IBM WebSphere Business Integration Adapters
IBM WebSphere InterChange Server

Connector Development Guide for Java

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 529,

30September2004

This edition of this document applies to IBM WebSphere InterChange Server, version 4.3.0, IBM WebSphere
Business Integration Adapter Framework (5724-G92), version 2.6.0.

To send us your comments about this documentation, email doc-comments@us.ibm.com. We look forward to
hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2004. All rights reserved. US Government Users
Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 2000, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document. . Xi
Audience . . xi
Related documents . . xi
Typographic conventions . . xii
Markup conventions . Xii
New in this release . . . Xiii
New in WebSphere Business Integrat10n Adapter Framework V2 6 0 . . xiii
New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integratlon Adapter Framework V2 4 1 xiii
New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integration Adapters v2.4.0 . xiil
New in WebSphere InterChange Server v4.2.1 and WebSphere Business lntegratmn Adapters v2.3.0 . Xiv
New in WebSphere Business Integration Adapters 2.2.0. . S . XV
New in WebSphere Business Integration Adapters 2.1 . . xvi
New in WebSphere Business Integration Adapters 2.0.1 . xvii
New in WebSphere Business Integration Adapters 2.0. . xvii
Part 1. Getting started.1
Chapter 1. Introduction to connector development . 3
Adapters in the WebSphere business integration system . .3
Connector components . .7
Event-triggered flow .18
Tools for adapter development . . . 25
Overview of the connector development process . . 28
Part 2. Building a connector 33
Chapter 2. Designing a connector . . 35
Scope of a connector development project . .35
Designing the connector architecture . . 36
Designing application-specific business ob]ects .41
Event notification . . . 49
Communication across operatmg systems . 50
Communication across other systems. . 50
Summary set of planning questions . 53
An internationalized connector . . 56
Chapter 3. Providing general connector functionality . . 63
Running a connector . 63
Extending the connector base class . 68
Handling errors . . 69
Using connector conf1gurat1on property values . 70
Calling a data handler. . .75
Handling loss of connection to an appl1cat1or1 .78
Chapter 4. Request processing . 79
Designing business object handlers .79
Extending the business-object-handler base class . . 82
Handling the request . .82
Performing the verb action . . 85
Handling the Create verb. . 86
Handling the Retrieve verb . . 89
Handling the RetrieveByContent Verb .94
© Copyright IBM Corp. 2000, 2004 iii

Handling the Update verb . 96
Handling the Delete verb . 103
Handling the Exists verb . 104
Processing business objects . . 105
Indicating the connector response . 112
Handling loss of connection to the apphcatlon 112
Chapter 5. Event notification . . 113
Overview of an event-notification mechanism . 113
Implementing an event store for the application . . 114
Implementing event detection . . 119
Implementing event retrieval . . 124
Implementing the poll method . 126
Special considerations for event processing . 130
Chapter 6. Message logging . . 137
Error and informational messages . 137
Trace messages . . 139
Message file . . 142
Chapter 7. Implementing a Java connector. . 147
Extending the Java connector base class . 147
Beginning execution of the connector . 148
Creating a business object handler . . 152
Implementing an event-notification mechanism . . 174
Shutting down the connector . . 200
Handling errors and status . . 201
Chapter 8. Adding a connector to the business integration system . 207
Naming the connector . 207
Compiling the connector . . 208
Creating the connector definition . . 208
Creating the initial configuration file . 210
Starting up a new connector . 211
Part 3. Java connector library API reference . . 229
Chapter 9. Overview of the Java connector library . 231
Classes and interfaces . 231
Chapter 10. CWConnectorAgent class. . 233
CWConnectorAgent(). . 233
agentInit() . 234
executeCollaboratlon() . 236
getCollabNames() . . . 237
getConnectorBOHandlerForBO() . 237
getEventStore() . . 238
getVersion() . . 239
gotApplEvent() . . 240
1sAgentCapableOfPollmg() . 241
isSubscribed() . 243
pollForEvents() . . 244
terminate() . 245
Chapter 11. CWConnectorAttrType class. . 247
Attribute-type constants . . 247
Chapter 12. CWConnectorBOHandler class . 249

iV Connector Development Guide for Java

CWConnectorBOHandler() 249
doVerbFor() L ..o 250
getName() L L ..o 2B82
setName() L. e s s u2m2

Chapter 13. CWConnectorBusObj class2b5
areAllPrlmaryKeysTheSame() Lo 4o
compare() Ao 1)
doVerbFor() L . ..o 260
dump() e
getAppText() . . e e s e s s 262
getAttrASIHashtable() 1 0 X)
getAttrCount() Lo 264
getAttrindex() .25
getAttrName() .25
getbooleanValue() .. .o . o .206
getBusinessObjectVersion() .266
getBusObjASIHashtable() L L. 207
getBusObjValue() L L Lo 207
getCardinality(). .28
getDefault() oL L L2609
getDefaultboolean() L. L L2609
getDefaultdouble(). ..200
getDefaultfloat() 2
getDefaultint() L L L L s s L22
getDefaultlong() L L L L s L22
getDefaultString() 273
getdoubleValue() L L L L s 274
getfloatValue() L L. L L 274
getintValue(). 275
getLocale() . . e s e e 276
getLongTextValue() e Me
getlongValue() oL oL oL e L2
getMaxLength() L L L. L. 278
getName() L L ..o 278
getObjectCount() . .]
getParentBusmessOb]ect() C o2
getStringValue() L L L L L L2
getSupportedVerbs()28
getTypeName(). s8]
getTypeNum() L L oL 282
getVerb() L oL Lo 282
getVerbAppText() .28
hasAllKeys(). u283
hasAllPrimaryKeys()o 264
hasAnyActivePrimaryKey(). .28
hasCardinality() .28
hasName() L L L L L. Lo Lo 286
hasType().o 286
isAttrPresent() L. Lo Lo 287
isBlank() . . . X V4
1sFore1gnKeyAttr() C e e e 288
islgnore(). L . L L Lo 288
isKeyAttr() L L L L2809
isMultipleCard() L ..o 289
isObjectType()o 290
isRequiredAttr() L L L L ..o 0290
isType() . . 2. X |
1sVerbSupported() el
objectClone() L oL s 292
prune()o e 292

Contents V

removeAllObjects()
removeBusinessObjectAt() .
setAttrValues() .
setbooleanValue() .
setBusObjValue() .
setDEEI()
setDefaultAttrValues()
setdoubleValue()
setfloatValue() .
setintValue() .
setLocale() . . .
setLongTextValue()
setStringValue().
setVerb() .

Chapter 14. CWConnectorConstant class
Outcome-status constants

Verb constants . -

Cormector—property constants .

Chapter 15. CWConnectorEvent class .
CWConnectorEvent() .
getBusObjName() .
getConnectorID() .
getEffectiveDate() .
getEventID().
getEventSource()
getEventTimeStamp().
getIDValues()
getKeyDelimiter() .
getPriority() .
getStatus() . . .
getTriggeringUser()
getVerb() .
setEventSource()

Chapter 16. CWConnectorEventStatusConstants class
Event-status constants

Chapter 17. CWConnectorEventStore class
CWConnectorEventStore() .
archiveEvent() .
cleanupResources()
deleteEvent()

fetchEvents()

getBO()

getNextEvent() .
getTerminate() .
recoverInProgressEvents() .
resubmitArchivedEvents() .
setEventStatus()
setEventsToProcess() .
setTerminate() .
updateEventStatus() .
Deprecated Methods .

Chapter 18. CWConnectorEventStoreFactory interface.

getEventStore() .

Vi Connector Development Guide for Java

. 293
. 293
. 294
. 294
. 295
. 296
. 297
. 297
. 298
. 299
. 299
. 300
. 301
. 302

. 303
. 303
. 303
. 304

. 305
. 305
. 306
. 307
. 307
. 308
. 308
. 308
. 309
. 309
. 310
. 310
. 311
. 311
. 312

. 313
. 313

. 317
. 317
. 318
. 319
. 319
. 320
. 321
. 323
. 324
. 324
. 326
. 326
. 327
. 328
. 328
. 329

. 331
. 331

Chapter 19. CWConnectorExceptionObject class . . 333
CWConnectorExceptlonOb]ect() e . 333
getExpl() . . 333
getMsg() . .o . 334
getMsgNumber() . . 334
getMsgType() . 335
getStatus() . 335
setExpl() . . 336
setMsg() . . . 336
setMsgNumber() . 337
setMsgType() . 337
setStatus() . 338
Chapter 20. CWConnectorLogAndTrace class . . 339
Message-type constants . . . 339
Trace-level constants . . 339
Chapter 21. CWConnectorReturnStatusDescriptor class . . 341
CWConnectorReturnStatusDescriptor() . e . 341
getErrorString(). .o . 342
getStatus() . 342
setErrorStringy() . . 342
setStatus() . 343
Chapter 22. CWConnectorUtil class . . 345
Message-file constants e . 345
Methods . . . 345
Deprecated Methods . . 377
Chapter 23. CWCustomBOHandlerinterface interface . 379
doVerbForCustom() . 379
Chapter 24. CWExceptlon class . . 381
Methods . . . 381
CWException() . . 381
getExceptionObject() . . 382
getMessage() . 382
getStatus() . 383
setStatus() . 383
Exception subclasses . . 384
Chapter 25. CWProperty class . . 389
CWProperty() . . . 389
getCardinality(). . 390
getChildPropValue() . . . 391
getChildPropsWithPrefix() . . 391
getEncryptionFlag() . 392
getHierChildProp() . 393
getHierChildProps() . . 394
getHierProp() . 395
getName() . 396
getPropType() . . 396
getStringValues() . . 396
hasChildren() . 397
hasValue() . . 398
setEncryptlonFlag() . 399
setValues() . 399
Part 4. Java low-level connector library API reference . 401

vii

Chapter 26. Overview of the low-level Java connector library. 403
Classes and interfaces .403

Chapter 27. BOHandlerBaseclass405
doVerbFor() L ..o oo A0S
getName() L L L Lo 40e
setName()o oy

Chapter 28. BusinessObjectinterface interface409
clone(). L L oL s s s s 40
doVerbFor() L . ..o 4
dump() oA
getAppText() o L L L4112
getAttrCount() L L L Lo 42
getAttrDesc() L L L. A2
getAttribute() o L L oL oL 413
getAttributeIndex() L L L L L L L L L. ... 418
getAttributeType(). L L L 414
getAttrName() L L L L L L e 414
getAttrValue() L L L. 41s
getBusinessObjectVersion() .415
getDefaultAttrValue(). .46
getLocale() L L L L. e
getName() . . e YV
getParentBusmessOb]ect() S V4
getVerb() L L L Lo oL 48
getVerbAppText() 418
isAttrPresent() L L ..o o418
isBlank() L L a4
islgnore(). . . 3 1
1sVerbSupported() S
makeNewAttrObject() L L L L L ..o ... 40
setAttributeWithCreate(). 42
setAttrValue() L o L Lo L Lo s s aAan
setDefaultAttrValues() L .. L oL 4
setLocale()o oo 4n3
setVerb() L L L. s 43

Chapter 29. ConnectorBaseclass.425
executeCollaboration() L. L. L42
getBOHandlerForBO() L. L ... 426
getCollabNames() . . . " 521
getSupportedBusOb]Names() A 4
getVersion() A Y4
gotApplEvent(). 428
init() . . . O 0
1sAgentCapableOfPolhng() e X (0]
isSubscribed() . . . T X |
pollForEvents(). L oL 432
terminate() L L ... oo oo .a43s
Deprecated methods L L L L Lo .433

Chapter 30. CxObjectAttrcIass A £ 1)
Attribute-type constants. . . . e oo 48s
Methods L 435
equals() L L L L Lo oo 430
getAppText() L L ..o 430
getCardinality(). L L 437
getDefault() oL L 43y
getMaxLength() L L L L 43y

viii Connector Development Guide for Java

getName() Lo 438
getRelationType()43
getTypeName().43
getTypeNum()438
hasCardinality() L Lo 43
hasName() L L oL
hasType(). . . e X
1sF0re1gnKeyAttr() ey
isKeyAttr() L L L e e A
isMultipleCard() Lo A
isObjectType() L e e e e e e e e s s
isRequiredAttr() L L L L L s s s s
isType() L L e e e e e s s s s s

Chapter 31. CxObjectContainerinterface interface. 443
getBusinessObject() ... 443
getObjectCount() L L L. 44
insertBusinessObject() L L L L L Lo 444
removeAllObjects() L L L ..o 445
removeBusinessObjectAt() o .445
setBusinessObject() L . . L 445

Chapter32CxPropertycIass e ¥ ¥ 4
CxProperty() O 4
getAllChildProps() 448
getChildProp()M
getEncryptlonFlag() ey
getName() . . " 1510
getStringValues() .45
hasChildren() L L. 4s
setEncryptlonFlag() C oo s s as2
setValues() . . R 45 YA

Chapter 33. CxStatusConstantsclass455

Outcome-status constants .45

Chapter 34. JavaConnectorUtilclass457
Static constants. L . Lo L Lo 4sY
Methods P V4
CreateBusmessOb]ect() O SoTe
createContainer() Lo 4Y
generateMsg() L L L ..o 459
getAllConfigProp() . . .)
getAllCormectorAgentPropertles() O 1< |
getAllStandardProperties() .46
getAllUserProperties() ... 462
getBlankValue(). L L L L L 462
getConfigProp() .463
getEncoding() .463
getlgnoreValue() L L L L L L L. 464
getLocale() oL 404
getOneConfigProp() .465
getSupportedBusObjNames() .465
initAndValidateAttributes(). 466
isBlankValue() 468
islgnoreValue() ..o o468
isTraceEnabled() L . L 468
logMsg() L .46
traceWrite() L. L L L4

Contents 1X

Chapter 35. ReturnStatusDescriptor class . . 471
getErrorString(). . 471
getStatus() . 471
setErrorString() . . 472
setStatus() . 472
Chapter 36. Low-level Java exceptions . 473
Exception subclasses . . 473
Methods . . 473
getFormattedMessage() . 473
Part 5. Appendixes . . 475
Appendix A. Standard conflguratlon propertles for connectors . . 477
New properties. e . . 477
Standard connector properties overview . 477
Standard properties quick-reference . . 479
Standard properties . 485
Appendix B. Connector Configurator . . 501
Overview of Connector Configurator . 501
Starting Connector Configurator . . . 502
Running Configurator from System Manager . 503
Creating a connector-specific property template . . 503
Creating a new configuration file. . 506
Using an existing file. . 507
Completing a configuration file . 508
Setting the configuration file properties. . 509
Saving your configuration file . . 516
Changing a configuration file . . 517
Completing the configuration . . . 517
Using Connector Configurator in a globahzed env1ronment . . 517
Appendix C. Connector Script Generator . 519
Appendix D. Connector feature checklist . 521
Guidelines for using the connector feature checklist . 521
Standard behavior for request processing . . 521
Standard behavior for the event notification . . 523
General standards . . 525
Notices . . - . 529
Programming interface 1nformat10n . . 530
Trademarks and service marks . 531
Index . . 533

X Connector Development Guide for Java

About this document

The IBM® WebSphere® Business Integration Adapter portfolio supplies integration
connectivity for leading e-business technologies, enterprise applications, legacy
applications and mainframe systems. The product set includes tools and templates
for customizing, creating, and managing components for business integration.

This document describes the development of Java connectors in the IBM
WebSphere business integration system.

Audience

This document is for connector developers. It assumes proficiency in the Java
programming language. The document also assumes a basic familiarity with the
IBM WebSphere business integration system, including connectors and business
objects.

Related documents

Note: Important information about the products documented in this guide may be
available in Technical Support Technotes and Flashes issued after this
document was published. These can be found on the WebSphere Business
Integration Support Web site,
http:/ /www.ibm.com/software/integration/websphere/support/. Select the
component area of interest and browse the Technotes and Flashes sections.
Additional information might also be available in IBM Redbooks at
http:/ /www.redbooks.ibm.com/.>>.

The complete set of documentation describes the features and components
common to all WebSphere Business Integration Adapters installations, and includes
reference material on specific components.

Note: This document covers the development of connectors written in Java. The
development of C++ connectors is documented in the Connector Development
Guide for C++.

You can install the documentation available for this product or read it directly

online at the following sites:

* For general adapter information, for using adapters with WebSphere message
brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,
WebSphere Business Integration Message Broker), and for using adapters with
WebSphere Application Server:

ttp:/ /www.ibm.com /websphere/integration/wbiadapters/infocente
htp:// ib /websphere/integration/wbiadapters/inf,

* For using adapters with WebSphere InterChange Server:

[http:/ /www.ibm.com /websphere/integration /wicserver /infocenter|

* For more information about message brokers (WebSphere MQ Integrator,
WebSphere MQ Integrator Broker, WebSphere Business Integration Message
Broker):

[http:/ /www.ibm.com /software/integration/mqfamily/library /manualsa /|

* For more information about WebSphere Application Server:

© Copyright IBM Corp. 2000, 2004 xi

http://www.ibm.com/software/websphere/wbiadapters/infocenter
http://www.ibm.com/websphere/crossworlds/library/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/

[http: / /www.ibm.com /software /webserver/appserv/library.html|

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Typographic conventions

This document uses the following conventions:

courier font

italic
italic, italic
blue outline

{1

[]

/,\

%text% and $text

ProductDir

Indicates a literal value, such as a command name, file
name, information that you type, or information that the
system prints on the screen.

Indicates a new term the first time that it appears.

Indicates a variable name or a cross-reference.

A blue outline, which is visible only when you view the
manual online, indicates a cross-reference hyperlink. Click
include the outline to jump to the object of the reference.

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

In this document, backslashes (\) are used as the convention
for directory paths. For UNIX installations, substitute slashes
(/) for backslashes. All WebSphere Business Integration
Adapters product pathnames are relative to the directory
where the product is installed on your system.

Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.
Represents the directory where the product is installed. For
the IBM WebSphere InterChange Server environment, the
default product directory is "IBM\WebSpherelCS”. For the
IBM WebSphere Business Integration Adapters environment,
the default product directory is "WebSphereAdapters”.

Markup conventions

xii

In some chapters, you will find text identified by the following markup:

— WebSphere InterChange Broker
Describes functionality of the IBM WebSphere business integration system
when InterChange Server is the integration broker.

— WebSphere MQ Integrator Broker
Describes functionality of the IBM WebSphere business integration system
when WebSphere MQ Integrator Broker is the integration broker.

Connector Development Guide for Java

http://www.ibm.com/software/webserver/appserv/library.html

New in this release

This chapter describes the new features of IBM WebSphere business integration
system that are covered in this document.

New in WebSphere Business Integration Adapter Framework v2.6.0

The IBM WebSphere Business Integration Adapter 2.6.0 release provide the
following new functionality in the Java connector library:

Application Response Measurement (ARM) support has been added to
connectors and can be added to custom Java connnectors in the form of several
ARM APIs that must be implemented in the adapter runtime code. Such
connectors can participate in the IBM Tivoli Monitoring for Transaction
Performance (ITMTP) transaction decomposition.

Recommended version of the JDK has been updated from 1.3.1 to 1.4.2
Common Event Infrastructure (CEI) support has been added to Java connectors.

An additional signature for thedoVerbFor() method has been added to support
Results sets. The original signature is still supported.

The adapter runtime has been split out of crossworlds.jar and placed in
whbiart.jar

A new "low cost” API to check for optional attributes, isAttrPresent(), has been
added to the CwConnectorBusObj and to

New in WebSphere InterChange Server v4.2.2 and WebSphere
Business Integration Adapter Framework v2.4.1
As of version 2.4.1 of the IBM WebSphere Business Integration Adapter

Framework, adapters are are not supported on Solaris 7, so references to that
platform version have been deleted from this guide.

New in WebSphere InterChange Server v4.2.2 and WebSphere
Business Integration Adapters v2.4.0

The IBM WebSphere InterChange Server 4.2.2 release and the IBM WebSphere
Business Integration Adapter 2.4.0 release provide the following new functionality
in the Java connector library:

A Java connector now uses the IBM Java Object Request Broker (ORB) instead of
the third-party VisiBroker ORB.

A Java connector can now support access to the serialized data sent or or
received from a data handler. In previous releases, the connector could access
serialized data as a Java String. It can now provide access in any of the
following new forms.

— As an input stream: boToStream() and streamToBO()

— As aJava byte array: boToByteArray() and byteArrayToBo()

— As a Reader object: readerToBO0()

In addition, all data-handler methods now support the ability to identify the
character encoding and locale for the data handler to associate with the

serialized data. For more information, see the descriptions of these methods in
[“Calling a data handler” on page 75)

© Copyright IBM Corp. 2000, 2004 xiii

* The Java connector library now provides the following features for an event
store (which the CWConnectorEventStore class represents):

— The setEventStoreStatus() method has been renamed to setEventStatus()
to better identify its functionaliy. This method sets the status of an event.

— The getB0() method now provides the ability to return an integer status
value to its calling method. The default implementation of getBO() continues
to use the form that does not provide an internal status value. For more
information, see the description of the getB0() method in the
CWConnectorEventStore class.

* The Java Connector Development Kit (JCDK) now provides a more consistent
way to create startup scripts for Java connectors. It also provides a template (for
both Windows and UNIX-based systems) for the creation of this startup script.
For more information, see [“Starting up a new connector” on page 211)

In addition, the Adapter Development Kit (ADK) now includes an adapter sample
in the DevelopmentKits\Twineball_sample subdirectory of the product directory.
This adapter sample includes a Java connector.

New in WebSphere InterChange Server v4.2.1 and WebSphere
Business Integration Adapters v2.3.0

The IBM WebSphere InterChange Server 4.2.1 release and the IBM WebSphere
Business Integration Adapter 2.3.0 release provide the following new functionality
in the Java connector library:

¢ The connector can now provide additional configuration to a data handler when
it calls the data handler. The following methods support a config argument to
specify this additional information:

— boToString()
— stringToBo()

For more information, see the descriptions of these methods in [Chapter 22,
[“CWConnectorUtil class,” on page 345.|

* The Java connector library now provides access to individual name-value pairs
in application-specific information through new forms of the getAppText ()
method in the CWConnectorBusObj class.

For more information, see the description of this method in
[“CWConnectorBusObj class,” on page 255/

* In support of duplicate event elimination (which provides guaranteed event
delivery), the Java connector library provides the setDEEId() method in the
CWConnectorBusObj class to enable a connector to set a business object’s
ObjectEventld attribute with the event identifier (ID). For more information, see
“Guaranteed event delivery for connectors with non-JMS event stores” on page|
134 and the description of the setDEEId() method in |Chapter 13,|
“CWConnectorBusObj class,” on page 255

* The Java connector library now provides the ability to modularize the
instantiation of an event-store object from its event-store factory with the
following features:

— The |getEventStore()| method (in the CWConnectorAgent class) instantiates an

event-store object from its event-store factory. The CWConnectorAgent class
provides a default implementation of this method. However, you can override
it for custom behavior. The default implementation of the pol1ForEvents()
method now calls this getEventStore() method to obtain its event-store object

X1V Connector Development Guide for Java

— The EventStoreFactory connector configuration property can contain the
name of the event-store-factory class for your event store. The
getEventStore() method (in the CWConnectorAgent class) obtains the name of
the event-store-factory class it uses from the EventStoreFactory property.

For more information, see [“CWConnectorEventStoreFactory interface” on page
[176]

* The Java connector library now provides the leetTerminate()| and [setTerminate()|
methods (in the CWConnectorEventStore class) to allow the pol1ForEvents()
method to better handle the application-timeout (APPRESPONSETIMEOUT) condition.

* The Java connector library now provides verb constants for the Exists and
RetrieveByContent verbs. The VERB_EXISTS and VERB_RETRIEVEBYCONTENT verb
constants are defined in the CWConnectorConstant class.

* To supplement changes to the return codes of the gotAppl1Events() method, the
manual now provides more information on how to respond to these different
outcome-status values. In addition, the pol1ForEvents() method has been
enhanced to take these same responses. For more information, see
[business object” on page 187

* The Java connector library now supports the creation of a custom business object
handler through a custom-business-object-handler class, which implements the
CWCustomBOHandler interface. If your connector supports a business object that
requires different processing for one of its verbs, you can create a custom
business object handler to handle that verb for the business object. For more
information, see [“Creating a custom business object handler” on page 172

New in WebSphere Business Integration Adapters 2.2.0

The IBM WebSphere Business Integration Adapter 2.2.0 release provides the
following new functionality in the Java connector library:

¢ The "CrossWorlds” name is no longer used to describe an entire system or to
modify the names of components or tools, with are otherwise mostly the same
as before. For example "CrossWorlds System Manager” is now "System
Manager” and "CrossWorlds InterChange Server” is now "WebSphere
InterChange Server”.

¢ The Java connector library provides access to hierarchical connector
configuration properties with the following enhancements:

— The CWProperty class provides methods that allow you to obtain string values
and child properties within a hierarchical connector property. For more
information, see [Chapter 25, “CWProperty class,” on page 389

— The CWConnectorUtil class provides two new methods to allow you to
retrieve the top-level hierarchical connector properties:
- To retrieve all top-level hierarchical connector properties:
getAl1ConfigProperties()
- To retrieve a specified top-level hierarchical connector property:
getHierarchicalConfigProp()

For more information, see [“Retrieving hierarchical connector configuration|
[properties” on page 73]

Note: The Java connector library still provides support for the old single-valued,
simple connector property values, though the getConfigProp() method.

¢ The Java connector library now supports duplicate event elimination to provide
guaranteed event delivery. Duplicate event elimination is most often used by
JMS-enabled adapters that have event stores that are not implemented as JMS
queues. Use the DuplicateEventETimination connector property to enable this

New in this release XV

functionality. For more information, see [‘Guaranteed event delivery for

[connectors with non-JMS event stores” on page 134

* The Java connector library now provides the following API methods:

— The [getSupported Verbs()) method (in the CWConnectorBusObj class) provides a
list of the business object’s supported verbs.

— The method (in the CWConnectorBusObj class) allows you to set the
locale that is associated with a business object. This new method
complements the getLocale() method that has already been defined in this

same class.

— The kleanupResources()| method (in the CWConnectorEventStore class) allows
you to release resources that the event store has used.

Chapter 8, “Adding a connector to the business integration system,” on page 207]

now provides more information on how to add a Java connector to the
WebSphere business integration system, including;:

— How to create an initial configuration file for a connector

— How to create a startup script for a Java connector from a sample startup file
— Use of the new CWConnEnv.bat (Windows) or CWConnEnv.sh (UNIX) file for

system-variable settings

* |Chapter 2, “Designing a connector,” on page 35| now provides more information

on how to internationalize a connector.

* Several Java connector library methods have been changed to better handle

status return codes:

— The default implementation of the pol1ForEvents() method now takes the

following actions:

- It handles the CONNECTOR_NOT_ACTIVE and NO_SUBSCRIPTION_ FOUND status
return codes from its call to the gotAppl1Event () method. For more

information, see [“Sending the business object” on page 187

- It returns an outcome status of APPRESPONSETIMEQUT if access to the event
store fails. Failure to access the event store can occur in any of the

following event-store methods:

Event-store method Exception raised
fetchEvents() StatusChangeFailedException
archiveEvent() ArchiveFailedException
deleteEvent() DeleteFailedException
updateEventStatus() StatusChangeFailedException

— The agentInit() method now returns an outcome status of FAIL if, when it

throws an exception, the exception-detail object’s status value is not set. If the
status value is set within the exception-detail object, agentInit() returns that

status value.

— The doVerbFor() method now returns an outcome status of
APPRESPONSETIMEOUT if, when it throws a ConnectionFailureException, the

exception-detail object’s status value is not set. If the status value is set within

the exception-detail object, doVerbFor() returns that status value.

New in WebSphere Business Integration Adapters 2.1

The IBM WebSphere Business Integration Adapter 2.1 release provides the
following new functionality in the Java connector library:

Xvi Connector Development Guide for Java

¢ The Java connector library provides access to attribute values that are LongText
with the following new methods in the CWConnectorBusObj class:

— getlLongTextValue() to retrieve a LongText attribute value
— setlLongTextValue() to set a LongText attribute value

¢ The Java connector library now supports synchronous sending of an event with
the executeCollaboration() method in the CWConnectorAgent class. This method
is valid for use only when InterChange Server is the integration broker.

New in WebSphere Business Integration Adapters 2.0.1

The IBM WebSphere Business Integration Adapter 2.0.1 release provides an
internationalized version of the Java connector library. This internationalized
connector library enables you to develop adapters that can be localized for many
different locales (A locale includes culture-specific conventions and a character
code set.). The structure of connectors has changed in the following ways to
accomodate locales:

* The connector framework now has a locale associated with it. This locale is
determined either from the operating system locale or from configuration
properties. The Java connector library provides the getGlobalEncoding() and
getGloballLocale() methods in the CWConnectorUtil class to access this
information from within the connector.

* A business object has a locale associated with it. This locale is associated with
the data in the business object, not with the name of the business object
definition or its attributes. The Java connector library provides the getLocale()
method in the CWConnectorBusObj class to obtain the name of this locale from
within the connector.

For more information, see [“An internationalized connector” on page 56

New in WebSphere Business Integration Adapters 2.0

The IBM WebSphere Business Integration Adapter 2.0 release provides support for
adapters. An adapter is a set of software modules that communicate with an
integration broker and with applications or technologies to perform tasks such as
executing application logic and exchanging data. For an introduction to adapters
and integration brokers, see [’Adapters in the WebSphere business integration|
lsystem” on page 3}

In addition, the structure of IBM WebSphere business integration system
documentation for the development of connectors has changed in this release:

* IBM introduces a new application programming interface (API) for the
development of Java connectors. Features of this connector library include:

— Classes to encapsulate an event and event store within the Java connector:
CWConnectorEvent, CWConnectorEventStore

— A single class, CWConnectorBusObj, to provide access to the business object,
business object definition, and attributes

— Classes to provide more information in exceptions that methods of the Java
connector library throw: CWException, CWConnectorExceptionObject

— Other classes retain the functionality of the old low-level Java connector
library by being wrappers for the old classes.

IBM recommends this new Java connector library for all new development of
Java connectors. For a summary of the classes and methods of this connector

New in this release ~ XVi1

library, see [Chapter 9, “Overview of the Java connector library,” on page 23|
Support for the old low-level Java connector library will be continued for
backward compatibility.

* The following guides have been combined to create a single document that
covers the development of Java connectors:

Connector Development Guide Material on how to develop a connector is
now found in Parts I and II of this new
document.

Connector Reference: Java Class Library Reference material on the low-level Java

connector library is now found in Part IV.

Reference material on the new Java connector library is now found in Part III of
this document.

xviil Connector Development Guide for Java

Part 1. Getting started

© Copyright IBM Corp. 2000, 2004

2 Connector Development Guide for Java

Chapter 1. Introduction to connector development

This chapter provides a brief overview of connectors in the IBM WebSphere
business integration system. It also introduces the Java Connector Development Kit
(JCDK) and summarizes the development steps you need to follow to implement a
connector. This chapter contains the following sections:

+ [“Adapters in the WebSphere business integration system”|

+ [“Connector components” on page 7]

* |“Event-triggered flow” on page 18

« ["Tools for adapter development” on page 25|

« |“Overview of the connector development process” on page 2§

Adapters in the WebSphere business integration system

The IBM WebSphere business integration system consists of the following components,
which allow heterogeneous business applications to exchange data:

* A set of IBM WebSphere Business Integration Adapters

An IBM WebSphere Business Integration Adapter, called simply an adapter,
provides the components to support communication between an integration
broker and either applications or technologies to perform tasks such as executing
application logic and exchanging data.

* An integration broker

The task of an integration broker is to integrate data among heterogeneous
applications. The IBM WebSphere business integration system can include either
of the integration brokers in [Table 1

Table 1. Integration brokers in the WebSphere business integration system

Integration broker For more information Documentation set

WebSphere message brokers Implementing Adapters for WebSphere Business
(WebSphere MQ Integrator, WebSphere Message Brokers Integration Adapters
WebSphere MQ Integrator

Broker, WebSphere Business

Integration Message Broker)

WebSphere Application Implementing Adapters for WebSphere Business
Server WebSphere Application Server — Integration Adapters
IBM WebSphere InterChange Implementation Guide for WebSphere InterChange
Server (ICS) WebSphere InterChange Server ~ Server

In the IBM WebSphere business integration system, the integration broker
communicates to these applications through adapters. The following adapter
components actually provide this communication:

* |“Business objects” on page 5)whose role is to hold information about an
application event

* [“Connectors” on page 6,|whose role is to send information about an application
event to an integration broker or to receive information about a request from the
integration broker.

© Copyright IBM Corp. 2000, 2004 3

shows how these components transfer information from an application to
an integration broker.

Integration broker

Business object

Business object

Runtime components

of an
Connector adapter
Connector
framework

Application-specific
component

Application

Figure 1. Adapter components that provide information transfer

Note: An adapter also includes configuration and development components. For
more information, see [“Tools for adapter development” on page 25|

shows the WebSphere business integration system and the role that
connectors play within this system.

4 Connector Development Guide for Java

Legacy Order Management
application enterprise application
v I
Custom connector Application connector

[]

Legacy data Order data

7" Integration broker <«

> — Order Status for
Sales Order display on Web site

L]]

- IBM WebSphere
Appl
pplication connector Business Integration Adapter
4 for XML
v
“Sales Order Processing
enterprise application Web server | —» .
Web client

Figure 2. WebSphere business integration system

Business objects

As shows, a business object is a two-part entity, consisting of a repository
definition and a runtime object.

Table 2. Parts of a Business Object

Repository entity Runtime object

Business object definition Business object instance (often called a
“business object”)

Business object definition

A business object definition represents a group of attributes that can be treated as a
collective unit. For example, a business object definition can represent an
application entity and the operations that can be performed on the entity, such as
create, retrieve, update, or delete. A business object definition can also represent
other programmatic entities, such as the data contents of a business transaction
form submitted from a Web browser. A business object definition contains attributes
for each piece of data in the collective unit.

Note: For more information on the structure of a business object definition, see
[“Processing business objects” on page 105

When you “develop a business object,” you create a business object definition. You
can create business objects definitions with the Business Object Designer tool,

Chapter 1. Introduction to connector development 5

which provides an easy-to-use, graphical user interface (GUI) that allows you to
define attributes of the business object. It supports saving the business object
definition in the repository or in an external XML file.

Within Business Object Designer, you can create the business object definition in
either of two ways:

* Manually, by using the dialogs of Business Object Designer to define attributes
and other information for the business object definition.

* With an Object Discovery Agent (ODA), which automatically generates a
business object definition by:

— Examining specified entities within the application

— “Discovering” the elements of these entities that correspond to business object
attributes

Note: For information on how to use Business Object Designer to create business
object definitions in either of these ways, see the Business Object Development
Guide.

Business object instance

While the business object definition represents the collection of data, a business
object instance (often just called a “business object”) is the runtime entity that
contains the actual data. For example, to represent a customer entity in your
application, you can create a Customer business object definition that defines the
information in the customer entity that needs to be sent to other applications. At
runtime, the Customer business object, which is an instance of this business object
definition, contains the information for a particular customer.

Connectors

The role of a connector is to send information about an application event to an
integration broker or to receive information about a request from the integration
broker.

— WebSphere InterChange Server
When InterChange Server is the integration broker, a connector is a set of
software modules and data maps that connect WebSphere Business
Integration collaborations to an enterprise application or an external
application. A collaboration represents a business process that can involve
several applications. The connector acts as an intermediary for one or more
collaborations, using an enterprise application’s API, or some other program
logic, to support a business process.

The information that the connector sends or receives is in the form of a business
object. Therefore, each connector supports one or more business object definitions.
These business object definitions have been designed to correspond to application
data models or to other types of external entities. The business object closely
reflects the data entity that it represents. Its structure and content match that of the
entity.

6 Connector Development Guide for Java

— WebSphere InterChange Server
When InterChange Server is the integration broker, the business integration
system uses two kinds of business objects. The business object that a
connector processes is called an application-specific business object. The business
object that a collaboration processes is called a generic business object. For more
information, see ["Mapping services” on page 11}

— Other integrator brokers
When a WebSphere message broker (WebSphere MQ Integrator, WebSphere
MQ Integrator Broker, or WebSphere Business Intregration Message Broker)
or WebSphere Application Server is the integration broker, the business
integration system uses a single kind of business object, the business object
that a connector processes. Although this business object is an
application-specific business object, the “application-specific” qualifier is often
omitted because this is the only kind of business object used.

The connector uses information in its supported business object definitions to
perform its major roles, as [Table 3| shows.

Table 3. Operations on business objects for the different roles of a connector

Connector role Operation on business object
“Event notification” on| When an event that affects an application entity occurs (such as
page 20| when a user of the application creates, updates, or deletes

application data), a connector:

* Creates a business object, based on the information in its
business object definition

* Fills this business object with data from an application entity

* Sends this business object as an event to an integration broker

‘Request processing” on| ~When the integration broker requests a change to the

page 22| connector’s application or when the broker needs information
from the connector’s application, the connector:

* Receives a business object from an integration broker

* Uses information in the business object and its business object
definition to create the appropriate application command that
performs an operation

* Sends any appropriate response information back to the
integration broker

Note: Every connector must implement request processing. Implementation of
event notification is optional (though it does require some minor coding).

Connector components

The connector represents the application in the WebSphere business integration
system, performing tasks in support of the application. For example, the connector
polls the application for events and sends business objects that represent events to
the integration broker. The connector also performs tasks in support of
integration-broker requests, such as retrieving or modifying application data.

Chapter 1. Introduction to connector development 7

illustrates the components of a Java connector. The Java connector library
is included in the generic services that the connector framework provides.

Integration broker

Connector
Transport layer Connector
framework
Generic services (C++ extensions)
Business Application
ﬁlﬁgiaoln s object event Application-
handler notification specific
component
Application interface functions

Application

Figure 3. Components of a Java connector

As shows, a connector has the following components:

* [“Connector framework”}—Provided as part of the WebSphere Business
Integration Adapters product to communicate with the integration broker.

* |“Application-specific component” on page 18—Contains code you write to
specify the actions of the application-specific tasks of the connector, such as basic
initialization and setup methods, business object handling, and event
notification.

Connector framework

The connector framework manages interactions between the connector and the
integration broker. IBM provides this component to ease connector development.
The connector framework is written in Java and includes a C++ extension to allow
the development of the application-specific component in C++.

— Other integration brokers
In an IBM WebSphere business integration system that uses a WebSphere
message broker (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,
or WebSphere Business Integration Message Broker), or WebSphere
Application Server as its integration broker, the connector framework is a
nondistributed component; that is, it resides entirely on the adapter machine.
shows the high-level connector architecture with the WebSphere
message broker or WebSphere Application Server. For information on the
connector architecture with InterChange Server as the integration broker, see
[“Connector controller” on page 9.|

8 Connector Development Guide for Java

Connector A Integration broker

Connector framework

Event

[] delivery

message

Delivery
queue

Data
handler

Application-specific

component

Business
data:l]

Application A

Figure 4. High-level connector architecture with a WebSphere message broker

The connector framework provides the services that summarizes.

Table 4. Services of the connector framework

Component Services
[‘Connector controller’] * Provides mapping between application-specific and
(InterChange Server only) generic business objects, and manages business

object transfers between the connector and
collaborations running in InterChange Server.

* Provides other management services, such as
monitoring the status of the connector

[‘Transport layer” on page 13 * Handles the exchange of business objects between
the connector and the integration broker

* Manages the exchange of startup and administrative
messages between the connector controller and the
client connector framework

* Keeps a list of subscribed business objects

java connector library On pase * Provides generic services to the application-specific
1]7 ava connector library” on page| component in the form of Java classes and methods

Connector controller

In an IBM WebSphere business integration system that uses InterChange Server as
its integration broker, the connector framework is distributed to take advantage of
services that InterChange Server provides. This distributed connector framework
contains the following components:

* The client connector framework runs as part of the connector process on the client

machine. It includes a transport layer, and the Java connector library. For more
information on these components, see [Table 4 on page 9

* The connector controller runs within InterChange Server on the server machine.

Chapter 1. Introduction to connector development 9

illustrates the basic components of a connector within the InterChange
Server system. InterChange Server, collaborations, and connector controllers run as
a single process, and each connector runs as a separate process.

InterChange Server

’ Collaboration ‘ ’

i

Collaboration ‘

i

v

v

//

\\

Connector Connector Connector
controller controller controller
Connector | |, CORBA IIOP
framework or Messaging
Client Client Client
Connector Connector Connector
Framework Framework Framework
Connector ——»

Application-specific

Application-specific

Application-specific

component / component component
Application Application Application
libraries libraries libraries
’ Application 1 ‘ ’ Application 2 ‘ ’ Application 3 ‘

Figure 5. High-level connector architecture with WebSphere InterChange Server

The connector controller manages communication between the connector
framework and collaborations. The primary type of information that connector
components exchange is a business object. Other types of connector communication
include startup information and administrative messages.

Note: A connector controller is instantiated by InterChange Server for each
connector that has been defined in the InterChange Server repository. You
do not need to provide code for the connector controller, as this component
is internal to InterChange Server.

In addition to the features that the client connector framework provides, the
connector controller provides the services that summarizes.

Table 5. Services of the connector controller

Connector controller service

[“Mapping services” on page 11|

“Business object subscription and)|

publishing” on page 12

Description

The connector controller calls the map
associated with each business object to
transfer data between generic business
objects and application-specific business
objects.

The connector controller manages
collaboration subscriptions to business object
definitions. It also manages connector queries
about subscription status for a business
object.

10 Connector Development Guide for Java

Table 5. Services of the connector controller (continued)

Connector controller service Description

Service call requests (For more information, The connector controller delivers

see |“Initiating a request with InterChange] collaboration service call requests to
[Server” on page 23|) connectors. It also accepts return status

messages and business objects from the
connector and forwards them to InterChange

Server.
Communication between components (For The connector controller contains a transport
more information, see|[“Transport mechanism| driver to handle its side of the mechanism
[with InterChange Server” on page 14) for exchanging business objects and

administrative messages between the
connector controller and client connector
framework. It also performs remote-end
synchronization to manages high-level
synchronization between itself and the client
connector framework. These services enable
the connector controller to communicate with
the connector, which might be installed
remotely.

Note: The connector controller handles its own internal errors as well as errors
from the client connector framework. In general, the connector controller
logs exceptions and then evaluates whether further action is needed. When
status messages are returned by the client connector framework, the
connector controller forwards the messages to the collaboration.

Mapping services: The client connector framework sends and receives
information in an application-specific business object. However, a collaboration
generates information in a generic business object. Because application-specific
business objects can differ from generic business objects, the InterChange Server
system must convert business objects from one form to another so that data can be
transmitted across the system. Data is transformed between generic and
application-specific business objects by data mapping.

Data mapping converts business objects from generic to application-specific and
from application-specific to generic forms. An application-specific business object
closely reflects the data entity that it represents. Its structure and content match
that of the entity. A generic business object, on the other hand, typically contains a
superset of attributes that represents a typical, cross-application view of an entity’s
data. This type of business object is a composite of common information that many
applications have about a particular entity. A generic business object serves as an
intermediate point between data models.

Mapping is initiated by the connector and executed at runtime. For example, when
a connector needs to map an application-specific business object to a generic
business object, it runs an associated map to transfer data between the
application-specific business object and the generic business object before sending
the generic business object to a collaboration.

Mapping is handled by the connector controller. illustrates the connector
in the InterChange Server system and shows the components of the connector.

Chapter 1. Introduction to connector development 11

InterChange Server

Collaboration

Mapping
execution

—

Generic
business
objects

App A
RGeS _--»| connector
N controller

App B
connector
controller

App C
connector
controller

App A
business
objects

App A
client connector
framework

App B
business
objects

App B
client connector
framework

Application A

Application B

App C
business
objects

App C
client connector
framework

Application C

Figure 6. Mapping in the InterChange Server System

For more information on data mapping, refer to the Map Development Guide in the
IBM WebSphere InterChange Server documentation set.

Business object subscription and publishing: Subscription handling is managed
through a subscription list, which is a list of business objects to which collaborations
have subscribed. Both the connector framework and the connector controller
maintain a subscription list, as follows:

* The connector controller maintains a list of business objects to which
collaborations have subscribed.

When collaborations start, they subscribe to the business objects that they are
interested in by informing the connector controller of their interest. The
connector controller stores this information in a subscription list, which contains
the name of the subscribing collaboration and the business object definition
name and verb.

When the connector controller receives a business object from the client
connector framework, it checks its own subscription list to determine which
collaborations have subscribed to this type of business object. It then forwards
the business object to the subscribing collaboration.

¢ The connector framework also maintains a list of business objects to which
collaborations have subscribed. However, this subscription list is a consolidated
version of the connector controller’s subscription list.

At initialization, the connector downloads its business object definitions and
configuration properties from the InterChange Server repository. It also requests
the subscription list from the connector controller. The subscription list that the
connector controller sends to the client connector framework contains only the

12 Connector Development Guide for Java

names of the business object definitions and verbs for these subscribed business
objects. The connector framework stores this subscription list locally. Whenever a
new collaboration starts up and subscribes to a business object, the connector
controller notifies the connector framework so that the local subscription list is
kept current.

As part of the initialization of the client connector framework, the connector
framework instantiates a subscription manager. The subscription manager tracks
all subscribe and unsubscribe messages that arrive from the connector controller
and maintains a list of active business object subscriptions. Through the
subscription manager, the application-specific connector component can query
the connector framework to find out whether any collaborations are interested in
a particular kind of business object.

illustrates the connector architecture for subscription handling.

InterChange Server

Collaboration

Collaboration
Connector controller
subscription list

Collaboration

Bus Obj Name
Connector \ / Bus Obj Verb
controller Subscriber
v
Client connector Bus Obj Name
framework
Bus Obj Verb
Application-specific Connector framework
component subscription list
A
Application

Figure 7. Subscription handling

For more information on subscriptions, see|“Request processing” on page 22|

Transport layer

The transport layer of the connector framework handles the exchange of
information between the connector and the integration broker. The transport layer
of the connector framework provides the following services:

* Receives business objects from the integration broker and sends business objects
to the integration broker:

Message service Description

"Request processing” on| Receives a business object from the integration broker and

page 22| sends it to the application-specific component of the connector

“Event notification” on| Receives a business object from the application-specific

page 20| component of the connector and sends it to the integration
broker

* Manages the exchange of startup and administrative messages between the
connector and the integration broker.

Chapter 1. Introduction to connector development 13

* Keeps a list of business objects that are subscribed to

The transport mechanism of the transport layer depends on the integration broker
in your business integration system:

+ [“Transport mechanism with InterChange Server”|

» |[“Transport mechanism with other integration brokers” on page 17

Transport mechanism with InterChange Server: If the integration broker is
InterChange Server (ICS), the transport layer handles the exchange of information
between the connector controller, which resides within ICS, and the client
connector framework.

Note: For more information, see |[’Connector controller” on page 9|

As shows, the transport layer for a connector that communicates with
InterChange Server might include two transport drivers, one for the Common
Object Request Broker (CORBA) and one for some message-oriented middleware

(MOM).
InterChange Server
Connector controller
Connector
Transport layer
CORBA IIOP Message transport
transport driver driver
- Connector
Java-to-C++ translation (C++ only) | framework
Generic services (C++ class library)
Business Application
f Glotpal object event Application-
unctions handler notification specific
component

Application interface functions

Application

Figure 8. Connector architecture for communicating with InterChange Server

summarizes the tasks that the transport layer performs and the transport
mechanisms it can use.

14 Connector Development Guide for Java

Table 6. Tasks of the transport layer

Transport-layer task Transport mechanism

Connector startup and exchange of startup =~ CORBA
messages between the connector controller

and the client connector framework

Administrative messages about the state of ~CORBA
the client connector framework

Sending business objects to the connector, CORBA
initiated with a collaboration service call

request
Sending business objects from the connector, CORBA A message-oriented middleware
initiated with an event delivery system, including one of the following:

* WebSphere MQ
* Java Messaging Service (JMS)

This transport mechanism has the following tasks:

* At connector startup, the transport layer uses the Common Object Request
Broker Architecture (CORBA) to transfer information from InterChange Server to
the memory of the connector process.

In the CORBA architecture, objects communicate through the Object Request
Broker (ORB). The ORB is a set of libraries and services that connects an object,
such as a connector controller, with another object, such as a client connector
framework. The ORB enables objects to find each other at startup and to invoke
methods on each other at runtime.

With the ORB, the CORBA architecture provides a Naming Service that allows
an object on the ORB to locate another object by name. At startup, the client
connector framework uses the Naming Service to connect to the InterChange
Server. The client connector framework then uses the ORB to request its
application-specific connector configuration properties and its list of supported
business object definitions from the repository. For more information, see
[“Starting up a connector” on page 63.|

Once the client connector framework and connector controller are active and
connected, the client connector framework requests its list of business object
subscriptions. At this point, connector initialization is complete, and the
connector starts polling for events.

* For administrative messages about the state of the connector, the transport layer
uses CORBA to send and receive state information for the connector controller.

Changes in state of the client connector framework can be initiated from System
Manager in the WebSphere Business Integration Toolset. Such changes include
start, stop, pause, and resume operations, as well as retrieving the status. In
addition, administrative messages can specify remote message logging.

* For sending business objects to the connector, initiated with a collaboration
service call request, the transport layer also uses CORBA.

CORBA technology includes the Internet Inter-ORB Protocol (IIOP) transport
protocol. CORBA IIOP provides a lightweight, high-performance, synchronous
communication mechanism that the connector controller and the client connector
framework use to interact. Because the IIOP communication mechanism is
synchronous, connector components can quickly determine whether a business
object exchange was successful and can take appropriate action if necessary.

* For sending business objects from the connector, initiated with an event delivery,
the connector can be configured to use either CORBA or a message-oriented
middleware (MOM) system.

Chapter 1. Introduction to connector development 15

When CORBA is used for business object subscription delivery, multiple
business objects can be delivered concurrently, improving performance for
subscription delivery. Using CORBA as a communication mechanism provides
particularly good performance on a high-bandwidth LAN network.

A messaging system provides asynchronous message delivery across a network,
enabling connector components to send a message and continue processing
without waiting for a response. The messaging system also provides persistent
messaging, allowing the connector controller and client connector framework to
operate independently.

Note: In this case, connector components continue to use CORBA for startup
and administrative messages.

In the messaging communication mechanism, message transport is handled by
transport drivers in the client connector framework and the connector controller.
The message transport driver implements the low-level mechanism for
exchanging data between InterChange Server and the underlying message
queuing software. Messages between the components of the connector are
transported in a format defined by the messaging software.

This business integration system uses CORBA technology provided by the IBM
Object Request Broker (ORB). illustrates the CORBA communication
mechanism.

InterChange Server

Connector controller

Transport driver IBM ORB
Transient
IBM Java ORB package Naming Server

||

CORBA IIOP ORB

v

IBM Java ORB package

Transport driver

Connector application-specific
component

l 1

Application

Figure 9. Communication within a connector using CORBA IIOP

Supported message-oriented middleware includes:

* IBM WebSphere MQ messaging suite. In this system, each active connector
requires one unidirectional message queue. WebSphere MQ manages the queue
using a queue manager. In this business integration system, each InterChange
Server has one queue manager for all system components.

* Java Messaging Service (JMS)

16 Connector Development Guide for Java

Note: To configure a connector’s transport mechanism for event delivery, set the
DeliveryTransport standard property. For more information on this
property, see[Appendix A, “Standard configuration properties for|
[connectors,” on page 477

Transport mechanism with other integration brokers: If the integration broker is
a WebSphere message broker (WebSphere MQ Integrator, WebSphere MQ
Integrator Broker, or WebSphere Business Integration Message Broker) or
WebSphere Application Server, the transport layer handles the exchange of
information between the connector framework and the integration broker. The
transport layer for a connector that communicates with the broker includes a single
transport driver for the IBM WebSphere MQ messaging suite. Data is exchanged
between applications by means of application-specific business objects, which are
transported between the connector framework and the integration broker as
WebSphere MQ messages. The integration broker removes the message from the
MQ queue, and passes it through the message flow for the queue.

This transport mechanism uses WebSphere MQ messages to perform the following
tasks:

* For sending business objects to the connector, which initiates request processing,
the transport layer converts the business object to an MQ message and puts this
message onto the appropriate WebSphere MQ queue.

* For sending business objects from the connector, which initiates an event
delivery, the transport layer takes the MQ message off the appropriate
WebSphere MQ queue and converts it to an application-specific business object.

The connector framework uses a custom data handler to transform the
application-specific business object to and from an MQ message of the appropriate
wire format for the destination WebSphere MQ queue.

For more detailed information on the use of MQ messages and a connector, see the
implementation guide for your integration broker.

Java connector library

The connector framework includes the Java connector library, which provides
generic services and utilities for connector development. The primary services
provided by the Java connector library are:

* Business object definition directory — Manages access to the business object
definitions supported by a connector. Business object definitions are cached to
improve connector performance in a distributed environment.

* Business object class — Provides methods for processing application information.
This class allows the connector to handle application data in an object-oriented
manner.

* Subscription manager — Enables the connector to check whether any
collaborations are interested in a particular kind of business object.

* Logging utility — Enables the connector to post messages to the connector’s
standard output. Functionality includes configurable output destination and
allows assigning error levels for all logged messages.

¢ Tracing utility — Enables the connector to generate trace messages for debugging
purposes.

Note: For a summary of the Java connector library and its classes, see [Chapter 9
[“Overview of the Java connector library,” on page 231.k:hapter 9, “Overview
of the Java connector library,” on page 237.

Chapter 1. Introduction to connector development 17

The Java connector library is a Java .jar file called WBIA. jar, which resides in the
following directory:

ProductDir/1ib

Because Java is operating-system-independent, the Java connector library is
available on all systems that the WebSphere Business Integration Adapters product
supports

Application-specific component

The application-specific component of the connector contains code tailored to a
particular application. This is the part of the connector that you design and code.
The application-specific component includes:

* A connector base class to initialize and set up the connector

* A business object handler to respond to request business objects initialized by
integration-broker requests

* If needed, an event notification mechanism to detect and respond to application
events.

You develop your code for the application-specific component to use services
provided by the connector framework. The connector class library provides access
to these services. You can write your connector code in C++ or Java depending on
the application programming interface (API) provided by the application.

If the application API is written in Java, you write the application-specific portion
of the connector in Java, accessing services of the connector framework through the
Java connector library.

Event-triggered flow

The Java connector library contain an API that allows a user-defined
application-specific component to communicate with an integration broker through
business objects. Applications can exchange information with other applications
that the integration broker handles.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
can communicates with other applications through executing a collaboration.
A collaboration represents a business process that can involve several
applications. A connector transforms data and logic into a business object that
carries information about an event in the connector’s application. The
business object triggers a collaboration business process and provides the
collaboration with information that it needs for the business process.

Note: An external process can also initiate execution of collaborations
through a call-triggered flow. For more information, see the Access
Development Guide in the IBM WebSphere InterChange Server
documentation set.

18 Connector Development Guide for Java

— WebSphere Message Brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere
Business Integration Message Broker), the connector might request
information from or send information to other applications through
WebSphere MQ workflows. The MQ workflow routes the information as
appropriate.

When an event occurs in the application, the connector’s application-specific
component creates a business object to represent this event and sends the event to
the integration broker. An application event is any event that affects an entity
associated with a business object definition. To send an event to an integration
broker, the connector initiates an event delivery. This event contains a business

object. Therefore, the flow trigger that a connector initiates is called an
event-triggered flow (see |Figure 10).

Integration Broker

Connector Connector

Request
. Information-routing Connector
Connector | Event delivery mechanism framework
framework

Response

Figure 10. Event-triggered flow for WebSphere business integration system

shows event-triggering flow within the IBM WebSphere business
integration system, which involves the following steps:

1. The connector creates the triggering event, which it sends to the integration
broker during event delivery.

When an event that affects an application entity occurs (such as when a user of
the application creates, updates, or deletes application data), a connector creates
a business object, which contains data from the application entity and a verb
that indicates the operation performed on this data.

2. The application-specific component of the connector calls the gotAppTEvent ()
method of the Java connector library to send the triggering event to the
connector framework. Through this method call, the connector performs an
event delivery, which initiates the event-triggered flow.

3. The connector framework performs any needed conversion of the triggering
event to a business object, then sends this event to the integration broker.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
controller receives the triggering event, performing any needed mapping
of the application-specific business object data to the appropriate generic
business object. The connector controller then sends the triggering event
to the specified collaboration to trigger its execution. This collaboration is
one that has subscribed to the business object that the event represents.
The collaboration receives this business object in its incoming port.

4. The integration broker uses whatever logic it provides to route the event to the
appropriate application. If it is so programmed, it might perform a request,
routing the event information to the connector of some destination application,

Chapter 1. Introduction to connector development 19

which would receive the event containing its request business object. In
addition, this destination connector might send a request response back to the
integration broker.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the
collaboration might perform a service call request to send a business object
to the connector controller of the destination connector, which is bound to
its outgoing port. This connector controller performs any needed
conversion from the resulting generic business object to the appropriate
application-specific business object. It then performs a service call response
to send the event response to the connector controller, which routes it
back to the collaboration.

As [Figure 10| shows, a connector can participate in one of two roles:

+ |“Event notification”}—the connector sends an event (in the form of a business
object) to the integration broker to notify it of some operation that has occurred
in the application.

* [“Request processing” on page 22}—the connector receives a request business
object from an integration broker.

Each of these connector roles is described in more detail in the following sections.

Event notification

One role of a connector is to detect changes to application business entities. When
an event that affects an application entity occurs, such as when a user of the
application creates, updates, or deletes application data, a connector sends an event
to the integration broker. This event contains a business object and a verb. This role
is called event notification.

This section provides the following information about event notification:
+ |“Publish-and-subscribe model”

+ |“Event-notification mechanism” on page 21

Publish-and-subscribe model

A connector assumes that the business integration system uses a
publish-and-subscribe model to move information from an application to an
integration broker for processing:

* An integration broker subscribes to a business object that represents an event in
an application.

WebSphere InterChange Server
If your business integration system uses InterChange Server, a collaboration
subscribes to a business object that represents an event in an application,
and then the collaboration waits.

* A connector uses an event-notification mechanism to monitor when application
events occur. When an application event does occur, the connector publishes a
notification of the event in the form of a business object and a verb. When the
integration broker receives an event in the form of the business object that it has
subscribed to, it can begin the associated business logic on this data.

20 Connector Development Guide for Java

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
controller checks its own subscription list when it receives a business object
from the connector framework to determine which any collaborations have
subscribed to this type of business object. If so, it then forwards the
business object to the subscribing collaboration. When a collaboration
receives the subscribed event, it begins executing.

Event-notification mechanism

An event-notification mechanism enables a connector to determine when an entity
within an application changes. When an event occurs in an application, the
connector application-specific component processes the event, retrieves related
application data, and returns the data to the integration broker in an business
object.

Note: This section provides an introduction to event notification. For more
information on how to implement an event-notification mechanism, see
[Chapter 5, “Event notification,” on page 113.|

The following steps outline the tasks of an event-notification mechanism:
1. An application performs an event and puts an event record into the event store.

The event store is a persistent cache in the application where event records are
saved until the connector can process them. The event record contains
information about the change to an event store in the application. This
information includes the data that has been created or changed, as well as the
operation (such as create, delete, or update) that has been performed on the
data.

2. The connector’s application-specific component monitors the event store,
usually through a polling mechanism, to check for incoming events. When it
finds an event, it retrieves its event record from the event store and converts it
into an application-specific business object with a verb.

3. Before sending the business object to the integration broker, the
application-specific component can verify that the integration broker is
interested in receiving the business object.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
framework does not assume that the integration broker is always
interested in every supported business objects. At initialization, the
connector framework requests its subscription list from the connector
controller. At runtime, the application-specific component can query the
connector framework to verify that some collaboration subscribes to a
particular business object. The application-specific connector component
can send the event only if some collaboration is currently subscribed. The
application-specific component sends the event, in the form of a business
object and a verb, to the connector framework, which in turn sends it to
the connector controller within ICS. For more information, see
[services” on page 11}

Chapter 1. Introduction to connector development 21

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or
WebSphere Business Integration Message Broker) or WebSphere
Application Server, the connector framework assumes that the integration
broker is interested in all the connector’s supported business objects. If the
application-specific connector component queries the connector
framework to verify whether to send the business object, it will receive a
confirmation for every business object that the connector supports.

4. If the integration broker is interested in the business object, the connector
application-specific component sends the event, in the form of a business object
and a verb, to the connector framework, which in turn sends it to the
integration broker.

illustrates the components of the event-notification mechanism. In event
notification, the flow of information is from the application to the connector and
then to the integration broker.

Application Event
retrieval
User
action
& icati E;I ent Event Connector Integration
Application store > ook et
entity

Event
record

’ Information flow H >

Request processing

In addition to detecting application events, another role of a connector is to
respond to requests from the integration broker. A connector receives a request
business object from a integration broker when the broker requests a change to the
connector’s application or needs information from the connector’s application. In
general, connectors perform create, retrieve, and update operations on application
data in response to requests from a collaboration. Depending on the application’s
policies, the connector might also support delete operations. This role is called
request processing.

“—~(cen]
detection

Figure 11. Event detection and retrieval

WebSphere InterChange Server
If your business integration system uses InterChange Server, request
processing can sometimes be called “service call request processing”. The
connector receives a business object from its connector controller, which
receives it from a service call of a collaboration.

Note: This section provides an introduction to request processing. For more
information on how to implement request processing in your connector, see
[Chapter 4, “Request processing,” on page 79.|

22 Connector Development Guide for Java

Request processing involves the following steps:

1. As|Figure 10 on page 19 shows, an integration broker initiates request
processing by sending a request to the connector framework. This request is in
the form of a business object, called the request business object, and a verb. For
more information, see [“Initiating a request” on page 23|

2. The connector framework has the task of determining which business object
handler in the application-specific component should process the request
business object. For more information, see [Choosing a business object handler”|

3. The connector framework passes the request business object to the business
object handler defined for it in its business object definition.

The connector framework does this by calling the doVerbFor() method defined
in the business object class and passing in the request business object. The
business object handler then processes the business object, converting it to one
or more application requests.

4. When the business object handler completes the interaction with the
application, it returns a return-status descriptor and possibly a response
business object to the connector framework. For more information, see
[“Handling a request response” on page 24|

Initiating a request
The way a request is initiated depends on the integration broker in your IBM
WebSphere business integration system:

+ |“Initiating a request with InterChange Server”]

* [“Initiating a request with other integration brokers”]

Initiating a request with InterChange Server: If your business integration system
uses InterChange Server, the collaboration initiates a service call request, sending the
request over one of its collaboration ports. When you bind a port of a collaboration
object, you associate the port with a connector (or another collaboration object).
Collaboration ports enable communication between bound entities, so that the
collaboration object can accept the business object that triggers its business
processes, and then send and receive business objects as service call requests and
responses.

Note: For more information on how to define collaboration ports, see the
Collaboration Development Guide. For information on how to bind ports of a
collaboration object, see the Implementation Guide for WebSphere InterChange
Server. Both these documents are in the IBM WebSphere InterChange Server
documentation set.

One the service call request is initiated, the InterChange Server system takes the
following steps:

1. The connector controller for the connector bound to the collaboration port
receives the service call request. If necessary, the connector controller maps the
generic business object to an application-specific business object before sending
the request to the connector framework.

2. The connector controller forwards the service call request to the connector
framework. The connector controller sends the request business object as a Java
object.

Initiating a request with other integration brokers: If your business integration
system uses a WebSphere message broker (WebSphere MQ Integrator, WebSphere
MQ Integrator Broker, or WebSphere Business Integration Message Broker) or

Chapter 1. Introduction to connector development 23

WebSphere Application Server, the integration broker initiates a request by sending
a message to the WebSphere MQ queue associated with the connector. One the
request is initiated, the connector framework gets the WebSphere MQ message off
using its transport layer and converts the message to the appropriate business
object using a custom data handler.

For more information on the IBM WebSphere business integration system and
request processing, see the implementation guide for your integration broker.

Choosing a business object handler

A business object handler is the Java class that is responsible for transforming the
request business object into a request for the appropriate application operation. An
application-specific component includes one or more business object handlers to
perform tasks for the verbs in the connector’s supported business objects.
Depending on the active verb, a business object handler can insert the data
associated with a business object into an application, update an object, retrieve the
object, delete it, or perform another task.

Based on this response business object’s business object definition, the connector

framework obtains the correct business object handler for the associated business

object:

* When the connector starts up, the connector framework receives from the
connector controller the list of business objects that the connector supports.

* The connector framework calls the getConnectorBOHandlerForBO() method
(defined in the connector base class) to instantiate one or more business object
handlers.

* For each supported business object, the getConnectorBOHandlerForB0() method
returns a reference to a business object handler, and this reference is stored in
the business object definition in the memory of the connector process.

All conversions between business objects and application operations take place
within the business object handler (or handlers).

For more information about how to implement the getConnectorBOHandlerForB0()
method, see [‘Obtaining the business object handler” on page 66|

Handling a request response
Once a connector has processed this request and completed the interaction with
the application, it can return a response to the integration broker.

WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
framework returns a service call response to the collaboration. Using
information in the return-status descriptor, the collaboration can determine
the state of its service call request and take appropriate actions.

24 Connector Development Guide for Java

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere
Business Integration Message Broker) or WebSphere Application Server, the
connector framework’s response includes:

* A status indicator, which contains the information return-status descriptor

* Any business object messages, which contain the optional response
business objects

The connector framework puts this response information onto the connector’s
queue. However, for the message transport to be synchronous (that is, for
some program to wait for a response), a program must post its request
message to the integration broker on a synchronous request queue and expect
its response from the broker on a synchronous response queue. A correlation
ID on the response message identifies the message request to which it is
responding.

Tools for adapter development

In the IBM WebSphere business integration system, the connector is a component of
a WebSphere Business Integration adapter. As discussed in [“Adapters in the]
[WebSphere business integration system” on page 3| an adapter includes runtime
components to support communication between an integration broker and
applications or technologies. The adapter also includes an adapter framework, which
includes components for the configuration, runtime, and development of custom
adapters in cases where a prebuilt adapter for a particular legacy or specialized
application is not currently available as part of the WebSphere Business Integration
Adapters product.

The adapter framework includes configuration tools that assist in the development
of the adapter components listed in

Table 7. Adapter framework support for the development of a connector

Adapter component Configuration tool API

Business object Business Object Designer Not applicable

Object Discovery Agent (ODA) Business Object Designer Object Discovery Agent Development
Kit (ODK)

Connector Connector Configurator Java Connector Library

In addition to the adapter framework, the WebSphere Business Integration
Adapters product also provides the Adapter Development Kit (ADK). The ADK is a
toolkit that provides code samples of connectors, ODAs, and data handlers. For
more information, see[“Adapter Development Kit” on page 27,

Development support for business objects

shows the tools that the WebSphere Business Integration Adapters product
provides to assist in the development of business objects.

Chapter 1. Introduction to connector development 25

Table 8. Development tools for business object development

Development tool Description

Business Object Designer Graphical tool that assists in the creation of business object
definitions, either manually or through an ODA.

For a brief introduction to business objects, see|“Business objects” on page 5. For
more information on the use of the Business Object Designer, see the Business
Object Development Guide.

Development support for ODAs

shows the tools that the WebSphere Business Integration Adapters product
provides to assist in the development of an ODA.

Table 9. Development tools for ODA development

Development tool Description

Business Object Designer ~ Graphical tool that assists in the creation of business object
definitions, either manually or through an ODA.

Object Discovery Agent Set of Java classes with which you can create a custom ODA.

Development Kit (ODK)

In addition, the ADK provides sample ODAs in the following product
subdirectory:

DevelopmentKits\0dk

For a brief introduction to ODAs, see |[“Business objects” on page 5| For more
information on the use of the Business Object Designer and the development of
ODAs, see the Business Object Development Guide.

Development support for connectors

able 10 shows the tools that the WebSphere Business Integration Adapters product
provides to assist in the development of connectors.

Table 10. Development tools for connector development

Development tool Description

Connector Configurator] ~ Graphical tool that assists in the configuration of the connector
[Adapter Development Kit| Includes sample code for Java connectors and ODAs

The supported operating-system environment for connector development is
Windows 2000. Connectors can be written in either C++ or Java, depending on the
language of your application APL

Connector Configurator
Connector Configurator is a graphical tool that allows you to configure a
connector. It provides the ability to set the following information:

* Connector configuration properties

e Supported business objects

* Associated maps (with InterChange Server only)
* Log and message files

* Data-handler configuration (for guaranteed event delivery)

26 Connector Development Guide for Java

This graphical tool runs on Windows 2000 and Windows XP. Therefore, these
platforms are for connector configuration.

Note: For more information on the use of Connector Configurator, see
[“Connector Configurator,” on page 501

Adapter Development Kit

The Adapter Development Kit (ADK) provides files and samples to assist in the
development of an adapter. It provides samples for many of the adapter
components, including an Object Discovery Agent (ODA), a connector, and a data
handler. The ADK provides these samples in the DevelopmentKits subdirectory of
your product directory.

Note: The ADK is part of the WebSphere Business Integration Adapters product
and it requires its own separate Installer. Therefore, to have access to the
development samples in the ADK, you must have access to the WebSphere
Business Integration Adapters product and install the ADK. Please note that
the ADK is available only on Windows systems.

able 11| lists the samples that the ADK provides for the development of a
connector, as well as the subdirectory of the DevelopmentKits directory in which
they reside.

Table 11. ADK samples for connector development

DevelopmentKits
Adapter Development Kit component Description subdirectory
Java Connector Development Kit Provides sample code for a Java connector. jedk
(JCDK)

edk\ConnectorAgent
Twineball adapter sample Provides a sample adapter, which includes a Twineball_sample

connector.

The ADK provides an adapter sample in the Twineball_sample subdirectory of
DevelopmentKits. This sample contains several components of an adapter,
including a connector, a data handler, and an Object Discovery Agent (ODA). For
more information, see the Adapter Development Kit Samples Guide.

Connector Development Kit: The ADK includes the Java Connector Development
Kit (JCDK), which provides components for use in the development of a connector.
The components of the JCDK reside in the following ProductDir\DevelopmentKits
subdirectory:

DevelopmentKits\jcdk

describes the contents of the subdirectories in the jedk directory.

Table 12. Components of the Connector Development Kit

Connector Development Kit

component

Code samples

Description Subdirectory
Sample code for a simple low-level Java samples
connector

The JCDK includes the following code samples to help in the development of your
Java connector written with the low-level Java connector library:

DevelopmentKits\jcdk\samples

Chapter 1. Introduction to connector development 27

In addition, the JCDK includes code samples for a Java connector written with the
Java connector library in the following directory:

DevelopmentKits\edk\ConnectorAgent

To compile a Java connector, use the Java compiler provided with the IBM Java
Develoi ers Kit (JDK). For more information, see [‘Compiling the connector” on|

Note: The WebSphere Business Integration Adapters product also provides a C++
version of the Connector Development Kit for use in development
connectors in the C++ programming language. For more information, see
the Connector Development Guide for C++.

ODA samples: The Adapter Development Kit includes samples for an Object
Discovery Agent (ODA). These samples reside in the following directory:

DevelopmentKits\0dk

For more information, see [“Development support for ODAs” on page 26.|

Overview of the connector development process
This section provides an overview of the connector development process, which
includes the following high-level steps:

1. Install and set up the IBM WebSphere business integration system software and
install the Java Development Kit (JDK).

2. Design and implement the connector.

Setting up the development environment
Before you start the development process, the following must be true:

e The IBM WebSphere business integration system software is installed on a
machine that you can access.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, refer to the
System Installation Guide for UNIX or for Windows (in the WebSphere
InterChange Server documentation set) for information on how to install
and start up the InterChange Server system.

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere Integrator Broker, WebSphere
Business Integration Message Broker), refer to the installation chapter of the
Implementing Adapters for WebSphere Message Brokers for information on how
to install and start up the IBM WebSphere business integration system. If
your business integration system uses WebSphere Application Server, refer
to the installation chapter of the Implementing Adapters for WebSphere
Application Server for information on how to install and start up the IBM
WebSphere business integration system.

* The Java Development Kit (JDK) 1.4.2 or a JDK-compliant development product
is installed on the development machine.

28 Connector Development Guide for Java

The Java compiler is part of the JDK. Therefore, the JDK must be installed for
you to be able to create a new connector.

The IBM JDK is provided on the product CD. However, the product Installer
does not automatically install it on your system.

— For more information about how to install the JDK on Windows platforms as
part of the InterChange Server product, see the System Installation Guide for
Windows. For information on how to install it as part of the WebSphere
Business Integration Adapters product, see the WebSphere Business Integration
Adapters Installation Guide.

— For more information about how to install the JDK on Unix platforms as part
of the InterChange Server product, see the System Installation Guide for UNIX.
For information on how to install it as part of the WebSphere Business
Integration Adapters product, see the WebSphere Business Integration Adapters
Installation Guide

Ensure that the development environment can access the directories that contain
the connector library files. To compile the connector, the compiler must be able to
access the connector library.

For information on compiling a connector, see [“Compiling the connector” on|

InterChange Server |

If your business integration system uses InterChange Server, the InterChange
Server repository’s database server and ICS are running.

Note: This step is required only when you are ready to configure the connector
with Connector Configurator. For development only, you can create the
connector class, without connecting to ICS.

For an overview of how to configure a connector, see [Chapter 8, “Adding a
[connector to the business integration system,” on page 207.|For information on
starting up the IBM WebSphere business integration system, see your system
installation guide.

End of InterChange Server

Note: To create a connector, you do not need to run the messaging software.

However, the messaging software must be running before you can execute
and test the connector.

Stages of connector development

As part of the connector development process, you code the application-specific
component of the connector and then compile and link the connector source files.

In

addition, the overall process of developing a connector includes other tasks,

such as developing application-specific business objects. Here is an overview of the
tasks in the connector development process:

1.

Identify the application entities that the connector will make available to other
applications, and investigate the integration features provided by the
application.

InterChange Server

2. If your business integration system uses InterChange Server, identify generic

business objects that the connector will support, and define
application-specific business objects that correspond to the generic objects.

Chapter 1. Introduction to connector development 29

3. If your business integration system uses InterChange Server, analyze the
relationship between the generic business objects and the application-specific
business objects, and implement the mapping between them.

| End of InterChange Server

4. Define a connector base class for the application-specific component, and
implement functions to initialize and terminate the connector.

5. Define a business object handler class and code one or more business object
handlers to handle requests.

6. Define a mechanism to detect events in the application, and implement the
mechanism to support event subscriptions.

7. Implement error and message handling for all connector methods.
8. Build the connector.
9. Configure the connector.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, use
Connector Configurator to create the connector definition and save it in
the InterChange Server repository. You can call Connector Configurator
from System Manager.

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or
WebSphere Business Integration Message Broker) or WebSphere
Application Server, use Connector Configurator to define and create the
connector configuration file.

10. If WebSphere MQ will be used for messaging between connector components,
add message queues for the connector.

11. Create a startup script for the new connector.
12. Test and debug the connector, recoding as necessary.

provides a visual overview of the connector development process and
provides a quick reference to chapters where you can find information on specific
topics. Note that if a team of people is available for connector development, the
major tasks of developing a connector can be done in parallel by different
members of the connector development team.

30 Connector Development Guide for Java

Task:

Steps: Refer to:

Design connector
architecture

* Identify application entities to export

* Investigate application integration

Design and develop
business objects

v

* Design structure of business objects

* Implement business objects - Chapter 2

v

v

Code the connector

* Derive the connector base classand ~ §._____ Chapter 3
implement agentInit() and terminate()
functions

* Derive business-object-handler class ~ fl Chapter 4
and implement business object P
processing

* Implement event notification ~ f-- Chapter 5

* Implement error and message handling |- Chapter 6

* Implement the connector Chapter 7

A 4

Develop maps I—>

v

Add the connector
to the business
integration system

Ma
* (ICS only) Implement mapping between f§ De\felopment
generic and application-specific business Guide
objects
* Configure the connector definition ~ § Chapter 8

* Add message queues, if necessary

* Create a startup script

v

Test and debug

* Configure the connector

* Test connector in the IBM WebSphere
business integration system

* Recode as needed

Figure 12. Overview of the Java Connector development process

Chapter 1. Introduction to connector development

31

32 Connector Development Guide for Java

Part 2. Building a connector

© Copyright IBM Corp. 2000, 2004

33

34 Connector Development Guide for Java

Chapter 2. Designing a connector

This chapter provides an overview of analysis and design issues to consider when
planning a connector development project. The chapter presents topics that can
help you judge the complexity of building a connector for your application or
technology.

As with most software development projects, careful planning early in the
connector development cycle helps prevent problems during later implementation
phases. This chapter contains the following sections:

* [“Scope of a connector development project’|

* [“Designing the connector architecture” on page 34

. "’Designing application-specific business objects” on page 41|

* [“Event notification” on page 49|

+ [“Communication across operating systems” on page 50|

* [“Summary set of planning questions” on page 53|

[“An internationalized connector” on page 56|

Scope of a connector development project

IBM provides a connector framework as part of the Java Connector Development Kit.
The connector framework contains all the code necessary for the connector to
interact with an integration broker and provides a basic infrastructure for
interaction with the application.

Your task as a connector developer is to code the application-specific component of
a connector, and if necessary, develop the event notification mechanism. The
complexity of the design for your connector and the time required for the
connector’s implementation will vary based on the application.

To understand the scope and complexity of a connector development project, you
may want to develop a project plan before beginning a new connector. As you
develop the project plan, you need to identify the business requirements for the
connector, define the application data that the connector will handle, and
determine what application business processes the connector and business objects
will work with. Developing a project plan can help you understand application
functionality in the areas of business objects, business object processing, and event
management.

Working through the topics in this chapter can help you estimate the time and
effort needed to complete the connector development task. Each topic provides a
set of questions that are intended to develop understanding of specific aspects of
an application that might increase or decrease the complexity of the connector
development task. A complete set of answers to the questions for each topic
provides a high-level architecture for your connector.

Step in connector design For more information

Obtain information about the application that [‘Designing the connector architecture” on|
is relevant to the design of the connector page 36|

architecture.

© Copyright IBM Corp. 2000, 2004 35

Step in connector design For more information

Ensure that application-specific business “Designing application-specific business
objects adequately represent the application |objects” on page 41|

entities that the connector needs to export.

Design the event notification mechanism so [“Event notification” on page 49

that the application can notify the connector

of relevant events.

Designing the connector architecture

To design the connector architecture, consider evaluating the following areas of the
application that the connector is to support:

“Understanding the application environment” on page 37|

* |“Determining connector directionality” on page 3§|

* |“Getting data in and out of the application” on page 39

The specific areas within an application that affect connector design are illustrated
in In this figure, the clouds show the high-level tasks required for
connector development.

36 Connector Development Guide for Java

Connector controller

| Mapping services

Application

| Transport driver

l

Connector

| Transport driver

| Java-to-C++ translation (C++ only)

| Generic services (C++ class library)

Global Business
functions object
handler

Application
event
notification

| Application interface functions

Application database

Application entities

Event management
and
notification

Application
object interface
mechanism

| Application libraries

S~

InterChange Server -

Operating system

Connector OS to Application OS Application
communication mechanism operating system

Requires definition
for connector design

]

Structure defined;

requires implementation IBM business integration
based on application

Component part of

system

Figure 13. Areas of an application that affect connector design

Understanding the application environment

Understanding the application environment is the first step in assessing the

feasibility of a connector development project. To obtain an understanding of the
aspects of an application that affect connector development, consider these topics

and questions:

Operating system
* What operating system does the application run on?

Programming languages

* What programming languages were used to create the application?

Chapter 2. Designing a connector

37

Application execution architecture

* What is the execution architecture of the application? For example, in a
centralized architecture, the application and its database might both reside on a
mainframe system. In this case, both application processing and database
processing occur on this central system.

Alternatively, in a client-server architecture, the database might reside on a
server, and the application front-end program might be a client running on
another machine, such as a personal computer. Other types of application
execution architecture are online transaction processing and file server
architecture.

Database type

* Is there a central database for application data? If application data is stored in a
central database, what type of database is it? Example database types are RDMS
and flat file.

Distributed application
* Is the application distributed across multiple servers?
* Is the application database distributed across multiple servers?

During project assessment, you may want to identify and work with an application
expert. This person can also provide assistance during business object development
and connector development.

Determining connector directionality

Early on in the project planning phase, you need to determine what roles the
connector will perform for the application:

* Request processing—Update application data at the request of an integration
broker. For more information, see|“Request processing” on page 22|

* Event notification—Detect application events and send notification of events to
the integration broker. For more information, see [‘Event notification” on page|

kd

These roles determine the directionality that the connector supports:

* Unidirectional— some connectors might need to operate in only one direction,
passing data from the application to the integration broker, or from the
integration broker to the application.

— To inform an integration broker that changes have occurred in the application,
a connector must support event notification.

— To receive data from an integration broker, a connector must support request
processing, in which it interacts with the application to support Create,
Retrieve, Update, or Delete operations as requested by the integration broker.

For example, a connector might simply need to receive request business objects
from an integration broker and pass them to an application. The connector for
an application that serves only as the destination is a unidirectional connector —
it implements request handling to pass data to the application, but it does not
implement event notification. Knowing early in the development cycle that your
connector will operate unidirectionally can save a significant amount of
development time.

¢ Bidirectional—most connectors need to operate in both directions, passing data
from the application to an integration broker and receiving data back from the
integration broker.

38 Connector Development Guide for Java

To be bidirectional, your connector needs to support both event notification and
request processing.

For information on how to provide event notification support in your connector,
see [Chapter 5, “Event notification,” on page 113

Getting data in and out of the application

An important aspect of the connector development project plan is to determine
how the connector will get data into and out of the application. Ideally, an
application provides an application programming interface (API) that includes all
of the following features:

* Support for Create, Retrieve, Update, and Delete (CRUD) operations at the
object level

* Encapsulation of all of the application business logic

* Support for delta and after-image operations

¢ An event-management strategy that allows external notification at the subobject
level.

Typically, however, an application interface falls short of this ideal.

In your project plan, you need to establish whether a formal application API exists
and evaluate its robustness, or, if an API does not exist, determine whether there is
a suitable workaround. Keep in mind that an application CRUD interface can be
anything from batch file imports and extracts to a COM/DCOM server, so be sure
to explore all possible avenues. Refer to the application business object scope
specified in when exploring the application object CRUD interface.

Consider the following tasks:

* [“Examining previous integration efforts”—Have there been any other efforts to
integrate with this application?

* |“Determining whether application data is shared with other applications” on|
[page 401—Is the application data shared by other applications?

* [“Examining an application API” on page 40|—Is there an existing mechanism
that the connector can use to communicate with the application?

« |”Application use of batch clean-up or merge programs” on page 41l—Does the
application use batch clean-up or merge programs?

These questions are discussed in more detail in the following sections.

Examining previous integration efforts

If you have access to previous efforts to integrate other applications with your
application, you might be able to find ways of getting data into and out of the
application. Even if you decide to implement another approach to application
integration, the previous integration effort may provide useful design information.

When examining previous integration efforts, consider these questions:
¢ What was the purpose of the integration?

* Does the integration use interfaces that modify or retrieve information from the
application? If so, describe the mechanism used to modify or retrieve
information.

* If the integration can process an event generated in the application, what is the
mechanism used to trigger event processing?

* What is the mode of the existing integration? (batch, asynchronous, and so on)

Chapter 2. Designing a connector 39

* Will your connector replace the pre-existing integration? If not, will previous
integrations work with the data entities that your connector will be working
with?

In your answers, include information on all previous integration efforts that
interact with the application in different ways.

Determining whether application data is shared with other
applications

Your application might be one of several applications creating or updating data in
a single database. In this case, your connector might have to consider an
application data entity based on work that other applications are also doing. If you
determine that your connector will be sharing application data with other
applications, consider these questions:

* What is the mechanism used by the other applications to gain access to the
application data?

* Do other applications create, retrieve, update, or delete application data? If so,
what mechanism do other applications use for each verb?

* Is there object-specific business logic used by other applications? Is the logic
consistent throughout all of the applications?

Provide answers to these questions for all applications that share the application
data.

Examining an application API

If the application provides an API or other mechanism that the connector can use
to communicate with the application, examine the API and review any available
documentation. Keep in mind the following questions about the API:

* Does the API allow access for Create, Retrieve, Update, and Delete operations?
* Does the API provide access to all attributes of a data entity?

* Are there inconsistencies in the API implementation? Is the navigation to
Create/Retrieve/Update/Delete the same regardless of the entity?

* Describe the transaction behavior of the API. For example, an API might simply
enable the connector to run a report, which the connector can then read and use
for processing. Or the API might be more robust, providing ways of performing
asynchronous or synchronous Create and Update operations.

* Does the API allow access to the application for event detection? For example, if

an application event-notification mechanism uses a database table as an event
store, does the API allow access to this table?

Is the API suited for metadata design? APIs that are forms-based, table-based, or
object-based are good candidates. For information on metadata design, see
[“Assessing support for metadata-driven design” on page 45,

* Does the API enforce application business rules? In other words, is it an API that
interacts at the table level, form level, or object level?

The recommended approach to connector development is to use whatever API the
application provides. The use of an API helps ensure that connector interactions
with the application abide by application business logic. In particular, a high-level
API is usually designed to include support for the business logic in the application,
whereas a low-level API might bypass application business logic.

As an example, a high-level API call to create a new record in a database table
might evaluate the input data against a range of values, or it might update several

40 Connector Development Guide for Java

associated tables as well as the specified table. Using SQL statements to write
directly to the database may bypass the data evaluation and related table updates
performed by an APL

If no API is provided, the application might allow its clients to access its database
directly using SQL statements. If you use SQL statements to update application
data, work closely with someone who knows the application well so that you can
be sure that your connector will not bypass application business logic.

This aspect of the application has a major impact on connector design because it
affects the amount of coding that the connector requires. The easiest application for
connector development is one that interacts with its database through a high-level
APL If the application provides a low-level API or has no API, the connector will
probably require more coding.

Application use of batch clean-up or merge programs

A final aspect of the application business object interface that you need to
investigate is whether the application uses any batch clean-up or merge programs
to purge redundant or invalid data. For example, an application may run a batch
program once a day to standardize site names that operators may have typed in
incorrectly or incompletely. This program might, for example, change all sites
named IBM WebSphere to IBM WebSphere Software.

When this type of batch program runs, all changes to the database may also need
to flow through an InterChange Server customer synchronization system. A
program like this may result in hidden requirements for your connector. For
example, even if it appears initially that your connector does not need to provide
Delete functionality, you may need to provide Delete functionality to support a
batch clean-up program that deletes all sites named IBM WebSphere.

You may decide that you want to handle batch clean-up tasks periodically, such as
once a month, rather than synchronously. In any case, an important planning task
is to gather information about any programs that result in unanticipated
requirements for your connector.

Designing application-specific business objects

Application-specific business objects are the units of work that are triggered within
the application, created and processed by the connector, and sent to the integration
broker. A connector uses these business objects to export data from its application
to other applications and to import data from other applications.

The connector exposes all the information about an application entity that is
necessary to allow other applications to share the data. Once the connector makes
the entity available to other applications, the integration broker can route the data
to any number of other applications through their connectors.

Designing the relationship between the connector and its supported
application-specific business objects is one of the tasks in connector development.
Application-specific business object design can generate requirements for connector
programming logic that must be integrated into the connector development
process. Therefore, business object and connector developers must work together to
develop specifications for the connector and its business objects.

Consider the following design guidelines when you design your
application-specific business objects:

Chapter 2. Designing a connector 41

1. Determine what application entities the connector will work with.
2. Determine the scope of business object development.
3. Determine support for a metadata-driven design.

Note: For more information about the design of application-specific business
objects, see the Business Object Development Guide.

Determining the application entities

The complexity of business objects can have a significant impact on the amount of
work that is necessary to build a connector. A first step in identifying
application-specific business objects is to determine what application entities the
connector will work with.

You can identify application entities that the connector will work with in two

ways:

* Focus on existing InterChange Server collaborations whose business processes
correspond to those of your application.

* Focus on other applications that you want to integrate with your application.

Design focus on InterChange Server collaborations

If you are using InterChange Server as your integration broker, one way to begin
identifying application-specific business objects is to list the InterChange Server
collaborations that you want the application to work with. Consider the features of
each collaboration, and note which generic business objects each collaboration
references. Using this list, you can decide what kinds of business objects allow
your application to work with the collaboration.

For example, you may decide that you want to use your application with the
Customer Manager collaboration. In this case, the connector must handle customer
entities. The connector might extract customer data from the application to forward
to the collaboration or receive customer data from the collaboration to pass back to
the application.

Design focus on other applications

Alternatively, you might start the connector development task by looking at other
applications with which you want to integrate. As you examine your application
and other applications, you can determine what business processes you want to
share across applications and identify what data you want to exchange. The goal is
to determine what entities in your application make sense to implement as
business objects to enable integration with other applications.

For example, if your application stores customer data, you may want to keep the
customer database consistent with the customer database in another application. To
synchronize customer data, you need to know about the customer entity that each
application publishes. illustrates a design approach that focuses on
integrating with other applications.

42 Connector Development Guide for Java

Application A Application B
SalesReps Invoice
entity entity

Customer oo . Customer
entity . Application entities entity
correspond
Order Offices
entity entity

Figure 14. Design focus: identify applications with which to integrate

Design focus on the application
Use the following topics and questions to gather more information about
application entities and business objects:

[“Contained entities”|

[“Database representation of entities”]

[“Denormalization of application entities” on page 44

[“Batch processing of application entities” on page 44|

Contained entities:

Do the application entities have contained entities?

For example, in many applications a contract entity has one to many line items.
The IBM WebSphere Business Integration Contract business object contains child
line items as business objects. Determine whether the entities your connector
will work with have related entities that will be defined as child business
objects.

Database representation of entities:

Are there application business entities that are the same type but that have
different physical representations in the application?

For example, an application may have two types of contracts: hardware
contracts and software contracts. Both are of type Contract, but they are stored
in different tables in the application database. In addition, the attributes for each
Contract type differ.

Because a single set of maps can convert between only one generic business
object and one application-specific business object, developers for this
application must design business objects to account for the different entities in
the application. For example, they may need to redesign the IBM WebSphere
Business Integration generic business object, create new generic child business
objects, and create new maps.

shows the business objects that may result from multiple application
entities of the same type. It illustrates the creation of two generic child business
objects, one that contains data specific to hardware contracts and one that
contains data specific to software contracts.

Chapter 2. Designing a connector 43

InterChange Server
Application

Contract

Generic
business
Type =
objects vp
Application database Application-specific
business objects |
HW_CONTRACT App_HWContract HW_Contract
T * Mapping
SW_CONTRACT
App_SWContract SW_Contract
_/ Mapping

Figure 15. Database representation of application entities

Denormalization of application entities: Are there application entities that reside
in more than one location in the database but that correspond to the same logical
entity?

For example, Contract, Customer, and Contact entities might each have Customer
address fields as part of the physical table definition for each entity. If the
Customer address field changes in one entity, it must be updated in all entities.

However, the address fields might be consolidated into an Address business object
that needs to be updated for the Contact, Customer, and Contract business objects
if the address changes for any of the entities. In this case, the Address business
object would be referenced rather than contained by the top-level business objects
that use the data.

Batch processing of application entities: Are there batch processes associated
with the creation of application entities?

In some applications, batch processing may add data to entities. As an example, a
data entry operator may enter a new customer into the application database at
11:00 AM, but the customer record will not be complete until a 7:00 PM batch job
runs to fill in some remaining values.

If a batch process is associated with application entities and the process adds
important or required data, you need to determine when the business object is
generated. For example:

e If the batch process generates the event notification, the event will trigger the
connector to send a complete business object into the IBM WebSphere business
integration system.

* If the operator’s Save operation generates the event notification, the event may
trigger the connector to send an incomplete business object.

If there is a need for real-time data synchronization, but there are batch processes

running in the background, your connector development plans must account for
this.

44 Connector Development Guide for Java

Determining the scope of business object development

When you have determined at a high level what business objects you need to
define, you then need to determine the verb support for the business object
development, as follows:

1. Use to create a verb-scope summary for each business object and verb
combination that your connector will support.

2. Use the completed scope summary to assemble information about each
business object.

Table 13. Business Object Verb-Scoping Summary

Business object Required delivery verbs (application
name Required request Verbs (request processing) event notification)

Object 1 O Create O Update O Delete O Create O Update O Delete

Object 2 O Create O Update O Delete O Create O Update O Delete

Object n O Create O Update O Delete O Create O Update O Delete

Important: Most connectors must support the Retrieve verb for each business

object; therefore, it is not included in[Table 13

Assessing support for metadata-driven design

In addition to its structure and attributes, a business object definition can contain
application-specific information, which can provide processing instructions or
information on how the business object is represented in the application. Such
information is called metadata.

Metadata can include any information that the connector needs in its interactions
with the application. For example, if a business object definition for a table-based
application includes metadata that provides the application table and column
names, the connector can locate requested data using this information, and the
application column names do not need to be encoded in the connector. Because the
connector has access to its supported business object definitions at runtime, it can
use the metadata in the business object definition to dynamically determine how to
process a particular business object.

Depending on the application and its programming interface (API), a connector
and its business objects might be designed based on the ability to support the use
of metadata, as|Table 14{ shows.

Table 14. Connector support for metadata

Connector’s use of metadata Business object handlers required For more information

Entirely driven by the One generic metadata-drive business object “Metadata-driven connectors” on

processing instructions in the handler page 46|

metadata of its business object

definitions

Partially driven by the One partially metadata-driven business object |“Partially metadata-driven|

metadata in its business object handler connectors” on page 47]

definitions

Cannot use metadata Separate business object handler for each “Connectors that do not use|
business object that does not use metadata metadata” on page 48|

While some application interfaces have constraints that restrict the use of metadata
in connector and business object design, a worthwhile goal for connector

Chapter 2. Designing a connector 45

development is to make the connector as metadata driven as possible. Advantages

and disadvantages of the approaches in [[able 14{are discussed below.

Metadata-driven connectors

To be able to support metadata-driven design, the application API must be able to
specify what objects in the application are to be acted upon. In general, this means
that you can use the business object metadata to provide information about the
application entity to be acted upon and the attribute data as the values for that
object. A metadata-driven connector can then use the business object values and the
metadata (the application-specific information that the business object definition
contains) to build the appropriate application function calls or SQL statements to
access the entity. The function calls perform the required changes in the application
for the business object and verb the connector is processing.

Applications based on forms, tables, or objects are well suited for metadata-driven
connectors. For example, applications that are forms-based consist of named forms.
Programmatic interaction with a forms-based application consists of opening a
form, reading or writing fields on the form, and then saving or dismissing the
form. The connector for such an application can be driven directly by the business
object definitions that the connector supports.

The main benefit to a metadata-driven connector is that the connector can use one
generic business object handler for all business objects. In this approach, the
business object definition contains all the information that the connector needs to
process the business object. Because the business object itself contains the
application-specific information, the connector can handle new or modified
business objects without requiring modifications to the connector source code. The
connector can be written in a generic manner, with a single metadata-driven business
object handler, which does not contain hard-coded logic for processing specific
business objects.

Note: Business object names should not have semantic value to the connector. The
connector should process identically two business objects with the same
structure, data, and application-specific information with different names.

WebSphere InterChange Server
shows an application-specific business object and a connector with a
meta-data-driven business object handler. The processing instructions in the
application-specific information of the App_Order business object tell the
connector how to process the business object.

46 Connector Development Guide for Java

InterChange
Server

Connector

Collaboration

v

Connector
controller

Processing instructions
in the metadata of the

business object Metadata-driven Application
business

I:l object handler

App_Order
business

v

object

Figure 16. Using metadata in the business object for processing instructions

Because a metadata-driven connector derives its processing instructions from its
application-specific business objects, the business objects must be designed with
this type of processing in mind. This approach to connector and business object
design provides flexibility and easy extensibility, but it requires more planning in
the design phase. When connectors are designed to work with business object
metadata, the business object itself can be changed without requiring
corresponding changes in the connector.

For more information on designing a metadata-driven business object handler, see
[“Implementing metadata-driven business object handlers” on page 80

Partially metadata-driven connectors

IBM encourages the metadata approach for designing connectors and
application-specific business object definitions. However, some applications might
not be suited for this approach. Application APIs that are specific for each entity in
an application make it more difficult to write a metadata-driven connector. Often
the issue is that the call itself differs between objects in some structural way, rather
than just in the name of the method or the data that is passed.

Sometimes you can still drive a connector with metadata, though this metadata
does not contain the actual processing instructions. This partially metadata-driven
connector can use the metadata in the business object definition or attributes to help
determine what processing to perform. For example, an application that has a large
amount of business logic embedded in its user interface might have restrictions on
how an external program, such as a connector, can get information into and out of
its database. In some cases, it may be necessary to provide an extension to the
application using the application environment and application programming
interface. You may need to add object-specific modules to the application to handle
the processing for each business object. The application may require the use of its
application environment and interface to ensure that application business logic is
enforced and not bypassed.

In this case, the business object and attribute application-specific information can
still contain metadata for the connector. This metadata specifies the name of the
module or API call needed to perform operations for the business object in the
application. The connector can still be implemented with a single business object
handler, but it is a partially metadata-driven business object handler because this
metadata does not contain the processing instructions.

Chapter 2. Designing a connector 47

illustrates an application extension that is responsible for handling
requests from the connector. The extension contains separate modules for each
business object supported by the connector.

Application
Connector
I:I Processing instructions in the application
App_Order
business Partially
object metadata-driven
object handler I

Figure 17. Application-specific processing in the application

The benefit to the partially metadata-driven connector is that it still uses just one
business object handler. However, unlike with a metadata-driven connector, there
is coding to do when new business objects are created for the connector. In this
case, new object functions must be written and added to the application, but the
connector does not need to be recoded or recompiled.

Connectors that do not use metadata

If the application API does not provide the ability to specify what entities in the
application are to be acted upon, the connector cannot use metadata to support a
single business object handler. Instead, it must provide multiple business object
handlers, one for each business object the connector supports. In this approach, each
business object handler contains specific logic and code to process a particular
business object.

In , the connector has multiple, object-specific business object handlers.
When the connector receives a business object, it calls the appropriate business
object handler for that business object.

Connector Application

Processing instructions in the connector

Cust Handler
» | Order Handler
I:l Item Handler

App_Order
business
object

Cust Module

Order Module
Item Module

11

Figure 18. Application-specific processing in the connector

The drawback of this non-metadata approach is that when a business object is
changed or a new business object is added, this type of connector must be recoded
to handle the new or changed business object.

48 Connector Development Guide for Java

Event notification

The IBM WebSphere business integration system is an event-driven system, and
connectors need some way to detect and record events that occur in the
application. When you examine the application, determine whether it provides an
event-notification mechanism that can notify the connector of changes to
application data.

Event notification typically consists of a collection of processes that allows a
connector to be notified of internal application events. The event record should
include the type of the event, the business object name and verb, such as Customer
and Create, and the data key required for the connector to retrieve associated data.

In addition, an event-notification strategy must incorporate the necessary
mechanisms to ensure the data integrity between event records and the
corresponding event data. In other words, an event notification should not occur
until all the required data transactions for the event have completed successfully.

The design of an event notification mechanism varies depending on the extent to
which the application reports application events and enables clients to retrieve
event data. If the application provides an event notification interface such as an
API, IBM recommends that you use this to implement the event-notification
mechanism. The use of an API helps ensure that connector interactions with the
application abide by application business logic. If the application provides an
event-notification mechanism, use the following topics and questions to gather
more information.

Event notification level of detail

* Does the application’s event-notification mechanism provide enough detail about
the event to establish the discrete business object and verb? If not, can the event
notification component be configured to provide this level of detail?

For example, if a new record is added or an existing customer is updated,
determine whether the event-notification mechanism can provide information on
the type of operation, such as Create or Update operations. If the connector
supports delta operations, determine whether the event mechanism can provide
information on exactly which subobjects or attributes changed.

Event notification support for business logic

* Does event notification occur at a level that adequately supports business
requirements? In other words, an event-notification mechanism would ideally
include support for application business logic.

In your project plan, describe the event-notification mechanism. If there is no
existing event mechanism, determine what alternatives are available to detect
changes to application data. For example, you might be able to provide event
notification by setting up database triggers on tables in a relational database. Or
the application might provide a batch-export capability that exports all database
modifications to a file from which the connector can extract information about
application events.

Note: For more information on the stages of implementing an event-notification
mechanism, see [’Overview of an event-notification mechanism” on page|
-113.

Chapter 2. Designing a connector 49

Communication across operating systems

Communication between the application and the connector is a major component
in the overall connector design. If the application runs on a different operating
system from InterChange Server and the connector, you must ensure that a
mechanism is in place to allow the connector access to the application.

If the application provides an API, determine whether the API handles the
communication between the operating system of the application and that of the
connector. For example, if the application runs on UNIX and the connector and
InterChange Server run on Windows 2000, the application API might enable the
connector and application to communicate across operating systems.

shows an example communication mechanism between an ODBC
connector running on Windows 2000 and an ODBC-based application running on
UNIX. The connector builds dynamic SQL statements and executes them using the
ODBC APIL The ODBC driver enables the connector to establish a connection with
the application database and to access the database using ODBC SQL statements.

InterChange Server - Windows Application OS - UNIX

T~~~

Connector

ODBC-based application

Global
functions

Event management

Business Application and
object event notification
handler notification

Application

CRUD

ODBC interaction functions

mechanism

ODBC Protocol

driver adapter TCP/IP

Figure 19. Sample Windows-to-UNIX communication

Communication across other systems

The Java Connector Development Kit supports various standards for
communication with other systems and frameworks. Among these are the
Common Event Infrastructure, which provides interoperability with other IBM
WebSphere event-producing applications, and Application Response Measurement
instrumentation support, which makes transaction metrics from the connector and
application available to the IBM Tivoli Monitoring for Transaction Performance
framework. For more information about these standards, see:

+ [“Common Event Infrastructure support” on page 51|

50 Connector Development Guide for Java

« |”Application Response Measurement instrumentation support” on page 52|

Common Event Infrastructure support

Java-based connectors are compatible with IBM’s Common Event Infrastructure, a
standard for event management that permits interoperability with other IBM
WebSphere event-producing applications. When you implement Common Event
Infrastructure support in your connector, events produced by the connector can be
received (or “consumed”) by another Common Event Infrastructure- compatible
application.

Note: Common Event Infrastructure is not supported on any Linux or HP-UX
platform.

Required software
You must have the following software installed to implement the Common Event
Infrastructure in the connector:

* WebSphere Application Server Foundation 5.1.1
¢ WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

WebSphere Application Server Foundation includes the Common Event
Infrastructure Server Application, which is required for Common Event
Infrastructure to operate. The WebSphere Application Server Foundation can be
installed on any system (it does not have to be the same machine on which the
adapter is installed.) The WebSphere Application Server Application Client
includes the libraries required for interaction between the adapter and the
Common Event Infrastructure Server Application. You must install WebSphere
Application Server Application Client on the same system on which you install
and run the connector. The connector connects to the WebSphere Application
Server Foundation server by means of a configurable URL. Common Event
Infrastructure support is available using any integration broker supported with this
release.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties
CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured
with Connector Configurator. By default, Common Event Infrastructure is not
enabled. The CommonEventInfrastructureContextURL property enables you to
configure the URL of the Common Event Infrastructure server.(Refer to Appendix
A, Standard Properties, for more information.).

Obtaining Common Event Infrastructure events
If Common Event Infrastructure is enabled, the connector generates Common
Event Infrastructure events that map to the following adapter events:

* Starting the connector

* Stopping the connector

* An application response to a timeout from the connector agent

¢ Any doVerbFor call issued from the connector agent

* A otApplEvent call from the connector agent

For another application (the "consumer application”) to receive the Common Event

Infrastructure events generated by the connector, the application must use the
Common Event Infrastructure event catalog to determine the definitions of

Chapter 2. Designing a connector 51

appropriate events and their properties. The events must be defined in the event
catalog for the consumer application to be able to consume the sending
application’s events.

For more information

For more information about Common Event Infrastructure, refer to the Common
Event Infrastructure information in the WebSphere Application Server Foundation
documentation. This is available on the web at the IBM WebSphere Application
Server Information Center.

Application Response Measurement instrumentation support

Java-based connectors are compatible with the Application Response Measurement
application programming interface (API), an API that allows applications to be
managed for availability, service level agreements, and capacity planning. The
connector calls the ARM APIs to participate in IBM Tivoli Monitoring for
Transaction Performance, allowing collection and review of data concerning
transaction metrics.

Note: Application Response Measurement instrumentation is supported on all
operating systems supported with this IBM WebSphere Business Integration
Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Required software
In addition to the software prerequisites required for the adapter, you must have
the following installed for ARM to operate with the connector:

* WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for
Transaction Performance server). This does not have to be installed on the same
system as the adapter.

 IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must
be installed on the same system on which the adapter is installed and
configured to point to the system on which the IBM Tivoli Monitoring for
Transaction Performance server resides.

Application Response Measurement support is available using any integration
broker supported with this release.

Enabling Application Response Measurement in the connector
ARM instrumentation is enabled by setting the standard property
TivoliMonitorTransactionPerformance in Connector Configurator to “True”. By
default ARM support is not enabled. (Refer to Appendix A, Standard Properties,
for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and
event deliveries. The transaction is measured from the start of a service request or
event delivery to the end of the service request or event delivery. The name of the
transaction displayed on the Tivoli Monitoring for Transaction Performance console
will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the
name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).
The final part of the name will be the business object name such as “EMPLOYEE.” So
for example, the name of a transaction for an event delivery for creation of an
employee might beEVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE
REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or
event delivery:

52 Connector Development Guide for Java

* Minimum transaction time
* Maxium transaction time
* Average transaction time

e Total transaction runs

You can select which of these metrics to display, for which connector events, by
configuring Discovery Policies and Listener Policies for particular transactions from
within the Tivoli Monitoring for Transaction Performance console. (Refer to
Imore information.”)

For more information
Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for
more information.

* See the IBM Tivoli Monitoring for Transaction Performance User’s Guide for
information about monitoring and managing the metrics generated by the
adapter.

* See the Application Response Measurement (ARM) API, Version 2
(http:/ /regions.cmg.org/regions/cmgarmw /marcarm.pdf) for information about
how to setup the ARM application to process transaction metrics from the
connector.

Summary set of planning questions

The following table lists the set of planning questions provided in this chapter. You
can use this table as a worksheet for gathering information about your application.
As you gather information, get copies of any documentation that can help in the
planning, design, or development phases of the project.

Chapter 2. Designing a connector 53

1. Understanding the Application
* What is the application operating system?
* What programming languages were used to create the application?
* What is the execution architecture of the application?
* Is there a central database for application data? What type of database is it?
* Is the application or its database distributed across multiple servers?
2. Identifying the Directionality of the Connector
* Does the connector need to send data, receive data, or both?
3. Identifying the Application-Specific Business Objects
* Do application entities have contained entities?

* Are there application business entities that are the same type but have different physical representations in
the application?

* Are there application entities that reside in more than one location in the database but correspond to the
same logical entity?

* Are there batch processes associated with the creation of application entities?
4. Investigating the Application Data Interaction Interface

* Have there been any other efforts to integrate with this application?
— What was the purpose of the integration?
— Does the integration use interfaces that modify or retrieve information?
— If the integration is able to process an event generated in the application, what is the mechanism used to
trigger event processing?
— Will your connector replace the pre-existing integration?

* Is application data shared by other applications?
— Do other applications create, retrieve, update, or delete this application’s data?
— What is the mechanism used by other applications to gain access to the data?
— Is there object-specific business logic used by other applications?

* Is there a mechanism that the connector can use to communicate with the application?
— Does the APT allow access for create, retrieve, update, and delete operations?
— Does the API provide access to all data entity attributes?
— Does the APT allow access to the application for event detection?
— Are there inconsistencies in the API implementation?
— Describe the transaction behavior of the API.
— Is the API suited for meta-data design?
— Does the API enforce application business rules?

* Are there batch clean-up or merge programs used to purge redundant or invalid data?
5. Investigating the Event Management and Notification Mechanism

* Describe the event management mechanism.

* Does it provide the necessary granularity to establish the distinct object and verb?

* Does event notification occur at a level that can support application business logic?
6. Investigating Communication Across Operating Systems

* Does the API handle the communication mechanism between the application operating system and the
connector operating system?

* If not, is there a mechanism available to handle communication across operating systems?

Figure 20. Summary set of planning question

54 Connector Development Guide for Java

Evaluating the findings

As you assemble the answers to the questions presented in this chapter, you
acquire essential information about application data entities, business object
processing, and event management. These findings become the basis for a
high-level architecture for the connector.

When you have determined what entities your connector will support and have
examined the application functionality for database interaction and event
notification, you should have a clear understanding of the scope of the connector
development project. At this point, you can continue with the next phases of
connector development—defining application-specific business objects and coding
the connector.

Figure 21{shows a partial write-up of information about a sample connector.
Figure 22|illustrates a high-level architecture diagram for an ODBC-based
connector.

1. Understanding the Application
* Application is running on UNIX.
* Programming language used is Visual C++ with the Microsoft MFC libraries.
* Application is client-server.
* Application has a central database. Type is RDMS.
* Application is not distributed.
2. Identifying the Directionality of the Connector
* Connector will be bidirectional.
3. Identifying the Application-Specific Business Objects
* Business objects have contained objects. Contained business objects are:
— Customer “Address ”Site Use and Site Profile
— Item ”Status
— Contact “n Phones and 7 Roles
* Application business entities do not have different physical representations in the application.
* Application entities do not reside in more than one location in the database.
* No batch processes are associated with the creation of these objects.
4. Examining the Application Data Interaction Interface
* No previous efforts to integrate with this application.
* Application data is not shared by other applications.
* The application provides the OpenProduct APL
— OpenProduct allows for Creates and Updates but not Retrieves and Deletes.
— The API provide access to all data entity attributes.

— The API allows access to the application for event detection. We can create an event table and poll for
events at a specified interval.

— There are no inconsistencies in the APL
— The API has a batch interface.
— The application is table-based, and the API is suited for meta-data design.

Figure 21. Sample results write-up

Chapter 2. Designing a connector 55

Connector controller

Mapping Services

Transport Driver

Connector

Transport driver

Java-to-C++ translation (C++ only)

Generic services (C++ class library)

Business Application
f Glotpal object event
unctions handler notification

Oracle-based application

Application
tables

N

Database
triggers

Event Archive
table

Database
ODBC interaction functions CRUD Polling to
operations event table
Oracle
O[.)BC SQL*Net protocol TCP/IP
driver adapter
InterChange Server p Application OS
Windows UNIX

Figure 22. Sample ODBC-based connector architecture

An internationalized connector

An internationalized connector is a connector that has been written so that it can be
customized for a particular locale. A locale is the part of a user’s environment that
brings together information about how to handle data that is specific to the end
user’s particular country, language, or territory. The locale is typically installed as
part of the operating system. Creating a connector that handles locale-sensitive
data is called the internationalization (I18N) of the connector. Preparing an
internationalized connector for a particular locale is called the localization (L10N) of

the connector.

This section provides the following information on an internationalized connector:

56 Connector Development Guide for Java

* |"What is a locale?”]

* |"Design considerations for an internationalized connector”|

What is a locale?

A locale provides the following information for the user environment:
* Cultural conventions according to the language and country (or territory):
— Data formats:

- Dates: define full and abbreviated names for weekdays and months, as well
as the structure of the date (including date separator).

- Numbers: define symbols for the thousands separator and decimal point, as
well as where these symbols are placed within the number.

- Times: define indicators for 12-hour time (such AM and PM indicators) as
well as the structure of the time.

- Monetary values: define numeric and currency symbols, as well as where
these symbols are placed within the monetary value.

— Collation order: how to sort data for the particular character code set and
language.

— String handling includes tasks such as letter “case” (upper case and lower
case) comparison, substrings, and concatenation.

* A character encoding — the mapping from a character (a letter of the alphabet) to
a numeric value in a character code set. For example, the ASCII character code
set encodes the letter “A” as 65, while the EBCIDIC character set encodes this
letter as 43. The character code set contains encodings for all characters in one or
more language alphabets.

A locale name has the following format:
Ul _TT.codeset

where 11 is a two-character language code (usually in lower case), TT is a
two-letter country and territory code (usually in upper case), and codeset is the
name of the associated character code set. The codeset portion of the name is often
optional. The locale is typically installed as part of the installation of the operating
system.

Design considerations for an internationalized connector

This section provides the following categories of design considerations for
internationalizing a connector:

* [“Locale-sensitive design principles”|

+ [“Character-encoding design principles” on page 61|

Locale-sensitive design principles

To be internationalized, a connector must be coded to be locale-sensitive; that is, its
behavior must take the locale setting into consideration and perform the task
appropriate to that locale. For example, for locales that use English, the connector
should obtain its error messages from an English-language message file. The
WebSphere Business Integration Adapters product provides you with an
internationalized version of the connector framework. To complete the
internationalization (I18N) of a connector you develop, you must ensure that your
application-specific component is internationalized.

lists the locale-sensitive design principles that an internationalized
application-specific component must follow.

Chapter 2. Designing a connector 57

Table 15. Locale-sensitive design principles for application-specific components

Design principle For more information

The text of all error, status, and trace

messages should be isolated from the
application-specific component in a message
file and translated into the language of the

locale.

The locale of a business object must be [“Business object locales” on page 59|
preserved during execution of the connector.

Properties of connector configuration “Connector configuration properties” on|
properties must be handled to include page 6Q|

possible inclusion of multibyte characters.

Other locale-specific tasks must be [“Other locale-sensitive tasks” on page 60|
considered.

Text strings: It is good programming practice to design a connector so that it
refers to an external message file when it needs to obtain text strings rather than
hardcoding text strings in the connector code. When a connector needs to generate
a text message, it retrieves the appropriate message by its message number from
the message file. Once all messages are gathered in a single message file, this file
can be localized by having the text translated into the appropriate language or
languages.

This section provides the following information on how to internationalize text
strings:

* ["Handling logging and tracing”]

» [“Handling miscellaneous strings” on page 59|

Handling logging and tracing: To internationalize the logging and tracing, make
sure that all these operations use message files to generate text messages. By
putting message strings in a message file, you assign a unique identifier to each
message. lists the types of operations that use a message file and the
associated Java connector library methods in the CWConnectorUtil class that the
application-specific component uses to retrieve their messages from a message file.

Table 16. Methods to log and trace messages from a message file

Message-file operation Connector library method
Logging generateAndLogMsg()
Tracing generateAndTraceMsg() or tracelrite()

Log messages should display in the language of the customer’s locale. Therefore,
log messages should always be isolated into a connector message file and retrieved
with the generateAndLogMsg () method.

Because trace messages are intended for the product debugging process, they often
do not need to display in the language of the customer’s locale. Therefore, whether
trace messages are contained in a message file is left at the discretion of the
developer:

* If non-English-speaking users need to view trace messages, you need to
internationalize these messages. Therefore, you must put the trace messages in a
message file and extract them with the generateMsg() method. This message file
should be the connector message file, which contains message specific to your

58 Connector Development Guide for Java

connector. The generateMsg() method generates the message string for
traceWrite(). It retrieves a predefined trace message from a message file,
formats the text, and returns a generated message string.

* If only English-speaking users need to view trace messages, you do not need to
internationalize these messages. Therefore, you can include the trace message (in
English) directly in the call to tracelrite(). You do nof need to use the
generateMsg() method.

However, storing trace messages in the message file makes it easy to locate and
maintain them.

Handling miscellaneous strings: In addition to handling the message-file operations
in , an internationalized connector must not contain any miscellaneous
hardcoded strings. You must isolate these strings into the message file as well.
shows the method that the application-specific component can use to
retrieve a message from a message file.

Table 17. Method to retrieve a message from the message file

Connector library class Method

CWConnectorUtil generateMsg()

To internationalize hardcoded strings, take the following steps:

* Generate a uniquely numbered message in the connector message file for the
hardcoded string.

Note: In the message file, you can also include an optional explanation to the
isolated string. In this explanation, you can put the method name where
the string is used. This information can help to track the position of the
source and make changes when needed.

* In the application-specific component, use the generateMsg() method to specify
the isolated string by its message number.

For example, suppose your application-specific component contains the following
hardcoded string in a line of code:

*x*xxxx*xxBefore updating the event status#x*xsxxx

To isolate this hardcoded string from the connector code, create a message in the
message file and assign it a unique message number (100):

100

*x*xxxxkx*Before updating the event statusxxsxx*xx

[EXPL]
Hardcoded message in pollForEvents()

The application-specific component retrieves the isolated string (message 100) from

the message file and replaces the hardcoded string with this retrieved string:

//retrieve the message numbered ' 100"

String msgl00 = generateMsg(100, CWConnectorLogAndTrace.XRD_INFO,
CWConnectorLogAndTrace.CONNECTOR_MESSAGE_FILE, 0);

MyClassObject.formatMsg(msg100); //send retrieved message to a custom method

For more information on the use of message files, see [Chapter 6, “Message
logging,” on page 137

Business object locales: The connector might need to perform locale-sensitive
processing (such as data format conversions) when it converts from application

Chapter 2. Designing a connector 59

data to the application-specific business object. During processing of a business

object in a connector, there are two different locale settings:

* The connector inherits a locale, called the connector-framework locale, from the
connector framework with which it runs. The connector-framework locale
determines the locale of text messages that the connector uses for logging and
exceptions.

* The connector also can access the locale that is associated with a business object
it is processing. This business-object locale identifies the locale associated with the
data in the business object.

shows the method that the connector can use to retrieve the locale
associated with the connector framework.

Table 18. Method to retrieve the connector framework’s locale

Connector Library Class Method
CWConnectorUtil getGlobalLocale()

When a business object is created, it can have a locale associated with its data.

Your connector can access this business-object locale in either of the following

ways:

» To obtain the name of the business-object locale, use the getLocale() method,
which is defined in the CWConnectorBusObj class. The CWConnectorBusObj class
also provides a setLocale() method.

* To associate a locale with the business object, use the createBusObj () method,
which is defined in the CWConnectorUtil class.

Connector configuration properties: As discussed in[“Using connector]
lconfiguration property values” on page 70} an application-specific component can
use two types of configuration properties to customize its execution:

* Standard configuration properties are available to all connectors.

* Connector-specific configuration properties are unique to the particular
connector in which they are defined.

The names of all connector configuration properties must use only characters
defined in the code set associated with the U.S English (en_US) locale. However, the
values of these configuration properties can contain characters from the code set
associated with the connector framework locale.

The application-specific component obtains the values of configuration properties
with the methods described in [“Retrieving connector configuration properties” on|
These methods correctly handle characters from multibyte code sets.
However, to ensure that your connector is internationalized, its code must correctly
handle these configuration-property values once it retrieves them. The
application-specific component must not assume that configuration-property values
contain only single-byte characters.

Other locale-sensitive tasks: An internationalized connector must also handle the
following locale-sensitive tasks:

 Sorting or collation of data: the collaboration must use a collation order
appropriate for the language and country of the locale.

* String processing (such as comparison, substrings, and letter case): the
collaboration must ensure that any processing it performs is appropriate for
characters in the locale’s language.

60 Connector Development Guide for Java

* Formats of dates, numbers, and times: the collaboration must ensure that any
formatting it performs is appropriate for the locale.

Character-encoding design principles

If data transfers from a location that uses one code set to a location that uses a
different code set, some form of character conversion needs to be performed for
the data to retain its meaning. The Java runtime environment within the Java
Virtual Machine (JVM) represents data in Unicode. The Unicode character set is a
universal character set that contains encodings for characters in most known
character code sets (both single-byte and multibyte). There are several encoding
formats of Unicode. The following encodings are used most frequently within the
integration business system:

¢ Universal multiple octet Coded Character Set: UCS-2
The UCS-2 encoding is the Unicode character set encoded in 2 bytes (octets).

e UCS Transformation Format, 8-bit form: UTF-8
The UTF-8 encoding is designed to address the use of Unicode character data in
UNIX environments. It supports all ASCII code values (0...127) so that they are

never interpreted as anything except a true ASCII code. Each code value is
usually represented as a 1-, 2-, or 3- byte value.

Most components in the WebSphere business integration system, including the
connector framework, are written in Java. Therefore, when data is transferred
between most system components, it is encoded in the Unicode code set and there
is no need for character conversion.

Character conversion
required

InterChange Server

\ !
D v
C++ ?.E\Tﬂni_ Ci+ | ‘UTE-" Connector
application connector controller
(client side)

Figure 23. Character encoding with a C++ connector

Because a Java connector works with a Java application (or technology), its
application-specific component is written in Java, which handles data in the
Unicode code set. The Java application (or technology) also has data already in
Unicode. Therefore, a Java connector does not normally need to perform character
conversion on application data for the application-specific business object. If some
data is not in Unicode, the Java environment automatically supports character
conversion between UCS-2 and a native encoding. However, if the application data
includes data from some other external source (such as an operating-system file),
the Java connector might need to handle character conversion. shows the
character encoding for a Java connector.

Note: A connector obtains the character encoding of its application from the
CharacterEncoding connector configuration property. If your connector
performs character conversion, make sure you instruct the connector end
user to set this connector property to the correct value.

Chapter 2. Designing a connector 61

InterChange Server

Connector

F\
UTF-8 Java UTF-8
/‘ Java - —P connector TP

N controller
| | application /gf’ (client side)
S _ ~Native encoding
(character conversion
File required)

Figure 24. Character encoding with a Java connector

To obtain the character encoding at runtime, [Table 19| shows the method in the Java
connector library that the connector can use.

Table 19. Method to retrieve the connector framework’s character encoding

Connector library class Method

CWConnectorUtil getGlobalEncoding()

A Java String is UCS-2 encoded. Therefore, the connector can get and set attribute
values (those represented as Java Strings), default attribute values, and
application-specific information in their native encoding by performing a simple
conversion:

nativeEncodedAppSpecInfo = busObj.getAppText(attrName).getBytes(nativeEncoding);
Note: Connector configuration properties with String values do not require

character conversion because they originate from the InterChange Server
repository and are therefore in the UCS-2 encoding.

62 Connector Development Guide for Java

Chapter 3. Providing general connector functionality

This chapter presents information on how to implement a connector class, which
performs the initialization and setup for the application-specific component of a
connector. It also discusses some basic functionality that your connector might

need.

Note: Writing code for the application-specific component is only one part of the
overall task for developing a connector. Before you begin to write your
application-specific component, you should clearly understand the connector
design issues as well as the design of any application-specific business
objects. A thorough understanding of the design issues can help you
complete the coding task successfully. For information on connector design,

refer to |Chapter 2, “Designing a connector,” on page 35

This chapter contains the following sections:

+ [“Running a connector”]

+ |“Extending the connector base class” on page 68|

+ |[“Handling errors” on page 69|

+ |[“Using connector configuration property values” on page 70|

[“Calling a data handler” on page 75|

[“Handling loss of connection to an application” on page 78|

Running a connector

When the connector runs, it performs the tasks summarized in [Table 20

Table 20. Steps for executing a connector

Execution step

For more information

1. Start the connector with the startup script to initialize |“Starting up a connector” on page 63|

the connector framework and application-specific
component of the connector.

2. If polling is turned on, the connector framework calls [“Polling for events” on page 67

poll1ForEvents() at the interval defined by the
connector’s Pol1Frequency connector configuration
property.

3. If the connector implements request processing, call
the business-object handler associated with the
request business object that the connector receives.

4. When the connector is shut down, the connector
framework calls terminate().

Request processing is implemented by the
doVerbFor() method in the connector’s business
object handler. For more information, see thapter 4,|

""Request processing,” on page 79

"“Shutting down the connector” on page 68|

The following sections provide more information about each of the execution steps

[Table 24

Starting up a connector

Each connector has a connector startup script to begin its execution. This startup
script invokes the connector framework.

© Copyright IBM Corp. 2000, 2004

63

Note: For more information on how to create a connector startup script, see
[“Creating startup scripts” on page 213

Once the connector framework is executing, it performs the appropriate steps to
invoke the application-specific component of the connector, based on the
integration broker.

Starting connectors with InterChange Server

When InterChange Server is the integration broker, the connector framework takes

the following steps to invoke the application-specific component:

1. Use the Object Request Broker (ORB) to establish contact with InterChange
Server.

2. From the repository, load the following connector-definition information into
memory for the connector’s process:
¢ The connector configuration properties
A list of the connector’s supported business object definitions

3. Begin execution of the connector’s application-specific component by

instantiating the connector base class and calling methods of this base class that
initialize the application-specific component.

When the connector is started, the connector framework instantiates the
connector base class and then calls the connector-base-class methods in

[Table 21]

Table 21. Beginning execution of the connector

Initialization task

1.

For more information

Initialize the connector to perform any necessary initialization for |“Initializing the connector” on page 65
the application-specific component, such as opening a connection
to the application.

For each business object that the connector supports, obtain the “Obtaining the business object handler”]
business object handler. on page 66|

Once these methods have been called, the connector is operational.

4. Contact the connector controller to obtain the subscription list for business
objects to which collaborations have subscribed. For more information, see
[“Business object subscription and publishing” on page 12|

Starting connectors with other integration brokers

When a WebSphere message broker (WebSphere MQ Integrator, WebSphere MQ
Integrator Broker, or WebSphere Business Integration Message Broker) or
WebSphere Application Server is the integration broker, the connector framework
takes the following steps to invoke the application-specific component:

1. From the local repository, load the following connector-definition information
into memory for the connector’s process:
* The connector configuration properties
A list of the connector’s supported business object definitions

2. Begin execution of the connector’s application-specific component by

instantiating the connector base class and calling methods of this base class that
initialize the application-specific component.

When the connector is started, the connector framework instantiates the
connector base class and then calls the connector-base-class methods in
Table 21} Once these methods have been called, the connector is operational.

64 Connector Development Guide for Java

Initializing the connector

To begin connector initialization, the connector framework calls the initialization
method of the connector base class.|Table 22| shows the initialization method for
the connector.

Table 22. Connector Base Class Methods to Initialize the Connector

Class Method

CWConnectorAgent agentInit()

As part of the implementation of the connector class, you must implement an
initialization method for your connector. The main tasks of the initialization
method include:

+ |“Establishing a connection”]

* |"Checking the connector version”|

¢ [“Recovering In-Progress events”|

Important: During execution of the initialization method, business object
definitions and the connector framework’s subscription list are not yet
available.

Establishing a connection: The main task of the initialization method is to
establish a connection to the application. To establish the connection, the
initialization method can perform the following tasks:

* Read from the repository the connector’s configuration properties that provide
connector information (such as ApplicationUserID and ApplicationPassword)
and use them to send login information to the application. If a required
connector property is empty, your initialization method can provide a default
value.

Use the getConfigProp() method to obtain the value of a connector
configuration property. For more information, see |”Using Connector|
[configuration property values” on page 70}

* Obtain any required connections or files. For example, the initialization method
usually opens a connection with the application. It returns “success” if the
connector succeeds in opening a connection. If the connector cannot open a
connection, the initialization method must return the appropriate failure status
to indicate the cause of the failure.

In a Java connector, the agentInit() method should throw the
ConnectionFailureException exception if the connection fails or the
LogonFailureException exception if the connector is unable to log into the
application. For information on these conditions, see [“Exceptions” on page 202

Checking the connector version: The getVersion() method returns the version of
the connector. It is called in both of the following contexts:

* The initialization method should call getVersion() to check the connector
version.

* The connector framework calls the getVersion() method when it needs to get a
version for the connector.

Note: A connector should keep track of which application versions it supports. It
should check the application version when it logs on to the application.

Recovering In-Progress events: Processing an event during event notification
includes performing a retrieve on the application entity, creating a new business

Chapter 3. Providing general connector functionality =~ 65

object for the event, and sending the business object to the connector framework. If
the connector terminates while processing an event and before updating the event
status to indicate that the event was either sent or failed, the In-Progress event will
remain in the event store. When a connector is restarted, it should check the event
store for events that have an In-Progress status.

If the connector finds events with the In-Progress status, it can choose to do one of
the tasks outlined in This behavior should be configurable. Several
connectors use the InDoubtEvents connector configuration property for this
purpose. Its settings are also shown in

Table 23. Actions to take to recover In-Progress events

Event-recovery action taken Value of InDoubtEvents

Change the status of the In-Progress events to Ready-for-Poll so Reprocess
they can be submitted to the connector framework in

subsequent poll calls. Note: If events are resubmitted, duplicate

events might be generated. If you want to ensure that duplicate

events are not generated during recovery, use another recovery

response.

Log a fatal error, shutting down the connector. If FailOnStartup
LogAtInterchangeEnd is set to True, this triggers an email

notification about the error.

Log an error without shutting down the connector. LogError
Ignore the In-Progress event records in the event store. Ignore

For a Java connector, the CWConnectorEventStore class provides the
recoverInProgresskEvents() method to obtain event records with an In-Progress
status from the event store and take the appropriate recovery action. The connector
developer can implement this method to take actions based on the value of
InDoubtEvents. In t his method, the connector developer can also change the status
of in-progress events to the ready-for-poll status.

Note: For more information on event notification, the event store, and In-Progress
events, see [Chapter 5, “Event notification,” on page 113]

Obtaining the business object handler

As the final step in connector initialization, the connector framework obtains the
business object handler for each business object definition that the connector
supports. A business object handler receives request business objects from the
connector framework and performs the verb operations defined in these business
objects. Each connector must have a getConnectorBOHandlerForB0() method
defined in its connector base class to retrieve the business object handler. This
method returns a reference to the business object handler for a specified business
object definition.

Important: As part of the implementation of the connector base class, you must
implement the getConnectorBOHandlerForBO() to obtain business object
handlers for your connector.

To instantiate the business object handler (or business object handlers), the
connector framework takes the following steps:

1. During initialization, the connector framework receives a list of business object
definitions that the connector supports. For more information, see

[a connector” on page 63|

66 Connector Development Guide for Java

2. The connector framework then calls the getConnectorBOHandlerForB0()
method, once for every supported business object.

3. The getConnectorBOHandlerForB0() method instantiates the appropriate
business object handler for that business object, based on the name of the
business object definition it receives as an argument. It returns the business
object handler to the connector framework.

The number of business object handlers that are instantiated depends on the
overall design of your connector’s business object handling:

* If the business object definitions for application-specific business objects
contain metadata that follows consistent rules, the connector is
metadata-driven. It can be designed to use a metadata-driven business object
handler.

A metadata-driven connector handles all business objects in a single, generic
business object handler, called a metadata-driven business object handler.
Therefore, the getConnectorBOHandlerForB0() method can simply instantiate
one business object handler, regardless of the number of business objects the
connector supports. It can create a business object handler the first time it is
called and return a pointer to the same handler for each subsequent call.

* If some or all application-specific business objects require special processing,
then you must set up multiple business object handlers for those objects.

If your connector requires a separate business object handler for each
business object, the getConnectorBOHandlerForB0() method can instantiate
the appropriate business object handler, based on the name of the business
object being passed in. In this case, getConnectorBOHandlerForBO0()
instantiates multiple business object handlers, one for each business object
definition that requires a separate business object handler. Each time the
business-object-handler retrieval method is called, it instantiates a separate
business object handler.

4. The connector framework stores the reference to this business object handler in
the associated business object definition (which resides in the memory of the
connector’s process).

Important: Before you implement the getConnectorBOHandlerForB0O() method, you
want to complete the design for business object handling for your
connector. For information on designing application-specific business
object, see |“Assessing support for metadata-driven design” on page 45|

For more information on how to implement the
getConnectorBOHand1erForB0 () method, see[“Obtaining the Java business object]
lhandler” on page 151 For information on how to implement business object
handlers, see [Chapter 4, “Request processing,” on page 79

Polling for events

If a connector is to implement event notification, it must implement an event
notification mechanism. Event notification contains methods that interact with an
application to detect changes to application business entities. These changes are
represented as events, which the connector sends to the connector framework for
routing to a destination (such as InterChange Server).

If the connector uses a polling mechanism for event notification, the connector
must implement the pol1ForEvents() method to periodically to retrieve event
information from the event store, which holds events that the application generates
until the connector can process them. When polling is turned on, the connector

Chapter 3. Providing general connector functionality 67

framework calls the poll method poll1ForEvents(). The poll1ForEvents() method
returns an integer indicating the status of the polling operation.

In the Java connector library, the pol1ForEvents() method is defined in the
CWConnectorAgent class. Typical return codes used in pol1ForEvents() are SUCCEED,
FAIL, and APPRESPONSETIMEQOUT. For more information on return codes, see
Ireturn codes” on page 201/

Important: The developer must provide an implementation of the pol1ForEvents()
method. If the connector supports only request processing, you do not
need to fully implement pol1ForEvents (). However, because the poll
method is a required method, you must implement a stub for the
method. The Java connector library provides a default implementation
of the pol1ForEvents() method.

For a more thorough discussion of event notification and the implementation of
pol1ForEvents (), see|Chapter 5, “Event notification,” on page 113

Shutting down the connector

The administrator shuts down a connector with by terminating the connector
startup script. When the connector is shut down, the connector framework calls the
terminate() method of the connector base class. The main task of the terminate()
method is to close the connection with the application and to free any allocated
resources.

Extending the connector base class

To create a connector, you extend the connector base class, available in the connector
library. The base class for the connector includes methods for initialization and
setup of the connector’s application-specific component. Your derived connector
class contains the code for the application-specific component of the connector.

Note: For information on naming conventions for a connector, see Naming IBM
WebSphere InterChange Server Components in the IBM WebSphere InterChange
Server documentation set.

The connector base class includes the methods shown in [Table 24, You must
implement these methods in your connector.

Table 24. Methods to implement in the connector base class

Description Connector base class method For more information

Initializes the connector’s agentInit() “Initializing the connector” on|

application-specific component page 65|

Returns the version of the connector getVersion() ‘Checking the connector]
version” on page 65|

Sets up one or more business object getConnectorBOHandlerForB0() ‘Obtaining the business object|

handlers handler” on page 66|

Polls for application events pol1ForEvents() ‘Polling for events” on page|
67

Performs cleanup tasks upon terminate() ‘Shutting down the]

connector termination connector” on page 68

illustrates the complete set of methods that the connector framework
calls, and shows which methods are called at startup and which are called at
runtime. All but one of the methods that the connector framework calls are in the

68 Connector Development Guide for Java

connector base class. The remaining method, doVerbFor(), is in the business object
handler class; for information on implementing the doVerbFor() method, see
[Chapter 4, “Request processing,” on page 79

Connector - -
T —. Application-specific connector component
Startup ———— agentlnit()

——+— getVersion()

——+— getConnectorBOHandlerForBO()
Runtime ———+— pollForEvents()

——» doVerbFor()

— 1 —» terminate()

Figure 25. Summary of methods called by the connector framework

For more information on extending the connector base class, see|”Extending the|

Java business-object-handler base class” on page 152

Handling errors

The methods of the connector class library indicate error conditions in the
following ways:

* Return codes—The connector class library includes a set of defined
outcome-status values that your abstract methods can use to return information
on the success or failure of a method. The return codes are defined as integer
values and outcome-status constants. In your code, IBM recommends use of the
predefined constants to prevent a problem if the IBM changes the values of the
constants.

For information on Java return codes, see[“Java return codes” on page 201/

* Exceptions—The Java connector library provides classes to encapsulate exception
objects and exception-detail objects, which contain exception information. For
more information, see [“Exceptions” on page 202

¢ Return-status descriptor—during request processing, the connector framework
sends status information back to the integration broker in a return-status
descriptor. The business object handler can save a message and status code in
this descriptor to provide the integration broker about the status of the verb
processing. For more information, see [“Return-status descriptor” on page 204/

* Error and message logging—The connector class library also provides the
following features to assist in providing notification of errors and noteworthy
conditions:

- Logging allows you to send an informational or error message to a log
destination.

— Tracing allows you to include statements in your code that generate trace
messages at different trace levels.

For more information on how to implement logging and tracing, see
[“Message logging,” on page 137

Chapter 3. Providing general connector functionality =~ 69

Using connector configuration property values

This section provides the following information about connector configuration
properties:

« |“What is a connector configuration property?’|

* |“Defining and setting connector configuration properties”|

* [“Retrieving connector configuration properties” on page 71|

What is a connector configuration property?

A connector configuration property (sometimes called just a connector property) allows
you to create named place holders (similar to variables) that the connector can use
to access information it needs. Connectors have two categories of configuration
properties:

 Standard configuration properties

* Connector-specific configuration properties

Standard connector configuration properties

Standard configuration properties provide information that is typically used by the
connector framework. These properties are usually common to all connectors and
usually represent well-defined behavior that is the WebSphere business integration
system enforces.

Connector-specific configuration properties

Connector-specific configuration properties provide information needed by a
particular connector at runtime. These configuration properties provide a way of
changing static information or logic within the connector’s application-specific
component without having to recode and rebuild it. For example, configuration
properties can be used to:

* Hold the value of constants, such as the name of the application server or
database, the name of the event table, or the name of files the connector needs to
read.

* Set behavior for the connector in a particular situation. For example, a
configuration property can indicate that the connector should not fail a business
object Retrieve operation for a hierarchical business object if a child object is
missing. As another example, a configuration property can determine whether
the application or the connector should create an ID for a new object on a Create
operation.

You can create any number of connector-specific configuration properties for your
connector. When you have identified needed connector-specific properties, you
define them as part of the connector configuration process. Use Connector
Configurator to specify connector configuration properties as part of the
information stored in the local repository.

You can also add configuration properties later on as needed. In general, your
connector code needs only to query for the values of the connector-specific
properties such as ApplicationUserID and ApplicationPassword.

Defining and setting connector configuration properties

The Connector Configurator tool provides you with the ability to perform the
following tasks on connector configuration properties:

e Assign a value to a standard configuration property.

* Define and assign a value to a connector-specific configuration property.

70 Connector Development Guide for Java

You invoke Connector Configurator from the System Manager tool.

— WebSphere InterChange Server
If WebSphere InterChange Server is your integration broker, refer to the
Implementation Guide for WebSphere InterChange Server for information about
the Connector Configurator tool.

— Other integration brokers
If a WebSphere message broker (WebSphere MQ Integrator, WebSphere MQ
Integrator Broker, or WebSphere Business Integration Message Broker) is your
integration broker, refer the Implementation Guide for WebSphere Message Brokers
for information about Connector Configurator. If WebSphere Application
Server is your integration broker, refer to the Implementation Guide for
WebSphere Application Server for information about Connector Configurator.

Retrieving connector configuration properties

Connector configuration properties are downloaded to the connector as part of the
connector initialization (For more information, see [“Starting up a connector” on|
. Your connector application-specific component retrieves the values of any
configuration properties that it needs for initialization based on the type of the
connector property.

A connector can use a connector configuration property that has one of the
following types:

* A simple connector configuration property contains only string values. It does not
contain any other properties. A single-valued simple property contains only one
string value.

* A hierarchical connector configuration property contains other properties and
their values. A given connector property can contain multiple values.

Note: For the IBMWebSphere Business Integration Adapters product, single-valued
simple connector configuration properties are the only kind of connector
properties that a C++ connector supports. C++ connectors do not support
hierarchical properties.

Note: In previous versions of the product, connector configuration properties were
only single-valued and simple. That is, a connector property could contain
only one string value. With this release, a Java connector can support
hierarchical properties. As noted above, hierarchical properties can contain
other properties and multiple values. Hierarchical properties are supported
starting with version 2.2.0. For the IBM WebSphere InterChange Server
product, this support starts with version 4.2.

Retrieving single-valued simple connector configuration
properties

In previous versions of the product, connector configuration properties were only
single-valued and simple. That is, a connector property could contain only one
string value. To retrieve a single-valued simple connector configuration property,
you can use the getConfigProp() method.

Chapter 3. Providing general connector functionality 71

Note: For the IBMWebSphere Business Integration Adapters product, single-valued
simple connector configuration properties were the only kind of connector
properties supported in all releases before version 2.2.0. For the IBM
WebSphere InterChange Server product, single-valued simple connector
configuration properties were the only kind of connector properties
supported in all releases before version 4.2. For backward compatibility, the
mechanism described here to access single-valued simple connector
properties is still supported by a Java connector. However, IBM recommends
that new connector development use the mechanism described in
[“Retrieving hierarchical connector configuration properties” on page 73| to
access connector configuration properties as hierarchical properties.

The Java connector library provides the two methods in [Table 25| for retrieving the
value of a simple connector configuration property.

Table 25. Methods for retrieving value of a simple connector configuration property

Connector library method Description

getConfigProp() Retrieves the value of a specified simple
connector configuration property

getAl1ConnectorAgentProperties() Retrieves the values of all connector

configuration properties. However, if the
method retrieves a multiple value
connector property, it only retrieves the
first of the connector-property values.

These methods are both defined in the CWConnectorUtil class and function as
follows:

* The getConfigProp() method takes as input a string for the name of the
configuration property and returns the value of this property as a Java String.

* The getAl1ConnectorAgentProperties() method does not require input
arguments and returns the values of all connector configuration properties in a
Java HashtabTe.

The code fragment in uses the getAl1ConnectorAgentProperties()
method to retrieve all connector configuration properties into a Java Hashtable
object called connectorProperties. The code fragment then uses the get () method
of the Hashtable class to retrieve the value of each connector configuration

property.

connectorProperties =
CWConnectorUtil.getAl1ConnectorAgentProperties();

// get Connector Configuration Properties to establish Connection

String connectString =
(String)connectorProperties.get("ConnectString");

String userName =
(String)connectorProperties.get("ApplicationUserName");

String userPassword =
(String)connectorProperties.get("ApplicationPassword");

if(connectString == null || connectString.equals("")

| userName==null || userPassword==null)

Figure 26. Retrieving all Connector Configuration Properties

72 Connector Development Guide for Java

Retrieving hierarchical connector configuration properties
A hierarchical connector configuration property can contain any of the following
values:

* One or more child properties. Each child property can, in turn, contain its own
child properties and string values.

* One or more string values.

A hierarchical connector property with more than one string value is called a
multi-valued property. A property with only one string value is called a single-valued

property.

The Java connector library represents a hierarchical connector configuration
property with the CWProperty class. An object of this class is called a
connector-property object and it can represent a simple or hierarchical, single- or
multi-valued connector configuration property.

lists the metadata for a hierarchical connector configuration property that
a connector-property object provides.

Table 26. Metadata in a connector-property object

Connector-property

information Description CWProperty method
Name The name of the connector property getName()
Cardinality Indicates the number of values that the connector getCardinality()

property contains:
* single-valued
* multi-valued
Property type Indicates whether the connector property contains getPropType()
any child properties:
* simple: contains no child properties, only string
values

e hierarchical: contains one or more child

properties
Encryption flag Indicates whether the property value is to be getEncryptionFlag(),
encrypted. setEncryptionFlag()

As [Table 26| indicates, retrieving metadata about the connector property is done
with the methods indicated. However, retrieving the property value is a two-step
process, as follows:

1. Retrieve the top-level connector-property object for one or all of the connector
configuration properties.

2. Retrieve the desired property value from a connector-property object.

Retrieving the top-level connector-property object: To retrieve the top-level

connector-property object for a connector property, you can use either of the
methods in|[Table 27.

Table 27. Methods for retrieving top-level connector-property objects

Connector library method Description

getHierarchicalConfigProp() Retrieves the top-level connector-property
object of a specified hierarchical connector
configuration property

Chapter 3. Providing general connector functionality 73

Table 27. Methods for retrieving top-level connector-property objects (continued)

Connector library method Description

getAl1ConfigProperties() Retrieves the top-level connector-properties
objects for all connector configuration
properties, regardless of whether the
property is simple, hierarchical, or
multi-valued.

The methods infTable 27| are both defined in the CWConnectorUtil class and function

as follows:

* The getHierarchicalConfigProp() method takes the name of a connector
configuration property as an argument. It returns a single CWProperty object that
contains the top-level connector-property object for the specified connector
property.

* The getAl1ConfigProperties() method returns an array of CWProperty objects,
each containing a top-level connector-property object for one of the connector
configuration properties.

Retrieving the connector-property value: Once you have retrieved the top-level
connector-property object for a connector property, you can retrieve the values
from this connector-property object. As discussed above, a hierarchical connector
property can have one or more of the following kinds of values:

* One or more child properties
* One or more string values

Retrieving child properties: The CWProperty class provides the methods in|Table 28
to retrieve child properties from a connector-property object.

Table 28. Methods for retrieving values child properties from a connector-property object

Description CWProperty method

To obtain all child properties of the hierarchical getHierChildProps()
connector property

To obtain all child properties of the hierarchical getChildPropsWithPrefix()
connector property that has a specified prefix

To obtain a single specified child property from the getHierChildProp()

hierarchical connector property

You can use the hasChildren() method to determine whether the current
connector-property object contains any child properties.

Retrieving string values: The CWProperty class provides the methods in [Table 29| to
retrieve string values from a connector-property object.

Table 29. Methods for retrieving values string values from a connector-property object

Description CWProperty method

To obtain all string values of the hierarchical connector getStringValues()

property
To obtain all string values of a specified child property getChildPropValue()

You can use the hasValue() method to determine whether the current
connector-property object contains any string values.

74 Connector Development Guide for Java

Calling a data handler

The main task of a connector is to convert data between an application-specific
form and a business object. Often, the connector must perform this conversion
directly. For example, it can create the appropriate database statements to create or
access the data as a row in a table of an application database. However, a
connector might handle serialized data in a common Multipurpose Internet Mail
Extensions (MIME) format.

Rather than have each connector perform the conversions between a particular
MIME format and a business object, both the and WebSphere InterChange Server
and WebSphere Business Integration Adapters products provide data handlers to
perform these common conversions. A data handler is a special Java class instance
that converts between serialized data in a particular MIME format and a business
object. For example, the WebSphere Business Integration Data Handler for XML
provides a data handler that converts between an XML document and business
objects.

Note: This section provides a brief overview of data handlers. For a more
complete description, see the Data Handler Guide.

The Java connector library provides several data-handler methods you can call a
specific data handler from within the connector. To determine which data-handler
method to use, you must perform the following tasks:

* |“Determining direction of the data conversion”|

+ |“Accessing the serialized data” on page 76|

* |“Identifying the data handler to instantiate” on page 77|

Determining direction of the data conversion

A data handler can usually convert between serialized data and a business object
in both directions; that is, it can perform both of the following conversions:

* String-to-business-object conversion converts serialized data to a business object.

Within a connector, this conversion is useful during event processing, when the
connector receives serialized data from the application and must create the
appropriate business-object representation of this data, which it then sends to
the integration broker. The connector can send the business object to the
appropriate data handler and receive from it the corresponding serialized data
(as long as a data handler exists to convert to the desired format of serialized
data).

* Business-object-to-string conversion converts a business object to serialized data.

This conversion is useful during request processing when the connector receives
a business object from the integration broker and must create the appropriate
serialized data, which it then sends to the application. The connector can send in
the business object to the appropriate data handler and receive the
corresponding business object (as long as a data handler exists to convert the
desired format for the serialized data).

The Java connector library provides the data-handler methods in so that a
connector can call a data handler to convert between serialized data in a particular
MIME format and a business object. These methods are defined in the
CWConnectorUtil class.

Chapter 3. Providing general connector functionality 75

Table 30. Data-handler methods in Java Connector Library

argument) to serialized data, returning
this data in one of the supported access
forms. For more information, see
[“Accessing the serialized data.”}

Conversion Conversion process Method
Business-object-to-string | Call a data handler to convert the “boToByteArray()”]|
specified business object (theBusObj on page 347

“boToStream()” on|

page 349|

“boToString()” onl

page 351|

String-to-business-object

Call a data handler to convert the
specified serialized data (the
serializedData argument) to a business
object.

“byteArrayToBo()”]|

on page 353

“readerToBO()” on|

age 370|

“streamToBO()” on|

page 372|

“stringToBo()” on|

age 374

If the data handler cannot perform the requested conversion, the data-handler
method throws the ParseException exception.

Accessing the serialized data

To access the serialized data sent to or received from a data-handler method, you
must provide the following information:

* In what format your code will access the serialized data

e In what locale the serialized data exists

Choosing a data format
The purpose of a data handler is to convert between serialized data and a business
object. Therefore, the code of the Java connector must be able to access to this
serialized data. It might have access to this data in any of the forms listed in

The Java connector library provides data-handler methods that support
each of these forms of serialized data.

Table 31. Ways to access serialized data to and from data handlers

Access to

serialized data Java construct Method

A string String object boToString()
stringToBo()

An input stream An object of java.io.InputStream class | boToStream()

or one of its subclasses streamToBO()

A reader for An object of java.io.Reader class or readerToBO()

character streams one of its subclasses

A byte array byte[] boToByteArray()
byteArrayToBo()

To access the serialized data sent to or received from a data handler, choose the
data-handler method from [Table 31| that handles the appropriate access format.

Identifying the data locale and encoding
As shown in , the data-handler methods call a data handler to either read
serialized data (string-to-business-object conversion) or create serialized data

(business-object-to-string conversion). During this process, the data handler might

76 Connector Development Guide for Java

need to know about the character encoding or locale of the serialized data it is
processing. To allow you to specify a different locale or character encoding for the
data handler to use, the data-handler methods accept a Java Locale object and a
String encoding argument to specify this information:

* If the locale is the same as the connector-framework locale, you can specify a
null for the locale argument in the call to the data-handler method. If the locale
is different, specify a java.util.Locale object that contains the appropriate
locale information.

* If the character encoding is the same as that the connector framework is using,
you can specify a null for the encoding argument in the call to the data-handler
method. If the character encoding is different, specify the appropriate character
encoding as a Java String.

For information on how to obtain the connector-framework locale or character
encoding, see|“Design considerations for an internationalized connector” on page]

Identifying the data handler to instantiate

To identify the data handler that needs instantiation, the data-handler methods
must provide the instantiation process with the information it needs to locate the
data handler’s class. This data-handler class is the name of the Java class that
implements the data handler.

Note: The data-handler methods must instantiate a data handler before they can
request the specified conversion. This instantiation process is implemented
by the createHandler() method of the DataHandler base class. For more
information on the DataHandler class and the data-handler configuration
information, see theData Handler Guide.

The data-handler method can specify the name of the data-handler class by
providing the MIME type of the serialized data in its mimeType argument and,
optionally its BOPrefix argument. It uses this MIME type to obtain the data
handler’s class from its child meta-object in the top-level meta object as follows:

¢ The data-handler method checks the top-level meta-object for the data handler
that corresponds to this specified MIME type. It obtains the name of this
top-level meta-object from the DataHandlerMetaObjectName connector
configuration property. If this property is not set, the data-handler method
throws the PropertyNotSetException exception.

* The top-level meta-object contains attributes whose names indicate supported
MIME types. The attribute types identify the child meta-object that corresponds
to the specified MIME type. This child meta-object contains configuration
information for the data handler, including the data handler’s class name.

In this case, the data-handler method instantiates a data handler of Java class listed
in the child meta-object. The instantiation process uses the child data-handler
meta-object associated with that MIME type to derive the class name and other
configuration information for the data handler instance.

Note: Each system on which data handlers are installed has a meta-object to
describe the available data handlers. A meta-object is a special business
object that contains configuration information. For data handlers, the
top-level meta-object contains the available data handlers and the associated
MIME type that each data handler supports.

Chapter 3. Providing general connector functionality 77

For more information about the meta-objects and about how the instantiation
process derives a class name from the specified MIME type, see the Data Handler
Guide.

If the data handler cannot be instantiated, the data-handler method throws the
DataHandlerCreateException.

Handling loss of connection to an application

A good design practice is to code the connector application-specific code so that it
shuts down whenever the connection to the application is lost. To respond to a lost
connection, the connector’s application-specific component should take the
following steps:

* Log a fatal error message so that email notification is triggered if the
LogAtInterchangeEnd connector configuration property is set to True.

* Return the APPRESPONSETIMEOUT outcome status to inform the connector
controller that the application is not responding. When this occurs, the process
in which the connector runs is stopped and then restarted automatically.

The following user-implemented abstract methods should check for a loss of
connection to the application:

» For event notification, the pol1ForEvents() method should verify the connection
before it accesses the event store. For more information, see |”Verifying thEl
[connection before accessing the event store” on page 180

* For request processing, the doVerbFor() method should verify the connection
before it begins verb processing. For more information, see [“Verifying the

[connection before processing the verb” on page 156

78 Connector Development Guide for Java

Chapter 4. Request processing

This chapter presents information on how to provide request processing in a
connector. Request processing implements a mechanism to receive requests, in the
form of request business objects, from an integration broker and to initiate the
appropriate changes in the application business entities. The mechanism for
implementing request processing is a business object handler, which contains
methods that interact with an application to transform request business objects into
requests for application operations. This chapter contains the following sections:

* |"Designing business object handlers”|

G

* [“Extending the business-object-handler base class” on page 82|

. "’Handling the request” on page 82

« [“Handling the Create verb” on page 86|

[“Handling the Retrieve verb” on page 89|

[“Handling the RetrieveByContent verb” on page 94|

[“Handling the Update verb” on page 96|
[“Handling the Delete verb” on page 103|
[“Handling the Exists verb” on page 104|

+ |“Processing business objects” on page 105

[“Indicating the connector response” on page 112

[“Handling loss of connection to the application” on page 112|

Note: For an introduction to request processing, see [“Request processing” on page]

Designing business object handlers

The business object handler implements request processing for the connector.
Therefore, the defining and coding of business object handlers is one of the
primary tasks in connector development. A business object handler is an instance
of a subclass of the CHConnectorBOHandler class. Each business object definition
refers to a business object handler, which contains a set of methods to perform the
tasks for the verbs that the business object definition supports. You need to code
one or more business object handlers to process the business objects that the
connector supports.

The way to implement a business object handler depends on the application
programming interface (API) that you are using and how this interface exposes
application entities. To determine how many business object handlers your
connector requires, you need to take a look at the application that the connector
will interact with:

* If the application is form-based, table-based, or object-based and has a standard
access method across entities, you might be able to design business objects that
store information about application entities. The business object handler can
process the application entities in a metadata-driven business object handler.

You can derive one generic business-object-handler class to implement a
metadata-driven business object handler, which handles processing of all
business objects. For more information, see [“Implementing metadata-driven|
[business object handlers” on page 80

© Copyright IBM Corp. 2000, 2004 79

* If the application has different access methods for different kinds of entities,
some or all of the application entities might require individual business object
handlers.

You can:

— Derive a generic business-object-handler class to implement a
metadata-driven business object handler for some business objects, and
separate business-object-handler classes to implement business object handlers
for other business objects.

— Derive multiple business-object-handler classes, one for each business object
definition that the connector supports.

For more information, see[“Implementing multiple business object handlers” on|

Another consideration in the design of a business object handler is whether you
need to have separate processing for certain verbs of the business object. If some
verb (or verbs) require special processing, you can create a custom business object
handler for the verb. For more information, see [“Creating a custom business object]
lhandler” on page 172/

Implementing metadata-driven business object handlers

If the application API is suitable for a metadata-driven connector, and if you
design business object definitions to include metadata, you can implement a
metadata-driven business object handler. This business object handler uses the
metadata to process all requests. A business object handler can be completely
metadata-driven if the application is consistent in its design, and the metadata
follows a consistent syntax for each supported business object.

Note: For an introduction to metadata and metadata-driven design, see
[support for metadata-driven design” on page 45|

This section provides the following information about metadata-driven design for a
business object handler:

+ |“Metadata in business objects”|

* |“Benefits of metadata design” on page 81|

Metadata in business objects

Business object definitions have specific locations for different types of
application-specific data. For example, business object attributes have a set of
properties, such as Key, Foreign Key, Required, Type, and so on, that provide the
business object handler with information that it can use to drive business object
processing. In addition, the AppSpecificInfo property can provide the business
object handler with application-specific information, which can specify how to
access data in the application and how to process application entities.

The AppSpecificInfo property is available for the business object definition,
attributes, and verbs. [Table 32[shows some typical schemes for encoding
application-specific information in business objects.

Table 32. Example schemes for storage of application information in business objects

Scope of application-specific

information Table-based application Form-based application
The whole business object Table name Form name
An individual attribute Column name Field name

80 Connector Development Guide for Java

Table 32. Example schemes for storage of application information in business objects (continued)

Scope of application-specific
information Table-based application Form-based application

The business object verb SQL statement or other Action to be performed
verb-processing instructions

Using application-specific information, a metadata-driven business object handler

might simply:

* Examine the verb of an incoming business object to identify the operation to
perform.

* Examine the contents of the business object metadata to identify the name of the
associated application entity (such as an application table or form).

¢ Examine the contents of the attribute metadata to identify fields, columns, or
other information about the attributes.

If a business object definition contains the table name and column names, you do
not have to explicitly code those names in the business object handler.

Benefits of metadata design
Encoding application information in a business object accomplishes two things:

* One business object handler class can perform all operations for all business
objects supported by the connector. You do not have to code a separate business
object handler for each supported business object.

* Changes to a business object definition do not require recoding the connector as
long as the changes conform to existing metadata syntax. This benefit means
that you can add attributes to a business object definition, remove attributes, or
reorder attributes without recompiling or recoding the connector.

If information about application entities is encoded consistently in the business
object definition, all request business objects can be handled by a single
business-object-handler class in the connector. Also, you need to implement only a
single getConnectorBOHandlerForB0() method to return the single business object
handler and a single doVerbFor() method to implement this business object
handler. This approach is recommended for connector development because it
provides flexibility and automatic support for new business object attributes.

Implementing multiple business object handlers

For each business object definition that does not encapsulate all the metadata and
business logic for an application entity, you need a separate business-object-handler
class. You can derive separate handler classes directly from the
business-object-handler base class, or you can derive a single utility class and
derive subclasses as needed. You must then implement the
getConnectorBOHandlerForB0() method to return business object handler that
corresponds to particular business object definitions.

Each business object handler must contain a doVerbFor() method. If you
implement multiple business object handlers, you must implement a doVerbFor()
method for each business-object-handler class. In each doVerbFor() method,
include code to handle any parts of the application entity or operations on the
application entity that the business object definition does not describe.

This approach results in higher maintenance requirements and longer development
time than designing a single business object handler for a metadata-driven

Chapter 4. Request processing 81

connector. For this reason, this approach should be avoided if possible. However, if
the application has different access methods for different kinds of entities, coding
multiple, entity-specific business object handlers might be unavoidable.

Extending the business-object-handler base class

The Java connector library provides the business-object-handler base class,
CWConnectorBOHandler. This base class includes methods for handling request
processing, including the doVerbFor() method. To create a business object handler,
you must extend this business-object-handler base class and implement its abstract
method doVerbFor(). For information specific to the Java connector library, see
[“Extending the Java business-object-handler base class” on page 152)

Handling the request

Once you have derived your business-object-handler class, you must implement
the business-object-handler method, doVerbFor(). It is the doVerbFor() method that
provides request processing for the business objects that the connector supports. At
startup, the connector framework calls getConnectorBOHandlerForBO() to obtain the
business object handler implemented for each of the business object definitions that
the connector supports.

Important: All connectors must implement a business-object-handler method,
doVerbFor(), that implements the Retrieve verb. This method and verb
must be implemented even if your connector will not perform request
processing.

This section provides the following information on how to implement the
doVerbFor() method:

+ |“Basic logic for doVerbFor()’]

+ |“General recommendations on verb implementations” on page 84|

Basic logic for doVerbFor()

For a Java connector, the CWConnectorBOHandler class defines the doVerbFor()
method, which is an abstract method defined. The doVerbFor() method typically
follows a basic logic for request processing.

shows a flow chart of the method’s basic logic.

82 Connector Development Guide for Java

Verb processing
failed: "fail" status

Create

Retrieve, RetrieveByContent ||

Branch on the value of the Was ver.b
active verb: one branch Update > processing
for each verb supported successful?

by the business object

Delete

Other verbs: Exist, custom

Verb processing was

Is the " "
successful: "success" status

connector still
connected to the
application?

NO | Request processing
failed: "application-timeout"

Verb processing
failed: "fail" status

Is the active
verb valid?

Receive request
business object
(with active verb)

<

Figure 27. Flow chart for basic logic of doVerbFor()

For an implementation of this basic doVerbFor() logic, see [‘Implementing the
ldoVerbFor() method” on page 153.|

When the connector framework receives a request, it calls the doVerbFor() method
for the business-object-handler class associated with the business object definition
of the request business object. To this doVerb For() method, the connector
framework passes the request business object. summarizes the tasks that
the doVerbFor() method performs once it has received a request business object
from the connector framework.

Table 33. Tasks of the doVerbFor() method

Task of business object handler For more information

1. Determine the verb processing to perform, based on the [“Performing the verb action” on page 85|
active verb in the request business object.

2. Obtain information from the request business object to [“Processing business objects” on page 105|

build and send requests for operations to the application.

Chapter 4. Request processing 83

General recommendations on verb implementations
This section provides the following general recommendations for implementing
your doVerbFor() method:

* |“Verb stability”|

* |“Transaction support”|

“ObjectEventld attribute”|

Verb stability

Verbs in a business object should remain stable throughout the request and
response cycle. When a connector receives a request, the hierarchical business
object that is returned to InterChange Server should have the same verbs as the
original request business object, with the exception of verbs in child business
objects that were not set in the original request.

Verbs in child business objects might or might not be set in request business
objects:

* When a verb is set in a child business object, the connector should perform the
operation that the child verb indicates, regardless of the verb on the top-level
business object.

* If a verb in a child business object request is not set, the connector can either
leave the child verb as NULL, set the child verb to the verb in the top-level
business object, or set the value of the verb to the operation that the connector
needs to perform.

Transaction support

An entire business object request must be wrapped in a single transaction. In other
words, all Create, Update, and Delete transactions for a top-level business object
and all of its children must be wrapped in a single transaction. If any failure is

detected during the life of the transaction, the whole transaction should be rolled
back.

For example, if a Create operation on a top-level business object succeeds, but the
transaction for one of the child business objects fails, the connector
application-specific component should roll back the entire Create transaction to the
previous state. In this case, the connector’s application-specific component should
return failure from the verb method.

ObjectEventld attribute

The ObjectEventld attribute is used in the IBM WebSphere business integration
system to identify an event-trigger flow in the system. In addition, it is used to
keep track of child business objects across requests and responses, as the position
of child business objects in a hierarchical business object request might be different
from the position of the child business objects in the response business object.

Connectors are not required to populate ObjectEventId attributes for either a
parent business object or its children. If business objects do not have values for
ObjectEventId attributes, the IBM WebSphere business integration system
generates values for them. When connectors generate ObjectEventId values, this is
done by the source connector as part of the event-notification mechanism.

When processing request business objects, connectors should preserve

ObjectEventId values in all levels of a hierarchical business object between the
request business object and the response business object. If a connector method

84 Connector Development Guide for Java

changes the values of child business object ObjectEventIds, the IBM WebSphere
business integration system may not be able to correctly track the child business
objects.

For information on generating ObjectEventIds in the event notification mechanism,
see [“Event identifier” on page 115

Performing the verb action

The standard verbs that IBM WebSphere business integration system expect
connectors to handle are Create, Retrieve, Update, and Delete. IBM recommends
that you implement these verbs according to standard behaviors documented in
the sections listed in the For More Information column of These sections
provide information about the standard behavior, implementation notes, and the
appropriate outcome-status values.

lists the standard verbs that IBM WebSphere business integration system
defines. Your doVerbFor() method should implement those verbs appropriate for its
application.

Table 34. Verbs implemented by the doVerbFor() method

Verb Description For more information
Create Make a new entity in the application. “Handling the Create verb” on|
page 86|
Retrieve Using key values, return a complete business object. [‘Handling the Retrieve verb” on|
page 89
RetrieveByContent Using non-key values, return a complete business “Handling the RetrieveByContenf]
object. verb” on page 94
Update Change the value in one or more fields in the “Handling the Update verb” on|
application. page 96|
Delete Remove the entity from the application. This “Handling the Delete verb” onl|
operation must be a true physical delete. page 103
Exists Check whether the entity exists in the application. “Handling the Exists verb” on|
page 104]
Custom verbs Perform some application-specific operation. None

Note: Although the sections listed in the "For more information” column of
present suggested behavior for verb methods, your connector might
need to implement some aspects of verb processing differently to support a
particular application. Once the connector framework passes a request
business object to your connector’s doVerbFor() method, the doVerbFor()
method can implement verb processing in any way that is necessary. Your
verb processing code is not limited to the suggestions presented in this
chapter.

| InterChange Server |

When InterChange Server is the integration broker and you design your own
collaborations, you can implement any custom verbs that you need. Your
collaborations and connectors are not limited to the standard list of verbs.

| End of InterChange Server

This basic verb-processing logic consists of the following steps:
1. Get the verb from the request business object.

Chapter 4. Request processing 85

The doVerbFor() method must first retrieve the active verb from the business
object with the getVerb() method. For a Java connector, getVerb() is defined in
the CWConnectorBusObj class.

2. Perform the verb operation.

In the business object handler, you can design the doVerb For() method in either
of the following ways:

* Implement verb processing for each supported verb directly within the
doVerbFor() method. You can modularize the verb processing so that each
verb operation is implemented in a separate verb method called from
doVerbFor(). The method should also take appropriate action if the verb is
not a supported verb by returning a message in the return-status descriptor
and a “fail” status.

* Handle all verb processing in the same method using a metadata-driven
doVerbFor() method.

Handling the Create verb

When the business object handler obtains a Create verb from the request business
object, it must ensure that a new application entity, whose type is indicated by the
business object definition, is created, as follows:

* For a flat business object, the Create verb indicates that the specified entity must
be created.

* For a hierarchical business object, the Create verb indicates that one or more
application entities (to match the entire business object) must be created.

The business object handler must set all the values in the new application entities
to the attribute values in the request business object. To ensure that all required
attributes in the request business object have values assigned, you can call the
initAndValidateAttributes() method, which assigns the attribute’s default value
to each required attribute that does not have its value set (when the UseDefaults
connector configuration property is set to true). The initAndValidateAttributes()
method is defined in the CWConnectorUtil class. Call initAndValidateAttributes()
before performing the Create operation in the application.

Note: For a table-based application, the entire application entity must be created in
the application database, usually as a new row to the database table

associated with the business object definition of the request business object.

This section provides the following information to help process a Create verb:

* |“Standard processing for a Create verb”|

+ [“Implementation of a Create verb operation” on page 87

“QOutcome status for Create verb processing” on page 8§

Note: You can modularize your business object handler so that each supported
verb is handled in a separate Java method. If you follow this structure, a
Create method handles processing for the Create verb.

Standard processing for a Create verb

The following steps outline the standard processing for a Create verb:
1. Create the application entity corresponding to the top-level business object.
2. Handle the primary key or keys for the application entity:

86 Connector Development Guide for Java

¢ If the application generates its own primary key (or keys), get these key
values for insertion in the top-level business object.

* If the application does not generate its own primary key (or keys), insert the
key values from the request business object into the appropriate key column
(or columns) of the application entity.

3. Set foreign key attributes in any first-level child business objects to the value of
the top-level primary key.

4. Recursively create the application entities corresponding to the first-level child
business objects, and continue recursively creating all child business objects at
all subsequent levels in the business object hierarchy.

In , a verb method sets the foreign key attributes (FK) in child business
objects A, B, and C to the value of the top-level primary key (PK1). The method
then recursively sets the foreign key attributes in child business objects D and E to
the value of the primary key (PK3) in their parent business object, object B.

Top-level Child A
bus object
ID = PK2
ID = PK1 > =
FK = PK1 Child D
Child B ID = PK5
ID = PK3 » FK=PK3
> FK=PKi | chidE
Child C D = PK6
ID = PK4 FK = PK3
FK = PK1

Figure 28. Creating parent/child relationships

Implementation of a Create verb operation

A typical implementation of a Create operation first traverses the top-level business
object and processes the business object’s simple attributes. It gets the values of the
attributes from the business object and generates the application-specific action
(such as an API call or SQL statement) that inserts an entity in the application to
represent the top-level business object. Once this top-level entity is created, the
verb operation takes the following steps:

1. Retrieve any primary keys for the entity from the application.

2. Use the keys to set the foreign key attributes in the first-level child business
objects to the value of the parent primary keys.

3. Set the verb in each child business object to Create and recursively create
application entities to represent the child business objects.

A recommended approach for creating child business objects is to design a
submethod to recursively create child entities. The submethod might traverse the
business object, looking for attributes of type 0BJECT. If the submethod finds
attributes that are objects, it calls the main Create method to create the child
entities.

Chapter 4. Request processing 87

The way that the main method provides primary key values to the submethod can
vary. For example, the main Create method might pass the parent business object
to the submethod, and the submethod can then retrieve the primary key from the
parent business object to set the foreign key in the child business object.
Alternatively, the main method might traverse the parent object, find first-level
children, set the foreign key attributes in the child business objects, and then call
the submethod on each child.

In either case, the main Create method and its submethod interact to set the
interdependencies between the parent business object and its first-level children.
Once the foreign keys are set, the operation can:

* Insert new rows into the application.
* Set foreign keys for the next level of child business objects.
* Create the child entities.

* Descend the business object hierarchy, recursively creating child entities until
there are no more child business objects to process.

Note: For a table-based application, the order of the steps for setting the
relationships between a top-level object and its children may vary,
depending on the database schema for the application and on the design of
the application-specific business objects. For example, if foreign keys for a
hierarchical business object are located in the top-level business object, the
verb operation might need to process all child business objects before
processing the top-level business object. Only when the child entities are
inserted into the application database and the primary keys for these entities
are returned can the top-level business object be processed and inserted into
the application database. Therefore, be sure to consider the structure of data
in the application database when you implement connector verb methods.

Outcome status for Create verb processing
The Create operation should return one of the outcome-status values shown in

[Table 33.

Table 35. Possible outcome status for Java Create verb processing

Create condition Java outcome status

If the Create operation is successful and the application VALCHANGE
generates new key values, the connector:

* fills the business object with the new key values; this business
object is returned to the connector framework through the
request business object parameter.

¢ returns the “Value Changed” outcome status to indicate that
the connector has changed the business object
If the Create operation is successful and the application does not SUCCEED
generate new key values, the connector can simply return
“Success”.
If the application entity already exists, the connector can either
of the following actions:

* Fail the Create operation. FAIL

e Return an outcome status that indicates the application entity VALDUPES
already exists.

If the Create operation fails, the verb operation: FAIL

* fills a return-status descriptor with information on the failure

* returns the “Fail” outcome status

88 Connector Development Guide for Java

Note: When the connector framework receives the VALCHANGE outcome status,
it includes a business object in its response to InterChange Server. For more
information, see [’Sending the verb-processing response” on page 167

Handling the Retrieve verb

When the business object handler obtains a Retrieve verb from the request business
object, it must ensure that an existing application entity, whose type is indicated by
the business object definition, is retrieved, as follows:

* For a flat business object, the Retrieve verb indicates that the specified entity is
retrieved by its key values. The verb operation returns a business object that
contains the current values for the application entity.

* For a hierarchical business object, the Retrieve verb indicates that one or more
application entities (to match the entire business object) are retrieved by the key
values of the top-level business object. The verb operation returns a business
object in which all simple attributes of each business object in the hierarchy
match the values of the corresponding entity attributes, and the number of
individual business objects in each child business object array matches the
number of child entities in the application.

Note: For a table-based application, the entire application entity must be retrieved
from the application database.

For the Retrieve verb, the business object handler obtains the key value (or values)
from the request business object. These key values uniquely identify an application
entity. The business object handler then uses these key values to retrieve all the
data associated with an application entity. The connector retrieves the entire
hierarchical image of the entity, including all child objects. This type of retrieve
operation might be referred to as an after-image retrieve.

Important: All connectors must implement a doVerbFor() method with verb
processing for the Retrieve verb. This requirement holds even if your
connector will not perform request processing.

An alternative way of retrieving data is to query using a subset of non-key
attribute values, none of which uniquely define a particular application record.

This type of retrieve processing is performed by the RetrieveByContent verb
method. For information on retrieving by non-key values, see|”Handling the

[RetrieveByContent verb” on page 94

This section provides the following information to help process a Retrieve verb:

* |“Standard processing for a Retrieve verb”|

+ |“Implementation of a Retrieve verb operation” on page 9|

+ [“Example: Retrieve operation” on page 90|

* [“Retrieving child objects” on page 91|

» |[“Outcome status for Retrieve verb processing” on page 94

Note: You can modularize your business object handler so that each supported
verb is handled in a separate Java method. If you follow this structure, a
Retrieve method handles processing for the Retrieve verb.

Standard processing for a Retrieve verb

The following steps outline the standard processing for a Retrieve verb:

Chapter 4. Request processing 89

1. Create a new business object of the same type as the request business object.
This new business object is the response business object, which will hold the
retrieved copy of the request business object.

2. Set the primary keys in the new top-level business object to the values of the
top-level keys in the request business object.

3. Retrieve the application data for the top-level business object and fill the
response top-level business object’s simple attributes.

4. Retrieve all the application data associated with the top-level entity, and create
and fill child business objects as needed.

Note: By default, the Retrieve method returns failure if it cannot retrieve
application data for all the child objects in a hierarchical business object.
This behavior can be made configurable; for information, see

[Retrieve to ignore missing child objects” on page 93|

Implementation of a Retrieve verb operation
A typical Retrieve operation can use one of the following methods:

* Create a new response business object from the business object definition for
that object and sets the top-level primary keys in this new business object. Using
the top-level primary keys, the verb operation can retrieve all data associated
with the top-level entity.

* Start by pruning all child business objects from the top-level business object.
Using the top-level keys in the pruned object, the verb operation can retrieve the
top-level data and all associated data.

The goal of each of these approaches is the same: Start with the top-level business
object and rebuild the complete business object hierarchy. This type of
implementation ensures that all children in the request business object that are no
longer in the database are removed and are not passed back in the response
business object. This implementation also ensures that the hierarchical response
business object exactly matches the database state of the application entity. At each
level, the Retrieve operation rebuilds the request business object so that it
accurately reflects the current database representation of the entity.

Example: Retrieve operation

In a Retrieve operation, an integration broker requests the complete set of data that
is associated with an application entity. The request business object might contain
any of the following:

* A top-level business object but no child objects, even though the business object
definition includes children

* A business object that contains the top-level business object and some of its
defined children

* A complete hierarchical business object containing all child business objects

shows a request business object for a Contact entity. The Contact
business object includes a multiple cardinality array for the ContactProfile
attribute. In this request business object, the ContactProfile business object array
includes two child business objects.

90 Connector Development Guide for Java

Contact

Contactld = 100
Name = ContactProfile
JobTitle =

ContactProfile =

Profileld = 275
Contactld =

ContactProfile

Profileld = 276
Contactld =

Figure 29. Example business object content for a Retrieve request

Application tables associated with the Contact and ContactProfile business objects
might look like the tables in This illustration also shows the foreign-key
relationship between the tables. As you can see, the contact_profile table has a
row for the ContactId of 100 that is not reflected in the Contact request business

object in

contact table contact_profile table
contact_id | name job_title profile_id | contact_id | job_code | department

275 100 42 422

1 OOK Jones VP F
276 100 53

200 Smith Manager L 422
277 100 78 422
278 200 156 537

Figure 30. Foreign-key relationships between tables

The Retrieve operation uses the primary key in the Contact business object (100) to
retrieve the data for the simple attributes in the response business object: values
for the Name and JobTitle attributes. To be sure that it retrieves the correct number
of child business objects, the verb operation must either create a new business
object or prune child objects from the existing request business object. For the
tables in , the Retrieve operation would need to create a new
ContactProfile business object for the contact_profile row with a profile_id
value of 277. In this way, the Retrieve operation properly creates and populates all
arrays based on the current state of the application entities.

Retrieving child objects

To retrieve entities associated with the top-level entity, the Retrieve operation
might be able to use the application API:

* Ideally, the API will navigate the relationships between application entities and
return all related data. The verb operation can then encapsulate the related data
as child business objects.

e If the API does not provide information on associated entities, you might need to
access the application (for example, with generated SQL statements) to retrieve
related data. The SQL statements might use foreign keys to navigate through
application tables.

Chapter 4. Request processing 91

If the attribute application-specific information in the business object definition
contains information on foreign keys, the verb operation can use this information
to generate command to access the application (such as SQL statements). For
example, application-specific information for the foreign key attribute of the
ContactProfile child business object might specify:

* The parent table: contact
* The child table’s column for the foreign key: contact_id

* The attribute in the parent business object that contains the primary key value
that serves as a foreign key in the child business object: ContactId

shows example application-specific information for the primary key
attribute of the Contact business object and the primary and foreign key attributes
of the ContactProfile child business object.

Contact

] L Primary key attribute
[Attribute] / in parent
Name = Contactld

AppSpecificinfo = contact.contact_id <

ContactProfile

[Attribute]
Name = Profileld
IsKey = true

AppSpecificlnfo = contact_profile.profile_id

[Attribute]
Name = Contactld

IsForeignKey = true

AppSpecificinfo = contact_profile.contact_id:Contactld

~ A

Foreign key table
and column

Figure 31. Foreign-key relationships in business objects

Using the application-specific information, the verb operation can find the name of
the child table (contact_profile) and the column for the foreign key (contact_id)
in the child table. The verb operation can also find the value of the foreign key for
the child business object by obtaining the value of the primary key attribute
(ContactlId) in the parent business object (100). With this information, the verb
operation can generate a SQL SELECT statement that retrieves all the records in
the child table associated with the parent key. The SELECT statement to retrieve
the data associated with the missing contact_profile row might be:

SELECT profile_id, job_code, department

FROM contact_profile
WHERE contact_id = 100

The SELECT statement returns three rows from the example contact_profile table,

as shown in [Figure 3

92 Connector Development Guide for Java

contact_profile table
contact table

.] . profile_id | contact_id | job_code | department
contact_id name job_title
275 100 42 422
Jones VP 276 100 53 422
Smith M
m b 277 100 78 422
278 200 156 537

Figure 32. Results of SELECT statement for example Retrieve operation

If a Retrieve operation returns multiple rows, each row becomes a child business
object. The verb operation might process retrieved rows as follows:

1. For each row, create a new child business object of the correct type.

2. Set attributes in the new child business object based on the values that a
SELECT statement returns for the associated row.

3. Recursively retrieve all children of the child business object, creating the
business object and setting the attributes for each one.

4. Insert the array of child business objects into the multiple-cardinality attribute
in the parent business object.

The response business object for the Retrieve operation on the two example tables
might look like L The verb operation has retrieved the current database
entity and has added a child to the hierarchical business object.

Contact »| ContactProfile
Contactld = 100 Profileld = 275
Name = Jones Contactld = 100
JobTitle = VP
ContactProfile ContactProfile

Profileld = 276
Contactld = 100

ContactProfile

Profileld = 277
Contactld = 100

Figure 33. Business object response to example Retrieve request

Configuring a Retrieve to ignore missing child objects

By default, the Retrieve operation should return failure if it cannot retrieve
application data for the complete set of child business objects in a hierarchical
business object. However, you can implement the verb operation so that the
behavior of the connector is configurable when one or more of the children in a
business object are not found in the application.

To do this, define a connector-specific configuration property named
IgnoreMissingChildObject, whose values are True and False. The Retrieve
operation obtains the value of this property to determine how to handle missing
child business objects. When the property is True, the Retrieve operation should

Chapter 4. Request processing 93

simply move on to the next child in the array if it fails to find a child business
object. In this case, the verb operation should return VALCHANGE if it is
successful in retrieving the top-level object, regardless of whether it is successful in
retrieving its children.

Outcome status for Retrieve verb processing

The Retrieve operation should return one of the outcome-status values shown in

[Table 34.

Table 36. Possible outcome status for Java Retrieve verb processing

Retrieve condition Java outcome status

When the Retrieve operation is successful, it: VALCHANGE

* fills the entire business object hierarchy, including all child
business objects; this business object is returned to the
connector framework through the request business object
parameter.

e returns the “Value Changed” outcome status to indicate that
the connector has changed the business object
If the IgnoreMissingChildObject connector property is True, the VALCHANGE
Retrieve operation returns the “Value Changed” outcome status
for the business object if it is successful in retrieving the
top-level object, regardless of whether it is successful in
retrieving its children.
If the entity that the business object represents does not exist in ~ BO_DOES_NOT_EXIST
the application, the connector returns a special outcome status
instead of “Fail”.
If the request business object does not provide a key for the FAIL
top-level business object, the Retrieve operation can take either
of the following actions:

* Fill a return-status descriptor with information about the
cause of Request failure and return a “Fail” outcome status.

* Call the RetrieveByContent method to retrieve using the
content of the top-level business object.

Note: When the connector framework receives the VALCHANGE outcome status,
it includes a business object in its response to InterChange Server. For more
information, see [“Sending the verb-processing response” on page 167

Handling the RetrieveByContent verb

An integration broker might need to retrieve a business object for which it has a
set of attribute values without having the key attribute (or attributes) that uniquely
identifies an application entity. Such a retrieve is called “retrieve by non-key
values” or “retrieve by content.” As an example, if a business object handler
receives a Customer business object with the verb RetrieveByContent and with the
non-key attributes Name and City set to Smith and San Diego, the
RetrieveByContent operation can attempt to retrieve a customer entity that matches
the values of the Name and City attributes.

When the business object handler obtains a RetrieveByContent verb from the

request business object, it must ensure that an existing application entity, whose
type is indicated by the business object definition, is retrieved, as follows:

94 Connector Development Guide for Java

 For a flat business object, the RetrieveByContent verb indicates that the specified
entity is retrieved by its non-key values. The verb operation returns a business
object that contains the current values for the application entity.

 For a hierarchical business object, the RetrieveByContent verb indicates that one
or more application entities (to match the entire business object) are retrieved by
the non-key values of the top-level business object. The verb operation returns a
business object in which all simple attributes of each business object in the
hierarchy match the values of the corresponding entity attributes, and the
number of individual business objects in each child business object array
matches the number of child entities in the application.

This section provides the following information to help process a
RetrieveByContent verb:

* |“Implementation for a RetrieveByContent verb operation”|

“Outcome status for RetrieveByContent processing”|

Note: You can modularize your business object handler so that each supported
verb is handled in a separate Java method. If you follow this structure, a
RetrieveByContent method handles processing for the RetrieveByContent
verb.

Implementation for a RetrieveByContent verb operation

RetrieveByContent functions the same as the Retrieve verb except that it uses a
subset of non-key values, instead of key values, to retrieve application data. In its
most robust implementation, a top-level business object and its child business
objects would independently support the RetrieveByContent verb. However, not all
application APIs enable retrieve by non-key values for hierarchical business objects.

A more common implementation is to provide RetrieveByContent support only in
the top-level business object. When a top-level business object supports retrieve by
non-key values and this retrieve-by-content is successful, the RetrieveByContent
operation can retrieve the keys for the entity matching the request business object.
The verb operation can then perform a Retrieve operation to retrieve the complete
business object.

You might want to specify which attributes are to be used in RetrieveByContent
operations. To do this, you can implement attribute application-specific information
to specify those attributes that will contain a value that is to be used in the
RetrieveByContent operation or receive a value as a result of the operation.

Outcome status for RetrieveByContent processing

The RetrieveByContent operation should return one of the outcome-status values
shown in [Table 37.

Table 37. Possible outcome status for Java RetrieveByContent verb processing

RetrieveByContent condition Java outcome status

If the RetrieveByContent operation finds a single entity VALCHANGE
that matches the query, it:
e fills the entire business object hierarchy, including all

child business objects; this business object is returned to

the connector framework through the request business

object parameter.

* returns a “Value Changed” outcome status

Chapter 4. Request processing 95

Table 37. Possible outcome status for Java RetrieveByContent verb processing (continued)

RetrieveByContent condition Java outcome status

If the IgnoreMissingChildObject connector property is VALCHANGE
True, the RetrieveByContent operation returns the “Value

Changed” outcome status for the business object if it is

successful in retrieving the top-level object, regardless of

whether it is successful in retrieving its children.

If the RetrieveByContent operation finds multiple entries ~ MULTIPLE_HITS
that match the query, it:

* retrieves only the first occurrence of the match; this
business object is returned to the connector framework
through the request business object parameter.

* fills a return-status descriptor with further information
about the search

* returns a status of “Multiple Hits” to notify the

connector framework that there are additional records

that match the specification
If the RetrieveByContent operation does not find matches RETRIEVEBYCONTENT_FAILED
for retrieve by non-key values, it:

e fills a return-status descriptor containing additional
information about the cause of the RetrieveByContent
error

* returns a “RetrieveByContent Failed” outcome status

Note: When the connector framework receives the VALCHANGE outcome status,
it includes a business object in its response to InterChange Server. For more
information, see [“Sending the verb-processing response” on page 167

Handling the Update verb

When the business object handler obtains an Update verb from the request
business object, it must ensure that an existing application entity, whose type is
indicated by the business object definition, is updated, as follows:

* For a flat business object, the Update verb indicates that the data in the specified
entity must be modified as necessary until the application entity exactly matches
the request business object.

* For a hierarchical business object, the Update verb indicates that updates the
application entity must be updated to match the entire business object hierarchy.
To do this, the connector might need to create, update, and delete application
entities:

— If child entities exist in the application, they are modified as needed.

— Any child business objects contained in the hierarchical business object that
do not have corresponding entities in the application are added to the
application.

— Any child entities that exist in the application but are not contained in the
business object are deleted from the application.

Note: For a table-based application, the entire application entity must be updated
in the application database, usually as a new row to the database table

associated with the business object definition of the request business object.

This section provides the following information to help process an Update verb:

« |"Standard processing for an Update verb” on page 97|

96 Connector Development Guide for Java

* |“Implications of business objects representing logical Delete events” on page 100

* [“Outcome status for Update verb processing” on page 102|

Note: You can modularize your business object handler so that each supported

verb is handled in a separate Java method. If you follow this structure, an
Update method handles processing for the Update verb.

Standard processing for an Update verb
The following steps outline the standard processing for an Update verb:

1.

Create a new business object of the same type as the request business object.
This new business object is the response business object, which will hold the
retrieved copy of the request business object.

Retrieve a copy of the request business object from the application.

Recursively retrieve the data for the entire entity from the application using the
primary keys from the request business object:

* For a flat business object, retrieve the single application entity.

 For a hierarchical business object, use the Retrieve operation to descend into
the application business object, expanding all paths in the business object
hierarchy.

Place the retrieved data in the response business object. This response business
object is now a representation of the current state of the entity in the
application.

The Update operation can now compare the two hierarchical business objects
and update the application entity appropriately.

Update the simple attributes in the application entity to correspond to the
top-level source business object.

Compare the response business object (created in step Eb with the request
business object. Perform this comparison down to the lowest level of the
business object hierarchy.

Recursively update the children of the top-level business object following these
rules:

¢ If a child business object is present in both the response business object and
the request business object, recursively update the child by performing the
Update operation.

¢ If a child business object is present in the request business object but not in
the response business object, recursively create the child by performing the
Create operation.

* If a child business object is not present in the request business object but is
present in the response business object, recursively delete the child using
either the Delete operation (physical) or a logical delete, depending on the
functionality of the connector and the application. For more information on
logical deletes, see [“Implications of business objects representing logicall
[Delete events” on page 100

Note: Only the existence or non-existence of the child objects are compared, not
the attributes of the child business objects.

If the connector’s application supports logical delete, the connector recursively
retrieves the complete business object hierarchy; then the Update operation sets
status attributes and recursively updates the status of the children.

Chapter 4. Request processing 97

Note: The Update operation should fail if an application entity does not exist for
any foreign key (Foreign Key is set to true) referenced in the request
business object. The connector should verify that the foreign key is a valid
key (it references an existing application entity). If the foreign key is invalid,
the Update operation should return FAIL. A foreign key is assumed to be
present in the application, and the connector should never try to create an
application object marked as a foreign key.

shows a set of associated application entities that represent a customer in
the application database. The entities contain customer, address, phone, and
customer profile data. Note that the sample customer, Acme Construction, has no
phone number in the database.

Customer table

ID Name Status

% Acme Construction Active
Addres(able

ID shget N N:Qs CustID
ol

A | 107 | 65EI Denver do [™22

108 | 279 Vine Altos Idaho~_ | ™ 22

109 | 835High \ Akron Ohio |™ 22
Phone table

ID PhoneNo Custlls\

CustomerProfile table

ID Type Role Contact CustlD

978 72 Cust Sam Jones \‘22

Figure 34. Customer entities before Update request

Assume that an integration broker sends an update request that consists of the
request business object as shown in

98 Connector Development Guide for Java

Address
Address
B
A Update
Customer Update
CustomerID
CustomerTy pe CustProfile
AddressArray
A
CustProfileArray Update
PhoneArray —
. Phone
ObjectEventld
Update Cr :a o

Figure 35. Customer request business object for an Update

This request business object indicates that the Acme Construction customer has

undergone the changes listed in [Table 3§

Table 38. Updates to Acme Construction in the Request business object

Update made to Acme Construction Representation in request business object

Acquired a new phone number The child business object for the PhoneArray attribute (Phone
object A) has a Create verb.

Moved to new offices in Denver and Altos Two child business objects (Address objects A and B) exist in the
AddressArray attribute, each with an Update verb.

Closed the office in Akron No child business object exists in the AddressArray attribute for
the Akron address.

Changed the name of the contact person The child business object for the CustProfileArray attribute

(CustProfile object A) has an Update verb.

Your connector’s task is to keep the application database for this destination

application synchronized with the source application. Therefore, to respond to this

request, the connector would need to perform the following tasks as part of its

Update operation:

* Update any columns in Customer table that have updated values in the
corresponding simple attributes of the Customer business object.

* Update the rows in the Address table that correspond to Address objects A and
B. Update the columns in each of these rows with any new values from the
corresponding simple attributes in the appropriate Address object. In this case,
the Street column has changed for the Denver and Altos offices.

* Delete the row in the Address table that corresponds to the Akron address.

* Update the Contact column of the CustomerProfile table to the value of the
corresponding simple attribute in the CustProfile object A business object.

* Create a row in the Phone table with column values from the simple attributes of
the Phone object A business object. Make sure that the CustID column of this
new row is created with the foreign-key value that identifies the appropriate
Customer row (22).

shows the set of associated application entities that represent a customer
after the Update operation has completed.

Chapter 4. Request processing 99

Customer table

ID Name Status
% Acme Construction Active
Addreé\xble
ID S\k@\at\ }ny\ ate CustID
107 | 3 Tashi Denver olorado | ™ 22
108 | 300 Vi Altos Idaho~_ | ™ 22
Phone table
ID | PhoneNo Custhg\
<
4 (650) 231-5542 | 22
CustomerProfile table
ID Type Role Contact CustlD
)
978 72 Cust Dexter Haven 22

Figure 36. Customer entities after Update request

Implications of business objects representing logical Delete

events

If your application supports physical delete, but an integration broker sends
requests from a source application that supports only logical delete, you might
need to handle a business object that represents a logical delete request.
Connectors for applications that perform logical delete operations, where an entity
is marked as deleted by updating a status value, should handle logical deletes in
the Update method. A system view of this implementation is as follows:

* Events that represent the deletion of data in the source application should be
sent as application-specific business objects with the Delete verb. Similarly, maps
on the source application side should set the verb of generic business objects to

Delete.

* On the destination side, maps for connectors supporting logical delete
applications can transform Delete verbs in generic business objects to Update
verbs in application-specific business objects. Business object attributes
representing entity status values can be set to the inactive status.

In this way, a connector representing a logical delete application receives an
application-specific business object with an Update verb and the status value

marked appropriately.

100 Connector Development Guide for Java

For example, assume that a source application entity has been updated to look like

the business object representation in Components in the source
application entity have been updated, created, and deleted.

Top-level

bus object

Delete

Delete

M

Update Delete

Delete

1

Update

Create

No Change

Figure 37. Updated entity in the source application

If the source application connector has implemented event notification as
recommended in [Chapter 5, “Event notification,” on page 113} deleted child
business objects are not present in the business object hierarchy, and the business
object simply contains the updated and new child business objects.

An example of a business object representing an Update request might look like
|Eigure 38} In this figure, the parent object is set to update, and all entities that have
been deleted are no longer present in the business object hierarchy.

Top-level
bus object

1
11

Update Update
P Create

No Change
Figure 38. Update request business object from a physical-delete connector

In this case, the connector compares the source and destination business objects
and deletes the entities that are not present in the source business object.

However, if the source application supports logical delete, the source connector
might send a business object with deletes tagged as updates and status attribute
values set to an inactive value. This business object might look like ,
where updates that are delete operations are identified by “[D]”.

Chapter 4. Request processing 101

Top-level

bus object Update [D]

Update [D]

1

Update Update

Update [D]

M1

Create

No Change

Figure 39. Update request business object from a logical-delete connector

There are several ways to handle a source business object that represents a logical
delete request:

* Implement mapping to examine the status of child business objects. If the status
of a particular child business object is inactive, the business object can be
removed in mapping.

e Implement the Update operation to determine whether an update operation is
actually a delete operation. In a logical delete source application, an entity may
be marked as active or inactive by a status value. In the source’s
application-specific business objects, the status value is usually an attribute.
Although entities in an application that supports physical delete might not
include status information, you can extend your application-specific business
objects to include status information.

* Extend a business object by adding an additional status attribute or by
overloading an existing attribute with a status value. When the Update
operation receives a request, it can check the status attribute. If it is set to the
inactive value, the operation is really a delete. The Update operation can then
set the business object verb to Delete and call the Delete operation to handle
deleted child business objects.

Outcome status for Update verb processing

The Update operation should return one of the outcome-status values shown in
Table 39.

Table 39. possible outcome status for Java Update verb processing

Update condition Java outcome status

If the application entity exists, the Update operation: SUCCEED
* modifies the data in the application entity

* returns a “Success” outcome status
If a row or entity does not exist, the Update operation: VALCHANGE
e creates the application entity
* returns the “Value Changed” outcome status to indicate that
the connector has changed the business object
If the Update operation is unable to create the application entity, FAIL
it:
e fills a return-status descriptor with information about the cause
of the update error

e returns a “Fail” outcome status

102 Connector Development Guide for Java

Table 39. possible outcome status for Java Update verb processing (continued)

Update condition Java outcome status
If any object identified as a foreign key is missing from the FAIL
application, the Update operation:

* fills a return-status descriptor with information about the cause
of the update error

* returns a “Fail” outcome status

Note: When the connector framework receives the VALCHANGE outcome status,
it includes a business object in its response to InterChange Server. For more
information, see [‘Sending the verb-processing response” on page 167 |

Handling the Delete verb

For a delete, an application might support either of the implementations shown in

[Table 44

Table 40. Delete Implementations

Delete implementation Description Verb-processing support

Physical delete
Logical delete

Physically removes the specified application entity. ~ Delete operation
Does not actually remove the entity; instead, it Update operation
marks it with a special “deleted” status.

Note: If the application does not allow any type of delete operation, the connector
can return a “Fail” outcome status.

The Delete operation, discussed in this section, performs a true physical deletion of
data in the application. Connectors for applications that perform logical delete
operations should handle logical deletes in the Update operation. For more
information, see [“Implications of business objects representing logical Delete|
fevents” on page 100|

When the business object handler obtains a Delete verb from the request business

object, it must ensure that a physical delete is performed; that is, the application

deletes the application entity whose type is indicated by the business object

definition, as follows:

* For a flat business object, the Delete verb indicates that the specified entity must
be deleted.

* For a hierarchical business object, the Delete verb indicates that the top-level
business object must be deleted. Depending on the application policies, the it
might delete associated entities representing child business objects.

Note: For a table-based application, the entire application entity must be deleted
from the application database, usually deleting a row in one or more
database tables.

This section provides the following information to help process a Delete verb:
* [“Standard processing for a Delete verb” on page 104|
* [“Outcome status for Delete verb processing” on page 104

Chapter 4. Request processing 103

Note: You can modularize your business object handler so that each supported
verb is handled in a separate Java method. If you follow this structure, a
Delete method handles processing for the Delete verb.

Standard processing for a Delete verb
The following steps outline the standard processing for a Delete verb:

1. Perform a recursive retrieve on the request business object to get all data in the
application that is associated with the top-level business object.

2. Perform a recursive delete on the entities represented by the request business
object, starting from the lowest level entities and ascending to the top-level
entity.

Note: Delete operations might be limited by application functionality. For example,
cascading deletes might not always be the desired operation. If you are
using an application API, it might automatically complete the delete
operation appropriately. If you are not using an application API, you might
need to determine whether the connector should delete child entities in the
application. If a child entity is referenced by other entities, it might not be
appropriate to delete it.

Outcome status for Delete verb processing
The Delete operation should return one of the outcome-status values shown in

[Table 41].

Table 41. Possible outcome status for Java Delete verb processing

Delete condition Java outcome status

InterChange Server only: In most cases, the connector returns a ~ VALCHANGE
“Value Changed” outcome status to enable the system to clean
up the relationship tables after a delete operation.
All integration brokers: If the Delete operation is unsuccessful, FAIL
it:
e fills a return-status descriptor with additional information
about the cause of the delete error

e returns a “Fail” outcome status

Note: When the connector framework receives the VALCHANGE outcome status,
it includes a business object in its response to InterChange Server. For more
information, see [“Sending the verb-processing response” on page 167

Handling the Exists verb

When the business object handler obtains an Exists verb from the request business
object, it must determine whether an application entity, whose type is indicated by
the business object definition, exists. This operation enables an integration broker
to verify that an entity exists before the integration broker performs an operation
on the entity. As an example, assume that a customer site wants to synchronize
Order, Customer, and Item entities in the source and destination applications.
Before synchronizing an order, the user wants to ensure that the customer entity
referenced by the Order business object already exists in the destination application
database. In addition, the user wants to ensure that each Item entity referenced by
the OrderLineltem child business objects also exists in the destination application.

104 Connector Development Guide for Java

Note: For a table-based application, the Exists method checks for the existence of
an entity in an application database, usually checking for a row in a
database table.

The user can configure the integration broker to call the connector with a
Customer business object that has the Exists verb and the primary keys set. In this
way, the integration broker can verify that the customer already exists in the
application. Similarly, the user can configure the integration broker to call the
connector with referenced Item business objects that have the Exists verb and
primary keys set. The user might decide to halt the synchronization of the Order if
the verification of the existence of the application entities fails.

This section provides the following information to help implement an Exists verb:

» |“Standard processing for an Exists verb”]

« |“Outcome status for Exists verb processing’]

Note: You can modularize your business object handler so that each supported
verb is handled in a separate Java method. If you follow this structure, an
Exists method handles processing for the Exists verb.

Standard processing for an Exists verb

The standard behavior of the Exists method is to query the application database
for the existence of a top-level business object.

Outcome status for Exists verb processing

The Exists operation should return one of the outcome-status values shown in

[Table 43.

Table 42. Possible outcome status for Java Exists verb processing

Exists condition Java outcome status
If the application entity exists, the Exists operation returns SUCCEED

“Success”.

If the Exists operation is unsuccessful in retrieving the top-level ~ FAIL

object, it:

e fills a return-status descriptor

* returns a “Fail” outcome status

Processing business objects

A business object handler’s role is to deconstruct a request business object, process
the request, and perform the requested operation in the application. To do this, a
business object handler extracts verb and attribute information from the request
business object and generates an API call, SQL statement, or other type of
application interaction to perform the operation.

Basic business object processing involves extracting metadata from the business
object’s application-specific information (if it exists) and accessing the attribute
values. The actions to take on the attribute value depend on whether the business
object is flat or hierarchical. This section provides an overview on how a business
object handler can process the following kinds of business objects:

* [“Processing flat business objects” on page 106|

« |"Processing hierarchical business objects” on page 108

Chapter 4. Request processing 105

Processing flat business objects

This section provides the following information on how to process flat business
objects:

* |"Representing a flat business object”]

* |“Accessing simple attributes” on page 107|

Representing a flat business object

If a business object does not contain any other business objects (called child
business objects), it is called a flat business object. All the attributes in a flat business
object are simple attribute; that is, each attribute contains an actual value, not a
reference to another business object.

Suppose you have to perform verb processing on an example business object
named Customer. This business object represents a single database table in a
sample table-based application. The database table is named customer, and it
contains customer data. shows the Customer business object definition
and the corresponding customer table in the application.

Business object definition Application customer table

Customer ID Name Status Region

Customerld
CustomerName
CustomerStatus
CustomerRegion
ObjectEventld

Figure 40. A Flat business object and corresponding application table

As shows, the example Customer business object has four simple
attributes: CustomerId, CustomerName, CustomerStatus, and CustomerRegion. These
attributes correspond to columns in the customer table. The business object also
includes the required ObjectEventId attribute.

Note: The ObjectEventId attribute is used by the IBM WebSphere business
integration system and does rnot correspond to a column in an application
table. This attribute is automatically added to business objects by Business
Object Designer.

shows an expanded business object definition and an instance of the
business object. The business object definition contains the business object name,
and the attribute name, properties, and application-specific information. The
business object instance contains only the business object name, the active verb,
and the attribute names and values.

106 Connector Development Guide for Java

Business object definition

Business object instance

Customer

Customer

Customerld
IsKey = True
Type = Integer
AppSpecificinfo = cust_key

CustomerName
Type = String
AppSpecificinfo = cust_name

CustomerStatus
Type = String

Verb = Create

Customerld = 1150
CustomerName = Jones
CustomerStatus = Active

CustomerRegion = North

AppSpecificinfo = cust_status .
ObjectEventld

CustomerRegion
Type = String
AppSpecificlnfo = cust_region

ObjectEventld

Figure 41. A flat business object with application-specific information

Accessing simple attributes

After the verb operation has accessed information it needs within the business
object definition, it often needs to access information about attributes. Attribute
properties include the cardinality, key or foreign key designation, and maximum
length. For example, the example Create method needs to obtain the attribute’s
application-specific information. A connector business object handler typically uses
the attribute properties to decide how to process the attribute value.

illustrates business object attribute properties of the CustomerlId attribute

from the business object in

Customer
business object definition Attribute properties
Business Object Name pd
Version v Name = Customerld
AppSpecificlnf o = // Type = simple
, g Key = true
Attribute 0 .
AppSpecificlnf o = Foreign Key = false
N Max Length
Attribute 1 ired =
AppSpecificinf o = AN Required = true
\\ Cardinality = 1
o AN

N Default Value

o

Figure 42. Business object attribute properties

Each attribute has a zero-based integer index (ordinal position) within the business
object definition. For example, as shows, the Customerld attribute would
be accessed with an ordinal position of zero (0), the CustomerName attribute with an
ordinal position of one (1), and so on. The Java connector library provides access to
an attribute through its name or ordinal position.

For the business object handler that handles the flat Customer business object,
deconstructing a business object includes the following steps:

Chapter 4. Request processing 107

1. Extract the table and column names from the application-specific information in
the business object definition.

2. Extract the values of the attributes from the business object instance.

As shows, the Customer business object definition is designed for a
metadata-driven connector. Its business object definition includes
application-specific information that the verb operation uses to locate the
application entity upon which to operation. The application-specific information is

designed as shown in [Iable 43

Table 43. Application-specific information for a table-based application

Application-specific information Purpose

Business object definition The name of application database table
associated with this business object

Attribute The name of the application table’s column

associated with this attribute

Note: Application-specific information is also used to store information on foreign
keys and other kinds of relationships between entities in the application
database. A metadata-driven connector can use this information to build a
SQL statement or an application API call.

Processing hierarchical business objects

Business objects are hierarchical: parent business objects can contain child business
objects, which can in turn contain child business objects, and so on. A hierarchical
business object is composed of a top-level business object, which is the business
object at the very top of the hierarchy, and child business objects, which are all
business objects under the top-level business object. A child business object is
contained in a parent object as an attribute.

This section provides the following information on how to process hierarchical
business objects:

* ["Representing Top-Level and Child Business Objects”|

« |“Accessing child business objects” on page 110|

Representing Top-Level and Child Business Objects

If a top-level business object has child business objects, it is the parent of its
children. Similarly, if a child business object has children, it is the parent of its
children. The parent/child terminology describes the relationships between
business objects, and it may also be used to describe the relationship between
application entities.

There are two types of containment relationships between parent and child
business objects:

* Cardinality 1 containment—the attribute contains a single child business object.

* Cardinality n containment—the attribute contains several child business objects
in a structure called a business object array.

shows a typical hierarchical business object. The top-level business object
has both cardinality 1 and cardinality n relationships with child business objects.

108 Connector Development Guide for Java

Name Name

Verb Verb

] Cardinality 1
Attribute containment

Attribute

o
o
o

°
°
°

i Cardinality n N
Attribute containment ame

Verb

Attribute

°
°
°

Attribute

I_:

Figure 43. Hierarchical business object

In a typical table-based application, relationships between entities are represented
by primary keys and foreign keys in the database, where the parent entity contains
the primary keys and the child entity contains the foreign keys. An hierarchical
business object can be organized in a similar way:

* In a cardinality 1 type (single cardinality) of relationship, each parent business
object relates to a single child business object.

The child business object typically contains one or more foreign keys whose
values are the same as the corresponding primary keys in the parent business
object. Although applications might structure the relationships between entities
in different ways, a single cardinality relationship for an application that uses
foreign keys might be represented as shown in

* In a cardinality n type (multiple cardinality) relationship, each parent business
object can relate to zero or more child business objects in an array of child
business objects.
Each child business object within the array contains foreign key attributes whose
values are the same as the corresponding values in the primary key attributes of

the parent business object. A multiple cardinality relationship might be
represented as shown in

Parent business object

Invoice
Invoiceld (PK) <
InvoiceNumber Child business object
SoldToAddress SoldToAddress
InvoiceDate Addressld
Foreign key — Invoiceld (FK)
relationship City
State

Figure 44. Business objects with single cardinality

Chapter 4. Request processing 109

Parent business object

Customer
Verb
Customerld (PK))
Array of child
CustomerName business objects
Address Address m
Verb _D
Addressld
Foreign key r Customerld (FK)
relationship Address

Figure 45. Business objects with multiple cardinality

Note: In [Figure 44| and [Figure 45, the string “PK” appears next to an attribute that
serves as a primary key in the business object. The string”FK” appears next
to an attribute that serves as a foreign key.

Accessing child business objects

As part of its verb processing, the doVerbFor() method needs to handle any
hierarchical business objects. To process a hierarchical business object, the
doVerbFor() method takes the same basic steps as it does to process a flat business
object: it obtains any application-specific information and then accesses the
attribute. However, if the attribute contains a child business object, doVerbFor()
must take the following steps to access the child business object:

1. Determine whether the attribute type is type 0BJECT by calling the
isObjectType() method.

The 0BJECT type indicates that the attribute is a complex attribute; that is, it
contains a business object rather than a simple value. The 0BJECT attribute-type
constant is defined in the CWConnectorAttrType class. The isObjectType()
method returns True if an attribute is complex; that is, if it contains a business
object.

2. When the doVerbFor() method finds an attribute contains a business object, it
checks the cardinality of the attribute using isMultipleCard().

If the attribute has single cardinality (cardinality 1), the method can perform
the requested operation on the child. One way to perform an operation on a
child business object is to recursively call doVerbFor() or a verb method on the
child object. However, such a recursive call assumes that the child business
object is set as follows:

e If the verb on a child business object is set, the method should perform the
specified operation.

¢ If the verb on the child business object is not set, the verb method should set
the verb in the child business object to the verb in the top-level business
object before calling another method on the child.

If an attribute has multiple cardinality (cardinality n), the attribute contains an
array of child business objects. In this case, the connector must access the
contents of the array before it can process individual child business objects.
From the array, the doVerbFor() method can access individual business objects:

* To access individual business objects, the method can get the number of child
business objects in the array with the getObjectCount () method and then
iterate through the objects.

110 Connector Development Guide for Java

¢ To get an individual child business object, the method can obtain the
business object at one element of the array.

Once the doVerbFor() method has access to a child business object, it can
recursively process the child as needed.

Note: A connector should never create arrays for child business objects. An array
is always associated with a business object definition when cardinality is n.

When a connector a request business object, the business object includes all its
arrays even though some or all of the arrays might be empty. If an array contains
no child business objects, it is an array of size 0.

You might want to modularize your verb operation so that the main verb method
calls a submethod to process child objects. For a business object such as the one
shown in , a Create method might first create the application entity for
the parent Customer business object, and then call the submethod to traverse the
parent business object to find attributes referring to contained business objects.

CustomerName
AppSpecificinfo = cust_name

Cardinality n
Customer array Address
AppSpecificlnfo= address
Customerld Addressld -
AppSpecificinfo = cust_key AppSpecificlnfo = addr_key

Customerld
AppSpecificinfo = cust_key

CustomerStatus Addressinfo

AppSpecificinfo = cust_status AppSpecificinfo = address
Address ObjectEventld

Type = Address

Relationship = Containment |

Cardinality = n
Place Holder)

o CustProfile
. Cardinality 1 AppSpecificinfo = profile

CustProfile

Type = CustProfile
Relationship = Containment
Cardinality = 1

CustProfileld
AppSpecificinfo = profile_key

Customerld

ObjectEventld AppSpecificinfo= cust_key

ObjectEventld

Figure 46. Example of a hierarchical business object definition

When the submethod finds an attribute that is an 0BJECT type, it can process the
attribute as needed. For example, the submethod processes the Address attribute by
retrieving each child business object in the Address array and recursively calling
doCreate(). One by one, the main method creates each address entity in the
database until all Address children in the array are processed. Finally, the
submethod processes the single cardinality CustProfile business object.

For more information about how to access a child business object, see
ichild business objects” on page 171

Chapter 4. Request processing 111

Indicating the connector response

Before the doVerbFor() method exits, it must prepare the response it sends back to
the connector framework. This response indicates the success (or lack thereof) of
the verb processing. The connector framework, which has invoked doVerbFor(),
uses this information to determine its next action and to build the response it
returns to the integration broker.

The doVerbFor() method can provide the response information in|Table 44f to the
connector framework.

Table 44. Response information from the doVerbFor() method

Response information How the response is returned
Outcome status Integer return code of doVerbFor()
Return-status descriptor Return-status descriptor that was passed in

as an argument—Connector framework
passes in an empty return-status descriptor
as an argument to doVerbFor(). The method
can update this descriptor with a message
and status value to provide informational,
warning, or error status.

Response business object Request business object that was passed in as
an argument—Connector framework passes
in the request business object as an argument
to doVerbFor(). The method can update this
request business object with attribute values
to provide a response business object.

For information on how to send this response information for a Java connector, see
[“Sending the verb-processing response” on page 167 |

Handling loss of connection to the application

Each time the connector framework calls the connector application-specific
component, the application-specific code validates that the connection with the
application is still open. For a business object handler, this check should be done in
either the doVerbFor() method or in each verb method.

If the connection has been lost, the doVerbFor() method should log a fatal error
message so that email notification is triggered if the LogAtInterchangeEnd
connector configuration property is set to True. The method should also return a
APPRESPONSETIMEOUT outcome status to inform the connector controller that
the application is not responding. When this occurs, the process in which the
connector runs is stopped. A system administrator must fix the problem with the
application and restart the connector to continue processing of business object
requests.

For more information, see [“Verifying the connection before processing the verb” on|

112 Connector Development Guide for Java

Chapter 5. Event notification

This chapter presents information on how to provide event notification in a
connector. Event notification implements a mechanism to interact with an
application to detect changes made to application business entities. This chapter
provides the following information about how to implement an event-notification
mechanism:

» |“Overview of an event-notification mechanism”|

+ [“Implementing an event store for the application” on page 114|

* |“Implementing event detection” on page 119

* [“Implementing event retrieval” on page 124

¢ [“Implementing the poll method” on page 122|

* |“Special considerations for event processing” on page 130

Note: For an introduction to event notification, see [“Event notification” on page|

Overview of an event-notification mechanism

An event-notification mechanism enables a connector to determine when an entity
within an application changes. Implementation of an event-notification mechanism
is a three-stage process, as[lable 45 shows.

Table 45. Stages of an event-notification mechanism

Stage of event-notification mechanism For more information

Create an event store that the application uses [‘Implementing an event store for the|

to hold notifications of events that have application” on page 114]

changed application business entities.

Implement an event detection mechanism [“Implementing event detection” on page 119

within the application. Event detection

notices a change in an application entity and

writes an event record containing

information about the change to an event

store in the application.

Implement an event retrieval mechanism “Implementing an event store for the]
(such as a polling mechanism) within the application” on page 114

connector to retrieve events from the event

store and take the appropriate action to

notify other applications.

Note: For design considerations for an event-notification mechanism, see
[notification” on page 20

In many cases, an application must be configured or modified before the connector
can use the event-notification mechanism. Typically, this application configuration
occurs as part of the installation of the connector’s application-specific component.
Modifications to the application might include setting up a user account in the
application, creating an event store and event table in the application database,
inserting stored procedures in the database, or setting up an inbox. If the
application generates event records, it might be necessary to configure the text of
the event records.

© Copyright IBM Corp. 2000, 2004 113

The connector might also need to be configured to use the event-notification
mechanism. For example, a system administrator might need to set
connector-specific configuration properties to the names of the event store and
event table.

Implementing an event store for the application

An event store is a persistent cache in the application where event records are saved
until the connector can process them. The event store might be a database table,
application event queue, email inbox, or any type of persistent store. If the
connector is not operational, a persistent event store enables the application to
detect and save event records until the connector becomes operational.

This section provides the following information about an event store:

» [“Standard contents of an event record”]

* |"Possible implementations of an event store” on page 116|

Standard contents of an event record

Event records must encapsulate everything a connector needs to process an event.
Each event record should include enough information that the connector poll
method can retrieve the event data and build a business object that represents the
event.

Note: Although different event retrieval mechanisms might exist, this section
describes event records in the context of the most common mechanism,
polling.

If the application provides an event detection mechanism that writes event records
to an event store, the event record should provide discrete detail on the object and
verb. If the application does not provide sufficient detail, it might be possible to
configure it to provide this level of detail.

lists the standard elements for event records. The sections that follow
include more information on certain fields.

Table 46. Standard elements of an event record

Element

Event identifier (ID)
Business object
name

Verb

Object key
Priority

Timestamp
Status
Description

Connector identifier
(ID)

Description For more information
A unique identifier for the event. "“Event identifier” on page 115|
The name of the business object definition as it “Business object name” on page 115

appears in the repository.
The name of the verb, such as Create, Update, or |“Event verb” on page 115

Delete.

The primary key for the application entity. “Obiject key” on page 115|

The priority of the event in the range 0 - n, where ["Processing events by event priority” on|
0 is the highest priority. page 129

The time at which the application generated the None.

event.

The status of the event. This is used for archiving [“Event status” on page 116|

events.

A text string describing the event. None

An identifier for the connector that will process the [“Event distribution” on page 129
event.

114 Connector Development Guide for Java

Note: A minimal set of information in an event record includes the event ID,
business object name, verb, and object key. You may also want to set a
priority for an event so that if large numbers of events are queued in the
event store, the connector can select events in order of priority.

Business object name

You can use the name of the business object definition to check for event
subscriptions. Note that the event record should specify the exact name of the
business object definition, such as SAP_Customer rather than Customer.

Event verb
The verb represents the kind of event that occurred in the application, such as
Create, Update, or Delete. You can use the verb to check for event subscriptions.

Note: Events that represent deletion of application data should generate event
records with the Delete verb. This is true even for logical delete operations,
where the delete is an update of a status value to inactive. For more
information, see [“Processing Delete events” on page 130}

The verb that the connector sets in the business object should be same verb that
was specified in the event record.

Object key

The entity’s object key enables the connector to retrieve the full set of entity data if
the object has subscribing events.

Note: The only data from the application entity that event records should include
are the business object name, active verb, and object key. Storing additional
entity data in the event store requires memory and processing time that
might be unneeded if no subscriptions exist for the event.

The object key column must use name/value pairs to set data in the event record.
For example, if ContractlId is the name of an attribute in the business object, the
object key field in the event record would be:

ContractId=45381

Depending on the application, the object key may be a concatenation of several
fields. Therefore, the connector should support multiple name/value pairs that are
separated by a delimiter, for example Contractld=45381:Headerld=321. The
delimiter should be configurable as set by the PolTAttributeDelimiter connector
configuration property. The default value for the delimiter is a colon (:).

Event identifier

Each event must have a unique identifier. This identifier can be an number
generated by the application or a number generated by a scheme that your
connector uses. As an example of an event ID numbering scheme, the event may
generate a sequential identifier, such as 00123, to which the connector adds its
name. The resulting object event ID is ConnectorName_00123. Another technique
might be to generate a timestamp, resulting in an identifier such as
ConnectorName_06139833001001.

Your connector can optionally store the event ID in the ObjectEventId attribute in
a business object. The ObjectEventId attribute is a unique value that identifies each
event in the IBM WebSphere business integration system. Because this attribute is
required, the connector framework generates a value for it if the
application-specific connector does not provide a value. If no values for

Chapter 5. Event notification 115

ObjectEventIds are provided for hierarchical business objects, the connector
framework generates values for the parent business object and for each child. If the
connector generates ObjectEventId values for hierarchical business objects, each
value must be unique across all business objects in the hierarchy regardless of
level.

Event status

A Java connector should use the event-status constants, which are defined in
CWConnectorEventStatusConstants class. |Table 47] lists the event-status constants.

Table 47. Event-status values for a Java connector

Event-status constant Description

READY_FOR_POLL Ready for poll

SUCCESS Sent to the integration broker

UNSUBSCRIBED No subscriptions for event

IN_PROGRESS Event is in progress

ERROR_PROCESSING_EVENT Error in processing the event. A description of the error
can be appended to the event description in the event
record.

ERROR_POSTING_EVENT Error in sending the event to the integration broker. A

description of the error can be appended to the event
description in the event record.
ERROR_OBJECT_NOT_FOUND Error in finding the event in the application database

Possible implementations of an event store
The application might use any of the following as the event store:

* |“Event inbox”|

» |“Event table” on page 117

* |“Email” on page 118|

“Flat files” on page 119)

Note: Some applications might provide multiple ways of keeping track of changes
to application entities. For example, an application might provide workflow
for some database tables and user exits for other tables. If this is the case,
you may have to piece together an event notification mechanism that
handles events in one way for some business objects and another way for
other business objects.

Event inbox
Some applications have a built-in inbox mechanism. This inbox mechanism can be
used to transfer information about application events to the connector, as follows:

* Event detection—you might need to identify the entities and events that trigger
entries in the inbox.

* Event retrieval—the connector’s application-specific component can retrieve the
entries. If an API is available that provides interfaces to access the inbox, the
application-specific component can use this API.

illustrates this interaction.

116 Connector Development Guide for Java

Application

— 3
= Inbox Inbox Connector
= API

User action ‘

Figure 47. An event inbox as an event store

Event table

An application can use its application database to store event information. It can
create a special event table in this database to use as the event store for event
records. This table is created during the installation of the connector. With an event
table as an event store:

e Event detection—when an event of interest to the connector occurs, the
application places an event record in the event table.

* Event retrieval—the connector application-specific component polls the event
table periodically and processes any events. Applications often provide database
(DB) APIs that enable the connector to gain access to the contents of the event
table.

illustrates this interaction.

Application ©

Application database

User I - -
action Event detegtion Event retrieval fa)
]

Event table

Connector

interface

Figure 48. An event table as an event store

Note: Avoid full table scans of existing application tables as a way of determining
whether application tables have changed. The recommended approach is to
populate an event table with event information and poll the event table.

If your connector supports archiving of events, you can also create an archive table
in the application database to hold the archived events. shows a
recommended schema for event and archive tables. You can extend this schema as
needed for your application.

Table 48. Recommended schema for event and archive tables

Column name Type Description

event_id Use appropriate The unique key for the event. System
type for database constraints determine format.

object_name Char 80 Complete name of the business object.

object_verb Char 80 Event verb.

object_key Char 80 The primary key of the object.

event_priority Integer The priority of the event, where 0 is the

highest priority.
event_time DateTime The timestamp for the event (time at

which the event occurred).

Chapter 5. Event notification 117

Table 48. Recommended schema for event and archive tables (continued)

Column name Type Description

event_processed DateTime For the archive table only. The time at
which the event was handed to the
connector framework.

event_status Integer For possible status values, see

|status” on page 116.|
event_description Char 255 Event description or error string
connector_id Integer Id for the connector (if applicable)
Email

You can use an email system as an event store:

* Event detection—the application sends an email message to a mailbox when an
application event occurs.

* Event retrieval—the connector’s application-specific component checks the
mailbox and retrieves the event message.

illustrates this interaction.

Mail
system
Application & A
q KPS ey .
Mail Sy EROS Mail Connector
client (9@0 0&‘ e,;b%,/ client
& % O

Figure 49. A mailbox as an event store

For an email-based event store, the mailbox used for a connector must be
configurable, and the actual name of the inbox used should reflect its usage. The
following list specifies the format and recommended names for fields in event
messages.

* Message attributes — Email messages usually have certain attributes, such as a
creation date and time, and a priority. You may be able to use these attributes in
the event notification mechanism. For example, you may be able to use the date
and time attributes to represent the date and time at which the event occurred.

* Subject — The subject of an event message might have the following format. In
this example, fields are separated by spaces for human-readability, but
connectors can use a different field delimiter.
object_name object_verb event_id
The event_id is the unique key for the event. Depending on the application, the
event_id key may or may not be included in the mail message. The event_id can
be derived from a combination of the connector name, business object name, and
either the message timestamp or the system time.

* Body - The body of an event message might contain a sequence of key/value
pairs separated by delimiters. These key/value pairs are the elements of the
object key. For example, if a particular customer and address are uniquely
identified by the combination of Customerld and AddrSeqNum, the body of the
mail message might look like this:

118 Connector Development Guide for Java

CustomerId 34225

AddrSegNum 2

The body of the event message can be a list of attribute names for the business
object, and the values that should be inserted into those attributes.

Flat files

If no other event detection mechanism is available, it might be possible to set up
an event store using flat files. With this type of event store:

* Event detection—the event detection mechanism in the application writes event
records to a file.

* Event retrieval—the connector’s application-specific component locates the file
and reads the event information.

If the file is not directly accessible by the connector (if, for example, it was
generated on a mainframe system), the file must be transferred to a location that
the connector can access. One way of transferring files is to use File Transfer
Protocol (FTP). This can be done either internally in the connector or using an
external tool to copy the file from one location to another. There are other ways to
transfer information between files; the approach that you choose depends on your
application and connector.

illustrates event detection and retrieval using flat files. In this example,
FTP is used to transfer the event information to a location accessible by the

connector.
Application File , File
virtior reader Connector
Event Event
information information

Figure 50. Retrieving event records from flat files

Implementing event detection

For most connectors, the application must be configured to implement the event
detection mechanism. A system administrator does this as part of the connector
installation. Once the application has been configured, it can detect entity changes
and write event records to the event store. The information is then picked up by
the connector and processed. In this way, an event notification mechanism is
implemented in both the application and the connector.

This section provides the following information about event detection:

* [“Event detection mechanisms”|

* |“Event detection: standard behavior” on page 123

Event detection mechanisms

Events can be triggered by user actions in the application, by batch processes that
add or modify application data, or by database administrator actions. When an
event detection mechanism is set up in an application and an application event
associated with a business object occurs, the application must detect the event and
write it to the event store.

Chapter 5. Event notification 119

Event detection mechanisms are application dependent. Some applications provide
an event detection mechanism for use by clients such as connectors. The event
detection mechanism may include an event store and a defined way of inserting
information about application changes into the event store. For example, one type
of implementation uses an event message box, where the application sends a
message every time it processes an event in which the connector is interested. The
connector’s application-specific component periodically polls the message box for
new event messages.

Other applications have no built-in event detection mechanism but have other
ways of providing information on changes to application entities. If an application
does not provide an event detection mechanism, you must use whatever
mechanism is available to extract information on entity changes for the connector.
For example, you may be able to implement database triggers, use user exits to call
out to a program that writes to an event store, or extract information on
application changes from flat files.

Note: Although the way in which events are generated can vary significantly from
application to application, certain aspects of an event notification mechanism
should be consistent across all types of applications. For example, all types
of event detection mechanisms should create event records that have similar
contents.

Three common ways in which events are detected and written to an event store are
discussed in the following sections:

e [“Form events”|

+ |[“Workflow” on page 121
* |“Database triggers” on page 122]

Form events

Some form-based applications provide form events that are executed when a
special user action occurs. To set up event detection in this way, you must create a
script that executes when a particular type of event occurs. When a user opens a
form and performs an action that has an associated script, the script places event
records in the event store.

In most cases, form events are integrated in application business processes and
therefore support application business logic. However, only application events that
are triggered by user actions are detected; if the application database is updated
directly in other ways, such as by a batch process, these events are not detected.

shows a form-based event detection mechanism. When a user enters a
new customer on the Customer form and clicks OK, a script generates an event
record and places it in the event store.

120 Connector Development Guide for Java

Application form
Application
Name:
[—
OK
PS Event
O»,,) store
DA
) Script
Event
information

Figure 51. Form-based event detection

Workflow

Some applications use an internal workflow system to keep track of their business
processes. You may be able to use the workflow system to generate events for
event detection.

For example, you may be able to define a workflow process that inserts an entry in
an event store when a particular operation occurs. Alternatively, the event
detection mechanism might be able to intercept information from a workflow
process and use the information to place an event record in the event store. In
designing a workflow-based event detection mechanism, you need to determine at
what point in the workflow an event record should be written to the event store
and then use the available application mechanism to generate the event record.

Using a workflow system for event detection ensures that event detection is
integrated into an application business process. The workflow system can also
detect application events that are generated automatically without user
involvement.

shows a workflow-based event detection mechanism. When a particular
operation occurs, the workflow process is started. The event detection mechanism
receives the information about the event and writes a record to the event store. The
workflow process continues with other tasks.

Chapter 5. Event notification 121

Workflow process
Application
. Event
store
Event
information

Figure 52. Workflow-based event detection

Database triggers

If the application has no built-in method for detecting events and the database that
the application is running on provides database triggers, you may be able to
implement row-level triggers to detect changes to application tables. The triggers
are inserted in application tables that correspond to business object definitions
supported by the connector.

With this mechanism, you also need to set up an event table in the application
database to store the event records that the triggers generate. Whenever an
application entity is created, updated, or deleted, a trigger inserts a row into the
event table. Each row represents one event record, and the event table queues the
events for processing by the connector.

shows a user action that updates an application Customer table. When
the Customer table is updated, a trigger on the table executes and writes an event
record to the event table in the application database.

Application
Application database

customer table Event
I table

> lDB

trigger

User sction
in Customer
entity

Event
information

Figure 53. Event detection using database triggers

If you use database triggers, keep the following in mind:

* Make sure that any triggers you provide do not overwrite triggers already in use
in the application.

122 Connector Development Guide for Java

* Make sure that the application is suitable for the use of triggers for event
notification. For example, if an application has implemented complex business
rules in its database, a simple trigger on a particular table might not accurately
reflect the complete application event.

* A drawback to database triggers is that if table schemas change in the
application database, you may need to modify the triggers that you have
created. If table schemas change frequently and you have set up many database
triggers, you may need to spend considerable time maintaining the triggers.

Event detection: standard behavior
An application event detection mechanism should take the following steps:

* Detect an event on an application entity for a business object supported by the
connector.

e Create an event record. To create the record, the event detection mechanism
should:

— Set the name of the object to the complete name of the business object in the
repository.
— Set the verb to the action that occurred in the database.
— Set the object key to the primary key of the application entity.
— Generate a unique event identifier (ID).
— Set the event priority.
— Set the event timestamp.
— Set the event status to Ready-for-Poll.
* Insert the completed event record into the event store.

Note: An event detection mechanism can optionally query the event store for
existing duplicate events before inserting a record for a new event. For
more information, see [“Filtering the event store for duplicate event|
[records” on page 123

Once event records are in the event store, the event store queues events for pickup
by the connector’s poll method. The event store should be internal to the
application. If the application terminates unexpectedly, the event store can be
restored to its preceding state when the application is restored, and the connector
application-specific code can then pick up queued events.

The event detection mechanism should ensure data integrity between an
application event and the event record written to the event store. For example,
generation of an event record should not take place until all required data
transactions for the event have completed successfully.

Subsequent sections provide the following information about issues to handle in
the event detection mechanism:

» [“Filtering the event store for duplicate event records”|

» |“Future event processing” on page 124

Filtering the event store for duplicate event records

The event detection mechanism can be implemented so that duplicate events are
not saved in the event store. This behavior can minimize the amount of processing
that the integration broker has to perform. As an example, if an application
updates a particular Address object several times between connector polls, all the
events might be stored in the event store, and the connector will then create

Chapter 5. Event notification 123

business objects for all events and send them to InterChange Server. To prevent
this, the event detection mechanism can filter the events such that only a single
Update event is stored.

Before storing a new event as a record in the event store, the event detection
mechanism can query the event store for existing events that match the new event.
The event detection mechanism should not generate a record for a new event in
these cases:

Case 1 The business object name, verb, key, status, and ConnectorlId (if applicable) in
a new event match those of another unprocessed event in the event store.

Case 2 The business object name, key, and status for a new event match an
unprocessed event in the event table; in addition, the verb for the new event
is Update, and the verb for the unprocessed event is Create.

Case 3 The business object name, key, and status for a new event match an
unprocessed event in the event table; in addition, the verb in the unprocessed
event in the event table is Create, and the verb in the new event is Delete. In
this case, remove the Create record from the event store.

Note: If event detection is implemented with stored procedures and triggers, the
stored procedures can perform the query before inserting records for new
events.

Future event processing

The event detection mechanism can be set up to specify a date and time in the
future to process an event. To implement this feature, you may need to set up an
additional event store for these events. Event records in the future event store
should include a date that identifies when they will be processed.

This feature is required for applications with records that include effective dates.
As an example, suppose that an existing employee will receive a promotion in a
month and that, at that time, he will receive a raise. Because the paperwork for his
increased compensation is completed prior to the date of his promotion, the
change to his status generates an event with an effective date, which is stored in
the future event table.

Implementing event retrieval

For most connectors, the application-specific component of the connector
implements the event retrieval mechanism. The connector developer does this as
part of the connector design and implementation. This mechanism works in
conjunction with the event detection mechanism, which detects entity changes and
writes event records to the event store. Event retrieval transfers information about
application events from the event store to the connector’s application-specific
component.

This section provides the following information about event retrieval:

* [“Event retrieval mechanisms”|

» |"Using a polling mechanism” on page 125

Event retrieval mechanisms

Two common mechanisms use to retrieve event records from an event store are:

124 Connector Development Guide for Java

* Event callback mechanism—connectors can be notified of application events
through an event-callback mechanism; however, few applications currently
provide event callback APIs for application events.

* Polling mechanism—the most common type of event retrieval mechanism is a
polling mechanism.

Using a polling mechanism

In a polling mechanism, the application provides a persistent event store, such as
an database table or inbox, where it writes event records when changes to
application entities occur. The connector periodically checks, or polls, the event
store for changes to entities that correspond to business object definitions that the
connector supports. In general, the only information about the business object that
is kept in the event store is the type of operation and the key values of the
application entity. As the connector processes the event, it retrieves the remainder
of the application entity data. After the connector has processed the event, it
removes the event record from the event store and places it in an archive store.

To implement a polling mechanism to perform event retrieval, the connector’s
application-specific component uses a poll method, called the pol1ForEvents()
method. The poll method checks the event store, retrieves new events, and
processes each event before returning.

This section provides the following information about the poll method:

+ [“Polling interval’

+ |[“Event polling: standard behavior”|

Polling interval

The connector framework calls the poll method at a specified polling interval as
defined by the Pol1Frequency connector configuration property. This property is
initialized at connector installation time with Connector Configurator. Typically, the
polling interval is about 10 seconds.

Note: If your connector does not need to poll to retrieve event information, polling
can be turned off by setting the Pol1Frequency property to zero (0).

Therefore, the connector framework calls the pol1ForEvents() method in either of
the following conditions:

e The Pol1Frequency is set to a value greater than zero.

¢ The connector startup script specifies a value for the -fPollFreq option.

Event polling: standard behavior
illustrates the basic behavior of a poll method:
1. The connector framework calls the application-specific component’s

pol1ForEvents() method to begin polling.

2. The pol1ForEvents() method checks the event store in the application for new
events and retrieves the events.

3. The poll method then queries the connector framework to determine whether
an event has subscribers.

4. If an event has subscribers, the poll method retrieves the complete set of data
for the business object from the application.

5. The poll method sends the business object to the connector framework, which
routes it to its destination (such as InterChange Server).

Chapter 5. Event notification 125

Each time the poll method is called, it checks for and retrieves new events,
determines whether the event has subscribers, retrieves application data for events
with subscribers, and sends business objects to InterChange Server.

Connector
application-specific
Connector pollForEvents()
framework method Application

Begin polling

Check for events

Check for subscription

Retrieve changed entity

Send object to framework

Check return status

Get next event

Check for subscription

A

Retrieve changed entity

Send object to framework

Check return status

Return from polling

A

Figure 54. Basic behavior of pollForEvents() method

For information on how to implement the pol1ForEvents() method, see
[‘Implementing the poll method” on page 126

Implementing the poll method

Regardless of whether the application provides is an event store in a table, inbox,
or other location, the connector must poll periodically to retrieve event
information. The connector’s poll method, pol1ForEvents(), polls the event store,
retrieves event records, and processes events. To process an event, the poll method
determines whether the event has subscribers, creates a new business object
containing application data that encapsulates the event, and sends the business
object to the connector framework.

Note: If your connector will be implementing request processing but not event
notification, you might not need to fully implement pol1ForEvents().
However, since the poll method is defined with a default implementation in
the Java connector library, polling is already implemented. If you want to
disable polling, you can implement a stub for this method.

This section provides the following information on how to implement the
pol1ForEvents() method:

+ |“Basic logic for pollForEvents()”|

* [“Other polling issues” on page 127]

Basic logic for pollForEvents()

The pollForEvents() method typically uses a basic logic for event processing.
shows a flow chart of the poll method’s basic logic.

126 Connector Development Guide for Java

Retrieve entity
information and
create business object

Was the
event sent to
the connector

Poll
I method
failed

Send event to
connector framework

subscription?

framework?

Archive
event

Retrieve name
business object
and verb

of

A

Retrieve
event(s)

L

Figure 55. Flow chart for basic logic of pollForEvents()

For an implementation of this basic polling logic, see [‘ITmplementing an|

fevent-notification mechanism” on page 174.]

Note: For the event-status values that occur in the flow of the poll method, see

[Table 129 on page 313]

Other polling issues

This section provides information on the following polling issues:

“ Archiving events”|

“Threading issues” on page 129

“Processing events by event priority” on page 129

“Event distribution” on page 129|

Archiving events

Once a connector has processed an event, it can archive the event. Archiving
processed or unsubscribed events ensures that events are not lost. Archiving
usually involves the following steps:

Copy the event record from the event store to the archive store.

The archive store serves the same basic purpose as an event store: it saves archive
records in a persistent cache until the connector can process them. An archive
record contains the same basic information as an event record.

Update the event status of the event in the archive store.
The archive record should be updated with one of the event-status values in

Chapter 5. Event notification 127

e Delete the event record from the event store.

Table 49. Event-status values in an archive record

Status Description

Success The event was detected, and the connector created a business object
for the event and sent the business object to the connector framework.

Unsubscribed The event was detected, but there were no subscriptions for the event,

so the event was not sent to the connector framework and on to the
integration broker.

Error The event was detected, but the connector encountered an error when
trying to process the event. The error occurred either in the process of
building a business object for the event or in sending the business
object to connector framework.

This section provides the following information about event archiving:

* |“Creating an archive store”|

* |"Configuring a connector for archiving”|

¢ [“Accessing the archive store”)

Creating an archive store: If the application provides archiving services, you can
use those; otherwise, an archive store is usually implemented using the same
mechanism as the event store:

* For an event-notification mechanism that uses database triggers, one way to set
up event archiving is to install a delete trigger on the event table. When the
connector’s application-specific component deletes a processed or unsubscribed
event from the event table, the delete trigger moves the event to the archive
table. For information on event tables, see [“Event table” on page 117}

Note: If a connector uses an event table, an administrator might need to clean
up the archive periodically.

* With an email event notification scheme, archiving might consist of moving a
message to a different folder. A folder called Archive might be used for
archiving event messages.

Configuring a connector for archiving: Archiving can have performance impact
in the form of the archive store and moving the event records into this store.
Therefore, you might want to design event archiving to be configurable at install
time, so that a system administrator can control whether events are archived. To
make archiving configurable, you can create a connector-specific configuration
property that specifies whether the connector archives unsubscribed events. IBM
suggests a name of ArchiveProcessed for this configuration property. If the
configuration property specifies no archiving, the connector application-specific
component can delete or ignore the event. If the connector is performance-
constrained or the event volume is extremely high, archiving events is not
required.

Accessing the archive store: A connector performs archiving as part of the event
processing in its poll method, pol1ForEvents(). Once a connector has processed an
event, the connector must move the event to an archive store whether or not the
event was successfully delivered to the connector framework. Events that have no
subscriptions are also moved to the archive. Archiving processed or unsubscribed
events ensures that events are not lost.

128 Connector Development Guide for Java

Your poll method should consider archiving an event when any of the following
conditions occur:

* When the poll method has processed the event and the connector framework
has delivered the business object

* When no subscriptions exist for the event

Note: If a connector uses an event table, an administrator might need to clean up
the archive periodically. For example, the administrator may need to
truncate the archive to free disk space.

Threading issues

Java connectors must be thread safe. The connector framework can use multiple
threads to perform event delivery (execution of the pol1ForEvents() method) and
request processing (execution of the doVerbFor() method).

Processing events by event priority

Event priority enables the connector poll method to handle situations where the
number of events in the event store exceeds the maximum number of events the
connector retrieves in a single poll. In this type of polling implementation, the poll
method polls and processes events in order of priority. Event priority is defined as
an integer value in the range 0 - n, with 0 as the highest priority.

To process events by event priority, the following tasks must be implemented in
the event notification mechanism:

* The event detection mechanism must assign a priority value to an event record
when it saves it to the event store.

* The event retrieval mechanism (the polling mechanism) must specify the order
in which it retrieves event records to process, based on the event priority.

Note: As events are picked up, event priority values are not decremented. In rare
circumstances, this might lead to low priority events being not picked up.

The following example SQL SELECT statement shows how a connector might
select event records based on event priority. The SELECT statement sorts the
events by priority, and the connector processes each event in turn.

SELECT event_id, object name, object verb, object key

FROM event_table
WHERE event_status = 0 ORDER BY event_priority

The logic for a poll method is then the same as discussed in

fpollForEvents()” on page 126}

Event distribution

The event detection and retrieval mechanisms can be implemented so that multiple
connectors can poll the same event store. Each connector can be configured to
process certain events, create specific business objects and pass those business
objects to InterChange Server. This can streamline the processing of certain types of
events and increase the transfer of data out of an application.

To implement event distribution so that multiple connectors can poll the event
store, do the following:

¢ Add a column to the event record for an integer connector identifier (ID), and
design the event detection mechanism to specify which connector will pick up
the event.

Chapter 5. Event notification 129

This might be done per application entity. For example, the event detection
mechanism might specify that all Customer events be picked up by the connector
that has the connectorld field set to 4.

* Add an application-specific connector property named ConnectorId. Assign each
connector a unique identifier and store this value in its Connectorld property.

* Implement the poll method to query for the value of the Connectorld property.
If the property is not set, the poll method can retrieve all event records from the
event store as usual. If the property is set to a connector identifier value, the poll
method retrieves only those events that match the Connectorld.

Special considerations for event processing

This section contains the following information about event processing;:

* [“Processing Delete events’

» |"Using guaranteed event delivery” on page 131|

Processing Delete events
An application can support one of the following types of delete operations:
* Physical delete—Data is physically deleted from the database.

* Logical delete—A status column in a database entity is set to an inactive or
invalid status, but the data is not deleted from the database.

It may be tempting to implement delete event processing in a manner that is
consistent with the application. For example, when an application entity is deleted,
a connector poll method for an application that supports physical deletes might
publish a business object with the Delete verb. A connector poll method for an
application that supports logical deletes might publish a business object with the
Update verb and the status value changed to inactive.

Problems can arise with this approach when a source application and a destination
application support different delete models. Suppose that the source application
supports logical delete and the destination application supports physical delete.
Assume that an enterprise is synchronizing between the source and destination
applications. If the source connector sends a change in status (in other words, a
delete event) as a business object with the Update verb, the destination connector
might be unable to determine that the business object actually represents a delete
event.

Therefore, event publishing must be designed so that source connectors for both
types of applications can publish delete events in such a way that destination
connectors can handle the events appropriately. The Delete verb in an event
notification business object should represent an event where data was deleted,
whether the delete operation was a physical or logical delete. This ensures that
destination connectors will be correctly informed about a delete event.

This section provides the following information on how to implement event
processing for delete events:

* |“Setting the verb in the event record” on page 131|

» |“Setting the verb in the business object” on page 131|

“Setting the verb during mapping” on page 131]

130 Connector Development Guide for Java

Setting the verb in the event record
The event detection mechanism for both logical and physical delete connectors
should set the verb in the event record to Delete:

* For a physical delete connector, this is the standard implementation.

* For a connector whose application supports logical deletes, the event detection
mechanism must be designed to determine when update events actually
represent deletion of data.

In other words, it must differentiate update events for modified entities from
update events for logically deleted entities. For logically deleted entities, the
event detection mechanism should set the verb in the event record to Delete
even if the event in the application was an Update event that updated a status
column.

Setting the verb in the business object
The poll method for both logical and physical delete connectors should generate a
business object with the Delete verb:

* If the application supports logical deletes, the connector poll method retrieves
the delete event from the event store, creates an empty business object, sets the
key, sets the verb to Delete, and sends the business object to the connector
framework.

For hierarchical business objects, the connector should not send deleted children.
The connector can constrain queries to not include entities with status of
inactive, or child business objects with a status of inactive can be removed in
mapping.

* If the application supports physical deletes, the connector might not be able to
retrieve the application data. In this case, the connector poll method retrieves the
delete event from the event store, creates an empty business object, sets the key
values, sets the values of other attributes to the special Ignore value (CxIgnore),
sets the verb in the business object to Delete, and sends the business object to
the connector framework.

Setting the verb during mapping

WebSphere InterChange Server
Mapping between the application-specific business object and the generic
business object should map the verb as Delete. This ensures that the correct
information about an event is sent to the collaboration, which may perform
special processing based on the verb.

Follow these recommendations for relationship tables:

* For delete events for a logical delete application, leave relationship entries in the
relationship table.

* For delete events for a physical delete application, delete relationship entries
from the relationship table.

Using guaranteed event delivery

The guaranteed-event-delivery feature enables the connector framework to
guarantee that events are never sent twice between the connector’s event store and
the integration broker.

Important: This feature is available only for JMS-enabled connectors; that is, those
connectors that use Java Messaging Service (JMS) to handle queues for
their message transport. A J]MS-enabled connector always has its

Chapter 5. Event notification 131

DeliveryTransport connector property set to JMS. When the connector
starts, it uses the JMS transport; all subsequent communication
between the connector and the integration broker occurs through this
transport. The JMS transport ensures that the messages are eventually
delivered to their destination.

Without use of the guaranteed-event-delivery feature, a small window of possible
failure exists between the time that the connector publishes an event (when the
connector calls the gotApplEvent () method within its pol1ForEvents() method)
and the time it updates the event store by deleting the event record (or perhaps
updating it with an “event posted” status). If a failure occurs in this window, the
event has been sent but its event record remains in the event store with a “ready
for poll” status. When the connector restarts, it finds this event record still in the
event store and sends it, resulting in the event being sent twice.

You can provide the guaranteed-event-delivery feature to a JMS-enabled connector
in one of the following ways:

* With the container-managed-events feature: If the connector uses a JMS event store
(implemented as a JMS source queue), the connector framework act as a
container and manage the JMS event store. For more information, see
[“Guaranteed event delivery for connectors with JMS event stores.”]

* With the duplicate-event-elimination feature: The connector framework can use a
JMS monitor queue to ensure that no duplicate events occur. This feature is
usually used for a connector that uses a non-JMS event store (for example,
implemented as a JDBC table, Email mailbox, or flat files). For more information,
see [“Guaranteed event delivery for connectors with non-JMS event stores” on|

|Eage 134.|

Guaranteed event delivery for connectors with JMS event stores
If the JMS-enabled connector uses JMS queues to implement its event store, the
connector framework can act as a "container” and manage the JMS event store (the
JMS source queue). One of the roles of JMS is to ensure that once a transactional
queue session starts, the messages are cached there until a commit is issued; if a
failure occurs or a rollback is issued, the messages are discarded. Therefore, in a
single JMS transaction, the connector framework can remove a message from a
source queue and place it on the destination queue. This container-managed-events
feature of guaranteed event delivery enables the connector framework to guarantee
that events are never sent twice between the JMS event store and the destination’s
JMS queue.

This section provides the following information about use of the
guaranteed-event-delivery feature for a JMS-enabled connector that has a JMS
event store:

» |“Enabling the feature for connectors with JMS event stores”|

« [“Effect on event polling” on page 134|

Enabling the feature for connectors with JMS event stores: To enable the
guaranteed-event-delivery feature for a JMS-enabled connector that has a J]MS
event store, set the connector configuration properties shown in [Table 50

Table 50. Guaranteed-event-delivery connector properties for a connector with a JMS event

store
Connector property Value
DeliveryTransport JMS

132 Connector Development Guide for Java

Table 50. Guaranteed-event-delivery connector properties for a connector with a JMS event
store (continued)

Connector property Value
ContainerManagedEvents JMS
Pol1Quantity The number of events to processing in a

single poll of the event store

SourceQueue Name of the JMS source queue (event store)
which the connector framework polls and
from which it retrieves events for processing
Note: The source queue and other JMS
queues should be part of the same queue
manager. If the connector’s application
generates events that are stored in a
different queue manager, you must define a
remote queue definition on the remote
queue manager. WebSphere MQ can then
transfer the events from the remote queue to
the queue manager that the J]MS-enabled
connector uses for transmission to the
integration broker. For information on how
to configure a remote queue definition, see
your IBM WebSphere MQ documentation.

Note: A connector can use only one of these guaranteed-event-delivery features:
container managed events or duplicate event elimination.Therefore, you
cannot set the ContainerManagedEvents property to JMS and the
DuplicateEventElimination property to true.

In addition to configuring the connector, you must also configure the data handler
that converts between the event in the JMS store and a business object. This
data-handler information consists of the connector configuration properties that

able 51| summarizes.

Table 51. Data-handler properties for guaranteed event delivery

Data-handler property Value Required?

MimeType The MIME type that the data handler Yes
handles. This MIME type identifies which
data handler to call.

DHClass The full name of the Java class that Yes
implements the data handler
DataHandlerConfigMOName The name of the top-level meta-object that | Optional
associates MIME types and their data
handlers

Note: The data-handler configuration properties reside in the connector
configuration file with the other connector configuration properties.

End users that configure a connector that has a JMS event store to use guaranteed
event delivery must be instructed to set the connector properties as described in
[Table 50| and [Table 51} To set these connector configuration properties, use the
Connector Configurator tool. Connector Configurator displays the connector
properties in [Table 50| on its Standard Properties tab. It displays the connector
properties in [Table 51| on its Data Handler tab.

Chapter 5. Event notification 133

Note: Connector Configurator activates the fields on its Data Handler tab only
when the DeliveryTransport connector configuration property is set to JMS
and ContainerManagedEvents is set to JMS.

For information on Connector Configurator, see|Appendix B, “Connector]
(Configurator,” on page 501

Effect on event polling: If a connector uses guaranteed event delivery by setting
ContainedManagedEvents to JMS, it behaves slightly differently from a connector
that does not use this feature. To provide container-managed events, the connector
framework takes the following steps to poll the event store:

1. Start a JMS transaction.

2. Read a JMS message from the event store.
The event store is implemented as a JMS source queue. The JMS message
contains an event record. The name of the JMS source queue is obtained from
the SourceQueue connector configuration property.

3. Call the appropriate data handler to convert the event to a business object.
The connector framework calls the data handler that has been configured with
the properties in [Table 51 on page 133

4. When a WebSphere message broker (WebSphere MQ Integrator, WebSphere MQ
Integrator Broker, WebSphere Business Integration Message Broker) or
WebSphere Application Server is the integration broker, convert the business
object to a message based on the configured wire format (XML).

5. Send the resulting message to the JMS destination queue.

WebSphere InterChange Server
FThe message sent to the JMS destination queue is the business object.

Other integration brokers
FThe message sent to the JMS destination queue is an XML message.

6. Commit the JMS transaction.

When the JMS transaction commits, the message is written to the JMS
destination queue and removed from the JMS source queue in the same
transaction.

7. Repeat step through@ in a loop. The Pol1Quantity connector property
determines the number of repetitions in this loop.

Important: A connector that sets the ContainerManagedEvents property is set to JMS
does not call the pol1ForEvents() method to perform event polling. If
the connector’s base class includes a pol1ForEvents() method, this
method is not invoked.

Guaranteed event delivery for connectors with non-JMS event
stores

The connector framework can use duplicate event elimination to ensure that duplicate
events do not occur. This feature is usually enabled for JMS-enabled connectors
that use a non-JMS solution to implement an event store (such as a JDBC event
table, Email mailbox, or flat files). This duplicate-event-elimination feature of

134 Connector Development Guide for Java

guaranteed event delivery enables the connector framework to guarantee that
events are never sent twice between the event store and the destination’s JMS
queue.

Note: JMS-enabled connectors that use a J]MS event store usually use the
container-managed-events feature. However, they can use duplicate event
elimination instead of container managed events.

This section provides the following information about use of the
guaranteed-event-delivery feature with a J]MS-enabled connector that has a
non-JMS event store:

» |“Enabling the feature for connectors with non-JMS event stores”

» [“Effect on event polling” on page 134|

Enabling the feature for connectors with non-JMS event stores: To enable the
guaranteed-event-delivery feature for a JMS-enabled connector that has a non-JMS
event store, you must set the connector configuration properties shown in|Table 5

Table 52. Guaranteed-event-delivery connector properties for a connector with a non-JMS
event store

Connector property Value

DeliveryTransport JMS

DuplicateEventETimination true

MonitorQueue Name of the J]MS monitor queue, in which
the connector framework stores the
ObjectEventld of processed business objects

Note: A connector can use only one of these guaranteed-event-delivery features:
container managed events or duplicate event elimination.Therefore, you
cannot set the DupTlicateEventElimination property to true and the
ContainerManagedEvents property to JMS.

End users that configure a connector to use guaranteed event delivery must be
instructed to set the connector properties as described in To set these
connector configuration properties, use the Connector Configurator tool. It displays
these connector properties on its Standard Properties tab. For information on
Connector Configurator, see [Appendix B, “Connector Configurator,” on page 501

Effect on event polling: If a connector uses guaranteed event delivery by setting
DuplicateEventElimination to true, it behaves slightly differently from a connector
that does not use this feature. To provide the duplicate event elimination, the
connector framework uses a JMS monitor queue to track a business object. The
name of the J]MS monitor queue is obtained from the MonitorQueue connector
configuration property.

After the connector framework receives the business object from the
application-specific component (through a call to gotApp1Event() in the
poll1ForEvents() method), it must determine if the current business object
(received from gotApplEvents()) represents a duplicate event. To make this
determination, the connector framework retrieves the business object from the JMS
monitor queue and compares its ObjectEventld with the ObjectEventld of the
current business object:

Chapter 5. Event notification 135

¢ If these two ObjectEventlds are the same, the current business object represents a
duplicate event. In this case, the connector framework ignores the event that the
current business object represents; it does not send this event to the integration
broker.

* If these ObjectEventlds are not the same, the business object does not represent a
duplicate event. In this case, the connector framework copies the current
business object to the JMS monitor queue and then delivers it to the JMS
delivery queue, all as part of the same JMS transaction. The name of the JMS
delivery queue is obtained from the DeliveryQueue connector configuration
property. Control returns to the connector’s pol1ForEvents() method, after the
call to the gotApplEvent () method.

For a JMS-enabled connector to support duplicate event elimination, you must

make sure that the connector’s pol1ForEvents () method includes the following

steps:

* When you create a business object from an event record retrieved from the
non-JMS event store, save the event record’s unique event identifier as the
business object’s ObjectEventld attribute.

The application generates this event identifier to uniquely identify the event
record in the event store. If the connector goes down after the event has been
sent to the integration broker but before this event record’s status can be
changed, this event record remains in the event store with an In-Progress status.
When the connector comes back up, it should recover any In-Progress events.
When the connector resumes polling, it generates a business object for the event
record that still remains in the event store. However, because both the business
object that was already sent and the new one have the same event record as
their ObjectEventlds, the connector framework can recognize the new business
object as a duplicate and not send it to the integration broker.

A Java connector can use the setDEEId() method of the CWConnectorBusObj class
to assign the event identifier to the ObjectEventld attribute, as follows:
busObj.setDEEId(event_id);

* During connector recovery, make sure that you process In-Progress events before
the connector begins polling for new events.

Unless the connector changes any In-Progress events to Ready-for-Poll status
when it starts up, the polling method does not pick up the event record for
reprocessing.

136 Connector Development Guide for Java

Chapter 6. Message logging

This chapter presents information on message logging. A message is a string of
information that the connector can send to an external connect log, where it can be
reviewed by the system administrator or the developer to provide information
about the runtime state of the connector. There are two different categories of
messages that a connector can send to the connector log:

* Error or informational messages

* Trace messages

Messages can be generated within the connector code or obtained from a message
file. This chapter contains the following sections:

* |“Error and informational messages”|

* |“Trace messages” on page 139|

* [“Message file” on page 142|

Error and informational messages

A connector can send information about its state to a log destination. The
following types of information are recommended for logging:

* Errors and fatal errors from your code to a log file.

* Warnings require a system administrator’s attention, from your code to a log
file.

* Informational messages such as:
— Connector startup and termination messages

— Important messages from the application

Although a connector can send informational or error messages, this logging
process is referred to as error logging.

Note: These messages are independent of any trace messages defined for the
connector.

Indicating a log destination

A connector sends its log messages into its log destination. The log is an external
destination that is available for viewing by those needing to review the execution
state of the connector. The log destination is defined at connector configuration
time by the setting of the Logging field in the Trace/Log Files tab of Connector
Configurator as one of the following:

* To File: The absolute pathname of an external file, which must reside on the
same machine as the connector’s process (with its connector framework and
application-specific component)

* To console (STDOUT): The command prompt window generated when the
connector startup script starts the connector

By default, the connector’s log destination is set to the console, which indicates use

of the startup script’s command prompt window as the log destination. Set this log
destination as appropriate for your connector.

© Copyright IBM Corp. 2000, 2004 137

— WebSphere InterChange Server
You can also set the LogAtInterchangeEnd connector configuration property to
indicate whether messages are also logged to the InterChange Server’s log
destination:

* Messages logged locally only: LogAtInterchangeEnd is false.

* Messages are logged both locally and sent to InterChange Server’s log
destination: LogAtInterchangeEnd is true.

By default, LogAtInterchangeEnd is set to false, so that messages are only
logged locally. If messages are sent to InterChange Server, they are written to
the destination specified for InterChange Server messages.

Note: Logging to InterChange Server’s log destination also turns on email
notification, which generates email messages for the MESSAGE_RECIPIENT
parameter specified in the InterchangeSystem.cfg file when errors or
fatal errors occur. As an example, when a connector loses its connection
to its application, if LogAtInterchangeEnd is set to true, an email
message is sent to the specified message recipient.

These connector properties are set with Connector Configurator. For more
information on InterChange Server’s message logging, see the System
Administration Guide in the IBM WebSphere InterChange Server documentation set.

Sending a message to the log destination

shows the ways that a connector sends an error, warning, and information
message to its log destination.

Table 53. Methods for sending a message to the log destination

Connector library method Description

TogMsg() and generateMsg() Takes as input a text string or a string generated from a
message in a message file. Optionally, it can take a
message-type constant to indicate whether the message is
an error, warning, or informational. To generate a
character string from the message text in a message file,
use the generateMsg() method.

generateAndLogMsg () Combines the functionality of the TogMsg() and
generateMsg() methods into a single call.

For more information on how to generate a message, see [“Generating a message
string” on page 143

In the Java connector library, the TogMsg(), generateMsg(), and
generateAndLogMsg () methods are defined in the CWConnectorUtil class.

Both the generateMsg() and generateAndLogMsg() methods require a message type
as an argument. This argument indicates the severity of the message. For more
information, see [“Generating a message string” on page 143

138 Connector Development Guide for Java

Trace messages

Tracing is an optional troubleshooting and debugging feature that can be turned on
for connectors. When tracing is turned on, system administrators can follow events
as they work their way through the IBM WebSphere business integration system.

WebSphere InterChange Server
When InterChange Server is the integration broker, you can also use tracing
on connector controllers, and other components of the InterChange Server
system.

Tracing in an application-specific component allows you and other users of your
connector code to monitor the behavior of the connector. Tracing can also track
when specific connector functions are called by the connector framework. Trace
messages that you provide for the connector application-specific code augment the
trace messages provided for the connector framework.

Enabling tracing

By default, tracing on a connector is turned off. Tracing is turned on for a
connector when the connector configuration property Tracelevel is set to a
non-zero value in Connector Configurator. You can set TracelLevel to a value from
1 to 5 to obtain the appropriate level of detail. Level 5 tracing logs the trace
messages of all lower trace levels.

— WebSphere InterChange Server

Tip: For information on turning on tracing for connector controllers or for
other components of the InterChange Server system, see the System
Administration Guide in the IBM WebSphere InterChange Server
documentation set.

Identifying a trace destination

A connector sends its trace messages into its trace destination, which is an external
destination that is available for viewing by those needing to review the execution
state of the connector. The trace destination is defined at connector configuration
time by the setting of the Tracing field in the Trace/Log Files tab of Connector
Configurator as one of the following:

* To File: The absolute pathname of an external file, which must reside on the
same machine as the connector’s process (with its connector framework and
application-specific component)

* To console (STDOUT): The command prompt window generated when the
connector startup script starts the connector

By default, the connector’s trace destination is set to the console, which indicates
use of the startup script’'s command prompt window as the trace destination. Set
this trace destination as appropriate for your connector.

Sending a trace message to the trace destination

shows the ways that a connector sends a trace message to its trace
destination.

Chapter 6. Message logging 139

Table 54. Methods for sending a trace message to the trace destination

Connector library method Description

tracelrite() and generateMsg() Takes as input a text string or a string generated from a
message in a message file and a trace-level constant to
indicate the trace level. This method writes a trace
message for the specified trace level or greater to the
trace destination. To generate a character string from the
message text in a message file, use the generateMsg()
method with the message type set to XRD_TRACE.

generateAndTraceMsg() Combines the functionality of the tracelrite() and
generateMsg() methods into a single call.

For information on the generateMsg() method, see [“Generating a message string”]

Note: It is not required that trace messages be localized in the message file.
Whether trace messages are contained in a message file is left at the
discretion of the developer. For more information, see [“Locale-sensitive]
[design principles” on page 57|

In the Java connector library, the tracelrite(), generateMsg(), and
generateAndTraceMsg() methods are defined in the CWConnectorUtil class.

The traceWrite() and generateAndTraceMsg() require a trace level as an argument.
This argument specifies the trace level to use for a trace message. When you turn
on tracing at runtime, you specify a trace level at which to run the tracing. All
trace messages in your code with trace levels at or below the runtime trace level
are sent to the trace destination. For more information, see [“Recommended content|
ffor trace messages” on page 140,

To specify a trace level to associate with a trace message, use a trace-level constant
of the form TRACELEVELn where n can be a trace level from 1 to 5. Trace-level
constants are defined in the CWConnectorLogAndTrace class.

The generateMsg() method requires a message type as an argument. This
argument indicates the severity of the message. Because trace messages do not
have severity levels, you just use the XRD_TRACE message-type constant.
Message-type constants are defined in the CWConnectorLogAndTrace class.

Note: The generateAndTrace() method does not require a message type as an
argument. The method automatically assumes the XRD_TRACE message-type
constant.

Recommended content for trace messages

You are responsible for defining what kind of information your connector returns
at each trace level. [Table 55[shows the recommended content for
application-specific connector trace messages.

Table 55. Content of application-specific connector trace messages

Level Content
0 Trace message that identifies the connector version. No other tracing is done at
this level.

140 Connector Development Guide for Java

Table 55. Content of application-specific connector trace messages (continued)

Level
1

Content

Trace messages that:

* Log status messages and identifying (key) information for each business object
processed.

* Record each time the pol1ForEvents() method is executed.
Trace messages that:

* Identify the business object handlers used for each object the connector
processes.

* Log each time a business object is posted to InterChange Server, either from
gotApplEvent() or executeCollaboration().

* Indicate each time a request business object is received.
Trace messages that:

* Identify the foreign keys being processed (if applicable). These messages
appear when the connector has encountered a foreign key in a business object
or when the connector sets a foreign key in a business object.

* Relate to business object processing. Examples of this include finding a match
between business objects, or finding a business object in an array of child
business objects.

Trace message that:

* Identify application-specific information. Examples of this information include
the values returned by the methods that process the application-specific
information fields in business objects.

* Identify when the connector enters or exits a function. These messages help
trace the process flow of the connector.

* Record any thread-specific processing. For example, if the connector spawns
multiple threads, a message should log the creation of each new thread.
Trace message that:

* Indicate connector initialization. Examples of this message include the value of
each connector configuration property that has been retrieved from
InterChange Server.

* Detail the status of each thread the connector spawns while it is running.

* Represent statements executed in the application. The connector log file
contains all statements executed in the target application and the value of any
variables that are substituted (where applicable).

* Record business object dumps. The connector should output a text
representation of a business object before it begins processing (showing the
object the connector receives from the integration broker) and after it has
processed the object (showing the object the connector returns to the
integration broker).

Note: The connector should deliver all the trace messages at the specified trace

level and lower.

For information on the content and level of detail for connector framework trace
messages, see the System Administration Guide in the IBM WebSphere InterChange
Server documentation set.

Chapter 6. Message logging 141

Message file

You can provide message input to the connector error logging or tracing method
be as text strings or as references to a message file. A message file is a text file
containing message numbers and message text. The message text can contain
positional parameters for passing runtime data out of your connector. You can
provide a message file by creating a file and defining the messages that you need.

WebSphere InterChange Server

Important: Do not add your messages to the InterChange Server message file,
InterchangeSystem.txt. Access only existing messages from this
system message file.

This section provides the following information about a message file:

* [“Message format’]

¢ [“Name and location of a message file”]|

* [“Generating a message string” on page 143

Message format

Within a message file, messages have the following format:
message number message text[EXPL]explanation text

The message number is an integer that uniquely identifies the message. This
message number must appear on one line. The message text can span multiple
lines, with a carriage return terminating each line. The explanation text is a more
detailed explanation of the condition that causes the message to occur.

As an example of message text, a connector can call the following message when it
determines that its version differs from the version of the connector infrastructure.

20017
Connector Infrastructure version does not match.

Messages can contain parameters whose values are replaced at runtime by values
from the program. The parameters are positional and are indicated in the message
file by a number in braces. For example, the following message has two
parameters to record an unsubscribed event.

20026
Warning: Unsubscribed event: Object Name:{1}, Verb: {2}.

For information on how to provide values to message parameters, see
[parameter values” on page 145,

Note: For additional examples of messages, see the InterChange Server message
file InterchangeSystem. txt.

Name and location of a message file
A connector can obtain its messages from one of two message files:

* A connector message file is named AppnameConnector.txt and is stored in the
following subdirectory of the product directory:

connectors\messages

142 Connector Development Guide for Java

For example, the connector message file for the IBM WebSphere Business
Integration Adapter for Clarify is named ClarifyConnector.txt.

* The InterChange Server message file is named InterchangeSystem.txt and is
located in the product directory.

When you generate a message, you can specify which of these two message files to
extract a message from with a message-file constant. All methods that generate
messages (see [Table 56 on page 144) provide a parameter to specify which message
file to use. For more information, see [“Specifying a message number” on page
”Specifying a message number” on page 142

WebSphere InterChange Server
If a connector message file does not exist, the InterChange Server message file
InterchangeSystem.txt (located in the product directory) is used as the
message file.

The connector message file should contain all text strings that the
application-specific component uses. These strings include those for logging as
well as hardcoded strings.

Note: Connector standards suggest that trace messages are not included in a
connector message file because end users do not normally view them.

For an internationalized connector, it is important that text strings are isolated into
the connector message file. This message file can be translated and the messages
can then be easily available in different languages. The name of the translated
connector message file should include the name of the associated locale, as follows:

AppnameConnector_L1_TT.txt

In the preceding line, Il is the two-letter abbreviation for the locale (by convention
in lowercase letters) and TT is the two-letter abbreviation for the territory (by
convention in uppercase letters). For example, the version of the connector
message file for the WBI Adapter for Clarify that contains U.S. English messages
would have the following name:

ClarifyConnector_en_US.txt

At runtime, the connector framework locates the appropriate message file for the
connector framework locale from the connectors\messages subdirectory. For
example, if the connector framework’s locale is U.S. English (en_US), the connector
framework retrieves messages from the AppnameConnector_en_US. txt file.

For more information on how to internationalize the text strings of a connector, see
[“An internationalized connector” on page 56.|

Generating a message string

The methods in [Table 56| retrieve a predefined message from a message file, format
the text, and return a generated message string.

Chapter 6. Message logging 143

Table 56. Methods that generate a message string

Message method Description

generateMsg() Generates a message of the specified severity
from a message file. You can use the message
as input to the TogMsg() or tracelrite()

method.

generateAndLogMsg() Generates a message of the specified severity
from a message file and sends it to the log
destination

generateAndTraceMsg() Generates a trace message from a message

file and sends it to the log destination

Tip: Before using generateMsg() for tracing, check that tracing is enabled with the
isTraceEnabled() method. If tracing is not enabled, you need not generate the
trace message.

In the Java connector library, the generateMsg(), generateAndLogMsg(), and
generateAndTraceMsg() methods are defined in the CWConnectorUtil class

The message-generation methods in [Table 56| require the following information:
* |"Specifying a message number”|

* |“Specifying a message type” on page 145|

» |"Using parameter values” on page 145| (optional)

Specifying a message number

The methods in require a message number as an argument. This argument
specifies the number of the message to obtain from the message file. As described
in ["Message format” on page 142} each message in a message file must have a
unique integer message number (identifier) associated with it. The methods in
search the message file for the specified message number and extract the
associated message text.

To indicate which message file these methods search in, you specify an integer
message-file constant as an argument, as [Table 57| shows.

Table 57. Message-file constants

Message-file constant Description

INFRASTRUCTURE_MESSAGE_FILE Search the InterChange Server message file
(InterchangeSystem.txt) for the specified
message number.

Note: This message-file constant is valid only
when the integration broker is InterChange
Server.

CONNECTOR_MESSAGE_FILE Search the connector message file for the

specified message number.

In the Java connector library, the message-file constants are defined in the
CWConnectorLogAndTrace class.

The IBM WebSphere business integration system generates the date and time and
displays the following message:

[1999/05/28 11:54:15.990] [ConnectorAgent ConnectorName]
Error 1100: Failed to connect to application

144 Connector Development Guide for Java

Note: If the connector logs to its local log file, the connector infrastructure adds
the timestamp.

WebSphere InterChange Server
If the connector logs to InterChange Server, InterChange Server adds the
timestamp.

Specifying a message type

The methods in [Table 56| also require a message type as an argument. This
E

argument indicates the severity of the message. [[able 5§ lists the valid message
types and their associated message-type constants.

Table 58. Message types

Message type Severity level Description

XRD_FATAL Fatal Error Indicates an error that stops program execution.

XRD_ERROR Error Indicates a error that should be investigated.

XRD_WARNING Warning Indicates a condition that might represent a
problem but that can be ignored.

XRD_INFO Informational Information message only; no action required.

XRD_TRACE - Use for trace messages.

To specify a message type to associate with a message, use one of the
message-type constants in [Table 58| as an argument to the message-generation
method, as follows:

* For a log message, use a message-type constant that indicates the message
severity (in decreasing level of severity): XRD_FATAL, XRD_ERROR, XRD_WARNING,
XRD_INFO.

* For a trace message, use the XRD_TRACE message-type constant.

In the Java connector library, the generateAndTraceMsg() method does not require a
message type for trace messages. Although the Java connector library supports a
deprecated version of generateAndTraceMsg() that requires the message type, the
nondeprecated version of this method automatically specifies the XRD_TRACE
message type; therefore, you do not need to provide it as an argument.

Message-type constants are defined in the CWConnectorLogAndTrace class.

Using parameter values

With the message-generation methods in you can specify an optional
number of values for message-text parameters. The number of parameter values
must match the number of parameters defined in the message text. For information
on how to define parameters in a message, see ["Message format” on page 142}

To specify parameter values, you must include the following arguments:

e An argument count to indicate the number of parameters within the message
text; to determine the number, refer to the message in the message file.

* A comma-separated list of parameter values; each parameter is represented as a
character string.

Suppose you have the following informational message in your connector message
file that contains one parameter:

Chapter 6. Message logging 145

2887
Initializing connector {1}

Because this message contains a single parameter, a call to one of the
message-generation methods must specify an argument count of 1 and then
provide the name of the connector as a character string. In the code fragment
below, generateAndLogMsg() is called to format a message that contains one
parameter and send this message to the log:

String val = CWConnectorUtil.getConfigProp("ConnectorName");

CWConnectorUtil.generateAndLogMsg (2887, CWConnectorLogAndTrace.XRD_INFO,
CWConnectorUtil.CONNECTOR_MESSAGE FILE, 1, val);

The parameter value of val is combined with the message in the message file. If
val is set to MyConnector, the resulting message is:
[1999/05/28 11:54:15.990] [ConnectorAgent MyConnector]

Info 2887: Initializing connector MyConnector

You can also locate trace messages in the connector message file.

146 Connector Development Guide for Java

Chapter 7. Implementing a Java connector

This chapter presents information on how to implement a connector’s
application-specific component in Java. It provides language-specific details for the
general tasks discussed in earlier chapters of this guide.

This chapter contains the following sections:

» |“Extending the Java connector base class”|

+ [“Beginning execution of the connector” on page 148§|

* [“Creating a business object handler” on page 152

* [“Implementing an event-notification mechanism” on page 174

* [“Shutting down the connector” on page 200}

+ [“Handling errors and status” on page 201

Extending the Java connector base class

In the Java connector library, the connector base class is named CWConnectorAgent.
The CWConnectorAgent class provides methods for startup, subscription checking,
business object subscription delivery, and shut down. To implement your own
connector, you extend this connector base class to create your own connector class.

Note: For general information about the methods of the connector base class, see
[“Extending the connector base class” on page 68].

To derive a connector class for a Java connector, follow these steps:

1. Create a connector class that extends the CWConnectorAgent class. Name this
connector class:

connectorNameAgent. java

where connectorName uniquely identifies the application or technology with
which the connector communicates. For example, to create a connector for a
Baan application, you create a connector class called BaanAgent.

2. In the connector-class file, define a package name to contain your connector. A
connector package name has the following format:

com.crossworlds.connectors.connectorName

where connectorName is the same as defined in step above. For example, the
package name for the Baan connector would be defined in the connector-class
file as follows:

package com.crossworlds.connectors.Baan;
3. Ensure that the connector-class file imports the following classes:

com.crossworlds.cwconnectorapi.*;
com.crossworlds.cwconnectorapi.exceptions.*;

If you create several files to hold the connector-class code, you must import
these classes into every connector file.

4. Implement the appropriate base-class methods for the connector’s
application-specific component. For more information on how to create these
base-class methods, see [Table 59].

© Copyright IBM Corp. 2000, 2004 147

Table 59. Extending base-class methods of the CWConnectorAgent class

CWConnectorAgent method

agentInit()

etVersion()

Q

lgetConnectorBOHandlerForBO ()|

etEventStore()

«Q

doVerbFor()

poll1ForEvents

erminate

ﬂ !

Description

Initializes the application-specific
component of the connector.
Obtain the version of the connector.

Obtain the business-object handler for
the business objects.

Obtain the event-store object for the
connector.

Process the request business object by
performing its verb operation.

Poll event store to obtain application
events and send them to the connector
framework.

Perform cleanup operations for the
connector shut down.

For more information

“Initializing the connector” on page

14

“Checking the connector version” on|

page 149

“Obtaining the Java business object|

handler” on page 151

"“CWConnectorEventStoreFactory]|

interface” on page 176

“Creating a business object handler”|

on page 152

“Implementing an event-notification|

mechanism” on page 174|

“Shutting down the connector” on|

page 2()0|

Beginning execution of the connector

When the connector is started, the connector framework instantiates the associated
connector class and then calls the connector class methods in [Table 60}.

Table 60. Beginning execution of the connector

Initialization task

For more information

1. Initialize the connector to perform any necessary initialization for [‘Initializing the connector” on page 14§
the connector, such as opening a connection to the application.
2. For each business object that the connector supports, obtain the ‘Obtaining the Java business object|

business object handler. handler” on page 151

Initializing the connector

To begin connector initialization, the connector framework calls the initialization
method, agentInit(), in the connector base class, CWConnectorAgent. This method
performs initialization steps for the connector’s application-specific component.

Important: As part of the implementation of your connector class, you must
implement an agentInit() method for your connector.

As discussed in [“Initializing the connector” on page 65|, the main tasks of the
agentInit() initialization method include:

+ [“Establishing a connection” on page 149

+ [“Checking the connector version” on page 149

* |“Recovering In-Progress events” on page 149

In addition to _the above topics, this section provides an example Java agentInit()
method in [“Example Java initialization method” on page 150,

Important: During execution of the initialization method, business object
definitions and the connector framework’s subscription list are not yet
available.

148 Connector Development Guide for Java

Establishing a connection

The main task of the agentInit() initialization method is to establish a connection
to the application. It executes successfully if the connector succeeds in opening a
connection. If the connector cannot open a connection, the initialization method
must throw the ConnectionFailureException exception to indicate the cause of the
failure. The connector might also need to log into the application. If this logon
attempt fails, the initialization method must throw the LogonFailedException to
indicate the cause of the failure. The steps in [Table 64 on page 155| outline how to
throw either of these initialization exceptions.

Note: For an overview of the steps in an initialization method, see [“Establishing a

[connection” on page 65].

Checking the connector version
The getVersion() method returns the version of the connector’s
application-specific component.

Note: For a general description of getVersion(), see [“Checking the connector]
[version” on page 65.

In the Java connector library, the getVersion() method is defined in the
CWConnectorAgent class. This class provides a default implementation of
getVersion() that obtains the version from the Java manifest file. You can override
getVersion() to provide a different implementation.

For example, the following code sample implements getVersion() to return a
string indicating the version of the connector.

public String getVersion(){

// get version from manifest file, or from string

String version = "1.0.0";
return version;

}

Recovering In-Progress events
The Java connector library provides the CWConnectorEventStore class to represent
an event store. To recover In-Progress event records in the event store, the Java

connector library provides the method in [Table 61].

Table 61. Method for recovering In-Progress events

Java connector library class Method

CWConnectorEventStore [recoverInProgressEvents()|

The recoverInProgressEvents() method implements the recovery behavior for
In-Progress events. However, the CWConnectorEventStore class does not provide a
default implementation for this method. One possible recovery behavior is based
on the InDoubtEvents connector configuration property and is outlined in

fon page 6d].

Note: For a general discussion of how to recover In-Progress events,
sed“Recovering In-Progress events” on page 65|.

If the recovery process fails, the initialization method must throw the
InProgressEventRecoveryFailedException to indicate the cause of the failure. The
steps in[Table 64 on page 155 outline how to throw this initialization exception.

Chapter 7. Implementing a Java connector 149

shows a fragment of the agentInit() method that uses
recoverInProgressEvents() to recover the In-Progress events.

// instantiate event-store factory
evtFac=new MyEventStoreFactoryInstance();

// instantiate event store
Object evto=evtFac.getEventStore();
CWConnectorEventStore evts=(CWConnectorEventStore)evto;

// check for any leftover In-Progress events
String inDoubtEvents=CWConnectorUtil.getConfigProp(
"InDoubtEvents");

// In case the InDoubtEvents property is not set, use

// FailOnStartup as default.

if (inDoubtEvents == null || inDoubtEvents.equals(""))
inDoubtEvents="FailOnStartup";

// recover In-Progress events
if (evts.recoverInProgressEvents() == FAIL
|| inDoubtEvents.equals("FailOnStartup")) {

// log a fatal error

// throw an exception to terminate agentInit()
throw new InProcessEventRecoveryFailureException()

Figure 56. Recovering in-progress events

In , the MyEventStoreFactoryInstance class is an example of an extension
of the CWConnectorEventStoreFactory class, whose getEventStore() method
provides access to the event store.

Example Java initialization method

For a Java connector, the agentInit() method provides the initialization for the
connector’s application-specific component. This method does not return a value
but throws special exceptions to indicate common initialization errors.
shows a simple agentInit() method that obtains connector properties and
establishes a connection to the application.

150 Connector Development Guide for Java

public agentInit()
throws PropertyNotSetException, ConnectionFailureException,
InProgressEventRecoveryFailedException, LogonFailedException

{

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,
"Entering Connector agentInit()");

int status = CWConnectorConstant.SUCCEED;
connectorProperties =
CWConnectorUtil.getAl1ConnectorAgentProperties();

ExampleConnection userConnect = new Connection();

// get Connector Configuration Properties to establish Connection

String connectString =
(String)connectorProperties.get("ConnectString");

String userName =
(String)connectorProperties.get("ApplicationUserName");

String userPassword =
(String)connectorProperties.get ("ApplicationPassword");

if(connectString == null || connectString.equals("")
| userName==null || userPassword==null)

throw new PropertyNotSetException();
}

// Use Configuration Values to Tog into Application
try

boolean loginSuccessful = userConnect.login(connectString,
userName, userPassword);

if(loginSuccessful)
CWConnectorUtil.generateAndLogMsg(30000,CWConnectorLogAndTrace.XRD_INFO,);

}
catch(ExampleAppException se)

{
CWConnectorUtil.generateAndLogMsg (30001,
CWConnectorLogAndTrace.XRD_ERROR,0,1,path);

Figure 57. Initializing a Java connector

Note: For agentInit() code fragment that recovers In-Progress events, see
[Figure 56 on page 150}.

Obtaining the Java business object handler

In a Java connector, the business-object-handler base class is CHConnectorBOHandler.
To obtain an instance of a business object handler for a supported business object,
the connector framework calls the getConnectorBOHandlerForB0() method, which is
defined as part of the CWConnectorAgent class.

Note: For general information about the getConnectorBOHandlerForB0() method,
see[“Obtaining the business object handler” on page 66,. For a general
discussion of how to design business object handlers, see |”Designiné
[business object handlers” on page 79.

Chapter 7. Implementing a Java connector 151

The default implementation of getConnectorBOHandlerForB0() in the
CWConnectorAgent class returns a business object handler for a
business-object-handler base class named ConnectorBOHandler. If you name your
extended business-object-handler base class ConnectorBOHandler, you do not need
to override the getConnectorBOHandlerForB0() method. However, if you name
your extended business-object-handler base class some other than
ConnectorBOHandler, you must override getConnectorBOHand]1 erForB0() to return
an instance of your extended business-object-handler base class.

The number of business object handlers that the connector framework obtains
through its calls to the getConnectorBOHandlerForB0() method depends on the
overall design for business object handling in your connector:

* If the connector is metadata-driven, it can be designed to use a generic,
metadata-driven business object handler.

contains an implementation of the getConnectorBOHandlerForB0()
method that returns a metadata-driven business object handler. It calls the
constructor for the ExampleBOHandler class, which instantiates a single
business-object-handler base class that handles all the business objects supported
by the connector.

* If some or all application-specific business objects require special processing,
then you must set up multiple business object handlers for those objects.

Important: During execution of the getConnectorBOHandlerForB0() method, the
business object class methods are not yet available.

Calls the constructor for the ExampleConnectorBOHandler class to
instantiate a single business-object-handler base class that handles all the business
objects supported by the connector.

public CWConnectorBOHandler getConnectorBOHandlerForBO(String BOName) {
return new ExampleConnectorBOHandler();
}

Figure 58. The getConnectorBOHandlerForBO() method for generic business object handler

Creating a business object handler

Creating a business object handler involves the following steps:

“Extending the Java business-object-handler base class”|

* Implementing a business-object-handler retrieval method—For more information,
see ['Obtaining the Java business object handler” on page 151}

“Implementing the doVerbFor() method” on page 153

“Creating a custom business object handler” on page 172|

Note: For an introduction to request processing, see [“Request processing” on page]
. For a discussion of request processing and the implementation of
doVerbFor(), see [Chapter 4, “Request processing,” on page 79)

Extending the Java business-object-handler base class

In the Java connector library, the base class for a business object handler is named
CWConnectorBOHandler. The CWConnectorBOHandler class provides methods for
defining and accessing a business object handler. To implement your own business
object handler, you extend this business-object-handler base class to create your
own business-object-handler class.

152 Connector Development Guide for Java

Note: For general information about the methods of the business-object-handler
base class, see [’Extending the business-object-handler base class” on pagge]

To derive a business-object-handler class for a Java connector, follow these steps:

1. Create a class that extends the CWConnectorBOHandler class. Name this class:
connectorNameBOHandler. java

where connectorName uniquely identifies the application or technology with
which the connector communicates. For example, to create a business object
handler for a Baan application, you create a business-object-handler class called
BaanBOHandler. If your connector design implements multiple business object
handlers, include the name of the handled business objects in the name of the
business-object-handler class.

2. In the business-object-handler-class file, define the package name that contains
your connector. A connector package name has the following format:

com.crossworlds.connectors.connectorName

where connectorName is the same as defined in step above. For example, the
package name for the Baan connector would be defined in the
business-object-handler-class file as follows:

package com.crossworlds.connectors.Baan;
3. Ensure that the business-object-handler-class file imports the following classes:

com.crossworlds.cwconnectorapi.*;
com.crossworlds.cwconnectorapi.exceptions.*;
If you create several files to hold the business object handler’s code, you must
import these classes into every file.

4. Implement the doVerbFor() method to define the behavior of the business
object handler. For more information on how to implement this method, see
[“Implementing the doVerbFor() method.”|

Note: The other methods in the CWConnectorBOHandler class have their
implementations provided. The doVerbFor() method is the only method
you must implement in the business-object-handler class. For more
information, see [Chapter 12, “CWConnectorBOHandler class,” on page|

You might need to implement more than one business object handler for your
connector, depending on the application and its APIL For a discussion of some
issues to consider when implementing business object handlers, see
business object handlers” on page 79|.

Implementing the doVerbFor() method

The doVerbFor() method provides the functionality for the business object handler.
When the connector framework receives a request business object, it calls the
doVerbFor() method for the appropriate business object handler to perform the
action of this business object’s verb. For a Java connector, the
CWConnectorBOHandler class defines the doVerbFor() method in which you define
the verb processing.

Note: For a general description of the role of the doVerbFor() method, see
[“Handling the request” on page 82} [Figure 27 on page 83 provides the
method’s basic logic.

Chapter 7. Implementing a Java connector 153

However, the actual doVerbFor() method that the connector framework invokes is
the low-level version of this method, which the CWConnectorBOHandler class
inherits from the BOHandlerBase class of the low-level Java connector library. This
low-level version of doVerbFor() calls the user-implemented doVerbFor() method.
Therefore, as part of your business-object-handler class (an extension of
CWConnectorBOHandler), you must provide an implementation of the doVerbFor()
method.

Note: The low-level doVerbFor() method calls the doVerbFor() method as long as
the business object’s verb does not contain the CBOH tag in its verb
application-specific information. If the CBOH tag exists, the low-level
doVerbFor() calls the custom business object handler whose name the CBOH
tag specifies. For more information, see [“Creating a custom business object]
[handler” on page 172.|

The role of the business object handler is to perform the following tasks:
1. Receive business objects from the connector framework.

2. Process each business object based on the active verb.

3. Send requests for operations to the application.

4. Return status to the connector framework.

summarizes the steps in the basic logic for the verb processing that the
doVerbFor() method typically performs. Each of the sections listed in the For More
Information column provides more detailed information on the associated step in
the basic logic.

Table 62. Basic logic of the doVerbFor() method

Business-object-handler step For more information
1. Obtain the active verb from the request business object. “Obtaining the active verb” on page 155
2. Verify that the connector still has a valid connection to the |“Verifying the connection before processing the|
application. verb” on page 156|
3. Branch on the value of the valid active verb. “Branching on the active verb” on page 157
4. For a given active verb, perform the appropriate request
processing:
* Perform verb-specific tasks. ['Performing the verb operation” on page 159)
+ Process the business object. ["Processing business objects” on page 160|
5. Send the appropriate status to the connector framework. [“Sending the verb-processing response” on page|

16

In addition to the processing steps in |Table 65],, this section also provides additional
processing information in|“Additional processing issues” on page 169}

Note: Java connectors must be thread safe. For Java connectors, the connector
framework uses separate threads to call into the doVerbFor() and
pollForEvents() methods.

WebSphere InterChange Server
If your business integration system uses InterChange Server and
collaborations are coded to be multi-threaded, the connector framework
might call into doVerbFor() with multiple threads representing request
processing.

154 Connector Development Guide for Java

Obtaining the active verb

To determine which actions to take, the doVerbFor() method must first retrieve the
verb from the business object that it receives as an argument. This incoming
business object is called the request business object. The verb that this business object
contains is the active verb, which must be one of the verbs that the business object
definition supports. lists the method that the Java connector library
provides to retrieve the active verb from the request business object.

Table 63. Method for obtaining the active verb

Java connector library class Method

CWConnectorBusObj getVerb()

Obtaining the active verb from the request business object generally involves the
following steps:

1. Verify that the request business object is valid.

Before the connector calls getVerb(), it should verify that the incoming request
business object is not null. The incoming business object is passed into the
doVerbFor() method as a CWConnectorBusObj object.

2. Obtain the active verb with the getVerb() method.

Once the request business object is valid, you can use the getVerb() method in
the CWConnectorBusObj class to obtain the active verb from this business object.

3. Verity that the active verb is valid.

When the connector has obtained the active verb, it should verify that this verb
is neither null nor empty.

If either the request business object or the active verb is invalid, the connector
should not continue with verb processing. Instead, it should take the steps outlined

Table 64. Handling a verb-processing error

Error-handling step
1.

Method or code to use

Log an error message to the log destination to indicate the CWConnectorUtil JgenerateAndLogMsg ()|
cause of the verb-processing error.
Instantiate an exception-detail object to hold the exception CWConnectorExceptionObject excptnDtailObj =

information.

new CWConnectorExceptionObject();

Set the status information within an exception-detail object:

* set a message to indicate the cause of the excptnDtailObj '
verb-processing failure
* set the status to the FAIL outcome status, which the excptnDtailObj setStatus

connector framework includes in its response to the
integration broker.
Throw a VerbProcessingFailureException exception, which throw new VerbProcessingFailureException(
the doVerbFor() uses to tell the connector framework that a excptnDtailObj);
verb-processing error has occurred. This exception object
contains the exception-detail object you initialized in Step

2.

When the low-level doVerbFor() method catches this
exception object, it copies the message and status from the
exception-detail object into the return-status descriptor that
it returns to the connector framework, which in turn
returns it to the integration broker.

Chapter 7. Implementing a Java connector 155

Note: For information on the exception and exception-detail objects, see
[“Exceptions” on page 202]

contains a fragment of the doVerbFor() method that obtains the active
verb with the getVerb() method. This code uses the try and catch statements to
ensure that the request business object and its active verb are not null. If either of
these conditions exists, the code fragment throws the
VerbProcessingFailedException exception, which the connector framework
catches.

public int doVerbFor(CWConnectorBusObj theBusObj)
throws VerbProcessingFailedException, ConnectionFailureException
{

CWConnectorExceptionObject cwExcpObj =
new CWConnectorExceptionObject();

//make sure that the incoming business object is not null
if (theBusObj == null) {
CWConnectorUtil.logMsg (3456,
CWConnectorLogAndTrace.XRD_ERROR) ;
cwExcpObj.setMsg (
"doVerbFor(): Invalid business object passed in");
cwExcpObj.setStatus (CWConnectorConstant.FAIL);
throw new VerbProcessingFailedException(cwExcpObj);

}

// obtain the active verb
String busObjVerb = theBusObj.getVerb();

// make sure the active verb is neither null nor empty

if (busObjVerb == null || busObjVerb.equals("")){
cwExcpObj . setMsgNumber(6548) ;
cwExcpObj.setMsgType (CWConnectorLogAndTrace.XRD_ERROR) ;
cwExcpObj.setMsg("doVerbFor: Invalid active verb");
cwExcpObj.setStatus (CWConnectorConstant.FAIL);
throw new VerbProcessingFailedException(cwExcpObj);

}
try {
// perform verb processing here

} catch (SampleException se) {
throw new VerbProcessingFailedException(cwExcpObj);

Figure 59. Obtaining the active verb

Verifying the connection before processing the verb

When the agentInit() method in the connector class initializes the
application-specific component, one of its most common tasks is to establish a
connection to the application. The verb processing that doVerbFor() performs
requires access to the application. Therefore, before the doVerbFor() method begins
processing the verb, it should verify that the connector is still connected to the
application. The way to perform this verification is application-specific. Consult
your application documentation for more information.

A good design practice is to code the connector application-specific component so
that it shuts down whenever the connection to the application is lost. If the
connection has been lost, the connector should not continue with verb processing.
Instead, it should take the following steps to notify the connector framework of the
lost connection:

156 Connector Development Guide for Java

1. Log an error message to the log destination to indicate the cause of the error.

The connector logs a fatal error message so that email notification is triggered if
the LogAtInterchangeEnd connector configuration property is set to True.

2. Set the exception-detail object with:

* a message to indicate the cause of the CHConnectorExceptionObject jsetMsg()
connection failure

+ the status of the APPRESPONSETIMEQUT ~ CHConnectorException0bject fetStatus()]

outcome status, which the connector
framework includes in its response to
the integration broker.

This exception-detail object is part of the exception object that doVerbFor ()
throws. For information on these methods, see |“Exceptions” on page 202}

3. Throw a ConnectionFailureException exception, which the doVerbFor() uses to
tell the connector framework that a verb-processing cannot continue because
the connection to the application has been lost. This exception object contains
the exception-detail object you initialized in step Iz

When the low-level doVerbFor() method catches this exception object, it copies
the message and status from the exception-detail object into the return-status
descriptor that it returns to the connector framework. If you have not set the
status in the ConnectionFailureException exception-detail object, the connector
framework sets the status to APPRESPONSETIMEOUT. The connector framework
includes this return-status descriptor as part of its response to the integration
broker. The integration broker can check the return-status descriptor to
determine that the application is not responding.

After it has sent the return-status descriptor, the connector framework stops the
process in which the connector runs. A system administrator must fix the problem
with the application and restart the connector to continue processing events and
business object requests.

Branching on the active verb

The main task of verb processing is to ensure that the application performs the
operation associated with the active verb. The action to take on the active verb
depends on whether the doVerbFor() method has been designed as a basic method
or a metadata-driven method:

* |“Basic verb processing”|

* [“Metadata-driven verb processing” on page 159

Basic verb processing: For verb-processing that is not metadata-driven, you
branch on the value of the active verb to perform the verb-specific processing. Your
doVerbFor() method must handle all verbs that the business object supports.

Note: You can obtain a list of business object’s supported verbs with the
getSupportedVerbs () method of the CWConnectorBusObj class.

shows the verb constants that the Java connector library provides for

comparing with the active verb.

Table 65. The Java verb constants

Verb Constant Active Verb
VERB_CREATE Create
VERB_RETRIEVE Retrieve
VERB_UPDATE Update

Chapter 7. Implementing a Java connector 157

Table 65. The Java verb constants (continued)

Verb Constant Active Verb
VERB_DELETE Delete
VERB_EXISTS Exists
VERB_RETRIEVEBYCONTENT RetrieveByContent

All verb constants in are defined in the CWConnectorConstant class. If your
connector handles additional verbs, IBM recommends that you define your own
String constants as part of your extended CWConnectorBOHandler class.

Note: As part of the verb-branching logic, make sure you include a test for an
invalid verb. If the request business object’s active verb is not supported by
the business object definition, the business object handler must take the
appropriate recovery actions to indicate an error in verb processing. For a
list of steps to handle a verb-processing error, see [Table 64 on page 155}.

shows a code fragment of doVerbFor() that branches off the active verb’s
value for the Create and Update verbs. For each verb your business object
supports, you must provide a branch in this code.

// handle the Create verb
if(busObjVerb.equals(CWConnectorConstant.VERB_CREATE)) {
CWConnectorUtil.initAndValidateAttributes(theBusObj);
status=doCreate(theBusObj);
// where doCreate() inserts new row into Sample Apps database
// using data from theBusObj
1

// handle the Update verb

else if (objVerb.equals(CWConnectorConstant.VERB_UPDATE)) {
status=doUpdate(theBusObj);
// where doUpdate() locates existing row and updates it with
// information from theObj

// notify connector framework of invalid verb

} else {
CWConnectorUtil.logMsg(3456, CWConnectorLogAndTrace.XRD_ERROR);
cwExcpObj.setMsg("doVerbFor(): Invalid verb passed in");
cwExcpObj.setStatus (CWConnectorConstant.FAIL);
throw new VerbProcessing FailedException(cwExcpObj);

Figure 60. Branching on the active verb’s value

The code fragment in is modularized; that is, it puts the actual

processing of each supported verb into a separate verb method: doCreate() and

doUpdate(). Each verb method should meet the following minimal guidelines:

* Define a CWConnectorBusObj parameter, so the verb method can receive the
request business object, and possibly send this updated business object back to
the calling method.

* Throw any verb-specific exceptions to notify the doVerbFor() method of any
verb-processing errors it encountered.

e Return an outcome status, which doVerbFor() can then return to the connector
framework.

This modular structure greatly simplifies the readability and maintainability of the
doVerbFor() method.

158 Connector Development Guide for Java

Metadata-driven verb processing: For metadata-driven verb processing, the
application-specific information for the verb contains metadata, which provides
processing instructions for the request business object when that particular verb is
active. lists the method that the Java connector library provides to obtain
application-specific information for the verb of a business object.

Table 66. Method for retrieving the verb’s application-specific information

Java connector library class Method

CWConnectorBusObj |getVerb AppText()|

The following call to getVerbAppText () extracts the verb’s application-specific
information:

String verbAppInfo = theBusObj.getVerbAppText (busObjVerb);

The verb application-specific information can contain the name of the method to
call to process the request business object for that particular verb. In this case, the
doVerbFor() method does not need to branch off the value of the active verb
because the processing information resides in the verb’s application-specific
information.

Note: Another use of verb application-specific information can be to specify the
application’s API method to call to update the application entity for the
particular verb.

Performing the verb operation

lists the standard verbs that a doVerbFor() method can implement, as well
as an overview of how each verb operation processes the request business object.
For more information on how to process business objects, see [“Processing business|

bbjects” on page 160}

Table 67. Performing the verb operation

Verb

Create

Retrieve

Use of request business object

 Use any application-specific information in the business object
definition to determine in which application structure to create
the entity (for example, a database table).

* Use any application-specific information for each attribute to
determine in which application substructure to add the attribute
values (for example, a database column).

* Use attribute values as values to save in new application entity.

If the application generates key values for the new entity, save the

new key values in the request business object, which should then be

included as part of the verb-processing response.

* Use any application-specific information in the business object
definition to determine from which application structure (for
example, a database table) to retrieve the entity.

* Use attribute key value (or values) to identify which application
entity to retrieve.

If the application finds the requested entity, save its values in the
request business object’s attributes. The request business object
should then be included as part of the verb-processing response.

For more information

‘Handling the Create verb” onl

page 86|

“Handling the Retrieve verb”|

on page 89|

Chapter 7. Implementing a Java connector 159

Table 67. Performing the verb operation (continued)

Verb
Update

Delete

Use of request business object

For more information

‘Handling the Update verb”|

 Use any application-specific information of the business object
definition to determine in which application structure (for
example, a database table) to update the entity.

on page 96|

» Use any application-specific information for each attribute to
determine which application substructure to update with the
attribute values (for example, a database column).

* Use attribute key value (or values) to identity which application
entity to update.

* Use the attribute values as values to update the existing
application entity.

If the application is designed to create an entity if the one specified
for update does not exist, save the new entity values in the request
business object’s attributes. The request business object should then

be included as part of the verb-processing response.

‘Handling the Delete verb” onl

page 10§|

Use any application-specific information in the business object
definition to determine from which application structure (for
example, a database table) to delete the entity.

Use attribute key value (or values) to identify which application
entity to delete.

The request business object should then be included as part of the
verb-processing response so that InterChange Server can perform
any required cleanup of relationship tables.

Processing business objects

Most verb operations involve obtaining information from the request business
object. This section provides information about the steps your doVerbFor() method
needs to take to process the request business object.

Note: These steps assume that your connector has been designed to be
metadata-driven; that is, they describe how to extract application-specific
information from the business object definition and attributes to obtain the
location within the application associated with each attribute. If your
connector is not metadata-driven, you probably do not need to perform any
steps that extract application-specific information.

summarizes the steps in the basic program logic for deconstructing a

request business object that contains metadata.

Table 68. Basic logic for processing a request business object with metadata

Step
1.

Obtain the business object definition for the request
business object.

Obtain the application-specific information in the
business object definition to obtain the application
structure to access.

Obtain the attribute information.

For each attribute, get the attribute
application-specific information in the business object
definition to obtain the application substructure to
access.

Make sure that processing occurs only for those
attributes that are appropriate.

For more information

“ Accessing the business object definition” on page]

161

“Extracting business object application-specifid|

information” on page 161

" Accessing the attributes” on page 162|

“Extracting attribute application-specific information”|

on page 163|

“Determining whether to process an attribute” on|

page 164]

160 Connector Development Guide for Java

Table 68. Basic logic for processing a request business object with metadata (continued)

Step
6.

Obtain the value of each attribute whose value needs
to be sent to the application entity.

Notify the application to perform the appropriate
verb operation.

Save any attribute values in the request business
object that are required for the verb-processing
response.

For more information

“Extracting attribute values from a business object”|

on page 165|

“Initiating the application operation” on page 166|

“Saving attribute values in a business object” on page]

166,

Accessing the business object definition: For a Java connector, the doVerbFor()
method receives the request business object as an instance of the
CWConnectorBusObj class. To begin verb processing, the doVerbFor() method often
needs information from the business object definition. The CWConnectorBusObj class
provides access to the business object, its business object definition, and its
attributes. Therefore, a Java doVerbFor() method does not need to instantiate a
separate object for the business object definition; it can obtain information in the
business object definition directly from the CWConnectorBusObj object passed into

doVerbFor().

The business object definition includes the information shown in [Table 69]. For a
complete list of CWConnectorBusObj methods, see [Chapter 13, “CWConnectorBusObj|

class,” on page 255

Table 69. Methods for obtaining information from the business object definition

Business object definition information

The name of the business object definition
A verb list—contains the verbs that the

business object supports

A list of attributes—for each attribute, the

business object definition defines:
* attribute name

e attribute data type

* position in the list of attributes

* other properties
Application-specific information:

* business object definition
* attribute

* verb

CWConnectorBusObj method

getName()l

isVerbSupported()} |getSupported Verbs()|

getAttrCount()
ogetAttrName

leetTypeName()} |zet TypeNum()|

oetAttrindex()

For a complete list, see [Table 71 on page 163].

leet AppText()} lzetBusObjASIHashtable()|
leetAppText()} |zetAttrASIHashtable()
leetVerb AppText()|

A business object handler typically uses the business object definition to get
information on the business object’s attributes or to get the application-specific
information from the business object definition, attribute, or verb.

Extracting business object application-specific information: Business objects for
metadata-driven connectors are usually designed to have application-specific
information that provides information about the application structure. For such
connectors, the first step in a typical verb operation is to retrieve the
application-specific information from the business object definition associated with
the request business object. lists the methods that the Java connector
library provides to retrieve application-specific information from the business

object definition.

161

Chapter 7. Implementing a Java connector

Table 70. Methods for obtaining business object application-specific information

Java connector library class Method

CWConnectorBusObj etAppText()|(with no arguments)
etBusObjASIHashtable()

As [Table 70| shows, the connector can use either of the following methods to obtain
the application-specific information for the business object definition:

* The getAppText () method returns the application-specific information as a Java
String. It can also retrieve the value of a specified name-value pair within the
business-object-level application-specific information.

Note: The getAppText() method uses deprecated terminology in its method
name. This method name refers to “application-specific text”. The more
current name for “application-specific text” is “application-specific
information”.

* The getBusObjASIHashtable() method returns the application-specific
information as a Java Hashtable of name-value pairs.

For a table-based application, the business objects are often designed to have
application-specific information provide the verb operations with information
about the application structure (For more information, see [Table 43 on page 108).
The application-specific information in a business object definition can contain the
name of the database table associated with the business object.

Accessing the attributes: For a Java connector, the CWConnectorBusObj class
provides access to the business object, its business object definition, and its
attributes. When the doVerbFor() method needs information about attributes in the
business object, it can obtain this information directly from the request business
object. Therefore, a Java doVerbFor() method does not need to instantiate a
separate object for an attribute.

The connector can use attribute methods in the CWConnectorBusObj class (see

to obtain information about an attribute, such as its cardinality or
maximum length. Methods that access attribute properties provide the ability to
access an attribute in of two ways:

* Its attribute name—you can identify the attribute by its Name property to obtain
its attribute object:

e Its integer index—to obtain the attribute index (its ordinal position), you can
either:
— Obtain a count of all attributes in the business object definition with

getAttrCount() and loop through them one at a time, passing each index

value to one of the attribute-access methods in [Table 71|.

— Obtain the index for a particular attribute. You can obtain the index for an
attribute by specifying its name to getAttrIndex().

Note: Both the getAttrCount() and getAttrIndex() methods are defined in the
CWConnectorBusObj class.

lists the methods that the Java connector library provides to retrieve
information about an attribute. For a complete list of methods that access attribute
information, see [Chapter 13, “CWConnectorBusObj class,” on page 255.|

162 Connector Development Guide for Java

Table 71. Methods for obtaining attribute information

Attribute property CWConnectorBusObj method

Name getAttrName(), [hasName()|

Type getTypeNum()} [getTypeName()} hasType()l
isObjectType()| fisType()|

Key isKeyAttr()|

Foreign key isForeignKeyAttr()|

Max Length etMaxLength(

Required isRequired Attr()

Cardinality getCardinality()} hasCardinality()} [isMultipleCard ()|

Default Value getDefault()), lgetDefaultboolean()}
getDefaultdouble()} [getDefaultfloat()} |getDefaultint()}
éetDefaultlongg)} [getDefaultString()|

Attribute application-specific etAppText

information

Extracting attribute application-specific information: If business objects for
metadata-driven connectors are designed to have application-specific information
that provides information about the application structure, the next step after
extracting the application-specific information from the business object definition is
to extract the application-specific information from each attribute in the request
business object. lists the methods that the Java connector library provides
to retrieve application-specific information from each attribute.

Table 72. Methods for obtaining attribute application-specific information

Java connector library class Method

CWConnectorBusObj etAttrCount()
etAppText()| (with the position or

name of the attribute as an argument)
|getAttrASIHashtable()|

As [Table 72| shows, the connector can use either of the following methods to obtain
the application-specific information for an attribute:

* The getAppText () method returns the application-specific information as a Java
String. It can also retrieve the value of a specified name-value pair within the
attribute application-specific information.

Note: The getAppText () method uses deprecated terminology in its method
names. This method name refers to “application-specific text”. The more
current name for “application-specific text” is “application-specific
information”.

* The getAttrASIHashtable() method returns the application-specific information
as a Java Hashtable of name-value pairs.

If business objects have been designed to have application-specific information
provide information for a table-based application, the application-specific
information for the attribute can contain the name of the application table’s column
associated with this attribute (For more information, see [Table 43 on page 108).
After extracting the application-specific information from the business object
definition, the next step is to determine what columns in the application table are
associated with the attributes in the request business object.

Chapter 7. Implementing a Java connector 163

A verb operation can call getAppText (), passing it the position or name of the
attribute, to obtain the name of the column within the database table to access. To
obtain the application-specific information for each attribute, the verb operation
must loop through all attributes in the business object definition. Therefore, it must
determine the total number of attributes in the business object definition. The most
common syntax for looping through the attributes is a for statement that uses the
following limits on the loop index:

* Loop index is initialized to zero.

If the verb operation processes the first attribute, which contains the key, the
loop index variable starts at 0. However, if the verb is Create and your
application generates keys, your Create verb operation should rnot process
attributes containing keys. In this case, the loop index variable starts at a value
other than 0.

* Loop index increments until it reaches the total number of attributes in the
business object definition.

The getAttrCount () method returns the total number of attributes in the
business object. However, this total includes the ObjectEventId attribute.
Because the ObjectEventId attribute is used by the IBM WebSphere business
integration system and is not present in application tables, a verb operation does
not need to process this attribute. Therefore, when looping through business
object attributes, you loop from zero to one less than the total number of
attributes:

getAttrCount() - 1
* Loop index increments by one.
This increment of the index obtains the next attribute.

Within the for loop, the Java connector can use the getAppText () method to obtain
each attribute’s application-specific information:

for (i = 0; i < theBusObj.getAttrCount() - 1; i++) {
colName = theBusObj.getAppText(i);

// process the attribute associated with the column in
// 'colName'

}

Determining whether to process an attribute: Up to this point, the verb
processing has been using the application-specific information to obtain the
application location for each attribute of the request business object. With this
location information, the verb operation can begin processing the attribute.

As the verb operation loops through the business object attributes, you might need
to confirm that the operation processes only certain attributes. lists some
of the methods that the Java connector library provides to determine whether an
attribute should be processed.

Table 73. Methods for determining attribute processing

Attribute test CWConnectorBusObj method

An attribute is a simple attribute and not an attribute [isObjectType()

that represents a contained business object.

The value of the attribute is not the special value of fislgnore()} [isBlank()|
Blank (a zero-length string) or Ignore (a null pointer).

The attribute is not a place-holder attribute.
Place-holder attributes are used in business object

definitions to separate attributes that contain child

business objects.

164 Connector Development Guide for Java

Using the methods in[Table 73}, a verb operation can determine that an attribute is
one that the operation wants to process:

* Is the attribute simple or complex?

The isObjectType() method checks that the attribute value does not represent a
contained business object. For more information on how to handle an attribute
that does contain a business object, see [“Accessing child business objects” on|

* Is the attribute a place-holder attribute or the ObjectEventId attribute?

You can use the getAppText () method to determine if the attribute in the
business object definition has application-specific information. Because neither of
these special types of attributes represent columns in an application entity, there
is no need for the business object definition to include application-specific
information for them.

* Is the attribute set to a value other than the special Blank or Ignore values?

The verb operation can compare the attribute’s value to the Ignore and Blank
values with the isIgnore() and isBlank() methods, respectively. For more
information on the Ignore and Blank values, see|“Handling the Blank and Ignore]
[values” on page 169

Extracting attribute values from a business object: Once the verb operation has
confirmed that the attribute is ready for processing, it usually needs to extract the
attribute value:

* For a Create or Update verb, the verb operation needs the attribute value to
send it to the application, where it can be added to the appropriate application
entity. For an Update verb, the verb operation also needs the attribute value
from any key attribute that holds search information. The application uses this
search information to locate the entity to update.

Note: If the Create or Update operation sends information back to the connector,
the verb operation needs to store the returned information as values in
the appropriate attributes. For more information, see[“Saving attribute
[values in a business object” on page 166}

* For a Retrieve, RetrieveByContent, or Exists verb, the verb operation needs the
attribute value from any key attribute (Retrieve or Exists) or non-key attribute
(RetrieveByContent) that holds search information. The application uses this
search information to retrieve the entity.

Note: For a Retrieve or RetrieveByContent, the verb operation also needs to set
the attribute value for any attribute associated with retrieved data. For
more information, see [“Saving attribute values in a business object” on|
[page 166]

 For a Delete verb, the verb operation needs the attribute value from any key
attribute that holds search information. The application uses this search
information to locate the entity to delete.

lists the methods that the Java connector library provides to obtain
attribute values from a business object.

Chapter 7. Implementing a Java connector 165

Table 74. Methods for obtaining attribute values

Java connector library class Method

CWConnectorBusObj etTypeName()}, [getTypeNum()},
etbooleanValue()|, |getBusObjValue()|,
etdoubleValue()|, [zetfloatValue(),, [zetintValue()},
etlongValue()}, lgetLongTextValue()},

etString Value()

As shows, the CWConnectorBusObj class provides type-specific methods for
obtaining attribute values. These methods remove the need to cast the attribute
value to match its type. You can choose which type-specific method to use by
checking the attribute’s data type with the getTypeName() or getTypeNum() method.

Initiating the application operation: Once the verb operation has obtained the
information it needs from the request business object, it is ready to send the
application-specific command so that the application performs the appropriate
operation. The command must be appropriate for the verb of the request business
object. For a table-based application, this command might be an SQL statement or
a JDBC call. Consult your application documentation for more information.

Important: Your doVerbFor() method must ensure that the application operation
completes successfully. If this operation is unsuccessful, the
doVerbFor() method must return the appropriate outcome status (such
as FAIL) to the connector framework. For more information, see
[“Sending the verb-processing response” on page 167}

Saving attribute values in a business object: Once the application operation has
completed successfully, the verb operation might need to save new attribute values
retrieved from the application into the request business object:

* For a Create verb, the verb operation needs to save the new key values if the
application has generated them as part of its Create operation.

* For an Update verb, the verb operation needs to save all attribute values,
including any generated key values (if the application has been designed to
create a new entity when it does not find the specified entity to update).

* For a Retrieve or RetrieveByContent, the verb operation needs to save the
attribute value for any attributes retrieved.

lists the methods that the Java connector library provides to save attribute
values in a business object.

Table 75. Methods for saving attribute values

Java connector library class Method

CWConnectorBusObj setAttrValues()), [setbooleanValue()}, [setBusObjValue(),
setdoubleValue(),, [setfloatValue()}, [setintValue()},
setLongTextValue()}, [setStringValue()|

As [Table 75| shows, the CWConnectorBus0Obj class provides the following ways to
save attribute values:

* The setAttrValues() method saves values for all attributes in a business object.
It accepts the attribute values in a Java Vector object.

¢ The remaining methods in [Iable 75|are type-specific methods for saving attribute
values. These methods remove the need to cast the attribute value to match its

166 Connector Development Guide for Java

type. You can choose which type-specific method to use by checking the
attribute’s data type with the getTypeName() or getTypeNum() method.

Sending the verb-processing response

The Java connector must send a verb-processing response to the connector

framework, which in turn sends a response to the integration broker. This

verb-processing response includes the following information:

* The integer return code of doVerbFor()

¢ A message in the return-status descriptor, if there is an information, warning, or
error return message

* A response business object

The following sections provide additional information about how a Java connector
provides each of the pieces of response information. For general information about
the connector response, see|“Indicating the connector response” on page 112].

Returning the outcome status: The doVerbFor() method provides an integer
outcome status as its return code. As [lable 76[shows, the Java connector library
provides constants for the outcome-status values that doVerbFor() is mostly likely
to return.

Important: The doVerbFor() method must return an integer outcome status to the
connector framework.

Table 76. Outcome-status values for a Java doVerbFor()

Condition in doVerbFor() Java outcome status

The verb operation succeeded. CWConnectorConstant.SUCCEED

The verb operation failed. CWConnectorConstant.FAIL

The application is not responding. CWConnectorConstant. APPRESPONSETIMEOUT
At least one value in the business object changed. CWConnectorConstant.VALCHANGE

The requested operation found multiple records for the same key CWConnectorConstant.VALDUPES

value.

The connector finds multiple matching records when retrieving using CWConnectorConstant .MULTIPLE_HITS
non-key values. The connector will only return the first matching

record in a business object.

The connector was not able to find matches for Retrieve by non-key CWConnectorConstant.

values.

RETRIEVEBYCONTENT_FAILED

The requested business object entity does not exist in the database. CWConnectorConstant. BO_DOES_NOT_EXIST

Note: The CWConnectorConstant class provides additional outcome-status constants
for use by other connector methods. For a complete list of outcome-status
constants, see [‘Outcome-status constants” on page 303|.

The outcome status that doVerbFor() returns depends on the particular active verb
it is processing. |Table 77] lists the tables in this manual that provide possible return
values for the different verbs.

Table 77. Return values for different verbs

Verb For more information
Create Table 35 on page 88
Retrieve Table 36 on page 94
RetrieveByContent Table 37 on page 95
Update Table 39 on page 102
Delete Table 41 on page 104

Chapter 7. Implementing a Java connector 167

Table 77. Return values for different verbs (continued)

Verb For more information

Exists [Table 42 on page 105

Using the outcome status that doVerbFor() returns, the connector framework
determines its next action:

e If the outcome status is APPRESPONSETIMEOUT, the connector framework shuts
down the connector. For more information, see [“Verifying the connection before|
[processing the verb” on page 156

* For all other outcome-status values, the connector framework continues running
the connector. It copies the outcome status in its response to the integration
broker. For some outcome-status values, the connector framework also includes
a response business object in its response. For more information, see
[the request business object” on page 168|

Populating the return-status descriptor: The return-status descriptor is a structure
that holds additional information about the state of the verb processing. When the
connector framework invokes a business object handler, it actually calls the
low-level version of the doVerbFor() method, inherited from the BOHandlerBase
class of the low-level Java connector library. To this low-level doVerbFor() method,
the connector framework passes in an empty return-status descriptor as an
argument. The low-level doVerbFor() then calls the user-implemented doVerbFor ()
method, which is the version for which the connector developer provides an
implementation as part of the CHConnectorBOHandler business-object-handler class.
The user-implemented doVerbFor() performs the actual verb processing.

When this user-implemented doVerbFor() method exits, the low-level doVerbFor()
updates its return-status descriptor with status information about the verb
processing, as follows:

* If the user-implemented doVerbFor() method is successful (that is, it does not
throw an exception), the low-level doVerbFor() copies the outcome status that
the user-implemented doVerbFor() method returned into the status field of its
return-status descriptor.

* If the user-implemented doVerbFor() method is not successful (that is, it throws
one of the defined exceptions), the low-level doVerbFor() catches the exception
and copies the status and any message from the exception-detail object into its
return-status descriptor.

When the low-level doVerbFor() exits, this updated return-status descriptor is
accessible by the connector framework. The connector framework then includes the
return-status descriptor in the response it sends to the integration broker.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
framework returns the response to the connector controller, which routes it to
the collaboration. This response includes the return-status descriptor
populated by the low-level doVerbFor() method. The collaboration can access
the information in this return-status descriptor to obtain the status of its
service call request.

Updating the request business object: The connector framework passes in the
request business object as an argument to doVerbFor(). The doVerbFor() method

168 Connector Development Guide for Java

can update this business object with attribute values. This updated business object
is then accessible by the connector framework when doVerbFor() exits.

The connector framework uses the outcome status to determine whether to return
a business object as part of its response to the integration broker, as follows:

e If the connector framework receives one of the following outcome-status values,
it includes the request business object as part of its response:

— VALCHANGE
— MULTIPLE_HITS

If your doVerbFor() method returns one of these outcome-status values, make
sure it updates the request business object with appropriate response
information.

* For any other outcome-status value, the connector framework does not include
the request business object in its response.

Important: The outcome status that the doVerbFor() method returns affects what
the connector framework sends to the integration broker. If the value is
VALCHANGE or MULTIPLE_HITS, the connector framework returns the
request business object. You must ensure that the request business
object is updated as appropriate for the returned outcome status.

Additional processing issues
This section provides information on the following issues related to processing a
business object:

+ |“Handling the Blank and Ignore values”]

* [“Accessing child business objects” on page 171

Handling the Blank and Ignore values: In addition to a regular attribute value,
simple attributes in business objects can have either of the special values shown in
Table 7§

Table 78. Special attribute values for simple attributes

Special attribute value Represents
Blank An "empty” zero-length string value
Ignore An attribute value that the connector should ignore

— WebSphere InterChange Server

Important: If your business integration system uses InterChange Server, in
the third-party maps, the string CxIgnore represents an Ignore
value, and the string CxBlank represents a Blank value. These
strings should be used only in maps. They should not be stored in
business objects as attribute values because they are reserved
keywords in the IBM WebSphere InterChange Server system.

The connector can call Java connector library methods to determine whether a
business object attribute is set to a special value:

¢ Blank—to process attributes with the Blank value, a connector can use any of the
methods shown in [Table 79|.

Chapter 7. Implementing a Java connector 169

Table 79. Methods for determining if an attribute contains the Blank value

CWConnectorBusObj method Description
isBlank(attributeName) Determines whether a specified attribute
isBlank(position) contains the Blank value.

When an attribute contains the Blank value, the doVerbFor() method should
process the attributes as shown in [Table 81}.

* Ignore— to process attributes with the Ignore value, a connector can use any of

the methods shown in [Table 80}.

Table 80. Methods for determining if an attribute contains the Ignore value

CWConnectorBusObj method Description
isIgnore(attributeName) Determines whether a specified attribute
isIgnore(position) contains the Ignore value.

When attributes are set to the Ignore value, the connector should process the

attributes as shown in|Table 82|.

Table 81. Processing actions for the Blank value

Verb Processing action for Blank value

Create Create the entity with an appropriate blank value for the
attributes. The blank value might be configurable, or it might be
specific to the application.

Update Update the entity fields to “empty” for those attributes that are
set to the Blank value.
Retrieve If the attribute is a key or the connector is doing a retrieve by

non-key values, retrieve an entity where this attribute is a
zero-length string.

Delete If the attribute is a key, delete an entity where this field is set to
the Blank value.

Table 82. Processing actions for the Ignore value

Verb Processing action for Ignore value

Create If the attribute is not a key, do not set a value in the application
for the attribute. For key attributes, if the application generates
keys, the key attributes might be set to the Ignore value. In this
case, create the entity, retrieve the application-generated keys,
and return the keys to the integration broker. Note that if the
application does not generate key values, then all key attributes
are expected to have valid values.

Update If the attribute is not a key, do not set a value in the application
for the attribute.

Retrieve Do not match for Retrieve operations based on an attribute set to
Ignore.

Delete Do not match for Delete operations based on an attribute set to
Ignore.

When a connector creates a new business object, all attribute values are set to
Ignore internally. A connector must set appropriate values for attributes, since all
unset attribute values remain defined as Ignore. To set attribute values to the
special Ignore or Blank values, you use the methods in (defined in the
CWConnectorUtil class) to obtain a special attribute value and then assign the
results of these methods directly to the attribute.

170 Connector Development Guide for Java

Table 83. Methods for obtaining special attribute values

Special attribute value CWConnectorUtil method
Blank value getBlankValue()
Ignore value getIgnoreValue()

Once a method in [Iable 83|retrieves the desired special attribute value, you can
pass it to one of the “set” methods for the attribute value (see|Table 75 on page|
, as the following code fragment shows:

attrName = theBusObj.getAttrName(i);

theBusObj.setdoubleValue(attrName,
CWConnectorUtil.getIgnoreValue());

Accessing child business objects: As discussed in [‘Processing hierarchicall
lbusiness objects” on page 108}, a Java connector uses the methods of the Java
connector library shown in [Table 75| to access child business objects.

Table 84. Methods for accessing child business objects

Java connector library class Method

CWConnectorBusObj isObjectType()}, fisMultipleCard()}, lzetObjectCount()},
getBusObjValue()|

CWConnectorAttrType OBJECT attribute-type constant

The verb processing in the doVerbFor() method uses the isObjectType() method
to determine if the attribute contains a business object (its attribute type is set to
the OBJECT attribute-type constant). When a verb operation finds an attribute that is
a business object, the method checks the cardinality of the attribute using
isMultipleCard(). Based on the results of isMultipleCard(), the method takes one
of the following actions:

e If the attribute has single cardinality, the method can perform the requested
operation on the single child business object.

¢ If an attribute has multiple cardinality, the Java connector can access the contents
of the business object array through the CWConnectorBusObj object:

— If the attribute is a business object, it contains a CHConnectorBusObj object
with one business object.

— If the attribute is an business object array, it contains a CWConnectorBus0Obj
object containing all business objects in the array.

The Java verb method can access individual business objects by calling
CWConnectorBusObj.getObjectCount () to get the number of child business objects
in the array. As it iterates through the business object array, the verb method can
get each individual child object within the business object array using the
CWConnectorBusObj.getBusObjValue(index) method, where index is the array
element index. This method returns a CWConnectorBusObj that contains the a child
business object. shows the Java code to access child business objects.

Chapter 7. Implementing a Java connector 171

// For all attributes in the business object
for (int i=0; i<theBusObj.getAttrCount()-1; i++){
if (theBusObj.isObjectType(i)){
// cardinality N
if(theBusObj.isMultipleCard(i)){
for (int i=0; i < theBusObj.getObjectCount(); i++) {
CWConnectorBusinessObject childBusObj =
theBusObj.getBusObjValue(i);
status = doVerbMethod(childBusObj);
} // end for i to getObjectCount()
} else {
// Cardinality 1 child
CWConnectorBusObj childBusObj = null;
childBusObj = theBusObj.getBusObjValue(i);
status = doVerbMethod(childBusObj);
} // end else 1 cardinality
} // end isObjectType()
} // end for i to getAttCount()-1

Figure 61. Accessing child business objects in a Java connector

Creating a custom business object handler

The connector framework calls the doVerbFor() method in the
CWConnectorBOHandler class (which implements the business object handler) for all
verbs that a particular business object supports.Therefore, all verbs in a business
object are processed in one standard way (although they can initiate different
actions within the application). However, if your connector supports a business
object that requires different processing for some particular verb, you can create a
custom business object handler to handle that verb for the business object.

Creating a custom business object handler involves the following steps:

+ |“Creating the class for the custom business object handler”]

* [“Implementing the doVerbForCustom() method” on page 173)|

+ |“Adding the verb application-specific information” on page 174]

Creating the class for the custom business object handler
To create a custom business object handler, you must create a class that implements
the CWCustomBOHandler interface. The CWCustomBOHandler interface provides the
doVerbForCustom() method, which you must implement to define a custom
business object handler. Follow these steps to create a custom-business-object-
handler class for a Java connector:
1. Create a class that implements the CWCustomBOHandler interface. A suggested
name this class is:
connectorNameCustomBOHandlerverbName.java
where connectorName uniquely identifies the application or technology with
which the connector communicates and verbName identifies the verb (or verbs)
that this custom business object handler processes. For example, to create a
custom business object handler for the Retrieve verb in a Baan application, you
create a custom-business-object-handler class called
BaanCustomBOHandlerRetrieve.
2. In the custom-business-object-handler-class file, define the package name that
contains your connector. A connector package name has the following format:
com.crossworlds.connectors.connectorName

172 Connector Development Guide for Java

where connectorName is the same as defined in step above. For example, the
package name for the Baan connector would be defined in the
custom-business-object-handler-class file as follows:

package com.crossworlds.connectors.Baan;

3. Ensure that the custom-business-object-handler-class file imports the following
classes:
com.crossworlds.cwconnectorapi.*;
com.crossworlds.cwconnectorapi.exceptions.=;
If you create several files to hold the business object handler’s code, you must
import these classes into every file.

4. Implement the doVerbForCustom() method to define the behavior of the
business object handler. For more information on how to implement this
method, see ['Implementing the doVerbForCustom() method.”|

Implementing the doVerbForCustom() method

The doVerbForCustom() method provides the functionality for the custom business
object handler. As discussed in [“Implementing the doVerbFor() method” on pagel
the connector framework calls the low-level doVerbFor() method (defined in
the BOHandTerBase class) for the appropriate business object handler when it
receives a request business object. This low-level doVerbFor() method determines
which business object handler to call as follows:

e If the business object’s verb has the CBOH tag in its application-specific
information, call the doVerbForCustom() method.

The CBOH tag specifies the full name (including the package name) of the
custom-business-object-handler class, which implements the
CWCustomBOHandlerInterface interface and its doVerbForCustom() method. For
more information on this class name, see the description of|“Adding the verb|
[application-specific information” on page 174)

If the CBOH tag exists, the low-level doVerbFor() method tries to create a new
instance of the class that this tag specifies. If this instantiation is successful, the
low-level doVerbFor() calls the doVerbForCustom() method in this class.

* Otherwise, call the doVerbFor() method, which the connector developer must
implement as part of the business object handler’s CWConnectorBOHandler class.
For more information, see [Implementing the doVerbFor() method” on page 153

The implementation of the doVerbForCustom() method must handle the verb
processing of the verb for which its class is specified. You can refer to
[‘Implementing the doVerbFor() method” on page 153| for information on the verb
processing that the doVerbFor() method usually provides. However, you must
customize the behavior of doVerbForCustom() to meet the special processing needs
of your business object’s verb.

Note: Unlike the doVerbFor() method, the doVerbForCustom() method is not
invoked directly by the connector framework. Instead, the connector
framework invokes the low-level doVerbFor(), which in turn invokes
doVerbForCustom(). Therefore, doVerbForCustom() cannot include calls to
any methods in the CWConnectorBOHandler class.

The low-level doVerbFor() method handles return values and exceptions from
doVerbForCustom() as follows:

* On successful completion of doVerbForCustom(), send the status back to the
connector framework (as it does for the doVerbFor() method).

Chapter 7. Implementing a Java connector 173

* If there is any problem with the instantiation of the custom business object
handler, populate the return-status descriptor with this status and an error
message that describes the cause, then return a FAIL outcome status to the
connector framework.

» If doVerbForCustom() throws the VerbProcessingFailedException exception,
copy the status set in the exception object into the return-status descriptor, then
return this exception status to the connector framework.

 If doVerbForCustom() throws the ConnectionFailureException exception,
determine if the exception object has its status set:

— If so, copy the exception status into the return-status descriptor and return
this status to the connector framework.

— If not, copy the APPRESPONSETIMEOUT outcome status into the return-status
description and return APPRESPONSETIMEQOUT to the connector framework.

Adding the verb application-specific information

For the connector framework to call a custom business object handler for a
particular business object, the verb of this business object must have the CBOH tag
in its verb application-specific information. The CBOH tag has the following format:

CBOH=connectorPackageName .CustomBOHandlerClassName

In this format, the connectorPackageName is as follows:
com.crossworlds.connectors.connectorName

with connectorName the name of the connector. The CustomBOHandlerClassName is
the name of the class that implements the CWCustomBOHandlerInterface interface.

For example, the following CBOH tag specifies a class called
BaanCustomBOHandlerRetrieve:

CBOH=com.crossworlds.connectors.Baan.BaanCustomBOHandlerRetrieve

Implementing an event-notification mechanism

shows the support that the Java connector library provides for the
development of an event-notification mechanism:

Table 85. Support for an event-notification mechanism

Java connector library support For more information
The following classes for the encapsulation of “Obtaining access to the event store” on
access to the event store: page 173

* CWConnectorEvent
e CWConnectorEventStatusConstants
* CWConnectorEventStore

e CWConnectorEventStoreFactory
A poll method, pol1ForEvents(), that polls the “Implementing the pollForEvents()|
event store at a specified frequency. method” on page 178|

Note: For an introduction to event notification, see [“Event notification” on page|
. For a discussion of event-notification mechanisms and the

implementation of pol1ForEvents(), see [Chapter 5, “Event notification,” on|

174 Connector Development Guide for Java

Obtaining access to the event store

If a connector is expected to process information that originates in its application,
it must obtain access to the application’s event store. shows the support
that the Java connector library provides in support of obtaining access to an event
store from within a Java connector.

Table 86. Support for defining access to an event store

Event store

Event

Java connector library class Description

CWConnectorEventStoreFactory Provides a single method that creates an
event-store object

CWConnectorEventStore Represents the event store

CWConnectorEvent Represents an event object, which provides

access to an event record within the Java
connector.

Defining the event store
As [Table 86| shows, the Java connector library provides the following classes to
define an event store:

+ |"CWConnectorEventStore class”|

* [“CWConnectorEventStoreFactory interface” on page 176

CWConnectorEventStore class: The CWConnectorEventStore class defines an event
store. As [[able 87|shows, this class provides an additional layer for standardizing
the event retrieval, processing, and archiving mechanisms.

Table 87. Methods of the CWConnectorEventStore class

Event-store task

Event retrieval

Event processing

Archiving

Error processing
Resource cleanup

CWConnectorEventStore method Implementation status

fetchEvents() Must be implemented

ﬁl Implementation provided in base
class—however, you must override this
implementation if your connector does
not support the RetrieveByContent verb.

oetNextEvent() Implementation provided in base class

recoverInProeressEvents() Must be implemented

resubmitArchivedEvents() Must be implemented

setEventStatus()| Must be implemented

setEventsToProcess(Implementation provided in base class

updateEventStatus() Implementation provided in base class

archiveEventf] Must be implemented—if the connector
supports archiving.

deleteEventi !I Must be implemented

cetTerminate()}, [setTerminate() Implementation provided in base class

cleanupResources()| Not required for the event-store class but

must be implemented if resources used to
access the event store need to be released.

To define an event store, follow these steps:

1. Extend the CWConnectorEventStore class, naming your new class to identify the
event store that your connector accesses.

2. Define any additional data members that your event store might require.

The CWConnectorEventStore class contains a single data member: an events
vector array called eventsToProcess. Events retrieved from the event store are
saved in this Java Vector object. Declare any other information that is required

Chapter 7. Implementing a Java connector 175

to access the application’s event and archive stores as data members in your
extended CWConnectorEventStore class. This information should include the
location of the event and archive stores. For example:

* In a table-based application, this information might be the event and archive
table names and any database connection information.

* In a file-based event store, this information might include the names of the
event and archive directories.

* An extended event store should also store any metadata information required
for accessing or processing the event records. This information might include
any “order by” information needed for JDBC queries

3. Implement the appropriate abstract methods within the CWConnectorEventStore
class (see |Tab1e 87) to provide access to the event store.

You can implement those CWConnectorEventStore methods that your event store
requires, with the following conditions:

* You must provide implementations for the abstract methods with “Must be
implemented” in the Implementation Status column of . These
methods are required to support the default implementation of the
pol1ForEvents () method.

Note: If you override the default implementation of pol1ForEvents(), you
can define only those CWConnectorEventStore methods that your
pollForEvents () method needs to use.

e The CWConnectorEventStore class provides implementations for the methods
with “Implementation provided in base class” in the Implementation Status
column of .

4. Access the CWConnectorEventStore methods as needed to perform event
retrieval, event processing, and archiving from within the pollForEvents() poll
method. For more information, see [“Implementing the pollForEvents() method”]

Note: For more information on the methods of CWConnectorEventStore, see
[Chapter 17, “CWConnectorEventStore class,” on page 317

CWConnectorEventStoreFactory interface: The CWConnectorEventStoreFactory
interface defines an event-store factory, which provides a method to instantiate an

event store, as [Table 88| shows.

Table 88. Method of the CWConnectorEventStoreFactory interface

CWConnectorEventStoreFactory method Implementation status

oetEventStore() Must be implemented

To define an event-store factory, follow these steps:

1. Create a new event-store-factory class to implement the
CWConnectorEventStoreFactory interface. Name your new class to include the
name of the event store that your CWConnectorEventStore class accesses.

2. Implement the getEventStore() method of the CWConnectorEventStoreFactory
interface within your event-store-factory class to provide an event-store factory
for your extended CWConnectorEventStore class.

3. Determine whether to use the default implementation of the getEventStore()
method in the CWConnectorAgent class to instantiate an event store. The default
implementation of the pol1ForEvents() method uses this getEventStore()
method to obtain a reference to the event store.

176 Connector Development Guide for Java

» If you use the default implementation of this getEventStore() method,
define the EventStoreFactory connector configuration property and set it to
the entire class name (including its package name) for your
event-store-factory class (which implements the
CWConnectorEventStoreFactory interface).

The EventStoreFactory property has the following format:
connectorPackageName .EventStoreFactoryClassName

In this format, the connectorPackageName is as follows:
com.crossworlds.connectors.connectorName

with connectorName the name of the connector. The
EventStoreFactoryClassName is the name of the class that implements the
CWConnectorEventStoreFactory interface.

Note: The EventStoreFactory property is a user-defined property, not a
standard property. You must define this property with Connector
Configurator for any connector that provides an event-store factory.

If EventStoreFactory is not set, the default implementation of

getEventStore() attempts to generate the name of the event store. For more
information, see the description of [“getEventStore()” on page 238]

* If the default implementation of getEventStore() does not adequately
address the needs of your connector, you can override it in your connector
class. Within this method, you can call some custom event-store constructor.

Defining an event object

The Java connector obtains event records from the event store and encapsulates
them as event objects. The event-store class builds event objects for each event
record that the connector retrieves from the event store. The information in each
event object is then used to build and retrieve the business object that the
connector sends to the integration broker.

The default event object that CWConnectorEvent defines contains the event
information in [Table 46 on page 114. The CWConnectorEvent class provides access
methods for this information, as | [able 89| shows.

Table 89. Methods to retrieve information in an event object

Element CWConnectorEvent method

Event Id oetEventID()
Business object name |getBusObjName()|

Business object verb etVerb()
Object key getIDValues()|, |getKeyDelimiter()f

These CWConnectorEvent methods provide access to the actual data
values that identify the business object. The getIDValues() method
assumes that this data is a name/value pair. For example, if the
object key contains data for the ContractId attribute in the business
object, the name/value pair in the business object data would be:
ContractId=45381If the object key in the event record contains a
concatenation of fields, the getIDValues() assumes that each
name/value pair is separated by a delimiter, which the
getKeyDelimiter() method returns. The delimiter should be
configurable as set by the Pol1AttributeDelimiter connector
configuration property. The default value for the delimiter is a colon

().
Priority cetPriority()
Timestamp oetEventTimeStamp ()

Chapter 7. Implementing a Java connector 177

Table 89. Methods to retrieve information in an event object (continued)

Element CWConnectorEvent method

Status getStatus(),

Use the following methods to set event status: |getNextEvent()l,
recoverInProgressEvents()}, [resubmitArchivedEvents()|,
setEventStatus()} jupdateEventStatus()|

Description A text string describing the event.

ConnectorID |getConnectorID()|

In addition to providing the standard information in an event record (shown in
[Table 89), the event object also provides accessor methods for the information

shown in |!able 9]

Table 90. Additional event information in the event object

Element

Effective date

Event source

Triggering user

Description Accessor method

Date on which the event becomes active and should be [getEffectiveDate()|
processed. This information might be useful when there

is a change to an object in one system that should not

be propagated until the date on which it becomes

effective (such as a salary change).

Source from where the event originated. This etEventSource()},
information might be needed by a connector that needs [setEventSource()

to track the event source for archiving.

User identifier (ID) associated with the user that lgetTriggeringUser()|

triggered this event. This information can be used to
avoid synchronization problems between two systems.

If your event record requires information beyond what the default event class
provides (Table 89| and [[able 90)), you can take the following steps:

1. Extend the CWConnectorEvent class, naming your new class to identify the event

store whose event records your event class encapsulates.
2. Define any additional data members that your event might require.

The CWConnectorEvent class contains the data members whose accessor

methods are listed in [Table 89 and [Table 90}. Any other information that is
required to access the application’s event records needs to be declared as data
members in your extended CWConnectorEvent class.

3. Provide accessor methods for any data members you add to your extended
CWConnectorEvent class.
To support true encapsulation, your data members should be private members
of your extended CWConnectorEvent class. To provide access to these data
members, you define a “get” methods to retrieve each data member’s value.
You can also define “set” methods for those data members that connector
developers are allowed to set.

Note: For more information on the methods of CWConnectorEvent, see [Chapter 15,
[“CWConnectorEvent class,” on page 305)

Implementing the pollForEvents() method

For a Java connector, the CWConnectorAgent class defines the pol1ForEvents()

method. This class provides a default implementation of pol1ForEvents(). You can

use this default implementation or override the method with your own poll
method. However, the pol1ForEvents() method must be implemented.

178 Connector Development Guide for Java

The Java-based pseudo-code in shows the basic logic flow for a

pol1ForEvents() method. The method first retrieves a set of events from the event

store. For each event, the method calls the isSubscribed() method to determine

whether any subscriptions exist for the corresponding business object. If there are

subscriptions, the method retrieves the data from the application, creates a new

business object, and calls gotApp1Event() to send the business object to InterChange
Server. If there are no subscriptions, the method archives the event record with a
status value of unprocessed.

public int pollForEvents()

{

int status = 0;
get the events from the event store
for (events 1 to MaxEvents in event store) {
extract BOName, verb, and key from the event record
if(ConnectorBase.isSubscribed(BOName,BOverb) {
BO = JavaConnectorUtil.createBusinessObject (BOName)
BO.setAttrValue(key)

retrieve application data using doVerbFor()

BO.setVerb(Retrieve)
BO.doVerbFor()
BO.setVerb(BOverb)

status = gotApplEvent(BusinessObject);

archive event record with success or failure status

}

else {

archive item with unsubscribed status

}

return status;

Figure 62. Java pollForEvents() example

Note: For a flow chart of the poll method’s basic logic, see [Figure 27 on page 83}.

This section provides more detailed information on each of the steps in the basic

logic for the event processing that the pol1ForEvents() method typically performs.
able 91f summarizes these basic steps.

Table 91. Basic logic of the pollForEvents() method

Step

1. Set up a subscription manager for the connector.

2. Verify that the connector still has a valid connection
to the event store.

3. Retrieve specified number of event records from the
event store and store them in an events array. Cycle
through the events array. For each event, mark the
event in the event store as In-Progress and begin
processing.

4. Get the business object name, verb, and key data
from the event record.

5. Check for subscriptions to the event.

If the event has subscribers:

* Retrieve application data and create the business
object.

For more information

" Accessing a subscription manager” on page 18(|
“Verifying the connection before accessing the event
store” on page 180|

“Retrieving event records” on page 180|

“Getting the business object name, verb, and key” on|

page 182
“Checking for subscriptions to the event” on page|
183

[“Retrieving application data” on page 185|

Chapter 7. Implementing a Java connector 179

Table 91. Basic logic of the pollForEvents() method (continued)

Step For more information

+ Send the business object to the connector "“Sending the business object to the connector
framework for event delivery. framework” on page 186]

+ Complete event processing. [“Completing the processing of an event” on page 19()
If the event does not have subscribers, update the "“Checking for subscriptions to the event” on page]
event status to Unsubscribed. 183

6. Archive the event. " Archiving the event” on page 191

7. Release resources used to access the event store.

Accessing a subscription manager

As part of connector initialization, the connector framework instantiates a
subscription manager. This subscription manager keeps the subscription list
current. (For more information, see ["Business object subscription and publishing”]
) A connector has access to the subscription manager and the connector
subscription list through a subscription handler, which is included in the connector
base class. It can use methods of this class to determine whether business objects
have subscribers and to send business objects to the connector controller.

Note: Unlike a C++ connector, a Java connector does not need to set up a
subscription handler. This functionality is handled in the CWConnectorAgent
class.

Verifying the connection before accessing the event store

When the agentInit() method in the connector class initializes the
application-specific component, one of its most common tasks is to establish a
connection to the application. The poll method requires access to the event store.
Therefore, before the pol1ForEvents() method begins processing events, it should
verify that the connector is still connected to the application. The way to perform
this verification is application-specific. Consult your application documentation for
more information.

A good design practice is to code the connector application-specific component so
that it shuts down whenever the connection to the application is lost. If the
connection has been lost, the connector should not continue with event polling.
Instead, it should return APPRESPONSETIMEOUT to notify the connector framework of
the loss of connection to the application.

Note: To surface an APPRESPONSETIMEOUT outcome status returned by the
doVerbFor() from within pol1ForEvents(), use the getTerminate() method
of the CWConnectorEventStore class. For more information, see
[application data” on page 185.

Retrieving event records

To send event notifications to the connector framework, the poll method must first
retrieve event records from the event store. lists the methods that the Java
connector library provides to retrieve event records from the event store.

Table 92. Classes and methods for event retrieval

Java connector library class Method
CWConnectorAgent oetEventStore()
CWConnectorEventStoreFactory oetEventStore()
CWConnectorEventStore fetchEvents()|,

getNextEvent ()|, JupdateEventStatus()|

180 Connector Development Guide for Java

The poll method can retrieve one event record at a time and process it or it can
retrieve a specified number of event records per poll and cache them to an events
array. Processing multiple events per poll can improve performance when the
application generates large numbers of events.

The number of events picked up in any polling cycle should be configurable using
the connector configuration property Pol1Quantity. At install time, a system
administrator sets the value of Pol1Quantity to an appropriate number, such as 50.
The poll method can use the getConfigProp() to retrieve the value of the
Pol1Quantity property, and then retrieve the specified number of event records
and process them in a single poll.

The connector should assign the In-Progress status to any event that it has read out
of the event store and has started to process. If the connector terminates while
processing an event and before updating the event status to indicate that the event
was either sent or failed, it will leave an In-Progress event in the table. For more
information on how recover these In-Progress events, see [“Recovering In-Progress|
fevents” on page 149|

The Java connector library provides the CWConnectorEventStore class to represent
an event store. To retrieve event records from this event store, the poll method
takes the following actions:

1. Instantiate an event-store object with the getEventStore() method that is
defined in the CWConnectorAgent class. The default implementation of this
method calls the getEventStore() of the event-store-factory class named in the
EventStoreFactory connector configuration property. The event-store-factory
class implements the CWConnectorEventStoreFactory interface for your event
store. For more information, see [‘CWConnectorEventStoreFactory interface” on|

2. Retrieve a specified number of event records from the event store with the
fetchEvents () method.

You must implement the fetchEvents() method as part of the
CWConnectorEventStore class. This method can use the value of the
Pol1Quantity connector configuration property as the number of event records
to retrieve. The method must take the following actions:

* Create a CWConnectorEvent event object for each event record that it retrieves.

These event records can be ordered by their timestamp. For information on
retrieving event records by event priority, see ['Processing events by event|
[priority” on page 129].

Note: If the event store is implemented with an event table in the
application database, the fetchEvents() method can use JDBC
methods to access the event table, in much the same way as the C++
connector uses ODBC methods.

* DPut each event object into the eventsInProgress events vector.

The fetchEvents() method should throw the StatusChangeFailedException
exception if the application is unable to fetch events because it is unable to
access the event store. When the pol1ForEvents () method catches this
exception, it can return the APPRESPONSETIMEOUT outcome status to indicate the
lack of response from the application’s event store.

* Loop through the events in the eventsInProgress events vector, taking the
following actions on each event object:

Chapter 7. Implementing a Java connector 181

— Retrieve the next event object to process with the getNextEvent () method.

— Update the status of both the event record (in the event store) and the event
object (retrieved from the events vector) to IN_PROGRESS with the
updateEventStatus () method.

The updateEventStatus() method should throw the
StatusChangeFailedException exception if the application is unable to change
event status because it is unable to access the event store. When the
pol1ForEvents() method catches this exception, it can return the
APPRESPONSETIMEOUT outcome status to indicate the lack of response from the
application’s event store.

Setting the event status to IN PROGRESS indicates that the poll method has begun
processing on the event. shows a code fragment that retrieves event
records from the event store, accessing each as an event object.

// Instantiate event store
CWConnectorEventStore evts=getEventStore();

// Fetch PollQuantity number of events from the application.
try

{
evts.fetchEvents();

catch (StatusChangeFailedException e)
{

// log error message
return CWConnectorConstant.FAIL;

1
1
// Get the property values for PollQuantity
int pollQuantity;
String poll1=CWConnectorUtil.getConfigProp("PollQuantity");
if (poll == null || poll.equals(""))
pollQuantity=1;
else
pollQuantity=Integer.parselnt(poll);

for (int i=0; i < pollQuantity; i++)
{

// Process each event retrieved from the application.
// Get the next event to be processed.
evtObj=evts.getNextEvent();

Figure 63. Retrieving event records from the event store

Getting the business object nhame, verb, and key

Once the connector has retrieved an event, it extracts the event ID, the object key,
and the name and verb of the business object from the event record. The connector
uses the business object name and verb to determine whether the integration
broker is interested in this type of business object. If the business object and its
active verb have subscribers, the connector uses the entity key to retrieve the
complete set of data.

lists the methods that the Java connector library provides to obtain the
name of the business object definition and the verb from the retrieved event
records.

182 Connector Development Guide for Java

Table 93. Methods for obtaining event information

Java connector library class Method

CWConnectorEvent |getBusObjName()l, lzetVerb()|

Important: The connector should send the business object with the same verb that
was in the event record.

Once the getNextEvent () method has retrieved an event object to be processed, the
Java connector can use the appropriate accessor methods of the CWConnectorEvent
class to obtain the information needed to check for an event subscription, as
follows:

Event ID |getEventID! 2|

etBusObjName

Business object name
Verb
Object key

For sample code that uses these accessor methods, see [Figure 64 on page 184].

Checking for subscriptions to the event

To determine whether the integration broker is interested in receiving a particular
business object and verb, the poll method calls the isSubscribed() method. The
isSubscribed() method takes the name of the current business object and a verb
as arguments. The name of the business object and verb must match the name of
the business object and verb in the repository.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the poll method
can determine if any collaboration subscribes to the business object with a
particular verb. At initialization, the connector framework requests its
subscription list from the connector controller at connector initialization. At
runtime, the application-specific component can use isSubscribed() to query
the connector framework to verify that some collaboration subscribes to a
particular business object. The application-specific connector component can
send the event only if some collaboration is currently subscribed.

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere
Business Integration Message Broker) or WebSphere Application Server, the
connector framework assumes that the integration broker is interested in all
the connector’s supported business objects. If the poll method uses the
isSubscribed() method to query the connector framework about
subscriptions for a particular business object, the method returns true for
every business object that the connector supports.

lists the methods that the Java connector library provides to check for
subscriptions to the event.

Chapter 7. Implementing a Java connector 183

Table 94. Classes and methods for checking subscriptions

Java connector library class Method

CWConnectorAgent isSubscribed()

CWConnectorEventStore updateEventStatus()}, [archiveEvent()},
deleteEvent(

Based on the value that isSubscribed() returns, the poll method should take one
of the following actions based on whether there are subscribers for the event:

e If there are subscribers for an event, the connector takes one of the actions
described in [‘Events that have subscriptions.”|

* If there are no subscriptions for the event, the connector should take one of the
actions described in [“Events that do not have subscriptions.”|

For a Java connector, the isSubscribed() method is defined in the
CWConnectorAgent class because the subscription manager is part of the connector
base class. The method returns true if there are subscribers and false if there are
no subscribers. shows a code fragment that checks for subscriptions in a
Java connector.

if (isSubscribed(evtObj.getBusObjName(),evtObj.getVerb())) {
// handle event
} else
{
// Update the event status to UNSUBSCRIBED.
evts.updateEventStatus (evtObj,
CWConnectorEventStatusConstants.UNSUBSCRIBED) ;

// Archive the event (if archiving is supported)
return CWConnectorConstant.FAIL;

Figure 64. Checking for an event subscription

If no subscriptions exist for the event, this code fragment uses the
updateEventStatus() method to update the event’s status to UNSUBSCRIBED and
then archives the event.

Events that have subscriptions: If there are subscribers for an event, the
connector takes the following actions:

Connector action taken For more information

Retrieve the complete set of business object |“Retrieving application data” on page 185|
data from the entity in the application

database.

Send the business object to the connector “Sending the business object to the connector]

framework, which routes it to the framework” on page 186|

integration broker.

Complete the processing on the event. “Completing the processing of an event” on|
page 190|

Archive the event (if archiving is “ Archiving the event” on page 191

implemented) in case the integration broker
subscribes at a later time.

Events that do not have subscriptions: If there are no subscriptions for the event,
the connector should take the following actions:

184 Connector Development Guide for Java

* Update the status of the event to “Unsubscribed” to indicate that there were no
subscribers.

* Archive the event (if archiving is implemented) in case the integration broker
subscribes at a later time. Moving the event record to the archive store prevents
the poll method from picking up unsubscribed events. For more information, see
[“Archiving the event” on page 191}

* Return “fail” (FAIL outcome status for a Java connector) to indicate there are
events pending for which no subscriptions currently exist.

IBM suggests that the connector return “fail” if no subscriptions exist for the
event. However, you can return the outcome status that your design dictates.

No other processing should be done with unsubscribed events. If at a later date,
the integration broker subscribes to these events, a system administrator can move
the unsubscribed event records from the archive store back to the event store.

Retrieving application data
If there are subscribers for an event, the poll method must take the following steps:
1. Retrieve the complete set of data for the entity from the application.

To retrieve the complete set of entity data, the poll method must use name of
the entity’s key information (which is stored in the event) to locate the entity in
the application. The poll method must retrieve the complete set of application
data when the event has the following verbs:

* Create
* Update
* Delete event for an application that supports logical deletes

For a Delete event from an application that supports physical deletes, the
application may have already deleted the entity from the database, and the
connector may not be able to retrieve the entity data. For information on delete
processing, see [“Processing Delete events” on page 130

2. Package the entity data in a business object.

Once the populated business object exists, the poll method can publish the
business object to subscribers.

lists the method that the Java connector library provides to retrieve entity
data from the application database and populate a business object.

Table 95. Method for retrieving business object data

Java connector library class Method

CWConnectorEventStore oetBO()

Note: If the event is a delete operation and the application supports physical
deletions of data, the data has most likely been deleted from the application,
and the connector cannot retrieve the data. In this case, the connector simply
creates a business object, sets the key from the object key of the event
record, and sends the business object.

For a Java connector, the standard way of retrieving application data from within
pol1ForEvents() is to use the getBO() method in the CWConnectorEventStore class.
This method takes the following steps:

* Create a temporary CWConnectorBusObj object to hold the new business object.

* Populate the CWConnectorBusObj object with the data and key values from the
specified event object.

Chapter 7. Implementing a Java connector 185

* If the event’s verb is Create or Update, set the business object’s verb to
RetrieveByContent and call the doVerbFor() method to retrieve the remaining
attribute values from the application.

* Return the populated CWConnectorBusObj object to the caller.

If the call to getBO() is successful, it returns the populated CWConnectorBus0bj
object. The following line shows a call to getBO() that returns a populated
CWConnectorBusObj object called bo:

bo = evts.getBO(evtObj);

In case the getBO() call is not successful, the poll method should take the following
steps:

» Catch any exceptions that getB0() throws.

* Check for an ERROR_OBJECT_NOT_FOUND status in the event object to determine if
the doVerbFor() method could not find the business object data in the
application.

* Check for a null value returned by getBO(), which indicates that doVerbFor()
was not successful.

* Use the getTerminate() method to check if the terminate-connector flag has
been set, which indicates that doVerbFor() (called from within the getB0()
method) returned an APPRESPONSETIMEOUT outcome status. If getTerminate()
returns true, pol1ForEvents() should return an APPRESPONSETIMEOUT outcome
status to terminate the connector.

Note: The default implementation of getB0O() checks the outcome status of
doVerbFor() and calls the setTerminate() method if doVerbFor() returns
an APPRESPONSETIMEOUT outcome status. If you override the default
implementation of getB0O() but still use the default implementation of
poll1ForEvents(), your getBO() implementation should perform this same
task.

The ObjectEventld attribute is used in the IBM WebSphere business integration
system to track the flow of business objects through the system. In addition, it is
used to keep track of child business objects across requests and responses, as child
business objects in a hierarchical business object request might be reordered in a
response business object.

Connectors are not required to populate ObjectEventId attributes for either a
parent business object or its children. If business objects do not have values for
ObjectEventId attributes, the business integration system generates values for
them. However, if a connector populates child ObjectEventIds, the values must be
unique across all other ObjectEventId values for that particular business object
regardless of level of hierarchy. ObjectEventId values can be generated as part of
the event notification mechanism. For suggestions on how to generate
ObjectEventId values, see|“Event identifier” on page 115

Sending the business object to the connector framework
Once the data for the business object has been retrieved, the poll method performs
the following tasks:

» [“Setting the business object verb” on page 187]

“Sending the business object” on page 187

lists the methods that the Java connector library provides to perform these
tasks.

186 Connector Development Guide for Java

Table 96. Classes and methods for setting the verb and sending the business object

Java connector library class Method
CWConnectorBusObj setVerb()
CWConnectorEvent oetVerb()
CWConnectorAgent otApplEvent()

Setting the business object verb: To set the verb in a business object to the verb
specified in the event record, the poll method calls the business object method
setVerb(). The poll method should set the verb to the same verb that was in the
event record in the event store.

Note: If the event is a physical delete, use the object keys from the event record to
set the keys in the business object, and set the verb to Delete.

For a Java connector, the populated CWConnectorBusObj object that the getB0()
method returns still has a verb of RetrieveByContent. The poll method must set the
business object’s verb to its original value with the setVerb() method of the
CWConnectorBusObj class, as the following code fragment shows:

// Set verb to action as indicated in the event record

busObj.setVerb(evntObj.getVerb());

In this code fragment, the poll method uses the getVerb() of the CWConnectorEvent
class to obtain the verb from the event record. This verb is then copied into the
business object with setVerb().

Sending the business object: The poll method uses the method gotApplEvent ()
to send the business object to the connector framework. This method takes the
following steps:

¢ Check that the connector is active.
* Check that there are subscriptions for the event.
* Send the business object to the connector framework.

The connector framework does some processing on the event object to serialize the
data and ensure that it is persisted properly. It then makes sure the event is sent.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
framework makes sure the event is either sent to the ICS through CORBA
IIOP or written to a queue (if you are using queues for event notification). If
sending the event to ICS, the connector framework forwards the business
object to the connector controller, which in turn performs any mapping
required to transform the application-specific business object to a generic
business object. The connector controller can then send the generic business
object to the appropriate collaboration.

Chapter 7. Implementing a Java connector 187

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere
Business Integration Message Broker) or WebSphere Application Server, the
connector framework makes sure the event is converted to an XML
WebSphere MQ message and written to the appropriate MQ queue.

The poll method should check the return code from gotApplEvent() to ensure that
any error conditions are handled appropriately. For example, until the event
delivery is successful, the poll method should not remove the event from the event
store. Instead, the poll method should update the event record’s status to reflect
the results of the event delivery. shows the possible event-status values,
based on the return code from gotApplEvent().

Table 97. Possible event status after event delivery with gotApplEvent()

State of event delivery Return code of gotApplEvent() Event status

If the event delivery is successful SUCCEED SUCCESS

If no subscription exists for the event ~ NO_SUBSCRIPTION_FOUND UNSUBSCRIBED

If the connector has been paused CONNECTOR_NOT_ACTIVE READY_FOR_POLL

If the event delivery fails FAIL ERROR_POSTING_EVENT

The gotApplEvent () method returns SUCCEED if the connector framework
successfully delivers the business object. The poll method checks the return code
from gotApplEvent () to ensure that the event record’s status is updated
appropriately. If gotApp1Event () returns any return code except FAIL, the poll
method returns SUCCEED so that it continues to poll for events. However, on a FAIL
return code from gotApplEvent(), event delivery has failed so the poll method logs
an error message and fails.

shows the actions that pol1ForEvents() takes based on the
gotApplEvent() return code.

Table 98. Possible pollForEvents() actions after event delivery with gotApplEvent()

Return code of gotApplEvent() Actions in pollForEvents()

SUCCEED

NO_SUBSCRIPTION_FOUND

CONNECTOR_NOT_ACTIVE

1. Reset the event status to SUCCESS.

2. If the ArchiveProcessed connector property is set to true, archive the
event and delete it from the event store.

Continue polling.
Log an error message.
Reset the event status to UNSUBSCRIBED.

If the ArchiveProcessed connector property is set to true, archive the
event and delete it from the event store.

w2

»

Continue polling.

—_

. Log an informational message at a trace level of 3.

2. Prepare the event for future re-execution:
* For application adapters, reset the event status to READY_FOR_POLL.
 For technology adapters, push back the event (if possible).

3. Return SUCCEED as the pol1ForEvents() outcome status.

Note: In this case, the event is not archived.

188 Connector Development Guide for Java

Table 98. Possible pollForEvents() actions after event delivery with gotApplEvent() (continued)

Return code of gotApplEvent() Actions in pollForEvents()

FAIL

1. Log an error message.
2. Reset the event status to ERROR_POSTING_EVENT.

3. If the ArchiveProcessed connector property is set to true, archive the
event and delete it from the event store.

4. Return FAIL as the pol1ForEvents() outcome status.

As shows, the action that pol1ForEvents() takes when the
gotApplEvents() method returns an outcome status of CONNECTOR_NOT_ACTIVE
depends on the type of connector you have created. For an application connector
(in particular a connector whose application uses a database as its event store), the
pol1ForEvents() method should reset the event’s status to READY_FOR_POLL to
revert an event back to its "unprocessed” state.

However, for technology connectors (in particular, those that do not use event
tables and therefore cannot always revert an event back to an "unprocessed” state),
the connector can hold the event in memory and return an outcome status of
SUCCEED from poll1ForEvents(), rather than attempting to "push” the event back.
The connector should keep this event in memory until the adapter is re-activated
and pol1ForEvents() is again invoked. At this time, the connector can try to
republish the event.

The following code fragment shows how this functionality might be implemented.
BusinessObject eventOnHold;

pollForEvents(...)
{

if eventOnHold != null
{
event = eventOnHold;
eventOnHold = null;

}

else

{
}

event = getNextUnprocessedEvent();

result = gotApplEvent(event);
if (result == CWConnectorConstant.CONNECTOR_NOT_ACTIVE)
{

eventOnHold = event;
return CWConnectorConstant.SUCCEED;

Note: Keep in mind that if you pause the adapter while it is actively processing an
event and then later terminate this adapter (or it terminates unexpectedly on
its own), "in-doubt” events can result for these events that the connector
(using the above logic) has copied to memory. Different adapters have
different strategies for how to handle in-doubt events. However, the result of
this logic can mean the creation of "in-doubt” events even though the
adapter was seemingly terminated properly. These events are not lost.

When implementing the pol1ForEvents() response to the CONNECTOR_NOT_ACTIVE
return status, keep in mind that the programming approaches discussed here

Chapter 7. Implementing a Java connector 189

assume that the adapter places an event in an "in-progress” state while it processes
and sends the event to the integration broker. However, not all adapters are
implemented this way. An adapter might simply receive an event from a source
and then call gotApplEvent() to send it to the integration broker. If this adapter
terminates in the time between when it receives the event and when it calls
gotApplEvent(), the event is lost. When such an adapter is restarted, it has no way
of reprocessing the event.

Completing the processing of an event

The processing of an event is complete with the completion of the tasks in
‘-

Table 99. Steps in processing an event

Event-processing task For more information

The poll method has retrieved the |“Retrieving application data” on page 185
application data for the event and created a

business object that represents the event.

The poll method has sent the business object [‘Sending the business object to the connector|
to the connector framework. framework” on page 186

Note: For hierarchical business objects, the event processing is complete when the
poll method has retrieved the application data for the parent business object
and all child business objects and sent the complete hierarchical business
object to the connector framework. The event notification mechanism must
retrieve and send the entire hierarchical business object, not just the parent
business object.

The poll method must ensure that the event status correctly reflects the completion
of the event processing. Therefore, it must handle both of the following conditions:

+ [“Handling successful event processing”|

“Handling unsuccessful event processing”|

Handling successful event processing: The processing of an event is successful
when the tasks in|Table 99 successfully complete. The following steps show how
the poll method should finish processing a successful event:

1. Receive a “success” return code from the gotApplEvent () method signifying the
connector framework’s successful delivery of the business object to the
messaging system.

2. Copy the event to the archive store. For more information, see [“Archiving the)

[event” on page 191}

3. Set the status of the event in the archive store.
4. Delete the event record from the event store.

Until the event delivery is successful, the poll method should not remove the
event from the event table.

Note: The order of the steps might be different for different implementations.
Handling unsuccessful event processing: If an error occurs in processing an
event, the connector should update the event status to indicate that an error has

occurred. [Table 100| shows the possible event-status values, based on errors that can
occur during event processing.

190 Connector Development Guide for Java

Table 100. Possible event status after errors in event processing

State of event delivery Event status Does polling terminate?

If an error occurs in processing an event ~ ERROR_PROCESSING_EVENT No, retrieve the next event from the
event store

If the event delivery fails ERROR_POSTING_EVENT Yes

If no subscriptions exist for the event UNSUBSCRIBED No, retrieve the next event from the

event store

For example, if there are no application entities matching the entity key, the event
status should be updated to “error processing event”. If the event cannot be
successfully delivered, its event status should be updated to “error posting event”.
As discussed in|“Sending the business object” on page 187, the poll method should
check the return code from gotApplEvent() to ensure that any errors that are
returned are handled appropriately.

In any case, the event should be left in the event store to be analyzed by a system
administrator. When the poll method queries for events, it should exclude events
with the error status so that these events are not picked up. Once an event’s error
condition has been resolved, the system administrator can manually reset the event
status so that the event is picked up by the connector on the next poll.

Archiving the event

Archiving an event consists of moving the event record from the event store to an
archive store. The Java connector library provides the CWConnectorEventStore class
to represent an event store, which includes the archive store. lists the
methods that the Java connector library provides to archive events.

Table 101. Methods for archiving events

Java connector library class Method
CWConnectorEventStore updateEventStatus()} [archiveEvent()}
deleteEvent()

Note: For a general introduction to archiving, see [“Archiving events” on page 127}.

To archive event records from this event store, the poll method takes the following
actions:

1. Ensure that archiving is implemented by checking the value of the appropriate
connector configuration property, such as ArchiveProcessed. For more
information, see [“Configuring a connector for archiving” on page 128].

2. Copy the event record from the archive store to the event store with the
archiveEvent () method.

To provide event archiving, you must implement the archiveEvent () method
as part of the CWConnectorEventStore class. This method identifies the event
record to copy by its event ID.

The archiveEvents() method should throw the ArchiveFailedException
exception if the application is unable to archive the event because it is unable
to access the event store. When the pol1ForEvents() method catches this
exception, it can return the APPRESPONSETIMEOUT outcome status to indicate the
lack of response from the application’s event store.

3. Update the event status of the archive record with the updateEventStatus()
method to reflect the reason for archiving the event.

Chapter 7. Implementing a Java connector 191

Table 102 shows the likely event-status constants that the archive record will
have.

Table 102. Event-status constants in an archive record

Event status

SUCCESS

UNSUBSCRIBED

ERROR_PROCESSING_EVENT

Description

The event was detected, and the connector created a business object for the
event and sent the business object to the connector framework. For more
information, see [‘Handling successful event processing” on page 190}

The event was detected, but there were no subscriptions for the event, so the
event was not sent to the connector framework and on to the integration
broker. For more information, see|“Checking for subscriptions to the event”|
The event was detected, but the connector encountered an error when trying
to process the event. The error occurred either in the process of building a
business object for the event or in sending the business object to connector
framework. For more information, see |”Hand1ing unsuccessful evenﬂ
[processing” on page 190}

The updateEventStatus() method should throw the
StatusChangeFailedException exception if the application is unable to change
the event status because it is unable to access the event store. When the
pol1ForEvents() method catches this exception, it can return the
APPRESPONSETIMEOUT outcome status to indicate the lack of response from the
application’s event store.

Delete the event record from the event store with the deleteEvent () method.

You must implement the deleteEvent () method as part of the
CWConnectorEventStore class. This method uses the event ID to identify the
event record to delete.

The deleteEvents() method should throw the DeleteFailedException
exception if the application is unable to delete the event because it is unable to
access the event store. When the pol1ForEvents() method catches this
exception, it can return the APPRESPONSETIMEOUT outcome status to indicate the
lack of response from the application’s event store.

contains a code fragment that archives an event.

// Archive the event if ArchiveProcessed is set to true.
if (arcProcessed.equalsIgnoreCase("true")) {

// Archive the event in the application's archive store.
evts.archiveEvent (evtObj.getEventID());

// Delete the event from the event store.
evts.deleteEvent (evtObj.getEventID());
1

Figure 65. Archiving an event

After archiving is complete, your poll method should set the appropriate return
code:

* If the archiving takes place after an event is successfully delivered, the return

code is “success”, indicated with the SUCCEED outcome-status constant.

* If archiving is due to some error condition (such as unsubscribed events or an

error in processing the event), the poll method might need to return a “fail”
status, indicated with the FAIL outcome-status constant.

192 Connector Development Guide for Java

Releasing event-store resources

Often, the pol1ForEvents() method needs to allocate resources to access the event
store. To prevent excessive memory usage by these resources, you can release them
at the end of the poll method. |Table 103]lists the methods that the Java connector
library provides to release event-store resources.

Table 103. Method for releasing event-store resources

Java connector library class Method

CWConnectorEventStore |cleanupResources()|

For example, if the event store is implemented as event tables in a database,
pol1ForEvents() might allocate SQL cursors to access these tables. You can
implement a cleanupResources () method to free these SQL cursors. At the end of
pol1ForEvents(), you can then call cleanupResources() to free the memory that
these cursors use.

Note: The CWConnectorEventStore class does not provide a default implementation
of the cleanupResources () method. To free event-store resources, you must
override cleanupResources () with a version that releases the resources
needed to access your event store.

Default implementation of the Java pollForEvents()
shows the default implementation of the poll1ForEvents() in the

CWConnectorAgent class. You can use this default implementation, which follows
the basic logic outlined in[“Basic logic for pollForEvents()” on page 126} or you can
override this method with your own implementation.

Chapter 7. Implementing a Java connector 193

[**
* Default implementation of pollForEvents.
*/
public int pollForEvents() {
CWConnectorUtil.traceWrite(
CWConnectorLogAndTrace.LEVEL5,"Entering pollForEvents.");

// Get the EventStoreFactory implementation name from the
// getEventStore() method.
CWConnectorEventStore evts=getEventStore();
if (evts==null)
{
CWConnectorUtil.generateAndLogMsg (10533,
CWConnectorLogAndTrace.XRD_ERROR, 0, 0);
return CWConnectorConstant.APPRESPONSETIMEQOUT
1
try { //finally block
// Fetch PollQuantity number of events from the application.
try {
evts.fetchEvents();
} catch (StatusChangeFailedException e) {
CWConnectorUtil.generateAndLogMsg (10533,
CWConnectorLogAndTrace.XRD_ERROR,0,0) ;
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.APPRESPONSETIMEQOUT;
}

// Get the property values for PollQuantity and ArchiveProcessed.
int pollQuantity;
String poll1=CWConnectorUtil.getConfigProp("PollQuantity");
try {
if (poll1 == null || poll.equals(""))
pollQuantity=1;
else
pollQuantity=Integer.parselnt(poll);
} catch (NumberFormatException e) {
CWConnectorUtil.generateAndLogMsg (10544,
CWConnectorLogAndTrace.XRD_ERROR, 0);
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.FAIL;

}

String arcProcessed=CWConnectorUtil.getConfigProp(
"ArchiveProcessed");

// In case the ArchiveProcessed property is not set, use true

// as default.

if (arcProcessed == null || arcProcessed.equals(""))
arcProcessed=CWConnectorAttrType.TRUESTRING;

CWConnectorEvent evtObj;

CWConnectorBusObj bo=null;

Figure 66. Implementation of basic logic for pollForEvents() (Part 1 of 7)

194 Connector Development Guide for Java

try {
for (int i=0; i < pollQuantity; i++){

// Process each event retrieved from the application.
// Get the next event to be processed.
evtObj=evts.getNextEvent();

// A null return indicates that there were no events with
// READY_FOR_POLL status. Return SUCCESS.
if (evtObj == null) {
CWConnectorUtil.generateAndLogMsg (10534,
CWConnectorLogAndTrace.XRD_INF0,0,0);
return CWConnectorConstant.SUCCEED;
}
// Check if the connector has subscribed to the event
// generated for the business object.
boolean isSub=isSubscribed(evtObj.getBusObjName(),
evtObj.getVerb());
if (isSub) {
// Retrieve the complete CWConnectorBusObj corresponding
// to the object using the getBO method in
// CWConnectorEventStore. This method sets the verb on a
// temporary business object to RetrieveByContent
// and retrieves the corresponding data information to be
// filled in the business object from the application.
try {
bo = evts.getBO(evtObj);
// Terminate flag will be set in the event store when
// the doVerbFor method returns APPRESPONSETIMEOUT in
// getBO.
if (evts.getTerminate())
return CWConnectorConstant.APPRESPONSETIMEOUT;
Jcatch (AttributeNotFoundException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"getB0","AttributeNotFoundException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
// Update the event status to ERROR_PROCESSING_EVENT
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT)
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))
{
// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());
}
continue;
}catch (SpecNameNotFoundException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"getB0", "SpecNameNotFoundException")
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();

Figure 66. Implementation of basic logic for pollIForEvents() (Part 2 of 7)

Chapter 7. Implementing a Java connector 195

// Update the event status to ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_PROCESSING EVENT)

if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

// Archive the event in the application's archive store

evts.archiveEvent (evtObj.getEventID());

// Delete the event from the event store

evts.deleteEvent (evtObj.getEventID());
}
continue;

}catch (InvalidVerbException e) {
CWConnectorUtil.generateAndLogMsg (10536,

CWConnectorLogAndTrace.XRD_ERROR, 0, 2,

"getB0","InvalidVerbException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();

// Update the event status to ERROR_PROCESSING_EVENT
evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT)
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))
{

// Archive the event in the application's archive store

evts.archiveEvent (evtObj.getEventID());

// Delete the event from the event store

evts.deleteEvent (evtObj.getEventID());
1
continue;

Jcatch (WrongAttributeException e) {
CWConnectorUtil.generateAndLogMsg (10536,

CWConnectorLogAndTrace.XRD_ERROR, 0, 2,

"getB0", "WrongAttributeException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();

// Update the event status to ERROR_PROCESSING_EVENT
evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))
{

// Archive the event in the application's archive store

evts.archiveEvent (evtObj.getEventID());

// Delete the event from the event store

evts.deleteEvent (evtObj.getEventID());
1
continue;

Jcatch (AttributeValueException e) {
CWConnectorUtil.generateAndLogMsg (10536,

CWConnectorLogAndTrace.XRD_ERROR, 0, 2,

"getBO","AttributeValueException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();

// Update the event status to ERROR_PROCESSING_EVENT
evts.updateEventStatus (evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());

1

continue;

Figure 66. Implementation of basic logic for pollForEvents() (Part 3 of 7)

196 Connector Development Guide for Java

Jcatch (AttributeNullValueException e) {

CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"getBO","AttributeNullValueException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

// Update the event status to ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());

}

continue;

}

// Log a fatal error in case the object is not found.
if (evtObj.getStatus()==
CWConnectorEventStatusConstants.ERROR_OBJECT_NOT_FOUND) {
CWConnectorUtil.generateAndLogMsg (10543,
CWConnectorLogAndTrace.XRD_FATAL,0,0);
// Update the event status to ERROR_OBJECT_NOT_FOUND
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_OBJECT_NOT_FOUND) ;
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))
{
// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());
}

continue;

// In case the business object is null, the retrieve call
// returned an error.
if (bo == null) {
CWConnectorUtil.generateAndLogMsg (10335,
CWConnectorLogAndTrace.XRD_ERROR,0,0);
// Update the event status to ERROR_PROCESSING_EVENT
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT)
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());

}

continue;

Figure 66. Implementation of basic logic for pollForEvents() (Part 4 of 7)

Chapter 7. Implementing a Java connector 197

// Set the processing verb on the business object.
try {
bo.setVerb(evtObj.getVerb());
} catch(InvalidVerbException e){
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"setVerb","InvalidVerbException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
// Update the event status to ERROR_PROCESSING EVENT
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT)
if (arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))
{
// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());
1
continue;
}
// Check again for subscription.
if (isSubscribed(bo.getName(),bo.getVerb())){
// Send the event to integration broker.
int stat=gotApplEvent(bo);
if (stat == CWConnectorConstant.CONNECTOR_NOT_ACTIVE) {
CWConnectorUtil.generateAndTraceMsg(
CWConnectorLogAndTrace.LEVEL3, 10551,
CWConnectorlLogAndTrace.XRD_INFO, 0, 0);
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.READY_FOR ROLL);
// No need to archive the event, as the status is reset to
// READY_FOR_POLL. It is as if this event never reached the
// connector for processing.
return CWConnectorConstant.SUCCEED;

if (stat == CWConnectorConstant.NO_SUBSCRIPTION_FOUND) {

CWConnectorUtil.generateAndLogMsg (10552,
CWConnectorlLogAndTrace.XRD_ERROR, 0, 0);

// Update the event status to UNSUBSCRIBED.

evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.UNSUBSCRIBED) ;

if (arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING)) {

// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());

}

continue;

if (stat == CWConnectorConstant.SUCCEED){

// Update the event status to SUCCESS.

evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.SUCCESS);

if (arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING)) {

// Archive the event in the application's archive store
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store
evts.deleteEvent (evtObj.getEventID());

1

continue;

Figure 66. Implementation of basic logic for pollForEvents() (Part 5 of 7)

198 Connector Development Guide for Java

} else // gotApplEvent returned FAIL
{

CWConnectorUtil.generateAndLogMsg (10532,
CWConnectorlLogAndTrace.XRD_ERROR,0,0) ;
// Update the event status to ERROR_POSTING EVENT.
evts.updateEventStatus (evtObj,
CWConnectorEventStatusConstants.ERROR_POSTING_EVENT);
// Archive the event if ArchiveProcessed is set
// to true.
if (arcProcessed.equalsIgnoreCase(
CWConnectorAttrType.TRUESTRING)) {
// Archive the event in the application's
// archive store.
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store.
evts.deleteEvent (evtObj.getEventID());
1
return CWConnectorConstant.FAIL;

}
} else // Event unsubscribed.

CWConnectorUtil.generateAndLogMsg (10552,
CWConnectorLogAndTrace.XRD_ERROR, 0, 0);
// Update the event status to UNSUBSCRIBED.
evts.updateEventStatus(evtObj,
CWConnectorEventStatusConstants.UNSUBSCRIBED) ;
// Archive the event if ArchiveProcessed is set
// to true.
if (arcProcessed.equalsIgnoreCase(
CWConnectorAttrType.TRUESTRING)) {
// Archive the event in the application's
// archive store.
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store.
evts.deleteEvent (evtObj.getEventID());
}
continue;

}

} else
{
CWConnectorUtil.generateAndLogMsg (10552,
CWConnectorLogAndTrace.XRD_ERROR, 0, 0);
// Update the event status to UNSUBSCRIBED.
evts.updateEventStatus (evtObj,
CWConnectorEventStatusConstants.UNSUBSCRIBED) ;
// Archive the event if ArchiveProcessed is set
// to true.
if (arcProcessed.equalsIgnoreCase(
CWConnectorAttrType.TRUESTRING)) {
// Archive the event in the application's
// archive store.
evts.archiveEvent (evtObj.getEventID());
// Delete the event from the event store.
evts.deleteEvent (evtObj.getEventID());
}
continue;
}
} //For loop

Figure 66. Implementation of basic logic for pollIForEvents() (Part 6 of 7)

Chapter 7. Implementing a Java connector

199

} catch (StatusChangeFailedException e){
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"updateEventStatus","StatusChangeFailedException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.APPRESPONSETIMEOUT;
} catch (InvalidStatusChangeException e){
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"updateEventStatus","InvalidStatusChangeException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.APPRESPONSETIMEOUT;
} catch (ArchiveFailedException e){
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"archiveEvent","ArchiveFailedException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.APPRESPONSETIMEOUT;
} catch (DeleteFailedException e){
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"deleteEvent","DeleteFailedException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.APPRESPONSETIMEOUT;
} catch (AttributeNullValueException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR, 0, 2,
"get method in event store","AttributeNullValueException");
CWConnectorUtil.logMsg(e.getMessage());
e.printStackTrace();
return CWConnectorConstant.FAIL;

}

} finally {
evts.cleanupResources();

1

return CWConnectorConstant.SUCCEED;

Figure 66. Implementation of basic logic for pollForEvents() (Part 7 of 7)

Shutting down the connector

In the Java connector library, the terminate() method for a Java connector is
defined in the CWConnectorAgent class. Typical return codes used in terminate()
are SUCCEED and FAIL. shows a sample terminate() method for a Java

connector.

200 Connector Development Guide for Java

public int terminate(){

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,
"Entering Connector terminate()");

// disconnect from application

boolean logoutSuccessful

userConnect.logout();

// free any resources, logoff any cache sessions if connection

// pool is used.

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,
return CWConnectorConstant.SUCCEED;

Figure 67. Java terminate() method

Handling errors and status

Java

This section provides the following information about how the methods of the
connector class library indicate error conditions:

+ |“Java return codes”|

+ |“Exceptions” on page 202|

* [“Return-status descriptor” on page 204|

Note: You can also use error logging and message logging to handle error
conditions and messages in your connector. For more information, see

[Chapter 6, “Message logeing,” on page 137]

return codes

In the Java connector library, the outcome-status constants in the
CWConnectorConstant class define the Java return codes. [Table 104{lists these Java

outcome-status constants.

Table 104. Java outcome-status codes

Return code

CWConnectorConstant.
CWConnectorConstant.
CWConnectorConstant.
CWConnectorConstant.

CWConnectorConstant.

CWConnectorConstant.

CWConnectorConstant.
CWConnectorConstant.
CWConnectorConstant.

CWConnectorConstant.
CWConnectorConstant.

SUCCEED

FAIL
APPRESPONSETIMEOUT
MULTIPLE_HITS

BO_DOES_NOT_EXIST

RETRIEVEBYCONTENT_FAILED

UNABLETOLOGIN
VALCHANGE
VALDUPES

CONNECTOR_NOT_ACTIVE
NO_SUBSCRIPTION_FOUND

Description

The operation succeeded.

The operation failed.

The application is not responding.

The connector found multiple matching records when
retrieving using non-key values. The first record is
returned with this status code.

The connector performed a Retrieve operation, but the
entity that the business object represents does not exist
in the application database.

The connector was not able to find matches for retrieve
by non-key values.

The connector is unable to log in to the application.
At least one value in a business object has changed.
The object in the application already has the requested
data values.

The connector is not active; it has been paused.

No subscriptions were found for the event.

Chapter 7. Implementing a Java connector 201

Outcome-status constants are provided for use in user implementations of many of
the Java methods, as shows. Although your code can return these values
from within any method, some of the return codes were designed with specific
uses in mind. For example, VALCHANGE informs the integration broker that the
connector is sending a business object with changed values.

Table 105. Outcome-status values for Java connector methods

Connector method Possible outcome-status codes
archiveEvent() SUCCEED, FAIL
doVerbFor() SUCCEED, FAIL, APPRESPONSETIMEOUT, VALCHANGE, VALDUPES,

MULTIPLE_HITS, RETRIEVEBYCONTENT FAILED,
BO_DOES_NOT_EXIST

otApplEvent() SUCCEED, FAIL, CONNECTOR_NOT_ACTIVE,
NO_SUBSCRIPTION_FOUND

ollForEvents SUCCEED, FAIL, APPRESPONSETIMEOUT
terminate SUCCEED, FAIL

The outcome-status constant that the connector framework receives helps to
determine its next action, as follows:

e If the outcome status is APPRESPONSETIMEQOUT, the connector framework shuts
down the connector.

When the connector framework receives this outcome status, it copies the
APPRESPONSETIMEOQUT status into the return-status descriptor and returns this
descriptor to inform the connector controller that the application is nof
responding. Once it has sent this return-status descriptor, the connector
framework stops the process in which the connector runs. A system
administrator must fix the problem with the application and restart the
connector to continue processing events and business object requests.

e For all other outcome-status values, the connector framework continues
execution of the connector.

During request processing, the connector framework copies the outcome status
into the status field of the return-status descriptor and includes this descriptor in
its response to the integration broker. It continues execution of the connector. For
some outcome-status values, the connector framework also includes a response
business object in its response. For more information, see [“Updating the requesf
[business object” on page 168|

Important: The connector framework does not stop execution of the connector
when it receives the FAIL outcome-status constant.

Exceptions

In addition to returning status codes, the methods of the Java connector library can
throw exceptions to indicate certain predefined conditions. This section provides
the following information about how to handle exceptions in a Java connector:

+ |“What Is a Java connector exception?”]

* |“Exceptions from the Java connector library” on page 203

What Is a Java connector exception?
When a method of the Java connector library throws an exception, this exception

object is a subclass of the CWException class, which is an extension of the Java
Exception class. As shows, this exception object contains a message and

202 Connector Development Guide for Java

status, as well as an exception-detail object with additional information about the
exception.

Exception object

Message

Status Exception-detail object

——®| Message

Message Number

Message Explanation

Message Type

Status

Figure 68. The CWException exception object

able 104 shows the accessor methods that the CWException class provides to obtain
information in the exception object.

Table 106. Information in the exception object

Member Accessor method
Message text cetMessage()

Status getStatus()| setStatus()|
Exception-detail object zetExceptionObject()|

Note: For more information on the methods in the CWException class, see
[Chapter 24, “CWException class,” on page 381|

The exception-detail object is an instance of the CWConnectorExceptionObject class.
As shows, an exception object contains an exception-detail object. This
exception-detail object provides more detailed information about the Java

connector library exception, as|Table 107 shows.

Table 107. Information in the exception-detail object

Member Description Accessor method
Message text The message text for the exception
Message number The number in a message file that identifies the
message
Message explanation The detailed description of a message, which is also

stored in the message file. This information might
include a corrective action.

Message type An integer constant that indicates the severity of a [zetMsgType()} [setMsgType()|
message

Status An integer status that indicates the outcome of the [zetStatus()| [setStatus()|
method.

Note: For more information on the methods in the CWConnectorExceptionObject
class, see [Chapter 19, “CWConnectorExceptionObject class,” on page 333

Exceptions from the Java connector library
When you write code for a Java connector, you can include Java try and catch
statements to handle specific exceptions thrown by the methods of the Java

Chapter 7. Implementing a Java connector 203

connector library. The reference description for most Java connector library
methods has a section entitled Exceptions, which lists the exceptions thrown by
that method.

shows a code fragment from the default implementation of the
poll1ForEvents() method that catches the exceptions that the getB0() method
throws.

try {
bo = evts.getBO(evtObj);

}catch (AttributeNotFoundException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0","AttributeNotFoundException");
return CWConnectorConstant.FAIL;
}catch (SpecNameNotFoundException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0","SpecNameNotFoundException");
return CWConnectorConstant.FAIL;
}catch (InvalidVerbException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0","InvalidVerbException");
return CWConnectorConstant.FAIL;
}catch (WrongAttributeException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0", "WrongAttributeException");
return CWConnectorConstant.FAIL;
}catch (AttributeValueException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0","AttributeValueException");
return CWConnectorConstant.FAIL;
}catch (AttributeNullValueException e) {
CWConnectorUtil.generateAndLogMsg (10536,
CWConnectorLogAndTrace.XRD_ERROR,
0,2,"getB0","AttributeNul1ValueException");
return CWConnectorConstant.FAIL;

}

Figure 69. Catching exceptions from getBO()

When a Java connector library method throws an exception, it does not usually
provide message and status information in the exception object. However, you can
choose to fill the exception object with additional information as needed.

Return-status descriptor

The return-status descriptor usually contains information about the success (or lack
thereof) of the verb processing that the business object handler (the doVerbFor()
method) has performed. The calling code can use this status information to
determine how to proceed. When the business object handler for a particular
business object is invoked, the doVerbFor() of its associated business-object-handler
class executes. However, the actual method invoked is not the user-implemented
doVerbFor() (which the connector developer implements as part of the
business-object-handler class). Instead, the business object handler invokes a
low-level doVerbFor() method, which is defined in this same class but which the
connector developer does not implement.

204 Connector Development Guide for Java

This low-level doVerbFor() method performs the following tasks:
1. Receive an empty return-status descriptor as an argument.
2. Call the user-implemented doVerbFor() to perform the verb processing.

3. Populate the return-status descriptor based on the verb-processing status when
this user-implemented doVerbFor() completes (either successfully or otherwise).

Because the low-level doVerbFor() receives an instantiated return-status descriptor
as an argument, any changes that it makes to this return-status descriptor are
available to the calling code (which instantiated the return-status descriptor) once
the low-level doVerbFor() exits. Therefore, the code that called the business object
handler can access this return-status descriptor to obtain information about the
status of the verb processing.

Access to this return-status descriptor can be performed in either of the following
ways:

+ [“Implicitly accessing the return-status descriptor”]

« [“Explicitly accessing the return-status descriptor”|

Implicitly accessing the return-status descriptor

In request processing, the connector framework uses the return-status descriptor to
report the status of the verb processing back to the integration broker. When the
connector framework receives a request business object, it locates the associated
business-object-handler class and invokes its low-level doVerbFor() method. It
passes to this low-level doVerbFor() an instantiated, empty return-status descriptor.

When the low-level doVerbFor() completes, it has populated the return-status
descriptor with the verb-processing status from the user-implemented doVerbFor ()
method. The connector framework then includes this return-status descriptor as
part of its response to the integration broker. For more information, see
[“Populating the return-status descriptor” on page 168}

Explicitly accessing the return-status descriptor

In event notification, the poll method can use the return-status descriptor to
determine the success of the retrieval of application data associated with an event.
When the poll method, pol1ForEvents(), retrieves an event from the event store,
the event usually contains only the key values of the associated application event.
To obtain all application data, pol1ForEvents() must use the key value (or values)
to query the application and retrieve the full set of values. For more information,
see ["Retrieving application data” on page 185|

A common way to retrieve this application data is to call the business object
handler with a RetrieveByContent verb in the business object. To facilitate this use
of a business object handler, the CWConnectorBus0Obj class provides a version of the
doVerbFor() method. When calling code calls this doVerbFor() method, it invokes
the business object handler for the current business object by calling the low-level
doVerbFor() method. The code that calls the CWConnectorBusObj version of
doVerbFor() must first create a return-status descriptor and then pass this
instantiated, empty return-status descriptor into doVerbFor().

The CWConnectorBusObj version of doVerbFor() passes the empty return-status
descriptor to the low-level doVerbFor() method in the business-object-handler
class. When the low-level doVerbFor() completes, it has populated the return-status
descriptor with the verb-processing status from the user-implemented doVerbFor()
method. The CWConnectorBusObj version of doVerbFor() passes this return-status

Chapter 7. Implementing a Java connector 205

descriptor back to the calling code. Because the calling code has instantiated this
return-status descriptor, it can explicitly access its contents to determine the success
of the verb processing.

For a Java connector, the return-status descriptor is a
CWConnectorReturnStatusDescriptor object. [Table 108|lists the status information
that this structure provides.

Table 108. Information in the return-status descriptor

Return-status
descriptor
information

Error message
Status

Description Java accessor method

A string to provide a description of the error condition getErrorString ()} [setErrorString()|
An additional status value to further detail the cause of the [getStatus()| [setStatus()|
error condition

The CWConnectorEventStore class provides the getB0() method to retrieve
application data associated with an event. The default implementation of the
getB0O() method calls the CWConnectorBusObj version of doVerbFor() to perform
this retrieval. The default implementation of the pol1ForEvents () method includes
a call to getBO(). Therefore, your pol1ForEvents() does not need to explicitly
access the return-status descriptor for information about the retrieval status in
either of the following cases:

* If you use the default implementation of pol1ForEvents()

» If you call the default implementation of getB0O() in your own pollForEvents()
method

The default implementation of getB0O() automatically accesses the return-status
descriptor and returns values (or throws exceptions) to indicate the retrieval status.

Note: You can use the methods of the CWConnectorReturnStatusDescriptor
method to access the collaboration status from a return-status descriptor
after execution of the executeCollaboration() method.

Important: Any status code that the doVerbFor() method sets in the return-status
descriptor must have meaning to the collaboration. The collaboration
developer and the connector developer must agree on the meaning of
this status code.

206 Connector Development Guide for Java

Chapter 8. Adding a connector to the business integration
system

To run in the IBM WebSphere business integration system, a connector must be
defined in the repository. Pre-defined adapters, which the WebSphere Business
Integration Adapters product provides, have predefined connector definitions in
the repository. A system administrator need only configure the application and set
the connector’s configuration properties to run the connector.

For the IBM WebSphere business integration system to be able to access a
connector that you have developed, you must take the following steps:

1. Create the connector definition in the repository.

2. If WebSphere MQ will be used for messaging between connector components,
add message queues for the connector.

3. Create the connector’s initial configuration file.

4. Create the connector’s startup script.

This chapter provides information on adding a new connector to the IBM
WebSphere business integration system. This chapter includes the following
sections:

+ [“Naming the connector”]

+ |[“Compiling the connector” on page 208|

* |“Creating the connector definition” on page 20§

* |“Creating the initial configuration file” on page 210

* [“Starting up a new connector” on page 211

Naming the connector

This chapter provides suggested naming conventions for the files and directories
used in connector development. Naming conventions provide a way to make you
connector files more easy to locate and identify. summarizes the
suggested naming conventions for connector files. Many of these files are based on
the connector name, which should uniquely identify it within the WebSphere
business integration system. This name (connName) can identify the application or
technology with which the connector communicates.

Table 109. Suggested naming conventions for a connector

Connector file Name

Connector definition connNameConnector

Connector directory ProductDir\ connectors\connName
Initial connector File name: BIA_CN_connName.txt

configuration file
Directory name: ProductDir\repository\connName

User-customized connector | File name: CN_connName.txt
configuration file
Directory name: ProductDir\connectors\connName

Connector class connNameAgent java

© Copyright IBM Corp. 2000, 2004 207

Table 109. Suggested naming conventions for a connector (continued)

Connector file Name

Connector library Java jar file: connDir\BIA_connName jar
Java package: com.crossworlds.connectors.connName.

where connDir is the name of the connector directory, as
defined above.

Connector startup script Windows platforms: connDir\start_connName.bat

UNIX-based platforms:
connDir\connector_manager_connName.sh

where connDir is the name of the connector directory, as
defined above.

For more information on naming conventions for connectors, see Naming IBM
WebSphere InterChange Server Components in the IBM WebSphere InterChange Server
documentation set.

Compiling the connector

Once you have written the connector’s application-specific component, you must
compile it into an executable format, its connector library. This section provides
information on how to compile a connector.

To compile a Java connector, take the following steps:

* Use a JDK 1.4.2 development environment. For more information, see
[up the development environment” on page 28/

* Ensure that the following file is in the 11b subdirectory of the product directory.
— WBIA.jar

* Include wbiart.jar in the wbiart directory and make sure that directory is in the
project path. Also include in the project path any application-specific jar files
that your connector’s application-specific component requires.

* Compile the connector source (java) files into class (.class) files with the Java
compiler.

* Create the Java connector’s library file, which is a Java archive (jar) file that
contains the compiled Java code.

The suggested naming convention for the jar file is to begin its name with the
string "BIA_". Follow this string with the connector name, which uniquely
identifies the connector (see [Table 109 on page 207). For more information about
the connector name, see ["Naming the connector” on page 207

For example, for a Java connector with a connector name of MyJava, you could
name its jar file as:

BIA MyJdava.jar

Creating the connector definition

To run in the IBM WebSphere business integration system, a connector must be
defined in the repository. Pre-defined adapters, which the WebSphere Business
Integration Adapters product provides, have predefined connector definitions that
are loaded in the repository at installation time. To run a predefined connector, a
system administrator need only configure the application and set the connector’s

208 Connector Development Guide for Java

configuration properties. However, before the IBM WebSphere business integration
system can access a connector that you have developed, you must take the
following steps:

* Create a connector definition to define the connector within the repository.

* Create an initial configuration file to assist users in connector configuration
(optional).

Defining the connector

To define the connector within the WebSphere business integration system, you
create a connector definition. This connector definition includes the following
information to define the connector in the repository:

¢ The name of the connector definition
* Supported business objects and associated maps
* Connector configuration properties

A tool called Connector Configurator collects this information and stores it in the
repository.

— WebSphere InterChange Server
When your integration broker is InterChange Server, the repository is a
database that InterChange Server communicates with to obtain information
about components in the WebSphere business integration system. In this
repository, connector definitions reside. These connector definitions include
both standard and connector-specific connector configuration properties that
the connector controller and the client connector framework require. The
connector can also have a local configuration file, which provides
configuration information for the connector locally. When a local
configuration file exists, it takes precedence over the information in the
InterChange Server repository.

You update the connector definitions in the InterChange Server repository
with Connector Configurator from within the System Manager tool. You can
update the locale configuration file with the standalone version of Connector
Configurator, which resides in the bin subdirectory of your product directory.

— WebSphere MQ Integrator Broker
When your integration broker is WebSphere MQ Integrator Broker, the
repository is a directory of files that the connector framework uses to obtain
information about components of the WebSphere business integration system.
In this repository, connector definitions for each adapter in the system resides.

You update the connector definitions in the local repository with Connector
Configurator, which resides in the bin subdirectory of your product directory.

For information on how to use Connector Configurator, refer to
[“Connector Configurator,” on page 501

The connector definition name

The connector definition name uniquely identifies the connector within the
WebSphere business integration system. By convention, a connector definition
name usually takes the following form:

Chapter 8. Adding a connector to the business integration system 209

connNameConnector

where connName is the connector name (see [Table 109 on page 207). For more
information on the connector name, see [“Naming the connector” on page 207 For
example, if the connector name is MyConn, the name of its connector definition is
MyConnConnector.

Supported business objects and maps
A connector definition must specify the following information about the business
objects that the connector supports:

* The business object definitions

Each business object that the connector is able to send to or receive from the
integration broker must be specified as a supported business object. Connector
Configurator provides a Supported Business Objects tab in which you can enter
the connector’s supported business objects.

Note: All application-specific business objects that the connector supports must
be defined in the repository before you can include them as supported
business objects in the connector definition. For information on how to
define application-specific business objects, see the Business Object
Development Guide.

* Associated maps

— WebSphere InterChange Server
Only the connector definition for a connector that communicates with
InterChange Server as its integration broker includes the maps associated
with the connector. Associated maps are those maps that convert between
the connector’s application-specific business objects and the appropriate
generic business objects.

Connector Configurator provides an Associated Maps tab in which you can
enter the connector’s associated maps.

Connector configuration properties

The connector definition also contains the connector configuration properties. To
initialize these properties, you must take the following steps:

* Assign values for standard connector configuration properties.

* Define any connector-specific configuration properties that your connector uses
and assign them values as appropriate.

Connector Configurator provides two tabs for specifying connector configuration
properties: Standard Properties and Connector-Specific Properties. For more
information on connector configuration properties, see [“Using connector]|
fconfiguration property values” on page 70}

Creating the initial configuration file

By convention, pre-defined adapters provide an initial configuration file for users
to use the first time that they configure the adapter with Connector Configurator.
The suggested name for this configuration file is:

BIA_CN_connName .txt

210 Connector Development Guide for Java

where connName is the connector name (see [Table 109 on page 207). For more
information on the connector name, see [“Naming the connector” on page 207/ This
initial configuration file resides in the following directory:

ProductDir\repository\connName

That is, the repository subdirectory of the product directory contains directories
for each connector. Each connector’s directory (connName) is named with its unique
connector name and within this directory resides the initial configuration file with
the following name.

For users to configure a connector that you have developed, you can provide an
initial configuration file for your new connector. As part of your connector
development, you have probably specified the settings for the standard
configuration properties as well as defining any connector-specific configuration
properties. This connector configuration information should reside in your
repository. However, once your connector is moved to some other environment, it
loses access to this repository. Therefore, you should create an initial configuration
file that is part of your released connector.

To create this initial configuration file, bring up Connector Configurator for your
connector and save its configuration in the following file:

ProductDir\repository\connName\BIA_CN_connName .txt

Note: These steps assume that during the course of development, you have
already created a connector configuration file (.cfg) for your connector. The
preceding step just saves this connector configuration information in a
separate file, which is included as part of the released connector.

Starting up a new connector

To start up the connector, you execute a connector startup script. As|Table 110|shows,
the name of this startup script depends on the operating system which you are
using.

Table 110. Startup scripts for a connector

Operating system Startup script
UNIX-based systems connector_manager_connName
Windows start_connName .bat

The startup script supports those adapters that the WebSphere Business Integration
Adapters product provides. To start up a predefined connector, a system
administrator runs its startup script. The startup scripts for most predefined
connectors expect the following command-line arguments:

1. The first argument is the connector name, which identifies the following:

¢ The name of the connector’s directory under the connectors subdirectory of
the product directory

* The connector library, which resides in the connector’s directory

2. The second argument is the name of the integration broker instance against
which the connector runs.

Chapter 8. Adding a connector to the business integration system 211

— WebSphere InterChange Server
When your integration broker is InterChange Server (ICS), the startup
script specifies the name of the ICS instance against which your connector
runs. On Windows systems, this ICS instance name (which was specified
in the installation process) appears in each of the connector shortcuts of
the startup script.

— Other integrator brokers
When your integration broker is a WebSphere message broker (WebSphere
MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere Business
Integration Message Broker) or WebSphere Application Server, the startup
script specifies the name of the broker instance against which your
connector runs. On Windows systems, this instance name (which was
specified in the installation process) appears in each of the connector
shortcuts of the startup script.

3. Optional additional startup parameters can be specified on the command line
and are passed to the connector runtime.

For more information about the startup parameters, see the System
Administration Guide in the IBM WebSphere InterChange Server documentation
set or your implementation guide in the WebSphere Business Integration
Adapters documentation set.

WebSphere InterChange Server
Before you start a connector, InterChange Server must be running for the
connector to complete its initialization and obtain its business objects from
the repository.

Before you can start up a connector that you have developed, you need to ensure
that a startup script supports your new connector. To enable a startup script to
start your own connector, you must take the following steps:

1. Prepare a connector directory for your connector.

2. Create the startup script for your connector. For Windows systems, also create a
shortcut for your connector startup.

3. Set up the startup script as a Windows service (optional).

The following sections describe each of these steps.

Preparing the connector directory

The connector directory contains the runtime files for your connector. To prepare the
connector directory, take the following steps:
1. Create a connector directory for your new connector under the connectors
subdirectory of the product directory:
ProductDir\connectors\connName
By convention, this directory name matches the connector name (connName).

The connector name is a string that uniquely identifies the connector. For more
information, see [“Naming the connector” on page 207

2. Move your connector’s library file to this connector directory.

212 Connector Development Guide for Java

A Java connector’s library file is a Java archive (jar) file. You created this jar file
when you compiled the connector. For more information, see [“Compiling the

[connector” on page 208

Creating startup scripts

As ITable 110 on page 211| shows, a connector requires a startup script for the
system administrator to start execution of the connector process. The startup script
to use depends on the operating system on which you are developing your
connector.

Startup script and shortcut on Windows systems
Starting a connector on a Windows system involves the following steps:
1. Call the connector’s startup script, start_connName .bat.

The start_connName .bat script (where connName is the name of your connector)
is a connector-specific startup script. It provides connector-specific information
(such as application-specific libraries and their locations). By convention, this
script resides in the connector directory:

ProductDir\connectors\connName

It is this start_connName .bat script that the user invokes to start the connector
on a Windows system.

2. Call the generic connector-invocation script, start_adapter.bat
The start_adapter.bat file is generic to all connectors. It performs the actual
invocation of the connector within the JVM. It resides in the bin subdirectory of

the product directory. The start_connName.bat script must call the
start_adapter.bat script to actually invoke the connector.

shows the steps to start a connector on a Windows system.

Connector startup script: LN Environment file:
start_connName.bat CWConnEnv.bat
2

Connector invocation script:
start_adapter.bat

3

A 4

JVM

Connector

Figure 70. Starting a connector on a Windows system

When a WebSphere Business Integration Adapters Installer installs a predefined
connector on a Windows system, it takes the following steps:

Chapter 8. Adding a connector to the business integration system 213

* Install a startup script for the predefined connector.

* Create a menu option for the predefined connector under the Programs > IBM
WebSphere Business Integration Adapters > Adapters > Connectors menu.

To provide the ability to start up your own connector, you must duplicate these

steps by:

* Generating the start_connName.bat startup script and putting it in the
connector\connName subdirectory of the product directory

* Providing a menu option for the connector under the Programs > IBM WebSphere
Business Integration Adapters > Adapters > Connectors menu. Each menu
option is a shortcut that invokes the Windows startup script,
start_connName .bat, for the particular connector.

Creating the startup script: To create a custom connector startup script, you
create a new connector-specific startup script called start_connName.bat (where
connName is your Java connector name). For example, if your Java connector has a
connector name of MyJava, its startup script name is start_MyJava.bat. As a
starting point, you can copy the startup-script template, which is located in the
following file:

ProductDir\templates\start_connName.bat

shows a sample of the contents of the startup-script template for
Windows. Please consult the version of this file released with your product for the
most current contents.

214 Connector Development Guide for Java

REM @echo off
setlocal
REM Set adapter specific variables

set ACCESS_JAR=%ACCESS_HOME%\T1ib\access.jar
set J2EE_JAR=%J2EE_HOME%\j2ee.jar

REM End adapter specific variables

REM Branch between WBIA_RUNTIME and CROSSWORLDS
REM IF WBIA RUNTIME is set use start_adapter launcher to run adapter
If "%WBIA_RUNTIME%"=="" goto CROSSWORLDS

REM call CWConnEnv
call "%WBIA_RUNTIME%"\bin\CwConnEnv.bat

REM set the directory where the specific connector resides
set CONNDIR="%WBIA_RUNTIME%"\connectors\%1

REM goto the connector specific drive and directory.
REM CONNDIR is defined by caller
cd /d %CONNDIR%

REM set variables that need to pass to callee

set JVMArgs=-AAA

set JCLASSES=AAA;%ACCESS_JAR%;%J2EE_JAR%;%JCLASSES%
set LibPath=AAA

set ExtDirs=AAA

call start_adapter.bat -nAccessDest -sWSICS
-1Samples.AccessTestConnector.AppConn
-fno -pnull -b -cAccessDest.cfg

goto END
:CROSSWORLDS
END

endlocal

Figure 71. Sample contents of the startup-script template for Windows

By convention, the start_connName.bat script has the standard syntax shown in
with connName being the name of the connector, ICSinstance being the

name of the InterChange Server instance, and additionalOptions specifies additional
startup parameters to pass to the connector invocation. These options include -c, -f,
-t, and -x. For more information, see|Table 112 on page 217

start_connName connName ICSinstance additionalOptions

Figure 72. Standard syntax for Windows connector startup script

As the connector developer, you control the content of start_connName .bat.
Therefore, you can change the syntax of your connector startup script. However, if
you change this standard syntax, make sure that all information that
start_adapter.bat requires is available at the time of its invocation within
start_connName .bat.

Note: In the start_connName.bat syntax in the connName and ICSinstance
arguments are required. The additionalOptions argument is optional.

The startup script with the standard syntax makes the following assumptions
about your connector’s runtime files based on the connector name (connName):

* The connector name is the same as name of the connector directory under the
connectors subdirectory of the product directory

Chapter 8. Adding a connector to the business integration system 215

* The connector name is the same as the Java connector’s library file (its jar file,
CWconnName . jar), which resides in the connector directory

For example, for the MyJava connector to meet these assumptions, its runtime files
must reside in the ProductDir\connectors\MyJava directory and its jar file must
reside in that directory with the name BIA_MyJava.jar. If y our connector cannot
meet these assumptions, you must customize its startup script to provide the
appropriate information to the generic connector-invocation script,
start_adapter.bat.

In this start_connName .bat file, take the following steps:
1. Move into the connector directory.

2. Set the startup environment variables within the startup script with any
connector-specific information and any connector-specific variables.

3. Call the start_adapter.bat script to invoke the connector.

Note: The start_adapter.bat script does not contain a pause statement to display
information in the console. If startup fails and you want to view this
information, include a pause statement in start_connName .bat to prevent the
console from closing when the connector fails.

The following sections describe each of these steps.

Calling the environment file: The CWConnEnv.bat file contains environment settings
for the IBM Java Object Request Broker (ORB) and the IBM Java Runtime
Environment (JRE). The following line invokes this environment file within the
startup script:

call "%WBIA_RUNTIME%"\bin\CWConnEnv

Moving into the connector directory: The start_connName.bat script must change to
the connector directory before it calls the start_adapter.bat script. The connector
directory contains the connector-specific startup script as well as other files needed
at connector startup. You can define the name of this connector directory any way
ou wish. However, as discussed in|“Preparing the connector directory” on page
by convention the connector directory name matches the connector name.

If the start_connName.bat script uses the standard syntax (see [Figure 72 on page|
, the connector name is passed in as the first argument (%1). In this case, the
following lines move into the connector directory:

REM set the directory where the specific connector resides
set CONNDIR=%CROSSWORLDS%\connectors\%1

REM goto the connector specific drive & directory
cd /d %CONNDIR%

Alternatively, because the connector name is used in several components of the
connector, you can define an environment variable to specify this connector name
and then evaluate this environment variable for all subsequent uses of the
connector name within the start_connName .bat script. The lines to set the
environment variables for the connector name and connector directory could be as
follows:

REM set the name of the connector
set CONNAME=%1

REM set the directory where the specific connector resides
set CONNDIR=%CROSSWORLDS%\connectors\%CONNAME%

216 Connector Development Guide for Java

REM goto the connector specific drive & directory
cd /d %CONNDIR%

Setting the environment variables: In the start_connName .bat script, you must
provide any of the connector-specific information that the environment variables
listed in [Table 111| specify.

Table 111. Environment variables in the connector startup script

Variable name Value

ExtDirs Specify the location of any application-specific jar files.

JCLASSES Specify any application-specific jar files. Jar files are separated
with a semicolon (;).

JVMArgs Add any arguments to be passed to the Java Virtual Machine
JVM).

LibPath Specify any application-specific library paths.

The start_adapter.bat file uses the information in [Table 111] as follows:

* It appends the JCLASSES and LibPath environment variables to the appropriate
variables within the connector framework.

» It sets the external directories (java.ext.dirs) with the ExtDirs environment
variable.

* It includes the JVMArgs environment variable in its list of arguments it passes to
the JVM.

In addition to the environment variables in you can also define your
own connector-specific environment variables. Such variables are useful for
information that can change from release to release. You can set the variable to a
value appropriate for this release and then include the variable in the appropriate
line of the startup script. If the information changes in the future, you only have to
change the variable’s value. You do not have to locate all lines that use this
information.

Invoking the connector: To actually invoke the connector within the JVM, the
start_connName .bat script must call the start_adapter.bat script. The
start_adapter.bat script provides information to initialize the necessary
environment for the connector runtime (which includes the connector framework)
with its startup parameters. Therefore, you must provide the appropriate startup
parameters to start_adapter.bat. shows the startup parameters that the
start_adapter.bat script recognizes.

Table 112. Startup parameters for start_adapter.bat script

Valid as additional
command-line option to
Startup parameter Description Required? start_connName.bat?
-cconfigFile The full path name of the connector’s Required if Yes
configuration file integration
broker is other
than ICS
-ddlIName The name of the C++ connector’s library file Yes, for all C++ | No
(dlIName), which is a dynamic link library connectors
(DLL). This DLL name should not include the
.d11 file extension.

Chapter 8. Adding a connector to the business integration system 217

Table 112. Startup parameters for start_adapter.bat script (continued)

Valid as additional
command-line option to
Startup parameter Description Required? start_connName.bat?
-fpollFrequency The amount of time between polling actions. No Yes
Possible pollFrequency values are:
* The number of milliseconds between polling D?fe.lult is 1000
) milliseconds
actions
* key: causes the connector to poll only when
you type the letter p in the connector’s
startup window. The key option must be
specified in lowercase.
* no: causes the connector not to poll. The no
option must be specified in lowercase.
5 Indicates that the connector is written in Java No, as long as | No
you specify the
-1 option for
Java connectors
-lclassname The name of the Java connector’s connector Yes, for all Java | No
class (className) connectors
-nconnectorName The name of the connector (connectorName) to Yes No
start
-sbrokerName The name of the integration broker (brokerName) | Yes No
to which the connector connects
-t Boolean value to turn off or on the connector No Yes
property SingleThreadAppCalls, which
guarantees that all calls the connector
framework makes to the application-specific
component are with one call-triggered flow. The
default value is false.
-xconnectorProps Initializes the value of an application-specific No Yes
connector property. Use the following format
for each property you specify:
propName=value

Make sure that the call to start_adapter.bat includes the following startup

parameters:

* All required startup parameters:

— To specify the name of the connector definition: -n

If the name of the connector is passed in as the first argument (%1) to the

start_connName .bat script (see [Figure 72 on page 215)), the -n startup

parameter can be specified as follows:

-n%1Connector

If you define an environment variable for the connector name (such as
CONNAME), this -n parameter could appear as follows:

-n%CONNAME%Connector

— To specify the name of the InterChange Server instance: -s

If the name of the ICS instance is passed in as the second argument (%2) to

the start_connName .bat script (see [Figure 72 on page 215)), the -s startup

parameter can be specified as follows:

-s%2

218 Connector Development Guide for Java

Other integration brokers
When your integration broker is a WebSphere message broker (WebSphere
MQ Integrator, WebSphere MQ Integrator Broker, WebSphere Integration
Message Broker), or WebSphere Application Server, the -c option is also a
required startup parameter.

* Language-specific startup parameters required for a Java connector:
To specify connector-specific classes (or package): -1

For example, if you follow the recommended naming conventions, the
language-specific parameter for the Java connector name is MyJava would be:

-Tcom.crossworlds.connectors.MyJava.MyJavaAgent

If you define an environment variable for the connector name (such as CONNAME),
this -1 parameter could appear as follows:

-lcom.crossworlds.connectors.%CONNAME%.%CONNAME%Agent

* Any optional startup parameters that apply to all invocations of your connector.
Consult(Table 112 on page 217 for a list of optional startup parameters.

The syntax for the call to start_adapter.bat should have the following format:

call start_adapter.bat -nconnName -sICSinstance languageSpecificParams
-cCN_connNameConnector.cfg

For example, the following line invokes the MyJava connector:

call start_adapter.bat -Tcom.crossworlds.connectors.MyJava.MyJavaAgent
-nMyJdava -sICSserver -cMyJdavaConnector.cfg -...

Note: The preceding command line assumes that the connector is running against
an InterChange Server instance whose name is ICSserver. If the connector
runs against an instance of WebSphere MQ Integrator Broker or WebSphere
Message Broker, that instance name would need to appear in the command
line.

With the use of the CONNAME environment variable to hold the connector name, this
call can be generalized to the following:

call start_adapter.bat -n%CONNAME% -s%2 languageSpecificParams
-cCN_%CONNAME%Connector.cfg

For the call to start_adapter.bat, keep the following points in mind:

* Make sure that the line to invoke the connector runtime is all on one line in your
startup script; that is, no carriage returns should exist at the line breaks shown
in the sample startup line.

¢ The order of the parameters listed in the call to start_adapter.bat is not
important.

* You might also want to have your call to start_adapter.bat handle any
additional options that the user might pass into the call to start_connName .bat.
In this case, you should provide "extra” arguments to pass to start_adapter.bat
so that additional options are passed down to the actual connector invocation.
For example, the following call to start_adapter.bat handles up to three
additional command-line options:

call start_adapter.bat -n%CONNAME% -s%2 languageSpecificParams
-cCN_%CONNAME%Connector.cfg %3 %4 %5

Chapter 8. Adding a connector to the business integration system 219

Creating the shortcut: A shortcut enables a connector to be started from a menu
option within Programs > IBM WebSphere Business Integration Adapters >
Adapters > Connectors. The shortcut should list the call to the start connName.bat
script. If this script uses the standard syntax (see [Figure 72 on page 215), the
shortcut would have the following form:

ProductDir\connectors\start_connName connName ICSinstance

If you define your own syntax for your start_connName.bat script, you must
ensure that the shortcut uses this custom syntax.

If your menu already contains a shortcut for a Java connector that uses the
start_connName .bat startup script, an easy way to create a shortcut is to copy this
existing connector’s shortcut and edit the shortcut properties to change the
connector name or add any other startup parameters.

For example, for the MyJavaconnector that uses the standard syntax for its startup
script, you could create the following shortcut:

ProductDir\bin\start_MyJava.bat MyJava ICSinstance

Note: The preceding command line assumes that the connector is running against
an InterChange Server instance whose name is ICSinstance. If the connector
runs against a WebSphere MQ Integrator Broker instance, that instance name
would appear in the shortcut command line.

Startup script on UNIX systems

Starting a connector on a UNIX-based system involves the following steps:

1. Call the connector’s startup script, connector_manager_connName with its -start
option.
The connector_manager_connName script (where connName is the name of your
connector) is a connector-specific startup script. It identifies the name of the
connector and provides the action to take on this connector with one of its
options, which include -start and -stop. This script is generated with the
Connector Script Generator tool. Once generated, the script resides in the bin
subdirectory of the product directory. It is this connector_manager_connName .bat
script that the user invokes to start the connector on a UNIX-based system.

2. Call the generic connector manager script, connector_manager.
The connector_manager file is generic to all connectors. It generates the call to
the connector-specific invocation script, start_connName.sh. the actual
invocation of the connector within the JVM. It resides in the bin subdirectory of
the product directory. The connector_manager_connName script calls the
connector_manager script.

3. Call the connector-specific invocation script, start_connName .sh
The start_connName.sh script provides connector-specific information (such as
application-specific libraries and their locations). By convention, this script
resides in the connector directory:
ProductDir/connectors/connName

The connector_manager script calls the start_connName .sh script to actually
prepare the connector-specific information for connector invocation.

4. Call the generic connector-invocation script, start_adapter.sh

The start_adapter.sh file is generic to all connectors. It performs the actual
invocation of the connector within the JVM. It resides in the bin subdirectory of
the product directory. The start_connName .sh script must call the
start_adapter.sh script to actually invoke the connector.

220 Connector Development Guide for Java

shows the steps to start a connector on a UNIX-based system.

Connector startup script:
connector_manager_connName -start

-

Generic connector manager script:
connector_manager.sh

!

Connector-specific invocation script:
start_connName.sh

v

Environment file:
adapterEnv.sh

5

v

Connector invocation script:

v

Environment file:
CWSharedEnv.sh

start_adapter.sh

7

v

JVM

Connector

Figure 73. Starting a connector on a UNIX-based system

v

Environment file:
adapterEnv.sh

When a WebSphere Business Integration Adapters Installer installs connectors on a

UNIX-based system, it takes the following steps:

* Install the generic connector_manager script and the generic start_adapter.sh

connector invocation script in the bin subdirectory of the product directory.

* Install the start_connName.sh script in the connectors/connName subdirectory of

the product directory.

* Generate the connector_manager_connName startup script, which is a wrapper for

the generic connector_manager script. This generic script calls the appropriate
start_connName .sh script, which begins the actual connector invocation.

* Install the new connector_manager_connName script in the bin product

subdirectory.

The connector_manager_connName script calls the connector_manager script,

providing the appropriate command-line arguments, such as a local

configuration file or a threading type.

In this sequence of steps, there are two scripts that are not generic; that is, no

single script exists that can work with any connector:

Chapter 8. Adding a connector to the business integration system

221

* The connector_manager_connName.sh startup script is unique to each connector.
However, it is generated by the installation process. Therefore, you do not need
to create one for your custom connector.

* The custom invocation script, start_connName.sh, is also unique to each
connector. Therefore, you must create a custom invocation script for your
connector and put it in the connector\connName subdirectory of the product
directory.

Connector-specific connector-manager startup script: To start a connector, the
connector_manager_connName.sh script has the syntax shown in with
connName being the name of the connector and additionalOptions is an optional
argument that specifies additional startup parameters to pass to the connector
invocation. These options include -f and -x. For more information, see

connector_manager_connName -start additionalOptions

Figure 74. Syntax for starting a UNIX connector

To create a connector-specific connector-manager startup script,
connector_manager_connName, you can use the Connector Script Generator tool
(ConnConfig.sh in the product bin directory). Once you specify the connector name
(connName), this tool generates the connector_manager_connName startup script and
puts it in the bin subdirectory of the product directory. For information on this
tool, see|Appendix C, “Connector Script Generator,” on page 519

Connector-specific invocation script: To create a connector-specific invocation
script, you create a new connector-specific script called start_connName .sh (where
connName is your Java connector name). For example, if your Java connector has a
connector name of MyJava, its startup script name is start_MyJava.sh. As a starting
point, you can copy the startup-script template, which is located in the following
file:

ProductDir/templates/start_connName.sh

shows a sample of the contents of the invocation-script template for
UNIX. Please consult the version of this file released with your product for the
most current contents.

222 Connector Development Guide for Java

#1/bin/sh
set environment

\
#.${WBIA RUNTIME}/bin/wbia_connEnv.sh

If required, go to directory where connector class files reside
cd /
cd "${CONNDIR}"

Please define the following variables that need to pass to callee
export JCLASSES=
export LibPath=
export ExtDirs=
export JVMArgs=

Call base script start_adapter.sh to start a C++ connector
exec ${WBIA RUNTIME}/bin/start_adapter.sh -nconnName -sserverName
-dconnSpecificDLLfile -f... -p... -c... ...

Call base script start_adapter.sh to start a Java connector
exec ${WBIA_RUNTIME}/bin/start_adapter.sh -nconnName -sserverName
-lconnSpecificClasses -f... -p... -C... ...

Figure 75. Sample contents of the startup-script template for UNIX-based systems

On UNIX-based systems, the start_connName.sh script has the syntax shown in
[Figure 72 on page 215l However, unlike the start_connName script on Windows
systems, this syntax for start _connName on UNIX-based systems must follow that
shown in [Figure 72 on page 215} The connector_manager script calls
start_connName with this syntax. As the connector developer, you control the
content of start_connName.sh but you should not change the syntax of this script.

If you follow the suggested naming conventions (see [Table 109 on page 207), your
connector-specific invocation script can make the following assumptions about
your connector’s runtime files based on the connector name (connNarme):

* The connector name is the same as name of the connector directory under the
connectors subdirectory of the product directory

* The connector name is the same as the Java connector’s library file (its jar file,
CWconnName . jar), which resides in the connector directory

For example, for the MyJava connector to meet these assumptions, its runtime files
must reside in the ProductDir/connectors/MyJava directory and its jar file must
reside in that directory with the name BIA_MyJava.jar. If y our connector cannot
meet these assumptions, you must customize its startup script to provide the
appropriate information to the generic connector-invocation script,
start_adapter.sh.

In this start_connName.sh file, take the following steps:
1. Call the CWConnEnv.sh environment file to initialize the startup environment.
2. Move into the connector directory.

3. Set the startup environment variables within the startup script with any
connector-specific information and any connector-specific variables.

4. Call the start_adapter.sh script to invoke the connector.

The following sections describe each of these steps.

Chapter 8. Adding a connector to the business integration system 223

Calling the environment file: The CWConnEnv.sh file contains environment settings
for the IBM Java Object Request Broker (ORB) and the IBM Java Runtime
Environment (JRE). The following line invokes this environment file within the
startup script:

. ${WBIA RUNTIME}/bin/CWConnEnv.sh

Moving into the connector directory: The start_connName.sh script must change to
the connector directory before it calls the start_adapter.sh script. The connector
directory contains the connector-specific startup script as well as other files needed
at connector startup. You can define the name of this connector directory any way
ou wish. However, as discussed in [“Preparing the connector directory” on pag
by convention the connector directory name matches the connector name.

The start_connName .sh script expects the connector name to be passed in as the
first argument ($1). Therefore, the following lines move into the connector
directory:

set the directory where the specific connector resides

CONNDIR=${CROSSWORLDS}/connectors/$1
export CONNDIR

If required, go to directory where connector class files reside
cd /
cd "${CONNDIR}"

Alternatively, because the connector name is used in several components of the
connector, you can define an environment variable to specify this connector name
and then evaluate this environment variable for all subsequent uses of the
connector name within the start_connName.sh script. The lines to set the
environment variables for the connector name and connector directory could be as
follows:

set the name of the connector

CONNAME=$1
export CONNNAME

REM set the directory where the specific connector resides
CONNDIR=${CROSSWORLDS}/connectors/${CONNAME}
export CONNDIR

If required, go to directory where connector class files reside
cd /
cd "${CONNDIR}"

Setting the environment variables: In the start_connName .sh script, you must specify
any of the connector-specific information that the environment variables listed in
[Table 111 on page 217} The start_adapter.sh script uses these environment
variables in the same way as the start_adapter.bat script does on Windows
systems. You can also define your own connector-specific environment variables
for information that can change from release to release. For more information, see
[“Setting the environment variables” on page 217/

Invoking the connector: To actually invoke the connector within the JVM, the
start_connName.sh script must call the start_adapter.sh script. The
start_adapter.sh script provides information to initialize the necessary
environment for the connector runtime (which includes the connector framework)
with its startup parameters. Therefore, you must provide the appropriate startup
parameters to start_adapter.sh.|Table 113 [Table 113|shows the startup parameters
that the start_adapter.sh script recognizes.

224 Connector Development Guide for Java

Table 113. Startup parameters for start_adapter.sh script

Startup
parameter

Description

Required?

Valid as additonal
command-line option for
connector_manager_connName?

-b

Runs the connector as a background thread;
that is, the connector does 1ot receive any
input from standard input (STDIN). The
generic connector_manager script (called by
each connector_manager_connName script)
automatically specifies this option when it
invokes the start_connName .sh script.
Therefore, to prevent a connector from
being run in the background, you can
remove the -b parameter from the
start_connName .sh invocation.

See the
description

No

-cconfigFile

The full path name of the connector’s
configuration file

Required if
integration
broker is other
than ICS

Yes

-fpollFrequency

The amount of time between polling
actions. Possible pollFrequency values are:

e The number of milliseconds between
polling actions

* key: causes the connector to poll only
when you type the letter p in the
connector’s startup window. The key
option must be specified in lowercase.

* no: causes the connector not to poll. The
no option must be specified in lowercase.

The value that the -f parameter specifies
overrides the polling frequency in the
connector’s configuration file.

No

Default is 1000
milliseconds

Yes

-lclassname

The name of the Java connector’s connector
class (className)

Note: The -b parameter is not a valid
command-line option for the
connector_manager_connName script.

Yes

-nconnectorName

The name of the connector (connectorName)
to start

Yes

No

-sbrokerName

The name of the integration broker
(brokerName) to which the connector
connects

Yes

-tthreadingType

Specifies the threading model to use for the

connector. Possible values for threadingType

are:

* SINGLE_THREADED: only a single
thread accesses the application.

* MAIN_SINGLE_THREADED: only the
main thread accesses the application.

* MULTI_THREADED: multiple threads
can access the application

No

Chapter 8. Adding a connector to the business integration system 225

Table 113. Startup parameters for start_adapter.sh script (continued)

Valid as additonal

Startup command-line option for
parameter Description Required? connector_manager_connName?
-xconnectorProps | Initializes the value of an No Yes

application-specific connector property. Use
the following format for each property you
specify:

propName=value

Make sure that the call to start_adapter.sh includes the following startup

parameters:

 All required startup parameters:

— To specify the name of the connector definition: -n

Because the name of the connector is passed in as the first argument ($1) to
the start_connName.sh script (see [Figure 72 on page 215), the -n startup
parameter can be specified as follows:

-n${1}Connector

If you define an environment variable for the connector name (such as
CONNAME), this -n parameter could appear as follows:

-n$ {CONNAME } Connector

— To specify the name of the InterChange Server instance: -s

If the name of the ICS instance is
the start_connName.sh script (see

assed in as the second argument ($2) to

Figure 72 on page 215|), the -s startup

parameter can be specified as follows:

-s${2}

Note: All UNIX connectors usually include the -b startup parameter so that the
connector process runs in the background. Therefore, the
connector_manager generic startup script automatically specifies this
startup parameter for all connectors. You do not need to specify it in the

start_adapter.sh call.

Other integration brokers

When your integration broker is WebSphere MQ Integrator Broker,
WebSphere Integration Message Broker, or WebSphere Application Server,
the -c option is also a required startup parameter.

¢ Language-specific startup parameters required for a Java connector:

To specify connector-specific classes (or package): -1

For example, if you follow the recommended naming conventions, the
language-specific parameter for the Java connector name is MyJava would be:

-Tcom.crossworlds.connectors.MyJava.MyJavaAgent

If you define an environment variable for the connector name (such as CONNAME),
this -1 parameter could appear as follows:
-1com.crossworlds.connectors.${CONNAME}.${CONNAME}Agent

* Any optional startup parameters that apply to all invocations of your connector.
Consult|Table 113 on page 225 for a list of optional startup parameters.

226 Connector Development Guide for Java

For more information about the startup parameters, see the System Administration
Guide in the IBM WebSphere InterChange Server documentation set or your
implementation guide in the WebSphere Business Integration Adapters
documentation set.

The syntax for the call to start_adapter.sh should have the following format:

exec ${WBIA RUNTIME}/bin/start_adapter.sh -nconnDefName -sICSinstance
-1className -cCN_connNameConnector.cfg

For example, the following line invokes the MyJava connector:

exec ${WBIA RUNTIME}/bin/start_adapter.sh -nMyJavaConnector -sICSserver
-Tcom.crossworlds.connectors.MyJdava.MyJavaAgent
-cMyJavaConnector.cfg -...

Note: The preceding command line assumes that the connector is running against
an InterChange Server instance whose name is ICSserver. If the connector
runs against a WebSphere MQ Integrator Broker instance, that instance name
would need to appear in the command line.

With the use of the CONNAME environment variable to hold the connector name, this
call can be generalized to the following:

exec ${WBIA _RUNTIME}/bin/start_adapter.sh -n${CONNAME}Connector -s${2}
-TclassName -cCN_${CONNAME}Connector.cfg -...

For the call to start_adapter.sh, keep the following points in mind:

* Make sure that the line to invoke the connector runtime is all on one line in your
startup script; that is, no carriage returns should exist at the line breaks shown
in the sample startup line.

* The order of the parameters listed in the call to start_adapter.sh is not
important.

* You might also want to have your call to start_adapter.sh handle any
additional options that the user might pass into the call to
connector_manager_connName .sh (see [Figure 74 on page 222).. In this case, you
should provide "extra” arguments to pass to start_adapter.sh so that additional
options are passed down to the actual connector invocation. For example, the
following call to start_adapter.sh handles three additional command-line
options:
exec ${WBIA RUNTIME}/bin/start_adapter.sh -n${CONNAME}Connector -s${2}
-TclassName -cCN_${CONNAME}Connector.cfg ${3} ${4} ${5}

Starting a connector as a Windows service

You can set up a connector to run as a Windows service that can be started and
stopped by a remote administrator. For more information, see the Systemn
Installation Guide for Windows in the IBM WebSphere InterChange Server
documentation set or your implementation guide in the IBM WebSphere Business
Integration Adapter documentation set.

Note: If you are using InterChange Server as your integration broker and you
want to use the automatic-and-remote restart feature with the connector, do
not start connector as a Windows service. Instead, start the MQ Trigger
Monitor as a service. For more information, see the System Administration
Guide in the IBM WebSphere InterChange Server documentation set.

Chapter 8. Adding a connector to the business integration system 227

228 Connector Development Guide for Java

Part 3. Java connector library API reference

© Copyright IBM Corp. 2000, 2004 229

230 Connector Development Guide for Java

Chapter 9. Overview of the Java connector library

The Java connector library include class libraries that you need to use when
developing a connector. This connector class library contains predefined classes for
connectors in Java. You use these class libraries to derive connector classes and

methods. The class libraries also provide utilities, such as methods to implement
tracing and logging services.

IBM provides a Java jar file (Java archive file), WBIA. jar, that contains the

predefined classes and interfaces of the Java connector library. The current version
of the WBIA. jar file resides in the 1ib subdirectory of the product directory. Older

versions of the WBIA. jar file reside in the following product subdirectory:
Tib\WBIA\version

where version is the version of the Java connector library. The current version of
WBIA.jar is compatible with older versions of this library.

Note: For instructions on building a Java connector to run on Windows NT or

Windows 2000, see [“Compiling the connector” on page 208

Classes and interfaces
lists the classes and interfaces in the Java connector library.

Table 114. Classes and interfaces in the Java connector library

Class or interface Description Page
CWConnectorAgent Represents the base class for a connector. You
extend this class to define your connector class and
implement the required virtual methods
CWConnectorAttrType Defines the attribute-type constants
CWConnectorBOHandler Represents the base class for a business object 249
handler. You extend this class to define one or
more business object handler for your connector.
CWConnectorBusObj Represents a business object instance. It provides 255
access to the business object, business object
definition, and the attributes
CWConnectorConstant Defines constants for use with the Java connector |303
library:
* outcome-status constants
* verb constants
CWConnectorEvent Represents an event object, which holds 305
information from an event record that has been
retrieved from an event store
CWConnectorEventStatusConstants Defines event-status constants, which represent the |313
status values that an event record can have
CWConnectorEventStore Represents an event store, which holds event
records for access by the connector’s event
detection mechanism (usually polling)
CWConnectorEventStoreFactory Represents the event-store factory, which 331
instantiates a CWConnectorEventStore object
CWConnectorExceptionObject Represents an exception-detail object, which 333
contains additional status information that is
included in an exception object
© Copyright IBM Corp. 2000, 2004 231

Table 114. Classes and interfaces in the Java connector library (continued)

Class or interface Description Page
CWConnectorLogAndTrace Defines constants for use with logging and tracing |339,
services:

* message-file constants
* message-type constants

e trace-level constants

CWConnectorReturnStatusDescriptor Represents a return-status descriptor, which 341
contains error and informational messages
CWConnectorUtil Provides miscellaneous utility methods for use in a m

Java connector; These utility methods fall into the
following general categories:

* Static methods for generating and logging
messages

* Static methods for creating business objects

* Static methods for obtaining connector
configuration properties

* Methods for obtaining locale information

CWException Represents an exception object for the Java 381
connector library

CWProperty Represents a connector-property object, which
contains a hierarchical connector configuration
property

232 Connector Development Guide for Java

Chapter 10. CWConnectorAgent class

The CWConnectorAgent class is the base class for a Java connector. From this class, a
connector developer must derive a connector class and implement the user-defined
methods for the connector. This derived connector class contains the code for the
application-specific component of the connector.

Note: The CWConnectorAgent class extends the ConnectorBase class of the low-level
Java connector library. For more information on the classes of the low-level
Java connector library, see [Chapter 26, “Overview of the low-level]ava|
[connector library,” on page 403

Important: All Java connectors must extend this connector base class and provide
implementations for the following methods: agentInit(),
getVersion(), getConnectorBOHandlerForBO(), pol1ForEvents(), and
terminate(). However, CWConnectorAgent provides default
implementations for the getVersion(), getConnectorBOHandlerForBO(),
and pol1ForEvents() methods. In their derived connector base class,
developers can either use these default implementations or override
them to implement their own versions. Developers must provide
implementations for the agentInit() and terminate() methods.

able 115(summarizes the methods in the CWConnectorAgent class.
Table 115. Member methods of the CWConnectorAgent class

Member method Description Page
ICWConnectorAgent()| Creates a connector object. 233
agentInit()| Initializes the connector 234
lexecuteCollaboration()| Sends business object requests to collaborations as a 236
synchronous request.
[zetCollabNames()| Retrieves the list of collaborations that are available to
process business object requests.
[zetConnectorBOHandlerForBO()| Retrieves the business object handler for a specified
business object definition.
etEventStore() Retrieves a reference to the connector’s event store.

Retrieves the version of the connector.
Sends a business object to InterChange Server.

is AgentCapableOfPolling()| Determines whether this connector process is capable of
polling.
isSubscribed() Determines whether the integration broker has

subscribed to a particular business object with a
particular verb.

pollForEvents() Polls an application’s event store for events that cause
changes to business objects.
erminate() Closes the connection with the application and frees 245

allocated resources.

CWConnectorAgent()

Creates a connector object.

© Copyright IBM Corp. 2000, 2004 233

Syntax

public CWConnectorAgent();

Parameters
None.

Return

values

A CWConnectorAgent object containing the newly created connector.

agentlinit()
Initializes the connector.
Syntax
public void agentInit();
Parameters
None.
Return values
None.
Exceptions
ConnectionFailureException
Thrown if the connector fails to obtain a connection with the
application.
InProgressEventRecoveryFailedException
Thrown if the connector is unable to perform in-progress event
recovery.
LogonFailedException
Thrown if the connector is unable to log into the application.
PropertyNotSetException
Thrown if the connector retrieves any required connector
configuration property that does not have a value set for it.
Notes

The agentInit() method performs all initialization functionality for the connector,
including any of the following tasks required for the connector’s
application-specific component:

* Establishing a connection
* Retrieving connector properties

* Recovering In-Progress events

Important: The CWConnectorAgent class does not provide a default implementation
for the agentInit() class. Therefore, the connector class must
implement this method.

The connector framework calls the agentInit() method to initialize the connector
when it comes up. If agentInit() performs any of the conditions listed in

234 Connector Development Guide for Java

able 116}, it must check for the following conditions and throw the appropriate

exception.

Table 116. Exceptions to throw from the agentinit() method

Condition

If the connector retrieves any required
connector configuration property that is
not set

If the connector fails to obtain a
connection with the application

If the connector fails to log onto the
application

If the recoverInProgressEvents()
method finds In-Progress events in the
event store and some failure occurs
during the recovery process

Exception to throw

PropertyNotSetException

ConnectionFailureException
LogonFailedException

InProgressEventRecoveryFailedException

To throw one of the exceptions in [Table 116} take the steps outlined in [Table 11

Table 117. Handling an initialization error

Error-handling step

1.

If an error has occurred, log an error message to the log
destination to indicate the cause of the initialization error.
Instantiate an exception-detail object to hold the exception
information.

Set the status information within an exception-detail object:

* set a message to indicate the cause of the initialization
failure

* set the status to an outcome status that tells the
connector framework the success of the initialization. If
you want the initialization process (and the connector) to
terminate, set the outcome status to
CxConnectorConstant.FAIL.

Throw the agentInit() exception from that

indicates the initialization failure. This exception is how the

agentInit() method tells the connector framework that a

initialization error has occurred. This exception object

contains the exception-detail object you initialized in Step

3.

When the low-level init() method (which

calls agentInit()) catches this exception object, it copies
the status from the exception-detail object into its own
return status, which it returns to the connector framework.
Note: If you do not set the exception status within the
exception-detail object, the init() method returns an
outcome status of FAIL and the connector framework
terminates the connector.

Method or code to use

CWConnectorUtil.generateAndLogMsg ()|

CWConnectorExceptionObject excptnDtailObj

new CWConnectorExceptionObject();

excptnDtailObj .

excptnDtailObj JsetStatus()|

throw new
agentInitException(excptnDtailObj);

See also

lzenerateAndLogMsg()} frecoverInProgressEvents()|

Chapter 10. CWConnectorAgent class

235

executeCollaboration()

Sends a business object request to the connector framework, which sends it to a
business process within the integration broker. This is a synchronous request.

Syntax

public void executeCollaboration(String busProcName,
CWConnectorBusObj theBusObj,
CWConnectorReturnStatusDescriptor rtnStatusDesc);

Parameters

busProcName Specifies the name of the business process to execute the business
object request. If InterChange Server is your integration broker, the
business-process name is the name of a collaboration.

theBusObj Is the triggering event and the business object returned from the
business process.

rtnStatusDesc Is the return-status descriptor containing a message and the
execution or return status from the business process.

Return values

None.

Exceptions
None.

Notes

The executeCollaboration() method sends the theBusObj business object to the
connector framework. The connector framework does some processing on the
event object to serialize the data and ensure that it is persisted properly. It then
sends the event to the busProcName business process in the integration broker. This
method initiates a synchronous execution of an event, which means that the
method waits for a response from the integration broker’s business process.

WebSphere InterChange Server
If your integration broker is IBM WebSphere InterChange Server, the business
process that executeCollaboration() invokes is a collaboration.

To receive status information about the business-process execution, pass in an
instantiated return-status descriptor, rtnStatusDesc, as the last argument to the
method. The integration broker can return status information from its business
process and send it to the connector framework, which populates this return-status
descriptor with it. You can use the methods of the
CWConnectorReturnStatusDescriptor class to access this status information.

Note: To initiate an asynchronous execution of an event, use the gotApp1Event ()

method. Asynchronous execution means that the calling code does not wait
for the receipt of the event, nor does it wait for a response.

236 Connector Development Guide for Java

See also
ocotApplEvent()|, methods of the CWConnectorReturnStatusDescriptor class

getCollabNames()

Retrieves the list of collaborations that are available to process business object
requests.

WebSphere InterChange Server
FThis method is only valid when the integration broker is InterChange Server.

Syntax

public String[] getCollabNames();

Parameters

None.

Return values

An array of String objects containing a list of collaboration names.

Exceptions

None.

getConnectorBOHandlerForBO()

Retrieves the business object handler for a specified business object definition.

Syntax

public CWConnectorBOHandler getConnectorBOHandlerForBO(
String busObjName) ;

Parameters

busObjName Is the name of a business object.

Return values

A reference to a CWConnectorBOHandler object, which represents the business object
handler for the busObjName business object.

Exceptions

None.

Notes

The connector framework calls the getConnectorBOHandlerForB0() method to
retrieve the business object handler for a business object definition. You can use
one business object handler for multiple business object definitions or a business
object handler for each business object definition.

Chapter 10. CWConnectorAgent class 237

Important: The CWConnectorAgent class provides a default implementation for the
getConnectorBOHandlerForB0() method. Therefore, you can either use
this default implementation or override the method to return your own
business-object-handler class.

The CWConnectorAgent class provides a default implementation for the
getConnectorBOHandlerForBO() method, which returns a reference to a business
object handler of the ConnectorBOHandler class. To use this default implementation,
you would extend the CWConnectorBOHandler class, naming this extended class
ConnectorBOHandler. If you name your business-object-handler base class
something other than ConnectorBOHandler, you must override
getConnectorBOHandlerForB0O() to return a reference to your extended
business-object-handler base class.

getEventStore()

Creates a reference to the connector’s event store.

Syntax

public CWConnectorEventStore getEventStore();

Parameters

None.

Return values

A CWConnectorEventStore object that provides access to the connector’s event store.
If the event-store-factory class cannot be located, the method returns null.

Exceptions

None.

Notes

The getEventStore() method is the event-store factory, whose task is to instantiate
an event-store object for the connector. Through this event-store object, the
connector can access its event store. The getEventStore() method calls the
getEventStore() method of your event-store-factory class, which implements the
CWConnectorEventStoreFactory interface.

Important: The CWConnectorAgent class provides a default implementation for the
getEventStore() method. Therefore, you can either use this default
implementation or override the method to implement your own
mechanism to instantiate an event-store object.

The default implementation of the getEventStore() method that the
CWConnectorAgent class provides checks the EventStoreFactory connector
configuration property for the name of the event-store-factory class (which
implements the CWConnectorEventStoreFactory interface), as follows:

+ If the EventStoreFactory property is set, getEventStore() instantiates the
specified event-store-factory class and calls its getEventStore() method to return
an event-store object.

* If the EventStoreFactory property is not set, getEventStore() tries to build the
name of the event-store-factory class.

238 Connector Development Guide for Java

From the name of the connector package, the getEventStore() method extracts
the connector name. It assumes that the event store is named as follows:

connectorNameEventStore

For example, for the WebSphere Business Integration Adapter for JDBC, the
connector name is JDBC. Therefore, the getEventStore() would generate
JDBCEventStore as the name of the connector’s event store and try to instantiate
an event-store-factory class of this name.

The EventStoreFactory property must specify the entire class name for the
event-store factory instance. For information on the format of this property, see
[“CWConnectorEventStoreFactory interface” on page 176] For example, the
WebSphere Business Integration Adapter for JDBC contains an event-store factory
that provides access to a JDBC event store. Therefore, the EventStoreFactory
property might be set as follows:

com.crossworlds.connectors.JDBC.JDBCEventStoreFactoryInstance

The default implementation of the pol1ForEvents() method calls this
getEventStore() method to retrieve a reference to the event store. For more
information, see [“Retrieving event records” on page 180

See also

lzetEventStore()}, [pollForEvents()|

getVersion()

Retrieves the version of the connector.

Syntax

public String getVersion();

Parameters

None.

Return values

A String indicating the version of the connector’s application-specific component.

Exceptions

Notes

None.

The connector framework calls the getVersion() method to retrieve the version of
the connector. The getVersion() methods is usually called as part of the connector
initialization process, from within the agentInit() method. The connector
framework also calls the getVersion() method to get a version for the connector.

Important: The CWConnectorAgent class provides a default implementation for the
getVersion() method. Therefore, you can either use this default
implementation or override the method to implement your own
versioning mechanism.

Chapter 10. CWConnectorAgent class 239

The CWConnectorAgent class provides a default implementation for the
getVersion() method, which retrieves the package name from standard class
information. It then gets the version from the manifest file present in the package.

gotApplEvent()

Sends a business object request to the connector framework. This is an
asynchronous request.

Syntax
public int gotApplEvent(CWConnectorBusObject theBusObj);
Parameters
theBusObj Is the business object instance being sent to the connector

framework.

Return values

An integer that indicates the outcome status of the event delivery. Compare this
integer value with the following outcome-status constants to determine the status:

CWConnectorConstant.SUCCEED

The connector framework successfully delivered the business object
to the connector framework.

CWConnectorConstant.FAIL
The event delivery failed.

CWConnectorConstant.CONNECTOR_NOT_ACTIVE
The connector is paused and therefore unable to receive events.

CWConnectorConstant.NO_SUBSCRIPTION_FOUND
No subscriptions for the event that the business object represents.

Exceptions

None.

Notes

The gotApplEvent () method sends the theBusObj business object to the connector
framework. The connector framework does some processing on the event object to
serialize the data and ensure that it is persisted properly. It then makes sure the
event is sent to the integration broker.

WebSphere InterChange Server
If the integration broker is InterChange Server, the connector framework
sends the event (as a business object) to InterChange Server across its
configured delivery transport mechanism (such as J]MS or CORBA IIOP).

240 Connector Development Guide for Java

— Other integration brokers
If the integration broker is a WebSphere message broker (WebSphere MQ
Integrator, WebSphere MQ Integrator Broker, or WebSphere Business
Integration Message Broker) or WebSphere Application Server, the connector
framework sends the event (as an XML message) to the integration broker
across its configured delivery transport mechanism of a JMS queue.

Before sending the business object to the connector framework, gotAppl1Event ()
checks for the following conditions and returns the associated outcome status if
these conditions are not met:

Condition Outcome status

Is the status of the connector active; that is, it is CONNECTOR_NOT_ACTIVE
not in a “paused” state? When the connector’s

application-specific component is paused, it no

longer polls the application.

Is there a subscription for the event? NO_SUBSCRIPTION_FOUND

Note: Because gotApplEvent () makes sure that the business object and verb to be
sent have a valid subscription, you do not need to call isSubscribed()
immediately before calling gotAppTEvent().

The connector uses the pol1ForEvents() method to poll the event store for
subscribed events to send to the integration broker. Within pol1ForEvents(), the
connector uses the gotApplEvent () method to send an event (represented as a
business object) to the connector framework. The connector framework then routes
this business object to the integration broker. Therefore, the poll method should
check the return code from gotApplEvent() to ensure that any errors that are
returned are handled appropriately. For example, until the event delivery is
successful, the poll method should not remove the event from the event store.
Instead, the poll method should update the event record’s status to reflect the
results of the event delivery based on the return code of gotApplEvent (). For more
information, see [“Sending the business object” on page 187

The gotApplEvent () method initiates an asynchronous execution of an event.
Asynchronous execution means that the method does not wait for receipt of the
event, nor does it wait for a response.

Note: To initiate a synchronous execution of an event, use the
executeCollaboration() method. Synchronous execution means that the
calling code waits for the receipt of the event, and for a response.

See also
fexecuteCollaboration()}, [isSubscribed ()}, [pollForEvents()|

isAgentCapableOfPolling()

Determines whether this connector process is capable of polling.

Chapter 10. CWConnectorAgent class 241

WebSphere InterChange Server
’(This method is only valid when the integration broker is InterChange Server.

Syntax

boolean isAgentCapable0fPolling();

Parameters
None.

Return values

A boolean value that indicates whether this connector is capable of polling. This
return value depends on the type of connector:

Connector process type Return value

Master (serial processing) true

Master (parallel processing) false

Slave (request) false

Slave (polling) true
Exceptions

None.
Notes

If a connector is configured to run in the single-process mode (with
ParallelProcessDegree set to 1, which is the default), the
isAgentCapab1e0fPol1ing() method always returns true because the same
connector process performs both event polling and request processing.

If a connector is configured to run in parallel-process mode (with
ParallelProcessDegree greater than 1), it consists of several processes, each with a
particular purpose, as shown in [Table 118

Table 118. Purposes of processes of a parallel connector

Connector process Purpose of connector process

Connector-agent master process Receives the incoming event from ICS and determines
to which of the connector’s slave processes to route
the event

Request-processing slave process Handles requests for the connector

Polling slave process Handles polling and event delivery for the connector

The return value of isAgentCapable0fPolling() depends on the purpose of the
connector-agent process that makes the call to this method. For a parallel-process
connector, this method returns true only when called from a connector whose
purpose is to serve as a polling slave. For more information on parallel-process
connectors, see the System Administration Guide in the IBM WebSphere InterChange
Server documentation set.

Note: Because the isAgentCapable0fPol1ing() method obtains information about
the parallel-process mode of a connector, it must run against a version of

242 Connector Development Guide for Java

InterChange Server (ICS) that supports this feature. Therefore, to behave as
documented here, isAgentCapable0fPol1ing() must run against a version
4.0 or later ICS. If run against an earlier version of ICS,
isAgentCapable0fPolling() always returns true.

isSubscribed()

Determines whether the integration broker has subscribed to a particular business
object with a particular verb.

Syntax
public boolean isSubscribed(String busObjName, String verb);
Parameters
busObjName Is the name of a business object for which subscriptions are to
checked.
verb Is the active verb for the business object.

Return values

Returns true if the integration broker is interested in receiving the specified
business object and verb; otherwise, returns false.

Exceptions

None.

Notes

The isSubscribed() method is part of the subscription manager, which tracks all
subscribe and unsubscribe messages that arrive from the connector framework and
maintains a list of active business object subscriptions. For a Java connector, this
subscription manager is part of the connector base class.

— WebSphere InterChange Server
If your business integration system uses InterChange Server, the poll method
can determine if any collaboration subscribes to the busObjName business
object with the specified verb. At initialization, the connector framework
requests its subscription list from the connector controller. At runtime, the
poll method can use isSubscribed() to query the connector framework to
verify that some collaboration subscribes to a particular business object. The
poll method can send the event only if some collaboration is currently
subscribed. For more information, see [“Business object subscription and|
[publishing” on page 12|

Chapter 10. CWConnectorAgent class 243

— Other integration brokers
If your business integration system uses a WebSphere message broker
(WebSphere MQ Integrator, WebSphere MQ Integrator Broker, or WebSphere
Business Integration Message Broker) or WebSphere Application Server, the
connector framework assumes that the integration broker is interested in all
the connector’s supported business objects. If the application-specific
component uses the isSubscribed() method to query the connector
framework about subscriptions for a particular business object, the method
returns true for every business object that the connector supports.

See also
koot ApplEvent()}, fpollForEvents()|

pollForEvents()
Polls an application’s event store for events that cause changes to business objects.

Syntax

public int pollForEvents();

Parameters
None.

Return values

An integer that indicates the outcome status of the polling operation.The
pol1ForEvents() method typically uses the following return codes:

CWConnectorConstant.SUCCEED
The polling action succeeded regardless of whether an event is
retrieved.

CWConnectorConstant.FAIL
The polling operation failed.

CWConnectorConstant.APPRESPONSETIMEOUT
The application is not responding.

Exceptions
None.

Notes

The connector framework calls the pol1ForEvents() method, at a time interval that
you can configure, so that the connector can detect any event in the application
that is interesting to a subscriber. The frequency at which the class library calls this
method depends on the poll frequency value that is configured by the
Pol1Frequency connector configuration property.

Note: The CWConnectorAgent class provides a default implementation for the
poll1ForEvents() method. Therefore, you can either use this default

244 Connector Development Guide for Java

implementation or override the method to implement your own polling
mechanism. To provide a different polling behavior, you can implement
your own version of pol1ForEvents().

The CWConnectorAgent class provides a default implementation for the
poll1ForEvents() method, which is based on the CWConnectorEvent event objects as
a standard interface for event management. For information on the behavior of this
default implementation, see [‘Implementing the pollForEvents() method” on page|
. This default implementation provides the basic steps for polling an event
store. If you override the default pol1ForEvents(), your implementation must
perform similar steps.

Note: If your connector executes in a parallel-process mode, it uses a separate
polling slave process to handle polling.

See also
leotApplEvent()], [isSubscribed ()

terminate()
Terminates the connector, performing any required clean-up tasks.

Syntax

public int terminate();

Parameters
None.

Return values

An integer that indicates the status value of the terminate() operation.

CWConnectorConstant.SUCCEED
The terminate operation succeeded.

CWConnectorConstant.FAIL
The terminate operation failed.

Exceptions

None.

Notes

The connector infrastructure calls the terminate() method when the connector is
shutting down. In your implementation of this method, it is good practice to free
all the memory and log off from the application. You must implement this method
for the connector.

Important: The CWConnectorAgent class does not provide a default implementation

for the terminate() method. Therefore, the connector class must
implement this method if resource clean-up is required.

Chapter 10. CWConnectorAgent class 245

246 Connector Development Guide for Java

Chapter 11. CWConnectorAtirType class

The CWConnectorAttrType class is the attribute-type class for Java connectors. It
defines static constants for data types of attributes in a business object definition.

Attribute-type constants

The CWConnectorAttrType class defines numeric and string equivalents for attribute
types. [Table 119|summarizes the attribute-type constants in the
CWConnectorAttrType class.

Table 119. Static constants of the CWConnectorAttrType class

Attribute data type

Boolean

Business object: multiple cardinality
Business object: single cardinality
Ciphertext

"Missing ID"

Date

Double

Float

Integer

Invalid data type

LongText

Object

String

Blank value

Ignore value

Numeric attribute-type constant

BOOLEAN
None
None
CIPHERTEXT
None

DATE
DOUBLE
FLOAT
INTEGER
INVALID TYPE_NUM
LONGTEXT
OBJECT
STRING
None
None

String attribute-type constant

BOOLSTRING
MULTIPLECARDSTRING
SINGLECARDSTRING
CIPHERTEXTSTRING
CXMISSINGID_STRING
DATESTRING
DOUBSTRING
FLTSTRING
INTSTRING

INVALID TYPE_STRING
LONGTEXTSTRING
None

STRSTRING

CxBlank

CxIgnore

© Copyright IBM Corp. 2000, 2004

247

248 Connector Development Guide for Java

Chapter 12. CWConnectorBOHandler class

The CWConnectorBOHandler class is the base class for the business object handlers of
a Java connector. It provides the code to implement and access one business object
handler. From this class, a connector developer must derive business-object-handler
classes (as many as needed) and implement the doVerbFor() method for the
business object handler.

Note: The CWConnectorBOHandler class extends the BOHandlerBase class of the
low-level Java connector library. For more information on the classes of the
low-level Java connector library, see |Chapter 26, “Overview of the low—levell
[Java connector library,” on page 403]

Important: All Java connectors must extend this class. The name
ConnectorBOHandler is the default name for the derived
business-object-handler class. Developers can either use this default
name or choose a different name for the derived business-object-
handler class. Regardless of the name of the class, developers must
implement the single method, doVerbFor(), in their derived
business-object-handler class. If your connector handles request
processing, your doVerbFor() method must provide verb processing for
all supported verbs for the business object (or objects) it handles. If
your connector does not provide request processing, it must still
provide verb processing for the Retrieve verb.

An connector includes one or more business object handlers to perform tasks for
the verbs in business objects. Depending on the active verb, a business object
handler can insert business object data into an application, retrieve data, delete
application data, or perform another task. For an introduction to request
processing and business object handlers, see [“Request processing” on page 22| For
information on how to implement a business object handler, see |ChaEter 4:|
[“Request processing,” on page 79|

able 120| summarizes the methods in the CWConnectorBOHandler class.

Table 120. Member methods of the CWConnectorBOHandler class

Member method Description Page
[CWConnectorBOHandler()| Creates a business-object-handler object. D49
doVerbFor() Performs the verb processing for the active verb of a business D50)
object.
etName(), Retrieves the name of the business-object-handler object. 52
setName() Sets the name of the business-object-handler object. 52

CWConnectorBOHandler()

Creates a business-object-handler object.

Syntax

public CWConnectorBOHandler();

© Copyright IBM Corp. 2000, 2004 249

Parameters

None.

Return values

A CWConnectorBOHandler object containing the newly created business-object-
handler object.

Notes

The CWConnectorBOHandler() constructor creates an instance of the
CWConnectorBOHandler class, to which business object definitions can refer for
performing the tasks of verbs in business objects. Typically, a connector developer
derives a class from CWConnectorBOHandler and implements the doVerbFor()
method for this derived class. The developer can call the constructor of this
derived class in the getConnectorBOHandlerForBO() method of the
CWConnectorAgent class to instantiate one or more business object handlers.

See also
lzetConnectorBOHandlerForBO()|

doVerbFor()

Performs the verb processing for the active verb of a business object.

Syntax

public int doVerbFor(CWConnectorBusObj theBusObj);

Parameters

theBusObj Is the business object whose active verb is to be processed.

Return values

An integer that indicates the outcome status of the verb operation. Compare this
integer value with the following outcome-status constants to determine the status:

CWConnectorConstant.SUCCEED
The verb operation succeeded.

CWConnectorConstant.FAIL
The verb operation failed.

CWConnectorConstant.APPRESPONSETIMEOUT
The application is not responding.

CWConnectorConstant.VALCHANGE
At least one value in the business object changed.

CWConnectorConstant.VALDUPES
The requested operation found multiple records in the application
database for the same key value.

CWConnectorConstant .MULTIPLE_HITS
The connector finds multiple matching records when retrieving
using non-key values. The connector returns a business object only
for the first matching record.

250 Connector Development Guide for Java

CWConnectorConstant .RETRIEVEBYCONTENT_FAILED
The connector was not able to find matches for Retrieve by
non-key values.

CWConnectorConstant.BO_DOES_NOT_EXIST
The connector performed a Retrieve operation, but the application
database does not contain a matching entity for the requested
business object.

Exceptions

Notes

ConnectionFailureException
Thrown if the connector has lost the connection with the
application.

VerbProcessingFailedException
Thrown if the verb processing fails.

The doVerbFor() method performs the action of the active verb in the theBusObj
business object. This method is the primary public interface for the business object
handler. However, when the connector framework invokes a business object
handler, it actually executes the low-level doVerbFor() method, inherited from the
BOHandlerBase class. The low-level doVerbFor() method calls this doVerbFor() (in
the business-object-handler class), which the connector developer must implement.
For more information, see [“Populating the return-status descriptor” on page 168|.

Important: The CWConnectorBOHandTer class does not provide a default
implementation of the doVerbFor() method. Therefore, the
business-object-handler class must implement this method.

If the doVerbFor() method needs to throw one of its exceptions, it first needs to
populate an exception-detail object that contains information about the exception.
In particular, the method must set the status code, as [Table 121|shows.

Table 121. Exception status codes for the doVerbFor() method

doVerbFor() exception Exception status code

ConnectionFailureException APPRESPONSETIMEOUT

VerbProcessingFailedException The same outcome status code that
doVerbFor() returns

To initialize an exception-detail object, follow these steps:

* Create the exception-detail object with the CWConnectorExceptionObject ()
constructor.

* Fill in the appropriate values of the exception-detail object with the accessor
methods in the CWConnectorExceptionObject class, as follows:

setMsg() Sets a message in the exception-detail object if
there is an informational, warning, or error
return message.

setStatus() Sets a status return code, which is an integer
whose value should be the same as shown in

Table 121,

Chapter 12. CWConnectorBOHandler class 251

The connector framework handles copying information from the exception-detail
object into the return-status descriptor that it returns to the integration broker:

 If doVerbFor() throws an exception, the connector framework copies the
exception information.

* When doVerbFor() is successful, the connector framework copies the outcome
status that doVerbFor() returns.

For more information on how to implement this method, see [“Implementing the|
ldoVerbFor() method” on page 153.|

See also
lsetErrorString()}, [setStatus()|

getName()
Retrieves the name of the business-object-handler object.

Syntax

protected String getName();

Parameters

None.

Return values

A String containing the name assigned to the business-object-handler
(CWConnectorBOHandler) object. If setName() has not been called on the
CWConnectorBOHandler object prior to this method, the method returns null.

Exceptions

None.

See also

setName()

setName()

Sets the name of the business-object-handler object.

Syntax
protected void setName(String name);
Parameters
name Specifies the name of the CWConnectorBOHandler object.

Return values

None.

Exceptions

None.

252 Connector Development Guide for Java

Notes

This name is typically the name of the business object the handler has been created
to process.

Chapter 12. CWConnectorBOHandler class 253

254 Connector Development Guide for Java

Chapter 13. CWConnectorBusObj class

The CWConnectorBusObj class gives a view of the business object to the Java
connectors developers. The class defines methods for getting information about the
business object definition, business object, and its attributes. It also includes
methods to obtain the metadata of the business object, and methods for reading
and modifying the business object instance. Each instance of CWConnectorBusObj
represents a single business object. Any manipulations of the business object has to
be from this class.

Note:

The CWConnectorBusObj class stores an internal handle to the
BusinessObjectInterface interface of the low-level Java connector library.
For more information on the classes of the low-level Java connector library,
see|Chapter 26, “Overview of the low-level Java connector library,” on pagel

1403

able 122| summarizes the methods in the CWConnectorBusObj class.
Table 122. Member methods of the CWConnectorBusObj class

Member method

fare AllPrimaryKeysTheSame()|

ompare

oVerbFor

Q. Q.
c
O

[zetAttr ASTHashtable()

getAttrIndex()

getAttrName()

getboolean Value()|

getBusinessObjectVersioni)|
etBusObjASIHashtable()

oetBusObjValue()

Description Page

Determines if the attribute values in the primary key of |259
a specified business object match those in the current
business object.

Compares a specified business object with the current [259
business object, based on the verb set, attribute count,
application-specific information for the business object,

and the attributes and attribute values.

Invokes the business object handler to perform the verb |260
processing for the active verb in the business object.

Returns business object information in a readable 261
format for logging and tracing.
Retrieves the value of the AppSpecificInfo field 262

associated with this business object definition or with a
specified attribute.

Parses the application-specific information for any 263
attribute in a business object, given the attribute’s name

or its position in the business object’s attribute list, into
name/value pairs.

Retrieves the number of attributes that are in the 264
business object’s attribute list.

Retrieves the ordinal position of a given attribute of a |265
business object.

Retrieves the name of an attribute that you specify by [265
its position in the business object’s attribute list.

Retrieves the value of a boolean attribute in a business |266
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the version of the business object definition. |266
Parses the application-specific information for a
business object definition into name/value pairs.

Retrieves the value of an attribute that contains a
business object, given the attribute’s name or its

position in the business object’s attribute list.

© Copyright IBM Corp. 2000, 2004

255

Table 122. Member methods of the CWConnectorBusObj class (continued)

Member method
getCardinality()

getDefault()

[zetDefaultboolean()|

getDefaultdouble()
etDefaultfloat

oetDefaultint()

oetDefaultlong()

oetdoubleValue

oetfloatValue()

oetintValue()

etLocale(),
etlongValue(

hQ |
[}
@
v}
(0]
8
[
c
=
wn
-
B.
=]
P

))
[¢°) (¢}
= =
g 5
3 o
= =
oy

= =

= =

(@

ocetMaxLeng

e(

getObjectCount()

[zetParentBusinessObject()|

getStringValue()

oetSupported Verbs()|

ogetTypeName

Description

Retrieves the cardinality of an attribute, given the
attribute’s name or its position in the business object’s
attribute list.

Retrieves the default value for this attribute, given the
attribute’s name or its position in the business object’s
attribute list.

Retrieves the default value of a double attribute in a
business object, given the attribute’s name or its
position in the business object’s attribute list.
Retrieves the version of the business object definition.
Retrieves the default value of a float attribute in a
business object, given the attribute’s name or its
position in the business object’s attribute list.
Retrieves the default value of a int attribute in a
business object, given the attribute’s name or its
position in the business object’s attribute list.
Retrieves the default value of a long attribute in a
business object, given the attribute’s name or its
position in the business object’s attribute list.
Retrieves the default value of a String attribute in a
business object, given the attribute’s name or its
position in the business object’s attribute list.
Retrieves the value of a double attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the value of a float attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the value of a int attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the locale associated with the business object.
Retrieves the value of a Tong attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the value of a TongText attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the maximum length of an attribute from the
business object definition

Retrieves the name of the business object definition that
the current business object references.

Retrieves the number of child business objects in an
attribute that is a business object array.

Retrieves the parent business object of the current
business object.

Retrieves the value of a String attribute in a business
object, given the attribute’s name or its position in the
business object’s attribute list.

Retrieves the supported verbs for the current business
object.

Retrieves the name of the attribute’s data type, given
the attribute’s name or its position in the business
object’s attribute list.

[l]

(o)

gq%
[¢]

3]
[N
\O

N
[\

8

NN
N
= o

N N N N
N N R N
= €8] \S) \S)

]
N
™

H
N
6]}

N
N
(o)}

N
R

276)

278

27

9]

N
x

7

N
N
\O

H
N
\O

N
x
o

N
oo
—_

256 Connector Development Guide for Java

Table 122. Member methods of the CWConnectorBusObj class (continued)

.i(%
8
S| o
A
gl 8
3|l 2
<! =

=}

o

(

etVerb()
etVerbAppText()|

asAllKeys()

[hasAllPrimaryKeys()|

asCardinalit

isBlank

islgnore

=] = — — — -E-
w w

2 z : 1

i il 5 E 2

o)l =} & B <

- = o o >

= @ o

) =] [=1

< - <

: ¢

7 e

=] 3

QO

2

~

o

<

isKeyAttr()

isMultipleCard (),

isObjectType()

isRequired Attr()

isType()

isVerbSupported ()|

objectClone

rune

fremoveAllObjects()|

[removeBusinessObjectAt()

Description

Retrieves the numeric type code for the data type of an
attribute, given the attribute’s name or its position in
the business object’s attribute list.

Retrieves the active verb for the business object.
Retrieves the value of the AppSpecificInfo field for a
particular verb.

Determines if the current business object has values for
all its primary- and foreign-key attributes.

Determines if the current business object has values for
all its primary-key attributes.

Determines if the current business object has values for
any primary-key attribute.

Determines if the attribute has the same cardinality as a
specified cardinality value, given the attribute’s name
or its position in the business object’s attribute list.
Determines if the name of the attribute matches a
specified name, given the attribute’s name or its
position in the business object’s attribute list.
Determines if the data type of the attribute matches a
specified data type name.

Determines if an attribute is present or not on the
business object.

o o NH w'ﬁ
@ ® ol x|
= o8 o8] I 0Ol do

®

N
a1

8

28

a1

286

286

Determines if an attribute is a part of the foreign key of

the business object, given the attribute’s name or its
position in the business object’s attribute list.
Determines if an attribute is a part of the foreign key of
the business object, given the attribute’s name or its
position in the business object’s attribute list.
Determines whether the value is the special Ignore
value for the attribute with the specified name or at the
specified position in the attribute list.

Determines if an attribute is a part of the business
object primary key, given the attribute’s name or its
position in the business object’s attribute list.
Determines if an attribute has multiple cardinality,
given the attribute’s name or its position in the business
object’s attribute list.

Determines if an attribute’s data type is an object type;
that is, if it is a complex attribute (an array or a
subobject).

Determines if an attribute is a required attribute for the
business object, given the attribute’s name or its
position in the business object’s attribute list. If the
attribute is required, it must have a value.

Determines if an attribute value has the same data type
as a specified value.

Determines whether the verb passed to the method is
supported by this business object definition.

Copies an existing business object.

Removes the child business objects from the current
(parent) business object and sets their attributes to null.
Removes all child business objects in an attribute that is
a business object array.

Removes a child business object at a specified position
in a business object array.

288

288

289

289

290

290

291

291

292,
292

293

293

Chapter 13. CWConnectorBusObj class

257

Table 122. Member methods of the CWConnectorBusObj class (continued)

Member method Description Page

setAttrValues() Sets the attributes for the current business object based

on the values in a vector.

[setbooleanValue()| Sets the value of a boolean attribute to a specified 294
value, given the attribute’s name or its position in the
business object’s attribute list.

Sets the value of an attribute that contains a business 295
object to a specified value, given the attribute’s name or
its position in the business object’s attribute list.

[setDefaultAttrValues()| Sets default values for attributes which currently have
the Blank or Ignore attribute values.
setdoubleValue Sets the value of a double attribute to a specified value,

given the attribute’s name or its position in the business
object’s attribute list.

Sets the value of a float attribute to a specified value, 298
given the attribute’s name or its position in the business
object’s attribute list.

Sets the value of an int attribute to a specified value, 299
given the attribute’s name or its position in the business
object’s attribute list.

setLocale() Sets the locale associated with the business object. 299

setLongTextValue() Sets the value of an longText attribute to a specified 300
value, given the attribute’s name or its position in the
business object’s attribute list.

setString Value() Sets the value of a String attribute to a specified value, |301

given the attribute’s name or its position in the business

object’s attribute list.

setVerb Sets the active verb for a business object. 302,

As [Table 122| shows, the CWConnectorBusObj class combines the following business
object information into a single class:

* Business object definition and business object

fcompare()| [getVerb()|

doVerbFor() getVerb AppText()|
hasAnyActivePrimaryKey()f
hasAllKeys()|
hasAnyActivePrimaryKey()
hasName()|

etBusinessObijectVersion()
etBusObjASIHashtable()|

etlongValue()
etName()

etParentBusinessObject()|

* Business object array

|getObjectCountg 2] removeBusinessObijectAt()|

fremoveAllObjects()|

* Business object attributes

IareAllPrimarVKeysTheSame()| |getT¥EeNum! !l

258 Connector Development Guide for Java

lgetAppText ()] hasCardinalit
etAttrASIHashtable()| lhasName()
hasType(
isBlank()|

setbooleanValue
setBusObjValue()
setDefaultAttrValues()|
setdoubleValue

etMaxLength()
etStringValue(

getTypeName(2|

areAllPrimaryKeysTheSame()

Determines if the attribute values in the primary key of a specified business object
match those in the current business object.

Syntax

public final boolean areAl1PrimaryKeysTheSame(CWConnectorBusObj theBus0bj);
Parameters

theBusObj Is the business object whose primary key values are compared to

those of the current business object.

Return values

Returns true if all primary-key values in the bus0Obj object match those in the
current business object; otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the attribute position specified is not valid for the
definition of this business object.

WrongAttributeException
Thrown if the specified attribute .

See also
lhasAnyActivePrimaryKey/()}, hasAllKeys(), [hasAllPrimaryKeys()|

compare()

Compares a specified business object with the current business object, based on the
verb set, attribute count, application-specific information for the business object,
and the attributes and attribute values.

Chapter 13. CWConnectorBusObj class 259

Syntax

public boolean compare(CWConnectorBusObj theBusObj);

Parameters

theBusObj Is the business object to compare with the current business object.

Return values

Returns true if all of the following information in the bus0Obj object match those in
the current business object:

* value of the active verb
* application-specific information for the business object definition
* attribute count

e attributes and attribute values.

For each failure, the method logs a message and returns false.

Exceptions

AttributeNotFoundException
Thrown if an attribute is not found in the definition of this
business object.

WrongAttributeException
Thrown if the attribute types are invalid for the attributes being
compared.

doVerbFor()

Invokes the business object handler to perform the verb processing for the active
verb in the business object.

Syntax

public final int doVerbFor(CWConnectorReturnStatusDescriptor rtnStat);

Parameters

rtnStat Is an empty return-status descriptor object, which the doVerbFor()
method populates with a status and message for the execution
status of this method. The calling code can access the execution
status from this return-status descriptor.

Return values

An integer that specifies the outcome status of the verb operation. Compare this
integer value with the following outcome-status constants to determine the status:

CWConnectorConstant.SUCCEED
The verb operation succeeded.

CWConnectorConstant.FAIL
The verb operation failed.

CWConnectorConstant.APPRESPONSETIMEOUT
The application is not responding.

260 Connector Development Guide for Java

CWConnectorConstant.VALCHANGE
At least one value in the business object changed.

CWConnectorConstant.VALDUPES
The requested operation found multiple records for the same key
value.

CWConnectorConstant .MULTIPLE_HITS
The connector finds multiple matching records when retrieving
with non-key values. The connector will only return the first
matching record in a business object.

CWConnectorConstant .RETRIEVEBYCONTENT_FAILED
The connector was not able to find matches for Retrieve by
non-key values.

CWConnectorConstant.BO_DOES_NOT_EXIST
The requested business object entity does not exist in the database.

Exceptions

Notes

None.

The doVerbFor() method invokes the business object handler
(CWConnectorBOHandler object) to perform the action specified by the active verb in
the business object. The business object handler provides all the operations for the
verbs that the business object definition supports. The active verb is one of the list
of verbs that the business object definition contains. To determine the active verb
for a business object, you can use the getVerb() method.

Within the doVerbFor() method, the empty passed-in rtnStat return-status
descriptor is populated with a status and message to indicate the execution status
of the verb processing. The calling code can then use the accessor methods of the
CWConnectorReturnStatusDescriptor class to obtain execution information about
the verb processing from the populated return-status descriptor.

This doVerbFor() method is normally called from the pol1ForEvents() method in
the connector class (CWConnectorAgent) to obtain the application information for an
event. The default implementation of pol1ForEvents() calls the getB0O() method of
the CWConnectorEventStore class to obtain application information. The getB0()
method calls the doVerbFor() method in the CWConnectorBusObj class. If you do not
use getBO() in your poll1ForEvents() method, you can call doVerbFor() directly
from pollForEvents() by passing in an instantiated return-status descriptor. You
can then obtain verb-processing status from the populated return-status descriptor
once doVerbFor() exits.

See also

(in CWConnectorBOHandTer), fzetVerb()}, pollForEvents()}, |setVerb()|

dump()

Returns business object information in a readable format for logging and tracing.

Syntax

public String dump();

Chapter 13. CWConnectorBusObj class 261

Parameters

None.

Return values

A String that contains the formatted business object information.

Exceptions

None.

getAppText()

Retrieves the value of the AppSpecificInfo field associated with this business
object definition or with a specified attribute.

Syntax

public String getAppText();
public String getAppText(String attrName);
public String getAppText(int position);

public final String getAppText(String tagName, String delimiter);

public final String getAppText(String attrName, String tagName,
String delimiter);

public final String getAppText(int position, String tagName,
String delimiter);

Parameters

attrName Is the name of an attribute whose application-specific information
is parsed.

delimiter Is the delimiter between each name-value pair. By convention, the
colon (:) is used as the delimiter for building the name-value pairs.

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

tagName Is the name of the tag in the application-specific information whose

value the method retrieves.

Return values

A String object that holds the application-specific information from the
appropriate AppSpecificInfo field:

* The first form of getAppText() retrieves application-specific information for the
business object definition associated with the current business object. This
method can return null if there is no application-specific information for the
business object definition.

* The second and third forms of getAppText() retrieve the application-specific
information for the attribute, which can be specified by name or by its position
within the business object definition. This method can return null if there is no
application-specific information for the attribute.

Exceptions

The second, third, fifth, and sixth forms of the getAppText() method can throw the
following exception:

262 Connector Development Guide for Java

AttributeNotFoundException
Thrown when the specified attribute cannot be found.

The fourth, fifth, and sixth forms of the getAppText () method can throw the
following exception:

WrongASIFormatException
Thrown if the application-specific information does not conform to the
name-value format.

Notes
The getAppText () method provides the following forms:

* This first form retrieves the business-object-level application-specific information;
that is, it obtains the application-specific information for the business object
definition associated with the current business object.

* The second and third forms retrieve the attribute application-specific
information; that is, they obtain the application-specific information for an
attribute, which you can identify through its name (attrName) or position within
the business object definition (position).

* The fourth, fifth, and sixth forms retrieve application-specific information when
this information is formatted into name-value pairs of the form:

tagName=value

The tagName specifies the name of the tag (property) that appears in the
application-specific information. The delimiter specifies the symbol that separates
each name-value pair. By convention, the delimiter is usually the colon (:). The
fourth form retrieves a name-value pair from the business-object-level
application-specific information, while the fifth and sixth forms retrieve a
name-value pair from the application-specific information of a specified
attribute.

For example, suppose a business object definition contains the following
application-specific information:

TN=tablel:SCH=schemal

The following call to getAppText() retrieves the value of the name-value pair for
the TN tag:

String TNvalue = busObj.getAppText("TN", ":");

Note: To retrieve all name-value pairs as a Java Hashtable object, use the
getBusObjASIHashtable() or the getAttrASIHashtable() method for
business-object-level or attribute application-specific information,
respectively.

See also
lzet Attr ASIHashtable()}, |getBusObjASIHashtable()}, [getVerb AppText()|

getAttrASIHashtable()

Parses the application-specific information for any attribute in a business object,
given the attribute’s name or its position in the business object’s attribute list, into
name-value pairs.

Chapter 13. CWConnectorBusObj class 263

Syntax

public final Hashtable getAttrASIHashtable(int attriName,
String delimiter);

public final Hashtable getAttrASIHashtable(int position,
String delimiter);

Parameters
attrName Is the name of an attribute whose application-specific information
is parsed.
delimiter Is the delimiter between each name-value pair. Use the colon (:) as
the delimiter for building the name-value pairs.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

A java.util.Hashtable object that contains the name-value pairs in the attribute’s
application-specific information.

Exceptions

AttributeNotFoundException
Thrown if the specified attribute cannot be found; for example, if
the position specified is not valid for the definition of this business
object.

WrongASIFormatException
Thrown if the application-specific information does not conform to
the name-value format.

Notes

The getAttrASIHashtable() method parses the application-specific information for
any attribute and returns a hash table of the name-value pairs. For example, these
name/value pairs could appear as:

ASI=CN=colname:FK=attrl:UID=attr2:...
This example assumes that a colon (:) is specified as the delimiter.

Note: To retrieve one particular name-value pair from attribute application-specific
information, use the getAppText () method.

See also
lzet AppText()}, |zetBusObjASIHashtable()|

getAttrCount()

Retrieves the number of attributes that are in the business object’s attribute list.

Syntax

public int getAttrCount();

264 Connector Development Guide for Java

Parameters

None.

Return values
An integer that specifies the number of attributes in the attribute list.

Exceptions

None.

See also
getAttrIndex()

getAttrindex()

Retrieves the ordinal position of a given attribute of a business object.

Syntax
public int getAttrIndex(String attrName);
Parameters
attrName Is the name of the attribute in the business object definition.

Return values

The ordinal position of the attribute within the business object definition.

Exceptions

AttributeNotFoundException
Thrown if the attribute name specified is not valid for the
definition of this business object.

getAttrName()

Retrieves the name of an attribute that you specify by its position in the business
object’s attribute list.

Syntax
public String getAttrName(int position);
Parameters
position Is an integer that specifies the ordinal position of the attribute in

the business object’s attribute list.

Return values

The name of the specified attribute.

Chapter 13. CWConnectorBusObj class 265

Exceptions

AttributeNotFoundException
Thrown if the attribute position specified is not valid for the
definition of this business object.

getbooleanValue()

Retrieves the value of a boolean attribute in a business object, given the attribute’s

name or its position in the business object’s attribute list.

Syntax

public boolean getbooleanValue(String attriName);
public boolean getbooleanValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The booTean value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-boolean attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

See also

etAttrName()}, [getBusObjValue(),, [getDefaultboolean()}, [getdoubleValue()},
etfloatValue()}, [zetintValue()}, lzetlongValue(), [zetLongTextValue()|,
etStringValue()|, setbooleanValue()|

getBusinessObjectVersion()
Retrieves the version of the business object definition.

Syntax

public String getBusinessObjectVersion();

Parameters

None.

Return values
The version number of the business object.

266 Connector Development Guide for Java

Exceptions

None.

Notes

The version is represented by the major, minor, and point components -x.y.z. For
example: - 1.0.2.

getBusObjASIHashtable()

Parses the application-specific information for a business object definition into
name-value pairs.

Syntax
public Hashtable getBusObjASIHashtable(String delimiter);
Parameters
delimiter Is the delimiter between each name-value pair. Use the colon (:) as

the delimiter for building the name-value pairs.

Return values

A java.util.Hashtable object that contains the name-value pairs in the
application-specific information of the business object definition.

Exceptions

WrongASIFormatException
Thrown when the application-specific information does not
conform to the name-value pair format.

Notes

The getBusObjASIHashtable() method parses the application-specific information
for the business object definition associated with the current business object and
returns a hash table of the name-value pairs. For example, these name-value pairs
could appear as:

ASI=CN=colname:FK=attrl:UID=attr2:...
This example assumes that a colon (:) is specified as the delimiter.

Note: To retrieve one particular name-value pair from business-object-level
application-specific information, use the getAppText () method.

See also
leet AppText()}, [getAttrASIHashtable()|

getBusObijValue()

Retrieves the value of an attribute that contains a business object, given the
attribute’s name or its position in the business object’s attribute list.

Chapter 13. CWConnectorBusObj class 267

Syntax

public CWConnectorBusObj getBusObjValue(String attriName);
public CWConnectorBusObj getBusObjValue(int position);

public CWConnectorBusObj getBusObjValue(String attriName,
int arraylndex);

public CWConnectorBusObj getBusObjValue(int position,
int arraylIndex);

Parameters
attrName Is the name of an attribute whose value is retrieved.
arraylndex Is the integer that specifies the ordinal position of the business
object within the business object array (when the attribute contains
a business object array).
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The business object contained in the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on an attribute that is not a
business object.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

Notes
The getBusObjValue() method provides two forms:

* The first form expects the name or position of an attribute that is an object type.
It returns the business object at the specified attribute. It assumes that the
attribute has single cardinality.

* The second form expects either the name or position of an attribute and an
index into a business object array. It returns the child business object at the
specified index position in the business object array. It assumes that the attribute
has multiple cardinality.

See also

etAttrName()}, [gzetbooleanValue()}, [zetdoubleValue()], [eetfloatValue(),
etintValue()|, [zetlongValue()], [eetParentBusinessObject()], [getObjectCount()},
etStringValue()|, setBusObjValue()|

getCardinality()

Retrieves the cardinality of an attribute, given the attribute’s name or its position
in the business object’s attribute list.

Syntax

public String getCardinality(String attrName);
public String getCardinality(int position);

268 Connector Development Guide for Java

Parameters

attrName Is the name of an attribute whose cardinality is retrieved.

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

Return values
A String containing the cardinality of the attribute. The value of the string is either:

1 attribute has single cardinality or is a simple attribute
n attribute has multiple cardinality
Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
lhasCardinality()}, lisMultipleCard ()|

getDefault()

Retrieves the default value for this attribute, given the attribute’s name or its
position in the business object’s attribute list.

Syntax

public String getDefault(String attrName);
public String getDefault(int position);

Parameters

attrName Is the name of an attribute whose default value is retrieved.

position Is an integer that specifies the ordinal yposition of an attribute in
the business object’s attribute list.

Return values

The String containing the default value of the attribute. If no default value exists
for the attribute, the method returns an empty string.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

getDefaultboolean()

Retrieves the default value of a boolean attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Chapter 13. CWConnectorBusObj class 269

Syntax

public boolean getDefaultboolean(String attriName);
public boolean getDefaultboolean(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

The default value of the specified attribute, as a boolean value, or null if there is
no default value for the attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-boolean attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

See also

etbooleanValue()}, [zetDefaultdouble()|, [gzetDefaultfloat(), [zetDefaultint()],
etDefaultlong()}, lzetDefaultString()|

getDefaultdouble()

Retrieves the default value of a double attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public double getDefaultdouble(String attriName);
public double getDefaultdouble(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

The default value of the specified attribute, as a double value, or null if there is no
default value for the attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-double attribute.

270 Connector Development Guide for Java

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the default value is not in the correct format.

See also

etDefaultboolean()}, |getDefau1tﬂoat()|,, |getDefaultint()l, |getDefaultlong()l,
etDefaultString()|, lgetdoubleValue()|

getDefaultfloat()

Retrieves the default value of a float attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public float getDefaultfloat(String attriName);
public float getDefaultfloat(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

The default value of the specified attribute, as a float value, or null if there is no
default value for the attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-float attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the default value is not in the correct format.

See also

etDefaultboolean()}, leetDefaultdouble()], getDefaultﬂoat()L, IgetDefaultint()l,,
etDefaultlong()], |getDefaultString()], lzetfloatValue()|

Chapter 13. CWConnectorBusObj class 271

getDefaultint()

Retrieves the default value of a int attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public int getDefaultint(String attrName);
public int getDefaultint(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

The default value of the specified attribute, as an int value, or null if there is no
default value for the attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-int attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the default value is not in the correct format.

See also

etDefaultboolean()}, [zetDefaultdouble()], [cetDefaultfloat(),, [getDefaultlong()},
etDefaultString()}, [zetintValue()|

getDefaultlong()

Retrieves the default value of a Tong attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public Tong getDefaultlong(String attrName);
public long getDefaultlong(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

272 Connector Development Guide for Java

Return values

The default value of the specified attribute, as a Tong value, or null if there is no
default value for the attribute.

Exceptions
WrongAttributeException

Thrown if the method is called on a non-1ong attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the default value is not in the correct format.

See also

etDefaultboolean()}, |getDefaultdouble()}, |getDefaultfloat(), |getDefaultlong ()},
etDefaultString()|, [getintValue()|

getDefaultString()

Retrieves the default value of a String attribute in a business object, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public String getDefaultString(String attriName);
public String getDefaultString(int position);

Parameters
attrName Is the name of an attribute whose default value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

The default value of the specified attribute, as a String value, or null if there is no
default value for the attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-String attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also

etDefaultboolean()}, |getDefaultdouble()}, [getDefaultfloat(), [getDefaultint()},
etDefaultlong()], |zetString Value()|

Chapter 13. CWConnectorBusObj class 273

getdoubleValue()

Retrieves the value of a double attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.

Syntax

public double getdoubleValue(String attrName);
public double getdoubleValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The doubTe value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-double attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the double value is not in the correct format.

See also

etAttrName()}, [getbooleanValue()|, leetBusObjValue()|, [zetDefaultdouble()},
etfloatValue()|, [getintValue()], lretlongValue(), lzetLongTextValue(),
etStringValue()], setdoubleValue()|

getfloatValue()

Retrieves the value of a float attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.

Syntax

public float getfloatValue(String attrName);
public float getfloatValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

274 Connector Development Guide for Java

Return values
The float value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-float attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the float value is not in the correct format.

See also

etAttrName()l, [zetbooleanValue()|, lgetBusObjValue()}, [cetDefaultfloat(),
etdoubleValue()], [getintValue(), |getlongValue(), lgetLongTextValue()],
etStringValue(), lsetfloatValue()|

getintValue()

Retrieves the value of a int attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.
Syntax
public int getintValue(String attriName);
public int getintValue(int position);
Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The int value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-int attribute.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the int value is not in the correct format.

Chapter 13. CWConnectorBusObj class 275

See also

etAttrName()}, [getbooleanValue()|, lgetBusObjValue()}, [zetDefaultint()|,
etdoubleValue()], [getfloatValue()|, [getlongValue()}, lgetLongTextValue()},
etStringValue()|, setintValue()|

getLocale()
Retrieves the locale associated with the business object.

Syntax

public String getlLocale();

Parameters

None.

Return values

The String that contains the name of the locale associated with the current
business object.

Exceptions

None.

Notes

The getLocale() method returns the business-object locale, which is associated
with the business object. This locale indicates the language and code encoding
associated with the data in the business object, not with the name of the business
object definition or its attributes (which must be characters in the code set
associated with the U.S. English locale, en_US). If the business object does not have
a locale associated with it, the connector framework assigns the
connector-framework locale as the business-object locale.

See also
fcreateBusODbij()}, lzetGlobalLocale()}, [setLocale()|

getLongTextValue()

Retrieves the value of a LongText attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.

Syntax

public String getLongTextValue(String attriName);
public String getlLongTextValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

276 Connector Development Guide for Java

Return values
The String that contains the LongText value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-LongText attribute.

AttributeNotFoundException

Thrown if the position or name specified is not valid for the
definition of this business object.

See also

etAttrName()}, |getbooleanValue()|,, loetBusObjValue()l, [zetDefaultlong ()],

etdoubleValue()], leetfloatValue()], [getintValue(), [getlongValue()| [getStringValue(),
setLongTextValue()

getlongValue()

Retrieves the value of a long attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.

Syntax

public Tong getlongValue(String attriName);
public Tong getlongValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The Tong value of the specified attribute.

Exceptions

WrongAttributeException
Thrown if the method is called on a non-long attribute.

AttributeNotFoundException

Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeNullValueException
Thrown if the specified attribute has null as a value.

AttributeValueException
Thrown if the Tong value is not in the correct format.

See also

etAttrName()}, |getbooleanValue()|,, loetBusObjValue()}, |getDefaultlong()|,,
etdoubleValue()], |getfloatValue()|, [getintValue(), lzetLongTextValue()
etStringValue()

N

Chapter 13. CWConnectorBusObj class 277

getMaxLength()

Retrieves the maximum length of an attribute from the business object definition.

Syntax

public int getMaxLength(String attrName);
public int getMaxLength(int position);

Parameters
attrName Is the name of an attribute whose maximum length is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

An integer that specifies the maximum length, in bytes, that an attribute value can
have.

Exceptions

AttributeNotFound
Thrown if the position or name specified is not valid for the
definition of this business object.

InvalidAttributePropertyException
Thrown if the method is called on an object-type attribute.

getName()

Retrieves the name of the business object definition that the current business object
references.

Syntax

public String getName();

Parameters
None.

Return values

The String object containing the name of a business object definition.

Exceptions

None.

See also
lzetBusinessObjectVersion()

getObjectCount()

Retrieves the number of child business objects in an attribute that is a business
object array.

278 Connector Development Guide for Java

Syntax

public int getObjectCount(String attrName);
public int getObjectCount(int position);

Parameters
attrName Is the name of an attribute whose number of child objects is
determined.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

An integer that indicates the number of child business objects in a business object
array.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
lzetBusObjValue()|

getParentBusinessObject()
Retrieves the parent business object of the current business object.

Syntax

public CWConnectorBusObj getParentBusinessObject();

Parameters
None.

Return values

The business object that contains the parent business object, or null if the current
business object is a root and has no parent.

Exceptions

None.

See also
loetBusObjValue()|

getStringValue()

Retrieves the value of a String attribute in a business object, given the attribute’s
name or its position in the business object’s attribute list.

Chapter 13. CWConnectorBusObj class 279

Syntax

public String getStringValue(String attrName);
public String getStringValue(int position);

Parameters
attrName Is the name of an attribute whose value is retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
The String value of the specified attribute.

Exceptions

WrongAttributeException

Thrown if the method is called on an attribute that is not have an
object type.

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also

etAttrName()}, [zetbooleanValue()}, loetBusObjValue()}, lzetDefaultString()],
etdoubleValue()], [zetfloatValue()|, [cetintValue(), [getlongValue()],
etLongTextValue()}, |setStringValue()|

getSupportedVerbs|()

Retrieves the list ofverbs that the current business object supports.

Syntax

public String[] getSupportedVerbs();

Parameters

None.

Return values

An array of String objects, each of which contains a supported verb of the
business object. Compare these String values with the following verb constants:

CWConnectorConstant.VERB_CREATE
The string representation for the Create verb.

CWConnectorConstant.RETRIEVE
The string representation for the Retrieve verb.

CWConnectorConstant.UPDATE
The string representation for the Update verb.

CWConnectorConstant.DELETE
The string representation for the Delete verb.

280 Connector Development Guide for Java

If your application supports other verbs, create your own verb constants to
represent these verbs.

See also
lzetVerb()|, [isVerbSupported ()

getTypeName()

Retrieves the name of the attribute’s data type, given the attribute’s name or its
position in the business object’s attribute list.

Syntax

public String getTypeName(String attrName);
public String getTypeName(int position);

Parameters
attrName Is the name of an attribute whose string value of its data type is
retrieved.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

A String that contains the name of the attribute’s data type. Compare this String
value with the attribute-type constants shown in [Table 123[to determine the type.

Table 123. String attribute-type constants

Attribute data type String attribute-type constant

Boolean BOOLSTRING

Business object: multiple cardinality MULTIPLECARDSTRING

Business object: single cardinality SINGLECARDSTRING
CIPHERTEXTSTRING

Date DATESTRING

Double DOUBSTRING

Float FLTSTRING

Integer INTSTRING

Invalid data type INVALID_TYPE_STRING

Long text LONGTEXTSTRING

String STRSTRING

Note: The CWConnectorAttrType class defines the string attribute-type constants

listed in [Table 123

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
leetTypeNum()}, [hasType()|

Chapter 13. CWConnectorBusObj class 281

getTypeNum()

Retrieves the numeric type code for the data type of an attribute, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public int getTypeNum(String attrName);
public int getTypeNum(int position);

Parameters

attrName

position

Return values
An integer that

Is the name of an attribute whose numeric value of its data type is
retrieved.

Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

specifies the data type of the attribute. Compare this integer value

with the attribute-type constants shown in|Table 124| to determine the type.

Table 124. Numeric attribute-type constants

Attribute data type Numeric attribute-type constant

Boolean BOOLEAN
CIPHERTEXT

Date DATE

Double DOUBLE

Float FLOAT

Integer INTEGER

Invalid data type INVALID_TYPE_NUM

Long text LONGTEXT

Object OBJECT

String STRING

Note: The CWConnectorAttrType class defines the numeric attribute-type constants

listed in [Table 124

Exceptions

AttributeNotFoundException

See also

Thrown if the position or name specified is not valid for the
definition of this business object.

leetTypeName()}, hasType()|

getVerb()

Retrieves the active verb for the business object.

Syntax

public String getVerb();

282 Connector Development Guide for Java

Parameters

None.

Return values

A String object that contains the active verb for the business object. If there is no
active verb for the business object, the returned String is empty.

Exceptions

None.

Notes

The business object definition contains the list of verbs that the business object
supports. The getVerb() method enables you to determine the active verb for the
current business object.

See also
lisVerbSupported(), [setVerb()|

getVerbAppTexi()

Retrieves the value of the AppSpecificInfo field for a particular verb.

Syntax

public String getVerbAppText(String verb);

Parameters

verb Is the verb for which the value of the AppSpecificInfo field is to
be retrieved.

Return values

A String object that holds the application-specific information for the verb. This
information is stored in AppSpecificInfo field for the specified verb. If the
business object does not have application-specific information for the verb, the
method returns an empty string.

Exceptions
None.

See also
leet AppText()}, [getVerb()|

hasAllKeys()
Determines if the current business object has values for all its primary- and
foreign-key attributes.
Syntax

public final boolean hasAl1Keys();

Chapter 13. CWConnectorBusObj class 283

Parameters

None.

Return values

Returns true if the current business object has values for all primary and foreign
key attributes; otherwise returns false.

Exceptions

WrongAttributeException
Thrown if the key is set on a multiple cardinality attribute.

AttributeNotFoundException
Thrown if a key attribute cannot be found within the business
object definition.

Notes

The hasAT1Keys () method checks if all the primary and foreign keys have been
populated. This method is typically used to identify the row for updates.

See also
lareAllPrimaryKeysTheSame()l, JhasAnyActivePrimaryKey(), hasAllPrimaryKeys()|

hasAllPrimaryKeys()

Determines if the current business object has values for all its primary-key
attributes.

Syntax

public final boolean hasAl1PrimaryKeys();

Parameters

None.

Return values

Returns true if the current business object has values for all primary key attributes;
otherwise returns false.

Exceptions

WrongAttributeException
Thrown if the key is set on a multiple cardinality attribute.

AttributeNotFoundException
Thrown if a primary key attribute cannot be found within the
business object definition.

Notes

The hasAT1PrimaryKeys () method checks if all the primary keys have been
populated. This method is typically used to identify the row for updates.

284 Connector Development Guide for Java

See also
areAllPrimaryKeysTheSame()}, [hasAnyActivePrimaryKey(), lhasAllKeys()|

hasAnyActivePrimaryKey()
Determines if the current business object has values for any primary-key attribute.

Syntax

public final boolean hasAnyActivePrimaryKey();

Parameters

None.

Return values

Returns true if the current business object has a value for any primary key
attribute; otherwise returns false.

Exceptions

WrongAttributeException
Thrown if the key is set on a multiple cardinality attribute.

AttributeNotFoundException
Thrown if a key attribute cannot be found within the business
object definition.

Notes

The hasAnyActivePrimaryKey() method checks if at least one primary key has been
populated. This method is typically used to identify the row for deletes.

See also
lareAllPrimaryKeysTheSame()}, [hasAllKeys()}, hasAllPrimaryKeys()|

hasCardinality()

Determines if the attribute has the same cardinality as a specified cardinality value,
given the attribute’s name or its position in the business object’s attribute list.

Syntax

public boolean hasCardinality(String attrName, String card);
public boolean hasCardinality(int position, String card);

Parameters
attrName Is the name of an attribute whose cardinality is tested.
card Is the cardinality value to use for checking. Valid cardinality values
are:
1 - single cardinality
n - multiple cardinality
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Chapter 13. CWConnectorBusObj class 285

Return values

Returns true if the cardinality of the attribute matches the specified value;
otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

Notes

This method is used to test cardinality of complex attributes (subobjects and
arrays).

See also
loetCardinality ()}, lisMultipleCard()|

hasName()

Determines if the name of the attribute matches a specified name, given the
attribute’s name or its position in the business object’s attribute list.

Syntax
public boolean hasName(int position, String name);

Parameters
name Is the name of the attribute to test for at the specified attribute

position.

position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

Returns true if the attribute name matches the specified name; otherwise, returns
false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

hasType()
Determines if the data type of the attribute matches a specified data type name.

Syntax

public boolean hasType(String attrName, int typeName);
public boolean hasType(int position, String typeName);

public boolean hasType(String attrName, int typeNum);
public boolean hasType(int position, String typeNum);

286 Connector Development Guide for Java

Parameters

attrName Is the name of an attribute whose cardinality is tested.

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

typeName Is the string value of the data type of the attribute to test for. Use
one of the string attribute-type constants in [Table 123| to specify the
data type.

typeNum Is the numeric value of the data type of the attribute to test for.

Use one of the numeric attribute-type constants in [Table 124| to
specify the data type.

Return values

Returns true if the attribute type matches the passed-in type name; otherwise,
returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
leetTypeName()}, leetTypeNum(),, hasName()|

isAttrPresent()

Determines if a given attribute is present or not on a business object.

Syntax
public boolean isAttrPresent(String attrName);
Parameters
attrName Is the name of an attribute whose value is checked for blank.

Return values

Returns true if the attribute exists or false if it does not.

isBlank()

Determines whether the value is the special Blank attribute value for the attribute
with the specified name or at the specified position in the attribute list.

Syntax

public boolean isBlank(String attriName);
public boolean isBlank(int position);
Parameters

attrName Is the name of an attribute whose value is checked for blank.

Chapter 13. CWConnectorBusObj class 287

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

Return values
Returns true if the attribute value equals the blank value or false if it does not.

Exceptions

None.

See also

slgnore()

isForeignKeyAttr()

Determines if an attribute is a part of the foreign key of the business object, given
the attribute’s name or its position in the business object’s attribute list.

Syntax

public boolean isForeignKeyAttr(String attriName);
public boolean isForeignKeyAttr(int position);

Parameters
attrName Is the name of an attribute that is checked for participation in a
foreign key.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

Returns true if the attribute is a foreign key, or part of the foreign key, for the
business object; otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
lhasAllKeys()|, fisKeyAttr()|

islgnore()
Determines whether the value is the special Ignore value for the attribute with the
specified name or at the specified position in the attribute list.
Syntax

public boolean isIgnore(String attrName);
public boolean isIgnore(int position);

288 Connector Development Guide for Java

Parameters

attrName Is the name of an attribute whose value is checked for “ignore”.

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

Return values

Returns true if the attribute value equals the special “ignore” value or false if it
does not.

Exceptions
None.

See also

isKeyAttr()

Determines if an attribute is a part of the business object primary key, given the
attribute’s name or its position in the business object’s attribute list.

Syntax

public boolean isKeyAttr(String attrName);
public boolean isKeyAttr(int position);

Parameters

attrName Is the name of an attribute that is checked for participation in a
key.

position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.

Return values

Returns true if the attribute is a primary key, or part of the primary key, for the
business object; otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also

are AllPrimaryKeysTheSame()], IhasAnvActivePrimaryKey()I,, |hasAllKeys()l,
hasAllPrimaryKeys()}, lisForeignKey Attr()

isMultipleCard()

Determines if an attribute has multiple cardinality, given the attribute’s name or its
position in the business object’s attribute list.

Chapter 13. CWConnectorBusObj class 289

Syntax

public boolean isMultipleCard(String attriName);
public boolean isMultipleCard(int position);

Parameters
attrName Is the name of an attribute that is checked for multiple cardinality.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

Returns true if the attribute is a multiple cardinality; otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

See also
loetCardinality()}, [hasCardinality()|

isObjectType()

Determines if an attribute’s data type is an object type; that is, if it is a complex
attribute (an array or a subobject).

Syntax

public boolean isObjectType(String attrName);
public boolean isObjectType(int position);

Parameters
attrName Is the name of an attribute that is checked for an object data type.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

Returns true if the attribute is a business object or a complex attribute, such as a
business object array or subobject; otherwise, returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

isRequiredAttr()

Determines if an attribute is a required attribute for the business object, given the
attribute’s name or its position in the business object’s attribute list. If the attribute
is required, it must have a value.

290 Connector Development Guide for Java

Syntax

public boolean isRequiredAttr(String attriName);
public boolean isRequiredAttr(int position);

Parameters
attrName Is the name of an attribute that is checked to see if it is required.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

Returns true if the attribute is required for the business object; otherwise, returns
false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

isType()
Determines if an attribute value has the same data type as a specified value.

Syntax

public boolean isType(String attrName, Object value);
public boolean isType(int position, Object value);

Parameters
attrName Is the name of an attribute whose data type is compared with the
specified attribute value.
position Is an integer that specifies the ordinal position of an attribute in
the business object’s attribute list.
value Is the value whose data type is compared with the attribute value.

Return values

Returns true if the type of the attribute matches the passed-in type; otherwise,
returns false.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

isVerbSupported()

Determines whether the verb passed to the method is supported by this business
object definition.

Chapter 13. CWConnectorBusObj class 291

Syntax

public boolean isVerbSupported(String verb);

Parameters

verb Is the verb that the method determines if the current business
object definition supports.

Return values

Returns true if the specified verb is supported; otherwise, returns false.

Exceptions

None.

See also
loetVerb()), lzetSupported Verbs()|

objectClone()
Copies an existing business object.

Syntax

public CWConnectorBusObj objectClone();

Parameters

None.

Return values
A copy of the current business object, including its attributes and verbs.

Exceptions

None.

Notes

This method copies the business object attributes and also its verb.

prune()

Removes the child business objects from the current (parent) business object and
sets their attributes to null.

Syntax

public final void prune();

Parameters

None.

Return values
None.

292 Connector Development Guide for Java

Exceptions

AttributeNotFoundException
Thrown if the object-type attribute is not found in the definition of
this business object.

WrongAttributeException
Thrown if the attribute is not valid (not an object-type attribute).

removeAllObjects()
Removes all child business objects in an attribute that is a business object array.

Syntax

public void removeAll0bjects(String attrName);
public void removeAll0bjects(int position);

Parameters
attrName Is the name of an attribute whose business objects are removed
from its business object array.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values
None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

removeBusinessObjectAt()
Removes a child business object at a specified position in a business object array.
Syntax

public void removeBusinessObjectAt(String attrName, int index);
public void removeBusinessObjectAt(int position, int index);

Parameters
attrName Is the name of an attribute whose business objects are removed
from its business object array.
index Is an integer that specifies the position for a child business object
in a business object array.
position Is an integer that specifies the ordinal position of an attribute in

the business object’s attribute list.

Return values

None.

Chapter 13. CWConnectorBusObj class 293

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

Notes

After the remove operation, the business object array is compacted. Indexes are
decremented for all business objects that have an index number higher than that of
the removed business object.

setAttrValues()
Sets the attributes for the current business object based on the values in a vector.

Syntax

public final void setAttrValues(Vector attrValues);

Parameters

attrValues Is a java.util.Vector object that contains a value for each
attribute in the current business object.

Return values

None.

Exceptions

AttributeNotFoundException
Thrown if a value specified in the attrlialues vector does not have
an associated attribute in the definition of this business object.

AttributeValueException
Thrown if the attribute value in the attrValues vector is not
compatible with its associated attribute’s data type.

WrongAttributeException
Thrown if the value is being set on an object-type attribute.

setbooleanValue()

Sets the value of a boolean attribute to a specified value, given the attribute’s name
or its position in the business object’s attribute list.

Syntax

public void setbooleanValue(String attrName, boolean newlal);
public void setbooleanValue(int position, boolean newlal);

Parameters
attrName Is the name of the attribute whose value you want to set.
position Is an integer that specifies the ordinal position of the attribute in

the business object’s attribute list.

294 Connector Development Guide for Java

newVal Is the booTlean value to assign to the attribute.

Return values

None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

WrongAttributeException
Thrown if the value is being set on a non-boolean attribute.

See also

etbooleanValue()}, [zetDefaultboolean()}, [setBusObjValue()|, setdoubleValue()),
setfloatValue(), [setintValue()}, lsetLongTextValue()}, [setStringValue()|

setBusObjValue()

Sets the value of an attribute that contains a business object to a specified value,
given the attribute’s name or its position in the business object’s attribute list.

Syntax

public void setBusObjValue(String attrName, CWConnectorBusObj newlVal);
public void setBusObjValue(int position, CWConnectorBusObj newlal);

public void setBusObjValue(String attrName, CWConnectorBusObj newlal,
int arrayIndex);

public void setBusObjValue(int position, CWConnectorBusObj newlVal,
int arraylndex);

Parameters

attrName Is the name of the attribute whose value you want to set.

arraylndex Is the integer that specifies the ordinal position of the business
object within the business object array (when the attribute contains
a business object array).

position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.

newVal Is the booTean value to assign to the attribute.

Return values
None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

Chapter 13. CWConnectorBusObj class 295

AttributeNullValueException
Thrown if the business object array to hold the business object
could not be created (for a multiple cardinality attribute).

WrongAttributeException
Thrown if the value is being set on a non-object attribute.

AttributeValueException
Thrown if the value to be set is not a valid business object.

SpecNameNotFoundException
Thrown if the business object definition for the business object
array could not be found. This exception is returned only by the
forms of setBusObjValue() that pass in the arrayIndex argument.

Notes
The setBusObjValue() method provides two forms:

* The first form expects the name or position of an attribute that is an object type
and the business object to assign to this attribute. It assumes that the attribute
has single cardinality.

¢ The second form expects:
— the name or position of the attribute to set
— the business object to assign to the attribute
— an index position within the business object array at which to assign the
object value

It assumes that the attribute has multiple cardinality.

See also

etBusObjValue()}, [setbooleanValue()}, [setdoubleValue()}, [setfloatValue()},
setintValue()|, setLongTextValue()}, [setStringValue()|

setDEEId()

Sets the ObjectEventld attribute to a specified event identifier (ID).

Syntax

public void setDEEId(String eventId);

Parameters

eventld Is the event identifier you want to assign to the ObjectEventld
attribute.

Return values
None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value to be set is not a valid business object.

296 Connector Development Guide for Java

Notes

In the duplication event elimination feature, the business object must store the
event ID for its event record in its ObjectEventld attribute. Normally, the
ObjectEventld is reserved for use by the integration broker. To access this attribute
for the duplication event elimination feature, use the setDEEId () method. For more
information, see the description of duplicate event elimination in |Chapter 5, ”Event|
Inotification,” on page 113

setDefaultAttrValues()

Sets default values for attributes which currently have the Blank or Ignore values.

Syntax

public void setDefaultAttrValues();

Parameters

None.

Return values

None.

Exceptions

Notes

None.

The setDefaultAttrValues() method sets default values as valid values, not Ignore
values. For complex attributes (whose type a business object or business object
array), the method creates an empty container. The method sets default values for
instances of subobjects within the business object.

See also

setbooleanValue(), setBusObjValue()}, setdoubleValue()}, |setfloatValue()l,
setintValue()|, setLongTextValue()|, [setStringValue()|

setdoubleValue()

Sets the value of a double attribute to a specified value, given the attribute’s name
or its position in the business object’s attribute list.

Syntax

public void setdoubleValue(String attrName, double newVal);
public void setdoubleValue(int position, double newlal);

Parameters
attrName Is the name of the attribute whose value you want to set.
position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.
newVal Is the double value to assign to the attribute.

Chapter 13. CWConnectorBusObj class 297

Return values

None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

WrongAttributeException
Thrown if the value is being set on a non-double attribute.

Notes

If the connector-specific property MaxDoublePrecision has been set, the
setdoubleValue() method uses this rather than the default locale precision to
specify the precision of the input value.

See also

etDefaultdouble()}, [zetdoubleValue()}, [setbooleanValue()}, [setBusObjValue(),,
setfloatValue(), [setintValue()], setLongTextValue()}, [setStringValue()|

setfloatValue()

Sets the value of a float attribute to a specified value, given the attribute’s name
or its position in the business object’s attribute list.

Syntax

public void setfloatValue(String attrName, float newlal);
public void setfloatValue(int position, float newVal);

Parameters
attrName Is the name of the attribute whose value you want to set.
position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.
newVal Is the float value to assign to the attribute.

Return values
None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

298 Connector Development Guide for Java

WrongAttributeException
Thrown if the value is being set on a non-float attribute.

Notes

If the connector-specific property MaxFloatPrecision has been set, the
setfloatValue() method uses this rather than the default locale precision to
specify the precision of the input value.

See also

etDefaultfloat()|, |zetﬂoatValue() _[setbooleanValue()], IsetBusObiValued,,
setdoubleValue()), setintValue()|, setLongTextValue()}, [setStringValue()|

setintValue()

Sets the value of an int attribute to a specified value, given the attribute’s name or
its position in the business object’s attribute list.

Syntax

public void setintValue(String attrName, int newVal);
public void setintValue(int position, int newlal);

Parameters

attrName Is the name of the attribute whose value you want to set.

position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.

newVal Is the int value to assign to the attribute.

Return values

None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

WrongAttributeException
Thrown if the value is being set on a non-integer attribute

See also

etDefaultint()}, |getintValue()l, ketbooleanValue(), lsetBusObjValue()},
setdoubleValue()], etfloatValue()|, lsetLongTextValue()], [setString Value()|

setLocale()

Sets the locale for the business object.

Chapter 13. CWConnectorBusObj class 299

Syntax

public void setLocale(String localeName);

Parameters

localeName Is the name of the locale to associate with the current business
object.

Return values

None.

Exceptions

I1legallocaleException
Thrown if the locale name specified is not valid.

Notes

The setLocale() method sets the business-object locale, which identifies the locale
that is associated with the business object. This locale indicates the language and
code encoding associated with the data in the business object, not with the name of
the business object definition or its attributes (which must be characters in the code
set associated with the U.S. English locale, en_US). If the business object does not
have a locale associated with it, the connector framework assigns the
connector-framework locale as the business-object locale.

See also

setLongTextValue()

Sets the value of an LongText attribute to a specified value, given the attribute’s
name or its position in the business object’s attribute list.

Syntax

public void setLongTextValue(String attrName, String newVal);
public void setLongTextValue(int position, String newlVal);

Parameters
attrName Is the name of the attribute whose value you want to set.
position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.
newVal Is a String that contains the LongText value to assign to the

attribute.

Return values
None.

300 Connector Development Guide for Java

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

WrongAttributeException
Thrown if the value is being set on a non-LongText attribute

See also

etLongTextValue()|, [setbooleanValue()|, [setBusObjValue(),, setdoubleValue(),
setfloatValue()), [setStringValue()|

setStringValue()

Sets the value of a String attribute to a specified value, given the attribute’s name
or its position in the business object’s attribute list.

Syntax

public void setStringValue(String attrName, String newlal);
public void setStringValue(int position, String newlal);

Parameters
attrName Is the name of the attribute whose value you want to set.
position Is an integer that specifies the ordinal position of the attribute in
the business object’s attribute list.
newVal Is the String value to assign to the attribute.

Return values
None.

Exceptions

AttributeNotFoundException
Thrown if the position or name specified is not valid for the
definition of this business object.

AttributeValueException
Thrown if the value passed in is not a valid value for the particular
attribute.

WrongAttributeException
Thrown if the value is being set on a non-String attribute.

See also

etDefaultString()L, [zetStringValue()), [setbooleanValue()}, |setBusObiValue()|,,
setdoubleValue()], setfloatValue()], setintValue()|, lsetLongTextValue()|

Chapter 13. CWConnectorBusObj class 301

setVerb()

Sets the active verb for a business object.

Syntax
public void setVerb(String newlVerb);
Parameters
newVerb Is a verb that is in the verb list of the business object definition to

which the business object refers.

Return values
None.

Exceptions

InvalidVerbException
Thrown if the verb passed in is not a supported verb in the
business object definition.

Notes

The business object definition contains the list of verbs that the business object
supports. The verb that you set as the active verb must be on this list. Only one
verb is active at a time for a business object.

All business objects typically support the Create, Retrieve, and Update verbs. A

business object might support additional verbs, such as Delete. Every connector
that supports the business object must implement all the verbs that it supports.

See also
oetVerb()

302 Connector Development Guide for Java

Chapter 14. CWConnectorConstant class

The CWConnectorConstant class defines the constants shared by all Java connectors.
The CWConnectorConstant class provides the following groups of static constants:

* [“Outcome-status constants”|

* |“Verb constants”

» [“Connector-property constants” on page 304

Note: The CWConnectorConstant class extends the CxStatusConstants class of the
low-level Java connector library. For more information on the classes of the
low-level Java connector library, see |Chapter 26, “Overview of the low-level|
[Java connector library,” on page 403]

Outcome-status constants
Many methods of the Java connector library return an integer outcome status to

indicate the success of the method. le 125 summarizes the static outcome-status
constants, which are defined in the CWConnectorConstant class.

Table 125. Outcome-status constants of the CWConnectorConstant class

Constant name Meaning

SUCCEED The operation completed successfully.

APPRESPONSETIMEOUT The application is not responding.

BO_DOES_NOT_EXIST The requested business object in a retrieve does not exist.
CONNECTOR_NOT_ACTIVE The connector has attempted to deliver an event but the connector

controller is not active; it has been paused. Only when the integration
broker is InterChange Server does a connector controller exist.

FAIL The operation failed for an unspecified reason.

MULTIPLE_HITS The integration broker requested a retrieve-by-content but the connector
found more than one matching record. The status indicates that more
than one record matched the search requirements.

NO_SUBSCRIPTION_FOUND No subscriptions for the event.

RETRIEVEBYCONTENT_FAILED Retrieve by content failed.

UNABLETOLOGIN The connector cannot log into the application.

VALCHANGE The operation successfully completed and changed the value of the
object in the target application.

VALDUPES The requested operation was not needed because the object in the

application already had the requested characteristics.

Verb constants

When the doVerbFor() method of a Java connector needs to refer to one of the
basic verb values, it can use the verb constants that the CWConnectorConstant class
defines. [Table 125(summarizes the static verb constants.

Table 126. Verb constants of the CWConnectorConstant class

Constant name Meaning

VERB_CREATE String representation of the Create verb
VERB_RETRIEVE String representation of the Retrieve verb
VERB_UPDATE String representation of the Update verb
VERB_DELETE String representation of the Delete verb

© Copyright IBM Corp. 2000, 2004 303

Table 126. Verb constants of the CWConnectorConstant class (continued)

Constant name Meaning
VERB_EXISTS String representation of the Exists verb
VERB_RETRIEVEBYCONTENT String representation of the RetrieveByContent verb

Verb constants are useful in the doVerbFor() method.

Connector-property constants

Many methods of the Java connector library return an integer outcome status to
indicate the success of the method. [Table 125 summarizes the static outcome-status
constants, which are defined in the CWConnectorConstant class.

Table 127. Connector-property constants of the CWConnectorConstant class

Constant name Meaning

HIERARCHICAL The connector property is hierarchical; that is, it contains a combination
of multiple string values and child properties.

SIMPLE The connector property is simple; that is, it contains only string values,
no child properties.

SINGLE_VALUED The connector property contains only a single value.

MULTI_VALUED The connector property contains one or more values.

304 Connector Development Guide for Java

Chapter 15. CWConnectorEvent class

The CWConnectorEvent class allows you to create and interact with connector event
objects. An event object represents the occurred event in the application. The event
store builds these event objects for each event pulled from the application. The
information in each event object is then used to build and retrieve the business
object for further processing by the connector infrastructure.

able 128 summarizes the methods in the CWConnectorEvent class.

Table 128. Member methods of the CWConnectorEvent class

Member method Description
CWConnectorEvent()| Creates a new event object.
etBusObjName() Retrieves the name of the business object associated with the

event object.

Retrieves the connector identifier (ID) from the event object.
Retrieves the effective date from the event object.

Retrieves the event identifier (ID) from the event object.

etEventSource Retrieves the name of the event source from the event
object.
getEventTimeStamE“l Retrieves the event timestamp from the event object.
etIDValues Retrieves the data values of the business object from the
event object.
etKeyDelimiter()| Retrieves the key delimiter from the event object.
getPrioritﬁg) Retrieves the priority from the event object.
etStatus(), Retrieves the status from the event object.

etTriggeringUser

Retrieves the triggering user from the event object.
Retrieves the verb from the event object.

EEEEEE B EEEE EE g

setEventSource Sets the event source to a specified value in the event object.

CWConnectorEvent()

Creates a new event object.

Syntax

public CWConnectorEvent();

public CWConnectorEvent(String eventID, String busObjName,
String verb, String IDvalues, int status, int priority,
String connectorID, Date eventTimeStamp, Date effectiveDate,
String triggeringUser, String description, String delimiter);

Parameters
busObjName Is the business object associated with the event.
connectorlD Is the connector identifier (ID) for the connector associated with
the event.
description Is an optional description of the event.
delimiter Is the delimiter that separates the key values of the event.

effectiveDate Is the effective date for the event.

© Copyright IBM Corp. 2000, 2004 305

eventID Specifies the event identifier for the event.

eventTimeStamp
Is the timestamp for the event.
IDvalues Is the data for the business object associated with the event.
priority Is an integer event priority
status Is one of the following event-status constants to associate with the
event:

CWConnectorEventStatus.
.READY_FOR_POLL
.SUCCESS
.UNSUBSCRIBED

CWConnectorEventStatus
CWConnectorEventStatus
CWConnectorEventStatus

CWConnectorEventStatus.
.ERROR_POSTING_EVENT
CWConnectorEventStatus.

CWConnectorEventStatus

IN_PROGRESS

ERROR_OBJECT_NOT_FOUND

ERROR_PROCESSING_EVENT

triggeringUser Is the user identifier (ID) associated with the user that triggered

the event.

verb Is the verb for the busObjName business object.

Return values

A CWConnectorEvent object containing the newly created event.

Notes

The CWConnectorEvent () constructor has two forms:

* The first form creates an empty event object.

* The second form passes data to initialize the new event object. The second form
of the CWConnectorEvent () constructor provides a way to initialize the members

of the event object.

Note: The only way to initialize the event’s description is through the second form
of the CWConnectorEvent () constructor. There is no accessor method for this

member because connectors do not use the event description.

getBusObjName()

Retrieves the name of the business object associated with the event object.

Syntax

public String getBusObjName();

Parameters

None.

Return values

A String object containing the name of the business object.

Exceptions
AttributeNullValueException

Thrown if the business object name is null.

306 Connector Development Guide for Java

Notes

An event store might not persist the name of the business object. In some cases,
the business object name might be determined when it is created based on content.

getConnectorlD()
Retrieves the connector identifier (ID) from the event object.

Syntax

public String getConnectorID();

Parameters

None.

Return values

A String containing the connector ID, which identifies the connector to which the
event is assigned.

Exceptions

AttributeNullValueException
Thrown if the connector ID is null.

Notes

Currently, the connector ID is only used for tracing purposes.

getEffectiveDate()
Retrieves the effective date from the event object.

Syntax

public Date getEffectiveDate();

Return values

A Date object containing the event’s effective date, which is the date on which the
event becomes active and should be processed.

Exceptions

AttributeNullValueException
Thrown if the event’s effective date is null.

Notes

An effective date is useful when your event detection mechanism handles
future-event processing; that is, it stores events that must be processed at some
particular point in the future. The effective date indicates when the event should
be processed.

Chapter 15. CWConnectorEvent class 307

getEventiD()
Retrieves the event identifier (ID) from the event object.

Syntax

public String getEventID();

Parameters
None.

Return values

A String object containing the event ID, which uniquely identifies the event.

Exceptions

AttributeNullValueException
Thrown if the event ID is null.

Notes

If the event store is an event table in a database, the event ID is the key value of
the table row. For other event stores, the event ID can be a file name and the
position of the record within the file.

getEventSource()
Retrieves the name of the event source from the event object.

Syntax

public String getEventSource();

Return values

A String object containing the event source, which is the source from which the
event originated.

Exceptions

AttributeNullValueException
Thrown if the evemt source is null.

Notes

The event source is often used by connectors that require this information for
archiving. For example, the WebSphere Business Integration Adapter for JText
stores the name of the WebSphere MQ queue.

getEventTimeStamp()
Retrieves the event timestamp from the event object.

Syntax

public Date getEventTimeStamp();

308 Connector Development Guide for Java

Parameters

None.

Return values

A String object containing the event timestamp, which is the time the event was
created.

Exceptions

AttributeNullValueException
Thrown if the event timestamp is null.

getiDValues()

Retrieves the data values of the business object from the event object.

Syntax

public String getIDValues();

Parameters
None.

Return values

A String object containing the business object’s data values, which identify the
business object.

Exceptions

AttributeNullValueException
Thrown if the data of the business object is null.

Notes

As a standard, these data values should be the key values for the business object;
that is, data values in name/value pair format. They should include whatever
attribute values are needed to uniquely identify a business object to be retrieved
during polling.

getKeyDelimiter()
Retrieves the key delimiter from the event object.

Syntax

public String getKeyDelimiter();

Parameters
None.

Return values

A String object containing the event’s key delimiter.

Chapter 15. CWConnectorEvent class 309

Exceptions

AttributeNullValueException
Thrown if the key delimiter is null.

getPriority()
Retrieves the priority from the event object.

Syntax

public int getPriority();

Parameters
None.

Return values

An integer to indicate the priority of the event.

Exceptions

None.

Notes

Use the event priority to determine the correct processing order of the event.

getStatus()

Retrieves the status from the event object.

Syntax

public int getStatus();

Parameters
None.

Return values

An integer value that represents the event status. Compare this integer value with
the following event-status constants to determine the status:
CWConnectorEventStatus.IN_PROGRESS
CWConnectorEventStatus.READY_FOR_POLL
CWConnectorEventStatus.SUCCESS
CWConnectorEventStatus.UNSUBSCRIBED
CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND
CWConnectorEventStatus.ERROR_POSTING_EVENT
CWConnectorEventStatus.ERROR_PROCESSING_EVENT

Exceptions

None.

Notes

The Java connector library provides the getStatus() method as a public method in
the CWConnectorEvent class. However, it does 1ot provide a public method for

310 Connector Development Guide for Java

setting this status. To set the event status, use one of the following Java connector
library methods from the CWConnectorEventStore class:

* |getNextEvent()

* [recoverInProgressEvents()|
. resubmitArchivedEvents()|
* |setEventStatus()|

+ |lupdateEventStatus()|

getTriggeringUser()

Retrieves the triggering user from the event object.

Syntax

public String getTriggeringUser();

Parameters

None.

Return values

A String object containing the triggering user for the event, which is the user ID
that triggering the event.

Exceptions

AttributeNullValueException
Thrown if the name of the triggering user is null.

Notes

You can use the triggering user value to avoid ping pong in a standard way when
synchronizing between two systems.

getVerb()

Retrieves the verb from the event object.

Syntax

public String getVerb();

Parameters

None.

Return values

A String object containing the verb associated with the event.

Exceptions

AttributeNullValueException
Thrown if the verb is null.

Chapter 15. CWConnectorEvent class 311

setEventSource()

Sets the event source to a specified value in the event object.

Syntax
public void setEventSource(String eventSource);
Parameters
eventSource Specifies the new event source to assign to the event.

Return values
None.

Exceptions

None.

312 Connector Development Guide for Java

Chapter 16. CWConnectorEventStatusConstants class

The CWConnectorEventStatusConstants class defines static constants for status
values that an event can have.

Event-status constants

The event-status constants are typically used in the poll method to track the
current status of an event.|Table 129 summarizes the static event-status constants in

the CWConnectorEventStatusConstants class.

Table 129. Static constants of the CWConnectorEventStatusConstants class

Event-status constant Meaning

ERROR_OBJECT_NOT_FOUND Error in finding the event in the application database

ERROR_POSTING_EVENT Error in sending the event to InterChange Server. A description of
the error can be appended to the event description in the event
record.

ERROR_PROCESSING_EVENT Error in processing the event. A description of the error can be
appended to the event description in the event record.

IN_PROGRESS Event is in progress

READY_FOR_POLL Ready for poll

SUCCESS Sent to connector framework

UNSUBSCRIBED No subscriptions for event

shows when the different event-status constants are set.

© Copyright IBM Corp. 2000, 2004 313

Event object:

UNSUBSCRIBED ERROR_OBJECT_NOT_FOUND ERROR_POSTING_EVENT

Event object: Event object:

Does the

event have a
subscription?

Was the
event sent to

the connector
framework?,

Can the entity
data be
retrieved?

Event object:
IN_PROGRESS

SUCCESS

} Event object:

A

®

Event object:

READY_FOR_POLL

E—

@

Event record:

READY_FOR_POLL }

Event Store

Figure 76. Event-status values for the poll method

As shows, the poll method takes the following steps to maintain the
status of an event object:

1.

The fetchEvents() retrieves the Ready-for-Poll event record and creates an
event object with the READY_FOR_POLL status.

The getNextEvent () method retrieves a Ready-for-Poll event object from the
events vector and update its status to IN_PROGRESS.

The poll method uses the isSubscribed() method to check whether the

retrieved event has any subscriptions.

* If no subscriptions exist, the poll method uses updateEventStatus() to
change the event object’s status to UNSUBSCRIBED.

e If subscriptions do exist, execution of the poll event continues with step @

The poll method calls the getB0O() method to retrieve the application entity’s

data to populate the business object.

» If getBO() cannot locate the application entity’s data, the poll method uses
updateEventStatus() to change the event object’s status to
ERROR_OBJECT_NOT_FOUND.

* If the application entity data is found, execution of the poll event continues
with step

314 Connector Development Guide for Java

5. The poll method calls the gotApplEvent () method to send the business object to
the connector framework, where it is then routed to its destination. The poll
method uses the updateEventStatus() method to change the event object’s
status to reflect the success of gotApplEvent (). For a list of event status values
that correspond to the gotAppl1Event () return codes, see[Table 100 on page 191}

Chapter 16. CWConnectorEventStatusConstants class 315

316 Connector Development Guide for Java

Chapter 17. CWConnectorEventStore class

The CWConnectorEventStore class is a base class to provide a Java connector with
the ability to access an event store. An event store is the application’s mechanism
for persistently storing events. The application stores event records in the event
store for events that occur in the application. The connector retrieves events from
the event store and processes them for transferal to the integration broker. From
this class, a connector developer must derive an event-store class and implement
some of its methods for the event store.

Important: All Java connectors must extend this class to access the application’s
event store. To access the application’s event store through the Java
CWConnectorEventStore class, developers must implement the following
abstract methods in their derived event-store class: deleteEvent(),
fetchEvents(), recoverInProgressEvents(), resubmitArchivedEvents(),
and setEventStatus(). To access an archive store, developers must
implement the archiveEvent () method.

able 130| summarizes the methods in the CWConnectorEventStore class.

Table 130. Member methods of the CWConnectorEventStore class

Member method Description Page

(CWConnectorEventStore()| Creates an event-store object 317

archiveEvent(2] Archives the specified event in the application’s archive 318
store with appropriate status.

[cleanupResources()| Releases resources that the poll method has used to access
the event store.

deleteEvent() Deletes the event from the application’s event store. 319

fetchEvents() Retrieves a specified number of Ready-for-Poll events 320
from the application’s event store.

Builds a business object based on the information in an
event from the event store.

oetNextEvent() Retrieves the next event object from the eventsToProcess
vector.

recoverInProgressEvents()| Recovers any In-Progress events in the event store. 324

resubmitArchivedEvents()| Copies the specified archived event from the application’s [326]

archive store to the application’s event store and changes
the event status to READY_FOR_POLL.

setEventStatus(), Sets the status of an event in the event store. 326
setEventsToProcess()| 327
setTerminate()| Sets the internal terminate-connector flag to true. 328
updateEventStatus()| Updates the event status both in the application’s event 328§

store and in the event.

CWConnectorEventStore()

Creates an event-store object.

Syntax

public CWConnectorEventStore();

© Copyright IBM Corp. 2000, 2004 317

Parameters

None.

Return values
A CWConnectorEventStore object containing the newly created event store.

Notes

The CWConnectorEventStore() constructor creates a new event store and initializes
the single data member, eventsToProcess. The eventsToProcess member is a Java
Vector object to hold retrieved event objects.

archiveEvent()
Archives the specified event in the application’s archive store with appropriate
status.
Syntax
public int archiveEvent(String eventID);
Parameters
eventID Specifies the event ID of the event to archive.

Return values

An integer that indicates the outcome status of the archive operation. Compare this
integer value with the following outcome-status constants to determine the status:

CWConnectorConstant.SUCCEED
The archiving of the event succeeded.

CWConnectorConstant.FAIL
The archiving of the event failed.

Exceptions

ArchiveFailedException
Thrown when the underlying application is unable to archive the
event.

InvalidStatusChangeException
Thrown if the connector tries to update the event status with one
that is invalid for the application.

Notes

The arhiveEvent () method is usually called from the poll method,
pol1ForEvents() to archive processed or unsuccessful events to the event archive
store.

Important: The archiveEvent () method is not an abstract method because it is a
synchronized method. However, the event-store class must implement
this method to provide the ability to archive an event to the archive
store.

318 Connector Development Guide for Java

See also
(deleteEvent()}, [pollForEvents()|

cleanupResources()

Release resourses that the polling method has used to access the event store.

Syntax

public void cleanupResources();

Parameters

None.

Return values
None.

Exceptions

None.

Notes

The cleanupResources () method is useful as one of the last steps in the
poll1ForEvents() method. In it, you can include code that releases resources that
the pol1ForEvents() method has allocated to access the event store. For example, if
the event store is implemented as an event table, the pol1ForEvents () method
might have allocated SQL cursors to access the event tables. In this case, you can
include statements in cleanupResources() that close these cursors, thereby freeing
memory usage and releasing unneeded cursors.

Important: The cleanupResources() method is not an abstract method. However,
neither does it provide a default implementation. Therefore, to provide
the ability to clean up resources used to access your event store, you
must override the default cleanupResources() with your own
implementation.

See also
pollForEvents()

deleteEvent()

Deletes the event from the application’s event store.

Syntax

public abstract void deleteEvent(String eventID);
Parameters

eventID Specifies the event ID of the event to delete.

Return values
None.

Chapter 17. CWConnectorEventStore class 319

Exceptions

DeleteFailedException
Thrown when the underlying application’s attempt to delete the
event from the event store has failed.

Notes

The deleteEvent () method is used mainly during archiving. It deletes the event
from the event store after this event has been successfully moved to the
application’s archive store.

Important: The deleteEvent() method is an abstract method.Therefore, the
event-store class must implement this method to provide the ability to
delete an event from the event store.

See also

fetchEvents()

Retrieves a specified number of Ready-for-Poll events from the application’s event
store.

Syntax

public abstract Vector fetchEvents(int pollQuantity)

Parameters

pollQuantity ~ The number of events to fetch from the application store.

Return values
None.

Exceptions

ConnectionFailureException
Thrown when connection could not be established.

EventProcessingException
Thrown when an error occurs fetching events after the connection
is established.

Notes

The fetchEvents() method searches the event store for event records with the
READY_FOR_POLL status and puts them in the event. The number of events that
fetchEvents() retrieves is specified by pol1Quantity, which correlates with the
Pol1Quantity connector configuration property. For each retrieved event, the
method must create a CWConnectorEvent event object, put this event object into a
Java Vector, and return the Vector. The fetchEvents() method determines the
order in which event objects are stored in the eventsToProcess vector.

Important: The fetchEvents() method is an abstract method. Therefore, the
event-store class must implement this method to provide the ability to
fetch READY_FOR_POLL events from the event store.

320 Connector Development Guide for Java

Note: The fetchEvents() method is usually called from the poll method,
pol1ForEvents().

Note: A previous signature of fetchEvents() with no input parameter and no
return value has been deprecated. This version replaces it.

See also
leetNextEvent()}, [pollForEvents()|

getBO()

Builds a business object based on the information in an event from the event store.

Syntax

public CWConnectorBusObj getBO(CWConnectorEvent eventObject);
public CWConnectorBusObj getBO(CWConnectorEvent eventObject,

int status,
String Retrievelerb);

Parameters
eventObject Is the event that contains the business object information.
status Is a status value set by some method or exception within the

getBO() method.

RetrieveVerb Is used to override the default RetrieveByContent verb used to
fetch the application record for which an event was detected.
getB0O() will use the specified verb instead of RetrieveByContent to
fetch the modified record from the application.

Return values

A CWConnectorBusObj object containing a new business object based on information
retrieved from the application’s database. If the method was unable to retrieve the
eventObject event object, it returns null.

Exceptions

AttributeNotFoundException
Thrown if getBO() cannot find an attribute when assigning a key
value to a key attribute.

SpecNameNotFoundException
Thrown if the name of the business object within the event object
is invalid.

AttributeValueException

Thrown if the retrieved attribute value is not valid for a particular
attribute.

InvalidVerbException
Thrown if the verb within the event object is invalid.

WrongAttributeException
Thrown if getB0O() encounters an invalid attribute type when
assigning a key value a key attribute. For example, if the attribute
is a container, it cannot hold a key value.

Chapter 17. CWConnectorEventStore class 321

AttributeNullValueException
Thrown if the business object could not be created.

Notes

The getB0() method returns a business object that contains information for an
application entity that the eventObject event object describes.

Important: The getB0() method must be overridden if you want to return an
internal status code to the calling method.

The default implementation of this method performs the following actions:
* Create a temporary CWConnectorBusObj object to hold the new business object.

* Populate the CWConnectorBusObj object with the data and key values from the
eventObject event object.

* If RetrieveVerb is set, use this property’s value as the verb for business object
retrieval.

» If RetrieveVerb is not set, take one of the following actions, based on the value
of the verb in the event object:

Verb getBO() action taken
Delete Do not retrieve the object with doVerbFor().
Create, Update Set the business object’s verb to RetrieveByContent and call the

doVerbFor() method (in the CWConnectorBusObj class) to retrieve
the remaining information from the application.

If the verb is Create or Update, populate the CWConnectorBusObj object with the
data that doVerbFor() has retrieved. It handles the following conditions that the
doVerbFor() method might generate:

— If doVerbFor() does not find the specified entity in the application, it returns
BO_DOES_NOT_EXIST. In this case, getBO() sets the event status of eventObject
to ERROR_OBJECT_NOT_FOUND and returns null.

— If doVerbFor() is not able to connect to the application, it returns
APPRESPONSETIMEQUT. In this case, getB0O() calls the setTerminate() method (in
the CWConnectorEventStore class) to set the internal terminate-connector flag.
For more information, see ["Retrieving application data” on page 185

— 1If doVerbFor() returns some other error (such as RETRIEVEBYCONTENT FAILED),
The getB0() method returns null.

* Send the CWConnectorBusObj object to the connector framework by calling the
gotApplEvent () method.

Note: The getB0() method is usually called from the poll method,
pollForEvents().

As described above, the default implementation of getB0() has several ways to
indicate to the calling method that certain error or exception conditions occur.
However, if you need to return a particular internal status value (such as the status
attribute of a thrown exception) to the calling method, you can override this
default implementation. For your implementation of getB0(), use the second form
of this method’s signature, which provides a status argument. Within getB0(),
assign some status value to this argument before you exit getB0(). From the
calling method, pass in the uninitialized status value and, after the call to getBO(),
access the initialized status value.

322 Connector Development Guide for Java

Note: The default implementation of the pol1ForEvents() method calls the first
form of getBO(); that is, it does not handle any initialized status value
returned by getBO().

See also
ldoVerbFor()}, |getTerminate()} [pollForEvents(), [setTerminate()|

getNextEvent()

Retrieves the next event object from the eventsToProcess vector.

Syntax

public CWConnectorEvent getNextEvent();

Parameters
None.

Return values

A CWConnectorEvent object for the next Ready-for-Poll event. If the
eventsToProcess vector is empty, the method returns null.

Exceptions

InvalidStatusChangeException
Thrown when the event status is being changed to an invalid
status value for the application.

StatusChangeFailedException
Thrown when the status change from READY_FOR_POLL to
IN_PROGRESS fails.

Notes

The getNextEvent () method checks the eventsToProcess vector for events that
currently have the READY_FOR_POLL status. If it finds the such an event in this
vector, the method takes the following actions:

1. Get the next event to process from the eventsToProcess vector. The
fetchEvents() method determines the order in which event objects are stored
in the eventsToProcess vector.

2. Change its event status to IN_PROGRESS.

3. Return the event to the caller.

The eventsToProcess vector is initialized with either the fetchEvents() or
setEventsToProcess() method.

Note: The getNextEvent () method is usually called from the poll method,
pollForEvents().

See also
fetchEvents()}, [pollForEvents()}, [setEventsToProcess()|

Chapter 17. CWConnectorEventStore class 323

getTerminate()

Retrieves the value of the internal terminate-connector flag.

Syntax

public boolean getTerminate();

Parameters

None.

Return values

Aboolean value that indicates the current setting of the internal
terminate-connector flag.

Exceptions
None.

Notes

The getTerminate() method retrieves the value of an internal flag that indicates
that the connector framework should terminate the connector. The connector can
set the status of this internal flag with the setTerminate() method. The
pol1ForEvents () method should call the getTerminate() method after its call to
getB0O() to determine whether to return the APPRESPONSETIMEQUT outcome status.
For more information, see [“Retrieving application data” on page 185}

See also
leetBO()}, [setTerminate()

recoverinProgressEvents()
Recovers any In-Progress events in the event store.

Syntax

public abstract int recoverInProgress();

Parameters

None.

Return values

An integer that indicates the outcome status of the recovery operation. Compare
this integer value with the following outcome-status constants to determine the
status:

CWConnectorConstant.SUCCEED
The recovery of in-progress events succeeded.

CWConnectorConstant.FAIL
The recovery of in-progress events failed.

324 Connector Development Guide for Java

Exceptions

Notes

InvalidStatusChangeException
Thrown when the status is being changed to an invalid status
value for the application.

StatusChangeFailedException
Thrown when the status change from IN_PROGRESS to
READY_FOR_POLL fails.

AttributeNullValueException
Thrown if the InDoubtEvents connector configuration property is
not defined and set.

The recoverInProgressEvents() method checks the event store for any events that
currently have the IN_PROGRESS status. An event might remain in the event store
with an event status of IN_PROGRESS if the connector was unexpectedly shutdown.

Note: The CWConnectorEventStore class does not provide a default implementation
for the recoverInProgressEvents() method. Therefore, the event-store class
must implement this method to provide the ability to recover In-Progress
events at connector startup.

One possible way to implement recoverInProgressEvents() is to base its actions
on the InDoubtEvents connector configuration property. If such events exist, the
method can take one of the following actions, based on the value of this property:

Value of InDoubtEvents Action for recoverInProgressEvents()

Reprocess Change all events with the IN_PROGRESS status to the
READY_FOR_POLL status so that they are sent to the connector
framework in subsequent poll calls.

FailOnStartup Log a fatal error and return a FAIL outcome status to
agentInit(), which in turn throws the
InProgressEventRecoveryFailedException exception. This
action also sends an automatic email, if LogAtInterchangeEnd is

set to True.

LogError Log a fatal error but do not return FAIL outcome status to
agentInit().

Ignore Ignore the In-Progress events.

Note: For recoverInProgressEvents() to work as described, the InDoubtEvents
connector configuration property must be defined. If InDoubtEvents is not
defined, recoverInProgresskEvents() should throw the
AttributeNullValueException exception.

The recoverInProgressEvents() methods is usually called as part of the connector
initialization process, from within the agentInit() method. The agentInit()
should check for the status from recoverInProgressEvents() and catch any
exceptions as well. The agentInit() method should throw an exception in either of
the following cases:

e If recoverInProgressEvents() returns a FAIL outcome status
* If recoverInProgressEvents() catches an exception

Chapter 17. CWConnectorEventStore class 325

See also

agentlnit()

resubmitArchivedEvents()

Copies the specified archived event from the application’s archive store to the
application’s event store and changes the event status to READY_FOR_POLL.

Syntax

public abstract int resubmitArchivedEvents(String eventID);
Parameters

eventlD Is the event ID for the event to resubmit.

Return values

An integer that indicates the number of events archived. If nothing is resubmitted,
return a zero (0).

Exceptions

InvalidStatusChangeException
Thrown when the status is being changed to an invalid status
value for the application.

StatusChangeFailedException
Thrown when the status change to READY_FOR_POLL fails.

Notes

The resubmitArchivedEvents() method resubmits unprocessed events in the
archive store to the event store, where they can be processed. An event is moved to
the archive store when it has no subscriptions or after it has been processed.
Archiving processed or unsubscribed events ensures that events are not lost.
Setting the event status to READY_FOR_POLL ensures that the events will be picked
up on subsequent polls of the event store.

Note: The resubmitArchivedEvents() method is an abstract method. Therefore, the
event-store class must implement this method to provide the ability to
resubmit archived events for subsequent polls of the event store.

setEventStatus()

Sets the status of an event in the event store.

Syntax

public abstract void setEventStatus(String eventID, int status);
Parameters

eventID Is the event ID of the event whose status is changed.

status Is one of the following event-status constants to identify the new

status of the specified event:

326 Connector Development Guide for Java

CWConnectorEventStatus.READY_FOR_POLL
CWConnectorEventStatus.IN_PROGRESS
CWConnectorEventStatus.SUCCESS
CWConnectorEventStatus.UNSUBSCRIBED
CWConnectorEventStatus.ERROR_POSTING_EVENT
CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND
CWConnectorEventStatus.ERROR_PROCESSING_EVENT

Return values

None.

Exceptions

InvalidStatusChangeException
Thrown when the status is being changed to an invalid status value
for the application.

Notes
The setEventStatus() method performs the following actions:

¢ Check if the status value is valid, throwing the InvalidStatusChangeException
exception if it is not.

* Change the status of the event identified by eventID in the application’s event
store.

Important: The setEventStatus() method is an abstract method.Therefore, the
event-store class must implement this method to provide the ability to
set the status of an event in the event store.

The connector must ensure that the change in event status is committed in the
underlying application.

See also
updateEventStatus()|

setEventsToProcess()
Sets the eventsToProcess vector with specified events.

Syntax

public void setEventsToProcess(Vector eventslVector);

Parameters

eventsVector Is a Java.util.Vector object that contains the events to process.

Return values
None.

Exceptions

None.

Chapter 17. CWConnectorEventStore class 327

Notes

The setEventsToProcess() method assigns to the eventsToProcess vector of the
CWConnectorEventStore object the contents of the eventsVector vector.

setTerminate()

Sets the internal terminate-connector flag to true.

Syntax

public void setTerminate();

Parameters

None.

Return values
None.

Exceptions

None.

Notes

The setTerminate() method sets an internal flag that tells the connector
framework to terminate the connector. The connector can check the status of this
internal flag with the getTerminate() method. The getB0() method should call the
setTerminate() method after its call to doVerbFor() if doVerbFor() has returned
the APPRESPONSETIMEOUT outcome status. For more information, see
lapplication data” on page 185/

See also

updateEventStatus()
Updates the event status both in the application’s event store and in the event.
Syntax

public void updateEventStore(CWConnectorEvent eventObject,
int status);

Parameters
eventObject Is the event object whose status is updated.
status Is one of the following event-status constants to store in the event

object:

CWConnectorEventStatus.READY_FOR_POLL

328 Connector Development Guide for Java

CWConnectorEventStatus.
.SUCCESS
.UNSUBSCRIBED
.ERROR_POSTING_EVENT
CWConnectorEventStatus.
CWConnectorEventStatus.

CWConnectorEventStatus
CWConnectorEventStatus
CWConnectorEventStatus

IN_PROGRESS

ERROR_OBJECT_NOT_FOUND
ERROR_PROCESSING EVENT

Return values

None.

Exceptions

InvalidStatusChangeException

Thrown when the status is being changed to an invalid status

value for the application.

StatusChangeFailedException

Thrown when the underlying application is unable to change the
event status in the event store.

Notes

The updateEventStatus() method sets the status of the eventObject event to
status. It also updates the event status within the eventObject event to status.

Deprecated Methods

Some methods in the CWConnectorEventStore class were supported in earlier
versions but are no longer supported. These deprecated methods will not generate
errors, but IBM recommends that you avoid their use and migrate existing code to
the new methods. The deprecated methods might be removed in a future release.

able 131 lists the deprecated methods for the CWConnectorEventStore class. If you
are writing a new connector (not modifying an existing connector), you can ignore

this section.

Table 131. Deprecated methods of the CWConnectorEventStore class

Deprecated method Replacement
setEventStoreStatus() setEventStatus

Chapter 17. CWConnectorEventStore class 329

330 Connector Development Guide for Java

Chapter 18. CWConnectorEventStoreFactory interface

The CWConnectorEventStoreFactory interface defines the functionality for the
event-store factory, which creates an event store. If your Java connector uses an
extension of the CWConnectorEventStore class to access the event store, you must
create an event-store-factory class to implement the CWConnectorEventStoreFactory
interface. This interface contains a method to instantiate an event-store
(CWConnectorEventStore) object.

Important: All Java connectors that use an extension of the CWConnectorEventStore
class to access the event store must provide an implementation of this
interface. In this event-store-factory class, you must implement the
getEventStore() method to be able to access the event store through
the CWConnectorEventStore class.

able 132 summarizes the methods in the CWConnectorEventStoreFactory interface.

Table 132. Member method of the CWConnectorEventStoreFactory interface

Member method Description Page
Creates a new event-store object. 331
getEventStore()
Creates a new event-store object.
Syntax
public Object getEventStore();
Parameters

None.

Return values

An 0Object containing the newly created event-store object. If the event store cannot
be located, the method returns null.

Exceptions

Notes

None.

The getEventStore() method is the event-store factory. It needs to build the
corresponding event store for the connector and return the event-store object.
Connectors that use more than one event store must provide implementations for
this method for each event-store class.

The default implementation of the getEventStore() method in the
CWConnectorAgent class calls the getEventStore() method of the event-store-factory
class named in the EventStoreFactory connector configuration property. For more
information, see [“CWConnectorEventStoreFactory interface” on page 176.}

© Copyright IBM Corp. 2000, 2004 331

See also
oetEventStore()

332 Connector Development Guide for Java

Chapter 19. CWConnectorExceptionObject class

The CWConnectorExceptionObject class represents an exception-detail object, which
provides detailed information about an exception. Each exception that methods of
the Java connector library can throw can contain an exception-detail object. This
class provides methods to store and access information about the exception
message. summarizes the methods in the CWConnectorExceptionObject
class.

Table 133. Member methods of the CWConnectorExceptionObject class

Member method Description Page

ICWConnectorExceptionObiject()| Creates an exception-detail object. 333

etExpl()| Retrieves the explanation for the message associated 333
with the exception-detail object’s message number.

o o() Retrieves the message text from an exception-detail 334
object.

Retrieves the message number (ID) associated with the [334

message in the exception-detail object.
Retrieves the message type associated with the message |335
in the exception-detail object.

Sets the explanation for the message in the 336
exception-detail object.

setMs Sets the message text for the exception-detail object. 336

setMsgNumber Sets the message number (ID) associated with the
message in the exception-detail object.

Sets the message type associated with the message in
the exception-detail object.

Sets the status value for the exception-detail object. 338

CWConnectorExceptionObject()
Creates an exception-detail object.

Syntax

public CWConnectorExceptionObject();

Parameters

None.

Return values

A CWConnectorExceptionObject object containing the newly created exception-detail
object.

getExpl()

Retrieves the explanation for the message associated with the exception-detail
object’s message number.

© Copyright IBM Corp. 2000, 2004 333

Syntax

public String getExpl();

Parameters
None.

Return values

A String object containing the message explanation from the current
exception-detail object.

Exceptions

None.

See also

getMsg()

Retrieves the message text from an exception-detail object.

Syntax

public String getMsg();

Parameters
None.

Return values

A String object that contains the message text from the current exception-detail
object.

Exceptions
None.

See also
setMsg()

getMsgNumber()

Retrieves the message number (ID) associated with the message in the
exception-detail object.

Syntax

public int getMsgNumber();

Parameters

None.

334 Connector Development Guide for Java

Return values

The integer message number of the exception-detail object’s message.

See also

lsetMsgNumber()|
getMsgType()

Retrieves the message type associated with the message in the exception-detail
object.

Syntax
public int getMsgType();

Parameters
None.

Return values

The integer that indicates the message type of the exception-detail object’s
message. Compare this integer value with the following message-type constants to
determine the message type:

XRD_ERROR
XRD_FATAL

These message-type constants are defined in both the CWConnectorUtil and
CWConnectorLogAndTrace classes.

See also

S O pey)

getStatus()

Retrieves the status from the exception-detail object.

Syntax

public int getStatus();

Parameters

None.

Return values

An integer value that represents the status exception-detail object. Compare this
integer value with the following outcome-status constants to determine the
message type:
CWConnectorConstant.APPRESPONSETIMEOUT
CWConnectorConstant.BO_DOES_NOT_EXIST
CWConnectorConstant. MULTIPLE_HITS

CWConnectorConstant .RETRIEVEBYCONTENT_FAILED
CWConnectorConstant.UNABLETOLOGIN

These outcome-status constants are defined in the CWConnectorConstant class.

Chapter 19. CWConnectorExceptionObject class 335

Exceptions

None.

See also
setStatus()

setExpl()

Sets the explanation for the message in the exception-detail object.

Syntax

public void setExpl(String msgExpl);

Parameters

msgExpl Is a String object that contains the message explanation to assign
to the exception-detail object.

Return values

None.

Exceptions

None.

See also

setMsg()
Sets the message text for the exception-detail object.

Syntax

public void setMsg(String newMsg);

Parameters

newMsg Is a String object that contains the message text to assign to the
exception-detail object.

Return values

None.

Exceptions

None.

See also
getMsg()

336 Connector Development Guide for Java

setMsgNumber()

Sets the message number (ID) associated with the message in the exception-detail

object.
Syntax
public void setMessageNumber(int msgNumber);
Parameters
msgNumber Is the integer message number to set for the exception-detail

object’s message.

Return values

None.
Exceptions
None.
See also
leetMsgNumber()
setMsgType()
Sets the message type associated with the message in the exception-detail object.
Syntax
public void setMsgType(int msgType);
Parameters
msgType Is the message type that indicates the severity of the message in
the exception-detail object. Use one of the following message-type
constants:
XRD_ERROR
XRD_FATAL

Note: Even though other message-type constants exist, they are not
valid as types for a message in the exception-detail object.
This object is part of the exception object, which is only
thrown when an exception occurs.

Return values

None.

Exceptions
None.

See also

Chapter 19. CWConnectorExceptionObject class 337

setStatus()

Sets the status value for the exception-detail object.

Syntax
public void setStatus(int status);
Parameters
status Is an integer value that indicates the outcome status to assign to

the exception-detail object.

Return values
None.

Notes

You must set the exception status of an exception-detail object with the
setStatus() method before the exception is thrown. This status value allows the
calling code to take appropriate action to cleanup any application-related resources
(for example from an APPRESPONSETIMEOUT status) before to passing this status back
to the connector framework.

Exceptions

None.

See also

338 Connector Development Guide for Java

Chapter 20. CWConnectorLogAndTrace class

The CWConnectorLogAndTrace class defines the log-trace constants shared by all
connectors. This class contains the following static constants:

* [“Message-type constants”|

* |“Trace-level constants”|

Message-type constants

able 134f summarizes the static message-type constants, which are defined in the
CWConnectorLogAndTrace cclass.

Table 134. Message-type constants of the CWConnectorLogAndTrace class

Constant name Meaning

XRD_WARNING A warning message
XRD_TRACE A trace message

XRD_INFO An informational message
XRD_ERROR An error message
XRD_FATAL A fatal error message

Trace-level constants

able 135 summarizes the static trace-level constants, which are defined in the
CWConnectorLogAndTrace cclass.

Table 135. Trace-level constants of the CWConnectorLogAndTrace class

Constant name Meaning

LEVEL® Level 0 of tracing (turn tracing off)
LEVEL1 Level 1 of tracing

LEVEL2 Level 2 of tracing

LEVEL3 Level 3 of tracing

LEVEL4 Level 4 of tracing

LEVEL5 Level 5 of tracing

© Copyright IBM Corp. 2000, 2004 339

340 Connector Development Guide for Java

Chapter 21. CWConnectorReturnStatusDescriptor class

The CWConnectorReturnStatusDescriptor class enables Java connectors to return
error and informational messages in a return-status descriptor. This descriptor
provides additional status information is usually returned as part of the request
response sent to the integration broker that initiated the request.

WebSphere InterChange Server
If your business integration system uses InterChange Server, the connector
framework returns the return-status descriptor to the collaboration that
initiated the request. The collaboration can access the information in this
return-status descriptor to obtain the status of its service call request.

Note: The CWConnectorReturnStatusDescriptor class extends the
ReturnStatusDescriptor class of the low-level Java connector library. For
more information on the classes of the low-level Java connector library, see
[Chapter 26, “Overview of the low-level Java connector library,” on page 403

able 136 summarizes the methods in the CWConnectorReturnStatusDescriptor
class.

Table 136. Member methods of the CWConnectorReturnStatusDescriptor class

Member method Description Page
(CWConnectorReturnStatusDescriptor()| Creates a return-status descriptor. 341
etErrorString)() Retrieves a message string from a return-status [342]
descriptor.
getStatus() Retrieves the value of the status code from the 342

return-status descriptor.

setErrorString Sets the error or informational message in the 342

return-status descriptor.

setStatus Sets the value of the status code in the 343

return-status descriptor.

CWConnectorReturnStatusDescriptor()

Creates a return-status descriptor.

Syntax

public CWConnectorReturnStatusDescriptor();

Parameters

None.

Return values

A CWConnectorReturnStatusDescriptor object containing the newly created
return-status descriptor.

© Copyright IBM Corp. 2000, 2004 341

getErrorString()
Retrieves a message string from a return-status descriptor.

Syntax

public String getErrorString();

Parameters
None.

Return values

A String containing an error or informational message for the integration broker,

or null.
Exceptions
None.
Notes
The getErrorString() method returns a message that can be an error message or
an informational message.
See also
getStatus()
Retrieves the value of the status code from the return-status descriptor.
Syntax
public int getStatus();
Parameters

None.

Return values

An int value indicating the status of an operation.

Exceptions

None.

See also
setStatus()

setErrorString()

Sets the error or informational message in the return-status descriptor.

342 Connector Development Guide for Java

Syntax

public void setErrorString(String errorStr);

Parameters

errorStr Is the value to set the message string.

Return values

None.

Exceptions
None.

See also
leetErrorString ()|

setStatus()
Sets the value of the status code in the return-status descriptor.

Syntax

public void setStatus(int status);

Parameters

status Is the value of status code to assign to the return-status descriptor.

Return values
None.

Exceptions

None.

See also
getStatus()

Chapter 21. CWConnectorReturnStatusDescriptor class 343

344 Connector Development Guide for Java

Chapter 22. CWConnectorUtil class

The CWConnectorUtil class contains miscellaneous utility methods.

Note: The CWConnectorUtil class extends the JavaConnectorUtil class of the
low-level Java connector library. For more information on the classes of the
low-level Java connector library, see |Chapter 26, “Overview of the low-levell
[lava connector library,” on page 403]

This class contains the following:

* |"Message-file constants”|

. "’Methods’l

Message-file constants

able 137 summarizes the static message-file constants, which are defined in the
CWConnectorUtiTl class.

Table 137. Message-file constants of the CWConnectorUltil class

Constant name Meaning

CONNECTOR_MESSAGE_FILE Use the connector message file to generate
messages.

INFRASTRUCTURE_MESSAGE_FILE Use the InterChange Server message file
(InterchangeSystem.txt) to generate
messages.

Important: Connectors should nof obtain

messages from the InterchangeSystem.txt
file. Instead, they should always use their
local connector message file.

Methods

The CWConnectorUtil class contains miscellaneous utility methods for use in a Java
connector. These utility methods fall into the following general categories:

* Static methods for generating and logging messages

* Static methods for creating business objects

e Static methods for obtaining connector configuration properties
¢ Methods for obtaining locale information

able 138 summarizes the methods in the CWConnectorUtil class.
Table 138. Member methods of the CWConnectorU'til class

Member method Description Page
CWConnectorUtil()| Creates a CWConnectorUtil object.
boToByteArray()| Calls a data handler to convert a business object to

serialized data of a specified MIME type. This
serialized data can be accessed through a byte array.

© Copyright IBM Corp. 2000, 2004 345

Table 138. Member methods of the CWConnectorUtil class (continued)

Member method

boToStream()

boToString()

byteArrayToBo()

[createAndCopyKeyVals()|

[create AndSetDefaults()|

createBusObi()
enerateAndLogMsg()|

[zenerate And TraceMsg ()

oenerateMsg

oet AllConfigProperties()|

[zetAllConnectorAgentProperties()|

oetBlankValue()

oetConfigProp()

0q |
[¢)
-+
Q
o
o3
=3
™
5
(o)
o
&
5
o
-l

etGlobalLocale()|
etHierarchicalConfigProp()|

getlgnoreValue()

[zetSupportedBONames()|

etVersion()
initAndValidateAttributes()|

0

islgnoreValue()

isTraceEnabled

=
! i
)

o]

IQ
)

=

c

@

Description

Calls a data handler to convert a business object to
serialized data of a specified MIME type. This
serialized data can be accessed through an input
stream.

Calls a data handler to convert a business object to
serialized data of a specified MIME type. This
serialized data can be accessed as a string.

Calls a data handler to convert serialized data of a
specified MIME type to a business object. This
serialized data is accessed through a byte array.
Creates a new business object, assigning it the
specified key values and verb and default values to
the remaining attributes.

Creates a new business object, assigning default
values to all its attributes.

Creates a new business object.

Generates a message and sends it to the log
destination.

Generates a trace message and sends it to the log
destination.

Generates a message from a set of predefined
messages in a message file.

Retrieves a list of all connector configuration
properties, regardless of whether the property is
simple, hierarchical, or multi-valued.

Retrieves a list of all connector configuration
properties for the current connector. However, it
retrieves them as single-valued properties.
Retrieves the value for the special Blank attribute
value.

Retrieves the value of a connector configuration
property.

Retrieves the character encoding that the connector
framework is using.

Retrieves the locale of the connector framework.
Retrieves the value of a hierarchical connector
configuration property.

Retrieves the value for the special “Ignore” attribute
value.

Retrieves a list of supported business objects for the
current connector.

Retrieves the version of the connector.

Initializes attributes by setting them to their default
values and for each attribute and then validates the
attributes.

Determines if an attribute value is the special Blank
value.

Determines if an attribute value is the special Ignore
value.

Determines if the trace level is greater than or equal
to the trace level for which it is looking, if tracing is
enabled at this level.

Logs a message to the connector’s log destination.

Wl =g

15N

!c"é
[¢]

[68)
a1
—_

[$8)
i
E

[$8)
|
2

[65) [S] B [$8]
T B
[eXY)Y I (€]]

[¢8) W
eillE]
\O 0]

@
[o))
o

H
[@))
—

2 B & E
(o2} I =)} I [*)Y B (o))
(O8] I 1°°] B 11 B 1))

[$8)
[oN
'y

e
[I F=2) I KA
[©)Y I 161 | B €] |

[¢8)
[N
(o)}

g [
[®)) [o)}
! es)

[68)
(o))
x

@
[oN)
\O

346 Connector Development Guide for Java

Table 138. Member methods of the CWConnectorUtil class (continued)

Member method

readerToBO(
streamToBO()

tringToBo()

[traceCWConnector APIVersion()|

raceWrite

Description Page

Calls a data handler to convert serialized data of a |370
specified MIME type to a business object. This

serialized data is accessed with a Reader object.

Calls a data handler to convert serialized data of a [372]
specified MIME type to a business object. This

serialized data is accessed through an input stream.

Calls a data handler to convert serialized data of a
specified MIME type to a business object. This

serialized data is accessed as a string.

Traces the Java connector library version at a trace
level 1.

Writes a trace message to the log destination. 376

CWConnectorUtil()

Creates a CWConnectorUtiT object.

Syntax

public CWConnectorUtil();

Parameters
None.

Return values
A CWConnectorUtil object.

boToByteArray()

Calls a data handler to convert a business object to serialized data of a specified
MIME type. This serialized data can be accessed as a byte array.

Syntax

public static byte[] boToByteArray(CwConnectorBusObj theBusObj, String mimeType,
String BOPrefix, String encoding, Locale locale, Object config);

Parameters
BOPrefix

config

encoding

locale

Is the optional business-object prefix, which is combined with
mimeType to form the key of the child meta-object. This argument
can be used to specify a MIME subtype. It can also be used to
specify a value for the BOPrefix data-handler configuration
property.

Is an Object that contains additional configuration information for
the data handler.

Specifies the character encoding for the serialized data in the byte
array. If you specify null, the method uses the character encoding
of the machine.

Is a java.util.Locale object that specifies the locale for the
serialized data in the byte array. If you specify null, the method
uses the connector-framework locale.

Chapter 22. CWConnectorUtil class 347

mimeType Is the MIME type that identifies the serialized format to which to
convert the business object.

theBusObj Is the business object to serialize to the specified MIME type and
return a byte array.

Return values
A byte array that contains the serialized business object in the specified MIME
type.

Exceptions

DataHandlerCreateException
Thrown when the boToByteArray () method cannot instantiate a
data handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the business object to the specified MIME type.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

The boToByteArray() method can also throw the general Java exception
NullPointerException if the data handler returns a null pointer instead of a byte
array.

Notes

The boToByteArray() method provides the connector with the ability to call a data
handler to perform business-object-to-string conversion. With this method, the
resulting serialized data can be accessed through a Java byte array. The method
identifies which data handler to invoke based on the specified mimeType argument.
It instantiates a data handler whose class name is identified in the child
meta-object associated with this MIME type in the the top-level meta-object, as
follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, boToByteArray() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

e It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If boToByteArray() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, boToByteArray() throws the
DataHandlerCreateException. For more information on how the arguments of
boToByteArray() identify which data handler to instantiate, see [“Identifying the
[data handler to instantiate” on page 77

348 Connector Development Guide for Java

Once instantiated, the data handler converts the specified business object to the
serialized format that the MIME type indicates. If boToByteArray() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it creates the serialized data. The data handler returns
this serialized data to the boToByteArray() method as a byte array, through which
the calling method can access the returned serialized data.

Note: If the data handler cannot convert the business object, boToByteArray ()
throws the ParseException exception.

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
boToStream()} poToString (), [byte ArrayToBo()|

boToStream()

Calls a data handler to convert a business object to serialized data of a specified
MIME type. This serialized data can be accessed through an input stream.

Syntax

public static InputStream boToStream(CWConnectorBusObj theBusObj, String mimeType);
public static InputStream boToStream(CwConnectorBusObj theBusObj, String mimeType,
Object config);

public static InputStream boToStream(CwConnectorBusObj theBusObj, String mimeType,
String BOPrefix, String encoding, Locale locale, Object config);

Parameters

BOPrefix Is the optional business-object prefix, which is combined with
mimeType to form the key of the child meta-object. This argument
can be used to specify a MIME subtype. It can also be used to
specify a value for the BOPrefix data-handler configuration
property.

config Is an Object that contains additional configuration information for
the data handler.

encoding Specifies the character encoding for the serialized data in the input
stream. If you specify null, the method uses the character
encoding of the machine.

locale Is a java.util.Locale object that specifies the locale for the
serialized data in the input stream. If you specify null, the method
uses the connector-framework locale.

mimeType Is the MIME type that identifies the serialized format to which to
convert the business object.

theBusObj Is the business object to serialize tothe specified MIME type and
return an input stream.

Return values

An object of the Java java.io.InputStream class (or one of its subclasses) that
contains the serialized business object in the specified MIME type.

Chapter 22. CWConnectorUtil class 349

Exceptions

DataHandTerCreateException
Thrown when the boToStream() method cannot instantiate a data
handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the business object to the specified MIME type.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

The boToStream() method can also throw the general Java exception
NullPointerException if the data handler returns a null pointer instead of an
InputStream object.

Notes

The boToStream() method provides the connector with the ability to call a data
handler to perform business-object-to-string conversion. With this method, the
resulting serialized data can be accessed through a Java input stream (based on the
InputStream class). The method identifies which data handler to invoke based on
the specified mimeType argument. It instantiates a data handler whose class name is
identified in the child meta-object associated with this MIME type in the the
top-level meta-object, as follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, boToStream() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

e It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If boToStream() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, boToStream() throws the
DataHandlerCreateException. For more information on how the arguments of
boToStream() identify which data handler to instantiate, see [“Identifying the datal
lhandler to instantiate” on page 77}

Once instantiated, the data handler converts the specified business object to the
serialized format that the MIME type indicates. If boToStream() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it creates the serialized data. The data handler returns
this serialized data to the boToStream() method as an input stream, through which
the calling method can access the returned serialized data.

Note: If the data handler cannot convert the business object, boToStream() throws
the ParseException exception.

350 Connector Development Guide for Java

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
IboToByteArray()} boToString(), |streamToBO()

boToString()

Calls a data handler to convert a business object to serialized data of a specified
MIME type. This serialized data can be accessed as a string.

Syntax

public static String boToString(CWConnectorBusObj theBusObj, String mimeType);
public static String boToString(CwConnectorBusObj theBusObj, String mimeType,
Object config);

public static String boToString(CwConnectorBusObj theBusObj, String mimeType,
String BOPrefix, String encoding, Object config);

Parameters

BOPrefix Is the business-object prefix, which is combined with mimeType to
form the key of the child meta-object. This argument can be used
to specify a MIME subtype. It can also be used to specify a value
for the BOPrefix data-handler configuration property.

config Is an Object that contains additional configuration information for
the data handler.

encoding Specifies the character encoding for the serialized data in the
String. If you specify null, the method uses the character
encoding of the machine.

locale Is a java.util.Locale object that specifies the locale for the
serialized data in the String. If you specify null, the method uses
the connector-framework locale.

mimeType Is the MIME type that identifies the serialized format to which to
convert the business object.

theBusObj Is the business object to serialize to the specified MIME type and

return a string.

Return values
A String object that contains the serialized business object in the specified MIME

type.
Exceptions

DataHandTerCreateException
Thrown when the boToString() method cannot instantiate a data
handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the business object to the specified MIME type.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

Chapter 22. CWConnectorUtil class 351

The boToString() method can also throw the general Java exception
NullPointerException if the data handler returns a null pointer instead of a
String object.

Notes

The boToString() method provides the connector with the ability to call a data
handler to perform business-object-to-string conversion. With this method, the
resulting serialized data can be accessed through a Java String. The method
identifies which data handler to invoke based on the specified mimeType argument.
It instantiates a data handler whose class name is identified in the child
meta-object associated with this MIME type in the the top-level meta-object, as
follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, boToString() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

e It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If boToString() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, boToString() throws the
DataHandlerCreateException. For more information on how the arguments of
boToString() identify which data handler to instantiate, see [‘Identifying the datal
lhandler to instantiate” on page 77/

Once instantiated, the data handler converts the specified business object to the
serialized format that the MIME type indicates. If boToString() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it creates the serialized data. The data handler returns
this serialized data to the boToString() method as a String object, through which
the calling method can access the returned serialized data.

Note: If the data handler cannot convert the business object, boToString() throws
the ParseException exception.

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
lboToByteArray()} boToStream()} [string ToBo()|

352 Connector Development Guide for Java

byteArrayToBo()

Calls a data handler to convert serialized data of a specified MIME type to a

business object.

Syntax

This serialized data is accessed as a byte array.

public static CWConnectorBusObj byteArrayToBo(CWConnectorBusObj theBusObj,
byte[] serializedData, String mimeType, String BOPrefix,
String encoding, Locale locale, Object config);

Parameters
BOPrefix

config

encoding

locale

mimeType

serializedData

theBusObj

Is the business-object prefix, which is combined with mimeType to
form the key of the child meta-object. This argument can be used
to specify a MIME subtype. It can also be used to specify a value
for the BOPrefix data-handler configuration property.

Is an Object that contains additional configuration information for
the data handler.

Specifies the character encoding for the serialized data in the byte
array. If you specify null, the method uses the character encoding
of the machine.

Is a java.util.Locale object that specifies the locale for the
serialized data in the byte array. If you specify null, the method
uses the connector-framework locale.

Is the MIME type that identifies the format of the serialized data.

Is a byte array that contains the serialized data to convert to a
business object.

Identifies the type of business object (business object definition) to
which the method converts the serialized data.

Return values
A CWConnectorBusObj object that contains the business object for the serialized data.

Exceptions

DataHandTerCreateException

ParseException

Thrown when the byteArrayToBo() method cannot instantiate a
data handler for the specified MIME type.

Thrown when the data handler encounters some error during the
conversion of the serialized data to the specified business object.

PropertyNotSetException

Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

The byteArrayToBo() method can also throw the general Java exception
NulTPointerException if the data handler returns a null pointer instead of a

business object.

Notes

The byteArrayToBo() method provides the connector with the ability to call a data
handler to perform string-to-business-object conversion. With this method, the
incoming serializedData is accessed through a Java byte array. The method identifies
which data handler to invoke based on the specified mimeType argument. It

Chapter 22. CWConnectorUtil class 353

instantiates a data handler whose class name is identified in the child meta-object
associated with this MIME type in the the top-level meta-object, as follows:

¢ It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, byteArrayToBo() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

e It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If byteArrayToBo() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, byteArrayToBo() throws the
DataHandlerCreateException. For more information on how the arguments of
byteArrayToBo() identify which data handler to instantiate, see [‘Identifying the|
[data handler to instantiate” on page 77

Once instantiated, the data handler converts the specified serialized data to a
business object of the type that theBusObj indicates. If byteArrayToBo() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it interprets the serialized data. The data handler returns
this business object to the byteArrayToBo() method, which in turn returns it to the
calling method.

Note: If the data handler cannot convert the serialized data, byteArrayToBo()
throws the ParseException exception.

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
boToByteArray()} freaderToBO()}, [streamToBO()} string ToBo()|

createAndCopyKeyVals()

Creates a new business object, assigning it the specified key values and verb and
default values to the remaining attributes.

Syntax

public static CWConnectorBusObj createAndCopyKeyVals(String busObjName,
String keyVals, String verb, String delimiter)

Parameters

busObjName Is the name of the business object to create.

354 Connector Development Guide for Java

keyVals Is the key-value string, which is an ordered list of primary-key
values separated by the delimiter.

verb Is the verb to assign to the new business object.

delimiter Is the key delimiter.

Return values
A CWConnectorBusObj object containing the newly created business object.

Exceptions

SpecNameNotFoundException
Thrown when the business object definition is not found for the
name specified.

AttributeNotFoundException
Thrown when an attribute cannot be found.

AttributeValueException
Thrown when an attribute is set to an invalid value.

WrongAttributeException
Thrown when the attribute’s value does not match its data type.

InvalidVerbException
Thrown when the verb value is invalid.

Notes
The createAndCopyKeyVals () method performs the following tasks:

* Create a new business object of the type specified by busObjName.

* Parses the keyVals key string to obtain the key values and sets these in the
business object’s key attributes. The method assumes that the key values are
delimited with the specified delimiter value.

* Set the new business object’s verb to verb.

* Assign default attribute values to the remaining attributes in the business object.

This method is useful in the pol1ForEvents() method to build the business objedt
that is to be sent to the integration broker for further processing.

createAndSetDefaults()

Creates a new business object, assigning default values to all its attributes.

Syntax

public static CWConnectorBusObj createAndSetDefaults(
String busObjName)

Parameters

busObjName Is the name of the business object to create.

Return values
A CWConnectorBusObj object containing the newly created business object.
Exceptions

SpecNameNotFoundException
Thrown when the business object definition is not found for the
name specified.

Chapter 22. CWConnectorUtil class 355

AttributeNotFoundException
Thrown when one of the business object’s attributes (as defined by
the business object definition) cannot be found.

Notes
The createAndSetDefaults () method performs the following tasks:

* Create a new business object of the type specified by busObjName.
* Assign default attribute values to the all attributes in the business object.

createBusObj()

Creates a new business object.

Syntax
public static final CWConnectorBusObj createBusObj(String busObjName)

public static final CWConnectorBusObj createBusObj(String busObjName,
Locale localeObject);

public static final CWConnectorBusObj createBusObj(String busObjName,
String localeName);

Parameters

busObjName Specifies the name of the business object to create.

localeObject Is the Java Locale object that identifies the locale to associate with
the business object.

localeName Is the name of the locale to associate with the business object.

Return values
A CWConnectorBusObj object containing the newly created business object.

Exceptions

SpecNameNotFoundException
Thrown when the business object definition is not found for the
name specified.

Notes

The createBusObj () method creates a new business object instance whose type is
the business object definition you specify in busObjName. If you specify a
localeObject or localeName, this business-object locale applies to the data in the
business object, not to the name of the business object definition or its attributes
(which must be characters in the code set associated with the U.S. English locale,
en_US). For a description of the format for localeName, see "Design Considerations
for an Internationalized Connector,” on page 54.

See also
oetlocale()

generateAndLogMsg()

Generates a message and sends it to the log destination.

356 Connector Development Guide for Java

Syntax
public static void generateAndLogMsg(int msgNum, int msgType, int isGlobal);

public static void generateAndLogMsg(int msgNum, int msgType, int isGlobal,
msgParameters) ;

Parameters

isGlobal Is the CONNECTOR_MESSAGE_FILE message-file constant defined in the
CWConnectorUtil class to indicate that the message file is the
connector message file.

msgNum Specifies the message number (identifier) in the message file.

msgParameters Is an optional list of String parameter values, each corresponding
to a parameter in the message list, for a maximum of ten
parameters.

msgType Is one of the following message-type constants defined in the
CWConnectorLogAndTrace class to identify the message severity:
CWConnectorLogAndTrace.XRD_WARNING
CWConnectorLogAndTrace.XRD_ERROR
CWConnectorLogAndTrace.XRD_FATAL

CWConnectorLogAndTrace.XRD_INFO
CWConnectorLogAndTrace.XRD_TRACE

Return values
None.

Exceptions
None.

Notes

The generateAndLogMsg () method combines the message generating and logging
functionality of generateMsg() and TogMsg(), respectively. It generates a message
from a message file and then sends it to the log destination. You establish the
name of a connector’s log destination through the Logging section in the
Trace/Log File tab of Connector Configurator.

The method can take in variable number of string arguments. It supports up to a
total of ten parameter values. That is, you can provide up to ten String values as
arguments to generateAndLogMsg (). The following call provides values for seven

parameters in error message 3223, which is defined in the connector message file:
generateAndLogMsg (3223, CWConnectorLogAndTrace:XRD_ERROR,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,
valuel, value2, value3, value4, value5, value6, value7);

— WebSphere InterChange Server
If severity is XRD_ERROR or XRD_FATAL and the connector configuration
property LogAtInterchangeEnd is set, the error message is logged and an
email notification is sent when email notification is on. See the System
Administration Guide in the IBM WebSphere InterChange Server
documentation set for information on how to set up email notification for
errors.

IBM recommends that log messages be contained in a message file and extracted
with the generateAndLogMsg() method. This message file should be the connector
message file, which contains messages specific to your connector.

Chapter 22. CWConnectorUtil class 357

Connector messages logged with generateAndLogMsg() are viewable using
LogViewer.

See also
lzenerateAnd TraceMsg()|, lgenerateMsg()], [logMsg()

generateAndTraceMsg()

Generates a trace message and sends it to the trace destination.

Syntax

public static void generateAndTraceMsg(int tracelevel, int msgNum,
int isGlobal);

public static void generateAndTraceMsg(int tracelevel, int msghum,
int isGlobal, msgParameters);

Parameters

isGlobal Is the CONNECTOR_MESSAGE_FILE message-file constant defined in the
CWConnectorUtil class to indicate that the message file is the
connector message file.

msgNum Specifies the message number (identifier) in the message file.

msgParameters Is an optional list of String parameter values, each corresponding
to a parameter in the message list, with a maximum of ten
parameters.

traceLevel Is one of the following trace-level constants defined in the

CWConnectorlLogAndTrace class to identify the trace level used to

determine which trace messages are output:
CWConnectorLogAndTrace.LEVEL1
CWConnectorLogAndTrace.LEVEL2
CWConnectorLogAndTrace.LEVEL3
CWConnectorLogAndTrace.LEVEL4
CWConnectorLogAndTrace.LEVELS

The method writes the trace message when the current trace level
is greater than or equal to tracelevel.

Note: Do not specify a trace level of zero (LEVELO) with a tracing
message. A trace level of zero indicates that tracing is turned
off. Therefore, any trace message associated with a traceLevel
of LEVEL® will never print.

Return values
None.

Exceptions
None.

Notes

The generateAndTraceMsg() method combines the message generating and tracing
functionality of generateMsg() and traceWrite(), respectively. It generates a
message from a message file and then sends it to the trace destination. You
establish the name of a connector’s trace destination through the Tracing section in
the Trace/Log File tab of Connector Configurator.

358 Connector Development Guide for Java

The method can take in variable number of string arguments. It supports up to a
total of ten parameter values. That is, you can provide up to ten String values as
arguments in the msgParameters parameter of generateAndTraceMsg(). The
following call provides values for seven parameters in trace message 668, which is
defined in the connector message file:
generateAndTraceMsg(CWConnectorLogAndTrace.LEVEL3, 668,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,
valuel, value2, value3, value4, valueb, valueb, value7);

Because trace messages are usually needed only during debugging, whether trace
messages are contained in a message file is left at the discretion of the developer:

¢ If non-English-speaking users need to view trace messages, you need to
internationalize these messages. Therefore, you must put the trace messages in a
message file and extract them with the generateAndTraceMsg() method. This
message file should be the connector message file, which contains message
specific to your connector.

¢ If only English-speaking users need to view trace messages, you do not need to
internationalize these messages. Therefore, you can include the trace message (in
English) directly in the call to traceWrite(). You do not need to use the
generateMsg() or generateAndTraceMsg() method.

Connector messages logged with generateAndTraceMsg() are not viewable using
LogViewer.

See also
loenerate AndLogMsg()|, [generateMsg ()|, [traceWrite()|

generateMsg()

Generates a message from a set of predefined messages in a message file.

Syntax

public final static String generateMsg(int tracelevel, int msgNum,
int msgType, int isGlobal, int argCount,
Vector msgParams);

public final static String generateMsg(int msgNum, int msgType,
int isGlobal, int argCount, Vector msgParams);

Parameters

traceLevel Is one of the following trace-level constants defined in the
CWConnectorLogAndTrace class to specify the trace level at which to
generate the message:
CWConnectorLogAndTrace.LEVEL1
CWConnectorLogAndTrace.LEVEL2
CWConnectorLogAndTrace.LEVEL3
CWConnectorLogAndTrace.LEVEL4
CWConnectorLogAndTrace.LEVELS

When this parameter is omitted, the method generates the message
regardless of the trace level. The message is generated only if the
traceLevel value is equal to or less than the current trace level of the

connector.
msgNum Specifies the message number (identifier) in the message file.
msgType Is one of the following message-type constants defined in the

CWConnectorLogAndTrace class to identify the message:

Chapter 22. CWConnectorUtil class 359

CWConnectorLogAndTrace.XRD_WARNING
CWConnectorLogAndTrace.XRD_ERROR
CWConnectorLogAndTrace.XRD_FATAL
CWConnectorLogAndTrace.XRD_INFO
CWConnectorLogAndTrace.XRD_TRACE

isGlobal Is the CONNECTOR_MESSAGE_FILE message-file constant defined in the

CWConnectorUtil class to indicate that the message file is the
connector message file.

argCount Is an integer that specifies the number of parameters within the
message text. To determine the number, refer to the message in the
message file.

msgParams Is a list of parameters for the message text.

Return values

A String containing the generated message. For the first form of the method, the
method returns null if the trace level is greater than the trace level of the
connector.

Exceptions
None.

Notes

The generateMsg() method provides two forms:

* Use the first form of the method (where traceLevel is the first parameter) for
tracing messages. For the message to be generated, the trace level must be less
than or equal to the trace level of the connector. You then use the tracelrite()
method to send the trace message to the trace destination.

You can use the generateAndTraceMsg() method to combine the message
generation and tracing steps.

* Use the second form of the signature (where msgNum is the first parameter) for
logging. You then use the TogMsg() method to send the log message to the log
destination.

You can use the generateAndLogMsg() method to combine the message
generation and logging steps.

See also
lzenerateAndLogMsg()|, [generate AndTraceMsg(), logMsg ()}, [traceWrite()|

getAllConfigProperties()

Retrieves a list of all configuration properties, as hierarchical connector properties,
for the current connector.

Syntax
public static CWProperty[] getAllConfigProperties();

Parameters
None.

Return values

A reference to an array of CWProperty objects, each of which contains one connector
property for the current connector.

Exceptions
None.

360 Connector Development Guide for Java

Notes

The getAl1ConfigProperties() method retrieves the connector configuration
properties as an array of CWProperty objects. Each connector-property (CWProperty)
object contains a single connector property and can hold a single value, another
property, or a combination of values and child properties. Use methods of the
CWProperty class (such as getHierChildProps() and getStringValues()) to obtain
the values from a connector-property object.

See also
lzetConfigProp()}, |getAllConnectorAgentProperties()

getAllConnectorAgentProperties()

Retrieves a list of all configuration properties for the current connector.

Syntax
public static Hashtable getAl1ConnectorAgentProperties();

Parameters
None.

Return values
A reference to a java.util.Hashtable object that contains the connector properties
for the current connector.

Exceptions
None.

Notes

The getAl1ConnectorAgentProperties() method retrieves the connector
configuration properties as a Java Hashtable object, which maps keys to values.
The keys are the names of the properties and values are the associated property
values. Use methods of the Hashtable class (such as keys() and elements()) to
obtain the information from this structure.

Note: This method does not retrieve hierarchical or multi-valued properties. If it
attempts to retrieve a multi-valued property, it returns only the first of the
values. To retrieve hierarchical or multi-valued properties, use the
getAl1ConfigProperties() method.

Examples

Hashtable ht = new Hastable();

ht = CWConnectorUtil.getAl1ConnectorAgentProperties();
int size = ht.size();

Enumeration properties = ht.keys();

Enumeration values = ht.elements();

while (properties.hasMoreElements()) {
System.out.print((String)properties.nextElement());
System.out.print("=");
System.out.printIn((String)values.nextElement());
System.out.printin("Property set");

1

See also
lzetConfigProp()}, [getAllConfigProperties()

Chapter 22. CWConnectorUtil class 361

getBlankValue()

Retrieves the value for the special Blank attribute value.

Syntax
public static String getBlankValue();

Return values
A String object containing the Blank attribute value.

Notes

The Blank value, which getBlankValue() retrieves, is a special attribute value that
represents a “null” or zero-length value. Although the Java connector library does
provide the CWConnectorAttrType.CxBlank constant for the Blank attribute value, it
is recommended that you use the getBlankValue() method to obtain the Blank
value when you want to assign it to an attribute.

See also
lzetlgnoreValue()|

getConfigProp()

Retrieves the value of a connector configuration property.

Syntax
public final static String getConfigProp(String propName);

Parameters

propName Is the name of the property to retrieve.

Return values
A String object containing the property value. If the property name is not found,
the method returns null.

Exceptions
None.

Notes
Values of connector configuration properties are downloaded to the connector
during its initialization.

When you call getConfigProp("ConnectorName") in a parallel-process connector
(one that has the ParallelProcessDegree connector property set to a value greater
than 1), the method always returns the name of the connector-agent master
process, regardless of whether it is called in the master process or a slave process.

See also
lzet AllConnectorAgentProperties()}, [getHierarchicalConfigProp()|

getGlobalEncoding()

Retrieves the character encoding that the connector framework is using.

Syntax
public String getGlobalEncoding();

362 Connector Development Guide for Java

Parameters
None.

Return values
A String object containing the connector framework’s character encoding.

Exceptions
None.

Notes

The getGlobalEncoding() method retrieves the connector framework’s character
encoding, which is part of the locale. The locale specifies cultural conventions for
data according to language, country (or territory), and a character encoding. The
connector framework’s character encoding should indicate the character encoding
of the connector application. The connector framework’s character encoding using
the following hierarchy:

* The CharacterEncoding connector configuration property in the repository

— WebSphere InterChange Server
If a local configuration file exists, the setting of the CharacterEncoding
connector configuration property in this local file takes precedence. If no
local configuration file exists, the setting of the CharacterEncoding property
is one from the set of connector configuration properties downloaded from
the InterChange Server repository at connector startup.

* The character encoding from the Java environment, which Unicode (UCS-2)

This method is useful when the connector needs to perform character-encoding
processing, such as character conversion.

See also
IgetGlobalLocale()l

getGlobalLocale()

Retrieves the locale of the connector framework.

Syntax
public static String getGloballLocale();

Parameters
None.

Return values
A String object containing the connector framework’s locale setting.

Exceptions
None.

Notes

The getGlobalLocale() method retrieves the connector framework’s locale, which
defines cultural conventions for data according to language, country (or territory),
and a character encoding. The connector framework’s locale should indicate the
locale of the connector application. The connector framework’s locale is set using
the following hierarchy:

Chapter 22. CWConnectorUtil class 363

* The LOCALE connector configuration property in the repository

— WebSphere InterChange Server
If a local configuration file exists, the setting of the Locale connector
configuration property in this local file takes precedence. If no local
configuration file exists, the setting of the Locale property is the one from
the set of connector configuration properties downloaded from the
InterChange Server repository at connector startup.

* The locale from the Java environment, which is the locale from the operating
system

This method is useful when the connector needs to perform locale-sensitive
processing.

See also
fcreateBusODbij()}, lzetGlobalEncoding()}, [getLocale()|

getHierarchicalConfigProp()

Retrieves the top-level connector-object for a specified hierarchical connector
configuration property.

Syntax
public static CWProperty getHierarchicalConfigProp(String propName);

Parameters

propName Is the name of the hierarchical connector property to retrieve.

Return values
A CWProperty object that contains the top-level connector-property object for the
specified hierarchical connector property.

Exceptions

WrongPropertyException
Thrown if the specified connector-property name does not exist for
this connector or it is not a hierarchical connector property.

Notes

The getHierarchicalConfigProp() method obtains the top-level connector-property
(CWProperty) object. From this retrieved object, you can use methods of the
CWProperty class to obtain the desired values of the connector property.

Note: Values of connector configuration properties are downloaded to the
connector during its initialization. If you specify a propName for a connector
property that has not been downloaded, getHierarchicalConfigProp()
throws the WrongPropertyException exception.

When you call getHierarchicalConfigProp("ConnectorName") in a parallel-process
connector (one that has the ParallelProcessDegree connector property set to a
value greater than 1), the method always returns the name of the connector-agent
master process, regardless of whether it is called in the master process or a slave
process.

364 Connector Development Guide for Java

See also
leet AllConfigProperties()}, [getConfigProp()

getignoreValue()

Retrieves the value for the special Ignore attribute value.

Syntax
public static String getIgnoreValue();

Parameters
None.

Return values
A String object containing the Ignore attribute value.

Exceptions
None.

Notes

The Ignore value, which getIgnoreValue() retrieves, is a special attribute value
that represents an attribute value that the connector can ignore. Although the Java
connector library does provide the CWConnectorAttrType.CxIgnore constant for the
Ignore attribute value, it is recommended that you use the getIgnoreValue()
method to obtain the Ignore value when you want to assign it to an attribute.

See also
leetBlankValue()|

getSupportedBONames()

Retrieves a list of supported business objects for the current connector.

WebSphere InterChange Server
The getSupportedBusObjNames () method is valid only when the integration
broker is InterChange Server (ICS). It can provide supported business objects
only with ICS version 4.0 and later. For ICS versions earlier than 4.0, this
method throws the FunctionalityNotImplementedException exception.

Syntax
public static String[] getSupportedBONames ()

Parameters
None.

Return values
A String array that contains a list of the names of the supported business objects
for the connector.

Exceptions

NotSupportedException
Thrown if this method is called within a connector that has a
version 3.x InterChange Server as its integration broker.

Chapter 22. CWConnectorUtil class 365

Notes

The getSupportedBONames () method returns a list of top-level supported business
objects for the current connector; that is, if the connector supports business objects
that contain child business objects, getSupportedBONames () includes only the name
of the parent object in its list.

Note: The getSupportedBONames () method is only supported when the connector is
using a version 4.0 or later InterChange Server as its integration broker. If
the connector is using an earlier version of InterChange Server, the method
returns the NotSupportedException exception.

getVersion()

Retrieves the version of the connector.

Syntax
public static String getVersion();

Return values
A String containing the version of the connector.

Exceptions
None.

Notes
The getVersion() method returns the version of the Java connector library. It
obtains this version from the manifest file that is present in the Java package.

Note: The CWConnectorAgent class also provides a getVersion() method. However,
this method retrieves the version of the connector itself.

initAndValidateAttributes()

Initializes attributes that do not have values set, but are marked as required, with
their default values.

Syntax

public static final void initAndValidateAttributes(
CWConnectorBusObj theBusObj) ;

Parameters

theBusObj Is the business object whose attributes this method sets.
Return values

None.

Exceptions

SpecNameNotFoundException
Thrown when the name of the specified business object does not
match any of the business object definitions in the repository.

DefaultSettingFailedException
Thrown when the attribute’s default value could not be set and
there is no default value specified for the attribute in the business
object definition.

366 Connector Development Guide for Java

Notes
The initAndValidateAttributes() method has two purposes:

* It initializes attributes by setting the value for each attribute to its default value
under the following conditions:

— When the UseDefaults connector configuration property is set to true

— When the attribute’s isRequired property is set to true (the attribute is
required)

— When the attribute’s value is not currently set (has the special Ignore value of
CxIgnore)

— When the attribute’s Default Value property specifies a default value

* It validates attributes by throwing a DefaultSettingFailedException exception
under the following conditions:

— When the attribute’s isRequired property is set to true

— When the attribute does not have a Default Value property that defines its
default value

In case of failure, no value exists some attributes (those without default values)
after initAndValidateAttributes() finishes default-value processing. You might
want to code your connector’s application-specific component to catch this
exception and return CWConnectorConstant.FAIL.

The initAndValidateAttributes() method looks at every attribute in all levels of a
business object and determines the following;:

* Whether an attribute is required
* Whether the attribute has a value in the business object instance
* Whether the UseDefaults configuration property is set to true

If an attribute is required and UseDefaults is true, initAndValidateAttributes()
sets the value of any unset attribute to its default value. To have
initAndValidateAttributes() set the attribute value to the special Blank value
(CxBlank), you can set the attribute’s default value to the string "CxBlank”. If the
attribute does not have a default value, initAndValidateAttributes() throws the
DefaultSettingFailedException exception.

Note: If an attribute is a key or other attribute whose value is generated by the
application, the business object definition should not provide default values,
and the Required property for the attribute should be set to false.

The initAndValidateAttributes() method is usually called from the
business-object-handler doVerbFor() method to ensure that required attributes have
values before a Create operation is performed in an application. In the doVerbFor()
method, you can call initAndValidateAttributes() for the Create verb. You can
also call it for the Update verb, before it performs a Create.

To use initAndValidateAttributes(), you must also do the following;:

* Design business object definitions so that the IsRequired attribute property is set
to true for required attributes and that required attributes have default values
specified in their Default Value property.

* Add the UseDefaults connector configuration property to the list of
connector-specific properties for the connector. Set this property to true.

Chapter 22. CWConnectorUtil class 367

isBlankValue()

Determines if an attribute value is the special Blank value.

Syntax

public static boolean isBlankValue(Object value);

Parameters

value Is the value to compare with the special Blank value.

Return values
Returns true if the specified attribute value is the Blank attribute value; otherwise,
returns false.

Exceptions
None.

See also

islgnoreValue()

Determines if an attribute value is the special Ignore value.

Syntax

public static boolean isIgnoreValue(Object value);

Parameters

value Is the value to compare with the special Ignore value.

Return values
Return true if the specified attribute value is the Ignore value; otherwise, returns
false.

Exceptions
None.

Notes
The Ignore attribute value signifies that this attribute is to be ignored while
processing the business object.

See also
sBlankValue()

isTraceEnabled()

Determines if the trace level is greater than or equal to the trace level for which it
is looking, if tracing is enabled at this level.

Syntax

public final static boolean isTraceEnabled(int tracelevel);

Parameters

traceLevel is the trace level to check.

368 Connector Development Guide for Java

Return values
Returns true if the agent trace level is greater than or equal to the trace level
passed in.

Exceptions
None.

Notes
Use this method before generating a message.

logMsg()
Logs a message to the connector’s log destination.
Syntax
public final static void TogMsg(String msg, int severity);
Parameters
msg Is the message text to be logged.
severity Is one of the following message-type constants to identify the

message:

CWConnectorUtiTl.XRD_WARNING

CWConnectorUtil.XRD_ERROR

CWConnectorUtil.XRD_FATAL

CWConnectorUtil.XRD_INFO
CWConnectorUtil.XRD_TRACE

Return values
None.

Exceptions
None.

Notes

The TogMsg () method sends the specified msg text to the log destination. You
establish the name of a connector’s log destination through the Logging section in
the Trace/Log File tab of Connector Configurator.

IBM recommends that log messages be contained in a message file and extracted
with the generateMsg() method. This message file should be the connector
message file, which contains messages specific to your connector. The
generateMsg() method generates the message string for TogMsg(). It retrieves a
predefined message from a message file, formats the text, and returns a generated
message string.

Note: You can use the generateAndLogMsg() method to combine the message
generation and logging steps.

Chapter 22. CWConnectorUtil class 369

— WebSphere InterChange Server
If severity is XRD_ERROR or XRD_FATAL and the connector configuration
property LogAtInterchangeEnd is set, the error message is logged and an
email notification is sent when email notification is on. See the System
Administration Guide in the IBM WebSphere InterChange Server
documentation set for information on how to set up email notification for
errors.

Connector messages logged with 1ogMsg() are viewable using LogViewer if the
message strings were generated with generateMsg().

See also
lzenerateAndLogMsg ()}, [zenerateMsg ()

readerToBO()

Calls a data handler to convert serialized data of a specified MIME type to a
business object. This serialized data is accessed as a Reader object.

Syntax

public static CWConnectorBusObj readerToBO(CWConnectorBusObj theBusObj,
Reader serializedData, String mimeType, String BOPrefix,
String encoding, Locale locale, Object config);

Parameters

BOPrefix Is the business-object prefix, which is combined with mimeType to
form the key of the child meta-object. This argument can be used
to specify a MIME subtype. It can also be used to specify a value
for the BOPrefix data-handler configuration property.

config Is an Object that contains additional configuration information for
the data handler.

encoding Specifies the character encoding for the serialized data in the
Reader object. If you specify null, the method uses the character
encoding of the machine.

locale Is a java.util.Locale object that specifies the locale for the
serialized data in the Reader object. If you specify null, the method
uses the connector-framework locale.

mimeType Is the MIME type that identifies the format of the serialized data.

serializedData Is an object of the Java java.io.Reader class (or one of its
subclasses) that accesses the serialized data to convert to a business
object.

theBusObj Identifies the type of business object (business object definition) to
which the method converts the serialized data.

Return values
A CWConnectorBusObj object that contains the business object for the serialized data.

370 Connector Development Guide for Java

Exceptions

DataHandTerCreateException
Thrown when the readerToB0() method cannot instantiate a data
handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the serialized data to the specified business object.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

The readerToBO() method can also throw the general Java exception
NullPointerException if the data handler returns a null pointer instead of a
business object.

Notes

The readerToB0() method provides the connector with the ability to call a data
handler to perform string-to-business-object conversion. With this method, the
incoming serializedData is accessed through a Java Reader object. The method
identifies which data handler to invoke based on the specified mimeType argument.
It instantiates a data handler whose class name is identified in the child
meta-object associated with this MIME type in the the top-level meta-object, as
follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, readerToBO() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

* It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If readerToBO() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, readerToB0() throws the
DataHandlerCreateException. For more information on how the arguments of
readerToB0() identify which data handler to instantiate, see [‘Identifying the data|
lhandler to instantiate” on page 77}

Once instantiated, the data handler converts the specified serialized data to a
business object of the type that theBusObj indicates. If readerToBO() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it interprets the serialized data. The data handler returns
this business object to the readerToB0() method, which in turn returns it to the
calling method.

Note: If the data handler cannot convert the serialized data, readerToB0() throws
the ParseException exception.

Chapter 22. CWConnectorUtil class 371

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
byteArrayToBo()} streamToBO()} |string ToBo()|

streamToBO()

Calls a data handler to convert serialized data of a specified MIME type to a
business object. This serialized data is accessed through an input stream.

Syntax

public static CWConnectorBusObj streamToBO(CWConnectorBusObj theBusObj,
InputStream serializedData, String mimeType, String BOPrefix,
String encoding, Locale locale, Object config);

Parameters

BOPrefix Is the business-object prefix, which is combined with mimeType to
form the key of the child meta-object. This argument can be used
to specify a MIME subtype. It can also be used to specify a value
for the BOPrefix data-handler configuration property.

config Is an Object that contains additional configuration information for
the data handler.

encoding Specifies the character encoding for the serialized data in the input
stream. If you specify null, the method uses the character
encoding of the machine.

locale Is a java.util.Locale object that specifies the locale for the
serialized data in the input stream. If you specify null, the method
uses the connector-framework locale.

mimeType Is the MIME type that identifies the format of the serialized data.

serializedData Is an object of the Java java.io.InputStream class (or one of its
subclasses) that accesses the serialized data to convert to a business
object.

theBusObj Identifies the type of business object (business object definition) to
which the method converts the serialized data.

Return values
A CWConnectorBusObj object that contains the business object for the serialized data.

Exceptions

DataHandlerCreateException
Thrown when the streamToB0() method cannot instantiate a data
handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the serialized data to the specified business object.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

372 Connector Development Guide for Java

The streamToB0() method can also throw the general Java exception
NullPointerException if the data handler returns a null pointer instead of a
business object.

Notes

The streamToB0() method provides the connector with the ability to call a data
handler to perform string-to-business-object conversion. With this method, the
incoming serializedData is accessed through a Java input stream (derived from the
InputStream class). The method identifies which data handler to invoke based on
the specified mimeType argument. It instantiates a data handler whose class name is
identified in the child meta-object associated with this MIME type in the the
top-level meta-object, as follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, streamToBO() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

* It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If streamToBO() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, streamToBO() throws the
DataHandlerCreateException. For more information on how the arguments of
streamToBO() identify which data handler to instantiate, see [‘Identifying the data]
lhandler to instantiate” on page 77

Once instantiated, the data handler converts the specified serialized data to a
business object of the type that theBusObj indicates. If streamToBO() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it interprets the serialized data. The data handler returns
this business object to the streamToB0() method, which in turn returns it to the
calling method.

Note: If the data handler cannot convert the serialized data, streamToBO() throws
the ParseException exception.

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
IboToStream()} pyteArrayToBo()} [readerToBO()} fstring ToBo()|

Chapter 22. CWConnectorUtil class 373

stringToBo()

Calls a data handler to convert serialized data of a specified MIME type to a
business object. This serialized data is accessed as a string.

Syntax
public static CWConnectorBusObj stringToBo(CWConnectorBusObj theBusObj,
String serializedData, String mimeType);

public static CWConnectorBusObj stringToBo(CWConnectorBusObj theBusObj,
String serializedData, String mimeType, Object config);

public static CWConnectorBusObj stringToBo(CWConnectorBusObj theBusObj,
String serializedData, String mimeType, String BOPrefix,
String encoding, Locale locale, Object config);

Parameters

BOPrefix Is the business-object prefix, which is combined with mimeType to
form the key of the child meta-object. This argument can be used
to specify a MIME subtype. It can also be used to specify a value
for the BOPrefix data-handler configuration property.

config Is an Object that contains additional configuration information for
the data handler.

encoding Specifies the character encoding for the serialized data in the
String. If you specify null, the method uses the character
encoding of the machine.

locale Is a java.util.Locale object that specifies the locale for the
serialized data in the String. If you specify null, the method uses
the connector-framework locale.

mimeType Is the MIME type that identifies the format of the serialized data.

serializedData Is the string representation of the serialized data to convert to a
business object.

theBusObj Identifies the type of business object (business object definition) to
which the method converts the serialized data.

Return values
A CWConnectorBusObj object that contains the business object for the serialized data.

Exceptions

DataHandTerCreateException
Thrown when the stringToBo() method cannot instantiate a data
handler for the specified MIME type.

ParseException
Thrown when the data handler encounters some error during the
conversion of the serialized data to the specified business object.

PropertyNotSetException
Thrown when the DataHandlerMetaObjectName connector
configuration property is not set.

The stringToBo() method can also throw the general Java exception

NulTPointerException if the data handler returns a null pointer instead of a
business object.

374 Connector Development Guide for Java

Notes

The stringToBo() method provides the connector with the ability to call a data
handler to perform string-to-business-object conversion. With this method, the
incoming serializedData is accessed through a Java String. The method identifies
which data handler to invoke based on the specified mimeType argument. It
instantiates a data handler whose class name is identified in the child meta-object
associated with this MIME type in the the top-level meta-object, as follows:

* It checks the top-level meta-object for the data handler that corresponds to this
MIME type. It obtains the name of this top-level meta-object from the
DataHandlerMetaObjectName connector configuration property. If this property is
not set, stringToBo() throws the PropertyNotSetException exception.

* The instantiation process converts the specified mimeType to its equivalent
MIME-type string and then searches the top-level meta-object for an attribute
whose name matches this MIME-type string. The associated type for this
attribute is the child meta-object.

e It obtains the name of the class to instantiate from the ClassName attribute in the
child meta-object.

If stringToBo() specifies a BOPrefix and a mimeType, it instantiates a data
handler whose class name is identified in the child meta-object associated with
this MIME type in the the top-level meta-object. However, when a BOPrefix is
specified, the instantiation process interprets this value as a MIME subtype. It
searches the top-level meta-object for an attribute whose name includes both the
MIME type and subtype.

If the data handler cannot be instantiated, stringToBo() throws the
DataHandlerCreateException. For more information on how the arguments of
stringToBo() identify which data handler to instantiate, see [‘Identifying the data]
lhandler to instantiate” on page 77

Once instantiated, the data handler converts the specified serialized data to a
business object of the type that theBusObj indicates. If stringToBo() specifies the
encoding and locale arguments, the data handler uses the specified character
encoding and locale when it interprets the serialized data. The data handler returns
this business object to the stringToBo() method, which in turn returns it to the
calling method.

Note: If the data handler cannot convert the serialized data, stringToBo() throws
the ParseException exception.

You can specify a config option if you need to provide the data handler with more
configuration information than is available in its meta-object. This argument can be
used to specify a template file or a string to a URL for a schema that is used to
build an XML document from a business object.

See also
boToString()} [byte ArrayToBo(), [readerToBO()} streamToBO()|

traceCWConnectorAPIVersion()

Writes the version of the Java connector library to the trace destination.

Syntax

public static void traceCWConnectorAPIVersion();

Chapter 22. CWConnectorUtil class 375

Parameters
None.

Return values
None.

Exceptions
None.

Notes

The traceCWConnectorAPIVersion() method sends the version of the Java connector
library to the trace destination when the trace level is at level 1 and higher. It
obtains the version of Java connector library from the manifest file in the package.
A manifest file is a standard Java file that stores version information for a product.

You establish the name of a connector’s trace destination through the
TraceFileName connector configuration property.

traceWrite()

Writes a trace message to the trace destination.

Syntax

public final static void traceWrite(int tracelLevel, String msg);

Parameters

traceLevel Is one of the following trace-level constants to identify the trace
level used to determine which trace messages are output:
CWConnectorUtil.LEVEL1
CWConnectorUtil.LEVEL2
CWConnectorUtiTl.LEVEL3
CWConnectorUtil.LEVEL4
CWConnectorUtil.LEVELS

The method writes the trace message when the current trace level
is greater than or equal to traceLevel.

Note: Do not specify a trace level of zero (LEVELO) with a tracing
message. A trace level of zero indicates that tracing is turned
off. Therefore, any trace message associated with a traceLevel
of LEVELO will never print.

msg Is the message text to use for the trace message.

Return values
None.

Exceptions
None.

Notes
You can use the tracelrite() method to write your own trace messages for a
connector. Tracing is turned on for the connector when the TracelLevel connector

configuration property is set to a nonzero value (any trace-level constant except
LEVELO).

376 Connector Development Guide for Java

The traceWrite() method sends the specified msg text to the trace destination
when the current trace level is greater than or equal to traceLevel. You establish the
name of a connector’s trace destination through the Tracing section in the
Trace/Log File tab of Connector Configurator.

Because trace messages are usually needed only during debugging, whether trace
messages are contained in a message file is left at the discretion of the developer:

* If non-English-speaking users need to view trace messages, you need to
internationalize these messages. Therefore, you must put the trace messages in a
message file and extract them with the generateMsg() method. This message file
should be the connector message file, which contains message specific to your
connector. The generateMsg() method generates the message string for
traceWrite(). It retrieves a predefined trace message from a message file,
formats the text, and returns a generated message string.

Note: You can use the generateAndTraceMsg() method to combine the message
generation and logging steps.

* If only English-speaking users need to view trace messages, you do not need to
internationalize these messages. Therefore, you can include the trace message (in
English) directly in the call to tracelrite(). You do not need to use the
generateMsg() or generateAndTraceMsg() method.

Connector messages logged with tracelirite() are not viewable using LogViewer.

See also
leenerate And TraceMsg()|, leenerateMsg()|

Deprecated Methods

Some methods in the CWConnectorUtil class were supported in earlier versions but
are no longer supported. These deprecated methods will not generate errors, but IBM
recommends that you avoid their use and migrate existing code to t