
IBM

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

Connector

Development

Guide

for

Java

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

529.

30September2004

This

edition

of

this

document

applies

to

IBM

WebSphere

InterChange

Server,

version

4.3.0,

IBM

WebSphere

Business

Integration

Adapter

Framework

(5724-G92),

version

2.6.0.

To

send

us

your

comments

about

this

documentation,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

Markup

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.6.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapter

Framework

v2.4.1

xiii

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapters

v2.4.0

.

.

.

.

. xiii

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapters

v2.3.0

.

.

.

.

. xiv

New

in

WebSphere

Business

Integration

Adapters

2.2.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

New

in

WebSphere

Business

Integration

Adapters

2.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

New

in

WebSphere

Business

Integration

Adapters

2.0.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

New

in

WebSphere

Business

Integration

Adapters

2.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Part

1.

Getting

started

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

to

connector

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Adapters

in

the

WebSphere

business

integration

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Connector

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Event-triggered

flow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Tools

for

adapter

development

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Overview

of

the

connector

development

process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Part

2.

Building

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Chapter

2.

Designing

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Scope

of

a

connector

development

project

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Designing

the

connector

architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Designing

application-specific

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Communication

across

operating

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Communication

across

other

systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Summary

set

of

planning

questions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

An

internationalized

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Chapter

3.

Providing

general

connector

functionality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Running

a

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Extending

the

connector

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Using

connector

configuration

property

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Calling

a

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Handling

loss

of

connection

to

an

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Chapter

4.

Request

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Designing

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Extending

the

business-object-handler

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Handling

the

request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Performing

the

verb

action

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Handling

the

Create

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Handling

the

Retrieve

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Handling

the

RetrieveByContent

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

©

Copyright

IBM

Corp.

2000,

2004

iii

Handling

the

Update

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Handling

the

Delete

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Handling

the

Exists

verb

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Processing

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Indicating

the

connector

response

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Handling

loss

of

connection

to

the

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Chapter

5.

Event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Overview

of

an

event-notification

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Implementing

an

event

store

for

the

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Implementing

event

detection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Implementing

event

retrieval

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Implementing

the

poll

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Special

considerations

for

event

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Chapter

6.

Message

logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Error

and

informational

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Trace

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Message

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Chapter

7.

Implementing

a

Java

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Extending

the

Java

connector

base

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Beginning

execution

of

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Creating

a

business

object

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Implementing

an

event-notification

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Shutting

down

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Handling

errors

and

status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Chapter

8.

Adding

a

connector

to

the

business

integration

system

.

.

.

.

.

.

.

.

. 207

Naming

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Compiling

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Creating

the

connector

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Creating

the

initial

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Starting

up

a

new

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Part

3.

Java

connector

library

API

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Chapter

9.

Overview

of

the

Java

connector

library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Classes

and

interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Chapter

10.

CWConnectorAgent

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

CWConnectorAgent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

agentInit()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

executeCollaboration()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

getCollabNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

getConnectorBOHandlerForBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

getEventStore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

getVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

gotApplEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

isAgentCapableOfPolling()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

isSubscribed()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

pollForEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

terminate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Chapter

11.

CWConnectorAttrType

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Attribute-type

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Chapter

12.

CWConnectorBOHandler

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

iv

Connector

Development

Guide

for

Java

CWConnectorBOHandler()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

setName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Chapter

13.

CWConnectorBusObj

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

areAllPrimaryKeysTheSame()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

compare()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

dump()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

getAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

getAttrASIHashtable()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

getAttrCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

getAttrIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

getAttrName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

getbooleanValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

getBusinessObjectVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

getBusObjASIHashtable()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

getBusObjValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

getCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

getDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

getDefaultboolean()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

getDefaultdouble()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

getDefaultfloat()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

getDefaultint()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getDefaultlong()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

getDefaultString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

getdoubleValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

getfloatValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

getintValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

getLongTextValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

getlongValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

getMaxLength()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

getObjectCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

getParentBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

getStringValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

getSupportedVerbs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

getTypeName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

getTypeNum()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

getVerbAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

hasAllKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

hasAllPrimaryKeys()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

hasAnyActivePrimaryKey()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

hasCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

hasName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

hasType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

isAttrPresent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

isBlank()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

isForeignKeyAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

isIgnore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

isKeyAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

isMultipleCard()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

isObjectType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

isRequiredAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

isType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

isVerbSupported()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

objectClone()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

prune()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Contents

v

removeAllObjects()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

removeBusinessObjectAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

setAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

setbooleanValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

setBusObjValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

setDEEId()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

setDefaultAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

setdoubleValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

setfloatValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

setintValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

setLongTextValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

setStringValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

setVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

Chapter

14.

CWConnectorConstant

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Outcome-status

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Verb

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Connector-property

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Chapter

15.

CWConnectorEvent

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

CWConnectorEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

getBusObjName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

getConnectorID()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

getEffectiveDate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

getEventID()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

getEventSource()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

getEventTimeStamp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

getIDValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

getKeyDelimiter()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

getPriority()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

getTriggeringUser()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

setEventSource()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

Chapter

16.

CWConnectorEventStatusConstants

class

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Event-status

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Chapter

17.

CWConnectorEventStore

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

CWConnectorEventStore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

archiveEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

cleanupResources()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

deleteEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

fetchEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

getBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

getNextEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

getTerminate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

recoverInProgressEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

resubmitArchivedEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

setEventStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

setEventsToProcess()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

setTerminate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

updateEventStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

Deprecated

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Chapter

18.

CWConnectorEventStoreFactory

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

getEventStore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

vi

Connector

Development

Guide

for

Java

Chapter

19.

CWConnectorExceptionObject

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

CWConnectorExceptionObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

getExpl()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

getMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

getMsgNumber()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

getMsgType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

setExpl()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

setMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

setMsgNumber()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

setMsgType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

setStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Chapter

20.

CWConnectorLogAndTrace

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Message-type

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Trace-level

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Chapter

21.

CWConnectorReturnStatusDescriptor

class

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

CWConnectorReturnStatusDescriptor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

getErrorString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

setErrorString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

setStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Chapter

22.

CWConnectorUtil

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Message-file

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Deprecated

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Chapter

23.

CWCustomBOHandlerInterface

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

doVerbForCustom()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

Chapter

24.

CWException

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

CWException()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

getExceptionObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

getMessage()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

setStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

Exception

subclasses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Chapter

25.

CWProperty

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

CWProperty()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

getCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

getChildPropValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

getChildPropsWithPrefix()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

getEncryptionFlag()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

getHierChildProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

getHierChildProps()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

getHierProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

getPropType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

getStringValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

hasChildren()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

hasValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

setEncryptionFlag()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

setValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Part

4.

Java

low-level

connector

library

API

reference

.

.

.

.

.

.

.

.

.

.

.

. 401

Contents

vii

Chapter

26.

Overview

of

the

low-level

Java

connector

library

.

.

.

.

.

.

.

.

.

.

.

. 403

Classes

and

interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Chapter

27.

BOHandlerBase

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

setName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Chapter

28.

BusinessObjectInterface

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

clone()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

doVerbFor()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

dump()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

getAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

getAttrCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

getAttrDesc()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

getAttribute()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

getAttributeIndex()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

getAttributeType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

getAttrName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

getAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

getBusinessObjectVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

getDefaultAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

getParentBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

getVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

getVerbAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

isAttrPresent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

isBlank()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

isIgnore()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

isVerbSupported()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

makeNewAttrObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

setAttributeWithCreate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

setAttrValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

setDefaultAttrValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

setLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

setVerb()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

Chapter

29.

ConnectorBase

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

executeCollaboration()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

getBOHandlerForBO()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

getCollabNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

getSupportedBusObjNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

getVersion()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

gotApplEvent()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

init()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

isAgentCapableOfPolling()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 430

isSubscribed()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

pollForEvents()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

terminate()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Deprecated

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Chapter

30.

CxObjectAttr

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Attribute-type

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

equals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

getAppText()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

getCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

getDefault()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

getMaxLength()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

viii

Connector

Development

Guide

for

Java

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

getRelationType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

getTypeName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

getTypeNum()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

hasCardinality()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

hasName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

hasType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

isForeignKeyAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

isKeyAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

isMultipleCard()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

isObjectType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

isRequiredAttr()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

isType()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

Chapter

31.

CxObjectContainerInterface

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

getBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

getObjectCount()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

insertBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

removeAllObjects()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

removeBusinessObjectAt()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

setBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

Chapter

32.

CxProperty

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

CxProperty()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

getAllChildProps()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

getChildProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

getEncryptionFlag()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

getName()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

getStringValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

hasChildren()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

setEncryptionFlag()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

setValues()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

Chapter

33.

CxStatusConstants

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

Outcome-status

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

Chapter

34.

JavaConnectorUtil

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

Static

constants

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

createBusinessObject()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

createContainer()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

generateMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

getAllConfigProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

getAllConnectorAgentProperties()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

getAllStandardProperties()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

getAllUserProperties()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

getBlankValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

getConfigProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

getEncoding()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

getIgnoreValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

getLocale()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

getOneConfigProp()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

getSupportedBusObjNames()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

initAndValidateAttributes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

isBlankValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

isIgnoreValue()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

isTraceEnabled()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

logMsg()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

traceWrite()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

Contents

ix

Chapter

35.

ReturnStatusDescriptor

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

getErrorString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

getStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

setErrorString()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

setStatus()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

Chapter

36.

Low-level

Java

exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

Exception

subclasses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

getFormattedMessage()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

Part

5.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 477

New

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Standard

connector

properties

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Standard

properties

quick-reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

Appendix

B.

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Overview

of

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

Starting

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

Running

Configurator

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

Changing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Using

Connector

Configurator

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Appendix

C.

Connector

Script

Generator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Appendix

D.

Connector

feature

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Guidelines

for

using

the

connector

feature

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Standard

behavior

for

request

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Standard

behavior

for

the

event

notification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

General

standards

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 530

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

x

Connector

Development

Guide

for

Java

About

this

document

The

IBMR

WebSphereR

Business

Integration

Adapter

portfolio

supplies

integration

connectivity

for

leading

e-business

technologies,

enterprise

applications,

legacy

applications

and

mainframe

systems.

The

product

set

includes

tools

and

templates

for

customizing,

creating,

and

managing

components

for

business

integration.

This

document

describes

the

development

of

Java

connectors

in

the

IBM

WebSphere

business

integration

system.

Audience

This

document

is

for

connector

developers.

It

assumes

proficiency

in

the

Java

programming

language.

The

document

also

assumes

a

basic

familiarity

with

the

IBM

WebSphere

business

integration

system,

including

connectors

and

business

objects.

Related

documents

Note:

Important

information

about

the

products

documented

in

this

guide

may

be

available

in

Technical

Support

Technotes

and

Flashes

issued

after

this

document

was

published.

These

can

be

found

on

the

WebSphere

Business

Integration

Support

Web

site,

http://www.ibm.com/software/integration/websphere/support/.

Select

the

component

area

of

interest

and

browse

the

Technotes

and

Flashes

sections.

Additional

information

might

also

be

available

in

IBM

Redbooks

at

http://www.redbooks.ibm.com/.>>.

The

complete

set

of

documentation

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Adapters

installations,

and

includes

reference

material

on

specific

components.

Note:

This

document

covers

the

development

of

connectors

written

in

Java.

The

development

of

C++

connectors

is

documented

in

the

Connector

Development

Guide

for

C++.

You

can

install

the

documentation

available

for

this

product

or

read

it

directly

online

at

the

following

sites:

v

For

general

adapter

information,

for

using

adapters

with

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker),

and

for

using

adapters

with

WebSphere

Application

Server:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v

For

using

adapters

with

WebSphere

InterChange

Server:

http://www.ibm.com/websphere/integration/wicserver/infocenter

v

For

more

information

about

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker):

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v

For

more

information

about

WebSphere

Application

Server:

©

Copyright

IBM

Corp.

2000,

2004

xi

http://www.ibm.com/software/websphere/wbiadapters/infocenter
http://www.ibm.com/websphere/crossworlds/library/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/

http://www.ibm.com/software/webserver/appserv/library.html

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

italic

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

include

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

WebSphere

Business

Integration

Adapters

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

ProductDir

Represents

the

directory

where

the

product

is

installed.

For

the

IBM

WebSphere

InterChange

Server

environment,

the

default

product

directory

is

″IBM\WebSphereICS″.

For

the

IBM

WebSphere

Business

Integration

Adapters

environment,

the

default

product

directory

is

″WebSphereAdapters″.

Markup

conventions

In

some

chapters,

you

will

find

text

identified

by

the

following

markup:

WebSphere

InterChange

Broker

Describes

functionality

of

the

IBM

WebSphere

business

integration

system

when

InterChange

Server

is

the

integration

broker.

WebSphere

MQ

Integrator

Broker

Describes

functionality

of

the

IBM

WebSphere

business

integration

system

when

WebSphere

MQ

Integrator

Broker

is

the

integration

broker.

xii

Connector

Development

Guide

for

Java

http://www.ibm.com/software/webserver/appserv/library.html

New

in

this

release

This

chapter

describes

the

new

features

of

IBM

WebSphere

business

integration

system

that

are

covered

in

this

document.

New

in

WebSphere

Business

Integration

Adapter

Framework

v2.6.0

The

IBM

WebSphere

Business

Integration

Adapter

2.6.0

release

provide

the

following

new

functionality

in

the

Java

connector

library:

v

Application

Response

Measurement

(ARM)

support

has

been

added

to

connectors

and

can

be

added

to

custom

Java

connnectors

in

the

form

of

several

ARM

APIs

that

must

be

implemented

in

the

adapter

runtime

code.

Such

connectors

can

participate

in

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

(ITMTP)

transaction

decomposition.

v

Recommended

version

of

the

JDK

has

been

updated

from

1.3.1

to

1.4.2

v

Common

Event

Infrastructure

(CEI)

support

has

been

added

to

Java

connectors.

v

An

additional

signature

for

thedoVerbFor()

method

has

been

added

to

support

Results

sets.

The

original

signature

is

still

supported.

v

The

adapter

runtime

has

been

split

out

of

crossworlds.jar

and

placed

in

wbiart.jar

v

A

new

″low

cost″

API

to

check

for

optional

attributes,

isAttrPresent(),

has

been

added

to

the

CwConnectorBusObj

and

to

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapter

Framework

v2.4.1

As

of

version

2.4.1

of

the

IBM

WebSphere

Business

Integration

Adapter

Framework,

adapters

are

are

not

supported

on

Solaris

7,

so

references

to

that

platform

version

have

been

deleted

from

this

guide.

New

in

WebSphere

InterChange

Server

v4.2.2

and

WebSphere

Business

Integration

Adapters

v2.4.0

The

IBM

WebSphere

InterChange

Server

4.2.2

release

and

the

IBM

WebSphere

Business

Integration

Adapter

2.4.0

release

provide

the

following

new

functionality

in

the

Java

connector

library:

v

A

Java

connector

now

uses

the

IBM

Java

Object

Request

Broker

(ORB)

instead

of

the

third-party

VisiBroker

ORB.

v

A

Java

connector

can

now

support

access

to

the

serialized

data

sent

or

or

received

from

a

data

handler.

In

previous

releases,

the

connector

could

access

serialized

data

as

a

Java

String.

It

can

now

provide

access

in

any

of

the

following

new

forms.

–

As

an

input

stream:

boToStream()

and

streamToBO()

–

As

a

Java

byte

array:

boToByteArray()

and

byteArrayToBo()

–

As

a

Reader

object:

readerToBO()

In

addition,

all

data-handler

methods

now

support

the

ability

to

identify

the

character

encoding

and

locale

for

the

data

handler

to

associate

with

the

serialized

data.

For

more

information,

see

the

descriptions

of

these

methods

in

“Calling

a

data

handler”

on

page

75.

©

Copyright

IBM

Corp.

2000,

2004

xiii

v

The

Java

connector

library

now

provides

the

following

features

for

an

event

store

(which

the

CWConnectorEventStore

class

represents):

–

The

setEventStoreStatus()

method

has

been

renamed

to

setEventStatus()

to

better

identify

its

functionaliy.

This

method

sets

the

status

of

an

event.

–

The

getBO()

method

now

provides

the

ability

to

return

an

integer

status

value

to

its

calling

method.

The

default

implementation

of

getBO()

continues

to

use

the

form

that

does

not

provide

an

internal

status

value.

For

more

information,

see

the

description

of

the

getBO()

method

in

the

CWConnectorEventStore

class.
v

The

Java

Connector

Development

Kit

(JCDK)

now

provides

a

more

consistent

way

to

create

startup

scripts

for

Java

connectors.

It

also

provides

a

template

(for

both

Windows

and

UNIX-based

systems)

for

the

creation

of

this

startup

script.

For

more

information,

see

“Starting

up

a

new

connector”

on

page

211.

In

addition,

the

Adapter

Development

Kit

(ADK)

now

includes

an

adapter

sample

in

the

DevelopmentKits\Twineball_sample

subdirectory

of

the

product

directory.

This

adapter

sample

includes

a

Java

connector.

New

in

WebSphere

InterChange

Server

v4.2.1

and

WebSphere

Business

Integration

Adapters

v2.3.0

The

IBM

WebSphere

InterChange

Server

4.2.1

release

and

the

IBM

WebSphere

Business

Integration

Adapter

2.3.0

release

provide

the

following

new

functionality

in

the

Java

connector

library:

v

The

connector

can

now

provide

additional

configuration

to

a

data

handler

when

it

calls

the

data

handler.

The

following

methods

support

a

config

argument

to

specify

this

additional

information:

–

boToString()

–

stringToBo()

For

more

information,

see

the

descriptions

of

these

methods

in

Chapter

22,

“CWConnectorUtil

class,”

on

page

345.

v

The

Java

connector

library

now

provides

access

to

individual

name-value

pairs

in

application-specific

information

through

new

forms

of

the

getAppText()

method

in

the

CWConnectorBusObj

class.

For

more

information,

see

the

description

of

this

method

in

Chapter

13,

“CWConnectorBusObj

class,”

on

page

255.

v

In

support

of

duplicate

event

elimination

(which

provides

guaranteed

event

delivery),

the

Java

connector

library

provides

the

setDEEId()

method

in

the

CWConnectorBusObj

class

to

enable

a

connector

to

set

a

business

object’s

ObjectEventId

attribute

with

the

event

identifier

(ID).

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

134

and

the

description

of

the

setDEEId()

method

in

Chapter

13,

“CWConnectorBusObj

class,”

on

page

255.

v

The

Java

connector

library

now

provides

the

ability

to

modularize

the

instantiation

of

an

event-store

object

from

its

event-store

factory

with

the

following

features:

–

The

getEventStore()

method

(in

the

CWConnectorAgent

class)

instantiates

an

event-store

object

from

its

event-store

factory.

The

CWConnectorAgent

class

provides

a

default

implementation

of

this

method.

However,

you

can

override

it

for

custom

behavior.

The

default

implementation

of

the

pollForEvents()

method

now

calls

this

getEventStore()

method

to

obtain

its

event-store

object

xiv

Connector

Development

Guide

for

Java

–

The

EventStoreFactory

connector

configuration

property

can

contain

the

name

of

the

event-store-factory

class

for

your

event

store.

The

getEventStore()

method

(in

the

CWConnectorAgent

class)

obtains

the

name

of

the

event-store-factory

class

it

uses

from

the

EventStoreFactory

property.

For

more

information,

see

“CWConnectorEventStoreFactory

interface”

on

page

176.

v

The

Java

connector

library

now

provides

the

getTerminate()

and

setTerminate()

methods

(in

the

CWConnectorEventStore

class)

to

allow

the

pollForEvents()

method

to

better

handle

the

application-timeout

(APPRESPONSETIMEOUT)

condition.

v

The

Java

connector

library

now

provides

verb

constants

for

the

Exists

and

RetrieveByContent

verbs.

The

VERB_EXISTS

and

VERB_RETRIEVEBYCONTENT

verb

constants

are

defined

in

the

CWConnectorConstant

class.

v

To

supplement

changes

to

the

return

codes

of

the

gotApplEvents()

method,

the

manual

now

provides

more

information

on

how

to

respond

to

these

different

outcome-status

values.

In

addition,

the

pollForEvents()

method

has

been

enhanced

to

take

these

same

responses.

For

more

information,

see

“Sending

the

business

object”

on

page

187.

v

The

Java

connector

library

now

supports

the

creation

of

a

custom

business

object

handler

through

a

custom-business-object-handler

class,

which

implements

the

CWCustomBOHandler

interface.

If

your

connector

supports

a

business

object

that

requires

different

processing

for

one

of

its

verbs,

you

can

create

a

custom

business

object

handler

to

handle

that

verb

for

the

business

object.

For

more

information,

see

“Creating

a

custom

business

object

handler”

on

page

172.

New

in

WebSphere

Business

Integration

Adapters

2.2.0

The

IBM

WebSphere

Business

Integration

Adapter

2.2.0

release

provides

the

following

new

functionality

in

the

Java

connector

library:

v

The

″CrossWorlds″

name

is

no

longer

used

to

describe

an

entire

system

or

to

modify

the

names

of

components

or

tools,

with

are

otherwise

mostly

the

same

as

before.

For

example

″CrossWorlds

System

Manager″

is

now

″System

Manager″

and

″CrossWorlds

InterChange

Server″

is

now

″WebSphere

InterChange

Server″.

v

The

Java

connector

library

provides

access

to

hierarchical

connector

configuration

properties

with

the

following

enhancements:

–

The

CWProperty

class

provides

methods

that

allow

you

to

obtain

string

values

and

child

properties

within

a

hierarchical

connector

property.

For

more

information,

see

Chapter

25,

“CWProperty

class,”

on

page

389.

–

The

CWConnectorUtil

class

provides

two

new

methods

to

allow

you

to

retrieve

the

top-level

hierarchical

connector

properties:

-

To

retrieve

all

top-level

hierarchical

connector

properties:

getAllConfigProperties()

-

To

retrieve

a

specified

top-level

hierarchical

connector

property:

getHierarchicalConfigProp()

For

more

information,

see

“Retrieving

hierarchical

connector

configuration

properties”

on

page

73.

Note:

The

Java

connector

library

still

provides

support

for

the

old

single-valued,

simple

connector

property

values,

though

the

getConfigProp()

method.

v

The

Java

connector

library

now

supports

duplicate

event

elimination

to

provide

guaranteed

event

delivery.

Duplicate

event

elimination

is

most

often

used

by

JMS-enabled

adapters

that

have

event

stores

that

are

not

implemented

as

JMS

queues.

Use

the

DuplicateEventElimination

connector

property

to

enable

this

New

in

this

release

xv

functionality.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

134.

v

The

Java

connector

library

now

provides

the

following

API

methods:

–

The

getSupportedVerbs()

method

(in

the

CWConnectorBusObj

class)

provides

a

list

of

the

business

object’s

supported

verbs.

–

The

setLocale()

method

(in

the

CWConnectorBusObj

class)

allows

you

to

set

the

locale

that

is

associated

with

a

business

object.

This

new

method

complements

the

getLocale()

method

that

has

already

been

defined

in

this

same

class.

–

The

cleanupResources()

method

(in

the

CWConnectorEventStore

class)

allows

you

to

release

resources

that

the

event

store

has

used.
v

Chapter

8,

“Adding

a

connector

to

the

business

integration

system,”

on

page

207

now

provides

more

information

on

how

to

add

a

Java

connector

to

the

WebSphere

business

integration

system,

including:

–

How

to

create

an

initial

configuration

file

for

a

connector

–

How

to

create

a

startup

script

for

a

Java

connector

from

a

sample

startup

file

–

Use

of

the

new

CWConnEnv.bat

(Windows)

or

CWConnEnv.sh

(UNIX)

file

for

system-variable

settings
v

Chapter

2,

“Designing

a

connector,”

on

page

35

now

provides

more

information

on

how

to

internationalize

a

connector.

v

Several

Java

connector

library

methods

have

been

changed

to

better

handle

status

return

codes:

–

The

default

implementation

of

the

pollForEvents()

method

now

takes

the

following

actions:

-

It

handles

the

CONNECTOR_NOT_ACTIVE

and

NO_SUBSCRIPTION_FOUND

status

return

codes

from

its

call

to

the

gotApplEvent()

method.

For

more

information,

see

“Sending

the

business

object”

on

page

187.

-

It

returns

an

outcome

status

of

APPRESPONSETIMEOUT

if

access

to

the

event

store

fails.

Failure

to

access

the

event

store

can

occur

in

any

of

the

following

event-store

methods:

Event-store

method

Exception

raised

fetchEvents()

StatusChangeFailedException

archiveEvent()

ArchiveFailedException

deleteEvent()

DeleteFailedException

updateEventStatus()

StatusChangeFailedException

–

The

agentInit()

method

now

returns

an

outcome

status

of

FAIL

if,

when

it

throws

an

exception,

the

exception-detail

object’s

status

value

is

not

set.

If

the

status

value

is

set

within

the

exception-detail

object,

agentInit()

returns

that

status

value.

–

The

doVerbFor()

method

now

returns

an

outcome

status

of

APPRESPONSETIMEOUT

if,

when

it

throws

a

ConnectionFailureException,

the

exception-detail

object’s

status

value

is

not

set.

If

the

status

value

is

set

within

the

exception-detail

object,

doVerbFor()

returns

that

status

value.

New

in

WebSphere

Business

Integration

Adapters

2.1

The

IBM

WebSphere

Business

Integration

Adapter

2.1

release

provides

the

following

new

functionality

in

the

Java

connector

library:

xvi

Connector

Development

Guide

for

Java

v

The

Java

connector

library

provides

access

to

attribute

values

that

are

LongText

with

the

following

new

methods

in

the

CWConnectorBusObj

class:

–

getLongTextValue()

to

retrieve

a

LongText

attribute

value

–

setLongTextValue()

to

set

a

LongText

attribute

value
v

The

Java

connector

library

now

supports

synchronous

sending

of

an

event

with

the

executeCollaboration()

method

in

the

CWConnectorAgent

class.

This

method

is

valid

for

use

only

when

InterChange

Server

is

the

integration

broker.

New

in

WebSphere

Business

Integration

Adapters

2.0.1

The

IBM

WebSphere

Business

Integration

Adapter

2.0.1

release

provides

an

internationalized

version

of

the

Java

connector

library.

This

internationalized

connector

library

enables

you

to

develop

adapters

that

can

be

localized

for

many

different

locales

(A

locale

includes

culture-specific

conventions

and

a

character

code

set.).

The

structure

of

connectors

has

changed

in

the

following

ways

to

accomodate

locales:

v

The

connector

framework

now

has

a

locale

associated

with

it.

This

locale

is

determined

either

from

the

operating

system

locale

or

from

configuration

properties.

The

Java

connector

library

provides

the

getGlobalEncoding()

and

getGlobalLocale()

methods

in

the

CWConnectorUtil

class

to

access

this

information

from

within

the

connector.

v

A

business

object

has

a

locale

associated

with

it.

This

locale

is

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes.

The

Java

connector

library

provides

the

getLocale()

method

in

the

CWConnectorBusObj

class

to

obtain

the

name

of

this

locale

from

within

the

connector.

For

more

information,

see

“An

internationalized

connector”

on

page

56.

New

in

WebSphere

Business

Integration

Adapters

2.0

The

IBM

WebSphere

Business

Integration

Adapter

2.0

release

provides

support

for

adapters.

An

adapter

is

a

set

of

software

modules

that

communicate

with

an

integration

broker

and

with

applications

or

technologies

to

perform

tasks

such

as

executing

application

logic

and

exchanging

data.

For

an

introduction

to

adapters

and

integration

brokers,

see

“Adapters

in

the

WebSphere

business

integration

system”

on

page

3.

In

addition,

the

structure

of

IBM

WebSphere

business

integration

system

documentation

for

the

development

of

connectors

has

changed

in

this

release:

v

IBM

introduces

a

new

application

programming

interface

(API)

for

the

development

of

Java

connectors.

Features

of

this

connector

library

include:

–

Classes

to

encapsulate

an

event

and

event

store

within

the

Java

connector:

CWConnectorEvent,

CWConnectorEventStore

–

A

single

class,

CWConnectorBusObj,

to

provide

access

to

the

business

object,

business

object

definition,

and

attributes

–

Classes

to

provide

more

information

in

exceptions

that

methods

of

the

Java

connector

library

throw:

CWException,

CWConnectorExceptionObject

–

Other

classes

retain

the

functionality

of

the

old

low-level

Java

connector

library

by

being

wrappers

for

the

old

classes.

IBM

recommends

this

new

Java

connector

library

for

all

new

development

of

Java

connectors.

For

a

summary

of

the

classes

and

methods

of

this

connector

New

in

this

release

xvii

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231

Support

for

the

old

low-level

Java

connector

library

will

be

continued

for

backward

compatibility.

v

The

following

guides

have

been

combined

to

create

a

single

document

that

covers

the

development

of

Java

connectors:

Connector

Development

Guide

Material

on

how

to

develop

a

connector

is

now

found

in

Parts

I

and

II

of

this

new

document.

Connector

Reference:

Java

Class

Library

Reference

material

on

the

low-level

Java

connector

library

is

now

found

in

Part

IV.

Reference

material

on

the

new

Java

connector

library

is

now

found

in

Part

III

of

this

document.

xviii

Connector

Development

Guide

for

Java

Part

1.

Getting

started

©

Copyright

IBM

Corp.

2000,

2004

1

2

Connector

Development

Guide

for

Java

Chapter

1.

Introduction

to

connector

development

This

chapter

provides

a

brief

overview

of

connectors

in

the

IBM

WebSphere

business

integration

system.

It

also

introduces

the

Java

Connector

Development

Kit

(JCDK)

and

summarizes

the

development

steps

you

need

to

follow

to

implement

a

connector.

This

chapter

contains

the

following

sections:

v

“Adapters

in

the

WebSphere

business

integration

system”

v

“Connector

components”

on

page

7

v

“Event-triggered

flow”

on

page

18

v

“Tools

for

adapter

development”

on

page

25

v

“Overview

of

the

connector

development

process”

on

page

28

Adapters

in

the

WebSphere

business

integration

system

The

IBM

WebSphere

business

integration

system

consists

of

the

following

components,

which

allow

heterogeneous

business

applications

to

exchange

data:

v

A

set

of

IBM

WebSphere

Business

Integration

Adapters

An

IBM

WebSphere

Business

Integration

Adapter,

called

simply

an

adapter,

provides

the

components

to

support

communication

between

an

integration

broker

and

either

applications

or

technologies

to

perform

tasks

such

as

executing

application

logic

and

exchanging

data.

v

An

integration

broker

The

task

of

an

integration

broker

is

to

integrate

data

among

heterogeneous

applications.

The

IBM

WebSphere

business

integration

system

can

include

either

of

the

integration

brokers

in

Table

1.

Table

1.

Integration

brokers

in

the

WebSphere

business

integration

system

Integration

broker

For

more

information

Documentation

set

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker)

Implementing

Adapters

for

WebSphere

Message

Brokers

WebSphere

Business

Integration

Adapters

WebSphere

Application

Server

Implementing

Adapters

for

WebSphere

Application

Server

WebSphere

Business

Integration

Adapters

IBM

WebSphere

InterChange

Server

(ICS)

Implementation

Guide

for

WebSphere

InterChange

Server

WebSphere

InterChange

Server

In

the

IBM

WebSphere

business

integration

system,

the

integration

broker

communicates

to

these

applications

through

adapters.

The

following

adapter

components

actually

provide

this

communication:

v

“Business

objects”

on

page

5,

whose

role

is

to

hold

information

about

an

application

event

v

“Connectors”

on

page

6,

whose

role

is

to

send

information

about

an

application

event

to

an

integration

broker

or

to

receive

information

about

a

request

from

the

integration

broker.

©

Copyright

IBM

Corp.

2000,

2004

3

Figure

1

shows

how

these

components

transfer

information

from

an

application

to

an

integration

broker.

Note:

An

adapter

also

includes

configuration

and

development

components.

For

more

information,

see

“Tools

for

adapter

development”

on

page

25.

Figure

2

shows

the

WebSphere

business

integration

system

and

the

role

that

connectors

play

within

this

system.

Connector
framework

Application

Integration broker

Connector

Runtime components
of an

adapter

Business object

Application-specific
component

Business object

Figure

1.

Adapter

components

that

provide

information

transfer

4

Connector

Development

Guide

for

Java

Business

objects

As

Table

2

shows,

a

business

object

is

a

two-part

entity,

consisting

of

a

repository

definition

and

a

runtime

object.

Table

2.

Parts

of

a

Business

Object

Repository

entity

Runtime

object

Business

object

definition

Business

object

instance

(often

called

a

“business

object”)

Business

object

definition

A

business

object

definition

represents

a

group

of

attributes

that

can

be

treated

as

a

collective

unit.

For

example,

a

business

object

definition

can

represent

an

application

entity

and

the

operations

that

can

be

performed

on

the

entity,

such

as

create,

retrieve,

update,

or

delete.

A

business

object

definition

can

also

represent

other

programmatic

entities,

such

as

the

data

contents

of

a

business

transaction

form

submitted

from

a

Web

browser.

A

business

object

definition

contains

attributes

for

each

piece

of

data

in

the

collective

unit.

Note:

For

more

information

on

the

structure

of

a

business

object

definition,

see

“Processing

business

objects”

on

page

105.

When

you

“develop

a

business

object,”

you

create

a

business

object

definition.

You

can

create

business

objects

definitions

with

the

Business

Object

Designer

tool,

Integration broker

Custom connector

Web server

Web client

`Sales Order Processing
enterprise application

IBM WebSphere
Business Integration Adapter

for XML

Legacy
application

Application connector

Order Management
enterprise application

Application connector

Sales Order

Legacy data Order data

Order Status for
display on Web site

o

Figure

2.

WebSphere

business

integration

system

Chapter

1.

Introduction

to

connector

development

5

which

provides

an

easy-to-use,

graphical

user

interface

(GUI)

that

allows

you

to

define

attributes

of

the

business

object.

It

supports

saving

the

business

object

definition

in

the

repository

or

in

an

external

XML

file.

Within

Business

Object

Designer,

you

can

create

the

business

object

definition

in

either

of

two

ways:

v

Manually,

by

using

the

dialogs

of

Business

Object

Designer

to

define

attributes

and

other

information

for

the

business

object

definition.

v

With

an

Object

Discovery

Agent

(ODA),

which

automatically

generates

a

business

object

definition

by:

–

Examining

specified

entities

within

the

application

–

“Discovering”

the

elements

of

these

entities

that

correspond

to

business

object

attributes

Note:

For

information

on

how

to

use

Business

Object

Designer

to

create

business

object

definitions

in

either

of

these

ways,

see

the

Business

Object

Development

Guide.

Business

object

instance

While

the

business

object

definition

represents

the

collection

of

data,

a

business

object

instance

(often

just

called

a

“business

object”)

is

the

runtime

entity

that

contains

the

actual

data.

For

example,

to

represent

a

customer

entity

in

your

application,

you

can

create

a

Customer

business

object

definition

that

defines

the

information

in

the

customer

entity

that

needs

to

be

sent

to

other

applications.

At

runtime,

the

Customer

business

object,

which

is

an

instance

of

this

business

object

definition,

contains

the

information

for

a

particular

customer.

Connectors

The

role

of

a

connector

is

to

send

information

about

an

application

event

to

an

integration

broker

or

to

receive

information

about

a

request

from

the

integration

broker.

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

a

connector

is

a

set

of

software

modules

and

data

maps

that

connect

WebSphere

Business

Integration

collaborations

to

an

enterprise

application

or

an

external

application.

A

collaboration

represents

a

business

process

that

can

involve

several

applications.

The

connector

acts

as

an

intermediary

for

one

or

more

collaborations,

using

an

enterprise

application’s

API,

or

some

other

program

logic,

to

support

a

business

process.

The

information

that

the

connector

sends

or

receives

is

in

the

form

of

a

business

object.

Therefore,

each

connector

supports

one

or

more

business

object

definitions.

These

business

object

definitions

have

been

designed

to

correspond

to

application

data

models

or

to

other

types

of

external

entities.

The

business

object

closely

reflects

the

data

entity

that

it

represents.

Its

structure

and

content

match

that

of

the

entity.

6

Connector

Development

Guide

for

Java

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

the

business

integration

system

uses

two

kinds

of

business

objects.

The

business

object

that

a

connector

processes

is

called

an

application-specific

business

object.

The

business

object

that

a

collaboration

processes

is

called

a

generic

business

object.

For

more

information,

see

“Mapping

services”

on

page

11.

Other

integrator

brokers

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Intregration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

the

business

integration

system

uses

a

single

kind

of

business

object,

the

business

object

that

a

connector

processes.

Although

this

business

object

is

an

application-specific

business

object,

the

“application-specific”

qualifier

is

often

omitted

because

this

is

the

only

kind

of

business

object

used.

The

connector

uses

information

in

its

supported

business

object

definitions

to

perform

its

major

roles,

as

Table

3

shows.

Table

3.

Operations

on

business

objects

for

the

different

roles

of

a

connector

Connector

role

Operation

on

business

object

“Event

notification”

on

page

20

When

an

event

that

affects

an

application

entity

occurs

(such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data),

a

connector:

v

Creates

a

business

object,

based

on

the

information

in

its

business

object

definition

v

Fills

this

business

object

with

data

from

an

application

entity

v

Sends

this

business

object

as

an

event

to

an

integration

broker

“Request

processing”

on

page

22

When

the

integration

broker

requests

a

change

to

the

connector’s

application

or

when

the

broker

needs

information

from

the

connector’s

application,

the

connector:

v

Receives

a

business

object

from

an

integration

broker

v

Uses

information

in

the

business

object

and

its

business

object

definition

to

create

the

appropriate

application

command

that

performs

an

operation

v

Sends

any

appropriate

response

information

back

to

the

integration

broker

Note:

Every

connector

must

implement

request

processing.

Implementation

of

event

notification

is

optional

(though

it

does

require

some

minor

coding).

Connector

components

The

connector

represents

the

application

in

the

WebSphere

business

integration

system,

performing

tasks

in

support

of

the

application.

For

example,

the

connector

polls

the

application

for

events

and

sends

business

objects

that

represent

events

to

the

integration

broker.

The

connector

also

performs

tasks

in

support

of

integration-broker

requests,

such

as

retrieving

or

modifying

application

data.

Chapter

1.

Introduction

to

connector

development

7

Figure

3

illustrates

the

components

of

a

Java

connector.

The

Java

connector

library

is

included

in

the

generic

services

that

the

connector

framework

provides.

As

Figure

3

shows,

a

connector

has

the

following

components:

v

“Connector

framework”—Provided

as

part

of

the

WebSphere

Business

Integration

Adapters

product

to

communicate

with

the

integration

broker.

v

“Application-specific

component”

on

page

18—Contains

code

you

write

to

specify

the

actions

of

the

application-specific

tasks

of

the

connector,

such

as

basic

initialization

and

setup

methods,

business

object

handling,

and

event

notification.

Connector

framework

The

connector

framework

manages

interactions

between

the

connector

and

the

integration

broker.

IBM

provides

this

component

to

ease

connector

development.

The

connector

framework

is

written

in

Java

and

includes

a

C++

extension

to

allow

the

development

of

the

application-specific

component

in

C++.

Other

integration

brokers

In

an

IBM

WebSphere

business

integration

system

that

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker),

or

WebSphere

Application

Server

as

its

integration

broker,

the

connector

framework

is

a

nondistributed

component;

that

is,

it

resides

entirely

on

the

adapter

machine.

Figure

4

shows

the

high-level

connector

architecture

with

the

WebSphere

message

broker

or

WebSphere

Application

Server.

For

information

on

the

connector

architecture

with

InterChange

Server

as

the

integration

broker,

see

“Connector

controller”

on

page

9.

Generic services (C++ extensions)

Global
functions

Business
object
handler

Application
event
notification

Connector
framework

Application-
specific
component

Transport layer

Application

Application interface functionsa

Integration broker

Connector

Figure

3.

Components

of

a

Java

connector

8

Connector

Development

Guide

for

Java

The

connector

framework

provides

the

services

that

Table

4

summarizes.

Table

4.

Services

of

the

connector

framework

Component

Services

“Connector

controller”

(InterChange

Server

only)

v

Provides

mapping

between

application-specific

and

generic

business

objects,

and

manages

business

object

transfers

between

the

connector

and

collaborations

running

in

InterChange

Server.

v

Provides

other

management

services,

such

as

monitoring

the

status

of

the

connector

“Transport

layer”

on

page

13

v

Handles

the

exchange

of

business

objects

between

the

connector

and

the

integration

broker

v

Manages

the

exchange

of

startup

and

administrative

messages

between

the

connector

controller

and

the

client

connector

framework

v

Keeps

a

list

of

subscribed

business

objects

Java

connector

library

on

page

“Java

connector

library”

on

page

17.

v

Provides

generic

services

to

the

application-specific

component

in

the

form

of

Java

classes

and

methods

Connector

controller

In

an

IBM

WebSphere

business

integration

system

that

uses

InterChange

Server

as

its

integration

broker,

the

connector

framework

is

distributed

to

take

advantage

of

services

that

InterChange

Server

provides.

This

distributed

connector

framework

contains

the

following

components:

v

The

client

connector

framework

runs

as

part

of

the

connector

process

on

the

client

machine.

It

includes

a

transport

layer,

and

the

Java

connector

library.

For

more

information

on

these

components,

see

Table

4

on

page

9.

v

The

connector

controller

runs

within

InterChange

Server

on

the

server

machine.

Application A

Connector A

Application-specific
component

Connector framework

Data
handler

BO

Integration broker

Delivery
queue

Business
data

Event
delivery

message

BO

Figure

4.

High-level

connector

architecture

with

a

WebSphere

message

broker

Chapter

1.

Introduction

to

connector

development

9

Figure

5

illustrates

the

basic

components

of

a

connector

within

the

InterChange

Server

system.

InterChange

Server,

collaborations,

and

connector

controllers

run

as

a

single

process,

and

each

connector

runs

as

a

separate

process.

The

connector

controller

manages

communication

between

the

connector

framework

and

collaborations.

The

primary

type

of

information

that

connector

components

exchange

is

a

business

object.

Other

types

of

connector

communication

include

startup

information

and

administrative

messages.

Note:

A

connector

controller

is

instantiated

by

InterChange

Server

for

each

connector

that

has

been

defined

in

the

InterChange

Server

repository.

You

do

not

need

to

provide

code

for

the

connector

controller,

as

this

component

is

internal

to

InterChange

Server.

In

addition

to

the

features

that

the

client

connector

framework

provides,

the

connector

controller

provides

the

services

that

Table

5

summarizes.

Table

5.

Services

of

the

connector

controller

Connector

controller

service

Description

“Mapping

services”

on

page

11

The

connector

controller

calls

the

map

associated

with

each

business

object

to

transfer

data

between

generic

business

objects

and

application-specific

business

objects.

“Business

object

subscription

and

publishing”

on

page

12

The

connector

controller

manages

collaboration

subscriptions

to

business

object

definitions.

It

also

manages

connector

queries

about

subscription

status

for

a

business

object.

Collaborationa Collaborationa

InterChange Server

Connector
controller

Connector
controller

Connector
controller

Client
Connector
Framework

Application-specific
component

Connector
framework

Application 1 Application 2 Application 3

CORBA IIOP
or Messaging

Connector

Application
libraries

Application-specific
component

Application
libraries

Application-specific
component

Application
libraries

Client
Connector
Framework

Client
Connector
Framework

Figure

5.

High-level

connector

architecture

with

WebSphere

InterChange

Server

10

Connector

Development

Guide

for

Java

Table

5.

Services

of

the

connector

controller

(continued)

Connector

controller

service

Description

Service

call

requests

(For

more

information,

see

“Initiating

a

request

with

InterChange

Server”

on

page

23.)

The

connector

controller

delivers

collaboration

service

call

requests

to

connectors.

It

also

accepts

return

status

messages

and

business

objects

from

the

connector

and

forwards

them

to

InterChange

Server.

Communication

between

components

(For

more

information,

see

“Transport

mechanism

with

InterChange

Server”

on

page

14.)

The

connector

controller

contains

a

transport

driver

to

handle

its

side

of

the

mechanism

for

exchanging

business

objects

and

administrative

messages

between

the

connector

controller

and

client

connector

framework.

It

also

performs

remote-end

synchronization

to

manages

high-level

synchronization

between

itself

and

the

client

connector

framework.

These

services

enable

the

connector

controller

to

communicate

with

the

connector,

which

might

be

installed

remotely.

Note:

The

connector

controller

handles

its

own

internal

errors

as

well

as

errors

from

the

client

connector

framework.

In

general,

the

connector

controller

logs

exceptions

and

then

evaluates

whether

further

action

is

needed.

When

status

messages

are

returned

by

the

client

connector

framework,

the

connector

controller

forwards

the

messages

to

the

collaboration.

Mapping

services:

The

client

connector

framework

sends

and

receives

information

in

an

application-specific

business

object.

However,

a

collaboration

generates

information

in

a

generic

business

object.

Because

application-specific

business

objects

can

differ

from

generic

business

objects,

the

InterChange

Server

system

must

convert

business

objects

from

one

form

to

another

so

that

data

can

be

transmitted

across

the

system.

Data

is

transformed

between

generic

and

application-specific

business

objects

by

data

mapping.

Data

mapping

converts

business

objects

from

generic

to

application-specific

and

from

application-specific

to

generic

forms.

An

application-specific

business

object

closely

reflects

the

data

entity

that

it

represents.

Its

structure

and

content

match

that

of

the

entity.

A

generic

business

object,

on

the

other

hand,

typically

contains

a

superset

of

attributes

that

represents

a

typical,

cross-application

view

of

an

entity’s

data.

This

type

of

business

object

is

a

composite

of

common

information

that

many

applications

have

about

a

particular

entity.

A

generic

business

object

serves

as

an

intermediate

point

between

data

models.

Mapping

is

initiated

by

the

connector

and

executed

at

runtime.

For

example,

when

a

connector

needs

to

map

an

application-specific

business

object

to

a

generic

business

object,

it

runs

an

associated

map

to

transfer

data

between

the

application-specific

business

object

and

the

generic

business

object

before

sending

the

generic

business

object

to

a

collaboration.

Mapping

is

handled

by

the

connector

controller.

Figure

6

illustrates

the

connector

in

the

InterChange

Server

system

and

shows

the

components

of

the

connector.

Chapter

1.

Introduction

to

connector

development

11

For

more

information

on

data

mapping,

refer

to

the

Map

Development

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Business

object

subscription

and

publishing:

Subscription

handling

is

managed

through

a

subscription

list,

which

is

a

list

of

business

objects

to

which

collaborations

have

subscribed.

Both

the

connector

framework

and

the

connector

controller

maintain

a

subscription

list,

as

follows:

v

The

connector

controller

maintains

a

list

of

business

objects

to

which

collaborations

have

subscribed.

When

collaborations

start,

they

subscribe

to

the

business

objects

that

they

are

interested

in

by

informing

the

connector

controller

of

their

interest.

The

connector

controller

stores

this

information

in

a

subscription

list,

which

contains

the

name

of

the

subscribing

collaboration

and

the

business

object

definition

name

and

verb.

When

the

connector

controller

receives

a

business

object

from

the

client

connector

framework,

it

checks

its

own

subscription

list

to

determine

which

collaborations

have

subscribed

to

this

type

of

business

object.

It

then

forwards

the

business

object

to

the

subscribing

collaboration.

v

The

connector

framework

also

maintains

a

list

of

business

objects

to

which

collaborations

have

subscribed.

However,

this

subscription

list

is

a

consolidated

version

of

the

connector

controller’s

subscription

list.

At

initialization,

the

connector

downloads

its

business

object

definitions

and

configuration

properties

from

the

InterChange

Server

repository.

It

also

requests

the

subscription

list

from

the

connector

controller.

The

subscription

list

that

the

connector

controller

sends

to

the

client

connector

framework

contains

only

the

InterChange Server

Collaboration

Generic
business
objects

App A
business
objects

App A
client connector

framework

App A
connector
controller

App B
connector
controller

App C
connector
controller

Mapping
execution

Application A Application B Application C

App B
business
objects

App B
client connector

framework

App C
business
objects

App C
client connector

framework

Figure

6.

Mapping

in

the

InterChange

Server

System

12

Connector

Development

Guide

for

Java

names

of

the

business

object

definitions

and

verbs

for

these

subscribed

business

objects.

The

connector

framework

stores

this

subscription

list

locally.

Whenever

a

new

collaboration

starts

up

and

subscribes

to

a

business

object,

the

connector

controller

notifies

the

connector

framework

so

that

the

local

subscription

list

is

kept

current.

As

part

of

the

initialization

of

the

client

connector

framework,

the

connector

framework

instantiates

a

subscription

manager.

The

subscription

manager

tracks

all

subscribe

and

unsubscribe

messages

that

arrive

from

the

connector

controller

and

maintains

a

list

of

active

business

object

subscriptions.

Through

the

subscription

manager,

the

application-specific

connector

component

can

query

the

connector

framework

to

find

out

whether

any

collaborations

are

interested

in

a

particular

kind

of

business

object.

Figure

7

illustrates

the

connector

architecture

for

subscription

handling.

For

more

information

on

subscriptions,

see

“Request

processing”

on

page

22.

Transport

layer

The

transport

layer

of

the

connector

framework

handles

the

exchange

of

information

between

the

connector

and

the

integration

broker.

The

transport

layer

of

the

connector

framework

provides

the

following

services:

v

Receives

business

objects

from

the

integration

broker

and

sends

business

objects

to

the

integration

broker:

Message

service

Description

“Request

processing”

on

page

22

Receives

a

business

object

from

the

integration

broker

and

sends

it

to

the

application-specific

component

of

the

connector

“Event

notification”

on

page

20

Receives

a

business

object

from

the

application-specific

component

of

the

connector

and

sends

it

to

the

integration

broker

v

Manages

the

exchange

of

startup

and

administrative

messages

between

the

connector

and

the

integration

broker.

InterChange Server

Collaboration

Collaboration

Collaboration

Connector
controller

Bus Obj Name

Bus Obj Name

Application

Bus Obj Verb

Bus Obj Verb
Subscriber

Connector framework
subscription list

Connector controller
subscription list

Client connector
framework

Application-specific
component

Figure

7.

Subscription

handling

Chapter

1.

Introduction

to

connector

development

13

v

Keeps

a

list

of

business

objects

that

are

subscribed

to

The

transport

mechanism

of

the

transport

layer

depends

on

the

integration

broker

in

your

business

integration

system:

v

“Transport

mechanism

with

InterChange

Server”

v

“Transport

mechanism

with

other

integration

brokers”

on

page

17

Transport

mechanism

with

InterChange

Server:

If

the

integration

broker

is

InterChange

Server

(ICS),

the

transport

layer

handles

the

exchange

of

information

between

the

connector

controller,

which

resides

within

ICS,

and

the

client

connector

framework.

Note:

For

more

information,

see

“Connector

controller”

on

page

9.

As

Figure

8

shows,

the

transport

layer

for

a

connector

that

communicates

with

InterChange

Server

might

include

two

transport

drivers,

one

for

the

Common

Object

Request

Broker

(CORBA)

and

one

for

some

message-oriented

middleware

(MOM).

Table

6

summarizes

the

tasks

that

the

transport

layer

performs

and

the

transport

mechanisms

it

can

use.

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Connector
framework

Application-
specific
component

Transport layer

Java-to-C++ translation (C++ only)

Connector controller

Application

Application interface functions

InterChange Server

Connector

Message transport
driver

CORBA IIOP
transport driver

Figure

8.

Connector

architecture

for

communicating

with

InterChange

Server

14

Connector

Development

Guide

for

Java

Table

6.

Tasks

of

the

transport

layer

Transport-layer

task

Transport

mechanism

Connector

startup

and

exchange

of

startup

messages

between

the

connector

controller

and

the

client

connector

framework

CORBA

Administrative

messages

about

the

state

of

the

client

connector

framework

CORBA

Sending

business

objects

to

the

connector,

initiated

with

a

collaboration

service

call

request

CORBA

Sending

business

objects

from

the

connector,

initiated

with

an

event

delivery

CORBA

A

message-oriented

middleware

system,

including

one

of

the

following:

v

WebSphere

MQ

v

Java

Messaging

Service

(JMS)

This

transport

mechanism

has

the

following

tasks:

v

At

connector

startup,

the

transport

layer

uses

the

Common

Object

Request

Broker

Architecture

(CORBA)

to

transfer

information

from

InterChange

Server

to

the

memory

of

the

connector

process.

In

the

CORBA

architecture,

objects

communicate

through

the

Object

Request

Broker

(ORB).

The

ORB

is

a

set

of

libraries

and

services

that

connects

an

object,

such

as

a

connector

controller,

with

another

object,

such

as

a

client

connector

framework.

The

ORB

enables

objects

to

find

each

other

at

startup

and

to

invoke

methods

on

each

other

at

runtime.

With

the

ORB,

the

CORBA

architecture

provides

a

Naming

Service

that

allows

an

object

on

the

ORB

to

locate

another

object

by

name.

At

startup,

the

client

connector

framework

uses

the

Naming

Service

to

connect

to

the

InterChange

Server.

The

client

connector

framework

then

uses

the

ORB

to

request

its

application-specific

connector

configuration

properties

and

its

list

of

supported

business

object

definitions

from

the

repository.

For

more

information,

see

“Starting

up

a

connector”

on

page

63..

Once

the

client

connector

framework

and

connector

controller

are

active

and

connected,

the

client

connector

framework

requests

its

list

of

business

object

subscriptions.

At

this

point,

connector

initialization

is

complete,

and

the

connector

starts

polling

for

events.

v

For

administrative

messages

about

the

state

of

the

connector,

the

transport

layer

uses

CORBA

to

send

and

receive

state

information

for

the

connector

controller.

Changes

in

state

of

the

client

connector

framework

can

be

initiated

from

System

Manager

in

the

WebSphere

Business

Integration

Toolset.

Such

changes

include

start,

stop,

pause,

and

resume

operations,

as

well

as

retrieving

the

status.

In

addition,

administrative

messages

can

specify

remote

message

logging.

v

For

sending

business

objects

to

the

connector,

initiated

with

a

collaboration

service

call

request,

the

transport

layer

also

uses

CORBA.

CORBA

technology

includes

the

Internet

Inter-ORB

Protocol

(IIOP)

transport

protocol.

CORBA

IIOP

provides

a

lightweight,

high-performance,

synchronous

communication

mechanism

that

the

connector

controller

and

the

client

connector

framework

use

to

interact.

Because

the

IIOP

communication

mechanism

is

synchronous,

connector

components

can

quickly

determine

whether

a

business

object

exchange

was

successful

and

can

take

appropriate

action

if

necessary.

v

For

sending

business

objects

from

the

connector,

initiated

with

an

event

delivery,

the

connector

can

be

configured

to

use

either

CORBA

or

a

message-oriented

middleware

(MOM)

system.

Chapter

1.

Introduction

to

connector

development

15

When

CORBA

is

used

for

business

object

subscription

delivery,

multiple

business

objects

can

be

delivered

concurrently,

improving

performance

for

subscription

delivery.

Using

CORBA

as

a

communication

mechanism

provides

particularly

good

performance

on

a

high-bandwidth

LAN

network.

A

messaging

system

provides

asynchronous

message

delivery

across

a

network,

enabling

connector

components

to

send

a

message

and

continue

processing

without

waiting

for

a

response.

The

messaging

system

also

provides

persistent

messaging,

allowing

the

connector

controller

and

client

connector

framework

to

operate

independently.

Note:

In

this

case,

connector

components

continue

to

use

CORBA

for

startup

and

administrative

messages.

In

the

messaging

communication

mechanism,

message

transport

is

handled

by

transport

drivers

in

the

client

connector

framework

and

the

connector

controller.

The

message

transport

driver

implements

the

low-level

mechanism

for

exchanging

data

between

InterChange

Server

and

the

underlying

message

queuing

software.

Messages

between

the

components

of

the

connector

are

transported

in

a

format

defined

by

the

messaging

software.

This

business

integration

system

uses

CORBA

technology

provided

by

the

IBM

Object

Request

Broker

(ORB).

Figure

9

illustrates

the

CORBA

communication

mechanism.

Supported

message-oriented

middleware

includes:

v

IBM

WebSphere

MQ

messaging

suite.

In

this

system,

each

active

connector

requires

one

unidirectional

message

queue.

WebSphere

MQ

manages

the

queue

using

a

queue

manager.

In

this

business

integration

system,

each

InterChange

Server

has

one

queue

manager

for

all

system

components.

v

Java

Messaging

Service

(JMS)

Connector controller

InterChange Server

Transport driver

Transport driver

Connector application-specific
component

IBM ORB
Transient

Naming Server

Application

IBM Java ORB package

IBM Java ORB package

CORBA IIOP ORB

Figure

9.

Communication

within

a

connector

using

CORBA

IIOP

16

Connector

Development

Guide

for

Java

Note:

To

configure

a

connector’s

transport

mechanism

for

event

delivery,

set

the

DeliveryTransport

standard

property.

For

more

information

on

this

property,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

477.

Transport

mechanism

with

other

integration

brokers:

If

the

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

transport

layer

handles

the

exchange

of

information

between

the

connector

framework

and

the

integration

broker.

The

transport

layer

for

a

connector

that

communicates

with

the

broker

includes

a

single

transport

driver

for

the

IBM

WebSphere

MQ

messaging

suite.

Data

is

exchanged

between

applications

by

means

of

application-specific

business

objects,

which

are

transported

between

the

connector

framework

and

the

integration

broker

as

WebSphere

MQ

messages.

The

integration

broker

removes

the

message

from

the

MQ

queue,

and

passes

it

through

the

message

flow

for

the

queue.

This

transport

mechanism

uses

WebSphere

MQ

messages

to

perform

the

following

tasks:

v

For

sending

business

objects

to

the

connector,

which

initiates

request

processing,

the

transport

layer

converts

the

business

object

to

an

MQ

message

and

puts

this

message

onto

the

appropriate

WebSphere

MQ

queue.

v

For

sending

business

objects

from

the

connector,

which

initiates

an

event

delivery,

the

transport

layer

takes

the

MQ

message

off

the

appropriate

WebSphere

MQ

queue

and

converts

it

to

an

application-specific

business

object.

The

connector

framework

uses

a

custom

data

handler

to

transform

the

application-specific

business

object

to

and

from

an

MQ

message

of

the

appropriate

wire

format

for

the

destination

WebSphere

MQ

queue.

For

more

detailed

information

on

the

use

of

MQ

messages

and

a

connector,

see

the

implementation

guide

for

your

integration

broker.

Java

connector

library

The

connector

framework

includes

the

Java

connector

library,

which

provides

generic

services

and

utilities

for

connector

development.

The

primary

services

provided

by

the

Java

connector

library

are:

v

Business

object

definition

directory

–

Manages

access

to

the

business

object

definitions

supported

by

a

connector.

Business

object

definitions

are

cached

to

improve

connector

performance

in

a

distributed

environment.

v

Business

object

class

–

Provides

methods

for

processing

application

information.

This

class

allows

the

connector

to

handle

application

data

in

an

object-oriented

manner.

v

Subscription

manager

–

Enables

the

connector

to

check

whether

any

collaborations

are

interested

in

a

particular

kind

of

business

object.

v

Logging

utility

–

Enables

the

connector

to

post

messages

to

the

connector’s

standard

output.

Functionality

includes

configurable

output

destination

and

allows

assigning

error

levels

for

all

logged

messages.

v

Tracing

utility

–

Enables

the

connector

to

generate

trace

messages

for

debugging

purposes.

Note:

For

a

summary

of

the

Java

connector

library

and

its

classes,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

237.

Chapter

1.

Introduction

to

connector

development

17

The

Java

connector

library

is

a

Java

.jar

file

called

WBIA.jar,

which

resides

in

the

following

directory:

ProductDir/lib

Because

Java

is

operating-system-independent,

the

Java

connector

library

is

available

on

all

systems

that

the

WebSphere

Business

Integration

Adapters

product

supports

Application-specific

component

The

application-specific

component

of

the

connector

contains

code

tailored

to

a

particular

application.

This

is

the

part

of

the

connector

that

you

design

and

code.

The

application-specific

component

includes:

v

A

connector

base

class

to

initialize

and

set

up

the

connector

v

A

business

object

handler

to

respond

to

request

business

objects

initialized

by

integration-broker

requests

v

If

needed,

an

event

notification

mechanism

to

detect

and

respond

to

application

events.

You

develop

your

code

for

the

application-specific

component

to

use

services

provided

by

the

connector

framework.

The

connector

class

library

provides

access

to

these

services.

You

can

write

your

connector

code

in

C++

or

Java

depending

on

the

application

programming

interface

(API)

provided

by

the

application.

If

the

application

API

is

written

in

Java,

you

write

the

application-specific

portion

of

the

connector

in

Java,

accessing

services

of

the

connector

framework

through

the

Java

connector

library.

Event-triggered

flow

The

Java

connector

library

contain

an

API

that

allows

a

user-defined

application-specific

component

to

communicate

with

an

integration

broker

through

business

objects.

Applications

can

exchange

information

with

other

applications

that

the

integration

broker

handles.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

can

communicates

with

other

applications

through

executing

a

collaboration.

A

collaboration

represents

a

business

process

that

can

involve

several

applications.

A

connector

transforms

data

and

logic

into

a

business

object

that

carries

information

about

an

event

in

the

connector’s

application.

The

business

object

triggers

a

collaboration

business

process

and

provides

the

collaboration

with

information

that

it

needs

for

the

business

process.

Note:

An

external

process

can

also

initiate

execution

of

collaborations

through

a

call-triggered

flow.

For

more

information,

see

the

Access

Development

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

18

Connector

Development

Guide

for

Java

WebSphere

Message

Brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker),

the

connector

might

request

information

from

or

send

information

to

other

applications

through

WebSphere

MQ

workflows.

The

MQ

workflow

routes

the

information

as

appropriate.

When

an

event

occurs

in

the

application,

the

connector’s

application-specific

component

creates

a

business

object

to

represent

this

event

and

sends

the

event

to

the

integration

broker.

An

application

event

is

any

event

that

affects

an

entity

associated

with

a

business

object

definition.

To

send

an

event

to

an

integration

broker,

the

connector

initiates

an

event

delivery.

This

event

contains

a

business

object.

Therefore,

the

flow

trigger

that

a

connector

initiates

is

called

an

event-triggered

flow

(see

Figure

10).

Figure

10

shows

event-triggering

flow

within

the

IBM

WebSphere

business

integration

system,

which

involves

the

following

steps:

1.

The

connector

creates

the

triggering

event,

which

it

sends

to

the

integration

broker

during

event

delivery.

When

an

event

that

affects

an

application

entity

occurs

(such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data),

a

connector

creates

a

business

object,

which

contains

data

from

the

application

entity

and

a

verb

that

indicates

the

operation

performed

on

this

data.

2.

The

application-specific

component

of

the

connector

calls

the

gotApplEvent()

method

of

the

Java

connector

library

to

send

the

triggering

event

to

the

connector

framework.

Through

this

method

call,

the

connector

performs

an

event

delivery,

which

initiates

the

event-triggered

flow.

3.

The

connector

framework

performs

any

needed

conversion

of

the

triggering

event

to

a

business

object,

then

sends

this

event

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

controller

receives

the

triggering

event,

performing

any

needed

mapping

of

the

application-specific

business

object

data

to

the

appropriate

generic

business

object.

The

connector

controller

then

sends

the

triggering

event

to

the

specified

collaboration

to

trigger

its

execution.

This

collaboration

is

one

that

has

subscribed

to

the

business

object

that

the

event

represents.

The

collaboration

receives

this

business

object

in

its

incoming

port.

4.

The

integration

broker

uses

whatever

logic

it

provides

to

route

the

event

to

the

appropriate

application.

If

it

is

so

programmed,

it

might

perform

a

request,

routing

the

event

information

to

the

connector

of

some

destination

application,

Integration Broker

Connector

Connector
framework

Event delivery

Request

Response

Connector

Connector
framework

Information-routing
mechanism

Figure

10.

Event-triggered

flow

for

WebSphere

business

integration

system

Chapter

1.

Introduction

to

connector

development

19

which

would

receive

the

event

containing

its

request

business

object.

In

addition,

this

destination

connector

might

send

a

request

response

back

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

collaboration

might

perform

a

service

call

request

to

send

a

business

object

to

the

connector

controller

of

the

destination

connector,

which

is

bound

to

its

outgoing

port.

This

connector

controller

performs

any

needed

conversion

from

the

resulting

generic

business

object

to

the

appropriate

application-specific

business

object.

It

then

performs

a

service

call

response

to

send

the

event

response

to

the

connector

controller,

which

routes

it

back

to

the

collaboration.

As

Figure

10

shows,

a

connector

can

participate

in

one

of

two

roles:

v

“Event

notification”—the

connector

sends

an

event

(in

the

form

of

a

business

object)

to

the

integration

broker

to

notify

it

of

some

operation

that

has

occurred

in

the

application.

v

“Request

processing”

on

page

22—the

connector

receives

a

request

business

object

from

an

integration

broker.

Each

of

these

connector

roles

is

described

in

more

detail

in

the

following

sections.

Event

notification

One

role

of

a

connector

is

to

detect

changes

to

application

business

entities.

When

an

event

that

affects

an

application

entity

occurs,

such

as

when

a

user

of

the

application

creates,

updates,

or

deletes

application

data,

a

connector

sends

an

event

to

the

integration

broker.

This

event

contains

a

business

object

and

a

verb.

This

role

is

called

event

notification.

This

section

provides

the

following

information

about

event

notification:

v

“Publish-and-subscribe

model”

v

“Event-notification

mechanism”

on

page

21

Publish-and-subscribe

model

A

connector

assumes

that

the

business

integration

system

uses

a

publish-and-subscribe

model

to

move

information

from

an

application

to

an

integration

broker

for

processing:

v

An

integration

broker

subscribes

to

a

business

object

that

represents

an

event

in

an

application.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

a

collaboration

subscribes

to

a

business

object

that

represents

an

event

in

an

application,

and

then

the

collaboration

waits.

v

A

connector

uses

an

event-notification

mechanism

to

monitor

when

application

events

occur.

When

an

application

event

does

occur,

the

connector

publishes

a

notification

of

the

event

in

the

form

of

a

business

object

and

a

verb.

When

the

integration

broker

receives

an

event

in

the

form

of

the

business

object

that

it

has

subscribed

to,

it

can

begin

the

associated

business

logic

on

this

data.

20

Connector

Development

Guide

for

Java

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

controller

checks

its

own

subscription

list

when

it

receives

a

business

object

from

the

connector

framework

to

determine

which

any

collaborations

have

subscribed

to

this

type

of

business

object.

If

so,

it

then

forwards

the

business

object

to

the

subscribing

collaboration.

When

a

collaboration

receives

the

subscribed

event,

it

begins

executing.

Event-notification

mechanism

An

event-notification

mechanism

enables

a

connector

to

determine

when

an

entity

within

an

application

changes.

When

an

event

occurs

in

an

application,

the

connector

application-specific

component

processes

the

event,

retrieves

related

application

data,

and

returns

the

data

to

the

integration

broker

in

an

business

object.

Note:

This

section

provides

an

introduction

to

event

notification.

For

more

information

on

how

to

implement

an

event-notification

mechanism,

see

Chapter

5,

“Event

notification,”

on

page

113.

The

following

steps

outline

the

tasks

of

an

event-notification

mechanism:

1.

An

application

performs

an

event

and

puts

an

event

record

into

the

event

store.

The

event

store

is

a

persistent

cache

in

the

application

where

event

records

are

saved

until

the

connector

can

process

them.

The

event

record

contains

information

about

the

change

to

an

event

store

in

the

application.

This

information

includes

the

data

that

has

been

created

or

changed,

as

well

as

the

operation

(such

as

create,

delete,

or

update)

that

has

been

performed

on

the

data.

2.

The

connector’s

application-specific

component

monitors

the

event

store,

usually

through

a

polling

mechanism,

to

check

for

incoming

events.

When

it

finds

an

event,

it

retrieves

its

event

record

from

the

event

store

and

converts

it

into

an

application-specific

business

object

with

a

verb.

3.

Before

sending

the

business

object

to

the

integration

broker,

the

application-specific

component

can

verify

that

the

integration

broker

is

interested

in

receiving

the

business

object.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

does

not

assume

that

the

integration

broker

is

always

interested

in

every

supported

business

objects.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller.

At

runtime,

the

application-specific

component

can

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

application-specific

connector

component

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

The

application-specific

component

sends

the

event,

in

the

form

of

a

business

object

and

a

verb,

to

the

connector

framework,

which

in

turn

sends

it

to

the

connector

controller

within

ICS.

For

more

information,

see

“Mapping

services”

on

page

11.

Chapter

1.

Introduction

to

connector

development

21

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

application-specific

connector

component

queries

the

connector

framework

to

verify

whether

to

send

the

business

object,

it

will

receive

a

confirmation

for

every

business

object

that

the

connector

supports.

4.

If

the

integration

broker

is

interested

in

the

business

object,

the

connector

application-specific

component

sends

the

event,

in

the

form

of

a

business

object

and

a

verb,

to

the

connector

framework,

which

in

turn

sends

it

to

the

integration

broker.

Figure

11

illustrates

the

components

of

the

event-notification

mechanism.

In

event

notification,

the

flow

of

information

is

from

the

application

to

the

connector

and

then

to

the

integration

broker.

Request

processing

In

addition

to

detecting

application

events,

another

role

of

a

connector

is

to

respond

to

requests

from

the

integration

broker.

A

connector

receives

a

request

business

object

from

a

integration

broker

when

the

broker

requests

a

change

to

the

connector’s

application

or

needs

information

from

the

connector’s

application.

In

general,

connectors

perform

create,

retrieve,

and

update

operations

on

application

data

in

response

to

requests

from

a

collaboration.

Depending

on

the

application’s

policies,

the

connector

might

also

support

delete

operations.

This

role

is

called

request

processing.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

request

processing

can

sometimes

be

called

“service

call

request

processing”.

The

connector

receives

a

business

object

from

its

connector

controller,

which

receives

it

from

a

service

call

of

a

collaboration.

Note:

This

section

provides

an

introduction

to

request

processing.

For

more

information

on

how

to

implement

request

processing

in

your

connector,

see

Chapter

4,

“Request

processing,”

on

page

79.

Application

Connector
framework

Integration
broker

Event
record

Event

Event
detection

Event
store

User
action

Application
entity

Event
retrieval

Information flow

Figure

11.

Event

detection

and

retrieval

22

Connector

Development

Guide

for

Java

Request

processing

involves

the

following

steps:

1.

As

Figure

10

on

page

19

shows,

an

integration

broker

initiates

request

processing

by

sending

a

request

to

the

connector

framework.

This

request

is

in

the

form

of

a

business

object,

called

the

request

business

object,

and

a

verb.

For

more

information,

see

“Initiating

a

request”

on

page

23.

2.

The

connector

framework

has

the

task

of

determining

which

business

object

handler

in

the

application-specific

component

should

process

the

request

business

object.

For

more

information,

see

“Choosing

a

business

object

handler”

on

page

24.

3.

The

connector

framework

passes

the

request

business

object

to

the

business

object

handler

defined

for

it

in

its

business

object

definition.

The

connector

framework

does

this

by

calling

the

doVerbFor()

method

defined

in

the

business

object

class

and

passing

in

the

request

business

object.

The

business

object

handler

then

processes

the

business

object,

converting

it

to

one

or

more

application

requests.

4.

When

the

business

object

handler

completes

the

interaction

with

the

application,

it

returns

a

return-status

descriptor

and

possibly

a

response

business

object

to

the

connector

framework.

For

more

information,

see

“Handling

a

request

response”

on

page

24.

Initiating

a

request

The

way

a

request

is

initiated

depends

on

the

integration

broker

in

your

IBM

WebSphere

business

integration

system:

v

“Initiating

a

request

with

InterChange

Server”

v

“Initiating

a

request

with

other

integration

brokers”

Initiating

a

request

with

InterChange

Server:

If

your

business

integration

system

uses

InterChange

Server,

the

collaboration

initiates

a

service

call

request,

sending

the

request

over

one

of

its

collaboration

ports.

When

you

bind

a

port

of

a

collaboration

object,

you

associate

the

port

with

a

connector

(or

another

collaboration

object).

Collaboration

ports

enable

communication

between

bound

entities,

so

that

the

collaboration

object

can

accept

the

business

object

that

triggers

its

business

processes,

and

then

send

and

receive

business

objects

as

service

call

requests

and

responses.

Note:

For

more

information

on

how

to

define

collaboration

ports,

see

the

Collaboration

Development

Guide.

For

information

on

how

to

bind

ports

of

a

collaboration

object,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Both

these

documents

are

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

One

the

service

call

request

is

initiated,

the

InterChange

Server

system

takes

the

following

steps:

1.

The

connector

controller

for

the

connector

bound

to

the

collaboration

port

receives

the

service

call

request.

If

necessary,

the

connector

controller

maps

the

generic

business

object

to

an

application-specific

business

object

before

sending

the

request

to

the

connector

framework.

2.

The

connector

controller

forwards

the

service

call

request

to

the

connector

framework.

The

connector

controller

sends

the

request

business

object

as

a

Java

object.

Initiating

a

request

with

other

integration

brokers:

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

Chapter

1.

Introduction

to

connector

development

23

WebSphere

Application

Server,

the

integration

broker

initiates

a

request

by

sending

a

message

to

the

WebSphere

MQ

queue

associated

with

the

connector.

One

the

request

is

initiated,

the

connector

framework

gets

the

WebSphere

MQ

message

off

using

its

transport

layer

and

converts

the

message

to

the

appropriate

business

object

using

a

custom

data

handler.

For

more

information

on

the

IBM

WebSphere

business

integration

system

and

request

processing,

see

the

implementation

guide

for

your

integration

broker.

Choosing

a

business

object

handler

A

business

object

handler

is

the

Java

class

that

is

responsible

for

transforming

the

request

business

object

into

a

request

for

the

appropriate

application

operation.

An

application-specific

component

includes

one

or

more

business

object

handlers

to

perform

tasks

for

the

verbs

in

the

connector’s

supported

business

objects.

Depending

on

the

active

verb,

a

business

object

handler

can

insert

the

data

associated

with

a

business

object

into

an

application,

update

an

object,

retrieve

the

object,

delete

it,

or

perform

another

task.

Based

on

this

response

business

object’s

business

object

definition,

the

connector

framework

obtains

the

correct

business

object

handler

for

the

associated

business

object:

v

When

the

connector

starts

up,

the

connector

framework

receives

from

the

connector

controller

the

list

of

business

objects

that

the

connector

supports.

v

The

connector

framework

calls

the

getConnectorBOHandlerForBO()

method

(defined

in

the

connector

base

class)

to

instantiate

one

or

more

business

object

handlers.

v

For

each

supported

business

object,

the

getConnectorBOHandlerForBO()

method

returns

a

reference

to

a

business

object

handler,

and

this

reference

is

stored

in

the

business

object

definition

in

the

memory

of

the

connector

process.

All

conversions

between

business

objects

and

application

operations

take

place

within

the

business

object

handler

(or

handlers).

For

more

information

about

how

to

implement

the

getConnectorBOHandlerForBO()

method,

see

“Obtaining

the

business

object

handler”

on

page

66.

Handling

a

request

response

Once

a

connector

has

processed

this

request

and

completed

the

interaction

with

the

application,

it

can

return

a

response

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

a

service

call

response

to

the

collaboration.

Using

information

in

the

return-status

descriptor,

the

collaboration

can

determine

the

state

of

its

service

call

request

and

take

appropriate

actions.

24

Connector

Development

Guide

for

Java

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework’s

response

includes:

v

A

status

indicator,

which

contains

the

information

return-status

descriptor

v

Any

business

object

messages,

which

contain

the

optional

response

business

objects

The

connector

framework

puts

this

response

information

onto

the

connector’s

queue.

However,

for

the

message

transport

to

be

synchronous

(that

is,

for

some

program

to

wait

for

a

response),

a

program

must

post

its

request

message

to

the

integration

broker

on

a

synchronous

request

queue

and

expect

its

response

from

the

broker

on

a

synchronous

response

queue.

A

correlation

ID

on

the

response

message

identifies

the

message

request

to

which

it

is

responding.

Tools

for

adapter

development

In

the

IBM

WebSphere

business

integration

system,

the

connector

is

a

component

of

a

WebSphere

Business

Integration

adapter.

As

discussed

in

“Adapters

in

the

WebSphere

business

integration

system”

on

page

3,

an

adapter

includes

runtime

components

to

support

communication

between

an

integration

broker

and

applications

or

technologies.

The

adapter

also

includes

an

adapter

framework,

which

includes

components

for

the

configuration,

runtime,

and

development

of

custom

adapters

in

cases

where

a

prebuilt

adapter

for

a

particular

legacy

or

specialized

application

is

not

currently

available

as

part

of

the

WebSphere

Business

Integration

Adapters

product.

The

adapter

framework

includes

configuration

tools

that

assist

in

the

development

of

the

adapter

components

listed

in

Table

7.

Table

7.

Adapter

framework

support

for

the

development

of

a

connector

Adapter

component

Configuration

tool

API

Business

object

Business

Object

Designer

Not

applicable

Object

Discovery

Agent

(ODA)

Business

Object

Designer

Object

Discovery

Agent

Development

Kit

(ODK)

Connector

Connector

Configurator

Java

Connector

Library

In

addition

to

the

adapter

framework,

the

WebSphere

Business

Integration

Adapters

product

also

provides

the

Adapter

Development

Kit

(ADK).

The

ADK

is

a

toolkit

that

provides

code

samples

of

connectors,

ODAs,

and

data

handlers.

For

more

information,

see

“Adapter

Development

Kit”

on

page

27.

Development

support

for

business

objects

Table

8

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

business

objects.

Chapter

1.

Introduction

to

connector

development

25

Table

8.

Development

tools

for

business

object

development

Development

tool

Description

Business

Object

Designer

Graphical

tool

that

assists

in

the

creation

of

business

object

definitions,

either

manually

or

through

an

ODA.

For

a

brief

introduction

to

business

objects,

see

“Business

objects”

on

page

5.

For

more

information

on

the

use

of

the

Business

Object

Designer,

see

the

Business

Object

Development

Guide.

Development

support

for

ODAs

Table

8

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

an

ODA.

Table

9.

Development

tools

for

ODA

development

Development

tool

Description

Business

Object

Designer

Graphical

tool

that

assists

in

the

creation

of

business

object

definitions,

either

manually

or

through

an

ODA.

Object

Discovery

Agent

Development

Kit

(ODK)

Set

of

Java

classes

with

which

you

can

create

a

custom

ODA.

In

addition,

the

ADK

provides

sample

ODAs

in

the

following

product

subdirectory:

DevelopmentKits\Odk

For

a

brief

introduction

to

ODAs,

see

“Business

objects”

on

page

5.

For

more

information

on

the

use

of

the

Business

Object

Designer

and

the

development

of

ODAs,

see

the

Business

Object

Development

Guide.

Development

support

for

connectors

Table

10

shows

the

tools

that

the

WebSphere

Business

Integration

Adapters

product

provides

to

assist

in

the

development

of

connectors.

Table

10.

Development

tools

for

connector

development

Development

tool

Description

Connector

Configurator

Graphical

tool

that

assists

in

the

configuration

of

the

connector

Adapter

Development

Kit

Includes

sample

code

for

Java

connectors

and

ODAs

The

supported

operating-system

environment

for

connector

development

is

Windows

2000.

Connectors

can

be

written

in

either

C++

or

Java,

depending

on

the

language

of

your

application

API.

Connector

Configurator

Connector

Configurator

is

a

graphical

tool

that

allows

you

to

configure

a

connector.

It

provides

the

ability

to

set

the

following

information:

v

Connector

configuration

properties

v

Supported

business

objects

v

Associated

maps

(with

InterChange

Server

only)

v

Log

and

message

files

v

Data-handler

configuration

(for

guaranteed

event

delivery)

26

Connector

Development

Guide

for

Java

This

graphical

tool

runs

on

Windows

2000

and

Windows

XP.

Therefore,

these

platforms

are

for

connector

configuration.

Note:

For

more

information

on

the

use

of

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

501.

Adapter

Development

Kit

The

Adapter

Development

Kit

(ADK)

provides

files

and

samples

to

assist

in

the

development

of

an

adapter.

It

provides

samples

for

many

of

the

adapter

components,

including

an

Object

Discovery

Agent

(ODA),

a

connector,

and

a

data

handler.

The

ADK

provides

these

samples

in

the

DevelopmentKits

subdirectory

of

your

product

directory.

Note:

The

ADK

is

part

of

the

WebSphere

Business

Integration

Adapters

product

and

it

requires

its

own

separate

Installer.

Therefore,

to

have

access

to

the

development

samples

in

the

ADK,

you

must

have

access

to

the

WebSphere

Business

Integration

Adapters

product

and

install

the

ADK.

Please

note

that

the

ADK

is

available

only

on

Windows

systems.

Table

11

lists

the

samples

that

the

ADK

provides

for

the

development

of

a

connector,

as

well

as

the

subdirectory

of

the

DevelopmentKits

directory

in

which

they

reside.

Table

11.

ADK

samples

for

connector

development

Adapter

Development

Kit

component

Description

DevelopmentKits

subdirectory

Java

Connector

Development

Kit

(JCDK)

Provides

sample

code

for

a

Java

connector.

jcdk

edk\ConnectorAgent

Twineball

adapter

sample

Provides

a

sample

adapter,

which

includes

a

connector.

Twineball_sample

The

ADK

provides

an

adapter

sample

in

the

Twineball_sample

subdirectory

of

DevelopmentKits.

This

sample

contains

several

components

of

an

adapter,

including

a

connector,

a

data

handler,

and

an

Object

Discovery

Agent

(ODA).

For

more

information,

see

the

Adapter

Development

Kit

Samples

Guide.

Connector

Development

Kit:

The

ADK

includes

the

Java

Connector

Development

Kit

(JCDK),

which

provides

components

for

use

in

the

development

of

a

connector.

The

components

of

the

JCDK

reside

in

the

following

ProductDir\DevelopmentKits

subdirectory:

DevelopmentKits\jcdk

Table

12

describes

the

contents

of

the

subdirectories

in

the

jcdk

directory.

Table

12.

Components

of

the

Connector

Development

Kit

Connector

Development

Kit

component

Description

Subdirectory

Code

samples

Sample

code

for

a

simple

low-level

Java

connector

samples

The

JCDK

includes

the

following

code

samples

to

help

in

the

development

of

your

Java

connector

written

with

the

low-level

Java

connector

library:

DevelopmentKits\jcdk\samples

Chapter

1.

Introduction

to

connector

development

27

In

addition,

the

JCDK

includes

code

samples

for

a

Java

connector

written

with

the

Java

connector

library

in

the

following

directory:

DevelopmentKits\edk\ConnectorAgent

To

compile

a

Java

connector,

use

the

Java

compiler

provided

with

the

IBM

Java

Developers

Kit

(JDK).

For

more

information,

see

“Compiling

the

connector”

on

page

208.

Note:

The

WebSphere

Business

Integration

Adapters

product

also

provides

a

C++

version

of

the

Connector

Development

Kit

for

use

in

development

connectors

in

the

C++

programming

language.

For

more

information,

see

the

Connector

Development

Guide

for

C++.

ODA

samples:

The

Adapter

Development

Kit

includes

samples

for

an

Object

Discovery

Agent

(ODA).

These

samples

reside

in

the

following

directory:

DevelopmentKits\Odk

For

more

information,

see

“Development

support

for

ODAs”

on

page

26.

Overview

of

the

connector

development

process

This

section

provides

an

overview

of

the

connector

development

process,

which

includes

the

following

high-level

steps:

1.

Install

and

set

up

the

IBM

WebSphere

business

integration

system

software

and

install

the

Java

Development

Kit

(JDK).

2.

Design

and

implement

the

connector.

Setting

up

the

development

environment

Before

you

start

the

development

process,

the

following

must

be

true:

v

The

IBM

WebSphere

business

integration

system

software

is

installed

on

a

machine

that

you

can

access.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

refer

to

the

System

Installation

Guide

for

UNIX

or

for

Windows

(in

the

WebSphere

InterChange

Server

documentation

set)

for

information

on

how

to

install

and

start

up

the

InterChange

Server

system.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker),

refer

to

the

installation

chapter

of

the

Implementing

Adapters

for

WebSphere

Message

Brokers

for

information

on

how

to

install

and

start

up

the

IBM

WebSphere

business

integration

system.

If

your

business

integration

system

uses

WebSphere

Application

Server,

refer

to

the

installation

chapter

of

the

Implementing

Adapters

for

WebSphere

Application

Server

for

information

on

how

to

install

and

start

up

the

IBM

WebSphere

business

integration

system.

v

The

Java

Development

Kit

(JDK)

1.4.2

or

a

JDK-compliant

development

product

is

installed

on

the

development

machine.

28

Connector

Development

Guide

for

Java

The

Java

compiler

is

part

of

the

JDK.

Therefore,

the

JDK

must

be

installed

for

you

to

be

able

to

create

a

new

connector.

The

IBM

JDK

is

provided

on

the

product

CD.

However,

the

product

Installer

does

not

automatically

install

it

on

your

system.

–

For

more

information

about

how

to

install

the

JDK

on

Windows

platforms

as

part

of

the

InterChange

Server

product,

see

the

System

Installation

Guide

for

Windows.

For

information

on

how

to

install

it

as

part

of

the

WebSphere

Business

Integration

Adapters

product,

see

the

WebSphere

Business

Integration

Adapters

Installation

Guide.

–

For

more

information

about

how

to

install

the

JDK

on

Unix

platforms

as

part

of

the

InterChange

Server

product,

see

the

System

Installation

Guide

for

UNIX.

For

information

on

how

to

install

it

as

part

of

the

WebSphere

Business

Integration

Adapters

product,

see

the

WebSphere

Business

Integration

Adapters

Installation

Guide

v

Ensure

that

the

development

environment

can

access

the

directories

that

contain

the

connector

library

files.

To

compile

the

connector,

the

compiler

must

be

able

to

access

the

connector

library.

For

information

on

compiling

a

connector,

see

“Compiling

the

connector”

on

page

208.

InterChange

Server

v

If

your

business

integration

system

uses

InterChange

Server,

the

InterChange

Server

repository’s

database

server

and

ICS

are

running.

Note:

This

step

is

required

only

when

you

are

ready

to

configure

the

connector

with

Connector

Configurator.

For

development

only,

you

can

create

the

connector

class,

without

connecting

to

ICS.

For

an

overview

of

how

to

configure

a

connector,

see

Chapter

8,

“Adding

a

connector

to

the

business

integration

system,”

on

page

207.

For

information

on

starting

up

the

IBM

WebSphere

business

integration

system,

see

your

system

installation

guide.

End

of

InterChange

Server

Note:

To

create

a

connector,

you

do

not

need

to

run

the

messaging

software.

However,

the

messaging

software

must

be

running

before

you

can

execute

and

test

the

connector.

Stages

of

connector

development

As

part

of

the

connector

development

process,

you

code

the

application-specific

component

of

the

connector

and

then

compile

and

link

the

connector

source

files.

In

addition,

the

overall

process

of

developing

a

connector

includes

other

tasks,

such

as

developing

application-specific

business

objects.

Here

is

an

overview

of

the

tasks

in

the

connector

development

process:

1.

Identify

the

application

entities

that

the

connector

will

make

available

to

other

applications,

and

investigate

the

integration

features

provided

by

the

application.

InterChange

Server

2.

If

your

business

integration

system

uses

InterChange

Server,

identify

generic

business

objects

that

the

connector

will

support,

and

define

application-specific

business

objects

that

correspond

to

the

generic

objects.

Chapter

1.

Introduction

to

connector

development

29

3.

If

your

business

integration

system

uses

InterChange

Server,

analyze

the

relationship

between

the

generic

business

objects

and

the

application-specific

business

objects,

and

implement

the

mapping

between

them.

End

of

InterChange

Server

4.

Define

a

connector

base

class

for

the

application-specific

component,

and

implement

functions

to

initialize

and

terminate

the

connector.

5.

Define

a

business

object

handler

class

and

code

one

or

more

business

object

handlers

to

handle

requests.

6.

Define

a

mechanism

to

detect

events

in

the

application,

and

implement

the

mechanism

to

support

event

subscriptions.

7.

Implement

error

and

message

handling

for

all

connector

methods.

8.

Build

the

connector.

9.

Configure

the

connector.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

use

Connector

Configurator

to

create

the

connector

definition

and

save

it

in

the

InterChange

Server

repository.

You

can

call

Connector

Configurator

from

System

Manager.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

use

Connector

Configurator

to

define

and

create

the

connector

configuration

file.

10.

If

WebSphere

MQ

will

be

used

for

messaging

between

connector

components,

add

message

queues

for

the

connector.

11.

Create

a

startup

script

for

the

new

connector.

12.

Test

and

debug

the

connector,

recoding

as

necessary.

Figure

12

provides

a

visual

overview

of

the

connector

development

process

and

provides

a

quick

reference

to

chapters

where

you

can

find

information

on

specific

topics.

Note

that

if

a

team

of

people

is

available

for

connector

development,

the

major

tasks

of

developing

a

connector

can

be

done

in

parallel

by

different

members

of

the

connector

development

team.

30

Connector

Development

Guide

for

Java

Task: Steps:

Design connector
architecture

* Identify application entities to export

* Investigate application integration

Refer to:

Design and develop
business objects

Code the connector

Add the connector
to the business
integration system

Test and debug

* Design structure of business objects

* Implement business objects

* Derive the connector base class and
implement agentInit() and terminate()
functions

* Derive business-object-handler class
and implement business object
processing

* Implement event notification

* Configure the connector definition

* Add message queues, if necessary

* Configure the connector

* Test connector in the IBM WebSphere
business integration system

Chapter 2

Chapter 3

Chapter 8

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Develop maps generic and application-specific business

Map
Development
Guide

* Implement error and message handling

* Implement the connector

* (ICS only) Implement mapping between
generic and application-specific business
objects

* Create a startup script

* Recode as needed

Figure

12.

Overview

of

the

Java

Connector

development

process

Chapter

1.

Introduction

to

connector

development

31

32

Connector

Development

Guide

for

Java

Part

2.

Building

a

connector

©

Copyright

IBM

Corp.

2000,

2004

33

34

Connector

Development

Guide

for

Java

Chapter

2.

Designing

a

connector

This

chapter

provides

an

overview

of

analysis

and

design

issues

to

consider

when

planning

a

connector

development

project.

The

chapter

presents

topics

that

can

help

you

judge

the

complexity

of

building

a

connector

for

your

application

or

technology.

As

with

most

software

development

projects,

careful

planning

early

in

the

connector

development

cycle

helps

prevent

problems

during

later

implementation

phases.

This

chapter

contains

the

following

sections:

v

“Scope

of

a

connector

development

project”

v

“Designing

the

connector

architecture”

on

page

36

v

“Designing

application-specific

business

objects”

on

page

41

v

“Event

notification”

on

page

49

v

“Communication

across

operating

systems”

on

page

50

v

“Summary

set

of

planning

questions”

on

page

53

v

“An

internationalized

connector”

on

page

56

Scope

of

a

connector

development

project

IBM

provides

a

connector

framework

as

part

of

the

Java

Connector

Development

Kit.

The

connector

framework

contains

all

the

code

necessary

for

the

connector

to

interact

with

an

integration

broker

and

provides

a

basic

infrastructure

for

interaction

with

the

application.

Your

task

as

a

connector

developer

is

to

code

the

application-specific

component

of

a

connector,

and

if

necessary,

develop

the

event

notification

mechanism.

The

complexity

of

the

design

for

your

connector

and

the

time

required

for

the

connector’s

implementation

will

vary

based

on

the

application.

To

understand

the

scope

and

complexity

of

a

connector

development

project,

you

may

want

to

develop

a

project

plan

before

beginning

a

new

connector.

As

you

develop

the

project

plan,

you

need

to

identify

the

business

requirements

for

the

connector,

define

the

application

data

that

the

connector

will

handle,

and

determine

what

application

business

processes

the

connector

and

business

objects

will

work

with.

Developing

a

project

plan

can

help

you

understand

application

functionality

in

the

areas

of

business

objects,

business

object

processing,

and

event

management.

Working

through

the

topics

in

this

chapter

can

help

you

estimate

the

time

and

effort

needed

to

complete

the

connector

development

task.

Each

topic

provides

a

set

of

questions

that

are

intended

to

develop

understanding

of

specific

aspects

of

an

application

that

might

increase

or

decrease

the

complexity

of

the

connector

development

task.

A

complete

set

of

answers

to

the

questions

for

each

topic

provides

a

high-level

architecture

for

your

connector.

Step

in

connector

design

For

more

information

Obtain

information

about

the

application

that

is

relevant

to

the

design

of

the

connector

architecture.

“Designing

the

connector

architecture”

on

page

36

©

Copyright

IBM

Corp.

2000,

2004

35

Step

in

connector

design

For

more

information

Ensure

that

application-specific

business

objects

adequately

represent

the

application

entities

that

the

connector

needs

to

export.

“Designing

application-specific

business

objects”

on

page

41

Design

the

event

notification

mechanism

so

that

the

application

can

notify

the

connector

of

relevant

events.

“Event

notification”

on

page

49

Designing

the

connector

architecture

To

design

the

connector

architecture,

consider

evaluating

the

following

areas

of

the

application

that

the

connector

is

to

support:

v

“Understanding

the

application

environment”

on

page

37

v

“Determining

connector

directionality”

on

page

38

v

“Getting

data

in

and

out

of

the

application”

on

page

39

The

specific

areas

within

an

application

that

affect

connector

design

are

illustrated

in

Figure

13.

In

this

figure,

the

clouds

show

the

high-level

tasks

required

for

connector

development.

36

Connector

Development

Guide

for

Java

Understanding

the

application

environment

Understanding

the

application

environment

is

the

first

step

in

assessing

the

feasibility

of

a

connector

development

project.

To

obtain

an

understanding

of

the

aspects

of

an

application

that

affect

connector

development,

consider

these

topics

and

questions:

Operating

system

v

What

operating

system

does

the

application

run

on?

Programming

languages

v

What

programming

languages

were

used

to

create

the

application?

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Transport driver

Java-to-C++ translation (C++ only)

Connector controller

Application interface functions

Transport driver

Mapping services
Application

Application database

Application entities

Event management
and

notification

Application
object interface

mechanism

Connector OS to Application OS
communication mechanism

InterChange Server -
Operating system

Application
operating system

Requires definition
for connector design

Structure defined;
requires implementation
based on application

Component part of
IBM business integration
system

Connector

Application libraries

Figure

13.

Areas

of

an

application

that

affect

connector

design

Chapter

2.

Designing

a

connector

37

Application

execution

architecture

v

What

is

the

execution

architecture

of

the

application?

For

example,

in

a

centralized

architecture,

the

application

and

its

database

might

both

reside

on

a

mainframe

system.

In

this

case,

both

application

processing

and

database

processing

occur

on

this

central

system.

Alternatively,

in

a

client-server

architecture,

the

database

might

reside

on

a

server,

and

the

application

front-end

program

might

be

a

client

running

on

another

machine,

such

as

a

personal

computer.

Other

types

of

application

execution

architecture

are

online

transaction

processing

and

file

server

architecture.

Database

type

v

Is

there

a

central

database

for

application

data?

If

application

data

is

stored

in

a

central

database,

what

type

of

database

is

it?

Example

database

types

are

RDMS

and

flat

file.

Distributed

application

v

Is

the

application

distributed

across

multiple

servers?

v

Is

the

application

database

distributed

across

multiple

servers?

During

project

assessment,

you

may

want

to

identify

and

work

with

an

application

expert.

This

person

can

also

provide

assistance

during

business

object

development

and

connector

development.

Determining

connector

directionality

Early

on

in

the

project

planning

phase,

you

need

to

determine

what

roles

the

connector

will

perform

for

the

application:

v

Request

processing—Update

application

data

at

the

request

of

an

integration

broker.

For

more

information,

see

“Request

processing”

on

page

22.

v

Event

notification—Detect

application

events

and

send

notification

of

events

to

the

integration

broker.

For

more

information,

see

“Event

notification”

on

page

20.

These

roles

determine

the

directionality

that

the

connector

supports:

v

Unidirectional—

some

connectors

might

need

to

operate

in

only

one

direction,

passing

data

from

the

application

to

the

integration

broker,

or

from

the

integration

broker

to

the

application.

–

To

inform

an

integration

broker

that

changes

have

occurred

in

the

application,

a

connector

must

support

event

notification.

–

To

receive

data

from

an

integration

broker,

a

connector

must

support

request

processing,

in

which

it

interacts

with

the

application

to

support

Create,

Retrieve,

Update,

or

Delete

operations

as

requested

by

the

integration

broker.

For

example,

a

connector

might

simply

need

to

receive

request

business

objects

from

an

integration

broker

and

pass

them

to

an

application.

The

connector

for

an

application

that

serves

only

as

the

destination

is

a

unidirectional

connector

–

it

implements

request

handling

to

pass

data

to

the

application,

but

it

does

not

implement

event

notification.

Knowing

early

in

the

development

cycle

that

your

connector

will

operate

unidirectionally

can

save

a

significant

amount

of

development

time.

v

Bidirectional—most

connectors

need

to

operate

in

both

directions,

passing

data

from

the

application

to

an

integration

broker

and

receiving

data

back

from

the

integration

broker.

38

Connector

Development

Guide

for

Java

To

be

bidirectional,

your

connector

needs

to

support

both

event

notification

and

request

processing.

For

information

on

how

to

provide

event

notification

support

in

your

connector,

see

Chapter

5,

“Event

notification,”

on

page

113.

Getting

data

in

and

out

of

the

application

An

important

aspect

of

the

connector

development

project

plan

is

to

determine

how

the

connector

will

get

data

into

and

out

of

the

application.

Ideally,

an

application

provides

an

application

programming

interface

(API)

that

includes

all

of

the

following

features:

v

Support

for

Create,

Retrieve,

Update,

and

Delete

(CRUD)

operations

at

the

object

level

v

Encapsulation

of

all

of

the

application

business

logic

v

Support

for

delta

and

after-image

operations

v

An

event-management

strategy

that

allows

external

notification

at

the

subobject

level.

Typically,

however,

an

application

interface

falls

short

of

this

ideal.

In

your

project

plan,

you

need

to

establish

whether

a

formal

application

API

exists

and

evaluate

its

robustness,

or,

if

an

API

does

not

exist,

determine

whether

there

is

a

suitable

workaround.

Keep

in

mind

that

an

application

CRUD

interface

can

be

anything

from

batch

file

imports

and

extracts

to

a

COM/DCOM

server,

so

be

sure

to

explore

all

possible

avenues.

Refer

to

the

application

business

object

scope

specified

in

Table

13

when

exploring

the

application

object

CRUD

interface.

Consider

the

following

tasks:

v

“Examining

previous

integration

efforts”—Have

there

been

any

other

efforts

to

integrate

with

this

application?

v

“Determining

whether

application

data

is

shared

with

other

applications”

on

page

40—Is

the

application

data

shared

by

other

applications?

v

“Examining

an

application

API”

on

page

40—Is

there

an

existing

mechanism

that

the

connector

can

use

to

communicate

with

the

application?

v

“Application

use

of

batch

clean-up

or

merge

programs”

on

page

41—Does

the

application

use

batch

clean-up

or

merge

programs?

These

questions

are

discussed

in

more

detail

in

the

following

sections.

Examining

previous

integration

efforts

If

you

have

access

to

previous

efforts

to

integrate

other

applications

with

your

application,

you

might

be

able

to

find

ways

of

getting

data

into

and

out

of

the

application.

Even

if

you

decide

to

implement

another

approach

to

application

integration,

the

previous

integration

effort

may

provide

useful

design

information.

When

examining

previous

integration

efforts,

consider

these

questions:

v

What

was

the

purpose

of

the

integration?

v

Does

the

integration

use

interfaces

that

modify

or

retrieve

information

from

the

application?

If

so,

describe

the

mechanism

used

to

modify

or

retrieve

information.

v

If

the

integration

can

process

an

event

generated

in

the

application,

what

is

the

mechanism

used

to

trigger

event

processing?

v

What

is

the

mode

of

the

existing

integration?

(batch,

asynchronous,

and

so

on)

Chapter

2.

Designing

a

connector

39

v

Will

your

connector

replace

the

pre-existing

integration?

If

not,

will

previous

integrations

work

with

the

data

entities

that

your

connector

will

be

working

with?

In

your

answers,

include

information

on

all

previous

integration

efforts

that

interact

with

the

application

in

different

ways.

Determining

whether

application

data

is

shared

with

other

applications

Your

application

might

be

one

of

several

applications

creating

or

updating

data

in

a

single

database.

In

this

case,

your

connector

might

have

to

consider

an

application

data

entity

based

on

work

that

other

applications

are

also

doing.

If

you

determine

that

your

connector

will

be

sharing

application

data

with

other

applications,

consider

these

questions:

v

What

is

the

mechanism

used

by

the

other

applications

to

gain

access

to

the

application

data?

v

Do

other

applications

create,

retrieve,

update,

or

delete

application

data?

If

so,

what

mechanism

do

other

applications

use

for

each

verb?

v

Is

there

object-specific

business

logic

used

by

other

applications?

Is

the

logic

consistent

throughout

all

of

the

applications?

Provide

answers

to

these

questions

for

all

applications

that

share

the

application

data.

Examining

an

application

API

If

the

application

provides

an

API

or

other

mechanism

that

the

connector

can

use

to

communicate

with

the

application,

examine

the

API

and

review

any

available

documentation.

Keep

in

mind

the

following

questions

about

the

API:

v

Does

the

API

allow

access

for

Create,

Retrieve,

Update,

and

Delete

operations?

v

Does

the

API

provide

access

to

all

attributes

of

a

data

entity?

v

Are

there

inconsistencies

in

the

API

implementation?

Is

the

navigation

to

Create/Retrieve/Update/Delete

the

same

regardless

of

the

entity?

v

Describe

the

transaction

behavior

of

the

API.

For

example,

an

API

might

simply

enable

the

connector

to

run

a

report,

which

the

connector

can

then

read

and

use

for

processing.

Or

the

API

might

be

more

robust,

providing

ways

of

performing

asynchronous

or

synchronous

Create

and

Update

operations.

v

Does

the

API

allow

access

to

the

application

for

event

detection?

For

example,

if

an

application

event-notification

mechanism

uses

a

database

table

as

an

event

store,

does

the

API

allow

access

to

this

table?

v

Is

the

API

suited

for

metadata

design?

APIs

that

are

forms-based,

table-based,

or

object-based

are

good

candidates.

For

information

on

metadata

design,

see

“Assessing

support

for

metadata-driven

design”

on

page

45.

v

Does

the

API

enforce

application

business

rules?

In

other

words,

is

it

an

API

that

interacts

at

the

table

level,

form

level,

or

object

level?

The

recommended

approach

to

connector

development

is

to

use

whatever

API

the

application

provides.

The

use

of

an

API

helps

ensure

that

connector

interactions

with

the

application

abide

by

application

business

logic.

In

particular,

a

high-level

API

is

usually

designed

to

include

support

for

the

business

logic

in

the

application,

whereas

a

low-level

API

might

bypass

application

business

logic.

As

an

example,

a

high-level

API

call

to

create

a

new

record

in

a

database

table

might

evaluate

the

input

data

against

a

range

of

values,

or

it

might

update

several

40

Connector

Development

Guide

for

Java

associated

tables

as

well

as

the

specified

table.

Using

SQL

statements

to

write

directly

to

the

database

may

bypass

the

data

evaluation

and

related

table

updates

performed

by

an

API.

If

no

API

is

provided,

the

application

might

allow

its

clients

to

access

its

database

directly

using

SQL

statements.

If

you

use

SQL

statements

to

update

application

data,

work

closely

with

someone

who

knows

the

application

well

so

that

you

can

be

sure

that

your

connector

will

not

bypass

application

business

logic.

This

aspect

of

the

application

has

a

major

impact

on

connector

design

because

it

affects

the

amount

of

coding

that

the

connector

requires.

The

easiest

application

for

connector

development

is

one

that

interacts

with

its

database

through

a

high-level

API.

If

the

application

provides

a

low-level

API

or

has

no

API,

the

connector

will

probably

require

more

coding.

Application

use

of

batch

clean-up

or

merge

programs

A

final

aspect

of

the

application

business

object

interface

that

you

need

to

investigate

is

whether

the

application

uses

any

batch

clean-up

or

merge

programs

to

purge

redundant

or

invalid

data.

For

example,

an

application

may

run

a

batch

program

once

a

day

to

standardize

site

names

that

operators

may

have

typed

in

incorrectly

or

incompletely.

This

program

might,

for

example,

change

all

sites

named

IBM

WebSphere

to

IBM

WebSphere

Software.

When

this

type

of

batch

program

runs,

all

changes

to

the

database

may

also

need

to

flow

through

an

InterChange

Server

customer

synchronization

system.

A

program

like

this

may

result

in

hidden

requirements

for

your

connector.

For

example,

even

if

it

appears

initially

that

your

connector

does

not

need

to

provide

Delete

functionality,

you

may

need

to

provide

Delete

functionality

to

support

a

batch

clean-up

program

that

deletes

all

sites

named

IBM

WebSphere.

You

may

decide

that

you

want

to

handle

batch

clean-up

tasks

periodically,

such

as

once

a

month,

rather

than

synchronously.

In

any

case,

an

important

planning

task

is

to

gather

information

about

any

programs

that

result

in

unanticipated

requirements

for

your

connector.

Designing

application-specific

business

objects

Application-specific

business

objects

are

the

units

of

work

that

are

triggered

within

the

application,

created

and

processed

by

the

connector,

and

sent

to

the

integration

broker.

A

connector

uses

these

business

objects

to

export

data

from

its

application

to

other

applications

and

to

import

data

from

other

applications.

The

connector

exposes

all

the

information

about

an

application

entity

that

is

necessary

to

allow

other

applications

to

share

the

data.

Once

the

connector

makes

the

entity

available

to

other

applications,

the

integration

broker

can

route

the

data

to

any

number

of

other

applications

through

their

connectors.

Designing

the

relationship

between

the

connector

and

its

supported

application-specific

business

objects

is

one

of

the

tasks

in

connector

development.

Application-specific

business

object

design

can

generate

requirements

for

connector

programming

logic

that

must

be

integrated

into

the

connector

development

process.

Therefore,

business

object

and

connector

developers

must

work

together

to

develop

specifications

for

the

connector

and

its

business

objects.

Consider

the

following

design

guidelines

when

you

design

your

application-specific

business

objects:

Chapter

2.

Designing

a

connector

41

1.

Determine

what

application

entities

the

connector

will

work

with.

2.

Determine

the

scope

of

business

object

development.

3.

Determine

support

for

a

metadata-driven

design.

Note:

For

more

information

about

the

design

of

application-specific

business

objects,

see

the

Business

Object

Development

Guide.

Determining

the

application

entities

The

complexity

of

business

objects

can

have

a

significant

impact

on

the

amount

of

work

that

is

necessary

to

build

a

connector.

A

first

step

in

identifying

application-specific

business

objects

is

to

determine

what

application

entities

the

connector

will

work

with.

You

can

identify

application

entities

that

the

connector

will

work

with

in

two

ways:

v

Focus

on

existing

InterChange

Server

collaborations

whose

business

processes

correspond

to

those

of

your

application.

v

Focus

on

other

applications

that

you

want

to

integrate

with

your

application.

Design

focus

on

InterChange

Server

collaborations

If

you

are

using

InterChange

Server

as

your

integration

broker,

one

way

to

begin

identifying

application-specific

business

objects

is

to

list

the

InterChange

Server

collaborations

that

you

want

the

application

to

work

with.

Consider

the

features

of

each

collaboration,

and

note

which

generic

business

objects

each

collaboration

references.

Using

this

list,

you

can

decide

what

kinds

of

business

objects

allow

your

application

to

work

with

the

collaboration.

For

example,

you

may

decide

that

you

want

to

use

your

application

with

the

Customer

Manager

collaboration.

In

this

case,

the

connector

must

handle

customer

entities.

The

connector

might

extract

customer

data

from

the

application

to

forward

to

the

collaboration

or

receive

customer

data

from

the

collaboration

to

pass

back

to

the

application.

Design

focus

on

other

applications

Alternatively,

you

might

start

the

connector

development

task

by

looking

at

other

applications

with

which

you

want

to

integrate.

As

you

examine

your

application

and

other

applications,

you

can

determine

what

business

processes

you

want

to

share

across

applications

and

identify

what

data

you

want

to

exchange.

The

goal

is

to

determine

what

entities

in

your

application

make

sense

to

implement

as

business

objects

to

enable

integration

with

other

applications.

For

example,

if

your

application

stores

customer

data,

you

may

want

to

keep

the

customer

database

consistent

with

the

customer

database

in

another

application.

To

synchronize

customer

data,

you

need

to

know

about

the

customer

entity

that

each

application

publishes.

Figure

14

illustrates

a

design

approach

that

focuses

on

integrating

with

other

applications.

42

Connector

Development

Guide

for

Java

Design

focus

on

the

application

Use

the

following

topics

and

questions

to

gather

more

information

about

application

entities

and

business

objects:

v

“Contained

entities”

v

“Database

representation

of

entities”

v

“Denormalization

of

application

entities”

on

page

44

v

“Batch

processing

of

application

entities”

on

page

44

Contained

entities:

v

Do

the

application

entities

have

contained

entities?

For

example,

in

many

applications

a

contract

entity

has

one

to

many

line

items.

The

IBM

WebSphere

Business

Integration

Contract

business

object

contains

child

line

items

as

business

objects.

Determine

whether

the

entities

your

connector

will

work

with

have

related

entities

that

will

be

defined

as

child

business

objects.

Database

representation

of

entities:

v

Are

there

application

business

entities

that

are

the

same

type

but

that

have

different

physical

representations

in

the

application?

For

example,

an

application

may

have

two

types

of

contracts:

hardware

contracts

and

software

contracts.

Both

are

of

type

Contract,

but

they

are

stored

in

different

tables

in

the

application

database.

In

addition,

the

attributes

for

each

Contract

type

differ.

Because

a

single

set

of

maps

can

convert

between

only

one

generic

business

object

and

one

application-specific

business

object,

developers

for

this

application

must

design

business

objects

to

account

for

the

different

entities

in

the

application.

For

example,

they

may

need

to

redesign

the

IBM

WebSphere

Business

Integration

generic

business

object,

create

new

generic

child

business

objects,

and

create

new

maps.

Figure

15

shows

the

business

objects

that

may

result

from

multiple

application

entities

of

the

same

type.

It

illustrates

the

creation

of

two

generic

child

business

objects,

one

that

contains

data

specific

to

hardware

contracts

and

one

that

contains

data

specific

to

software

contracts.

Application A Application B

Application entities
correspond

Order
entity

SalesReps
entity

Customer
entity

Customer
entity

Invoice
entity

Offices
entity

Figure

14.

Design

focus:

identify

applications

with

which

to

integrate

Chapter

2.

Designing

a

connector

43

Denormalization

of

application

entities:

Are

there

application

entities

that

reside

in

more

than

one

location

in

the

database

but

that

correspond

to

the

same

logical

entity?

For

example,

Contract,

Customer,

and

Contact

entities

might

each

have

Customer

address

fields

as

part

of

the

physical

table

definition

for

each

entity.

If

the

Customer

address

field

changes

in

one

entity,

it

must

be

updated

in

all

entities.

However,

the

address

fields

might

be

consolidated

into

an

Address

business

object

that

needs

to

be

updated

for

the

Contact,

Customer,

and

Contract

business

objects

if

the

address

changes

for

any

of

the

entities.

In

this

case,

the

Address

business

object

would

be

referenced

rather

than

contained

by

the

top-level

business

objects

that

use

the

data.

Batch

processing

of

application

entities:

Are

there

batch

processes

associated

with

the

creation

of

application

entities?

In

some

applications,

batch

processing

may

add

data

to

entities.

As

an

example,

a

data

entry

operator

may

enter

a

new

customer

into

the

application

database

at

11:00

AM,

but

the

customer

record

will

not

be

complete

until

a

7:00

PM

batch

job

runs

to

fill

in

some

remaining

values.

If

a

batch

process

is

associated

with

application

entities

and

the

process

adds

important

or

required

data,

you

need

to

determine

when

the

business

object

is

generated.

For

example:

v

If

the

batch

process

generates

the

event

notification,

the

event

will

trigger

the

connector

to

send

a

complete

business

object

into

the

IBM

WebSphere

business

integration

system.

v

If

the

operator’s

Save

operation

generates

the

event

notification,

the

event

may

trigger

the

connector

to

send

an

incomplete

business

object.

If

there

is

a

need

for

real-time

data

synchronization,

but

there

are

batch

processes

running

in

the

background,

your

connector

development

plans

must

account

for

this.

HW_CONTRACT

SW_CONTRACT

Application database

SW_Contract

Type =

App_HWContract

App_SWContract

InterChange Server

Generic
business
objects

Application
Contract

HW_Contract

Mapping

Mapping

Application-specific
business objects

Figure

15.

Database

representation

of

application

entities

44

Connector

Development

Guide

for

Java

Determining

the

scope

of

business

object

development

When

you

have

determined

at

a

high

level

what

business

objects

you

need

to

define,

you

then

need

to

determine

the

verb

support

for

the

business

object

development,

as

follows:

1.

Use

Table

13

to

create

a

verb-scope

summary

for

each

business

object

and

verb

combination

that

your

connector

will

support.

2.

Use

the

completed

scope

summary

to

assemble

information

about

each

business

object.

Table

13.

Business

Object

Verb-Scoping

Summary

Business

object

name

Required

request

Verbs

(request

processing)

Required

delivery

verbs

(application

event

notification)

Object

1

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Object

2

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Object

n

O

Create

O

Update

O

Delete

O

Create

O

Update

O

Delete

Important:

Most

connectors

must

support

the

Retrieve

verb

for

each

business

object;

therefore,

it

is

not

included

in

Table

13.

Assessing

support

for

metadata-driven

design

In

addition

to

its

structure

and

attributes,

a

business

object

definition

can

contain

application-specific

information,

which

can

provide

processing

instructions

or

information

on

how

the

business

object

is

represented

in

the

application.

Such

information

is

called

metadata.

Metadata

can

include

any

information

that

the

connector

needs

in

its

interactions

with

the

application.

For

example,

if

a

business

object

definition

for

a

table-based

application

includes

metadata

that

provides

the

application

table

and

column

names,

the

connector

can

locate

requested

data

using

this

information,

and

the

application

column

names

do

not

need

to

be

encoded

in

the

connector.

Because

the

connector

has

access

to

its

supported

business

object

definitions

at

runtime,

it

can

use

the

metadata

in

the

business

object

definition

to

dynamically

determine

how

to

process

a

particular

business

object.

Depending

on

the

application

and

its

programming

interface

(API),

a

connector

and

its

business

objects

might

be

designed

based

on

the

ability

to

support

the

use

of

metadata,

as

Table

14

shows.

Table

14.

Connector

support

for

metadata

Connector’s

use

of

metadata

Business

object

handlers

required

For

more

information

Entirely

driven

by

the

processing

instructions

in

the

metadata

of

its

business

object

definitions

One

generic

metadata-drive

business

object

handler

“Metadata-driven

connectors”

on

page

46

Partially

driven

by

the

metadata

in

its

business

object

definitions

One

partially

metadata-driven

business

object

handler

“Partially

metadata-driven

connectors”

on

page

47

Cannot

use

metadata

Separate

business

object

handler

for

each

business

object

that

does

not

use

metadata

“Connectors

that

do

not

use

metadata”

on

page

48

While

some

application

interfaces

have

constraints

that

restrict

the

use

of

metadata

in

connector

and

business

object

design,

a

worthwhile

goal

for

connector

Chapter

2.

Designing

a

connector

45

development

is

to

make

the

connector

as

metadata

driven

as

possible.

Advantages

and

disadvantages

of

the

approaches

in

Table

14

are

discussed

below.

Metadata-driven

connectors

To

be

able

to

support

metadata-driven

design,

the

application

API

must

be

able

to

specify

what

objects

in

the

application

are

to

be

acted

upon.

In

general,

this

means

that

you

can

use

the

business

object

metadata

to

provide

information

about

the

application

entity

to

be

acted

upon

and

the

attribute

data

as

the

values

for

that

object.

A

metadata-driven

connector

can

then

use

the

business

object

values

and

the

metadata

(the

application-specific

information

that

the

business

object

definition

contains)

to

build

the

appropriate

application

function

calls

or

SQL

statements

to

access

the

entity.

The

function

calls

perform

the

required

changes

in

the

application

for

the

business

object

and

verb

the

connector

is

processing.

Applications

based

on

forms,

tables,

or

objects

are

well

suited

for

metadata-driven

connectors.

For

example,

applications

that

are

forms-based

consist

of

named

forms.

Programmatic

interaction

with

a

forms-based

application

consists

of

opening

a

form,

reading

or

writing

fields

on

the

form,

and

then

saving

or

dismissing

the

form.

The

connector

for

such

an

application

can

be

driven

directly

by

the

business

object

definitions

that

the

connector

supports.

The

main

benefit

to

a

metadata-driven

connector

is

that

the

connector

can

use

one

generic

business

object

handler

for

all

business

objects.

In

this

approach,

the

business

object

definition

contains

all

the

information

that

the

connector

needs

to

process

the

business

object.

Because

the

business

object

itself

contains

the

application-specific

information,

the

connector

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

source

code.

The

connector

can

be

written

in

a

generic

manner,

with

a

single

metadata-driven

business

object

handler,

which

does

not

contain

hard-coded

logic

for

processing

specific

business

objects.

Note:

Business

object

names

should

not

have

semantic

value

to

the

connector.

The

connector

should

process

identically

two

business

objects

with

the

same

structure,

data,

and

application-specific

information

with

different

names.

WebSphere

InterChange

Server

Figure

16

shows

an

application-specific

business

object

and

a

connector

with

a

meta-data-driven

business

object

handler.

The

processing

instructions

in

the

application-specific

information

of

the

App_Order

business

object

tell

the

connector

how

to

process

the

business

object.

46

Connector

Development

Guide

for

Java

Because

a

metadata-driven

connector

derives

its

processing

instructions

from

its

application-specific

business

objects,

the

business

objects

must

be

designed

with

this

type

of

processing

in

mind.

This

approach

to

connector

and

business

object

design

provides

flexibility

and

easy

extensibility,

but

it

requires

more

planning

in

the

design

phase.

When

connectors

are

designed

to

work

with

business

object

metadata,

the

business

object

itself

can

be

changed

without

requiring

corresponding

changes

in

the

connector.

For

more

information

on

designing

a

metadata-driven

business

object

handler,

see

“Implementing

metadata-driven

business

object

handlers”

on

page

80.

Partially

metadata-driven

connectors

IBM

encourages

the

metadata

approach

for

designing

connectors

and

application-specific

business

object

definitions.

However,

some

applications

might

not

be

suited

for

this

approach.

Application

APIs

that

are

specific

for

each

entity

in

an

application

make

it

more

difficult

to

write

a

metadata-driven

connector.

Often

the

issue

is

that

the

call

itself

differs

between

objects

in

some

structural

way,

rather

than

just

in

the

name

of

the

method

or

the

data

that

is

passed.

Sometimes

you

can

still

drive

a

connector

with

metadata,

though

this

metadata

does

not

contain

the

actual

processing

instructions.

This

partially

metadata-driven

connector

can

use

the

metadata

in

the

business

object

definition

or

attributes

to

help

determine

what

processing

to

perform.

For

example,

an

application

that

has

a

large

amount

of

business

logic

embedded

in

its

user

interface

might

have

restrictions

on

how

an

external

program,

such

as

a

connector,

can

get

information

into

and

out

of

its

database.

In

some

cases,

it

may

be

necessary

to

provide

an

extension

to

the

application

using

the

application

environment

and

application

programming

interface.

You

may

need

to

add

object-specific

modules

to

the

application

to

handle

the

processing

for

each

business

object.

The

application

may

require

the

use

of

its

application

environment

and

interface

to

ensure

that

application

business

logic

is

enforced

and

not

bypassed.

In

this

case,

the

business

object

and

attribute

application-specific

information

can

still

contain

metadata

for

the

connector.

This

metadata

specifies

the

name

of

the

module

or

API

call

needed

to

perform

operations

for

the

business

object

in

the

application.

The

connector

can

still

be

implemented

with

a

single

business

object

handler,

but

it

is

a

partially

metadata-driven

business

object

handler

because

this

metadata

does

not

contain

the

processing

instructions.

Connector

Collaboration

InterChange
Server

Connector
controller

Metadata-driven
business

object handler

App_Order
business

object

Application

Processing instructions
in the metadata of the

business object

Figure

16.

Using

metadata

in

the

business

object

for

processing

instructions

Chapter

2.

Designing

a

connector

47

Figure

17

illustrates

an

application

extension

that

is

responsible

for

handling

requests

from

the

connector.

The

extension

contains

separate

modules

for

each

business

object

supported

by

the

connector.

The

benefit

to

the

partially

metadata-driven

connector

is

that

it

still

uses

just

one

business

object

handler.

However,

unlike

with

a

metadata-driven

connector,

there

is

coding

to

do

when

new

business

objects

are

created

for

the

connector.

In

this

case,

new

object

functions

must

be

written

and

added

to

the

application,

but

the

connector

does

not

need

to

be

recoded

or

recompiled.

Connectors

that

do

not

use

metadata

If

the

application

API

does

not

provide

the

ability

to

specify

what

entities

in

the

application

are

to

be

acted

upon,

the

connector

cannot

use

metadata

to

support

a

single

business

object

handler.

Instead,

it

must

provide

multiple

business

object

handlers,

one

for

each

business

object

the

connector

supports.

In

this

approach,

each

business

object

handler

contains

specific

logic

and

code

to

process

a

particular

business

object.

In

Figure

18,,

the

connector

has

multiple,

object-specific

business

object

handlers.

When

the

connector

receives

a

business

object,

it

calls

the

appropriate

business

object

handler

for

that

business

object.

The

drawback

of

this

non-metadata

approach

is

that

when

a

business

object

is

changed

or

a

new

business

object

is

added,

this

type

of

connector

must

be

recoded

to

handle

the

new

or

changed

business

object.

Connector

App_Order
business

object

Your extension
to the application

Order Handler

Partially
metadata-driven

business
object handler

Application

Processing instructions in the application

Figure

17.

Application-specific

processing

in

the

application

Connector

Cust Handler

Order Handler

Item Handler
App_Order
business

object

Processing instructions in the connector

Application extension

Application

Cust Module

Order Module

Item Module

Figure

18.

Application-specific

processing

in

the

connector

48

Connector

Development

Guide

for

Java

Event

notification

The

IBM

WebSphere

business

integration

system

is

an

event-driven

system,

and

connectors

need

some

way

to

detect

and

record

events

that

occur

in

the

application.

When

you

examine

the

application,

determine

whether

it

provides

an

event-notification

mechanism

that

can

notify

the

connector

of

changes

to

application

data.

Event

notification

typically

consists

of

a

collection

of

processes

that

allows

a

connector

to

be

notified

of

internal

application

events.

The

event

record

should

include

the

type

of

the

event,

the

business

object

name

and

verb,

such

as

Customer

and

Create,

and

the

data

key

required

for

the

connector

to

retrieve

associated

data.

In

addition,

an

event-notification

strategy

must

incorporate

the

necessary

mechanisms

to

ensure

the

data

integrity

between

event

records

and

the

corresponding

event

data.

In

other

words,

an

event

notification

should

not

occur

until

all

the

required

data

transactions

for

the

event

have

completed

successfully.

The

design

of

an

event

notification

mechanism

varies

depending

on

the

extent

to

which

the

application

reports

application

events

and

enables

clients

to

retrieve

event

data.

If

the

application

provides

an

event

notification

interface

such

as

an

API,

IBM

recommends

that

you

use

this

to

implement

the

event-notification

mechanism.

The

use

of

an

API

helps

ensure

that

connector

interactions

with

the

application

abide

by

application

business

logic.

If

the

application

provides

an

event-notification

mechanism,

use

the

following

topics

and

questions

to

gather

more

information.

Event

notification

level

of

detail

v

Does

the

application’s

event-notification

mechanism

provide

enough

detail

about

the

event

to

establish

the

discrete

business

object

and

verb?

If

not,

can

the

event

notification

component

be

configured

to

provide

this

level

of

detail?

For

example,

if

a

new

record

is

added

or

an

existing

customer

is

updated,

determine

whether

the

event-notification

mechanism

can

provide

information

on

the

type

of

operation,

such

as

Create

or

Update

operations.

If

the

connector

supports

delta

operations,

determine

whether

the

event

mechanism

can

provide

information

on

exactly

which

subobjects

or

attributes

changed.

Event

notification

support

for

business

logic

v

Does

event

notification

occur

at

a

level

that

adequately

supports

business

requirements?

In

other

words,

an

event-notification

mechanism

would

ideally

include

support

for

application

business

logic.

In

your

project

plan,

describe

the

event-notification

mechanism.

If

there

is

no

existing

event

mechanism,

determine

what

alternatives

are

available

to

detect

changes

to

application

data.

For

example,

you

might

be

able

to

provide

event

notification

by

setting

up

database

triggers

on

tables

in

a

relational

database.

Or

the

application

might

provide

a

batch-export

capability

that

exports

all

database

modifications

to

a

file

from

which

the

connector

can

extract

information

about

application

events.

Note:

For

more

information

on

the

stages

of

implementing

an

event-notification

mechanism,

see

“Overview

of

an

event-notification

mechanism”

on

page

113.

Chapter

2.

Designing

a

connector

49

Communication

across

operating

systems

Communication

between

the

application

and

the

connector

is

a

major

component

in

the

overall

connector

design.

If

the

application

runs

on

a

different

operating

system

from

InterChange

Server

and

the

connector,

you

must

ensure

that

a

mechanism

is

in

place

to

allow

the

connector

access

to

the

application.

If

the

application

provides

an

API,

determine

whether

the

API

handles

the

communication

between

the

operating

system

of

the

application

and

that

of

the

connector.

For

example,

if

the

application

runs

on

UNIX

and

the

connector

and

InterChange

Server

run

on

Windows

2000,

the

application

API

might

enable

the

connector

and

application

to

communicate

across

operating

systems.

Figure

19

shows

an

example

communication

mechanism

between

an

ODBC

connector

running

on

Windows

2000

and

an

ODBC-based

application

running

on

UNIX.

The

connector

builds

dynamic

SQL

statements

and

executes

them

using

the

ODBC

API.

The

ODBC

driver

enables

the

connector

to

establish

a

connection

with

the

application

database

and

to

access

the

database

using

ODBC

SQL

statements.

Communication

across

other

systems

The

Java

Connector

Development

Kit

supports

various

standards

for

communication

with

other

systems

and

frameworks.

Among

these

are

the

Common

Event

Infrastructure,

which

provides

interoperability

with

other

IBM

WebSphere

event-producing

applications,

and

Application

Response

Measurement

instrumentation

support,

which

makes

transaction

metrics

from

the

connector

and

application

available

to

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

framework.

For

more

information

about

these

standards,

see:

v

“Common

Event

Infrastructure

support”

on

page

51

Global
functions

Business
object

handler

Application
event

notification

ODBC interaction functions

ODBC-based application

Event management
and

notification

Application
CRUD

mechanism

InterChange Server - Windows Application OS - UNIX

Connector

ODBC
driver

Protocol
adapter TCP/IP

Figure

19.

Sample

Windows-to-UNIX

communication

50

Connector

Development

Guide

for

Java

v

“Application

Response

Measurement

instrumentation

support”

on

page

52

Common

Event

Infrastructure

support

Java-based

connectors

are

compatible

with

IBM’s

Common

Event

Infrastructure,

a

standard

for

event

management

that

permits

interoperability

with

other

IBM

WebSphere

event-producing

applications.

When

you

implement

Common

Event

Infrastructure

support

in

your

connector,

events

produced

by

the

connector

can

be

received

(or

“consumed”)

by

another

Common

Event

Infrastructure-

compatible

application.

Note:

Common

Event

Infrastructure

is

not

supported

on

any

Linux

or

HP-UX

platform.

Required

software

You

must

have

the

following

software

installed

to

implement

the

Common

Event

Infrastructure

in

the

connector:

v

WebSphere

Application

Server

Foundation

5.1.1

v

WebSphere

Application

Server

Application

Client

5.0.2,

5.1,

or

5.1.1.

WebSphere

Application

Server

Foundation

includes

the

Common

Event

Infrastructure

Server

Application,

which

is

required

for

Common

Event

Infrastructure

to

operate.

The

WebSphere

Application

Server

Foundation

can

be

installed

on

any

system

(it

does

not

have

to

be

the

same

machine

on

which

the

adapter

is

installed.)

The

WebSphere

Application

Server

Application

Client

includes

the

libraries

required

for

interaction

between

the

adapter

and

the

Common

Event

Infrastructure

Server

Application.

You

must

install

WebSphere

Application

Server

Application

Client

on

the

same

system

on

which

you

install

and

run

the

connector.

The

connector

connects

to

the

WebSphere

Application

Server

Foundation

server

by

means

of

a

configurable

URL.

Common

Event

Infrastructure

support

is

available

using

any

integration

broker

supported

with

this

release.

Enabling

Common

Event

Infrastructure

Common

Event

Infrastructure

functionality

is

enabled

with

the

standard

properties

CommonEventInfrastructure

and

CommonEventInfrastructureContextURL,

configured

with

Connector

Configurator.

By

default,

Common

Event

Infrastructure

is

not

enabled.

The

CommonEventInfrastructureContextURL

property

enables

you

to

configure

the

URL

of

the

Common

Event

Infrastructure

server.(Refer

to

Appendix

A,

Standard

Properties,

for

more

information.).

Obtaining

Common

Event

Infrastructure

events

If

Common

Event

Infrastructure

is

enabled,

the

connector

generates

Common

Event

Infrastructure

events

that

map

to

the

following

adapter

events:

v

Starting

the

connector

v

Stopping

the

connector

v

An

application

response

to

a

timeout

from

the

connector

agent

v

Any

doVerbFor

call

issued

from

the

connector

agent

v

A

otApplEvent

call

from

the

connector

agent

For

another

application

(the

″consumer

application″)

to

receive

the

Common

Event

Infrastructure

events

generated

by

the

connector,

the

application

must

use

the

Common

Event

Infrastructure

event

catalog

to

determine

the

definitions

of

Chapter

2.

Designing

a

connector

51

appropriate

events

and

their

properties.

The

events

must

be

defined

in

the

event

catalog

for

the

consumer

application

to

be

able

to

consume

the

sending

application’s

events.

For

more

information

For

more

information

about

Common

Event

Infrastructure,

refer

to

the

Common

Event

Infrastructure

information

in

the

WebSphere

Application

Server

Foundation

documentation.

This

is

available

on

the

web

at

the

IBM

WebSphere

Application

Server

Information

Center.

Application

Response

Measurement

instrumentation

support

Java-based

connectors

are

compatible

with

the

Application

Response

Measurement

application

programming

interface

(API),

an

API

that

allows

applications

to

be

managed

for

availability,

service

level

agreements,

and

capacity

planning.

The

connector

calls

the

ARM

APIs

to

participate

in

IBM

Tivoli

Monitoring

for

Transaction

Performance,

allowing

collection

and

review

of

data

concerning

transaction

metrics.

Note:

Application

Response

Measurement

instrumentation

is

supported

on

all

operating

systems

supported

with

this

IBM

WebSphere

Business

Integration

Adapters

release

except

HP-UX

(any

version)

and

Red

Hat

Linux

3.0.

Required

software

In

addition

to

the

software

prerequisites

required

for

the

adapter,

you

must

have

the

following

installed

for

ARM

to

operate

with

the

connector:

v

WebSphere

Application

Server

5.0.1

(contains

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

server).

This

does

not

have

to

be

installed

on

the

same

system

as

the

adapter.

v

IBM

Tivoli

Monitoring

for

Transaction

Performance

v.

5.2

Fixpack

1.

This

must

be

installed

on

the

same

system

on

which

the

adapter

is

installed

and

configured

to

point

to

the

system

on

which

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

server

resides.

Application

Response

Measurement

support

is

available

using

any

integration

broker

supported

with

this

release.

Enabling

Application

Response

Measurement

in

the

connector

ARM

instrumentation

is

enabled

by

setting

the

standard

property

TivoliMonitorTransactionPerformance

in

Connector

Configurator

to

“True”.

By

default

ARM

support

is

not

enabled.

(Refer

to

Appendix

A,

Standard

Properties,

for

more

information.)

Transaction

monitoring

When

ARM

is

enabled,

the

transactions

that

are

monitored

are

service

events

and

event

deliveries.

The

transaction

is

measured

from

the

start

of

a

service

request

or

event

delivery

to

the

end

of

the

service

request

or

event

delivery.

The

name

of

the

transaction

displayed

on

the

Tivoli

Monitoring

for

Transaction

Performance

console

will

start

with

either

SERVICE

REQUEST

or

EVENT

DELIVERY.

The

next

part

of

the

name

will

be

the

business

object

verb

(such

as

CREATE,

RETRIEVE,

UPDATE

or

DELETE).

The

final

part

of

the

name

will

be

the

business

object

name

such

as

“EMPLOYEE.”

So

for

example,

the

name

of

a

transaction

for

an

event

delivery

for

creation

of

an

employee

might

beEVENT

DELIVERY

CREATE

EMPLOYEE.

Another

might

be

SERVICE

REQUEST

UPDATE

ORDER.

The

following

metrics

are

collected

by

default

for

each

type

of

service

request

or

event

delivery:

52

Connector

Development

Guide

for

Java

v

Minimum

transaction

time

v

Maxium

transaction

time

v

Average

transaction

time

v

Total

transaction

runs

You

can

select

which

of

these

metrics

to

display,

for

which

connector

events,

by

configuring

Discovery

Policies

and

Listener

Policies

for

particular

transactions

from

within

the

Tivoli

Monitoring

for

Transaction

Performance

console.

(Refer

to

“For

more

information.”)

For

more

information

Refer

to

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

documentation

for

more

information.

v

See

the

IBM

Tivoli

Monitoring

for

Transaction

Performance

User’s

Guide

for

information

about

monitoring

and

managing

the

metrics

generated

by

the

adapter.

v

See

the

Application

Response

Measurement

(ARM)

API,

Version

2

(http://regions.cmg.org/regions/cmgarmw/marcarm.pdf)

for

information

about

how

to

setup

the

ARM

application

to

process

transaction

metrics

from

the

connector.

Summary

set

of

planning

questions

The

following

table

lists

the

set

of

planning

questions

provided

in

this

chapter.

You

can

use

this

table

as

a

worksheet

for

gathering

information

about

your

application.

As

you

gather

information,

get

copies

of

any

documentation

that

can

help

in

the

planning,

design,

or

development

phases

of

the

project.

Chapter

2.

Designing

a

connector

53

1.

Understanding

the

Application

v

What

is

the

application

operating

system?

v

What

programming

languages

were

used

to

create

the

application?

v

What

is

the

execution

architecture

of

the

application?

v

Is

there

a

central

database

for

application

data?

What

type

of

database

is

it?

v

Is

the

application

or

its

database

distributed

across

multiple

servers?

2.

Identifying

the

Directionality

of

the

Connector

v

Does

the

connector

need

to

send

data,

receive

data,

or

both?

3.

Identifying

the

Application-Specific

Business

Objects

v

Do

application

entities

have

contained

entities?

v

Are

there

application

business

entities

that

are

the

same

type

but

have

different

physical

representations

in

the

application?

v

Are

there

application

entities

that

reside

in

more

than

one

location

in

the

database

but

correspond

to

the

same

logical

entity?

v

Are

there

batch

processes

associated

with

the

creation

of

application

entities?

4.

Investigating

the

Application

Data

Interaction

Interface

v

Have

there

been

any

other

efforts

to

integrate

with

this

application?

–

What

was

the

purpose

of

the

integration?

–

Does

the

integration

use

interfaces

that

modify

or

retrieve

information?

–

If

the

integration

is

able

to

process

an

event

generated

in

the

application,

what

is

the

mechanism

used

to

trigger

event

processing?

–

Will

your

connector

replace

the

pre-existing

integration?

v

Is

application

data

shared

by

other

applications?

–

Do

other

applications

create,

retrieve,

update,

or

delete

this

application’s

data?

–

What

is

the

mechanism

used

by

other

applications

to

gain

access

to

the

data?

–

Is

there

object-specific

business

logic

used

by

other

applications?

v

Is

there

a

mechanism

that

the

connector

can

use

to

communicate

with

the

application?

–

Does

the

API

allow

access

for

create,

retrieve,

update,

and

delete

operations?

–

Does

the

API

provide

access

to

all

data

entity

attributes?

–

Does

the

API

allow

access

to

the

application

for

event

detection?

–

Are

there

inconsistencies

in

the

API

implementation?

–

Describe

the

transaction

behavior

of

the

API.

–

Is

the

API

suited

for

meta-data

design?

–

Does

the

API

enforce

application

business

rules?

v

Are

there

batch

clean-up

or

merge

programs

used

to

purge

redundant

or

invalid

data?

5.

Investigating

the

Event

Management

and

Notification

Mechanism

v

Describe

the

event

management

mechanism.

v

Does

it

provide

the

necessary

granularity

to

establish

the

distinct

object

and

verb?

v

Does

event

notification

occur

at

a

level

that

can

support

application

business

logic?

6.

Investigating

Communication

Across

Operating

Systems

v

Does

the

API

handle

the

communication

mechanism

between

the

application

operating

system

and

the

connector

operating

system?

v

If

not,

is

there

a

mechanism

available

to

handle

communication

across

operating

systems?

Figure

20.

Summary

set

of

planning

question

54

Connector

Development

Guide

for

Java

Evaluating

the

findings

As

you

assemble

the

answers

to

the

questions

presented

in

this

chapter,

you

acquire

essential

information

about

application

data

entities,

business

object

processing,

and

event

management.

These

findings

become

the

basis

for

a

high-level

architecture

for

the

connector.

When

you

have

determined

what

entities

your

connector

will

support

and

have

examined

the

application

functionality

for

database

interaction

and

event

notification,

you

should

have

a

clear

understanding

of

the

scope

of

the

connector

development

project.

At

this

point,

you

can

continue

with

the

next

phases

of

connector

development—defining

application-specific

business

objects

and

coding

the

connector.

Figure

21

shows

a

partial

write-up

of

information

about

a

sample

connector.

Figure

22

illustrates

a

high-level

architecture

diagram

for

an

ODBC-based

connector.

1.

Understanding

the

Application

v

Application

is

running

on

UNIX.

v

Programming

language

used

is

Visual

C++

with

the

Microsoft

MFC

libraries.

v

Application

is

client-server.

v

Application

has

a

central

database.

Type

is

RDMS.

v

Application

is

not

distributed.

2.

Identifying

the

Directionality

of

the

Connector

v

Connector

will

be

bidirectional.

3.

Identifying

the

Application-Specific

Business

Objects

v

Business

objects

have

contained

objects.

Contained

business

objects

are:

–

Customer

”Address

”Site

Use

and

Site

Profile

–

Item

”Status

–

Contact

”n

Phones

and

n

Roles

v

Application

business

entities

do

not

have

different

physical

representations

in

the

application.

v

Application

entities

do

not

reside

in

more

than

one

location

in

the

database.

v

No

batch

processes

are

associated

with

the

creation

of

these

objects.

4.

Examining

the

Application

Data

Interaction

Interface

v

No

previous

efforts

to

integrate

with

this

application.

v

Application

data

is

not

shared

by

other

applications.

v

The

application

provides

the

OpenProduct

API.

–

OpenProduct

allows

for

Creates

and

Updates

but

not

Retrieves

and

Deletes.

–

The

API

provide

access

to

all

data

entity

attributes.

–

The

API

allows

access

to

the

application

for

event

detection.

We

can

create

an

event

table

and

poll

for

events

at

a

specified

interval.

–

There

are

no

inconsistencies

in

the

API.

–

The

API

has

a

batch

interface.

–

The

application

is

table-based,

and

the

API

is

suited

for

meta-data

design.

–

...

Figure

21.

Sample

results

write-up

Chapter

2.

Designing

a

connector

55

An

internationalized

connector

An

internationalized

connector

is

a

connector

that

has

been

written

so

that

it

can

be

customized

for

a

particular

locale.

A

locale

is

the

part

of

a

user’s

environment

that

brings

together

information

about

how

to

handle

data

that

is

specific

to

the

end

user’s

particular

country,

language,

or

territory.

The

locale

is

typically

installed

as

part

of

the

operating

system.

Creating

a

connector

that

handles

locale-sensitive

data

is

called

the

internationalization

(I18N)

of

the

connector.

Preparing

an

internationalized

connector

for

a

particular

locale

is

called

the

localization

(L10N)

of

the

connector.

This

section

provides

the

following

information

on

an

internationalized

connector:

Generic services (C++ class library)

Global
functions

Business
object

handler

Application
event

notification

Connector controller

ODBC interaction functions

Transport Driver

Mapping Services Oracle-based application

Oracle database

InterChange Server
Windows

Application OS
UNIX

Application
tables

Event
table

Archive
table

Database
triggers

Polling to
event table

Database
CRUD
operations

Transport driver

Java-to-C++ translation (C++ only)

Connector

ODBC
driver

Oracle
protocol
adapter

TCP/IPSQL*Net

Figure

22.

Sample

ODBC-based

connector

architecture

56

Connector

Development

Guide

for

Java

v

“What

is

a

locale?”

v

“Design

considerations

for

an

internationalized

connector”

What

is

a

locale?

A

locale

provides

the

following

information

for

the

user

environment:

v

Cultural

conventions

according

to

the

language

and

country

(or

territory):

–

Data

formats:

-

Dates:

define

full

and

abbreviated

names

for

weekdays

and

months,

as

well

as

the

structure

of

the

date

(including

date

separator).

-

Numbers:

define

symbols

for

the

thousands

separator

and

decimal

point,

as

well

as

where

these

symbols

are

placed

within

the

number.

-

Times:

define

indicators

for

12-hour

time

(such

AM

and

PM

indicators)

as

well

as

the

structure

of

the

time.

-

Monetary

values:

define

numeric

and

currency

symbols,

as

well

as

where

these

symbols

are

placed

within

the

monetary

value.
–

Collation

order:

how

to

sort

data

for

the

particular

character

code

set

and

language.

–

String

handling

includes

tasks

such

as

letter

“case”

(upper

case

and

lower

case)

comparison,

substrings,

and

concatenation.
v

A

character

encoding

—

the

mapping

from

a

character

(a

letter

of

the

alphabet)

to

a

numeric

value

in

a

character

code

set.

For

example,

the

ASCII

character

code

set

encodes

the

letter

“A”

as

65,

while

the

EBCIDIC

character

set

encodes

this

letter

as

43.

The

character

code

set

contains

encodings

for

all

characters

in

one

or

more

language

alphabets.

A

locale

name

has

the

following

format:

ll_TT.codeset

where

ll

is

a

two-character

language

code

(usually

in

lower

case),

TT

is

a

two-letter

country

and

territory

code

(usually

in

upper

case),

and

codeset

is

the

name

of

the

associated

character

code

set.

The

codeset

portion

of

the

name

is

often

optional.

The

locale

is

typically

installed

as

part

of

the

installation

of

the

operating

system.

Design

considerations

for

an

internationalized

connector

This

section

provides

the

following

categories

of

design

considerations

for

internationalizing

a

connector:

v

“Locale-sensitive

design

principles”

v

“Character-encoding

design

principles”

on

page

61

Locale-sensitive

design

principles

To

be

internationalized,

a

connector

must

be

coded

to

be

locale-sensitive;

that

is,

its

behavior

must

take

the

locale

setting

into

consideration

and

perform

the

task

appropriate

to

that

locale.

For

example,

for

locales

that

use

English,

the

connector

should

obtain

its

error

messages

from

an

English-language

message

file.

The

WebSphere

Business

Integration

Adapters

product

provides

you

with

an

internationalized

version

of

the

connector

framework.

To

complete

the

internationalization

(I18N)

of

a

connector

you

develop,

you

must

ensure

that

your

application-specific

component

is

internationalized.

Table

15

lists

the

locale-sensitive

design

principles

that

an

internationalized

application-specific

component

must

follow.

Chapter

2.

Designing

a

connector

57

Table

15.

Locale-sensitive

design

principles

for

application-specific

components

Design

principle

For

more

information

The

text

of

all

error,

status,

and

trace

messages

should

be

isolated

from

the

application-specific

component

in

a

message

file

and

translated

into

the

language

of

the

locale.

“Text

strings”

The

locale

of

a

business

object

must

be

preserved

during

execution

of

the

connector.

“Business

object

locales”

on

page

59

Properties

of

connector

configuration

properties

must

be

handled

to

include

possible

inclusion

of

multibyte

characters.

“Connector

configuration

properties”

on

page

60

Other

locale-specific

tasks

must

be

considered.

“Other

locale-sensitive

tasks”

on

page

60

Text

strings:

It

is

good

programming

practice

to

design

a

connector

so

that

it

refers

to

an

external

message

file

when

it

needs

to

obtain

text

strings

rather

than

hardcoding

text

strings

in

the

connector

code.

When

a

connector

needs

to

generate

a

text

message,

it

retrieves

the

appropriate

message

by

its

message

number

from

the

message

file.

Once

all

messages

are

gathered

in

a

single

message

file,

this

file

can

be

localized

by

having

the

text

translated

into

the

appropriate

language

or

languages.

This

section

provides

the

following

information

on

how

to

internationalize

text

strings:

v

“Handling

logging

and

tracing”

v

“Handling

miscellaneous

strings”

on

page

59

Handling

logging

and

tracing:

To

internationalize

the

logging

and

tracing,

make

sure

that

all

these

operations

use

message

files

to

generate

text

messages.

By

putting

message

strings

in

a

message

file,

you

assign

a

unique

identifier

to

each

message.

Table

16

lists

the

types

of

operations

that

use

a

message

file

and

the

associated

Java

connector

library

methods

in

the

CWConnectorUtil

class

that

the

application-specific

component

uses

to

retrieve

their

messages

from

a

message

file.

Table

16.

Methods

to

log

and

trace

messages

from

a

message

file

Message-file

operation

Connector

library

method

Logging

generateAndLogMsg()

Tracing

generateAndTraceMsg()

or

traceWrite()

Log

messages

should

display

in

the

language

of

the

customer’s

locale.

Therefore,

log

messages

should

always

be

isolated

into

a

connector

message

file

and

retrieved

with

the

generateAndLogMsg()

method.

Because

trace

messages

are

intended

for

the

product

debugging

process,

they

often

do

not

need

to

display

in

the

language

of

the

customer’s

locale.

Therefore,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

58

Connector

Development

Guide

for

Java

connector.

The

generateMsg()

method

generates

the

message

string

for

traceWrite().

It

retrieves

a

predefined

trace

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

method.

However,

storing

trace

messages

in

the

message

file

makes

it

easy

to

locate

and

maintain

them.

Handling

miscellaneous

strings:

In

addition

to

handling

the

message-file

operations

in

Table

16,,

an

internationalized

connector

must

not

contain

any

miscellaneous

hardcoded

strings.

You

must

isolate

these

strings

into

the

message

file

as

well.

Table

17

shows

the

method

that

the

application-specific

component

can

use

to

retrieve

a

message

from

a

message

file.

Table

17.

Method

to

retrieve

a

message

from

the

message

file

Connector

library

class

Method

CWConnectorUtil

generateMsg()

To

internationalize

hardcoded

strings,

take

the

following

steps:

v

Generate

a

uniquely

numbered

message

in

the

connector

message

file

for

the

hardcoded

string.

Note:

In

the

message

file,

you

can

also

include

an

optional

explanation

to

the

isolated

string.

In

this

explanation,

you

can

put

the

method

name

where

the

string

is

used.

This

information

can

help

to

track

the

position

of

the

source

and

make

changes

when

needed.

v

In

the

application-specific

component,

use

the

generateMsg()

method

to

specify

the

isolated

string

by

its

message

number.

For

example,

suppose

your

application-specific

component

contains

the

following

hardcoded

string

in

a

line

of

code:

********Before

updating

the

event

status********

To

isolate

this

hardcoded

string

from

the

connector

code,

create

a

message

in

the

message

file

and

assign

it

a

unique

message

number

(100):

100

********Before

updating

the

event

status********

[EXPL]

Hardcoded

message

in

pollForEvents()

The

application-specific

component

retrieves

the

isolated

string

(message

100)

from

the

message

file

and

replaces

the

hardcoded

string

with

this

retrieved

string:

//retrieve

the

message

numbered

’

100’

String

msg100

=

generateMsg(100,

CWConnectorLogAndTrace.XRD_INFO,

CWConnectorLogAndTrace.CONNECTOR_MESSAGE_FILE,

0);

MyClassObject.formatMsg(msg100);

//send

retrieved

message

to

a

custom

method

For

more

information

on

the

use

of

message

files,

see

Chapter

6,

“Message

logging,”

on

page

137.

Business

object

locales:

The

connector

might

need

to

perform

locale-sensitive

processing

(such

as

data

format

conversions)

when

it

converts

from

application

Chapter

2.

Designing

a

connector

59

data

to

the

application-specific

business

object.

During

processing

of

a

business

object

in

a

connector,

there

are

two

different

locale

settings:

v

The

connector

inherits

a

locale,

called

the

connector-framework

locale,

from

the

connector

framework

with

which

it

runs.

The

connector-framework

locale

determines

the

locale

of

text

messages

that

the

connector

uses

for

logging

and

exceptions.

v

The

connector

also

can

access

the

locale

that

is

associated

with

a

business

object

it

is

processing.

This

business-object

locale

identifies

the

locale

associated

with

the

data

in

the

business

object.

Table

18

shows

the

method

that

the

connector

can

use

to

retrieve

the

locale

associated

with

the

connector

framework.

Table

18.

Method

to

retrieve

the

connector

framework’s

locale

Connector

Library

Class

Method

CWConnectorUtil

getGlobalLocale()

When

a

business

object

is

created,

it

can

have

a

locale

associated

with

its

data.

Your

connector

can

access

this

business-object

locale

in

either

of

the

following

ways:

v

To

obtain

the

name

of

the

business-object

locale,

use

the

getLocale()

method,

which

is

defined

in

the

CWConnectorBusObj

class.

The

CWConnectorBusObj

class

also

provides

a

setLocale()

method.

v

To

associate

a

locale

with

the

business

object,

use

the

createBusObj()

method,

which

is

defined

in

the

CWConnectorUtil

class.

Connector

configuration

properties:

As

discussed

in

“Using

connector

configuration

property

values”

on

page

70,,

an

application-specific

component

can

use

two

types

of

configuration

properties

to

customize

its

execution:

v

Standard

configuration

properties

are

available

to

all

connectors.

v

Connector-specific

configuration

properties

are

unique

to

the

particular

connector

in

which

they

are

defined.

The

names

of

all

connector

configuration

properties

must

use

only

characters

defined

in

the

code

set

associated

with

the

U.S

English

(en_US)

locale.

However,

the

values

of

these

configuration

properties

can

contain

characters

from

the

code

set

associated

with

the

connector

framework

locale.

The

application-specific

component

obtains

the

values

of

configuration

properties

with

the

methods

described

in

“Retrieving

connector

configuration

properties”

on

page

71.

These

methods

correctly

handle

characters

from

multibyte

code

sets.

However,

to

ensure

that

your

connector

is

internationalized,

its

code

must

correctly

handle

these

configuration-property

values

once

it

retrieves

them.

The

application-specific

component

must

not

assume

that

configuration-property

values

contain

only

single-byte

characters.

Other

locale-sensitive

tasks:

An

internationalized

connector

must

also

handle

the

following

locale-sensitive

tasks:

v

Sorting

or

collation

of

data:

the

collaboration

must

use

a

collation

order

appropriate

for

the

language

and

country

of

the

locale.

v

String

processing

(such

as

comparison,

substrings,

and

letter

case):

the

collaboration

must

ensure

that

any

processing

it

performs

is

appropriate

for

characters

in

the

locale’s

language.

60

Connector

Development

Guide

for

Java

v

Formats

of

dates,

numbers,

and

times:

the

collaboration

must

ensure

that

any

formatting

it

performs

is

appropriate

for

the

locale.

Character-encoding

design

principles

If

data

transfers

from

a

location

that

uses

one

code

set

to

a

location

that

uses

a

different

code

set,

some

form

of

character

conversion

needs

to

be

performed

for

the

data

to

retain

its

meaning.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

Unicode.

The

Unicode

character

set

is

a

universal

character

set

that

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

There

are

several

encoding

formats

of

Unicode.

The

following

encodings

are

used

most

frequently

within

the

integration

business

system:

v

Universal

multiple

octet

Coded

Character

Set:

UCS-2

The

UCS-2

encoding

is

the

Unicode

character

set

encoded

in

2

bytes

(octets).

v

UCS

Transformation

Format,

8-bit

form:

UTF-8

The

UTF-8

encoding

is

designed

to

address

the

use

of

Unicode

character

data

in

UNIX

environments.

It

supports

all

ASCII

code

values

(0...127)

so

that

they

are

never

interpreted

as

anything

except

a

true

ASCII

code.

Each

code

value

is

usually

represented

as

a

1-,

2-,

or

3-

byte

value.

Most

components

in

the

WebSphere

business

integration

system,

including

the

connector

framework,

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

system

components,

it

is

encoded

in

the

Unicode

code

set

and

there

is

no

need

for

character

conversion.

Because

a

Java

connector

works

with

a

Java

application

(or

technology),

its

application-specific

component

is

written

in

Java,

which

handles

data

in

the

Unicode

code

set.

The

Java

application

(or

technology)

also

has

data

already

in

Unicode.

Therefore,

a

Java

connector

does

not

normally

need

to

perform

character

conversion

on

application

data

for

the

application-specific

business

object.

If

some

data

is

not

in

Unicode,

the

Java

environment

automatically

supports

character

conversion

between

UCS-2

and

a

native

encoding.

However,

if

the

application

data

includes

data

from

some

other

external

source

(such

as

an

operating-system

file),

the

Java

connector

might

need

to

handle

character

conversion.

Figure

24

shows

the

character

encoding

for

a

Java

connector.

Note:

A

connector

obtains

the

character

encoding

of

its

application

from

the

CharacterEncoding

connector

configuration

property.

If

your

connector

performs

character

conversion,

make

sure

you

instruct

the

connector

end

user

to

set

this

connector

property

to

the

correct

value.

Connector
controller

InterChange Server

UTF-8C++
application

C++
connector

(client side)

Native encoding

Character conversion
required

Figure

23.

Character

encoding

with

a

C++

connector

Chapter

2.

Designing

a

connector

61

To

obtain

the

character

encoding

at

runtime,

Table

19

shows

the

method

in

the

Java

connector

library

that

the

connector

can

use.

Table

19.

Method

to

retrieve

the

connector

framework’s

character

encoding

Connector

library

class

Method

CWConnectorUtil

getGlobalEncoding()

A

Java

String

is

UCS-2

encoded.

Therefore,

the

connector

can

get

and

set

attribute

values

(those

represented

as

Java

Strings),

default

attribute

values,

and

application-specific

information

in

their

native

encoding

by

performing

a

simple

conversion:

nativeEncodedAppSpecInfo

=

busObj.getAppText(attrName).getBytes(nativeEncoding);

Note:

Connector

configuration

properties

with

String

values

do

not

require

character

conversion

because

they

originate

from

the

InterChange

Server

repository

and

are

therefore

in

the

UCS-2

encoding.

Connector
controller

InterChange Server

UTF-8
Java

application

File

Java
connector

(client side)

UTF-8

Native encoding
(character conversion

required)

Figure

24.

Character

encoding

with

a

Java

connector

62

Connector

Development

Guide

for

Java

Chapter

3.

Providing

general

connector

functionality

This

chapter

presents

information

on

how

to

implement

a

connector

class,

which

performs

the

initialization

and

setup

for

the

application-specific

component

of

a

connector.

It

also

discusses

some

basic

functionality

that

your

connector

might

need.

Note:

Writing

code

for

the

application-specific

component

is

only

one

part

of

the

overall

task

for

developing

a

connector.

Before

you

begin

to

write

your

application-specific

component,

you

should

clearly

understand

the

connector

design

issues

as

well

as

the

design

of

any

application-specific

business

objects.

A

thorough

understanding

of

the

design

issues

can

help

you

complete

the

coding

task

successfully.

For

information

on

connector

design,

refer

to

Chapter

2,

“Designing

a

connector,”

on

page

35.

This

chapter

contains

the

following

sections:

v

“Running

a

connector”

v

“Extending

the

connector

base

class”

on

page

68

v

“Handling

errors”

on

page

69

v

“Using

connector

configuration

property

values”

on

page

70

v

“Calling

a

data

handler”

on

page

75

v

“Handling

loss

of

connection

to

an

application”

on

page

78

Running

a

connector

When

the

connector

runs,

it

performs

the

tasks

summarized

in

Table

20.

Table

20.

Steps

for

executing

a

connector

Execution

step

For

more

information

1.

Start

the

connector

with

the

startup

script

to

initialize

the

connector

framework

and

application-specific

component

of

the

connector.

“Starting

up

a

connector”

on

page

63

2.

If

polling

is

turned

on,

the

connector

framework

calls

pollForEvents()

at

the

interval

defined

by

the

connector’s

PollFrequency

connector

configuration

property.

“Polling

for

events”

on

page

67

3.

If

the

connector

implements

request

processing,

call

the

business-object

handler

associated

with

the

request

business

object

that

the

connector

receives.

Request

processing

is

implemented

by

the

doVerbFor()

method

in

the

connector’s

business

object

handler.

For

more

information,

see

Chapter

4,

“Request

processing,”

on

page

79.

4.

When

the

connector

is

shut

down,

the

connector

framework

calls

terminate().

“Shutting

down

the

connector”

on

page

68

The

following

sections

provide

more

information

about

each

of

the

execution

steps

Table

20.

Starting

up

a

connector

Each

connector

has

a

connector

startup

script

to

begin

its

execution.

This

startup

script

invokes

the

connector

framework.

©

Copyright

IBM

Corp.

2000,

2004

63

Note:

For

more

information

on

how

to

create

a

connector

startup

script,

see

“Creating

startup

scripts”

on

page

213.

Once

the

connector

framework

is

executing,

it

performs

the

appropriate

steps

to

invoke

the

application-specific

component

of

the

connector,

based

on

the

integration

broker.

Starting

connectors

with

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

the

connector

framework

takes

the

following

steps

to

invoke

the

application-specific

component:

1.

Use

the

Object

Request

Broker

(ORB)

to

establish

contact

with

InterChange

Server.

2.

From

the

repository,

load

the

following

connector-definition

information

into

memory

for

the

connector’s

process:

v

The

connector

configuration

properties

v

A

list

of

the

connector’s

supported

business

object

definitions
3.

Begin

execution

of

the

connector’s

application-specific

component

by

instantiating

the

connector

base

class

and

calling

methods

of

this

base

class

that

initialize

the

application-specific

component.

When

the

connector

is

started,

the

connector

framework

instantiates

the

connector

base

class

and

then

calls

the

connector-base-class

methods

in

Table

21.

Table

21.

Beginning

execution

of

the

connector

Initialization

task

For

more

information

1.

Initialize

the

connector

to

perform

any

necessary

initialization

for

the

application-specific

component,

such

as

opening

a

connection

to

the

application.

“Initializing

the

connector”

on

page

65

2.

For

each

business

object

that

the

connector

supports,

obtain

the

business

object

handler.

“Obtaining

the

business

object

handler”

on

page

66

Once

these

methods

have

been

called,

the

connector

is

operational.

4.

Contact

the

connector

controller

to

obtain

the

subscription

list

for

business

objects

to

which

collaborations

have

subscribed.

For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

12.

Starting

connectors

with

other

integration

brokers

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

the

connector

framework

takes

the

following

steps

to

invoke

the

application-specific

component:

1.

From

the

local

repository,

load

the

following

connector-definition

information

into

memory

for

the

connector’s

process:

v

The

connector

configuration

properties

v

A

list

of

the

connector’s

supported

business

object

definitions
2.

Begin

execution

of

the

connector’s

application-specific

component

by

instantiating

the

connector

base

class

and

calling

methods

of

this

base

class

that

initialize

the

application-specific

component.

When

the

connector

is

started,

the

connector

framework

instantiates

the

connector

base

class

and

then

calls

the

connector-base-class

methods

in

Table

21.

Once

these

methods

have

been

called,

the

connector

is

operational.

64

Connector

Development

Guide

for

Java

Initializing

the

connector

To

begin

connector

initialization,

the

connector

framework

calls

the

initialization

method

of

the

connector

base

class.

Table

22

shows

the

initialization

method

for

the

connector.

Table

22.

Connector

Base

Class

Methods

to

Initialize

the

Connector

Class

Method

CWConnectorAgent

agentInit()

As

part

of

the

implementation

of

the

connector

class,

you

must

implement

an

initialization

method

for

your

connector.

The

main

tasks

of

the

initialization

method

include:

v

“Establishing

a

connection”

v

“Checking

the

connector

version”

v

“Recovering

In-Progress

events”

Important:

During

execution

of

the

initialization

method,

business

object

definitions

and

the

connector

framework’s

subscription

list

are

not

yet

available.

Establishing

a

connection:

The

main

task

of

the

initialization

method

is

to

establish

a

connection

to

the

application.

To

establish

the

connection,

the

initialization

method

can

perform

the

following

tasks:

v

Read

from

the

repository

the

connector’s

configuration

properties

that

provide

connector

information

(such

as

ApplicationUserID

and

ApplicationPassword)

and

use

them

to

send

login

information

to

the

application.

If

a

required

connector

property

is

empty,

your

initialization

method

can

provide

a

default

value.

Use

the

getConfigProp()

method

to

obtain

the

value

of

a

connector

configuration

property.

For

more

information,

see

“Using

connector

configuration

property

values”

on

page

70.

v

Obtain

any

required

connections

or

files.

For

example,

the

initialization

method

usually

opens

a

connection

with

the

application.

It

returns

“success”

if

the

connector

succeeds

in

opening

a

connection.

If

the

connector

cannot

open

a

connection,

the

initialization

method

must

return

the

appropriate

failure

status

to

indicate

the

cause

of

the

failure.

In

a

Java

connector,

the

agentInit()

method

should

throw

the

ConnectionFailureException

exception

if

the

connection

fails

or

the

LogonFailureException

exception

if

the

connector

is

unable

to

log

into

the

application.

For

information

on

these

conditions,

see

“Exceptions”

on

page

202.

Checking

the

connector

version:

The

getVersion()

method

returns

the

version

of

the

connector.

It

is

called

in

both

of

the

following

contexts:

v

The

initialization

method

should

call

getVersion()

to

check

the

connector

version.

v

The

connector

framework

calls

the

getVersion()

method

when

it

needs

to

get

a

version

for

the

connector.

Note:

A

connector

should

keep

track

of

which

application

versions

it

supports.

It

should

check

the

application

version

when

it

logs

on

to

the

application.

Recovering

In-Progress

events:

Processing

an

event

during

event

notification

includes

performing

a

retrieve

on

the

application

entity,

creating

a

new

business

Chapter

3.

Providing

general

connector

functionality

65

object

for

the

event,

and

sending

the

business

object

to

the

connector

framework.

If

the

connector

terminates

while

processing

an

event

and

before

updating

the

event

status

to

indicate

that

the

event

was

either

sent

or

failed,

the

In-Progress

event

will

remain

in

the

event

store.

When

a

connector

is

restarted,

it

should

check

the

event

store

for

events

that

have

an

In-Progress

status.

If

the

connector

finds

events

with

the

In-Progress

status,

it

can

choose

to

do

one

of

the

tasks

outlined

in

Table

23.

This

behavior

should

be

configurable.

Several

connectors

use

the

InDoubtEvents

connector

configuration

property

for

this

purpose.

Its

settings

are

also

shown

in

Table

23.

Table

23.

Actions

to

take

to

recover

In-Progress

events

Event-recovery

action

taken

Value

of

InDoubtEvents

Change

the

status

of

the

In-Progress

events

to

Ready-for-Poll

so

they

can

be

submitted

to

the

connector

framework

in

subsequent

poll

calls.

Note:

If

events

are

resubmitted,

duplicate

events

might

be

generated.

If

you

want

to

ensure

that

duplicate

events

are

not

generated

during

recovery,

use

another

recovery

response.

Reprocess

Log

a

fatal

error,

shutting

down

the

connector.

If

LogAtInterchangeEnd

is

set

to

True,

this

triggers

an

email

notification

about

the

error.

FailOnStartup

Log

an

error

without

shutting

down

the

connector.

LogError

Ignore

the

In-Progress

event

records

in

the

event

store.

Ignore

For

a

Java

connector,

the

CWConnectorEventStore

class

provides

the

recoverInProgressEvents()

method

to

obtain

event

records

with

an

In-Progress

status

from

the

event

store

and

take

the

appropriate

recovery

action.

The

connector

developer

can

implement

this

method

to

take

actions

based

on

the

value

of

InDoubtEvents.

In

t

his

method,

the

connector

developer

can

also

change

the

status

of

in-progress

events

to

the

ready-for-poll

status.

Note:

For

more

information

on

event

notification,

the

event

store,

and

In-Progress

events,

see

Chapter

5,

“Event

notification,”

on

page

113.

Obtaining

the

business

object

handler

As

the

final

step

in

connector

initialization,

the

connector

framework

obtains

the

business

object

handler

for

each

business

object

definition

that

the

connector

supports.

A

business

object

handler

receives

request

business

objects

from

the

connector

framework

and

performs

the

verb

operations

defined

in

these

business

objects.

Each

connector

must

have

a

getConnectorBOHandlerForBO()

method

defined

in

its

connector

base

class

to

retrieve

the

business

object

handler.

This

method

returns

a

reference

to

the

business

object

handler

for

a

specified

business

object

definition.

Important:

As

part

of

the

implementation

of

the

connector

base

class,

you

must

implement

the

getConnectorBOHandlerForBO()

to

obtain

business

object

handlers

for

your

connector.

To

instantiate

the

business

object

handler

(or

business

object

handlers),

the

connector

framework

takes

the

following

steps:

1.

During

initialization,

the

connector

framework

receives

a

list

of

business

object

definitions

that

the

connector

supports.

For

more

information,

see

“Starting

up

a

connector”

on

page

63.

66

Connector

Development

Guide

for

Java

2.

The

connector

framework

then

calls

the

getConnectorBOHandlerForBO()

method,

once

for

every

supported

business

object.

3.

The

getConnectorBOHandlerForBO()

method

instantiates

the

appropriate

business

object

handler

for

that

business

object,

based

on

the

name

of

the

business

object

definition

it

receives

as

an

argument.

It

returns

the

business

object

handler

to

the

connector

framework.

The

number

of

business

object

handlers

that

are

instantiated

depends

on

the

overall

design

of

your

connector’s

business

object

handling:

v

If

the

business

object

definitions

for

application-specific

business

objects

contain

metadata

that

follows

consistent

rules,

the

connector

is

metadata-driven.

It

can

be

designed

to

use

a

metadata-driven

business

object

handler.

A

metadata-driven

connector

handles

all

business

objects

in

a

single,

generic

business

object

handler,

called

a

metadata-driven

business

object

handler.

Therefore,

the

getConnectorBOHandlerForBO()

method

can

simply

instantiate

one

business

object

handler,

regardless

of

the

number

of

business

objects

the

connector

supports.

It

can

create

a

business

object

handler

the

first

time

it

is

called

and

return

a

pointer

to

the

same

handler

for

each

subsequent

call.

v

If

some

or

all

application-specific

business

objects

require

special

processing,

then

you

must

set

up

multiple

business

object

handlers

for

those

objects.

If

your

connector

requires

a

separate

business

object

handler

for

each

business

object,

the

getConnectorBOHandlerForBO()

method

can

instantiate

the

appropriate

business

object

handler,

based

on

the

name

of

the

business

object

being

passed

in.

In

this

case,

getConnectorBOHandlerForBO()

instantiates

multiple

business

object

handlers,

one

for

each

business

object

definition

that

requires

a

separate

business

object

handler.

Each

time

the

business-object-handler

retrieval

method

is

called,

it

instantiates

a

separate

business

object

handler.
4.

The

connector

framework

stores

the

reference

to

this

business

object

handler

in

the

associated

business

object

definition

(which

resides

in

the

memory

of

the

connector’s

process).

Important:

Before

you

implement

the

getConnectorBOHandlerForBO()

method,

you

want

to

complete

the

design

for

business

object

handling

for

your

connector.

For

information

on

designing

application-specific

business

object,

see

“Assessing

support

for

metadata-driven

design”

on

page

45.

For

more

information

on

how

to

implement

the

getConnectorBOHandlerForBO()method,

see

“Obtaining

the

Java

business

object

handler”

on

page

151.

For

information

on

how

to

implement

business

object

handlers,

see

Chapter

4,

“Request

processing,”

on

page

79.

Polling

for

events

If

a

connector

is

to

implement

event

notification,

it

must

implement

an

event

notification

mechanism.

Event

notification

contains

methods

that

interact

with

an

application

to

detect

changes

to

application

business

entities.

These

changes

are

represented

as

events,

which

the

connector

sends

to

the

connector

framework

for

routing

to

a

destination

(such

as

InterChange

Server).

If

the

connector

uses

a

polling

mechanism

for

event

notification,

the

connector

must

implement

the

pollForEvents()

method

to

periodically

to

retrieve

event

information

from

the

event

store,

which

holds

events

that

the

application

generates

until

the

connector

can

process

them.

When

polling

is

turned

on,

the

connector

Chapter

3.

Providing

general

connector

functionality

67

framework

calls

the

poll

method

pollForEvents().

The

pollForEvents()

method

returns

an

integer

indicating

the

status

of

the

polling

operation.

In

the

Java

connector

library,

the

pollForEvents()

method

is

defined

in

the

CWConnectorAgent

class.

Typical

return

codes

used

in

pollForEvents()

are

SUCCEED,

FAIL,

and

APPRESPONSETIMEOUT.

For

more

information

on

return

codes,

see

“Java

return

codes”

on

page

201.

Important:

The

developer

must

provide

an

implementation

of

the

pollForEvents()

method.

If

the

connector

supports

only

request

processing,

you

do

not

need

to

fully

implement

pollForEvents().

However,

because

the

poll

method

is

a

required

method,

you

must

implement

a

stub

for

the

method.

The

Java

connector

library

provides

a

default

implementation

of

the

pollForEvents()

method.

For

a

more

thorough

discussion

of

event

notification

and

the

implementation

of

pollForEvents(),

see

Chapter

5,

“Event

notification,”

on

page

113.

Shutting

down

the

connector

The

administrator

shuts

down

a

connector

with

by

terminating

the

connector

startup

script.

When

the

connector

is

shut

down,

the

connector

framework

calls

the

terminate()

method

of

the

connector

base

class.

The

main

task

of

the

terminate()

method

is

to

close

the

connection

with

the

application

and

to

free

any

allocated

resources.

Extending

the

connector

base

class

To

create

a

connector,

you

extend

the

connector

base

class,

available

in

the

connector

library.

The

base

class

for

the

connector

includes

methods

for

initialization

and

setup

of

the

connector’s

application-specific

component.

Your

derived

connector

class

contains

the

code

for

the

application-specific

component

of

the

connector.

Note:

For

information

on

naming

conventions

for

a

connector,

see

Naming

IBM

WebSphere

InterChange

Server

Components

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

The

connector

base

class

includes

the

methods

shown

in

Table

24.

You

must

implement

these

methods

in

your

connector.

Table

24.

Methods

to

implement

in

the

connector

base

class

Description

Connector

base

class

method

For

more

information

Initializes

the

connector’s

application-specific

component

agentInit()

“Initializing

the

connector”

on

page

65

Returns

the

version

of

the

connector

getVersion()

“Checking

the

connector

version”

on

page

65

Sets

up

one

or

more

business

object

handlers

getConnectorBOHandlerForBO()

“Obtaining

the

business

object

handler”

on

page

66

Polls

for

application

events

pollForEvents()

“Polling

for

events”

on

page

67

Performs

cleanup

tasks

upon

connector

termination

terminate()

“Shutting

down

the

connector”

on

page

68

Figure

25

illustrates

the

complete

set

of

methods

that

the

connector

framework

calls,

and

shows

which

methods

are

called

at

startup

and

which

are

called

at

runtime.

All

but

one

of

the

methods

that

the

connector

framework

calls

are

in

the

68

Connector

Development

Guide

for

Java

connector

base

class.

The

remaining

method,

doVerbFor(),

is

in

the

business

object

handler

class;

for

information

on

implementing

the

doVerbFor()

method,

see

Chapter

4,

“Request

processing,”

on

page

79.

For

more

information

on

extending

the

connector

base

class,

see

“Extending

the

Java

business-object-handler

base

class”

on

page

152.

Handling

errors

The

methods

of

the

connector

class

library

indicate

error

conditions

in

the

following

ways:

v

Return

codes—The

connector

class

library

includes

a

set

of

defined

outcome-status

values

that

your

abstract

methods

can

use

to

return

information

on

the

success

or

failure

of

a

method.

The

return

codes

are

defined

as

integer

values

and

outcome-status

constants.

In

your

code,

IBM

recommends

use

of

the

predefined

constants

to

prevent

a

problem

if

the

IBM

changes

the

values

of

the

constants.

For

information

on

Java

return

codes,

see

“Java

return

codes”

on

page

201.

v

Exceptions—The

Java

connector

library

provides

classes

to

encapsulate

exception

objects

and

exception-detail

objects,

which

contain

exception

information.

For

more

information,

see

“Exceptions”

on

page

202.

v

Return-status

descriptor—during

request

processing,

the

connector

framework

sends

status

information

back

to

the

integration

broker

in

a

return-status

descriptor.

The

business

object

handler

can

save

a

message

and

status

code

in

this

descriptor

to

provide

the

integration

broker

about

the

status

of

the

verb

processing.

For

more

information,

see

“Return-status

descriptor”

on

page

204.

v

Error

and

message

logging—The

connector

class

library

also

provides

the

following

features

to

assist

in

providing

notification

of

errors

and

noteworthy

conditions:

–

Logging

allows

you

to

send

an

informational

or

error

message

to

a

log

destination.

–

Tracing

allows

you

to

include

statements

in

your

code

that

generate

trace

messages

at

different

trace

levels.

For

more

information

on

how

to

implement

logging

and

tracing,

see

Chapter

6,

“Message

logging,”

on

page

137.

Connector
framework

Application-specific connector component

Startup

Runtime

agentInit()

getVersion()

getConnectorBOHandlerForBO()

pollForEvents()

doVerbFor()

terminate()

Figure

25.

Summary

of

methods

called

by

the

connector

framework

Chapter

3.

Providing

general

connector

functionality

69

Using

connector

configuration

property

values

This

section

provides

the

following

information

about

connector

configuration

properties:

v

“What

is

a

connector

configuration

property?”

v

“Defining

and

setting

connector

configuration

properties”

v

“Retrieving

connector

configuration

properties”

on

page

71

What

is

a

connector

configuration

property?

A

connector

configuration

property

(sometimes

called

just

a

connector

property)

allows

you

to

create

named

place

holders

(similar

to

variables)

that

the

connector

can

use

to

access

information

it

needs.

Connectors

have

two

categories

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

Standard

connector

configuration

properties

Standard

configuration

properties

provide

information

that

is

typically

used

by

the

connector

framework.

These

properties

are

usually

common

to

all

connectors

and

usually

represent

well-defined

behavior

that

is

the

WebSphere

business

integration

system

enforces.

Connector-specific

configuration

properties

Connector-specific

configuration

properties

provide

information

needed

by

a

particular

connector

at

runtime.

These

configuration

properties

provide

a

way

of

changing

static

information

or

logic

within

the

connector’s

application-specific

component

without

having

to

recode

and

rebuild

it.

For

example,

configuration

properties

can

be

used

to:

v

Hold

the

value

of

constants,

such

as

the

name

of

the

application

server

or

database,

the

name

of

the

event

table,

or

the

name

of

files

the

connector

needs

to

read.

v

Set

behavior

for

the

connector

in

a

particular

situation.

For

example,

a

configuration

property

can

indicate

that

the

connector

should

not

fail

a

business

object

Retrieve

operation

for

a

hierarchical

business

object

if

a

child

object

is

missing.

As

another

example,

a

configuration

property

can

determine

whether

the

application

or

the

connector

should

create

an

ID

for

a

new

object

on

a

Create

operation.

You

can

create

any

number

of

connector-specific

configuration

properties

for

your

connector.

When

you

have

identified

needed

connector-specific

properties,

you

define

them

as

part

of

the

connector

configuration

process.

Use

Connector

Configurator

to

specify

connector

configuration

properties

as

part

of

the

information

stored

in

the

local

repository.

You

can

also

add

configuration

properties

later

on

as

needed.

In

general,

your

connector

code

needs

only

to

query

for

the

values

of

the

connector-specific

properties

such

as

ApplicationUserID

and

ApplicationPassword.

Defining

and

setting

connector

configuration

properties

The

Connector

Configurator

tool

provides

you

with

the

ability

to

perform

the

following

tasks

on

connector

configuration

properties:

v

Assign

a

value

to

a

standard

configuration

property.

v

Define

and

assign

a

value

to

a

connector-specific

configuration

property.

70

Connector

Development

Guide

for

Java

You

invoke

Connector

Configurator

from

the

System

Manager

tool.

WebSphere

InterChange

Server

If

WebSphere

InterChange

Server

is

your

integration

broker,

refer

to

the

Implementation

Guide

for

WebSphere

InterChange

Server

for

information

about

the

Connector

Configurator

tool.

Other

integration

brokers

If

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

is

your

integration

broker,

refer

the

Implementation

Guide

for

WebSphere

Message

Brokers

for

information

about

Connector

Configurator.

If

WebSphere

Application

Server

is

your

integration

broker,

refer

to

the

Implementation

Guide

for

WebSphere

Application

Server

for

information

about

Connector

Configurator.

Retrieving

connector

configuration

properties

Connector

configuration

properties

are

downloaded

to

the

connector

as

part

of

the

connector

initialization

(For

more

information,

see

“Starting

up

a

connector”

on

page

63).

Your

connector

application-specific

component

retrieves

the

values

of

any

configuration

properties

that

it

needs

for

initialization

based

on

the

type

of

the

connector

property.

A

connector

can

use

a

connector

configuration

property

that

has

one

of

the

following

types:

v

A

simple

connector

configuration

property

contains

only

string

values.

It

does

not

contain

any

other

properties.

A

single-valued

simple

property

contains

only

one

string

value.

v

A

hierarchical

connector

configuration

property

contains

other

properties

and

their

values.

A

given

connector

property

can

contain

multiple

values.

Note:

For

the

IBMWebSphere

Business

Integration

Adapters

product,

single-valued

simple

connector

configuration

properties

are

the

only

kind

of

connector

properties

that

a

C++

connector

supports.

C++

connectors

do

not

support

hierarchical

properties.

Note:

In

previous

versions

of

the

product,

connector

configuration

properties

were

only

single-valued

and

simple.

That

is,

a

connector

property

could

contain

only

one

string

value.

With

this

release,

a

Java

connector

can

support

hierarchical

properties.

As

noted

above,

hierarchical

properties

can

contain

other

properties

and

multiple

values.

Hierarchical

properties

are

supported

starting

with

version

2.2.0.

For

the

IBM

WebSphere

InterChange

Server

product,

this

support

starts

with

version

4.2.

Retrieving

single-valued

simple

connector

configuration

properties

In

previous

versions

of

the

product,

connector

configuration

properties

were

only

single-valued

and

simple.

That

is,

a

connector

property

could

contain

only

one

string

value.

To

retrieve

a

single-valued

simple

connector

configuration

property,

you

can

use

the

getConfigProp()

method.

Chapter

3.

Providing

general

connector

functionality

71

Note:

For

the

IBMWebSphere

Business

Integration

Adapters

product,

single-valued

simple

connector

configuration

properties

were

the

only

kind

of

connector

properties

supported

in

all

releases

before

version

2.2.0.

For

the

IBM

WebSphere

InterChange

Server

product,

single-valued

simple

connector

configuration

properties

were

the

only

kind

of

connector

properties

supported

in

all

releases

before

version

4.2.

For

backward

compatibility,

the

mechanism

described

here

to

access

single-valued

simple

connector

properties

is

still

supported

by

a

Java

connector.

However,

IBM

recommends

that

new

connector

development

use

the

mechanism

described

in

“Retrieving

hierarchical

connector

configuration

properties”

on

page

73

to

access

connector

configuration

properties

as

hierarchical

properties.

The

Java

connector

library

provides

the

two

methods

in

Table

25

for

retrieving

the

value

of

a

simple

connector

configuration

property.

Table

25.

Methods

for

retrieving

value

of

a

simple

connector

configuration

property

Connector

library

method

Description

getConfigProp()

Retrieves

the

value

of

a

specified

simple

connector

configuration

property

getAllConnectorAgentProperties()

Retrieves

the

values

of

all

connector

configuration

properties.

However,

if

the

method

retrieves

a

multiple

value

connector

property,

it

only

retrieves

the

first

of

the

connector-property

values.

These

methods

are

both

defined

in

the

CWConnectorUtil

class

and

function

as

follows:

v

The

getConfigProp()

method

takes

as

input

a

string

for

the

name

of

the

configuration

property

and

returns

the

value

of

this

property

as

a

Java

String.

v

The

getAllConnectorAgentProperties()

method

does

not

require

input

arguments

and

returns

the

values

of

all

connector

configuration

properties

in

a

Java

Hashtable.

The

code

fragment

in

Figure

26

uses

the

getAllConnectorAgentProperties()

method

to

retrieve

all

connector

configuration

properties

into

a

Java

Hashtable

object

called

connectorProperties.

The

code

fragment

then

uses

the

get()

method

of

the

Hashtable

class

to

retrieve

the

value

of

each

connector

configuration

property.

connectorProperties

=

CWConnectorUtil.getAllConnectorAgentProperties();

//

get

Connector

Configuration

Properties

to

establish

Connection

String

connectString

=

(String)connectorProperties.get("ConnectString");

String

userName

=

(String)connectorProperties.get("ApplicationUserName");

String

userPassword

=

(String)connectorProperties.get("ApplicationPassword");

if(connectString

==

null

||

connectString.equals("")

||

userName==null

||

userPassword==null

)

Figure

26.

Retrieving

all

Connector

Configuration

Properties

72

Connector

Development

Guide

for

Java

Retrieving

hierarchical

connector

configuration

properties

A

hierarchical

connector

configuration

property

can

contain

any

of

the

following

values:

v

One

or

more

child

properties.

Each

child

property

can,

in

turn,

contain

its

own

child

properties

and

string

values.

v

One

or

more

string

values.

A

hierarchical

connector

property

with

more

than

one

string

value

is

called

a

multi-valued

property.

A

property

with

only

one

string

value

is

called

a

single-valued

property.

The

Java

connector

library

represents

a

hierarchical

connector

configuration

property

with

the

CWProperty

class.

An

object

of

this

class

is

called

a

connector-property

object

and

it

can

represent

a

simple

or

hierarchical,

single-

or

multi-valued

connector

configuration

property.

Table

26

lists

the

metadata

for

a

hierarchical

connector

configuration

property

that

a

connector-property

object

provides.

Table

26.

Metadata

in

a

connector-property

object

Connector-property

information

Description

CWProperty

method

Name

The

name

of

the

connector

property

getName()

Cardinality

Indicates

the

number

of

values

that

the

connector

property

contains:

v

single-valued

v

multi-valued

getCardinality()

Property

type

Indicates

whether

the

connector

property

contains

any

child

properties:

v

simple:

contains

no

child

properties,

only

string

values

v

hierarchical:

contains

one

or

more

child

properties

getPropType()

Encryption

flag

Indicates

whether

the

property

value

is

to

be

encrypted.

getEncryptionFlag(),

setEncryptionFlag()

As

Table

26

indicates,

retrieving

metadata

about

the

connector

property

is

done

with

the

methods

indicated.

However,

retrieving

the

property

value

is

a

two-step

process,

as

follows:

1.

Retrieve

the

top-level

connector-property

object

for

one

or

all

of

the

connector

configuration

properties.

2.

Retrieve

the

desired

property

value

from

a

connector-property

object.

Retrieving

the

top-level

connector-property

object:

To

retrieve

the

top-level

connector-property

object

for

a

connector

property,

you

can

use

either

of

the

methods

in

Table

27..

Table

27.

Methods

for

retrieving

top-level

connector-property

objects

Connector

library

method

Description

getHierarchicalConfigProp()

Retrieves

the

top-level

connector-property

object

of

a

specified

hierarchical

connector

configuration

property

Chapter

3.

Providing

general

connector

functionality

73

Table

27.

Methods

for

retrieving

top-level

connector-property

objects

(continued)

Connector

library

method

Description

getAllConfigProperties()

Retrieves

the

top-level

connector-properties

objects

for

all

connector

configuration

properties,

regardless

of

whether

the

property

is

simple,

hierarchical,

or

multi-valued.

The

methods

inTable

27

are

both

defined

in

the

CWConnectorUtil

class

and

function

as

follows:

v

The

getHierarchicalConfigProp()

method

takes

the

name

of

a

connector

configuration

property

as

an

argument.

It

returns

a

single

CWProperty

object

that

contains

the

top-level

connector-property

object

for

the

specified

connector

property.

v

The

getAllConfigProperties()

method

returns

an

array

of

CWProperty

objects,

each

containing

a

top-level

connector-property

object

for

one

of

the

connector

configuration

properties.

Retrieving

the

connector-property

value:

Once

you

have

retrieved

the

top-level

connector-property

object

for

a

connector

property,

you

can

retrieve

the

values

from

this

connector-property

object.

As

discussed

above,

a

hierarchical

connector

property

can

have

one

or

more

of

the

following

kinds

of

values:

v

One

or

more

child

properties

v

One

or

more

string

values

Retrieving

child

properties:

The

CWProperty

class

provides

the

methods

in

Table

28

to

retrieve

child

properties

from

a

connector-property

object.

Table

28.

Methods

for

retrieving

values

child

properties

from

a

connector-property

object

Description

CWProperty

method

To

obtain

all

child

properties

of

the

hierarchical

connector

property

getHierChildProps()

To

obtain

all

child

properties

of

the

hierarchical

connector

property

that

has

a

specified

prefix

getChildPropsWithPrefix()

To

obtain

a

single

specified

child

property

from

the

hierarchical

connector

property

getHierChildProp()

You

can

use

the

hasChildren()

method

to

determine

whether

the

current

connector-property

object

contains

any

child

properties.

Retrieving

string

values:

The

CWProperty

class

provides

the

methods

in

Table

29

to

retrieve

string

values

from

a

connector-property

object.

Table

29.

Methods

for

retrieving

values

string

values

from

a

connector-property

object

Description

CWProperty

method

To

obtain

all

string

values

of

the

hierarchical

connector

property

getStringValues()

To

obtain

all

string

values

of

a

specified

child

property

getChildPropValue()

You

can

use

the

hasValue()

method

to

determine

whether

the

current

connector-property

object

contains

any

string

values.

74

Connector

Development

Guide

for

Java

Calling

a

data

handler

The

main

task

of

a

connector

is

to

convert

data

between

an

application-specific

form

and

a

business

object.

Often,

the

connector

must

perform

this

conversion

directly.

For

example,

it

can

create

the

appropriate

database

statements

to

create

or

access

the

data

as

a

row

in

a

table

of

an

application

database.

However,

a

connector

might

handle

serialized

data

in

a

common

Multipurpose

Internet

Mail

Extensions

(MIME)

format.

Rather

than

have

each

connector

perform

the

conversions

between

a

particular

MIME

format

and

a

business

object,

both

the

and

WebSphere

InterChange

Server

and

WebSphere

Business

Integration

Adapters

products

provide

data

handlers

to

perform

these

common

conversions.

A

data

handler

is

a

special

Java

class

instance

that

converts

between

serialized

data

in

a

particular

MIME

format

and

a

business

object.

For

example,

the

WebSphere

Business

Integration

Data

Handler

for

XML

provides

a

data

handler

that

converts

between

an

XML

document

and

business

objects.

Note:

This

section

provides

a

brief

overview

of

data

handlers.

For

a

more

complete

description,

see

the

Data

Handler

Guide.

The

Java

connector

library

provides

several

data-handler

methods

you

can

call

a

specific

data

handler

from

within

the

connector.

To

determine

which

data-handler

method

to

use,

you

must

perform

the

following

tasks:

v

“Determining

direction

of

the

data

conversion”

v

“Accessing

the

serialized

data”

on

page

76

v

“Identifying

the

data

handler

to

instantiate”

on

page

77

Determining

direction

of

the

data

conversion

A

data

handler

can

usually

convert

between

serialized

data

and

a

business

object

in

both

directions;

that

is,

it

can

perform

both

of

the

following

conversions:

v

String-to-business-object

conversion

converts

serialized

data

to

a

business

object.

Within

a

connector,

this

conversion

is

useful

during

event

processing,

when

the

connector

receives

serialized

data

from

the

application

and

must

create

the

appropriate

business-object

representation

of

this

data,

which

it

then

sends

to

the

integration

broker.

The

connector

can

send

the

business

object

to

the

appropriate

data

handler

and

receive

from

it

the

corresponding

serialized

data

(as

long

as

a

data

handler

exists

to

convert

to

the

desired

format

of

serialized

data).

v

Business-object-to-string

conversion

converts

a

business

object

to

serialized

data.

This

conversion

is

useful

during

request

processing

when

the

connector

receives

a

business

object

from

the

integration

broker

and

must

create

the

appropriate

serialized

data,

which

it

then

sends

to

the

application.

The

connector

can

send

in

the

business

object

to

the

appropriate

data

handler

and

receive

the

corresponding

business

object

(as

long

as

a

data

handler

exists

to

convert

the

desired

format

for

the

serialized

data).

The

Java

connector

library

provides

the

data-handler

methods

in

Table

30

so

that

a

connector

can

call

a

data

handler

to

convert

between

serialized

data

in

a

particular

MIME

format

and

a

business

object.

These

methods

are

defined

in

the

CWConnectorUtil

class.

Chapter

3.

Providing

general

connector

functionality

75

Table

30.

Data-handler

methods

in

Java

Connector

Library

Conversion

Conversion

process

Method

Business-object-to-string

Call

a

data

handler

to

convert

the

specified

business

object

(theBusObj

argument)

to

serialized

data,

returning

this

data

in

one

of

the

supported

access

forms.

For

more

information,

see

“Accessing

the

serialized

data.”.

“boToByteArray()”

on

page

347

“boToStream()”

on

page

349

“boToString()”

on

page

351

String-to-business-object

Call

a

data

handler

to

convert

the

specified

serialized

data

(the

serializedData

argument)

to

a

business

object.

“byteArrayToBo()”

on

page

353

“readerToBO()”

on

page

370

“streamToBO()”

on

page

372

“stringToBo()”

on

page

374

If

the

data

handler

cannot

perform

the

requested

conversion,

the

data-handler

method

throws

the

ParseException

exception.

Accessing

the

serialized

data

To

access

the

serialized

data

sent

to

or

received

from

a

data-handler

method,

you

must

provide

the

following

information:

v

In

what

format

your

code

will

access

the

serialized

data

v

In

what

locale

the

serialized

data

exists

Choosing

a

data

format

The

purpose

of

a

data

handler

is

to

convert

between

serialized

data

and

a

business

object.

Therefore,

the

code

of

the

Java

connector

must

be

able

to

access

to

this

serialized

data.

It

might

have

access

to

this

data

in

any

of

the

forms

listed

in

Table

31

The

Java

connector

library

provides

data-handler

methods

that

support

each

of

these

forms

of

serialized

data.

Table

31.

Ways

to

access

serialized

data

to

and

from

data

handlers

Access

to

serialized

data

Java

construct

Method

A

string

String

object

boToString()

stringToBo()

An

input

stream

An

object

of

java.io.InputStream

class

or

one

of

its

subclasses

boToStream()

streamToBO()

A

reader

for

character

streams

An

object

of

java.io.Reader

class

or

one

of

its

subclasses

readerToBO()

A

byte

array

byte[]

boToByteArray()

byteArrayToBo()

To

access

the

serialized

data

sent

to

or

received

from

a

data

handler,

choose

the

data-handler

method

from

Table

31

that

handles

the

appropriate

access

format.

Identifying

the

data

locale

and

encoding

As

shown

in

Table

30.,

the

data-handler

methods

call

a

data

handler

to

either

read

serialized

data

(string-to-business-object

conversion)

or

create

serialized

data

(business-object-to-string

conversion).

During

this

process,

the

data

handler

might

76

Connector

Development

Guide

for

Java

need

to

know

about

the

character

encoding

or

locale

of

the

serialized

data

it

is

processing.

To

allow

you

to

specify

a

different

locale

or

character

encoding

for

the

data

handler

to

use,

the

data-handler

methods

accept

a

Java

Locale

object

and

a

String

encoding

argument

to

specify

this

information:

v

If

the

locale

is

the

same

as

the

connector-framework

locale,

you

can

specify

a

null

for

the

locale

argument

in

the

call

to

the

data-handler

method.

If

the

locale

is

different,

specify

a

java.util.Locale

object

that

contains

the

appropriate

locale

information.

v

If

the

character

encoding

is

the

same

as

that

the

connector

framework

is

using,

you

can

specify

a

null

for

the

encoding

argument

in

the

call

to

the

data-handler

method.

If

the

character

encoding

is

different,

specify

the

appropriate

character

encoding

as

a

Java

String.

For

information

on

how

to

obtain

the

connector-framework

locale

or

character

encoding,

see

“Design

considerations

for

an

internationalized

connector”

on

page

57.

Identifying

the

data

handler

to

instantiate

To

identify

the

data

handler

that

needs

instantiation,

the

data-handler

methods

must

provide

the

instantiation

process

with

the

information

it

needs

to

locate

the

data

handler’s

class.

This

data-handler

class

is

the

name

of

the

Java

class

that

implements

the

data

handler.

Note:

The

data-handler

methods

must

instantiate

a

data

handler

before

they

can

request

the

specified

conversion.

This

instantiation

process

is

implemented

by

the

createHandler()

method

of

the

DataHandler

base

class.

For

more

information

on

the

DataHandler

class

and

the

data-handler

configuration

information,

see

theData

Handler

Guide.

The

data-handler

method

can

specify

the

name

of

the

data-handler

class

by

providing

the

MIME

type

of

the

serialized

data

in

its

mimeType

argument

and,

optionally

its

BOPrefix

argument.

It

uses

this

MIME

type

to

obtain

the

data

handler’s

class

from

its

child

meta-object

in

the

top-level

meta

object

as

follows:

v

The

data-handler

method

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

specified

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

the

data-handler

method

throws

the

PropertyNotSetException

exception.

v

The

top-level

meta-object

contains

attributes

whose

names

indicate

supported

MIME

types.

The

attribute

types

identify

the

child

meta-object

that

corresponds

to

the

specified

MIME

type.

This

child

meta-object

contains

configuration

information

for

the

data

handler,

including

the

data

handler’s

class

name.

In

this

case,

the

data-handler

method

instantiates

a

data

handler

of

Java

class

listed

in

the

child

meta-object.

The

instantiation

process

uses

the

child

data-handler

meta-object

associated

with

that

MIME

type

to

derive

the

class

name

and

other

configuration

information

for

the

data

handler

instance.

Note:

Each

system

on

which

data

handlers

are

installed

has

a

meta-object

to

describe

the

available

data

handlers.

A

meta-object

is

a

special

business

object

that

contains

configuration

information.

For

data

handlers,

the

top-level

meta-object

contains

the

available

data

handlers

and

the

associated

MIME

type

that

each

data

handler

supports.

Chapter

3.

Providing

general

connector

functionality

77

For

more

information

about

the

meta-objects

and

about

how

the

instantiation

process

derives

a

class

name

from

the

specified

MIME

type,

see

the

Data

Handler

Guide.

If

the

data

handler

cannot

be

instantiated,

the

data-handler

method

throws

the

DataHandlerCreateException.

Handling

loss

of

connection

to

an

application

A

good

design

practice

is

to

code

the

connector

application-specific

code

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

To

respond

to

a

lost

connection,

the

connector’s

application-specific

component

should

take

the

following

steps:

v

Log

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

v

Return

the

APPRESPONSETIMEOUT

outcome

status

to

inform

the

connector

controller

that

the

application

is

not

responding.

When

this

occurs,

the

process

in

which

the

connector

runs

is

stopped

and

then

restarted

automatically.

The

following

user-implemented

abstract

methods

should

check

for

a

loss

of

connection

to

the

application:

v

For

event

notification,

the

pollForEvents()

method

should

verify

the

connection

before

it

accesses

the

event

store.

For

more

information,

see

“Verifying

the

connection

before

accessing

the

event

store”

on

page

180.

v

For

request

processing,

the

doVerbFor()

method

should

verify

the

connection

before

it

begins

verb

processing.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

156.

78

Connector

Development

Guide

for

Java

Chapter

4.

Request

processing

This

chapter

presents

information

on

how

to

provide

request

processing

in

a

connector.

Request

processing

implements

a

mechanism

to

receive

requests,

in

the

form

of

request

business

objects,

from

an

integration

broker

and

to

initiate

the

appropriate

changes

in

the

application

business

entities.

The

mechanism

for

implementing

request

processing

is

a

business

object

handler,

which

contains

methods

that

interact

with

an

application

to

transform

request

business

objects

into

requests

for

application

operations.

This

chapter

contains

the

following

sections:

v

“Designing

business

object

handlers”

v

“Extending

the

business-object-handler

base

class”

on

page

82

v

“Handling

the

request”

on

page

82

v

“Handling

the

Create

verb”

on

page

86

v

“Handling

the

Retrieve

verb”

on

page

89

v

“Handling

the

RetrieveByContent

verb”

on

page

94

v

“Handling

the

Update

verb”

on

page

96

v

“Handling

the

Delete

verb”

on

page

103

v

“Handling

the

Exists

verb”

on

page

104

v

“Processing

business

objects”

on

page

105

v

“Indicating

the

connector

response”

on

page

112

v

“Handling

loss

of

connection

to

the

application”

on

page

112

Note:

For

an

introduction

to

request

processing,

see

“Request

processing”

on

page

22.

Designing

business

object

handlers

The

business

object

handler

implements

request

processing

for

the

connector.

Therefore,

the

defining

and

coding

of

business

object

handlers

is

one

of

the

primary

tasks

in

connector

development.

A

business

object

handler

is

an

instance

of

a

subclass

of

the

CWConnectorBOHandler

class.

Each

business

object

definition

refers

to

a

business

object

handler,

which

contains

a

set

of

methods

to

perform

the

tasks

for

the

verbs

that

the

business

object

definition

supports.

You

need

to

code

one

or

more

business

object

handlers

to

process

the

business

objects

that

the

connector

supports.

The

way

to

implement

a

business

object

handler

depends

on

the

application

programming

interface

(API)

that

you

are

using

and

how

this

interface

exposes

application

entities.

To

determine

how

many

business

object

handlers

your

connector

requires,

you

need

to

take

a

look

at

the

application

that

the

connector

will

interact

with:

v

If

the

application

is

form-based,

table-based,

or

object-based

and

has

a

standard

access

method

across

entities,

you

might

be

able

to

design

business

objects

that

store

information

about

application

entities.

The

business

object

handler

can

process

the

application

entities

in

a

metadata-driven

business

object

handler.

You

can

derive

one

generic

business-object-handler

class

to

implement

a

metadata-driven

business

object

handler,

which

handles

processing

of

all

business

objects.

For

more

information,

see

“Implementing

metadata-driven

business

object

handlers”

on

page

80.

©

Copyright

IBM

Corp.

2000,

2004

79

v

If

the

application

has

different

access

methods

for

different

kinds

of

entities,

some

or

all

of

the

application

entities

might

require

individual

business

object

handlers.

You

can:

–

Derive

a

generic

business-object-handler

class

to

implement

a

metadata-driven

business

object

handler

for

some

business

objects,

and

separate

business-object-handler

classes

to

implement

business

object

handlers

for

other

business

objects.

–

Derive

multiple

business-object-handler

classes,

one

for

each

business

object

definition

that

the

connector

supports.

For

more

information,

see

“Implementing

multiple

business

object

handlers”

on

page

81.

Another

consideration

in

the

design

of

a

business

object

handler

is

whether

you

need

to

have

separate

processing

for

certain

verbs

of

the

business

object.

If

some

verb

(or

verbs)

require

special

processing,

you

can

create

a

custom

business

object

handler

for

the

verb.

For

more

information,

see

“Creating

a

custom

business

object

handler”

on

page

172.

Implementing

metadata-driven

business

object

handlers

If

the

application

API

is

suitable

for

a

metadata-driven

connector,

and

if

you

design

business

object

definitions

to

include

metadata,

you

can

implement

a

metadata-driven

business

object

handler.

This

business

object

handler

uses

the

metadata

to

process

all

requests.

A

business

object

handler

can

be

completely

metadata-driven

if

the

application

is

consistent

in

its

design,

and

the

metadata

follows

a

consistent

syntax

for

each

supported

business

object.

Note:

For

an

introduction

to

metadata

and

metadata-driven

design,

see

“Assessing

support

for

metadata-driven

design”

on

page

45.

This

section

provides

the

following

information

about

metadata-driven

design

for

a

business

object

handler:

v

“Metadata

in

business

objects”

v

“Benefits

of

metadata

design”

on

page

81

Metadata

in

business

objects

Business

object

definitions

have

specific

locations

for

different

types

of

application-specific

data.

For

example,

business

object

attributes

have

a

set

of

properties,

such

as

Key,

Foreign

Key,

Required,

Type,

and

so

on,

that

provide

the

business

object

handler

with

information

that

it

can

use

to

drive

business

object

processing.

In

addition,

the

AppSpecificInfo

property

can

provide

the

business

object

handler

with

application-specific

information,

which

can

specify

how

to

access

data

in

the

application

and

how

to

process

application

entities.

The

AppSpecificInfo

property

is

available

for

the

business

object

definition,

attributes,

and

verbs.

Table

32

shows

some

typical

schemes

for

encoding

application-specific

information

in

business

objects.

Table

32.

Example

schemes

for

storage

of

application

information

in

business

objects

Scope

of

application-specific

information

Table-based

application

Form-based

application

The

whole

business

object

Table

name

Form

name

An

individual

attribute

Column

name

Field

name

80

Connector

Development

Guide

for

Java

Table

32.

Example

schemes

for

storage

of

application

information

in

business

objects

(continued)

Scope

of

application-specific

information

Table-based

application

Form-based

application

The

business

object

verb

SQL

statement

or

other

verb-processing

instructions

Action

to

be

performed

Using

application-specific

information,

a

metadata-driven

business

object

handler

might

simply:

v

Examine

the

verb

of

an

incoming

business

object

to

identify

the

operation

to

perform.

v

Examine

the

contents

of

the

business

object

metadata

to

identify

the

name

of

the

associated

application

entity

(such

as

an

application

table

or

form).

v

Examine

the

contents

of

the

attribute

metadata

to

identify

fields,

columns,

or

other

information

about

the

attributes.

If

a

business

object

definition

contains

the

table

name

and

column

names,

you

do

not

have

to

explicitly

code

those

names

in

the

business

object

handler.

Benefits

of

metadata

design

Encoding

application

information

in

a

business

object

accomplishes

two

things:

v

One

business

object

handler

class

can

perform

all

operations

for

all

business

objects

supported

by

the

connector.

You

do

not

have

to

code

a

separate

business

object

handler

for

each

supported

business

object.

v

Changes

to

a

business

object

definition

do

not

require

recoding

the

connector

as

long

as

the

changes

conform

to

existing

metadata

syntax.

This

benefit

means

that

you

can

add

attributes

to

a

business

object

definition,

remove

attributes,

or

reorder

attributes

without

recompiling

or

recoding

the

connector.

If

information

about

application

entities

is

encoded

consistently

in

the

business

object

definition,

all

request

business

objects

can

be

handled

by

a

single

business-object-handler

class

in

the

connector.

Also,

you

need

to

implement

only

a

single

getConnectorBOHandlerForBO()

method

to

return

the

single

business

object

handler

and

a

single

doVerbFor()

method

to

implement

this

business

object

handler.

This

approach

is

recommended

for

connector

development

because

it

provides

flexibility

and

automatic

support

for

new

business

object

attributes.

Implementing

multiple

business

object

handlers

For

each

business

object

definition

that

does

not

encapsulate

all

the

metadata

and

business

logic

for

an

application

entity,

you

need

a

separate

business-object-handler

class.

You

can

derive

separate

handler

classes

directly

from

the

business-object-handler

base

class,

or

you

can

derive

a

single

utility

class

and

derive

subclasses

as

needed.

You

must

then

implement

the

getConnectorBOHandlerForBO()

method

to

return

business

object

handler

that

corresponds

to

particular

business

object

definitions.

Each

business

object

handler

must

contain

a

doVerbFor()

method.

If

you

implement

multiple

business

object

handlers,

you

must

implement

a

doVerbFor()

method

for

each

business-object-handler

class.

In

each

doVerbFor()

method,

include

code

to

handle

any

parts

of

the

application

entity

or

operations

on

the

application

entity

that

the

business

object

definition

does

not

describe.

This

approach

results

in

higher

maintenance

requirements

and

longer

development

time

than

designing

a

single

business

object

handler

for

a

metadata-driven

Chapter

4.

Request

processing

81

connector.

For

this

reason,

this

approach

should

be

avoided

if

possible.

However,

if

the

application

has

different

access

methods

for

different

kinds

of

entities,

coding

multiple,

entity-specific

business

object

handlers

might

be

unavoidable.

Extending

the

business-object-handler

base

class

The

Java

connector

library

provides

the

business-object-handler

base

class,

CWConnectorBOHandler.

This

base

class

includes

methods

for

handling

request

processing,

including

the

doVerbFor()

method.

To

create

a

business

object

handler,

you

must

extend

this

business-object-handler

base

class

and

implement

its

abstract

method

doVerbFor().

For

information

specific

to

the

Java

connector

library,

see

“Extending

the

Java

business-object-handler

base

class”

on

page

152.

Handling

the

request

Once

you

have

derived

your

business-object-handler

class,

you

must

implement

the

business-object-handler

method,

doVerbFor().

It

is

the

doVerbFor()

method

that

provides

request

processing

for

the

business

objects

that

the

connector

supports.

At

startup,

the

connector

framework

calls

getConnectorBOHandlerForBO()

to

obtain

the

business

object

handler

implemented

for

each

of

the

business

object

definitions

that

the

connector

supports.

Important:

All

connectors

must

implement

a

business-object-handler

method,

doVerbFor(),

that

implements

the

Retrieve

verb.

This

method

and

verb

must

be

implemented

even

if

your

connector

will

not

perform

request

processing.

This

section

provides

the

following

information

on

how

to

implement

the

doVerbFor()

method:

v

“Basic

logic

for

doVerbFor()”

v

“General

recommendations

on

verb

implementations”

on

page

84

Basic

logic

for

doVerbFor()

For

a

Java

connector,

the

CWConnectorBOHandler

class

defines

the

doVerbFor()

method,

which

is

an

abstract

method

defined.

The

doVerbFor()

method

typically

follows

a

basic

logic

for

request

processing.

Figure

27

shows

a

flow

chart

of

the

method’s

basic

logic.

82

Connector

Development

Guide

for

Java

For

an

implementation

of

this

basic

doVerbFor()

logic,

see

“Implementing

the

doVerbFor()

method”

on

page

153.

When

the

connector

framework

receives

a

request,

it

calls

the

doVerbFor()

method

for

the

business-object-handler

class

associated

with

the

business

object

definition

of

the

request

business

object.

To

this

doVerbFor()

method,

the

connector

framework

passes

the

request

business

object.

Table

33

summarizes

the

tasks

that

the

doVerbFor()

method

performs

once

it

has

received

a

request

business

object

from

the

connector

framework.

Table

33.

Tasks

of

the

doVerbFor()

method

Task

of

business

object

handler

For

more

information

1.

Determine

the

verb

processing

to

perform,

based

on

the

active

verb

in

the

request

business

object.

“Performing

the

verb

action”

on

page

85

2.

Obtain

information

from

the

request

business

object

to

build

and

send

requests

for

operations

to

the

application.

“Processing

business

objects”

on

page

105

Receive request
business object
(with active verb)

Request processing
failed: "application-timeout"

Is the active
verb valid?

NO

YES

NO

YESYES

Branch on the value of the
active verb: one branch
for each verb supported
by the business object

Create

Retrieve, RetrieveByContent

Update

Delete

Other verbs: Exist, custom

NO

Was verb
processing
successful?

Verb processing
failed: fail status" "

Verb processing
failed: "fail" status

Verb processing was
successful: success status" "Is the

connector still
connected to the

application?

Figure

27.

Flow

chart

for

basic

logic

of

doVerbFor()

Chapter

4.

Request

processing

83

General

recommendations

on

verb

implementations

This

section

provides

the

following

general

recommendations

for

implementing

your

doVerbFor()

method:

v

“Verb

stability”

v

“Transaction

support”

v

“ObjectEventId

attribute”

Verb

stability

Verbs

in

a

business

object

should

remain

stable

throughout

the

request

and

response

cycle.

When

a

connector

receives

a

request,

the

hierarchical

business

object

that

is

returned

to

InterChange

Server

should

have

the

same

verbs

as

the

original

request

business

object,

with

the

exception

of

verbs

in

child

business

objects

that

were

not

set

in

the

original

request.

Verbs

in

child

business

objects

might

or

might

not

be

set

in

request

business

objects:

v

When

a

verb

is

set

in

a

child

business

object,

the

connector

should

perform

the

operation

that

the

child

verb

indicates,

regardless

of

the

verb

on

the

top-level

business

object.

v

If

a

verb

in

a

child

business

object

request

is

not

set,

the

connector

can

either

leave

the

child

verb

as

NULL,

set

the

child

verb

to

the

verb

in

the

top-level

business

object,

or

set

the

value

of

the

verb

to

the

operation

that

the

connector

needs

to

perform.

Transaction

support

An

entire

business

object

request

must

be

wrapped

in

a

single

transaction.

In

other

words,

all

Create,

Update,

and

Delete

transactions

for

a

top-level

business

object

and

all

of

its

children

must

be

wrapped

in

a

single

transaction.

If

any

failure

is

detected

during

the

life

of

the

transaction,

the

whole

transaction

should

be

rolled

back.

For

example,

if

a

Create

operation

on

a

top-level

business

object

succeeds,

but

the

transaction

for

one

of

the

child

business

objects

fails,

the

connector

application-specific

component

should

roll

back

the

entire

Create

transaction

to

the

previous

state.

In

this

case,

the

connector’s

application-specific

component

should

return

failure

from

the

verb

method.

ObjectEventId

attribute

The

ObjectEventId

attribute

is

used

in

the

IBM

WebSphere

business

integration

system

to

identify

an

event-trigger

flow

in

the

system.

In

addition,

it

is

used

to

keep

track

of

child

business

objects

across

requests

and

responses,

as

the

position

of

child

business

objects

in

a

hierarchical

business

object

request

might

be

different

from

the

position

of

the

child

business

objects

in

the

response

business

object.

Connectors

are

not

required

to

populate

ObjectEventId

attributes

for

either

a

parent

business

object

or

its

children.

If

business

objects

do

not

have

values

for

ObjectEventId

attributes,

the

IBM

WebSphere

business

integration

system

generates

values

for

them.

When

connectors

generate

ObjectEventId

values,

this

is

done

by

the

source

connector

as

part

of

the

event-notification

mechanism.

When

processing

request

business

objects,

connectors

should

preserve

ObjectEventId

values

in

all

levels

of

a

hierarchical

business

object

between

the

request

business

object

and

the

response

business

object.

If

a

connector

method

84

Connector

Development

Guide

for

Java

changes

the

values

of

child

business

object

ObjectEventIds,

the

IBM

WebSphere

business

integration

system

may

not

be

able

to

correctly

track

the

child

business

objects.

For

information

on

generating

ObjectEventIds

in

the

event

notification

mechanism,

see

“Event

identifier”

on

page

115.

Performing

the

verb

action

The

standard

verbs

that

IBM

WebSphere

business

integration

system

expect

connectors

to

handle

are

Create,

Retrieve,

Update,

and

Delete.

IBM

recommends

that

you

implement

these

verbs

according

to

standard

behaviors

documented

in

the

sections

listed

in

the

For

More

Information

column

of

Table

34.

These

sections

provide

information

about

the

standard

behavior,

implementation

notes,

and

the

appropriate

outcome-status

values.

Table

34

lists

the

standard

verbs

that

IBM

WebSphere

business

integration

system

defines.

Your

doVerbFor()

method

should

implement

those

verbs

appropriate

for

its

application.

Table

34.

Verbs

implemented

by

the

doVerbFor()

method

Verb

Description

For

more

information

Create

Make

a

new

entity

in

the

application.

“Handling

the

Create

verb”

on

page

86

Retrieve

Using

key

values,

return

a

complete

business

object.

“Handling

the

Retrieve

verb”

on

page

89

RetrieveByContent

Using

non-key

values,

return

a

complete

business

object.

“Handling

the

RetrieveByContent

verb”

on

page

94

Update

Change

the

value

in

one

or

more

fields

in

the

application.

“Handling

the

Update

verb”

on

page

96

Delete

Remove

the

entity

from

the

application.

This

operation

must

be

a

true

physical

delete.

“Handling

the

Delete

verb”

on

page

103

Exists

Check

whether

the

entity

exists

in

the

application.

“Handling

the

Exists

verb”

on

page

104

Custom

verbs

Perform

some

application-specific

operation.

None

Note:

Although

the

sections

listed

in

the

″For

more

information″

column

of

Table

34

present

suggested

behavior

for

verb

methods,

your

connector

might

need

to

implement

some

aspects

of

verb

processing

differently

to

support

a

particular

application.

Once

the

connector

framework

passes

a

request

business

object

to

your

connector’s

doVerbFor()

method,

the

doVerbFor()

method

can

implement

verb

processing

in

any

way

that

is

necessary.

Your

verb

processing

code

is

not

limited

to

the

suggestions

presented

in

this

chapter.

InterChange

Server

When

InterChange

Server

is

the

integration

broker

and

you

design

your

own

collaborations,

you

can

implement

any

custom

verbs

that

you

need.

Your

collaborations

and

connectors

are

not

limited

to

the

standard

list

of

verbs.

End

of

InterChange

Server

This

basic

verb-processing

logic

consists

of

the

following

steps:

1.

Get

the

verb

from

the

request

business

object.

Chapter

4.

Request

processing

85

The

doVerbFor()

method

must

first

retrieve

the

active

verb

from

the

business

object

with

the

getVerb()

method.

For

a

Java

connector,

getVerb()

is

defined

in

the

CWConnectorBusObj

class.

2.

Perform

the

verb

operation.

In

the

business

object

handler,

you

can

design

the

doVerbFor()

method

in

either

of

the

following

ways:

v

Implement

verb

processing

for

each

supported

verb

directly

within

the

doVerbFor()

method.

You

can

modularize

the

verb

processing

so

that

each

verb

operation

is

implemented

in

a

separate

verb

method

called

from

doVerbFor().

The

method

should

also

take

appropriate

action

if

the

verb

is

not

a

supported

verb

by

returning

a

message

in

the

return-status

descriptor

and

a

“fail”

status.

v

Handle

all

verb

processing

in

the

same

method

using

a

metadata-driven

doVerbFor()

method.

Handling

the

Create

verb

When

the

business

object

handler

obtains

a

Create

verb

from

the

request

business

object,

it

must

ensure

that

a

new

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

created,

as

follows:

v

For

a

flat

business

object,

the

Create

verb

indicates

that

the

specified

entity

must

be

created.

v

For

a

hierarchical

business

object,

the

Create

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

must

be

created.

The

business

object

handler

must

set

all

the

values

in

the

new

application

entities

to

the

attribute

values

in

the

request

business

object.

To

ensure

that

all

required

attributes

in

the

request

business

object

have

values

assigned,

you

can

call

the

initAndValidateAttributes()

method,

which

assigns

the

attribute’s

default

value

to

each

required

attribute

that

does

not

have

its

value

set

(when

the

UseDefaults

connector

configuration

property

is

set

to

true).

The

initAndValidateAttributes()

method

is

defined

in

the

CWConnectorUtil

class.

Call

initAndValidateAttributes()

before

performing

the

Create

operation

in

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

created

in

the

application

database,

usually

as

a

new

row

to

the

database

table

associated

with

the

business

object

definition

of

the

request

business

object.

This

section

provides

the

following

information

to

help

process

a

Create

verb:

v

“Standard

processing

for

a

Create

verb”

v

“Implementation

of

a

Create

verb

operation”

on

page

87

v

“Outcome

status

for

Create

verb

processing”

on

page

88

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

a

Create

method

handles

processing

for

the

Create

verb.

Standard

processing

for

a

Create

verb

The

following

steps

outline

the

standard

processing

for

a

Create

verb:

1.

Create

the

application

entity

corresponding

to

the

top-level

business

object.

2.

Handle

the

primary

key

or

keys

for

the

application

entity:

86

Connector

Development

Guide

for

Java

v

If

the

application

generates

its

own

primary

key

(or

keys),

get

these

key

values

for

insertion

in

the

top-level

business

object.

v

If

the

application

does

not

generate

its

own

primary

key

(or

keys),

insert

the

key

values

from

the

request

business

object

into

the

appropriate

key

column

(or

columns)

of

the

application

entity.
3.

Set

foreign

key

attributes

in

any

first-level

child

business

objects

to

the

value

of

the

top-level

primary

key.

4.

Recursively

create

the

application

entities

corresponding

to

the

first-level

child

business

objects,

and

continue

recursively

creating

all

child

business

objects

at

all

subsequent

levels

in

the

business

object

hierarchy.

In

Figure

28,,

a

verb

method

sets

the

foreign

key

attributes

(FK)

in

child

business

objects

A,

B,

and

C

to

the

value

of

the

top-level

primary

key

(PK1).

The

method

then

recursively

sets

the

foreign

key

attributes

in

child

business

objects

D

and

E

to

the

value

of

the

primary

key

(PK3)

in

their

parent

business

object,

object

B.

Implementation

of

a

Create

verb

operation

A

typical

implementation

of

a

Create

operation

first

traverses

the

top-level

business

object

and

processes

the

business

object’s

simple

attributes.

It

gets

the

values

of

the

attributes

from

the

business

object

and

generates

the

application-specific

action

(such

as

an

API

call

or

SQL

statement)

that

inserts

an

entity

in

the

application

to

represent

the

top-level

business

object.

Once

this

top-level

entity

is

created,

the

verb

operation

takes

the

following

steps:

1.

Retrieve

any

primary

keys

for

the

entity

from

the

application.

2.

Use

the

keys

to

set

the

foreign

key

attributes

in

the

first-level

child

business

objects

to

the

value

of

the

parent

primary

keys.

3.

Set

the

verb

in

each

child

business

object

to

Create

and

recursively

create

application

entities

to

represent

the

child

business

objects.

A

recommended

approach

for

creating

child

business

objects

is

to

design

a

submethod

to

recursively

create

child

entities.

The

submethod

might

traverse

the

business

object,

looking

for

attributes

of

type

OBJECT.

If

the

submethod

finds

attributes

that

are

objects,

it

calls

the

main

Create

method

to

create

the

child

entities.

ID = PK6

FK = PK3ID = PK4

FK = PK1

ID = PK3

FK = PK1

ID = PK1

ID = PK2

FK = PK1

ID = PK5

FK = PK3

Top-level
bus object

Child A

Child C

Child B

Child D

Child E

Figure

28.

Creating

parent/child

relationships

Chapter

4.

Request

processing

87

The

way

that

the

main

method

provides

primary

key

values

to

the

submethod

can

vary.

For

example,

the

main

Create

method

might

pass

the

parent

business

object

to

the

submethod,

and

the

submethod

can

then

retrieve

the

primary

key

from

the

parent

business

object

to

set

the

foreign

key

in

the

child

business

object.

Alternatively,

the

main

method

might

traverse

the

parent

object,

find

first-level

children,

set

the

foreign

key

attributes

in

the

child

business

objects,

and

then

call

the

submethod

on

each

child.

In

either

case,

the

main

Create

method

and

its

submethod

interact

to

set

the

interdependencies

between

the

parent

business

object

and

its

first-level

children.

Once

the

foreign

keys

are

set,

the

operation

can:

v

Insert

new

rows

into

the

application.

v

Set

foreign

keys

for

the

next

level

of

child

business

objects.

v

Create

the

child

entities.

v

Descend

the

business

object

hierarchy,

recursively

creating

child

entities

until

there

are

no

more

child

business

objects

to

process.

Note:

For

a

table-based

application,

the

order

of

the

steps

for

setting

the

relationships

between

a

top-level

object

and

its

children

may

vary,

depending

on

the

database

schema

for

the

application

and

on

the

design

of

the

application-specific

business

objects.

For

example,

if

foreign

keys

for

a

hierarchical

business

object

are

located

in

the

top-level

business

object,

the

verb

operation

might

need

to

process

all

child

business

objects

before

processing

the

top-level

business

object.

Only

when

the

child

entities

are

inserted

into

the

application

database

and

the

primary

keys

for

these

entities

are

returned

can

the

top-level

business

object

be

processed

and

inserted

into

the

application

database.

Therefore,

be

sure

to

consider

the

structure

of

data

in

the

application

database

when

you

implement

connector

verb

methods.

Outcome

status

for

Create

verb

processing

The

Create

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

35..

Table

35.

Possible

outcome

status

for

Java

Create

verb

processing

Create

condition

Java

outcome

status

If

the

Create

operation

is

successful

and

the

application

generates

new

key

values,

the

connector:

v

fills

the

business

object

with

the

new

key

values;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

VALCHANGE

If

the

Create

operation

is

successful

and

the

application

does

not

generate

new

key

values,

the

connector

can

simply

return

“Success”.

SUCCEED

If

the

application

entity

already

exists,

the

connector

can

either

of

the

following

actions:

v

Fail

the

Create

operation.

FAIL

v

Return

an

outcome

status

that

indicates

the

application

entity

already

exists.

VALDUPES

If

the

Create

operation

fails,

the

verb

operation:

v

fills

a

return-status

descriptor

with

information

on

the

failure

v

returns

the

“Fail”

outcome

status

FAIL

88

Connector

Development

Guide

for

Java

Note:

When

the

connector

framework

receives

the

VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

the

Retrieve

verb

When

the

business

object

handler

obtains

a

Retrieve

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

retrieved,

as

follows:

v

For

a

flat

business

object,

the

Retrieve

verb

indicates

that

the

specified

entity

is

retrieved

by

its

key

values.

The

verb

operation

returns

a

business

object

that

contains

the

current

values

for

the

application

entity.

v

For

a

hierarchical

business

object,

the

Retrieve

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

are

retrieved

by

the

key

values

of

the

top-level

business

object.

The

verb

operation

returns

a

business

object

in

which

all

simple

attributes

of

each

business

object

in

the

hierarchy

match

the

values

of

the

corresponding

entity

attributes,

and

the

number

of

individual

business

objects

in

each

child

business

object

array

matches

the

number

of

child

entities

in

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

retrieved

from

the

application

database.

For

the

Retrieve

verb,

the

business

object

handler

obtains

the

key

value

(or

values)

from

the

request

business

object.

These

key

values

uniquely

identify

an

application

entity.

The

business

object

handler

then

uses

these

key

values

to

retrieve

all

the

data

associated

with

an

application

entity.

The

connector

retrieves

the

entire

hierarchical

image

of

the

entity,

including

all

child

objects.

This

type

of

retrieve

operation

might

be

referred

to

as

an

after-image

retrieve.

Important:

All

connectors

must

implement

a

doVerbFor()

method

with

verb

processing

for

the

Retrieve

verb.

This

requirement

holds

even

if

your

connector

will

not

perform

request

processing.

An

alternative

way

of

retrieving

data

is

to

query

using

a

subset

of

non-key

attribute

values,

none

of

which

uniquely

define

a

particular

application

record.

This

type

of

retrieve

processing

is

performed

by

the

RetrieveByContent

verb

method.

For

information

on

retrieving

by

non-key

values,

see

“Handling

the

RetrieveByContent

verb”

on

page

94.

This

section

provides

the

following

information

to

help

process

a

Retrieve

verb:

v

“Standard

processing

for

a

Retrieve

verb”

v

“Implementation

of

a

Retrieve

verb

operation”

on

page

90

v

“Example:

Retrieve

operation”

on

page

90

v

“Retrieving

child

objects”

on

page

91

v

“Outcome

status

for

Retrieve

verb

processing”

on

page

94

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

a

Retrieve

method

handles

processing

for

the

Retrieve

verb.

Standard

processing

for

a

Retrieve

verb

The

following

steps

outline

the

standard

processing

for

a

Retrieve

verb:

Chapter

4.

Request

processing

89

1.

Create

a

new

business

object

of

the

same

type

as

the

request

business

object.

This

new

business

object

is

the

response

business

object,

which

will

hold

the

retrieved

copy

of

the

request

business

object.

2.

Set

the

primary

keys

in

the

new

top-level

business

object

to

the

values

of

the

top-level

keys

in

the

request

business

object.

3.

Retrieve

the

application

data

for

the

top-level

business

object

and

fill

the

response

top-level

business

object’s

simple

attributes.

4.

Retrieve

all

the

application

data

associated

with

the

top-level

entity,

and

create

and

fill

child

business

objects

as

needed.

Note:

By

default,

the

Retrieve

method

returns

failure

if

it

cannot

retrieve

application

data

for

all

the

child

objects

in

a

hierarchical

business

object.

This

behavior

can

be

made

configurable;

for

information,

see

“Configuring

a

Retrieve

to

ignore

missing

child

objects”

on

page

93.

Implementation

of

a

Retrieve

verb

operation

A

typical

Retrieve

operation

can

use

one

of

the

following

methods:

v

Create

a

new

response

business

object

from

the

business

object

definition

for

that

object

and

sets

the

top-level

primary

keys

in

this

new

business

object.

Using

the

top-level

primary

keys,

the

verb

operation

can

retrieve

all

data

associated

with

the

top-level

entity.

v

Start

by

pruning

all

child

business

objects

from

the

top-level

business

object.

Using

the

top-level

keys

in

the

pruned

object,

the

verb

operation

can

retrieve

the

top-level

data

and

all

associated

data.

The

goal

of

each

of

these

approaches

is

the

same:

Start

with

the

top-level

business

object

and

rebuild

the

complete

business

object

hierarchy.

This

type

of

implementation

ensures

that

all

children

in

the

request

business

object

that

are

no

longer

in

the

database

are

removed

and

are

not

passed

back

in

the

response

business

object.

This

implementation

also

ensures

that

the

hierarchical

response

business

object

exactly

matches

the

database

state

of

the

application

entity.

At

each

level,

the

Retrieve

operation

rebuilds

the

request

business

object

so

that

it

accurately

reflects

the

current

database

representation

of

the

entity.

Example:

Retrieve

operation

In

a

Retrieve

operation,

an

integration

broker

requests

the

complete

set

of

data

that

is

associated

with

an

application

entity.

The

request

business

object

might

contain

any

of

the

following:

v

A

top-level

business

object

but

no

child

objects,

even

though

the

business

object

definition

includes

children

v

A

business

object

that

contains

the

top-level

business

object

and

some

of

its

defined

children

v

A

complete

hierarchical

business

object

containing

all

child

business

objects

Figure

29

shows

a

request

business

object

for

a

Contact

entity.

The

Contact

business

object

includes

a

multiple

cardinality

array

for

the

ContactProfile

attribute.

In

this

request

business

object,

the

ContactProfile

business

object

array

includes

two

child

business

objects.

90

Connector

Development

Guide

for

Java

Application

tables

associated

with

the

Contact

and

ContactProfile

business

objects

might

look

like

the

tables

in

Figure

30.

This

illustration

also

shows

the

foreign-key

relationship

between

the

tables.

As

you

can

see,

the

contact_profile

table

has

a

row

for

the

ContactId

of

100

that

is

not

reflected

in

the

Contact

request

business

object

in

Figure

28.

The

Retrieve

operation

uses

the

primary

key

in

the

Contact

business

object

(100)

to

retrieve

the

data

for

the

simple

attributes

in

the

response

business

object:

values

for

the

Name

and

JobTitle

attributes.

To

be

sure

that

it

retrieves

the

correct

number

of

child

business

objects,

the

verb

operation

must

either

create

a

new

business

object

or

prune

child

objects

from

the

existing

request

business

object.

For

the

tables

in

Figure

30,,

the

Retrieve

operation

would

need

to

create

a

new

ContactProfile

business

object

for

the

contact_profile

row

with

a

profile_id

value

of

277.

In

this

way,

the

Retrieve

operation

properly

creates

and

populates

all

arrays

based

on

the

current

state

of

the

application

entities.

Retrieving

child

objects

To

retrieve

entities

associated

with

the

top-level

entity,

the

Retrieve

operation

might

be

able

to

use

the

application

API:

v

Ideally,

the

API

will

navigate

the

relationships

between

application

entities

and

return

all

related

data.

The

verb

operation

can

then

encapsulate

the

related

data

as

child

business

objects.

v

If

the

API

does

not

provide

information

on

associated

entities,

you

might

need

to

access

the

application

(for

example,

with

generated

SQL

statements)

to

retrieve

related

data.

The

SQL

statements

might

use

foreign

keys

to

navigate

through

application

tables.

ContactProfile

ProfileId = 276

ContactId =
...

ProfileId = 275

ContactId =
...

ContactId = 100

Name =

JobTitle =

ContactProfile =

Contact

ContactProfile

Figure

29.

Example

business

object

content

for

a

Retrieve

request

contact_profile table

100

100

42

53

contact_id job_code department

422

422

100 78 422

contact_id

contact table

name job_title

100

200

Jones

Smith

VP

Manager

profile_id

275

276

277

200 156 537278

Figure

30.

Foreign-key

relationships

between

tables

Chapter

4.

Request

processing

91

If

the

attribute

application-specific

information

in

the

business

object

definition

contains

information

on

foreign

keys,

the

verb

operation

can

use

this

information

to

generate

command

to

access

the

application

(such

as

SQL

statements).

For

example,

application-specific

information

for

the

foreign

key

attribute

of

the

ContactProfile

child

business

object

might

specify:

v

The

parent

table:

contact

v

The

child

table’s

column

for

the

foreign

key:

contact_id

v

The

attribute

in

the

parent

business

object

that

contains

the

primary

key

value

that

serves

as

a

foreign

key

in

the

child

business

object:

ContactId

Figure

31

shows

example

application-specific

information

for

the

primary

key

attribute

of

the

Contact

business

object

and

the

primary

and

foreign

key

attributes

of

the

ContactProfile

child

business

object.

Using

the

application-specific

information,

the

verb

operation

can

find

the

name

of

the

child

table

(contact_profile)

and

the

column

for

the

foreign

key

(contact_id)

in

the

child

table.

The

verb

operation

can

also

find

the

value

of

the

foreign

key

for

the

child

business

object

by

obtaining

the

value

of

the

primary

key

attribute

(ContactId)

in

the

parent

business

object

(100).

With

this

information,

the

verb

operation

can

generate

a

SQL

SELECT

statement

that

retrieves

all

the

records

in

the

child

table

associated

with

the

parent

key.

The

SELECT

statement

to

retrieve

the

data

associated

with

the

missing

contact_profile

row

might

be:

SELECT

profile_id,

job_code,

department

FROM

contact_profile

WHERE

contact_id

=

100

The

SELECT

statement

returns

three

rows

from

the

example

contact_profile

table,

as

shown

in

Figure

32.

Name = ContactId

AppSpecificInfo = contact.contact_id
...

[Attribute]

Name = ProfileId

AppSpecificInfo = contact_profile.profile_id
...

[Attribute]

IsKey = true

[Attribute]
Name = ContactId
IsForeignKey = true
AppSpecificInfo = contact_profile.contact_id:ContactId
...

Primary key attribute
in parent

Foreign key table
and column

Contact

ContactProfile

Figure

31.

Foreign-key

relationships

in

business

objects

92

Connector

Development

Guide

for

Java

If

a

Retrieve

operation

returns

multiple

rows,

each

row

becomes

a

child

business

object.

The

verb

operation

might

process

retrieved

rows

as

follows:

1.

For

each

row,

create

a

new

child

business

object

of

the

correct

type.

2.

Set

attributes

in

the

new

child

business

object

based

on

the

values

that

a

SELECT

statement

returns

for

the

associated

row.

3.

Recursively

retrieve

all

children

of

the

child

business

object,

creating

the

business

object

and

setting

the

attributes

for

each

one.

4.

Insert

the

array

of

child

business

objects

into

the

multiple-cardinality

attribute

in

the

parent

business

object.

The

response

business

object

for

the

Retrieve

operation

on

the

two

example

tables

might

look

like

Figure

33.

The

verb

operation

has

retrieved

the

current

database

entity

and

has

added

a

child

to

the

hierarchical

business

object.

Configuring

a

Retrieve

to

ignore

missing

child

objects

By

default,

the

Retrieve

operation

should

return

failure

if

it

cannot

retrieve

application

data

for

the

complete

set

of

child

business

objects

in

a

hierarchical

business

object.

However,

you

can

implement

the

verb

operation

so

that

the

behavior

of

the

connector

is

configurable

when

one

or

more

of

the

children

in

a

business

object

are

not

found

in

the

application.

To

do

this,

define

a

connector-specific

configuration

property

named

IgnoreMissingChildObject,

whose

values

are

True

and

False.

The

Retrieve

operation

obtains

the

value

of

this

property

to

determine

how

to

handle

missing

child

business

objects.

When

the

property

is

True,

the

Retrieve

operation

should

contact_profile table

contact_id job_code department
contact_id

contact table

name job_title

100

200

Jones

Smith

VP

Manager

profile_id

275

276

277

200 156 537278

100

100

42

53

422

422

100 78 422

Figure

32.

Results

of

SELECT

statement

for

example

Retrieve

operation

ProfileId = 277

ContactId = 100
...

ProfileId = 276

ContactId = 100
...

ContactId = 100 ProfileId = 275

ContactId = 100Name = Jones
...

JobTitle = VP

ContactProfile

Contact ContactProfile

ContactProfile

ContactProfile

Figure

33.

Business

object

response

to

example

Retrieve

request

Chapter

4.

Request

processing

93

simply

move

on

to

the

next

child

in

the

array

if

it

fails

to

find

a

child

business

object.

In

this

case,

the

verb

operation

should

return

VALCHANGE

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

Outcome

status

for

Retrieve

verb

processing

The

Retrieve

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

36..

Table

36.

Possible

outcome

status

for

Java

Retrieve

verb

processing

Retrieve

condition

Java

outcome

status

When

the

Retrieve

operation

is

successful,

it:

v

fills

the

entire

business

object

hierarchy,

including

all

child

business

objects;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

VALCHANGE

If

the

IgnoreMissingChildObject

connector

property

is

True,

the

Retrieve

operation

returns

the

“Value

Changed”

outcome

status

for

the

business

object

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

VALCHANGE

If

the

entity

that

the

business

object

represents

does

not

exist

in

the

application,

the

connector

returns

a

special

outcome

status

instead

of

“Fail”.

BO_DOES_NOT_EXIST

If

the

request

business

object

does

not

provide

a

key

for

the

top-level

business

object,

the

Retrieve

operation

can

take

either

of

the

following

actions:

v

Fill

a

return-status

descriptor

with

information

about

the

cause

of

Request

failure

and

return

a

“Fail”

outcome

status.

v

Call

the

RetrieveByContent

method

to

retrieve

using

the

content

of

the

top-level

business

object.

FAIL

Note:

When

the

connector

framework

receives

the

VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

the

RetrieveByContent

verb

An

integration

broker

might

need

to

retrieve

a

business

object

for

which

it

has

a

set

of

attribute

values

without

having

the

key

attribute

(or

attributes)

that

uniquely

identifies

an

application

entity.

Such

a

retrieve

is

called

“retrieve

by

non-key

values”

or

“retrieve

by

content.”

As

an

example,

if

a

business

object

handler

receives

a

Customer

business

object

with

the

verb

RetrieveByContent

and

with

the

non-key

attributes

Name

and

City

set

to

Smith

and

San

Diego,

the

RetrieveByContent

operation

can

attempt

to

retrieve

a

customer

entity

that

matches

the

values

of

the

Name

and

City

attributes.

When

the

business

object

handler

obtains

a

RetrieveByContent

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

retrieved,

as

follows:

94

Connector

Development

Guide

for

Java

v

For

a

flat

business

object,

the

RetrieveByContent

verb

indicates

that

the

specified

entity

is

retrieved

by

its

non-key

values.

The

verb

operation

returns

a

business

object

that

contains

the

current

values

for

the

application

entity.

v

For

a

hierarchical

business

object,

the

RetrieveByContent

verb

indicates

that

one

or

more

application

entities

(to

match

the

entire

business

object)

are

retrieved

by

the

non-key

values

of

the

top-level

business

object.

The

verb

operation

returns

a

business

object

in

which

all

simple

attributes

of

each

business

object

in

the

hierarchy

match

the

values

of

the

corresponding

entity

attributes,

and

the

number

of

individual

business

objects

in

each

child

business

object

array

matches

the

number

of

child

entities

in

the

application.

This

section

provides

the

following

information

to

help

process

a

RetrieveByContent

verb:

v

“Implementation

for

a

RetrieveByContent

verb

operation”

v

“Outcome

status

for

RetrieveByContent

processing”

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

a

RetrieveByContent

method

handles

processing

for

the

RetrieveByContent

verb.

Implementation

for

a

RetrieveByContent

verb

operation

RetrieveByContent

functions

the

same

as

the

Retrieve

verb

except

that

it

uses

a

subset

of

non-key

values,

instead

of

key

values,

to

retrieve

application

data.

In

its

most

robust

implementation,

a

top-level

business

object

and

its

child

business

objects

would

independently

support

the

RetrieveByContent

verb.

However,

not

all

application

APIs

enable

retrieve

by

non-key

values

for

hierarchical

business

objects.

A

more

common

implementation

is

to

provide

RetrieveByContent

support

only

in

the

top-level

business

object.

When

a

top-level

business

object

supports

retrieve

by

non-key

values

and

this

retrieve-by-content

is

successful,

the

RetrieveByContent

operation

can

retrieve

the

keys

for

the

entity

matching

the

request

business

object.

The

verb

operation

can

then

perform

a

Retrieve

operation

to

retrieve

the

complete

business

object.

You

might

want

to

specify

which

attributes

are

to

be

used

in

RetrieveByContent

operations.

To

do

this,

you

can

implement

attribute

application-specific

information

to

specify

those

attributes

that

will

contain

a

value

that

is

to

be

used

in

the

RetrieveByContent

operation

or

receive

a

value

as

a

result

of

the

operation.

Outcome

status

for

RetrieveByContent

processing

The

RetrieveByContent

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

37..

Table

37.

Possible

outcome

status

for

Java

RetrieveByContent

verb

processing

RetrieveByContent

condition

Java

outcome

status

If

the

RetrieveByContent

operation

finds

a

single

entity

that

matches

the

query,

it:

v

fills

the

entire

business

object

hierarchy,

including

all

child

business

objects;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

returns

a

“Value

Changed”

outcome

status

VALCHANGE

Chapter

4.

Request

processing

95

Table

37.

Possible

outcome

status

for

Java

RetrieveByContent

verb

processing

(continued)

RetrieveByContent

condition

Java

outcome

status

If

the

IgnoreMissingChildObject

connector

property

is

True,

the

RetrieveByContent

operation

returns

the

“Value

Changed”

outcome

status

for

the

business

object

if

it

is

successful

in

retrieving

the

top-level

object,

regardless

of

whether

it

is

successful

in

retrieving

its

children.

VALCHANGE

If

the

RetrieveByContent

operation

finds

multiple

entries

that

match

the

query,

it:

v

retrieves

only

the

first

occurrence

of

the

match;

this

business

object

is

returned

to

the

connector

framework

through

the

request

business

object

parameter.

v

fills

a

return-status

descriptor

with

further

information

about

the

search

v

returns

a

status

of

“Multiple

Hits”

to

notify

the

connector

framework

that

there

are

additional

records

that

match

the

specification

MULTIPLE_HITS

If

the

RetrieveByContent

operation

does

not

find

matches

for

retrieve

by

non-key

values,

it:

v

fills

a

return-status

descriptor

containing

additional

information

about

the

cause

of

the

RetrieveByContent

error

v

returns

a

“RetrieveByContent

Failed”

outcome

status

RETRIEVEBYCONTENT_FAILED

Note:

When

the

connector

framework

receives

the

VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

the

Update

verb

When

the

business

object

handler

obtains

an

Update

verb

from

the

request

business

object,

it

must

ensure

that

an

existing

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

is

updated,

as

follows:

v

For

a

flat

business

object,

the

Update

verb

indicates

that

the

data

in

the

specified

entity

must

be

modified

as

necessary

until

the

application

entity

exactly

matches

the

request

business

object.

v

For

a

hierarchical

business

object,

the

Update

verb

indicates

that

updates

the

application

entity

must

be

updated

to

match

the

entire

business

object

hierarchy.

To

do

this,

the

connector

might

need

to

create,

update,

and

delete

application

entities:

–

If

child

entities

exist

in

the

application,

they

are

modified

as

needed.

–

Any

child

business

objects

contained

in

the

hierarchical

business

object

that

do

not

have

corresponding

entities

in

the

application

are

added

to

the

application.

–

Any

child

entities

that

exist

in

the

application

but

are

not

contained

in

the

business

object

are

deleted

from

the

application.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

updated

in

the

application

database,

usually

as

a

new

row

to

the

database

table

associated

with

the

business

object

definition

of

the

request

business

object.

This

section

provides

the

following

information

to

help

process

an

Update

verb:

v

“Standard

processing

for

an

Update

verb”

on

page

97

96

Connector

Development

Guide

for

Java

v

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

100

v

“Outcome

status

for

Update

verb

processing”

on

page

102

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

an

Update

method

handles

processing

for

the

Update

verb.

Standard

processing

for

an

Update

verb

The

following

steps

outline

the

standard

processing

for

an

Update

verb:

1.

Create

a

new

business

object

of

the

same

type

as

the

request

business

object.

This

new

business

object

is

the

response

business

object,

which

will

hold

the

retrieved

copy

of

the

request

business

object.

2.

Retrieve

a

copy

of

the

request

business

object

from

the

application.

Recursively

retrieve

the

data

for

the

entire

entity

from

the

application

using

the

primary

keys

from

the

request

business

object:

v

For

a

flat

business

object,

retrieve

the

single

application

entity.

v

For

a

hierarchical

business

object,

use

the

Retrieve

operation

to

descend

into

the

application

business

object,

expanding

all

paths

in

the

business

object

hierarchy.
3.

Place

the

retrieved

data

in

the

response

business

object.

This

response

business

object

is

now

a

representation

of

the

current

state

of

the

entity

in

the

application.

The

Update

operation

can

now

compare

the

two

hierarchical

business

objects

and

update

the

application

entity

appropriately.

4.

Update

the

simple

attributes

in

the

application

entity

to

correspond

to

the

top-level

source

business

object.

5.

Compare

the

response

business

object

(created

in

step

2)

with

the

request

business

object.

Perform

this

comparison

down

to

the

lowest

level

of

the

business

object

hierarchy.

Recursively

update

the

children

of

the

top-level

business

object

following

these

rules:

v

If

a

child

business

object

is

present

in

both

the

response

business

object

and

the

request

business

object,

recursively

update

the

child

by

performing

the

Update

operation.

v

If

a

child

business

object

is

present

in

the

request

business

object

but

not

in

the

response

business

object,

recursively

create

the

child

by

performing

the

Create

operation.

v

If

a

child

business

object

is

not

present

in

the

request

business

object

but

is

present

in

the

response

business

object,

recursively

delete

the

child

using

either

the

Delete

operation

(physical)

or

a

logical

delete,

depending

on

the

functionality

of

the

connector

and

the

application.

For

more

information

on

logical

deletes,

see

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

100.

Note:

Only

the

existence

or

non-existence

of

the

child

objects

are

compared,

not

the

attributes

of

the

child

business

objects.

If

the

connector’s

application

supports

logical

delete,

the

connector

recursively

retrieves

the

complete

business

object

hierarchy;

then

the

Update

operation

sets

status

attributes

and

recursively

updates

the

status

of

the

children.

Chapter

4.

Request

processing

97

Note:

The

Update

operation

should

fail

if

an

application

entity

does

not

exist

for

any

foreign

key

(Foreign

Key

is

set

to

true)

referenced

in

the

request

business

object.

The

connector

should

verify

that

the

foreign

key

is

a

valid

key

(it

references

an

existing

application

entity).

If

the

foreign

key

is

invalid,

the

Update

operation

should

return

FAIL.

A

foreign

key

is

assumed

to

be

present

in

the

application,

and

the

connector

should

never

try

to

create

an

application

object

marked

as

a

foreign

key.

Figure

34

shows

a

set

of

associated

application

entities

that

represent

a

customer

in

the

application

database.

The

entities

contain

customer,

address,

phone,

and

customer

profile

data.

Note

that

the

sample

customer,

Acme

Construction,

has

no

phone

number

in

the

database.

Assume

that

an

integration

broker

sends

an

update

request

that

consists

of

the

request

business

object

as

shown

in

Figure

35.

Customer table

Name

StreetID City State

Acme Construction

Status

ID

ID

Address table

Phone table

CustomerProfile table

CustID

PhoneNo CustID

CustIDType Role Contact

Active
...

107 65 Elm Denver Colorado 22

108 279 Vine Altos Idaho 22

109 835 High Akron Ohio 22

978 72 Cust Sam Jones 22
...

ID

22

...

...

A

B

C

Figure

34.

Customer

entities

before

Update

request

98

Connector

Development

Guide

for

Java

This

request

business

object

indicates

that

the

Acme

Construction

customer

has

undergone

the

changes

listed

in

Table

38.

Table

38.

Updates

to

Acme

Construction

in

the

Request

business

object

Update

made

to

Acme

Construction

Representation

in

request

business

object

Acquired

a

new

phone

number

The

child

business

object

for

the

PhoneArray

attribute

(Phone

object

A)

has

a

Create

verb.

Moved

to

new

offices

in

Denver

and

Altos

Two

child

business

objects

(Address

objects

A

and

B)

exist

in

the

AddressArray

attribute,

each

with

an

Update

verb.

Closed

the

office

in

Akron

No

child

business

object

exists

in

the

AddressArray

attribute

for

the

Akron

address.

Changed

the

name

of

the

contact

person

The

child

business

object

for

the

CustProfileArray

attribute

(CustProfile

object

A)

has

an

Update

verb.

Your

connector’s

task

is

to

keep

the

application

database

for

this

destination

application

synchronized

with

the

source

application.

Therefore,

to

respond

to

this

request,

the

connector

would

need

to

perform

the

following

tasks

as

part

of

its

Update

operation:

v

Update

any

columns

in

Customer

table

that

have

updated

values

in

the

corresponding

simple

attributes

of

the

Customer

business

object.

v

Update

the

rows

in

the

Address

table

that

correspond

to

Address

objects

A

and

B.

Update

the

columns

in

each

of

these

rows

with

any

new

values

from

the

corresponding

simple

attributes

in

the

appropriate

Address

object.

In

this

case,

the

Street

column

has

changed

for

the

Denver

and

Altos

offices.

v

Delete

the

row

in

the

Address

table

that

corresponds

to

the

Akron

address.

v

Update

the

Contact

column

of

the

CustomerProfile

table

to

the

value

of

the

corresponding

simple

attribute

in

the

CustProfile

object

A

business

object.

v

Create

a

row

in

the

Phone

table

with

column

values

from

the

simple

attributes

of

the

Phone

object

A

business

object.

Make

sure

that

the

CustID

column

of

this

new

row

is

created

with

the

foreign-key

value

that

identifies

the

appropriate

Customer

row

(22).

Figure

36

shows

the

set

of

associated

application

entities

that

represent

a

customer

after

the

Update

operation

has

completed.

Address

B

A

A

CustomerID

AddressArray

CustProfileArray

PhoneArray

ObjectEventId

CustomerType

A

Update

Update

Update

Create

Update

Customer

Address

Phone

CustProfile

Figure

35.

Customer

request

business

object

for

an

Update

Chapter

4.

Request

processing

99

Implications

of

business

objects

representing

logical

Delete

events

If

your

application

supports

physical

delete,

but

an

integration

broker

sends

requests

from

a

source

application

that

supports

only

logical

delete,

you

might

need

to

handle

a

business

object

that

represents

a

logical

delete

request.

Connectors

for

applications

that

perform

logical

delete

operations,

where

an

entity

is

marked

as

deleted

by

updating

a

status

value,

should

handle

logical

deletes

in

the

Update

method.

A

system

view

of

this

implementation

is

as

follows:

v

Events

that

represent

the

deletion

of

data

in

the

source

application

should

be

sent

as

application-specific

business

objects

with

the

Delete

verb.

Similarly,

maps

on

the

source

application

side

should

set

the

verb

of

generic

business

objects

to

Delete.

v

On

the

destination

side,

maps

for

connectors

supporting

logical

delete

applications

can

transform

Delete

verbs

in

generic

business

objects

to

Update

verbs

in

application-specific

business

objects.

Business

object

attributes

representing

entity

status

values

can

be

set

to

the

inactive

status.

In

this

way,

a

connector

representing

a

logical

delete

application

receives

an

application-specific

business

object

with

an

Update

verb

and

the

status

value

marked

appropriately.

Customer table

Name

StreetID City State

Acme Construction

Status

ID

ID

Address table

Phone table

CustomerProfile table

CustID

PhoneNo CustID

CustIDType Role Contact

Active
...

107 3 Tashi Denver Colorado 22

108 300 Vine Altos Idaho 22

978 72 Cust Dexter Haven 22
...

ID

22

...

4 (650) 231-5542 22

Figure

36.

Customer

entities

after

Update

request

100

Connector

Development

Guide

for

Java

For

example,

assume

that

a

source

application

entity

has

been

updated

to

look

like

the

business

object

representation

in

Figure

37.

Components

in

the

source

application

entity

have

been

updated,

created,

and

deleted.

If

the

source

application

connector

has

implemented

event

notification

as

recommended

in

Chapter

5,

“Event

notification,”

on

page

113,

deleted

child

business

objects

are

not

present

in

the

business

object

hierarchy,

and

the

business

object

simply

contains

the

updated

and

new

child

business

objects.

An

example

of

a

business

object

representing

an

Update

request

might

look

like

Figure

38.

In

this

figure,

the

parent

object

is

set

to

update,

and

all

entities

that

have

been

deleted

are

no

longer

present

in

the

business

object

hierarchy.

In

this

case,

the

connector

compares

the

source

and

destination

business

objects

and

deletes

the

entities

that

are

not

present

in

the

source

business

object.

However,

if

the

source

application

supports

logical

delete,

the

source

connector

might

send

a

business

object

with

deletes

tagged

as

updates

and

status

attribute

values

set

to

an

inactive

value.

This

business

object

might

look

like

Figure

39,,

where

updates

that

are

delete

operations

are

identified

by

“[D]”.

Update

Delete

Delete

Delete

Delete

Update

Create

No Change

Top-level
bus object

Figure

37.

Updated

entity

in

the

source

application

Update Update
Create

No Change

Top-level
bus object

Figure

38.

Update

request

business

object

from

a

physical-delete

connector

Chapter

4.

Request

processing

101

There

are

several

ways

to

handle

a

source

business

object

that

represents

a

logical

delete

request:

v

Implement

mapping

to

examine

the

status

of

child

business

objects.

If

the

status

of

a

particular

child

business

object

is

inactive,

the

business

object

can

be

removed

in

mapping.

v

Implement

the

Update

operation

to

determine

whether

an

update

operation

is

actually

a

delete

operation.

In

a

logical

delete

source

application,

an

entity

may

be

marked

as

active

or

inactive

by

a

status

value.

In

the

source’s

application-specific

business

objects,

the

status

value

is

usually

an

attribute.

Although

entities

in

an

application

that

supports

physical

delete

might

not

include

status

information,

you

can

extend

your

application-specific

business

objects

to

include

status

information.

v

Extend

a

business

object

by

adding

an

additional

status

attribute

or

by

overloading

an

existing

attribute

with

a

status

value.

When

the

Update

operation

receives

a

request,

it

can

check

the

status

attribute.

If

it

is

set

to

the

inactive

value,

the

operation

is

really

a

delete.

The

Update

operation

can

then

set

the

business

object

verb

to

Delete

and

call

the

Delete

operation

to

handle

deleted

child

business

objects.

Outcome

status

for

Update

verb

processing

The

Update

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

39..

Table

39.

possible

outcome

status

for

Java

Update

verb

processing

Update

condition

Java

outcome

status

If

the

application

entity

exists,

the

Update

operation:

v

modifies

the

data

in

the

application

entity

v

returns

a

“Success”

outcome

status

SUCCEED

If

a

row

or

entity

does

not

exist,

the

Update

operation:

v

creates

the

application

entity

v

returns

the

“Value

Changed”

outcome

status

to

indicate

that

the

connector

has

changed

the

business

object

VALCHANGE

If

the

Update

operation

is

unable

to

create

the

application

entity,

it:

v

fills

a

return-status

descriptor

with

information

about

the

cause

of

the

update

error

v

returns

a

“Fail”

outcome

status

FAIL

Update

Update [D]

Update [D]

Update

Update [D]

Update

Create

No Change

Top-level
bus object

Figure

39.

Update

request

business

object

from

a

logical-delete

connector

102

Connector

Development

Guide

for

Java

Table

39.

possible

outcome

status

for

Java

Update

verb

processing

(continued)

Update

condition

Java

outcome

status

If

any

object

identified

as

a

foreign

key

is

missing

from

the

application,

the

Update

operation:

v

fills

a

return-status

descriptor

with

information

about

the

cause

of

the

update

error

v

returns

a

“Fail”

outcome

status

FAIL

Note:

When

the

connector

framework

receives

the

VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

the

Delete

verb

For

a

delete,

an

application

might

support

either

of

the

implementations

shown

in

Table

40.

Table

40.

Delete

Implementations

Delete

implementation

Description

Verb-processing

support

Physical

delete

Physically

removes

the

specified

application

entity.

Delete

operation

Logical

delete

Does

not

actually

remove

the

entity;

instead,

it

marks

it

with

a

special

“deleted”

status.

Update

operation

Note:

If

the

application

does

not

allow

any

type

of

delete

operation,

the

connector

can

return

a

“Fail”

outcome

status.

The

Delete

operation,

discussed

in

this

section,

performs

a

true

physical

deletion

of

data

in

the

application.

Connectors

for

applications

that

perform

logical

delete

operations

should

handle

logical

deletes

in

the

Update

operation.

For

more

information,

see

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

100.

When

the

business

object

handler

obtains

a

Delete

verb

from

the

request

business

object,

it

must

ensure

that

a

physical

delete

is

performed;

that

is,

the

application

deletes

the

application

entity

whose

type

is

indicated

by

the

business

object

definition,

as

follows:

v

For

a

flat

business

object,

the

Delete

verb

indicates

that

the

specified

entity

must

be

deleted.

v

For

a

hierarchical

business

object,

the

Delete

verb

indicates

that

the

top-level

business

object

must

be

deleted.

Depending

on

the

application

policies,

the

it

might

delete

associated

entities

representing

child

business

objects.

Note:

For

a

table-based

application,

the

entire

application

entity

must

be

deleted

from

the

application

database,

usually

deleting

a

row

in

one

or

more

database

tables.

This

section

provides

the

following

information

to

help

process

a

Delete

verb:

v

“Standard

processing

for

a

Delete

verb”

on

page

104

v

“Outcome

status

for

Delete

verb

processing”

on

page

104

Chapter

4.

Request

processing

103

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

a

Delete

method

handles

processing

for

the

Delete

verb.

Standard

processing

for

a

Delete

verb

The

following

steps

outline

the

standard

processing

for

a

Delete

verb:

1.

Perform

a

recursive

retrieve

on

the

request

business

object

to

get

all

data

in

the

application

that

is

associated

with

the

top-level

business

object.

2.

Perform

a

recursive

delete

on

the

entities

represented

by

the

request

business

object,

starting

from

the

lowest

level

entities

and

ascending

to

the

top-level

entity.

Note:

Delete

operations

might

be

limited

by

application

functionality.

For

example,

cascading

deletes

might

not

always

be

the

desired

operation.

If

you

are

using

an

application

API,

it

might

automatically

complete

the

delete

operation

appropriately.

If

you

are

not

using

an

application

API,

you

might

need

to

determine

whether

the

connector

should

delete

child

entities

in

the

application.

If

a

child

entity

is

referenced

by

other

entities,

it

might

not

be

appropriate

to

delete

it.

Outcome

status

for

Delete

verb

processing

The

Delete

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

41..

Table

41.

Possible

outcome

status

for

Java

Delete

verb

processing

Delete

condition

Java

outcome

status

InterChange

Server

only:

In

most

cases,

the

connector

returns

a

“Value

Changed”

outcome

status

to

enable

the

system

to

clean

up

the

relationship

tables

after

a

delete

operation.

VALCHANGE

All

integration

brokers:

If

the

Delete

operation

is

unsuccessful,

it:

v

fills

a

return-status

descriptor

with

additional

information

about

the

cause

of

the

delete

error

v

returns

a

“Fail”

outcome

status

FAIL

Note:

When

the

connector

framework

receives

the

VALCHANGE

outcome

status,

it

includes

a

business

object

in

its

response

to

InterChange

Server.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

the

Exists

verb

When

the

business

object

handler

obtains

an

Exists

verb

from

the

request

business

object,

it

must

determine

whether

an

application

entity,

whose

type

is

indicated

by

the

business

object

definition,

exists.

This

operation

enables

an

integration

broker

to

verify

that

an

entity

exists

before

the

integration

broker

performs

an

operation

on

the

entity.

As

an

example,

assume

that

a

customer

site

wants

to

synchronize

Order,

Customer,

and

Item

entities

in

the

source

and

destination

applications.

Before

synchronizing

an

order,

the

user

wants

to

ensure

that

the

customer

entity

referenced

by

the

Order

business

object

already

exists

in

the

destination

application

database.

In

addition,

the

user

wants

to

ensure

that

each

Item

entity

referenced

by

the

OrderLineItem

child

business

objects

also

exists

in

the

destination

application.

104

Connector

Development

Guide

for

Java

Note:

For

a

table-based

application,

the

Exists

method

checks

for

the

existence

of

an

entity

in

an

application

database,

usually

checking

for

a

row

in

a

database

table.

The

user

can

configure

the

integration

broker

to

call

the

connector

with

a

Customer

business

object

that

has

the

Exists

verb

and

the

primary

keys

set.

In

this

way,

the

integration

broker

can

verify

that

the

customer

already

exists

in

the

application.

Similarly,

the

user

can

configure

the

integration

broker

to

call

the

connector

with

referenced

Item

business

objects

that

have

the

Exists

verb

and

primary

keys

set.

The

user

might

decide

to

halt

the

synchronization

of

the

Order

if

the

verification

of

the

existence

of

the

application

entities

fails.

This

section

provides

the

following

information

to

help

implement

an

Exists

verb:

v

“Standard

processing

for

an

Exists

verb”

v

“Outcome

status

for

Exists

verb

processing”

Note:

You

can

modularize

your

business

object

handler

so

that

each

supported

verb

is

handled

in

a

separate

Java

method.

If

you

follow

this

structure,

an

Exists

method

handles

processing

for

the

Exists

verb.

Standard

processing

for

an

Exists

verb

The

standard

behavior

of

the

Exists

method

is

to

query

the

application

database

for

the

existence

of

a

top-level

business

object.

Outcome

status

for

Exists

verb

processing

The

Exists

operation

should

return

one

of

the

outcome-status

values

shown

in

Table

42..

Table

42.

Possible

outcome

status

for

Java

Exists

verb

processing

Exists

condition

Java

outcome

status

If

the

application

entity

exists,

the

Exists

operation

returns

“Success”.

SUCCEED

If

the

Exists

operation

is

unsuccessful

in

retrieving

the

top-level

object,

it:

v

fills

a

return-status

descriptor

v

returns

a

“Fail”

outcome

status

FAIL

Processing

business

objects

A

business

object

handler’s

role

is

to

deconstruct

a

request

business

object,

process

the

request,

and

perform

the

requested

operation

in

the

application.

To

do

this,

a

business

object

handler

extracts

verb

and

attribute

information

from

the

request

business

object

and

generates

an

API

call,

SQL

statement,

or

other

type

of

application

interaction

to

perform

the

operation.

Basic

business

object

processing

involves

extracting

metadata

from

the

business

object’s

application-specific

information

(if

it

exists)

and

accessing

the

attribute

values.

The

actions

to

take

on

the

attribute

value

depend

on

whether

the

business

object

is

flat

or

hierarchical.

This

section

provides

an

overview

on

how

a

business

object

handler

can

process

the

following

kinds

of

business

objects:

v

“Processing

flat

business

objects”

on

page

106

v

“Processing

hierarchical

business

objects”

on

page

108

Chapter

4.

Request

processing

105

Processing

flat

business

objects

This

section

provides

the

following

information

on

how

to

process

flat

business

objects:

v

“Representing

a

flat

business

object”

v

“Accessing

simple

attributes”

on

page

107

Representing

a

flat

business

object

If

a

business

object

does

not

contain

any

other

business

objects

(called

child

business

objects),

it

is

called

a

flat

business

object.

All

the

attributes

in

a

flat

business

object

are

simple

attribute;

that

is,

each

attribute

contains

an

actual

value,

not

a

reference

to

another

business

object.

Suppose

you

have

to

perform

verb

processing

on

an

example

business

object

named

Customer.

This

business

object

represents

a

single

database

table

in

a

sample

table-based

application.

The

database

table

is

named

customer,

and

it

contains

customer

data.

Figure

40

shows

the

Customer

business

object

definition

and

the

corresponding

customer

table

in

the

application.

As

Figure

40

shows,

the

example

Customer

business

object

has

four

simple

attributes:

CustomerId,

CustomerName,

CustomerStatus,

and

CustomerRegion.

These

attributes

correspond

to

columns

in

the

customer

table.

The

business

object

also

includes

the

required

ObjectEventId

attribute.

Note:

The

ObjectEventId

attribute

is

used

by

the

IBM

WebSphere

business

integration

system

and

does

not

correspond

to

a

column

in

an

application

table.

This

attribute

is

automatically

added

to

business

objects

by

Business

Object

Designer.

Figure

41

shows

an

expanded

business

object

definition

and

an

instance

of

the

business

object.

The

business

object

definition

contains

the

business

object

name,

and

the

attribute

name,

properties,

and

application-specific

information.

The

business

object

instance

contains

only

the

business

object

name,

the

active

verb,

and

the

attribute

names

and

values.

Application customer tableBusiness object definition

CustomerId

CustomerName

Name Status RegionID

CustomerStatus

CustomerRegion

ObjectEventId

Customer

Figure

40.

A

Flat

business

object

and

corresponding

application

table

106

Connector

Development

Guide

for

Java

Accessing

simple

attributes

After

the

verb

operation

has

accessed

information

it

needs

within

the

business

object

definition,

it

often

needs

to

access

information

about

attributes.

Attribute

properties

include

the

cardinality,

key

or

foreign

key

designation,

and

maximum

length.

For

example,

the

example

Create

method

needs

to

obtain

the

attribute’s

application-specific

information.

A

connector

business

object

handler

typically

uses

the

attribute

properties

to

decide

how

to

process

the

attribute

value.

Figure

42

illustrates

business

object

attribute

properties

of

the

CustomerId

attribute

from

the

business

object

in

Figure

41.

Each

attribute

has

a

zero-based

integer

index

(ordinal

position)

within

the

business

object

definition.

For

example,

as

Figure

42

shows,

the

CustomerId

attribute

would

be

accessed

with

an

ordinal

position

of

zero

(0),

the

CustomerName

attribute

with

an

ordinal

position

of

one

(1),

and

so

on.

The

Java

connector

library

provides

access

to

an

attribute

through

its

name

or

ordinal

position.

For

the

business

object

handler

that

handles

the

flat

Customer

business

object,

deconstructing

a

business

object

includes

the

following

steps:

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Business object definition

CustomerId = 1150

CustomerStatus = Active

CustomerName = Jones

Verb = Create

Type = Integer

Type = String

Type = String

CustomerRegion

AppSpecificInfo = cust_region

CustomerRegion = North

Business object instance

IsKey = True

Customer Customer

Type = String

ObjectEventId

Figure

41.

A

flat

business

object

with

application-specific

information

Business Object Name
Version
AppSpecificInf o =

Attribute 0

Name = CustomerId

Type = simple

Key = true

Foreign Key = false

Max Length

Required = true

Cardinality = 1

Attribute properties

Default Value

Customer
business object definition

AppSpecificInf o =

AppSpecificInf o =

Attribute 1

Figure

42.

Business

object

attribute

properties

Chapter

4.

Request

processing

107

1.

Extract

the

table

and

column

names

from

the

application-specific

information

in

the

business

object

definition.

2.

Extract

the

values

of

the

attributes

from

the

business

object

instance.

As

Figure

41

shows,

the

Customer

business

object

definition

is

designed

for

a

metadata-driven

connector.

Its

business

object

definition

includes

application-specific

information

that

the

verb

operation

uses

to

locate

the

application

entity

upon

which

to

operation.

The

application-specific

information

is

designed

as

shown

in

Table

43.

Table

43.

Application-specific

information

for

a

table-based

application

Application-specific

information

Purpose

Business

object

definition

The

name

of

application

database

table

associated

with

this

business

object

Attribute

The

name

of

the

application

table’s

column

associated

with

this

attribute

Note:

Application-specific

information

is

also

used

to

store

information

on

foreign

keys

and

other

kinds

of

relationships

between

entities

in

the

application

database.

A

metadata-driven

connector

can

use

this

information

to

build

a

SQL

statement

or

an

application

API

call.

Processing

hierarchical

business

objects

Business

objects

are

hierarchical:

parent

business

objects

can

contain

child

business

objects,

which

can

in

turn

contain

child

business

objects,

and

so

on.

A

hierarchical

business

object

is

composed

of

a

top-level

business

object,

which

is

the

business

object

at

the

very

top

of

the

hierarchy,

and

child

business

objects,

which

are

all

business

objects

under

the

top-level

business

object.

A

child

business

object

is

contained

in

a

parent

object

as

an

attribute.

This

section

provides

the

following

information

on

how

to

process

hierarchical

business

objects:

v

“Representing

Top-Level

and

Child

Business

Objects”

v

“Accessing

child

business

objects”

on

page

110

Representing

Top-Level

and

Child

Business

Objects

If

a

top-level

business

object

has

child

business

objects,

it

is

the

parent

of

its

children.

Similarly,

if

a

child

business

object

has

children,

it

is

the

parent

of

its

children.

The

parent/child

terminology

describes

the

relationships

between

business

objects,

and

it

may

also

be

used

to

describe

the

relationship

between

application

entities.

There

are

two

types

of

containment

relationships

between

parent

and

child

business

objects:

v

Cardinality

1

containment—the

attribute

contains

a

single

child

business

object.

v

Cardinality

n

containment—the

attribute

contains

several

child

business

objects

in

a

structure

called

a

business

object

array.

Figure

43

shows

a

typical

hierarchical

business

object.

The

top-level

business

object

has

both

cardinality

1

and

cardinality

n

relationships

with

child

business

objects.

108

Connector

Development

Guide

for

Java

In

a

typical

table-based

application,

relationships

between

entities

are

represented

by

primary

keys

and

foreign

keys

in

the

database,

where

the

parent

entity

contains

the

primary

keys

and

the

child

entity

contains

the

foreign

keys.

An

hierarchical

business

object

can

be

organized

in

a

similar

way:

v

In

a

cardinality

1

type

(single

cardinality)

of

relationship,

each

parent

business

object

relates

to

a

single

child

business

object.

The

child

business

object

typically

contains

one

or

more

foreign

keys

whose

values

are

the

same

as

the

corresponding

primary

keys

in

the

parent

business

object.

Although

applications

might

structure

the

relationships

between

entities

in

different

ways,

a

single

cardinality

relationship

for

an

application

that

uses

foreign

keys

might

be

represented

as

shown

in

Figure

44.

v

In

a

cardinality

n

type

(multiple

cardinality)

relationship,

each

parent

business

object

can

relate

to

zero

or

more

child

business

objects

in

an

array

of

child

business

objects.

Each

child

business

object

within

the

array

contains

foreign

key

attributes

whose

values

are

the

same

as

the

corresponding

values

in

the

primary

key

attributes

of

the

parent

business

object.

A

multiple

cardinality

relationship

might

be

represented

as

shown

in

Figure

45.

Name

Verb

Attribute

Name

Verb

Cardinality n
containment Name

Verb

Cardinality 1
containment

Attribute

Attribute

Attribute

Attribute

Figure

43.

Hierarchical

business

object

InvoiceId (PK)

AddressId

InvoiceId (FK)

InvoiceNumber

City

InvoiceDate

Child business object

Parent business object

State

SoldToAddress

Foreign key
relationship

Invoice

SoldToAddress

Figure

44.

Business

objects

with

single

cardinality

Chapter

4.

Request

processing

109

Note:

In

Figure

44

and

Figure

45,,

the

string

“PK”

appears

next

to

an

attribute

that

serves

as

a

primary

key

in

the

business

object.

The

string”FK”

appears

next

to

an

attribute

that

serves

as

a

foreign

key.

Accessing

child

business

objects

As

part

of

its

verb

processing,

the

doVerbFor()

method

needs

to

handle

any

hierarchical

business

objects.

To

process

a

hierarchical

business

object,

the

doVerbFor()

method

takes

the

same

basic

steps

as

it

does

to

process

a

flat

business

object:

it

obtains

any

application-specific

information

and

then

accesses

the

attribute.

However,

if

the

attribute

contains

a

child

business

object,

doVerbFor()

must

take

the

following

steps

to

access

the

child

business

object:

1.

Determine

whether

the

attribute

type

is

type

OBJECT

by

calling

the

isObjectType()

method.

The

OBJECT

type

indicates

that

the

attribute

is

a

complex

attribute;

that

is,

it

contains

a

business

object

rather

than

a

simple

value.

The

OBJECT

attribute-type

constant

is

defined

in

the

CWConnectorAttrType

class.

The

isObjectType()

method

returns

True

if

an

attribute

is

complex;

that

is,

if

it

contains

a

business

object.

2.

When

the

doVerbFor()

method

finds

an

attribute

contains

a

business

object,

it

checks

the

cardinality

of

the

attribute

using

isMultipleCard().

If

the

attribute

has

single

cardinality

(cardinality

1),

the

method

can

perform

the

requested

operation

on

the

child.

One

way

to

perform

an

operation

on

a

child

business

object

is

to

recursively

call

doVerbFor()

or

a

verb

method

on

the

child

object.

However,

such

a

recursive

call

assumes

that

the

child

business

object

is

set

as

follows:

v

If

the

verb

on

a

child

business

object

is

set,

the

method

should

perform

the

specified

operation.

v

If

the

verb

on

the

child

business

object

is

not

set,

the

verb

method

should

set

the

verb

in

the

child

business

object

to

the

verb

in

the

top-level

business

object

before

calling

another

method

on

the

child.

If

an

attribute

has

multiple

cardinality

(cardinality

n),

the

attribute

contains

an

array

of

child

business

objects.

In

this

case,

the

connector

must

access

the

contents

of

the

array

before

it

can

process

individual

child

business

objects.

From

the

array,

the

doVerbFor()

method

can

access

individual

business

objects:

v

To

access

individual

business

objects,

the

method

can

get

the

number

of

child

business

objects

in

the

array

with

the

getObjectCount()

method

and

then

iterate

through

the

objects.

Verb

AddressId

CustomerName
Array of child

business objects

Parent business object

CustomerId (PK)

CustomerId (FK)

Address

Address

Foreign key
relationship

Customer

Address

Verb

Figure

45.

Business

objects

with

multiple

cardinality

110

Connector

Development

Guide

for

Java

v

To

get

an

individual

child

business

object,

the

method

can

obtain

the

business

object

at

one

element

of

the

array.

Once

the

doVerbFor()

method

has

access

to

a

child

business

object,

it

can

recursively

process

the

child

as

needed.

Note:

A

connector

should

never

create

arrays

for

child

business

objects.

An

array

is

always

associated

with

a

business

object

definition

when

cardinality

is

n.

When

a

connector

a

request

business

object,

the

business

object

includes

all

its

arrays

even

though

some

or

all

of

the

arrays

might

be

empty.

If

an

array

contains

no

child

business

objects,

it

is

an

array

of

size

0.

You

might

want

to

modularize

your

verb

operation

so

that

the

main

verb

method

calls

a

submethod

to

process

child

objects.

For

a

business

object

such

as

the

one

shown

in

Figure

46,,

a

Create

method

might

first

create

the

application

entity

for

the

parent

Customer

business

object,

and

then

call

the

submethod

to

traverse

the

parent

business

object

to

find

attributes

referring

to

contained

business

objects.

When

the

submethod

finds

an

attribute

that

is

an

OBJECT

type,

it

can

process

the

attribute

as

needed.

For

example,

the

submethod

processes

the

Address

attribute

by

retrieving

each

child

business

object

in

the

Address

array

and

recursively

calling

doCreate().

One

by

one,

the

main

method

creates

each

address

entity

in

the

database

until

all

Address

children

in

the

array

are

processed.

Finally,

the

submethod

processes

the

single

cardinality

CustProfile

business

object.

For

more

information

about

how

to

access

a

child

business

object,

see

“Accessing

child

business

objects”

on

page

171.

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Address

Place Holder

CustProfile

Type = Address
Relationship = Containment
Cardinality = n

Type = CustProfile
Relationship = Containment
Cardinality = 1

AddressId

ObjectEventId

AddressInfo

CustomerId

AppSpecificInfo = addr_key

AppSpecificInfo = address

CustProfileId

CustomerId

AppSpecificInfo = profile_key

Cardinality 1

Cardinality n
arrayCustomer Address

AppSpecificInfo= address

CustProfile
AppSpecificInfo = profile

AppSpecificInfo = cust_key

AppSpecificInfo= cust_key

ObjectEventId

Figure

46.

Example

of

a

hierarchical

business

object

definition

Chapter

4.

Request

processing

111

Indicating

the

connector

response

Before

the

doVerbFor()

method

exits,

it

must

prepare

the

response

it

sends

back

to

the

connector

framework.

This

response

indicates

the

success

(or

lack

thereof)

of

the

verb

processing.

The

connector

framework,

which

has

invoked

doVerbFor(),

uses

this

information

to

determine

its

next

action

and

to

build

the

response

it

returns

to

the

integration

broker.

The

doVerbFor()

method

can

provide

the

response

information

in

Table

44

to

the

connector

framework.

Table

44.

Response

information

from

the

doVerbFor()

method

Response

information

How

the

response

is

returned

Outcome

status

Integer

return

code

of

doVerbFor()

Return-status

descriptor

Return-status

descriptor

that

was

passed

in

as

an

argument—Connector

framework

passes

in

an

empty

return-status

descriptor

as

an

argument

to

doVerbFor().

The

method

can

update

this

descriptor

with

a

message

and

status

value

to

provide

informational,

warning,

or

error

status.

Response

business

object

Request

business

object

that

was

passed

in

as

an

argument—Connector

framework

passes

in

the

request

business

object

as

an

argument

to

doVerbFor().

The

method

can

update

this

request

business

object

with

attribute

values

to

provide

a

response

business

object.

For

information

on

how

to

send

this

response

information

for

a

Java

connector,

see

“Sending

the

verb-processing

response”

on

page

167.

Handling

loss

of

connection

to

the

application

Each

time

the

connector

framework

calls

the

connector

application-specific

component,

the

application-specific

code

validates

that

the

connection

with

the

application

is

still

open.

For

a

business

object

handler,

this

check

should

be

done

in

either

the

doVerbFor()

method

or

in

each

verb

method.

If

the

connection

has

been

lost,

the

doVerbFor()

method

should

log

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

The

method

should

also

return

a

APPRESPONSETIMEOUT

outcome

status

to

inform

the

connector

controller

that

the

application

is

not

responding.

When

this

occurs,

the

process

in

which

the

connector

runs

is

stopped.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

of

business

object

requests.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

156.

112

Connector

Development

Guide

for

Java

Chapter

5.

Event

notification

This

chapter

presents

information

on

how

to

provide

event

notification

in

a

connector.

Event

notification

implements

a

mechanism

to

interact

with

an

application

to

detect

changes

made

to

application

business

entities.

This

chapter

provides

the

following

information

about

how

to

implement

an

event-notification

mechanism:

v

“Overview

of

an

event-notification

mechanism”

v

“Implementing

an

event

store

for

the

application”

on

page

114

v

“Implementing

event

detection”

on

page

119

v

“Implementing

event

retrieval”

on

page

124

v

“Implementing

the

poll

method”

on

page

126

v

“Special

considerations

for

event

processing”

on

page

130

Note:

For

an

introduction

to

event

notification,

see

“Event

notification”

on

page

20.

Overview

of

an

event-notification

mechanism

An

event-notification

mechanism

enables

a

connector

to

determine

when

an

entity

within

an

application

changes.

Implementation

of

an

event-notification

mechanism

is

a

three-stage

process,

as

Table

45

shows.

Table

45.

Stages

of

an

event-notification

mechanism

Stage

of

event-notification

mechanism

For

more

information

Create

an

event

store

that

the

application

uses

to

hold

notifications

of

events

that

have

changed

application

business

entities.

“Implementing

an

event

store

for

the

application”

on

page

114

Implement

an

event

detection

mechanism

within

the

application.

Event

detection

notices

a

change

in

an

application

entity

and

writes

an

event

record

containing

information

about

the

change

to

an

event

store

in

the

application.

“Implementing

event

detection”

on

page

119

Implement

an

event

retrieval

mechanism

(such

as

a

polling

mechanism)

within

the

connector

to

retrieve

events

from

the

event

store

and

take

the

appropriate

action

to

notify

other

applications.

“Implementing

an

event

store

for

the

application”

on

page

114

Note:

For

design

considerations

for

an

event-notification

mechanism,

see

“Event

notification”

on

page

20.

In

many

cases,

an

application

must

be

configured

or

modified

before

the

connector

can

use

the

event-notification

mechanism.

Typically,

this

application

configuration

occurs

as

part

of

the

installation

of

the

connector’s

application-specific

component.

Modifications

to

the

application

might

include

setting

up

a

user

account

in

the

application,

creating

an

event

store

and

event

table

in

the

application

database,

inserting

stored

procedures

in

the

database,

or

setting

up

an

inbox.

If

the

application

generates

event

records,

it

might

be

necessary

to

configure

the

text

of

the

event

records.

©

Copyright

IBM

Corp.

2000,

2004

113

The

connector

might

also

need

to

be

configured

to

use

the

event-notification

mechanism.

For

example,

a

system

administrator

might

need

to

set

connector-specific

configuration

properties

to

the

names

of

the

event

store

and

event

table.

Implementing

an

event

store

for

the

application

An

event

store

is

a

persistent

cache

in

the

application

where

event

records

are

saved

until

the

connector

can

process

them.

The

event

store

might

be

a

database

table,

application

event

queue,

email

inbox,

or

any

type

of

persistent

store.

If

the

connector

is

not

operational,

a

persistent

event

store

enables

the

application

to

detect

and

save

event

records

until

the

connector

becomes

operational.

This

section

provides

the

following

information

about

an

event

store:

v

“Standard

contents

of

an

event

record”

v

“Possible

implementations

of

an

event

store”

on

page

116

Standard

contents

of

an

event

record

Event

records

must

encapsulate

everything

a

connector

needs

to

process

an

event.

Each

event

record

should

include

enough

information

that

the

connector

poll

method

can

retrieve

the

event

data

and

build

a

business

object

that

represents

the

event.

Note:

Although

different

event

retrieval

mechanisms

might

exist,

this

section

describes

event

records

in

the

context

of

the

most

common

mechanism,

polling.

If

the

application

provides

an

event

detection

mechanism

that

writes

event

records

to

an

event

store,

the

event

record

should

provide

discrete

detail

on

the

object

and

verb.

If

the

application

does

not

provide

sufficient

detail,

it

might

be

possible

to

configure

it

to

provide

this

level

of

detail.

Table

46

lists

the

standard

elements

for

event

records.

The

sections

that

follow

include

more

information

on

certain

fields.

Table

46.

Standard

elements

of

an

event

record

Element

Description

For

more

information

Event

identifier

(ID)

A

unique

identifier

for

the

event.

“Event

identifier”

on

page

115

Business

object

name

The

name

of

the

business

object

definition

as

it

appears

in

the

repository.

“Business

object

name”

on

page

115

Verb

The

name

of

the

verb,

such

as

Create,

Update,

or

Delete.

“Event

verb”

on

page

115

Object

key

The

primary

key

for

the

application

entity.

“Object

key”

on

page

115

Priority

The

priority

of

the

event

in

the

range

0

-

n,

where

0

is

the

highest

priority.

“Processing

events

by

event

priority”

on

page

129

Timestamp

The

time

at

which

the

application

generated

the

event.

None.

Status

The

status

of

the

event.

This

is

used

for

archiving

events.

“Event

status”

on

page

116

Description

A

text

string

describing

the

event.

None

Connector

identifier

(ID)

An

identifier

for

the

connector

that

will

process

the

event.

“Event

distribution”

on

page

129

114

Connector

Development

Guide

for

Java

Note:

A

minimal

set

of

information

in

an

event

record

includes

the

event

ID,

business

object

name,

verb,

and

object

key.

You

may

also

want

to

set

a

priority

for

an

event

so

that

if

large

numbers

of

events

are

queued

in

the

event

store,

the

connector

can

select

events

in

order

of

priority.

Business

object

name

You

can

use

the

name

of

the

business

object

definition

to

check

for

event

subscriptions.

Note

that

the

event

record

should

specify

the

exact

name

of

the

business

object

definition,

such

as

SAP_Customer

rather

than

Customer.

Event

verb

The

verb

represents

the

kind

of

event

that

occurred

in

the

application,

such

as

Create,

Update,

or

Delete.

You

can

use

the

verb

to

check

for

event

subscriptions.

Note:

Events

that

represent

deletion

of

application

data

should

generate

event

records

with

the

Delete

verb.

This

is

true

even

for

logical

delete

operations,

where

the

delete

is

an

update

of

a

status

value

to

inactive.

For

more

information,

see

“Processing

Delete

events”

on

page

130.

The

verb

that

the

connector

sets

in

the

business

object

should

be

same

verb

that

was

specified

in

the

event

record.

Object

key

The

entity’s

object

key

enables

the

connector

to

retrieve

the

full

set

of

entity

data

if

the

object

has

subscribing

events.

Note:

The

only

data

from

the

application

entity

that

event

records

should

include

are

the

business

object

name,

active

verb,

and

object

key.

Storing

additional

entity

data

in

the

event

store

requires

memory

and

processing

time

that

might

be

unneeded

if

no

subscriptions

exist

for

the

event.

The

object

key

column

must

use

name/value

pairs

to

set

data

in

the

event

record.

For

example,

if

ContractId

is

the

name

of

an

attribute

in

the

business

object,

the

object

key

field

in

the

event

record

would

be:

ContractId=45381

Depending

on

the

application,

the

object

key

may

be

a

concatenation

of

several

fields.

Therefore,

the

connector

should

support

multiple

name/value

pairs

that

are

separated

by

a

delimiter,

for

example

ContractId=45381:HeaderId=321.

The

delimiter

should

be

configurable

as

set

by

the

PollAttributeDelimiter

connector

configuration

property.

The

default

value

for

the

delimiter

is

a

colon

(:).

Event

identifier

Each

event

must

have

a

unique

identifier.

This

identifier

can

be

an

number

generated

by

the

application

or

a

number

generated

by

a

scheme

that

your

connector

uses.

As

an

example

of

an

event

ID

numbering

scheme,

the

event

may

generate

a

sequential

identifier,

such

as

00123,

to

which

the

connector

adds

its

name.

The

resulting

object

event

ID

is

ConnectorName_00123.

Another

technique

might

be

to

generate

a

timestamp,

resulting

in

an

identifier

such

as

ConnectorName_06139833001001.

Your

connector

can

optionally

store

the

event

ID

in

the

ObjectEventId

attribute

in

a

business

object.

The

ObjectEventId

attribute

is

a

unique

value

that

identifies

each

event

in

the

IBM

WebSphere

business

integration

system.

Because

this

attribute

is

required,

the

connector

framework

generates

a

value

for

it

if

the

application-specific

connector

does

not

provide

a

value.

If

no

values

for

Chapter

5.

Event

notification

115

ObjectEventIds

are

provided

for

hierarchical

business

objects,

the

connector

framework

generates

values

for

the

parent

business

object

and

for

each

child.

If

the

connector

generates

ObjectEventId

values

for

hierarchical

business

objects,

each

value

must

be

unique

across

all

business

objects

in

the

hierarchy

regardless

of

level.

Event

status

A

Java

connector

should

use

the

event-status

constants,

which

are

defined

in

CWConnectorEventStatusConstants

class.

Table

47

lists

the

event-status

constants.

Table

47.

Event-status

values

for

a

Java

connector

Event-status

constant

Description

READY_FOR_POLL

Ready

for

poll

SUCCESS

Sent

to

the

integration

broker

UNSUBSCRIBED

No

subscriptions

for

event

IN_PROGRESS

Event

is

in

progress

ERROR_PROCESSING_EVENT

Error

in

processing

the

event.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

ERROR_POSTING_EVENT

Error

in

sending

the

event

to

the

integration

broker.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

ERROR_OBJECT_NOT_FOUND

Error

in

finding

the

event

in

the

application

database

Possible

implementations

of

an

event

store

The

application

might

use

any

of

the

following

as

the

event

store:

v

“Event

inbox”

v

“Event

table”

on

page

117

v

“Email”

on

page

118

v

“Flat

files”

on

page

119

Note:

Some

applications

might

provide

multiple

ways

of

keeping

track

of

changes

to

application

entities.

For

example,

an

application

might

provide

workflow

for

some

database

tables

and

user

exits

for

other

tables.

If

this

is

the

case,

you

may

have

to

piece

together

an

event

notification

mechanism

that

handles

events

in

one

way

for

some

business

objects

and

another

way

for

other

business

objects.

Event

inbox

Some

applications

have

a

built-in

inbox

mechanism.

This

inbox

mechanism

can

be

used

to

transfer

information

about

application

events

to

the

connector,

as

follows:

v

Event

detection—you

might

need

to

identify

the

entities

and

events

that

trigger

entries

in

the

inbox.

v

Event

retrieval—the

connector’s

application-specific

component

can

retrieve

the

entries.

If

an

API

is

available

that

provides

interfaces

to

access

the

inbox,

the

application-specific

component

can

use

this

API.

Figure

47

illustrates

this

interaction.

116

Connector

Development

Guide

for

Java

Event

table

An

application

can

use

its

application

database

to

store

event

information.

It

can

create

a

special

event

table

in

this

database

to

use

as

the

event

store

for

event

records.

This

table

is

created

during

the

installation

of

the

connector.

With

an

event

table

as

an

event

store:

v

Event

detection—when

an

event

of

interest

to

the

connector

occurs,

the

application

places

an

event

record

in

the

event

table.

v

Event

retrieval—the

connector

application-specific

component

polls

the

event

table

periodically

and

processes

any

events.

Applications

often

provide

database

(DB)

APIs

that

enable

the

connector

to

gain

access

to

the

contents

of

the

event

table.

Figure

48

illustrates

this

interaction.

Note:

Avoid

full

table

scans

of

existing

application

tables

as

a

way

of

determining

whether

application

tables

have

changed.

The

recommended

approach

is

to

populate

an

event

table

with

event

information

and

poll

the

event

table.

If

your

connector

supports

archiving

of

events,

you

can

also

create

an

archive

table

in

the

application

database

to

hold

the

archived

events.

Table

48

shows

a

recommended

schema

for

event

and

archive

tables.

You

can

extend

this

schema

as

needed

for

your

application.

Table

48.

Recommended

schema

for

event

and

archive

tables

Column

name

Type

Description

event_id

Use

appropriate

type

for

database

The

unique

key

for

the

event.

System

constraints

determine

format.

object_name

Char

80

Complete

name

of

the

business

object.

object_verb

Char

80

Event

verb.

object_key

Char

80

The

primary

key

of

the

object.

event_priority

Integer

The

priority

of

the

event,

where

0

is

the

highest

priority.

event_time

DateTime

The

timestamp

for

the

event

(time

at

which

the

event

occurred).

Application

Inbox Inbox
API

Connector

User action

Figure

47.

An

event

inbox

as

an

event

store

Event table

Application

User
action

Application database

Connector

D
B

in
te

rf
ac

e

Event detection Event retrieval

Figure

48.

An

event

table

as

an

event

store

Chapter

5.

Event

notification

117

Table

48.

Recommended

schema

for

event

and

archive

tables

(continued)

Column

name

Type

Description

event_processed

DateTime

For

the

archive

table

only.

The

time

at

which

the

event

was

handed

to

the

connector

framework.

event_status

Integer

For

possible

status

values,

see

“Event

status”

on

page

116.

event_description

Char

255

Event

description

or

error

string

connector_id

Integer

Id

for

the

connector

(if

applicable)

Email

You

can

use

an

email

system

as

an

event

store:

v

Event

detection—the

application

sends

an

email

message

to

a

mailbox

when

an

application

event

occurs.

v

Event

retrieval—the

connector’s

application-specific

component

checks

the

mailbox

and

retrieves

the

event

message.

Figure

49

illustrates

this

interaction.

For

an

email-based

event

store,

the

mailbox

used

for

a

connector

must

be

configurable,

and

the

actual

name

of

the

inbox

used

should

reflect

its

usage.

The

following

list

specifies

the

format

and

recommended

names

for

fields

in

event

messages.

v

Message

attributes

–

Email

messages

usually

have

certain

attributes,

such

as

a

creation

date

and

time,

and

a

priority.

You

may

be

able

to

use

these

attributes

in

the

event

notification

mechanism.

For

example,

you

may

be

able

to

use

the

date

and

time

attributes

to

represent

the

date

and

time

at

which

the

event

occurred.

v

Subject

–

The

subject

of

an

event

message

might

have

the

following

format.

In

this

example,

fields

are

separated

by

spaces

for

human-readability,

but

connectors

can

use

a

different

field

delimiter.

object_name

object_verb

event_id

The

event_id

is

the

unique

key

for

the

event.

Depending

on

the

application,

the

event_id

key

may

or

may

not

be

included

in

the

mail

message.

The

event_id

can

be

derived

from

a

combination

of

the

connector

name,

business

object

name,

and

either

the

message

timestamp

or

the

system

time.

v

Body

–

The

body

of

an

event

message

might

contain

a

sequence

of

key/value

pairs

separated

by

delimiters.

These

key/value

pairs

are

the

elements

of

the

object

key.

For

example,

if

a

particular

customer

and

address

are

uniquely

identified

by

the

combination

of

CustomerId

and

AddrSeqNum,

the

body

of

the

mail

message

might

look

like

this:

Application

Mail
client

Sen
ds

ev
en

t

inf
or

m
at

ion

Receives event

information

Mail
system

ConnectorMail
client

Figure

49.

A

mailbox

as

an

event

store

118

Connector

Development

Guide

for

Java

CustomerId

34225

AddrSeqNum

2

The

body

of

the

event

message

can

be

a

list

of

attribute

names

for

the

business

object,

and

the

values

that

should

be

inserted

into

those

attributes.

Flat

files

If

no

other

event

detection

mechanism

is

available,

it

might

be

possible

to

set

up

an

event

store

using

flat

files.

With

this

type

of

event

store:

v

Event

detection—the

event

detection

mechanism

in

the

application

writes

event

records

to

a

file.

v

Event

retrieval—the

connector’s

application-specific

component

locates

the

file

and

reads

the

event

information.

If

the

file

is

not

directly

accessible

by

the

connector

(if,

for

example,

it

was

generated

on

a

mainframe

system),

the

file

must

be

transferred

to

a

location

that

the

connector

can

access.

One

way

of

transferring

files

is

to

use

File

Transfer

Protocol

(FTP).

This

can

be

done

either

internally

in

the

connector

or

using

an

external

tool

to

copy

the

file

from

one

location

to

another.

There

are

other

ways

to

transfer

information

between

files;

the

approach

that

you

choose

depends

on

your

application

and

connector.

Figure

50

illustrates

event

detection

and

retrieval

using

flat

files.

In

this

example,

FTP

is

used

to

transfer

the

event

information

to

a

location

accessible

by

the

connector.

Implementing

event

detection

For

most

connectors,

the

application

must

be

configured

to

implement

the

event

detection

mechanism.

A

system

administrator

does

this

as

part

of

the

connector

installation.

Once

the

application

has

been

configured,

it

can

detect

entity

changes

and

write

event

records

to

the

event

store.

The

information

is

then

picked

up

by

the

connector

and

processed.

In

this

way,

an

event

notification

mechanism

is

implemented

in

both

the

application

and

the

connector.

This

section

provides

the

following

information

about

event

detection:

v

“Event

detection

mechanisms”

v

“Event

detection:

standard

behavior”

on

page

123

Event

detection

mechanisms

Events

can

be

triggered

by

user

actions

in

the

application,

by

batch

processes

that

add

or

modify

application

data,

or

by

database

administrator

actions.

When

an

event

detection

mechanism

is

set

up

in

an

application

and

an

application

event

associated

with

a

business

object

occurs,

the

application

must

detect

the

event

and

write

it

to

the

event

store.

Application

Event
information

File
writer

File
reader

Connector
FTP

Event
information

Figure

50.

Retrieving

event

records

from

flat

files

Chapter

5.

Event

notification

119

Event

detection

mechanisms

are

application

dependent.

Some

applications

provide

an

event

detection

mechanism

for

use

by

clients

such

as

connectors.

The

event

detection

mechanism

may

include

an

event

store

and

a

defined

way

of

inserting

information

about

application

changes

into

the

event

store.

For

example,

one

type

of

implementation

uses

an

event

message

box,

where

the

application

sends

a

message

every

time

it

processes

an

event

in

which

the

connector

is

interested.

The

connector’s

application-specific

component

periodically

polls

the

message

box

for

new

event

messages.

Other

applications

have

no

built-in

event

detection

mechanism

but

have

other

ways

of

providing

information

on

changes

to

application

entities.

If

an

application

does

not

provide

an

event

detection

mechanism,

you

must

use

whatever

mechanism

is

available

to

extract

information

on

entity

changes

for

the

connector.

For

example,

you

may

be

able

to

implement

database

triggers,

use

user

exits

to

call

out

to

a

program

that

writes

to

an

event

store,

or

extract

information

on

application

changes

from

flat

files.

Note:

Although

the

way

in

which

events

are

generated

can

vary

significantly

from

application

to

application,

certain

aspects

of

an

event

notification

mechanism

should

be

consistent

across

all

types

of

applications.

For

example,

all

types

of

event

detection

mechanisms

should

create

event

records

that

have

similar

contents.

Three

common

ways

in

which

events

are

detected

and

written

to

an

event

store

are

discussed

in

the

following

sections:

v

“Form

events”

v

“Workflow”

on

page

121

v

“Database

triggers”

on

page

122

Form

events

Some

form-based

applications

provide

form

events

that

are

executed

when

a

special

user

action

occurs.

To

set

up

event

detection

in

this

way,

you

must

create

a

script

that

executes

when

a

particular

type

of

event

occurs.

When

a

user

opens

a

form

and

performs

an

action

that

has

an

associated

script,

the

script

places

event

records

in

the

event

store.

In

most

cases,

form

events

are

integrated

in

application

business

processes

and

therefore

support

application

business

logic.

However,

only

application

events

that

are

triggered

by

user

actions

are

detected;

if

the

application

database

is

updated

directly

in

other

ways,

such

as

by

a

batch

process,

these

events

are

not

detected.

Figure

51

shows

a

form-based

event

detection

mechanism.

When

a

user

enters

a

new

customer

on

the

Customer

form

and

clicks

OK,

a

script

generates

an

event

record

and

places

it

in

the

event

store.

120

Connector

Development

Guide

for

Java

Workflow

Some

applications

use

an

internal

workflow

system

to

keep

track

of

their

business

processes.

You

may

be

able

to

use

the

workflow

system

to

generate

events

for

event

detection.

For

example,

you

may

be

able

to

define

a

workflow

process

that

inserts

an

entry

in

an

event

store

when

a

particular

operation

occurs.

Alternatively,

the

event

detection

mechanism

might

be

able

to

intercept

information

from

a

workflow

process

and

use

the

information

to

place

an

event

record

in

the

event

store.

In

designing

a

workflow-based

event

detection

mechanism,

you

need

to

determine

at

what

point

in

the

workflow

an

event

record

should

be

written

to

the

event

store

and

then

use

the

available

application

mechanism

to

generate

the

event

record.

Using

a

workflow

system

for

event

detection

ensures

that

event

detection

is

integrated

into

an

application

business

process.

The

workflow

system

can

also

detect

application

events

that

are

generated

automatically

without

user

involvement.

Figure

52

shows

a

workflow-based

event

detection

mechanism.

When

a

particular

operation

occurs,

the

workflow

process

is

started.

The

event

detection

mechanism

receives

the

information

about

the

event

and

writes

a

record

to

the

event

store.

The

workflow

process

continues

with

other

tasks.

ApplicationCustomer

Name:

OK

Form
 event Script

Event
store

Application form

Event
information

Figure

51.

Form-based

event

detection

Chapter

5.

Event

notification

121

Database

triggers

If

the

application

has

no

built-in

method

for

detecting

events

and

the

database

that

the

application

is

running

on

provides

database

triggers,

you

may

be

able

to

implement

row-level

triggers

to

detect

changes

to

application

tables.

The

triggers

are

inserted

in

application

tables

that

correspond

to

business

object

definitions

supported

by

the

connector.

With

this

mechanism,

you

also

need

to

set

up

an

event

table

in

the

application

database

to

store

the

event

records

that

the

triggers

generate.

Whenever

an

application

entity

is

created,

updated,

or

deleted,

a

trigger

inserts

a

row

into

the

event

table.

Each

row

represents

one

event

record,

and

the

event

table

queues

the

events

for

processing

by

the

connector.

Figure

53

shows

a

user

action

that

updates

an

application

Customer

table.

When

the

Customer

table

is

updated,

a

trigger

on

the

table

executes

and

writes

an

event

record

to

the

event

table

in

the

application

database.

If

you

use

database

triggers,

keep

the

following

in

mind:

v

Make

sure

that

any

triggers

you

provide

do

not

overwrite

triggers

already

in

use

in

the

application.

Event
information

Event
store

Workflow
task

Application

Workflow process

Workflow
task

Workflow
task

Workflow
task

Figure

52.

Workflow-based

event

detection

Event
information

Event
table

Application

User sction
in Customer

entity

customer table

Application database

DB
trigger

Figure

53.

Event

detection

using

database

triggers

122

Connector

Development

Guide

for

Java

v

Make

sure

that

the

application

is

suitable

for

the

use

of

triggers

for

event

notification.

For

example,

if

an

application

has

implemented

complex

business

rules

in

its

database,

a

simple

trigger

on

a

particular

table

might

not

accurately

reflect

the

complete

application

event.

v

A

drawback

to

database

triggers

is

that

if

table

schemas

change

in

the

application

database,

you

may

need

to

modify

the

triggers

that

you

have

created.

If

table

schemas

change

frequently

and

you

have

set

up

many

database

triggers,

you

may

need

to

spend

considerable

time

maintaining

the

triggers.

Event

detection:

standard

behavior

An

application

event

detection

mechanism

should

take

the

following

steps:

v

Detect

an

event

on

an

application

entity

for

a

business

object

supported

by

the

connector.

v

Create

an

event

record.

To

create

the

record,

the

event

detection

mechanism

should:

–

Set

the

name

of

the

object

to

the

complete

name

of

the

business

object

in

the

repository.

–

Set

the

verb

to

the

action

that

occurred

in

the

database.

–

Set

the

object

key

to

the

primary

key

of

the

application

entity.

–

Generate

a

unique

event

identifier

(ID).

–

Set

the

event

priority.

–

Set

the

event

timestamp.

–

Set

the

event

status

to

Ready-for-Poll.
v

Insert

the

completed

event

record

into

the

event

store.

Note:

An

event

detection

mechanism

can

optionally

query

the

event

store

for

existing

duplicate

events

before

inserting

a

record

for

a

new

event.

For

more

information,

see

“Filtering

the

event

store

for

duplicate

event

records”

on

page

123.

Once

event

records

are

in

the

event

store,

the

event

store

queues

events

for

pickup

by

the

connector’s

poll

method.

The

event

store

should

be

internal

to

the

application.

If

the

application

terminates

unexpectedly,

the

event

store

can

be

restored

to

its

preceding

state

when

the

application

is

restored,

and

the

connector

application-specific

code

can

then

pick

up

queued

events.

The

event

detection

mechanism

should

ensure

data

integrity

between

an

application

event

and

the

event

record

written

to

the

event

store.

For

example,

generation

of

an

event

record

should

not

take

place

until

all

required

data

transactions

for

the

event

have

completed

successfully.

Subsequent

sections

provide

the

following

information

about

issues

to

handle

in

the

event

detection

mechanism:

v

“Filtering

the

event

store

for

duplicate

event

records”

v

“Future

event

processing”

on

page

124

Filtering

the

event

store

for

duplicate

event

records

The

event

detection

mechanism

can

be

implemented

so

that

duplicate

events

are

not

saved

in

the

event

store.

This

behavior

can

minimize

the

amount

of

processing

that

the

integration

broker

has

to

perform.

As

an

example,

if

an

application

updates

a

particular

Address

object

several

times

between

connector

polls,

all

the

events

might

be

stored

in

the

event

store,

and

the

connector

will

then

create

Chapter

5.

Event

notification

123

business

objects

for

all

events

and

send

them

to

InterChange

Server.

To

prevent

this,

the

event

detection

mechanism

can

filter

the

events

such

that

only

a

single

Update

event

is

stored.

Before

storing

a

new

event

as

a

record

in

the

event

store,

the

event

detection

mechanism

can

query

the

event

store

for

existing

events

that

match

the

new

event.

The

event

detection

mechanism

should

not

generate

a

record

for

a

new

event

in

these

cases:

Case

1

The

business

object

name,

verb,

key,

status,

and

ConnectorId

(if

applicable)

in

a

new

event

match

those

of

another

unprocessed

event

in

the

event

store.

Case

2

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

table;

in

addition,

the

verb

for

the

new

event

is

Update,

and

the

verb

for

the

unprocessed

event

is

Create.

Case

3

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

table;

in

addition,

the

verb

in

the

unprocessed

event

in

the

event

table

is

Create,

and

the

verb

in

the

new

event

is

Delete.

In

this

case,

remove

the

Create

record

from

the

event

store.

Note:

If

event

detection

is

implemented

with

stored

procedures

and

triggers,

the

stored

procedures

can

perform

the

query

before

inserting

records

for

new

events.

Future

event

processing

The

event

detection

mechanism

can

be

set

up

to

specify

a

date

and

time

in

the

future

to

process

an

event.

To

implement

this

feature,

you

may

need

to

set

up

an

additional

event

store

for

these

events.

Event

records

in

the

future

event

store

should

include

a

date

that

identifies

when

they

will

be

processed.

This

feature

is

required

for

applications

with

records

that

include

effective

dates.

As

an

example,

suppose

that

an

existing

employee

will

receive

a

promotion

in

a

month

and

that,

at

that

time,

he

will

receive

a

raise.

Because

the

paperwork

for

his

increased

compensation

is

completed

prior

to

the

date

of

his

promotion,

the

change

to

his

status

generates

an

event

with

an

effective

date,

which

is

stored

in

the

future

event

table.

Implementing

event

retrieval

For

most

connectors,

the

application-specific

component

of

the

connector

implements

the

event

retrieval

mechanism.

The

connector

developer

does

this

as

part

of

the

connector

design

and

implementation.

This

mechanism

works

in

conjunction

with

the

event

detection

mechanism,

which

detects

entity

changes

and

writes

event

records

to

the

event

store.

Event

retrieval

transfers

information

about

application

events

from

the

event

store

to

the

connector’s

application-specific

component.

This

section

provides

the

following

information

about

event

retrieval:

v

“Event

retrieval

mechanisms”

v

“Using

a

polling

mechanism”

on

page

125

Event

retrieval

mechanisms

Two

common

mechanisms

use

to

retrieve

event

records

from

an

event

store

are:

124

Connector

Development

Guide

for

Java

v

Event

callback

mechanism—connectors

can

be

notified

of

application

events

through

an

event-callback

mechanism;

however,

few

applications

currently

provide

event

callback

APIs

for

application

events.

v

Polling

mechanism—the

most

common

type

of

event

retrieval

mechanism

is

a

polling

mechanism.

Using

a

polling

mechanism

In

a

polling

mechanism,

the

application

provides

a

persistent

event

store,

such

as

an

database

table

or

inbox,

where

it

writes

event

records

when

changes

to

application

entities

occur.

The

connector

periodically

checks,

or

polls,

the

event

store

for

changes

to

entities

that

correspond

to

business

object

definitions

that

the

connector

supports.

In

general,

the

only

information

about

the

business

object

that

is

kept

in

the

event

store

is

the

type

of

operation

and

the

key

values

of

the

application

entity.

As

the

connector

processes

the

event,

it

retrieves

the

remainder

of

the

application

entity

data.

After

the

connector

has

processed

the

event,

it

removes

the

event

record

from

the

event

store

and

places

it

in

an

archive

store.

To

implement

a

polling

mechanism

to

perform

event

retrieval,

the

connector’s

application-specific

component

uses

a

poll

method,

called

the

pollForEvents()

method.

The

poll

method

checks

the

event

store,

retrieves

new

events,

and

processes

each

event

before

returning.

This

section

provides

the

following

information

about

the

poll

method:

v

“Polling

interval”

v

“Event

polling:

standard

behavior”

Polling

interval

The

connector

framework

calls

the

poll

method

at

a

specified

polling

interval

as

defined

by

the

PollFrequency

connector

configuration

property.

This

property

is

initialized

at

connector

installation

time

with

Connector

Configurator.

Typically,

the

polling

interval

is

about

10

seconds.

Note:

If

your

connector

does

not

need

to

poll

to

retrieve

event

information,

polling

can

be

turned

off

by

setting

the

PollFrequency

property

to

zero

(0).

Therefore,

the

connector

framework

calls

the

pollForEvents()

method

in

either

of

the

following

conditions:

v

The

PollFrequency

is

set

to

a

value

greater

than

zero.

v

The

connector

startup

script

specifies

a

value

for

the

-fPollFreq

option.

Event

polling:

standard

behavior

Figure

54

illustrates

the

basic

behavior

of

a

poll

method:

1.

The

connector

framework

calls

the

application-specific

component’s

pollForEvents()

method

to

begin

polling.

2.

The

pollForEvents()

method

checks

the

event

store

in

the

application

for

new

events

and

retrieves

the

events.

3.

The

poll

method

then

queries

the

connector

framework

to

determine

whether

an

event

has

subscribers.

4.

If

an

event

has

subscribers,

the

poll

method

retrieves

the

complete

set

of

data

for

the

business

object

from

the

application.

5.

The

poll

method

sends

the

business

object

to

the

connector

framework,

which

routes

it

to

its

destination

(such

as

InterChange

Server).

Chapter

5.

Event

notification

125

Each

time

the

poll

method

is

called,

it

checks

for

and

retrieves

new

events,

determines

whether

the

event

has

subscribers,

retrieves

application

data

for

events

with

subscribers,

and

sends

business

objects

to

InterChange

Server.

For

information

on

how

to

implement

the

pollForEvents()

method,

see

“Implementing

the

poll

method”

on

page

126.

Implementing

the

poll

method

Regardless

of

whether

the

application

provides

is

an

event

store

in

a

table,

inbox,

or

other

location,

the

connector

must

poll

periodically

to

retrieve

event

information.

The

connector’s

poll

method,

pollForEvents(),

polls

the

event

store,

retrieves

event

records,

and

processes

events.

To

process

an

event,

the

poll

method

determines

whether

the

event

has

subscribers,

creates

a

new

business

object

containing

application

data

that

encapsulates

the

event,

and

sends

the

business

object

to

the

connector

framework.

Note:

If

your

connector

will

be

implementing

request

processing

but

not

event

notification,

you

might

not

need

to

fully

implement

pollForEvents().

However,

since

the

poll

method

is

defined

with

a

default

implementation

in

the

Java

connector

library,

polling

is

already

implemented.

If

you

want

to

disable

polling,

you

can

implement

a

stub

for

this

method.

This

section

provides

the

following

information

on

how

to

implement

the

pollForEvents()

method:

v

“Basic

logic

for

pollForEvents()”

v

“Other

polling

issues”

on

page

127

Basic

logic

for

pollForEvents()

The

pollForEvents()

method

typically

uses

a

basic

logic

for

event

processing.

Figure

55

shows

a

flow

chart

of

the

poll

method’s

basic

logic.

Connector
framework Application

Begin polling

Check for subscription

Send object to framework

Return from polling

Check for events

Retrieve changed entity

Get next event

Connector
application-specific

pollForEvents()
method

Check return status

Check for subscription

Send object to framework

Check return status

Retrieve changed entity

Figure

54.

Basic

behavior

of

pollForEvents()

method

126

Connector

Development

Guide

for

Java

For

an

implementation

of

this

basic

polling

logic,

see

“Implementing

an

event-notification

mechanism”

on

page

174.

Note:

For

the

event-status

values

that

occur

in

the

flow

of

the

poll

method,

see

Table

129

on

page

313.

Other

polling

issues

This

section

provides

information

on

the

following

polling

issues:

v

“Archiving

events”

v

“Threading

issues”

on

page

129

v

“Processing

events

by

event

priority”

on

page

129

v

“Event

distribution”

on

page

129

Archiving

events

Once

a

connector

has

processed

an

event,

it

can

archive

the

event.

Archiving

processed

or

unsubscribed

events

ensures

that

events

are

not

lost.

Archiving

usually

involves

the

following

steps:

v

Copy

the

event

record

from

the

event

store

to

the

archive

store.

The

archive

store

serves

the

same

basic

purpose

as

an

event

store:

it

saves

archive

records

in

a

persistent

cache

until

the

connector

can

process

them.

An

archive

record

contains

the

same

basic

information

as

an

event

record.

v

Update

the

event

status

of

the

event

in

the

archive

store.

The

archive

record

should

be

updated

with

one

of

the

event-status

values

in

Table

49.

Retrieve
event(s)

Retrieve name of
business object
and verb

Send event to
connector framework

Does the event
have a
subscription?

NO

YES

Retrieve entity
information and
create business object

Was the
event sent to
the connector
framework?

Archive
event

YES

NO Poll
method
failed

Figure

55.

Flow

chart

for

basic

logic

of

pollForEvents()

Chapter

5.

Event

notification

127

v

Delete

the

event

record

from

the

event

store.

Table

49.

Event-status

values

in

an

archive

record

Status

Description

Success

The

event

was

detected,

and

the

connector

created

a

business

object

for

the

event

and

sent

the

business

object

to

the

connector

framework.

Unsubscribed

The

event

was

detected,

but

there

were

no

subscriptions

for

the

event,

so

the

event

was

not

sent

to

the

connector

framework

and

on

to

the

integration

broker.

Error

The

event

was

detected,

but

the

connector

encountered

an

error

when

trying

to

process

the

event.

The

error

occurred

either

in

the

process

of

building

a

business

object

for

the

event

or

in

sending

the

business

object

to

connector

framework.

This

section

provides

the

following

information

about

event

archiving:

v

“Creating

an

archive

store”

v

“Configuring

a

connector

for

archiving”

v

“Accessing

the

archive

store”

Creating

an

archive

store:

If

the

application

provides

archiving

services,

you

can

use

those;

otherwise,

an

archive

store

is

usually

implemented

using

the

same

mechanism

as

the

event

store:

v

For

an

event-notification

mechanism

that

uses

database

triggers,

one

way

to

set

up

event

archiving

is

to

install

a

delete

trigger

on

the

event

table.

When

the

connector’s

application-specific

component

deletes

a

processed

or

unsubscribed

event

from

the

event

table,

the

delete

trigger

moves

the

event

to

the

archive

table.

For

information

on

event

tables,

see

“Event

table”

on

page

117.

Note:

If

a

connector

uses

an

event

table,

an

administrator

might

need

to

clean

up

the

archive

periodically.

v

With

an

email

event

notification

scheme,

archiving

might

consist

of

moving

a

message

to

a

different

folder.

A

folder

called

Archive

might

be

used

for

archiving

event

messages.

Configuring

a

connector

for

archiving:

Archiving

can

have

performance

impact

in

the

form

of

the

archive

store

and

moving

the

event

records

into

this

store.

Therefore,

you

might

want

to

design

event

archiving

to

be

configurable

at

install

time,

so

that

a

system

administrator

can

control

whether

events

are

archived.

To

make

archiving

configurable,

you

can

create

a

connector-specific

configuration

property

that

specifies

whether

the

connector

archives

unsubscribed

events.

IBM

suggests

a

name

of

ArchiveProcessed

for

this

configuration

property.

If

the

configuration

property

specifies

no

archiving,

the

connector

application-specific

component

can

delete

or

ignore

the

event.

If

the

connector

is

performance-
constrained

or

the

event

volume

is

extremely

high,

archiving

events

is

not

required.

Accessing

the

archive

store:

A

connector

performs

archiving

as

part

of

the

event

processing

in

its

poll

method,

pollForEvents().

Once

a

connector

has

processed

an

event,

the

connector

must

move

the

event

to

an

archive

store

whether

or

not

the

event

was

successfully

delivered

to

the

connector

framework.

Events

that

have

no

subscriptions

are

also

moved

to

the

archive.

Archiving

processed

or

unsubscribed

events

ensures

that

events

are

not

lost.

128

Connector

Development

Guide

for

Java

Your

poll

method

should

consider

archiving

an

event

when

any

of

the

following

conditions

occur:

v

When

the

poll

method

has

processed

the

event

and

the

connector

framework

has

delivered

the

business

object

v

When

no

subscriptions

exist

for

the

event

Note:

If

a

connector

uses

an

event

table,

an

administrator

might

need

to

clean

up

the

archive

periodically.

For

example,

the

administrator

may

need

to

truncate

the

archive

to

free

disk

space.

Threading

issues

Java

connectors

must

be

thread

safe.

The

connector

framework

can

use

multiple

threads

to

perform

event

delivery

(execution

of

the

pollForEvents()

method)

and

request

processing

(execution

of

the

doVerbFor()

method).

Processing

events

by

event

priority

Event

priority

enables

the

connector

poll

method

to

handle

situations

where

the

number

of

events

in

the

event

store

exceeds

the

maximum

number

of

events

the

connector

retrieves

in

a

single

poll.

In

this

type

of

polling

implementation,

the

poll

method

polls

and

processes

events

in

order

of

priority.

Event

priority

is

defined

as

an

integer

value

in

the

range

0

-

n,

with

0

as

the

highest

priority.

To

process

events

by

event

priority,

the

following

tasks

must

be

implemented

in

the

event

notification

mechanism:

v

The

event

detection

mechanism

must

assign

a

priority

value

to

an

event

record

when

it

saves

it

to

the

event

store.

v

The

event

retrieval

mechanism

(the

polling

mechanism)

must

specify

the

order

in

which

it

retrieves

event

records

to

process,

based

on

the

event

priority.

Note:

As

events

are

picked

up,

event

priority

values

are

not

decremented.

In

rare

circumstances,

this

might

lead

to

low

priority

events

being

not

picked

up.

The

following

example

SQL

SELECT

statement

shows

how

a

connector

might

select

event

records

based

on

event

priority.

The

SELECT

statement

sorts

the

events

by

priority,

and

the

connector

processes

each

event

in

turn.

SELECT

event_id,

object_name,

object_verb,

object_key

FROM

event_table

WHERE

event_status

=

0

ORDER

BY

event_priority

The

logic

for

a

poll

method

is

then

the

same

as

discussed

in

“Basic

logic

for

pollForEvents()”

on

page

126.

Event

distribution

The

event

detection

and

retrieval

mechanisms

can

be

implemented

so

that

multiple

connectors

can

poll

the

same

event

store.

Each

connector

can

be

configured

to

process

certain

events,

create

specific

business

objects

and

pass

those

business

objects

to

InterChange

Server.

This

can

streamline

the

processing

of

certain

types

of

events

and

increase

the

transfer

of

data

out

of

an

application.

To

implement

event

distribution

so

that

multiple

connectors

can

poll

the

event

store,

do

the

following:

v

Add

a

column

to

the

event

record

for

an

integer

connector

identifier

(ID),

and

design

the

event

detection

mechanism

to

specify

which

connector

will

pick

up

the

event.

Chapter

5.

Event

notification

129

This

might

be

done

per

application

entity.

For

example,

the

event

detection

mechanism

might

specify

that

all

Customer

events

be

picked

up

by

the

connector

that

has

the

connectorId

field

set

to

4.

v

Add

an

application-specific

connector

property

named

ConnectorId.

Assign

each

connector

a

unique

identifier

and

store

this

value

in

its

ConnectorId

property.

v

Implement

the

poll

method

to

query

for

the

value

of

the

ConnectorId

property.

If

the

property

is

not

set,

the

poll

method

can

retrieve

all

event

records

from

the

event

store

as

usual.

If

the

property

is

set

to

a

connector

identifier

value,

the

poll

method

retrieves

only

those

events

that

match

the

ConnectorId.

Special

considerations

for

event

processing

This

section

contains

the

following

information

about

event

processing:

v

“Processing

Delete

events”

v

“Using

guaranteed

event

delivery”

on

page

131

Processing

Delete

events

An

application

can

support

one

of

the

following

types

of

delete

operations:

v

Physical

delete—Data

is

physically

deleted

from

the

database.

v

Logical

delete—A

status

column

in

a

database

entity

is

set

to

an

inactive

or

invalid

status,

but

the

data

is

not

deleted

from

the

database.

It

may

be

tempting

to

implement

delete

event

processing

in

a

manner

that

is

consistent

with

the

application.

For

example,

when

an

application

entity

is

deleted,

a

connector

poll

method

for

an

application

that

supports

physical

deletes

might

publish

a

business

object

with

the

Delete

verb.

A

connector

poll

method

for

an

application

that

supports

logical

deletes

might

publish

a

business

object

with

the

Update

verb

and

the

status

value

changed

to

inactive.

Problems

can

arise

with

this

approach

when

a

source

application

and

a

destination

application

support

different

delete

models.

Suppose

that

the

source

application

supports

logical

delete

and

the

destination

application

supports

physical

delete.

Assume

that

an

enterprise

is

synchronizing

between

the

source

and

destination

applications.

If

the

source

connector

sends

a

change

in

status

(in

other

words,

a

delete

event)

as

a

business

object

with

the

Update

verb,

the

destination

connector

might

be

unable

to

determine

that

the

business

object

actually

represents

a

delete

event.

Therefore,

event

publishing

must

be

designed

so

that

source

connectors

for

both

types

of

applications

can

publish

delete

events

in

such

a

way

that

destination

connectors

can

handle

the

events

appropriately.

The

Delete

verb

in

an

event

notification

business

object

should

represent

an

event

where

data

was

deleted,

whether

the

delete

operation

was

a

physical

or

logical

delete.

This

ensures

that

destination

connectors

will

be

correctly

informed

about

a

delete

event.

This

section

provides

the

following

information

on

how

to

implement

event

processing

for

delete

events:

v

“Setting

the

verb

in

the

event

record”

on

page

131

v

“Setting

the

verb

in

the

business

object”

on

page

131

v

“Setting

the

verb

during

mapping”

on

page

131

130

Connector

Development

Guide

for

Java

Setting

the

verb

in

the

event

record

The

event

detection

mechanism

for

both

logical

and

physical

delete

connectors

should

set

the

verb

in

the

event

record

to

Delete:

v

For

a

physical

delete

connector,

this

is

the

standard

implementation.

v

For

a

connector

whose

application

supports

logical

deletes,

the

event

detection

mechanism

must

be

designed

to

determine

when

update

events

actually

represent

deletion

of

data.

In

other

words,

it

must

differentiate

update

events

for

modified

entities

from

update

events

for

logically

deleted

entities.

For

logically

deleted

entities,

the

event

detection

mechanism

should

set

the

verb

in

the

event

record

to

Delete

even

if

the

event

in

the

application

was

an

Update

event

that

updated

a

status

column.

Setting

the

verb

in

the

business

object

The

poll

method

for

both

logical

and

physical

delete

connectors

should

generate

a

business

object

with

the

Delete

verb:

v

If

the

application

supports

logical

deletes,

the

connector

poll

method

retrieves

the

delete

event

from

the

event

store,

creates

an

empty

business

object,

sets

the

key,

sets

the

verb

to

Delete,

and

sends

the

business

object

to

the

connector

framework.

For

hierarchical

business

objects,

the

connector

should

not

send

deleted

children.

The

connector

can

constrain

queries

to

not

include

entities

with

status

of

inactive,

or

child

business

objects

with

a

status

of

inactive

can

be

removed

in

mapping.

v

If

the

application

supports

physical

deletes,

the

connector

might

not

be

able

to

retrieve

the

application

data.

In

this

case,

the

connector

poll

method

retrieves

the

delete

event

from

the

event

store,

creates

an

empty

business

object,

sets

the

key

values,

sets

the

values

of

other

attributes

to

the

special

Ignore

value

(CxIgnore),

sets

the

verb

in

the

business

object

to

Delete,

and

sends

the

business

object

to

the

connector

framework.

Setting

the

verb

during

mapping

WebSphere

InterChange

Server

Mapping

between

the

application-specific

business

object

and

the

generic

business

object

should

map

the

verb

as

Delete.

This

ensures

that

the

correct

information

about

an

event

is

sent

to

the

collaboration,

which

may

perform

special

processing

based

on

the

verb.

Follow

these

recommendations

for

relationship

tables:

v

For

delete

events

for

a

logical

delete

application,

leave

relationship

entries

in

the

relationship

table.

v

For

delete

events

for

a

physical

delete

application,

delete

relationship

entries

from

the

relationship

table.

Using

guaranteed

event

delivery

The

guaranteed-event-delivery

feature

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

connector’s

event

store

and

the

integration

broker.

Important:

This

feature

is

available

only

for

JMS-enabled

connectors;

that

is,

those

connectors

that

use

Java

Messaging

Service

(JMS)

to

handle

queues

for

their

message

transport.

A

JMS-enabled

connector

always

has

its

Chapter

5.

Event

notification

131

DeliveryTransport

connector

property

set

to

JMS.

When

the

connector

starts,

it

uses

the

JMS

transport;

all

subsequent

communication

between

the

connector

and

the

integration

broker

occurs

through

this

transport.

The

JMS

transport

ensures

that

the

messages

are

eventually

delivered

to

their

destination.

Without

use

of

the

guaranteed-event-delivery

feature,

a

small

window

of

possible

failure

exists

between

the

time

that

the

connector

publishes

an

event

(when

the

connector

calls

the

gotApplEvent()

method

within

its

pollForEvents()

method)

and

the

time

it

updates

the

event

store

by

deleting

the

event

record

(or

perhaps

updating

it

with

an

“event

posted”

status).

If

a

failure

occurs

in

this

window,

the

event

has

been

sent

but

its

event

record

remains

in

the

event

store

with

a

“ready

for

poll”

status.

When

the

connector

restarts,

it

finds

this

event

record

still

in

the

event

store

and

sends

it,

resulting

in

the

event

being

sent

twice.

You

can

provide

the

guaranteed-event-delivery

feature

to

a

JMS-enabled

connector

in

one

of

the

following

ways:

v

With

the

container-managed-events

feature:

If

the

connector

uses

a

JMS

event

store

(implemented

as

a

JMS

source

queue),

the

connector

framework

act

as

a

container

and

manage

the

JMS

event

store.

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

JMS

event

stores.”

v

With

the

duplicate-event-elimination

feature:

The

connector

framework

can

use

a

JMS

monitor

queue

to

ensure

that

no

duplicate

events

occur.

This

feature

is

usually

used

for

a

connector

that

uses

a

non-JMS

event

store

(for

example,

implemented

as

a

JDBC

table,

Email

mailbox,

or

flat

files).

For

more

information,

see

“Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores”

on

page

134.

Guaranteed

event

delivery

for

connectors

with

JMS

event

stores

If

the

JMS-enabled

connector

uses

JMS

queues

to

implement

its

event

store,

the

connector

framework

can

act

as

a

″container″

and

manage

the

JMS

event

store

(the

JMS

source

queue).

One

of

the

roles

of

JMS

is

to

ensure

that

once

a

transactional

queue

session

starts,

the

messages

are

cached

there

until

a

commit

is

issued;

if

a

failure

occurs

or

a

rollback

is

issued,

the

messages

are

discarded.

Therefore,

in

a

single

JMS

transaction,

the

connector

framework

can

remove

a

message

from

a

source

queue

and

place

it

on

the

destination

queue.

This

container-managed-events

feature

of

guaranteed

event

delivery

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

JMS

event

store

and

the

destination’s

JMS

queue.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

JMS

event

stores”

v

“Effect

on

event

polling”

on

page

134

Enabling

the

feature

for

connectors

with

JMS

event

stores:

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

JMS

event

store,

set

the

connector

configuration

properties

shown

in

Table

50.

Table

50.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

132

Connector

Development

Guide

for

Java

Table

50.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

JMS

event

store

(continued)

Connector

property

Value

ContainerManagedEvents

JMS

PollQuantity

The

number

of

events

to

processing

in

a

single

poll

of

the

event

store

SourceQueue

Name

of

the

JMS

source

queue

(event

store)

which

the

connector

framework

polls

and

from

which

it

retrieves

events

for

processing

Note:

The

source

queue

and

other

JMS

queues

should

be

part

of

the

same

queue

manager.

If

the

connector’s

application

generates

events

that

are

stored

in

a

different

queue

manager,

you

must

define

a

remote

queue

definition

on

the

remote

queue

manager.

WebSphere

MQ

can

then

transfer

the

events

from

the

remote

queue

to

the

queue

manager

that

the

JMS-enabled

connector

uses

for

transmission

to

the

integration

broker.

For

information

on

how

to

configure

a

remote

queue

definition,

see

your

IBM

WebSphere

MQ

documentation.

Note:

A

connector

can

use

only

one

of

these

guaranteed-event-delivery

features:

container

managed

events

or

duplicate

event

elimination.Therefore,

you

cannot

set

the

ContainerManagedEvents

property

to

JMS

and

the

DuplicateEventElimination

property

to

true.

In

addition

to

configuring

the

connector,

you

must

also

configure

the

data

handler

that

converts

between

the

event

in

the

JMS

store

and

a

business

object.

This

data-handler

information

consists

of

the

connector

configuration

properties

that

Table

51

summarizes.

Table

51.

Data-handler

properties

for

guaranteed

event

delivery

Data-handler

property

Value

Required?

MimeType

The

MIME

type

that

the

data

handler

handles.

This

MIME

type

identifies

which

data

handler

to

call.

Yes

DHClass

The

full

name

of

the

Java

class

that

implements

the

data

handler

Yes

DataHandlerConfigMOName

The

name

of

the

top-level

meta-object

that

associates

MIME

types

and

their

data

handlers

Optional

Note:

The

data-handler

configuration

properties

reside

in

the

connector

configuration

file

with

the

other

connector

configuration

properties.

End

users

that

configure

a

connector

that

has

a

JMS

event

store

to

use

guaranteed

event

delivery

must

be

instructed

to

set

the

connector

properties

as

described

in

Table

50

and

Table

51.

To

set

these

connector

configuration

properties,

use

the

Connector

Configurator

tool.

Connector

Configurator

displays

the

connector

properties

in

Table

50

on

its

Standard

Properties

tab.

It

displays

the

connector

properties

in

Table

51

on

its

Data

Handler

tab.

Chapter

5.

Event

notification

133

Note:

Connector

Configurator

activates

the

fields

on

its

Data

Handler

tab

only

when

the

DeliveryTransport

connector

configuration

property

is

set

to

JMS

and

ContainerManagedEvents

is

set

to

JMS.

For

information

on

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

501.

Effect

on

event

polling:

If

a

connector

uses

guaranteed

event

delivery

by

setting

ContainedManagedEvents

to

JMS,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

container-managed

events,

the

connector

framework

takes

the

following

steps

to

poll

the

event

store:

1.

Start

a

JMS

transaction.

2.

Read

a

JMS

message

from

the

event

store.

The

event

store

is

implemented

as

a

JMS

source

queue.

The

JMS

message

contains

an

event

record.

The

name

of

the

JMS

source

queue

is

obtained

from

the

SourceQueue

connector

configuration

property.

3.

Call

the

appropriate

data

handler

to

convert

the

event

to

a

business

object.

The

connector

framework

calls

the

data

handler

that

has

been

configured

with

the

properties

in

Table

51

on

page

133.

4.

When

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server

is

the

integration

broker,

convert

the

business

object

to

a

message

based

on

the

configured

wire

format

(XML).

5.

Send

the

resulting

message

to

the

JMS

destination

queue.

WebSphere

InterChange

Server

The

message

sent

to

the

JMS

destination

queue

is

the

business

object.

Other

integration

brokers

The

message

sent

to

the

JMS

destination

queue

is

an

XML

message.

6.

Commit

the

JMS

transaction.

When

the

JMS

transaction

commits,

the

message

is

written

to

the

JMS

destination

queue

and

removed

from

the

JMS

source

queue

in

the

same

transaction.

7.

Repeat

step

1

through

6

in

a

loop.

The

PollQuantity

connector

property

determines

the

number

of

repetitions

in

this

loop.

Important:

A

connector

that

sets

the

ContainerManagedEvents

property

is

set

to

JMS

does

not

call

the

pollForEvents()

method

to

perform

event

polling.

If

the

connector’s

base

class

includes

a

pollForEvents()

method,

this

method

is

not

invoked.

Guaranteed

event

delivery

for

connectors

with

non-JMS

event

stores

The

connector

framework

can

use

duplicate

event

elimination

to

ensure

that

duplicate

events

do

not

occur.

This

feature

is

usually

enabled

for

JMS-enabled

connectors

that

use

a

non-JMS

solution

to

implement

an

event

store

(such

as

a

JDBC

event

table,

Email

mailbox,

or

flat

files).

This

duplicate-event-elimination

feature

of

134

Connector

Development

Guide

for

Java

guaranteed

event

delivery

enables

the

connector

framework

to

guarantee

that

events

are

never

sent

twice

between

the

event

store

and

the

destination’s

JMS

queue.

Note:

JMS-enabled

connectors

that

use

a

JMS

event

store

usually

use

the

container-managed-events

feature.

However,

they

can

use

duplicate

event

elimination

instead

of

container

managed

events.

This

section

provides

the

following

information

about

use

of

the

guaranteed-event-delivery

feature

with

a

JMS-enabled

connector

that

has

a

non-JMS

event

store:

v

“Enabling

the

feature

for

connectors

with

non-JMS

event

stores”

v

“Effect

on

event

polling”

on

page

134

Enabling

the

feature

for

connectors

with

non-JMS

event

stores:

To

enable

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

that

has

a

non-JMS

event

store,

you

must

set

the

connector

configuration

properties

shown

in

Table

52.

Table

52.

Guaranteed-event-delivery

connector

properties

for

a

connector

with

a

non-JMS

event

store

Connector

property

Value

DeliveryTransport

JMS

DuplicateEventElimination

true

MonitorQueue

Name

of

the

JMS

monitor

queue,

in

which

the

connector

framework

stores

the

ObjectEventId

of

processed

business

objects

Note:

A

connector

can

use

only

one

of

these

guaranteed-event-delivery

features:

container

managed

events

or

duplicate

event

elimination.Therefore,

you

cannot

set

the

DuplicateEventElimination

property

to

true

and

the

ContainerManagedEvents

property

to

JMS.

End

users

that

configure

a

connector

to

use

guaranteed

event

delivery

must

be

instructed

to

set

the

connector

properties

as

described

in

Table

52.

To

set

these

connector

configuration

properties,

use

the

Connector

Configurator

tool.

It

displays

these

connector

properties

on

its

Standard

Properties

tab.

For

information

on

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

501.

Effect

on

event

polling:

If

a

connector

uses

guaranteed

event

delivery

by

setting

DuplicateEventElimination

to

true,

it

behaves

slightly

differently

from

a

connector

that

does

not

use

this

feature.

To

provide

the

duplicate

event

elimination,

the

connector

framework

uses

a

JMS

monitor

queue

to

track

a

business

object.

The

name

of

the

JMS

monitor

queue

is

obtained

from

the

MonitorQueue

connector

configuration

property.

After

the

connector

framework

receives

the

business

object

from

the

application-specific

component

(through

a

call

to

gotApplEvent()

in

the

pollForEvents()

method),

it

must

determine

if

the

current

business

object

(received

from

gotApplEvents())

represents

a

duplicate

event.

To

make

this

determination,

the

connector

framework

retrieves

the

business

object

from

the

JMS

monitor

queue

and

compares

its

ObjectEventId

with

the

ObjectEventId

of

the

current

business

object:

Chapter

5.

Event

notification

135

v

If

these

two

ObjectEventIds

are

the

same,

the

current

business

object

represents

a

duplicate

event.

In

this

case,

the

connector

framework

ignores

the

event

that

the

current

business

object

represents;

it

does

not

send

this

event

to

the

integration

broker.

v

If

these

ObjectEventIds

are

not

the

same,

the

business

object

does

not

represent

a

duplicate

event.

In

this

case,

the

connector

framework

copies

the

current

business

object

to

the

JMS

monitor

queue

and

then

delivers

it

to

the

JMS

delivery

queue,

all

as

part

of

the

same

JMS

transaction.

The

name

of

the

JMS

delivery

queue

is

obtained

from

the

DeliveryQueue

connector

configuration

property.

Control

returns

to

the

connector’s

pollForEvents()

method,

after

the

call

to

the

gotApplEvent()

method.

For

a

JMS-enabled

connector

to

support

duplicate

event

elimination,

you

must

make

sure

that

the

connector’s

pollForEvents()

method

includes

the

following

steps:

v

When

you

create

a

business

object

from

an

event

record

retrieved

from

the

non-JMS

event

store,

save

the

event

record’s

unique

event

identifier

as

the

business

object’s

ObjectEventId

attribute.

The

application

generates

this

event

identifier

to

uniquely

identify

the

event

record

in

the

event

store.

If

the

connector

goes

down

after

the

event

has

been

sent

to

the

integration

broker

but

before

this

event

record’s

status

can

be

changed,

this

event

record

remains

in

the

event

store

with

an

In-Progress

status.

When

the

connector

comes

back

up,

it

should

recover

any

In-Progress

events.

When

the

connector

resumes

polling,

it

generates

a

business

object

for

the

event

record

that

still

remains

in

the

event

store.

However,

because

both

the

business

object

that

was

already

sent

and

the

new

one

have

the

same

event

record

as

their

ObjectEventIds,

the

connector

framework

can

recognize

the

new

business

object

as

a

duplicate

and

not

send

it

to

the

integration

broker.

A

Java

connector

can

use

the

setDEEId()

method

of

the

CWConnectorBusObj

class

to

assign

the

event

identifier

to

the

ObjectEventId

attribute,

as

follows:

busObj.setDEEId(event_id);

v

During

connector

recovery,

make

sure

that

you

process

In-Progress

events

before

the

connector

begins

polling

for

new

events.

Unless

the

connector

changes

any

In-Progress

events

to

Ready-for-Poll

status

when

it

starts

up,

the

polling

method

does

not

pick

up

the

event

record

for

reprocessing.

136

Connector

Development

Guide

for

Java

Chapter

6.

Message

logging

This

chapter

presents

information

on

message

logging.

A

message

is

a

string

of

information

that

the

connector

can

send

to

an

external

connect

log,

where

it

can

be

reviewed

by

the

system

administrator

or

the

developer

to

provide

information

about

the

runtime

state

of

the

connector.

There

are

two

different

categories

of

messages

that

a

connector

can

send

to

the

connector

log:

v

Error

or

informational

messages

v

Trace

messages

Messages

can

be

generated

within

the

connector

code

or

obtained

from

a

message

file.

This

chapter

contains

the

following

sections:

v

“Error

and

informational

messages”

v

“Trace

messages”

on

page

139

v

“Message

file”

on

page

142

Error

and

informational

messages

A

connector

can

send

information

about

its

state

to

a

log

destination.

The

following

types

of

information

are

recommended

for

logging:

v

Errors

and

fatal

errors

from

your

code

to

a

log

file.

v

Warnings

require

a

system

administrator’s

attention,

from

your

code

to

a

log

file.

v

Informational

messages

such

as:

–

Connector

startup

and

termination

messages

–

Important

messages

from

the

application

Although

a

connector

can

send

informational

or

error

messages,

this

logging

process

is

referred

to

as

error

logging.

Note:

These

messages

are

independent

of

any

trace

messages

defined

for

the

connector.

Indicating

a

log

destination

A

connector

sends

its

log

messages

into

its

log

destination.

The

log

is

an

external

destination

that

is

available

for

viewing

by

those

needing

to

review

the

execution

state

of

the

connector.

The

log

destination

is

defined

at

connector

configuration

time

by

the

setting

of

the

Logging

field

in

the

Trace/Log

Files

tab

of

Connector

Configurator

as

one

of

the

following:

v

To

File:

The

absolute

pathname

of

an

external

file,

which

must

reside

on

the

same

machine

as

the

connector’s

process

(with

its

connector

framework

and

application-specific

component)

v

To

console

(STDOUT):

The

command

prompt

window

generated

when

the

connector

startup

script

starts

the

connector

By

default,

the

connector’s

log

destination

is

set

to

the

console,

which

indicates

use

of

the

startup

script’s

command

prompt

window

as

the

log

destination.

Set

this

log

destination

as

appropriate

for

your

connector.

©

Copyright

IBM

Corp.

2000,

2004

137

WebSphere

InterChange

Server

You

can

also

set

the

LogAtInterchangeEnd

connector

configuration

property

to

indicate

whether

messages

are

also

logged

to

the

InterChange

Server’s

log

destination:

v

Messages

logged

locally

only:

LogAtInterchangeEnd

is

false.

v

Messages

are

logged

both

locally

and

sent

to

InterChange

Server’s

log

destination:

LogAtInterchangeEnd

is

true.

By

default,

LogAtInterchangeEnd

is

set

to

false,

so

that

messages

are

only

logged

locally.

If

messages

are

sent

to

InterChange

Server,

they

are

written

to

the

destination

specified

for

InterChange

Server

messages.

Note:

Logging

to

InterChange

Server’s

log

destination

also

turns

on

email

notification,

which

generates

email

messages

for

the

MESSAGE_RECIPIENT

parameter

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

As

an

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterchangeEnd

is

set

to

true,

an

email

message

is

sent

to

the

specified

message

recipient.

These

connector

properties

are

set

with

Connector

Configurator.

For

more

information

on

InterChange

Server’s

message

logging,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Sending

a

message

to

the

log

destination

Table

53

shows

the

ways

that

a

connector

sends

an

error,

warning,

and

information

message

to

its

log

destination.

Table

53.

Methods

for

sending

a

message

to

the

log

destination

Connector

library

method

Description

logMsg()

and

generateMsg()

Takes

as

input

a

text

string

or

a

string

generated

from

a

message

in

a

message

file.

Optionally,

it

can

take

a

message-type

constant

to

indicate

whether

the

message

is

an

error,

warning,

or

informational.

To

generate

a

character

string

from

the

message

text

in

a

message

file,

use

the

generateMsg()

method.

generateAndLogMsg()

Combines

the

functionality

of

the

logMsg()

and

generateMsg()

methods

into

a

single

call.

For

more

information

on

how

to

generate

a

message,

see

“Generating

a

message

string”

on

page

143.

In

the

Java

connector

library,

the

logMsg(),

generateMsg(),

and

generateAndLogMsg()

methods

are

defined

in

the

CWConnectorUtil

class.

Both

the

generateMsg()

and

generateAndLogMsg()

methods

require

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

For

more

information,

see

“Generating

a

message

string”

on

page

143.

138

Connector

Development

Guide

for

Java

Trace

messages

Tracing

is

an

optional

troubleshooting

and

debugging

feature

that

can

be

turned

on

for

connectors.

When

tracing

is

turned

on,

system

administrators

can

follow

events

as

they

work

their

way

through

the

IBM

WebSphere

business

integration

system.

WebSphere

InterChange

Server

When

InterChange

Server

is

the

integration

broker,

you

can

also

use

tracing

on

connector

controllers,

and

other

components

of

the

InterChange

Server

system.

Tracing

in

an

application-specific

component

allows

you

and

other

users

of

your

connector

code

to

monitor

the

behavior

of

the

connector.

Tracing

can

also

track

when

specific

connector

functions

are

called

by

the

connector

framework.

Trace

messages

that

you

provide

for

the

connector

application-specific

code

augment

the

trace

messages

provided

for

the

connector

framework.

Enabling

tracing

By

default,

tracing

on

a

connector

is

turned

off.

Tracing

is

turned

on

for

a

connector

when

the

connector

configuration

property

TraceLevel

is

set

to

a

non-zero

value

in

Connector

Configurator.

You

can

set

TraceLevel

to

a

value

from

1

to

5

to

obtain

the

appropriate

level

of

detail.

Level

5

tracing

logs

the

trace

messages

of

all

lower

trace

levels.

WebSphere

InterChange

Server

Tip:

For

information

on

turning

on

tracing

for

connector

controllers

or

for

other

components

of

the

InterChange

Server

system,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Identifying

a

trace

destination

A

connector

sends

its

trace

messages

into

its

trace

destination,

which

is

an

external

destination

that

is

available

for

viewing

by

those

needing

to

review

the

execution

state

of

the

connector.

The

trace

destination

is

defined

at

connector

configuration

time

by

the

setting

of

the

Tracing

field

in

the

Trace/Log

Files

tab

of

Connector

Configurator

as

one

of

the

following:

v

To

File:

The

absolute

pathname

of

an

external

file,

which

must

reside

on

the

same

machine

as

the

connector’s

process

(with

its

connector

framework

and

application-specific

component)

v

To

console

(STDOUT):

The

command

prompt

window

generated

when

the

connector

startup

script

starts

the

connector

By

default,

the

connector’s

trace

destination

is

set

to

the

console,

which

indicates

use

of

the

startup

script’s

command

prompt

window

as

the

trace

destination.

Set

this

trace

destination

as

appropriate

for

your

connector.

Sending

a

trace

message

to

the

trace

destination

Table

54

shows

the

ways

that

a

connector

sends

a

trace

message

to

its

trace

destination.

Chapter

6.

Message

logging

139

Table

54.

Methods

for

sending

a

trace

message

to

the

trace

destination

Connector

library

method

Description

traceWrite()

and

generateMsg()

Takes

as

input

a

text

string

or

a

string

generated

from

a

message

in

a

message

file

and

a

trace-level

constant

to

indicate

the

trace

level.

This

method

writes

a

trace

message

for

the

specified

trace

level

or

greater

to

the

trace

destination.

To

generate

a

character

string

from

the

message

text

in

a

message

file,

use

the

generateMsg()

method

with

the

message

type

set

to

XRD_TRACE.

generateAndTraceMsg()

Combines

the

functionality

of

the

traceWrite()

and

generateMsg()

methods

into

a

single

call.

For

information

on

the

generateMsg()

method,

see

“Generating

a

message

string”

on

page

143.

Note:

It

is

not

required

that

trace

messages

be

localized

in

the

message

file.

Whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer.

For

more

information,

see

“Locale-sensitive

design

principles”

on

page

57.

In

the

Java

connector

library,

the

traceWrite(),

generateMsg(),

and

generateAndTraceMsg()

methods

are

defined

in

the

CWConnectorUtil

class.

The

traceWrite()

and

generateAndTraceMsg()

require

a

trace

level

as

an

argument.

This

argument

specifies

the

trace

level

to

use

for

a

trace

message.

When

you

turn

on

tracing

at

runtime,

you

specify

a

trace

level

at

which

to

run

the

tracing.

All

trace

messages

in

your

code

with

trace

levels

at

or

below

the

runtime

trace

level

are

sent

to

the

trace

destination.

For

more

information,

see

“Recommended

content

for

trace

messages”

on

page

140.

To

specify

a

trace

level

to

associate

with

a

trace

message,

use

a

trace-level

constant

of

the

form

TRACELEVELn

where

n

can

be

a

trace

level

from

1

to

5.

Trace-level

constants

are

defined

in

the

CWConnectorLogAndTrace

class.

The

generateMsg()

method

requires

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

Because

trace

messages

do

not

have

severity

levels,

you

just

use

the

XRD_TRACE

message-type

constant.

Message-type

constants

are

defined

in

the

CWConnectorLogAndTrace

class.

Note:

The

generateAndTrace()

method

does

not

require

a

message

type

as

an

argument.

The

method

automatically

assumes

the

XRD_TRACE

message-type

constant.

Recommended

content

for

trace

messages

You

are

responsible

for

defining

what

kind

of

information

your

connector

returns

at

each

trace

level.

Table

55

shows

the

recommended

content

for

application-specific

connector

trace

messages.

Table

55.

Content

of

application-specific

connector

trace

messages

Level

Content

0

Trace

message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

140

Connector

Development

Guide

for

Java

Table

55.

Content

of

application-specific

connector

trace

messages

(continued)

Level

Content

1

Trace

messages

that:

v

Log

status

messages

and

identifying

(key)

information

for

each

business

object

processed.

v

Record

each

time

the

pollForEvents()

method

is

executed.

2

Trace

messages

that:

v

Identify

the

business

object

handlers

used

for

each

object

the

connector

processes.

v

Log

each

time

a

business

object

is

posted

to

InterChange

Server,

either

from

gotApplEvent()

or

executeCollaboration().

v

Indicate

each

time

a

request

business

object

is

received.

3

Trace

messages

that:

v

Identify

the

foreign

keys

being

processed

(if

applicable).

These

messages

appear

when

the

connector

has

encountered

a

foreign

key

in

a

business

object

or

when

the

connector

sets

a

foreign

key

in

a

business

object.

v

Relate

to

business

object

processing.

Examples

of

this

include

finding

a

match

between

business

objects,

or

finding

a

business

object

in

an

array

of

child

business

objects.

4

Trace

message

that:

v

Identify

application-specific

information.

Examples

of

this

information

include

the

values

returned

by

the

methods

that

process

the

application-specific

information

fields

in

business

objects.

v

Identify

when

the

connector

enters

or

exits

a

function.

These

messages

help

trace

the

process

flow

of

the

connector.

v

Record

any

thread-specific

processing.

For

example,

if

the

connector

spawns

multiple

threads,

a

message

should

log

the

creation

of

each

new

thread.

5

Trace

message

that:

v

Indicate

connector

initialization.

Examples

of

this

message

include

the

value

of

each

connector

configuration

property

that

has

been

retrieved

from

InterChange

Server.

v

Detail

the

status

of

each

thread

the

connector

spawns

while

it

is

running.

v

Represent

statements

executed

in

the

application.

The

connector

log

file

contains

all

statements

executed

in

the

target

application

and

the

value

of

any

variables

that

are

substituted

(where

applicable).

v

Record

business

object

dumps.

The

connector

should

output

a

text

representation

of

a

business

object

before

it

begins

processing

(showing

the

object

the

connector

receives

from

the

integration

broker)

and

after

it

has

processed

the

object

(showing

the

object

the

connector

returns

to

the

integration

broker).

Note:

The

connector

should

deliver

all

the

trace

messages

at

the

specified

trace

level

and

lower.

For

information

on

the

content

and

level

of

detail

for

connector

framework

trace

messages,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Chapter

6.

Message

logging

141

Message

file

You

can

provide

message

input

to

the

connector

error

logging

or

tracing

method

be

as

text

strings

or

as

references

to

a

message

file.

A

message

file

is

a

text

file

containing

message

numbers

and

message

text.

The

message

text

can

contain

positional

parameters

for

passing

runtime

data

out

of

your

connector.

You

can

provide

a

message

file

by

creating

a

file

and

defining

the

messages

that

you

need.

WebSphere

InterChange

Server

Important:

Do

not

add

your

messages

to

the

InterChange

Server

message

file,

InterchangeSystem.txt.

Access

only

existing

messages

from

this

system

message

file.

This

section

provides

the

following

information

about

a

message

file:

v

“Message

format”

v

“Name

and

location

of

a

message

file”

v

“Generating

a

message

string”

on

page

143

Message

format

Within

a

message

file,

messages

have

the

following

format:

message

number

message

text[EXPL]explanation

text

The

message

number

is

an

integer

that

uniquely

identifies

the

message.

This

message

number

must

appear

on

one

line.

The

message

text

can

span

multiple

lines,

with

a

carriage

return

terminating

each

line.

The

explanation

text

is

a

more

detailed

explanation

of

the

condition

that

causes

the

message

to

occur.

As

an

example

of

message

text,

a

connector

can

call

the

following

message

when

it

determines

that

its

version

differs

from

the

version

of

the

connector

infrastructure.

20017

Connector

Infrastructure

version

does

not

match.

Messages

can

contain

parameters

whose

values

are

replaced

at

runtime

by

values

from

the

program.

The

parameters

are

positional

and

are

indicated

in

the

message

file

by

a

number

in

braces.

For

example,

the

following

message

has

two

parameters

to

record

an

unsubscribed

event.

20026

Warning:

Unsubscribed

event:

Object

Name:{1},

Verb:

{2}.

For

information

on

how

to

provide

values

to

message

parameters,

see

“Using

parameter

values”

on

page

145.

Note:

For

additional

examples

of

messages,

see

the

InterChange

Server

message

file

InterchangeSystem.txt.

Name

and

location

of

a

message

file

A

connector

can

obtain

its

messages

from

one

of

two

message

files:

v

A

connector

message

file

is

named

AppnameConnector.txt

and

is

stored

in

the

following

subdirectory

of

the

product

directory:

connectors\messages

142

Connector

Development

Guide

for

Java

For

example,

the

connector

message

file

for

the

IBM

WebSphere

Business

Integration

Adapter

for

Clarify

is

named

ClarifyConnector.txt.

v

The

InterChange

Server

message

file

is

named

InterchangeSystem.txt

and

is

located

in

the

product

directory.

When

you

generate

a

message,

you

can

specify

which

of

these

two

message

files

to

extract

a

message

from

with

a

message-file

constant.

All

methods

that

generate

messages

(see

Table

56

on

page

144)

provide

a

parameter

to

specify

which

message

file

to

use.

For

more

information,

see

“Specifying

a

message

number”

on

page

144.“Specifying

a

message

number”

on

page

142

WebSphere

InterChange

Server

If

a

connector

message

file

does

not

exist,

the

InterChange

Server

message

file

InterchangeSystem.txt

(located

in

the

product

directory)

is

used

as

the

message

file.

The

connector

message

file

should

contain

all

text

strings

that

the

application-specific

component

uses.

These

strings

include

those

for

logging

as

well

as

hardcoded

strings.

Note:

Connector

standards

suggest

that

trace

messages

are

not

included

in

a

connector

message

file

because

end

users

do

not

normally

view

them.

For

an

internationalized

connector,

it

is

important

that

text

strings

are

isolated

into

the

connector

message

file.

This

message

file

can

be

translated

and

the

messages

can

then

be

easily

available

in

different

languages.

The

name

of

the

translated

connector

message

file

should

include

the

name

of

the

associated

locale,

as

follows:

AppnameConnector_ll_TT.txt

In

the

preceding

line,

ll

is

the

two-letter

abbreviation

for

the

locale

(by

convention

in

lowercase

letters)

and

TT

is

the

two-letter

abbreviation

for

the

territory

(by

convention

in

uppercase

letters).

For

example,

the

version

of

the

connector

message

file

for

the

WBI

Adapter

for

Clarify

that

contains

U.S.

English

messages

would

have

the

following

name:

ClarifyConnector_en_US.txt

At

runtime,

the

connector

framework

locates

the

appropriate

message

file

for

the

connector

framework

locale

from

the

connectors\messages

subdirectory.

For

example,

if

the

connector

framework’s

locale

is

U.S.

English

(en_US),

the

connector

framework

retrieves

messages

from

the

AppnameConnector_en_US.txt

file.

For

more

information

on

how

to

internationalize

the

text

strings

of

a

connector,

see

“An

internationalized

connector”

on

page

56.

Generating

a

message

string

The

methods

in

Table

56

retrieve

a

predefined

message

from

a

message

file,

format

the

text,

and

return

a

generated

message

string.

Chapter

6.

Message

logging

143

Table

56.

Methods

that

generate

a

message

string

Message

method

Description

generateMsg()

Generates

a

message

of

the

specified

severity

from

a

message

file.

You

can

use

the

message

as

input

to

the

logMsg()

or

traceWrite()

method.

generateAndLogMsg()

Generates

a

message

of

the

specified

severity

from

a

message

file

and

sends

it

to

the

log

destination

generateAndTraceMsg()

Generates

a

trace

message

from

a

message

file

and

sends

it

to

the

log

destination

Tip:

Before

using

generateMsg()

for

tracing,

check

that

tracing

is

enabled

with

the

isTraceEnabled()

method.

If

tracing

is

not

enabled,

you

need

not

generate

the

trace

message.

In

the

Java

connector

library,

the

generateMsg(),

generateAndLogMsg(),

and

generateAndTraceMsg()

methods

are

defined

in

the

CWConnectorUtil

class

The

message-generation

methods

in

Table

56

require

the

following

information:

v

“Specifying

a

message

number”

v

“Specifying

a

message

type”

on

page

145

v

“Using

parameter

values”

on

page

145

(optional)

Specifying

a

message

number

The

methods

in

Table

56

require

a

message

number

as

an

argument.

This

argument

specifies

the

number

of

the

message

to

obtain

from

the

message

file.

As

described

in

“Message

format”

on

page

142,

each

message

in

a

message

file

must

have

a

unique

integer

message

number

(identifier)

associated

with

it.

The

methods

in

Table

56

search

the

message

file

for

the

specified

message

number

and

extract

the

associated

message

text.

To

indicate

which

message

file

these

methods

search

in,

you

specify

an

integer

message-file

constant

as

an

argument,

as

Table

57

shows.

Table

57.

Message-file

constants

Message-file

constant

Description

INFRASTRUCTURE_MESSAGE_FILE

Search

the

InterChange

Server

message

file

(InterchangeSystem.txt)

for

the

specified

message

number.

Note:

This

message-file

constant

is

valid

only

when

the

integration

broker

is

InterChange

Server.

CONNECTOR_MESSAGE_FILE

Search

the

connector

message

file

for

the

specified

message

number.

In

the

Java

connector

library,

the

message-file

constants

are

defined

in

the

CWConnectorLogAndTrace

class.

The

IBM

WebSphere

business

integration

system

generates

the

date

and

time

and

displays

the

following

message:

[1999/05/28

11:54:15.990]

[ConnectorAgent

ConnectorName]

Error

1100:

Failed

to

connect

to

application

144

Connector

Development

Guide

for

Java

Note:

If

the

connector

logs

to

its

local

log

file,

the

connector

infrastructure

adds

the

timestamp.

WebSphere

InterChange

Server

If

the

connector

logs

to

InterChange

Server,

InterChange

Server

adds

the

timestamp.

Specifying

a

message

type

The

methods

in

Table

56

also

require

a

message

type

as

an

argument.

This

argument

indicates

the

severity

of

the

message.

Table

58

lists

the

valid

message

types

and

their

associated

message-type

constants.

Table

58.

Message

types

Message

type

Severity

level

Description

XRD_FATAL

Fatal

Error

Indicates

an

error

that

stops

program

execution.

XRD_ERROR

Error

Indicates

a

error

that

should

be

investigated.

XRD_WARNING

Warning

Indicates

a

condition

that

might

represent

a

problem

but

that

can

be

ignored.

XRD_INFO

Informational

Information

message

only;

no

action

required.

XRD_TRACE

--

Use

for

trace

messages.

To

specify

a

message

type

to

associate

with

a

message,

use

one

of

the

message-type

constants

in

Table

58

as

an

argument

to

the

message-generation

method,

as

follows:

v

For

a

log

message,

use

a

message-type

constant

that

indicates

the

message

severity

(in

decreasing

level

of

severity):

XRD_FATAL,

XRD_ERROR,

XRD_WARNING,

XRD_INFO.

v

For

a

trace

message,

use

the

XRD_TRACE

message-type

constant.

In

the

Java

connector

library,

the

generateAndTraceMsg()

method

does

not

require

a

message

type

for

trace

messages.

Although

the

Java

connector

library

supports

a

deprecated

version

of

generateAndTraceMsg()

that

requires

the

message

type,

the

nondeprecated

version

of

this

method

automatically

specifies

the

XRD_TRACE

message

type;

therefore,

you

do

not

need

to

provide

it

as

an

argument.

Message-type

constants

are

defined

in

the

CWConnectorLogAndTrace

class.

Using

parameter

values

With

the

message-generation

methods

in

Table

56,

you

can

specify

an

optional

number

of

values

for

message-text

parameters.

The

number

of

parameter

values

must

match

the

number

of

parameters

defined

in

the

message

text.

For

information

on

how

to

define

parameters

in

a

message,

see

“Message

format”

on

page

142.

To

specify

parameter

values,

you

must

include

the

following

arguments:

v

An

argument

count

to

indicate

the

number

of

parameters

within

the

message

text;

to

determine

the

number,

refer

to

the

message

in

the

message

file.

v

A

comma-separated

list

of

parameter

values;

each

parameter

is

represented

as

a

character

string.

Suppose

you

have

the

following

informational

message

in

your

connector

message

file

that

contains

one

parameter:

Chapter

6.

Message

logging

145

2887

Initializing

connector

{1}

Because

this

message

contains

a

single

parameter,

a

call

to

one

of

the

message-generation

methods

must

specify

an

argument

count

of

1

and

then

provide

the

name

of

the

connector

as

a

character

string.

In

the

code

fragment

below,

generateAndLogMsg()

is

called

to

format

a

message

that

contains

one

parameter

and

send

this

message

to

the

log:

String

val

=

CWConnectorUtil.getConfigProp("ConnectorName");

CWConnectorUtil.generateAndLogMsg(2887,

CWConnectorLogAndTrace.XRD_INFO,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

1,

val);

The

parameter

value

of

val

is

combined

with

the

message

in

the

message

file.

If

val

is

set

to

MyConnector,

the

resulting

message

is:

[1999/05/28

11:54:15.990]

[ConnectorAgent

MyConnector]

Info

2887:

Initializing

connector

MyConnector

You

can

also

locate

trace

messages

in

the

connector

message

file.

146

Connector

Development

Guide

for

Java

Chapter

7.

Implementing

a

Java

connector

This

chapter

presents

information

on

how

to

implement

a

connector’s

application-specific

component

in

Java.

It

provides

language-specific

details

for

the

general

tasks

discussed

in

earlier

chapters

of

this

guide.

This

chapter

contains

the

following

sections:

v

“Extending

the

Java

connector

base

class”

v

“Beginning

execution

of

the

connector”

on

page

148

v

“Creating

a

business

object

handler”

on

page

152

v

“Implementing

an

event-notification

mechanism”

on

page

174

v

“Shutting

down

the

connector”

on

page

200

v

“Handling

errors

and

status”

on

page

201

Extending

the

Java

connector

base

class

In

the

Java

connector

library,

the

connector

base

class

is

named

CWConnectorAgent.

The

CWConnectorAgent

class

provides

methods

for

startup,

subscription

checking,

business

object

subscription

delivery,

and

shut

down.

To

implement

your

own

connector,

you

extend

this

connector

base

class

to

create

your

own

connector

class.

Note:

For

general

information

about

the

methods

of

the

connector

base

class,

see

“Extending

the

connector

base

class”

on

page

68..

To

derive

a

connector

class

for

a

Java

connector,

follow

these

steps:

1.

Create

a

connector

class

that

extends

the

CWConnectorAgent

class.

Name

this

connector

class:

connectorNameAgent.java

where

connectorName

uniquely

identifies

the

application

or

technology

with

which

the

connector

communicates.

For

example,

to

create

a

connector

for

a

Baan

application,

you

create

a

connector

class

called

BaanAgent.

2.

In

the

connector-class

file,

define

a

package

name

to

contain

your

connector.

A

connector

package

name

has

the

following

format:

com.crossworlds.connectors.connectorName

where

connectorName

is

the

same

as

defined

in

step

1

above.

For

example,

the

package

name

for

the

Baan

connector

would

be

defined

in

the

connector-class

file

as

follows:

package

com.crossworlds.connectors.Baan;

3.

Ensure

that

the

connector-class

file

imports

the

following

classes:

com.crossworlds.cwconnectorapi.*;

com.crossworlds.cwconnectorapi.exceptions.*;

If

you

create

several

files

to

hold

the

connector-class

code,

you

must

import

these

classes

into

every

connector

file.

4.

Implement

the

appropriate

base-class

methods

for

the

connector’s

application-specific

component.

For

more

information

on

how

to

create

these

base-class

methods,

see

Table

59..

©

Copyright

IBM

Corp.

2000,

2004

147

Table

59.

Extending

base-class

methods

of

the

CWConnectorAgent

class

CWConnectorAgent

method

Description

For

more

information

agentInit()

Initializes

the

application-specific

component

of

the

connector.

“Initializing

the

connector”

on

page

148

getVersion()

Obtain

the

version

of

the

connector.

“Checking

the

connector

version”

on

page

149

getConnectorBOHandlerForBO()

Obtain

the

business-object

handler

for

the

business

objects.

“Obtaining

the

Java

business

object

handler”

on

page

151

getEventStore()

Obtain

the

event-store

object

for

the

connector.

“CWConnectorEventStoreFactory

interface”

on

page

176

doVerbFor()

Process

the

request

business

object

by

performing

its

verb

operation.

“Creating

a

business

object

handler”

on

page

152

pollForEvents()

Poll

event

store

to

obtain

application

events

and

send

them

to

the

connector

framework.

“Implementing

an

event-notification

mechanism”

on

page

174

terminate()

Perform

cleanup

operations

for

the

connector

shut

down.

“Shutting

down

the

connector”

on

page

200

Beginning

execution

of

the

connector

When

the

connector

is

started,

the

connector

framework

instantiates

the

associated

connector

class

and

then

calls

the

connector

class

methods

in

Table

60..

Table

60.

Beginning

execution

of

the

connector

Initialization

task

For

more

information

1.

Initialize

the

connector

to

perform

any

necessary

initialization

for

the

connector,

such

as

opening

a

connection

to

the

application.

“Initializing

the

connector”

on

page

148

2.

For

each

business

object

that

the

connector

supports,

obtain

the

business

object

handler.

“Obtaining

the

Java

business

object

handler”

on

page

151

Initializing

the

connector

To

begin

connector

initialization,

the

connector

framework

calls

the

initialization

method,

agentInit(),

in

the

connector

base

class,

CWConnectorAgent.

This

method

performs

initialization

steps

for

the

connector’s

application-specific

component.

Important:

As

part

of

the

implementation

of

your

connector

class,

you

must

implement

an

agentInit()

method

for

your

connector.

As

discussed

in

“Initializing

the

connector”

on

page

65,,

the

main

tasks

of

the

agentInit()

initialization

method

include:

v

“Establishing

a

connection”

on

page

149

v

“Checking

the

connector

version”

on

page

149

v

“Recovering

In-Progress

events”

on

page

149

In

addition

to

the

above

topics,

this

section

provides

an

example

Java

agentInit()

method

in

“Example

Java

initialization

method”

on

page

150.

Important:

During

execution

of

the

initialization

method,

business

object

definitions

and

the

connector

framework’s

subscription

list

are

not

yet

available.

148

Connector

Development

Guide

for

Java

Establishing

a

connection

The

main

task

of

the

agentInit()

initialization

method

is

to

establish

a

connection

to

the

application.

It

executes

successfully

if

the

connector

succeeds

in

opening

a

connection.

If

the

connector

cannot

open

a

connection,

the

initialization

method

must

throw

the

ConnectionFailureException

exception

to

indicate

the

cause

of

the

failure.

The

connector

might

also

need

to

log

into

the

application.

If

this

logon

attempt

fails,

the

initialization

method

must

throw

the

LogonFailedException

to

indicate

the

cause

of

the

failure.

The

steps

in

Table

64

on

page

155

outline

how

to

throw

either

of

these

initialization

exceptions.

Note:

For

an

overview

of

the

steps

in

an

initialization

method,

see

“Establishing

a

connection”

on

page

65..

Checking

the

connector

version

The

getVersion()

method

returns

the

version

of

the

connector’s

application-specific

component.

Note:

For

a

general

description

of

getVersion(),

see

“Checking

the

connector

version”

on

page

65..

In

the

Java

connector

library,

the

getVersion()

method

is

defined

in

the

CWConnectorAgent

class.

This

class

provides

a

default

implementation

of

getVersion()

that

obtains

the

version

from

the

Java

manifest

file.

You

can

override

getVersion()

to

provide

a

different

implementation.

For

example,

the

following

code

sample

implements

getVersion()

to

return

a

string

indicating

the

version

of

the

connector.

public

String

getVersion(){

//

get

version

from

manifest

file,

or

from

string

String

version

=

"1.0.0";

return

version;

}

Recovering

In-Progress

events

The

Java

connector

library

provides

the

CWConnectorEventStore

class

to

represent

an

event

store.

To

recover

In-Progress

event

records

in

the

event

store,

the

Java

connector

library

provides

the

method

in

Table

61..

Table

61.

Method

for

recovering

In-Progress

events

Java

connector

library

class

Method

CWConnectorEventStore

recoverInProgressEvents()

The

recoverInProgressEvents()

method

implements

the

recovery

behavior

for

In-Progress

events.

However,

the

CWConnectorEventStore

class

does

not

provide

a

default

implementation

for

this

method.

One

possible

recovery

behavior

is

based

on

the

InDoubtEvents

connector

configuration

property

and

is

outlined

in

Table

23

on

page

66..

Note:

For

a

general

discussion

of

how

to

recover

In-Progress

events,

see“Recovering

In-Progress

events”

on

page

65..

If

the

recovery

process

fails,

the

initialization

method

must

throw

the

InProgressEventRecoveryFailedException

to

indicate

the

cause

of

the

failure.

The

steps

in

Table

64

on

page

155

outline

how

to

throw

this

initialization

exception.

Chapter

7.

Implementing

a

Java

connector

149

Figure

56

shows

a

fragment

of

the

agentInit()

method

that

uses

recoverInProgressEvents()

to

recover

the

In-Progress

events.

In

Figure

56,,

the

MyEventStoreFactoryInstance

class

is

an

example

of

an

extension

of

the

CWConnectorEventStoreFactory

class,

whose

getEventStore()

method

provides

access

to

the

event

store.

Example

Java

initialization

method

For

a

Java

connector,

the

agentInit()

method

provides

the

initialization

for

the

connector’s

application-specific

component.

This

method

does

not

return

a

value

but

throws

special

exceptions

to

indicate

common

initialization

errors.

Figure

57

shows

a

simple

agentInit()

method

that

obtains

connector

properties

and

establishes

a

connection

to

the

application.

//

instantiate

event-store

factory

evtFac=new

MyEventStoreFactoryInstance();

//

instantiate

event

store

Object

evto=evtFac.getEventStore();

CWConnectorEventStore

evts=(CWConnectorEventStore)evto;

//

check

for

any

leftover

In-Progress

events

String

inDoubtEvents=CWConnectorUtil.getConfigProp(

"InDoubtEvents");

//

In

case

the

InDoubtEvents

property

is

not

set,

use

//

FailOnStartup

as

default.

if

(inDoubtEvents

==

null

||

inDoubtEvents.equals(""))

inDoubtEvents="FailOnStartup";

//

recover

In-Progress

events

if

(evts.recoverInProgressEvents()

==

FAIL

||

inDoubtEvents.equals("FailOnStartup”)

)

{

//

log

a

fatal

error

//

throw

an

exception

to

terminate

agentInit()

throw

new

InProcessEventRecoveryFailureException()

}

}

Figure

56.

Recovering

in-progress

events

150

Connector

Development

Guide

for

Java

Note:

For

agentInit()

code

fragment

that

recovers

In-Progress

events,

see

Figure

56

on

page

150..

Obtaining

the

Java

business

object

handler

In

a

Java

connector,

the

business-object-handler

base

class

is

CWConnectorBOHandler.

To

obtain

an

instance

of

a

business

object

handler

for

a

supported

business

object,

the

connector

framework

calls

the

getConnectorBOHandlerForBO()

method,

which

is

defined

as

part

of

the

CWConnectorAgent

class.

Note:

For

general

information

about

the

getConnectorBOHandlerForBO()

method,

see

“Obtaining

the

business

object

handler”

on

page

66..

For

a

general

discussion

of

how

to

design

business

object

handlers,

see

“Designing

business

object

handlers”

on

page

79..

public

agentInit()

throws

PropertyNotSetException,

ConnectionFailureException,

InProgressEventRecoveryFailedException,

LogonFailedException

{

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,

"Entering

Connector

agentInit()");

int

status

=

CWConnectorConstant.SUCCEED;

connectorProperties

=

CWConnectorUtil.getAllConnectorAgentProperties();

ExampleConnection

userConnect

=

new

Connection();

//

get

Connector

Configuration

Properties

to

establish

Connection

String

connectString

=

(String)connectorProperties.get("ConnectString");

String

userName

=

(String)connectorProperties.get("ApplicationUserName");

String

userPassword

=

(String)connectorProperties.get("ApplicationPassword");

if(connectString

==

null

||

connectString.equals("")

||

userName==null

||

userPassword==null

)

{

throw

new

PropertyNotSetException();

}

//

Use

Configuration

Values

to

log

into

Application

try

{

boolean

loginSuccessful

=

userConnect.login(connectString,

userName,

userPassword);

if(loginSuccessful)

CWConnectorUtil.generateAndLogMsg(30000,CWConnectorLogAndTrace.XRD_INFO,);

}

catch(ExampleAppException

se)

{

CWConnectorUtil.generateAndLogMsg(30001,

CWConnectorLogAndTrace.XRD_ERROR,0,1,path);

}

}

Figure

57.

Initializing

a

Java

connector

Chapter

7.

Implementing

a

Java

connector

151

The

default

implementation

of

getConnectorBOHandlerForBO()

in

the

CWConnectorAgent

class

returns

a

business

object

handler

for

a

business-object-handler

base

class

named

ConnectorBOHandler.

If

you

name

your

extended

business-object-handler

base

class

ConnectorBOHandler,

you

do

not

need

to

override

the

getConnectorBOHandlerForBO()

method.

However,

if

you

name

your

extended

business-object-handler

base

class

some

other

than

ConnectorBOHandler,

you

must

override

getConnectorBOHandlerForBO()

to

return

an

instance

of

your

extended

business-object-handler

base

class.

The

number

of

business

object

handlers

that

the

connector

framework

obtains

through

its

calls

to

the

getConnectorBOHandlerForBO()

method

depends

on

the

overall

design

for

business

object

handling

in

your

connector:

v

If

the

connector

is

metadata-driven,

it

can

be

designed

to

use

a

generic,

metadata-driven

business

object

handler.

Figure

58

contains

an

implementation

of

the

getConnectorBOHandlerForBO()

method

that

returns

a

metadata-driven

business

object

handler.

It

calls

the

constructor

for

the

ExampleBOHandler

class,

which

instantiates

a

single

business-object-handler

base

class

that

handles

all

the

business

objects

supported

by

the

connector.

v

If

some

or

all

application-specific

business

objects

require

special

processing,

then

you

must

set

up

multiple

business

object

handlers

for

those

objects.

Important:

During

execution

of

the

getConnectorBOHandlerForBO()

method,

the

business

object

class

methods

are

not

yet

available.

Figure

58

calls

the

constructor

for

the

ExampleConnectorBOHandler

class

to

instantiate

a

single

business-object-handler

base

class

that

handles

all

the

business

objects

supported

by

the

connector.

Creating

a

business

object

handler

Creating

a

business

object

handler

involves

the

following

steps:

v

“Extending

the

Java

business-object-handler

base

class”

v

Implementing

a

business-object-handler

retrieval

method—For

more

information,

see

“Obtaining

the

Java

business

object

handler”

on

page

151.

v

“Implementing

the

doVerbFor()

method”

on

page

153

v

“Creating

a

custom

business

object

handler”

on

page

172

Note:

For

an

introduction

to

request

processing,

see

“Request

processing”

on

page

22..

For

a

discussion

of

request

processing

and

the

implementation

of

doVerbFor(),

see

Chapter

4,

“Request

processing,”

on

page

79.

Extending

the

Java

business-object-handler

base

class

In

the

Java

connector

library,

the

base

class

for

a

business

object

handler

is

named

CWConnectorBOHandler.

The

CWConnectorBOHandler

class

provides

methods

for

defining

and

accessing

a

business

object

handler.

To

implement

your

own

business

object

handler,

you

extend

this

business-object-handler

base

class

to

create

your

own

business-object-handler

class.

public

CWConnectorBOHandler

getConnectorBOHandlerForBO(String

BOName){

return

new

ExampleConnectorBOHandler();

}

Figure

58.

The

getConnectorBOHandlerForBO()

method

for

generic

business

object

handler

152

Connector

Development

Guide

for

Java

Note:

For

general

information

about

the

methods

of

the

business-object-handler

base

class,

see

“Extending

the

business-object-handler

base

class”

on

page

82..

To

derive

a

business-object-handler

class

for

a

Java

connector,

follow

these

steps:

1.

Create

a

class

that

extends

the

CWConnectorBOHandler

class.

Name

this

class:

connectorNameBOHandler.java

where

connectorName

uniquely

identifies

the

application

or

technology

with

which

the

connector

communicates.

For

example,

to

create

a

business

object

handler

for

a

Baan

application,

you

create

a

business-object-handler

class

called

BaanBOHandler.

If

your

connector

design

implements

multiple

business

object

handlers,

include

the

name

of

the

handled

business

objects

in

the

name

of

the

business-object-handler

class.

2.

In

the

business-object-handler-class

file,

define

the

package

name

that

contains

your

connector.

A

connector

package

name

has

the

following

format:

com.crossworlds.connectors.connectorName

where

connectorName

is

the

same

as

defined

in

step

1

above.

For

example,

the

package

name

for

the

Baan

connector

would

be

defined

in

the

business-object-handler-class

file

as

follows:

package

com.crossworlds.connectors.Baan;

3.

Ensure

that

the

business-object-handler-class

file

imports

the

following

classes:

com.crossworlds.cwconnectorapi.*;

com.crossworlds.cwconnectorapi.exceptions.*;

If

you

create

several

files

to

hold

the

business

object

handler’s

code,

you

must

import

these

classes

into

every

file.

4.

Implement

the

doVerbFor()

method

to

define

the

behavior

of

the

business

object

handler.

For

more

information

on

how

to

implement

this

method,

see

“Implementing

the

doVerbFor()

method.”

Note:

The

other

methods

in

the

CWConnectorBOHandler

class

have

their

implementations

provided.

The

doVerbFor()

method

is

the

only

method

you

must

implement

in

the

business-object-handler

class.

For

more

information,

see

Chapter

12,

“CWConnectorBOHandler

class,”

on

page

249.

You

might

need

to

implement

more

than

one

business

object

handler

for

your

connector,

depending

on

the

application

and

its

API.

For

a

discussion

of

some

issues

to

consider

when

implementing

business

object

handlers,

see

“Designing

business

object

handlers”

on

page

79..

Implementing

the

doVerbFor()

method

The

doVerbFor()

method

provides

the

functionality

for

the

business

object

handler.

When

the

connector

framework

receives

a

request

business

object,

it

calls

the

doVerbFor()

method

for

the

appropriate

business

object

handler

to

perform

the

action

of

this

business

object’s

verb.

For

a

Java

connector,

the

CWConnectorBOHandler

class

defines

the

doVerbFor()

method

in

which

you

define

the

verb

processing.

Note:

For

a

general

description

of

the

role

of

the

doVerbFor()

method,

see

“Handling

the

request”

on

page

82.

Figure

27

on

page

83

provides

the

method’s

basic

logic.

Chapter

7.

Implementing

a

Java

connector

153

However,

the

actual

doVerbFor()

method

that

the

connector

framework

invokes

is

the

low-level

version

of

this

method,

which

the

CWConnectorBOHandler

class

inherits

from

the

BOHandlerBase

class

of

the

low-level

Java

connector

library.

This

low-level

version

of

doVerbFor()

calls

the

user-implemented

doVerbFor()

method.

Therefore,

as

part

of

your

business-object-handler

class

(an

extension

of

CWConnectorBOHandler),

you

must

provide

an

implementation

of

the

doVerbFor()

method.

Note:

The

low-level

doVerbFor()

method

calls

the

doVerbFor()

method

as

long

as

the

business

object’s

verb

does

not

contain

the

CBOH

tag

in

its

verb

application-specific

information.

If

the

CBOH

tag

exists,

the

low-level

doVerbFor()

calls

the

custom

business

object

handler

whose

name

the

CBOH

tag

specifies.

For

more

information,

see

“Creating

a

custom

business

object

handler”

on

page

172.

The

role

of

the

business

object

handler

is

to

perform

the

following

tasks:

1.

Receive

business

objects

from

the

connector

framework.

2.

Process

each

business

object

based

on

the

active

verb.

3.

Send

requests

for

operations

to

the

application.

4.

Return

status

to

the

connector

framework.

Table

62

summarizes

the

steps

in

the

basic

logic

for

the

verb

processing

that

the

doVerbFor()

method

typically

performs.

Each

of

the

sections

listed

in

the

For

More

Information

column

provides

more

detailed

information

on

the

associated

step

in

the

basic

logic.

Table

62.

Basic

logic

of

the

doVerbFor()

method

Business-object-handler

step

For

more

information

1.

Obtain

the

active

verb

from

the

request

business

object.

“Obtaining

the

active

verb”

on

page

155

2.

Verify

that

the

connector

still

has

a

valid

connection

to

the

application.

“Verifying

the

connection

before

processing

the

verb”

on

page

156

3.

Branch

on

the

value

of

the

valid

active

verb.

“Branching

on

the

active

verb”

on

page

157

4.

For

a

given

active

verb,

perform

the

appropriate

request

processing:

v

Perform

verb-specific

tasks.

“Performing

the

verb

operation”

on

page

159

v

Process

the

business

object.

“Processing

business

objects”

on

page

160

5.

Send

the

appropriate

status

to

the

connector

framework.

“Sending

the

verb-processing

response”

on

page

167

In

addition

to

the

processing

steps

in

Table

62,,

this

section

also

provides

additional

processing

information

in

“Additional

processing

issues”

on

page

169.

Note:

Java

connectors

must

be

thread

safe.

For

Java

connectors,

the

connector

framework

uses

separate

threads

to

call

into

the

doVerbFor()

and

pollForEvents()

methods.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server

and

collaborations

are

coded

to

be

multi-threaded,

the

connector

framework

might

call

into

doVerbFor()

with

multiple

threads

representing

request

processing.

154

Connector

Development

Guide

for

Java

Obtaining

the

active

verb

To

determine

which

actions

to

take,

the

doVerbFor()

method

must

first

retrieve

the

verb

from

the

business

object

that

it

receives

as

an

argument.

This

incoming

business

object

is

called

the

request

business

object.

The

verb

that

this

business

object

contains

is

the

active

verb,

which

must

be

one

of

the

verbs

that

the

business

object

definition

supports.

Table

63

lists

the

method

that

the

Java

connector

library

provides

to

retrieve

the

active

verb

from

the

request

business

object.

Table

63.

Method

for

obtaining

the

active

verb

Java

connector

library

class

Method

CWConnectorBusObj

getVerb()

Obtaining

the

active

verb

from

the

request

business

object

generally

involves

the

following

steps:

1.

Verify

that

the

request

business

object

is

valid.

Before

the

connector

calls

getVerb(),

it

should

verify

that

the

incoming

request

business

object

is

not

null.

The

incoming

business

object

is

passed

into

the

doVerbFor()

method

as

a

CWConnectorBusObj

object.

2.

Obtain

the

active

verb

with

the

getVerb()

method.

Once

the

request

business

object

is

valid,

you

can

use

the

getVerb()

method

in

the

CWConnectorBusObj

class

to

obtain

the

active

verb

from

this

business

object.

3.

Verify

that

the

active

verb

is

valid.

When

the

connector

has

obtained

the

active

verb,

it

should

verify

that

this

verb

is

neither

null

nor

empty.

If

either

the

request

business

object

or

the

active

verb

is

invalid,

the

connector

should

not

continue

with

verb

processing.

Instead,

it

should

take

the

steps

outlined

in

Table

64..

Table

64.

Handling

a

verb-processing

error

Error-handling

step

Method

or

code

to

use

1.

Log

an

error

message

to

the

log

destination

to

indicate

the

cause

of

the

verb-processing

error.

CWConnectorUtil.generateAndLogMsg()

2.

Instantiate

an

exception-detail

object

to

hold

the

exception

information.

CWConnectorExceptionObject

excptnDtailObj

=

new

CWConnectorExceptionObject();

3.

Set

the

status

information

within

an

exception-detail

object:

v

set

a

message

to

indicate

the

cause

of

the

verb-processing

failure

excptnDtailObj.setMsg()

v

set

the

status

to

the

FAIL

outcome

status,

which

the

connector

framework

includes

in

its

response

to

the

integration

broker.

excptnDtailObj.setStatus()

4.

Throw

a

VerbProcessingFailureException

exception,

which

the

doVerbFor()

uses

to

tell

the

connector

framework

that

a

verb-processing

error

has

occurred.

This

exception

object

contains

the

exception-detail

object

you

initialized

in

Step

2.

When

the

low-level

doVerbFor()

method

catches

this

exception

object,

it

copies

the

message

and

status

from

the

exception-detail

object

into

the

return-status

descriptor

that

it

returns

to

the

connector

framework,

which

in

turn

returns

it

to

the

integration

broker.

throw

new

VerbProcessingFailureException(

excptnDtailObj);

Chapter

7.

Implementing

a

Java

connector

155

Note:

For

information

on

the

exception

and

exception-detail

objects,

see

“Exceptions”

on

page

202.

Figure

59

contains

a

fragment

of

the

doVerbFor()

method

that

obtains

the

active

verb

with

the

getVerb()

method.

This

code

uses

the

try

and

catch

statements

to

ensure

that

the

request

business

object

and

its

active

verb

are

not

null.

If

either

of

these

conditions

exists,

the

code

fragment

throws

the

VerbProcessingFailedException

exception,

which

the

connector

framework

catches.

Verifying

the

connection

before

processing

the

verb

When

the

agentInit()

method

in

the

connector

class

initializes

the

application-specific

component,

one

of

its

most

common

tasks

is

to

establish

a

connection

to

the

application.

The

verb

processing

that

doVerbFor()

performs

requires

access

to

the

application.

Therefore,

before

the

doVerbFor()

method

begins

processing

the

verb,

it

should

verify

that

the

connector

is

still

connected

to

the

application.

The

way

to

perform

this

verification

is

application-specific.

Consult

your

application

documentation

for

more

information.

A

good

design

practice

is

to

code

the

connector

application-specific

component

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

If

the

connection

has

been

lost,

the

connector

should

not

continue

with

verb

processing.

Instead,

it

should

take

the

following

steps

to

notify

the

connector

framework

of

the

lost

connection:

public

int

doVerbFor(CWConnectorBusObj

theBusObj)

throws

VerbProcessingFailedException,

ConnectionFailureException

{

CWConnectorExceptionObject

cwExcpObj

=

new

CWConnectorExceptionObject();

//make

sure

that

the

incoming

business

object

is

not

null

if

(theBusObj

==

null)

{

CWConnectorUtil.logMsg(3456,

CWConnectorLogAndTrace.XRD_ERROR);

cwExcpObj.setMsg(

"doVerbFor():

Invalid

business

object

passed

in");

cwExcpObj.setStatus(CWConnectorConstant.FAIL);

throw

new

VerbProcessingFailedException(cwExcpObj);

}

//

obtain

the

active

verb

String

busObjVerb

=

theBusObj.getVerb();

//

make

sure

the

active

verb

is

neither

null

nor

empty

if

(busObjVerb

==

null

||

busObjVerb.equals("")){

cwExcpObj.setMsgNumber(6548);

cwExcpObj.setMsgType(CWConnectorLogAndTrace.XRD_ERROR);

cwExcpObj.setMsg("doVerbFor:

Invalid

active

verb");

cwExcpObj.setStatus(CWConnectorConstant.FAIL);

throw

new

VerbProcessingFailedException(cwExcpObj);

}

try

{

//

perform

verb

processing

here

...

}

catch

(SampleException

se)

{

throw

new

VerbProcessingFailedException(cwExcpObj);

}

Figure

59.

Obtaining

the

active

verb

156

Connector

Development

Guide

for

Java

1.

Log

an

error

message

to

the

log

destination

to

indicate

the

cause

of

the

error.

The

connector

logs

a

fatal

error

message

so

that

email

notification

is

triggered

if

the

LogAtInterchangeEnd

connector

configuration

property

is

set

to

True.

2.

Set

the

exception-detail

object

with:

v

a

message

to

indicate

the

cause

of

the

connection

failure

CWConnectorExceptionObject.setMsg()

v

the

status

of

the

APPRESPONSETIMEOUT

outcome

status,

which

the

connector

framework

includes

in

its

response

to

the

integration

broker.

CWConnectorExceptionObject.setStatus()

This

exception-detail

object

is

part

of

the

exception

object

that

doVerbFor()

throws.

For

information

on

these

methods,

see

“Exceptions”

on

page

202.

3.

Throw

a

ConnectionFailureException

exception,

which

the

doVerbFor()

uses

to

tell

the

connector

framework

that

a

verb-processing

cannot

continue

because

the

connection

to

the

application

has

been

lost.

This

exception

object

contains

the

exception-detail

object

you

initialized

in

step

2..

When

the

low-level

doVerbFor()

method

catches

this

exception

object,

it

copies

the

message

and

status

from

the

exception-detail

object

into

the

return-status

descriptor

that

it

returns

to

the

connector

framework.

If

you

have

not

set

the

status

in

the

ConnectionFailureException

exception-detail

object,

the

connector

framework

sets

the

status

to

APPRESPONSETIMEOUT.

The

connector

framework

includes

this

return-status

descriptor

as

part

of

its

response

to

the

integration

broker.

The

integration

broker

can

check

the

return-status

descriptor

to

determine

that

the

application

is

not

responding.

After

it

has

sent

the

return-status

descriptor,

the

connector

framework

stops

the

process

in

which

the

connector

runs.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

events

and

business

object

requests.

Branching

on

the

active

verb

The

main

task

of

verb

processing

is

to

ensure

that

the

application

performs

the

operation

associated

with

the

active

verb.

The

action

to

take

on

the

active

verb

depends

on

whether

the

doVerbFor()

method

has

been

designed

as

a

basic

method

or

a

metadata-driven

method:

v

“Basic

verb

processing”

v

“Metadata-driven

verb

processing”

on

page

159

Basic

verb

processing:

For

verb-processing

that

is

not

metadata-driven,

you

branch

on

the

value

of

the

active

verb

to

perform

the

verb-specific

processing.

Your

doVerbFor()

method

must

handle

all

verbs

that

the

business

object

supports.

Note:

You

can

obtain

a

list

of

business

object’s

supported

verbs

with

the

getSupportedVerbs()

method

of

the

CWConnectorBusObj

class.

Table

65

shows

the

verb

constants

that

the

Java

connector

library

provides

for

comparing

with

the

active

verb.

Table

65.

The

Java

verb

constants

Verb

Constant

Active

Verb

VERB_CREATE

Create

VERB_RETRIEVE

Retrieve

VERB_UPDATE

Update

Chapter

7.

Implementing

a

Java

connector

157

Table

65.

The

Java

verb

constants

(continued)

Verb

Constant

Active

Verb

VERB_DELETE

Delete

VERB_EXISTS

Exists

VERB_RETRIEVEBYCONTENT

RetrieveByContent

All

verb

constants

in

Table

65

are

defined

in

the

CWConnectorConstant

class.

If

your

connector

handles

additional

verbs,

IBM

recommends

that

you

define

your

own

String

constants

as

part

of

your

extended

CWConnectorBOHandler

class.

Note:

As

part

of

the

verb-branching

logic,

make

sure

you

include

a

test

for

an

invalid

verb.

If

the

request

business

object’s

active

verb

is

not

supported

by

the

business

object

definition,

the

business

object

handler

must

take

the

appropriate

recovery

actions

to

indicate

an

error

in

verb

processing.

For

a

list

of

steps

to

handle

a

verb-processing

error,

see

Table

64

on

page

155..

Figure

60

shows

a

code

fragment

of

doVerbFor()

that

branches

off

the

active

verb’s

value

for

the

Create

and

Update

verbs.

For

each

verb

your

business

object

supports,

you

must

provide

a

branch

in

this

code.

The

code

fragment

in

Figure

60

is

modularized;

that

is,

it

puts

the

actual

processing

of

each

supported

verb

into

a

separate

verb

method:

doCreate()

and

doUpdate().

Each

verb

method

should

meet

the

following

minimal

guidelines:

v

Define

a

CWConnectorBusObj

parameter,

so

the

verb

method

can

receive

the

request

business

object,

and

possibly

send

this

updated

business

object

back

to

the

calling

method.

v

Throw

any

verb-specific

exceptions

to

notify

the

doVerbFor()

method

of

any

verb-processing

errors

it

encountered.

v

Return

an

outcome

status,

which

doVerbFor()

can

then

return

to

the

connector

framework.

This

modular

structure

greatly

simplifies

the

readability

and

maintainability

of

the

doVerbFor()

method.

//

handle

the

Create

verb

if(busObjVerb.equals(CWConnectorConstant.VERB_CREATE)){

CWConnectorUtil.initAndValidateAttributes(theBusObj);

status=doCreate(theBusObj);

//

where

doCreate()

inserts

new

row

into

Sample

Apps

database

//

using

data

from

theBusObj

}

//

handle

the

Update

verb

else

if

(objVerb.equals(CWConnectorConstant.VERB_UPDATE)){

status=doUpdate(theBusObj);

//

where

doUpdate()

locates

existing

row

and

updates

it

with

//

information

from

theObj

//

notify

connector

framework

of

invalid

verb

}

else

{

CWConnectorUtil.logMsg(3456,

CWConnectorLogAndTrace.XRD_ERROR);

cwExcpObj.setMsg("doVerbFor():

Invalid

verb

passed

in");

cwExcpObj.setStatus(CWConnectorConstant.FAIL);

throw

new

VerbProcessing

FailedException(cwExcpObj);

}

Figure

60.

Branching

on

the

active

verb’s

value

158

Connector

Development

Guide

for

Java

Metadata-driven

verb

processing:

For

metadata-driven

verb

processing,

the

application-specific

information

for

the

verb

contains

metadata,

which

provides

processing

instructions

for

the

request

business

object

when

that

particular

verb

is

active.

Table

66

lists

the

method

that

the

Java

connector

library

provides

to

obtain

application-specific

information

for

the

verb

of

a

business

object.

Table

66.

Method

for

retrieving

the

verb’s

application-specific

information

Java

connector

library

class

Method

CWConnectorBusObj

getVerbAppText()

The

following

call

to

getVerbAppText()

extracts

the

verb’s

application-specific

information:

String

verbAppInfo

=

theBusObj.getVerbAppText(busObjVerb);

The

verb

application-specific

information

can

contain

the

name

of

the

method

to

call

to

process

the

request

business

object

for

that

particular

verb.

In

this

case,

the

doVerbFor()

method

does

not

need

to

branch

off

the

value

of

the

active

verb

because

the

processing

information

resides

in

the

verb’s

application-specific

information.

Note:

Another

use

of

verb

application-specific

information

can

be

to

specify

the

application’s

API

method

to

call

to

update

the

application

entity

for

the

particular

verb.

Performing

the

verb

operation

Table

67

lists

the

standard

verbs

that

a

doVerbFor()

method

can

implement,

as

well

as

an

overview

of

how

each

verb

operation

processes

the

request

business

object.

For

more

information

on

how

to

process

business

objects,

see

“Processing

business

objects”

on

page

160.

Table

67.

Performing

the

verb

operation

Verb

Use

of

request

business

object

For

more

information

Create

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

in

which

application

structure

to

create

the

entity

(for

example,

a

database

table).

v

Use

any

application-specific

information

for

each

attribute

to

determine

in

which

application

substructure

to

add

the

attribute

values

(for

example,

a

database

column).

v

Use

attribute

values

as

values

to

save

in

new

application

entity.

If

the

application

generates

key

values

for

the

new

entity,

save

the

new

key

values

in

the

request

business

object,

which

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Create

verb”

on

page

86

Retrieve

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

from

which

application

structure

(for

example,

a

database

table)

to

retrieve

the

entity.

v

Use

attribute

key

value

(or

values)

to

identify

which

application

entity

to

retrieve.

If

the

application

finds

the

requested

entity,

save

its

values

in

the

request

business

object’s

attributes.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Retrieve

verb”

on

page

89

Chapter

7.

Implementing

a

Java

connector

159

Table

67.

Performing

the

verb

operation

(continued)

Verb

Use

of

request

business

object

For

more

information

Update

v

Use

any

application-specific

information

of

the

business

object

definition

to

determine

in

which

application

structure

(for

example,

a

database

table)

to

update

the

entity.

v

Use

any

application-specific

information

for

each

attribute

to

determine

which

application

substructure

to

update

with

the

attribute

values

(for

example,

a

database

column).

v

Use

attribute

key

value

(or

values)

to

identity

which

application

entity

to

update.

v

Use

the

attribute

values

as

values

to

update

the

existing

application

entity.

If

the

application

is

designed

to

create

an

entity

if

the

one

specified

for

update

does

not

exist,

save

the

new

entity

values

in

the

request

business

object’s

attributes.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response.

“Handling

the

Update

verb”

on

page

96

Delete

v

Use

any

application-specific

information

in

the

business

object

definition

to

determine

from

which

application

structure

(for

example,

a

database

table)

to

delete

the

entity.

v

Use

attribute

key

value

(or

values)

to

identify

which

application

entity

to

delete.

The

request

business

object

should

then

be

included

as

part

of

the

verb-processing

response

so

that

InterChange

Server

can

perform

any

required

cleanup

of

relationship

tables.

“Handling

the

Delete

verb”

on

page

103

Processing

business

objects

Most

verb

operations

involve

obtaining

information

from

the

request

business

object.

This

section

provides

information

about

the

steps

your

doVerbFor()

method

needs

to

take

to

process

the

request

business

object.

Note:

These

steps

assume

that

your

connector

has

been

designed

to

be

metadata-driven;

that

is,

they

describe

how

to

extract

application-specific

information

from

the

business

object

definition

and

attributes

to

obtain

the

location

within

the

application

associated

with

each

attribute.

If

your

connector

is

not

metadata-driven,

you

probably

do

not

need

to

perform

any

steps

that

extract

application-specific

information.

Table

68

summarizes

the

steps

in

the

basic

program

logic

for

deconstructing

a

request

business

object

that

contains

metadata.

Table

68.

Basic

logic

for

processing

a

request

business

object

with

metadata

Step

For

more

information

1.

Obtain

the

business

object

definition

for

the

request

business

object.

“Accessing

the

business

object

definition”

on

page

161

2.

Obtain

the

application-specific

information

in

the

business

object

definition

to

obtain

the

application

structure

to

access.

“Extracting

business

object

application-specific

information”

on

page

161

3.

Obtain

the

attribute

information.

“Accessing

the

attributes”

on

page

162

4.

For

each

attribute,

get

the

attribute

application-specific

information

in

the

business

object

definition

to

obtain

the

application

substructure

to

access.

“Extracting

attribute

application-specific

information”

on

page

163

5.

Make

sure

that

processing

occurs

only

for

those

attributes

that

are

appropriate.

“Determining

whether

to

process

an

attribute”

on

page

164

160

Connector

Development

Guide

for

Java

Table

68.

Basic

logic

for

processing

a

request

business

object

with

metadata

(continued)

Step

For

more

information

6.

Obtain

the

value

of

each

attribute

whose

value

needs

to

be

sent

to

the

application

entity.

“Extracting

attribute

values

from

a

business

object”

on

page

165

7.

Notify

the

application

to

perform

the

appropriate

verb

operation.

“Initiating

the

application

operation”

on

page

166

8.

Save

any

attribute

values

in

the

request

business

object

that

are

required

for

the

verb-processing

response.

“Saving

attribute

values

in

a

business

object”

on

page

166

Accessing

the

business

object

definition:

For

a

Java

connector,

the

doVerbFor()

method

receives

the

request

business

object

as

an

instance

of

the

CWConnectorBusObj

class.

To

begin

verb

processing,

the

doVerbFor()

method

often

needs

information

from

the

business

object

definition.

The

CWConnectorBusObj

class

provides

access

to

the

business

object,

its

business

object

definition,

and

its

attributes.

Therefore,

a

Java

doVerbFor()

method

does

not

need

to

instantiate

a

separate

object

for

the

business

object

definition;

it

can

obtain

information

in

the

business

object

definition

directly

from

the

CWConnectorBusObj

object

passed

into

doVerbFor().

The

business

object

definition

includes

the

information

shown

in

Table

69..

For

a

complete

list

of

CWConnectorBusObj

methods,

see

Chapter

13,

“CWConnectorBusObj

class,”

on

page

255.

Table

69.

Methods

for

obtaining

information

from

the

business

object

definition

Business

object

definition

information

CWConnectorBusObj

method

The

name

of

the

business

object

definition

getName()

A

verb

list—contains

the

verbs

that

the

business

object

supports

isVerbSupported(),

getSupportedVerbs()

A

list

of

attributes—for

each

attribute,

the

business

object

definition

defines:

getAttrCount()

v

attribute

name

getAttrName()

v

attribute

data

type

getTypeName(),

getTypeNum()

v

position

in

the

list

of

attributes

getAttrIndex()

v

other

properties

For

a

complete

list,

see

Table

71

on

page

163..

Application-specific

information:

v

business

object

definition

getAppText(),

getBusObjASIHashtable()

v

attribute

getAppText(),

getAttrASIHashtable()

v

verb

getVerbAppText()

A

business

object

handler

typically

uses

the

business

object

definition

to

get

information

on

the

business

object’s

attributes

or

to

get

the

application-specific

information

from

the

business

object

definition,

attribute,

or

verb.

Extracting

business

object

application-specific

information:

Business

objects

for

metadata-driven

connectors

are

usually

designed

to

have

application-specific

information

that

provides

information

about

the

application

structure.

For

such

connectors,

the

first

step

in

a

typical

verb

operation

is

to

retrieve

the

application-specific

information

from

the

business

object

definition

associated

with

the

request

business

object.

Table

70

lists

the

methods

that

the

Java

connector

library

provides

to

retrieve

application-specific

information

from

the

business

object

definition.

Chapter

7.

Implementing

a

Java

connector

161

Table

70.

Methods

for

obtaining

business

object

application-specific

information

Java

connector

library

class

Method

CWConnectorBusObj

getAppText()

(with

no

arguments)

getBusObjASIHashtable()

As

Table

70

shows,

the

connector

can

use

either

of

the

following

methods

to

obtain

the

application-specific

information

for

the

business

object

definition:

v

The

getAppText()

method

returns

the

application-specific

information

as

a

Java

String.

It

can

also

retrieve

the

value

of

a

specified

name-value

pair

within

the

business-object-level

application-specific

information.

Note:

The

getAppText()

method

uses

deprecated

terminology

in

its

method

name.

This

method

name

refers

to

“application-specific

text”.

The

more

current

name

for

“application-specific

text”

is

“application-specific

information”.

v

The

getBusObjASIHashtable()

method

returns

the

application-specific

information

as

a

Java

Hashtable

of

name-value

pairs.

For

a

table-based

application,

the

business

objects

are

often

designed

to

have

application-specific

information

provide

the

verb

operations

with

information

about

the

application

structure

(For

more

information,

see

Table

43

on

page

108).

The

application-specific

information

in

a

business

object

definition

can

contain

the

name

of

the

database

table

associated

with

the

business

object.

Accessing

the

attributes:

For

a

Java

connector,

the

CWConnectorBusObj

class

provides

access

to

the

business

object,

its

business

object

definition,

and

its

attributes.

When

the

doVerbFor()

method

needs

information

about

attributes

in

the

business

object,

it

can

obtain

this

information

directly

from

the

request

business

object.

Therefore,

a

Java

doVerbFor()

method

does

not

need

to

instantiate

a

separate

object

for

an

attribute.

The

connector

can

use

attribute

methods

in

the

CWConnectorBusObj

class

(see

Table

71)

to

obtain

information

about

an

attribute,

such

as

its

cardinality

or

maximum

length.

Methods

that

access

attribute

properties

provide

the

ability

to

access

an

attribute

in

of

two

ways:

v

Its

attribute

name—you

can

identify

the

attribute

by

its

Name

property

to

obtain

its

attribute

object:

v

Its

integer

index—to

obtain

the

attribute

index

(its

ordinal

position),

you

can

either:

–

Obtain

a

count

of

all

attributes

in

the

business

object

definition

with

getAttrCount()

and

loop

through

them

one

at

a

time,

passing

each

index

value

to

one

of

the

attribute-access

methods

in

Table

71..

–

Obtain

the

index

for

a

particular

attribute.

You

can

obtain

the

index

for

an

attribute

by

specifying

its

name

to

getAttrIndex().

Note:

Both

the

getAttrCount()

and

getAttrIndex()

methods

are

defined

in

the

CWConnectorBusObj

class.

Table

71

lists

the

methods

that

the

Java

connector

library

provides

to

retrieve

information

about

an

attribute.

For

a

complete

list

of

methods

that

access

attribute

information,

see

Chapter

13,

“CWConnectorBusObj

class,”

on

page

255.

162

Connector

Development

Guide

for

Java

Table

71.

Methods

for

obtaining

attribute

information

Attribute

property

CWConnectorBusObj

method

Name

getAttrName(),

hasName()

Type

getTypeNum(),

getTypeName(),

hasType(),

isObjectType(),

isType()

Key

isKeyAttr()

Foreign

key

isForeignKeyAttr()

Max

Length

getMaxLength()

Required

isRequiredAttr()

Cardinality

getCardinality(),

hasCardinality(),

isMultipleCard()

Default

Value

getDefault(),

getDefaultboolean(),

getDefaultdouble(),

getDefaultfloat(),

getDefaultint(),

getDefaultlong(),

getDefaultString()

Attribute

application-specific

information

getAppText()

Extracting

attribute

application-specific

information:

If

business

objects

for

metadata-driven

connectors

are

designed

to

have

application-specific

information

that

provides

information

about

the

application

structure,

the

next

step

after

extracting

the

application-specific

information

from

the

business

object

definition

is

to

extract

the

application-specific

information

from

each

attribute

in

the

request

business

object.

Table

72

lists

the

methods

that

the

Java

connector

library

provides

to

retrieve

application-specific

information

from

each

attribute.

Table

72.

Methods

for

obtaining

attribute

application-specific

information

Java

connector

library

class

Method

CWConnectorBusObj

getAttrCount()

getAppText()

(with

the

position

or

name

of

the

attribute

as

an

argument)

getAttrASIHashtable()

As

Table

72

shows,

the

connector

can

use

either

of

the

following

methods

to

obtain

the

application-specific

information

for

an

attribute:

v

The

getAppText()

method

returns

the

application-specific

information

as

a

Java

String.

It

can

also

retrieve

the

value

of

a

specified

name-value

pair

within

the

attribute

application-specific

information.

Note:

The

getAppText()

method

uses

deprecated

terminology

in

its

method

names.

This

method

name

refers

to

“application-specific

text”.

The

more

current

name

for

“application-specific

text”

is

“application-specific

information”.

v

The

getAttrASIHashtable()

method

returns

the

application-specific

information

as

a

Java

Hashtable

of

name-value

pairs.

If

business

objects

have

been

designed

to

have

application-specific

information

provide

information

for

a

table-based

application,

the

application-specific

information

for

the

attribute

can

contain

the

name

of

the

application

table’s

column

associated

with

this

attribute

(For

more

information,

see

Table

43

on

page

108).

After

extracting

the

application-specific

information

from

the

business

object

definition,

the

next

step

is

to

determine

what

columns

in

the

application

table

are

associated

with

the

attributes

in

the

request

business

object.

Chapter

7.

Implementing

a

Java

connector

163

A

verb

operation

can

call

getAppText(),

passing

it

the

position

or

name

of

the

attribute,

to

obtain

the

name

of

the

column

within

the

database

table

to

access.

To

obtain

the

application-specific

information

for

each

attribute,

the

verb

operation

must

loop

through

all

attributes

in

the

business

object

definition.

Therefore,

it

must

determine

the

total

number

of

attributes

in

the

business

object

definition.

The

most

common

syntax

for

looping

through

the

attributes

is

a

for

statement

that

uses

the

following

limits

on

the

loop

index:

v

Loop

index

is

initialized

to

zero.

If

the

verb

operation

processes

the

first

attribute,

which

contains

the

key,

the

loop

index

variable

starts

at

0.

However,

if

the

verb

is

Create

and

your

application

generates

keys,

your

Create

verb

operation

should

not

process

attributes

containing

keys.

In

this

case,

the

loop

index

variable

starts

at

a

value

other

than

0.

v

Loop

index

increments

until

it

reaches

the

total

number

of

attributes

in

the

business

object

definition.

The

getAttrCount()

method

returns

the

total

number

of

attributes

in

the

business

object.

However,

this

total

includes

the

ObjectEventId

attribute.

Because

the

ObjectEventId

attribute

is

used

by

the

IBM

WebSphere

business

integration

system

and

is

not

present

in

application

tables,

a

verb

operation

does

not

need

to

process

this

attribute.

Therefore,

when

looping

through

business

object

attributes,

you

loop

from

zero

to

one

less

than

the

total

number

of

attributes:

getAttrCount()

-

1

v

Loop

index

increments

by

one.

This

increment

of

the

index

obtains

the

next

attribute.

Within

the

for

loop,

the

Java

connector

can

use

the

getAppText()

method

to

obtain

each

attribute’s

application-specific

information:

for

(i

=

0;

i

<

theBusObj.getAttrCount()

-

1;

i++)

{

colName

=

theBusObj.getAppText(i);

//

process

the

attribute

associated

with

the

column

in

//

’colName’

}

Determining

whether

to

process

an

attribute:

Up

to

this

point,

the

verb

processing

has

been

using

the

application-specific

information

to

obtain

the

application

location

for

each

attribute

of

the

request

business

object.

With

this

location

information,

the

verb

operation

can

begin

processing

the

attribute.

As

the

verb

operation

loops

through

the

business

object

attributes,

you

might

need

to

confirm

that

the

operation

processes

only

certain

attributes.

Table

73

lists

some

of

the

methods

that

the

Java

connector

library

provides

to

determine

whether

an

attribute

should

be

processed.

Table

73.

Methods

for

determining

attribute

processing

Attribute

test

CWConnectorBusObj

method

An

attribute

is

a

simple

attribute

and

not

an

attribute

that

represents

a

contained

business

object.

isObjectType()

The

value

of

the

attribute

is

not

the

special

value

of

Blank

(a

zero-length

string)

or

Ignore

(a

null

pointer).

isIgnore(),

isBlank()

The

attribute

is

not

a

place-holder

attribute.

Place-holder

attributes

are

used

in

business

object

definitions

to

separate

attributes

that

contain

child

business

objects.

getAppText()

164

Connector

Development

Guide

for

Java

Using

the

methods

in

Table

73,,

a

verb

operation

can

determine

that

an

attribute

is

one

that

the

operation

wants

to

process:

v

Is

the

attribute

simple

or

complex?

The

isObjectType()

method

checks

that

the

attribute

value

does

not

represent

a

contained

business

object.

For

more

information

on

how

to

handle

an

attribute

that

does

contain

a

business

object,

see

“Accessing

child

business

objects”

on

page

171.

v

Is

the

attribute

a

place-holder

attribute

or

the

ObjectEventId

attribute?

You

can

use

the

getAppText()

method

to

determine

if

the

attribute

in

the

business

object

definition

has

application-specific

information.

Because

neither

of

these

special

types

of

attributes

represent

columns

in

an

application

entity,

there

is

no

need

for

the

business

object

definition

to

include

application-specific

information

for

them.

v

Is

the

attribute

set

to

a

value

other

than

the

special

Blank

or

Ignore

values?

The

verb

operation

can

compare

the

attribute’s

value

to

the

Ignore

and

Blank

values

with

the

isIgnore()

and

isBlank()

methods,

respectively.

For

more

information

on

the

Ignore

and

Blank

values,

see

“Handling

the

Blank

and

Ignore

values”

on

page

169.

Extracting

attribute

values

from

a

business

object:

Once

the

verb

operation

has

confirmed

that

the

attribute

is

ready

for

processing,

it

usually

needs

to

extract

the

attribute

value:

v

For

a

Create

or

Update

verb,

the

verb

operation

needs

the

attribute

value

to

send

it

to

the

application,

where

it

can

be

added

to

the

appropriate

application

entity.

For

an

Update

verb,

the

verb

operation

also

needs

the

attribute

value

from

any

key

attribute

that

holds

search

information.

The

application

uses

this

search

information

to

locate

the

entity

to

update.

Note:

If

the

Create

or

Update

operation

sends

information

back

to

the

connector,

the

verb

operation

needs

to

store

the

returned

information

as

values

in

the

appropriate

attributes.

For

more

information,

see

“Saving

attribute

values

in

a

business

object”

on

page

166.

v

For

a

Retrieve,

RetrieveByContent,

or

Exists

verb,

the

verb

operation

needs

the

attribute

value

from

any

key

attribute

(Retrieve

or

Exists)

or

non-key

attribute

(RetrieveByContent)

that

holds

search

information.

The

application

uses

this

search

information

to

retrieve

the

entity.

Note:

For

a

Retrieve

or

RetrieveByContent,

the

verb

operation

also

needs

to

set

the

attribute

value

for

any

attribute

associated

with

retrieved

data.

For

more

information,

see

“Saving

attribute

values

in

a

business

object”

on

page

166.

v

For

a

Delete

verb,

the

verb

operation

needs

the

attribute

value

from

any

key

attribute

that

holds

search

information.

The

application

uses

this

search

information

to

locate

the

entity

to

delete.

Table

74

lists

the

methods

that

the

Java

connector

library

provides

to

obtain

attribute

values

from

a

business

object.

Chapter

7.

Implementing

a

Java

connector

165

Table

74.

Methods

for

obtaining

attribute

values

Java

connector

library

class

Method

CWConnectorBusObj

getTypeName(),,

getTypeNum(),,

getbooleanValue(),,

getBusObjValue(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getlongValue(),,

getLongTextValue(),,

getStringValue()

As

Table

74

shows,

the

CWConnectorBusObj

class

provides

type-specific

methods

for

obtaining

attribute

values.

These

methods

remove

the

need

to

cast

the

attribute

value

to

match

its

type.

You

can

choose

which

type-specific

method

to

use

by

checking

the

attribute’s

data

type

with

the

getTypeName()

or

getTypeNum()

method.

Initiating

the

application

operation:

Once

the

verb

operation

has

obtained

the

information

it

needs

from

the

request

business

object,

it

is

ready

to

send

the

application-specific

command

so

that

the

application

performs

the

appropriate

operation.

The

command

must

be

appropriate

for

the

verb

of

the

request

business

object.

For

a

table-based

application,

this

command

might

be

an

SQL

statement

or

a

JDBC

call.

Consult

your

application

documentation

for

more

information.

Important:

Your

doVerbFor()

method

must

ensure

that

the

application

operation

completes

successfully.

If

this

operation

is

unsuccessful,

the

doVerbFor()

method

must

return

the

appropriate

outcome

status

(such

as

FAIL)

to

the

connector

framework.

For

more

information,

see

“Sending

the

verb-processing

response”

on

page

167.

Saving

attribute

values

in

a

business

object:

Once

the

application

operation

has

completed

successfully,

the

verb

operation

might

need

to

save

new

attribute

values

retrieved

from

the

application

into

the

request

business

object:

v

For

a

Create

verb,

the

verb

operation

needs

to

save

the

new

key

values

if

the

application

has

generated

them

as

part

of

its

Create

operation.

v

For

an

Update

verb,

the

verb

operation

needs

to

save

all

attribute

values,

including

any

generated

key

values

(if

the

application

has

been

designed

to

create

a

new

entity

when

it

does

not

find

the

specified

entity

to

update).

v

For

a

Retrieve

or

RetrieveByContent,

the

verb

operation

needs

to

save

the

attribute

value

for

any

attributes

retrieved.

Table

75

lists

the

methods

that

the

Java

connector

library

provides

to

save

attribute

values

in

a

business

object.

Table

75.

Methods

for

saving

attribute

values

Java

connector

library

class

Method

CWConnectorBusObj

setAttrValues(),,

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

As

Table

75

shows,

the

CWConnectorBusObj

class

provides

the

following

ways

to

save

attribute

values:

v

The

setAttrValues()

method

saves

values

for

all

attributes

in

a

business

object.

It

accepts

the

attribute

values

in

a

Java

Vector

object.

v

The

remaining

methods

in

Table

75

are

type-specific

methods

for

saving

attribute

values.

These

methods

remove

the

need

to

cast

the

attribute

value

to

match

its

166

Connector

Development

Guide

for

Java

type.

You

can

choose

which

type-specific

method

to

use

by

checking

the

attribute’s

data

type

with

the

getTypeName()

or

getTypeNum()

method.

Sending

the

verb-processing

response

The

Java

connector

must

send

a

verb-processing

response

to

the

connector

framework,

which

in

turn

sends

a

response

to

the

integration

broker.

This

verb-processing

response

includes

the

following

information:

v

The

integer

return

code

of

doVerbFor()

v

A

message

in

the

return-status

descriptor,

if

there

is

an

information,

warning,

or

error

return

message

v

A

response

business

object

The

following

sections

provide

additional

information

about

how

a

Java

connector

provides

each

of

the

pieces

of

response

information.

For

general

information

about

the

connector

response,

see

“Indicating

the

connector

response”

on

page

112..

Returning

the

outcome

status:

The

doVerbFor()

method

provides

an

integer

outcome

status

as

its

return

code.

As

Table

76

shows,

the

Java

connector

library

provides

constants

for

the

outcome-status

values

that

doVerbFor()

is

mostly

likely

to

return.

Important:

The

doVerbFor()

method

must

return

an

integer

outcome

status

to

the

connector

framework.

Table

76.

Outcome-status

values

for

a

Java

doVerbFor()

Condition

in

doVerbFor()

Java

outcome

status

The

verb

operation

succeeded.

CWConnectorConstant.SUCCEED

The

verb

operation

failed.

CWConnectorConstant.FAIL

The

application

is

not

responding.

CWConnectorConstant.

APPRESPONSETIMEOUT

At

least

one

value

in

the

business

object

changed.

CWConnectorConstant.VALCHANGE

The

requested

operation

found

multiple

records

for

the

same

key

value.

CWConnectorConstant.VALDUPES

The

connector

finds

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

will

only

return

the

first

matching

record

in

a

business

object.

CWConnectorConstant.MULTIPLE_HITS

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CWConnectorConstant.

RETRIEVEBYCONTENT_FAILED

The

requested

business

object

entity

does

not

exist

in

the

database.

CWConnectorConstant.

BO_DOES_NOT_EXIST

Note:

The

CWConnectorConstant

class

provides

additional

outcome-status

constants

for

use

by

other

connector

methods.

For

a

complete

list

of

outcome-status

constants,

see

“Outcome-status

constants”

on

page

303..

The

outcome

status

that

doVerbFor()

returns

depends

on

the

particular

active

verb

it

is

processing.

Table

77

lists

the

tables

in

this

manual

that

provide

possible

return

values

for

the

different

verbs.

Table

77.

Return

values

for

different

verbs

Verb

For

more

information

Create

Table

35

on

page

88

Retrieve

Table

36

on

page

94

RetrieveByContent

Table

37

on

page

95

Update

Table

39

on

page

102

Delete

Table

41

on

page

104

Chapter

7.

Implementing

a

Java

connector

167

Table

77.

Return

values

for

different

verbs

(continued)

Verb

For

more

information

Exists

Table

42

on

page

105

Using

the

outcome

status

that

doVerbFor()

returns,

the

connector

framework

determines

its

next

action:

v

If

the

outcome

status

is

APPRESPONSETIMEOUT,

the

connector

framework

shuts

down

the

connector.

For

more

information,

see

“Verifying

the

connection

before

processing

the

verb”

on

page

156.

v

For

all

other

outcome-status

values,

the

connector

framework

continues

running

the

connector.

It

copies

the

outcome

status

in

its

response

to

the

integration

broker.

For

some

outcome-status

values,

the

connector

framework

also

includes

a

response

business

object

in

its

response.

For

more

information,

see

“Updating

the

request

business

object”

on

page

168.

Populating

the

return-status

descriptor:

The

return-status

descriptor

is

a

structure

that

holds

additional

information

about

the

state

of

the

verb

processing.

When

the

connector

framework

invokes

a

business

object

handler,

it

actually

calls

the

low-level

version

of

the

doVerbFor()

method,

inherited

from

the

BOHandlerBase

class

of

the

low-level

Java

connector

library.

To

this

low-level

doVerbFor()

method,

the

connector

framework

passes

in

an

empty

return-status

descriptor

as

an

argument.

The

low-level

doVerbFor()

then

calls

the

user-implemented

doVerbFor()

method,

which

is

the

version

for

which

the

connector

developer

provides

an

implementation

as

part

of

the

CWConnectorBOHandler

business-object-handler

class.

The

user-implemented

doVerbFor()

performs

the

actual

verb

processing.

When

this

user-implemented

doVerbFor()

method

exits,

the

low-level

doVerbFor()

updates

its

return-status

descriptor

with

status

information

about

the

verb

processing,

as

follows:

v

If

the

user-implemented

doVerbFor()

method

is

successful

(that

is,

it

does

not

throw

an

exception),

the

low-level

doVerbFor()

copies

the

outcome

status

that

the

user-implemented

doVerbFor()

method

returned

into

the

status

field

of

its

return-status

descriptor.

v

If

the

user-implemented

doVerbFor()

method

is

not

successful

(that

is,

it

throws

one

of

the

defined

exceptions),

the

low-level

doVerbFor()

catches

the

exception

and

copies

the

status

and

any

message

from

the

exception-detail

object

into

its

return-status

descriptor.

When

the

low-level

doVerbFor()

exits,

this

updated

return-status

descriptor

is

accessible

by

the

connector

framework.

The

connector

framework

then

includes

the

return-status

descriptor

in

the

response

it

sends

to

the

integration

broker.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

the

response

to

the

connector

controller,

which

routes

it

to

the

collaboration.

This

response

includes

the

return-status

descriptor

populated

by

the

low-level

doVerbFor()

method.

The

collaboration

can

access

the

information

in

this

return-status

descriptor

to

obtain

the

status

of

its

service

call

request.

Updating

the

request

business

object:

The

connector

framework

passes

in

the

request

business

object

as

an

argument

to

doVerbFor().

The

doVerbFor()

method

168

Connector

Development

Guide

for

Java

can

update

this

business

object

with

attribute

values.

This

updated

business

object

is

then

accessible

by

the

connector

framework

when

doVerbFor()

exits.

The

connector

framework

uses

the

outcome

status

to

determine

whether

to

return

a

business

object

as

part

of

its

response

to

the

integration

broker,

as

follows:

v

If

the

connector

framework

receives

one

of

the

following

outcome-status

values,

it

includes

the

request

business

object

as

part

of

its

response:

–

VALCHANGE

–

MULTIPLE_HITS

If

your

doVerbFor()

method

returns

one

of

these

outcome-status

values,

make

sure

it

updates

the

request

business

object

with

appropriate

response

information.

v

For

any

other

outcome-status

value,

the

connector

framework

does

not

include

the

request

business

object

in

its

response.

Important:

The

outcome

status

that

the

doVerbFor()

method

returns

affects

what

the

connector

framework

sends

to

the

integration

broker.

If

the

value

is

VALCHANGE

or

MULTIPLE_HITS,

the

connector

framework

returns

the

request

business

object.

You

must

ensure

that

the

request

business

object

is

updated

as

appropriate

for

the

returned

outcome

status.

Additional

processing

issues

This

section

provides

information

on

the

following

issues

related

to

processing

a

business

object:

v

“Handling

the

Blank

and

Ignore

values”

v

“Accessing

child

business

objects”

on

page

171

Handling

the

Blank

and

Ignore

values:

In

addition

to

a

regular

attribute

value,

simple

attributes

in

business

objects

can

have

either

of

the

special

values

shown

in

Table

78..

Table

78.

Special

attribute

values

for

simple

attributes

Special

attribute

value

Represents

Blank

An

″empty″

zero-length

string

value

Ignore

An

attribute

value

that

the

connector

should

ignore

WebSphere

InterChange

Server

Important:

If

your

business

integration

system

uses

InterChange

Server,

in

the

third-party

maps,

the

string

CxIgnore

represents

an

Ignore

value,

and

the

string

CxBlank

represents

a

Blank

value.

These

strings

should

be

used

only

in

maps.

They

should

not

be

stored

in

business

objects

as

attribute

values

because

they

are

reserved

keywords

in

the

IBM

WebSphere

InterChange

Server

system.

The

connector

can

call

Java

connector

library

methods

to

determine

whether

a

business

object

attribute

is

set

to

a

special

value:

v

Blank—to

process

attributes

with

the

Blank

value,

a

connector

can

use

any

of

the

methods

shown

in

Table

79..

Chapter

7.

Implementing

a

Java

connector

169

Table

79.

Methods

for

determining

if

an

attribute

contains

the

Blank

value

CWConnectorBusObj

method

Description

isBlank(attributeName)

isBlank(position)

Determines

whether

a

specified

attribute

contains

the

Blank

value.

When

an

attribute

contains

the

Blank

value,

the

doVerbFor()

method

should

process

the

attributes

as

shown

in

Table

81..

v

Ignore—

to

process

attributes

with

the

Ignore

value,

a

connector

can

use

any

of

the

methods

shown

in

Table

80..

Table

80.

Methods

for

determining

if

an

attribute

contains

the

Ignore

value

CWConnectorBusObj

method

Description

isIgnore(attributeName)

isIgnore(position)

Determines

whether

a

specified

attribute

contains

the

Ignore

value.

When

attributes

are

set

to

the

Ignore

value,

the

connector

should

process

the

attributes

as

shown

in

Table

82..

Table

81.

Processing

actions

for

the

Blank

value

Verb

Processing

action

for

Blank

value

Create

Create

the

entity

with

an

appropriate

blank

value

for

the

attributes.

The

blank

value

might

be

configurable,

or

it

might

be

specific

to

the

application.

Update

Update

the

entity

fields

to

“empty”

for

those

attributes

that

are

set

to

the

Blank

value.

Retrieve

If

the

attribute

is

a

key

or

the

connector

is

doing

a

retrieve

by

non-key

values,

retrieve

an

entity

where

this

attribute

is

a

zero-length

string.

Delete

If

the

attribute

is

a

key,

delete

an

entity

where

this

field

is

set

to

the

Blank

value.

Table

82.

Processing

actions

for

the

Ignore

value

Verb

Processing

action

for

Ignore

value

Create

If

the

attribute

is

not

a

key,

do

not

set

a

value

in

the

application

for

the

attribute.

For

key

attributes,

if

the

application

generates

keys,

the

key

attributes

might

be

set

to

the

Ignore

value.

In

this

case,

create

the

entity,

retrieve

the

application-generated

keys,

and

return

the

keys

to

the

integration

broker.

Note

that

if

the

application

does

not

generate

key

values,

then

all

key

attributes

are

expected

to

have

valid

values.

Update

If

the

attribute

is

not

a

key,

do

not

set

a

value

in

the

application

for

the

attribute.

Retrieve

Do

not

match

for

Retrieve

operations

based

on

an

attribute

set

to

Ignore.

Delete

Do

not

match

for

Delete

operations

based

on

an

attribute

set

to

Ignore.

When

a

connector

creates

a

new

business

object,

all

attribute

values

are

set

to

Ignore

internally.

A

connector

must

set

appropriate

values

for

attributes,

since

all

unset

attribute

values

remain

defined

as

Ignore.

To

set

attribute

values

to

the

special

Ignore

or

Blank

values,

you

use

the

methods

in

Table

83

(defined

in

the

CWConnectorUtil

class)

to

obtain

a

special

attribute

value

and

then

assign

the

results

of

these

methods

directly

to

the

attribute.

170

Connector

Development

Guide

for

Java

Table

83.

Methods

for

obtaining

special

attribute

values

Special

attribute

value

CWConnectorUtil

method

Blank

value

getBlankValue()

Ignore

value

getIgnoreValue()

Once

a

method

in

Table

83

retrieves

the

desired

special

attribute

value,

you

can

pass

it

to

one

of

the

“set”

methods

for

the

attribute

value

(see

Table

75

on

page

166),

as

the

following

code

fragment

shows:

attrName

=

theBusObj.getAttrName(i);

theBusObj.setdoubleValue(attrName,

CWConnectorUtil.getIgnoreValue());

Accessing

child

business

objects:

As

discussed

in

“Processing

hierarchical

business

objects”

on

page

108,,

a

Java

connector

uses

the

methods

of

the

Java

connector

library

shown

in

Table

75

to

access

child

business

objects.

Table

84.

Methods

for

accessing

child

business

objects

Java

connector

library

class

Method

CWConnectorBusObj

isObjectType(),,

isMultipleCard(),,

getObjectCount(),,

getBusObjValue()

CWConnectorAttrType

OBJECT

attribute-type

constant

The

verb

processing

in

the

doVerbFor()

method

uses

the

isObjectType()

method

to

determine

if

the

attribute

contains

a

business

object

(its

attribute

type

is

set

to

the

OBJECT

attribute-type

constant).

When

a

verb

operation

finds

an

attribute

that

is

a

business

object,

the

method

checks

the

cardinality

of

the

attribute

using

isMultipleCard().

Based

on

the

results

of

isMultipleCard(),

the

method

takes

one

of

the

following

actions:

v

If

the

attribute

has

single

cardinality,

the

method

can

perform

the

requested

operation

on

the

single

child

business

object.

v

If

an

attribute

has

multiple

cardinality,

the

Java

connector

can

access

the

contents

of

the

business

object

array

through

the

CWConnectorBusObj

object:

–

If

the

attribute

is

a

business

object,

it

contains

a

CWConnectorBusObj

object

with

one

business

object.

–

If

the

attribute

is

an

business

object

array,

it

contains

a

CWConnectorBusObj

object

containing

all

business

objects

in

the

array.

The

Java

verb

method

can

access

individual

business

objects

by

calling

CWConnectorBusObj.getObjectCount()

to

get

the

number

of

child

business

objects

in

the

array.

As

it

iterates

through

the

business

object

array,

the

verb

method

can

get

each

individual

child

object

within

the

business

object

array

using

the

CWConnectorBusObj.getBusObjValue(index)

method,

where

index

is

the

array

element

index.

This

method

returns

a

CWConnectorBusObj

that

contains

the

a

child

business

object.

Figure

61

shows

the

Java

code

to

access

child

business

objects.

Chapter

7.

Implementing

a

Java

connector

171

Creating

a

custom

business

object

handler

The

connector

framework

calls

the

doVerbFor()

method

in

the

CWConnectorBOHandler

class

(which

implements

the

business

object

handler)

for

all

verbs

that

a

particular

business

object

supports.Therefore,

all

verbs

in

a

business

object

are

processed

in

one

standard

way

(although

they

can

initiate

different

actions

within

the

application).

However,

if

your

connector

supports

a

business

object

that

requires

different

processing

for

some

particular

verb,

you

can

create

a

custom

business

object

handler

to

handle

that

verb

for

the

business

object.

Creating

a

custom

business

object

handler

involves

the

following

steps:

v

“Creating

the

class

for

the

custom

business

object

handler”

v

“Implementing

the

doVerbForCustom()

method”

on

page

173

v

“Adding

the

verb

application-specific

information”

on

page

174

Creating

the

class

for

the

custom

business

object

handler

To

create

a

custom

business

object

handler,

you

must

create

a

class

that

implements

the

CWCustomBOHandler

interface.

The

CWCustomBOHandler

interface

provides

the

doVerbForCustom()

method,

which

you

must

implement

to

define

a

custom

business

object

handler.

Follow

these

steps

to

create

a

custom-business-object-
handler

class

for

a

Java

connector:

1.

Create

a

class

that

implements

the

CWCustomBOHandler

interface.

A

suggested

name

this

class

is:

connectorNameCustomBOHandlerverbName.java

where

connectorName

uniquely

identifies

the

application

or

technology

with

which

the

connector

communicates

and

verbName

identifies

the

verb

(or

verbs)

that

this

custom

business

object

handler

processes.

For

example,

to

create

a

custom

business

object

handler

for

the

Retrieve

verb

in

a

Baan

application,

you

create

a

custom-business-object-handler

class

called

BaanCustomBOHandlerRetrieve.

2.

In

the

custom-business-object-handler-class

file,

define

the

package

name

that

contains

your

connector.

A

connector

package

name

has

the

following

format:

com.crossworlds.connectors.connectorName

//

For

all

attributes

in

the

business

object

for

(int

i=0;

i<theBusObj.getAttrCount()-1;

i++

){

if

(

theBusObj.isObjectType(i)

){

//

cardinality

N

if(theBusObj.isMultipleCard(i)){

for

(int

i=0;

i

<

theBusObj.getObjectCount();

i++)

{

CWConnectorBusinessObject

childBusObj

=

theBusObj.getBusObjValue(i);

status

=

doVerbMethod(childBusObj);

}

//

end

for

i

to

getObjectCount()

}

else

{

//

Cardinality

1

child

CWConnectorBusObj

childBusObj

=

null;

childBusObj

=

theBusObj.getBusObjValue(i);

status

=

doVerbMethod(childBusObj);

}

//

end

else

1

cardinality

}

//

end

isObjectType()

}

//

end

for

i

to

getAttCount()-1

Figure

61.

Accessing

child

business

objects

in

a

Java

connector

172

Connector

Development

Guide

for

Java

where

connectorName

is

the

same

as

defined

in

step

1

above.

For

example,

the

package

name

for

the

Baan

connector

would

be

defined

in

the

custom-business-object-handler-class

file

as

follows:

package

com.crossworlds.connectors.Baan;

3.

Ensure

that

the

custom-business-object-handler-class

file

imports

the

following

classes:

com.crossworlds.cwconnectorapi.*;

com.crossworlds.cwconnectorapi.exceptions.*;

If

you

create

several

files

to

hold

the

business

object

handler’s

code,

you

must

import

these

classes

into

every

file.

4.

Implement

the

doVerbForCustom()

method

to

define

the

behavior

of

the

business

object

handler.

For

more

information

on

how

to

implement

this

method,

see

“Implementing

the

doVerbForCustom()

method.”

Implementing

the

doVerbForCustom()

method

The

doVerbForCustom()

method

provides

the

functionality

for

the

custom

business

object

handler.

As

discussed

in

“Implementing

the

doVerbFor()

method”

on

page

153,

the

connector

framework

calls

the

low-level

doVerbFor()

method

(defined

in

the

BOHandlerBase

class)

for

the

appropriate

business

object

handler

when

it

receives

a

request

business

object.

This

low-level

doVerbFor()

method

determines

which

business

object

handler

to

call

as

follows:

v

If

the

business

object’s

verb

has

the

CBOH

tag

in

its

application-specific

information,

call

the

doVerbForCustom()

method.

The

CBOH

tag

specifies

the

full

name

(including

the

package

name)

of

the

custom-business-object-handler

class,

which

implements

the

CWCustomBOHandlerInterface

interface

and

its

doVerbForCustom()

method.

For

more

information

on

this

class

name,

see

the

description

of

“Adding

the

verb

application-specific

information”

on

page

174.

If

the

CBOH

tag

exists,

the

low-level

doVerbFor()

method

tries

to

create

a

new

instance

of

the

class

that

this

tag

specifies.

If

this

instantiation

is

successful,

the

low-level

doVerbFor()

calls

the

doVerbForCustom()

method

in

this

class.

v

Otherwise,

call

the

doVerbFor()

method,

which

the

connector

developer

must

implement

as

part

of

the

business

object

handler’s

CWConnectorBOHandler

class.

For

more

information,

see

“Implementing

the

doVerbFor()

method”

on

page

153.

The

implementation

of

the

doVerbForCustom()

method

must

handle

the

verb

processing

of

the

verb

for

which

its

class

is

specified.

You

can

refer

to

“Implementing

the

doVerbFor()

method”

on

page

153

for

information

on

the

verb

processing

that

the

doVerbFor()

method

usually

provides.

However,

you

must

customize

the

behavior

of

doVerbForCustom()

to

meet

the

special

processing

needs

of

your

business

object’s

verb.

Note:

Unlike

the

doVerbFor()

method,

the

doVerbForCustom()

method

is

not

invoked

directly

by

the

connector

framework.

Instead,

the

connector

framework

invokes

the

low-level

doVerbFor(),

which

in

turn

invokes

doVerbForCustom().

Therefore,

doVerbForCustom()

cannot

include

calls

to

any

methods

in

the

CWConnectorBOHandler

class.

The

low-level

doVerbFor()

method

handles

return

values

and

exceptions

from

doVerbForCustom()

as

follows:

v

On

successful

completion

of

doVerbForCustom(),

send

the

status

back

to

the

connector

framework

(as

it

does

for

the

doVerbFor()

method).

Chapter

7.

Implementing

a

Java

connector

173

v

If

there

is

any

problem

with

the

instantiation

of

the

custom

business

object

handler,

populate

the

return-status

descriptor

with

this

status

and

an

error

message

that

describes

the

cause,

then

return

a

FAIL

outcome

status

to

the

connector

framework.

v

If

doVerbForCustom()

throws

the

VerbProcessingFailedException

exception,

copy

the

status

set

in

the

exception

object

into

the

return-status

descriptor,

then

return

this

exception

status

to

the

connector

framework.

v

If

doVerbForCustom()

throws

the

ConnectionFailureException

exception,

determine

if

the

exception

object

has

its

status

set:

–

If

so,

copy

the

exception

status

into

the

return-status

descriptor

and

return

this

status

to

the

connector

framework.

–

If

not,

copy

the

APPRESPONSETIMEOUT

outcome

status

into

the

return-status

description

and

return

APPRESPONSETIMEOUT

to

the

connector

framework.

Adding

the

verb

application-specific

information

For

the

connector

framework

to

call

a

custom

business

object

handler

for

a

particular

business

object,

the

verb

of

this

business

object

must

have

the

CBOH

tag

in

its

verb

application-specific

information.

The

CBOH

tag

has

the

following

format:

CBOH=connectorPackageName.CustomBOHandlerClassName

In

this

format,

the

connectorPackageName

is

as

follows:

com.crossworlds.connectors.connectorName

with

connectorName

the

name

of

the

connector.

The

CustomBOHandlerClassName

is

the

name

of

the

class

that

implements

the

CWCustomBOHandlerInterface

interface.

For

example,

the

following

CBOH

tag

specifies

a

class

called

BaanCustomBOHandlerRetrieve:

CBOH=com.crossworlds.connectors.Baan.BaanCustomBOHandlerRetrieve

Implementing

an

event-notification

mechanism

Table

85

shows

the

support

that

the

Java

connector

library

provides

for

the

development

of

an

event-notification

mechanism:

Table

85.

Support

for

an

event-notification

mechanism

Java

connector

library

support

For

more

information

The

following

classes

for

the

encapsulation

of

access

to

the

event

store:

v

CWConnectorEvent

v

CWConnectorEventStatusConstants

v

CWConnectorEventStore

v

CWConnectorEventStoreFactory

“Obtaining

access

to

the

event

store”

on

page

175

A

poll

method,

pollForEvents(),

that

polls

the

event

store

at

a

specified

frequency.

“Implementing

the

pollForEvents()

method”

on

page

178

Note:

For

an

introduction

to

event

notification,

see

“Event

notification”

on

page

20..

For

a

discussion

of

event-notification

mechanisms

and

the

implementation

of

pollForEvents(),

see

Chapter

5,

“Event

notification,”

on

page

113.

174

Connector

Development

Guide

for

Java

Obtaining

access

to

the

event

store

If

a

connector

is

expected

to

process

information

that

originates

in

its

application,

it

must

obtain

access

to

the

application’s

event

store.

Table

86

shows

the

support

that

the

Java

connector

library

provides

in

support

of

obtaining

access

to

an

event

store

from

within

a

Java

connector.

Table

86.

Support

for

defining

access

to

an

event

store

Java

connector

library

class

Description

Event

store

CWConnectorEventStoreFactory

Provides

a

single

method

that

creates

an

event-store

object

CWConnectorEventStore

Represents

the

event

store

Event

CWConnectorEvent

Represents

an

event

object,

which

provides

access

to

an

event

record

within

the

Java

connector.

Defining

the

event

store

As

Table

86

shows,

the

Java

connector

library

provides

the

following

classes

to

define

an

event

store:

v

“CWConnectorEventStore

class”

v

“CWConnectorEventStoreFactory

interface”

on

page

176

CWConnectorEventStore

class:

The

CWConnectorEventStore

class

defines

an

event

store.

As

Table

87

shows,

this

class

provides

an

additional

layer

for

standardizing

the

event

retrieval,

processing,

and

archiving

mechanisms.

Table

87.

Methods

of

the

CWConnectorEventStore

class

Event-store

task

CWConnectorEventStore

method

Implementation

status

Event

retrieval

fetchEvents()

Must

be

implemented

getBO()

Implementation

provided

in

base

class—however,

you

must

override

this

implementation

if

your

connector

does

not

support

the

RetrieveByContent

verb.

getNextEvent()

Implementation

provided

in

base

class

Event

processing

recoverInProgressEvents()

Must

be

implemented

resubmitArchivedEvents()

Must

be

implemented

setEventStatus()

Must

be

implemented

setEventsToProcess()

Implementation

provided

in

base

class

updateEventStatus()

Implementation

provided

in

base

class

Archiving

archiveEvent()

Must

be

implemented—if

the

connector

supports

archiving.

deleteEvent()

Must

be

implemented

Error

processing

getTerminate(),,

setTerminate()

Implementation

provided

in

base

class

Resource

cleanup

cleanupResources()

Not

required

for

the

event-store

class

but

must

be

implemented

if

resources

used

to

access

the

event

store

need

to

be

released.

To

define

an

event

store,

follow

these

steps:

1.

Extend

the

CWConnectorEventStore

class,

naming

your

new

class

to

identify

the

event

store

that

your

connector

accesses.

2.

Define

any

additional

data

members

that

your

event

store

might

require.

The

CWConnectorEventStore

class

contains

a

single

data

member:

an

events

vector

array

called

eventsToProcess.

Events

retrieved

from

the

event

store

are

saved

in

this

Java

Vector

object.

Declare

any

other

information

that

is

required

Chapter

7.

Implementing

a

Java

connector

175

to

access

the

application’s

event

and

archive

stores

as

data

members

in

your

extended

CWConnectorEventStore

class.

This

information

should

include

the

location

of

the

event

and

archive

stores.

For

example:

v

In

a

table-based

application,

this

information

might

be

the

event

and

archive

table

names

and

any

database

connection

information.

v

In

a

file-based

event

store,

this

information

might

include

the

names

of

the

event

and

archive

directories.

v

An

extended

event

store

should

also

store

any

metadata

information

required

for

accessing

or

processing

the

event

records.

This

information

might

include

any

“order

by”

information

needed

for

JDBC

queries
3.

Implement

the

appropriate

abstract

methods

within

the

CWConnectorEventStore

class

(see

Table

87)

to

provide

access

to

the

event

store.

You

can

implement

those

CWConnectorEventStore

methods

that

your

event

store

requires,

with

the

following

conditions:

v

You

must

provide

implementations

for

the

abstract

methods

with

“Must

be

implemented”

in

the

Implementation

Status

column

of

Table

87..

These

methods

are

required

to

support

the

default

implementation

of

the

pollForEvents()

method.

Note:

If

you

override

the

default

implementation

of

pollForEvents(),

you

can

define

only

those

CWConnectorEventStore

methods

that

your

pollForEvents()

method

needs

to

use.

v

The

CWConnectorEventStore

class

provides

implementations

for

the

methods

with

“Implementation

provided

in

base

class”

in

the

Implementation

Status

column

of

Table

87..
4.

Access

the

CWConnectorEventStore

methods

as

needed

to

perform

event

retrieval,

event

processing,

and

archiving

from

within

the

pollForEvents()

poll

method.

For

more

information,

see

“Implementing

the

pollForEvents()

method”

on

page

178.

Note:

For

more

information

on

the

methods

of

CWConnectorEventStore,

see

Chapter

17,

“CWConnectorEventStore

class,”

on

page

317.

CWConnectorEventStoreFactory

interface:

The

CWConnectorEventStoreFactory

interface

defines

an

event-store

factory,

which

provides

a

method

to

instantiate

an

event

store,

as

Table

88

shows.

Table

88.

Method

of

the

CWConnectorEventStoreFactory

interface

CWConnectorEventStoreFactory

method

Implementation

status

getEventStore()

Must

be

implemented

To

define

an

event-store

factory,

follow

these

steps:

1.

Create

a

new

event-store-factory

class

to

implement

the

CWConnectorEventStoreFactory

interface.

Name

your

new

class

to

include

the

name

of

the

event

store

that

your

CWConnectorEventStore

class

accesses.

2.

Implement

the

getEventStore()

method

of

the

CWConnectorEventStoreFactory

interface

within

your

event-store-factory

class

to

provide

an

event-store

factory

for

your

extended

CWConnectorEventStore

class.

3.

Determine

whether

to

use

the

default

implementation

of

the

getEventStore()

method

in

the

CWConnectorAgent

class

to

instantiate

an

event

store.

The

default

implementation

of

the

pollForEvents()

method

uses

this

getEventStore()

method

to

obtain

a

reference

to

the

event

store.

176

Connector

Development

Guide

for

Java

v

If

you

use

the

default

implementation

of

this

getEventStore()

method,

define

the

EventStoreFactory

connector

configuration

property

and

set

it

to

the

entire

class

name

(including

its

package

name)

for

your

event-store-factory

class

(which

implements

the

CWConnectorEventStoreFactory

interface).

The

EventStoreFactory

property

has

the

following

format:

connectorPackageName.EventStoreFactoryClassName

In

this

format,

the

connectorPackageName

is

as

follows:

com.crossworlds.connectors.connectorName

with

connectorName

the

name

of

the

connector.

The

EventStoreFactoryClassName

is

the

name

of

the

class

that

implements

the

CWConnectorEventStoreFactory

interface.

Note:

The

EventStoreFactory

property

is

a

user-defined

property,

not

a

standard

property.

You

must

define

this

property

with

Connector

Configurator

for

any

connector

that

provides

an

event-store

factory.

If

EventStoreFactory

is

not

set,

the

default

implementation

of

getEventStore()

attempts

to

generate

the

name

of

the

event

store.

For

more

information,

see

the

description

of

“getEventStore()”

on

page

238..

v

If

the

default

implementation

of

getEventStore()

does

not

adequately

address

the

needs

of

your

connector,

you

can

override

it

in

your

connector

class.

Within

this

method,

you

can

call

some

custom

event-store

constructor.

Defining

an

event

object

The

Java

connector

obtains

event

records

from

the

event

store

and

encapsulates

them

as

event

objects.

The

event-store

class

builds

event

objects

for

each

event

record

that

the

connector

retrieves

from

the

event

store.

The

information

in

each

event

object

is

then

used

to

build

and

retrieve

the

business

object

that

the

connector

sends

to

the

integration

broker.

The

default

event

object

that

CWConnectorEvent

defines

contains

the

event

information

in

Table

46

on

page

114..

The

CWConnectorEvent

class

provides

access

methods

for

this

information,

as

Table

89

shows.

Table

89.

Methods

to

retrieve

information

in

an

event

object

Element

CWConnectorEvent

method

Event

Id

getEventID()

Business

object

name

getBusObjName()

Business

object

verb

getVerb()

Object

key

getIDValues(),,

getKeyDelimiter()

These

CWConnectorEvent

methods

provide

access

to

the

actual

data

values

that

identify

the

business

object.

The

getIDValues()

method

assumes

that

this

data

is

a

name/value

pair.

For

example,

if

the

object

key

contains

data

for

the

ContractId

attribute

in

the

business

object,

the

name/value

pair

in

the

business

object

data

would

be:

ContractId=45381If

the

object

key

in

the

event

record

contains

a

concatenation

of

fields,

the

getIDValues()

assumes

that

each

name/value

pair

is

separated

by

a

delimiter,

which

the

getKeyDelimiter()

method

returns.

The

delimiter

should

be

configurable

as

set

by

the

PollAttributeDelimiter

connector

configuration

property.

The

default

value

for

the

delimiter

is

a

colon

(:).

Priority

getPriority()

Timestamp

getEventTimeStamp()

Chapter

7.

Implementing

a

Java

connector

177

Table

89.

Methods

to

retrieve

information

in

an

event

object

(continued)

Element

CWConnectorEvent

method

Status

getStatus()

Use

the

following

methods

to

set

event

status:

getNextEvent(),,

recoverInProgressEvents(),,

resubmitArchivedEvents(),,

setEventStatus(),

updateEventStatus().

Description

A

text

string

describing

the

event.

ConnectorID

getConnectorID()

In

addition

to

providing

the

standard

information

in

an

event

record

(shown

in

Table

89),

the

event

object

also

provides

accessor

methods

for

the

information

shown

in

Table

90..

Table

90.

Additional

event

information

in

the

event

object

Element

Description

Accessor

method

Effective

date

Date

on

which

the

event

becomes

active

and

should

be

processed.

This

information

might

be

useful

when

there

is

a

change

to

an

object

in

one

system

that

should

not

be

propagated

until

the

date

on

which

it

becomes

effective

(such

as

a

salary

change).

getEffectiveDate()

Event

source

Source

from

where

the

event

originated.

This

information

might

be

needed

by

a

connector

that

needs

to

track

the

event

source

for

archiving.

getEventSource(),,

setEventSource()

Triggering

user

User

identifier

(ID)

associated

with

the

user

that

triggered

this

event.

This

information

can

be

used

to

avoid

synchronization

problems

between

two

systems.

getTriggeringUser()

If

your

event

record

requires

information

beyond

what

the

default

event

class

provides

(Table

89

and

Table

90),

you

can

take

the

following

steps:

1.

Extend

the

CWConnectorEvent

class,

naming

your

new

class

to

identify

the

event

store

whose

event

records

your

event

class

encapsulates.

2.

Define

any

additional

data

members

that

your

event

might

require.

The

CWConnectorEvent

class

contains

the

data

members

whose

accessor

methods

are

listed

in

Table

89

and

Table

90..

Any

other

information

that

is

required

to

access

the

application’s

event

records

needs

to

be

declared

as

data

members

in

your

extended

CWConnectorEvent

class.

3.

Provide

accessor

methods

for

any

data

members

you

add

to

your

extended

CWConnectorEvent

class.

To

support

true

encapsulation,

your

data

members

should

be

private

members

of

your

extended

CWConnectorEvent

class.

To

provide

access

to

these

data

members,

you

define

a

“get”

methods

to

retrieve

each

data

member’s

value.

You

can

also

define

“set”

methods

for

those

data

members

that

connector

developers

are

allowed

to

set.

Note:

For

more

information

on

the

methods

of

CWConnectorEvent,

see

Chapter

15,

“CWConnectorEvent

class,”

on

page

305.

Implementing

the

pollForEvents()

method

For

a

Java

connector,

the

CWConnectorAgent

class

defines

the

pollForEvents()

method.

This

class

provides

a

default

implementation

of

pollForEvents().

You

can

use

this

default

implementation

or

override

the

method

with

your

own

poll

method.

However,

the

pollForEvents()

method

must

be

implemented.

178

Connector

Development

Guide

for

Java

The

Java-based

pseudo-code

in

Figure

62

shows

the

basic

logic

flow

for

a

pollForEvents()

method.

The

method

first

retrieves

a

set

of

events

from

the

event

store.

For

each

event,

the

method

calls

the

isSubscribed()

method

to

determine

whether

any

subscriptions

exist

for

the

corresponding

business

object.

If

there

are

subscriptions,

the

method

retrieves

the

data

from

the

application,

creates

a

new

business

object,

and

calls

gotApplEvent()

to

send

the

business

object

to

InterChange

Server.

If

there

are

no

subscriptions,

the

method

archives

the

event

record

with

a

status

value

of

unprocessed.

Note:

For

a

flow

chart

of

the

poll

method’s

basic

logic,

see

Figure

27

on

page

83..

This

section

provides

more

detailed

information

on

each

of

the

steps

in

the

basic

logic

for

the

event

processing

that

the

pollForEvents()

method

typically

performs.

Table

91

summarizes

these

basic

steps.

Table

91.

Basic

logic

of

the

pollForEvents()

method

Step

For

more

information

1.

Set

up

a

subscription

manager

for

the

connector.

“Accessing

a

subscription

manager”

on

page

180

2.

Verify

that

the

connector

still

has

a

valid

connection

to

the

event

store.

“Verifying

the

connection

before

accessing

the

event

store”

on

page

180

3.

Retrieve

specified

number

of

event

records

from

the

event

store

and

store

them

in

an

events

array.

Cycle

through

the

events

array.

For

each

event,

mark

the

event

in

the

event

store

as

In-Progress

and

begin

processing.

“Retrieving

event

records”

on

page

180

4.

Get

the

business

object

name,

verb,

and

key

data

from

the

event

record.

“Getting

the

business

object

name,

verb,

and

key”

on

page

182

5.

Check

for

subscriptions

to

the

event.

“Checking

for

subscriptions

to

the

event”

on

page

183

If

the

event

has

subscribers:

v

Retrieve

application

data

and

create

the

business

object.

“Retrieving

application

data”

on

page

185

public

int

pollForEvents()

{

int

status

=

0;

get

the

events

from

the

event

store

for

(events

1

to

MaxEvents

in

event

store)

{

extract

BOName,

verb,

and

key

from

the

event

record

if(ConnectorBase.isSubscribed(BOName,BOverb)

{

BO

=

JavaConnectorUtil.createBusinessObject(BOName)

BO.setAttrValue(key)

retrieve

application

data

using

doVerbFor()

BO.setVerb(Retrieve)

BO.doVerbFor()

BO.setVerb(BOverb)

status

=

gotApplEvent(BusinessObject);

archive

event

record

with

success

or

failure

status

}

else

{

archive

item

with

unsubscribed

status

}

return

status;

}

Figure

62.

Java

pollForEvents()

example

Chapter

7.

Implementing

a

Java

connector

179

Table

91.

Basic

logic

of

the

pollForEvents()

method

(continued)

Step

For

more

information

v

Send

the

business

object

to

the

connector

framework

for

event

delivery.

“Sending

the

business

object

to

the

connector

framework”

on

page

186

v

Complete

event

processing.

“Completing

the

processing

of

an

event”

on

page

190

If

the

event

does

not

have

subscribers,

update

the

event

status

to

Unsubscribed.

“Checking

for

subscriptions

to

the

event”

on

page

183

6.

Archive

the

event.

“Archiving

the

event”

on

page

191

7.

Release

resources

used

to

access

the

event

store.

Accessing

a

subscription

manager

As

part

of

connector

initialization,

the

connector

framework

instantiates

a

subscription

manager.

This

subscription

manager

keeps

the

subscription

list

current.

(For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

12.)

A

connector

has

access

to

the

subscription

manager

and

the

connector

subscription

list

through

a

subscription

handler,

which

is

included

in

the

connector

base

class.

It

can

use

methods

of

this

class

to

determine

whether

business

objects

have

subscribers

and

to

send

business

objects

to

the

connector

controller.

Note:

Unlike

a

C++

connector,

a

Java

connector

does

not

need

to

set

up

a

subscription

handler.

This

functionality

is

handled

in

the

CWConnectorAgent

class.

Verifying

the

connection

before

accessing

the

event

store

When

the

agentInit()

method

in

the

connector

class

initializes

the

application-specific

component,

one

of

its

most

common

tasks

is

to

establish

a

connection

to

the

application.

The

poll

method

requires

access

to

the

event

store.

Therefore,

before

the

pollForEvents()

method

begins

processing

events,

it

should

verify

that

the

connector

is

still

connected

to

the

application.

The

way

to

perform

this

verification

is

application-specific.

Consult

your

application

documentation

for

more

information.

A

good

design

practice

is

to

code

the

connector

application-specific

component

so

that

it

shuts

down

whenever

the

connection

to

the

application

is

lost.

If

the

connection

has

been

lost,

the

connector

should

not

continue

with

event

polling.

Instead,

it

should

return

APPRESPONSETIMEOUT

to

notify

the

connector

framework

of

the

loss

of

connection

to

the

application.

Note:

To

surface

an

APPRESPONSETIMEOUT

outcome

status

returned

by

the

doVerbFor()

from

within

pollForEvents(),

use

the

getTerminate()

method

of

the

CWConnectorEventStore

class.

For

more

information,

see

“Retrieving

application

data”

on

page

185.

Retrieving

event

records

To

send

event

notifications

to

the

connector

framework,

the

poll

method

must

first

retrieve

event

records

from

the

event

store.

Table

92

lists

the

methods

that

the

Java

connector

library

provides

to

retrieve

event

records

from

the

event

store.

Table

92.

Classes

and

methods

for

event

retrieval

Java

connector

library

class

Method

CWConnectorAgent

getEventStore()

CWConnectorEventStoreFactory

getEventStore()

CWConnectorEventStore

fetchEvents(),,

getNextEvent(),,updateEventStatus()

180

Connector

Development

Guide

for

Java

The

poll

method

can

retrieve

one

event

record

at

a

time

and

process

it

or

it

can

retrieve

a

specified

number

of

event

records

per

poll

and

cache

them

to

an

events

array.

Processing

multiple

events

per

poll

can

improve

performance

when

the

application

generates

large

numbers

of

events.

The

number

of

events

picked

up

in

any

polling

cycle

should

be

configurable

using

the

connector

configuration

property

PollQuantity.

At

install

time,

a

system

administrator

sets

the

value

of

PollQuantity

to

an

appropriate

number,

such

as

50.

The

poll

method

can

use

the

getConfigProp()

to

retrieve

the

value

of

the

PollQuantity

property,

and

then

retrieve

the

specified

number

of

event

records

and

process

them

in

a

single

poll.

The

connector

should

assign

the

In-Progress

status

to

any

event

that

it

has

read

out

of

the

event

store

and

has

started

to

process.

If

the

connector

terminates

while

processing

an

event

and

before

updating

the

event

status

to

indicate

that

the

event

was

either

sent

or

failed,

it

will

leave

an

In-Progress

event

in

the

table.

For

more

information

on

how

recover

these

In-Progress

events,

see

“Recovering

In-Progress

events”

on

page

149.

The

Java

connector

library

provides

the

CWConnectorEventStore

class

to

represent

an

event

store.

To

retrieve

event

records

from

this

event

store,

the

poll

method

takes

the

following

actions:

1.

Instantiate

an

event-store

object

with

the

getEventStore()

method

that

is

defined

in

the

CWConnectorAgent

class.

The

default

implementation

of

this

method

calls

the

getEventStore()

of

the

event-store-factory

class

named

in

the

EventStoreFactory

connector

configuration

property.

The

event-store-factory

class

implements

the

CWConnectorEventStoreFactory

interface

for

your

event

store.

For

more

information,

see

“CWConnectorEventStoreFactory

interface”

on

page

176.

2.

Retrieve

a

specified

number

of

event

records

from

the

event

store

with

the

fetchEvents()

method.

You

must

implement

the

fetchEvents()

method

as

part

of

the

CWConnectorEventStore

class.

This

method

can

use

the

value

of

the

PollQuantity

connector

configuration

property

as

the

number

of

event

records

to

retrieve.

The

method

must

take

the

following

actions:

v

Create

a

CWConnectorEvent

event

object

for

each

event

record

that

it

retrieves.

These

event

records

can

be

ordered

by

their

timestamp.

For

information

on

retrieving

event

records

by

event

priority,

see

“Processing

events

by

event

priority”

on

page

129..

Note:

If

the

event

store

is

implemented

with

an

event

table

in

the

application

database,

the

fetchEvents()

method

can

use

JDBC

methods

to

access

the

event

table,

in

much

the

same

way

as

the

C++

connector

uses

ODBC

methods.

v

Put

each

event

object

into

the

eventsInProgress

events

vector.

The

fetchEvents()

method

should

throw

the

StatusChangeFailedException

exception

if

the

application

is

unable

to

fetch

events

because

it

is

unable

to

access

the

event

store.

When

the

pollForEvents()

method

catches

this

exception,

it

can

return

the

APPRESPONSETIMEOUT

outcome

status

to

indicate

the

lack

of

response

from

the

application’s

event

store.
v

Loop

through

the

events

in

the

eventsInProgress

events

vector,

taking

the

following

actions

on

each

event

object:

Chapter

7.

Implementing

a

Java

connector

181

–

Retrieve

the

next

event

object

to

process

with

the

getNextEvent()

method.

–

Update

the

status

of

both

the

event

record

(in

the

event

store)

and

the

event

object

(retrieved

from

the

events

vector)

to

IN_PROGRESS

with

the

updateEventStatus()

method.

The

updateEventStatus()

method

should

throw

the

StatusChangeFailedException

exception

if

the

application

is

unable

to

change

event

status

because

it

is

unable

to

access

the

event

store.

When

the

pollForEvents()

method

catches

this

exception,

it

can

return

the

APPRESPONSETIMEOUT

outcome

status

to

indicate

the

lack

of

response

from

the

application’s

event

store.

Setting

the

event

status

to

IN_PROGRESS

indicates

that

the

poll

method

has

begun

processing

on

the

event.

Figure

63

shows

a

code

fragment

that

retrieves

event

records

from

the

event

store,

accessing

each

as

an

event

object.

Getting

the

business

object

name,

verb,

and

key

Once

the

connector

has

retrieved

an

event,

it

extracts

the

event

ID,

the

object

key,

and

the

name

and

verb

of

the

business

object

from

the

event

record.

The

connector

uses

the

business

object

name

and

verb

to

determine

whether

the

integration

broker

is

interested

in

this

type

of

business

object.

If

the

business

object

and

its

active

verb

have

subscribers,

the

connector

uses

the

entity

key

to

retrieve

the

complete

set

of

data.

Table

93

lists

the

methods

that

the

Java

connector

library

provides

to

obtain

the

name

of

the

business

object

definition

and

the

verb

from

the

retrieved

event

records.

//

Instantiate

event

store

CWConnectorEventStore

evts=getEventStore();

//

Fetch

PollQuantity

number

of

events

from

the

application.

try

{

evts.fetchEvents();

}

catch

(StatusChangeFailedException

e)

{

//

log

error

message

return

CWConnectorConstant.FAIL;

}

}

//

Get

the

property

values

for

PollQuantity

int

pollQuantity;

String

poll=CWConnectorUtil.getConfigProp("PollQuantity");

if

(poll

==

null

||

poll.equals(""))

pollQuantity=1;

else

pollQuantity=Integer.parseInt(poll);

for

(int

i=0;

i

<

pollQuantity;

i++)

{

//

Process

each

event

retrieved

from

the

application.

//

Get

the

next

event

to

be

processed.

evtObj=evts.getNextEvent();

Figure

63.

Retrieving

event

records

from

the

event

store

182

Connector

Development

Guide

for

Java

Table

93.

Methods

for

obtaining

event

information

Java

connector

library

class

Method

CWConnectorEvent

getBusObjName(),,

getVerb()

Important:

The

connector

should

send

the

business

object

with

the

same

verb

that

was

in

the

event

record.

Once

the

getNextEvent()

method

has

retrieved

an

event

object

to

be

processed,

the

Java

connector

can

use

the

appropriate

accessor

methods

of

the

CWConnectorEvent

class

to

obtain

the

information

needed

to

check

for

an

event

subscription,

as

follows:

Event

ID

getEventID()

Business

object

name

getBusObjName()

Verb

getVerb()

Object

key

getIDValues()

For

sample

code

that

uses

these

accessor

methods,

see

Figure

64

on

page

184..

Checking

for

subscriptions

to

the

event

To

determine

whether

the

integration

broker

is

interested

in

receiving

a

particular

business

object

and

verb,

the

poll

method

calls

the

isSubscribed()

method.

The

isSubscribed()

method

takes

the

name

of

the

current

business

object

and

a

verb

as

arguments.

The

name

of

the

business

object

and

verb

must

match

the

name

of

the

business

object

and

verb

in

the

repository.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

poll

method

can

determine

if

any

collaboration

subscribes

to

the

business

object

with

a

particular

verb.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller

at

connector

initialization.

At

runtime,

the

application-specific

component

can

use

isSubscribed()

to

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

application-specific

connector

component

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

poll

method

uses

the

isSubscribed()

method

to

query

the

connector

framework

about

subscriptions

for

a

particular

business

object,

the

method

returns

true

for

every

business

object

that

the

connector

supports.

Table

94

lists

the

methods

that

the

Java

connector

library

provides

to

check

for

subscriptions

to

the

event.

Chapter

7.

Implementing

a

Java

connector

183

Table

94.

Classes

and

methods

for

checking

subscriptions

Java

connector

library

class

Method

CWConnectorAgent

isSubscribed()

CWConnectorEventStore

updateEventStatus(),,

archiveEvent(),,

deleteEvent()

Based

on

the

value

that

isSubscribed()

returns,

the

poll

method

should

take

one

of

the

following

actions

based

on

whether

there

are

subscribers

for

the

event:

v

If

there

are

subscribers

for

an

event,

the

connector

takes

one

of

the

actions

described

in

“Events

that

have

subscriptions.”

v

If

there

are

no

subscriptions

for

the

event,

the

connector

should

take

one

of

the

actions

described

in

“Events

that

do

not

have

subscriptions.”

For

a

Java

connector,

the

isSubscribed()

method

is

defined

in

the

CWConnectorAgent

class

because

the

subscription

manager

is

part

of

the

connector

base

class.

The

method

returns

true

if

there

are

subscribers

and

false

if

there

are

no

subscribers.

Figure

64

shows

a

code

fragment

that

checks

for

subscriptions

in

a

Java

connector.

If

no

subscriptions

exist

for

the

event,

this

code

fragment

uses

the

updateEventStatus()

method

to

update

the

event’s

status

to

UNSUBSCRIBED

and

then

archives

the

event.

Events

that

have

subscriptions:

If

there

are

subscribers

for

an

event,

the

connector

takes

the

following

actions:

Connector

action

taken

For

more

information

Retrieve

the

complete

set

of

business

object

data

from

the

entity

in

the

application

database.

“Retrieving

application

data”

on

page

185

Send

the

business

object

to

the

connector

framework,

which

routes

it

to

the

integration

broker.

“Sending

the

business

object

to

the

connector

framework”

on

page

186

Complete

the

processing

on

the

event.

“Completing

the

processing

of

an

event”

on

page

190

Archive

the

event

(if

archiving

is

implemented)

in

case

the

integration

broker

subscribes

at

a

later

time.

“Archiving

the

event”

on

page

191

Events

that

do

not

have

subscriptions:

If

there

are

no

subscriptions

for

the

event,

the

connector

should

take

the

following

actions:

if

(isSubscribed(evtObj.getBusObjName(),evtObj.getVerb()))

{

//

handle

event

}

else

{

//

Update

the

event

status

to

UNSUBSCRIBED.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.UNSUBSCRIBED);

//

Archive

the

event

(if

archiving

is

supported)

return

CWConnectorConstant.FAIL;

}

Figure

64.

Checking

for

an

event

subscription

184

Connector

Development

Guide

for

Java

v

Update

the

status

of

the

event

to

“Unsubscribed”

to

indicate

that

there

were

no

subscribers.

v

Archive

the

event

(if

archiving

is

implemented)

in

case

the

integration

broker

subscribes

at

a

later

time.

Moving

the

event

record

to

the

archive

store

prevents

the

poll

method

from

picking

up

unsubscribed

events.

For

more

information,

see

“Archiving

the

event”

on

page

191.

v

Return

“fail”

(FAIL

outcome

status

for

a

Java

connector)

to

indicate

there

are

events

pending

for

which

no

subscriptions

currently

exist.

IBM

suggests

that

the

connector

return

“fail”

if

no

subscriptions

exist

for

the

event.

However,

you

can

return

the

outcome

status

that

your

design

dictates.

No

other

processing

should

be

done

with

unsubscribed

events.

If

at

a

later

date,

the

integration

broker

subscribes

to

these

events,

a

system

administrator

can

move

the

unsubscribed

event

records

from

the

archive

store

back

to

the

event

store.

Retrieving

application

data

If

there

are

subscribers

for

an

event,

the

poll

method

must

take

the

following

steps:

1.

Retrieve

the

complete

set

of

data

for

the

entity

from

the

application.

To

retrieve

the

complete

set

of

entity

data,

the

poll

method

must

use

name

of

the

entity’s

key

information

(which

is

stored

in

the

event)

to

locate

the

entity

in

the

application.

The

poll

method

must

retrieve

the

complete

set

of

application

data

when

the

event

has

the

following

verbs:

v

Create

v

Update

v

Delete

event

for

an

application

that

supports

logical

deletes

For

a

Delete

event

from

an

application

that

supports

physical

deletes,

the

application

may

have

already

deleted

the

entity

from

the

database,

and

the

connector

may

not

be

able

to

retrieve

the

entity

data.

For

information

on

delete

processing,

see

“Processing

Delete

events”

on

page

130.

2.

Package

the

entity

data

in

a

business

object.

Once

the

populated

business

object

exists,

the

poll

method

can

publish

the

business

object

to

subscribers.

Table

95

lists

the

method

that

the

Java

connector

library

provides

to

retrieve

entity

data

from

the

application

database

and

populate

a

business

object.

Table

95.

Method

for

retrieving

business

object

data

Java

connector

library

class

Method

CWConnectorEventStore

getBO()

Note:

If

the

event

is

a

delete

operation

and

the

application

supports

physical

deletions

of

data,

the

data

has

most

likely

been

deleted

from

the

application,

and

the

connector

cannot

retrieve

the

data.

In

this

case,

the

connector

simply

creates

a

business

object,

sets

the

key

from

the

object

key

of

the

event

record,

and

sends

the

business

object.

For

a

Java

connector,

the

standard

way

of

retrieving

application

data

from

within

pollForEvents()

is

to

use

the

getBO()

method

in

the

CWConnectorEventStore

class.

This

method

takes

the

following

steps:

v

Create

a

temporary

CWConnectorBusObj

object

to

hold

the

new

business

object.

v

Populate

the

CWConnectorBusObj

object

with

the

data

and

key

values

from

the

specified

event

object.

Chapter

7.

Implementing

a

Java

connector

185

v

If

the

event’s

verb

is

Create

or

Update,

set

the

business

object’s

verb

to

RetrieveByContent

and

call

the

doVerbFor()

method

to

retrieve

the

remaining

attribute

values

from

the

application.

v

Return

the

populated

CWConnectorBusObj

object

to

the

caller.

If

the

call

to

getBO()

is

successful,

it

returns

the

populated

CWConnectorBusObj

object.

The

following

line

shows

a

call

to

getBO()

that

returns

a

populated

CWConnectorBusObj

object

called

bo:

bo

=

evts.getBO(evtObj);

In

case

the

getBO()

call

is

not

successful,

the

poll

method

should

take

the

following

steps:

v

Catch

any

exceptions

that

getBO()

throws.

v

Check

for

an

ERROR_OBJECT_NOT_FOUND

status

in

the

event

object

to

determine

if

the

doVerbFor()

method

could

not

find

the

business

object

data

in

the

application.

v

Check

for

a

null

value

returned

by

getBO(),

which

indicates

that

doVerbFor()

was

not

successful.

v

Use

the

getTerminate()

method

to

check

if

the

terminate-connector

flag

has

been

set,

which

indicates

that

doVerbFor()

(called

from

within

the

getBO()

method)

returned

an

APPRESPONSETIMEOUT

outcome

status.

If

getTerminate()

returns

true,

pollForEvents()

should

return

an

APPRESPONSETIMEOUT

outcome

status

to

terminate

the

connector.

Note:

The

default

implementation

of

getBO()

checks

the

outcome

status

of

doVerbFor()

and

calls

the

setTerminate()

method

if

doVerbFor()

returns

an

APPRESPONSETIMEOUT

outcome

status.

If

you

override

the

default

implementation

of

getBO()

but

still

use

the

default

implementation

of

pollForEvents(),

your

getBO()

implementation

should

perform

this

same

task.

The

ObjectEventId

attribute

is

used

in

the

IBM

WebSphere

business

integration

system

to

track

the

flow

of

business

objects

through

the

system.

In

addition,

it

is

used

to

keep

track

of

child

business

objects

across

requests

and

responses,

as

child

business

objects

in

a

hierarchical

business

object

request

might

be

reordered

in

a

response

business

object.

Connectors

are

not

required

to

populate

ObjectEventId

attributes

for

either

a

parent

business

object

or

its

children.

If

business

objects

do

not

have

values

for

ObjectEventId

attributes,

the

business

integration

system

generates

values

for

them.

However,

if

a

connector

populates

child

ObjectEventIds,

the

values

must

be

unique

across

all

other

ObjectEventId

values

for

that

particular

business

object

regardless

of

level

of

hierarchy.

ObjectEventId

values

can

be

generated

as

part

of

the

event

notification

mechanism.

For

suggestions

on

how

to

generate

ObjectEventId

values,

see

“Event

identifier”

on

page

115.

Sending

the

business

object

to

the

connector

framework

Once

the

data

for

the

business

object

has

been

retrieved,

the

poll

method

performs

the

following

tasks:

v

“Setting

the

business

object

verb”

on

page

187

v

“Sending

the

business

object”

on

page

187

Table

96

lists

the

methods

that

the

Java

connector

library

provides

to

perform

these

tasks.

186

Connector

Development

Guide

for

Java

Table

96.

Classes

and

methods

for

setting

the

verb

and

sending

the

business

object

Java

connector

library

class

Method

CWConnectorBusObj

setVerb()

CWConnectorEvent

getVerb()

CWConnectorAgent

gotApplEvent()

Setting

the

business

object

verb:

To

set

the

verb

in

a

business

object

to

the

verb

specified

in

the

event

record,

the

poll

method

calls

the

business

object

method

setVerb().

The

poll

method

should

set

the

verb

to

the

same

verb

that

was

in

the

event

record

in

the

event

store.

Note:

If

the

event

is

a

physical

delete,

use

the

object

keys

from

the

event

record

to

set

the

keys

in

the

business

object,

and

set

the

verb

to

Delete.

For

a

Java

connector,

the

populated

CWConnectorBusObj

object

that

the

getBO()

method

returns

still

has

a

verb

of

RetrieveByContent.

The

poll

method

must

set

the

business

object’s

verb

to

its

original

value

with

the

setVerb()

method

of

the

CWConnectorBusObj

class,

as

the

following

code

fragment

shows:

//

Set

verb

to

action

as

indicated

in

the

event

record

busObj.setVerb(evntObj.getVerb());

In

this

code

fragment,

the

poll

method

uses

the

getVerb()

of

the

CWConnectorEvent

class

to

obtain

the

verb

from

the

event

record.

This

verb

is

then

copied

into

the

business

object

with

setVerb().

Sending

the

business

object:

The

poll

method

uses

the

method

gotApplEvent()

to

send

the

business

object

to

the

connector

framework.

This

method

takes

the

following

steps:

v

Check

that

the

connector

is

active.

v

Check

that

there

are

subscriptions

for

the

event.

v

Send

the

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

makes

sure

the

event

is

sent.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

makes

sure

the

event

is

either

sent

to

the

ICS

through

CORBA

IIOP

or

written

to

a

queue

(if

you

are

using

queues

for

event

notification).

If

sending

the

event

to

ICS,

the

connector

framework

forwards

the

business

object

to

the

connector

controller,

which

in

turn

performs

any

mapping

required

to

transform

the

application-specific

business

object

to

a

generic

business

object.

The

connector

controller

can

then

send

the

generic

business

object

to

the

appropriate

collaboration.

Chapter

7.

Implementing

a

Java

connector

187

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

makes

sure

the

event

is

converted

to

an

XML

WebSphere

MQ

message

and

written

to

the

appropriate

MQ

queue.

The

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

error

conditions

are

handled

appropriately.

For

example,

until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

store.

Instead,

the

poll

method

should

update

the

event

record’s

status

to

reflect

the

results

of

the

event

delivery.

Table

97

shows

the

possible

event-status

values,

based

on

the

return

code

from

gotApplEvent().

Table

97.

Possible

event

status

after

event

delivery

with

gotApplEvent()

State

of

event

delivery

Return

code

of

gotApplEvent()

Event

status

If

the

event

delivery

is

successful

SUCCEED

SUCCESS

If

no

subscription

exists

for

the

event

NO_SUBSCRIPTION_FOUND

UNSUBSCRIBED

If

the

connector

has

been

paused

CONNECTOR_NOT_ACTIVE

READY_FOR_POLL

If

the

event

delivery

fails

FAIL

ERROR_POSTING_EVENT

The

gotApplEvent()

method

returns

SUCCEED

if

the

connector

framework

successfully

delivers

the

business

object.

The

poll

method

checks

the

return

code

from

gotApplEvent()

to

ensure

that

the

event

record’s

status

is

updated

appropriately.

If

gotApplEvent()

returns

any

return

code

except

FAIL,

the

poll

method

returns

SUCCEED

so

that

it

continues

to

poll

for

events.

However,

on

a

FAIL

return

code

from

gotApplEvent(),

event

delivery

has

failed

so

the

poll

method

logs

an

error

message

and

fails.

Table

98

shows

the

actions

that

pollForEvents()

takes

based

on

the

gotApplEvent()

return

code.

Table

98.

Possible

pollForEvents()

actions

after

event

delivery

with

gotApplEvent()

Return

code

of

gotApplEvent()

Actions

in

pollForEvents()

SUCCEED

1.

Reset

the

event

status

to

SUCCESS.

2.

If

the

ArchiveProcessed

connector

property

is

set

to

true,

archive

the

event

and

delete

it

from

the

event

store.

3.

Continue

polling.

NO_SUBSCRIPTION_FOUND

1.

Log

an

error

message.

2.

Reset

the

event

status

to

UNSUBSCRIBED.

3.

If

the

ArchiveProcessed

connector

property

is

set

to

true,

archive

the

event

and

delete

it

from

the

event

store.

4.

Continue

polling.

CONNECTOR_NOT_ACTIVE

1.

Log

an

informational

message

at

a

trace

level

of

3.

2.

Prepare

the

event

for

future

re-execution:

v

For

application

adapters,

reset

the

event

status

to

READY_FOR_POLL.

v

For

technology

adapters,

push

back

the

event

(if

possible).

3.

Return

SUCCEED

as

the

pollForEvents()

outcome

status.

Note:

In

this

case,

the

event

is

not

archived.

188

Connector

Development

Guide

for

Java

Table

98.

Possible

pollForEvents()

actions

after

event

delivery

with

gotApplEvent()

(continued)

Return

code

of

gotApplEvent()

Actions

in

pollForEvents()

FAIL

1.

Log

an

error

message.

2.

Reset

the

event

status

to

ERROR_POSTING_EVENT.

3.

If

the

ArchiveProcessed

connector

property

is

set

to

true,

archive

the

event

and

delete

it

from

the

event

store.

4.

Return

FAIL

as

the

pollForEvents()

outcome

status.

As

Table

98

shows,

the

action

that

pollForEvents()

takes

when

the

gotApplEvents()

method

returns

an

outcome

status

of

CONNECTOR_NOT_ACTIVE

depends

on

the

type

of

connector

you

have

created.

For

an

application

connector

(in

particular

a

connector

whose

application

uses

a

database

as

its

event

store),

the

pollForEvents()

method

should

reset

the

event’s

status

to

READY_FOR_POLL

to

revert

an

event

back

to

its

″unprocessed″

state.

However,

for

technology

connectors

(in

particular,

those

that

do

not

use

event

tables

and

therefore

cannot

always

revert

an

event

back

to

an

″unprocessed″

state),

the

connector

can

hold

the

event

in

memory

and

return

an

outcome

status

of

SUCCEED

from

pollForEvents(),

rather

than

attempting

to

″push″

the

event

back.

The

connector

should

keep

this

event

in

memory

until

the

adapter

is

re-activated

and

pollForEvents()

is

again

invoked.

At

this

time,

the

connector

can

try

to

republish

the

event.

The

following

code

fragment

shows

how

this

functionality

might

be

implemented.

BusinessObject

eventOnHold;

pollForEvents(...)

{

...

if

eventOnHold

!=

null

{

event

=

eventOnHold;

eventOnHold

=

null;

}

else

{

event

=

getNextUnprocessedEvent();

}

...

result

=

gotApplEvent(

event

);

if

(result

==

CWConnectorConstant.CONNECTOR_NOT_ACTIVE

)

{

eventOnHold

=

event;

return

CWConnectorConstant.SUCCEED;

}

Note:

Keep

in

mind

that

if

you

pause

the

adapter

while

it

is

actively

processing

an

event

and

then

later

terminate

this

adapter

(or

it

terminates

unexpectedly

on

its

own),

″in-doubt″

events

can

result

for

these

events

that

the

connector

(using

the

above

logic)

has

copied

to

memory.

Different

adapters

have

different

strategies

for

how

to

handle

in-doubt

events.

However,

the

result

of

this

logic

can

mean

the

creation

of

″in-doubt″

events

even

though

the

adapter

was

seemingly

terminated

properly.

These

events

are

not

lost.

When

implementing

the

pollForEvents()

response

to

the

CONNECTOR_NOT_ACTIVE

return

status,

keep

in

mind

that

the

programming

approaches

discussed

here

Chapter

7.

Implementing

a

Java

connector

189

assume

that

the

adapter

places

an

event

in

an

″in-progress″

state

while

it

processes

and

sends

the

event

to

the

integration

broker.

However,

not

all

adapters

are

implemented

this

way.

An

adapter

might

simply

receive

an

event

from

a

source

and

then

call

gotApplEvent()

to

send

it

to

the

integration

broker.

If

this

adapter

terminates

in

the

time

between

when

it

receives

the

event

and

when

it

calls

gotApplEvent(),

the

event

is

lost.

When

such

an

adapter

is

restarted,

it

has

no

way

of

reprocessing

the

event.

Completing

the

processing

of

an

event

The

processing

of

an

event

is

complete

with

the

completion

of

the

tasks

in

Table

99.

Table

99.

Steps

in

processing

an

event

Event-processing

task

For

more

information

The

poll

method

has

retrieved

the

application

data

for

the

event

and

created

a

business

object

that

represents

the

event.

“Retrieving

application

data”

on

page

185

The

poll

method

has

sent

the

business

object

to

the

connector

framework.

“Sending

the

business

object

to

the

connector

framework”

on

page

186

Note:

For

hierarchical

business

objects,

the

event

processing

is

complete

when

the

poll

method

has

retrieved

the

application

data

for

the

parent

business

object

and

all

child

business

objects

and

sent

the

complete

hierarchical

business

object

to

the

connector

framework.

The

event

notification

mechanism

must

retrieve

and

send

the

entire

hierarchical

business

object,

not

just

the

parent

business

object.

The

poll

method

must

ensure

that

the

event

status

correctly

reflects

the

completion

of

the

event

processing.

Therefore,

it

must

handle

both

of

the

following

conditions:

v

“Handling

successful

event

processing”

v

“Handling

unsuccessful

event

processing”

Handling

successful

event

processing:

The

processing

of

an

event

is

successful

when

the

tasks

in

Table

99

successfully

complete.

The

following

steps

show

how

the

poll

method

should

finish

processing

a

successful

event:

1.

Receive

a

“success”

return

code

from

the

gotApplEvent()

method

signifying

the

connector

framework’s

successful

delivery

of

the

business

object

to

the

messaging

system.

2.

Copy

the

event

to

the

archive

store.

For

more

information,

see

“Archiving

the

event”

on

page

191.

3.

Set

the

status

of

the

event

in

the

archive

store.

4.

Delete

the

event

record

from

the

event

store.

Until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

table.

Note:

The

order

of

the

steps

might

be

different

for

different

implementations.

Handling

unsuccessful

event

processing:

If

an

error

occurs

in

processing

an

event,

the

connector

should

update

the

event

status

to

indicate

that

an

error

has

occurred.

Table

100

shows

the

possible

event-status

values,

based

on

errors

that

can

occur

during

event

processing.

190

Connector

Development

Guide

for

Java

Table

100.

Possible

event

status

after

errors

in

event

processing

State

of

event

delivery

Event

status

Does

polling

terminate?

If

an

error

occurs

in

processing

an

event

ERROR_PROCESSING_EVENT

No,

retrieve

the

next

event

from

the

event

store

If

the

event

delivery

fails

ERROR_POSTING_EVENT

Yes

If

no

subscriptions

exist

for

the

event

UNSUBSCRIBED

No,

retrieve

the

next

event

from

the

event

store

For

example,

if

there

are

no

application

entities

matching

the

entity

key,

the

event

status

should

be

updated

to

“error

processing

event”.

If

the

event

cannot

be

successfully

delivered,

its

event

status

should

be

updated

to

“error

posting

event”.

As

discussed

in

“Sending

the

business

object”

on

page

187,

the

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

errors

that

are

returned

are

handled

appropriately.

In

any

case,

the

event

should

be

left

in

the

event

store

to

be

analyzed

by

a

system

administrator.

When

the

poll

method

queries

for

events,

it

should

exclude

events

with

the

error

status

so

that

these

events

are

not

picked

up.

Once

an

event’s

error

condition

has

been

resolved,

the

system

administrator

can

manually

reset

the

event

status

so

that

the

event

is

picked

up

by

the

connector

on

the

next

poll.

Archiving

the

event

Archiving

an

event

consists

of

moving

the

event

record

from

the

event

store

to

an

archive

store.

The

Java

connector

library

provides

the

CWConnectorEventStore

class

to

represent

an

event

store,

which

includes

the

archive

store.

Table

101

lists

the

methods

that

the

Java

connector

library

provides

to

archive

events.

Table

101.

Methods

for

archiving

events

Java

connector

library

class

Method

CWConnectorEventStore

updateEventStatus(),

archiveEvent(),

deleteEvent()

Note:

For

a

general

introduction

to

archiving,

see

“Archiving

events”

on

page

127..

To

archive

event

records

from

this

event

store,

the

poll

method

takes

the

following

actions:

1.

Ensure

that

archiving

is

implemented

by

checking

the

value

of

the

appropriate

connector

configuration

property,

such

as

ArchiveProcessed.

For

more

information,

see

“Configuring

a

connector

for

archiving”

on

page

128..

2.

Copy

the

event

record

from

the

archive

store

to

the

event

store

with

the

archiveEvent()

method.

To

provide

event

archiving,

you

must

implement

the

archiveEvent()

method

as

part

of

the

CWConnectorEventStore

class.

This

method

identifies

the

event

record

to

copy

by

its

event

ID.

The

archiveEvents()

method

should

throw

the

ArchiveFailedException

exception

if

the

application

is

unable

to

archive

the

event

because

it

is

unable

to

access

the

event

store.

When

the

pollForEvents()

method

catches

this

exception,

it

can

return

the

APPRESPONSETIMEOUT

outcome

status

to

indicate

the

lack

of

response

from

the

application’s

event

store.

3.

Update

the

event

status

of

the

archive

record

with

the

updateEventStatus()

method

to

reflect

the

reason

for

archiving

the

event.

Chapter

7.

Implementing

a

Java

connector

191

Table

102

shows

the

likely

event-status

constants

that

the

archive

record

will

have.

Table

102.

Event-status

constants

in

an

archive

record

Event

status

Description

SUCCESS

The

event

was

detected,

and

the

connector

created

a

business

object

for

the

event

and

sent

the

business

object

to

the

connector

framework.

For

more

information,

see

“Handling

successful

event

processing”

on

page

190.

UNSUBSCRIBED

The

event

was

detected,

but

there

were

no

subscriptions

for

the

event,

so

the

event

was

not

sent

to

the

connector

framework

and

on

to

the

integration

broker.

For

more

information,

see

“Checking

for

subscriptions

to

the

event”

on

page

183.

ERROR_PROCESSING_EVENT

The

event

was

detected,

but

the

connector

encountered

an

error

when

trying

to

process

the

event.

The

error

occurred

either

in

the

process

of

building

a

business

object

for

the

event

or

in

sending

the

business

object

to

connector

framework.

For

more

information,

see

“Handling

unsuccessful

event

processing”

on

page

190.

The

updateEventStatus()

method

should

throw

the

StatusChangeFailedException

exception

if

the

application

is

unable

to

change

the

event

status

because

it

is

unable

to

access

the

event

store.

When

the

pollForEvents()

method

catches

this

exception,

it

can

return

the

APPRESPONSETIMEOUT

outcome

status

to

indicate

the

lack

of

response

from

the

application’s

event

store.

4.

Delete

the

event

record

from

the

event

store

with

the

deleteEvent()

method.

You

must

implement

the

deleteEvent()

method

as

part

of

the

CWConnectorEventStore

class.

This

method

uses

the

event

ID

to

identify

the

event

record

to

delete.

The

deleteEvents()

method

should

throw

the

DeleteFailedException

exception

if

the

application

is

unable

to

delete

the

event

because

it

is

unable

to

access

the

event

store.

When

the

pollForEvents()

method

catches

this

exception,

it

can

return

the

APPRESPONSETIMEOUT

outcome

status

to

indicate

the

lack

of

response

from

the

application’s

event

store.

Figure

65

contains

a

code

fragment

that

archives

an

event.

After

archiving

is

complete,

your

poll

method

should

set

the

appropriate

return

code:

v

If

the

archiving

takes

place

after

an

event

is

successfully

delivered,

the

return

code

is

“success”,

indicated

with

the

SUCCEED

outcome-status

constant.

v

If

archiving

is

due

to

some

error

condition

(such

as

unsubscribed

events

or

an

error

in

processing

the

event),

the

poll

method

might

need

to

return

a

“fail”

status,

indicated

with

the

FAIL

outcome-status

constant.

//

Archive

the

event

if

ArchiveProcessed

is

set

to

true.

if

(arcProcessed.equalsIgnoreCase("true"))

{

//

Archive

the

event

in

the

application’s

archive

store.

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store.

evts.deleteEvent(evtObj.getEventID());

}

Figure

65.

Archiving

an

event

192

Connector

Development

Guide

for

Java

Releasing

event-store

resources

Often,

the

pollForEvents()

method

needs

to

allocate

resources

to

access

the

event

store.

To

prevent

excessive

memory

usage

by

these

resources,

you

can

release

them

at

the

end

of

the

poll

method.

Table

103

lists

the

methods

that

the

Java

connector

library

provides

to

release

event-store

resources.

Table

103.

Method

for

releasing

event-store

resources

Java

connector

library

class

Method

CWConnectorEventStore

cleanupResources()

For

example,

if

the

event

store

is

implemented

as

event

tables

in

a

database,

pollForEvents()

might

allocate

SQL

cursors

to

access

these

tables.

You

can

implement

a

cleanupResources()

method

to

free

these

SQL

cursors.

At

the

end

of

pollForEvents(),

you

can

then

call

cleanupResources()

to

free

the

memory

that

these

cursors

use.

Note:

The

CWConnectorEventStore

class

does

not

provide

a

default

implementation

of

the

cleanupResources()

method.

To

free

event-store

resources,

you

must

override

cleanupResources()

with

a

version

that

releases

the

resources

needed

to

access

your

event

store.

Default

implementation

of

the

Java

pollForEvents()

Figure

66

shows

the

default

implementation

of

the

pollForEvents()

in

the

CWConnectorAgent

class.

You

can

use

this

default

implementation,

which

follows

the

basic

logic

outlined

in

“Basic

logic

for

pollForEvents()”

on

page

126,

or

you

can

override

this

method

with

your

own

implementation.

Chapter

7.

Implementing

a

Java

connector

193

/**

*

Default

implementation

of

pollForEvents.

*/

public

int

pollForEvents()

{

CWConnectorUtil.traceWrite(

CWConnectorLogAndTrace.LEVEL5,"Entering

pollForEvents.");

//

Get

the

EventStoreFactory

implementation

name

from

the

//

getEventStore()

method.

CWConnectorEventStore

evts=getEventStore();

if

(evts==null)

{

CWConnectorUtil.generateAndLogMsg(10533,

CWConnectorLogAndTrace.XRD_ERROR,

0,

0);

return

CWConnectorConstant.APPRESPONSETIMEOUT

}

try

{

//finally

block

//

Fetch

PollQuantity

number

of

events

from

the

application.

try

{

evts.fetchEvents();

}

catch

(StatusChangeFailedException

e)

{

CWConnectorUtil.generateAndLogMsg(10533,

CWConnectorLogAndTrace.XRD_ERROR,0,0);

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}

//

Get

the

property

values

for

PollQuantity

and

ArchiveProcessed.

int

pollQuantity;

String

poll=CWConnectorUtil.getConfigProp("PollQuantity");

try

{

if

(poll

==

null

||

poll.equals(""))

pollQuantity=1;

else

pollQuantity=Integer.parseInt(poll);

}

catch

(NumberFormatException

e)

{

CWConnectorUtil.generateAndLogMsg(10544,

CWConnectorLogAndTrace.XRD_ERROR,

0);

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.FAIL;

}

String

arcProcessed=CWConnectorUtil.getConfigProp(

"ArchiveProcessed");

//

In

case

the

ArchiveProcessed

property

is

not

set,

use

true

//

as

default.

if

(arcProcessed

==

null

||

arcProcessed.equals(""))

arcProcessed=CWConnectorAttrType.TRUESTRING;

CWConnectorEvent

evtObj;

CWConnectorBusObj

bo=null;

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

1

of

7)

194

Connector

Development

Guide

for

Java

try

{

for

(int

i=0;

i

<

pollQuantity;

i++){

//

Process

each

event

retrieved

from

the

application.

//

Get

the

next

event

to

be

processed.

evtObj=evts.getNextEvent();

//

A

null

return

indicates

that

there

were

no

events

with

//

READY_FOR_POLL

status.

Return

SUCCESS.

if

(evtObj

==

null)

{

CWConnectorUtil.generateAndLogMsg(10534,

CWConnectorLogAndTrace.XRD_INFO,0,0);

return

CWConnectorConstant.SUCCEED;

}

//

Check

if

the

connector

has

subscribed

to

the

event

//

generated

for

the

business

object.

boolean

isSub=isSubscribed(evtObj.getBusObjName(),

evtObj.getVerb());

if

(isSub)

{

//

Retrieve

the

complete

CWConnectorBusObj

corresponding

//

to

the

object

using

the

getBO

method

in

//

CWConnectorEventStore.

This

method

sets

the

verb

on

a

//

temporary

business

object

to

RetrieveByContent

//

and

retrieves

the

corresponding

data

information

to

be

//

filled

in

the

business

object

from

the

application.

try

{

bo

=

evts.getBO(evtObj);

//

Terminate

flag

will

be

set

in

the

event

store

when

//

the

doVerbFor

method

returns

APPRESPONSETIMEOUT

in

//

getBO.

if

(evts.getTerminate())

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}catch

(AttributeNotFoundException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","AttributeNotFoundException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}catch

(SpecNameNotFoundException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","SpecNameNotFoundException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

2

of

7)

Chapter

7.

Implementing

a

Java

connector

195

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}catch

(InvalidVerbException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","InvalidVerbException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}catch

(WrongAttributeException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","WrongAttributeException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}catch

(AttributeValueException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","AttributeValueException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

3

of

7)

196

Connector

Development

Guide

for

Java

}catch

(AttributeNullValueException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"getBO","AttributeNullValueException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

//

Log

a

fatal

error

in

case

the

object

is

not

found.

if

(evtObj.getStatus()==

CWConnectorEventStatusConstants.ERROR_OBJECT_NOT_FOUND)

{

CWConnectorUtil.generateAndLogMsg(10543,

CWConnectorLogAndTrace.XRD_FATAL,0,0);

//

Update

the

event

status

to

ERROR_OBJECT_NOT_FOUND

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_OBJECT_NOT_FOUND);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

//

In

case

the

business

object

is

null,

the

retrieve

call

//

returned

an

error.

if

(bo

==

null)

{

CWConnectorUtil.generateAndLogMsg(10335,

CWConnectorLogAndTrace.XRD_ERROR,0,0);

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

4

of

7)

Chapter

7.

Implementing

a

Java

connector

197

//

Set

the

processing

verb

on

the

business

object.

try

{

bo.setVerb(evtObj.getVerb());

}

catch(InvalidVerbException

e){

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"setVerb","InvalidVerbException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

//

Update

the

event

status

to

ERROR_PROCESSING_EVENT

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_PROCESSING_EVENT);

if

(arcProcessed.equalsIgnoreCase(CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

//

Check

again

for

subscription.

if

(isSubscribed(bo.getName(),bo.getVerb())){

//

Send

the

event

to

integration

broker.

int

stat=gotApplEvent(bo);

if

(stat

==

CWConnectorConstant.CONNECTOR_NOT_ACTIVE){

CWConnectorUtil.generateAndTraceMsg(

CWConnectorLogAndTrace.LEVEL3,

10551,

CWConnectorLogAndTrace.XRD_INFO,

0,

0);

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.READY_FOR_ROLL);

//

No

need

to

archive

the

event,

as

the

status

is

reset

to

//

READY_FOR_POLL.

It

is

as

if

this

event

never

reached

the

//

connector

for

processing.

return

CWConnectorConstant.SUCCEED;

}

if

(stat

==

CWConnectorConstant.NO_SUBSCRIPTION_FOUND){

CWConnectorUtil.generateAndLogMsg(10552,

CWConnectorLogAndTrace.XRD_ERROR,

0,

0);

//

Update

the

event

status

to

UNSUBSCRIBED.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.UNSUBSCRIBED);

if

(arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

if

(stat

==

CWConnectorConstant.SUCCEED){

//

Update

the

event

status

to

SUCCESS.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.SUCCESS);

if

(arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

archive

store

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store

evts.deleteEvent(evtObj.getEventID());

}

continue;

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

5

of

7)

198

Connector

Development

Guide

for

Java

}

else

//

gotApplEvent

returned

FAIL

{

CWConnectorUtil.generateAndLogMsg(10532,

CWConnectorLogAndTrace.XRD_ERROR,0,0);

//

Update

the

event

status

to

ERROR_POSTING_EVENT.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.ERROR_POSTING_EVENT);

//

Archive

the

event

if

ArchiveProcessed

is

set

//

to

true.

if

(arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

//

archive

store.

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store.

evts.deleteEvent(evtObj.getEventID());

}

return

CWConnectorConstant.FAIL;

}

}

else

//

Event

unsubscribed.

{

CWConnectorUtil.generateAndLogMsg(10552,

CWConnectorLogAndTrace.XRD_ERROR,

0,

0);

//

Update

the

event

status

to

UNSUBSCRIBED.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.UNSUBSCRIBED);

//

Archive

the

event

if

ArchiveProcessed

is

set

//

to

true.

if

(arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

//

archive

store.

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store.

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

}

else

{

CWConnectorUtil.generateAndLogMsg(10552,

CWConnectorLogAndTrace.XRD_ERROR,

0,

0);

//

Update

the

event

status

to

UNSUBSCRIBED.

evts.updateEventStatus(evtObj,

CWConnectorEventStatusConstants.UNSUBSCRIBED);

//

Archive

the

event

if

ArchiveProcessed

is

set

//

to

true.

if

(arcProcessed.equalsIgnoreCase(

CWConnectorAttrType.TRUESTRING))

{

//

Archive

the

event

in

the

application’s

//

archive

store.

evts.archiveEvent(evtObj.getEventID());

//

Delete

the

event

from

the

event

store.

evts.deleteEvent(evtObj.getEventID());

}

continue;

}

}

//For

loop

}

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

6

of

7)

Chapter

7.

Implementing

a

Java

connector

199

Shutting

down

the

connector

In

the

Java

connector

library,

the

terminate()

method

for

a

Java

connector

is

defined

in

the

CWConnectorAgent

class.

Typical

return

codes

used

in

terminate()

are

SUCCEED

and

FAIL.

Figure

67

shows

a

sample

terminate()

method

for

a

Java

connector.

}

catch

(StatusChangeFailedException

e){

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"updateEventStatus","StatusChangeFailedException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}

catch

(InvalidStatusChangeException

e){

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"updateEventStatus","InvalidStatusChangeException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}

catch

(ArchiveFailedException

e){

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"archiveEvent","ArchiveFailedException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}

catch

(DeleteFailedException

e){

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"deleteEvent","DeleteFailedException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.APPRESPONSETIMEOUT;

}

catch

(AttributeNullValueException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,

2,

"get

method

in

event

store","AttributeNullValueException");

CWConnectorUtil.logMsg(e.getMessage());

e.printStackTrace();

return

CWConnectorConstant.FAIL;

}

}

finally

{

evts.cleanupResources();

}

return

CWConnectorConstant.SUCCEED;

}

Figure

66.

Implementation

of

basic

logic

for

pollForEvents()

(Part

7

of

7)

200

Connector

Development

Guide

for

Java

Handling

errors

and

status

This

section

provides

the

following

information

about

how

the

methods

of

the

connector

class

library

indicate

error

conditions:

v

“Java

return

codes”

v

“Exceptions”

on

page

202

v

“Return-status

descriptor”

on

page

204

Note:

You

can

also

use

error

logging

and

message

logging

to

handle

error

conditions

and

messages

in

your

connector.

For

more

information,

see

Chapter

6,

“Message

logging,”

on

page

137

Java

return

codes

In

the

Java

connector

library,

the

outcome-status

constants

in

the

CWConnectorConstant

class

define

the

Java

return

codes.

Table

104

lists

these

Java

outcome-status

constants.

Table

104.

Java

outcome-status

codes

Return

code

Description

CWConnectorConstant.SUCCEED

The

operation

succeeded.

CWConnectorConstant.FAIL

The

operation

failed.

CWConnectorConstant.APPRESPONSETIMEOUT

The

application

is

not

responding.

CWConnectorConstant.MULTIPLE_HITS

The

connector

found

multiple

matching

records

when

retrieving

using

non-key

values.

The

first

record

is

returned

with

this

status

code.

CWConnectorConstant.BO_DOES_NOT_EXIST

The

connector

performed

a

Retrieve

operation,

but

the

entity

that

the

business

object

represents

does

not

exist

in

the

application

database.

CWConnectorConstant.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

retrieve

by

non-key

values.

CWConnectorConstant.UNABLETOLOGIN

The

connector

is

unable

to

log

in

to

the

application.

CWConnectorConstant.VALCHANGE

At

least

one

value

in

a

business

object

has

changed.

CWConnectorConstant.VALDUPES

The

object

in

the

application

already

has

the

requested

data

values.

CWConnectorConstant.CONNECTOR_NOT_ACTIVE

The

connector

is

not

active;

it

has

been

paused.

CWConnectorConstant.NO_SUBSCRIPTION_FOUND

No

subscriptions

were

found

for

the

event.

public

int

terminate(){

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,

"Entering

Connector

terminate()");

//

disconnect

from

application

boolean

logoutSuccessful

=

userConnect.logout();

//

free

any

resources,

logoff

any

cache

sessions

if

connection

//

pool

is

used.

CWConnectorUtil.traceWrite(CWConnectorLogAndTrace.LEVEL4,

return

CWConnectorConstant.SUCCEED;

}

Figure

67.

Java

terminate()

method

Chapter

7.

Implementing

a

Java

connector

201

Outcome-status

constants

are

provided

for

use

in

user

implementations

of

many

of

the

Java

methods,

as

Table

105

shows.

Although

your

code

can

return

these

values

from

within

any

method,

some

of

the

return

codes

were

designed

with

specific

uses

in

mind.

For

example,

VALCHANGE

informs

the

integration

broker

that

the

connector

is

sending

a

business

object

with

changed

values.

Table

105.

Outcome-status

values

for

Java

connector

methods

Connector

method

Possible

outcome-status

codes

archiveEvent()

SUCCEED,

FAIL

doVerbFor()

SUCCEED,

FAIL,

APPRESPONSETIMEOUT,

VALCHANGE,

VALDUPES,

MULTIPLE_HITS,

RETRIEVEBYCONTENT_FAILED,

BO_DOES_NOT_EXIST

gotApplEvent()

SUCCEED,

FAIL,

CONNECTOR_NOT_ACTIVE,

NO_SUBSCRIPTION_FOUND

pollForEvents()

SUCCEED,

FAIL,

APPRESPONSETIMEOUT

terminate()

SUCCEED,

FAIL

The

outcome-status

constant

that

the

connector

framework

receives

helps

to

determine

its

next

action,

as

follows:

v

If

the

outcome

status

is

APPRESPONSETIMEOUT,

the

connector

framework

shuts

down

the

connector.

When

the

connector

framework

receives

this

outcome

status,

it

copies

the

APPRESPONSETIMEOUT

status

into

the

return-status

descriptor

and

returns

this

descriptor

to

inform

the

connector

controller

that

the

application

is

not

responding.

Once

it

has

sent

this

return-status

descriptor,

the

connector

framework

stops

the

process

in

which

the

connector

runs.

A

system

administrator

must

fix

the

problem

with

the

application

and

restart

the

connector

to

continue

processing

events

and

business

object

requests.

v

For

all

other

outcome-status

values,

the

connector

framework

continues

execution

of

the

connector.

During

request

processing,

the

connector

framework

copies

the

outcome

status

into

the

status

field

of

the

return-status

descriptor

and

includes

this

descriptor

in

its

response

to

the

integration

broker.

It

continues

execution

of

the

connector.

For

some

outcome-status

values,

the

connector

framework

also

includes

a

response

business

object

in

its

response.

For

more

information,

see

“Updating

the

request

business

object”

on

page

168.

Important:

The

connector

framework

does

not

stop

execution

of

the

connector

when

it

receives

the

FAIL

outcome-status

constant.

Exceptions

In

addition

to

returning

status

codes,

the

methods

of

the

Java

connector

library

can

throw

exceptions

to

indicate

certain

predefined

conditions.

This

section

provides

the

following

information

about

how

to

handle

exceptions

in

a

Java

connector:

v

“What

Is

a

Java

connector

exception?”

v

“Exceptions

from

the

Java

connector

library”

on

page

203

What

Is

a

Java

connector

exception?

When

a

method

of

the

Java

connector

library

throws

an

exception,

this

exception

object

is

a

subclass

of

the

CWException

class,

which

is

an

extension

of

the

Java

Exception

class.

As

Figure

68

shows,

this

exception

object

contains

a

message

and

202

Connector

Development

Guide

for

Java

status,

as

well

as

an

exception-detail

object

with

additional

information

about

the

exception.

Table

106

shows

the

accessor

methods

that

the

CWException

class

provides

to

obtain

information

in

the

exception

object.

Table

106.

Information

in

the

exception

object

Member

Accessor

method

Message

text

getMessage()

Status

getStatus(),

setStatus()

Exception-detail

object

getExceptionObject()

Note:

For

more

information

on

the

methods

in

the

CWException

class,

see

Chapter

24,

“CWException

class,”

on

page

381.

The

exception-detail

object

is

an

instance

of

the

CWConnectorExceptionObject

class.

As

Figure

68

shows,

an

exception

object

contains

an

exception-detail

object.

This

exception-detail

object

provides

more

detailed

information

about

the

Java

connector

library

exception,

as

Table

107

shows.

Table

107.

Information

in

the

exception-detail

object

Member

Description

Accessor

method

Message

text

The

message

text

for

the

exception

getMsg(),

setMsg()

Message

number

The

number

in

a

message

file

that

identifies

the

message

getMsgNumber(),

setMsgNumber()

Message

explanation

The

detailed

description

of

a

message,

which

is

also

stored

in

the

message

file.

This

information

might

include

a

corrective

action.

getExpl(),

setExpl()

Message

type

An

integer

constant

that

indicates

the

severity

of

a

message

getMsgType(),

setMsgType()

Status

An

integer

status

that

indicates

the

outcome

of

the

method.

getStatus(),

setStatus()

Note:

For

more

information

on

the

methods

in

the

CWConnectorExceptionObject

class,

see

Chapter

19,

“CWConnectorExceptionObject

class,”

on

page

333.

Exceptions

from

the

Java

connector

library

When

you

write

code

for

a

Java

connector,

you

can

include

Java

try

and

catch

statements

to

handle

specific

exceptions

thrown

by

the

methods

of

the

Java

Exception object

Message

Message

Status

Message Number

Message Explanation

Status

Message Type

Exception-detail object

Figure

68.

The

CWException

exception

object

Chapter

7.

Implementing

a

Java

connector

203

connector

library.

The

reference

description

for

most

Java

connector

library

methods

has

a

section

entitled

Exceptions,

which

lists

the

exceptions

thrown

by

that

method.

Figure

69

shows

a

code

fragment

from

the

default

implementation

of

the

pollForEvents()

method

that

catches

the

exceptions

that

the

getBO()

method

throws.

When

a

Java

connector

library

method

throws

an

exception,

it

does

not

usually

provide

message

and

status

information

in

the

exception

object.

However,

you

can

choose

to

fill

the

exception

object

with

additional

information

as

needed.

Return-status

descriptor

The

return-status

descriptor

usually

contains

information

about

the

success

(or

lack

thereof)

of

the

verb

processing

that

the

business

object

handler

(the

doVerbFor()

method)

has

performed.

The

calling

code

can

use

this

status

information

to

determine

how

to

proceed.

When

the

business

object

handler

for

a

particular

business

object

is

invoked,

the

doVerbFor()

of

its

associated

business-object-handler

class

executes.

However,

the

actual

method

invoked

is

not

the

user-implemented

doVerbFor()

(which

the

connector

developer

implements

as

part

of

the

business-object-handler

class).

Instead,

the

business

object

handler

invokes

a

low-level

doVerbFor()

method,

which

is

defined

in

this

same

class

but

which

the

connector

developer

does

not

implement.

try

{

bo

=

evts.getBO(evtObj);

}catch

(AttributeNotFoundException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","AttributeNotFoundException");

return

CWConnectorConstant.FAIL;

}catch

(SpecNameNotFoundException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","SpecNameNotFoundException");

return

CWConnectorConstant.FAIL;

}catch

(InvalidVerbException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","InvalidVerbException");

return

CWConnectorConstant.FAIL;

}catch

(WrongAttributeException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","WrongAttributeException");

return

CWConnectorConstant.FAIL;

}catch

(AttributeValueException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","AttributeValueException");

return

CWConnectorConstant.FAIL;

}catch

(AttributeNullValueException

e)

{

CWConnectorUtil.generateAndLogMsg(10536,

CWConnectorLogAndTrace.XRD_ERROR,

0,2,"getBO","AttributeNullValueException");

return

CWConnectorConstant.FAIL;

}

Figure

69.

Catching

exceptions

from

getBO()

204

Connector

Development

Guide

for

Java

This

low-level

doVerbFor()

method

performs

the

following

tasks:

1.

Receive

an

empty

return-status

descriptor

as

an

argument.

2.

Call

the

user-implemented

doVerbFor()

to

perform

the

verb

processing.

3.

Populate

the

return-status

descriptor

based

on

the

verb-processing

status

when

this

user-implemented

doVerbFor()

completes

(either

successfully

or

otherwise).

Because

the

low-level

doVerbFor()

receives

an

instantiated

return-status

descriptor

as

an

argument,

any

changes

that

it

makes

to

this

return-status

descriptor

are

available

to

the

calling

code

(which

instantiated

the

return-status

descriptor)

once

the

low-level

doVerbFor()

exits.

Therefore,

the

code

that

called

the

business

object

handler

can

access

this

return-status

descriptor

to

obtain

information

about

the

status

of

the

verb

processing.

Access

to

this

return-status

descriptor

can

be

performed

in

either

of

the

following

ways:

v

“Implicitly

accessing

the

return-status

descriptor”

v

“Explicitly

accessing

the

return-status

descriptor”

Implicitly

accessing

the

return-status

descriptor

In

request

processing,

the

connector

framework

uses

the

return-status

descriptor

to

report

the

status

of

the

verb

processing

back

to

the

integration

broker.

When

the

connector

framework

receives

a

request

business

object,

it

locates

the

associated

business-object-handler

class

and

invokes

its

low-level

doVerbFor()

method.

It

passes

to

this

low-level

doVerbFor()

an

instantiated,

empty

return-status

descriptor.

When

the

low-level

doVerbFor()

completes,

it

has

populated

the

return-status

descriptor

with

the

verb-processing

status

from

the

user-implemented

doVerbFor()

method.

The

connector

framework

then

includes

this

return-status

descriptor

as

part

of

its

response

to

the

integration

broker.

For

more

information,

see

“Populating

the

return-status

descriptor”

on

page

168.

Explicitly

accessing

the

return-status

descriptor

In

event

notification,

the

poll

method

can

use

the

return-status

descriptor

to

determine

the

success

of

the

retrieval

of

application

data

associated

with

an

event.

When

the

poll

method,

pollForEvents(),

retrieves

an

event

from

the

event

store,

the

event

usually

contains

only

the

key

values

of

the

associated

application

event.

To

obtain

all

application

data,

pollForEvents()

must

use

the

key

value

(or

values)

to

query

the

application

and

retrieve

the

full

set

of

values.

For

more

information,

see

“Retrieving

application

data”

on

page

185.

A

common

way

to

retrieve

this

application

data

is

to

call

the

business

object

handler

with

a

RetrieveByContent

verb

in

the

business

object.

To

facilitate

this

use

of

a

business

object

handler,

the

CWConnectorBusObj

class

provides

a

version

of

the

doVerbFor()

method.

When

calling

code

calls

this

doVerbFor()

method,

it

invokes

the

business

object

handler

for

the

current

business

object

by

calling

the

low-level

doVerbFor()

method.

The

code

that

calls

the

CWConnectorBusObj

version

of

doVerbFor()

must

first

create

a

return-status

descriptor

and

then

pass

this

instantiated,

empty

return-status

descriptor

into

doVerbFor().

The

CWConnectorBusObj

version

of

doVerbFor()

passes

the

empty

return-status

descriptor

to

the

low-level

doVerbFor()

method

in

the

business-object-handler

class.

When

the

low-level

doVerbFor()

completes,

it

has

populated

the

return-status

descriptor

with

the

verb-processing

status

from

the

user-implemented

doVerbFor()

method.

The

CWConnectorBusObj

version

of

doVerbFor()

passes

this

return-status

Chapter

7.

Implementing

a

Java

connector

205

descriptor

back

to

the

calling

code.

Because

the

calling

code

has

instantiated

this

return-status

descriptor,

it

can

explicitly

access

its

contents

to

determine

the

success

of

the

verb

processing.

For

a

Java

connector,

the

return-status

descriptor

is

a

CWConnectorReturnStatusDescriptor

object.

Table

108

lists

the

status

information

that

this

structure

provides.

Table

108.

Information

in

the

return-status

descriptor

Return-status

descriptor

information

Description

Java

accessor

method

Error

message

A

string

to

provide

a

description

of

the

error

condition

getErrorString(),

setErrorString()

Status

An

additional

status

value

to

further

detail

the

cause

of

the

error

condition

getStatus(),

setStatus()

The

CWConnectorEventStore

class

provides

the

getBO()

method

to

retrieve

application

data

associated

with

an

event.

The

default

implementation

of

the

getBO()

method

calls

the

CWConnectorBusObj

version

of

doVerbFor()

to

perform

this

retrieval.

The

default

implementation

of

the

pollForEvents()

method

includes

a

call

to

getBO().

Therefore,

your

pollForEvents()

does

not

need

to

explicitly

access

the

return-status

descriptor

for

information

about

the

retrieval

status

in

either

of

the

following

cases:

v

If

you

use

the

default

implementation

of

pollForEvents()

v

If

you

call

the

default

implementation

of

getBO()

in

your

own

pollForEvents()

method

The

default

implementation

of

getBO()

automatically

accesses

the

return-status

descriptor

and

returns

values

(or

throws

exceptions)

to

indicate

the

retrieval

status.

Note:

You

can

use

the

methods

of

the

CWConnectorReturnStatusDescriptor

method

to

access

the

collaboration

status

from

a

return-status

descriptor

after

execution

of

the

executeCollaboration()

method.

Important:

Any

status

code

that

the

doVerbFor()

method

sets

in

the

return-status

descriptor

must

have

meaning

to

the

collaboration.

The

collaboration

developer

and

the

connector

developer

must

agree

on

the

meaning

of

this

status

code.

206

Connector

Development

Guide

for

Java

Chapter

8.

Adding

a

connector

to

the

business

integration

system

To

run

in

the

IBM

WebSphere

business

integration

system,

a

connector

must

be

defined

in

the

repository.

Pre-defined

adapters,

which

the

WebSphere

Business

Integration

Adapters

product

provides,

have

predefined

connector

definitions

in

the

repository.

A

system

administrator

need

only

configure

the

application

and

set

the

connector’s

configuration

properties

to

run

the

connector.

For

the

IBM

WebSphere

business

integration

system

to

be

able

to

access

a

connector

that

you

have

developed,

you

must

take

the

following

steps:

1.

Create

the

connector

definition

in

the

repository.

2.

If

WebSphere

MQ

will

be

used

for

messaging

between

connector

components,

add

message

queues

for

the

connector.

3.

Create

the

connector’s

initial

configuration

file.

4.

Create

the

connector’s

startup

script.

This

chapter

provides

information

on

adding

a

new

connector

to

the

IBM

WebSphere

business

integration

system.

This

chapter

includes

the

following

sections:

v

“Naming

the

connector”

v

“Compiling

the

connector”

on

page

208

v

“Creating

the

connector

definition”

on

page

208

v

“Creating

the

initial

configuration

file”

on

page

210

v

“Starting

up

a

new

connector”

on

page

211

Naming

the

connector

This

chapter

provides

suggested

naming

conventions

for

the

files

and

directories

used

in

connector

development.

Naming

conventions

provide

a

way

to

make

you

connector

files

more

easy

to

locate

and

identify.

Table

109

summarizes

the

suggested

naming

conventions

for

connector

files.

Many

of

these

files

are

based

on

the

connector

name,

which

should

uniquely

identify

it

within

the

WebSphere

business

integration

system.

This

name

(connName)

can

identify

the

application

or

technology

with

which

the

connector

communicates.

Table

109.

Suggested

naming

conventions

for

a

connector

Connector

file

Name

Connector

definition

connNameConnector

Connector

directory

ProductDir\connectors\connName

Initial

connector

configuration

file

File

name:

BIA_CN_connName.txt

Directory

name:

ProductDir\repository\connName

User-customized

connector

configuration

file

File

name:

CN_connName.txt

Directory

name:

ProductDir\connectors\connName

Connector

class

connNameAgent.java

©

Copyright

IBM

Corp.

2000,

2004

207

Table

109.

Suggested

naming

conventions

for

a

connector

(continued)

Connector

file

Name

Connector

library

Java

jar

file:

connDir\BIA_connName.jar

Java

package:

com.crossworlds.connectors.connName.

where

connDir

is

the

name

of

the

connector

directory,

as

defined

above.

Connector

startup

script

Windows

platforms:

connDir\start_connName.bat

UNIX-based

platforms:

connDir\connector_manager_connName.sh

where

connDir

is

the

name

of

the

connector

directory,

as

defined

above.

For

more

information

on

naming

conventions

for

connectors,

see

Naming

IBM

WebSphere

InterChange

Server

Components

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Compiling

the

connector

Once

you

have

written

the

connector’s

application-specific

component,

you

must

compile

it

into

an

executable

format,

its

connector

library.

This

section

provides

information

on

how

to

compile

a

connector.

To

compile

a

Java

connector,

take

the

following

steps:

v

Use

a

JDK

1.4.2

development

environment.

For

more

information,

see

“Setting

up

the

development

environment”

on

page

28.

v

Ensure

that

the

following

file

is

in

the

lib

subdirectory

of

the

product

directory.

–

WBIA.jar

v

Include

wbiart.jar

in

the

wbiart

directory

and

make

sure

that

directory

is

in

the

project

path.

Also

include

in

the

project

path

any

application-specific

jar

files

that

your

connector’s

application-specific

component

requires.

v

Compile

the

connector

source

(.java)

files

into

class

(.class)

files

with

the

Java

compiler.

v

Create

the

Java

connector’s

library

file,

which

is

a

Java

archive

(jar)

file

that

contains

the

compiled

Java

code.

The

suggested

naming

convention

for

the

jar

file

is

to

begin

its

name

with

the

string

″BIA_″.

Follow

this

string

with

the

connector

name,

which

uniquely

identifies

the

connector

(see

Table

109

on

page

207).

For

more

information

about

the

connector

name,

see

“Naming

the

connector”

on

page

207.

For

example,

for

a

Java

connector

with

a

connector

name

of

MyJava,

you

could

name

its

jar

file

as:

BIA_MyJava.jar

Creating

the

connector

definition

To

run

in

the

IBM

WebSphere

business

integration

system,

a

connector

must

be

defined

in

the

repository.

Pre-defined

adapters,

which

the

WebSphere

Business

Integration

Adapters

product

provides,

have

predefined

connector

definitions

that

are

loaded

in

the

repository

at

installation

time.

To

run

a

predefined

connector,

a

system

administrator

need

only

configure

the

application

and

set

the

connector’s

208

Connector

Development

Guide

for

Java

configuration

properties.

However,

before

the

IBM

WebSphere

business

integration

system

can

access

a

connector

that

you

have

developed,

you

must

take

the

following

steps:

v

Create

a

connector

definition

to

define

the

connector

within

the

repository.

v

Create

an

initial

configuration

file

to

assist

users

in

connector

configuration

(optional).

Defining

the

connector

To

define

the

connector

within

the

WebSphere

business

integration

system,

you

create

a

connector

definition.

This

connector

definition

includes

the

following

information

to

define

the

connector

in

the

repository:

v

The

name

of

the

connector

definition

v

Supported

business

objects

and

associated

maps

v

Connector

configuration

properties

A

tool

called

Connector

Configurator

collects

this

information

and

stores

it

in

the

repository.

WebSphere

InterChange

Server

When

your

integration

broker

is

InterChange

Server,

the

repository

is

a

database

that

InterChange

Server

communicates

with

to

obtain

information

about

components

in

the

WebSphere

business

integration

system.

In

this

repository,

connector

definitions

reside.

These

connector

definitions

include

both

standard

and

connector-specific

connector

configuration

properties

that

the

connector

controller

and

the

client

connector

framework

require.

The

connector

can

also

have

a

local

configuration

file,

which

provides

configuration

information

for

the

connector

locally.

When

a

local

configuration

file

exists,

it

takes

precedence

over

the

information

in

the

InterChange

Server

repository.

You

update

the

connector

definitions

in

the

InterChange

Server

repository

with

Connector

Configurator

from

within

the

System

Manager

tool.

You

can

update

the

locale

configuration

file

with

the

standalone

version

of

Connector

Configurator,

which

resides

in

the

bin

subdirectory

of

your

product

directory.

WebSphere

MQ

Integrator

Broker

When

your

integration

broker

is

WebSphere

MQ

Integrator

Broker,

the

repository

is

a

directory

of

files

that

the

connector

framework

uses

to

obtain

information

about

components

of

the

WebSphere

business

integration

system.

In

this

repository,

connector

definitions

for

each

adapter

in

the

system

resides.

You

update

the

connector

definitions

in

the

local

repository

with

Connector

Configurator,

which

resides

in

the

bin

subdirectory

of

your

product

directory.

For

information

on

how

to

use

Connector

Configurator,

refer

to

Appendix

B,

“Connector

Configurator,”

on

page

501.

The

connector

definition

name

The

connector

definition

name

uniquely

identifies

the

connector

within

the

WebSphere

business

integration

system.

By

convention,

a

connector

definition

name

usually

takes

the

following

form:

Chapter

8.

Adding

a

connector

to

the

business

integration

system

209

connNameConnector

where

connName

is

the

connector

name

(see

Table

109

on

page

207).

For

more

information

on

the

connector

name,

see

“Naming

the

connector”

on

page

207.

For

example,

if

the

connector

name

is

MyConn,

the

name

of

its

connector

definition

is

MyConnConnector.

Supported

business

objects

and

maps

A

connector

definition

must

specify

the

following

information

about

the

business

objects

that

the

connector

supports:

v

The

business

object

definitions

Each

business

object

that

the

connector

is

able

to

send

to

or

receive

from

the

integration

broker

must

be

specified

as

a

supported

business

object.

Connector

Configurator

provides

a

Supported

Business

Objects

tab

in

which

you

can

enter

the

connector’s

supported

business

objects.

Note:

All

application-specific

business

objects

that

the

connector

supports

must

be

defined

in

the

repository

before

you

can

include

them

as

supported

business

objects

in

the

connector

definition.

For

information

on

how

to

define

application-specific

business

objects,

see

the

Business

Object

Development

Guide.

v

Associated

maps

WebSphere

InterChange

Server

Only

the

connector

definition

for

a

connector

that

communicates

with

InterChange

Server

as

its

integration

broker

includes

the

maps

associated

with

the

connector.

Associated

maps

are

those

maps

that

convert

between

the

connector’s

application-specific

business

objects

and

the

appropriate

generic

business

objects.

Connector

Configurator

provides

an

Associated

Maps

tab

in

which

you

can

enter

the

connector’s

associated

maps.

Connector

configuration

properties

The

connector

definition

also

contains

the

connector

configuration

properties.

To

initialize

these

properties,

you

must

take

the

following

steps:

v

Assign

values

for

standard

connector

configuration

properties.

v

Define

any

connector-specific

configuration

properties

that

your

connector

uses

and

assign

them

values

as

appropriate.

Connector

Configurator

provides

two

tabs

for

specifying

connector

configuration

properties:

Standard

Properties

and

Connector-Specific

Properties.

For

more

information

on

connector

configuration

properties,

see

“Using

connector

configuration

property

values”

on

page

70.

Creating

the

initial

configuration

file

By

convention,

pre-defined

adapters

provide

an

initial

configuration

file

for

users

to

use

the

first

time

that

they

configure

the

adapter

with

Connector

Configurator.

The

suggested

name

for

this

configuration

file

is:

BIA_CN_connName.txt

210

Connector

Development

Guide

for

Java

where

connName

is

the

connector

name

(see

Table

109

on

page

207).

For

more

information

on

the

connector

name,

see

“Naming

the

connector”

on

page

207.

This

initial

configuration

file

resides

in

the

following

directory:

ProductDir\repository\connName

That

is,

the

repository

subdirectory

of

the

product

directory

contains

directories

for

each

connector.

Each

connector’s

directory

(connName)

is

named

with

its

unique

connector

name

and

within

this

directory

resides

the

initial

configuration

file

with

the

following

name.

For

users

to

configure

a

connector

that

you

have

developed,

you

can

provide

an

initial

configuration

file

for

your

new

connector.

As

part

of

your

connector

development,

you

have

probably

specified

the

settings

for

the

standard

configuration

properties

as

well

as

defining

any

connector-specific

configuration

properties.

This

connector

configuration

information

should

reside

in

your

repository.

However,

once

your

connector

is

moved

to

some

other

environment,

it

loses

access

to

this

repository.

Therefore,

you

should

create

an

initial

configuration

file

that

is

part

of

your

released

connector.

To

create

this

initial

configuration

file,

bring

up

Connector

Configurator

for

your

connector

and

save

its

configuration

in

the

following

file:

ProductDir\repository\connName\BIA_CN_connName.txt

Note:

These

steps

assume

that

during

the

course

of

development,

you

have

already

created

a

connector

configuration

file

(.cfg)

for

your

connector.

The

preceding

step

just

saves

this

connector

configuration

information

in

a

separate

file,

which

is

included

as

part

of

the

released

connector.

Starting

up

a

new

connector

To

start

up

the

connector,

you

execute

a

connector

startup

script.

As

Table

110

shows,

the

name

of

this

startup

script

depends

on

the

operating

system

which

you

are

using.

Table

110.

Startup

scripts

for

a

connector

Operating

system

Startup

script

UNIX-based

systems

connector_manager_connName

Windows

start_connName.bat

The

startup

script

supports

those

adapters

that

the

WebSphere

Business

Integration

Adapters

product

provides.

To

start

up

a

predefined

connector,

a

system

administrator

runs

its

startup

script.

The

startup

scripts

for

most

predefined

connectors

expect

the

following

command-line

arguments:

1.

The

first

argument

is

the

connector

name,

which

identifies

the

following:

v

The

name

of

the

connector’s

directory

under

the

connectors

subdirectory

of

the

product

directory

v

The

connector

library,

which

resides

in

the

connector’s

directory
2.

The

second

argument

is

the

name

of

the

integration

broker

instance

against

which

the

connector

runs.

Chapter

8.

Adding

a

connector

to

the

business

integration

system

211

WebSphere

InterChange

Server

When

your

integration

broker

is

InterChange

Server

(ICS),

the

startup

script

specifies

the

name

of

the

ICS

instance

against

which

your

connector

runs.

On

Windows

systems,

this

ICS

instance

name

(which

was

specified

in

the

installation

process)

appears

in

each

of

the

connector

shortcuts

of

the

startup

script.

Other

integrator

brokers

When

your

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

startup

script

specifies

the

name

of

the

broker

instance

against

which

your

connector

runs.

On

Windows

systems,

this

instance

name

(which

was

specified

in

the

installation

process)

appears

in

each

of

the

connector

shortcuts

of

the

startup

script.

3.

Optional

additional

startup

parameters

can

be

specified

on

the

command

line

and

are

passed

to

the

connector

runtime.

For

more

information

about

the

startup

parameters,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

WebSphere

InterChange

Server

Before

you

start

a

connector,

InterChange

Server

must

be

running

for

the

connector

to

complete

its

initialization

and

obtain

its

business

objects

from

the

repository.

Before

you

can

start

up

a

connector

that

you

have

developed,

you

need

to

ensure

that

a

startup

script

supports

your

new

connector.

To

enable

a

startup

script

to

start

your

own

connector,

you

must

take

the

following

steps:

1.

Prepare

a

connector

directory

for

your

connector.

2.

Create

the

startup

script

for

your

connector.

For

Windows

systems,

also

create

a

shortcut

for

your

connector

startup.

3.

Set

up

the

startup

script

as

a

Windows

service

(optional).

The

following

sections

describe

each

of

these

steps.

Preparing

the

connector

directory

The

connector

directory

contains

the

runtime

files

for

your

connector.

To

prepare

the

connector

directory,

take

the

following

steps:

1.

Create

a

connector

directory

for

your

new

connector

under

the

connectors

subdirectory

of

the

product

directory:

ProductDir\connectors\connName

By

convention,

this

directory

name

matches

the

connector

name

(connName).

The

connector

name

is

a

string

that

uniquely

identifies

the

connector.

For

more

information,

see

“Naming

the

connector”

on

page

207.

2.

Move

your

connector’s

library

file

to

this

connector

directory.

212

Connector

Development

Guide

for

Java

A

Java

connector’s

library

file

is

a

Java

archive

(jar)

file.

You

created

this

jar

file

when

you

compiled

the

connector.

For

more

information,

see

“Compiling

the

connector”

on

page

208.

Creating

startup

scripts

As

Table

110

on

page

211

shows,

a

connector

requires

a

startup

script

for

the

system

administrator

to

start

execution

of

the

connector

process.

The

startup

script

to

use

depends

on

the

operating

system

on

which

you

are

developing

your

connector.

Startup

script

and

shortcut

on

Windows

systems

Starting

a

connector

on

a

Windows

system

involves

the

following

steps:

1.

Call

the

connector’s

startup

script,

start_connName.bat.

The

start_connName.bat

script

(where

connName

is

the

name

of

your

connector)

is

a

connector-specific

startup

script.

It

provides

connector-specific

information

(such

as

application-specific

libraries

and

their

locations).

By

convention,

this

script

resides

in

the

connector

directory:

ProductDir\connectors\connName

It

is

this

start_connName.bat

script

that

the

user

invokes

to

start

the

connector

on

a

Windows

system.

2.

Call

the

generic

connector-invocation

script,

start_adapter.bat

The

start_adapter.bat

file

is

generic

to

all

connectors.

It

performs

the

actual

invocation

of

the

connector

within

the

JVM.

It

resides

in

the

bin

subdirectory

of

the

product

directory.

The

start_connName.bat

script

must

call

the

start_adapter.bat

script

to

actually

invoke

the

connector.

Figure

70

shows

the

steps

to

start

a

connector

on

a

Windows

system.

When

a

WebSphere

Business

Integration

Adapters

Installer

installs

a

predefined

connector

on

a

Windows

system,

it

takes

the

following

steps:

Environment file:
CWConnEnv.bat

Connector startup script:
start_ .batconnName

Connector

JVM

1

3

Connector invocation script:
start_adapter.bat

2

Figure

70.

Starting

a

connector

on

a

Windows

system

Chapter

8.

Adding

a

connector

to

the

business

integration

system

213

v

Install

a

startup

script

for

the

predefined

connector.

v

Create

a

menu

option

for

the

predefined

connector

under

the

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors

menu.

To

provide

the

ability

to

start

up

your

own

connector,

you

must

duplicate

these

steps

by:

v

Generating

the

start_connName.bat

startup

script

and

putting

it

in

the

connector\connName

subdirectory

of

the

product

directory

v

Providing

a

menu

option

for

the

connector

under

the

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors

menu.

Each

menu

option

is

a

shortcut

that

invokes

the

Windows

startup

script,

start_connName.bat,

for

the

particular

connector.

Creating

the

startup

script:

To

create

a

custom

connector

startup

script,

you

create

a

new

connector-specific

startup

script

called

start_connName.bat

(where

connName

is

your

Java

connector

name).

For

example,

if

your

Java

connector

has

a

connector

name

of

MyJava,

its

startup

script

name

is

start_MyJava.bat.

As

a

starting

point,

you

can

copy

the

startup-script

template,

which

is

located

in

the

following

file:

ProductDir\templates\start_connName.bat

Figure

71.

shows

a

sample

of

the

contents

of

the

startup-script

template

for

Windows.

Please

consult

the

version

of

this

file

released

with

your

product

for

the

most

current

contents.

214

Connector

Development

Guide

for

Java

By

convention,

the

start_connName.bat

script

has

the

standard

syntax

shown

in

Figure

72,

with

connName

being

the

name

of

the

connector,

ICSinstance

being

the

name

of

the

InterChange

Server

instance,

and

additionalOptions

specifies

additional

startup

parameters

to

pass

to

the

connector

invocation.

These

options

include

-c,

-f,

-t,

and

-x.

For

more

information,

see

Table

112

on

page

217.

As

the

connector

developer,

you

control

the

content

of

start_connName.bat.

Therefore,

you

can

change

the

syntax

of

your

connector

startup

script.

However,

if

you

change

this

standard

syntax,

make

sure

that

all

information

that

start_adapter.bat

requires

is

available

at

the

time

of

its

invocation

within

start_connName.bat.

Note:

In

the

start_connName.bat

syntax

in

Figure

72,

the

connName

and

ICSinstance

arguments

are

required.

The

additionalOptions

argument

is

optional.

The

startup

script

with

the

standard

syntax

makes

the

following

assumptions

about

your

connector’s

runtime

files

based

on

the

connector

name

(connName):

v

The

connector

name

is

the

same

as

name

of

the

connector

directory

under

the

connectors

subdirectory

of

the

product

directory

REM

@echo

off

setlocal

REM

Set

adapter

specific

variables

set

ACCESS_JAR=%ACCESS_HOME%\lib\access.jar

set

J2EE_JAR=%J2EE_HOME%\j2ee.jar

REM

End

adapter

specific

variables

REM

Branch

between

WBIA_RUNTIME

and

CROSSWORLDS

REM

IF

WBIA_RUNTIME

is

set

use

start_adapter

launcher

to

run

adapter

If

"%WBIA_RUNTIME%"==""

goto

CROSSWORLDS

REM

call

CWConnEnv

call

"%WBIA_RUNTIME%"\bin\CwConnEnv.bat

REM

set

the

directory

where

the

specific

connector

resides

set

CONNDIR="%WBIA_RUNTIME%"\connectors\%1

REM

goto

the

connector

specific

drive

and

directory.

REM

CONNDIR

is

defined

by

caller

cd

/d

%CONNDIR%

REM

set

variables

that

need

to

pass

to

callee

set

JVMArgs=-AAA

set

JCLASSES=AAA;%ACCESS_JAR%;%J2EE_JAR%;%JCLASSES%

set

LibPath=AAA

set

ExtDirs=AAA

call

start_adapter.bat

-nAccessDest

-sWSICS

-lSamples.AccessTestConnector.AppConn

-fno

-pnull

-b

-cAccessDest.cfg

goto

END

:CROSSWORLDS

END

endlocal

Figure

71.

Sample

contents

of

the

startup-script

template

for

Windows

start_connName

connName

ICSinstance

additionalOptions

Figure

72.

Standard

syntax

for

Windows

connector

startup

script

Chapter

8.

Adding

a

connector

to

the

business

integration

system

215

v

The

connector

name

is

the

same

as

the

Java

connector’s

library

file

(its

jar

file,

CWconnName.jar),

which

resides

in

the

connector

directory

For

example,

for

the

MyJava

connector

to

meet

these

assumptions,

its

runtime

files

must

reside

in

the

ProductDir\connectors\MyJava

directory

and

its

jar

file

must

reside

in

that

directory

with

the

name

BIA_MyJava.jar.

If

y

our

connector

cannot

meet

these

assumptions,

you

must

customize

its

startup

script

to

provide

the

appropriate

information

to

the

generic

connector-invocation

script,

start_adapter.bat.

In

this

start_connName.bat

file,

take

the

following

steps:

1.

Move

into

the

connector

directory.

2.

Set

the

startup

environment

variables

within

the

startup

script

with

any

connector-specific

information

and

any

connector-specific

variables.

3.

Call

the

start_adapter.bat

script

to

invoke

the

connector.

Note:

The

start_adapter.bat

script

does

not

contain

a

pause

statement

to

display

information

in

the

console.

If

startup

fails

and

you

want

to

view

this

information,

include

a

pause

statement

in

start_connName.bat

to

prevent

the

console

from

closing

when

the

connector

fails.

The

following

sections

describe

each

of

these

steps.

Calling

the

environment

file:

The

CWConnEnv.bat

file

contains

environment

settings

for

the

IBM

Java

Object

Request

Broker

(ORB)

and

the

IBM

Java

Runtime

Environment

(JRE).

The

following

line

invokes

this

environment

file

within

the

startup

script:

call

"%WBIA_RUNTIME%"\bin\CWConnEnv

Moving

into

the

connector

directory:

The

start_connName.bat

script

must

change

to

the

connector

directory

before

it

calls

the

start_adapter.bat

script.

The

connector

directory

contains

the

connector-specific

startup

script

as

well

as

other

files

needed

at

connector

startup.

You

can

define

the

name

of

this

connector

directory

any

way

you

wish.

However,

as

discussed

in

“Preparing

the

connector

directory”

on

page

212,

by

convention

the

connector

directory

name

matches

the

connector

name.

If

the

start_connName.bat

script

uses

the

standard

syntax

(see

Figure

72

on

page

215),

the

connector

name

is

passed

in

as

the

first

argument

(%1).

In

this

case,

the

following

lines

move

into

the

connector

directory:

REM

set

the

directory

where

the

specific

connector

resides

set

CONNDIR=%CROSSWORLDS%\connectors\%1

REM

goto

the

connector

specific

drive

&

directory

cd

/d

%CONNDIR%

Alternatively,

because

the

connector

name

is

used

in

several

components

of

the

connector,

you

can

define

an

environment

variable

to

specify

this

connector

name

and

then

evaluate

this

environment

variable

for

all

subsequent

uses

of

the

connector

name

within

the

start_connName.bat

script.

The

lines

to

set

the

environment

variables

for

the

connector

name

and

connector

directory

could

be

as

follows:

REM

set

the

name

of

the

connector

set

CONNAME=%1

REM

set

the

directory

where

the

specific

connector

resides

set

CONNDIR=%CROSSWORLDS%\connectors\%CONNAME%

216

Connector

Development

Guide

for

Java

REM

goto

the

connector

specific

drive

&

directory

cd

/d

%CONNDIR%

Setting

the

environment

variables:

In

the

start_connName.bat

script,

you

must

provide

any

of

the

connector-specific

information

that

the

environment

variables

listed

in

Table

111

specify.

Table

111.

Environment

variables

in

the

connector

startup

script

Variable

name

Value

ExtDirs

Specify

the

location

of

any

application-specific

jar

files.

JCLASSES

Specify

any

application-specific

jar

files.

Jar

files

are

separated

with

a

semicolon

(;).

JVMArgs

Add

any

arguments

to

be

passed

to

the

Java

Virtual

Machine

(JVM).

LibPath

Specify

any

application-specific

library

paths.

The

start_adapter.bat

file

uses

the

information

in

Table

111

as

follows:

v

It

appends

the

JCLASSES

and

LibPath

environment

variables

to

the

appropriate

variables

within

the

connector

framework.

v

It

sets

the

external

directories

(java.ext.dirs)

with

the

ExtDirs

environment

variable.

v

It

includes

the

JVMArgs

environment

variable

in

its

list

of

arguments

it

passes

to

the

JVM.

In

addition

to

the

environment

variables

in

Table

111,

you

can

also

define

your

own

connector-specific

environment

variables.

Such

variables

are

useful

for

information

that

can

change

from

release

to

release.

You

can

set

the

variable

to

a

value

appropriate

for

this

release

and

then

include

the

variable

in

the

appropriate

line

of

the

startup

script.

If

the

information

changes

in

the

future,

you

only

have

to

change

the

variable’s

value.

You

do

not

have

to

locate

all

lines

that

use

this

information.

Invoking

the

connector:

To

actually

invoke

the

connector

within

the

JVM,

the

start_connName.bat

script

must

call

the

start_adapter.bat

script.

The

start_adapter.bat

script

provides

information

to

initialize

the

necessary

environment

for

the

connector

runtime

(which

includes

the

connector

framework)

with

its

startup

parameters.

Therefore,

you

must

provide

the

appropriate

startup

parameters

to

start_adapter.bat.

Table

112

shows

the

startup

parameters

that

the

start_adapter.bat

script

recognizes.

Table

112.

Startup

parameters

for

start_adapter.bat

script

Startup

parameter

Description

Required?

Valid

as

additional

command-line

option

to

start_connName.bat?

-cconfigFile

The

full

path

name

of

the

connector’s

configuration

file

Required

if

integration

broker

is

other

than

ICS

Yes

-ddllName

The

name

of

the

C++

connector’s

library

file

(dllName),

which

is

a

dynamic

link

library

(DLL).

This

DLL

name

should

not

include

the

.dll

file

extension.

Yes,

for

all

C++

connectors

No

Chapter

8.

Adding

a

connector

to

the

business

integration

system

217

Table

112.

Startup

parameters

for

start_adapter.bat

script

(continued)

Startup

parameter

Description

Required?

Valid

as

additional

command-line

option

to

start_connName.bat?

-fpollFrequency

The

amount

of

time

between

polling

actions.

Possible

pollFrequency

values

are:

v

The

number

of

milliseconds

between

polling

actions

v

key:

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

startup

window.

The

key

option

must

be

specified

in

lowercase.

v

no:

causes

the

connector

not

to

poll.

The

no

option

must

be

specified

in

lowercase.

No

Default

is

1000

milliseconds

Yes

-j

Indicates

that

the

connector

is

written

in

Java

No,

as

long

as

you

specify

the

-l

option

for

Java

connectors

No

-lclassname

The

name

of

the

Java

connector’s

connector

class

(className)

Yes,

for

all

Java

connectors

No

-nconnectorName

The

name

of

the

connector

(connectorName)

to

start

Yes

No

-sbrokerName

The

name

of

the

integration

broker

(brokerName)

to

which

the

connector

connects

Yes

No

-t

Boolean

value

to

turn

off

or

on

the

connector

property

SingleThreadAppCalls,

which

guarantees

that

all

calls

the

connector

framework

makes

to

the

application-specific

component

are

with

one

call-triggered

flow.

The

default

value

is

false.

No

Yes

-xconnectorProps

Initializes

the

value

of

an

application-specific

connector

property.

Use

the

following

format

for

each

property

you

specify:

propName=value

No

Yes

Make

sure

that

the

call

to

start_adapter.bat

includes

the

following

startup

parameters:

v

All

required

startup

parameters:

–

To

specify

the

name

of

the

connector

definition:

-n

If

the

name

of

the

connector

is

passed

in

as

the

first

argument

(%1)

to

the

start_connName.bat

script

(see

Figure

72

on

page

215),

the

-n

startup

parameter

can

be

specified

as

follows:

-n%1Connector

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-n

parameter

could

appear

as

follows:

-n%CONNAME%Connector

–

To

specify

the

name

of

the

InterChange

Server

instance:

-s

If

the

name

of

the

ICS

instance

is

passed

in

as

the

second

argument

(%2)

to

the

start_connName.bat

script

(see

Figure

72

on

page

215),

the

-s

startup

parameter

can

be

specified

as

follows:

-s%2

218

Connector

Development

Guide

for

Java

Other

integration

brokers

When

your

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Integration

Message

Broker),

or

WebSphere

Application

Server,

the

-c

option

is

also

a

required

startup

parameter.

v

Language-specific

startup

parameters

required

for

a

Java

connector:

To

specify

connector-specific

classes

(or

package):

-l

For

example,

if

you

follow

the

recommended

naming

conventions,

the

language-specific

parameter

for

the

Java

connector

name

is

MyJava

would

be:

-lcom.crossworlds.connectors.MyJava.MyJavaAgent

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-l

parameter

could

appear

as

follows:

-lcom.crossworlds.connectors.%CONNAME%.%CONNAME%Agent

v

Any

optional

startup

parameters

that

apply

to

all

invocations

of

your

connector.

Consult

Table

112

on

page

217.

for

a

list

of

optional

startup

parameters.

The

syntax

for

the

call

to

start_adapter.bat

should

have

the

following

format:

call

start_adapter.bat

-nconnName

-sICSinstance

languageSpecificParams

-cCN_connNameConnector.cfg

-...

For

example,

the

following

line

invokes

the

MyJava

connector:

call

start_adapter.bat

-lcom.crossworlds.connectors.MyJava.MyJavaAgent

-nMyJava

-sICSserver

-cMyJavaConnector.cfg

-...

Note:

The

preceding

command

line

assumes

that

the

connector

is

running

against

an

InterChange

Server

instance

whose

name

is

ICSserver.

If

the

connector

runs

against

an

instance

of

WebSphere

MQ

Integrator

Broker

or

WebSphere

Message

Broker,

that

instance

name

would

need

to

appear

in

the

command

line.

With

the

use

of

the

CONNAME

environment

variable

to

hold

the

connector

name,

this

call

can

be

generalized

to

the

following:

call

start_adapter.bat

-n%CONNAME%

-s%2

languageSpecificParams

-cCN_%CONNAME%Connector.cfg

-...

For

the

call

to

start_adapter.bat,

keep

the

following

points

in

mind:

v

Make

sure

that

the

line

to

invoke

the

connector

runtime

is

all

on

one

line

in

your

startup

script;

that

is,

no

carriage

returns

should

exist

at

the

line

breaks

shown

in

the

sample

startup

line.

v

The

order

of

the

parameters

listed

in

the

call

to

start_adapter.bat

is

not

important.

v

You

might

also

want

to

have

your

call

to

start_adapter.bat

handle

any

additional

options

that

the

user

might

pass

into

the

call

to

start_connName.bat.

In

this

case,

you

should

provide

″extra″

arguments

to

pass

to

start_adapter.bat

so

that

additional

options

are

passed

down

to

the

actual

connector

invocation.

For

example,

the

following

call

to

start_adapter.bat

handles

up

to

three

additional

command-line

options:

call

start_adapter.bat

-n%CONNAME%

-s%2

languageSpecificParams

-cCN_%CONNAME%Connector.cfg

%3

%4

%5

Chapter

8.

Adding

a

connector

to

the

business

integration

system

219

Creating

the

shortcut:

A

shortcut

enables

a

connector

to

be

started

from

a

menu

option

within

Programs

>

IBM

WebSphere

Business

Integration

Adapters

>

Adapters

>

Connectors.

The

shortcut

should

list

the

call

to

the

start_connName.bat

script.

If

this

script

uses

the

standard

syntax

(see

Figure

72

on

page

215),

the

shortcut

would

have

the

following

form:

ProductDir\connectors\start_connName

connName

ICSinstance

If

you

define

your

own

syntax

for

your

start_connName.bat

script,

you

must

ensure

that

the

shortcut

uses

this

custom

syntax.

If

your

menu

already

contains

a

shortcut

for

a

Java

connector

that

uses

the

start_connName.bat

startup

script,

an

easy

way

to

create

a

shortcut

is

to

copy

this

existing

connector’s

shortcut

and

edit

the

shortcut

properties

to

change

the

connector

name

or

add

any

other

startup

parameters.

For

example,

for

the

MyJavaconnector

that

uses

the

standard

syntax

for

its

startup

script,

you

could

create

the

following

shortcut:

ProductDir\bin\start_MyJava.bat

MyJava

ICSinstance

Note:

The

preceding

command

line

assumes

that

the

connector

is

running

against

an

InterChange

Server

instance

whose

name

is

ICSinstance.

If

the

connector

runs

against

a

WebSphere

MQ

Integrator

Broker

instance,

that

instance

name

would

appear

in

the

shortcut

command

line.

Startup

script

on

UNIX

systems

Starting

a

connector

on

a

UNIX-based

system

involves

the

following

steps:

1.

Call

the

connector’s

startup

script,

connector_manager_connName

with

its

-start

option.

The

connector_manager_connName

script

(where

connName

is

the

name

of

your

connector)

is

a

connector-specific

startup

script.

It

identifies

the

name

of

the

connector

and

provides

the

action

to

take

on

this

connector

with

one

of

its

options,

which

include

-start

and

-stop.

This

script

is

generated

with

the

Connector

Script

Generator

tool.

Once

generated,

the

script

resides

in

the

bin

subdirectory

of

the

product

directory.

It

is

this

connector_manager_connName.bat

script

that

the

user

invokes

to

start

the

connector

on

a

UNIX-based

system.

2.

Call

the

generic

connector

manager

script,

connector_manager.

The

connector_manager

file

is

generic

to

all

connectors.

It

generates

the

call

to

the

connector-specific

invocation

script,

start_connName.sh.

the

actual

invocation

of

the

connector

within

the

JVM.

It

resides

in

the

bin

subdirectory

of

the

product

directory.

The

connector_manager_connName

script

calls

the

connector_manager

script.

3.

Call

the

connector-specific

invocation

script,

start_connName.sh

The

start_connName.sh

script

provides

connector-specific

information

(such

as

application-specific

libraries

and

their

locations).

By

convention,

this

script

resides

in

the

connector

directory:

ProductDir/connectors/connName

The

connector_manager

script

calls

the

start_connName.sh

script

to

actually

prepare

the

connector-specific

information

for

connector

invocation.

4.

Call

the

generic

connector-invocation

script,

start_adapter.sh

The

start_adapter.sh

file

is

generic

to

all

connectors.

It

performs

the

actual

invocation

of

the

connector

within

the

JVM.

It

resides

in

the

bin

subdirectory

of

the

product

directory.

The

start_connName.sh

script

must

call

the

start_adapter.sh

script

to

actually

invoke

the

connector.

220

Connector

Development

Guide

for

Java

Figure

73

shows

the

steps

to

start

a

connector

on

a

UNIX-based

system.

When

a

WebSphere

Business

Integration

Adapters

Installer

installs

connectors

on

a

UNIX-based

system,

it

takes

the

following

steps:

v

Install

the

generic

connector_manager

script

and

the

generic

start_adapter.sh

connector

invocation

script

in

the

bin

subdirectory

of

the

product

directory.

v

Install

the

start_connName.sh

script

in

the

connectors/connName

subdirectory

of

the

product

directory.

v

Generate

the

connector_manager_connName

startup

script,

which

is

a

wrapper

for

the

generic

connector_manager

script.

This

generic

script

calls

the

appropriate

start_connName.sh

script,

which

begins

the

actual

connector

invocation.

v

Install

the

new

connector_manager_connName

script

in

the

bin

product

subdirectory.

The

connector_manager_connName

script

calls

the

connector_manager

script,

providing

the

appropriate

command-line

arguments,

such

as

a

local

configuration

file

or

a

threading

type.

In

this

sequence

of

steps,

there

are

two

scripts

that

are

not

generic;

that

is,

no

single

script

exists

that

can

work

with

any

connector:

Environment file:
adapterEnv.sh

Connector startup script:
connector_manager_ -startconnName

Connector

JVM

2

7

1

Connector invocation script:
start_adapter.sh

3

5

Generic connector manager script:
connector_manager.sh

Connector-specific invocation script:
start_ .shconnName

Environment file:
CWSharedEnv.sh

4

Environment file:
adapterEnv.sh

6

Figure

73.

Starting

a

connector

on

a

UNIX-based

system

Chapter

8.

Adding

a

connector

to

the

business

integration

system

221

v

The

connector_manager_connName.sh

startup

script

is

unique

to

each

connector.

However,

it

is

generated

by

the

installation

process.

Therefore,

you

do

not

need

to

create

one

for

your

custom

connector.

v

The

custom

invocation

script,

start_connName.sh,

is

also

unique

to

each

connector.

Therefore,

you

must

create

a

custom

invocation

script

for

your

connector

and

put

it

in

the

connector\connName

subdirectory

of

the

product

directory.

Connector-specific

connector-manager

startup

script:

To

start

a

connector,

the

connector_manager_connName.sh

script

has

the

syntax

shown

in

Figure

74,

with

connName

being

the

name

of

the

connector

and

additionalOptions

is

an

optional

argument

that

specifies

additional

startup

parameters

to

pass

to

the

connector

invocation.

These

options

include

-f

and

-x.

For

more

information,

see

Table

113

on

page

225.

To

create

a

connector-specific

connector-manager

startup

script,

connector_manager_connName,

you

can

use

the

Connector

Script

Generator

tool

(ConnConfig.sh

in

the

product

bin

directory).

Once

you

specify

the

connector

name

(connName),

this

tool

generates

the

connector_manager_connName

startup

script

and

puts

it

in

the

bin

subdirectory

of

the

product

directory.

For

information

on

this

tool,

see

Appendix

C,

“Connector

Script

Generator,”

on

page

519.

Connector-specific

invocation

script:

To

create

a

connector-specific

invocation

script,

you

create

a

new

connector-specific

script

called

start_connName.sh

(where

connName

is

your

Java

connector

name).

For

example,

if

your

Java

connector

has

a

connector

name

of

MyJava,

its

startup

script

name

is

start_MyJava.sh.

As

a

starting

point,

you

can

copy

the

startup-script

template,

which

is

located

in

the

following

file:

ProductDir/templates/start_connName.sh

Figure

75.

shows

a

sample

of

the

contents

of

the

invocation-script

template

for

UNIX.

Please

consult

the

version

of

this

file

released

with

your

product

for

the

most

current

contents.

connector_manager_connName

-start

additionalOptions

Figure

74.

Syntax

for

starting

a

UNIX

connector

222

Connector

Development

Guide

for

Java

On

UNIX-based

systems,

the

start_connName.sh

script

has

the

syntax

shown

in

Figure

72

on

page

215.

However,

unlike

the

start_connName

script

on

Windows

systems,

this

syntax

for

start_connName

on

UNIX-based

systems

must

follow

that

shown

in

Figure

72

on

page

215.

The

connector_manager

script

calls

start_connName

with

this

syntax.

As

the

connector

developer,

you

control

the

content

of

start_connName.sh

but

you

should

not

change

the

syntax

of

this

script.

If

you

follow

the

suggested

naming

conventions

(see

Table

109

on

page

207),

your

connector-specific

invocation

script

can

make

the

following

assumptions

about

your

connector’s

runtime

files

based

on

the

connector

name

(connName):

v

The

connector

name

is

the

same

as

name

of

the

connector

directory

under

the

connectors

subdirectory

of

the

product

directory

v

The

connector

name

is

the

same

as

the

Java

connector’s

library

file

(its

jar

file,

CWconnName.jar),

which

resides

in

the

connector

directory

For

example,

for

the

MyJava

connector

to

meet

these

assumptions,

its

runtime

files

must

reside

in

the

ProductDir/connectors/MyJava

directory

and

its

jar

file

must

reside

in

that

directory

with

the

name

BIA_MyJava.jar.

If

y

our

connector

cannot

meet

these

assumptions,

you

must

customize

its

startup

script

to

provide

the

appropriate

information

to

the

generic

connector-invocation

script,

start_adapter.sh.

In

this

start_connName.sh

file,

take

the

following

steps:

1.

Call

the

CWConnEnv.sh

environment

file

to

initialize

the

startup

environment.

2.

Move

into

the

connector

directory.

3.

Set

the

startup

environment

variables

within

the

startup

script

with

any

connector-specific

information

and

any

connector-specific

variables.

4.

Call

the

start_adapter.sh

script

to

invoke

the

connector.

The

following

sections

describe

each

of

these

steps.

#!/bin/sh

#

set

environment

\

#.${WBIA_RUNTIME}/bin/wbia_connEnv.sh

#

If

required,

go

to

directory

where

connector

class

files

reside

cd

/

cd

"${CONNDIR}"

#

Please

define

the

following

variables

that

need

to

pass

to

callee

export

JCLASSES=

export

LibPath=

export

ExtDirs=

export

JVMArgs=

#

Call

base

script

start_adapter.sh

to

start

a

C++

connector

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-nconnName

-sserverName

-dconnSpecificDLLfile

-f...

-p...

-c...

...

#

Call

base

script

start_adapter.sh

to

start

a

Java

connector

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-nconnName

-sserverName

-lconnSpecificClasses

-f...

-p...

-c...

...

Figure

75.

Sample

contents

of

the

startup-script

template

for

UNIX-based

systems

Chapter

8.

Adding

a

connector

to

the

business

integration

system

223

Calling

the

environment

file:

The

CWConnEnv.sh

file

contains

environment

settings

for

the

IBM

Java

Object

Request

Broker

(ORB)

and

the

IBM

Java

Runtime

Environment

(JRE).

The

following

line

invokes

this

environment

file

within

the

startup

script:

.

${WBIA_RUNTIME}/bin/CWConnEnv.sh

Moving

into

the

connector

directory:

The

start_connName.sh

script

must

change

to

the

connector

directory

before

it

calls

the

start_adapter.sh

script.

The

connector

directory

contains

the

connector-specific

startup

script

as

well

as

other

files

needed

at

connector

startup.

You

can

define

the

name

of

this

connector

directory

any

way

you

wish.

However,

as

discussed

in

“Preparing

the

connector

directory”

on

page

212,

by

convention

the

connector

directory

name

matches

the

connector

name.

The

start_connName.sh

script

expects

the

connector

name

to

be

passed

in

as

the

first

argument

($1).

Therefore,

the

following

lines

move

into

the

connector

directory:

#

set

the

directory

where

the

specific

connector

resides

CONNDIR=${CROSSWORLDS}/connectors/$1

export

CONNDIR

#

If

required,

go

to

directory

where

connector

class

files

reside

cd

/

cd

"${CONNDIR}"

Alternatively,

because

the

connector

name

is

used

in

several

components

of

the

connector,

you

can

define

an

environment

variable

to

specify

this

connector

name

and

then

evaluate

this

environment

variable

for

all

subsequent

uses

of

the

connector

name

within

the

start_connName.sh

script.

The

lines

to

set

the

environment

variables

for

the

connector

name

and

connector

directory

could

be

as

follows:

#

set

the

name

of

the

connector

CONNAME=$1

export

CONNNAME

REM

set

the

directory

where

the

specific

connector

resides

CONNDIR=${CROSSWORLDS}/connectors/${CONNAME}

export

CONNDIR

#

If

required,

go

to

directory

where

connector

class

files

reside

cd

/

cd

"${CONNDIR}"

Setting

the

environment

variables:

In

the

start_connName.sh

script,

you

must

specify

any

of

the

connector-specific

information

that

the

environment

variables

listed

in

Table

111

on

page

217.

The

start_adapter.sh

script

uses

these

environment

variables

in

the

same

way

as

the

start_adapter.bat

script

does

on

Windows

systems.

You

can

also

define

your

own

connector-specific

environment

variables

for

information

that

can

change

from

release

to

release.

For

more

information,

see

“Setting

the

environment

variables”

on

page

217.

Invoking

the

connector:

To

actually

invoke

the

connector

within

the

JVM,

the

start_connName.sh

script

must

call

the

start_adapter.sh

script.

The

start_adapter.sh

script

provides

information

to

initialize

the

necessary

environment

for

the

connector

runtime

(which

includes

the

connector

framework)

with

its

startup

parameters.

Therefore,

you

must

provide

the

appropriate

startup

parameters

to

start_adapter.sh.

Table

113.

Table

113

shows

the

startup

parameters

that

the

start_adapter.sh

script

recognizes.

224

Connector

Development

Guide

for

Java

Table

113.

Startup

parameters

for

start_adapter.sh

script

Startup

parameter

Description

Required?

Valid

as

additonal

command-line

option

for

connector_manager_connName?

-b

Runs

the

connector

as

a

background

thread;

that

is,

the

connector

does

not

receive

any

input

from

standard

input

(STDIN).

The

generic

connector_manager

script

(called

by

each

connector_manager_connName

script)

automatically

specifies

this

option

when

it

invokes

the

start_connName.sh

script.

Therefore,

to

prevent

a

connector

from

being

run

in

the

background,

you

can

remove

the

-b

parameter

from

the

start_connName.sh

invocation.

See

the

description

No

-cconfigFile

The

full

path

name

of

the

connector’s

configuration

file

Required

if

integration

broker

is

other

than

ICS

Yes

-fpollFrequency

The

amount

of

time

between

polling

actions.

Possible

pollFrequency

values

are:

v

The

number

of

milliseconds

between

polling

actions

v

key:

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

startup

window.

The

key

option

must

be

specified

in

lowercase.

v

no:

causes

the

connector

not

to

poll.

The

no

option

must

be

specified

in

lowercase.

The

value

that

the

-f

parameter

specifies

overrides

the

polling

frequency

in

the

connector’s

configuration

file.

No

Default

is

1000

milliseconds

Yes

-lclassname

The

name

of

the

Java

connector’s

connector

class

(className)

Note:

The

-b

parameter

is

not

a

valid

command-line

option

for

the

connector_manager_connName

script.

Yes

No

-nconnectorName

The

name

of

the

connector

(connectorName)

to

start

Yes

No

-sbrokerName

The

name

of

the

integration

broker

(brokerName)

to

which

the

connector

connects

Yes

No

-tthreadingType

Specifies

the

threading

model

to

use

for

the

connector.

Possible

values

for

threadingType

are:

v

SINGLE_THREADED:

only

a

single

thread

accesses

the

application.

v

MAIN_SINGLE_THREADED:

only

the

main

thread

accesses

the

application.

v

MULTI_THREADED:

multiple

threads

can

access

the

application

No

No

Chapter

8.

Adding

a

connector

to

the

business

integration

system

225

Table

113.

Startup

parameters

for

start_adapter.sh

script

(continued)

Startup

parameter

Description

Required?

Valid

as

additonal

command-line

option

for

connector_manager_connName?

-xconnectorProps

Initializes

the

value

of

an

application-specific

connector

property.

Use

the

following

format

for

each

property

you

specify:

propName=value

No

Yes

Make

sure

that

the

call

to

start_adapter.sh

includes

the

following

startup

parameters:

v

All

required

startup

parameters:

–

To

specify

the

name

of

the

connector

definition:

-n

Because

the

name

of

the

connector

is

passed

in

as

the

first

argument

($1)

to

the

start_connName.sh

script

(see

Figure

72

on

page

215),

the

-n

startup

parameter

can

be

specified

as

follows:

-n${1}Connector

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-n

parameter

could

appear

as

follows:

-n${CONNAME}Connector

–

To

specify

the

name

of

the

InterChange

Server

instance:

-s

If

the

name

of

the

ICS

instance

is

passed

in

as

the

second

argument

($2)

to

the

start_connName.sh

script

(see

Figure

72

on

page

215),

the

-s

startup

parameter

can

be

specified

as

follows:

-s${2}

Note:

All

UNIX

connectors

usually

include

the

-b

startup

parameter

so

that

the

connector

process

runs

in

the

background.

Therefore,

the

connector_manager

generic

startup

script

automatically

specifies

this

startup

parameter

for

all

connectors.

You

do

not

need

to

specify

it

in

the

start_adapter.sh

call.

Other

integration

brokers

When

your

integration

broker

is

WebSphere

MQ

Integrator

Broker,

WebSphere

Integration

Message

Broker,

or

WebSphere

Application

Server,

the

-c

option

is

also

a

required

startup

parameter.

v

Language-specific

startup

parameters

required

for

a

Java

connector:

To

specify

connector-specific

classes

(or

package):

-l

For

example,

if

you

follow

the

recommended

naming

conventions,

the

language-specific

parameter

for

the

Java

connector

name

is

MyJava

would

be:

-lcom.crossworlds.connectors.MyJava.MyJavaAgent

If

you

define

an

environment

variable

for

the

connector

name

(such

as

CONNAME),

this

-l

parameter

could

appear

as

follows:

-lcom.crossworlds.connectors.${CONNAME}.${CONNAME}Agent

v

Any

optional

startup

parameters

that

apply

to

all

invocations

of

your

connector.

Consult

Table

113

on

page

225.

for

a

list

of

optional

startup

parameters.

226

Connector

Development

Guide

for

Java

For

more

information

about

the

startup

parameters,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

WebSphere

Business

Integration

Adapters

documentation

set.

The

syntax

for

the

call

to

start_adapter.sh

should

have

the

following

format:

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-nconnDefName

-sICSinstance

-lclassName

-cCN_connNameConnector.cfg

-...

For

example,

the

following

line

invokes

the

MyJava

connector:

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-nMyJavaConnector

-sICSserver

-lcom.crossworlds.connectors.MyJava.MyJavaAgent

-cMyJavaConnector.cfg

-...

Note:

The

preceding

command

line

assumes

that

the

connector

is

running

against

an

InterChange

Server

instance

whose

name

is

ICSserver.

If

the

connector

runs

against

a

WebSphere

MQ

Integrator

Broker

instance,

that

instance

name

would

need

to

appear

in

the

command

line.

With

the

use

of

the

CONNAME

environment

variable

to

hold

the

connector

name,

this

call

can

be

generalized

to

the

following:

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-n${CONNAME}Connector

-s${2}

-lclassName

-cCN_${CONNAME}Connector.cfg

-...

For

the

call

to

start_adapter.sh,

keep

the

following

points

in

mind:

v

Make

sure

that

the

line

to

invoke

the

connector

runtime

is

all

on

one

line

in

your

startup

script;

that

is,

no

carriage

returns

should

exist

at

the

line

breaks

shown

in

the

sample

startup

line.

v

The

order

of

the

parameters

listed

in

the

call

to

start_adapter.sh

is

not

important.

v

You

might

also

want

to

have

your

call

to

start_adapter.sh

handle

any

additional

options

that

the

user

might

pass

into

the

call

to

connector_manager_connName.sh

(see

Figure

74

on

page

222.)..

In

this

case,

you

should

provide

″extra″

arguments

to

pass

to

start_adapter.sh

so

that

additional

options

are

passed

down

to

the

actual

connector

invocation.

For

example,

the

following

call

to

start_adapter.sh

handles

three

additional

command-line

options:

exec

${WBIA_RUNTIME}/bin/start_adapter.sh

-n${CONNAME}Connector

-s${2}

-lclassName

-cCN_${CONNAME}Connector.cfg

${3}

${4}

${5}

Starting

a

connector

as

a

Windows

service

You

can

set

up

a

connector

to

run

as

a

Windows

service

that

can

be

started

and

stopped

by

a

remote

administrator.

For

more

information,

see

the

System

Installation

Guide

for

Windows

in

the

IBM

WebSphere

InterChange

Server

documentation

set

or

your

implementation

guide

in

the

IBM

WebSphere

Business

Integration

Adapter

documentation

set.

Note:

If

you

are

using

InterChange

Server

as

your

integration

broker

and

you

want

to

use

the

automatic-and-remote

restart

feature

with

the

connector,

do

not

start

connector

as

a

Windows

service.

Instead,

start

the

MQ

Trigger

Monitor

as

a

service.

For

more

information,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Chapter

8.

Adding

a

connector

to

the

business

integration

system

227

228

Connector

Development

Guide

for

Java

Part

3.

Java

connector

library

API

reference

©

Copyright

IBM

Corp.

2000,

2004

229

230

Connector

Development

Guide

for

Java

Chapter

9.

Overview

of

the

Java

connector

library

The

Java

connector

library

include

class

libraries

that

you

need

to

use

when

developing

a

connector.

This

connector

class

library

contains

predefined

classes

for

connectors

in

Java.

You

use

these

class

libraries

to

derive

connector

classes

and

methods.

The

class

libraries

also

provide

utilities,

such

as

methods

to

implement

tracing

and

logging

services.

IBM

provides

a

Java

jar

file

(Java

archive

file),

WBIA.jar,

that

contains

the

predefined

classes

and

interfaces

of

the

Java

connector

library.

The

current

version

of

the

WBIA.jar

file

resides

in

the

lib

subdirectory

of

the

product

directory.

Older

versions

of

the

WBIA.jar

file

reside

in

the

following

product

subdirectory:

lib\WBIA\version

where

version

is

the

version

of

the

Java

connector

library.

The

current

version

of

WBIA.jar

is

compatible

with

older

versions

of

this

library.

Note:

For

instructions

on

building

a

Java

connector

to

run

on

Windows

NT

or

Windows

2000,

see

“Compiling

the

connector”

on

page

208.

Classes

and

interfaces

Table

114

lists

the

classes

and

interfaces

in

the

Java

connector

library.

Table

114.

Classes

and

interfaces

in

the

Java

connector

library

Class

or

interface

Description

Page

CWConnectorAgent

Represents

the

base

class

for

a

connector.

You

extend

this

class

to

define

your

connector

class

and

implement

the

required

virtual

methods

447

CWConnectorAttrType

Defines

the

attribute-type

constants

247

CWConnectorBOHandler

Represents

the

base

class

for

a

business

object

handler.

You

extend

this

class

to

define

one

or

more

business

object

handler

for

your

connector.

249

CWConnectorBusObj

Represents

a

business

object

instance.

It

provides

access

to

the

business

object,

business

object

definition,

and

the

attributes

255

CWConnectorConstant

Defines

constants

for

use

with

the

Java

connector

library:

v

outcome-status

constants

v

verb

constants

303

CWConnectorEvent

Represents

an

event

object,

which

holds

information

from

an

event

record

that

has

been

retrieved

from

an

event

store

305

CWConnectorEventStatusConstants

Defines

event-status

constants,

which

represent

the

status

values

that

an

event

record

can

have

313

CWConnectorEventStore

Represents

an

event

store,

which

holds

event

records

for

access

by

the

connector’s

event

detection

mechanism

(usually

polling)

317

CWConnectorEventStoreFactory

Represents

the

event-store

factory,

which

instantiates

a

CWConnectorEventStore

object

331

CWConnectorExceptionObject

Represents

an

exception-detail

object,

which

contains

additional

status

information

that

is

included

in

an

exception

object

333

©

Copyright

IBM

Corp.

2000,

2004

231

Table

114.

Classes

and

interfaces

in

the

Java

connector

library

(continued)

Class

or

interface

Description

Page

CWConnectorLogAndTrace

Defines

constants

for

use

with

logging

and

tracing

services:

v

message-file

constants

v

message-type

constants

v

trace-level

constants

339

CWConnectorReturnStatusDescriptor

Represents

a

return-status

descriptor,

which

contains

error

and

informational

messages

341

CWConnectorUtil

Provides

miscellaneous

utility

methods

for

use

in

a

Java

connector;

These

utility

methods

fall

into

the

following

general

categories:

v

Static

methods

for

generating

and

logging

messages

v

Static

methods

for

creating

business

objects

v

Static

methods

for

obtaining

connector

configuration

properties

v

Methods

for

obtaining

locale

information

345

CWException

Represents

an

exception

object

for

the

Java

connector

library

381

CWProperty

Represents

a

connector-property

object,

which

contains

a

hierarchical

connector

configuration

property

447

232

Connector

Development

Guide

for

Java

Chapter

10.

CWConnectorAgent

class

The

CWConnectorAgent

class

is

the

base

class

for

a

Java

connector.

From

this

class,

a

connector

developer

must

derive

a

connector

class

and

implement

the

user-defined

methods

for

the

connector.

This

derived

connector

class

contains

the

code

for

the

application-specific

component

of

the

connector.

Note:

The

CWConnectorAgent

class

extends

the

ConnectorBase

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Important:

All

Java

connectors

must

extend

this

connector

base

class

and

provide

implementations

for

the

following

methods:

agentInit(),

getVersion(),

getConnectorBOHandlerForBO(),

pollForEvents(),

and

terminate().

However,

CWConnectorAgent

provides

default

implementations

for

the

getVersion(),

getConnectorBOHandlerForBO(),

and

pollForEvents()

methods.

In

their

derived

connector

base

class,

developers

can

either

use

these

default

implementations

or

override

them

to

implement

their

own

versions.

Developers

must

provide

implementations

for

the

agentInit()

and

terminate()

methods.

Table

115

summarizes

the

methods

in

the

CWConnectorAgent

class.

Table

115.

Member

methods

of

the

CWConnectorAgent

class

Member

method

Description

Page

CWConnectorAgent()

Creates

a

connector

object.

233

agentInit()

Initializes

the

connector

234

executeCollaboration()

Sends

business

object

requests

to

collaborations

as

a

synchronous

request.

236

getCollabNames()

Retrieves

the

list

of

collaborations

that

are

available

to

process

business

object

requests.

237

getConnectorBOHandlerForBO()

Retrieves

the

business

object

handler

for

a

specified

business

object

definition.

237

getEventStore()

Retrieves

a

reference

to

the

connector’s

event

store.

238

getVersion()

Retrieves

the

version

of

the

connector.

239

gotApplEvent()

Sends

a

business

object

to

InterChange

Server.

240

isAgentCapableOfPolling()

Determines

whether

this

connector

process

is

capable

of

polling.

241

isSubscribed()

Determines

whether

the

integration

broker

has

subscribed

to

a

particular

business

object

with

a

particular

verb.

243

pollForEvents()

Polls

an

application’s

event

store

for

events

that

cause

changes

to

business

objects.

244

terminate()

Closes

the

connection

with

the

application

and

frees

allocated

resources.

245

CWConnectorAgent()

Creates

a

connector

object.

©

Copyright

IBM

Corp.

2000,

2004

233

Syntax

public

CWConnectorAgent();

Parameters

None.

Return

values

A

CWConnectorAgent

object

containing

the

newly

created

connector.

agentInit()

Initializes

the

connector.

Syntax

public

void

agentInit();

Parameters

None.

Return

values

None.

Exceptions

ConnectionFailureException

Thrown

if

the

connector

fails

to

obtain

a

connection

with

the

application.

InProgressEventRecoveryFailedException

Thrown

if

the

connector

is

unable

to

perform

in-progress

event

recovery.

LogonFailedException

Thrown

if

the

connector

is

unable

to

log

into

the

application.

PropertyNotSetException

Thrown

if

the

connector

retrieves

any

required

connector

configuration

property

that

does

not

have

a

value

set

for

it.

Notes

The

agentInit()

method

performs

all

initialization

functionality

for

the

connector,

including

any

of

the

following

tasks

required

for

the

connector’s

application-specific

component:

v

Establishing

a

connection

v

Retrieving

connector

properties

v

Recovering

In-Progress

events

Important:

The

CWConnectorAgent

class

does

not

provide

a

default

implementation

for

the

agentInit()

class.

Therefore,

the

connector

class

must

implement

this

method.

The

connector

framework

calls

the

agentInit()

method

to

initialize

the

connector

when

it

comes

up.

If

agentInit()

performs

any

of

the

conditions

listed

in

234

Connector

Development

Guide

for

Java

Table

116,,

it

must

check

for

the

following

conditions

and

throw

the

appropriate

exception.

Table

116.

Exceptions

to

throw

from

the

agentInit()

method

Condition

Exception

to

throw

If

the

connector

retrieves

any

required

connector

configuration

property

that

is

not

set

PropertyNotSetException

If

the

connector

fails

to

obtain

a

connection

with

the

application

ConnectionFailureException

If

the

connector

fails

to

log

onto

the

application

LogonFailedException

If

the

recoverInProgressEvents()

method

finds

In-Progress

events

in

the

event

store

and

some

failure

occurs

during

the

recovery

process

InProgressEventRecoveryFailedException

To

throw

one

of

the

exceptions

in

Table

116,

take

the

steps

outlined

in

Table

117:

Table

117.

Handling

an

initialization

error

Error-handling

step

Method

or

code

to

use

1.

If

an

error

has

occurred,

log

an

error

message

to

the

log

destination

to

indicate

the

cause

of

the

initialization

error.

CWConnectorUtil.generateAndLogMsg()

2.

Instantiate

an

exception-detail

object

to

hold

the

exception

information.

CWConnectorExceptionObject

excptnDtailObj

=

new

CWConnectorExceptionObject();

3.

Set

the

status

information

within

an

exception-detail

object:

v

set

a

message

to

indicate

the

cause

of

the

initialization

failure

excptnDtailObj.setMsg()

v

set

the

status

to

an

outcome

status

that

tells

the

connector

framework

the

success

of

the

initialization.

If

you

want

the

initialization

process

(and

the

connector)

to

terminate,

set

the

outcome

status

to

CxConnectorConstant.FAIL.

excptnDtailObj.setStatus()

4.

Throw

the

agentInit()

exception

from

Table

116

that

indicates

the

initialization

failure.

This

exception

is

how

the

agentInit()

method

tells

the

connector

framework

that

a

initialization

error

has

occurred.

This

exception

object

contains

the

exception-detail

object

you

initialized

in

Step

3.

When

the

low-level

init()

method

(which

calls

agentInit())

catches

this

exception

object,

it

copies

the

status

from

the

exception-detail

object

into

its

own

return

status,

which

it

returns

to

the

connector

framework.

Note:

If

you

do

not

set

the

exception

status

within

the

exception-detail

object,

the

init()

method

returns

an

outcome

status

of

FAIL

and

the

connector

framework

terminates

the

connector.

throw

new

agentInitException(

excptnDtailObj);

See

also

generateAndLogMsg(),

recoverInProgressEvents()

Chapter

10.

CWConnectorAgent

class

235

executeCollaboration()

Sends

a

business

object

request

to

the

connector

framework,

which

sends

it

to

a

business

process

within

the

integration

broker.

This

is

a

synchronous

request.

Syntax

public

void

executeCollaboration(String

busProcName,

CWConnectorBusObj

theBusObj,

CWConnectorReturnStatusDescriptor

rtnStatusDesc);

Parameters

busProcName

Specifies

the

name

of

the

business

process

to

execute

the

business

object

request.

If

InterChange

Server

is

your

integration

broker,

the

business-process

name

is

the

name

of

a

collaboration.

theBusObj

Is

the

triggering

event

and

the

business

object

returned

from

the

business

process.

rtnStatusDesc

Is

the

return-status

descriptor

containing

a

message

and

the

execution

or

return

status

from

the

business

process.

Return

values

None.

Exceptions

None.

Notes

The

executeCollaboration()

method

sends

the

theBusObj

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

sends

the

event

to

the

busProcName

business

process

in

the

integration

broker.

This

method

initiates

a

synchronous

execution

of

an

event,

which

means

that

the

method

waits

for

a

response

from

the

integration

broker’s

business

process.

WebSphere

InterChange

Server

If

your

integration

broker

is

IBM

WebSphere

InterChange

Server,

the

business

process

that

executeCollaboration()

invokes

is

a

collaboration.

To

receive

status

information

about

the

business-process

execution,

pass

in

an

instantiated

return-status

descriptor,

rtnStatusDesc,

as

the

last

argument

to

the

method.

The

integration

broker

can

return

status

information

from

its

business

process

and

send

it

to

the

connector

framework,

which

populates

this

return-status

descriptor

with

it.

You

can

use

the

methods

of

the

CWConnectorReturnStatusDescriptor

class

to

access

this

status

information.

Note:

To

initiate

an

asynchronous

execution

of

an

event,

use

the

gotApplEvent()

method.

Asynchronous

execution

means

that

the

calling

code

does

not

wait

for

the

receipt

of

the

event,

nor

does

it

wait

for

a

response.

236

Connector

Development

Guide

for

Java

See

also

gotApplEvent(),,

methods

of

the

CWConnectorReturnStatusDescriptor

class

getCollabNames()

Retrieves

the

list

of

collaborations

that

are

available

to

process

business

object

requests.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

public

String[]

getCollabNames();

Parameters

None.

Return

values

An

array

of

String

objects

containing

a

list

of

collaboration

names.

Exceptions

None.

getConnectorBOHandlerForBO()

Retrieves

the

business

object

handler

for

a

specified

business

object

definition.

Syntax

public

CWConnectorBOHandler

getConnectorBOHandlerForBO(

String

busObjName);

Parameters

busObjName

Is

the

name

of

a

business

object.

Return

values

A

reference

to

a

CWConnectorBOHandler

object,

which

represents

the

business

object

handler

for

the

busObjName

business

object.

Exceptions

None.

Notes

The

connector

framework

calls

the

getConnectorBOHandlerForBO()

method

to

retrieve

the

business

object

handler

for

a

business

object

definition.

You

can

use

one

business

object

handler

for

multiple

business

object

definitions

or

a

business

object

handler

for

each

business

object

definition.

Chapter

10.

CWConnectorAgent

class

237

Important:

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

getConnectorBOHandlerForBO()

method.

Therefore,

you

can

either

use

this

default

implementation

or

override

the

method

to

return

your

own

business-object-handler

class.

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

getConnectorBOHandlerForBO()

method,

which

returns

a

reference

to

a

business

object

handler

of

the

ConnectorBOHandler

class.

To

use

this

default

implementation,

you

would

extend

the

CWConnectorBOHandler

class,

naming

this

extended

class

ConnectorBOHandler.

If

you

name

your

business-object-handler

base

class

something

other

than

ConnectorBOHandler,

you

must

override

getConnectorBOHandlerForBO()

to

return

a

reference

to

your

extended

business-object-handler

base

class.

getEventStore()

Creates

a

reference

to

the

connector’s

event

store.

Syntax

public

CWConnectorEventStore

getEventStore();

Parameters

None.

Return

values

A

CWConnectorEventStore

object

that

provides

access

to

the

connector’s

event

store.

If

the

event-store-factory

class

cannot

be

located,

the

method

returns

null.

Exceptions

None.

Notes

The

getEventStore()

method

is

the

event-store

factory,

whose

task

is

to

instantiate

an

event-store

object

for

the

connector.

Through

this

event-store

object,

the

connector

can

access

its

event

store.

The

getEventStore()

method

calls

the

getEventStore()

method

of

your

event-store-factory

class,

which

implements

the

CWConnectorEventStoreFactory

interface.

Important:

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

getEventStore()

method.

Therefore,

you

can

either

use

this

default

implementation

or

override

the

method

to

implement

your

own

mechanism

to

instantiate

an

event-store

object.

The

default

implementation

of

the

getEventStore()

method

that

the

CWConnectorAgent

class

provides

checks

the

EventStoreFactory

connector

configuration

property

for

the

name

of

the

event-store-factory

class

(which

implements

the

CWConnectorEventStoreFactory

interface),

as

follows:

v

If

the

EventStoreFactory

property

is

set,

getEventStore()

instantiates

the

specified

event-store-factory

class

and

calls

its

getEventStore()

method

to

return

an

event-store

object.

v

If

the

EventStoreFactory

property

is

not

set,

getEventStore()

tries

to

build

the

name

of

the

event-store-factory

class.

238

Connector

Development

Guide

for

Java

From

the

name

of

the

connector

package,

the

getEventStore()

method

extracts

the

connector

name.

It

assumes

that

the

event

store

is

named

as

follows:

connectorNameEventStore

For

example,

for

the

WebSphere

Business

Integration

Adapter

for

JDBC,

the

connector

name

is

JDBC.

Therefore,

the

getEventStore()

would

generate

JDBCEventStore

as

the

name

of

the

connector’s

event

store

and

try

to

instantiate

an

event-store-factory

class

of

this

name.

The

EventStoreFactory

property

must

specify

the

entire

class

name

for

the

event-store

factory

instance.

For

information

on

the

format

of

this

property,

see

“CWConnectorEventStoreFactory

interface”

on

page

176.

For

example,

the

WebSphere

Business

Integration

Adapter

for

JDBC

contains

an

event-store

factory

that

provides

access

to

a

JDBC

event

store.

Therefore,

the

EventStoreFactory

property

might

be

set

as

follows:

com.crossworlds.connectors.JDBC.JDBCEventStoreFactoryInstance

The

default

implementation

of

the

pollForEvents()

method

calls

this

getEventStore()

method

to

retrieve

a

reference

to

the

event

store.

For

more

information,

see

“Retrieving

event

records”

on

page

180.

See

also

getEventStore(),,

pollForEvents()

getVersion()

Retrieves

the

version

of

the

connector.

Syntax

public

String

getVersion();

Parameters

None.

Return

values

A

String

indicating

the

version

of

the

connector’s

application-specific

component.

Exceptions

None.

Notes

The

connector

framework

calls

the

getVersion()

method

to

retrieve

the

version

of

the

connector.

The

getVersion()

methods

is

usually

called

as

part

of

the

connector

initialization

process,

from

within

the

agentInit()

method.

The

connector

framework

also

calls

the

getVersion()

method

to

get

a

version

for

the

connector.

Important:

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

getVersion()

method.

Therefore,

you

can

either

use

this

default

implementation

or

override

the

method

to

implement

your

own

versioning

mechanism.

Chapter

10.

CWConnectorAgent

class

239

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

getVersion()

method,

which

retrieves

the

package

name

from

standard

class

information.

It

then

gets

the

version

from

the

manifest

file

present

in

the

package.

gotApplEvent()

Sends

a

business

object

request

to

the

connector

framework.

This

is

an

asynchronous

request.

Syntax

public

int

gotApplEvent(CWConnectorBusObject

theBusObj);

Parameters

theBusObj

Is

the

business

object

instance

being

sent

to

the

connector

framework.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

event

delivery.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

connector

framework

successfully

delivered

the

business

object

to

the

connector

framework.

CWConnectorConstant.FAIL

The

event

delivery

failed.

CWConnectorConstant.CONNECTOR_NOT_ACTIVE

The

connector

is

paused

and

therefore

unable

to

receive

events.

CWConnectorConstant.NO_SUBSCRIPTION_FOUND

No

subscriptions

for

the

event

that

the

business

object

represents.

Exceptions

None.

Notes

The

gotApplEvent()

method

sends

the

theBusObj

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

makes

sure

the

event

is

sent

to

the

integration

broker.

WebSphere

InterChange

Server

If

the

integration

broker

is

InterChange

Server,

the

connector

framework

sends

the

event

(as

a

business

object)

to

InterChange

Server

across

its

configured

delivery

transport

mechanism

(such

as

JMS

or

CORBA

IIOP).

240

Connector

Development

Guide

for

Java

Other

integration

brokers

If

the

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

sends

the

event

(as

an

XML

message)

to

the

integration

broker

across

its

configured

delivery

transport

mechanism

of

a

JMS

queue.

Before

sending

the

business

object

to

the

connector

framework,

gotApplEvent()

checks

for

the

following

conditions

and

returns

the

associated

outcome

status

if

these

conditions

are

not

met:

Condition

Outcome

status

Is

the

status

of

the

connector

active;

that

is,

it

is

not

in

a

“paused”

state?

When

the

connector’s

application-specific

component

is

paused,

it

no

longer

polls

the

application.

CONNECTOR_NOT_ACTIVE

Is

there

a

subscription

for

the

event?

NO_SUBSCRIPTION_FOUND

Note:

Because

gotApplEvent()

makes

sure

that

the

business

object

and

verb

to

be

sent

have

a

valid

subscription,

you

do

not

need

to

call

isSubscribed()

immediately

before

calling

gotApplEvent().

The

connector

uses

the

pollForEvents()

method

to

poll

the

event

store

for

subscribed

events

to

send

to

the

integration

broker.

Within

pollForEvents(),

the

connector

uses

the

gotApplEvent()

method

to

send

an

event

(represented

as

a

business

object)

to

the

connector

framework.

The

connector

framework

then

routes

this

business

object

to

the

integration

broker.

Therefore,

the

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

errors

that

are

returned

are

handled

appropriately.

For

example,

until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

store.

Instead,

the

poll

method

should

update

the

event

record’s

status

to

reflect

the

results

of

the

event

delivery

based

on

the

return

code

of

gotApplEvent().

For

more

information,

see

“Sending

the

business

object”

on

page

187.

The

gotApplEvent()

method

initiates

an

asynchronous

execution

of

an

event.

Asynchronous

execution

means

that

the

method

does

not

wait

for

receipt

of

the

event,

nor

does

it

wait

for

a

response.

Note:

To

initiate

a

synchronous

execution

of

an

event,

use

the

executeCollaboration()

method.

Synchronous

execution

means

that

the

calling

code

waits

for

the

receipt

of

the

event,

and

for

a

response.

See

also

executeCollaboration(),,

isSubscribed(),,

pollForEvents()

isAgentCapableOfPolling()

Determines

whether

this

connector

process

is

capable

of

polling.

Chapter

10.

CWConnectorAgent

class

241

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

boolean

isAgentCapableOfPolling();

Parameters

None.

Return

values

A

boolean

value

that

indicates

whether

this

connector

is

capable

of

polling.

This

return

value

depends

on

the

type

of

connector:

Connector

process

type

Return

value

Master

(serial

processing)

true

Master

(parallel

processing)

false

Slave

(request)

false

Slave

(polling)

true

Exceptions

None.

Notes

If

a

connector

is

configured

to

run

in

the

single-process

mode

(with

ParallelProcessDegree

set

to

1,

which

is

the

default),

the

isAgentCapableOfPolling()

method

always

returns

true

because

the

same

connector

process

performs

both

event

polling

and

request

processing.

If

a

connector

is

configured

to

run

in

parallel-process

mode

(with

ParallelProcessDegree

greater

than

1),

it

consists

of

several

processes,

each

with

a

particular

purpose,

as

shown

in

Table

118.

Table

118.

Purposes

of

processes

of

a

parallel

connector

Connector

process

Purpose

of

connector

process

Connector-agent

master

process

Receives

the

incoming

event

from

ICS

and

determines

to

which

of

the

connector’s

slave

processes

to

route

the

event

Request-processing

slave

process

Handles

requests

for

the

connector

Polling

slave

process

Handles

polling

and

event

delivery

for

the

connector

The

return

value

of

isAgentCapableOfPolling()

depends

on

the

purpose

of

the

connector-agent

process

that

makes

the

call

to

this

method.

For

a

parallel-process

connector,

this

method

returns

true

only

when

called

from

a

connector

whose

purpose

is

to

serve

as

a

polling

slave.

For

more

information

on

parallel-process

connectors,

see

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set.

Note:

Because

the

isAgentCapableOfPolling()

method

obtains

information

about

the

parallel-process

mode

of

a

connector,

it

must

run

against

a

version

of

242

Connector

Development

Guide

for

Java

InterChange

Server

(ICS)

that

supports

this

feature.

Therefore,

to

behave

as

documented

here,

isAgentCapableOfPolling()

must

run

against

a

version

4.0

or

later

ICS.

If

run

against

an

earlier

version

of

ICS,

isAgentCapableOfPolling()

always

returns

true.

isSubscribed()

Determines

whether

the

integration

broker

has

subscribed

to

a

particular

business

object

with

a

particular

verb.

Syntax

public

boolean

isSubscribed(String

busObjName,

String

verb);

Parameters

busObjName

Is

the

name

of

a

business

object

for

which

subscriptions

are

to

checked.

verb

Is

the

active

verb

for

the

business

object.

Return

values

Returns

true

if

the

integration

broker

is

interested

in

receiving

the

specified

business

object

and

verb;

otherwise,

returns

false.

Exceptions

None.

Notes

The

isSubscribed()

method

is

part

of

the

subscription

manager,

which

tracks

all

subscribe

and

unsubscribe

messages

that

arrive

from

the

connector

framework

and

maintains

a

list

of

active

business

object

subscriptions.

For

a

Java

connector,

this

subscription

manager

is

part

of

the

connector

base

class.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

poll

method

can

determine

if

any

collaboration

subscribes

to

the

busObjName

business

object

with

the

specified

verb.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller.

At

runtime,

the

poll

method

can

use

isSubscribed()

to

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

poll

method

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

12.

Chapter

10.

CWConnectorAgent

class

243

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

application-specific

component

uses

the

isSubscribed()

method

to

query

the

connector

framework

about

subscriptions

for

a

particular

business

object,

the

method

returns

true

for

every

business

object

that

the

connector

supports.

See

also

gotApplEvent(),,

pollForEvents()

pollForEvents()

Polls

an

application’s

event

store

for

events

that

cause

changes

to

business

objects.

Syntax

public

int

pollForEvents();

Parameters

None.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

polling

operation.The

pollForEvents()

method

typically

uses

the

following

return

codes:

CWConnectorConstant.SUCCEED

The

polling

action

succeeded

regardless

of

whether

an

event

is

retrieved.

CWConnectorConstant.FAIL

The

polling

operation

failed.

CWConnectorConstant.APPRESPONSETIMEOUT

The

application

is

not

responding.

Exceptions

None.

Notes

The

connector

framework

calls

the

pollForEvents()

method,

at

a

time

interval

that

you

can

configure,

so

that

the

connector

can

detect

any

event

in

the

application

that

is

interesting

to

a

subscriber.

The

frequency

at

which

the

class

library

calls

this

method

depends

on

the

poll

frequency

value

that

is

configured

by

the

PollFrequency

connector

configuration

property.

Note:

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

pollForEvents()

method.

Therefore,

you

can

either

use

this

default

244

Connector

Development

Guide

for

Java

implementation

or

override

the

method

to

implement

your

own

polling

mechanism.

To

provide

a

different

polling

behavior,

you

can

implement

your

own

version

of

pollForEvents().

The

CWConnectorAgent

class

provides

a

default

implementation

for

the

pollForEvents()

method,

which

is

based

on

the

CWConnectorEvent

event

objects

as

a

standard

interface

for

event

management.

For

information

on

the

behavior

of

this

default

implementation,

see

“Implementing

the

pollForEvents()

method”

on

page

178..

This

default

implementation

provides

the

basic

steps

for

polling

an

event

store.

If

you

override

the

default

pollForEvents(),

your

implementation

must

perform

similar

steps.

Note:

If

your

connector

executes

in

a

parallel-process

mode,

it

uses

a

separate

polling

slave

process

to

handle

polling.

See

also

gotApplEvent(),,

isSubscribed()

terminate()

Terminates

the

connector,

performing

any

required

clean-up

tasks.

Syntax

public

int

terminate();

Parameters

None.

Return

values

An

integer

that

indicates

the

status

value

of

the

terminate()

operation.

CWConnectorConstant.SUCCEED

The

terminate

operation

succeeded.

CWConnectorConstant.FAIL

The

terminate

operation

failed.

Exceptions

None.

Notes

The

connector

infrastructure

calls

the

terminate()

method

when

the

connector

is

shutting

down.

In

your

implementation

of

this

method,

it

is

good

practice

to

free

all

the

memory

and

log

off

from

the

application.

You

must

implement

this

method

for

the

connector.

Important:

The

CWConnectorAgent

class

does

not

provide

a

default

implementation

for

the

terminate()

method.

Therefore,

the

connector

class

must

implement

this

method

if

resource

clean-up

is

required.

Chapter

10.

CWConnectorAgent

class

245

246

Connector

Development

Guide

for

Java

Chapter

11.

CWConnectorAttrType

class

The

CWConnectorAttrType

class

is

the

attribute-type

class

for

Java

connectors.

It

defines

static

constants

for

data

types

of

attributes

in

a

business

object

definition.

Attribute-type

constants

The

CWConnectorAttrType

class

defines

numeric

and

string

equivalents

for

attribute

types.

Table

119

summarizes

the

attribute-type

constants

in

the

CWConnectorAttrType

class.

Table

119.

Static

constants

of

the

CWConnectorAttrType

class

Attribute

data

type

Numeric

attribute-type

constant

String

attribute-type

constant

Boolean

BOOLEAN

BOOLSTRING

Business

object:

multiple

cardinality

None

MULTIPLECARDSTRING

Business

object:

single

cardinality

None

SINGLECARDSTRING

Ciphertext

CIPHERTEXT

CIPHERTEXTSTRING

″Missing

ID″

None

CXMISSINGID_STRING

Date

DATE

DATESTRING

Double

DOUBLE

DOUBSTRING

Float

FLOAT

FLTSTRING

Integer

INTEGER

INTSTRING

Invalid

data

type

INVALID_TYPE_NUM

INVALID_TYPE_STRING

LongText

LONGTEXT

LONGTEXTSTRING

Object

OBJECT

None

String

STRING

STRSTRING

Blank

value

None

CxBlank

Ignore

value

None

CxIgnore

©

Copyright

IBM

Corp.

2000,

2004

247

248

Connector

Development

Guide

for

Java

Chapter

12.

CWConnectorBOHandler

class

The

CWConnectorBOHandler

class

is

the

base

class

for

the

business

object

handlers

of

a

Java

connector.

It

provides

the

code

to

implement

and

access

one

business

object

handler.

From

this

class,

a

connector

developer

must

derive

business-object-handler

classes

(as

many

as

needed)

and

implement

the

doVerbFor()

method

for

the

business

object

handler.

Note:

The

CWConnectorBOHandler

class

extends

the

BOHandlerBase

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Important:

All

Java

connectors

must

extend

this

class.

The

name

ConnectorBOHandler

is

the

default

name

for

the

derived

business-object-handler

class.

Developers

can

either

use

this

default

name

or

choose

a

different

name

for

the

derived

business-object-
handler

class.

Regardless

of

the

name

of

the

class,

developers

must

implement

the

single

method,

doVerbFor(),

in

their

derived

business-object-handler

class.

If

your

connector

handles

request

processing,

your

doVerbFor()

method

must

provide

verb

processing

for

all

supported

verbs

for

the

business

object

(or

objects)

it

handles.

If

your

connector

does

not

provide

request

processing,

it

must

still

provide

verb

processing

for

the

Retrieve

verb.

An

connector

includes

one

or

more

business

object

handlers

to

perform

tasks

for

the

verbs

in

business

objects.

Depending

on

the

active

verb,

a

business

object

handler

can

insert

business

object

data

into

an

application,

retrieve

data,

delete

application

data,

or

perform

another

task.

For

an

introduction

to

request

processing

and

business

object

handlers,

see

“Request

processing”

on

page

22.

For

information

on

how

to

implement

a

business

object

handler,

see

Chapter

4,

“Request

processing,”

on

page

79.

Table

120

summarizes

the

methods

in

the

CWConnectorBOHandler

class.

Table

120.

Member

methods

of

the

CWConnectorBOHandler

class

Member

method

Description

Page

CWConnectorBOHandler()

Creates

a

business-object-handler

object.

249

doVerbFor()

Performs

the

verb

processing

for

the

active

verb

of

a

business

object.

250

getName()

Retrieves

the

name

of

the

business-object-handler

object.

252

setName()

Sets

the

name

of

the

business-object-handler

object.

252

CWConnectorBOHandler()

Creates

a

business-object-handler

object.

Syntax

public

CWConnectorBOHandler();

©

Copyright

IBM

Corp.

2000,

2004

249

Parameters

None.

Return

values

A

CWConnectorBOHandler

object

containing

the

newly

created

business-object-
handler

object.

Notes

The

CWConnectorBOHandler()

constructor

creates

an

instance

of

the

CWConnectorBOHandler

class,

to

which

business

object

definitions

can

refer

for

performing

the

tasks

of

verbs

in

business

objects.

Typically,

a

connector

developer

derives

a

class

from

CWConnectorBOHandler

and

implements

the

doVerbFor()

method

for

this

derived

class.

The

developer

can

call

the

constructor

of

this

derived

class

in

the

getConnectorBOHandlerForBO()

method

of

the

CWConnectorAgent

class

to

instantiate

one

or

more

business

object

handlers.

See

also

getConnectorBOHandlerForBO()

doVerbFor()

Performs

the

verb

processing

for

the

active

verb

of

a

business

object.

Syntax

public

int

doVerbFor(CWConnectorBusObj

theBusObj);

Parameters

theBusObj

Is

the

business

object

whose

active

verb

is

to

be

processed.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

verb

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

verb

operation

succeeded.

CWConnectorConstant.FAIL

The

verb

operation

failed.

CWConnectorConstant.APPRESPONSETIMEOUT

The

application

is

not

responding.

CWConnectorConstant.VALCHANGE

At

least

one

value

in

the

business

object

changed.

CWConnectorConstant.VALDUPES

The

requested

operation

found

multiple

records

in

the

application

database

for

the

same

key

value.

CWConnectorConstant.MULTIPLE_HITS

The

connector

finds

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

returns

a

business

object

only

for

the

first

matching

record.

250

Connector

Development

Guide

for

Java

CWConnectorConstant.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CWConnectorConstant.BO_DOES_NOT_EXIST

The

connector

performed

a

Retrieve

operation,

but

the

application

database

does

not

contain

a

matching

entity

for

the

requested

business

object.

Exceptions

ConnectionFailureException

Thrown

if

the

connector

has

lost

the

connection

with

the

application.

VerbProcessingFailedException

Thrown

if

the

verb

processing

fails.

Notes

The

doVerbFor()

method

performs

the

action

of

the

active

verb

in

the

theBusObj

business

object.

This

method

is

the

primary

public

interface

for

the

business

object

handler.

However,

when

the

connector

framework

invokes

a

business

object

handler,

it

actually

executes

the

low-level

doVerbFor()

method,

inherited

from

the

BOHandlerBase

class.

The

low-level

doVerbFor()

method

calls

this

doVerbFor()

(in

the

business-object-handler

class),

which

the

connector

developer

must

implement.

For

more

information,

see

“Populating

the

return-status

descriptor”

on

page

168..

Important:

The

CWConnectorBOHandler

class

does

not

provide

a

default

implementation

of

the

doVerbFor()

method.

Therefore,

the

business-object-handler

class

must

implement

this

method.

If

the

doVerbFor()

method

needs

to

throw

one

of

its

exceptions,

it

first

needs

to

populate

an

exception-detail

object

that

contains

information

about

the

exception.

In

particular,

the

method

must

set

the

status

code,

as

Table

121

shows.

Table

121.

Exception

status

codes

for

the

doVerbFor()

method

doVerbFor()

exception

Exception

status

code

ConnectionFailureException

APPRESPONSETIMEOUT

VerbProcessingFailedException

The

same

outcome

status

code

that

doVerbFor()

returns

To

initialize

an

exception-detail

object,

follow

these

steps:

v

Create

the

exception-detail

object

with

the

CWConnectorExceptionObject()

constructor.

v

Fill

in

the

appropriate

values

of

the

exception-detail

object

with

the

accessor

methods

in

the

CWConnectorExceptionObject

class,

as

follows:

setMsg()

Sets

a

message

in

the

exception-detail

object

if

there

is

an

informational,

warning,

or

error

return

message.

setStatus()

Sets

a

status

return

code,

which

is

an

integer

whose

value

should

be

the

same

as

shown

in

Table

121.

Chapter

12.

CWConnectorBOHandler

class

251

The

connector

framework

handles

copying

information

from

the

exception-detail

object

into

the

return-status

descriptor

that

it

returns

to

the

integration

broker:

v

If

doVerbFor()

throws

an

exception,

the

connector

framework

copies

the

exception

information.

v

When

doVerbFor()

is

successful,

the

connector

framework

copies

the

outcome

status

that

doVerbFor()

returns.

For

more

information

on

how

to

implement

this

method,

see

“Implementing

the

doVerbFor()

method”

on

page

153.

See

also

setErrorString(),,

setStatus()

getName()

Retrieves

the

name

of

the

business-object-handler

object.

Syntax

protected

String

getName();

Parameters

None.

Return

values

A

String

containing

the

name

assigned

to

the

business-object-handler

(CWConnectorBOHandler)

object.

If

setName()

has

not

been

called

on

the

CWConnectorBOHandler

object

prior

to

this

method,

the

method

returns

null.

Exceptions

None.

See

also

setName()

setName()

Sets

the

name

of

the

business-object-handler

object.

Syntax

protected

void

setName(String

name);

Parameters

name

Specifies

the

name

of

the

CWConnectorBOHandler

object.

Return

values

None.

Exceptions

None.

252

Connector

Development

Guide

for

Java

Notes

This

name

is

typically

the

name

of

the

business

object

the

handler

has

been

created

to

process.

Chapter

12.

CWConnectorBOHandler

class

253

254

Connector

Development

Guide

for

Java

Chapter

13.

CWConnectorBusObj

class

The

CWConnectorBusObj

class

gives

a

view

of

the

business

object

to

the

Java

connectors

developers.

The

class

defines

methods

for

getting

information

about

the

business

object

definition,

business

object,

and

its

attributes.

It

also

includes

methods

to

obtain

the

metadata

of

the

business

object,

and

methods

for

reading

and

modifying

the

business

object

instance.

Each

instance

of

CWConnectorBusObj

represents

a

single

business

object.

Any

manipulations

of

the

business

object

has

to

be

from

this

class.

Note:

The

CWConnectorBusObj

class

stores

an

internal

handle

to

the

BusinessObjectInterface

interface

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Table

122

summarizes

the

methods

in

the

CWConnectorBusObj

class.

Table

122.

Member

methods

of

the

CWConnectorBusObj

class

Member

method

Description

Page

areAllPrimaryKeysTheSame()

Determines

if

the

attribute

values

in

the

primary

key

of

a

specified

business

object

match

those

in

the

current

business

object.

259

compare()

Compares

a

specified

business

object

with

the

current

business

object,

based

on

the

verb

set,

attribute

count,

application-specific

information

for

the

business

object,

and

the

attributes

and

attribute

values.

259

doVerbFor()

Invokes

the

business

object

handler

to

perform

the

verb

processing

for

the

active

verb

in

the

business

object.

260

dump()

Returns

business

object

information

in

a

readable

format

for

logging

and

tracing.

261

getAppText()

Retrieves

the

value

of

the

AppSpecificInfo

field

associated

with

this

business

object

definition

or

with

a

specified

attribute.

262

getAttrASIHashtable()

Parses

the

application-specific

information

for

any

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list,

into

name/value

pairs.

263

getAttrCount()

Retrieves

the

number

of

attributes

that

are

in

the

business

object’s

attribute

list.

264

getAttrIndex()

Retrieves

the

ordinal

position

of

a

given

attribute

of

a

business

object.

265

getAttrName()

Retrieves

the

name

of

an

attribute

that

you

specify

by

its

position

in

the

business

object’s

attribute

list.

265

getbooleanValue()

Retrieves

the

value

of

a

boolean

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

266

getBusinessObjectVersion()

Retrieves

the

version

of

the

business

object

definition.

266

getBusObjASIHashtable()

Parses

the

application-specific

information

for

a

business

object

definition

into

name/value

pairs.

267

getBusObjValue()

Retrieves

the

value

of

an

attribute

that

contains

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

267

©

Copyright

IBM

Corp.

2000,

2004

255

Table

122.

Member

methods

of

the

CWConnectorBusObj

class

(continued)

Member

method

Description

Page

getCardinality()

Retrieves

the

cardinality

of

an

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

268

getDefault()

Retrieves

the

default

value

for

this

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

269

getDefaultboolean()

Retrieves

the

default

value

of

a

double

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

282

getDefaultdouble()

Retrieves

the

version

of

the

business

object

definition.

270

getDefaultfloat()

Retrieves

the

default

value

of

a

float

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

271

getDefaultint()

Retrieves

the

default

value

of

a

int

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

272

getDefaultlong()

Retrieves

the

default

value

of

a

long

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

272

getDefaultString()

Retrieves

the

default

value

of

a

String

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

273

getdoubleValue()

Retrieves

the

value

of

a

double

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

274

getfloatValue()

Retrieves

the

value

of

a

float

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

274

getintValue()

Retrieves

the

value

of

a

int

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

275

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

276

getlongValue()

Retrieves

the

value

of

a

long

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

277

getLongTextValue()

Retrieves

the

value

of

a

longText

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

276

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

from

the

business

object

definition

278

getName()

Retrieves

the

name

of

the

business

object

definition

that

the

current

business

object

references.

278

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

an

attribute

that

is

a

business

object

array.

278

getParentBusinessObject()

Retrieves

the

parent

business

object

of

the

current

business

object.

279

getStringValue()

Retrieves

the

value

of

a

String

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

279

getSupportedVerbs()

Retrieves

the

supported

verbs

for

the

current

business

object.

280

getTypeName()

Retrieves

the

name

of

the

attribute’s

data

type,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

281

256

Connector

Development

Guide

for

Java

Table

122.

Member

methods

of

the

CWConnectorBusObj

class

(continued)

Member

method

Description

Page

getTypeNum()

Retrieves

the

numeric

type

code

for

the

data

type

of

an

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

282

getVerb()

Retrieves

the

active

verb

for

the

business

object.

282

getVerbAppText()

Retrieves

the

value

of

the

AppSpecificInfo

field

for

a

particular

verb.

283

hasAllKeys()

Determines

if

the

current

business

object

has

values

for

all

its

primary-

and

foreign-key

attributes.

283

hasAllPrimaryKeys()

Determines

if

the

current

business

object

has

values

for

all

its

primary-key

attributes.

284

hasAnyActivePrimaryKey()

Determines

if

the

current

business

object

has

values

for

any

primary-key

attribute.

285

hasCardinality()

Determines

if

the

attribute

has

the

same

cardinality

as

a

specified

cardinality

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

285

hasName()

Determines

if

the

name

of

the

attribute

matches

a

specified

name,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

286

hasType()

Determines

if

the

data

type

of

the

attribute

matches

a

specified

data

type

name.

286

isAttrPresent()

Determines

if

an

attribute

is

present

or

not

on

the

business

object.

287

isBlank()

Determines

if

an

attribute

is

a

part

of

the

foreign

key

of

the

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

287

isForeignKeyAttr()

Determines

if

an

attribute

is

a

part

of

the

foreign

key

of

the

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

288

isIgnore()

Determines

whether

the

value

is

the

special

Ignore

value

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

288

isKeyAttr()

Determines

if

an

attribute

is

a

part

of

the

business

object

primary

key,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

289

isMultipleCard()

Determines

if

an

attribute

has

multiple

cardinality,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

289

isObjectType()

Determines

if

an

attribute’s

data

type

is

an

object

type;

that

is,

if

it

is

a

complex

attribute

(an

array

or

a

subobject).

290

isRequiredAttr()

Determines

if

an

attribute

is

a

required

attribute

for

the

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

If

the

attribute

is

required,

it

must

have

a

value.

290

isType()

Determines

if

an

attribute

value

has

the

same

data

type

as

a

specified

value.

291

isVerbSupported()

Determines

whether

the

verb

passed

to

the

method

is

supported

by

this

business

object

definition.

291

objectClone()

Copies

an

existing

business

object.

292

prune()

Removes

the

child

business

objects

from

the

current

(parent)

business

object

and

sets

their

attributes

to

null.

292

removeAllObjects()

Removes

all

child

business

objects

in

an

attribute

that

is

a

business

object

array.

293

removeBusinessObjectAt()

Removes

a

child

business

object

at

a

specified

position

in

a

business

object

array.

293

Chapter

13.

CWConnectorBusObj

class

257

Table

122.

Member

methods

of

the

CWConnectorBusObj

class

(continued)

Member

method

Description

Page

setAttrValues()

Sets

the

attributes

for

the

current

business

object

based

on

the

values

in

a

vector.

294

setbooleanValue()

Sets

the

value

of

a

boolean

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

294

setBusObjValue()

Sets

the

value

of

an

attribute

that

contains

a

business

object

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

295

setDefaultAttrValues()

Sets

default

values

for

attributes

which

currently

have

the

Blank

or

Ignore

attribute

values.

297

setdoubleValue()

Sets

the

value

of

a

double

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

297

setfloatValue()

Sets

the

value

of

a

float

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

298

setintValue()

Sets

the

value

of

an

int

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

299

setLocale()

Sets

the

locale

associated

with

the

business

object.

299

setLongTextValue()

Sets

the

value

of

an

longText

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

300

setStringValue()

Sets

the

value

of

a

String

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

301

setVerb()

Sets

the

active

verb

for

a

business

object.

302

As

Table

122

shows,

the

CWConnectorBusObj

class

combines

the

following

business

object

information

into

a

single

class:

v

Business

object

definition

and

business

object

compare()

getVerb()

doVerbFor()

getVerbAppText()

dump()

hasAnyActivePrimaryKey()

getAppText()

hasAllKeys()

getAttrCount()

hasAnyActivePrimaryKey()

getAttrIndex()

hasName()

getAttrName()

isVerbSupported()

getBusinessObjectVersion()

objectClone()

getBusObjASIHashtable()

prune()

getlongValue()

setAttrValues()

getName()

setVerb()

getParentBusinessObject()

v

Business

object

array

getObjectCount()

removeBusinessObjectAt()

removeAllObjects()

v

Business

object

attributes

areAllPrimaryKeysTheSame()

getTypeNum()

258

Connector

Development

Guide

for

Java

getAppText()

hasCardinality()

getAttrASIHashtable()

hasName()

getbooleanValue()

hasType()

getBusObjValue()

isBlank()

getCardinality()

isForeignKeyAttr()

getDefault()

isIgnore()

getDefaultboolean()

isKeyAttr()

getDefaultdouble()

isMultipleCard()

getDefaultfloat()

isObjectType()

getDefaultint()

isRequiredAttr()

getDefaultlong()

isType()

getdoubleValue()

setbooleanValue()

getfloatValue()

setBusObjValue()

getintValue()

setDefaultAttrValues()

getlongValue()

setdoubleValue()

getMaxLength()

setfloatValue()

getStringValue()

setintValue()

getTypeName()

setStringValue()

areAllPrimaryKeysTheSame()

Determines

if

the

attribute

values

in

the

primary

key

of

a

specified

business

object

match

those

in

the

current

business

object.

Syntax

public

final

boolean

areAllPrimaryKeysTheSame(CWConnectorBusObj

theBusObj);

Parameters

theBusObj

Is

the

business

object

whose

primary

key

values

are

compared

to

those

of

the

current

business

object.

Return

values

Returns

true

if

all

primary-key

values

in

the

busObj

object

match

those

in

the

current

business

object;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

attribute

position

specified

is

not

valid

for

the

definition

of

this

business

object.

WrongAttributeException

Thrown

if

the

specified

attribute

.

See

also

hasAnyActivePrimaryKey(),,

hasAllKeys(),

hasAllPrimaryKeys()

compare()

Compares

a

specified

business

object

with

the

current

business

object,

based

on

the

verb

set,

attribute

count,

application-specific

information

for

the

business

object,

and

the

attributes

and

attribute

values.

Chapter

13.

CWConnectorBusObj

class

259

Syntax

public

boolean

compare(CWConnectorBusObj

theBusObj);

Parameters

theBusObj

Is

the

business

object

to

compare

with

the

current

business

object.

Return

values

Returns

true

if

all

of

the

following

information

in

the

busObj

object

match

those

in

the

current

business

object:

v

value

of

the

active

verb

v

application-specific

information

for

the

business

object

definition

v

attribute

count

v

attributes

and

attribute

values.

For

each

failure,

the

method

logs

a

message

and

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

an

attribute

is

not

found

in

the

definition

of

this

business

object.

WrongAttributeException

Thrown

if

the

attribute

types

are

invalid

for

the

attributes

being

compared.

doVerbFor()

Invokes

the

business

object

handler

to

perform

the

verb

processing

for

the

active

verb

in

the

business

object.

Syntax

public

final

int

doVerbFor(CWConnectorReturnStatusDescriptor

rtnStat);

Parameters

rtnStat

Is

an

empty

return-status

descriptor

object,

which

the

doVerbFor()

method

populates

with

a

status

and

message

for

the

execution

status

of

this

method.

The

calling

code

can

access

the

execution

status

from

this

return-status

descriptor.

Return

values

An

integer

that

specifies

the

outcome

status

of

the

verb

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

verb

operation

succeeded.

CWConnectorConstant.FAIL

The

verb

operation

failed.

CWConnectorConstant.APPRESPONSETIMEOUT

The

application

is

not

responding.

260

Connector

Development

Guide

for

Java

CWConnectorConstant.VALCHANGE

At

least

one

value

in

the

business

object

changed.

CWConnectorConstant.VALDUPES

The

requested

operation

found

multiple

records

for

the

same

key

value.

CWConnectorConstant.MULTIPLE_HITS

The

connector

finds

multiple

matching

records

when

retrieving

with

non-key

values.

The

connector

will

only

return

the

first

matching

record

in

a

business

object.

CWConnectorConstant.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CWConnectorConstant.BO_DOES_NOT_EXIST

The

requested

business

object

entity

does

not

exist

in

the

database.

Exceptions

None.

Notes

The

doVerbFor()

method

invokes

the

business

object

handler

(CWConnectorBOHandler

object)

to

perform

the

action

specified

by

the

active

verb

in

the

business

object.

The

business

object

handler

provides

all

the

operations

for

the

verbs

that

the

business

object

definition

supports.

The

active

verb

is

one

of

the

list

of

verbs

that

the

business

object

definition

contains.

To

determine

the

active

verb

for

a

business

object,

you

can

use

the

getVerb()

method.

Within

the

doVerbFor()

method,

the

empty

passed-in

rtnStat

return-status

descriptor

is

populated

with

a

status

and

message

to

indicate

the

execution

status

of

the

verb

processing.

The

calling

code

can

then

use

the

accessor

methods

of

the

CWConnectorReturnStatusDescriptor

class

to

obtain

execution

information

about

the

verb

processing

from

the

populated

return-status

descriptor.

This

doVerbFor()

method

is

normally

called

from

the

pollForEvents()

method

in

the

connector

class

(CWConnectorAgent)

to

obtain

the

application

information

for

an

event.

The

default

implementation

of

pollForEvents()

calls

the

getBO()

method

of

the

CWConnectorEventStore

class

to

obtain

application

information.

The

getBO()

method

calls

the

doVerbFor()

method

in

the

CWConnectorBusObj

class.

If

you

do

not

use

getBO()

in

your

pollForEvents()

method,

you

can

call

doVerbFor()

directly

from

pollForEvents()

by

passing

in

an

instantiated

return-status

descriptor.

You

can

then

obtain

verb-processing

status

from

the

populated

return-status

descriptor

once

doVerbFor()

exits.

See

also

doVerbFor()

(in

CWConnectorBOHandler),

getVerb(),,

pollForEvents(),,

setVerb()

dump()

Returns

business

object

information

in

a

readable

format

for

logging

and

tracing.

Syntax

public

String

dump();

Chapter

13.

CWConnectorBusObj

class

261

Parameters

None.

Return

values

A

String

that

contains

the

formatted

business

object

information.

Exceptions

None.

getAppText()

Retrieves

the

value

of

the

AppSpecificInfo

field

associated

with

this

business

object

definition

or

with

a

specified

attribute.

Syntax

public

String

getAppText();

public

String

getAppText(String

attrName);

public

String

getAppText(int

position);

public

final

String

getAppText(String

tagName,

String

delimiter);

public

final

String

getAppText(String

attrName,

String

tagName,

String

delimiter);

public

final

String

getAppText(int

position,

String

tagName,

String

delimiter);

Parameters

attrName

Is

the

name

of

an

attribute

whose

application-specific

information

is

parsed.

delimiter

Is

the

delimiter

between

each

name-value

pair.

By

convention,

the

colon

(:)

is

used

as

the

delimiter

for

building

the

name-value

pairs.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

tagName

Is

the

name

of

the

tag

in

the

application-specific

information

whose

value

the

method

retrieves.

Return

values

A

String

object

that

holds

the

application-specific

information

from

the

appropriate

AppSpecificInfo

field:

v

The

first

form

of

getAppText()

retrieves

application-specific

information

for

the

business

object

definition

associated

with

the

current

business

object.

This

method

can

return

null

if

there

is

no

application-specific

information

for

the

business

object

definition.

v

The

second

and

third

forms

of

getAppText()

retrieve

the

application-specific

information

for

the

attribute,

which

can

be

specified

by

name

or

by

its

position

within

the

business

object

definition.

This

method

can

return

null

if

there

is

no

application-specific

information

for

the

attribute.

Exceptions

The

second,

third,

fifth,

and

sixth

forms

of

the

getAppText()

method

can

throw

the

following

exception:

262

Connector

Development

Guide

for

Java

AttributeNotFoundException

Thrown

when

the

specified

attribute

cannot

be

found.

The

fourth,

fifth,

and

sixth

forms

of

the

getAppText()

method

can

throw

the

following

exception:

WrongASIFormatException

Thrown

if

the

application-specific

information

does

not

conform

to

the

name-value

format.

Notes

The

getAppText()

method

provides

the

following

forms:

v

This

first

form

retrieves

the

business-object-level

application-specific

information;

that

is,

it

obtains

the

application-specific

information

for

the

business

object

definition

associated

with

the

current

business

object.

v

The

second

and

third

forms

retrieve

the

attribute

application-specific

information;

that

is,

they

obtain

the

application-specific

information

for

an

attribute,

which

you

can

identify

through

its

name

(attrName)

or

position

within

the

business

object

definition

(position).

v

The

fourth,

fifth,

and

sixth

forms

retrieve

application-specific

information

when

this

information

is

formatted

into

name-value

pairs

of

the

form:

tagName=value

The

tagName

specifies

the

name

of

the

tag

(property)

that

appears

in

the

application-specific

information.

The

delimiter

specifies

the

symbol

that

separates

each

name-value

pair.

By

convention,

the

delimiter

is

usually

the

colon

(:).

The

fourth

form

retrieves

a

name-value

pair

from

the

business-object-level

application-specific

information,

while

the

fifth

and

sixth

forms

retrieve

a

name-value

pair

from

the

application-specific

information

of

a

specified

attribute.

For

example,

suppose

a

business

object

definition

contains

the

following

application-specific

information:

TN=table1:SCH=schema1

The

following

call

to

getAppText()

retrieves

the

value

of

the

name-value

pair

for

the

TN

tag:

String

TNvalue

=

busObj.getAppText("TN",

":");

Note:

To

retrieve

all

name-value

pairs

as

a

Java

Hashtable

object,

use

the

getBusObjASIHashtable()

or

the

getAttrASIHashtable()

method

for

business-object-level

or

attribute

application-specific

information,

respectively.

See

also

getAttrASIHashtable(),,

getBusObjASIHashtable(),,

getVerbAppText()

getAttrASIHashtable()

Parses

the

application-specific

information

for

any

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list,

into

name-value

pairs.

Chapter

13.

CWConnectorBusObj

class

263

Syntax

public

final

Hashtable

getAttrASIHashtable(int

attrName,

String

delimiter);

public

final

Hashtable

getAttrASIHashtable(int

position,

String

delimiter);

Parameters

attrName

Is

the

name

of

an

attribute

whose

application-specific

information

is

parsed.

delimiter

Is

the

delimiter

between

each

name-value

pair.

Use

the

colon

(:)

as

the

delimiter

for

building

the

name-value

pairs.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

A

java.util.Hashtable

object

that

contains

the

name-value

pairs

in

the

attribute’s

application-specific

information.

Exceptions

AttributeNotFoundException

Thrown

if

the

specified

attribute

cannot

be

found;

for

example,

if

the

position

specified

is

not

valid

for

the

definition

of

this

business

object.

WrongASIFormatException

Thrown

if

the

application-specific

information

does

not

conform

to

the

name-value

format.

Notes

The

getAttrASIHashtable()

method

parses

the

application-specific

information

for

any

attribute

and

returns

a

hash

table

of

the

name-value

pairs.

For

example,

these

name/value

pairs

could

appear

as:

ASI=CN=colname:FK=attr1:UID=attr2:...

This

example

assumes

that

a

colon

(:)

is

specified

as

the

delimiter.

Note:

To

retrieve

one

particular

name-value

pair

from

attribute

application-specific

information,

use

the

getAppText()

method.

See

also

getAppText(),,

getBusObjASIHashtable()

getAttrCount()

Retrieves

the

number

of

attributes

that

are

in

the

business

object’s

attribute

list.

Syntax

public

int

getAttrCount();

264

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

An

integer

that

specifies

the

number

of

attributes

in

the

attribute

list.

Exceptions

None.

See

also

getAttrIndex()

getAttrIndex()

Retrieves

the

ordinal

position

of

a

given

attribute

of

a

business

object.

Syntax

public

int

getAttrIndex(String

attrName);

Parameters

attrName

Is

the

name

of

the

attribute

in

the

business

object

definition.

Return

values

The

ordinal

position

of

the

attribute

within

the

business

object

definition.

Exceptions

AttributeNotFoundException

Thrown

if

the

attribute

name

specified

is

not

valid

for

the

definition

of

this

business

object.

getAttrName()

Retrieves

the

name

of

an

attribute

that

you

specify

by

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getAttrName(int

position);

Parameters

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Return

values

The

name

of

the

specified

attribute.

Chapter

13.

CWConnectorBusObj

class

265

Exceptions

AttributeNotFoundException

Thrown

if

the

attribute

position

specified

is

not

valid

for

the

definition

of

this

business

object.

getbooleanValue()

Retrieves

the

value

of

a

boolean

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

boolean

getbooleanValue(String

attrName);

public

boolean

getbooleanValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

boolean

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-boolean

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

See

also

getAttrName(),,

getBusObjValue(),,

getDefaultboolean(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getlongValue(),,

getLongTextValue(),,

getStringValue(),,

setbooleanValue()

getBusinessObjectVersion()

Retrieves

the

version

of

the

business

object

definition.

Syntax

public

String

getBusinessObjectVersion();

Parameters

None.

Return

values

The

version

number

of

the

business

object.

266

Connector

Development

Guide

for

Java

Exceptions

None.

Notes

The

version

is

represented

by

the

major,

minor,

and

point

components

-x.y.z.

For

example:

-

1.0.2.

getBusObjASIHashtable()

Parses

the

application-specific

information

for

a

business

object

definition

into

name-value

pairs.

Syntax

public

Hashtable

getBusObjASIHashtable(String

delimiter);

Parameters

delimiter

Is

the

delimiter

between

each

name-value

pair.

Use

the

colon

(:)

as

the

delimiter

for

building

the

name-value

pairs.

Return

values

A

java.util.Hashtable

object

that

contains

the

name-value

pairs

in

the

application-specific

information

of

the

business

object

definition.

Exceptions

WrongASIFormatException

Thrown

when

the

application-specific

information

does

not

conform

to

the

name-value

pair

format.

Notes

The

getBusObjASIHashtable()

method

parses

the

application-specific

information

for

the

business

object

definition

associated

with

the

current

business

object

and

returns

a

hash

table

of

the

name-value

pairs.

For

example,

these

name-value

pairs

could

appear

as:

ASI=CN=colname:FK=attr1:UID=attr2:...

This

example

assumes

that

a

colon

(:)

is

specified

as

the

delimiter.

Note:

To

retrieve

one

particular

name-value

pair

from

business-object-level

application-specific

information,

use

the

getAppText()

method.

See

also

getAppText(),,

getAttrASIHashtable()

getBusObjValue()

Retrieves

the

value

of

an

attribute

that

contains

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Chapter

13.

CWConnectorBusObj

class

267

Syntax

public

CWConnectorBusObj

getBusObjValue(String

attrName);

public

CWConnectorBusObj

getBusObjValue(int

position);

public

CWConnectorBusObj

getBusObjValue(String

attrName,

int

arrayIndex);

public

CWConnectorBusObj

getBusObjValue(int

position,

int

arrayIndex);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

arrayIndex

Is

the

integer

that

specifies

the

ordinal

position

of

the

business

object

within

the

business

object

array

(when

the

attribute

contains

a

business

object

array).

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

business

object

contained

in

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

an

attribute

that

is

not

a

business

object.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

The

getBusObjValue()

method

provides

two

forms:

v

The

first

form

expects

the

name

or

position

of

an

attribute

that

is

an

object

type.

It

returns

the

business

object

at

the

specified

attribute.

It

assumes

that

the

attribute

has

single

cardinality.

v

The

second

form

expects

either

the

name

or

position

of

an

attribute

and

an

index

into

a

business

object

array.

It

returns

the

child

business

object

at

the

specified

index

position

in

the

business

object

array.

It

assumes

that

the

attribute

has

multiple

cardinality.

See

also

getAttrName(),,

getbooleanValue(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getlongValue(),,

getParentBusinessObject(),,

getObjectCount(),,

getStringValue(),,

setBusObjValue()

getCardinality()

Retrieves

the

cardinality

of

an

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getCardinality(String

attrName);

public

String

getCardinality(int

position);

268

Connector

Development

Guide

for

Java

Parameters

attrName

Is

the

name

of

an

attribute

whose

cardinality

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

A

String

containing

the

cardinality

of

the

attribute.

The

value

of

the

string

is

either:

1

attribute

has

single

cardinality

or

is

a

simple

attribute

n

attribute

has

multiple

cardinality

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

hasCardinality(),,

isMultipleCard()

getDefault()

Retrieves

the

default

value

for

this

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getDefault(String

attrName);

public

String

getDefault(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

yposition

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

String

containing

the

default

value

of

the

attribute.

If

no

default

value

exists

for

the

attribute,

the

method

returns

an

empty

string.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

getDefaultboolean()

Retrieves

the

default

value

of

a

boolean

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Chapter

13.

CWConnectorBusObj

class

269

Syntax

public

boolean

getDefaultboolean(String

attrName);

public

boolean

getDefaultboolean(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

as

a

boolean

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-boolean

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

See

also

getbooleanValue(),,

getDefaultdouble(),,

getDefaultfloat(),,

getDefaultint(),,

getDefaultlong(),,

getDefaultString()

getDefaultdouble()

Retrieves

the

default

value

of

a

double

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

double

getDefaultdouble(String

attrName);

public

double

getDefaultdouble(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

as

a

double

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-double

attribute.

270

Connector

Development

Guide

for

Java

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

default

value

is

not

in

the

correct

format.

See

also

getDefaultboolean(),,

getDefaultfloat(),,

getDefaultint(),,

getDefaultlong(),,

getDefaultString(),,

getdoubleValue(),

getDefaultfloat()

Retrieves

the

default

value

of

a

float

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

float

getDefaultfloat(String

attrName);

public

float

getDefaultfloat(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

as

a

float

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-float

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

default

value

is

not

in

the

correct

format.

See

also

getDefaultboolean(),,

getDefaultdouble(),,

getDefaultfloat(),,

getDefaultint(),,

getDefaultlong(),,

getDefaultString(),,

getfloatValue()

Chapter

13.

CWConnectorBusObj

class

271

getDefaultint()

Retrieves

the

default

value

of

a

int

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

int

getDefaultint(String

attrName);

public

int

getDefaultint(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

as

an

int

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-int

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

default

value

is

not

in

the

correct

format.

See

also

getDefaultboolean(),,

getDefaultdouble(),,

getDefaultfloat(),,

getDefaultlong(),,

getDefaultString(),,

getintValue()

getDefaultlong()

Retrieves

the

default

value

of

a

long

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

long

getDefaultlong(String

attrName);

public

long

getDefaultlong(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

272

Connector

Development

Guide

for

Java

Return

values

The

default

value

of

the

specified

attribute,

as

a

long

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-long

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

default

value

is

not

in

the

correct

format.

See

also

getDefaultboolean(),,

getDefaultdouble(),,

getDefaultfloat(),,

getDefaultlong(),,

getDefaultString(),,

getintValue()

getDefaultString()

Retrieves

the

default

value

of

a

String

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getDefaultString(String

attrName);

public

String

getDefaultString(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

default

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

default

value

of

the

specified

attribute,

as

a

String

value,

or

null

if

there

is

no

default

value

for

the

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-String

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getDefaultboolean(),,

getDefaultdouble(),,

getDefaultfloat(),,

getDefaultint(),,

getDefaultlong(),,

getStringValue()

Chapter

13.

CWConnectorBusObj

class

273

getdoubleValue()

Retrieves

the

value

of

a

double

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

double

getdoubleValue(String

attrName);

public

double

getdoubleValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

double

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-double

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

double

value

is

not

in

the

correct

format.

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultdouble(),,

getfloatValue(),,

getintValue(),,

getlongValue(),,

getLongTextValue(),,

getStringValue(),,

setdoubleValue()

getfloatValue()

Retrieves

the

value

of

a

float

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

float

getfloatValue(String

attrName);

public

float

getfloatValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

274

Connector

Development

Guide

for

Java

Return

values

The

float

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-float

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

float

value

is

not

in

the

correct

format.

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultfloat(),,

getdoubleValue(),,

getintValue(),,

getlongValue(),,

getLongTextValue(),,

getStringValue(),,

setfloatValue()

getintValue()

Retrieves

the

value

of

a

int

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

int

getintValue(String

attrName);

public

int

getintValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

int

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-int

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

int

value

is

not

in

the

correct

format.

Chapter

13.

CWConnectorBusObj

class

275

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultint(),,

getdoubleValue(),,

getfloatValue(),,

getlongValue(),,

getLongTextValue(),,

getStringValue(),,

setintValue()

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

Syntax

public

String

getLocale();

Parameters

None.

Return

values

The

String

that

contains

the

name

of

the

locale

associated

with

the

current

business

object.

Exceptions

None.

Notes

The

getLocale()

method

returns

the

business-object

locale,

which

is

associated

with

the

business

object.

This

locale

indicates

the

language

and

code

encoding

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

assigns

the

connector-framework

locale

as

the

business-object

locale.

See

also

createBusObj(),,

getGlobalLocale(),,

setLocale()

getLongTextValue()

Retrieves

the

value

of

a

LongText

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getLongTextValue(String

attrName);

public

String

getLongTextValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

276

Connector

Development

Guide

for

Java

Return

values

The

String

that

contains

the

LongText

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-LongText

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultlong(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getlongValue(),

getStringValue(),,

setLongTextValue()

getlongValue()

Retrieves

the

value

of

a

long

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

long

getlongValue(String

attrName);

public

long

getlongValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

long

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

a

non-long

attribute.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeNullValueException

Thrown

if

the

specified

attribute

has

null

as

a

value.

AttributeValueException

Thrown

if

the

long

value

is

not

in

the

correct

format.

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultlong(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getLongTextValue(),,

getStringValue()

Chapter

13.

CWConnectorBusObj

class

277

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

from

the

business

object

definition.

Syntax

public

int

getMaxLength(String

attrName);

public

int

getMaxLength(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

maximum

length

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

An

integer

that

specifies

the

maximum

length,

in

bytes,

that

an

attribute

value

can

have.

Exceptions

AttributeNotFound

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

InvalidAttributePropertyException

Thrown

if

the

method

is

called

on

an

object-type

attribute.

getName()

Retrieves

the

name

of

the

business

object

definition

that

the

current

business

object

references.

Syntax

public

String

getName();

Parameters

None.

Return

values

The

String

object

containing

the

name

of

a

business

object

definition.

Exceptions

None.

See

also

getBusinessObjectVersion()

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

an

attribute

that

is

a

business

object

array.

278

Connector

Development

Guide

for

Java

Syntax

public

int

getObjectCount(String

attrName);

public

int

getObjectCount(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

number

of

child

objects

is

determined.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

An

integer

that

indicates

the

number

of

child

business

objects

in

a

business

object

array.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getBusObjValue()

getParentBusinessObject()

Retrieves

the

parent

business

object

of

the

current

business

object.

Syntax

public

CWConnectorBusObj

getParentBusinessObject();

Parameters

None.

Return

values

The

business

object

that

contains

the

parent

business

object,

or

null

if

the

current

business

object

is

a

root

and

has

no

parent.

Exceptions

None.

See

also

getBusObjValue()

getStringValue()

Retrieves

the

value

of

a

String

attribute

in

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Chapter

13.

CWConnectorBusObj

class

279

Syntax

public

String

getStringValue(String

attrName);

public

String

getStringValue(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

String

value

of

the

specified

attribute.

Exceptions

WrongAttributeException

Thrown

if

the

method

is

called

on

an

attribute

that

is

not

have

an

object

type.

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getAttrName(),,

getbooleanValue(),,

getBusObjValue(),,

getDefaultString(),,

getdoubleValue(),,

getfloatValue(),,

getintValue(),,

getlongValue(),,

getLongTextValue(),,

setStringValue()

getSupportedVerbs()

Retrieves

the

list

ofverbs

that

the

current

business

object

supports.

Syntax

public

String[]

getSupportedVerbs();

Parameters

None.

Return

values

An

array

of

String

objects,

each

of

which

contains

a

supported

verb

of

the

business

object.

Compare

these

String

values

with

the

following

verb

constants:

CWConnectorConstant.VERB_CREATE

The

string

representation

for

the

Create

verb.

CWConnectorConstant.RETRIEVE

The

string

representation

for

the

Retrieve

verb.

CWConnectorConstant.UPDATE

The

string

representation

for

the

Update

verb.

CWConnectorConstant.DELETE

The

string

representation

for

the

Delete

verb.

280

Connector

Development

Guide

for

Java

If

your

application

supports

other

verbs,

create

your

own

verb

constants

to

represent

these

verbs.

See

also

getVerb(),,

isVerbSupported()

getTypeName()

Retrieves

the

name

of

the

attribute’s

data

type,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getTypeName(String

attrName);

public

String

getTypeName(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

string

value

of

its

data

type

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

A

String

that

contains

the

name

of

the

attribute’s

data

type.

Compare

this

String

value

with

the

attribute-type

constants

shown

in

Table

123

to

determine

the

type.

Table

123.

String

attribute-type

constants

Attribute

data

type

String

attribute-type

constant

Boolean

BOOLSTRING

Business

object:

multiple

cardinality

MULTIPLECARDSTRING

Business

object:

single

cardinality

SINGLECARDSTRING

CIPHERTEXTSTRING

Date

DATESTRING

Double

DOUBSTRING

Float

FLTSTRING

Integer

INTSTRING

Invalid

data

type

INVALID_TYPE_STRING

Long

text

LONGTEXTSTRING

String

STRSTRING

Note:

The

CWConnectorAttrType

class

defines

the

string

attribute-type

constants

listed

in

Table

123.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getTypeNum(),,

hasType()

Chapter

13.

CWConnectorBusObj

class

281

getTypeNum()

Retrieves

the

numeric

type

code

for

the

data

type

of

an

attribute,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

int

getTypeNum(String

attrName);

public

int

getTypeNum(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

numeric

value

of

its

data

type

is

retrieved.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

An

integer

that

specifies

the

data

type

of

the

attribute.

Compare

this

integer

value

with

the

attribute-type

constants

shown

in

Table

124

to

determine

the

type.

Table

124.

Numeric

attribute-type

constants

Attribute

data

type

Numeric

attribute-type

constant

Boolean

BOOLEAN

CIPHERTEXT

Date

DATE

Double

DOUBLE

Float

FLOAT

Integer

INTEGER

Invalid

data

type

INVALID_TYPE_NUM

Long

text

LONGTEXT

Object

OBJECT

String

STRING

Note:

The

CWConnectorAttrType

class

defines

the

numeric

attribute-type

constants

listed

in

Table

124.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getTypeName(),,

hasType()

getVerb()

Retrieves

the

active

verb

for

the

business

object.

Syntax

public

String

getVerb();

282

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

String

object

that

contains

the

active

verb

for

the

business

object.

If

there

is

no

active

verb

for

the

business

object,

the

returned

String

is

empty.

Exceptions

None.

Notes

The

business

object

definition

contains

the

list

of

verbs

that

the

business

object

supports.

The

getVerb()

method

enables

you

to

determine

the

active

verb

for

the

current

business

object.

See

also

isVerbSupported(),,

setVerb()

getVerbAppText()

Retrieves

the

value

of

the

AppSpecificInfo

field

for

a

particular

verb.

Syntax

public

String

getVerbAppText(String

verb);

Parameters

verb

Is

the

verb

for

which

the

value

of

the

AppSpecificInfo

field

is

to

be

retrieved.

Return

values

A

String

object

that

holds

the

application-specific

information

for

the

verb.

This

information

is

stored

in

AppSpecificInfo

field

for

the

specified

verb.

If

the

business

object

does

not

have

application-specific

information

for

the

verb,

the

method

returns

an

empty

string.

Exceptions

None.

See

also

getAppText(),,

getVerb()

hasAllKeys()

Determines

if

the

current

business

object

has

values

for

all

its

primary-

and

foreign-key

attributes.

Syntax

public

final

boolean

hasAllKeys();

Chapter

13.

CWConnectorBusObj

class

283

Parameters

None.

Return

values

Returns

true

if

the

current

business

object

has

values

for

all

primary

and

foreign

key

attributes;

otherwise

returns

false.

Exceptions

WrongAttributeException

Thrown

if

the

key

is

set

on

a

multiple

cardinality

attribute.

AttributeNotFoundException

Thrown

if

a

key

attribute

cannot

be

found

within

the

business

object

definition.

Notes

The

hasAllKeys()

method

checks

if

all

the

primary

and

foreign

keys

have

been

populated.

This

method

is

typically

used

to

identify

the

row

for

updates.

See

also

areAllPrimaryKeysTheSame(),,

hasAnyActivePrimaryKey(),,

hasAllPrimaryKeys()

hasAllPrimaryKeys()

Determines

if

the

current

business

object

has

values

for

all

its

primary-key

attributes.

Syntax

public

final

boolean

hasAllPrimaryKeys();

Parameters

None.

Return

values

Returns

true

if

the

current

business

object

has

values

for

all

primary

key

attributes;

otherwise

returns

false.

Exceptions

WrongAttributeException

Thrown

if

the

key

is

set

on

a

multiple

cardinality

attribute.

AttributeNotFoundException

Thrown

if

a

primary

key

attribute

cannot

be

found

within

the

business

object

definition.

Notes

The

hasAllPrimaryKeys()

method

checks

if

all

the

primary

keys

have

been

populated.

This

method

is

typically

used

to

identify

the

row

for

updates.

284

Connector

Development

Guide

for

Java

See

also

areAllPrimaryKeysTheSame(),,

hasAnyActivePrimaryKey(),,

hasAllKeys()

hasAnyActivePrimaryKey()

Determines

if

the

current

business

object

has

values

for

any

primary-key

attribute.

Syntax

public

final

boolean

hasAnyActivePrimaryKey();

Parameters

None.

Return

values

Returns

true

if

the

current

business

object

has

a

value

for

any

primary

key

attribute;

otherwise

returns

false.

Exceptions

WrongAttributeException

Thrown

if

the

key

is

set

on

a

multiple

cardinality

attribute.

AttributeNotFoundException

Thrown

if

a

key

attribute

cannot

be

found

within

the

business

object

definition.

Notes

The

hasAnyActivePrimaryKey()

method

checks

if

at

least

one

primary

key

has

been

populated.

This

method

is

typically

used

to

identify

the

row

for

deletes.

See

also

areAllPrimaryKeysTheSame(),,

hasAllKeys(),,

hasAllPrimaryKeys()

hasCardinality()

Determines

if

the

attribute

has

the

same

cardinality

as

a

specified

cardinality

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

boolean

hasCardinality(String

attrName,

String

card);

public

boolean

hasCardinality(int

position,

String

card);

Parameters

attrName

Is

the

name

of

an

attribute

whose

cardinality

is

tested.

card

Is

the

cardinality

value

to

use

for

checking.

Valid

cardinality

values

are:

1

-

single

cardinality

n

-

multiple

cardinality

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Chapter

13.

CWConnectorBusObj

class

285

Return

values

Returns

true

if

the

cardinality

of

the

attribute

matches

the

specified

value;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

This

method

is

used

to

test

cardinality

of

complex

attributes

(subobjects

and

arrays).

See

also

getCardinality(),,

isMultipleCard()

hasName()

Determines

if

the

name

of

the

attribute

matches

a

specified

name,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

boolean

hasName(int

position,

String

name);

Parameters

name

Is

the

name

of

the

attribute

to

test

for

at

the

specified

attribute

position.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

name

matches

the

specified

name;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

hasType()

Determines

if

the

data

type

of

the

attribute

matches

a

specified

data

type

name.

Syntax

public

boolean

hasType(String

attrName,

int

typeName);

public

boolean

hasType(int

position,

String

typeName);

public

boolean

hasType(String

attrName,

int

typeNum);

public

boolean

hasType(int

position,

String

typeNum);

286

Connector

Development

Guide

for

Java

Parameters

attrName

Is

the

name

of

an

attribute

whose

cardinality

is

tested.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

typeName

Is

the

string

value

of

the

data

type

of

the

attribute

to

test

for.

Use

one

of

the

string

attribute-type

constants

in

Table

123

to

specify

the

data

type.

typeNum

Is

the

numeric

value

of

the

data

type

of

the

attribute

to

test

for.

Use

one

of

the

numeric

attribute-type

constants

in

Table

124

to

specify

the

data

type.

Return

values

Returns

true

if

the

attribute

type

matches

the

passed-in

type

name;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getTypeName(),,

getTypeNum(),,

hasName()

isAttrPresent()

Determines

if

a

given

attribute

is

present

or

not

on

a

business

object.

Syntax

public

boolean

isAttrPresent(String

attrName);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

checked

for

blank.

Return

values

Returns

true

if

the

attribute

exists

or

false

if

it

does

not.

isBlank()

Determines

whether

the

value

is

the

special

Blank

attribute

value

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

public

boolean

isBlank(String

attrName);

public

boolean

isBlank(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

checked

for

blank.

Chapter

13.

CWConnectorBusObj

class

287

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

value

equals

the

blank

value

or

false

if

it

does

not.

Exceptions

None.

See

also

isIgnore()

isForeignKeyAttr()

Determines

if

an

attribute

is

a

part

of

the

foreign

key

of

the

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

boolean

isForeignKeyAttr(String

attrName);

public

boolean

isForeignKeyAttr(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

that

is

checked

for

participation

in

a

foreign

key.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

is

a

foreign

key,

or

part

of

the

foreign

key,

for

the

business

object;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

hasAllKeys(),,

isKeyAttr()

isIgnore()

Determines

whether

the

value

is

the

special

Ignore

value

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

public

boolean

isIgnore(String

attrName);

public

boolean

isIgnore(int

position);

288

Connector

Development

Guide

for

Java

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

checked

for

“ignore”.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

value

equals

the

special

“ignore”

value

or

false

if

it

does

not.

Exceptions

None.

See

also

isBlank()

isKeyAttr()

Determines

if

an

attribute

is

a

part

of

the

business

object

primary

key,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

boolean

isKeyAttr(String

attrName);

public

boolean

isKeyAttr(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

that

is

checked

for

participation

in

a

key.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

is

a

primary

key,

or

part

of

the

primary

key,

for

the

business

object;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

areAllPrimaryKeysTheSame(),,

hasAnyActivePrimaryKey(),,

hasAllKeys(),,

hasAllPrimaryKeys(),,

isForeignKeyAttr()

isMultipleCard()

Determines

if

an

attribute

has

multiple

cardinality,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Chapter

13.

CWConnectorBusObj

class

289

Syntax

public

boolean

isMultipleCard(String

attrName);

public

boolean

isMultipleCard(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

that

is

checked

for

multiple

cardinality.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

is

a

multiple

cardinality;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

See

also

getCardinality(),,

hasCardinality()

isObjectType()

Determines

if

an

attribute’s

data

type

is

an

object

type;

that

is,

if

it

is

a

complex

attribute

(an

array

or

a

subobject).

Syntax

public

boolean

isObjectType(String

attrName);

public

boolean

isObjectType(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

that

is

checked

for

an

object

data

type.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

is

a

business

object

or

a

complex

attribute,

such

as

a

business

object

array

or

subobject;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

isRequiredAttr()

Determines

if

an

attribute

is

a

required

attribute

for

the

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

If

the

attribute

is

required,

it

must

have

a

value.

290

Connector

Development

Guide

for

Java

Syntax

public

boolean

isRequiredAttr(String

attrName);

public

boolean

isRequiredAttr(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

that

is

checked

to

see

if

it

is

required.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

is

required

for

the

business

object;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

isType()

Determines

if

an

attribute

value

has

the

same

data

type

as

a

specified

value.

Syntax

public

boolean

isType(String

attrName,

Object

value);

public

boolean

isType(int

position,

Object

value);

Parameters

attrName

Is

the

name

of

an

attribute

whose

data

type

is

compared

with

the

specified

attribute

value.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

value

Is

the

value

whose

data

type

is

compared

with

the

attribute

value.

Return

values

Returns

true

if

the

type

of

the

attribute

matches

the

passed-in

type;

otherwise,

returns

false.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

isVerbSupported()

Determines

whether

the

verb

passed

to

the

method

is

supported

by

this

business

object

definition.

Chapter

13.

CWConnectorBusObj

class

291

Syntax

public

boolean

isVerbSupported(String

verb);

Parameters

verb

Is

the

verb

that

the

method

determines

if

the

current

business

object

definition

supports.

Return

values

Returns

true

if

the

specified

verb

is

supported;

otherwise,

returns

false.

Exceptions

None.

See

also

getVerb(),,

getSupportedVerbs()

objectClone()

Copies

an

existing

business

object.

Syntax

public

CWConnectorBusObj

objectClone();

Parameters

None.

Return

values

A

copy

of

the

current

business

object,

including

its

attributes

and

verbs.

Exceptions

None.

Notes

This

method

copies

the

business

object

attributes

and

also

its

verb.

prune()

Removes

the

child

business

objects

from

the

current

(parent)

business

object

and

sets

their

attributes

to

null.

Syntax

public

final

void

prune();

Parameters

None.

Return

values

None.

292

Connector

Development

Guide

for

Java

Exceptions

AttributeNotFoundException

Thrown

if

the

object-type

attribute

is

not

found

in

the

definition

of

this

business

object.

WrongAttributeException

Thrown

if

the

attribute

is

not

valid

(not

an

object-type

attribute).

removeAllObjects()

Removes

all

child

business

objects

in

an

attribute

that

is

a

business

object

array.

Syntax

public

void

removeAllObjects(String

attrName);

public

void

removeAllObjects(int

position);

Parameters

attrName

Is

the

name

of

an

attribute

whose

business

objects

are

removed

from

its

business

object

array.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

removeBusinessObjectAt()

Removes

a

child

business

object

at

a

specified

position

in

a

business

object

array.

Syntax

public

void

removeBusinessObjectAt(String

attrName,

int

index);

public

void

removeBusinessObjectAt(int

position,

int

index);

Parameters

attrName

Is

the

name

of

an

attribute

whose

business

objects

are

removed

from

its

business

object

array.

index

Is

an

integer

that

specifies

the

position

for

a

child

business

object

in

a

business

object

array.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

None.

Chapter

13.

CWConnectorBusObj

class

293

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

After

the

remove

operation,

the

business

object

array

is

compacted.

Indexes

are

decremented

for

all

business

objects

that

have

an

index

number

higher

than

that

of

the

removed

business

object.

setAttrValues()

Sets

the

attributes

for

the

current

business

object

based

on

the

values

in

a

vector.

Syntax

public

final

void

setAttrValues(Vector

attrValues);

Parameters

attrValues

Is

a

java.util.Vector

object

that

contains

a

value

for

each

attribute

in

the

current

business

object.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

a

value

specified

in

the

attrValues

vector

does

not

have

an

associated

attribute

in

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

attribute

value

in

the

attrValues

vector

is

not

compatible

with

its

associated

attribute’s

data

type.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

an

object-type

attribute.

setbooleanValue()

Sets

the

value

of

a

boolean

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setbooleanValue(String

attrName,

boolean

newVal);

public

void

setbooleanValue(int

position,

boolean

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

294

Connector

Development

Guide

for

Java

newVal

Is

the

boolean

value

to

assign

to

the

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-boolean

attribute.

See

also

getbooleanValue(),,

getDefaultboolean(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

setBusObjValue()

Sets

the

value

of

an

attribute

that

contains

a

business

object

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setBusObjValue(String

attrName,

CWConnectorBusObj

newVal);

public

void

setBusObjValue(int

position,

CWConnectorBusObj

newVal);

public

void

setBusObjValue(String

attrName,

CWConnectorBusObj

newVal,

int

arrayIndex);

public

void

setBusObjValue(int

position,

CWConnectorBusObj

newVal,

int

arrayIndex);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

arrayIndex

Is

the

integer

that

specifies

the

ordinal

position

of

the

business

object

within

the

business

object

array

(when

the

attribute

contains

a

business

object

array).

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

the

boolean

value

to

assign

to

the

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Chapter

13.

CWConnectorBusObj

class

295

AttributeNullValueException

Thrown

if

the

business

object

array

to

hold

the

business

object

could

not

be

created

(for

a

multiple

cardinality

attribute).

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-object

attribute.

AttributeValueException

Thrown

if

the

value

to

be

set

is

not

a

valid

business

object.

SpecNameNotFoundException

Thrown

if

the

business

object

definition

for

the

business

object

array

could

not

be

found.

This

exception

is

returned

only

by

the

forms

of

setBusObjValue()

that

pass

in

the

arrayIndex

argument.

Notes

The

setBusObjValue()

method

provides

two

forms:

v

The

first

form

expects

the

name

or

position

of

an

attribute

that

is

an

object

type

and

the

business

object

to

assign

to

this

attribute.

It

assumes

that

the

attribute

has

single

cardinality.

v

The

second

form

expects:

–

the

name

or

position

of

the

attribute

to

set

–

the

business

object

to

assign

to

the

attribute

–

an

index

position

within

the

business

object

array

at

which

to

assign

the

object

value

It

assumes

that

the

attribute

has

multiple

cardinality.

See

also

getBusObjValue(),,

setbooleanValue(),,

setdoubleValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

setDEEId()

Sets

the

ObjectEventId

attribute

to

a

specified

event

identifier

(ID).

Syntax

public

void

setDEEId(String

eventId);

Parameters

eventId

Is

the

event

identifier

you

want

to

assign

to

the

ObjectEventId

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

to

be

set

is

not

a

valid

business

object.

296

Connector

Development

Guide

for

Java

Notes

In

the

duplication

event

elimination

feature,

the

business

object

must

store

the

event

ID

for

its

event

record

in

its

ObjectEventId

attribute.

Normally,

the

ObjectEventId

is

reserved

for

use

by

the

integration

broker.

To

access

this

attribute

for

the

duplication

event

elimination

feature,

use

the

setDEEId()

method.

For

more

information,

see

the

description

of

duplicate

event

elimination

in

Chapter

5,

“Event

notification,”

on

page

113.

setDefaultAttrValues()

Sets

default

values

for

attributes

which

currently

have

the

Blank

or

Ignore

values.

Syntax

public

void

setDefaultAttrValues();

Parameters

None.

Return

values

None.

Exceptions

None.

Notes

The

setDefaultAttrValues()

method

sets

default

values

as

valid

values,

not

Ignore

values.

For

complex

attributes

(whose

type

a

business

object

or

business

object

array),

the

method

creates

an

empty

container.

The

method

sets

default

values

for

instances

of

subobjects

within

the

business

object.

See

also

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

setdoubleValue()

Sets

the

value

of

a

double

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setdoubleValue(String

attrName,

double

newVal);

public

void

setdoubleValue(int

position,

double

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

the

double

value

to

assign

to

the

attribute.

Chapter

13.

CWConnectorBusObj

class

297

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-double

attribute.

Notes

If

the

connector-specific

property

MaxDoublePrecision

has

been

set,

the

setdoubleValue()

method

uses

this

rather

than

the

default

locale

precision

to

specify

the

precision

of

the

input

value.

See

also

getDefaultdouble(),,

getdoubleValue(),,

setbooleanValue(),,

setBusObjValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

setfloatValue()

Sets

the

value

of

a

float

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setfloatValue(String

attrName,

float

newVal);

public

void

setfloatValue(int

position,

float

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

the

float

value

to

assign

to

the

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

298

Connector

Development

Guide

for

Java

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-float

attribute.

Notes

If

the

connector-specific

property

MaxFloatPrecision

has

been

set,

the

setfloatValue()

method

uses

this

rather

than

the

default

locale

precision

to

specify

the

precision

of

the

input

value.

See

also

getDefaultfloat(),,

getfloatValue(),,

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setintValue(),,

setLongTextValue(),,

setStringValue()

setintValue()

Sets

the

value

of

an

int

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setintValue(String

attrName,

int

newVal);

public

void

setintValue(int

position,

int

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

the

int

value

to

assign

to

the

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-integer

attribute

See

also

getDefaultint(),,

getintValue(),,

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setLongTextValue(),,

setStringValue()

setLocale()

Sets

the

locale

for

the

business

object.

Chapter

13.

CWConnectorBusObj

class

299

Syntax

public

void

setLocale(String

localeName);

Parameters

localeName

Is

the

name

of

the

locale

to

associate

with

the

current

business

object.

Return

values

None.

Exceptions

IllegalLocaleException

Thrown

if

the

locale

name

specified

is

not

valid.

Notes

The

setLocale()

method

sets

the

business-object

locale,

which

identifies

the

locale

that

is

associated

with

the

business

object.

This

locale

indicates

the

language

and

code

encoding

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

assigns

the

connector-framework

locale

as

the

business-object

locale.

See

also

getLocale()

setLongTextValue()

Sets

the

value

of

an

LongText

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setLongTextValue(String

attrName,

String

newVal);

public

void

setLongTextValue(int

position,

String

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

a

String

that

contains

the

LongText

value

to

assign

to

the

attribute.

Return

values

None.

300

Connector

Development

Guide

for

Java

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-LongText

attribute

See

also

getLongTextValue(),,

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setStringValue()

setStringValue()

Sets

the

value

of

a

String

attribute

to

a

specified

value,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

void

setStringValue(String

attrName,

String

newVal);

public

void

setStringValue(int

position,

String

newVal);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newVal

Is

the

String

value

to

assign

to

the

attribute.

Return

values

None.

Exceptions

AttributeNotFoundException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

AttributeValueException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

WrongAttributeException

Thrown

if

the

value

is

being

set

on

a

non-String

attribute.

See

also

getDefaultString(),,

getStringValue(),,

setbooleanValue(),,

setBusObjValue(),,

setdoubleValue(),,

setfloatValue(),,

setintValue(),,

setLongTextValue()

Chapter

13.

CWConnectorBusObj

class

301

setVerb()

Sets

the

active

verb

for

a

business

object.

Syntax

public

void

setVerb(String

newVerb);

Parameters

newVerb

Is

a

verb

that

is

in

the

verb

list

of

the

business

object

definition

to

which

the

business

object

refers.

Return

values

None.

Exceptions

InvalidVerbException

Thrown

if

the

verb

passed

in

is

not

a

supported

verb

in

the

business

object

definition.

Notes

The

business

object

definition

contains

the

list

of

verbs

that

the

business

object

supports.

The

verb

that

you

set

as

the

active

verb

must

be

on

this

list.

Only

one

verb

is

active

at

a

time

for

a

business

object.

All

business

objects

typically

support

the

Create,

Retrieve,

and

Update

verbs.

A

business

object

might

support

additional

verbs,

such

as

Delete.

Every

connector

that

supports

the

business

object

must

implement

all

the

verbs

that

it

supports.

See

also

getVerb()

302

Connector

Development

Guide

for

Java

Chapter

14.

CWConnectorConstant

class

The

CWConnectorConstant

class

defines

the

constants

shared

by

all

Java

connectors.

The

CWConnectorConstant

class

provides

the

following

groups

of

static

constants:

v

“Outcome-status

constants”

v

“Verb

constants”

v

“Connector-property

constants”

on

page

304

Note:

The

CWConnectorConstant

class

extends

the

CxStatusConstants

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Outcome-status

constants

Many

methods

of

the

Java

connector

library

return

an

integer

outcome

status

to

indicate

the

success

of

the

method.

Table

125

summarizes

the

static

outcome-status

constants,

which

are

defined

in

the

CWConnectorConstant

class.

Table

125.

Outcome-status

constants

of

the

CWConnectorConstant

class

Constant

name

Meaning

SUCCEED

The

operation

completed

successfully.

APPRESPONSETIMEOUT

The

application

is

not

responding.

BO_DOES_NOT_EXIST

The

requested

business

object

in

a

retrieve

does

not

exist.

CONNECTOR_NOT_ACTIVE

The

connector

has

attempted

to

deliver

an

event

but

the

connector

controller

is

not

active;

it

has

been

paused.

Only

when

the

integration

broker

is

InterChange

Server

does

a

connector

controller

exist.

FAIL

The

operation

failed

for

an

unspecified

reason.

MULTIPLE_HITS

The

integration

broker

requested

a

retrieve-by-content

but

the

connector

found

more

than

one

matching

record.

The

status

indicates

that

more

than

one

record

matched

the

search

requirements.

NO_SUBSCRIPTION_FOUND

No

subscriptions

for

the

event.

RETRIEVEBYCONTENT_FAILED

Retrieve

by

content

failed.

UNABLETOLOGIN

The

connector

cannot

log

into

the

application.

VALCHANGE

The

operation

successfully

completed

and

changed

the

value

of

the

object

in

the

target

application.

VALDUPES

The

requested

operation

was

not

needed

because

the

object

in

the

application

already

had

the

requested

characteristics.

Verb

constants

When

the

doVerbFor()

method

of

a

Java

connector

needs

to

refer

to

one

of

the

basic

verb

values,

it

can

use

the

verb

constants

that

the

CWConnectorConstant

class

defines.

Table

125

summarizes

the

static

verb

constants.

Table

126.

Verb

constants

of

the

CWConnectorConstant

class

Constant

name

Meaning

VERB_CREATE

String

representation

of

the

Create

verb

VERB_RETRIEVE

String

representation

of

the

Retrieve

verb

VERB_UPDATE

String

representation

of

the

Update

verb

VERB_DELETE

String

representation

of

the

Delete

verb

©

Copyright

IBM

Corp.

2000,

2004

303

Table

126.

Verb

constants

of

the

CWConnectorConstant

class

(continued)

Constant

name

Meaning

VERB_EXISTS

String

representation

of

the

Exists

verb

VERB_RETRIEVEBYCONTENT

String

representation

of

the

RetrieveByContent

verb

Verb

constants

are

useful

in

the

doVerbFor()

method.

Connector-property

constants

Many

methods

of

the

Java

connector

library

return

an

integer

outcome

status

to

indicate

the

success

of

the

method.

Table

125

summarizes

the

static

outcome-status

constants,

which

are

defined

in

the

CWConnectorConstant

class.

Table

127.

Connector-property

constants

of

the

CWConnectorConstant

class

Constant

name

Meaning

HIERARCHICAL

The

connector

property

is

hierarchical;

that

is,

it

contains

a

combination

of

multiple

string

values

and

child

properties.

SIMPLE

The

connector

property

is

simple;

that

is,

it

contains

only

string

values,

no

child

properties.

SINGLE_VALUED

The

connector

property

contains

only

a

single

value.

MULTI_VALUED

The

connector

property

contains

one

or

more

values.

304

Connector

Development

Guide

for

Java

Chapter

15.

CWConnectorEvent

class

The

CWConnectorEvent

class

allows

you

to

create

and

interact

with

connector

event

objects.

An

event

object

represents

the

occurred

event

in

the

application.

The

event

store

builds

these

event

objects

for

each

event

pulled

from

the

application.

The

information

in

each

event

object

is

then

used

to

build

and

retrieve

the

business

object

for

further

processing

by

the

connector

infrastructure.

Table

128

summarizes

the

methods

in

the

CWConnectorEvent

class.

Table

128.

Member

methods

of

the

CWConnectorEvent

class

Member

method

Description

Page

CWConnectorEvent()

Creates

a

new

event

object.

305

getBusObjName()

Retrieves

the

name

of

the

business

object

associated

with

the

event

object.

306

getConnectorID()

Retrieves

the

connector

identifier

(ID)

from

the

event

object.

307

getEffectiveDate()

Retrieves

the

effective

date

from

the

event

object.

307

getEventID()

Retrieves

the

event

identifier

(ID)

from

the

event

object.

308

getEventSource()

Retrieves

the

name

of

the

event

source

from

the

event

object.

308

getEventTimeStamp()

Retrieves

the

event

timestamp

from

the

event

object.

308

getIDValues()

Retrieves

the

data

values

of

the

business

object

from

the

event

object.

309

getKeyDelimiter()

Retrieves

the

key

delimiter

from

the

event

object.

309

getPriority()

Retrieves

the

priority

from

the

event

object.

310

getStatus()

Retrieves

the

status

from

the

event

object.

310

getTriggeringUser()

Retrieves

the

triggering

user

from

the

event

object.

311

getVerb()

Retrieves

the

verb

from

the

event

object.

311

setEventSource()

Sets

the

event

source

to

a

specified

value

in

the

event

object.

312

CWConnectorEvent()

Creates

a

new

event

object.

Syntax

public

CWConnectorEvent();

public

CWConnectorEvent(String

eventID,

String

busObjName,

String

verb,

String

IDvalues,

int

status,

int

priority,

String

connectorID,

Date

eventTimeStamp,

Date

effectiveDate,

String

triggeringUser,

String

description,

String

delimiter);

Parameters

busObjName

Is

the

business

object

associated

with

the

event.

connectorID

Is

the

connector

identifier

(ID)

for

the

connector

associated

with

the

event.

description

Is

an

optional

description

of

the

event.

delimiter

Is

the

delimiter

that

separates

the

key

values

of

the

event.

effectiveDate

Is

the

effective

date

for

the

event.

©

Copyright

IBM

Corp.

2000,

2004

305

eventID

Specifies

the

event

identifier

for

the

event.

eventTimeStamp

Is

the

timestamp

for

the

event.

IDvalues

Is

the

data

for

the

business

object

associated

with

the

event.

priority

Is

an

integer

event

priority

status

Is

one

of

the

following

event-status

constants

to

associate

with

the

event:

CWConnectorEventStatus.IN_PROGRESS

CWConnectorEventStatus.READY_FOR_POLL

CWConnectorEventStatus.SUCCESS

CWConnectorEventStatus.UNSUBSCRIBED

CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND

CWConnectorEventStatus.ERROR_POSTING_EVENT

CWConnectorEventStatus.ERROR_PROCESSING_EVENT

triggeringUser

Is

the

user

identifier

(ID)

associated

with

the

user

that

triggered

the

event.

verb

Is

the

verb

for

the

busObjName

business

object.

Return

values

A

CWConnectorEvent

object

containing

the

newly

created

event.

Notes

The

CWConnectorEvent()

constructor

has

two

forms:

v

The

first

form

creates

an

empty

event

object.

v

The

second

form

passes

data

to

initialize

the

new

event

object.

The

second

form

of

the

CWConnectorEvent()

constructor

provides

a

way

to

initialize

the

members

of

the

event

object.

Note:

The

only

way

to

initialize

the

event’s

description

is

through

the

second

form

of

the

CWConnectorEvent()

constructor.

There

is

no

accessor

method

for

this

member

because

connectors

do

not

use

the

event

description.

getBusObjName()

Retrieves

the

name

of

the

business

object

associated

with

the

event

object.

Syntax

public

String

getBusObjName();

Parameters

None.

Return

values

A

String

object

containing

the

name

of

the

business

object.

Exceptions

AttributeNullValueException

Thrown

if

the

business

object

name

is

null.

306

Connector

Development

Guide

for

Java

Notes

An

event

store

might

not

persist

the

name

of

the

business

object.

In

some

cases,

the

business

object

name

might

be

determined

when

it

is

created

based

on

content.

getConnectorID()

Retrieves

the

connector

identifier

(ID)

from

the

event

object.

Syntax

public

String

getConnectorID();

Parameters

None.

Return

values

A

String

containing

the

connector

ID,

which

identifies

the

connector

to

which

the

event

is

assigned.

Exceptions

AttributeNullValueException

Thrown

if

the

connector

ID

is

null.

Notes

Currently,

the

connector

ID

is

only

used

for

tracing

purposes.

getEffectiveDate()

Retrieves

the

effective

date

from

the

event

object.

Syntax

public

Date

getEffectiveDate();

Return

values

A

Date

object

containing

the

event’s

effective

date,

which

is

the

date

on

which

the

event

becomes

active

and

should

be

processed.

Exceptions

AttributeNullValueException

Thrown

if

the

event’s

effective

date

is

null.

Notes

An

effective

date

is

useful

when

your

event

detection

mechanism

handles

future-event

processing;

that

is,

it

stores

events

that

must

be

processed

at

some

particular

point

in

the

future.

The

effective

date

indicates

when

the

event

should

be

processed.

Chapter

15.

CWConnectorEvent

class

307

getEventID()

Retrieves

the

event

identifier

(ID)

from

the

event

object.

Syntax

public

String

getEventID();

Parameters

None.

Return

values

A

String

object

containing

the

event

ID,

which

uniquely

identifies

the

event.

Exceptions

AttributeNullValueException

Thrown

if

the

event

ID

is

null.

Notes

If

the

event

store

is

an

event

table

in

a

database,

the

event

ID

is

the

key

value

of

the

table

row.

For

other

event

stores,

the

event

ID

can

be

a

file

name

and

the

position

of

the

record

within

the

file.

getEventSource()

Retrieves

the

name

of

the

event

source

from

the

event

object.

Syntax

public

String

getEventSource();

Return

values

A

String

object

containing

the

event

source,

which

is

the

source

from

which

the

event

originated.

Exceptions

AttributeNullValueException

Thrown

if

the

evemt

source

is

null.

Notes

The

event

source

is

often

used

by

connectors

that

require

this

information

for

archiving.

For

example,

the

WebSphere

Business

Integration

Adapter

for

JText

stores

the

name

of

the

WebSphere

MQ

queue.

getEventTimeStamp()

Retrieves

the

event

timestamp

from

the

event

object.

Syntax

public

Date

getEventTimeStamp();

308

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

String

object

containing

the

event

timestamp,

which

is

the

time

the

event

was

created.

Exceptions

AttributeNullValueException

Thrown

if

the

event

timestamp

is

null.

getIDValues()

Retrieves

the

data

values

of

the

business

object

from

the

event

object.

Syntax

public

String

getIDValues();

Parameters

None.

Return

values

A

String

object

containing

the

business

object’s

data

values,

which

identify

the

business

object.

Exceptions

AttributeNullValueException

Thrown

if

the

data

of

the

business

object

is

null.

Notes

As

a

standard,

these

data

values

should

be

the

key

values

for

the

business

object;

that

is,

data

values

in

name/value

pair

format.

They

should

include

whatever

attribute

values

are

needed

to

uniquely

identify

a

business

object

to

be

retrieved

during

polling.

getKeyDelimiter()

Retrieves

the

key

delimiter

from

the

event

object.

Syntax

public

String

getKeyDelimiter();

Parameters

None.

Return

values

A

String

object

containing

the

event’s

key

delimiter.

Chapter

15.

CWConnectorEvent

class

309

Exceptions

AttributeNullValueException

Thrown

if

the

key

delimiter

is

null.

getPriority()

Retrieves

the

priority

from

the

event

object.

Syntax

public

int

getPriority();

Parameters

None.

Return

values

An

integer

to

indicate

the

priority

of

the

event.

Exceptions

None.

Notes

Use

the

event

priority

to

determine

the

correct

processing

order

of

the

event.

getStatus()

Retrieves

the

status

from

the

event

object.

Syntax

public

int

getStatus();

Parameters

None.

Return

values

An

integer

value

that

represents

the

event

status.

Compare

this

integer

value

with

the

following

event-status

constants

to

determine

the

status:

CWConnectorEventStatus.IN_PROGRESS

CWConnectorEventStatus.READY_FOR_POLL

CWConnectorEventStatus.SUCCESS

CWConnectorEventStatus.UNSUBSCRIBED

CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND

CWConnectorEventStatus.ERROR_POSTING_EVENT

CWConnectorEventStatus.ERROR_PROCESSING_EVENT

Exceptions

None.

Notes

The

Java

connector

library

provides

the

getStatus()

method

as

a

public

method

in

the

CWConnectorEvent

class.

However,

it

does

not

provide

a

public

method

for

310

Connector

Development

Guide

for

Java

setting

this

status.

To

set

the

event

status,

use

one

of

the

following

Java

connector

library

methods

from

the

CWConnectorEventStore

class:

v

getNextEvent()

v

recoverInProgressEvents()

v

resubmitArchivedEvents()

v

setEventStatus()

v

updateEventStatus()

getTriggeringUser()

Retrieves

the

triggering

user

from

the

event

object.

Syntax

public

String

getTriggeringUser();

Parameters

None.

Return

values

A

String

object

containing

the

triggering

user

for

the

event,

which

is

the

user

ID

that

triggering

the

event.

Exceptions

AttributeNullValueException

Thrown

if

the

name

of

the

triggering

user

is

null.

Notes

You

can

use

the

triggering

user

value

to

avoid

ping

pong

in

a

standard

way

when

synchronizing

between

two

systems.

getVerb()

Retrieves

the

verb

from

the

event

object.

Syntax

public

String

getVerb();

Parameters

None.

Return

values

A

String

object

containing

the

verb

associated

with

the

event.

Exceptions

AttributeNullValueException

Thrown

if

the

verb

is

null.

Chapter

15.

CWConnectorEvent

class

311

setEventSource()

Sets

the

event

source

to

a

specified

value

in

the

event

object.

Syntax

public

void

setEventSource(String

eventSource);

Parameters

eventSource

Specifies

the

new

event

source

to

assign

to

the

event.

Return

values

None.

Exceptions

None.

312

Connector

Development

Guide

for

Java

Chapter

16.

CWConnectorEventStatusConstants

class

The

CWConnectorEventStatusConstants

class

defines

static

constants

for

status

values

that

an

event

can

have.

Event-status

constants

The

event-status

constants

are

typically

used

in

the

poll

method

to

track

the

current

status

of

an

event.

Table

129

summarizes

the

static

event-status

constants

in

the

CWConnectorEventStatusConstants

class.

Table

129.

Static

constants

of

the

CWConnectorEventStatusConstants

class

Event-status

constant

Meaning

ERROR_OBJECT_NOT_FOUND

Error

in

finding

the

event

in

the

application

database

ERROR_POSTING_EVENT

Error

in

sending

the

event

to

InterChange

Server.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

ERROR_PROCESSING_EVENT

Error

in

processing

the

event.

A

description

of

the

error

can

be

appended

to

the

event

description

in

the

event

record.

IN_PROGRESS

Event

is

in

progress

READY_FOR_POLL

Ready

for

poll

SUCCESS

Sent

to

connector

framework

UNSUBSCRIBED

No

subscriptions

for

event

Figure

76

shows

when

the

different

event-status

constants

are

set.

©

Copyright

IBM

Corp.

2000,

2004

313

As

Figure

76

shows,

the

poll

method

takes

the

following

steps

to

maintain

the

status

of

an

event

object:

1.

The

fetchEvents()

retrieves

the

Ready-for-Poll

event

record

and

creates

an

event

object

with

the

READY_FOR_POLL

status.

2.

The

getNextEvent()

method

retrieves

a

Ready-for-Poll

event

object

from

the

events

vector

and

update

its

status

to

IN_PROGRESS.

3.

The

poll

method

uses

the

isSubscribed()

method

to

check

whether

the

retrieved

event

has

any

subscriptions.

v

If

no

subscriptions

exist,

the

poll

method

uses

updateEventStatus()

to

change

the

event

object’s

status

to

UNSUBSCRIBED.

v

If

subscriptions

do

exist,

execution

of

the

poll

event

continues

with

step

4.
4.

The

poll

method

calls

the

getBO()

method

to

retrieve

the

application

entity’s

data

to

populate

the

business

object.

v

If

getBO()

cannot

locate

the

application

entity’s

data,

the

poll

method

uses

updateEventStatus()

to

change

the

event

object’s

status

to

ERROR_OBJECT_NOT_FOUND.

v

If

the

application

entity

data

is

found,

execution

of

the

poll

event

continues

with

step

5.

Event Store

Event record:
READY_FOR_POLL

1

2

3

Event object:
IN_PROGRESS

Does the
event have a
subscription?

YES

NO

Can the entity
data be
retrieved?

YES

NO

Event object:
ERROR_OBJECT_NOT_FOUND

Was the
event sent to
the connector
framework?

NO

Event object:
ERROR_POSTING_EVENT

YES

Event object:
READY_FOR_POLL

Event object:
UNSUBSCRIBED

Event object:
SUCCESS

4 5

Figure

76.

Event-status

values

for

the

poll

method

314

Connector

Development

Guide

for

Java

5.

The

poll

method

calls

the

gotApplEvent()

method

to

send

the

business

object

to

the

connector

framework,

where

it

is

then

routed

to

its

destination.

The

poll

method

uses

the

updateEventStatus()

method

to

change

the

event

object’s

status

to

reflect

the

success

of

gotApplEvent().

For

a

list

of

event

status

values

that

correspond

to

the

gotApplEvent()

return

codes,

see

Table

100

on

page

191.

Chapter

16.

CWConnectorEventStatusConstants

class

315

316

Connector

Development

Guide

for

Java

Chapter

17.

CWConnectorEventStore

class

The

CWConnectorEventStore

class

is

a

base

class

to

provide

a

Java

connector

with

the

ability

to

access

an

event

store.

An

event

store

is

the

application’s

mechanism

for

persistently

storing

events.

The

application

stores

event

records

in

the

event

store

for

events

that

occur

in

the

application.

The

connector

retrieves

events

from

the

event

store

and

processes

them

for

transferal

to

the

integration

broker.

From

this

class,

a

connector

developer

must

derive

an

event-store

class

and

implement

some

of

its

methods

for

the

event

store.

Important:

All

Java

connectors

must

extend

this

class

to

access

the

application’s

event

store.

To

access

the

application’s

event

store

through

the

Java

CWConnectorEventStore

class,

developers

must

implement

the

following

abstract

methods

in

their

derived

event-store

class:

deleteEvent(),

fetchEvents(),

recoverInProgressEvents(),

resubmitArchivedEvents(),

and

setEventStatus().

To

access

an

archive

store,

developers

must

implement

the

archiveEvent()

method.

Table

130

summarizes

the

methods

in

the

CWConnectorEventStore

class.

Table

130.

Member

methods

of

the

CWConnectorEventStore

class

Member

method

Description

Page

CWConnectorEventStore()

Creates

an

event-store

object

317

archiveEvent()

Archives

the

specified

event

in

the

application’s

archive

store

with

appropriate

status.

318

cleanupResources()

Releases

resources

that

the

poll

method

has

used

to

access

the

event

store.

319

deleteEvent()

Deletes

the

event

from

the

application’s

event

store.

319

fetchEvents()

Retrieves

a

specified

number

of

Ready-for-Poll

events

from

the

application’s

event

store.

320

getBO()

Builds

a

business

object

based

on

the

information

in

an

event

from

the

event

store.

321

getNextEvent()

Retrieves

the

next

event

object

from

the

eventsToProcess

vector.

323

recoverInProgressEvents()

Recovers

any

In-Progress

events

in

the

event

store.

324

resubmitArchivedEvents()

Copies

the

specified

archived

event

from

the

application’s

archive

store

to

the

application’s

event

store

and

changes

the

event

status

to

READY_FOR_POLL.

326

setEventStatus()

Sets

the

status

of

an

event

in

the

event

store.

326

setEventsToProcess()

327

setTerminate()

Sets

the

internal

terminate-connector

flag

to

true.

328

updateEventStatus()

Updates

the

event

status

both

in

the

application’s

event

store

and

in

the

event.

328

CWConnectorEventStore()

Creates

an

event-store

object.

Syntax

public

CWConnectorEventStore();

©

Copyright

IBM

Corp.

2000,

2004

317

Parameters

None.

Return

values

A

CWConnectorEventStore

object

containing

the

newly

created

event

store.

Notes

The

CWConnectorEventStore()

constructor

creates

a

new

event

store

and

initializes

the

single

data

member,

eventsToProcess.

The

eventsToProcess

member

is

a

Java

Vector

object

to

hold

retrieved

event

objects.

archiveEvent()

Archives

the

specified

event

in

the

application’s

archive

store

with

appropriate

status.

Syntax

public

int

archiveEvent(String

eventID);

Parameters

eventID

Specifies

the

event

ID

of

the

event

to

archive.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

archive

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

archiving

of

the

event

succeeded.

CWConnectorConstant.FAIL

The

archiving

of

the

event

failed.

Exceptions

ArchiveFailedException

Thrown

when

the

underlying

application

is

unable

to

archive

the

event.

InvalidStatusChangeException

Thrown

if

the

connector

tries

to

update

the

event

status

with

one

that

is

invalid

for

the

application.

Notes

The

arhiveEvent()

method

is

usually

called

from

the

poll

method,

pollForEvents()

to

archive

processed

or

unsuccessful

events

to

the

event

archive

store.

Important:

The

archiveEvent()

method

is

not

an

abstract

method

because

it

is

a

synchronized

method.

However,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

archive

an

event

to

the

archive

store.

318

Connector

Development

Guide

for

Java

See

also

deleteEvent(),,

pollForEvents()

cleanupResources()

Release

resourses

that

the

polling

method

has

used

to

access

the

event

store.

Syntax

public

void

cleanupResources();

Parameters

None.

Return

values

None.

Exceptions

None.

Notes

The

cleanupResources()

method

is

useful

as

one

of

the

last

steps

in

the

pollForEvents()

method.

In

it,

you

can

include

code

that

releases

resources

that

the

pollForEvents()

method

has

allocated

to

access

the

event

store.

For

example,

if

the

event

store

is

implemented

as

an

event

table,

the

pollForEvents()

method

might

have

allocated

SQL

cursors

to

access

the

event

tables.

In

this

case,

you

can

include

statements

in

cleanupResources()

that

close

these

cursors,

thereby

freeing

memory

usage

and

releasing

unneeded

cursors.

Important:

The

cleanupResources()

method

is

not

an

abstract

method.

However,

neither

does

it

provide

a

default

implementation.

Therefore,

to

provide

the

ability

to

clean

up

resources

used

to

access

your

event

store,

you

must

override

the

default

cleanupResources()

with

your

own

implementation.

See

also

pollForEvents()

deleteEvent()

Deletes

the

event

from

the

application’s

event

store.

Syntax

public

abstract

void

deleteEvent(String

eventID);

Parameters

eventID

Specifies

the

event

ID

of

the

event

to

delete.

Return

values

None.

Chapter

17.

CWConnectorEventStore

class

319

Exceptions

DeleteFailedException

Thrown

when

the

underlying

application’s

attempt

to

delete

the

event

from

the

event

store

has

failed.

Notes

The

deleteEvent()

method

is

used

mainly

during

archiving.

It

deletes

the

event

from

the

event

store

after

this

event

has

been

successfully

moved

to

the

application’s

archive

store.

Important:

The

deleteEvent()

method

is

an

abstract

method.Therefore,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

delete

an

event

from

the

event

store.

See

also

archiveEvent()

fetchEvents()

Retrieves

a

specified

number

of

Ready-for-Poll

events

from

the

application’s

event

store.

Syntax

public

abstract

Vector

fetchEvents(int

pollQuantity)

Parameters

pollQuantity

The

number

of

events

to

fetch

from

the

application

store.

Return

values

None.

Exceptions

ConnectionFailureException

Thrown

when

connection

could

not

be

established.

EventProcessingException

Thrown

when

an

error

occurs

fetching

events

after

the

connection

is

established.

Notes

The

fetchEvents()

method

searches

the

event

store

for

event

records

with

the

READY_FOR_POLL

status

and

puts

them

in

the

event.

The

number

of

events

that

fetchEvents()

retrieves

is

specified

by

pollQuantity,

which

correlates

with

the

PollQuantity

connector

configuration

property.

For

each

retrieved

event,

the

method

must

create

a

CWConnectorEvent

event

object,

put

this

event

object

into

a

Java

Vector,

and

return

the

Vector.

The

fetchEvents()

method

determines

the

order

in

which

event

objects

are

stored

in

the

eventsToProcess

vector.

Important:

The

fetchEvents()

method

is

an

abstract

method.

Therefore,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

fetch

READY_FOR_POLL

events

from

the

event

store.

320

Connector

Development

Guide

for

Java

Note:

The

fetchEvents()

method

is

usually

called

from

the

poll

method,

pollForEvents().

Note:

A

previous

signature

of

fetchEvents()

with

no

input

parameter

and

no

return

value

has

been

deprecated.

This

version

replaces

it.

See

also

getNextEvent(),,

pollForEvents()

getBO()

Builds

a

business

object

based

on

the

information

in

an

event

from

the

event

store.

Syntax

public

CWConnectorBusObj

getBO(CWConnectorEvent

eventObject);

public

CWConnectorBusObj

getBO(CWConnectorEvent

eventObject,

int

status,

String

RetrieveVerb);

Parameters

eventObject

Is

the

event

that

contains

the

business

object

information.

status

Is

a

status

value

set

by

some

method

or

exception

within

the

getBO()

method.

RetrieveVerb

Is

used

to

override

the

default

RetrieveByContent

verb

used

to

fetch

the

application

record

for

which

an

event

was

detected.

getBO()

will

use

the

specified

verb

instead

of

RetrieveByContent

to

fetch

the

modified

record

from

the

application.

Return

values

A

CWConnectorBusObj

object

containing

a

new

business

object

based

on

information

retrieved

from

the

application’s

database.

If

the

method

was

unable

to

retrieve

the

eventObject

event

object,

it

returns

null.

Exceptions

AttributeNotFoundException

Thrown

if

getBO()

cannot

find

an

attribute

when

assigning

a

key

value

to

a

key

attribute.

SpecNameNotFoundException

Thrown

if

the

name

of

the

business

object

within

the

event

object

is

invalid.

AttributeValueException

Thrown

if

the

retrieved

attribute

value

is

not

valid

for

a

particular

attribute.

InvalidVerbException

Thrown

if

the

verb

within

the

event

object

is

invalid.

WrongAttributeException

Thrown

if

getBO()

encounters

an

invalid

attribute

type

when

assigning

a

key

value

a

key

attribute.

For

example,

if

the

attribute

is

a

container,

it

cannot

hold

a

key

value.

Chapter

17.

CWConnectorEventStore

class

321

AttributeNullValueException

Thrown

if

the

business

object

could

not

be

created.

Notes

The

getBO()

method

returns

a

business

object

that

contains

information

for

an

application

entity

that

the

eventObject

event

object

describes.

Important:

The

getBO()

method

must

be

overridden

if

you

want

to

return

an

internal

status

code

to

the

calling

method.

The

default

implementation

of

this

method

performs

the

following

actions:

v

Create

a

temporary

CWConnectorBusObj

object

to

hold

the

new

business

object.

v

Populate

the

CWConnectorBusObj

object

with

the

data

and

key

values

from

the

eventObject

event

object.

v

If

RetrieveVerb

is

set,

use

this

property’s

value

as

the

verb

for

business

object

retrieval.

v

If

RetrieveVerb

is

not

set,

take

one

of

the

following

actions,

based

on

the

value

of

the

verb

in

the

event

object:

Verb

getBO()

action

taken

Delete

Do

not

retrieve

the

object

with

doVerbFor().

Create,

Update

Set

the

business

object’s

verb

to

RetrieveByContent

and

call

the

doVerbFor()

method

(in

the

CWConnectorBusObj

class)

to

retrieve

the

remaining

information

from

the

application.

If

the

verb

is

Create

or

Update,

populate

the

CWConnectorBusObj

object

with

the

data

that

doVerbFor()

has

retrieved.

It

handles

the

following

conditions

that

the

doVerbFor()

method

might

generate:

–

If

doVerbFor()

does

not

find

the

specified

entity

in

the

application,

it

returns

BO_DOES_NOT_EXIST.

In

this

case,

getBO()

sets

the

event

status

of

eventObject

to

ERROR_OBJECT_NOT_FOUND

and

returns

null.

–

If

doVerbFor()

is

not

able

to

connect

to

the

application,

it

returns

APPRESPONSETIMEOUT.

In

this

case,

getBO()

calls

the

setTerminate()

method

(in

the

CWConnectorEventStore

class)

to

set

the

internal

terminate-connector

flag.

For

more

information,

see

“Retrieving

application

data”

on

page

185..

–

If

doVerbFor()

returns

some

other

error

(such

as

RETRIEVEBYCONTENT_FAILED),

The

getBO()

method

returns

null.
v

Send

the

CWConnectorBusObj

object

to

the

connector

framework

by

calling

the

gotApplEvent()

method.

Note:

The

getBO()

method

is

usually

called

from

the

poll

method,

pollForEvents().

As

described

above,

the

default

implementation

of

getBO()

has

several

ways

to

indicate

to

the

calling

method

that

certain

error

or

exception

conditions

occur.

However,

if

you

need

to

return

a

particular

internal

status

value

(such

as

the

status

attribute

of

a

thrown

exception)

to

the

calling

method,

you

can

override

this

default

implementation.

For

your

implementation

of

getBO(),

use

the

second

form

of

this

method’s

signature,

which

provides

a

status

argument.

Within

getBO(),

assign

some

status

value

to

this

argument

before

you

exit

getBO().

From

the

calling

method,

pass

in

the

uninitialized

status

value

and,

after

the

call

to

getBO(),

access

the

initialized

status

value.

322

Connector

Development

Guide

for

Java

Note:

The

default

implementation

of

the

pollForEvents()

method

calls

the

first

form

of

getBO();

that

is,

it

does

not

handle

any

initialized

status

value

returned

by

getBO().

See

also

doVerbFor(),,

getTerminate(),

pollForEvents(),

setTerminate()

getNextEvent()

Retrieves

the

next

event

object

from

the

eventsToProcess

vector.

Syntax

public

CWConnectorEvent

getNextEvent();

Parameters

None.

Return

values

A

CWConnectorEvent

object

for

the

next

Ready-for-Poll

event.

If

the

eventsToProcess

vector

is

empty,

the

method

returns

null.

Exceptions

InvalidStatusChangeException

Thrown

when

the

event

status

is

being

changed

to

an

invalid

status

value

for

the

application.

StatusChangeFailedException

Thrown

when

the

status

change

from

READY_FOR_POLL

to

IN_PROGRESS

fails.

Notes

The

getNextEvent()

method

checks

the

eventsToProcess

vector

for

events

that

currently

have

the

READY_FOR_POLL

status.

If

it

finds

the

such

an

event

in

this

vector,

the

method

takes

the

following

actions:

1.

Get

the

next

event

to

process

from

the

eventsToProcess

vector.

The

fetchEvents()

method

determines

the

order

in

which

event

objects

are

stored

in

the

eventsToProcess

vector.

2.

Change

its

event

status

to

IN_PROGRESS.

3.

Return

the

event

to

the

caller.

The

eventsToProcess

vector

is

initialized

with

either

the

fetchEvents()

or

setEventsToProcess()

method.

Note:

The

getNextEvent()

method

is

usually

called

from

the

poll

method,

pollForEvents().

See

also

fetchEvents(),,

pollForEvents(),,

setEventsToProcess()

Chapter

17.

CWConnectorEventStore

class

323

getTerminate()

Retrieves

the

value

of

the

internal

terminate-connector

flag.

Syntax

public

boolean

getTerminate();

Parameters

None.

Return

values

Aboolean

value

that

indicates

the

current

setting

of

the

internal

terminate-connector

flag.

Exceptions

None.

Notes

The

getTerminate()

method

retrieves

the

value

of

an

internal

flag

that

indicates

that

the

connector

framework

should

terminate

the

connector.

The

connector

can

set

the

status

of

this

internal

flag

with

the

setTerminate()

method.

The

pollForEvents()

method

should

call

the

getTerminate()

method

after

its

call

to

getBO()

to

determine

whether

to

return

the

APPRESPONSETIMEOUT

outcome

status.

For

more

information,

see

“Retrieving

application

data”

on

page

185..

See

also

getBO(),,

setTerminate()

recoverInProgressEvents()

Recovers

any

In-Progress

events

in

the

event

store.

Syntax

public

abstract

int

recoverInProgress();

Parameters

None.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

recovery

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

recovery

of

in-progress

events

succeeded.

CWConnectorConstant.FAIL

The

recovery

of

in-progress

events

failed.

324

Connector

Development

Guide

for

Java

Exceptions

InvalidStatusChangeException

Thrown

when

the

status

is

being

changed

to

an

invalid

status

value

for

the

application.

StatusChangeFailedException

Thrown

when

the

status

change

from

IN_PROGRESS

to

READY_FOR_POLL

fails.

AttributeNullValueException

Thrown

if

the

InDoubtEvents

connector

configuration

property

is

not

defined

and

set.

Notes

The

recoverInProgressEvents()

method

checks

the

event

store

for

any

events

that

currently

have

the

IN_PROGRESS

status.

An

event

might

remain

in

the

event

store

with

an

event

status

of

IN_PROGRESS

if

the

connector

was

unexpectedly

shutdown.

Note:

The

CWConnectorEventStore

class

does

not

provide

a

default

implementation

for

the

recoverInProgressEvents()

method.

Therefore,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

recover

In-Progress

events

at

connector

startup.

One

possible

way

to

implement

recoverInProgressEvents()

is

to

base

its

actions

on

the

InDoubtEvents

connector

configuration

property.

If

such

events

exist,

the

method

can

take

one

of

the

following

actions,

based

on

the

value

of

this

property:

Value

of

InDoubtEvents

Action

for

recoverInProgressEvents()

Reprocess

Change

all

events

with

the

IN_PROGRESS

status

to

the

READY_FOR_POLL

status

so

that

they

are

sent

to

the

connector

framework

in

subsequent

poll

calls.

FailOnStartup

Log

a

fatal

error

and

return

a

FAIL

outcome

status

to

agentInit(),

which

in

turn

throws

the

InProgressEventRecoveryFailedException

exception.

This

action

also

sends

an

automatic

email,

if

LogAtInterchangeEnd

is

set

to

True.

LogError

Log

a

fatal

error

but

do

not

return

FAIL

outcome

status

to

agentInit().

Ignore

Ignore

the

In-Progress

events.

Note:

For

recoverInProgressEvents()

to

work

as

described,

the

InDoubtEvents

connector

configuration

property

must

be

defined.

If

InDoubtEvents

is

not

defined,

recoverInProgressEvents()

should

throw

the

AttributeNullValueException

exception.

The

recoverInProgressEvents()

methods

is

usually

called

as

part

of

the

connector

initialization

process,

from

within

the

agentInit()

method.

The

agentInit()

should

check

for

the

status

from

recoverInProgressEvents()

and

catch

any

exceptions

as

well.

The

agentInit()

method

should

throw

an

exception

in

either

of

the

following

cases:

v

If

recoverInProgressEvents()

returns

a

FAIL

outcome

status

v

If

recoverInProgressEvents()

catches

an

exception

Chapter

17.

CWConnectorEventStore

class

325

See

also

agentInit()

resubmitArchivedEvents()

Copies

the

specified

archived

event

from

the

application’s

archive

store

to

the

application’s

event

store

and

changes

the

event

status

to

READY_FOR_POLL.

Syntax

public

abstract

int

resubmitArchivedEvents(String

eventID);

Parameters

eventID

Is

the

event

ID

for

the

event

to

resubmit.

Return

values

An

integer

that

indicates

the

number

of

events

archived.

If

nothing

is

resubmitted,

return

a

zero

(0

).

Exceptions

InvalidStatusChangeException

Thrown

when

the

status

is

being

changed

to

an

invalid

status

value

for

the

application.

StatusChangeFailedException

Thrown

when

the

status

change

to

READY_FOR_POLL

fails.

Notes

The

resubmitArchivedEvents()

method

resubmits

unprocessed

events

in

the

archive

store

to

the

event

store,

where

they

can

be

processed.

An

event

is

moved

to

the

archive

store

when

it

has

no

subscriptions

or

after

it

has

been

processed.

Archiving

processed

or

unsubscribed

events

ensures

that

events

are

not

lost.

Setting

the

event

status

to

READY_FOR_POLL

ensures

that

the

events

will

be

picked

up

on

subsequent

polls

of

the

event

store.

Note:

The

resubmitArchivedEvents()

method

is

an

abstract

method.

Therefore,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

resubmit

archived

events

for

subsequent

polls

of

the

event

store.

setEventStatus()

Sets

the

status

of

an

event

in

the

event

store.

Syntax

public

abstract

void

setEventStatus(String

eventID,

int

status);

Parameters

eventID

Is

the

event

ID

of

the

event

whose

status

is

changed.

status

Is

one

of

the

following

event-status

constants

to

identify

the

new

status

of

the

specified

event:

326

Connector

Development

Guide

for

Java

CWConnectorEventStatus.READY_FOR_POLL

CWConnectorEventStatus.IN_PROGRESS

CWConnectorEventStatus.SUCCESS

CWConnectorEventStatus.UNSUBSCRIBED

CWConnectorEventStatus.ERROR_POSTING_EVENT

CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND

CWConnectorEventStatus.ERROR_PROCESSING_EVENT

Return

values

None.

Exceptions

InvalidStatusChangeException

Thrown

when

the

status

is

being

changed

to

an

invalid

status

value

for

the

application.

Notes

The

setEventStatus()

method

performs

the

following

actions:

v

Check

if

the

status

value

is

valid,

throwing

the

InvalidStatusChangeException

exception

if

it

is

not.

v

Change

the

status

of

the

event

identified

by

eventID

in

the

application’s

event

store.

Important:

The

setEventStatus()

method

is

an

abstract

method.Therefore,

the

event-store

class

must

implement

this

method

to

provide

the

ability

to

set

the

status

of

an

event

in

the

event

store.

The

connector

must

ensure

that

the

change

in

event

status

is

committed

in

the

underlying

application.

See

also

updateEventStatus()

setEventsToProcess()

Sets

the

eventsToProcess

vector

with

specified

events.

Syntax

public

void

setEventsToProcess(Vector

eventsVector);

Parameters

eventsVector

Is

a

Java.util.Vector

object

that

contains

the

events

to

process.

Return

values

None.

Exceptions

None.

Chapter

17.

CWConnectorEventStore

class

327

Notes

The

setEventsToProcess()

method

assigns

to

the

eventsToProcess

vector

of

the

CWConnectorEventStore

object

the

contents

of

the

eventsVector

vector.

setTerminate()

Sets

the

internal

terminate-connector

flag

to

true.

Syntax

public

void

setTerminate();

Parameters

None.

Return

values

None.

Exceptions

None.

Notes

The

setTerminate()

method

sets

an

internal

flag

that

tells

the

connector

framework

to

terminate

the

connector.

The

connector

can

check

the

status

of

this

internal

flag

with

the

getTerminate()

method.

The

getBO()

method

should

call

the

setTerminate()

method

after

its

call

to

doVerbFor()

if

doVerbFor()

has

returned

the

APPRESPONSETIMEOUT

outcome

status.

For

more

information,

see

“Retrieving

application

data”

on

page

185.

See

also

getTerminate()

updateEventStatus()

Updates

the

event

status

both

in

the

application’s

event

store

and

in

the

event.

Syntax

public

void

updateEventStore(CWConnectorEvent

eventObject,

int

status);

Parameters

eventObject

Is

the

event

object

whose

status

is

updated.

status

Is

one

of

the

following

event-status

constants

to

store

in

the

event

object:

CWConnectorEventStatus.READY_FOR_POLL

CWConnectorEventStatus.IN_PROGRESS

CWConnectorEventStatus.SUCCESS

CWConnectorEventStatus.UNSUBSCRIBED

CWConnectorEventStatus.ERROR_POSTING_EVENT

CWConnectorEventStatus.ERROR_OBJECT_NOT_FOUND

CWConnectorEventStatus.ERROR_PROCESSING_EVENT

328

Connector

Development

Guide

for

Java

Return

values

None.

Exceptions

InvalidStatusChangeException

Thrown

when

the

status

is

being

changed

to

an

invalid

status

value

for

the

application.

StatusChangeFailedException

Thrown

when

the

underlying

application

is

unable

to

change

the

event

status

in

the

event

store.

Notes

The

updateEventStatus()

method

sets

the

status

of

the

eventObject

event

to

status.

It

also

updates

the

event

status

within

the

eventObject

event

to

status.

Deprecated

Methods

Some

methods

in

the

CWConnectorEventStore

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

131

lists

the

deprecated

methods

for

the

CWConnectorEventStore

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

Table

131.

Deprecated

methods

of

the

CWConnectorEventStore

class

Deprecated

method

Replacement

setEventStoreStatus()

setEventStatus()

Chapter

17.

CWConnectorEventStore

class

329

330

Connector

Development

Guide

for

Java

Chapter

18.

CWConnectorEventStoreFactory

interface

The

CWConnectorEventStoreFactory

interface

defines

the

functionality

for

the

event-store

factory,

which

creates

an

event

store.

If

your

Java

connector

uses

an

extension

of

the

CWConnectorEventStore

class

to

access

the

event

store,

you

must

create

an

event-store-factory

class

to

implement

the

CWConnectorEventStoreFactory

interface.

This

interface

contains

a

method

to

instantiate

an

event-store

(CWConnectorEventStore)

object.

Important:

All

Java

connectors

that

use

an

extension

of

the

CWConnectorEventStore

class

to

access

the

event

store

must

provide

an

implementation

of

this

interface.

In

this

event-store-factory

class,

you

must

implement

the

getEventStore()

method

to

be

able

to

access

the

event

store

through

the

CWConnectorEventStore

class.

Table

132

summarizes

the

methods

in

the

CWConnectorEventStoreFactory

interface.

Table

132.

Member

method

of

the

CWConnectorEventStoreFactory

interface

Member

method

Description

Page

getEventStore()

Creates

a

new

event-store

object.

331

getEventStore()

Creates

a

new

event-store

object.

Syntax

public

Object

getEventStore();

Parameters

None.

Return

values

An

Object

containing

the

newly

created

event-store

object.

If

the

event

store

cannot

be

located,

the

method

returns

null.

Exceptions

None.

Notes

The

getEventStore()

method

is

the

event-store

factory.

It

needs

to

build

the

corresponding

event

store

for

the

connector

and

return

the

event-store

object.

Connectors

that

use

more

than

one

event

store

must

provide

implementations

for

this

method

for

each

event-store

class.

The

default

implementation

of

the

getEventStore()

method

in

the

CWConnectorAgent

class

calls

the

getEventStore()

method

of

the

event-store-factory

class

named

in

the

EventStoreFactory

connector

configuration

property.

For

more

information,

see

“CWConnectorEventStoreFactory

interface”

on

page

176..

©

Copyright

IBM

Corp.

2000,

2004

331

See

also

getEventStore()

332

Connector

Development

Guide

for

Java

Chapter

19.

CWConnectorExceptionObject

class

The

CWConnectorExceptionObject

class

represents

an

exception-detail

object,

which

provides

detailed

information

about

an

exception.

Each

exception

that

methods

of

the

Java

connector

library

can

throw

can

contain

an

exception-detail

object.

This

class

provides

methods

to

store

and

access

information

about

the

exception

message.

Table

133

summarizes

the

methods

in

the

CWConnectorExceptionObject

class.

Table

133.

Member

methods

of

the

CWConnectorExceptionObject

class

Member

method

Description

Page

CWConnectorExceptionObject()

Creates

an

exception-detail

object.

333

getExpl()

Retrieves

the

explanation

for

the

message

associated

with

the

exception-detail

object’s

message

number.

333

getMsg()

Retrieves

the

message

text

from

an

exception-detail

object.

334

getMsgNumber()

Retrieves

the

message

number

(ID)

associated

with

the

message

in

the

exception-detail

object.

334

getMsgType()

Retrieves

the

message

type

associated

with

the

message

in

the

exception-detail

object.

335

setExpl()

Sets

the

explanation

for

the

message

in

the

exception-detail

object.

336

setMsg()

Sets

the

message

text

for

the

exception-detail

object.

336

setMsgNumber()

Sets

the

message

number

(ID)

associated

with

the

message

in

the

exception-detail

object.

337

setMsgType()

Sets

the

message

type

associated

with

the

message

in

the

exception-detail

object.

337

setStatus()

Sets

the

status

value

for

the

exception-detail

object.

338

CWConnectorExceptionObject()

Creates

an

exception-detail

object.

Syntax

public

CWConnectorExceptionObject();

Parameters

None.

Return

values

A

CWConnectorExceptionObject

object

containing

the

newly

created

exception-detail

object.

getExpl()

Retrieves

the

explanation

for

the

message

associated

with

the

exception-detail

object’s

message

number.

©

Copyright

IBM

Corp.

2000,

2004

333

Syntax

public

String

getExpl();

Parameters

None.

Return

values

A

String

object

containing

the

message

explanation

from

the

current

exception-detail

object.

Exceptions

None.

See

also

setExpl()

getMsg()

Retrieves

the

message

text

from

an

exception-detail

object.

Syntax

public

String

getMsg();

Parameters

None.

Return

values

A

String

object

that

contains

the

message

text

from

the

current

exception-detail

object.

Exceptions

None.

See

also

setMsg()

getMsgNumber()

Retrieves

the

message

number

(ID)

associated

with

the

message

in

the

exception-detail

object.

Syntax

public

int

getMsgNumber();

Parameters

None.

334

Connector

Development

Guide

for

Java

Return

values

The

integer

message

number

of

the

exception-detail

object’s

message.

See

also

setMsgNumber()

getMsgType()

Retrieves

the

message

type

associated

with

the

message

in

the

exception-detail

object.

Syntax

public

int

getMsgType();

Parameters

None.

Return

values

The

integer

that

indicates

the

message

type

of

the

exception-detail

object’s

message.

Compare

this

integer

value

with

the

following

message-type

constants

to

determine

the

message

type:

XRD_ERROR

XRD_FATAL

These

message-type

constants

are

defined

in

both

the

CWConnectorUtil

and

CWConnectorLogAndTrace

classes.

See

also

setMsgType()

getStatus()

Retrieves

the

status

from

the

exception-detail

object.

Syntax

public

int

getStatus();

Parameters

None.

Return

values

An

integer

value

that

represents

the

status

exception-detail

object.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

message

type:

CWConnectorConstant.APPRESPONSETIMEOUT

CWConnectorConstant.BO_DOES_NOT_EXIST

CWConnectorConstant.

MULTIPLE_HITS

CWConnectorConstant.RETRIEVEBYCONTENT_FAILED

CWConnectorConstant.UNABLETOLOGIN

These

outcome-status

constants

are

defined

in

the

CWConnectorConstant

class.

Chapter

19.

CWConnectorExceptionObject

class

335

Exceptions

None.

See

also

setStatus()

setExpl()

Sets

the

explanation

for

the

message

in

the

exception-detail

object.

Syntax

public

void

setExpl(String

msgExpl);

Parameters

msgExpl

Is

a

String

object

that

contains

the

message

explanation

to

assign

to

the

exception-detail

object.

Return

values

None.

Exceptions

None.

See

also

getExpl()

setMsg()

Sets

the

message

text

for

the

exception-detail

object.

Syntax

public

void

setMsg(String

newMsg);

Parameters

newMsg

Is

a

String

object

that

contains

the

message

text

to

assign

to

the

exception-detail

object.

Return

values

None.

Exceptions

None.

See

also

getMsg()

336

Connector

Development

Guide

for

Java

setMsgNumber()

Sets

the

message

number

(ID)

associated

with

the

message

in

the

exception-detail

object.

Syntax

public

void

setMessageNumber(int

msgNumber);

Parameters

msgNumber

Is

the

integer

message

number

to

set

for

the

exception-detail

object’s

message.

Return

values

None.

Exceptions

None.

See

also

getMsgNumber()

setMsgType()

Sets

the

message

type

associated

with

the

message

in

the

exception-detail

object.

Syntax

public

void

setMsgType(int

msgType);

Parameters

msgType

Is

the

message

type

that

indicates

the

severity

of

the

message

in

the

exception-detail

object.

Use

one

of

the

following

message-type

constants:

XRD_ERROR

XRD_FATAL

Note:

Even

though

other

message-type

constants

exist,

they

are

not

valid

as

types

for

a

message

in

the

exception-detail

object.

This

object

is

part

of

the

exception

object,

which

is

only

thrown

when

an

exception

occurs.

Return

values

None.

Exceptions

None.

See

also

getMsgType()

Chapter

19.

CWConnectorExceptionObject

class

337

setStatus()

Sets

the

status

value

for

the

exception-detail

object.

Syntax

public

void

setStatus(int

status);

Parameters

status

Is

an

integer

value

that

indicates

the

outcome

status

to

assign

to

the

exception-detail

object.

Return

values

None.

Notes

You

must

set

the

exception

status

of

an

exception-detail

object

with

the

setStatus()

method

before

the

exception

is

thrown.

This

status

value

allows

the

calling

code

to

take

appropriate

action

to

cleanup

any

application-related

resources

(for

example

from

an

APPRESPONSETIMEOUT

status)

before

to

passing

this

status

back

to

the

connector

framework.

Exceptions

None.

See

also

getStatus()

338

Connector

Development

Guide

for

Java

Chapter

20.

CWConnectorLogAndTrace

class

The

CWConnectorLogAndTrace

class

defines

the

log-trace

constants

shared

by

all

connectors.

This

class

contains

the

following

static

constants:

v

“Message-type

constants”

v

“Trace-level

constants”

Message-type

constants

Table

134

summarizes

the

static

message-type

constants,

which

are

defined

in

the

CWConnectorLogAndTrace

cclass.

Table

134.

Message-type

constants

of

the

CWConnectorLogAndTrace

class

Constant

name

Meaning

XRD_WARNING

A

warning

message

XRD_TRACE

A

trace

message

XRD_INFO

An

informational

message

XRD_ERROR

An

error

message

XRD_FATAL

A

fatal

error

message

Trace-level

constants

Table

135

summarizes

the

static

trace-level

constants,

which

are

defined

in

the

CWConnectorLogAndTrace

cclass.

Table

135.

Trace-level

constants

of

the

CWConnectorLogAndTrace

class

Constant

name

Meaning

LEVEL0

Level

0

of

tracing

(turn

tracing

off)

LEVEL1

Level

1

of

tracing

LEVEL2

Level

2

of

tracing

LEVEL3

Level

3

of

tracing

LEVEL4

Level

4

of

tracing

LEVEL5

Level

5

of

tracing

©

Copyright

IBM

Corp.

2000,

2004

339

340

Connector

Development

Guide

for

Java

Chapter

21.

CWConnectorReturnStatusDescriptor

class

The

CWConnectorReturnStatusDescriptor

class

enables

Java

connectors

to

return

error

and

informational

messages

in

a

return-status

descriptor.

This

descriptor

provides

additional

status

information

is

usually

returned

as

part

of

the

request

response

sent

to

the

integration

broker

that

initiated

the

request.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

the

return-status

descriptor

to

the

collaboration

that

initiated

the

request.

The

collaboration

can

access

the

information

in

this

return-status

descriptor

to

obtain

the

status

of

its

service

call

request.

Note:

The

CWConnectorReturnStatusDescriptor

class

extends

the

ReturnStatusDescriptor

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Table

136

summarizes

the

methods

in

the

CWConnectorReturnStatusDescriptor

class.

Table

136.

Member

methods

of

the

CWConnectorReturnStatusDescriptor

class

Member

method

Description

Page

CWConnectorReturnStatusDescriptor()

Creates

a

return-status

descriptor.

341

getErrorString()

Retrieves

a

message

string

from

a

return-status

descriptor.

342

getStatus()

Retrieves

the

value

of

the

status

code

from

the

return-status

descriptor.

342

setErrorString()

Sets

the

error

or

informational

message

in

the

return-status

descriptor.

342

setStatus()

Sets

the

value

of

the

status

code

in

the

return-status

descriptor.

343

CWConnectorReturnStatusDescriptor()

Creates

a

return-status

descriptor.

Syntax

public

CWConnectorReturnStatusDescriptor();

Parameters

None.

Return

values

A

CWConnectorReturnStatusDescriptor

object

containing

the

newly

created

return-status

descriptor.

©

Copyright

IBM

Corp.

2000,

2004

341

getErrorString()

Retrieves

a

message

string

from

a

return-status

descriptor.

Syntax

public

String

getErrorString();

Parameters

None.

Return

values

A

String

containing

an

error

or

informational

message

for

the

integration

broker,

or

null.

Exceptions

None.

Notes

The

getErrorString()

method

returns

a

message

that

can

be

an

error

message

or

an

informational

message.

See

also

setErrorString()

getStatus()

Retrieves

the

value

of

the

status

code

from

the

return-status

descriptor.

Syntax

public

int

getStatus();

Parameters

None.

Return

values

An

int

value

indicating

the

status

of

an

operation.

Exceptions

None.

See

also

setStatus()

setErrorString()

Sets

the

error

or

informational

message

in

the

return-status

descriptor.

342

Connector

Development

Guide

for

Java

Syntax

public

void

setErrorString(String

errorStr);

Parameters

errorStr

Is

the

value

to

set

the

message

string.

Return

values

None.

Exceptions

None.

See

also

getErrorString()

setStatus()

Sets

the

value

of

the

status

code

in

the

return-status

descriptor.

Syntax

public

void

setStatus(int

status);

Parameters

status

Is

the

value

of

status

code

to

assign

to

the

return-status

descriptor.

Return

values

None.

Exceptions

None.

See

also

getStatus()

Chapter

21.

CWConnectorReturnStatusDescriptor

class

343

344

Connector

Development

Guide

for

Java

Chapter

22.

CWConnectorUtil

class

The

CWConnectorUtil

class

contains

miscellaneous

utility

methods.

Note:

The

CWConnectorUtil

class

extends

the

JavaConnectorUtil

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

This

class

contains

the

following:

v

“Message-file

constants”

v

“Methods”

Message-file

constants

Table

137

summarizes

the

static

message-file

constants,

which

are

defined

in

the

CWConnectorUtil

class.

Table

137.

Message-file

constants

of

the

CWConnectorUtil

class

Constant

name

Meaning

CONNECTOR_MESSAGE_FILE

Use

the

connector

message

file

to

generate

messages.

INFRASTRUCTURE_MESSAGE_FILE

Use

the

InterChange

Server

message

file

(InterchangeSystem.txt)

to

generate

messages.

Important:

Connectors

should

not

obtain

messages

from

the

InterchangeSystem.txt

file.

Instead,

they

should

always

use

their

local

connector

message

file.

Methods

The

CWConnectorUtil

class

contains

miscellaneous

utility

methods

for

use

in

a

Java

connector.

These

utility

methods

fall

into

the

following

general

categories:

v

Static

methods

for

generating

and

logging

messages

v

Static

methods

for

creating

business

objects

v

Static

methods

for

obtaining

connector

configuration

properties

v

Methods

for

obtaining

locale

information

Table

138

summarizes

the

methods

in

the

CWConnectorUtil

class.

Table

138.

Member

methods

of

the

CWConnectorUtil

class

Member

method

Description

Page

CWConnectorUtil()

Creates

a

CWConnectorUtil

object.

347

boToByteArray()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

through

a

byte

array.

347

©

Copyright

IBM

Corp.

2000,

2004

345

Table

138.

Member

methods

of

the

CWConnectorUtil

class

(continued)

Member

method

Description

Page

boToStream()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

through

an

input

stream.

349

boToString()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

as

a

string.

351

byteArrayToBo()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

through

a

byte

array.

353

createAndCopyKeyVals()

Creates

a

new

business

object,

assigning

it

the

specified

key

values

and

verb

and

default

values

to

the

remaining

attributes.

354

createAndSetDefaults()

Creates

a

new

business

object,

assigning

default

values

to

all

its

attributes.

355

createBusObj()

Creates

a

new

business

object.

356

generateAndLogMsg()

Generates

a

message

and

sends

it

to

the

log

destination.

356

generateAndTraceMsg()

Generates

a

trace

message

and

sends

it

to

the

log

destination.

358

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

359

getAllConfigProperties()

Retrieves

a

list

of

all

connector

configuration

properties,

regardless

of

whether

the

property

is

simple,

hierarchical,

or

multi-valued.

360

getAllConnectorAgentProperties()

Retrieves

a

list

of

all

connector

configuration

properties

for

the

current

connector.

However,

it

retrieves

them

as

single-valued

properties.

361

getBlankValue()

Retrieves

the

value

for

the

special

Blank

attribute

value.

362

getConfigProp()

Retrieves

the

value

of

a

connector

configuration

property.

362

getGlobalEncoding()

Retrieves

the

character

encoding

that

the

connector

framework

is

using.

362

getGlobalLocale()

Retrieves

the

locale

of

the

connector

framework.

363

getHierarchicalConfigProp()

Retrieves

the

value

of

a

hierarchical

connector

configuration

property.

364

getIgnoreValue()

Retrieves

the

value

for

the

special

“Ignore”

attribute

value.

365

getSupportedBONames()

Retrieves

a

list

of

supported

business

objects

for

the

current

connector.

365

getVersion()

Retrieves

the

version

of

the

connector.

366

initAndValidateAttributes()

Initializes

attributes

by

setting

them

to

their

default

values

and

for

each

attribute

and

then

validates

the

attributes.

366

isBlankValue()

Determines

if

an

attribute

value

is

the

special

Blank

value.

368

isIgnoreValue()

Determines

if

an

attribute

value

is

the

special

Ignore

value.

368

isTraceEnabled()

Determines

if

the

trace

level

is

greater

than

or

equal

to

the

trace

level

for

which

it

is

looking,

if

tracing

is

enabled

at

this

level.

368

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

369

346

Connector

Development

Guide

for

Java

Table

138.

Member

methods

of

the

CWConnectorUtil

class

(continued)

Member

method

Description

Page

readerToBO()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

with

a

Reader

object.

370

streamToBO()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

through

an

input

stream.

372

stringToBo()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

as

a

string.

374

traceCWConnectorAPIVersion()

Traces

the

Java

connector

library

version

at

a

trace

level

1.

375

traceWrite()

Writes

a

trace

message

to

the

log

destination.

376

CWConnectorUtil()

Creates

a

CWConnectorUtil

object.

Syntax

public

CWConnectorUtil();

Parameters

None.

Return

values

A

CWConnectorUtil

object.

boToByteArray()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

as

a

byte

array.

Syntax

public

static

byte[]

boToByteArray(CwConnectorBusObj

theBusObj,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

optional

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

byte

array.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

byte

array.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

Chapter

22.

CWConnectorUtil

class

347

mimeType

Is

the

MIME

type

that

identifies

the

serialized

format

to

which

to

convert

the

business

object.

theBusObj

Is

the

business

object

to

serialize

to

the

specified

MIME

type

and

return

a

byte

array.

Return

values

A

byte

array

that

contains

the

serialized

business

object

in

the

specified

MIME

type.

Exceptions

DataHandlerCreateException

Thrown

when

the

boToByteArray()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

business

object

to

the

specified

MIME

type.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

The

boToByteArray()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

byte

array.

Notes

The

boToByteArray()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

business-object-to-string

conversion.

With

this

method,

the

resulting

serialized

data

can

be

accessed

through

a

Java

byte

array.

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

boToByteArray()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

boToByteArray()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

boToByteArray()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

boToByteArray()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

348

Connector

Development

Guide

for

Java

Once

instantiated,

the

data

handler

converts

the

specified

business

object

to

the

serialized

format

that

the

MIME

type

indicates.

If

boToByteArray()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

creates

the

serialized

data.

The

data

handler

returns

this

serialized

data

to

the

boToByteArray()

method

as

a

byte

array,

through

which

the

calling

method

can

access

the

returned

serialized

data.

Note:

If

the

data

handler

cannot

convert

the

business

object,

boToByteArray()

throws

the

ParseException

exception.

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToStream(),

boToString(),

byteArrayToBo()

boToStream()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

through

an

input

stream.

Syntax

public

static

InputStream

boToStream(CWConnectorBusObj

theBusObj,

String

mimeType);

public

static

InputStream

boToStream(CwConnectorBusObj

theBusObj,

String

mimeType,

Object

config);

public

static

InputStream

boToStream(CwConnectorBusObj

theBusObj,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

optional

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

input

stream.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

input

stream.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

serialized

format

to

which

to

convert

the

business

object.

theBusObj

Is

the

business

object

to

serialize

tothe

specified

MIME

type

and

return

an

input

stream.

Return

values

An

object

of

the

Java

java.io.InputStream

class

(or

one

of

its

subclasses)

that

contains

the

serialized

business

object

in

the

specified

MIME

type.

Chapter

22.

CWConnectorUtil

class

349

Exceptions

DataHandlerCreateException

Thrown

when

the

boToStream()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

business

object

to

the

specified

MIME

type.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

The

boToStream()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

an

InputStream

object.

Notes

The

boToStream()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

business-object-to-string

conversion.

With

this

method,

the

resulting

serialized

data

can

be

accessed

through

a

Java

input

stream

(based

on

the

InputStream

class).

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

boToStream()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

boToStream()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

boToStream()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

boToStream()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

business

object

to

the

serialized

format

that

the

MIME

type

indicates.

If

boToStream()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

creates

the

serialized

data.

The

data

handler

returns

this

serialized

data

to

the

boToStream()

method

as

an

input

stream,

through

which

the

calling

method

can

access

the

returned

serialized

data.

Note:

If

the

data

handler

cannot

convert

the

business

object,

boToStream()

throws

the

ParseException

exception.

350

Connector

Development

Guide

for

Java

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToByteArray(),

boToString(),

streamToBO()

boToString()

Calls

a

data

handler

to

convert

a

business

object

to

serialized

data

of

a

specified

MIME

type.

This

serialized

data

can

be

accessed

as

a

string.

Syntax

public

static

String

boToString(CWConnectorBusObj

theBusObj,

String

mimeType);

public

static

String

boToString(CwConnectorBusObj

theBusObj,

String

mimeType,

Object

config);

public

static

String

boToString(CwConnectorBusObj

theBusObj,

String

mimeType,

String

BOPrefix,

String

encoding,

Object

config);

Parameters

BOPrefix

Is

the

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

String.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

String.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

serialized

format

to

which

to

convert

the

business

object.

theBusObj

Is

the

business

object

to

serialize

to

the

specified

MIME

type

and

return

a

string.

Return

values

A

String

object

that

contains

the

serialized

business

object

in

the

specified

MIME

type.

Exceptions

DataHandlerCreateException

Thrown

when

the

boToString()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

business

object

to

the

specified

MIME

type.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

Chapter

22.

CWConnectorUtil

class

351

The

boToString()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

String

object.

Notes

The

boToString()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

business-object-to-string

conversion.

With

this

method,

the

resulting

serialized

data

can

be

accessed

through

a

Java

String.

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

boToString()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

boToString()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

boToString()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

boToString()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

business

object

to

the

serialized

format

that

the

MIME

type

indicates.

If

boToString()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

creates

the

serialized

data.

The

data

handler

returns

this

serialized

data

to

the

boToString()

method

as

a

String

object,

through

which

the

calling

method

can

access

the

returned

serialized

data.

Note:

If

the

data

handler

cannot

convert

the

business

object,

boToString()

throws

the

ParseException

exception.

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToByteArray(),

boToStream(),

stringToBo()

352

Connector

Development

Guide

for

Java

byteArrayToBo()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

as

a

byte

array.

Syntax

public

static

CWConnectorBusObj

byteArrayToBo(CWConnectorBusObj

theBusObj,

byte[]

serializedData,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

byte

array.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

byte

array.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

format

of

the

serialized

data.

serializedData

Is

a

byte

array

that

contains

the

serialized

data

to

convert

to

a

business

object.

theBusObj

Identifies

the

type

of

business

object

(business

object

definition)

to

which

the

method

converts

the

serialized

data.

Return

values

A

CWConnectorBusObj

object

that

contains

the

business

object

for

the

serialized

data.

Exceptions

DataHandlerCreateException

Thrown

when

the

byteArrayToBo()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

serialized

data

to

the

specified

business

object.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

The

byteArrayToBo()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

business

object.

Notes

The

byteArrayToBo()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

string-to-business-object

conversion.

With

this

method,

the

incoming

serializedData

is

accessed

through

a

Java

byte

array.

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

Chapter

22.

CWConnectorUtil

class

353

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

byteArrayToBo()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

byteArrayToBo()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

byteArrayToBo()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

byteArrayToBo()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

serialized

data

to

a

business

object

of

the

type

that

theBusObj

indicates.

If

byteArrayToBo()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

interprets

the

serialized

data.

The

data

handler

returns

this

business

object

to

the

byteArrayToBo()

method,

which

in

turn

returns

it

to

the

calling

method.

Note:

If

the

data

handler

cannot

convert

the

serialized

data,

byteArrayToBo()

throws

the

ParseException

exception.

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToByteArray(),

readerToBO(),

streamToBO(),

stringToBo()

createAndCopyKeyVals()

Creates

a

new

business

object,

assigning

it

the

specified

key

values

and

verb

and

default

values

to

the

remaining

attributes.

Syntax

public

static

CWConnectorBusObj

createAndCopyKeyVals(String

busObjName,

String

keyVals,

String

verb,

String

delimiter)

Parameters

busObjName

Is

the

name

of

the

business

object

to

create.

354

Connector

Development

Guide

for

Java

keyVals

Is

the

key-value

string,

which

is

an

ordered

list

of

primary-key

values

separated

by

the

delimiter.

verb

Is

the

verb

to

assign

to

the

new

business

object.

delimiter

Is

the

key

delimiter.

Return

values

A

CWConnectorBusObj

object

containing

the

newly

created

business

object.

Exceptions

SpecNameNotFoundException

Thrown

when

the

business

object

definition

is

not

found

for

the

name

specified.

AttributeNotFoundException

Thrown

when

an

attribute

cannot

be

found.

AttributeValueException

Thrown

when

an

attribute

is

set

to

an

invalid

value.

WrongAttributeException

Thrown

when

the

attribute’s

value

does

not

match

its

data

type.

InvalidVerbException

Thrown

when

the

verb

value

is

invalid.

Notes

The

createAndCopyKeyVals()

method

performs

the

following

tasks:

v

Create

a

new

business

object

of

the

type

specified

by

busObjName.

v

Parses

the

keyVals

key

string

to

obtain

the

key

values

and

sets

these

in

the

business

object’s

key

attributes.

The

method

assumes

that

the

key

values

are

delimited

with

the

specified

delimiter

value.

v

Set

the

new

business

object’s

verb

to

verb.

v

Assign

default

attribute

values

to

the

remaining

attributes

in

the

business

object.

This

method

is

useful

in

the

pollForEvents()

method

to

build

the

business

objedt

that

is

to

be

sent

to

the

integration

broker

for

further

processing.

createAndSetDefaults()

Creates

a

new

business

object,

assigning

default

values

to

all

its

attributes.

Syntax

public

static

CWConnectorBusObj

createAndSetDefaults(

String

busObjName)

Parameters

busObjName

Is

the

name

of

the

business

object

to

create.

Return

values

A

CWConnectorBusObj

object

containing

the

newly

created

business

object.

Exceptions

SpecNameNotFoundException

Thrown

when

the

business

object

definition

is

not

found

for

the

name

specified.

Chapter

22.

CWConnectorUtil

class

355

AttributeNotFoundException

Thrown

when

one

of

the

business

object’s

attributes

(as

defined

by

the

business

object

definition)

cannot

be

found.

Notes

The

createAndSetDefaults()

method

performs

the

following

tasks:

v

Create

a

new

business

object

of

the

type

specified

by

busObjName.

v

Assign

default

attribute

values

to

the

all

attributes

in

the

business

object.

createBusObj()

Creates

a

new

business

object.

Syntax

public

static

final

CWConnectorBusObj

createBusObj(String

busObjName);

public

static

final

CWConnectorBusObj

createBusObj(String

busObjName,

Locale

localeObject);

public

static

final

CWConnectorBusObj

createBusObj(String

busObjName,

String

localeName);

Parameters

busObjName

Specifies

the

name

of

the

business

object

to

create.

localeObject

Is

the

Java

Locale

object

that

identifies

the

locale

to

associate

with

the

business

object.

localeName

Is

the

name

of

the

locale

to

associate

with

the

business

object.

Return

values

A

CWConnectorBusObj

object

containing

the

newly

created

business

object.

Exceptions

SpecNameNotFoundException

Thrown

when

the

business

object

definition

is

not

found

for

the

name

specified.

Notes

The

createBusObj()

method

creates

a

new

business

object

instance

whose

type

is

the

business

object

definition

you

specify

in

busObjName.

If

you

specify

a

localeObject

or

localeName,

this

business-object

locale

applies

to

the

data

in

the

business

object,

not

to

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

For

a

description

of

the

format

for

localeName,

see

″Design

Considerations

for

an

Internationalized

Connector,″

on

page

54.

See

also

getLocale()

generateAndLogMsg()

Generates

a

message

and

sends

it

to

the

log

destination.

356

Connector

Development

Guide

for

Java

Syntax

public

static

void

generateAndLogMsg(int

msgNum,

int

msgType,

int

isGlobal);

public

static

void

generateAndLogMsg(int

msgNum,

int

msgType,

int

isGlobal,

msgParameters);

Parameters

isGlobal

Is

the

CONNECTOR_MESSAGE_FILE

message-file

constant

defined

in

the

CWConnectorUtil

class

to

indicate

that

the

message

file

is

the

connector

message

file.

msgNum

Specifies

the

message

number

(identifier)

in

the

message

file.

msgParameters

Is

an

optional

list

of

String

parameter

values,

each

corresponding

to

a

parameter

in

the

message

list,

for

a

maximum

of

ten

parameters.

msgType

Is

one

of

the

following

message-type

constants

defined

in

the

CWConnectorLogAndTrace

class

to

identify

the

message

severity:

CWConnectorLogAndTrace.XRD_WARNING

CWConnectorLogAndTrace.XRD_ERROR

CWConnectorLogAndTrace.XRD_FATAL

CWConnectorLogAndTrace.XRD_INFO

CWConnectorLogAndTrace.XRD_TRACE

Return

values

None.

Exceptions

None.

Notes

The

generateAndLogMsg()

method

combines

the

message

generating

and

logging

functionality

of

generateMsg()

and

logMsg(),

respectively.

It

generates

a

message

from

a

message

file

and

then

sends

it

to

the

log

destination.

You

establish

the

name

of

a

connector’s

log

destination

through

the

Logging

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

The

method

can

take

in

variable

number

of

string

arguments.

It

supports

up

to

a

total

of

ten

parameter

values.

That

is,

you

can

provide

up

to

ten

String

values

as

arguments

to

generateAndLogMsg().

The

following

call

provides

values

for

seven

parameters

in

error

message

3223,

which

is

defined

in

the

connector

message

file:

generateAndLogMsg(3223,

CWConnectorLogAndTrace:XRD_ERROR,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

value1,

value2,

value3,

value4,

value5,

value6,

value7);

WebSphere

InterChange

Server

If

severity

is

XRD_ERROR

or

XRD_FATAL

and

the

connector

configuration

property

LogAtInterchangeEnd

is

set,

the

error

message

is

logged

and

an

email

notification

is

sent

when

email

notification

is

on.

See

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

for

information

on

how

to

set

up

email

notification

for

errors.

IBM

recommends

that

log

messages

be

contained

in

a

message

file

and

extracted

with

the

generateAndLogMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

messages

specific

to

your

connector.

Chapter

22.

CWConnectorUtil

class

357

Connector

messages

logged

with

generateAndLogMsg()

are

viewable

using

LogViewer.

See

also

generateAndTraceMsg(),,

generateMsg(),,

logMsg()

generateAndTraceMsg()

Generates

a

trace

message

and

sends

it

to

the

trace

destination.

Syntax

public

static

void

generateAndTraceMsg(int

traceLevel,

int

msgNum,

int

isGlobal);

public

static

void

generateAndTraceMsg(int

traceLevel,

int

msgNum,

int

isGlobal,

msgParameters);

Parameters

isGlobal

Is

the

CONNECTOR_MESSAGE_FILE

message-file

constant

defined

in

the

CWConnectorUtil

class

to

indicate

that

the

message

file

is

the

connector

message

file.

msgNum

Specifies

the

message

number

(identifier)

in

the

message

file.

msgParameters

Is

an

optional

list

of

String

parameter

values,

each

corresponding

to

a

parameter

in

the

message

list,

with

a

maximum

of

ten

parameters.

traceLevel

Is

one

of

the

following

trace-level

constants

defined

in

the

CWConnectorLogAndTrace

class

to

identify

the

trace

level

used

to

determine

which

trace

messages

are

output:

CWConnectorLogAndTrace.LEVEL1

CWConnectorLogAndTrace.LEVEL2

CWConnectorLogAndTrace.LEVEL3

CWConnectorLogAndTrace.LEVEL4

CWConnectorLogAndTrace.LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

Return

values

None.

Exceptions

None.

Notes

The

generateAndTraceMsg()

method

combines

the

message

generating

and

tracing

functionality

of

generateMsg()

and

traceWrite(),

respectively.

It

generates

a

message

from

a

message

file

and

then

sends

it

to

the

trace

destination.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

Tracing

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

358

Connector

Development

Guide

for

Java

The

method

can

take

in

variable

number

of

string

arguments.

It

supports

up

to

a

total

of

ten

parameter

values.

That

is,

you

can

provide

up

to

ten

String

values

as

arguments

in

the

msgParameters

parameter

of

generateAndTraceMsg().

The

following

call

provides

values

for

seven

parameters

in

trace

message

668,

which

is

defined

in

the

connector

message

file:

generateAndTraceMsg(CWConnectorLogAndTrace.LEVEL3,

668,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

value1,

value2,

value3,

value4,

value5,

value6,

value7);

Because

trace

messages

are

usually

needed

only

during

debugging,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateAndTraceMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

connector.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

or

generateAndTraceMsg()

method.

Connector

messages

logged

with

generateAndTraceMsg()

are

not

viewable

using

LogViewer.

See

also

generateAndLogMsg(),,

generateMsg(),,

traceWrite()

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

Syntax

public

final

static

String

generateMsg(int

traceLevel,

int

msgNum,

int

msgType,

int

isGlobal,

int

argCount,

Vector

msgParams);

public

final

static

String

generateMsg(int

msgNum,

int

msgType,

int

isGlobal,

int

argCount,

Vector

msgParams);

Parameters

traceLevel

Is

one

of

the

following

trace-level

constants

defined

in

the

CWConnectorLogAndTrace

class

to

specify

the

trace

level

at

which

to

generate

the

message:

CWConnectorLogAndTrace.LEVEL1

CWConnectorLogAndTrace.LEVEL2

CWConnectorLogAndTrace.LEVEL3

CWConnectorLogAndTrace.LEVEL4

CWConnectorLogAndTrace.LEVEL5

When

this

parameter

is

omitted,

the

method

generates

the

message

regardless

of

the

trace

level.

The

message

is

generated

only

if

the

traceLevel

value

is

equal

to

or

less

than

the

current

trace

level

of

the

connector.

msgNum

Specifies

the

message

number

(identifier)

in

the

message

file.

msgType

Is

one

of

the

following

message-type

constants

defined

in

the

CWConnectorLogAndTrace

class

to

identify

the

message:

Chapter

22.

CWConnectorUtil

class

359

CWConnectorLogAndTrace.XRD_WARNING

CWConnectorLogAndTrace.XRD_ERROR

CWConnectorLogAndTrace.XRD_FATAL

CWConnectorLogAndTrace.XRD_INFO

CWConnectorLogAndTrace.XRD_TRACE

isGlobal

Is

the

CONNECTOR_MESSAGE_FILE

message-file

constant

defined

in

the

CWConnectorUtil

class

to

indicate

that

the

message

file

is

the

connector

message

file.

argCount

Is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

To

determine

the

number,

refer

to

the

message

in

the

message

file.

msgParams

Is

a

list

of

parameters

for

the

message

text.

Return

values

A

String

containing

the

generated

message.

For

the

first

form

of

the

method,

the

method

returns

null

if

the

trace

level

is

greater

than

the

trace

level

of

the

connector.

Exceptions

None.

Notes

The

generateMsg()

method

provides

two

forms:

v

Use

the

first

form

of

the

method

(where

traceLevel

is

the

first

parameter)

for

tracing

messages.

For

the

message

to

be

generated,

the

trace

level

must

be

less

than

or

equal

to

the

trace

level

of

the

connector.

You

then

use

the

traceWrite()

method

to

send

the

trace

message

to

the

trace

destination.

You

can

use

the

generateAndTraceMsg()

method

to

combine

the

message

generation

and

tracing

steps.

v

Use

the

second

form

of

the

signature

(where

msgNum

is

the

first

parameter)

for

logging.

You

then

use

the

logMsg()

method

to

send

the

log

message

to

the

log

destination.

You

can

use

the

generateAndLogMsg()

method

to

combine

the

message

generation

and

logging

steps.

See

also

generateAndLogMsg(),,

generateAndTraceMsg(),,

logMsg(),,

traceWrite()

getAllConfigProperties()

Retrieves

a

list

of

all

configuration

properties,

as

hierarchical

connector

properties,

for

the

current

connector.

Syntax

public

static

CWProperty[]

getAllConfigProperties();

Parameters

None.

Return

values

A

reference

to

an

array

of

CWProperty

objects,

each

of

which

contains

one

connector

property

for

the

current

connector.

Exceptions

None.

360

Connector

Development

Guide

for

Java

Notes

The

getAllConfigProperties()

method

retrieves

the

connector

configuration

properties

as

an

array

of

CWProperty

objects.

Each

connector-property

(CWProperty)

object

contains

a

single

connector

property

and

can

hold

a

single

value,

another

property,

or

a

combination

of

values

and

child

properties.

Use

methods

of

the

CWProperty

class

(such

as

getHierChildProps()

and

getStringValues())

to

obtain

the

values

from

a

connector-property

object.

See

also

getConfigProp(),,

getAllConnectorAgentProperties()

getAllConnectorAgentProperties()

Retrieves

a

list

of

all

configuration

properties

for

the

current

connector.

Syntax

public

static

Hashtable

getAllConnectorAgentProperties();

Parameters

None.

Return

values

A

reference

to

a

java.util.Hashtable

object

that

contains

the

connector

properties

for

the

current

connector.

Exceptions

None.

Notes

The

getAllConnectorAgentProperties()

method

retrieves

the

connector

configuration

properties

as

a

Java

Hashtable

object,

which

maps

keys

to

values.

The

keys

are

the

names

of

the

properties

and

values

are

the

associated

property

values.

Use

methods

of

the

Hashtable

class

(such

as

keys()

and

elements())

to

obtain

the

information

from

this

structure.

Note:

This

method

does

not

retrieve

hierarchical

or

multi-valued

properties.

If

it

attempts

to

retrieve

a

multi-valued

property,

it

returns

only

the

first

of

the

values.

To

retrieve

hierarchical

or

multi-valued

properties,

use

the

getAllConfigProperties()

method.

Examples

Hashtable

ht

=

new

Hastable();

ht

=

CWConnectorUtil.getAllConnectorAgentProperties();

int

size

=

ht.size();

Enumeration

properties

=

ht.keys();

Enumeration

values

=

ht.elements();

while

(properties.hasMoreElements())

{

System.out.print((String)properties.nextElement());

System.out.print("=");

System.out.println((String)values.nextElement());

System.out.println("Property

set");

}

See

also

getConfigProp(),,

getAllConfigProperties()

Chapter

22.

CWConnectorUtil

class

361

getBlankValue()

Retrieves

the

value

for

the

special

Blank

attribute

value.

Syntax

public

static

String

getBlankValue();

Return

values

A

String

object

containing

the

Blank

attribute

value.

Notes

The

Blank

value,

which

getBlankValue()

retrieves,

is

a

special

attribute

value

that

represents

a

“null”

or

zero-length

value.

Although

the

Java

connector

library

does

provide

the

CWConnectorAttrType.CxBlank

constant

for

the

Blank

attribute

value,

it

is

recommended

that

you

use

the

getBlankValue()

method

to

obtain

the

Blank

value

when

you

want

to

assign

it

to

an

attribute.

See

also

getIgnoreValue()

getConfigProp()

Retrieves

the

value

of

a

connector

configuration

property.

Syntax

public

final

static

String

getConfigProp(String

propName);

Parameters

propName

Is

the

name

of

the

property

to

retrieve.

Return

values

A

String

object

containing

the

property

value.

If

the

property

name

is

not

found,

the

method

returns

null.

Exceptions

None.

Notes

Values

of

connector

configuration

properties

are

downloaded

to

the

connector

during

its

initialization.

When

you

call

getConfigProp("ConnectorName")

in

a

parallel-process

connector

(one

that

has

the

ParallelProcessDegree

connector

property

set

to

a

value

greater

than

1),

the

method

always

returns

the

name

of

the

connector-agent

master

process,

regardless

of

whether

it

is

called

in

the

master

process

or

a

slave

process.

See

also

getAllConnectorAgentProperties(),,

getHierarchicalConfigProp()

getGlobalEncoding()

Retrieves

the

character

encoding

that

the

connector

framework

is

using.

Syntax

public

String

getGlobalEncoding();

362

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

String

object

containing

the

connector

framework’s

character

encoding.

Exceptions

None.

Notes

The

getGlobalEncoding()

method

retrieves

the

connector

framework’s

character

encoding,

which

is

part

of

the

locale.

The

locale

specifies

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

character

encoding

should

indicate

the

character

encoding

of

the

connector

application.

The

connector

framework’s

character

encoding

using

the

following

hierarchy:

v

The

CharacterEncoding

connector

configuration

property

in

the

repository

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

property

is

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

character

encoding

from

the

Java

environment,

which

Unicode

(UCS-2)

This

method

is

useful

when

the

connector

needs

to

perform

character-encoding

processing,

such

as

character

conversion.

See

also

getGlobalLocale()

getGlobalLocale()

Retrieves

the

locale

of

the

connector

framework.

Syntax

public

static

String

getGlobalLocale();

Parameters

None.

Return

values

A

String

object

containing

the

connector

framework’s

locale

setting.

Exceptions

None.

Notes

The

getGlobalLocale()

method

retrieves

the

connector

framework’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

locale

should

indicate

the

locale

of

the

connector

application.

The

connector

framework’s

locale

is

set

using

the

following

hierarchy:

Chapter

22.

CWConnectorUtil

class

363

v

The

LOCALE

connector

configuration

property

in

the

repository

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

Locale

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

Locale

property

is

the

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

locale

from

the

Java

environment,

which

is

the

locale

from

the

operating

system

This

method

is

useful

when

the

connector

needs

to

perform

locale-sensitive

processing.

See

also

createBusObj(),,

getGlobalEncoding(),,

getLocale()

getHierarchicalConfigProp()

Retrieves

the

top-level

connector-object

for

a

specified

hierarchical

connector

configuration

property.

Syntax

public

static

CWProperty

getHierarchicalConfigProp(String

propName);

Parameters

propName

Is

the

name

of

the

hierarchical

connector

property

to

retrieve.

Return

values

A

CWProperty

object

that

contains

the

top-level

connector-property

object

for

the

specified

hierarchical

connector

property.

Exceptions

WrongPropertyException

Thrown

if

the

specified

connector-property

name

does

not

exist

for

this

connector

or

it

is

not

a

hierarchical

connector

property.

Notes

The

getHierarchicalConfigProp()

method

obtains

the

top-level

connector-property

(CWProperty)

object.

From

this

retrieved

object,

you

can

use

methods

of

the

CWProperty

class

to

obtain

the

desired

values

of

the

connector

property.

Note:

Values

of

connector

configuration

properties

are

downloaded

to

the

connector

during

its

initialization.

If

you

specify

a

propName

for

a

connector

property

that

has

not

been

downloaded,

getHierarchicalConfigProp()

throws

the

WrongPropertyException

exception.

When

you

call

getHierarchicalConfigProp("ConnectorName")

in

a

parallel-process

connector

(one

that

has

the

ParallelProcessDegree

connector

property

set

to

a

value

greater

than

1),

the

method

always

returns

the

name

of

the

connector-agent

master

process,

regardless

of

whether

it

is

called

in

the

master

process

or

a

slave

process.

364

Connector

Development

Guide

for

Java

See

also

getAllConfigProperties(),,

getConfigProp()

getIgnoreValue()

Retrieves

the

value

for

the

special

Ignore

attribute

value.

Syntax

public

static

String

getIgnoreValue();

Parameters

None.

Return

values

A

String

object

containing

the

Ignore

attribute

value.

Exceptions

None.

Notes

The

Ignore

value,

which

getIgnoreValue()

retrieves,

is

a

special

attribute

value

that

represents

an

attribute

value

that

the

connector

can

ignore.

Although

the

Java

connector

library

does

provide

the

CWConnectorAttrType.CxIgnore

constant

for

the

Ignore

attribute

value,

it

is

recommended

that

you

use

the

getIgnoreValue()

method

to

obtain

the

Ignore

value

when

you

want

to

assign

it

to

an

attribute.

See

also

getBlankValue()

getSupportedBONames()

Retrieves

a

list

of

supported

business

objects

for

the

current

connector.

WebSphere

InterChange

Server

The

getSupportedBusObjNames()

method

is

valid

only

when

the

integration

broker

is

InterChange

Server

(ICS).

It

can

provide

supported

business

objects

only

with

ICS

version

4.0

and

later.

For

ICS

versions

earlier

than

4.0,

this

method

throws

the

FunctionalityNotImplementedException

exception.

Syntax

public

static

String[]

getSupportedBONames()

Parameters

None.

Return

values

A

String

array

that

contains

a

list

of

the

names

of

the

supported

business

objects

for

the

connector.

Exceptions

NotSupportedException

Thrown

if

this

method

is

called

within

a

connector

that

has

a

version

3.x

InterChange

Server

as

its

integration

broker.

Chapter

22.

CWConnectorUtil

class

365

Notes

The

getSupportedBONames()

method

returns

a

list

of

top-level

supported

business

objects

for

the

current

connector;

that

is,

if

the

connector

supports

business

objects

that

contain

child

business

objects,

getSupportedBONames()

includes

only

the

name

of

the

parent

object

in

its

list.

Note:

The

getSupportedBONames()

method

is

only

supported

when

the

connector

is

using

a

version

4.0

or

later

InterChange

Server

as

its

integration

broker.

If

the

connector

is

using

an

earlier

version

of

InterChange

Server,

the

method

returns

the

NotSupportedException

exception.

getVersion()

Retrieves

the

version

of

the

connector.

Syntax

public

static

String

getVersion();

Return

values

A

String

containing

the

version

of

the

connector.

Exceptions

None.

Notes

The

getVersion()

method

returns

the

version

of

the

Java

connector

library.

It

obtains

this

version

from

the

manifest

file

that

is

present

in

the

Java

package.

Note:

The

CWConnectorAgent

class

also

provides

a

getVersion()

method.

However,

this

method

retrieves

the

version

of

the

connector

itself.

initAndValidateAttributes()

Initializes

attributes

that

do

not

have

values

set,

but

are

marked

as

required,

with

their

default

values.

Syntax

public

static

final

void

initAndValidateAttributes(

CWConnectorBusObj

theBusObj)

;

Parameters

theBusObj

Is

the

business

object

whose

attributes

this

method

sets.

Return

values

None.

Exceptions

SpecNameNotFoundException

Thrown

when

the

name

of

the

specified

business

object

does

not

match

any

of

the

business

object

definitions

in

the

repository.

DefaultSettingFailedException

Thrown

when

the

attribute’s

default

value

could

not

be

set

and

there

is

no

default

value

specified

for

the

attribute

in

the

business

object

definition.

366

Connector

Development

Guide

for

Java

Notes

The

initAndValidateAttributes()

method

has

two

purposes:

v

It

initializes

attributes

by

setting

the

value

for

each

attribute

to

its

default

value

under

the

following

conditions:

–

When

the

UseDefaults

connector

configuration

property

is

set

to

true

–

When

the

attribute’s

isRequired

property

is

set

to

true

(the

attribute

is

required)

–

When

the

attribute’s

value

is

not

currently

set

(has

the

special

Ignore

value

of

CxIgnore)

–

When

the

attribute’s

Default

Value

property

specifies

a

default

value
v

It

validates

attributes

by

throwing

a

DefaultSettingFailedException

exception

under

the

following

conditions:

–

When

the

attribute’s

isRequired

property

is

set

to

true

–

When

the

attribute

does

not

have

a

Default

Value

property

that

defines

its

default

value

In

case

of

failure,

no

value

exists

some

attributes

(those

without

default

values)

after

initAndValidateAttributes()

finishes

default-value

processing.

You

might

want

to

code

your

connector’s

application-specific

component

to

catch

this

exception

and

return

CWConnectorConstant.FAIL.

The

initAndValidateAttributes()

method

looks

at

every

attribute

in

all

levels

of

a

business

object

and

determines

the

following:

v

Whether

an

attribute

is

required

v

Whether

the

attribute

has

a

value

in

the

business

object

instance

v

Whether

the

UseDefaults

configuration

property

is

set

to

true

If

an

attribute

is

required

and

UseDefaults

is

true,

initAndValidateAttributes()

sets

the

value

of

any

unset

attribute

to

its

default

value.

To

have

initAndValidateAttributes()

set

the

attribute

value

to

the

special

Blank

value

(CxBlank),

you

can

set

the

attribute’s

default

value

to

the

string

″CxBlank″.

If

the

attribute

does

not

have

a

default

value,

initAndValidateAttributes()

throws

the

DefaultSettingFailedException

exception.

Note:

If

an

attribute

is

a

key

or

other

attribute

whose

value

is

generated

by

the

application,

the

business

object

definition

should

not

provide

default

values,

and

the

Required

property

for

the

attribute

should

be

set

to

false.

The

initAndValidateAttributes()

method

is

usually

called

from

the

business-object-handler

doVerbFor()

method

to

ensure

that

required

attributes

have

values

before

a

Create

operation

is

performed

in

an

application.

In

the

doVerbFor()

method,

you

can

call

initAndValidateAttributes()

for

the

Create

verb.

You

can

also

call

it

for

the

Update

verb,

before

it

performs

a

Create.

To

use

initAndValidateAttributes(),

you

must

also

do

the

following:

v

Design

business

object

definitions

so

that

the

IsRequired

attribute

property

is

set

to

true

for

required

attributes

and

that

required

attributes

have

default

values

specified

in

their

Default

Value

property.

v

Add

the

UseDefaults

connector

configuration

property

to

the

list

of

connector-specific

properties

for

the

connector.

Set

this

property

to

true.

Chapter

22.

CWConnectorUtil

class

367

isBlankValue()

Determines

if

an

attribute

value

is

the

special

Blank

value.

Syntax

public

static

boolean

isBlankValue(Object

value);

Parameters

value

Is

the

value

to

compare

with

the

special

Blank

value.

Return

values

Returns

true

if

the

specified

attribute

value

is

the

Blank

attribute

value;

otherwise,

returns

false.

Exceptions

None.

See

also

isIgnoreValue()

isIgnoreValue()

Determines

if

an

attribute

value

is

the

special

Ignore

value.

Syntax

public

static

boolean

isIgnoreValue(Object

value);

Parameters

value

Is

the

value

to

compare

with

the

special

Ignore

value.

Return

values

Return

true

if

the

specified

attribute

value

is

the

Ignore

value;

otherwise,

returns

false.

Exceptions

None.

Notes

The

Ignore

attribute

value

signifies

that

this

attribute

is

to

be

ignored

while

processing

the

business

object.

See

also

isBlankValue()

isTraceEnabled()

Determines

if

the

trace

level

is

greater

than

or

equal

to

the

trace

level

for

which

it

is

looking,

if

tracing

is

enabled

at

this

level.

Syntax

public

final

static

boolean

isTraceEnabled(int

traceLevel);

Parameters

traceLevel

is

the

trace

level

to

check.

368

Connector

Development

Guide

for

Java

Return

values

Returns

true

if

the

agent

trace

level

is

greater

than

or

equal

to

the

trace

level

passed

in.

Exceptions

None.

Notes

Use

this

method

before

generating

a

message.

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

Syntax

public

final

static

void

logMsg(String

msg,

int

severity);

Parameters

msg

Is

the

message

text

to

be

logged.

severity

Is

one

of

the

following

message-type

constants

to

identify

the

message:

CWConnectorUtil.XRD_WARNING

CWConnectorUtil.XRD_ERROR

CWConnectorUtil.XRD_FATAL

CWConnectorUtil.XRD_INFO

CWConnectorUtil.XRD_TRACE

Return

values

None.

Exceptions

None.

Notes

The

logMsg()

method

sends

the

specified

msg

text

to

the

log

destination.

You

establish

the

name

of

a

connector’s

log

destination

through

the

Logging

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

IBM

recommends

that

log

messages

be

contained

in

a

message

file

and

extracted

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

messages

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

logMsg().

It

retrieves

a

predefined

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

Note:

You

can

use

the

generateAndLogMsg()

method

to

combine

the

message

generation

and

logging

steps.

Chapter

22.

CWConnectorUtil

class

369

WebSphere

InterChange

Server

If

severity

is

XRD_ERROR

or

XRD_FATAL

and

the

connector

configuration

property

LogAtInterchangeEnd

is

set,

the

error

message

is

logged

and

an

email

notification

is

sent

when

email

notification

is

on.

See

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

for

information

on

how

to

set

up

email

notification

for

errors.

Connector

messages

logged

with

logMsg()

are

viewable

using

LogViewer

if

the

message

strings

were

generated

with

generateMsg().

See

also

generateAndLogMsg(),,

generateMsg()

readerToBO()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

as

a

Reader

object.

Syntax

public

static

CWConnectorBusObj

readerToBO(CWConnectorBusObj

theBusObj,

Reader

serializedData,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

Reader

object.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

Reader

object.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

format

of

the

serialized

data.

serializedData

Is

an

object

of

the

Java

java.io.Reader

class

(or

one

of

its

subclasses)

that

accesses

the

serialized

data

to

convert

to

a

business

object.

theBusObj

Identifies

the

type

of

business

object

(business

object

definition)

to

which

the

method

converts

the

serialized

data.

Return

values

A

CWConnectorBusObj

object

that

contains

the

business

object

for

the

serialized

data.

370

Connector

Development

Guide

for

Java

Exceptions

DataHandlerCreateException

Thrown

when

the

readerToBO()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

serialized

data

to

the

specified

business

object.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

The

readerToBO()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

business

object.

Notes

The

readerToBO()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

string-to-business-object

conversion.

With

this

method,

the

incoming

serializedData

is

accessed

through

a

Java

Reader

object.

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

readerToBO()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

readerToBO()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

readerToBO()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

readerToBO()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

serialized

data

to

a

business

object

of

the

type

that

theBusObj

indicates.

If

readerToBO()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

interprets

the

serialized

data.

The

data

handler

returns

this

business

object

to

the

readerToBO()

method,

which

in

turn

returns

it

to

the

calling

method.

Note:

If

the

data

handler

cannot

convert

the

serialized

data,

readerToBO()

throws

the

ParseException

exception.

Chapter

22.

CWConnectorUtil

class

371

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

byteArrayToBo(),

streamToBO(),

stringToBo()

streamToBO()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

through

an

input

stream.

Syntax

public

static

CWConnectorBusObj

streamToBO(CWConnectorBusObj

theBusObj,

InputStream

serializedData,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

input

stream.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

input

stream.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

format

of

the

serialized

data.

serializedData

Is

an

object

of

the

Java

java.io.InputStream

class

(or

one

of

its

subclasses)

that

accesses

the

serialized

data

to

convert

to

a

business

object.

theBusObj

Identifies

the

type

of

business

object

(business

object

definition)

to

which

the

method

converts

the

serialized

data.

Return

values

A

CWConnectorBusObj

object

that

contains

the

business

object

for

the

serialized

data.

Exceptions

DataHandlerCreateException

Thrown

when

the

streamToBO()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

serialized

data

to

the

specified

business

object.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

372

Connector

Development

Guide

for

Java

The

streamToBO()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

business

object.

Notes

The

streamToBO()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

string-to-business-object

conversion.

With

this

method,

the

incoming

serializedData

is

accessed

through

a

Java

input

stream

(derived

from

the

InputStream

class).

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

streamToBO()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

streamToBO()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

streamToBO()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

streamToBO()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

serialized

data

to

a

business

object

of

the

type

that

theBusObj

indicates.

If

streamToBO()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

interprets

the

serialized

data.

The

data

handler

returns

this

business

object

to

the

streamToBO()

method,

which

in

turn

returns

it

to

the

calling

method.

Note:

If

the

data

handler

cannot

convert

the

serialized

data,

streamToBO()

throws

the

ParseException

exception.

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToStream(),

byteArrayToBo(),

readerToBO(),

stringToBo()

Chapter

22.

CWConnectorUtil

class

373

stringToBo()

Calls

a

data

handler

to

convert

serialized

data

of

a

specified

MIME

type

to

a

business

object.

This

serialized

data

is

accessed

as

a

string.

Syntax

public

static

CWConnectorBusObj

stringToBo(CWConnectorBusObj

theBusObj,

String

serializedData,

String

mimeType);

public

static

CWConnectorBusObj

stringToBo(CWConnectorBusObj

theBusObj,

String

serializedData,

String

mimeType,

Object

config);

public

static

CWConnectorBusObj

stringToBo(CWConnectorBusObj

theBusObj,

String

serializedData,

String

mimeType,

String

BOPrefix,

String

encoding,

Locale

locale,

Object

config);

Parameters

BOPrefix

Is

the

business-object

prefix,

which

is

combined

with

mimeType

to

form

the

key

of

the

child

meta-object.

This

argument

can

be

used

to

specify

a

MIME

subtype.

It

can

also

be

used

to

specify

a

value

for

the

BOPrefix

data-handler

configuration

property.

config

Is

an

Object

that

contains

additional

configuration

information

for

the

data

handler.

encoding

Specifies

the

character

encoding

for

the

serialized

data

in

the

String.

If

you

specify

null,

the

method

uses

the

character

encoding

of

the

machine.

locale

Is

a

java.util.Locale

object

that

specifies

the

locale

for

the

serialized

data

in

the

String.

If

you

specify

null,

the

method

uses

the

connector-framework

locale.

mimeType

Is

the

MIME

type

that

identifies

the

format

of

the

serialized

data.

serializedData

Is

the

string

representation

of

the

serialized

data

to

convert

to

a

business

object.

theBusObj

Identifies

the

type

of

business

object

(business

object

definition)

to

which

the

method

converts

the

serialized

data.

Return

values

A

CWConnectorBusObj

object

that

contains

the

business

object

for

the

serialized

data.

Exceptions

DataHandlerCreateException

Thrown

when

the

stringToBo()

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

ParseException

Thrown

when

the

data

handler

encounters

some

error

during

the

conversion

of

the

serialized

data

to

the

specified

business

object.

PropertyNotSetException

Thrown

when

the

DataHandlerMetaObjectName

connector

configuration

property

is

not

set.

The

stringToBo()

method

can

also

throw

the

general

Java

exception

NullPointerException

if

the

data

handler

returns

a

null

pointer

instead

of

a

business

object.

374

Connector

Development

Guide

for

Java

Notes

The

stringToBo()

method

provides

the

connector

with

the

ability

to

call

a

data

handler

to

perform

string-to-business-object

conversion.

With

this

method,

the

incoming

serializedData

is

accessed

through

a

Java

String.

The

method

identifies

which

data

handler

to

invoke

based

on

the

specified

mimeType

argument.

It

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object,

as

follows:

v

It

checks

the

top-level

meta-object

for

the

data

handler

that

corresponds

to

this

MIME

type.

It

obtains

the

name

of

this

top-level

meta-object

from

the

DataHandlerMetaObjectName

connector

configuration

property.

If

this

property

is

not

set,

stringToBo()

throws

the

PropertyNotSetException

exception.

v

The

instantiation

process

converts

the

specified

mimeType

to

its

equivalent

MIME-type

string

and

then

searches

the

top-level

meta-object

for

an

attribute

whose

name

matches

this

MIME-type

string.

The

associated

type

for

this

attribute

is

the

child

meta-object.

v

It

obtains

the

name

of

the

class

to

instantiate

from

the

ClassName

attribute

in

the

child

meta-object.

If

stringToBo()

specifies

a

BOPrefix

and

a

mimeType,

it

instantiates

a

data

handler

whose

class

name

is

identified

in

the

child

meta-object

associated

with

this

MIME

type

in

the

the

top-level

meta-object.

However,

when

a

BOPrefix

is

specified,

the

instantiation

process

interprets

this

value

as

a

MIME

subtype.

It

searches

the

top-level

meta-object

for

an

attribute

whose

name

includes

both

the

MIME

type

and

subtype.

If

the

data

handler

cannot

be

instantiated,

stringToBo()

throws

the

DataHandlerCreateException.

For

more

information

on

how

the

arguments

of

stringToBo()

identify

which

data

handler

to

instantiate,

see

“Identifying

the

data

handler

to

instantiate”

on

page

77.

Once

instantiated,

the

data

handler

converts

the

specified

serialized

data

to

a

business

object

of

the

type

that

theBusObj

indicates.

If

stringToBo()

specifies

the

encoding

and

locale

arguments,

the

data

handler

uses

the

specified

character

encoding

and

locale

when

it

interprets

the

serialized

data.

The

data

handler

returns

this

business

object

to

the

stringToBo()

method,

which

in

turn

returns

it

to

the

calling

method.

Note:

If

the

data

handler

cannot

convert

the

serialized

data,

stringToBo()

throws

the

ParseException

exception.

You

can

specify

a

config

option

if

you

need

to

provide

the

data

handler

with

more

configuration

information

than

is

available

in

its

meta-object.

This

argument

can

be

used

to

specify

a

template

file

or

a

string

to

a

URL

for

a

schema

that

is

used

to

build

an

XML

document

from

a

business

object.

See

also

boToString(),

byteArrayToBo(),

readerToBO(),

streamToBO()

traceCWConnectorAPIVersion()

Writes

the

version

of

the

Java

connector

library

to

the

trace

destination.

Syntax

public

static

void

traceCWConnectorAPIVersion();

Chapter

22.

CWConnectorUtil

class

375

Parameters

None.

Return

values

None.

Exceptions

None.

Notes

The

traceCWConnectorAPIVersion()

method

sends

the

version

of

the

Java

connector

library

to

the

trace

destination

when

the

trace

level

is

at

level

1

and

higher.

It

obtains

the

version

of

Java

connector

library

from

the

manifest

file

in

the

package.

A

manifest

file

is

a

standard

Java

file

that

stores

version

information

for

a

product.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

TraceFileName

connector

configuration

property.

traceWrite()

Writes

a

trace

message

to

the

trace

destination.

Syntax

public

final

static

void

traceWrite(int

traceLevel,

String

msg);

Parameters

traceLevel

Is

one

of

the

following

trace-level

constants

to

identify

the

trace

level

used

to

determine

which

trace

messages

are

output:

CWConnectorUtil.LEVEL1

CWConnectorUtil.LEVEL2

CWConnectorUtil.LEVEL3

CWConnectorUtil.LEVEL4

CWConnectorUtil.LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

msg

Is

the

message

text

to

use

for

the

trace

message.

Return

values

None.

Exceptions

None.

Notes

You

can

use

the

traceWrite()

method

to

write

your

own

trace

messages

for

a

connector.

Tracing

is

turned

on

for

the

connector

when

the

TraceLevel

connector

configuration

property

is

set

to

a

nonzero

value

(any

trace-level

constant

except

LEVEL0).

376

Connector

Development

Guide

for

Java

The

traceWrite()

method

sends

the

specified

msg

text

to

the

trace

destination

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

Tracing

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

Because

trace

messages

are

usually

needed

only

during

debugging,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

traceWrite().

It

retrieves

a

predefined

trace

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

Note:

You

can

use

the

generateAndTraceMsg()

method

to

combine

the

message

generation

and

logging

steps.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

or

generateAndTraceMsg()

method.

Connector

messages

logged

with

traceWrite()

are

not

viewable

using

LogViewer.

See

also

generateAndTraceMsg(),,

generateMsg()

Deprecated

Methods

Some

methods

in

the

CWConnectorUtil

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

139

lists

the

deprecated

methods

for

the

CWConnectorUtil

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

Table

139.

Deprecated

methods

of

the

CWConnectorUtil

class

Deprecated

method

Replacement

generateAndLogMsg()

Fourth

argument

was

a

count

of

the

number

of

arguments

(argCount)

in

the

msgParameters

list.

generateAndLogMsg()

The

argCount

value

is

no

longer

required

for

this

method

and

can

be

omitted.

The

method

itself

can

determine

the

number

of

arguments

in

the

msgParameters

list.

generateAndTraceMsg()

Fifth

argument

was

a

count

of

the

number

of

arguments

(argCount)

in

the

msgParameters

list.

generateAndTraceMsg()

The

argCount

value

is

no

longer

required

for

this

method

and

can

be

omitted.

The

method

itself

can

determine

the

number

of

arguments

in

the

msgParameters

list.

Chapter

22.

CWConnectorUtil

class

377

Table

139.

Deprecated

methods

of

the

CWConnectorUtil

class

(continued)

Deprecated

method

Replacement

generateAndTraceMsg()

Third

argument

was

the

message

type

of

the

message

to

generate

(msgType).

generateAndTraceMsg()

The

msgType

value

is

no

longer

required

for

this

method

and

can

be

omitted.

Because

the

message

type

for

a

trace

message

should

always

be

XRD_TRACE,

the

method

itself

can

fill

in

the

message

type.

378

Connector

Development

Guide

for

Java

Chapter

23.

CWCustomBOHandlerInterface

interface

The

CWCustomBOHandlerInterface

interface

defines

the

behavior

of

a

custom

business

object

handler.

It

provides

the

code

to

implement

and

access

one

business

object

handler.

Normally,

you

provide

a

business

object

handler

by

extending

the

business-object-handler

base

class,

CWConnectorBOHandler

and

implementing

the

doVerbFor()

method

to

define

the

business

object

handler’s

functionality.

With

this

approach,

there

is

a

standard

way

of

handling

each

verb

for

a

business

object.

However,

this

mechanism

does

not

support

the

ability

to

customize

the

behavior

of

a

particular

verb

for

only

some

business

objects.

If

you

need

to

provide

customized

behavior

for

a

business

object

handler,

you

can

create

a

custom

business

object

handler

by

creating

a

custom-business-object-
handler

class

and

implementing

the

CWCustomBOHandlerInterface

interface.

Its

doVerbForCustom()

method

defines

the

functionality

for

this

custom

business-object

handler.

For

an

introduction

to

request

processing

and

business

object

handlers,

see

“Request

processing”

on

page

22.

For

information

on

how

to

implement

a

business

object

handler,

see

Chapter

4,

“Request

processing,”

on

page

79.

Table

140

summarizes

the

methods

in

the

CWCustomBOHandlerInterface

interface.

Table

140.

Member

method

of

the

CWCustomBOHandlerInterface

interface

Member

method

Description

Page

doVerbForCustom()

Performs

the

verb

processing

for

the

active

verb

of

a

business

object.

379

doVerbForCustom()

Performs

the

custom

verb

processing

for

the

active

verb

of

a

business

object.

Syntax

public

int

doVerbForCustom(CWConnectorBusObj

theBusObj);

Parameters

theBusObj

Is

the

business

object

whose

active

verb

is

to

be

processed.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

verb

operation.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CWConnectorConstant.SUCCEED

The

verb

operation

succeeded.

CWConnectorConstant.FAIL

The

verb

operation

failed.

CWConnectorConstant.APPRESPONSETIMEOUT

The

application

is

not

responding.

©

Copyright

IBM

Corp.

2000,

2004

379

CWConnectorConstant.VALCHANGE

At

least

one

value

in

the

business

object

changed.

CWConnectorConstant.VALDUPES

The

requested

operation

found

multiple

records

in

the

application

database

for

the

same

key

value.

CWConnectorConstant.MULTIPLE_HITS

The

connector

finds

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

returns

a

business

object

only

for

the

first

matching

record.

CWConnectorConstant.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CWConnectorConstant.BO_DOES_NOT_EXIST

The

connector

performed

a

Retrieve

operation,

but

the

application

database

does

not

contain

a

matching

entity

for

the

requested

business

object.

Exceptions

ConnectionFailureException

Thrown

if

the

connector

has

lost

the

connection

with

the

application.

VerbProcessingFailedException

Thrown

if

the

verb

processing

fails.

Notes

The

doVerbForCustom()

method

performs

the

action

of

the

active

verb

in

the

theBusObj

business

object,

if

this

business

object’s

verb

application-specific

information

contains

the

CBOH

tag.

This

tag

specifies

the

entire

class

name

(including

its

package

name)

for

your

implementation

of

the

CWCustomBOHandlerInterface

interface.

For

information

on

the

format

of

this

tag,

see

“Adding

the

verb

application-specific

information”

on

page

174.

When

a

business

object

handler

is

invoked,

the

low-level

doVerbFor()

method,

(inherited

from

the

BOHandlerBase

class)

is

what

the

connector

framework

actually

invokes.

The

low-level

doVerbFor()

method

determines

which

business

object

handler

to

call

as

follows:

v

If

the

business

object’s

verb

has

the

CBOH

tag

in

its

application-specific

information,

call

this

doVerbForCustom()

method.

v

Otherwise,

call

the

doVerbFor()

method,

which

the

connector

developer

must

implement

as

part

of

the

business

object

handler’s

CWConnectorBOHandler

class

For

more

information,

see

“Populating

the

return-status

descriptor”

on

page

168.

If

the

doVerbForCustom()

method

needs

to

throw

one

of

its

exceptions,

it

first

needs

to

populate

an

exception-detail

object

that

it

contain

information

about

the

exception.

For

more

information,

see

Table

121

on

page

251.

For

information

about

how

to

implement

this

method,

see

“Implementing

the

doVerbForCustom()

method”

on

page

173.

See

also

doVerbFor()

380

Connector

Development

Guide

for

Java

Chapter

24.

CWException

class

The

CWException

class

is

the

base

class

for

exceptions

in

the

Java

connector

library.

The

Java

connector

library

extends

the

Java

Exception

class

to

create

its

own

exception

class

called:

com.crossworlds.cwconnectorapi.exceptions.CWException

This

class

represents

an

exception

object,

which

methods

of

the

Java

connector

library

can

throw.

Note:

The

reference

description

for

most

Java

connector

library

methods

lists

the

exceptions

thrown

by

that

method

in

the

Exceptions

section.

The

CWException

class

provides

the

following:

v

“Methods”

v

“Exception

subclasses”

on

page

384

Methods

Table

141

summarizes

the

methods

in

the

CWException

class.

Table

141.

Member

methods

of

the

CWException

class

Member

method

Description

Page

CWException()

Creates

an

exception

object.

381

getExceptionObject()

Retrieves

an

exception-detail

object

from

the

exception

object.

382

getMessage()

Retrieves

the

message

from

the

exception

object.

382

getStatus()

Retrieves

the

status

associated

with

the

exception

object.

383

setStatus()

Sets

the

status

associated

with

the

exception

object.

383

CWException()

Creates

an

exception

object.

Syntax

public

CWException();

public

CWException(CWExceptionObject

excptionDetail);

Parameters

excptionDetail

Is

an

exception-detail

object

that

contains

the

additional

exception

information.

Return

values

A

new

CWException

object.

©

Copyright

IBM

Corp.

2000,

2004

381

Notes

The

CWException()

constructor

provides

two

forms:

v

The

first

form

creates

an

empty

CWException

object.

v

The

second

form

passes

an

exception-detail

object

to

initialize

the

new

CWException

object.

getExceptionObject()

Retrieves

an

exception-detail

object

from

the

exception

object.

Syntax

public

CWConnectorExceptionObject

getExceptionObject();

Parameters

None.

Return

values

A

CWConnectorExceptionObject

object

that

contains

the

additional

exception

information.

Exceptions

None.

Notes

The

getExceptionObject()

method

retrieves

exception-detail

information,

in

the

form

of

a

CWConnectorExceptionObject,

from

the

exception

object.

You

can

use

methods

of

the

CWConnectorExceptionObject

class

to

obtain

exception

information

such

as

the

message

text,

message

number,

and

message

explanation.

See

also

Chapter

19,

“CWConnectorExceptionObject

class”

getMessage()

Retrieves

the

message

from

the

exception

object.

Syntax

public

String

getMessage();

Parameters

None.

Return

values

A

String

object

that

contains

the

message

associated

with

the

exception.

Exceptions

None.

382

Connector

Development

Guide

for

Java

getStatus()

Retrieves

the

status

associated

with

the

exception

object.

Syntax

public

int

getStatus();

Parameters

None.

Return

values

The

integer

exception

status

in

the

exception

object.

Exceptions

None.

Notes

The

getStatus()

method

retrieves

the

status

that

is

set

by

the

connector.

This

status

is

usually

one

of

the

outcome-status

constants,

as

represented

by

the

CWConnectorConstant

class

(such

as

FAIL

or

APPRESPONSETIMEOUT).

See

also

setStatus()

setStatus()

Sets

the

status

associated

with

the

exception

object.

Syntax

public

void

setStatus(int

status);

Parameters

status

Is

the

integer

status

value

to

assign

to

the

exception

object.

Return

values

None.

Exceptions

None.

Notes

The

setStatus()

method

sets

the

status

that

is

part

of

the

CWException

object.

This

status

is

usually

set

by

the

connector

to

one

of

the

outcome-status

constants,

as

represented

by

the

CWConnectorConstant

class

(such

as

FAIL

or

APPRESPONSETIMEOUT).

See

also

getStatus()

Chapter

24.

CWException

class

383

Exception

subclasses

Within

this

CWException

class

are

subclasses

that

identify

particular

exceptions

possible

in

the

methods

of

the

Java

connector

library.

Table

142

lists

the

subclassed

exceptions.

Table

142.

CWConnectorException

subclasses

Exception

subclass

Definition

ArchiveFailedException

Thrown

from

the

archiveEvent()

method

of

the

event-store

class

if

the

event

record

could

not

be

archived

into

the

archive

store.

AttributeNotFoundException

Thrown

when

the

specified

position

or

name

of

an

attribute

does

not

match

the

attribute

name

or

attribute

position

within

the

existing

business

object.

AttributeNullValueException

Thrown

if

the

attribute

value

is

null

when

some

operations

need

to

be

performed

on

the

attribute

value.

AttributeValueException

Thrown

if

there

is

a

NumberFormatException

exception.

ConnectionFailureException

Thrown

if

the

connector

is

unable

to

establish

a

connection

with

the

application.

DataHandlerCreateException

Thrown

when

a

data-handler

method

cannot

instantiate

a

data

handler

for

the

specified

MIME

type.

DefaultSettingFailedException

Thrown

when

setting

a

default

value

fails.

DeleteFailedException

Thrown

from

the

deleteEvent()

method

of

the

event-store

class

if

the

event

record

could

not

be

deleted

from

the

event

store.

InProgressEventRecoveryFailedException

Thrown

if

the

recovery

of

the

In-Progress

events

fails.

InvalidAttributePropertyException

Thrown

when

any

invalid

property

of

the

attribute

is

queried

(such

as

calling

getMaxLength()

on

an

attribute

that

is

an

object).

InvalidStatusChangeException

Thrown

if

the

requested

change

in

event

status

is

not

valid.

InvalidVerbException

Thrown

when

the

specified

verb

is

not

supported

by

the

business

object.

LogonFailedException

Thrown

if

the

connector

is

not

able

to

logon

to

the

application

with

the

user

name

and

password

provided.

NotSupportedException

Thrown

if

some

feature

is

not

supported

by

the

current

version

of

the

produce.

ParseException

Thrown

when

the

data

handler

(called

from

the

connector)

encounters

some

error

during

conversion

between

the

business

object

and

the

specified

MIME

type.

PropertyNotSetException

Thrown

if

a

required

connector

configuration

property

is

not

set.

SpecNameNotFoundException

Thrown

when

the

business

object

definition

for

creating

a

business

object

cannot

be

found.

StatusChangeFailedException

Thrown

if

the

connector

is

not

able

to

set

the

status

of

an

event

in

the

application’s

event

store.

VerbProcessingFailedException

Thrown

from

the

doVerbFor()

method

if

the

operation

specified

by

the

verb

fails.

WrongASIFormatException

Thrown

if

the

application-specific

information

is

not

in

the

format:

name=value

WrongAttributeException

Thrown

when

the

data

type

of

the

specified

attribute

does

not

match

the

data

type

that

the

attribute

is

defined

to

hold.

384

Connector

Development

Guide

for

Java

Table

143.

Methods

that

return

exceptions

Java

connector

library

exception

Method

that

returns

the

exception

SpecNameNotFoundException

CWConnectorUtil

createBusObj()

CWConnectorBusObj

setBusObjValue()

AttributeNotFoundException

CWConnectorBusObj

getAttrIndex()

getbooleanValue()

getBusObjValue()

getCardinality()

getDefault()

getDefaultboolean()

getDefaultdouble()

getDefaultfloat()

getDefaultint()

getDefaultlong()

getDefaultString()

getdoubleValue()

getfloatValue()

getintValue()

getlongValue()

getMaxLength()

getObjectCount()

getStringValue()

getTypeName()

getTypeNum()

hasCardinality()

hasName()

hasType()

isForeignKeyAttr()

isKeyAttr()

isMultipleCard()

isObjectType()

isRequiredAttr()

isType()

removeAllObjects()

removeBusinessObjectAt()

setbooleanValue()

setBusObjValue()

setdoubleValue()

setfloatValue()

setintValue()

setStringValue()

WrongAttributeException

CWConnectorBusObj

getbooleanValue()

getBusObjValue()

getDefaultboolean()

getDefaultdouble()

getDefaultfloat()

getDefaultint()

getDefaultlong()

getDefaultString()

getdoubleValue()

getfloatValue()

Chapter

24.

CWException

class

385

Table

143.

Methods

that

return

exceptions

(continued)

Java

connector

library

exception

Method

that

returns

the

exception

getintValue()

getlongValue()

getStringValue()

setbooleanValue()

setBusObjValue()

setdoubleValue()

setfloatValue()

setintValue()

setStringValue()

AttributeNullValueException

CWConnectorBusObj

getbooleanValue()

getDefaultboolean()

getDefaultdouble()

getDefaultfloat()

getDefaultint()

getDefaultlong()

getdoubleValue()

getfloatValue()

getintValue()

getlongValue()

setBusObjValue()

AttributeValueException

CWConnectorBusObj

getDefaultdouble()

getDefaultfloat()

getDefaultint()

getDefaultlong()

getdoubleValue()

getfloatValue()

getintValue()

getlongValue()

setbooleanValue()

setBusObjValue()

setdoubleValue()

setfloatValue()

setintValue()

setStringValue()

InvalidAttributePropertyException

CWConnectorBusObj

getMaxLength()

InvalidVerbException

CWConnectorBusObj

setVerb()

Exception

subclass

constructor

Creates

an

exception

subclass.

Syntax

public

exception_subclass(CWConnectorExceptionObject

excption)

where

exception_subclass

is

the

name

of

the

exception

subclass

(as

shown

in

Table

142).

386

Connector

Development

Guide

for

Java

Parameters

excption

is

an

exception

object

that

contains

information

about

the

exception.

Return

values

An

object

that

represents

a

subclass

of

the

CWException

class.

Notes

Use

methods

of

the

CWConnectorExceptionObject

class

to

obtain

information

about

the

exception.

Chapter

24.

CWException

class

387

388

Connector

Development

Guide

for

Java

Chapter

25.

CWProperty

class

The

CWProperty

class

represents

a

hierarchical

connector

configuration

property

for

a

Java

connector.

A

hierarchical

connector

configuration

property

can

contain

one

or

more

values

and

these

values

can

be

either

string

values

or

other

(child)

connector

properties.

Note:

The

CWProperty

class

extends

the

CxProperty

class

of

the

low-level

Java

connector

library.

For

more

information

on

the

classes

of

the

low-level

Java

connector

library,

see

Chapter

26,

“Overview

of

the

low-level

Java

connector

library,”

on

page

403.

Table

144

summarizes

the

methods

in

the

CWProperty

class.

Table

144.

Member

methods

of

the

CWProperty

class

Member

method

Description

Page

CWProperty()

Creates

a

connector-property

object.

389

getCardinality()

Retrieves

the

cardinality

of

the

connector

configuration

property

(single-valued

or

multi-values).

390

getChildPropValue()

Retrieves

all

string

values

for

a

specified

child

property.

391

getChildPropsWithPrefix()

Retrieves

all

child

properties

from

the

hierarchical

connector

configuration

property

whose

names

match

a

specified

prefix.

391

getEncryptionFlag()

Retrieves

the

encryption

flag

for

the

connector

configuration

property.

392

getHierChildProp()

Retrieves

a

specified

child

property

from

the

hierarchical

connector

configuration

property.

393

getHierChildProps()

Retrieves

all

child

properties

from

the

hierarchical

connector

configuration

property.

394

getHierProp()

Retrieves

a

specified

child

property

from

the

hierarchical

connector

configuration

property.,

at

any

level

in

the

property

hierarchy.

395

getName()

Retrieves

the

name

of

the

connector

configuration

property.

396

getPropType()

Retrieves

the

property

type

for

the

connector

configuration

property

(simple

or

hierarchical).

396

getStringValues()

Retrieves

all

string

values

from

the

hierarchical

connector

configuration

property.

396

hasChildren()

Determines

whether

the

connector

configuration

property

has

any

child

properties.

397

hasValue()

Determines

whether

the

connector

configuration

property

has

any

string

values.

398

setEncryptionFlag()

Sets

the

encryption

flag

for

the

hierarchical

connector

configuration

property.

399

setValues()

Sets

the

values

of

the

hierarchical

connector

configuration

property.

399

CWProperty()

Creates

a

hierarchical

connector-property

object.

©

Copyright

IBM

Corp.

2000,

2004

389

Syntax

public

CWProperty();

public

CWProperty(String

propName,

String

simplePropValue);

public

CWProperty(String

propName,

CWProperty[]

hierPropValues);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property.

simplePropValue

Is

a

String

value

with

which

to

initialize

a

simple

connector

property.

hierPropValues

Is

an

array

of

connector-property

(CWProperty)

objects

with

which

to

initialize

a

hierarchical

connector

property.

Return

values

A

CWProperty

object

containing

the

newly

created

hierarchical

connector

property.

Notes

The

CWProperty()

constructor

provides

the

following

forms:

v

The

first

form

creates

an

empty

connector-property

object.

You

can

use

other

methods

of

the

CWProperty

class

to

populate

this

object.

v

The

second

form

creates

a

connector-property

object

for

a

simple

connector

property,

with

a

property

name

and

a

string

value

that

you

specify.

v

The

third

form

creates

a

connector-property

object

for

a

hierarchical

connector

property,

with

a

property

name

and

array

of

hierarchical

properties

that

you

specify.

getCardinality()

Retrieves

the

cardinality

of

the

connector

configuration

property.

Syntax

public

int

getCardinality();

Parameters

None.

Return

values

An

integer

that

indicates

the

cardinality

of

the

connector

configuration

property.

Compare

this

integer

value

with

the

following

connector-property

constants

to

determine

the

cardinality:

CWConnectorConstant.SINGLE_VALUED

The

connector

configuration

property

has

single

cardinality;

that

is,

it

contains

only

one

value.

CWConnectorConstant.MULTI_VALUED

The

connector

configuration

property

has

multiple

cardinality;

that

is,

it

contains

more

than

one

value.

Exceptions

None.

390

Connector

Development

Guide

for

Java

Notes

The

getCardinality()

method

retrieves

the

cardinality

of

a

connector

configuration

property,

which

indicates

whether

the

property

contains

one

or

many

values.

Use

this

method

to

determine

how

to

retrieve

the

property

values:

getChildPropValue()

Retrieves

the

string

values

from

a

specified

child

property

in

the

hierarchical

connector

property.

Syntax

public

String[]

getChildPropValue(String

propName);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property

whose

string

values

are

retrieved.

Return

values

A

reference

to

an

array

of

String

objects,

each

of

which

represents

one

string

value

for

the

specified

child

property.

If

the

specified

child

property

does

not

exist

in

the

current

hierarchical

connector

property,

the

method

returns

null.

Exceptions

None.

Notes

The

getChildPropValue()

retrieves

a

string

values

for

a

specified

child

property.

Before

a

call

to

getChildPropValue(),

you

can

use

the

hasValue()

method

to

verify

that

the

hierarchical

connector

property

has

string

values.

To

retrieve

all

string

values

of

a

hierarchical

connector

property,

use

the

getStringValues()

method.

If

a

hierarchical

connector

property

has

encrypted

string

values

(its

encrypted

flag

is

true),

the

getChildPropValue()

returns

the

unencrypted

values.

You

do

not

have

to

handle

decryption.

See

also

getStringValues(),,

hasValue()

getChildPropsWithPrefix()

Retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property

whose

names

match

a

specified

prefix.

Syntax

public

CWProperty[]

getChildPropsWithPrefix(String

propPrefix);

Parameters

propPrefix

Specifies

the

prefix

to

match

in

searching

for

child

properties

of

the

hierarchical

connector

configuration

property.

Chapter

25.

CWProperty

class

391

Return

values

A

reference

to

an

array

of

CWProperty

objects,

each

of

which

represents

one

connector

property

in

the

hierarchical

connector

property

whose

name

begins

with

the

specified

propPrefix.

If

no

child

properties

exist

in

the

hierarchical

connector

property

with

the

specified

prefix,

the

method

returns

null.

Exceptions

None.

Notes

The

getChildPropsWithPrefix()

method

retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property

whose

name

begins

with

the

specified

propPrefix.

The

retrieved

properties

are

only

those

of

the

children

of

the

current

hierarchical

property;

they

do

not

include

any

grandchildren,

great-grandchildren,

and

so

on.

To

retrieve

child

properties

at

lower

levels

in

the

hierarchy,

you

must

first

obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getHierChildProps()

or

getHierChildProp()

to

retrieve

its

children.

Note:

You

can

use

the

getHierProp()

to

retrieve

a

specified

child,

grandchild,

and

so

on

down

the

property

hierarchy.

For

example,

suppose

you

configure

properties

for

multiple

listeners

with

the

following

property

hierarchy

shown

in

Figure

77.

To

obtain

all

the

properties

with

the

prefix

of

″Listener″,

you

must

first

retrieve

the

top-level

connector-object

for

ProtocolListener

(for

example,

into

topLevelProp).

You

can

then

use

the

following

call

to

retrieve

both

the

Listener1

and

Listener2

child

properties

of

ProtocolListener:

CWProperty[]

listenerProps

=

topLevelProp.getChildPropsWithPrefix("Listener");

Before

a

call

to

getChildPropsWithPrefix(),

you

can

use

the

hasChildren()

method

to

verify

that

the

hierarchical

connector

property

has

child

properties.

To

retrieve

a

specified

child

property,

use

the

getHierChildProp()

method.

To

retrieve

all

child

properties,

regardless

of

prefix,

you

can

use

the

getHierChildProps()

method.

See

also

getHierChildProp(),,

getHierChildProps(),,

getHierProp(),,

hasChildren()

getEncryptionFlag()

Retrieves

the

encryption

flag

of

the

hierarchical

connector

configuration

property

from

the

connector-property

object.

ProtocolListener

SingleValProp1=dexter

Listener1=first

listener

Port=1500

Listener2=second

listener

Port=1502

SingleValProp2=tashi

Figure

77.

Sample

property

hierarchy

for

protocol

listeners

392

Connector

Development

Guide

for

Java

Syntax

public

Boolean

getEncryptionFlag();

Parameters

None.

Return

values

A

boolean

value

that

indicates

whether

the

current

connector

configuration

property’s

value

is

encrypted.

Exceptions

None.

Notes

The

getEncryptionFlag()

method

obtains

the

boolean

encryption

flag

from

the

connector-property

object.

This

flag

indicates

whether

the

connector

property’s

string

values

are

encrypted.

Note:

In

Connector

Configurator,

encrypted

values

display

as

a

string

of

asterisk

(*)

characters.

See

also

setEncryptionFlag()

getHierChildProp()

Retrieves

a

specified

child

property

for

the

hierarchical

connector

configuration

property.

Syntax

public

CWProperty

getHierChildProp(String

propName);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property

to

retrieve.

Return

values

A

CWProperty

object

that

contains

the

retrieved

child

property.

If

the

specified

property

does

not

exist

in

the

current

hierarchical

connector

property,

the

method

returns

null.

Exceptions

None.

Notes

The

getHierChildProp()

method

retrieves

the

child

property

whose

name

matches

propName

from

the

hierarchical

connector

configuration

property.

The

retrieved

property

must

exist

as

a

child

of

the

current

hierarchical

property;

it

cannot

be

a

grandchildren,

great-grandchild,

and

so

on.

To

retrieve

child

properties

at

lower

Chapter

25.

CWProperty

class

393

levels

in

the

hierarchy,

you

must

first

obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getHierChildProps()

or

getHierChildProp()

to

retrieve

its

children.

Note:

You

can

use

the

getHierProp()

to

retrieve

a

specified

child,

grandchild,

and

so

on

down

the

property

hierarchy.

Before

a

call

to

getHierChildProp(),

you

can

use

the

hasChildren()

method

to

verify

that

the

hierarchical

connector

property

has

child

properties.

To

retrieve

all

child

properties,

use

the

getHierChildProps()

method.

To

retrieve

all

child

properties

with

a

specified

prefix,

you

can

use

the

getChildPropsWithPrefix()

method.

See

also

getChildPropsWithPrefix(),,

getHierChildProps(),,

getHierProp(),,

hasChildren(),,

setValues()

getHierChildProps()

Retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property.

Syntax

public

CWProperty[]

getHierChildProps();

Parameters

None.

Return

values

A

reference

to

an

array

of

CWProperty

objects,

each

of

which

represents

one

connector

property

in

the

hierarchical

connector

property.

If

the

hierarchical

connector

property

does

not

contain

any

child

properties,

the

method

returns

null.

Exceptions

None.

Notes

The

getHierChildProps()

method

retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property.

The

retrieved

properties

are

only

those

of

the

children

of

the

current

hierarchical

property;

they

do

not

include

any

grandchildren,

great-grandchildren,

and

so

on.

To

retrieve

child

properties

at

lower

levels

in

the

hierarchy,

you

must

first

obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getHierChildProps()

or

getHierChildProp()

to

retrieve

its

children.

Note:

You

can

use

the

getHierProp()

to

retrieve

a

specified

child,

grandchild,

and

so

on

down

the

property

hierarchy.

Before

a

call

to

getHierChildProps(),

you

can

use

the

hasChildren()

method

to

verify

that

the

hierarchical

connector

property

has

child

properties.

To

retrieve

a

specified

child

property,

use

the

getHierChildProp()

method.

To

retrieve

all

child

properties

with

a

specified

prefix,

you

can

use

the

getChildPropsWithPrefix()

method.

To

retrieve

all

string

values,

use

the

getStringValues()

method.

394

Connector

Development

Guide

for

Java

See

also

getChildPropsWithPrefix(),,

getHierChildProp(),,

getHierProp(),,

getStringValues(),,

hasChildren(),,

setValues()

getHierProp()

Retrieves

a

specified

child

property

for

the

hierarchical

connector

configuration

property

at

any

level

of

the

property

hierarchy.

Syntax

public

CWProperty

getHierProp(String

propName);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property

to

retrieve.

Return

values

A

CWProperty

object

that

contains

the

retrieved

property

from

the

hierarchy.

If

the

specified

property

does

not

exist

in

the

current

hierarchical

connector

property,

the

method

returns

null.

Exceptions

None.

Notes

The

getHierProp()

method

retrieves

the

child

property

whose

name

matches

propName

from

the

hierarchical

connector

configuration

property.

You

can

retrieve

a

child

property

at

any

level

of

the

current

property

hierarchical;

you

can

specify

a

grandchild,

great-grandchild,

and

so

on.

The

propName

of

the

retrieved

child

property

has

the

form:

child/grandchild/great-grandchild/....

For

example,

suppose

you

have

the

property

hierarchy

shown

in

Figure

77

on

page

392.

To

obtain

the

name

of

the

port

for

Listener1,

you

must

first

retrieve

the

top-level

connector-object

for

ProtocolListener

(for

example,

into

topLevelProp).

You

can

then

use

the

following

call

to

retrieve

the

port

name

of

Listener1:

CWProperty

listenerPort

=

topLevelProp.getHierProp("Listener1/Port");

Before

a

call

to

getHierProp(),

you

can

use

the

hasChildren()

method

to

verify

that

the

hierarchical

connector

property

has

child

properties.

To

retrieve

a

specified

child

property

at

the

top

level

of

the

property

hierarchy,

use

the

getHierChildProp()

method.

To

retrieve

all

child

properties

at

the

top

level

of

the

hierarchy,

you

can

use

the

getHierChildProps()

method.

See

also

getHierChildProp(),,

getHierChildProps(),,

hasChildren()

Chapter

25.

CWProperty

class

395

getName()

Retrieves

the

name

of

the

hierarchical

connector

configuration

property

from

the

connector-property

object.

Syntax

public

String

getName();

Parameters

None.

Return

values

A

String

that

contains

the

name

of

the

connector

configuration

property.

Exceptions

None.

getPropType()

Retrieves

the

property

type

from

a

connector-property

object.

Syntax

public

int

getPropType();

Parameters

None.

Return

values

An

integer

that

indicates

the

property

type

of

the

connector

configuration

property.

Compare

this

integer

value

with

the

following

connector-property

constants

to

determine

the

type:

CWConnectorConstant.SIMPLE

The

connector

configuration

property

is

simple;

that

is,

it

contains

only

string

values.

CWConnectorConstant.HIERARCHICAL

The

connector

configuration

property

is

hierarchical;

that

is,

it

contains

one

or

more

child

properties

and

perhaps

string

values

as

well.

Exceptions

None.

getStringValues()

Retrieves

all

string

values

for

the

hierarchical

connector

configuration

property.

Syntax

public

String[]

getStringValues();

396

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

reference

to

an

array

of

String

objects,

each

of

which

represents

one

string

value

for

the

hierarchical

connector

property.

If

the

hierarchical

connector

property

does

not

contain

any

string

values,

the

method

returns

null.

Exceptions

None.

Notes

The

getStringValues()

method

retrieves

all

string

values

for

the

hierarchical

connector

configuration

property.

The

retrieved

string

values

are

only

those

of

the

current

hierarchical

property;

they

do

not

include

any

values

in

child

properties.

To

retrieve

string

values

at

lower

levels

in

the

hierarchy,

you

can

do

either

of

the

following:

v

Use

the

getChildPropValue()

method

to

retrieve

the

string

values

of

a

specified

child

property.

v

Obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getStringValues()

to

retrieve

its

string

values.

Before

a

call

to

getStringValues(),

you

can

use

the

hasValue()

method

to

determine

if

the

hierarchical

connector

property

has

any

string

values.

To

retrieve

child

properties,

use

the

getHierChildProp()

or

getHierChildProps()

method.

If

a

hierarchical

connector

property

has

encrypted

string

values

(its

encrypted

flag

is

true),

the

getStringValues()

returns

the

unencrypted

values.

You

do

not

have

to

handle

decryption.

See

also

getChildPropValue(),,

getHierChildProp(),,

getHierChildProps(),,

hasValue(),,

setValues()

hasChildren()

Determines

whether

the

current

connector

property

contains

any

child

properties.

Syntax

public

boolean

hasChildren();

Parameters

None.

Return

values

A

boolean

that

indicates

whether

the

hierarchical

connector

property

contains

any

child

properties.

The

method

returns

true

if

it

does

contain

child

properties;

otherwise,

it

returns

false.

Chapter

25.

CWProperty

class

397

Exceptions

None.

Notes

The

hasChildren()

method

is

useful

for

determining

which

of

the

CWProperty

methods

to

use

to

extract

the

value

of

a

hierarchical

connector

property:

v

If

hasChildren()

returns

true,

use

one

of

the

following

value

methods

to

retrieve

child

properties:

To

obtain

all

child

properties

getHierChildProps()

To

obtain

a

specified

child

property

getHierChildProp()

To

obtain

all

child

properties

whose

names

begin

with

a

specified

prefice

getChildPropsWithPrefix()

v

If

hasChildren()

returns

false,

use

one

of

the

following

value

methods

to

retrieve

any

string

values:

To

obtain

all

string

values

getStringValues()

To

obtain

the

string

values

of

a

specified

child

property

getChildPropValue()

See

also

getChildPropValue(),,

getHierChildProp(),,

getHierChildProps(),,

getStringValues(),,

hasValue()

hasValue()

Determines

whether

the

current

hierarhical

connector

property

has

any

string

values.

Syntax

public

boolean

hasValue();

Parameters

None.

Return

values

A

boolean

that

indicates

whether

the

connector

property

contains

any

string

values.

The

method

returns

true

if

it

does

contain

values;

otherwise,

it

returns

false.

Exceptions

None.

Notes

The

hasValue()

method

is

useful

for

determining

which

of

the

CWProperty

methods

to

use

to

extract

the

value

of

a

hierarchical

connector

property:

v

If

hasValue()

returns

true,

use

one

of

the

following

value

methods

to

retrieve

string

values:

398

Connector

Development

Guide

for

Java

To

obtain

all

string

values

getStringValues()

To

obtain

the

string

values

of

a

specified

child

property

getChildPropValue()

v

If

hasValue()

returns

false,

use

one

of

the

following

value

methods

to

retrieve

any

child

properties:

To

obtain

all

child

properties

getHierChildProps()

To

obtain

a

specified

child

property

getHierChildProp()

To

obtain

all

child

properties

whose

names

begin

with

a

specified

prefice

getChildPropsWithPrefix()

See

also

hasChildren(),

setEncryptionFlag()

Sets

the

encryption

flag

of

a

connector

configuration

property

in

its

connector-property

object.

Syntax

public

void

setEncryptionFlag(boolean

encryptFlag);

Parameters

encryptFlag

Is

a

boolean

value

to

indicate

whether

the

current

connector

configuration

property’s

value

should

be

encrypted.

Return

values

None.

Exceptions

None.

Notes

The

setEncryptionFlag()

method

sets

the

boolean

encryption

flag

from

the

connector-property

object.

This

flag

indicates

whether

the

connector

property’s

string

values

are

encrypted.

Note:

In

Connector

Configurator,

encrypted

values

display

as

a

string

of

asterisk

(*)

characters.

See

also

getEncryptionFlag()

setValues()

Sets

the

values

of

the

hierarchical

connector

configuration

property.

Chapter

25.

CWProperty

class

399

Syntax

public

void

setValues(Object[]

propValues);

Parameters

propValues

Is

an

array

of

Object

values,

each

array

element

is

a

single

property

value.

Return

values

None.

Exceptions

None.

Notes

The

setValues()

method

allows

you

to

set

the

values

of

a

hierarchical

connector

configuration

property.

You

specify

the

property

values

in

the

propValues

array,

which

is

an

array

of

Objects.

Therefore,

you

can

pass

both

string

and

child-property

values

in

this

single

array.

Make

sure

you

assign

property

values

in

the

propValues

array

in

the

order

that

they

are

defined

within

the

hierarchical

connector

property.

For

example,

the

following

call

to

setValues()

assigns

both

a

string

value

and

a

child

property

to

the

connector

property

in

topLevelProp:

Object[]

propValues;

CWProperty

childProp;

propValues[0]

=

"stringValue"

propValue[1]

=

childProp;

topLevelProp.setValues(propValues);

See

also

getHierChildProp(),,

getHierChildProps(),,

getStringValues()

400

Connector

Development

Guide

for

Java

Part

4.

Java

low-level

connector

library

API

reference

©

Copyright

IBM

Corp.

2000,

2004

401

402

Connector

Development

Guide

for

Java

Chapter

26.

Overview

of

the

low-level

Java

connector

library

The

low-level

Java

connector

library

includes

the

low-level

class

libraries

on

which

the

high-level

Java

connector

library

is

based.

This

connector

class

library

contains

predefined

classes

for

low-level

Java

connectors.

The

low-level

Java

connector

library

also

provide

utilities,

such

as

methods

to

implement

tracing

and

logging

services.

Important:

The

low-level

Java

connector

library

is

a

deprecated

library

for

the

development

of

Java

connectors.

For

development

of

new

Java

connectors,

use

the

Java

connector

library.

For

more

information

on

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

IBM

includes

the

predefined

classes

and

interfaces

of

the

low-level

Java

connector

library

in

the

product

Java

jar

(Java

archive

file),

wbiart.jar.

The

wbiart.jar

file

resides

in

the

wbiart

subdirectory

of

the

product

directory.

Classes

and

interfaces

Table

145

lists

the

classes

and

interfaces

in

the

low-level

Java

connector

library.

Table

145.

Classes

and

interfaces

in

the

low-level

Java

connector

library

Class

or

interface

Description

Page

BOHandlerBase

Represents

the

base

class

for

a

business

object

handler.

You

extend

this

class

to

define

one

or

more

business

object

handler

for

your

connector.

405

BusinessObjectInterface

Represents

a

business

object

instance.

It

provides

access

to

the

names

and

values

of

attributes

409

ConnectorBase

Represents

the

base

class

for

a

connector.

You

extend

this

class

to

define

your

connector

class

and

implement

the

required

virtual

methods

425

CxObjectContainerInterface

Manages

an

array

of

child

business

objects

443

CxObjectAttr

Represents

an

attribute

descriptor,

which

contains

information

about

the

properties

of

an

attribute

435

CxProperty

Represents

a

connector-property

object,

which

contains

a

hierarchical

connector

configuration

property

447

CxStatusConstants

Defines

outcome-status

constants

for

use

with

the

low-level

Java

connector

library

455

JavaConnectorUtil

Provides

miscellaneous

utility

methods

for

use

in

a

Java

connector;

These

utility

methods

fall

into

the

following

general

categories:

v

Static

methods

for

generating

and

logging

messages

v

Static

methods

for

creating

business

objects

v

Static

methods

for

obtaining

connector

configuration

properties

v

Methods

for

obtaining

locale

information

457

ReturnStatusDescriptor

Represents

a

return-status

descriptor,

which

contains

error

and

informational

messages

471

Exceptions

Exception

subclasses

represent

exceptions

that

methods

of

the

low-level

Java

connector

library

throw

473

©

Copyright

IBM

Corp.

2000,

2004

403

404

Connector

Development

Guide

for

Java

Chapter

27.

BOHandlerBase

class

The

BOHandlerBase

class

is

the

low-level

Java

connector

library

class

for

the

base

class

of

a

business

object

handler.

It

is

part

of

the

AppSide_Connector

package.

All

low-level

Java

connectors

must

extend

this

class

for

each

of

its

business

object

handlers

and

implement

the

doVerbFor()

method

in

each

of

the

derived

classes.

Note:

The

CWConnectorBOHandler

class

is

the

Java

connector

library

method

that

is

a

wrapper

for

the

BOHandlerBase

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

The

connector

framework

calls

ConnectorBase.getBOHandlerForBO()

to

create

a

business

object

handler

for

each

of

the

business

object

definitions

that

the

connector

supports.

Table

146

summarizes

the

methods

in

the

BOHandlerBase

class.

Table

146.

Member

methods

of

the

BOHandlerBase

class

Member

method

Description

Page

doVerbFor()

Performs

the

action

for

the

active

verb

of

a

business

object.

405

getName()

Returns

the

name

of

the

business

object

handler.

406

setName()

Sets

the

name

of

the

business

object

handler.

407

doVerbFor()

Performs

the

action

for

the

active

verb

of

a

business

object.

This

method

is

the

primary

public

interface

for

the

business

object

handler.

Syntax

public

int

doVerbFor(BusinessObjectInterface

theBusObj,

ReturnStatusDescriptor

rtnObj);

Parameters

theBusObj

Is

the

incoming

business

object.

rtnObj

Is

the

status

descriptor

object

that

contains

an

error

or

informational

message

for

the

integration

broker

and

the

status

of

the

operation.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

verb

operation:

CxStatusConstants.SUCCEED

The

verb

operation

succeeded.

CxStatusConstants.FAIL

The

verb

operation

failed.

©

Copyright

IBM

Corp.

2000,

2004

405

CxStatusConstants.APPRESPONSETIMEOUT

The

application

is

not

responding.

CxStatusConstants.VALCHANGE

At

least

one

value

in

the

business

object

changed.

CxStatusConstants.VALDUPES

The

requested

operation

found

multiple

records

for

the

same

key

value.

CxStatusConstants.MULTIPLE_HITS

The

connector

finds

multiple

matching

records

when

retrieving

using

non-key

values.

The

connector

will

only

return

the

first

matching

record

in

a

business

object.

CxStatusConstants.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CxStatusConstants.BO_DOES_NOT_EXIST

The

requested

business

object

entity

does

not

exist

in

the

database.

Notes

When

a

business

object

arrives

from

the

integration

broker,

the

connector

framework

creates

a

status

descriptor

object

and

sends

it

as

an

argument

in

its

call

to

the

doVerbFor()

method,

which

performs

the

action

of

the

business

object’s

active

verb.

Important:

The

doVerbFor()

method

is

an

abstract

method

that

you

must

implement

for

the

business

object

handler.

The

doVerbFor()

method

should

take

the

following

steps:

v

Perform

the

verb

operation.

v

Call

ReturnStatusDescriptor.setErrorString()

to

set

a

message

in

the

status

descriptor

object

if

there

is

an

informational,

warning,

or

error

return

message.

v

Call

ReturnStatusDescriptor.setStatus()

to

return

a

status

return

code.

The

setStatus()

method

takes

an

integer

whose

value

should

be

the

same

as

the

return

value

of

the

doVerbFor()

method.

See

also

See

also

the

description

of

the

BusinessObjectInterface

class.

getName()

Retrieves

the

name

of

the

BOHandler

object.

Syntax

protected

String

getName();

Parameters

None.

Return

values

A

String

containing

the

name

of

the

BOHandler

object.

If

setName()

has

not

been

called

on

the

BOHandlerBase

instance

prior

to

this

method,

returns

null.

406

Connector

Development

Guide

for

Java

See

also

See

also

the

setName()

method.

setName()

Sets

the

name

of

the

BOHandler

object,

the

business

object

handler.

This

name

is

typically

the

name

of

the

business

object

the

handler

has

been

created

to

process.

Syntax

protected

void

setName(String

name);

Parameters

name

Specifies

the

name

of

the

BOHandler

object.

Return

values

None.

Chapter

27.

BOHandlerBase

class

407

408

Connector

Development

Guide

for

Java

Chapter

28.

BusinessObjectInterface

interface

The

BusinessObjectInterface

interface

gives

a

view

of

the

business

object

to

the

developers

of

low-level

Java

connectors.

It

is

part

of

the

CxCommon

package.

The

interface

defines

methods

for

getting

information

about

the

metadata

of

the

business

object,

and

methods

for

reading

and

modifying

the

business

object

instance.

Each

instance

of

BusinessObjectInterface

represents

a

single

business

object.

Note:

The

CWConnectorBusObj

class

is

the

Java

connector

library

class

that

provides

the

functionality

for

the

BusinessObjectInterface

interface

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

Important:

The

low-level

Java

connector

library

provides

an

implementation

of

this

interface

internally.

Connector

developers

should

not

implement

this

class.

Table

147

summarizes

the

methods

in

the

BusinessObjectInterface

interface.

Table

147.

Member

methods

of

the

BusinessObjectInterface

interface

Member

method

Description

Page

clone()

Copies

an

existing

business

object.

410

doVerbFor()

Calls

the

business

object

handler

(instance

of

the

BOHandlerBase

class)

to

perform

the

actions

of

the

business

object’s

active

verb.

410

dump()

Formats

and

returns

the

business

object

information

in

a

standard

defined

format

for

logging

and

tracing.

411

getAppText()

Retrieves

the

value

of

the

business

object’s

AppSpecificInfo

field

412

getAttrCount()

Retrieves

the

number

of

attributes

that

the

business

object

has.

412

getAttrDesc()

Retrieves

an

attribute

description

by

name

or

by

position.

412

getAttribute()

Retrieves

the

attribute

value.

413

getAttributeIndex()

Retrieves

the

index

position

of

a

given

attribute.

413

getAttributeType()

Retrieves

the

attribute

type

code

for

a

given

attribute

using

the

attribute

name

or

the

attribute’s

position.

414

getAttrName()

Retrieves

the

name

of

an

attribute

by

position.

414

getAttrValue()

Retrieves

an

attribute

value

by

name

or

by

position.

415

getBusinessObjectVersion()

Retrieves

the

version

of

the

business

object.

415

getDefaultAttrValue()

Retrieves

the

default

value

of

an

attribute

value

by

name

or

by

position.

416

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

416

getName()

Retrieves

the

name

of

the

business

object

specification

that

the

business

object

references.

417

getParentBusinessObject()

Retrieves

the

parent

business

object

of

the

current

business

object.

417

getVerb()

Retrieves

the

active

verb

for

the

business

object.

418

getVerbAppText()

Retrieves

the

verb

application-specific

information.

418

©

Copyright

IBM

Corp.

2000,

2004

409

Table

147.

Member

methods

of

the

BusinessObjectInterface

interface

(continued)

Member

method

Description

Page

isAttrPresent()

Determines

if

an

attribute

is

present

or

not

on

the

business

object.

418

isBlank()

Determines

whether

the

value

of

the

attribute

with

the

specified

name

or

position

is

blank.

419

isIgnore()

Determines

whether

the

value

of

the

attribute

with

the

specified

name

or

position

is

“ignore”.

419

isVerbSupported()

Determines

whether

a

verb

is

supported

or

not.

419

makeNewAttrObject()

Creates

a

new

object

of

the

correct

type

for

the

attribute

with

the

specified

name

or

position.

This

operation

applies

typically

to

attributes

that

contain

child

objects.

420

setAttributeWithCreate()

Sets

an

object’s

attribute

value.

420

setAttrValue()

Sets

the

value

of

an

attribute

by

name

or

by

position.

421

setDefaultAttrValues()

Initializes

the

business

object’s

attributes

with

their

default

values.

422

setLocale()

Sets

the

locale

associated

with

the

business

object.

423

setVerb()

Sets

the

active

verb

for

the

business

object.

423

clone()

Copies

an

existing

business

object.

It

copies

the

business

object

attributes

and

also

its

verb.

Syntax

public

Object

clone();

Parameters

None.

Return

values

A

copy

of

the

current

business

object,

including

its

attributes

and

verbs.

doVerbFor()

Invokes

the

business

object

handler

to

perform

the

action

specified

by

the

active

verb

in

the

business

object.

Syntax

public

int

doVerbFor(ReturnStatusDescriptor

rtnObj);

Parameters

rtnObj

Is

the

status

descriptor

object

that

contains

an

error

or

informational

message

for

the

execution

of

this

method.

The

integration

broker

uses

this

message.

Return

values

An

integer

that

specifies

the

outcome

status

of

the

verb

operation.

CxStatusConstants.SUCCEED

The

verb

operation

succeeded.

410

Connector

Development

Guide

for

Java

CxStatusConstants.FAIL

The

verb

operation

failed.

CxStatusConstants.APPRESPONSETIMEOUT

The

application

is

not

responding.

CxStatusConstants.VALCHANGE

At

least

one

value

in

the

business

object

changed.

CxStatusConstants.VALDUPES

The

requested

operation

found

multiple

records

for

the

same

key

value.

CxStatusConstants.MULTIPLE_HITS

The

connector

finds

multiple

matching

records

when

retrieving

with

non-key

values.

The

connector

will

only

return

the

first

matching

record

in

a

business

object.

CxStatusConstants.RETRIEVEBYCONTENT_FAILED

The

connector

was

not

able

to

find

matches

for

Retrieve

by

non-key

values.

CxStatusConstants.BO_DOES_NOT_EXIST

The

requested

business

object

entity

does

not

exist

in

the

database.

Notes

The

execution

of

this

method

sets

the

passed-in

parameter

with

the

error

or

informational

message.

The

message

is

then

sent

back

to

the

integration

broker.

The

business

object

provides

all

the

operations

for

the

verbs

that

the

business

object

definition

supports.

The

active

verb

is

one

of

the

list

of

verbs

that

the

business

object

definition

contains.

To

determine

the

active

verb

for

a

business

object,

you

can

use

the

getVerb()

method.

See

also

See

also

the

descriptions

of

the

getVerb()

and

setVerb()

methods

and

the

BusinessObjectInterface

interface.

dump()

Returns

business

object

information

in

a

readable

format

for

logging

and

tracing.

Syntax

public

String

dump();

Parameters

None.

Return

values

A

String

that

contains

the

formatted

business

object

information.

Chapter

28.

BusinessObjectInterface

interface

411

getAppText()

Retrieves

the

application-specific

information

for

this

business

object

definition.

Syntax

public

String

getAppText();

Parameters

None.

Return

values

A

String

object

that

holds

the

value

of

the

AppSpecificInfo

field

for

the

business

object.

This

method

can

return

null.

getAttrCount()

Retrieves

the

number

of

attributes

that

are

in

the

business

object’s

attribute

list.

Syntax

public

int

getAttrCount();

Parameters

None.

Return

values

An

integer

that

specifies

the

number

of

attributes

in

the

attribute

list.

See

also

See

also

the

description

of

the

getAttrIndex()

method.

getAttrDesc()

Retrieves

the

description

of

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

position.

Syntax

public

CxObjectAttr

getAttrDesc(String

name);

public

CxObjectAttr

getAttrDesc(int

position);

Parameters

name

Is

the

name

of

the

attribute

in

the

business

object

definition.

position

Is

the

position

of

the

attribute

in

the

business

object

definition.

Return

values

A

CxObjectAttr

object

that

defines

the

specified

attribute.

412

Connector

Development

Guide

for

Java

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

name

or

position

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

To

retrieve

the

description

of

an

attribute

of

the

business

object,

specify

either

the

attribute

name

or

its

position

in

the

list

of

attributes:

v

The

first

form

of

the

getAttrDesc()

method

retrieves

the

description

of

an

attribute

of

a

business

object,

given

the

attribute’s

name.

v

The

second

form

retrieves

the

description

of

an

attribute

of

a

business

object,

given

its

position

within

the

business

object

definition.

See

also

See

also

the

description

of

the

getAttrName()

method.

getAttribute()

Retrieves

the

value

of

an

attribute,

given

the

attribute’s

name.

Syntax

public

Object

getAttribute(String

attrName);

Parameters

attrName

Is

the

name

of

the

attribute

in

the

business

object

definition.

Return

values

An

Object

that

contains

the

attribute

value.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

This

method

differs

from

getAttrValue()

in

that

getAttribute()

can

do

a

deep

retrieve

of

attribute

values.

For

example,

if

a

Customer

business

object

contains

an

Address

business

object,

getAttribute()

can

retrieve

an

AddressId

from

the

Address

subobject,

at

the

fifth

position

in

the

container:

Address[4].AddressId.

getAttributeIndex()

Retrieves

the

ordinal

position

of

a

given

attribute

of

a

business

object.

Syntax

public

int

getAttributeIndex(String

name);

Chapter

28.

BusinessObjectInterface

interface

413

Parameters

name

Is

the

name

of

the

attribute

in

the

business

object

definition.

Return

values

The

integer

ordinal

position

of

the

attribute.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

name

specified

is

not

valid

for

the

definition

of

this

business

object.

getAttributeType()

Retrieves

the

data

type

of

the

attribute

using

either

the

ordinal

position

of

a

given

attribute

of

a

business

object

or

the

name

of

the

attribute.

Syntax

public

int

getAttributeType(String

name);

public

int

getAttributeType(int

position);

Parameters

name

Is

the

name

of

the

attribute

in

the

business

object

definition.

position

Is

the

ordinal

position

of

the

attribute

in

the

business

object

definition.

Return

values

The

type

of

the

attribute,

represented

as

an

integer.

See

Table

151

on

page

435

for

the

possible

attribute-type

constants.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

name

or

position

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

To

retrieve

the

type

of

an

attribute

of

the

business

object,

specify

either

the

attribute

name

or

its

position

in

the

list

of

attributes.

getAttrName()

Retrieves

the

name

of

an

attribute

that

you

specify

by

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getAttrName(int

position);

414

Connector

Development

Guide

for

Java

Parameters

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

Return

values

A

String

that

contains

the

name

of

the

specified

attribute.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

specified

is

not

valid

for

the

definition

of

this

business

object.

getAttrValue()

Retrieves

the

value

of

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

Object

getAttrValue(String

name);

public

Object

getAttrValue(int

position);

Parameters

name

Is

the

name

of

an

attribute.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

An

Object

that

contains

the

value

of

the

specified

attribute,

in

the

format

defined

for

the

attribute’s

data

type.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

The

getAttrValue()

method

returns

a

java.lang.Object,

which

you

cast

to

the

proper

type

before

assigning

to

a

variable.

See

also

See

also

the

description

of

the

getAttrName()

method.

getBusinessObjectVersion()

Retrieves

the

version

of

the

business

object

definition.

The

version

is

represented

by

the

major,

minor,

and

point

components

-x.y.z.

For

example:

-

1.0.2.

Chapter

28.

BusinessObjectInterface

interface

415

Syntax

public

String

getBusinessObjectVersion();

Parameters

None.

Return

values

A

String

that

contains

the

version

number

of

the

business

object.

getDefaultAttrValue()

Retrieves

the

default

value

of

an

attribute

of

a

business

object,

given

the

attribute’s

name

or

its

position

in

the

business

object’s

attribute

list.

Syntax

public

String

getDefaultAttrValue(int

position);

public

String

getDefaultAttrValue(String

name);

Parameters

name

Is

the

name

of

an

attribute.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

The

String

containing

the

default

value

of

the

attribute.

If

no

default

value

exists

for

the

attribute,

the

method

returns

an

empty

string.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

To

retrieve

the

default

value

of

an

attribute

of

the

business

object,

specify

either

the

attribute

name

or

the

attribute’s

position

in

the

list

of

attributes.

See

also

See

also

the

description

of

the

getAttrValue()

method.

getLocale()

Retrieves

the

locale

associated

with

the

business

object.

Syntax

public

Locale

getLocale();

Parameters

None.

416

Connector

Development

Guide

for

Java

Return

values

A

Java

Locale

object

that

describes

the

locale

associated

with

the

current

business

object.

Notes

The

getLocale()

method

returns

the

business-object

locale,

which

is

associated

with

the

business

object.

This

locale

indicates

the

language

and

code

encoding

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

assigns

the

connector-framework

locale

as

the

business-object

locale.

See

also

createBusObj(),

getGlobalLocale(),

setLocale()

getName()

Retrieves

the

name

of

the

business

object

definition

that

the

business

object

references.

Syntax

public

String

getName();

Parameters

None.

Return

values

A

String

object

containing

the

name

of

a

business

object

definition.

See

also

See

also

the

description

of

the

getBusinessObjectVersion()

method.

getParentBusinessObject()

Retrieves

the

parent

business

object

of

the

current

business

object.

If

this

business

object

instance

is

a

root

object,

in

which

case

it

has

no

parent

object,

then

the

method

returns

null.

Syntax

public

BusinessObjectInterface

getParentBusinessObject();

Parameters

None.

Return

values

The

business

object

that

contains

the

parent

business

object,

or

null

if

the

current

business

object

is

a

root

and

has

no

parent.

Chapter

28.

BusinessObjectInterface

interface

417

getVerb()

Retrieves

the

active

verb

for

the

business

object.

Syntax

public

String

getVerb();

Parameters

None.

Return

values

A

String

object

that

contains

the

active

verb

for

the

business

object.

If

there

is

no

active

verb

for

the

business

object,

the

returned

String

is

empty.

Notes

The

business

object

definition

contains

the

list

of

verbs

that

the

business

object

supports.

The

getVerb()

method

enables

you

to

determine

which

verb

is

active

for

the

business

object.

See

also

See

also

the

description

of

the

setVerb()

method.

getVerbAppText()

Retrieves

the

value

of

the

application-specific

information

for

a

particular

verb.

Syntax

public

String

getVerbAppText(String

verb);

Parameters

verb

Is

the

verb

for

which

the

value

of

the

AppSpecificInfo

field

is

to

be

retrieved.

Return

values

A

String

object

containing

the

value

of

AppSpecificInfo

for

the

specified

verb.

If

the

business

object

does

not

have

application-specific

information

for

the

verb,

the

method

returns

an

empty

string.

See

also

See

also

the

description

of

the

getVerb()

method.

isAttrPresent()

Determines

if

a

given

attribute

is

present

or

not

on

a

business

object.

Syntax

public

boolean

isAttrPresent(String

attrName);

418

Connector

Development

Guide

for

Java

Parameters

attrName

Is

the

name

of

an

attribute

whose

value

is

checked

for

blank.

Return

values

Returns

true

if

the

attribute

exists

or

false

if

it

does

not.

isBlank()

Determines

whether

the

value

is

blank

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

public

boolean

isBlank(int

position);

public

boolean

isBlank(String

name);

Parameters

name

Is

the

name

of

an

attribute.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

True

if

the

attribute

value

equals

the

blank

value

or

False

if

it

does

not.

isIgnore()

Determines

whether

the

value

is

Ignore

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

Syntax

public

boolean

isIgnore(int

position);

public

boolean

isIgnore(String

name);

Parameters

name

Is

the

name

of

an

attribute.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

Returns

true

if

the

attribute

value

equals

the

special

Ignore

value

or

false

if

it

does

not.

isVerbSupported()

Determines

whether

or

not

the

verb

passed

to

the

method

is

supported

by

this

business

object

definition.

Syntax

public

boolean

isVerbSupported(String

verb);

Chapter

28.

BusinessObjectInterface

interface

419

Parameters

verb

Is

the

verb

which

the

method

determines

if

supported.

Return

values

Returns

true

if

the

passed-in

verb

is

supported;

otherwise,

returns

false.

See

also

See

also

the

descriptions

of

the

getVerb()

method.

makeNewAttrObject()

Creates

a

new

business

object

of

the

correct

type

for

the

attribute.

Syntax

public

Object

makeNewAttrObject(int

position);

public

Object

makeNewAttrObject(String

name);

Parameters

name

Is

the

name

of

an

attribute.

position

Is

an

integer

that

specifies

the

ordinal

position

of

an

attribute

in

the

business

object’s

attribute

list.

Return

values

An

Object

containing

the

newly

created

instance

of

the

attribute

class.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

Notes

The

makeNewAttrObject()

method

creates

a

new

business

object

of

the

correct

type

for

the

attribute

with

the

specified

name

or

at

the

specified

position

in

the

attribute

list.

For

example,

for

an

attribute

of

type

container,

the

method

returns

an

instance

of

a

CxObjectContainerInterface.

The

caller

needs

to

cast

the

returned

object

to

the

correct

type.

In

the

case

where

the

type

is

a

business

object,

the

caller

must

cast

the

returned

object

to

BusinessObjectInterface.

For

an

attribute

whose

value

is

a

container,

cast

the

returned

object

to

CxObjectContainerInterface.

This

method

should

typically

be

used

with

attributes

that

contain

child

objects.

setAttributeWithCreate()

Sets

an

object’s

attribute,

creating

the

object’s

attributes

regardless

of

the

intervening

objects

and

containers.

420

Connector

Development

Guide

for

Java

Syntax

public

void

setAttributeWithCreate(String

attrName,

Object

value);

Parameters

attrName

Is

the

name

of

the

attribute

to

set.

value

Is

the

attribute

value.

Return

values

None.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

CxObjectInvalidAttrException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

BusObjSpecNameNotFoundException

Thrown

if

the

business

object

definition

is

not

found

in

the

database.

Notes

The

setAttributeWithCreate()

method

forcibly

sets

an

object’s

attribute;

that

is,

it

creates

the

object’s

attributes

regardless

of

the

intervening

objects

and

containers.

The

supported

grammar

is:

attr1.attr2...attrThatsAContainer[index]...attrN.

For

example,

Address[5].AddressObjId

refers

to

the

object

identifier

of

the

fifth

element

in

the

business

object

array

referenced

by

the

Address

attribute.

setAttrValue()

Sets

the

value

of

an

attribute.

Syntax

public

void

setAttrValue(String

attrName,

Object

newval);

public

void

setAttrValue(int

position,

Object

newval);

Parameters

attrName

Is

the

name

of

the

attribute

whose

value

you

want

to

set.

position

Is

an

integer

that

specifies

the

ordinal

position

of

the

attribute

in

the

business

object’s

attribute

list.

newval

Is

the

value

to

set

in

the

business

object.

Return

values

None.

Chapter

28.

BusinessObjectInterface

interface

421

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

or

name

specified

is

not

valid

for

the

definition

of

this

business

object.

CxObjectInvalidAttrException

Thrown

if

the

value

passed

in

is

not

a

valid

value

for

the

particular

attribute.

Notes

You

can

use

the

name

or

position

method

to

set

an

attribute

value.

The

setAttrValue()

method

sets

the

value

of

an

attribute

to

the

value

passed

in

as

a

parameter

to

the

method.

This

value

can

be

of

any

type

supported

by

the

IBM

WebSphere

business

integration

system.

If

the

attribute

type

is

a

type

other

than

container

and

subobject

type,

then

the

passed-in

parameter

is

of

type

String.

For

subobjects,

the

passed-in

parameter

is

of

type

BusinessObjectInterface.

For

containers,

the

passed-in

parameter

can

be

either

of

type

CxObjectContainerInterface

or

BusinessObjectInterface.

This

method

can

be

called

directly

on

a

container

attribute

with

an

instance

of

type

BusinessObjectInterface.

When

this

is

the

first

business

object

that

this

container

holds,

a

container

will

be

created

internally

and

this

business

object

is

inserted

into

that

new

container.

Subsequent

similar

calls

add

business

objects

to

the

same

container.

Alternatively,

you

can

create

a

container

of

type

CxObjectContainerInterface

by

using

the

JavaConnectorUtil.createContainer()

method,

then

inserting

all

business

objects

into

this

container

and

invoking

setAttrValue()

with

the

container

as

the

parameter.

See

also

See

also

the

description

of

the

getDefaultAttrValues()

method.

setDefaultAttrValues()

Sets

default

values

for

attributes

which

currently

have

the

special

Blank

or

Ignore

attribute

values.

Syntax

public

void

setDefaultAttrValues();

Parameters

None.

Return

values

None.

Notes

The

default

values

are

valid

values,

not

ignore

values.

For

attributes

whose

type

is

container,

the

method

creates

an

empty

container.

The

method

sets

default

values

for

instances

of

sub-objects

within

the

business

object.

422

Connector

Development

Guide

for

Java

See

also

See

also

the

description

of

the

setAttrValue()

method.

setLocale()

Sets

the

locale

for

the

business

object.

Syntax

public

void

setLocale(Locale

localeObj);

public

void

setLocale(String

localeName);

Parameters

localeName

Is

the

name

of

the

locale

to

associate

with

the

current

business

object.

localeObj

Is

a

Java

Locale

object

that

describes

the

locale

to

associate

with

the

current

business

object.

Return

values

None.

Exceptions

IllegalLocaleException

Thrown

if

the

locale

name

specified

is

not

valid.

Notes

The

setLocale()

method

sets

the

business-object

locale,

which

identifies

the

locale

that

is

associated

with

the

business

object.

This

locale

indicates

the

language

and

code

encoding

associated

with

the

data

in

the

business

object,

not

with

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

If

the

business

object

does

not

have

a

locale

associated

with

it,

the

connector

framework

assigns

the

connector-framework

locale

as

the

business-object

locale.

See

also

getLocale()

setVerb()

Sets

the

active

verb

for

a

business

object.

Syntax

public

void

setVerb(String

newVerb);

Parameters

newVerb

Is

a

verb

that

is

in

the

verb

list

of

the

business

object

definition

to

which

the

business

object

refers.

Chapter

28.

BusinessObjectInterface

interface

423

Return

values

None.

Exceptions

BusObjInvalidVerbException

Thrown

if

the

verb

passed

in

is

not

a

valid

verb

in

the

business

object

definition.

Notes

The

business

object

definition

contains

the

list

of

verbs

that

the

business

object

supports.

The

verb

that

you

set

as

the

active

verb

must

be

on

this

list.

Only

one

verb

is

active

at

a

time

for

a

business

object.

All

business

objects

typically

support

the

Create,

Retrieve,

and

Update

verbs.

A

business

object

might

support

additional

verbs,

such

as

Delete.

Every

connector

that

supports

the

business

object

must

implement

all

the

verbs

that

it

supports.

See

also

See

also

the

descriptions

of

the

getVerb()

method.

424

Connector

Development

Guide

for

Java

Chapter

29.

ConnectorBase

class

The

ConnectorBase

class

is

the

base

class

for

a

low-level

Java

connector.

It

is

part

of

the

AppSide_Connector

package.

From

this

class,

a

connector

developer

must

derive

a

connector

class

and

implement

the

abstract

methods

for

the

connector.

This

derived

class

contains

the

code

for

the

application-specific

component

of

the

connector.

Note:

The

CWConnectorAgent

class

is

the

Java

connector

library

method

that

is

a

wrapper

for

the

ConnectorBase

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

Important:

All

low-level

Java

connectors

must

extend

this

abstract

class,

which

contains

the

following

abstract

methods:

init(),

getVersion(),

getBOHandlerForBO(),

pollForEvents(),

and

terminate().

Developers

must

provide

implementations

for

these

abstract

methods.

Table

148

summarizes

the

methods

in

the

ConnectorBase

class.

Table

148.

Member

methods

of

the

ConnectorBase

class

Member

method

Description

Page

executeCollaboration()

Sends

business

object

request

to

a

collaboration.

425

getBOHandlerForBO()

Retrieves

the

handler

for

a

business

object.

426

getCollabNames()

Retrieves

a

list

of

collaboration

names

that

are

available

to

process

business

object

requests.

426

getSupportedBusObjNames()

Retrieves

a

list

of

supported

business

objects

for

the

connector.

427

getVersion()

Retrieves

the

version

of

the

application

connector.

427

gotApplEvent()

Sends

a

business

object

to

InterChange

Server.

428

init()

Initializes

the

connector

and

establishes

a

connection

with

the

application.

429

isAgentCapableOfPolling()

Determines

whether

this

connector-agent

process

can

perform

polling.

430

isSubscribed()

Checks

if

subscriptions

exist

for

the

business

object

and

verb

combination.

431

pollForEvents()

Polls

an

application

for

changes

to

business

objects.

432

terminate()

Closes

the

connection

with

the

application

and

frees

allocated

resources.

433

executeCollaboration()

Sends

business

object

requests

to

collaborations.

This

is

a

synchronous

request.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

©

Copyright

IBM

Corp.

2000,

2004

425

Syntax

public

void

executeCollaboration(String

collabName,

BusinessObjectInterface

theBusObj,

ReturnStatusDescriptor

rtnStatus);

Parameters

collabName

Specifies

the

name

of

the

collaboration

that

should

execute

the

business

object

request.

theBusObj

Is

the

incoming

and

returned

business

object.

rtnStatus

Is

the

status

descriptor

containing

a

message

and

the

execution

or

return

status

from

the

collaboration.

Return

values

None.

See

also

See

also

the

description

of

the

BusinessObjectInterface.

getBOHandlerForBO()

Retrieves

the

business

object

handler

for

a

business

object

definition.

Syntax

public

BOHandlerBase

getBOHandlerForBO(String

busObjName);

Parameters

busObjName

Is

the

name

of

a

business

object.

Return

values

A

reference

to

a

business

object

handler.

Notes

The

connector

framework

calls

the

getBOHandlerForBO()

method

to

retrieve

the

business

object

handler

for

a

business

object

definition.

Important:

The

getBOHandlerForBO()

method

is

an

abstract

method

that

you

must

implement

for

the

connector.

You

can

use

one

business

object

handler

for

multiple

business

object

definitions

or

a

business

object

handler

for

each

business

object

definition.

getCollabNames()

Retrieves

the

list

of

collaborations

that

are

available

to

process

business

object

requests.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

426

Connector

Development

Guide

for

Java

Syntax

public

String

[]

getCollabNames();

Parameters

None.

Return

values

An

array

of

String

objects

containing

a

list

of

collaboration

names.

getSupportedBusObjNames()

Retrieves

a

list

of

supported

business

objects

for

the

current

connector.

Syntax

public

String[]

getSupportedBusObjNames()

Parameters

None.

Return

values

A

String

array

that

contains

a

list

of

the

names

of

the

supported

business

objects

for

the

connector.

Notes

The

getSupportedBusObjNames()

method

returns

a

list

of

top-level

supported

business

objects

for

the

current

connector;

that

is,

if

the

connector

supports

business

objects

that

contain

child

business

objects,

getSupportedBusObjNames()

includes

only

the

name

of

the

parent

object

in

its

list.

getVersion()

Retrieves

the

version

of

the

connector.

Syntax

public

String

getVersion();

Parameters

None.

Return

values

A

String

indicating

the

version

of

the

connector’s

application-specific

component.

Notes

The

connector

framework

calls

the

getVersion()

method

to

retrieve

the

version

of

the

connector.

Important:

The

getVersion()

method

is

an

abstract

method

that

you

must

implement

for

the

connector.

Chapter

29.

ConnectorBase

class

427

gotApplEvent()

Sends

a

business

object

to

the

connector

framework.

Syntax

public

int

gotApplEvent(BusinessObjectInterface

theBusObj);

Parameters

theBusObj

Is

the

business

object

instance

being

sent

to

the

connector

framework.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

event

delivery.

Compare

this

integer

value

with

the

following

outcome-status

constants

to

determine

the

status:

CxStatusConstants.SUCCEED

The

connector

framework

successfully

delivered

the

business

object

to

the

connector

framework.

CxStatusConstants.FAIL

The

event

delivery

failed.

CxStatusConstants.CONNECTOR_NOT_ACTIVE

The

connector

is

paused

and

therefore

unable

to

receive

events.

CxStatusConstants.NO_SUBSCRIPTION_FOUND

No

subscriptions

exist

for

the

event

that

the

business

object

represents.

Notes

The

gotApplEvent()

method

sends

the

theBusObj

business

object

to

the

connector

framework.

The

connector

framework

does

some

processing

on

the

event

object

to

serialize

the

data

and

ensure

that

it

is

persisted

properly.

It

then

makes

sure

the

event

is

either

sent

to

the

ICS

through

IIOP

or

written

to

a

queue

(if

you

are

using

queues

for

event

notification).

WebSphere

InterChange

Server

If

the

integration

broker

is

InterChange

Server,

the

connector

framework

sends

the

event

(as

a

business

object)

to

InterChange

Server

across

its

configured

delivery

transport

mechanism

(such

as

JMS

or

CORBA

IIOP).

Other

integration

brokers

If

the

integration

broker

is

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

sends

the

event

(as

an

XML

message)

to

WebSphere

MQ

Integrator

Broker

across

its

configured

delivery

transport

mechanism

of

a

JMS

queue.

Before

sending

the

business

object

to

the

connector

framework,

gotApplEvent()

checks

for

the

following

conditions

and

returns

the

associated

outcome

status

if

428

Connector

Development

Guide

for

Java

these

conditions

are

not

met:

Condition

Outcome

status

Is

the

status

of

the

connector

active;

that

is,

it

is

not

in

a

“paused”

state?

When

the

connector’s

application-specific

component

is

paused,

it

no

longer

polls

the

application.

CONNECTOR_NOT_ACTIVE

Is

there

a

subscription

for

the

event?

NO_SUBSCRIPTION_FOUND

Note:

Because

gotApplEvent()

makes

sure

that

the

business

object

and

verb

to

be

sent

have

a

valid

subscription,

you

do

not

need

to

call

isSubscribed()

immediately

before

calling

gotApplEvent().

WebSphere

InterChange

Server

Usually,

you

call

the

gotApplEvent()

method

from

the

pollForEvents()

thread.

InterChange

Server

uses

the

pollForEvents()

method

to

request

the

connector

to

send

subscribed

events

to

it.

The

connector

uses

the

gotApplEvent()

method

to

send

business

objects

to

the

connector

framework,

which

in

turn

routes

them

to

InterChange

Server

in

response.

The

connector

uses

the

pollForEvents()

method

to

poll

the

event

store

for

subscribed

events

to

send

to

the

integration

broker.

Within

pollForEvents(),

the

connector

uses

the

gotApplEvent()

method

to

send

an

event

(represented

as

a

business

object)

to

the

connector

framework.

The

connector

framework

then

routes

this

business

object

to

the

integration

broker.

Therefore,

the

poll

method

should

check

the

return

code

from

gotApplEvent()

to

ensure

that

any

errors

that

are

returned

are

handled

appropriately.

For

example,

until

the

event

delivery

is

successful,

the

poll

method

should

not

remove

the

event

from

the

event

store.

Instead,

the

poll

method

should

update

the

event

record’s

status

to

reflect

the

results

of

the

event

delivery

based

on

the

return

code

of

gotApplEvent().

The

gotApplEvent()

method

initiates

an

asynchronous

execution

of

an

event.

Asynchronous

execution

means

that

the

calling

code

does

not

wait

for

receipt

of

the

event,

nor

does

it

wait

for

a

response.

Note:

To

initiate

a

sychronous

execution

of

an

event,

use

the

executeCollaboration()

method.

Sychronous

execution

means

that

the

calling

code

waits

for

the

receipt

of

the

event,

and

for

a

response.

See

also

executeCollaboration(),

isSubscribed(),

pollForEvents()

See

also

the

description

of

the

BusinessObjectInterface

interface.

init()

Initializes

the

connector.

Syntax

public

int

init();

Chapter

29.

ConnectorBase

class

429

Parameters

None.

Return

values

An

integer

that

indicates

the

status

of

the

initialization

operation.

If

the

initialization

operation

succeeds,

returns

CxStatusConstants.SUCCEED;

otherwise,

it

returns

a

negative

value.

Possible

failure

values

are:

CxStatusConstants.FAIL

Initialization

failed.

CxStatusConstants.UNABLETOLOGIN

The

connector

is

unable

to

log

in

to

the

application.

Notes

The

connector

framework

calls

the

init()

method

to

initialize

the

connector

when

the

connector

starts

up.

Be

sure

to

implement

all

of

the

initialization

for

the

connector,

such

as

logging

on

to

an

application,

in

the

init()

method.

Important:

The

init()

method

is

an

abstract

method

that

you

must

implement

for

the

connector.

isAgentCapableOfPolling()

Determines

whether

a

connector

process

is

capable

of

polling.

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

boolean

isAgentCapableOfPolling();

Parameters

None.

Return

values

A

boolean

value

that

indicates

whether

the

connector

is

capable

of

polling.

This

return

value

depends

on

the

type

of

connector:

Connector

process

type

Return

value

Master

(serial

processing)

true

Master

(parallel

processing)

false

Slave

(request)

false

Slave

(polling)

true

Notes

If

a

connector

is

configured

to

run

in

the

single-process

mode

(with

ParallelProcessDegree

set

to

1,

which

is

the

default),

the

isAgentCapableOfPolling()

method

always

returns

true

because

the

same

connector

process

performs

both

event

polling

and

request

processing.

430

Connector

Development

Guide

for

Java

If

a

connector

is

configured

to

run

in

parallel-process

mode

(with

ParallelProcessDegree

greater

than

1),

it

consists

of

several

processes,

each

with

a

particular

purpose,

as

shown

in

Table

149.

Table

149.

Purposes

of

processes

of

a

parallel

connector

Connector

process

Purpose

of

connector

process

Connector-agent

master

process

Receives

the

incoming

event

from

ICS

and

determines

to

which

of

the

connector’s

slave

processes

to

route

the

event

Request-processing

slave

process

Handles

requests

for

the

connector

Polling

slave

process

Handles

polling

and

event

delivery

for

the

connector

The

return

value

of

isAgentCapableOfPolling()

depends

on

the

purpose

of

the

connector-agent

process

that

makes

the

call

to

this

method.

For

a

parallel-process

connector,

this

method

returns

true

only

when

called

from

a

connector

whose

purpose

is

to

serve

as

a

polling

slave.

For

more

information

on

parallel-process

connectors,

see

the

System

Administration

Guide.

isSubscribed()

Determines

whether

the

integration

broker

has

subscribed

to

a

particular

business

object

with

a

particular

verb.

Syntax

public

boolean

isSubscribed(String

busObjName,

String

verb);

Parameters

busObjName

Is

the

name

of

a

business

object.

verb

is

the

active

verb

for

the

business

object.

Return

values

Returns

true

if

the

integration

broker

is

interested

in

receiving

the

specified

business

object

and

verb;

otherwise,

returns

false.

Notes

The

isSubscribed()

method

is

part

of

the

subscription

manager,

which

tracks

all

subscribe

and

unsubscribe

messages

that

arrive

from

the

connector

framework

and

maintains

a

list

of

active

business

object

subscriptions.

For

a

Java

connector,

this

subscription

manager

is

part

of

the

connector

base

class.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

poll

method

can

determine

if

any

collaboration

subscribes

to

the

busObjName

business

object

with

the

specified

verb.

At

initialization,

the

connector

framework

requests

its

subscription

list

from

the

connector

controller.

At

runtime,

the

poll

method

can

use

isSubscribed()

to

query

the

connector

framework

to

verify

that

some

collaboration

subscribes

to

a

particular

business

object.

The

poll

method

can

send

the

event

only

if

some

collaboration

is

currently

subscribed.

For

more

information,

see

“Business

object

subscription

and

publishing”

on

page

12.

Chapter

29.

ConnectorBase

class

431

Other

integration

brokers

If

your

business

integration

system

uses

a

WebSphere

message

broker

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

the

connector

framework

assumes

that

the

integration

broker

is

interested

in

all

the

connector’s

supported

business

objects.

If

the

application-specific

component

uses

the

isSubscribed()

method

to

query

the

connector

framework

about

subscriptions

for

a

particular

business

object,

the

method

returns

true

for

every

business

object

that

the

connector

supports.

See

also

gotApplEvent(),

pollForEvents()

pollForEvents()

Polls

an

application’s

event

store

for

events

that

cause

changes

to

business

objects.

Syntax

public

int

pollForEvents();

Parameters

None.

Return

values

An

integer

that

indicates

the

outcome

status

of

the

polling

operation.The

following

return

codes

are

typically

used

by

the

pollForEvents()

method.

CxStatusConstants.SUCCEED

The

polling

action

succeeded

regardless

of

whether

an

event

is

retrieved.

CxStatusConstants.FAIL

The

polling

operation

failed.

CxStatusConstants.APPRESPONSETIMEOUT

The

application

is

not

responding.

Notes

The

connector

infrastructure

calls

the

pollForEvents()

method,

at

a

time

interval

that

you

can

configure,

so

that

the

connector

can

detect

any

event

in

the

application

that

is

interesting

to

a

subscriber.

The

frequency

at

which

the

class

library

calls

this

method

depends

on

the

poll

frequency

value

that

is

configured

by

the

PollFrequency

connector

configuration

property.

Important:

The

pollForEvents()

method

is

an

abstract

method

that

you

must

implement

to

provide

your

own

polling

mechanism.

Note:

If

your

connector

executes

in

a

parallel-process

mode,

it

uses

a

separate

polling

slave

process

to

handle

polling.

432

Connector

Development

Guide

for

Java

terminate()

Performs

clean-up

operations

when

the

connector

is

shutting

down.

Syntax

public

int

terminate();

Parameters

None.

Return

values

An

integer

that

indicates

the

status

value

of

the

terminate()

operation.

CxStatusConstants.SUCCEED

The

terminate

operation

succeeded.

CxStatusConstants.FAIL

The

terminate

operation

failed.

Notes

The

connector

infrastructure

calls

the

terminate()

method

when

the

connector

is

shutting

down.

In

your

implementation

of

this

method,

it

is

good

practice

to

free

all

the

memory

and

log

off

from

the

application.

Important:

The

terminate()

method

is

an

abstract

method

that

you

must

implement

for

the

connector.

Deprecated

methods

Some

methods

in

the

ConnectorBase

class

were

supported

in

earlier

versions

but

are

no

longer

supported.

These

deprecated

methods

will

not

generate

errors,

but

IBM

recommends

that

you

avoid

their

use

and

migrate

existing

code

to

the

new

methods.

The

deprecated

methods

might

be

removed

in

a

future

release.

Table

150

lists

the

deprecated

methods

for

the

ConnectorBase

class.

If

you

are

writing

a

new

connector

(not

modifying

an

existing

connector),

you

can

ignore

this

section.

Table

150.

Deprecated

methods

of

the

ConnectorBase

class

Former

method

Replacement

consumeSync()

executeCollaboration()

Chapter

29.

ConnectorBase

class

433

434

Connector

Development

Guide

for

Java

Chapter

30.

CxObjectAttr

class

The

CxObjectAttr

class

is

the

object

attribute

class

for

Java

connectors.

It

is

part

of

the

CxCommon

package.

It

defines

an

attribute

of

a

business

object

specification.

The

class

defines

methods

for

getting

information

about

attributes.

Note:

The

CWConnectorBusObj

class

is

the

Java

connector

library

class

that

is

a

wrapper

for

the

methods

in

the

CxObjectAttr

class

of

the

low-level

Java

connector

library.

The

CWConnectorBusObj

class

provides

access

to

a

business

object,

business

object

array,

business

object

definition,

and

attributes.

The

CWConnectorAttrType

class

defines

the

attribute-type

constants.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

This

class

contains

the

following:

v

“Attribute-type

constants”

v

“Methods”

Attribute-type

constants

The

CxObjectAttr

class

defines

numeric

and

string

equivalents

for

attribute

types,

as

shown

in

Table

151.

Table

151.

Numeric

and

string

equivalents

for

attribute

types

Attribute

type

Equivalent

numeric

constants

Equivalent

string

constants

Boolean

BOOLEAN

BOOLSTRING

Business

object:

multiple

cardinality

MULTIPLECARDSTRING

Business

object:

single

cardinality

SINGLECARDSTRING

Date

DATE

DATESTRING

Double

DOUBLE

DOUBSTRING

Float

FLOAT

FLTSTRING

Integer

INTEGER

INTSTRING

Long

text

LONGTEXT

LONGTEXTSTRING

Object

OBJECT

String

STRING

STRSTRING

Invalid

type

number

INVALID_TYPE_NUM

INVALID_TYPE_STRING

Methods

Table

152

summarizes

the

methods

in

the

CxObjectAttr

interface.

Table

152.

Member

methods

of

the

CxObjectAttr

class

Member

method

Description

Page

equals()

Determines

if

a

specified

attribute

is

the

same

as

this

attribute

436

getAppText()

Retrieves

the

application

specific

information

of

this

attribute.

436

getCardinality()

Retrieves

the

cardinality

of

an

attribute.

437

getDefault()

Retrieves

an

attribute’s

default

value.

437

©

Copyright

IBM

Corp.

2000,

2004

435

Table

152.

Member

methods

of

the

CxObjectAttr

class

(continued)

Member

method

Description

Page

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

value.

437

getName()

Retrieves

the

attribute

name.

438

getRelationType()

Retrieves

the

type

of

an

attribute

relationship.

438

getTypeName()

Retrieves

the

type

of

an

attribute.

438

getTypeNum()

Retrieves

the

numeric

type

code

of

an

attribute.

438

hasCardinality()

Compares

the

cardinality

of

an

attribute

with

the

cardinality

value

passed

in

as

a

parameter.

439

hasName()

Compares

the

name

passed

in

to

the

method

to

the

attribute’s

name.

439

hasType()

Verifies

if

the

type

of

the

attribute

is

the

same

as

the

type

passed

in.

439

isForeignKeyAttr()

Verifies

if

the

attribute

is

part

of

the

object’s

foreign

key.

440

isKeyAttr()

Verifies

if

the

attribute

is

part

of

the

object’s

key

set.

440

isMultipleCard()

Retrieves

whether

the

attribute

is

a

multiple

cardinality.

440

isObjectType()

Retrieves

if

the

attribute

type

is

an

object

type.

441

isRequiredAttr()

Verifies

if

this

attribute

is

a

required

attribute

for

the

business

object.

441

isType()

Verifies

if

the

attribute

type

matches

the

passed-in

parameter

value.

441

equals()

Determines

whether

a

specified

attribute

is

the

same

as

the

current

attribute.

Syntax

public

boolean

equals(Object

obj)

Parameters

obj

Is

the

object

that

represents

the

attribute

to

compare

with

the

current

attribute.

Return

values

Returns

True

if

the

specified

attribute

is

the

same

as

this

attribute;

otherwise

returns

False.

Notes

This

method

verifies

if

the

specified

attribute

matches

in

name,

type,

whether

it

is

a

key,

whether

it

is

a

foreign

key

and

whether

it

is

a

required

attribute

matches,

with

this

attribute.

getAppText()

Retrieves

the

application-specific

information

of

this

attribute.

Syntax

public

String

getAppText();

436

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

String

object

that

holds

the

value

of

the

AppSpecificText

field

for

the

attribute.

If

the

attribute

does

not

have

any

application-specific

information,

this

method

returns

null.

getCardinality()

Retrieves

the

cardinality

of

an

attribute.

Syntax

public

String

getCardinality();

Parameters

None.

Return

values

A

String

containing

the

cardinality

of

the

attribute.

The

value

of

the

string

is

either

1

or

n.

getDefault()

Retrieves

the

default

value

for

this

attribute.

Syntax

public

String

getDefault();

Parameters

None.

Return

values

A

String

containing

the

default

value

of

the

attribute,

or

null.

getMaxLength()

Retrieves

the

maximum

length

of

an

attribute

from

the

business

object

definition.

Syntax

int

getMaxLength();

Parameters

None.

Return

values

An

integer

that

specifies

the

maximum

length,

in

bytes,

that

an

attribute

value

can

have.

Chapter

30.

CxObjectAttr

class

437

getName()

Retrieves

the

name

of

the

attribute.

Syntax

public

String

getName();

Parameters

None.

Return

values

A

String

containing

the

name

of

the

specified

attribute.

getRelationType()

Retrieves

the

relationship

type

of

an

attribute.

For

complex

attributes

(such

as

subobjects

and

arrays)

the

returned

relationship

type

is

a

containment

relationship.

Syntax

public

String

getRelationType();

Parameters

None.

Return

values

A

String

containing

the

attribute’s

relationship

type.

getTypeName()

Retrieves

the

name

of

the

attribute’s

data

type.

Syntax

public

String

getTypeName();

Parameters

None.

Return

values

A

String

containing

the

name

of

the

type

of

the

attribute.

See

Table

151

on

page

435

for

a

list

of

string

attribute

types.

getTypeNum()

Retrieves

the

numeric

type

code

for

the

data

type

of

an

attribute.

Syntax

public

String

getTypeNum();

438

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

The

numeric

type

code

of

the

type

of

the

attribute.

See

Table

151

on

page

435

for

a

list

of

numeric

attribute-type

constants.

hasCardinality()

Determines

if

the

attribute

has

the

same

cardinality

as

the

cardinality

value

passed

in

as

a

parameter.

This

method

is

used

to

test

cardinality

of

complex

attributes

(subobjects

and

containers).

Valid

cardinality

values

are

from

1

to

n.

Syntax

public

boolean

hasCardinality(String

card);

Parameters

card

Is

the

cardinality

value

to

use

for

checking.

Use

one

of

the

cardinality

constants:

CxObjectAttr.MULTIPLECARDSTRING

CxObjectAttr.SINGLECARDSTRING

Return

values

Returns

True

if

the

cardinality

of

the

attribute

matches

the

parameter

value;

otherwise,

returns

False.

hasName()

Determines

if

the

name

of

the

attribute

matches

the

name

passed

in

as

a

parameter.

Syntax

public

boolean

hasName(String

name);

Parameters

name

Is

the

name

of

the

attribute

passed

in

to

the

method.

Return

values

Returns

True

if

the

attribute

name

matches

the

passed-in

name;

otherwise,

returns

False.

hasType()

Determines

if

the

data

type

of

the

attribute

matches

the

type

name

passed

in

as

a

parameter.

Syntax

public

boolean

hasType(String

typeName);

Chapter

30.

CxObjectAttr

class

439

Parameters

typeName

Is

the

type

of

the

attribute

passed

in

to

the

method.

Use

one

of

the

string

attribute-type

constants:

CxObjectAttr.BOOLSTRING

CxObjectAttr.DATESTRING

CxObjectAttr.DOUBSTRING

CxObjectAttr.FLTSTRING

CxObjectAttr.INTSTRING

CxObjectAttr.LONGTEXTSTRING

CxObjectAttr.STRSTRING

Return

values

Returns

True

if

the

attribute

type

matches

the

passed-in

type

name;

otherwise,

returns

False.

isForeignKeyAttr()

Determines

if

this

attribute

is

a

part

of

the

foreign

key

of

the

business

object.

Syntax

public

boolean

isForeignKeyAttr();

Parameters

None.

Return

values

Returns

True

if

the

attribute

is

a

foreign

key,

or

part

of

the

foreign

key,

for

the

business

object;

otherwise,

returns

False.

isKeyAttr()

Determines

if

this

attribute

is

a

part

of

the

business

object

key

set.

Syntax

public

boolean

isKeyAttr();

Parameters

None.

Return

values

Returns

True

if

the

attribute

is

a

key,

or

part

of

the

key

set,

for

the

business

object;

otherwise,

returns

False.

isMultipleCard()

Determines

if

this

attribute

is

a

multiple

cardinality.

Syntax

public

boolean

isMultipleCard();

440

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

Returns

True

if

the

attribute

is

a

multiple

cardinality;

otherwise,

returns

False.

isObjectType()

Determines

if

this

attribute’s

data

type

is

an

object

type;

that

is,

if

it

is

a

complex

attribute

(a

container

or

a

subobject).

Syntax

public

boolean

isObjectType();

Parameters

None.

Return

values

Returns

True

if

the

attribute

is

an

object

type

or

complex

attribute,

such

as

a

container

or

subobject;

otherwise,

returns

False.

isRequiredAttr()

Determines

if

this

attribute

is

a

required

attribute

for

the

business

object.

If

the

attribute

is

required,

it

must

have

a

value.

Syntax

public

boolean

isRequiredAttr();

Parameters

None.

Return

values

Returns

True

if

the

attribute

is

required

for

the

business

object;

otherwise,

returns

False.

isType()

Determines

that

the

value

passed

in

to

the

method

is

of

the

same

type

as

that

of

the

attribute.

Syntax

public

boolean

isType(Object

value);

Parameters

value

Is

the

type

of

the

attribute

to

check

against.

Chapter

30.

CxObjectAttr

class

441

Return

values

Returns

True

if

the

type

of

the

attribute

matches

the

passed-in

type;

otherwise,

returns

False.

442

Connector

Development

Guide

for

Java

Chapter

31.

CxObjectContainerInterface

interface

The

CxObjectContainerInterface

interface

creates

and

maintains

an

array

of

one

or

more

child

business

objects.

It

is

part

of

the

CxCommon

package.

This

interface

supports

business

objects

with

a

hierarchical

structure.

Each

object

instance

created

from

the

CxObjectContainerInterface

is

a

container

object

into

which

you

can

insert

business

objects

of

the

same

type.

These

inserted

objects

are

instances

of

a

business

object

definition

referenced

by

a

compound

attribute

of

a

parent

business

object.

The

inserted

objects

are

child

business

objects

in

the

hierarchy.

Note:

The

CWConnectorBusObj

class

is

the

Java

connector

library

method

that

is

a

wrapper

for

the

methods

in

the

CxObjectContainerInterface

interface

of

the

low-level

Java

connector

library.

The

CWConnectorBusObj

class

provides

access

to

a

business

object,

business

object

array,

business

object

definition,

and

attributes.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

Table

153

summarizes

the

methods

in

the

CxObjectContainerInterface

interface.

Table

153.

Member

methods

of

the

CxObjectContainerInterface

interface

Member

method

Description

Page

getBusinessObject()

Retrieves

the

child

business

object

that

occupies

a

specified

position

in

a

business

object

array.

443

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

a

business

object

array.

444

insertBusinessObject()

Inserts

a

child

business

object

into

a

business

object

array

at

the

next

available

position.

444

removeAllObjects()

Removes

all

business

objects

in

a

business

object

array.

445

removeBusinessObjectAt()

Removes

the

business

object

at

the

specified

position

in

a

business

object

array.

445

setBusinessObject()

Inserts

a

child

business

object

into

a

business

object

array

at

a

specified

position.

445

Note:

The

deprecated

name

for

an

array

of

child

business

objects

is

a

“business

object

container”.

This

term

is

also

used

to

name

the

connector

library

class

that

provides

methods

for

accessing

the

child

business

objects

in

a

business

object

array.

You

can

think

of

this

class

as

providing

methods

for

handling

an

array

of

business

objects.

getBusinessObject()

Retrieves

the

child

business

object

that

occupies

a

specified

position

in

a

business

object

array.

Syntax

public

BusinessObjectInterface

getBusinessObject(int

index);

©

Copyright

IBM

Corp.

2000,

2004

443

Parameters

index

Is

an

integer

that

specifies

the

position

of

a

child

business

object

in

a

business

object

array.

Return

values

The

child

business

object,

or

null

if

there

is

no

business

object

at

the

specified

position

in

the

business

object

array.

See

also

See

also

the

description

of

the

setBusinessObject()

method.

getObjectCount()

Retrieves

the

number

of

child

business

objects

in

a

business

object

array.

Syntax

public

int

getObjectCount();

Parameters

None.

Return

values

An

integer

that

indicates

the

number

of

child

business

objects

in

a

business

object

array.

Notes

You

can

use

the

insertBusinessObject()

method

to

insert

child

business

objects

into

the

business

object

array.

See

also

See

also

the

description

of

the

insertBusinessObject()

method.

insertBusinessObject()

Inserts

a

child

business

object

into

a

business

object

array

at

the

next

available

position.

Syntax

public

void

insertBusinessObject(BusinessObjectInterface

theChildBusObj);

Parameters

theChildBusObj

Is

the

child

business

object

to

be

inserted.

Return

values

None.

444

Connector

Development

Guide

for

Java

Exceptions

CxObjectInvalidAttrException

Thrown

if

the

passed-in

business

object

is

not

the

same

type

as

the

objects

contained

by

the

array.

See

also

See

also

the

description

of

the

setBusinessObject()

method.

removeAllObjects()

Removes

all

business

objects

in

a

business

object

array.

Syntax

public

void

removeAllObjects();

Parameters

None.

Return

values

None.

removeBusinessObjectAt()

Removes

a

business

object

at

a

specified

position

in

a

business

object

array.

Syntax

public

void

removeBusinessObjectAt(int

index);

Parameters

index

Is

an

integer

that

specifies

the

position

for

a

child

business

object

in

a

business

object

array.

Return

values

None.

Exceptions

CxObjectNoSuchAttributeException

Thrown

if

the

position

specified

is

not

valid

for

this

business

object.

Notes

After

the

remove

operation,

the

business

object

array

is

compacted.

Indexes

are

decremented

for

all

business

objects

that

have

an

index

number

higher

than

that

of

the

removed

business

object.

setBusinessObject()

Inserts

a

child

business

object

into

a

business

object

array

at

a

specified

position.

Chapter

31.

CxObjectContainerInterface

interface

445

Syntax

public

BusinessObjectInterface

setBusinessObject(int

index,

BusinessObjectInterface

theChildBusObj);

Parameters

index

Is

an

integer

that

specifies

the

position

for

a

child

business

object

in

a

business

object

array.

theChildBusObj

Is

a

child

business

object.

Return

values

The

original

business

object,

if

one

was

replaced

as

a

result

of

the

insertion.

Otherwise,

returns

null.

Exceptions

CxObjectInvalidAttrException

Thrown

if

the

type

of

the

passed-in

business

object

attribute

is

not

of

the

type

that

the

business

object

array

handles.

Notes

If

there

is

already

a

business

object

at

the

specified

position,

the

new

one

replaces

it.

The

old

one

is

deleted

and

returned

to

the

caller.

See

also

See

also

the

description

of

the

getBusinessObject()

method.

446

Connector

Development

Guide

for

Java

Chapter

32.

CxProperty

class

The

CxProperty

class

represents

a

hierarchical

connector

configuration

property

for

a

low-level

Java

connector.

A

hierarchical

connector

configuration

property

can

contain

one

or

more

values

and

these

values

can

be

either

string

values

or

other

(child)

connector

properties.

Note:

The

CWProperty

class

is

the

Java

connector

library

method

that

is

a

wrapper

for

the

CxProperty

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

Table

154

summarizes

the

methods

in

the

CxProperty

class.

Table

154.

Member

methods

of

the

CxProperty

class

Member

method

Description

Page

CxProperty()

Creates

a

connector-property

object.

447

getAllChildProps()

Retrieves

all

child

properties

from

the

hierarchical

connector

configuration

property.

448

getChildProp()

Retrieves

a

specified

child

property

from

the

hierarchical

connector

configuration

property.,

at

any

level

in

the

property

hierarchy.

449

getEncryptionFlag()

Retrieves

the

encryption

flag

for

the

connector

configuration

property.

450

getName()

Retrieves

the

name

of

the

connector

configuration

property.

450

getStringValues()

Retrieves

all

string

values

from

the

hierarchical

connector

configuration

property.

450

hasChildren()

Determines

whether

the

connector

configuration

property

has

any

child

properties.

451

setEncryptionFlag()

Sets

the

encryption

flag

for

the

hierarchical

connector

configuration

property.

452

setValues()

Sets

the

values

of

the

hierarchical

connector

configuration

property.

452

CxProperty()

Creates

a

hierarchical

connector-property

object.

Syntax

public

CxProperty();

public

CxProperty(String

propName,

String

simplePropValue);

public

CxProperty(String

propName,

Object[]

hierPropValues);

public

CxProperty(String

propName,

org.w3c.dom.Element

xmlElement);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property.

©

Copyright

IBM

Corp.

2000,

2004

447

simplePropValue

Is

a

String

value

with

which

to

initialize

a

simple

connector

property.

hierPropValues

Is

an

array

of

connector-property

(CWProperty)

objects

with

which

to

initialize

a

hierarchical

connector

property.

xmlElement

Is

an

XML

Element

object

with

which

to

initialize

the

connector

property.

Return

values

A

CxProperty

object

containing

the

newly

created

hierarchical

connector

property.

Notes

The

CxProperty()

constructor

provides

the

following

forms:

v

The

first

form

creates

an

empty

connector-property

object.

You

can

use

other

methods

of

the

CWProperty

class

to

populate

this

object.

v

The

second

form

creates

a

connector-property

object

for

a

simple

connector

property,

with

a

property

name

and

a

string

value

that

you

specify.

v

The

third

form

creates

a

connector-property

object

for

a

hierarchical

connector

property,

with

a

property

name

and

array

of

hierarchical

properties

that

you

specify.

v

The

fourth

form

creates

a

connector-property

object

and

an

XML

Element

object.

getAllChildProps()

Retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property.

Syntax

public

CxProperty[]

getAllChildProps();

Parameters

None.

Return

values

A

reference

to

an

array

of

CxProperty

objects,

each

of

which

represents

one

connector

property

in

the

hierarchical

connector

property.

If

the

hierarchical

connector

property

does

not

contain

any

child

properties,

the

method

returns

null.

Exceptions

None.

Notes

The

getAllChildProps()

method

retrieves

all

child

properties

for

the

hierarchical

connector

configuration

property.

The

retrieved

properties

are

only

those

of

the

children

of

the

current

hierarchical

property;

they

do

not

include

any

grandchildren,

great-grandchildren,

and

so

on.

To

retrieve

child

properties

at

lower

levels

in

the

hierarchy,

you

must

first

obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getAllChildProps()

or

getChildProp()

to

retrieve

its

children.

448

Connector

Development

Guide

for

Java

Note:

You

can

use

the

getChildProp()

to

retrieve

a

specified

child,

grandchild,

and

so

on

down

the

property

hierarchy.

To

retrieve

a

specified

child

property,

use

the

getChildProp()

method.

To

retrieve

all

child

properties

with

a

specified

prefix,

you

can

use

the

getChildPropsWithPrefix()

method.

See

also

getChildProp()

getChildProp()

Retrieves

a

specified

child

property

for

the

hierarchical

connector

configuration

property

at

any

level

of

the

property

hierarchy.

Syntax

public

CxProperty

getChildProp(String

propName);

Parameters

propName

Specifies

the

name

of

the

connector

configuration

property

to

retrieve.

Return

values

A

CxProperty

object

that

contains

the

retrieved

property

from

the

hierarchy.

If

the

specified

property

does

not

exist

in

the

current

hierarchical

connector

property,

the

method

returns

null.

Exceptions

None.

Notes

The

getChildProp()

method

retrieves

the

child

property

whose

name

matches

propName

from

the

hierarchical

connector

configuration

property.

You

can

retrieve

a

child

property

at

any

level

of

the

current

property

hierarchical;

you

can

specify

a

grandchild,

great-grandchild,

and

so

on.

The

propName

of

the

retrieved

child

property

has

the

form:

child/grandchild/great-grandchild/....

For

example,

suppose

you

have

the

property

hierarchy

shown

in

Figure

77

on

page

392.

To

obtain

the

name

of

the

port

for

Listener1,

you

must

first

retrieve

the

top-level

connector-object

for

ProtocolListener

(for

example,

into

topLevelProp).

You

can

then

use

the

following

call

to

retrieve

the

port

name

of

Listener1:

CxProperty

listenerPort

=

topLevelProp.getChildProp("Listener1/Port");

To

retrieve

all

child

properties

at

the

top

level

of

the

hierarchy,

you

can

use

the

getAllChildProps()

method.

See

also

getAllChildProps()

Chapter

32.

CxProperty

class

449

getEncryptionFlag()

Retrieves

the

encryption

flag

of

the

hierarchical

connector

configuration

property

from

the

connector-property

object.

Syntax

public

boolean

getEncryptionFlag();

Parameters

None.

Return

values

A

Boolean

value

that

indicates

whether

the

current

connector

configuration

property’s

value

is

encrypted.

Exceptions

None.

Notes

The

getEncryptionFlag()

method

obtains

the

boolean

encryption

flag

from

the

connector-property

object.

This

flag

indicates

whether

the

connector

property’s

string

values

are

encrypted.

Note:

In

Connector

Configurator,

encrypted

values

display

as

a

string

of

asterisk

(*)

characters.

See

also

setEncryptionFlag()

getName()

Retrieves

the

name

of

the

connector

configuration

property

from

the

connector-property

object.

Syntax

public

String

getName();

Parameters

None.

Return

values

A

String

that

contains

the

name

of

the

connector

configuration

property.

Exceptions

None.

getStringValues()

Retrieves

all

string

values

for

the

hierarchical

connector

configuration

property.

450

Connector

Development

Guide

for

Java

Syntax

public

String[]

getStringValues();

Parameters

None.

Return

values

A

reference

to

an

array

of

String

objects,

each

of

which

represents

one

string

value

for

the

hierarchical

connector

property.

If

the

hierarchical

connector

property

does

not

contain

any

string

values,

the

method

returns

null.

Exceptions

None.

Notes

The

getStringValues()

method

retrieves

all

string

values

for

the

hierarchical

connector

configuration

property.

The

retrieved

string

values

are

only

those

of

the

current

hierarchical

property;

they

do

not

include

any

values

in

child

properties.

To

retrieve

string

values

at

lower

levels

in

the

hierarchy,

you

can

do

either

of

the

following:

v

Use

the

getChildPropValue()

method

to

retrieve

the

string

value

of

a

specified

child

property.

v

Obtain

the

connector-property

object

for

a

property

at

a

particular

level

and

then

use

a

method

such

as

getStringValues()

or

getChildPropValue()

to

retrieve

its

string

values.

Before

a

call

to

getHierChildProps(),

you

can

use

the

hasChildren()

method

to

verify

that

the

hierarchical

connector

property

has

child

properties.

To

retrieve

child

properties,

use

the

getChildProp()

or

getAllChildProps()

method.

See

also

getChildPropValue(),

getAllChildProps(),

getChildProp(),

setValues()

hasChildren()

Determines

whether

the

current

connector

property

contains

any

child

properties.

Syntax

public

boolean

hasChildren();

Parameters

None.

Return

values

A

boolean

that

indicates

whether

the

hierarchical

connector

property

contains

any

child

properties.

The

method

returns

true

if

it

does

contain

child

properties;

otherwise,

it

returns

false.

Exceptions

None.

Chapter

32.

CxProperty

class

451

Notes

The

hasChildren()

method

is

useful

for

determining

which

of

the

CWProperty

methods

to

use

to

extract

the

value

of

a

hierarchical

connector

property:

v

If

hasChildren()

returns

true,

use

one

of

the

following

value

methods

to

retrieve

child

properties:

To

obtain

all

child

properties

getHierChildProps()

To

obtain

a

specified

child

property

getHierChildProp()

v

If

hasChildren()

returns

false,

use

one

of

the

following

value

methods

to

retrieve

string

values:

To

obtain

all

string

values

getStringValues()

To

obtain

the

string

values

of

a

specified

child

property

getChildPropValue()

See

also

getChildPropValue(),

getHierChildProp(),

getConnectorBOHandlerForBO(),

getStringValues(),getVersion()

setEncryptionFlag()

Sets

the

encryption

flag

of

a

connector

configuration

property

in

its

connector-property

object.

Syntax

public

void

setEncryptionFlag(boolean

encryptFlag);

Parameters

encryptFlag

Is

a

boolean

value

to

indicate

whether

the

current

connector

configuration

property’s

value

should

be

encrypted.

Return

values

None.

Notes

The

setEncryptionFlag()

method

sets

the

boolean

encryption

flag

from

the

connector-property

object.

This

flag

indicates

whether

the

connector

property’s

string

values

are

encrypted.

Note:

In

Connector

Configurator,

encrypted

values

display

as

a

string

of

asterisk

(*)

characters.

See

also

getEncryptionFlag()

setValues()

Sets

the

values

of

the

hierarchical

connector

configuration

property.

452

Connector

Development

Guide

for

Java

Syntax

public

void

setValues(Object[]

propValues);

Parameters

propValues

Is

an

array

of

Object

values,

each

array

element

is

a

single

property

value.

Return

values

None.

Exceptions

None.

Notes

The

setValues()

method

allows

you

to

set

the

values

of

a

hierarchical

connector

configuration

property.

You

specify

the

property

values

in

the

propValues

array,

which

is

an

array

of

Objects.

Therefore,

you

can

pass

both

string

and

child-property

values

in

this

single

array.

Make

sure

you

assign

property

values

in

the

propValues

array

in

the

order

that

they

are

defined

within

the

hierarchical

connector

property.

For

example,

the

following

call

to

setValues()

assigns

both

a

string

value

and

a

child

property

to

the

connector

property

in

topLevelProp:

Object[]

propValues;

CxProperty

childProp;

propValues[0]

=

"stringValue"

propValue[1]

=

childProp;

topLevelProp.setValues(propValues);

See

also

getHierChildProp(),

getConnectorBOHandlerForBO(),

getStringValues()

Chapter

32.

CxProperty

class

453

454

Connector

Development

Guide

for

Java

Chapter

33.

CxStatusConstants

class

The

CxStatusConstants

class

defines

outcome-status

constants

for

the

low-level

Java

connector

library.

It

is

part

of

the

CxCommon

package.

Note:

The

CWConnectorConstant

class

is

the

Java

connector

library

class

that

is

a

wrapper

for

the

CxStatusConstants

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

Outcome-status

constants

Many

methods

of

the

low-level

Java

connector

library

return

an

integer

outcome

status

to

indicate

the

success

of

the

method.

Table

155

summarizes

the

static

outcome-status

constants,

which

are

defined

in

the

CxStatusConstants

class.

Table

155.

Outcome-status

constants

in

the

CxStatusConstants

class

Constant

name

Meaning

SUCCEED

The

operation

completed

successfully.

FAIL

The

operation

failed

for

an

unspecified

reason.

APPRESPONSETIMEOUT

The

application

is

not

responding.

BO_DOES_NOT_EXIST

The

requested

business

object

does

not

exist.

CONNECTOR_NOT_ACTIVE

The

connector

is

not

active;

that

is,

it

is

in

the

paused

state.

MULTIPLE_HITS

The

integration

broker

requested

a

retrieve-by-content

but

the

connector

found

more

than

one

matching

record.

The

status

indicates

that

more

than

one

record

matched

the

search

requirements.

NO_SUBSCRIPTION_FOUND

Cannot

find

any

subscriptions

for

the

business

object.

RETRIEVEBYCONTENT_FAILED

Retrieve

by

content

failed.

UNABLETOLOGIN

Cannot

login

to

the

application.

VALCHANGE

The

operation

successfully

completed

and

changed

the

value

of

the

object

in

the

target

application.

VALDUPES

The

requested

operation

failed

because

multiple

records

were

found

for

the

same

key

field

(or

fields).

©

Copyright

IBM

Corp.

2000,

2004

455

456

Connector

Development

Guide

for

Java

Chapter

34.

JavaConnectorUtil

class

The

JavaConnectorUtil

class

is

a

final

class

that

contains

miscellaneous

utility

methods

for

use

in

a

low-level

Java

connector.

It

is

part

of

the

AppSide_Connector

package.

A

connector

developer

can

use

these

static

methods

for

generating

and

logging

messages

and

creating

business

objects.

Note:

The

CWConnectorUtil

class

is

the

Java

connector

library

class

that

is

a

wrapper

for

the

JavaConnectorUtil

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

This

class

contains

the

following:

v

“Static

constants”

v

“Methods”

Static

constants

The

JavaConnectorUtil

class

defines

a

number

of

static

constants.

See

Table

156.

Table

156.

Static

constants

defined

in

the

JavaConnectorUtil

class

Constant

name

Meaning

Message-file

constants

CONNECTOR_MESSAGE_FILE

Use

the

connector

message

file

to

generate

messages.

INFRASTRUCTURE_MESSAGE_FILE

Use

the

InterChange

Server

message

file

(InterchangeSystem.txt)

to

generate

messages.

Important:

Connectors

should

not

obtain

messages

from

the

InterchangeSystem.txt

file.

Instead,

they

should

always

use

their

local

connector

message

file.

Message-type

constants

XRD_WARNING

A

warning

message

XRD_TRACE

A

trace

message

XRD_INFO

An

informational

message

XRD_ERROR

An

error

message

XRD_FATAL

A

fatal

error

message

Trace-level

constants

LEVEL1

Level

1

of

tracing

LEVEL2

Level

2

of

tracing

LEVEL3

Level

3

of

tracing

LEVEL4

Level

4

of

tracing

LEVEL5

Level

5

of

tracing

Methods

Table

157

summarizes

the

methods

in

the

JavaConnectorUtil

class.

Table

157.

Member

methods

of

the

JavaConnectorUtil

class

Member

method

Description

Page

createBusinessObject()

Creates

a

business

object.

458

©

Copyright

IBM

Corp.

2000,

2004

457

Table

157.

Member

methods

of

the

JavaConnectorUtil

class

(continued)

Member

method

Description

Page

createContainer()

Creates

a

container

459

generateMsg()

Generates

a

message

from

a

message

file

that

you

specify,

depending

on

the

trace

level.

You

can

optionally

specify

a

trace

level.

459

getAllConfigProp()

Retrieves

all

properties

for

the

connector

as

hierarchical

connector

properties.

460

getAllConnectorAgentProperties()

Retrieves

all

properties

for

the

connector.

461

getAllStandardProperties()

Retrieves

all

standard

connector

properties,

as

hierarchical

connector

properties.

461

getAllUserProperties()

Retrieves

all

connector-specific

properties,

as

hierarchical

connector

properties.

462

getBlankValue()

Retrieves

the

special

Blank

attribute

value.

462

getConfigProp()

Retrieves

a

property

for

the

connector

from

the

repository.

463

getEncoding()

Retrieves

the

character

encoding

that

the

connector

framework

is

using.

463

getIgnoreValue()

Retrieves

the

special

Ignore

attribute

value.

464

getLocale()

Retrieves

the

locale

of

the

connector

framework.

464

getOneConfigProp()

Retrieve

a

specified

hierarchical

connector

property.

465

getSupportedBusObjNames()

Retrieve

a

list

of

supported

business

objects

for

the

connector.

465

initAndValidateAttributes()

Initializes

all

required

attributes

to

their

default

values.

466

isBlankValue()

Tests

if

a

value

equals

the

special

Blank

attribute

value.

468

isIgnoreValue()

Tests

if

a

value

equals

the

special

Ignore

attribute

value.

468

isTraceEnabled()

Tests

if

the

trace

level

is

greater

than

or

equal

to

a

specified

trace

level.

468

logMsg()

Logs

a

message.

You

can

optionally

send

an

email

message

if

the

message

severity

is

set

to

error

or

fatal

error

469

traceWrite()

Writes

a

trace

message.

469

createBusinessObject()

Creates

a

new

business

object.

Syntax

public

static

BusinessObjectInterface

createBusinessObject(

String

busObjName);

public

static

BusinessObjectInterface

createBusinessObject(

String

busObjName,

Locale

localeObject);

public

static

BusinessObjectInterface

createBusObj(

String

busObjName,

String

localeName);

Parameters

busObjName

Is

the

name

of

the

business

object

to

create.

localeObject

Is

the

Java

Locale

object

that

identifies

the

locale

to

associate

with

the

business

object.

458

Connector

Development

Guide

for

Java

localeName

Is

the

name

of

the

locale

to

associate

with

the

business

object.

Return

values

A

BusinessObjectInterface

object

containing

the

newly

created

business

object.

Exceptions

BusObjSpecNameNotFoundException

Thrown

when

the

business

object

specification

is

not

found

for

the

name

specified.

Notes

The

createBusinessObject()

method

creates

a

new

business

object

instance

whose

type

is

the

business

object

definition

you

specify

in

name.

If

you

specify

a

localeObject

or

localeName,

this

locale

applies

to

the

data

in

the

business

object,

not

to

the

name

of

the

business

object

definition

or

its

attributes

(which

must

be

characters

in

the

code

set

associated

with

the

U.S.

English

locale,

en_US).

For

a

description

of

the

format

for

localeName,

see

″Design

Considerations

for

an

Internationalized

Connector,″

on

page

54.

createContainer()

Creates

an

instance

of

a

business

object

array

(container).

Syntax

public

static

CxObjectContainerInterface

createContainer(String

name);

Parameters

name

Specifies

the

name

of

the

business

object

container

to

create.

Return

values

A

CxObjectContainerInterface

object

containing

the

newly

created

business

object.

Exceptions

BusObjSpecNameNotFoundException

Thrown

when

the

business

object

specification

is

not

found

for

the

name

specified.

generateMsg()

Generates

a

message

from

a

set

of

predefined

messages

in

a

message

file.

Syntax

public

final

static

String

generateMsg(int

traceLevel,

int

msgNum,

int

msgType,

int

isGlobal,

int

argCount,

Vector

msgParams);

public

final

static

String

generateMsg(int

msgNum,

int

msgType,

int

isGlobal,

int

argCount,

Vector

msgParams);

Chapter

34.

JavaConnectorUtil

class

459

Parameters

traceLevel

specifies

the

trace

level

at

which

to

generate

the

message.

When

this

parameter

is

omitted,

the

method

generates

the

message

regardless

of

the

trace

level.

The

message

is

generated

only

if

the

traceLevel

value

is

equal

to

or

less

than

the

current

trace

level

of

the

connector.

msgNum

specifies

the

message

number

(identifier)

in

the

message

file.

msgType

is

one

of

the

following

message

types:

JavaConnectorUtil.XRD_WARNING

JavaConnectorUtil.XRD_ERROR

JavaConnectorUtil.XRD_FATAL

JavaConnectorUtil.XRD_INFO

JavaConnectorUtil.XRD_TRACE

isGlobal

is

the

CONNECTOR_MESSAGE_FILE

message-file

constant

defined

in

the

CWConnectorLogAndTrace

class

to

indicate

that

the

message

file

is

the

connector

message

file.

argCount

is

an

integer

that

specifies

the

number

of

parameters

within

the

message

text.

To

determine

the

number,

refer

to

the

message

in

the

message

file.

msgParams

is

a

list

of

parameters

for

the

message

text.

Return

values

A

String

containing

the

generated

message,

or

null

if

the

trace

level

is

greater

than

the

trace

level

of

the

connector.

Notes

The

generateMsg()

method

provides

two

forms:

v

Use

the

first

form

of

the

method

(where

traceLevel

is

the

first

parameter)

for

tracing

messages.

For

the

message

to

be

generated,

the

trace

level

must

be

less

than

or

equal

to

the

trace

level

of

the

connector.

You

then

use

the

traceWrite()

method

to

send

the

trace

message

to

the

log

destination.

v

Use

the

second

form

of

the

signature

(where

msgNum

is

the

first

parameter)

for

logging.

You

then

use

the

logMsg()

method

to

send

the

log

message

to

the

log

destination.

getAllConfigProp()

Retrieves

a

list

of

all

configuration

properties

for

the

current

connector

as

hierarchical

connector

properties.

Syntax

public

static

CxProperty[]

getAllConfigProp();

Parameters

None.

Return

values

A

reference

to

an

array

of

CxProperty

objects,

each

of

which

contains

one

connector

property

for

the

current

connector.

460

Connector

Development

Guide

for

Java

Notes

The

getAllConfigProp()

method

retrieves

the

connector

configuration

properties

as

an

array

of

CxProperty

objects.

Each

connector-property

(CxProperty)

object

contains

a

single

connector

property

and

can

hold

a

single

value,

another

property,

or

a

combination

of

values

and

child

properties.

Use

methods

of

the

CxProperty

class

(such

as

getAllChildProps()

and

getStringValues())

to

obtain

the

values

from

a

connector-property

object.

See

also

getConfigProp(),

getAllConnectorAgentProperties(),

getAllStandardProperties(),

getAllUserProperties()

getAllConnectorAgentProperties()

Retrieves

a

list

of

all

configuration

properties

for

the

current

connector.

Syntax

public

static

Hashtable

getAllConnectorAgentProperties();

Parameters

None.

Return

values

A

reference

to

a

Hashtable

object

that

contains

the

connector

properties

for

the

current

connector.

Notes

The

getAllConnectorAgentProperties()

method

retrieves

the

connector

configuration

properties

as

a

Java

Hashtable

object,

which

maps

keys

to

values.

The

keys

are

the

names

of

the

properties

and

values

are

the

associated

property

values.

Use

methods

of

the

Hashtable

structure

(such

as

keys()

and

elements())

to

obtain

the

information

from

this

structure.

Examples

Hashtable

ht

=

new

Hastable();

ht

=

JavaConnectorUtil.getAllConnectorAgentProperties();

int

size

=

ht.size();

Enumeration

properties

=

ht.keys();

Enumeration

values

=

ht.elements();

while

(properties.hasMoreElements())

{

System.out.print((String)properties.nextElement());

System.out.print("=");

System.out.println((String)values.nextElement());

System.out.println("Property

set");

}

getAllStandardProperties()

Retrieves

all

the

connector’s

standard

properties.

Syntax

static

CxProperty[]

getAllStandardProperties();

Chapter

34.

JavaConnectorUtil

class

461

Parameters

None.

Return

values

A

reference

to

an

array

of

CxProperty

objects,

each

of

which

contains

one

standard

connector

property

for

the

current

connector.

Notes

The

getAllStandardProperties()

method

retrieves

the

standard

connector

configuration

properties

as

an

array

of

CxProperty

objects.

Each

connector-property

(CxProperty)

object

contains

a

single

standard

connector

property

and

can

hold

a

single

value,

another

property,

or

a

combination

of

values

and

child

properties.

Use

methods

of

the

CxProperty

class

(such

as

getAllChildProps()

and

getStringValues())

to

obtain

the

values

from

a

connector-property

object.

See

also

getAllConfigProp(),

getAllUserProperties(),

getOneConfigProp()

getAllUserProperties()

Retrieves

all

the

connector’s

connector-specific

properties.

Syntax

static

CxProperty[]

getAllUserProperties();

Parameters

None.

Return

values

A

reference

to

an

array

of

CxProperty

objects,

each

of

which

contains

one

connector-specific

connector

property

for

the

current

connector.

Notes

The

getAllUserProperties()

method

retrieves

the

connedtor-specific

configuration

properties

as

an

array

of

CxProperty

objects.

Each

connector-property

(CxProperty)

object

contains

a

single

connector-specific

property

and

can

hold

a

single

value,

another

property,

or

a

combination

of

values

and

child

properties.

Use

methods

of

the

CxProperty

class

(such

as

getAllChildProps()

and

getStringValues())

to

obtain

the

values

from

a

connector-property

object.

See

also

getAllConfigProp(),

getAllStandardProperties(),

getOneConfigProp()

getBlankValue()

Retrieves

the

special

Blank

attribute

value.

Syntax

public

static

String

getBlankValue();

462

Connector

Development

Guide

for

Java

Parameters

None.

Return

values

A

String

object

containing

the

special

Blank

attribute

value.

getConfigProp()

Retrieves

the

configuration

property

value

for

a

connector

from

the

repository.

Syntax

public

final

static

String

getConfigProp(String

propName);

Parameters

propName

Is

the

name

of

the

property

to

retrieve.

Return

values

A

String

object

containing

the

property

value.

If

the

property

name

is

not

found,

the

method

returns

null.

Notes

When

you

call

getConfigProp("ConnectorName")

in

a

parallel-process

connector

(one

that

has

the

ParallelProcessDegree

connector

property

set

to

a

value

greater

than

1),

the

method

always

returns

the

name

of

the

connector-agent

master

process,

regardless

of

whether

it

is

called

in

the

master

process

or

a

slave

process.

getEncoding()

Retrieves

the

character

encoding

that

the

connector

framework

is

using.

Syntax

public

String

getEncoding();

Parameters

None.

Return

values

A

String

object

containing

the

connector

framework’s

character

encoding.

Notes

The

getEncoding()

method

retrieves

the

connector

framework’s

character

encoding,

which

is

part

of

the

locale.

The

locale

specifies

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

character

encoding

should

indicate

the

character

encoding

of

the

connector

application.

The

connector

framework’s

character

encoding

using

the

following

hierarchy:

v

The

CharacterEncoding

connector

configuration

property

in

the

repository

Chapter

34.

JavaConnectorUtil

class

463

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

CharacterEncoding

property

is

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

character

encoding

from

the

Java

environment,

which

Unicode

(UCS-2)

This

method

is

useful

when

the

connector

needs

to

perform

character-encoding

processing,

such

as

character

conversion.

See

also

getGlobalLocale()

getIgnoreValue()

Retrieves

the

value

for

the

special

Ignore

attribute

value

Syntax

public

static

String

getIgnoreValue();

Parameters

None.

Return

values

A

String

object

containing

the

special

“Ignore”

attribute

value.

getLocale()

Retrieves

the

locale

of

the

connector

framework.

Syntax

public

String

getLocale();

Parameters

None.

Return

values

A

String

object

containing

the

connector

framework’s

locale

setting.

Notes

The

getLocale()

method

retrieves

the

connector

framework’s

locale,

which

defines

cultural

conventions

for

data

according

to

language,

country

(or

territory),

and

a

character

encoding.

The

connector

framework’s

locale

should

indicate

the

locale

of

the

connector

application.

The

connector

framework’s

locale

is

set

using

the

following

hierarchy:

v

The

LOCALE

connector

configuration

property

in

the

repository

464

Connector

Development

Guide

for

Java

WebSphere

InterChange

Server

If

a

local

configuration

file

exists,

the

setting

of

the

Locale

connector

configuration

property

in

this

local

file

takes

precedence.

If

no

local

configuration

file

exists,

the

setting

of

the

Locale

property

is

the

one

from

the

set

of

connector

configuration

properties

downloaded

from

the

InterChange

Server

repository

at

connector

startup.

v

The

locale

from

the

Java

environment,

which

is

the

locale

from

the

operating

system

This

method

is

useful

when

the

connector

needs

to

perform

locale-sensitive

processing.

See

also

createBusinessObject(),

getGlobalEncoding(),

getLocale()

(within

the

BusinessObjectInterface

interface)

getOneConfigProp()

Retrieves

the

top-level

connector-object

for

a

specified

hierarchical

connector

configuration

property.

Syntax

public

static

CxProperty

getOneConfigProp(String

propName);

Parameters

propName

Is

the

name

of

the

hierarchical

connector

property

to

retrieve.

Return

values

A

CxProperty

object

that

contains

the

top-level

connector-property

object

for

the

specified

hierarchical

connector

property.

If

the

property

name

is

not

found,

the

method

returns

null.

Notes

The

getOneConfigProp()

method

obtains

the

top-level

connector-property

(CxProperty)

object.

From

this

retrieved

object,

you

can

use

methods

of

the

CxProperty

class

to

obtain

the

desired

values

of

the

connector

property.

Note:

Values

of

connector

configuration

properties

are

downloaded

to

the

connector

during

its

initialization.

If

you

specify

a

propName

for

a

connector

property

that

has

not

been

downloaded,

getOneConfigProp()

returns

null.

See

also

getAllConfigProp(),

getConfigProp()

getSupportedBusObjNames()

Retrieves

a

list

of

supported

business

objects

for

the

current

connector.

Chapter

34.

JavaConnectorUtil

class

465

WebSphere

InterChange

Server

This

method

is

only

valid

when

the

integration

broker

is

InterChange

Server.

Syntax

public

static

String[]

getSupportedBusObjNames()

Parameters

None.

Return

values

A

String

array

that

contains

a

list

of

the

names

of

the

supported

business

objects

for

the

connector.

Notes

The

getSupportedBusObjNames()

method

returns

a

list

of

top-level

supported

business

objects

for

the

current

connector;

that

is,

if

the

connector

supports

business

objects

that

contain

child

business

objects,

getSupportedBusObjNames()

includes

only

the

name

of

the

parent

object

in

its

list.

Note:

The

getSupportedBusObjNames()

method

is

only

supported

when

the

connector

is

using

a

version

4.0

or

later

InterChange

Server

as

its

integration

broker.

initAndValidateAttributes()

Initializes

attributes

that

do

not

have

values

set,

but

are

marked

as

required,

with

their

default

values.

Syntax

public

static

void

initAndValidateAttributes(

BusinessObjectInterface

theBusObj);

Parameters

theBusObj

Is

the

business

object

whose

attributes

this

method

sets.

Return

values

None.

Exceptions

BusObjSpecNameNotFoundException

Thrown

when

the

name

of

the

specified

business

object

does

not

match

any

of

the

business

object

definitions

in

the

repository.

SetDefaultFailedException

Thrown

when

the

attribute’s

default

value

could

not

be

set

and

there

is

no

default

value

specified

for

the

attribute

in

the

business

object

definition.

466

Connector

Development

Guide

for

Java

Notes

The

initAndValidateAttributes()

method

has

two

purposes:

v

It

initializes

attributes

by

setting

the

default

value

for

each

attribute

under

the

following

conditions:

–

When

the

UseDefaults

connector

configuration

property

is

set

to

true

–

When

the

attribute’s

isRequired

property

is

set

to

true

–

When

the

attribute’s

value

is

not

currently

set

(has

the

special

Ignore

value

of

CxIgnore)

–

When

the

attribute’s

Default

Value

property

specifies

a

default

value
v

It

validates

attributes

by

throwing

a

SetDefaultFailedException

exception

under

the

following

conditions:

–

When

the

attribute’s

isRequired

property

is

set

to

true

–

When

the

attribute

does

not

have

a

Default

Value

property

that

defines

its

default

value

In

case

of

failure,

no

value

exists

some

attributes

(those

without

default

values)

after

initAndValidateAttributes()

finishes

default-value

processing

.

You

might

want

to

code

your

connector’s

application-specific

component

to

catch

this

exception

and

return

CxStatusConstants.FAIL.

The

initAndValidateAttributes()method

looks

at

every

attribute

in

all

levels

of

a

business

object

and

determines

the

following:

v

Whether

an

attribute

is

required

v

Whether

the

attribute

has

a

value

in

the

business

object

instance

v

Whether

the

UseDefaults

configuration

property

is

set

to

true

If

an

attribute

is

required

and

UseDefaults

is

true,

initAndValidateAttributes()

sets

the

value

of

any

unset

attribute

to

its

default

value.

To

have

initAndValidateAttributes()

set

the

attribute

value

to

the

special

Blank

value

(CxBlank),

you

can

set

the

attribute’s

default

value

to

the

string

″CxBlank″.

If

the

attribute

does

not

have

a

default

value,

initAndValidateAttributes()

throws

the

SetDefaultFailedException

exception.

Note:

If

an

attribute

is

a

key

or

other

attribute

whose

value

is

generated

by

the

application,

the

business

object

definition

should

not

provide

default

values,

and

the

Required

property

for

the

attribute

should

be

set

to

false.

The

initAndValidateAttributes()

method

is

usually

called

from

the

business-object-handler

doVerbFor()

method

to

ensure

that

required

attributes

have

values

before

a

Create

operation

is

performed

in

an

application.

In

the

doVerbFor()

method,

you

can

call

the

initAndValidateAttributes()

method

for

the

Create

verb.

You

can

also

call

it

for

the

Update

verb,

before

it

performs

a

Create.

To

use

initAndValidateAttributes(),

you

must

also

do

the

following:

v

Design

business

objects

so

that

the

IsRequired

property

is

set

to

true

for

required

attributes

and

that

required

attributes

have

default

values

specified

in

their

Default

Value

property.

v

Add

the

UseDefaults

connector

configuration

property

to

the

list

of

connector-specific

properties

for

the

connector.

Set

this

property

to

true.

Chapter

34.

JavaConnectorUtil

class

467

isBlankValue()

Determines

if

an

attribute

value

is

the

special

Blank

(CxBlank)

attribute

value.

Syntax

public

static

boolean

isBlankValue(Object

value);

Parameters

value

Is

the

value

to

compare

with

the

special

Blank

value.

Return

values

Returns

True

if

the

value

is

the

special

Blank

attribute

value;

otherwise,

returns

False.

isIgnoreValue()

Determines

if

an

attribute

value

is

the

special

Ignore

(CxIgnore)

attribute

value,

which

signifies

that

this

attribute

is

to

be

ignored

while

processing

the

business

object.

Syntax

public

static

boolean

isIgnoreValue(Object

value);

Parameters

value

Is

the

value

to

compare

with

the

special

Ignore

value.

Return

values

Returns

True

if

the

value

is

equal

to

the

special

Ignore

attribute

value;

otherwise,

returns

False.

isTraceEnabled()

Determines

if

the

trace

level

is

greater

than

or

equal

to

the

trace

level

for

which

it

is

looking,

if

tracing

is

enabled

at

this

level.

Syntax

public

final

static

boolean

isTraceEnabled(int

traceLevel);

Parameters

traceLevel

Is

the

trace

level

to

check.

Return

values

Returns

True

if

the

agent

trace

level

is

greater

than

or

equal

to

the

trace

level

passed

in.

Notes

Use

this

method

before

generating

a

message.

468

Connector

Development

Guide

for

Java

logMsg()

Logs

a

message

to

the

connector’s

log

destination.

Syntax

public

final

static

void

logMsg(String

msg);

public

final

static

void

logMsg(String

msg,

int

severity);

Parameters

msg

Is

the

message

text

to

be

logged.

severity

Is

one

of

the

following

message

types:

JavaConnectorUtil.XRD_WARNING

JavaConnectorUtil.XRD_ERROR

JavaConnectorUtil.XRD_FATAL

JavaConnectorUtil.XRD_INFO

JavaConnectorUtil.XRD_TRACE

Return

values

None.

Notes

The

logMsg()

method

sends

the

specified

msg

text

to

the

log

destination.

You

establish

the

name

of

a

connector’s

log

destination

through

the

Logging

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

IBM

recommends

that

log

messages

be

contained

in

a

message

file

and

extracted

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

messages

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

logMsg().

It

retrieves

a

predefined

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

WebSphere

InterChange

Server

If

severity

is

XRD_ERROR

or

XRD_FATAL

and

the

connector

configuration

property

LogAtInterchangeEnd

is

set,

the

error

message

is

logged

and

an

email

notification

is

sent

when

email

notification

is

on.

See

the

System

Administration

Guide

in

the

IBM

WebSphere

InterChange

Server

documentation

set

for

information

on

how

to

set

up

email

notification

for

errors.

Connector

messages

logged

with

logMsg()

are

viewable

using

LogViewer

if

the

message

strings

were

generated

with

generateMsg().

See

also

See

the

description

of

the

generateMsg()

method.

traceWrite()

Writes

a

trace

message

to

the

connector’s

trace

destination.

Chapter

34.

JavaConnectorUtil

class

469

Syntax

public

final

static

void

traceWrite(int

traceLevel,

String

msg);

Parameters

traceLevel

Is

one

of

the

following

trace

levels:

JavaConnectorUtil.LEVEL1

JavaConnectorUtil.LEVEL2

JavaConnectorUtil.LEVEL3

JavaConnectorUtil.LEVEL4

JavaConnectorUtil.LEVEL5

The

method

writes

the

trace

message

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

Note:

Do

not

specify

a

trace

level

of

zero

(LEVEL0)

with

a

tracing

message.

A

trace

level

of

zero

indicates

that

tracing

is

turned

off.

Therefore,

any

trace

message

associated

with

a

traceLevel

of

LEVEL0

will

never

print.

msg

Is

the

message

text

to

use

for

the

trace

message.

Return

values

None.

Notes

You

can

use

the

traceWrite()

method

to

write

your

own

trace

messages

for

a

connector.

Tracing

is

turned

on

for

connectors

when

the

TraceLevel

connector

configuration

property

is

set

to

a

nonzero

value

(any

trace-level

constant

except

LEVEL0).

The

traceWrite()

method

sends

the

specified

msg

text

to

the

trace

destination

when

the

current

trace

level

is

greater

than

or

equal

to

traceLevel.

You

establish

the

name

of

a

connector’s

trace

destination

through

the

Tracing

section

in

the

Trace/Log

File

tab

of

Connector

Configurator.

Because

trace

messages

are

usually

needed

only

during

debugging,

whether

trace

messages

are

contained

in

a

message

file

is

left

at

the

discretion

of

the

developer:

v

If

non-English-speaking

users

need

to

view

trace

messages,

you

need

to

internationalize

these

messages.

Therefore,

you

must

put

the

trace

messages

in

a

message

file

and

extract

them

with

the

generateMsg()

method.

This

message

file

should

be

the

connector

message

file,

which

contains

message

specific

to

your

connector.

The

generateMsg()

method

generates

the

message

string

for

traceWrite().

It

retrieves

a

predefined

trace

message

from

a

message

file,

formats

the

text,

and

returns

a

generated

message

string.

v

If

only

English-speaking

users

need

to

view

trace

messages,

you

do

not

need

to

internationalize

these

messages.

Therefore,

you

can

include

the

trace

message

(in

English)

directly

in

the

call

to

traceWrite().

You

do

not

need

to

use

the

generateMsg()

method.

Connector

messages

logged

with

traceWrite()

are

not

viewable

using

LogViewer.

See

also

See

the

description

of

the

generateMsg()

method.

470

Connector

Development

Guide

for

Java

Chapter

35.

ReturnStatusDescriptor

class

The

ReturnStatusDescriptor

class

enables

low-level

Java

connectors

to

return

error

and

informational

messages

in

a

return-status

descriptor.

It

is

part

of

the

CxCommon

package.

This

return-status

descriptor

provides

additional

status

information

is

usually

returned

as

part

of

the

request

response

sent

to

the

integration

broker.

Note:

The

CWConnectorReturnStatusDescriptor

class

is

the

Java

connector

library

class

that

is

a

wrapper

for

the

ReturnStatusDescriptor

class

of

the

low-level

Java

connector

library.

Most

Java-connector

development

should

use

the

Java

connector

library.

For

more

information

on

the

classes

of

the

Java

connector

library,

see

Chapter

9,

“Overview

of

the

Java

connector

library,”

on

page

231.

WebSphere

InterChange

Server

If

your

business

integration

system

uses

InterChange

Server,

the

connector

framework

returns

the

return-status

descriptor

to

the

collaboration

that

initiated

the

request.

The

collaboration

can

access

the

information

in

this

return-status

descriptor

to

obtain

the

status

of

its

service

call

request.

Table

158

summarizes

the

methods

in

the

ReturnStatusDescriptor

class.

Table

158.

Member

methods

of

the

ReturnStatusDescriptor

class

Member

method

Description

Page

getErrorString()

Retrieves

the

error

message

from

the

object.

471

getStatus()

Retrieves

the

status

of

the

requested

operation.

471

setErrorString()

Sets

the

error

message

into

the

object.

472

setStatus()

Sets

the

status

of

the

requested

operation.

472

getErrorString()

Retrieves

a

message

string

from

a

return-status

descriptor.

The

message

may

be

an

error

message

or

an

informational

message.

Syntax

public

String

getErrorString();

Parameters

None.

Return

values

A

String

containing

an

error

or

informational

message

for

the

integration

broker,

or

null.

getStatus()

Retrieves

the

status

of

the

requested

operation.

©

Copyright

IBM

Corp.

2000,

2004

471

Syntax

public

int

getStatus();

Parameters

None.

Return

values

An

int

value

signaling

the

status

of

an

operation.

setErrorString()

Sets

the

error

or

informational

message

into

the

ReturnStatusDescriptor

object.

Syntax

public

void

setErrorString(String

errorStr);

Parameters

errorStr

Is

the

message

string.

Return

values

None.

setStatus()

Sets

the

status

of

the

requested

operation.

Syntax

public

void

setStatus(int

status);

Parameters

status

Is

the

status

value.

Return

values

None.

472

Connector

Development

Guide

for

Java

Chapter

36.

Low-level

Java

exceptions

The

exceptions

in

the

low-level

Java

connector

library

are

subclasses

derived

from

an

internal

IBM

WebSphere

business

integration

system

exception

class.

These

subclasses

represent

an

exception

object,

which

methods

of

the

low-level

Java

connector

library

can

throw.

Note:

The

reference

description

for

most

low-level

Java

connector

library

methods

lists

the

exceptions

thrown

by

that

method

in

the

Exceptions

section.

The

low-level

Java

connector

library

exceptions

provide

the

following:

v

“Exception

subclasses”

v

“Methods”

Exception

subclasses

This

chapter

lists

the

exception

subclasses

for

the

low-level

Java

connector

library.

Table

159.

Low-level

Java

connector

library

exceptions

Exception

name

Definition

BusObjInvalidVerbException

Thrown

when

the

specified

verb

is

not

supported

by

the

business

object.

BusObjSpecNameNotFoundException

Thrown

when

the

specification

for

creating

a

business

object

cannot

be

found.

CxObjectInvalidAttrException

Thrown

when

the

data

type

of

the

specified

attribute

does

not

match

the

data

type

that

the

attribute

is

defined

to

hold.

CxObjectNoSuchAttributeException

Thrown

when

the

specified

position

or

name

of

an

attribute

does

not

match

the

attribute

name

or

attribute

position

within

the

existing

business

object.

SetDefaultFailedException

Thrown

when

setting

a

default

value

fails.

Methods

Table

160

summarizes

the

methods

in

the

exception

subclasses

of

the

low-level

Java

connector

library.

Table

160.

Member

methods

of

the

Java

exception

subclasses

Member

method

Description

Page

getFormattedMessage()

Formats

the

exception’s

message.

473

getFormattedMessage()

Formats

the

exception’s

message

into

a

special

format.

Syntax

public

String

getFormattedMessage();

Parameters

None.

©

Copyright

IBM

Corp.

2000,

2004

473

Return

values

A

String

containing

the

formatted

error

message,

or

null

if

the

exception

object

is

initialized

with

null

when

it

is

constructed.

Notes

The

message

that

getFormattedMessage()

returns

has

the

following

format:

[Type:

<MsgType>][MsgID:

<msgId>][Mesg:

<msg>]

To

retrieve

the

error

message

embedded

in

the

exception,

use

the

getFormattedMessage()

method.

474

Connector

Development

Guide

for

Java

Part

5.

Appendixes

©

Copyright

IBM

Corp.

2000,

2004

475

476

Connector

Development

Guide

for

Java

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

WebSphere

Business

Integration

adapters.

The

information

covers

connectors

running

with

the

following

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(and

shown

as

WMQI

in

the

Connector

Configurator).

v

Information

Integrator

(II)

v

WebSphere

Application

Server

(WAS)

If

your

adapter

supports

DB2

Information

Integrator,

use

the

WMQI

options

and

the

DB2

II

standard

properties

(see

the

Notes

column

in

Table

161

on

page

479.)

The

properties

you

set

for

the

adapter

depend

on

which

integration

broker

you

use.

You

choose

the

integration

broker

using

Connector

Configurator.

After

you

choose

the

broker,

Connector

Configurator

lists

the

standard

properties

you

must

configure

for

the

adapter.

For

information

about

properties

specific

to

this

connector,

see

the

relevant

section

in

this

guide.

New

properties

These

standard

properties

have

been

added

in

this

release:

v

AdapterHelpName

v

BiDi.Application

v

BiDi.Broker

v

BiDi.Metadata

v

BiDi.Transformation

v

CommonEventInfrastructure

v

CommonEventInfrastructureContextURL

v

ControllerEventSequencing

v

jms.ListenerConcurrency

v

jms.TransportOptimized

v

ResultsSetEnabled

v

ResultsSetSize

v

TivoliTransactionMonitorPerformance

Standard

connector

properties

overview

Connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties,

which

are

used

by

the

framework

v

Application,

or

connector-specific,

configuration

properties,

which

are

used

by

the

agent

©

Copyright

IBM

Corp.

2000,

2004

477

These

properties

determine

the

adapter

framework

and

the

agent

run-time

behavior.

This

section

describes

how

to

start

Connector

Configurator

and

describes

characteristics

common

to

all

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Starting

Connector

Configurator

You

configure

connector

properties

from

Connector

Configurator,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator,

refer

to

the

sections

on

Connector

Configurator

in

this

guide.

Connector

Configurator

and

System

Manager

run

only

on

the

Windows

system.

If

you

are

running

the

connector

on

a

UNIX

system,

you

must

have

a

Windows

machine

with

these

tools

installed.

To

set

connector

properties

for

a

connector

that

runs

on

UNIX,

you

must

start

up

System

Manager

on

the

Windows

machine,

connect

to

the

UNIX

integration

broker,

and

bring

up

Connector

Configurator

for

the

connector.

Configuration

property

values

overview

The

connector

uses

the

following

order

to

determine

a

property’s

value:

1.

Default

2.

Repository

(valid

only

if

WebSphere

InterChange

Server

(ICS)

is

the

integration

broker)

3.

Local

configuration

file

4.

Command

line

The

default

length

of

a

property

field

is

255

characters.

There

is

no

limit

on

the

length

of

a

STRING

property

type.

The

length

of

an

INTEGER

type

is

determined

by

the

server

on

which

the

adapter

is

running.

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

update

method

determines

how

the

change

takes

effect.

The

update

characteristics

of

a

property,

that

is,

how

and

when

a

change

to

the

connector

properties

takes

effect,

depend

on

the

nature

of

the

property.

There

are

four

update

methods

for

standard

connector

properties:

v

Dynamic

The

new

value

takes

effect

immediately

after

the

change

is

saved

in

System

Manager.

However,

if

the

connector

is

in

stand-alone

mode

(independently

of

System

Manager),

for

example,

if

it

is

running

with

one

of

the

WebSphere

message

brokers,

you

can

change

properties

only

through

the

configuration

file.

In

this

case,

a

dynamic

update

is

not

possible.

v

Agent

restart

(ICS

only)

The

new

value

takes

effect

only

after

you

stop

and

restart

the

connector

agent.

v

Component

restart

The

new

value

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

agent

or

the

server

process.

478

Connector

Development

Guide

for

Java

v

System

restart

The

new

value

takes

effect

only

after

you

stop

and

restart

the

connector

agent

and

the

server.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

window,

or

see

the

Update

Method

column

in

Table

161

on

page

479.

There

are

three

locations

in

which

a

standard

property

can

reside.

Some

properties

can

reside

in

more

than

one

location.

v

ReposController

The

property

resides

in

the

connector

controller

and

is

effective

only

there.

If

you

change

the

value

on

the

agent

side,

it

does

not

affect

the

controller.

v

ReposAgent

The

property

resides

in

the

agent

and

is

effective

only

there.

A

local

configuration

can

override

this

value,

depending

on

the

property.

v

LocalConfig

The

property

resides

in

the

configuration

file

for

the

connector

and

can

act

only

through

the

configuration

file.

The

controller

cannot

change

the

value

of

the

property,

and

is

not

aware

of

changes

made

to

the

configuration

file

unless

the

system

is

redeployed

to

update

the

controller

explicitly.

Standard

properties

quick-reference

Table

161

provides

a

quick-reference

to

the

standard

connector

configuration

properties.

Not

all

connectors

require

all

of

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker.

See

the

section

following

the

table

for

a

description

of

each

property.

Note:

In

the

Notes

column

in

Table

161,

the

phrase

“RepositoryDirectory

is

set

to

<REMOTE>”

indicates

that

the

broker

is

InterChange

Server.

When

the

broker

is

WMQI

or

WAS,

the

repository

directory

is

set

to

<ProductDir>\repository

Table

161.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdapterHelpName

One

of

the

valid

subdirectories

in

<ProductDir>\bin\Data

\App\Help\

that

contains

a

valid

<RegionalSetting>

directory

Template

name,

if

valid,

or

blank

field

Component

restart

Supported

regional

settings.

Include

chs_chn,

cht_twn,

deu_deu,

esn_esp,

fra_fra,

ita_ita,

jpn_jpn,

kor_kor,

ptb_bra,

and

enu_usa

(default).

AdminInQueue

Valid

JMS

queue

name

<CONNECTORNAME>

/ADMININQUEUE

Component

restart

This

property

is

valid

only

when

the

value

of

DeliveryTransport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

<CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This

property

is

valid

only

when

the

value

of

DeliveryTransport

is

JMS

Appendix

A.

Standard

configuration

properties

for

connectors

479

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

AgentConnections

1

through

4

1

Component

restart

This

property

is

valid

only

when

the

value

of

DeliveryTransport

is

MQ

or

IDL,

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

AgentTraceLevel

0

through

5

0

Dynamic

if

broker

is

ICS;

otherwise

Component

restart

ApplicationName

Application

name

The

value

specified

for

the

connector

application

name

Component

restart

BiDi.Application

Any

valid

combination

of

these

bidirectional

attributes:

1st

letter:

I,V

2nd

letter:

L,R

3rd

letter:

Y,

N

4th

letter:

S,

N

5th

letter:

H,

C,

N

ILYNN

(five

letters)

Component

restart

This

property

is

valid

only

if

the

value

of

BiDi.Transforma

tion

is

true

BiDi.Broker

Any

valid

combination

of

these

bidirectional

attributes:

1st

letter:

I,V

2nd

letter:

L,R

3rd

letter:

Y,

N

4th

letter:

S,

N

5th

letter:

H,

C,

N

ILYNN

(five

letters)

Component

restart

This

property

is

valid

only

if

the

value

of

BiDi.Transformation

is

true.

If

the

value

of

BrokerType

is

ICS,

the

property

is

read-only.

BiDi.Metadata

Any

valid

combination

of

these

bidirectional

attributes:

1st

letter:

I,V

2nd

letter:

L,R

3rd

letter:

Y,

N

4th

letter:

S,

N

5th

letter:

H,

C,

N

ILYNN

(five

letters)

Component

restart

This

property

is

valid

only

if

the

value

of

BiDi.Transformation

is

true.

BiDi.Transformation

true

or

false

false

Component

restart

This

property

is

valid

only

if

the

value

of

BrokerType

is

not

WAS

.

BrokerType

ICS,

WMQI,

WAS

ICS

Component

restart

CharacterEncoding

Any

supported

code.

The

list

shows

this

subset:

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

.

ascii7

Component

restart

This

property

is

valid

only

for

C++

connectors.

480

Connector

Development

Guide

for

Java

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

CommonEventInfrastruc

ture

true

or

false

false

Component

restart

CommonEventInfrastruc

tureURL

A

URL

string,

for

example,

corbaloc:iiop:

host:2809.

No

default

value.

Component

restart

This

property

is

valid

only

if

the

value

of

CommonEvent

Infrastructure

is

true.

ConcurrentEventTrig

geredFlows

1

through

32,767

1

Component

restart

This

property

is

valid

only

if

the

value

of

RepositoryDirectory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

ContainerManagedEvents

Blank

or

JMS

Blank

Component

restart

This

property

is

valid

only

when

the

value

of

Delivery

Transport

is

JMS.

ControllerEventSequenc

ing

true

or

false

true

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

ControllerStoreAndFor

wardMode

true

or

false

true

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

ControllerTraceLevel

0

through

5

0

Dynamic

This

property

is

valid

only

if

the

value

of

RepositoryDirectory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

DeliveryQueue

Any

valid

JMS

queue

name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This

property

is

valid

only

when

the

value

of

Delivery

Transport

is

JMS.

DeliveryTransport

MQ,

IDL,

or

JMS

IDL

when

the

value

of

RepositoryDirectory

is

<REMOTE>,

otherwise

JMS

Component

restart

If

the

value

of

RepositoryDirectory

is

not

<REMOTE>,

the

only

valid

value

for

this

property

is

JMS.

DuplicateEventElimina

tion

true

or

false

false

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

EnableOidForFlowMoni

toring

true

or

false

false

Component

restart

This

property

is

valid

only

if

the

value

of

BrokerType

is

ICS.

FaultQueue

Any

valid

queue

name.

<CONNECTORNAME>

/FAULTQUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

Appendix

A.

Standard

configuration

properties

for

connectors

481

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

jms.ListenerConcurrency

1

through

32767

1

Component

restart

This

property

is

valid

only

if

the

value

of

jms.TransportOptimized

is

true.

jms.MessageBrokerName

If

the

value

of

jms.FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

.

jms.NumConcurrent

Requests

Positive

integer

10

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

.

jms.Password

Any

valid

password

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

.

jms.TransportOptimized

true

or

false

false

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

and

the

value

of

BrokerType

is

ICS.

jms.UserName

Any

valid

name

Component

restart

This

property

is

valid

only

if

the

value

of

Delivery

Transport

is

JMS.

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

ListenerConcurrency

1

through

100

1

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

MQ.

Locale

This

is

a

subset

of

the

supported

locales:

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

en_US

Component

restart

482

Connector

Development

Guide

for

Java

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

LogAtInterchangeEnd

true

or

false

false

Component

restart

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

MaxEventCapacity

1

through

2147483647

2147483647

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

MessageFileName

Valid

file

name

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

<CONNECTORNAME>

/MONITORQUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DuplicateEventElimination

is

true

and

ContainerManagedEvents

has

no

value.

OADAutoRestartAgent

true

or

false

false

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

OADMaxNumRetry

A

positive

integer

1000

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

OADRetryTimeInterval

A

positive

integer

in

minutes

10

Dynamic

This

property

is

valid

only

if

the

value

of

Repository

Directory

is

set

to

<REMOTE>

and

the

value

of

BrokerType

is

ICS.

PollEndTime

HH

=

0

through

23

MM

=

0

through

59

HH:MM

Component

restart

PollFrequency

A

positive

integer

(in

milliseconds)

10000

Dynamic

if

broker

is

ICS;

otherwise

Component

restart

PollQuantity

1

through

500

1

Agent

restart

This

property

is

valid

only

if

the

value

of

ContainerManagedEvents

is

JMS.

PollStartTime

HH

=

0

through

23

MM

=

0

through

59

HH:MM

Component

restart

RepositoryDirectory

<REMOTE>

if

the

broker

is

ICS;

otherwise

any

valid

local

directory.

For

ICS,

the

value

is

set

to

<REMOTE>

For

WMQI

and

WAS,

the

value

is

<ProductDir

\repository

Agent

restart

Appendix

A.

Standard

configuration

properties

for

connectors

483

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

RequestQueue

Valid

JMS

queue

name

<CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

ResponseQueue

Valid

JMS

queue

name

<CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

RestartRetryCount

0

through

99

3

Dynamic

if

ICS;

otherwise

Component

restart

RestartRetryInterval

A

value

in

minutes

from

1

through

2147483647

1

Dynamic

if

ICS;

otherwise

Component

restart

ResultsSetEnabled

true

or

false

false

Component

restart

Used

only

by

connectors

that

support

DB2II.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS,

and

the

value

of

BrokerType

is

WMQI.

ResultsSetSize

Positive

integer

0

(means

the

results

set

size

is

unlimited)

Component

restart

Used

only

by

connectors

that

support

DB2II.

This

property

is

valid

only

if

the

value

of

ResultsSetEnabled

is

true.

RHF2MessageDomain

mrm

or

xml

mrm

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

and

the

value

of

WireFormat

is

CwXML.

SourceQueue

Any

valid

WebSphere

MQ

queue

name

<CONNECTORNAME>

/SOURCEQUEUE

Agent

restart

This

property

is

valid

only

if

the

value

of

ContainerManagedEvents

is

JMS.

SynchronousRequest

Queue

Any

valid

queue

name.

<CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

SynchronousRequest

Timeout

0

to

any

number

(milliseconds)

0

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

SynchronousResponse

Queue

Any

valid

queue

name

<CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

TivoliMonitorTransaction

Performance

true

or

false

false

Component

restart

484

Connector

Development

Guide

for

Java

Table

161.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

WireFormat

CwXML

or

CwBO

CwXML

Agent

restart

The

value

of

this

property

must

be

CwXML

if

the

value

of

RepositoryDirectory

is

not

set

to

<REMOTE>.

The

value

must

be

CwBO

if

the

value

of

RepositoryDirectory

is

set

to

<REMOTE>.

WsifSynchronousRequest

Timeout

0

to

any

number

(milliseconds)

0

Component

restart

This

property

is

valid

only

if

the

value

of

BrokerType

is

WAS.

XMLNameSpaceFormat

short

or

long

short

Agent

restart

This

property

is

valid

only

if

the

value

of

BrokerType

is

WMQI

or

WAS

Standard

properties

This

section

describes

the

standard

connector

configuration

properties.

AdapterHelpName

The

AdapterHelpName

property

is

the

name

of

a

directory

in

which

connector-specific

extended

help

files

are

located.

The

directory

must

be

located

in

<ProductDir>\bin\Data\App\Help

and

must

contain

at

least

the

language

directory

enu_usa.

It

may

contain

other

directories

according

to

locale.

The

default

value

is

the

template

name

if

it

is

valid,

or

it

is

blank.

AdminInQueue

The

AdminInQueue

property

specifies

the

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

<CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The

AdminOutQueue

property

specifies

the

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

<CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The

AgentConnections

property

controls

the

number

of

ORB

(Object

Request

Broker)

connections

opened

when

the

ORB

initializes.

It

is

valid

only

if

the

value

of

the

RepositoryDirectory

is

set

to

<REMOTE>

and

the

value

of

the

DeliveryTransport

property

is

MQ

or

IDL.

The

default

value

of

this

property

is

1.

Appendix

A.

Standard

configuration

properties

for

connectors

485

AgentTraceLevel

The

AgentTraceLevel

property

sets

the

level

of

trace

messages

for

the

application-specific

component.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

and

lower.

The

default

value

is

0.

ApplicationName

The

ApplicationName

property

uniquely

identifies

the

name

of

the

connector

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

integration

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

The

default

is

the

name

of

the

connector.

BiDi.Application

The

BiDi.Application

property

specifies

the

bidirectional

format

for

data

coming

from

an

external

application

into

the

adapter

in

the

form

of

any

business

object

supported

by

this

adapter.

The

property

defines

the

bidirectional

attributes

of

the

application

data.

These

attributes

are:

v

Type

of

text:

implicit

or

visual

(I

or

V)

v

Text

direction:

left-to-right

or

right-to-left

(L

or

R)

v

Symmetric

swapping:

on

or

off

(Y

or

N)

v

Shaping

(Arabic):

on

or

off

(S

or

N)

v

Numerical

shaping

(Arabic):

Hindi,

contextual,

or

nominal

(H,

C,

or

N)

This

property

is

valid

only

if

the

BiDi.Transformation

property

value

is

set

to

true.

The

default

value

is

ILYNN

(implicit,

left-to-right,

on,

off,

nominal).

BiDi.Broker

The

BiDi.Broker

property

specifies

the

bidirectional

format

for

data

sent

from

the

adapter

to

the

integration

broker

in

the

form

of

any

supported

business

object.

It

defines

the

bidirectional

attributes

of

the

data,

which

are

as

listed

under

BiDi.Application

above.

This

property

is

valid

only

if

the

BiDi.Transformation

property

value

is

set

to

true.

If

the

BrokerType

property

is

ICS,

the

property

value

is

read-only.

The

default

value

is

ILYNN

(implicit,

left-to-right,

on,

off,

nominal).

BiDi.Metadata

The

BiDi.Metadata

property

defines

the

bidirectional

format

or

attributes

for

the

metadata,

which

is

used

by

the

connector

to

establish

and

maintain

a

link

to

the

external

application.

The

attribute

settings

are

specific

to

each

adapter

using

the

bidirectional

capabilities.

If

your

adapter

supports

bidirectional

processing,

refer

to

section

on

adapter-specific

properties

for

more

information.

This

property

is

valid

only

if

the

BiDi.Transformation

property

value

is

set

to

true.

The

default

value

is

ILYNN

(implicit,

left-to-right,

on,

off,

nominal).

486

Connector

Development

Guide

for

Java

BiDi.Transformation

The

BiDi.Transformation

property

defines

whether

the

system

performs

a

bidirectional

transformation

at

run

time.

If

the

property

value

is

set

to

true,

the

BiDi.Application,

BiDi.Broker,

and

BiDi.Metadata

properties

are

available.

If

the

property

value

is

set

to

false,

they

are

hidden.

The

default

value

is

false.

BrokerType

The

BrokerType

property

identifies

the

integration

broker

type

that

you

are

using.

The

possible

values

are

ICS,

WMQI

(for

WMQI,

WMQIB

or

WBIMB),

or

WAS.

CharacterEncoding

The

CharacterEncoding

property

specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

C++

connectors

use

the

value

ascii7

for

this

property.

By

default,

only

a

subset

of

supported

character

encodings

is

displayed.

To

add

other

supported

values

to

the

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory

(<ProductDir>).

For

more

information,

see

the

Connector

Configurator

appendix

in

this

guide.

CommonEventInfrastructure

The

Common

Event

Infrastructure

(CEI)

is

a

simple

event

management

function

handling

generated

events.

The

CommonEventInfrastructure

property

specifies

whether

the

CEI

should

be

invoked

at

run

time.

The

default

value

is

false.

CommonEventInfrastructureContextURL

The

CommonEventInfrastructureContextURL

is

sued

to

gain

access

to

the

WAS

server

that

executes

the

Common

Event

Infrastructure

(CEI)

server

application.

This

property

specifies

the

URL

to

be

used.

This

property

is

valid

only

if

the

value

of

CommonEventInfrastructure

is

set

to

true.

The

default

value

is

a

blank

field.

ConcurrentEventTriggeredFlows

The

ConcurrentEventTriggeredFlows

property

determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

You

set

the

value

of

this

attribute

to

the

number

of

business

objects

that

are

mapped

and

delivered

concurrently.

For

example,

if

you

set

the

value

of

this

property

to

5,

five

business

objects

are

processed

concurrently.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

Appendix

A.

Standard

configuration

properties

for

connectors

487

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

the

following

properties

must

configured:

v

The

collaboration

must

be

configured

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

The

destination

application’s

application-specific

component

must

be

configured

to

process

requests

concurrently.

That

is,

it

must

be

multithreaded,

or

it

must

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

The

Parallel

Process

Degree

configuration

property

must

be

set

to

a

value

larger

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

is

performed

serially.

This

property

is

valid

only

if

the

value

of

the

RepositoryDirectory

property

is

set

to

<REMOTE>.

The

default

value

is

1.

ContainerManagedEvents

The

ContainerManagedEvents

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

one

JMS

transaction.

When

this

property

is

set

to

JMS,

the

following

properties

must

also

be

set

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType

and

DHClass

(data

handler

class)

properties.

You

can

also

add

DataHandlerConfigMOName

(the

meta-object

name,

which

is

optional).

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator.

Although

these

properties

are

adapter-specific,

here

are

some

example

values:

v

MimeType

=

text\xml

v

DHClass

=

com.crossworlds.DataHandlers.text.xml

v

DataHandlerConfigMOName

=

MO_DataHandler_Default

The

fields

for

these

values

in

the

Data

Handler

tab

are

displayed

only

if

you

have

set

the

ContainerManagedEvents

property

to

the

value

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

The

ContainerManagedEvents

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

set

to

JMS.

488

Connector

Development

Guide

for

Java

There

is

no

default

value.

ControllerEventSequencing

The

ControllerEventSequencing

property

enables

event

sequencing

in

the

connector

controller.

This

property

is

valid

only

if

the

value

of

the

RepositoryDirectory

property

is

set

to

set

to

<REMOTE>

(BrokerType

is

ICS).

The

default

value

is

true.

ControllerStoreAndForwardMode

The

ControllerStoreAndForwardMode

property

sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

This

property

is

valid

only

if

the

value

of

the

RepositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

the

BrokerType

property

is

ICS).

The

default

value

is

true.

ControllerTraceLevel

The

ControllerTraceLevel

property

sets

the

level

of

trace

messages

for

the

connector

controller.

This

property

is

valid

only

if

the

value

of

the

RepositoryDirectory

property

is

set

to

set

to

<REMOTE>.

The

default

value

is

0.

DeliveryQueue

The

DeliveryQueue

property

defines

the

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

integration

broker.

This

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

set

to

JMS.

The

default

value

is

<CONNECTORNAME>/DELIVERYQUEUE.

Appendix

A.

Standard

configuration

properties

for

connectors

489

DeliveryTransport

The

DeliveryTransport

property

specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

v

If

the

value

of

the

RepositoryDirectory

property

is

set

to

<REMOTE>,

the

value

of

the

DeliveryTransport

property

can

be

MQ,

IDL,

or

JMS,

and

the

default

is

IDL.

v

If

the

value

of

the

RepositoryDirectory

property

is

a

local

directory,

the

value

can

be

only

JMS.

The

connector

sends

service-call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

of

the

RepositoryDirectory

property

is

MQ

or

IDL.

The

default

value

is

JMS.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

prevents

writing

potentially

large

events

to

the

repository

database.

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector

polling

thread

picks

up

an

event,

places

it

in

the

connector

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector

polling

thread

to

pick

up

an

event,

go

across

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

The

JMS

transport

mechanism

enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName

are

listed

in

Connector

Configurator.

The

properties

jms.MessageBrokerName

and

jms.FactoryClassName

are

required

for

this

transport.

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

in

the

following

environment:

v

AIX

5.0

v

WebSphere

MQ

5.3.0.1

v

ICS

is

the

integration

broker

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

If

your

installation

uses

less

than

768MB

of

process

heap

size,

set

the

following

variable

and

property:

v

Set

the

LDR_CNTRL

environment

variable

in

the

CWSharedEnv.sh

script.

490

Connector

Development

Guide

for

Java

This

script

is

located

in

the

\bin

directory

below

the

product

directory

(<ProductDir>).

Using

a

text

editor,

add

the

following

line

as

the

first

line

in

the

CWSharedEnv.sh

script:

export

LDR_CNTRL=MAXDATA=0x30000000

This

line

restricts

heap

memory

usage

to

a

maximum

of

768

MB

(3

segments

*

256

MB).

If

the

process

memory

grows

larger

than

this

limit,

page

swapping

can

occur,

which

can

adversely

affect

the

performance

of

your

system.

v

Set

the

value

of

the

IPCCBaseAddress

property

to

11

or

12.

For

more

information

on

this

property,

see

the

System

Installation

Guide

for

UNIX.

DuplicateEventElimination

When

the

value

of

this

property

is

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

during

connector

development,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object

ObjectEventId

attribute

in

the

application-specific

code.

Note:

When

the

value

of

this

property

is

true,

the

MonitorQueue

property

must

be

enabled

to

provide

guaranteed

event

delivery.

The

default

value

is

false.

EnableOidForFlowMonitoring

When

the

value

of

this

property

is

true,

the

adapter

runtime

will

mark

the

incoming

ObjectEventID

as

a

foreign

key

for

flow

monitoring.

This

property

is

only

valid

if

the

BrokerType

property

is

set

to

ICS.

The

default

value

is

false.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message,

it

moves

the

message

(and

a

status

indicator

and

description

of

the

problem)

to

the

queue

specified

in

the

FaultQueue

property.

The

default

value

is

<CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The

jms.FactoryClassName

property

specifies

the

class

name

to

instantiate

for

a

JMS

provider.

This

property

must

be

set

if

the

value

of

the

DeliveryTransport

property

is

JMS.

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The

jms.ListenerConcurrency

property

specifies

the

number

of

concurrent

listeners

for

the

JMS

controller.

It

specifies

the

number

of

threads

that

fetch

and

process

messages

concurrently

within

a

controller.

This

property

is

valid

only

if

the

value

of

the

jms.OptimizedTransport

property

is

true.

The

default

value

is

1.

Appendix

A.

Standard

configuration

properties

for

connectors

491

jms.MessageBrokerName

The

jms.MessageBrokerName

specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

if

you

specify

JMS

as

the

delivery

transport

mechanism

(in

the

DeliveryTransport

property).

When

you

connect

to

a

remote

message

broker,

this

property

requires

the

following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName

is

the

name

of

the

queue

manager.

Channel

is

the

channel

used

by

the

client.

HostName

is

the

name

of

the

machine

where

the

queue

manager

is

to

reside.

PortNumberis

the

port

number

used

by

the

queue

manager

for

listening

For

example:

jms.MessageBrokerName

=

WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The

default

value

is

crossworlds.queue.manager.

Use

the

default

when

connecting

to

a

local

message

broker.

jms.NumConcurrentRequests

The

jms.NumConcurrentRequests

property

specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

are

blocked

and

must

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

The

jms.Password

property

specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default

value.

jms.TransportOptimized

The

jms.TransportOptimized

property

determines

if

the

WIP

(work

in

progress)

is

optimized.

You

must

have

a

WebSphere

MQ

provider

to

optimize

the

WIP.

For

optimized

WIP

to

operate,

the

messaging

provider

must

be

able

to:

1.

Read

a

message

without

taking

it

off

the

queue

2.

Delete

a

message

with

a

specific

ID

without

transferring

the

entire

message

to

the

receiver’s

memory

space

3.

Read

a

message

by

using

a

specific

ID

(needed

for

recovery

purposes)

4.

Track

the

point

at

which

events

that

have

not

been

read

appear.

The

JMS

APIs

cannot

be

used

for

optimized

WIP

because

they

do

not

meet

conditions

2

and

4

above,

but

the

MQ

Java

APIs

meet

all

four

conditions,

and

hence

are

required

for

optimized

WIP.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS

and

the

value

of

BrokerType

is

ICS.

The

default

value

is

false.

492

Connector

Development

Guide

for

Java

jms.UserName

the

jms.UserName

property

specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default

value.

JvmMaxHeapSize

The

JvmMaxHeapSize

property

specifies

the

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

valid

only

if

the

value

for

the

RepositoryDirectory

property

is

set

to

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

JvmMaxNativeStackSize

property

specifies

the

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

valid

only

if

the

value

for

the

RepositoryDirectory

property

is

set

to

<REMOTE>.

The

default

value

is

128k.

JvmMinHeapSize

The

JvmMinHeapSize

property

specifies

the

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

valid

only

if

the

value

for

the

RepositoryDirectory

property

is

set

to

<REMOTE>.

The

default

value

is

1m.

ListenerConcurrency

The

ListenerConcurrency

property

supports

multithreading

in

WebSphere

MQ

Listener

when

ICS

is

the

integration

broker.

It

enables

batch

writing

of

multiple

events

to

the

database,

thereby

improving

system

performance.

This

property

valid

only

with

connectors

that

use

MQ

transport.

The

value

of

the

DeliveryTransport

property

must

be

MQ.

The

default

value

is

1.

Locale

The

Locale

property

specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

cultural

conventions

such

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

Appendix

A.

Standard

configuration

properties

for

connectors

493

where:

ll

is

a

two-character

language

code

(in

lowercase

letters)

TT

is

a

two-letter

country

or

territory

code

(in

uppercase

letters)

codeset

is

the

name

of

the

associated

character

code

set

(may

be

optional).

By

default,

only

a

subset

of

supported

locales

are

listed.

To

add

other

supported

values

to

the

list,

you

modify

the

\Data\Std\stdConnProps.xml

file

in

the

<ProductDir>\bin

directory.

For

more

information,

refer

to

the

Connector

Configurator

appendix

in

this

guide.

If

the

connector

has

not

been

internationalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

refer

to

the

user

guide

for

that

adapter.

The

default

value

is

en_US.

LogAtInterchangeEnd

The

LogAtInterchangeEnd

property

specifies

whether

to

log

errors

to

the

log

destination

of

the

integration

broker.

Logging

to

the

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

recipient

specified

as

the

value

of

MESSAGE_RECIPIENT

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

the

application,

if

the

value

of

LogAtInterChangeEnd

is

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

This

property

is

valid

only

if

the

value

of

the

RespositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

BrokerType

is

ICS).

The

default

value

is

false.

MaxEventCapacity

The

MaxEventCapacity

property

specifies

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

the

flow

control

feature.

This

property

is

valid

only

if

the

value

of

the

RespositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

BrokerType

is

ICS).

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

MessageFileName

property

specifies

the

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages

in

the

product

directory.

Specify

the

message

file

name

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

494

Connector

Development

Guide

for

Java

Note:

To

determine

whether

a

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

The

default

value

is

InterchangeSystem.txt.

MonitorQueue

The

MonitorQueue

property

specifies

the

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS

and

the

value

of

the

DuplicateEventElimination

is

true.

The

default

value

is

<CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the

OADAutoRestartAgent

property

specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

WebSphere

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

true

to

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

WebSphere

MQ-triggered

OAD

feature.

see

the

Installation

Guide

for

Windows

or

for

UNIX.

This

property

is

valid

only

if

the

value

of

the

RespositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

BrokerType

is

ICS).

The

default

value

is

false.

OADMaxNumRetry

The

OADMaxNumRetry

property

specifies

the

maximum

number

of

times

that

the

WebSphere

MQ-triggered

Object

Activation

Daemon

(OAD)

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

This

property

is

valid

only

if

the

value

of

the

RespositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

BrokerType

is

ICS).

The

default

value

is

1000.

OADRetryTimeInterval

The

OADRetryTimeInterval

property

specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

WebSphere

MQ-triggered

Object

Activation

Daemon

(OAD).

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

This

property

is

valid

only

if

the

value

of

the

RespositoryDirectory

property

is

set

to

<REMOTE>

(the

value

of

BrokerType

is

ICS).

The

default

value

is

10.

Appendix

A.

Standard

configuration

properties

for

connectors

495

PollEndTime

The

PollEndTime

property

specifies

the

time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

is

0

through

23

hours,

and

MM

represents

0

through

59

minutes.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM

without

a

value,

and

it

must

be

changed.

If

the

adapter

runtime

detects:

v

PollStartTime

set

and

PollEndTime

not

set,

or

v

PollEndTime

set

and

PollStartTime

not

set

it

will

poll

using

the

value

configured

for

the

PollFrequency

property.

PollFrequency

The

PollFrequency

property

specifies

the

amount

of

time

(in

milliseconds)

between

the

end

of

one

polling

action

and

the

start

of

the

next

polling

action.

This

is

not

the

interval

between

polling

actions.

Rather,

the

logic

is

as

follows:

v

Poll

to

obtain

the

number

of

objects

specified

by

the

value

of

the

PollQuantity

property.

v

Process

these

objects.

For

some

connectors,

this

may

be

partly

done

on

separate

threads,

which

execute

asynchronously

to

the

next

polling

action.

v

Delay

for

the

interval

specified

by

the

PollFrequency

property.

v

Repeat

the

cycle.

The

following

values

are

valid

for

this

property:

v

The

number

of

milliseconds

between

polling

actions

(a

positive

integer).

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector

Command

Prompt

window.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

Where

they

exist,

these

restrictions

are

documented

in

the

chapter

on

installing

and

configuring

the

adapter.

PollQuantity

The

PollQuantity

property

designates

the

number

of

items

from

the

application

that

the

connector

polls

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

overrides

the

standard

property

value.

This

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS,

and

the

ContainerManagedEvents

property

has

a

value.

An

e-mail

message

is

also

considered

an

event.

The

connector

actions

are

as

follows

when

it

is

polled

for

e-mail.

v

When

it

is

polled

once,

the

connector

detects

the

body

of

the

message,

which

it

reads

as

an

attachment.

Since

no

data

handler

was

specified

for

this

mime

type,

it

will

then

ignore

the

message.

496

Connector

Development

Guide

for

Java

v

The

connector

processes

the

first

BO

attachment.

The

data

handler

is

available

for

this

MIME

type,

so

it

sends

the

business

object

to

Visual

Test

Connector.

v

When

it

is

polled

for

the

second

time,

the

connector

processes

the

second

BO

attachment.

The

data

handler

is

available

for

this

MIME

type,

so

it

sends

the

business

object

to

Visual

Test

Connector.

v

Once

it

is

accepted,

the

third

BO

attachment

should

be

transmitted.

PollStartTime

The

PollStartTime

property

specifies

the

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

is

0

through

23

hours,

and

MM

represents

0

through

59

minutes.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM

without

a

value,

and

it

must

be

changed.

If

the

adapter

runtime

detects:

v

PollStartTime

set

and

PollEndTime

not

set,

or

v

PollEndTime

set

and

PollStartTime

not

set

it

will

poll

using

the

value

configured

for

the

PollFrequency

property.

RepositoryDirectory

The

RepositoryDirectory

property

is

the

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

metadata

for

business

object

definitions.

If

the

integration

broker

is

ICS,

this

value

must

be

set

to

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

repository.

When

the

integration

broker

is

a

WebSphere

message

broker

or

WAS,

this

value

is

set

to

<ProductDir>\repository

by

default.

However,

it

may

be

set

to

any

valid

directory

name.

RequestQueue

The

RequestQueue

property

specifies

the

queue

that

is

used

by

the

integration

broker

to

send

business

objects

to

the

connector.

This

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS.

The

default

value

is

<CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The

ResponseQueue

property

specifies

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

When

the

integration

broker

is

ICS,

the

server

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

This

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS.

The

default

value

is

<CONNECTORNAME>/RESPONSEQUEUE.

Appendix

A.

Standard

configuration

properties

for

connectors

497

RestartRetryCount

The

RestartRetryCount

property

specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

this

property

is

used

for

a

connector

that

is

connected

in

parallel,

it

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

client

connector

application-specific

component.

The

default

value

is

3.

RestartRetryInterval

The

RestartRetryInterval

property

specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

this

property

is

used

for

a

connector

that

is

linked

in

parallel,

it

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

client

connector

application-specific

component.

Possible

values

for

the

property

range

from

1

through

2147483647.

The

default

value

is

1.

ResultsSetEnabled

The

ResultsSetEnabled

property

enables

or

disables

results

set

support

when

Information

Integrator

is

active.

This

property

can

be

used

only

if

the

adapter

supports

DB2

Information

Integrator.

This

property

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS,

and

the

value

of

BrokerType

is

WMQI.

The

default

value

is

false.

ResultsSetSize

The

ResultsSetSize

property

defines

the

maximum

number

of

business

objects

that

can

be

returned

to

Information

Integrator.

This

property

can

be

used

only

if

the

adapter

supports

DB2

Information

Integrator.

This

property

is

valid

only

if

the

value

of

the

ResultsSetEnabled

property

is

true.

The

default

value

is

0.

This

means

that

the

size

of

the

results

set

is

unlimited.

RHF2MessageDomain

The

RHF2MessageDomain

property

allows

you

to

configure

the

value

of

the

field

domain

name

in

the

JMS

header.

When

data

is

sent

to

a

WebSphere

message

broker

over

JMS

transport,

the

adapter

framework

writes

JMS

header

information,

with

a

domain

name

and

a

fixed

value

of

mrm.

A

configurable

domain

name

lets

you

track

how

the

WebSphere

message

broker

processes

the

message

data.

This

is

an

example

header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This

property

is

valid

only

if

the

value

of

BrokerType

is

WMQI

or

WAS.

Also,

it

is

valid

only

if

the

value

of

the

DeliveryTransport

property

is

JMS,

and

the

value

of

the

WireFormat

property

is

CwXML.

498

Connector

Development

Guide

for

Java

Possible

values

are

mrm

and

xml.

The

default

value

is

mrm.

SourceQueue

The

SourceQueue

property

designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

488.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS,

and

a

value

for

ContainerManagedEvents

is

specified.

The

default

value

is

<CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The

SynchronousRequestQueue

property

delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

synchronous

request

queue

and

waits

for

a

response

from

the

broker

on

the

synchronous

response

queue.

The

response

message

sent

to

the

connector

has

a

correlation

ID

that

matches

the

ID

of

the

original

message.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

The

default

value

is

<CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The

SynchronousRequestTimeout

property

specifies

the

time

in

milliseconds

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

the

connector

moves

the

original

synchronous

request

message

(and

error

message)

to

the

fault

queue.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

The

default

value

is

0.

SynchronousResponseQueue

The

SynchronousResponseQueue

property

delivers

response

messages

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

This

property

is

valid

only

if

the

value

of

DeliveryTransport

is

JMS.

The

default

is

<CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The

TivoliMonitorTransactionPerformance

property

specifies

whether

IBM

Tivoli

Monitoring

for

Transaction

Performance

(ITMTP)

is

invoked

at

run

time.

The

default

value

is

false.

WireFormat

The

WireFormat

property

specifies

the

message

format

on

the

transport:

Appendix

A.

Standard

configuration

properties

for

connectors

499

v

If

the

value

of

the

RepositoryDirectory

property

is

a

local

directory,

the

value

is

CwXML.

v

If

the

value

of

the

RepositoryDirectory

property

is

a

remote

directory,

the

value

is

CwBO.

WsifSynchronousRequestTimeout

The

WsifSynchronousRequestTimeout

property

specifies

the

time

in

milliseconds

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

the

connector

moves

the

original

synchronous

request

message

(and

an

error

message)

to

the

fault

queue.

This

property

is

valid

only

if

the

value

of

BrokerType

is

WAS.

The

default

value

is

0.

XMLNameSpaceFormat

The

XMLNameSpaceFormat

property

specifies

short

or

long

namespaces

in

the

XML

format

of

business

object

definitions.

This

property

is

valid

only

if

the

value

of

BrokerType

is

set

to

WMQI

or

WAS.

The

default

value

is

short.

500

Connector

Development

Guide

for

Java

Appendix

B.

Connector

Configurator

This

appendix

describes

how

to

use

Connector

Configurator

to

set

configuration

property

values

for

your

adapter.

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

configuration

file

v

Set

properties

in

a

configuration

file

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator”

on

page

501

v

“Starting

Connector

Configurator”

on

page

502

v

“Creating

a

connector-specific

property

template”

on

page

503

v

“Creating

a

new

configuration

file”

on

page

506

v

“Setting

the

configuration

file

properties”

on

page

509

v

“Using

Connector

Configurator

in

a

globalized

environment”

on

page

517

Overview

of

Connector

Configurator

Connector

Configurator

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

these

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI)

v

WebSphere

Application

Server

(WAS)

If

your

adapter

supports

DB2

Information

Integrator,

use

the

WMQI

options

and

the

DB2

II

standard

properties

(see

the

Notes

column

in

the

Standard

Properties

appendix.)

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

with

ICS,

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

The

mode

in

which

you

run

Connector

Configurator,

and

the

configuration

file

type

you

use,

may

differ

according

to

which

integration

broker

you

are

running.

For

example,

if

WMQI

is

your

broker,

you

run

Connector

Configurator

directly,

and

not

from

within

System

Manager

(see

“Running

Configurator

in

stand-alone

mode”

on

page

502).

©

Copyright

IBM

Corp.

2000,

2004

501

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

503

to

set

up

a

new

one.

Running

connectors

on

UNIX

Connector

Configurator

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Some

properties

in

the

Connector

Configurator

use

directory

paths,

which

default

to

the

Windows

convention

for

directory

paths.

If

you

use

the

configuration

file

in

a

UNIX

environment,

revise

the

directory

paths

to

match

the

UNIX

convention

for

these

paths.

Select

the

target

operating

system

in

the

toolbar

drop-list

so

that

the

correct

operating

system

rules

are

used

for

extended

validation.

Starting

Connector

Configurator

You

can

start

and

run

Connector

Configurator

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

in

stand-alone

mode

You

can

run

Connector

Configurator

without

running

System

Manager

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

Business

Integration

Adapters>IBM

WebSphere

Business

Integration

Toolset>Connector

Configurator.

v

Select

File>New>Connector

Configuration.

v

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

You

may

choose

to

run

Connector

Configurator

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

508.)

502

Connector

Development

Guide

for

Java

Running

Configurator

from

System

Manager

You

can

run

Connector

Configurator

from

System

Manager.

To

run

Connector

Configurator:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator.

The

Connector

Configurator

window

opens

and

displays

a

New

Connector

dialog

box.

4.

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

To

edit

an

existing

configuration

file:

v

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

opens

and

displays

the

configuration

file

with

the

integration

broker

type

and

file

name

at

the

top.

v

From

Connector

Configurator,

select

File>Open.

Select

the

name

of

the

connector

configuration

file

from

a

project

or

from

the

directory

in

which

it

is

stored.

v

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

connector

definition

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

503.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

You

can

find

existing

templates

in

your

\WebSphereAdapters\bin\Data\App

directory.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template

in

Connector

Configurator:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears.

v

Enter

a

name

for

the

new

template

in

the

Name

field

below

Input

a

New

Template

Name.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

Appendix

B.

Connector

Configurator

503

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

appears

in

the

Template

Preview

display.
3.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

v

If

you

are

planning

to

modify

an

existing

template,

select

the

name

of

the

template

from

the

list

in

the

Template

Name

table

below

Select

the

Existing

Template

to

Modify:

Find

Template.

v

This

table

displays

the

names

of

all

currently

available

templates.

You

can

also

search

for

a

template.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Property

Subtype

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

The

Property

Subtype

can

be

selected

when

Property

Type

is

a

String.

It

is

an

optional

value

which

provides

syntax

checking

when

you

save

the

configuration

file.

The

default

is

a

blank

space,

and

means

that

the

property

has

not

been

subtyped.

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

enter

your

values.

To

create

a

new

property

value:

1.

Right-click

on

the

square

to

the

left

of

the

Value

column

heading.

2.

From

the

pop-up

menu,

select

Add

to

display

the

Property

Value

dialog

box.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

a

range.

3.

Enter

the

new

property

value

and

click

OK.

The

value

appears

in

the

Value

panel

on

the

right.

504

Connector

Development

Guide

for

Java

The

Value

panel

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependencies

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the

\bin

directory

where

you

have

installed

Connector

Configurator.

Setting

pathnames

Some

general

rules

for

setting

pathnames

are:

v

The

maximum

length

of

a

filename

in

Windows

and

UNIX

is

255

characters.

v

In

Windows,

the

absolute

pathname

must

follow

the

format

[Drive:][Directory]\filename:

for

example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In

UNIX

the

first

character

should

be

/.

Appendix

B.

Connector

Configurator

505

v

Queue

names

may

not

have

leading

or

embedded

spaces.

Creating

a

new

configuration

file

When

you

create

a

new

configuration

file,

you

must

name

it

and

select

an

integration

broker.

You

also

select

an

operating

system

for

extended

validation

on

the

file.

The

toolbar

has

a

droplist

called

Target

System

that

allows

you

to

select

the

target

operating

system

for

extended

validation

of

the

properties.

The

available

options

are:

Windows,

UNIX,

Other

(if

not

Windows

or

UNIX),

and

None-no

extended

validation

(switches

off

extended

validation).

The

default

on

startup

is

Windows.

To

start

Connector

Configurator:

v

In

the

System

Manager

window,

select

Connector

Configurator

from

the

Tools

menu.

Connector

Configurator

opens.

v

In

stand-alone

mode,

launch

Connector

Configurator.

To

set

the

operating

system

for

extended

validation

of

the

configuration

file:

v

Pull

down

the

Target

System:

droplist

on

the

menu

bar.

v

Select

the

operating

system

you

are

running

on.

Then

select

File>New>Connector

Configuration.

In

the

New

Connector

window,

enter

the

name

of

the

new

connector.

You

also

need

to

select

an

integration

broker.

The

broker

you

select

determines

the

properties

that

will

appear

in

the

configuration

file.

To

select

a

broker:

v

In

the

Integration

Broker

field,

select

ICS,

WebSphere

Message

Brokers

or

WAS

connectivity.

v

Complete

the

remaining

fields

in

the

New

Connector

window,

as

described

later

in

this

chapter.

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Set

the

operating

system

for

extended

validation

of

the

configuration

file

using

the

Target

System:

droplist

on

the

menu

bar

(see

“Creating

a

new

configuration

file”

above).

2.

Click

File>New>Connector

Configuration.

3.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

Click

ICS

or

WebSphere

Message

Brokers

or

WAS.

v

Select

Connector-Specific

Property

Template

506

Connector

Development

Guide

for

Java

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
4.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

name.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

5.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

6.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

window,

as

described

later

in

this

chapter.

Using

an

existing

file

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

ICS

repository

file.

Definitions

used

in

a

previous

ICS

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

ICS

Repository

(*.in,

*.out)

Appendix

B.

Connector

Configurator

507

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector

in

an

ICS

environment.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator.

3.

Click

File>Open>From

Project.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

The

title

of

the

configuration

screen

displays

the

integration

broker

and

connector

name

as

specified

in

the

file.

Make

sure

you

have

the

correct

broker.

If

not,

change

the

broker

value

before

you

configure

the

connector.

To

do

so:

1.

Under

the

Standard

Properties

tab,

select

the

value

field

for

the

BrokerType

property.

In

the

drop-down

menu,

select

the

value

ICS,

WMQI,

or

WAS.

2.

The

Standard

Properties

tab

will

display

the

connector

properties

associated

with

the

selected

broker.

The

table

shows

Property

name,

Value,

Type,

Subtype

(if

the

Type

is

a

string),

Description,

and

Update

Method.

3.

You

can

save

the

file

now

or

complete

the

remaining

configuration

fields,

as

described

in

“Specifying

supported

business

object

definitions”

on

page

511..

4.

When

you

have

finished

your

configuration,

click

File>Save>To

Project

or

File>Save>To

File.

If

you

are

saving

to

file,

select

*.cfg

as

the

extension,

select

the

correct

location

for

the

file

and

click

Save.

If

multiple

connector

configurations

are

open,

click

Save

All

to

File

to

save

all

of

the

configurations

to

file,

or

click

Save

All

to

Project

to

save

all

connector

configurations

to

a

System

Manager

project.

Before

you

created

the

configuration

file,

you

used

the

Target

System

droplist

that

allows

you

to

select

the

target

operating

system

for

extended

validation

of

the

properties.

Before

it

saves

the

file,

Connector

Configurator

checks

that

values

have

been

set

for

all

required

standard

properties.

If

a

required

standard

property

is

missing

a

value,

Connector

Configurator

displays

a

message

that

the

validation

failed.

You

must

supply

a

value

for

the

property

in

order

to

save

the

configuration

file.

If

you

have

elected

to

use

the

extended

validation

feature

by

selecting

a

value

of

Windows,

UNIX

or

Other

from

the

Target

System

droplist,

the

system

will

validate

the

property

subtype

s

well

as

the

type,

and

it

displays

a

warning

message

if

the

validation

fails.

508

Connector

Development

Guide

for

Java

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Connector

Configurator

requires

values

for

properties

in

these

categories

for

connectors

running

on

all

brokers:

v

Standard

Properties

v

Connector-specific

Properties

v

Supported

Business

Objects

v

Trace/Log

File

values

v

Data

Handler

(applicable

for

connectors

that

use

JMS

messaging

with

guaranteed

event

delivery)

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

connectors

running

on

ICS,

values

for

these

properties

are

also

required:

v

Associated

Maps

v

Resources

v

Messaging

(where

applicable)

v

Security

Important:

Connector

Configurator

accepts

property

values

in

either

English

or

non-English

character

sets.

However,

the

names

of

both

standard

and

connector-specific

properties,

and

the

names

of

supported

business

objects,

must

use

the

English

character

set

only.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

Appendix

B.

Connector

Configurator

509

v

The

Update

Method

field

is

displayed

for

each

property.

It

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

You

cannot

configure

this

setting.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

Note:

If

the

property

has

a

Type

of

String,

it

may

have

a

subtype

value

in

the

Subtype

column.

This

subtype

is

used

for

extended

validation

of

the

property.

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

To

get

more

information

on

a

particular

standard

property,

left-click

the

entry

in

the

Description

column

for

that

property

in

the

Standard

Properties

tabbed

sheet.

If

you

have

Extended

Help

installed,

an

arrow

button

will

appear

on

the

right.

When

you

click

on

the

button,

a

Help

window

will

open

and

display

details

of

the

standard

property.

Note:

If

the

hot

button

does

not

appear,

no

Extended

Help

was

found

for

that

property.

If

installed,

the

Extended

Help

files

are

located

in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting

connector-specific

configuration

properties

For

connector-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

Note:

If

the

property

has

a

Type

of

String,

you

can

select

a

subtype

from

the

Subtype

droplist.

This

subtype

is

used

for

extended

validation

of

the

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

510

Connector

Development

Guide

for

Java

4.

To

get

more

information

on

a

particular

property,

left-click

the

entry

in

the

Description

column

for

that

property.

If

you

have

Extended

Help

installed,

a

hot

button

will

appear.

When

you

click

on

the

hot

button,

a

Help

window

will

open

and

display

details

of

the

standard

property.

Note:

If

the

hot

button

does

not

appear,

no

Extended

Help

was

found

for

that

property.

5.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties”

on

page

510.

If

the

Extended

Help

files

are

installed

and

the

AdapterHelpName

property

is

blank,

Connector

Configurator

will

point

to

the

adapter-specific

Extended

Help

files

located

in

<ProductDir>\bin\Data\App\Help\<RegionalSetting>\.

Otherwise,

Connector

Configurator

will

point

to

the

adapter-specific

Extended

Help

files

located

in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\.

See

the

AdapterHelpName

property

described

in

the

Standard

Properties

appendix.

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Connector-specific

Properties

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

Properties

appendix,

under

“Configuration

property

values

overview”

on

page

478“Configuration

property

values

overview”

on

page

3.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

Appendix

B.

Connector

Configurator

511

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

If

ICS

is

your

broker

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name:

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

an

ICL

(Integration

Component

Library)

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level:

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

If

a

WebSphere

Message

Broker

is

your

broker

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

512

Connector

Development

Guide

for

Java

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

object

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

the

list.

The

Message

Set

ID

is

an

optional

field

for

WebSphere

Business

Integration

Message

Broker

5.0,

and

need

not

be

unique

if

supplied.

However,

for

WebSphere

MQ

Integrator

and

Integrator

Broker

2.1,

you

must

supply

a

unique

ID.

If

WAS

is

your

broker

When

WebSphere

Application

Server

is

selected

as

your

broker

type,

Connector

Configurator

does

not

require

message

set

IDs.

The

Supported

Business

Objects

tab

shows

a

Business

Object

Name

column

only

for

supported

business

objects.

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

objects

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

this

list.

Associated

maps

(ICS)

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

window.

v

Associated

Maps

Appendix

B.

Connector

Configurator

513

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

Binding

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

ICS

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

4.

Deploy

the

project

to

ICS.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

(ICS)

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

Messaging

(ICS)

The

Messaging

tab

enables

you

to

configure

messaging

properties.

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport

standard

property

and

ICS

as

the

broker

type.

These

properties

affect

how

your

connector

will

use

queues.

Validating

messaging

queues

Before

you

can

validate

a

messaging

queue,

you

must:

v

Make

sure

that

WebSphere

MQ

Series

is

installed.

v

Create

a

messaging

queue

with

channel

and

port

on

the

host

machine.

v

Set

up

a

connection

to

the

host

machine.

To

validate

the

queue,

use

the

Validate

button

to

the

right

of

the

Messaging

Type

and

Host

Name

fields

on

the

Messaging

tab.

Security

(ICS)

You

can

use

the

Security

tab

in

Connector

Configurator

to

set

various

privacy

levels

for

a

message.

You

can

only

use

this

feature

when

the

DeliveryTransport

property

is

set

to

JMS.

514

Connector

Development

Guide

for

Java

By

default,

Privacy

is

turned

off.

Check

the

Privacy

box

to

enable

it.

The

Keystore

Target

System

Absolute

Pathname

is:

v

For

Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v

For

UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This

path

and

file

should

be

on

the

system

where

you

plan

to

start

the

connector,

that

is,

the

target

system.

You

can

use

the

Browse

button

at

the

right

only

if

the

target

system

is

the

one

currently

running.

It

is

greyed

out

unless

Privacy

is

enabled

and

the

Target

System

in

the

menu

bar

is

set

to

Windows.

The

Message

Privacy

Level

may

be

set

as

follows

for

the

three

messages

categories

(All

Messages,

All

Administrative

Messages,

and

All

Business

Object

Messages):

v

“”

is

the

default;

used

when

no

privacy

levels

for

a

message

category

have

been

set.

v

none

Not

the

same

as

the

default:

use

this

to

deliberately

set

a

privacy

level

of

none

for

a

message

category.

v

integrity

v

privacy

v

integrity_plus_privacy

The

Key

Maintenance

feature

lets

you

generate,

import

and

export

public

keys

for

the

server

and

adapter.

v

When

you

select

Generate

Keys,

the

Generate

Keys

dialog

box

appears

with

the

defaults

for

the

keytool

that

will

generate

the

keys.

v

The

keystore

value

defaults

to

the

value

you

entered

in

Keystore

Target

System

Absolute

Pathname

on

the

Security

tab.

v

When

you

select

OK,

the

entries

are

validated,

the

key

certificate

is

generated

and

the

output

is

sent

to

the

Connector

Configurator

log

window.

Before

you

can

import

a

certificate

into

the

adapter

keystore,

you

must

export

it

from

the

server

keystore.

When

you

select

Export

Adapter

Public

Key,

the

Export

Adapter

Public

Key

dialog

box

appears.

v

The

export

certificate

defaults

to

the

same

value

as

the

keystore,

except

that

the

file

extension

is

<filename>.cer.

When

you

select

Import

Server

Public

Key,

the

Import

Server

Public

Key

dialog

box

appears.

v

The

import

certificate

defaults

to

<ProductDir>\bin\ics.cer

(if

the

file

exists

on

the

system).

v

The

import

Certificate

Association

should

be

the

server

name.

If

a

server

is

registered,

you

can

select

it

from

the

droplist.

The

Adapter

Access

Control

feature

is

enabled

only

when

the

value

of

DeliveryTransport

is

IDL.

By

default,

the

adapter

logs

in

with

the

guest

identity.

If

the

Use

guest

identity

box

is

not

checked,

the

Adapter

Identity

and

Adapter

Password

fields

are

enabled.

Appendix

B.

Connector

Configurator

515

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Not

all

adapters

make

use

of

data

handlers.

See

the

descriptions

under

ContainerManagedEvents

in

Appendix

A,

Standard

Properties,

for

values

to

use

for

these

properties.

For

additional

details,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

Saving

your

configuration

file

When

you

have

finished

configuring

your

connector,

save

the

connector

configuration

file.

Connector

Configurator

saves

the

file

in

the

broker

mode

that

you

selected

during

configuration.

The

title

bar

of

Connector

Configurator

always

displays

the

broker

mode

(ICS,

WMQI

or

WAS)

that

it

is

currently

using.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

By

default,

the

file

is

saved

to

\WebSphereAdapters\bin\Data\App.

v

You

can

also

save

it

to

a

WebSphere

Application

Server

project

if

you

have

set

one

up.

516

Connector

Development

Guide

for

Java

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

following

implementation

guides:

v

For

ICS:

Implementation

Guide

for

WebSphere

InterChange

Server

v

For

WebSphere

Message

Brokers:

Implementing

Adapters

with

WebSphere

Message

Brokers

v

For

WAS:

Implementing

Adapters

with

WebSphere

Application

Server

Changing

a

configuration

file

You

can

change

the

integration

broker

setting

for

an

existing

configuration

file.

This

enables

you

to

use

the

file

as

a

template

for

creating

a

new

configuration

file,

which

can

be

used

with

a

different

broker.

Note:

You

will

need

to

change

other

configuration

properties

as

well

as

the

broker

mode

property

if

you

switch

integration

brokers.

To

change

your

broker

selection

within

an

existing

configuration

file

(optional):

v

Open

the

existing

configuration

file

in

Connector

Configurator.

v

Select

the

Standard

Properties

tab.

v

In

the

BrokerType

field

of

the

Standard

Properties

tab,

select

the

value

that

is

appropriate

for

your

broker.

When

you

change

the

current

value,

the

available

tabs

and

field

selections

in

the

properties

window

will

immediately

change,

to

show

only

those

tabs

and

fields

that

pertain

to

the

new

broker

you

have

selected.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

in

a

globalized

environment

Connector

Configurator

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

Appendix

B.

Connector

Configurator

517

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

518

Connector

Development

Guide

for

Java

Appendix

C.

Connector

Script

Generator

The

Connector

Script

Generator

utility

creates

or

modifies

the

connector

script

for

connectors

running

on

the

UNIX

platform.

Use

this

tool

to

do

either

of

the

following:

v

To

generate

a

new

connector

startup

script

for

a

connector

you

have

added

without

using

the

WebSphere

Business

Integration

Adapters

installer.

v

To

modify

an

existing

startup

script

for

a

connector

to

include

the

correct

configuration

file

path.

To

run

the

Connector

Script

Generator,

do

the

following:

1.

Navigate

to

the

ProductDir/bin

directory.

2.

Enter

the

command

./ConnConfig.sh.

The

Connector

Script

Generator

screen

appears

as

shown

in

Figure

78.

3.

From

the

Select

Connector

Name

list,

select

the

connector

for

which

the

startup

script

is

to

be

generated.

4.

For

Agent

Config

File,

specify

the

connector’s

configuration

file

by

entering

its

full-path

name

or

by

clicking

Browse

to

select

a

file.

5.

To

generate

or

update

the

connector

script,

click

Install.

The

connector_manager_ConnectorName

file

(where

ConnectorName

is

the

name

of

the

connector

you

are

configuring)

is

created

in

the

ProductDir/bin

directory.

6.

Click

Close.

Figure

78.

Connector

Script

Generator.

©

Copyright

IBM

Corp.

2000,

2004

519

520

Connector

Development

Guide

for

Java

Appendix

D.

Connector

feature

checklist

This

appendix

describes

the

connector

feature

checklist.

Guidelines

for

using

the

connector

feature

checklist

The

connector

feature

checklist

briefly

describes

each

of

the

standard

features

for

connectors.

The

feature

list

establishes

a

baseline

for

the

behavior

of

a

connector.

Therefore,

as

you

design

a

new

connector,

you

can

use

the

list

as

a

quick

reference

to

standard

connector

features.

During

the

implementation

phase

for

your

connector,

you

can

use

the

feature

list

to

create

a

specification

describing

the

functionality

of

your

connector.

To

use

the

list:

v

Check

Full

for

each

feature

that

your

connector

supports.

v

Check

Partial

for

each

feature

that

your

connector

partially

supports

and

include

notes

describing

the

implementation.

v

Check

No

for

each

feature

that

the

connector

does

not

support.

v

Check

N/A

for

each

feature

that

is

not

relevant

for

the

connector.

For

example,

if

your

connector

does

not

implement

event

notification,

check

N/A

for

all

event

notification

features.

If

a

feature

is

not

supported

according

to

the

standard

behavior,

check

Partial

and

provide

additional

information.

Standard

behavior

for

request

processing

Table

162

lists

the

standard

features

for

connector

handling

of

business

object

requests.

The

table

includes

a

brief

description

of

each

feature

and

a

page

number

of

the

section

in

the

book

containing

more

information

on

the

feature.

Table

162.

Standard

features

for

request

processing

Category

and

name

Description

Supported?

Business

Object

and

Attribute

Naming

Business

object

names

Business

object

names

should

have

no

semantic

value

to

the

connector.

Two

business

objects

with

the

same

structure,

data,

and

application-specific

information

but

with

different

names

should

process

identically

in

the

connector.

__

Full

__

Partial

__

No

__

N/A

Attribute

names

Attribute

names

in

a

business

object

should

have

no

semantic

value

to

the

connector.

Values

such

as

application

table

name

or

column

name

should

be

stored

in

the

application-specific

information

field

of

the

attribute

and

not

in

the

attribute

name.

__

Full

__

Partial

__

No

__

N/A

Create

Create

Verb

The

connector

creates

the

object

in

the

destination

application.

The

application

object

includes

all

values

in

the

business

object,

including

child

objects.

See

“Handling

the

Create

verb”

on

page

86.

__

Full

__

Partial

__

No

__

N/A

Delete

Delete

Verb

The

connector

supports

the

Delete

verb,

and

when

processing

this

verb,

it

does

a

true

physical

delete,

not

a

logical

delete.

See

“Handling

the

Delete

verb”

on

page

103.

__

Full

__

Partial

__

No

__

N/A

©

Copyright

IBM

Corp.

2000,

2004

521

Table

162.

Standard

features

for

request

processing

(continued)

Category

and

name

Description

Supported?

Logical

delete

The

connector

supports

logical

deletes

operations

via

the

Update

verb

only.

The

Delete

verb

is

used

only

for

physical

deletes.

See

“Implications

of

business

objects

representing

logical

Delete

events”

on

page

100.

__

Full

__

Partial

__

No

__

N/A

Exist

Exist

Verb

The

connector

checks

for

the

existence

of

an

entity

in

the

application

database.

It

returns

SUCCEED

if

the

object

passed

in

exists

in

the

application

database,

and

FAIL

if

the

object

does

not

exist

in

the

application

database.

See

“Handling

the

Exists

verb”

on

page

104.

__

Full

__

Partial

__

No

__

N/A

Retrieve

Retrieve

Verb

The

entire

hierarchical

image

(including

all

child

business

objects)

is

retrieved

from

application

when

the

Retrieve

verb

is

processed.

The

retrieve

is

based

only

on

the

key

values

of

the

business

object.

See

“Handling

the

Retrieve

verb”

on

page

89.

__

Full

__

Partial

__

No

__

N/A

Ignore

missing

child

object

If

IgnoreMissingChildObject

is

set

to

true

in

the

business

object

level

application-specific

information,

the

connector

returns

SUCCEED

even

if

not

all

the

children

specified

in

the

business

object

are

found

in

the

application.

See

“Retrieving

child

objects”

on

page

91.

__

Full

__

Partial

__

No

__

N/A

RetrieveByContent

RetrieveBy

Content

Verb

The

entire

hierarchical

image

(including

all

child

objects),

based

solely

on

a

subset

of

non-key

values,

is

retrieved.

See

“Handling

the

RetrieveByContent

verb”

on

page

94.

__

Full

__

Partial

__

No

__

N/A

Multiple

results

If

more

than

one

object

is

retrieved

from

the

application,

RetrieveByContent

should

return

the

first

object

and

use

the

return

code

MULTIPLE_HITS.

See

“Handling

the

RetrieveByContent

verb”

on

page

94.

__

Full

__

Partial

__

No

__

N/A

Ignore

missing

child

object

If

IgnoreMissingChildObject

is

set

to

true

in

the

business

object

level

application-specific

information,

the

connector

returns

SUCCEED

even

if

not

all

the

children

specified

in

the

business

object

are

found

in

the

application.

__

Full

__

Partial

__

No

__

N/A

Update

After-image

support

The

connector

performs

all

the

steps

necessary

to

make

the

object

in

the

destination

application

exactly

match

the

business

object

received

in

the

doVerbFor()call.

See

“Handling

the

Update

verb”

on

page

96.

__

Full

__

Partial

__

No

__

N/A

Delta

support

Connector

processes

exactly

the

objects

and

verbs

that

are

received

in

the

source

business

object.

The

destination

application

object

is

updated

only

by

processing

the

contents

of

source

business

object,

not

by

making

the

application

representation

match

the

source

business

object.

[Not

currently

an

IBM

standard.]

__

Full

__

Partial

__

No

__

N/A

KeepRelations

When

KeepRelations

is

specified,

child

relations

are

not

destroyed

in

the

target

application.

Otherwise,

all

the

child

relations

are

destroyed

first,

then

the

child

objects

sent

in

from

InterChange

Server

are

created

and

the

relations

restored.

“Destroyed”

means

a

logical

or

physical

delete

of

the

relation

to

the

child,

or,

in

some

cases,

deletion

of

the

child

itself,

depending

on

the

functionality

of

the

connector

and

application.

KeepRelations

is

set

as

application-specific

information

on

the

child

array

in

the

parent

object

(not

as

text

on

the

child

itself).

The

syntax

should

be

keeprelations=true.

__

Full

__

Partial

__

No

__

N/A

Verb

Support

522

Connector

Development

Guide

for

Java

Table

162.

Standard

features

for

request

processing

(continued)

Category

and

name

Description

Supported?

Subverb

support

The

connector

supports

processing

of

verbs

on

child

objects

independent

of

the

verb

on

the

parent

object.

When

a

verb

is

set

in

a

child

business

object,

the

connector

performs

the

operation

that

the

child

verb

indicates,

regardless

of

the

verb

on

the

top-level

business

object.

If

a

verb

in

a

child

business

object

request

is

not

set,

the

connector

can

either

leave

the

child

verb

as

NULL,

set

the

child

verb

to

the

verb

in

the

top-level

business

object,

or

set

the

value

of

the

verb

to

the

operation

that

the

connector

needs

to

perform.

See

“Verb

stability”

on

page

84.

__

Full

__

Partial

__

No

__

N/A

Verb

Stability

Verbs

in

a

business

object

should

remain

stable

throughout

the

request

and

response

cycle.

When

a

connector

receives

an

business

object

request,

the

hierarchical

object

returned

to

InterChange

Server

should

have

the

same

verb(s)

as

the

original

request,

with

the

exception

of

verbs

that

are

set

on

child

business

objects

that

were

null

in

the

original

request

__

Full

__

Partial

__

No

__

N/A

Standard

behavior

for

the

event

notification

Table

163

lists

standard

features

for

event

retrieval

and

notification.

Table

163.

Standard

features

for

event

notification

Category

and

name

Description

Supported?

Connector

Properties

Event

distribution

The

event

retrieval

mechanism

includes

a

filter

that

processes

only

events

that

are

associated

with

the

connector

making

the

poll

call.

This

feature

requires

adding

a

ConnectorId

field

to

the

event

table

so

that

multiple

connectors

can

use

the

same

event

table.

Each

connector

also

requires

a

ConnectorId

connector

property.

This

property

sets

the

identifier

for

a

particular

instance

of

a

connector

and

allows

the

connector

to

pick

up

only

the

events

assigned

to

it.

See

“Event

distribution”

on

page

129.

__

Full

__

Partial

__

No

__

N/A

PollQuantity

The

connector

uses

the

PollQuantity

connector

property

to

specify

the

maximum

number

of

events

the

connector

will

process

for

each

poll

call.

If

possible,

the

connector

should

limit

the

number

of

rows

retrieved

in

the

poll

call

to

PollQuantity.

(For

example,

in

SQL

Server,

use

the

set

rowcount

option.)

See

“Retrieving

event

records”

on

page

180.

__

Full

__

Partial

__

No

__

N/A

Event

Table

Event

status

values

Where

applicable,

the

values

are

used

for

event

status

are

described

in

Table

49

on

page

128.

__

Full

__

Partial

__

No

__

N/A

Object

key

The

object

key

column

must

use

name-value

pairs

to

set

data

in

a

new

business

object.

For

example,

if

ContractId

is

the

name

of

an

attribute

in

the

business

object,

the

object

key

is:

ContractId=45381.

The

connector

should

support

multiple

name-value

pairs

separated

by

a

delimiter.

The

delimiter

is

configurable

(PollAttributeDelimiter)

and

should

default

to

a

colon

(:).

See

“Object

key”

on

page

115.

__

Full

__

Partial

__

No

__

N/A

Object

name

The

object

name

field

should

be

set

to

the

exact

business

object

name.

See

“Standard

contents

of

an

event

record”

on

page

114.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

523

Table

163.

Standard

features

for

event

notification

(continued)

Category

and

name

Description

Supported?

Priority

Priority

is

0-n,

with

0

being

the

highest

priority.

The

connector

polls

and

processes

events

in

order

of

priority.

Note

that

no

decrementing

is

done,

which

could,

in

rare

circumstances,

lead

to

low

priority

events

being

shut

out

(not

processed).

See

“Processing

events

by

event

priority”

on

page

129.

__

Full

__

Partial

__

No

__

N/A

Miscellaneous

Features

Archiving

An

event

is

archived

once

the

connector

has

processed

it,

whether

or

not

the

event

was

successfully

delivered

to

InterChange

Server.

The

event

status

is

kept

in

the

archive

table

and

is

one

of

the

following:

v

Success.

The

event

was

detected,

and

an

object

was

created

and

sent

to

InterChange

Server.

v

Unsubscribed.

The

event

was

detected,

but

the

connector

did

not

have

a

subscription

for

that

event/verb

combination,

so

the

event

was

not

sent

to

InterChange

Server.

v

Error.

The

event

was

detected,

but

the

connector

encountered

an

error

in

trying

to

process

the

event,

either

in

the

process

of

building

a

business

object

or

in

posting

the

object

to

InterChange

Server.

__

Full

__

Partial

__

No

__

N/A

CDK

method

gotApplEvent()

The

connector

should

call

gotApplEvent()only

from

within

pollForEvents().

__

Full

__

Partial

__

No

__

N/A

Delta

event

notification

An

event

can

be

created

that

represents

only

the

changes

to

a

hierarchical

business

object,

such

as

the

addition

or

deletion

of

order

lines,

without

creating

an

update

event

for

the

entire

business

object.

[Not

currently

an

IBM

Standard]

__

Full

__

Partial

__

No

__

N/A

Future

event

processing

The

mechanism

for

specifying

a

future

date

or

time

at

which

an

event

should

be

processed.

The

connector

does

not

process

the

event

until

that

date

or

time.

[Not

currently

an

IBM

Standard]

__

Full

__

Partial

__

No

__

N/A

In-Progress

event

recovery

When

restarted,

a

connector

checks

the

event

table

for

events

that

have

a

status

of

IN_PROGRESS.

If

any

exist,

the

connector

does

one

of

the

following:

v

PropValue

=

FailOnStartup:

Logs

a

fatal

error

and

sends

an

email

notification.

v

PropValue

=

Reprocess:

Submits

the

events

to

InterChange

Server.

v

PropValue

=

LogError:

Logs

an

error

but

does

not

shut

down.

v

PropValue

=

Ignore:

Ignores

these

entries

in

the

event

table.

This

behavior

is

configurable

via

the

InDoubtEvents

connector

property.

Use

the

Notes

field

to

describe

exactly

how

the

connector

handles

this

feature.

__

Full

__

Partial

__

No

__

N/A

Physical

delete

event

The

connector

creates

an

empty

business

object

with

the

Delete

verb,

with

key

values

populated

and

the

rest

of

the

attributes

populated

with

CxIgnore,

and

sends

the

object

to

InterChange

Server.

See

“Processing

Delete

events”

on

page

130.

__

Full

__

Partial

__

No

__

N/A

RetrieveAll

The

connector

retrieves

the

entire

hierarchical

business

object

during

subscription

delivery.

See

“Retrieving

application

data”

on

page

185.

__

Full

__

Partial

__

No

__

N/A

524

Connector

Development

Guide

for

Java

Table

163.

Standard

features

for

event

notification

(continued)

Category

and

name

Description

Supported?

Smart

filtering

Duplicate

events

are

not

saved

in

the

event

store.

Before

storing

a

new

event

as

a

record

in

the

event

store,

the

event

detection

mechanism

queries

the

event

store

for

existing

events

that

match

the

new

event.

The

event

detection

mechanism

does

not

generate

a

record

for

a

new

event

in

these

cases:

v

The

business

object

name,

verb,

key,

status,

and

ConnectorId

(if

applicable)

in

a

new

event

match

those

of

another

unprocessed

event

in

the

event

store.

v

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

store.

In

addition,

the

verb

for

the

new

event

is

Update,

and

the

verb

for

the

unprocessed

event

is

Create.

v

The

business

object

name,

key,

and

status

for

a

new

event

match

an

unprocessed

event

in

the

event

store.

In

addition,

the

verb

in

the

unprocessed

event

in

the

event

store

is

Create,

and

the

verb

in

the

new

event

is

Delete.

In

this

case,

remove

the

Create

record

from

the

event

store.

__

Full

__

Partial

__

No

__

N/A

Verb

stability

The

connector

should

send

a

business

object

with

the

same

verb

that

is

in

the

event

table.

See

“Getting

the

business

object

name,

verb,

and

key”

on

page

182.

__

Full

__

Partial

__

No

__

N/A

General

standards

Table

164

lists

general

standards

for

connector

behavior.

Table

164.

General

standards

Category

and

Name

Description

Supported?

Business

Object

Foreign

key

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Foreign

key

attribute

property

If

this

attribute

property

is

set

to

true,

the

connector

verifies

that

the

value

is

a

valid

key.

If

the

key

is

invalid,

the

connector

returns

FAIL.

The

connector

assumes

a

foreign

key

is

present

in

the

application,

and

the

connector

should

never

try

to

create

an

object

marked

as

a

foreign

key.

__

Full

__

Partial

__

No

__

N/A

Key

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Max

Length

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

Required

There

is

no

standard

defined.

If

you

use

this

property,

check

Full

and

describe

how

you

use

it.

If

you

do

not

use

this

property,

check

No.

__

Full

__

Partial

__

No

__

N/A

metadata

driven

design

The

connector

can

support

new

business

objects

without

recompiling

because

business

object

processing

is

based

on

metadata

in

the

business

object

definition.

See

“Assessing

support

for

metadata-driven

design”

on

page

45.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

525

Table

164.

General

standards

(continued)

Category

and

Name

Description

Supported?

Loss

of

Connection

to

Application

Connection

lost

on

request

processing

The

connector

detects

the

connection

error

when

processing

a

business

object

request

and

shuts

down.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

See

“Handling

loss

of

connection

to

an

application”

on

page

78.

__

Full

__

Partial

__

No

__

N/A

Connection

lost

on

poll

The

connector

detects

the

connection

error

at

the

time

of

a

poll

call

and

shuts

down.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

See

“Handling

loss

of

connection

to

an

application”

on

page

78.

__

Full

__

Partial

__

No

__

N/A

Connection

lost

while

idle

Connector

shuts

down

as

soon

as

the

connection

to

the

application

is

lost.

The

connector

logs

a

fatal

error

and

sends

a

return

code

of

APPRESPONSETIMEOUT

so

that

email

notification

can

be

triggered.

__

Full

__

Partial

__

No

__

N/A

Connector

Properties

ApplicationPassword

The

connector

should

use

this

property

value

as

the

password

to

log

in

to

the

application.

__

Full

__

Partial

__

No

__

N/A

ApplicationUser

Name

The

connector

should

use

this

property

value

as

the

user

name

to

log

in

to

the

application.

__

Full

__

Partial

__

No

__

N/A

UseDefaults

connector

property

If

this

connector

property

is

set

to

true,

when

the

connector

processes

a

business

object

request

with

a

Create

verb,

it

calls

the

JCDK

or

CDK

method

initAndValidateAttributes().

__

Full

__

Partial

__

No

__

N/A

Message

Tracing

General

messaging

Messages

that

identify

the

business

object

handlers

used

for

each

object.

Messages

that

log

each

time

a

business

object

is

posted

to

Interchange

Server,

either

from

gotApplEvent()

or

consumeSync().

Messages

that

indicate

each

time

a

business

object

request

is

received.

Guidelines

for

the

trace

messages

at

each

trace

level

0-5

follow.

Note

that

the

connector

should

deliver

all

the

trace

messages

applicable

at

the

level

of

tracing

set

and

lower.

See

“Trace

messages”

on

page

139.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

0

0

-

Message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

1

1

-

Status

messages

and

identifying

(key)

information

for

each

business

object

processed.

A

message

is

sent

each

time

the

pollForEvents()

method

is

executed.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

2

2

-

Messages

that

identify

the

business

object

handlers

used

for

each

object

the

connector

processes.

Messages

that

log

each

time

a

business

object

is

posted

to

InterChange

Server,

either

from

gotApplEvent()or

consumeSync().

Messages

that

indicate

each

time

a

business

object

request

is

received.

__

Full

__

Partial

__

No

__

N/A

526

Connector

Development

Guide

for

Java

Table

164.

General

standards

(continued)

Category

and

Name

Description

Supported?

Trace

Level

3

3

-

Messages

that

identify

the

foreign

keys

being

processed

(if

applicable).

These

messages

appear

when

the

connector

has

encountered

a

foreign

key

in

a

business

object

or

when

the

connector

sets

a

foreign

key

in

a

business

object.

Messages

that

relate

to

business

object

processing.

Examples

of

this

include

finding

a

match

between

business

objects,

or

finding

a

business

object

in

an

array

of

child

business

objects.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

4

4

-

Messages

that

identify

application-specific

information.

Examples

of

this

text

include

the

values

returned

by

the

functions

that

process

the

application-specific

information

fields

in

business

objects.

Messages

that

identify

entry

or

exit

functions.

These

messages

help

trace

the

process

flow

of

the

connector.

Messages

that

trace

any

thread-specific

processing.

For

example,

if

the

connector

spawns

multiple

threads,

a

message

should

log

the

creation

of

each

new

thread.

__

Full

__

Partial

__

No

__

N/A

Trace

Level

5

5

-

Messages

that

indicate

connector

initialization.

The

messages

include

the

value

of

each

configuration

property

that

has

been

retrieved

from

InterChange

Server.

Messages

that

detail

the

status

of

each

thread

the

connector

spawns

while

it

is

running.The

connector

log

file

contains

all

statements

executed

in

the

application

and

the

value

of

any

variables

that

are

substituted

(where

applicable).

Messages

for

business

object

dumps.

The

connector

outputs

a

text

representation

of

a

business

object

before

it

begins

processing

(showing

the

object

the

connector

receives

from

the

integration

broker)

and

after

it

has

processed

the

object

(showing

the

object

the

connector

returns

to

the

integration

broker).

__

Full

__

Partial

__

No

__

N/A

Message

tracing

Do

not

use

the

CDK

method

generateMsg()

for

tracing;

instead,

hard-code

the

message

strings

for

trace

messages.

__

Full

__

Partial

__

No

__

N/A

Miscellaneous

Features

Java

package

names

All

Java-based

connectors

should

follow

these

package

naming

standards:

com.CompanyName.connectors.ConnectorAgentPrefix

Example:

com.crossworlds.connectors.XML

__

Full

__

Partial

__

No

__

N/A

Logging

messages

The

connector

logs

errors

and

other

information

that

the

user

needs

regardless

of

the

trace

level

set

for

the

system.

See

137.

__

Full

__

Partial

__

No

__

N/A

CDK

method

logMsg()

Always

use

the

CDK

method

generateMsg()

before

calling

logMsg().

__

Full

__

Partial

__

No

__

N/A

NT

service

compliance

To

be

NT

service-compliant,

do

not

use

any

method

or

function

that

points

to

STDOUT,

for

example,

the

printf()

method

in

C++.

__

Full

__

Partial

__

No

__

N/A

Transaction

support

An

entire

business

object

request

must

be

wrapped

in

a

single

transaction.

All

Create,

Update,

and

Delete

transactions

for

a

top-level

business

object

and

all

of

its

children

should

be

wrapped

in

a

single

transaction.

If

any

failure

is

detected

during

the

life

of

the

transaction,

the

whole

transaction

should

be

rolled

back.

__

Full

__

Partial

__

No

__

N/A

Special

IBM

CrossWorlds

Values

CxBlank

processing

On

a

Create

operation,

the

connector

inserts

an

appropriate

blank

value

for

attributes

with

the

value

CxBlank.

The

blank

value

may

be

configurable

or

specific

to

the

application.

See

“Handling

the

Blank

and

Ignore

values”

on

page

169.

__

Full

__

Partial

__

No

__

N/A

Appendix

D.

Connector

feature

checklist

527

Table

164.

General

standards

(continued)

Category

and

Name

Description

Supported?

CxIgnore

processing

The

connector

does

not

set

a

value

in

the

application

for

attributes

that

are

passed

in

with

the

value

CxIgnore

when

processing

Create

or

Update

verbs.

See

“Handling

the

Blank

and

Ignore

values”

on

page

169.

__

Full

__

Partial

__

No

__

N/A

528

Connector

Development

Guide

for

Java

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2000,

2004

529

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

COPYRIGHT

LICENSE

This

information

may

contain

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

530

Connector

Development

Guide

for

Java

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

IBM

the

IBM

logo

AIX

CICS

CrossWorlds

DB2

DB2

Universal

Database

Domino

IMS

Informix

iSeries

Lotus

Lotus

Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport

Advantage

SupportPac

WebSphere

z/OS

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

WebSphere

Business

Integration

Adapter

Framework

V2.4.1

Notices

531

532

Connector

Development

Guide

for

Java

Index

A
Access

request

19

Adapter

3

development

tools

for

25

Adapter

Development

Kit

(ADK)

25,

27

Adapter

framework

25

agentInit()

method

65,

148,

156,

180,

234,

239,

325

Application
API

for

40

form-based

46,

79,

80,

81,

120

implementing

event

store

114

initiating

operation

in

166

object-based

46,

79

version

of

65

Application

connection
closing

68

establishing

65,

149

handling

loss

of

78,

112,

156,

180

verifying

156,

180

Application

database

38,

43

creating

entity

in

86

deleting

entity

from

103

event

table

117

keys

in

entities

109

querying

for

entity

in

105

retrieving

entity

from

89

triggers

in

122

updating

entity

in

96

Application

Response

Measurement

(ARM)

50

Application

Response

Measurement

instrumentation,

support

for

52

Application-specific

business

object

7,

11

designing

41

mapping

to

generic

business

object

11

scope

of

business

object

development

45

Application-specific

information
for

a

business

object

definition

80,

161,

260,

262,

267

for

a

verb

80,

161,

174,

283,

380

for

an

attribute

80,

92,

161,

163,

262,

263

name-value

pairs

162,

163,

263,

267

tracing

141

ApplicationPassword

connector

configuration

property

65,

70

ApplicationUserID

connector

configuration

property

65,

70

APPRESPONSETIMEOUT

outcome

status

78,

201,

202,

303,

335

doVerbFor()

112,

157,

167,

168,

186,

202,

250,

260,

322,

406,

411

doVerbForCustom()

174,

379

pollForEvents()

68,

180,

181,

182,

186,

191,

192,

202,

244,

432

AppSide_Connector

package

405,

425,

457

AppSpecificInfo

attribute

property

80

Archive

record

127

Archive

store

127

accessing

128

creating

128

resubmitting

events

from

326

storing

event

in

318

Archive

table

117

archiveEvent()

method

175,

191,

318

ArchiveFailedException

exception

191,

318,

384

ArchiveProcessed

connector

configuration

property

128,

191

areAllPrimaryKeysTheSame()

method

259

Attribute
accessing

107,

162

application-specific

information

80,

92,

161,

163,

262,

263,

436

checking

for

key

289,

440

class

for

161,

162,

255,

435

complex

110,

286,

290,

297

copying

292,

410

creating

object

for

420

data

type

of

161,

163,

281,

282,

286,

290,

291,

414,

438,

439,

441

description

412,

413

determining

equality

436

determining

number

of

260,

264,

412

determining

whether

to

process

164

initializing

366,

466

maximum

length

163,

278,

437,

525

methods

for

258

name

of

161,

162,

163,

265,

286,

414,

438,

439

ordinal

position

107,

161,

162,

265,

413

place-holder

164

relationship

type

438

required

163,

290,

367,

441,

466,

525

simple

106,

107,

169

validating

367,

466

Attribute

value
boolean

266,

269,

294

business

object

267,

295

comparing

260

double

270,

274,

297

float

271,

274,

298

int

272,

275,

299

long

272,

277

LongText

276,

300

retrieving

165,

266,

267,

274,

275,

276,

277,

279,

413,

415

setting

166,

170,

294,

295,

297,

298,

299,

300,

301,

420,

421,

422

special

169

String

273,

279,

301

AttributeNotFoundException

exception

384,

385

AttributeNullValueException

exception

384,

386

AttributeValueException

exception

384,

386

B
Blank

attribute

value

169

changing

to

default

297,

367,

422,

467

checking

for

169,

287,

368,

419,

468

constant

for

247

obtaining

171,

362,

462

setting

to

171

BO_DOES_NOT_EXIST

outcome

status

167,

201,

202,

303,

322,

335

doVerbFor()

251,

261,

406,

411

doVerbForCustom()

380

Retrieve

verb

94

BOHandlerBase

class

(low-level)

249,

403,

405,

407

doVerbFor()

405

getName()

406

©

Copyright

IBM

Corp.

2000,

2004

533

BOHandlerBase

class

(low-level)

(continued)
method

summary

405

setName()

407

BOOLEAN

attribute-type

constant

247,

282

BOOLSTRING

attribute-type

constant

247,

281

boToByteArray()

method

76,

347

boToStream()

method

76,

349

boToString()

method

76,

351

Business

object

5,

10

ADK

support

25

checking

subscriptions

of

183,

243,

431

class

for

17,

161,

255

converting

between

serialized

data

and

75,

347,

349,

351,

353,

370,

372,

374

copying

292,

410

creating

321,

354,

355,

356,

420,

458

development

support

25

extracting

values

from

165

generic

7,

11

inserting

into

business

object

array

444,

445

instance

6

interface

for

409

locale

59,

276,

299,

356,

416,

423,

459

metadata

80

methods

for

258

naming

46

parent

108,

279,

417

parts

of

5

processing

105,

160,

167

relationship

between

parent

and

child

108,

438

removing

from

business

object

array

292,

293,

445

request

22,

23,

155,

159,

168

response

90,

97,

112

retrieving

name

of

305,

306

saving

values

in

166

sending

to

collaboration

425

sending

to

connector

framework

187,

236,

240,

322,

428

setting

defaults

for

297

supported

15,

24,

64,

66,

79,

82,

151,

210,

365,

427,

465

top-level

108

Business

object

array

108

child

business

object

in

444

child

business

objects

in

110,

278,

443

creating

459

inserting

business

object

into

444

inserting

object

into

445

interface

for

443

methods

for

258

removing

object

from

293,

445

setting

defaults

for

297

Business

object

definition

5,

6

accessing

161

application-specific

information

80,

161,

260,

262,

267,

412

checking

supported

verbs

of

419

class

for

161,

255

in

an

event

114

methods

for

258

name

of

161,

278,

417

supported

verbs

161,

280,

291

version

266,

415

Business

Object

Designer

5

Business

object

handler

24,

66,

79,

112

calling

260,

410

class

for

24,

152,

172,

249,

379

creating

152,

174,

249

custom

172,

379

design

issues

79

Business

object

handler

(continued)
instantiating

67,

152

introduction

82

metadata-driven

46,

67,

80,

152

multiple

48,

67,

81,

152,

153

name

252,

406,

407

obtaining

24,

66,

151,

237

partially

metadata-driven

47

performing

action

of

active

verb

251,

405

retrieving

426

role

of

79,

154

trace

information

141

verb

processing

in

85

BusinessObjectInterface

interface

(low-level)

255,

403,

409,

424

clone()

410

doVerbFor()

410

dump()

411

getAppText()

412

getAttrCount()

412

getAttrDesc()

412

getAttribute()

413

getAttributeIndex()

413

getAttributeType()

414

getAttrName()

414

getAttrValue()

415

getBusinessObjectVersion()

415

getDefaultAttrValue()

416

getLocale()

416

getName()

417

getParentBusinessObject()

417

getVerb()

418

getVerbAppText()

418

isBlank()

419

isIgnore()

419

isVerbSupported()

419

makeNewAttrObject()

420

method

summary

409

setAttributeWithCreate()

420

setAttrValue()

421

setDefaultAttrValues()

422

setLocale()

423

setVerb()

423

byteArrayToBo()

method

76,

353

C
Cardinality

determining

110,

285,

439

methods

for

163

multiple

108,

109,

110,

281,

289,

440

obtaining

268,

437

single

108,

109,

110,

281

Character

encoding

57,

76,

362,

463

CharacterEncoding

connector

configuration

property

61

Child

business

object

108

accessing

110,

111,

171

determining

number

of

278,

444

inserting

into

business

object

array

444

relationship

type

108

removing

from

business

object

array

292,

293,

445

retrieving

91,

443

verb

support

84

CIPHERSTRING

attribute-type

constant

247,

281

CIPHERTEXT

attribute-type

constant

247,

282

cleanupResources()

method

175,

319

Client

connector

framework

9

534

Connector

Development

Guide

for

Java

Collaboration

6,

18,

42,

425,

426

determining

if

subscribed

64,

183,

243,

431

requesting

retrieve-by-content

303

retrieving

name

of

237

returning

status

to

341,

471

role

in

event

notification

20

role

in

request

processing

23

sending

business

object

to

187,

236

Common

Base

Event

51

Common

Event

Infrastructure

51

Common

Event

Infrastructure

(CEI)

50

Common

Object

Request

Broker

Architecture

(CORBA)

14,

15

communication

across

other

systems

50

compare()

method

259

ConnectionFailureException

exception

149,

157,

235,

251,

380,

384

Connector

6

adding

to

business

integration

system

207,

229

ADK

support

25

application-specific

component

18,

68,

233,

425

associated

maps

210

base

class

for

68,

147,

233,

425

business

object

handler

237,

426

compiling

208

components

7

configuration

file

210

configuring

26

connector

communication

9,

13,

14,

17

defining

30,

208

design

issues

35

development

environment

26

development

process

29

development

support

26

directory

211,

212

general

functionality

63,

147

implementation

questions

53

initialization

12,

15,

141,

148,

234,

429,

430

instantiating

233

internationalized

56,

63,

143

JMS-enabled

131

library

208,

211,

212

log

destination

137

loss

of

connection

to

application

78,

112,

156,

180

metadata-driven

46,

67,

80,

152,

160,

525

monitoring

139

name

207

naming

conventions

68

package

name

147,

153,

172,

174,

177,

380

parallel-process

242,

245,

362,

364,

431,

432,

463

partially

metadata-driven

47

poll

frequency

244,

432

recovering

In-Progress

events

149

request

processing

79,

112

required

implementation

82,

89

roles

of

6,

20,

38,

75

running

63

sample

27

shutting

down

63,

68,

200

starting

63,

211

supported

business

objects

6,

24,

64,

66,

82,

151,

210,

365,

427,

465

terminating

68,

186,

200,

245,

324,

328,

433

threading

issues

129,

154

unidirectional

38

version

427

version

of

65,

149,

239

without

metadata

48

Connector

class

library

69

exceptions

473

Connector

configuration

property

70

ApplicationPassword

65,

70

ApplicationUserID

65,

70

ArchiveProcessed

128,

191

cardinality

73,

390

CharacterEncoding

61

connector-specific

70,

462

ConnectorId

130

ContainerManagedEvents

133

DataHandlerConfigMOName

133

DataHandlerMetaObjectName

77,

348,

350,

352,

354,

371,

373,

375

defining

70,

210

DeliveryTransport

17,

132,

135

DHClass

133

DuplicateEventElimination

135

encryption

flag

73

EventStoreFactory

177,

181,

238

hierarchical

73,

74,

396

IgnoreMissingChildObject

93,

94,

96,

522

InDoubtEvents

66,

149,

325,

524

internationalizing

60

loading

64

LogAtInterchangeEnd

66,

78,

112,

138,

157,

325,

357,

370,

469

MaxDoublePrecision

298

MaxFloatPrecision

299

MimeType

133

MonitorQueue

135

multi-valued

73,

390

name

73

ParallelProcessDegree

242,

430,

463

PollAttributeDelimiter

115,

177

PollFrequency

63,

125,

244,

432

PollQuantity

133,

134,

181,

320,

523

RetrieveVerb

321

retrieving

15,

71,

74,

360,

361,

362,

364,

460,

461,

463,

465

setting

70,

210

simple

71,

73,

396

single-valued

73,

390

SourceQueue

133

standard

70,

461,

477,

500

TraceFileName

376

TraceLevel

139,

376,

470

tracing

141

type

73,

396

UseDefaults

367,

467,

526

value

73

Connector

Configurator

26,

70,

209,

501,

519

Connector

controller

9,

64

role

in

mapping

11

subscription

handling

and

12

subscription

list

12,

21

Connector

definition

30,

208

Connector

development
platform

for

26,

27

tools

for

26

Connector

Development

Kit

27

Connector

framework

8,

18

calling

poll

method

125

character

encoding

362,

463

choosing

business

object

handler

23

determining

connector

response

168

initializing

connector

64,

148,

234

internationalized

57

Index

535

Connector

framework

(continued)
invoking

63

locale

60,

363,

464

obtaining

business

object

handler

24,

66,

151

receiving

service

call

request

83

reporting

verb-processing

status

168,

205

response

from

doVerbFor()

112

response

to

outcome-status

values

202

sending

business

object

to

187,

240,

322,

428

services

of

9,

13

starting

up

application-specific

component

64

subscription

handling

and

12,

21,

183,

243,

431

subscription

list

12,

21,

183,

243,

431

tracing

139

transport

layer

13

Connector

identifier

(ID)

114,

129,

305,

307

Connector

message

file
generating

message

from

58,

357,

358,

359,

360,

369,

377,

460,

469,

470

location

142

message-file

constant

144,

345

name

of

142

Connector

Script

Generator

519,

521

Connector

startup

script

125,

137,

139,

211

connector_manager_connector

startup

script

211

CONNECTOR_MESSAGE_FILE

message-file

constant

144,

345,

357,

358,

360,

460

CONNECTOR_NOT_ACTIVE

outcome

status

188,

201,

202,

240,

303,

428

Connector-property

object

73

ConnectorBase

class

(low-level)

233,

403,

425,

435

consumeSync()

433

deprecated

methods

433

executeCollaboration()

425

getBOHandlerforBO()

426

getCollabNames()

426

getSupportedBusObjNames()

427

getVersion()

427

gotApplEvent()

428

init()

429

isAgentCapableOfPolling()

430

isSubscribed()

431

method

summary

425

pollForEvents()

432

terminate()

433

ConnectorId

connector

configuration

property

130

Constant
attribute-type

247

connector-property

304

event-status

313

message-file

144,

345,

457

message-type

145,

339,

457

outcome-status

69,

201,

303

trace-level

140,

339,

457

verb

157,

303

ContainerManagedEvents

connector

configuration

property

133

Containment

relationship

108

Create

verb
constant

for

157,

303

implementation

87

initializing

attributes

367,

467

outcome

status

88,

167

overview

86

processing

blank

values

170

processing

Ignore

values

170

retrieving

application

data

for

185

Create

verb

(continued)
standard

behavior

86

using

attribute

values

for

159,

165,

166

createAndCopyKeyVals()

method

354

createAndSetDefaults()

method

355

createBusObj()

method

60,

356,

385

createContainer()

method

422

CWConnectorAgent

class

147,

231,

233,

247

abstract

methods

233,

425

agentInit()

65,

234

constructor

233

executeCollaboration()

236

extending

147

getCollabNames()

237

getConnectorBOHandlerForBO()

151,

237

getEventStore()

238

getVersion()

149,

239

gotApplEvent()

240

isAgentCapableOfPolling()

241

isSubscribed()

184,

243

method

summary

233

pollForEvents()

68,

178,

244

terminate()

200,

245

CWConnectorAgent()

method

233

CWConnectorAttrType

class

231,

247,

249

attribute-type

constants

247

BOOLEAN

247

BOOLSTRING

247

CIPHERSTRING

247

CIPHERTEXT

247

CxBlank

247

CxIgnore

247

CXMISSINGID_STRING

247

DATE

247

DATESTRING

247

DOUBLE

247

DOUBSTRING

247

FLOAT

247

FLTSTRING

247

INTEGER

247

INTSTRING

247

INVALID_TYPE_NUM

247

INVALID_TYPE_STRING

247

LONGTEXT

247

LONGTEXTSTRING

247

MULTIPLECARDSTRING

247

OBJECT

247

SINGLECARDSTRING

247

STRING

247

STRSTRING

247

CWConnectorBOHandler

class

151,

152,

231,

249,

253

abstract

method

249

constructor

249

creating

instance

of

250

doVerbFor()

82,

250

extending

153,

172

getName()

252

method

summary

249

setName()

252

CWConnectorBOHandler()

method

249

CWConnectorBusObj

class

231,

255,

302

areAllPrimaryKeysTheSame()

259

compare()

259

doVerbFor()

260

dump()

261

getAppText()

262

getAttrASIHashtable()

263

536

Connector

Development

Guide

for

Java

CWConnectorBusObj

class

(continued)
getAttrCount()

264

getAttrIndex()

265

getAttrName()

265

getbooleanValue()

266

getBusinessObjectVersion()

266

getBusObjASIHashtable()

267

getBusObjValue()

171,

267

getCardinality()

268

getDefault()

269

getDefaultboolean()

269

getDefaultdouble()

270

getDefaultfloat()

271

getDefaultint()

272

getDefaultlong()

272

getDefaultString()

273

getdoubleValue()

274

getfloatValue()

274

getintValue()

275

getLocale()

60,

276

getLongTextValue()

276

getlongValue()

277

getMaxLength()

278

getName()

278

getObjectCount()

171,

278

getParentBusinessObject()

279

getStringValue()

279

getSupportedVerbs()

280

getTypeName()

281

getTypeNum()

282

getVerb()

155,

282

getVerbAppText()

283

hasAllKeys()

283

hasAllPrimaryKeys()

284

hasAnyActivePrimaryKey()

285

hasCardinality()

285

hasName()

286

hasType()

286

isBlank()

287

isForeignKeyAttr()

288

isIgnore()

288

isKeyAttr()

289

isMultipleCard()

289

isObjectType()

290

isRequiredAttr()

290

isType()

291

isVerbSupported()

291

method

summary

255

objectClone()

292

prune()

292

removeAllObjects()

293

removeBusinessObjectAt()

293

setAttrValues()

294

setbooleanValue()

294

setBusObjValue()

295

setDEEId()

296

setDefaultAttrValues()

297

setdoubleValue()

297

setfloatValue()

298

setintValue()

299

setLocale()

299

setLongTextValue()

300

setStringValue()

301

setVerb()

302

CWConnectorConstant

class

201,

231,

303,

305,

383

APPRESPONSETIMEOUT

303

BO_DOES_NOT_EXIST

303

CWConnectorConstant

class

(continued)
CONNECTOR_NOT_ACTIVE

303

connector-property

constants

304

FAIL

303

HIERARCHICAL

304

MULTI_VALUED

304

MULTIPLE_HITS

303

NO_SUBSCRIPTION_FOUND

303

outcome-status

constants

303

RETRIEVEBYCONTENT_FAILED

303

SIMPLE

304

SINGLE_VALUED

304

SUCCEED

303

UNABLETOLOGIN

303

VALCHANGE

303

VALDUPES

303

verb

constants

158,

303

VERB_CREATE

157,

303

VERB_DELETE

158,

303

VERB_EXISTS

158,

304

VERB_RETRIEVE

157,

303

VERB_RETRIEVEBYCONTENT

158,

304

VERB_UPDATE

157,

303

CWConnectorEvent

class

177,

231,

305,

312

constructor

305

getBusObjName()

306

getConnectorID()

307

getEffectiveDate()

307

getEventID()

308

getEventSource()

308

getEventTimeStamp()

308

getIDValues()

309

getKeyDelimiter()

309

getPriority()

310

getStatus()

310

getTriggeringUser()

311

getVerb()

311

method

summary

305

setEventSource()

312

CWConnectorEvent()

method

305

CWConnectorEventStatusConstants

class

116,

231,

313,

317

ERROR_OBJECT_NOT_FOUND

116,

313

ERROR_POSTING_EVENT

116,

313

ERROR_PROCESSING_EVENT

116,

192,

313

event-status

constants

313

IN_PROGRESS

116,

313

READY_FOR_POLL

116,

313

SUCCESS

116,

192,

313

UNSUBSCRIBED

116,

192,

313

CWConnectorEventStore

class

175,

181,

191,

231,

317,

331

abstract

methods

317

archiveEvent()

318

cleanupResources()

319

constructor

317

deleteEvent()

319

deprecated

methods

329

eventsToProcess

vector

318,

323

fetchEvents()

320

getBO()

321

getNextEvent()

323

getTerminate()

324

method

summary

317

recoverInProgressEvents()

324

resubmitArchivedEvents()

326

setEventStatus()

326

setEventsToProcess()

327

setEventStoreStatus()

329

Index

537

CWConnectorEventStore

class

(continued)
setTerminate()

328

updateEventStatus()

328

CWConnectorEventStore()

method

317

CWConnectorEventStoreFactory

interface

176,

231,

331,

332

getEventStore()

331

implementing

176,

238

method

summary

331

CWConnectorExceptionObject

class

231,

333,

338

constructor

333

getExpl()

333

getMsg()

334

getMsgNumber()

334

getMsgType()

335

getStatus()

335

method

summary

333

setExpl()

336

setMsg()

336

setMsgNumber()

337

setMsgType()

337

setStatus()

338

CWConnectorExceptionObject()

method

333

CWConnectorLogAndTrace

class

232,

339,

341

LEVEL0

339

LEVEL1

339

LEVEL2

339

LEVEL3

339

LEVEL4

339

LEVEL5

339

message-type

constants

140,

144,

145,

339

trace-level

constants

140,

339

XRD_ERROR

339

XRD_FATAL

339

XRD_INFO

339

XRD_TRACE

339

XRD_WARNING

339

CWConnectorReturnStatusDescriptor

class

206,

232,

341,

343

constructor

341

getErrorString()

342

getStatus()

342

method

summary

341

setErrorString()

342

setStatus()

343

CWConnectorReturnStatusDescriptor()

method

341

CWConnectorUtil

class

232,

345,

379

boToByteArray()

347

boToStream()

349

boToString()

351

byteArrayToBo()

353

CONNECTOR_MESSAGE_FILE

144,

345,

357,

358,

360

constructor

347

createAndCopyKeyVals()

354

createAndSetDefaults()

355

createBusObj()

60,

356

deprecated

methods

377

generateAndLogMsg()

138,

144,

356

generateAndTraceMsg()

140,

144,

358

generateMsg()

138,

140,

144,

359

getAllConfigProperties()

74,

360

getAllConnectorAgentProperties()

72,

361

getBlankValue()

362

getConfigProp()

72,

362

getGlobalEncoding()

62,

362

getGlobalLocale()

60,

363

getHierarchicalConfigProp()

74,

364

getIgnoreValue()

365

getSupportedBONames()

365

CWConnectorUtil

class

(continued)
getVersion()

366

INFRASTRUCTURE_MESSAGE_FILE

144,

345

initAndValidateAttributes()

366

isBlankValue()

368

isIgnoreValue()

368

isTraceEnabled()

368

logMsg()

138,

369

message-file

constants

345

method

summary

345

readerToBo()

370

streamToBO()

372

stringToBo()

374

traceCWConnectorAPIVersion()

375

traceWrite()

140,

376

CWConnectorUtil()

method

347

CWCustomBOHandler

interface

172

CWCustomBOHandlerInterface

interface

379,

380

doVerbForCustom()

379

CWException

class

232,

381,

387

constructor

381

getExceptionObject()

382

getMessage()

382

getStatus()

383

method

summary

381

setStatus()

383

subclasses

384

CWException()

method

381

CWProperty

class

73,

232,

389,

400

constructor

389

getCardinality()

390

getChildPropsWithPrefix()

391

getChildPropValue()

391

getEncryptionFlag()

392

getHierChildProp()

393

getHierChildProps()

394

getHierProp()

395

getName()

396

getPropType()

396

getStringValues()

396

hasChildren()

397

hasValue()

398

method

summary

389

setEncryptionFlag()

399

setValues()

399

CWProperty()

method

389

CxBlank

attribute-type

constant

247,

362,

365

CxCommon

package

409,

435,

443,

455,

471

CxIgnore

attribute-type

constant

247

CXMISSINGID_STRING

attribute-type

constant

247

CxObjectAttr

class

(low-level)

403,

435,

442

attribute-type

constants

435

BOOLEAN

435

BOOLSTRING

435

DATE

435

DATESTRING

435

DOUBLE

435

DOUBSTRING

435

equals()

436

FLOAT

435

FLTSTRING

435

getAppText()

436

getCardinality()

437

getDefault()

437

getMaxLength()

437

getName()

438

getRelationType()

438

538

Connector

Development

Guide

for

Java

CxObjectAttr

class

(low-level)

(continued)
getTypeName()

438

getTypeNum()

438

hasCardinality()

439

hasName()

439

hasType()

439

INTEGER

435

INTSTRING

435

INVALID_TYPE_NUM

435

INVALID_TYPE_STRING

435

isForeignKeyAttr()

440

isKeyAttr()

440

isMultipleCard()

440

isObjectType()

441

isRequiredAttr()

441

isType()

441

LONGTEXT

435

LONGTEXTSTRING

435

method

summary

435

MULTIPLECARDSTRING

435

OBJECT

435

SINGLECARDSTRING

435

STRING

435

STRSTRING

435

CxObjectContainerInterface

interface

(low-level)

403,

443,

446

getBusinessObject()

443

getObjectCount()

444

insertBusinessObject()

444

method

summary

443

removeAllObjects()

445

removeBusinessObjectAt()

445

setBusinessObject()

445

CxProperty

class

(low-level)

389,

403,

447,

453

constructor

447

getAllChildProps()

448

getChildProp()

449

getEncryptionFlag()

450

getName()

450

getStringValues()

450

hasChildren()

451

method

summary

447

setEncryptionFlag()

452

setValues()

452

CxProperty()

method

447

CxStatusConstants

class

(low-level)

303,

403,

455

APPRESPONSETIMEOUT

455

BO_DOES_NOT_EXIST

455

CONNECTOR_NOT_ACTIVE

455

FAIL

455

MULTIPLE_HITS

455

NO_SUBSCRIPTION_FOUND

455

outcome-status

constants

455

RETRIEVEBYCONTENT_FAILED

455

SUCCEED

455

UNABLETOLOGIN

455

VALCHANGE

455

VALDUPES

455

D
Data

handler

75,

78,

347,

349,

351,

353,

370,

372,

374

Database

triggers

122

DataHandlerConfigMOName

connector

configuration

property

133

DataHandlerCreateException

exception

348,

350,

351,

353,

371,

372,

374,

384

DataHandlerMetaObjectName

connector

configuration

property

77,

348,

350,

352,

354,

371,

373,

375

DATE

attribute-type

constant

247,

282

DATESTRING

attribute-type

constant

247,

281

Debugging

139

Default

attribute

value

163

boolean

269

double

270

float

271

int

272

long

272

retrieving

269,

270,

271,

272,

273,

416,

437

setting

297,

355,

366,

422,

467

String

273

DefaultSettingFailedException

exception

366,

384

Delete

operation

130

logical

97,

100,

103,

115,

130,

185

physical

103,

130,

185,

187

Delete

verb
constant

for

158,

303

outcome

status

104,

167

overview

103

processing

blank

values

170

processing

Ignore

values

170

retrieving

application

data

for

185

standard

behavior

104

using

attribute

values

for

160,

165

deleteEvent()

method

175,

192,

319

DeleteFailedException

exception

192,

320,

384

DeliveryTransport

connector

configuration

property

17,

132,

135

Denormalization

of

application

entities

44

Deprecated

methods
ConnectorBase

433

CWConnectorEventStore

329

CWConnectorUtil

377

Design

issues
application

architecture

37

application

interaction

39

communication

across

other

systems

50

identifying

application-specific

business

objects

41

identifying

connector

roles

38

metadata-driven

design

45

OS

communication

50

summary

set

of

questions

53

use

of

application

API

41

Development

process

28

DHClass

connector

configuration

property

133

DOUBLE

attribute-type

constant

247,

282

DOUBSTRING

attribute-type

constant

247,

281

doVerbFor()

method

23,

69,

82,

112,

250,

260,

322,

410,

467

basic

logic

82,

85

custom

379

designing

86

low-level

154,

157,

168,

173,

205,

251,

405

recursive

call

110

doVerbFor()

method

(CWConnectorBOHandler)

168,

250

branching

on

active

verb

157

implementing

153,

174

low-level

205

obtaining

active

verb

155

performing

verb

operation

159

processing

business

objects

160

returning

outcome

status

167

sending

verb-processing

response

167

validating

values

367

verifying

the

connection

156

Index

539

doVerbFor()

method

(CWConnectorBusObj)

205,

260

doVerbForCustom()

method

173,

379

dump()

method

261

Duplicate

event

elimination

134

DuplicateEventElimination

connector

configuration

property

135

E
Error

handling

69,

201

Error

logging

137

Error

message

137,

145,

251,

339,

342,

406,

471,

472,

473

ERROR_OBJECT_NOT_FOUND

event-status

constant

116,

313

retrieving

310

setting

306,

327,

328

updating

event

status

to

314,

322

ERROR_POSTING_EVENT

event-status

constant

116,

313

retrieving

310

setting

306,

327,

328

updating

event

status

to

188,

191

ERROR_PROCESSING_EVENT

event-status

constant

116,

192,

313

retrieving

310

setting

306,

327,

328

updating

event

status

to

191

Event

19

archiving

127,

191,

318,

320

asynchronous

241,

429

business

object

data

306,

309

business

object

name

114,

115,

117,

177,

182,

305,

306

connector

ID

114,

118,

129,

178,

305,

307

creating

305

creating

business

object

from

321

deleting

319

description

114,

118,

178,

305,

306

distribution

of

129

duplicate

66,

123

effective

date

124,

178,

305,

307

event

source

178,

308,

312

future

124,

307

In-Progress

65,

149,

234,

324

key

delimiter

305,

309

priority

310

processing

order

310

Ready-for-Poll

123,

320,

323

synchronous

236

triggering

19

triggering

user

178,

306,

311

unsubscribed

184

verb

114,

115,

117,

123,

131,

177,

182,

306,

311

Event

(Common

Base

Event)

51

Event

detection

113,

119,

124

database

triggers

122

duplicate

events

123

form

events

120

future

events

124

mechanisms

for

119

standard

behavior

of

123

workflow

121

Event

identifier

(ID)

115,

136

event

object

and

177

event

record

and

114

event

table

and

117

initializing

123,

306

obtaining

182,

308

Event

notification

7,

20,

22,

38,

113,

137

Event

notification

(continued)
delete

events

130

design

issues

49

error

handling

190

event

detection

113,

119,

124

event

distribution

129

event

retrieval

113,

124,

126

event

store

123

event

table

123

future

events

processing

124

standard

behavior

523

transport

layer

and

15,

17

unsubscribed

events

184

Event

object

177

creating

181,

320

information

in

177

retrieving

182,

323

Event

priority

129

event

object

and

177

event

record

and

114

event

table

and

117

initializing

123,

306

Event

record

21,

113

archiving

191

creating

123

inserting

into

event

store

123

Java

encapsulation

177

object

key

114,

115,

123,

177,

182

retrieving

180,

320

standard

contents

49,

114

Event

retrieval

113,

124,

126

mechanisms

for

124

Event

status

116

constants

for

313

event

object

and

178,

328

event

record

and

114,

328

event

table

and

118

initializing

123

obtaining

310

setting

326,

328

Event

store

21,

113,

114,

119,

175,

178

access

by

Java

connector

175

class

for

317

defining

175

definition

of

114

deleting

event

from

319

Email

mailbox

118,

134

factory

176,

238,

331

factory

for

176

fetching

events

from

320

flat

files

119,

134

future

124

inserting

event

record

in

123

instantiating

176,

238,

317,

331

JMS

132,

134

possible

implementations

116

releasing

resources

193,

319

resubmitting

events

to

326

setting

event

status

326,

328

Event

table

117,

134

Event

timestamp
event

object

and

177

event

record

and

114

event

table

and

117

initializing

123,

306

obtaining

308

usage

181

540

Connector

Development

Guide

for

Java

Event-notification

mechanism

21,

22,

49,

113,

114,

174,

200

Event-triggered

flow

18,

84

eventsToProcess

events

vector

175,

181,

318,

323,

327

EventStoreFactory

connector

configuration

property

177,

181,

238

Examples
agentInit()

150

doVerbFor()

156,

158

getConnectorBOHandlerForBO()

152

getVersion()

149

pollForEvents()

179,

193

terminate()

200

Exception

202,

204

class

for

333,

381,

384,

473

formatting

error

message

473

Exception

(low-level)
BusObjInvalidVerbException

424,

473

BusObjSpecNameNotFoundException

421,

459,

466,

473

CxObjectInvalidAttrException

421,

422,

445,

446,

473

CxObjectNoSuchAttributeException

413,

414,

415,

416,

420,

421,

422,

445,

473

IllegalLocaleException

300,

423

SetDefaultFailedException

466,

473

Exception

handling

11

Exception

object

202

class

for

381,

473

contents

of

203

creating

381

exception-detail

object

203,

382

message

203,

382

status

203,

383

Exception

subclass
ArchiveFailedException

191,

318,

384

AttributeNotFoundException

384,

385

AttributeNullValueException

384,

386

AttributeValueException

384,

386

ConnectionFailureException

149,

157,

235,

251,

380,

384

constructor

386

DataHandlerCreateException

348,

350,

351,

353,

371,

372,

374,

384

DefaultSettingFailedException

366,

384

DeleteFailedException

192,

320,

384

InProgressEventRecoveryFailedException

149,

235,

384

InvalidAttributePropertyException

384,

386

InvalidStatusChangeException

318,

323,

325,

326,

329,

384

InvalidVerbException

302,

384,

386

LogonFailedException

149,

235,

384

NotSupportedException

365,

384

Par
See

xception

PropertyNotSetException

235,

384

SpecNameNotFoundException

366,

384,

385

StatusChangeFailedException

181,

192,

323,

325,

326,

329,

384

VerbProcessingFailedException

155,

251,

380,

384

WrongASIFormatException

384

WrongAttributeException

384,

385

Exception-detail

object
class

for

333

contents

of

203

creating

333

message

explanation

203,

333,

336

message

number

203,

334,

337

message

text

155,

157,

203,

235,

334,

336

message

type

203,

335,

337

retrieving

382

status

155,

157,

203,

235,

335,

338

executeCollaboration()

method

141,

236

Exists

verb
constant

for

158,

304

outcome

status

105,

168

overview

104

using

attribute

values

for

165

F
FAIL

outcome

status

201,

202,

303

archiveEvent()

202,

318

Create

verb

88

Delete

verb

104

doVerbFor()

167,

202,

250,

260,

405,

411

doVerbForCustom()

174,

379

Exists

verb

105

gotApplEvent()

188,

189,

202,

240,

428

init()

430

pollForEvents()

68,

189,

192,

202,

244,

432

recoverInProgressEvents()

324

Retrieve

verb

94

terminate()

200,

202,

245,

433

Update

verb

98,

102,

103

Fatal

error

145,

339

fetchEvents()

method

175,

181,

314,

320

Flat

business

object

106

Create

operation

86

Delete

operation

103

processing

106

Retrieve

operation

89

RetrieveByContent

operation

95

Update

operation

96

FLOAT

attribute-type

constant

247,

282

FLTSTRING

attribute-type

constant

247,

281

Foreign

key

440

Foreign

key

attribute

87,

98,

109,

141,

163,

283,

288,

525

G
generateAndLogMsg()

method

58,

138,

144,

356

generateAndTraceMsg()

method

58,

140,

144,

358

generateMsg()

method

59,

138,

140,

144,

357,

359,

369,

469

trace

messages

and

58,

359,

377,

470

getAllConfigProperties()

method

74,

360

getAllConnectorAgentProperties()

method

72,

361

getAppText()

method

161,

162,

163,

164,

262

getAttrASIHashtable()

method

161,

163,

263

getAttrCount()

method

161,

162,

164,

264

getAttrIndex()

method

161,

162,

265

getAttrName()

method

161,

163,

265

getBlankValue()

method

171,

362

getBO()

method

175,

185,

206,

314,

321

getbooleanValue()

method

166,

266,

385,

386

getBusinessObjectVersion()

method

266

getBusObjASIHashtable()

method

161,

162,

267

getBusObjName()

method

177,

183,

306

getBusObjValue()

method

166,

171,

267,

385

getCardinality()

method

(CWConnectorBusObj)

163,

268,

385

getCardinality()

method

(CWProperty)

73,

390

getChildPropsWithPrefix()

method

74,

391

getChildPropValue()

method

74,

391

getCollabNames()

method

237

getConfigProp()

method

71,

72,

362

getConnectorBOHandlerForBO()

method

24,

66,

151,

237

getConnectorID()

method

178,

307

getDefault()

method

163,

269,

385

Index

541

getDefaultboolean()

method

163,

269,

385,

386

getDefaultdouble()

method

163,

270,

385,

386

getDefaultfloat()

method

163,

271,

385,

386

getDefaultint()

method

163,

272,

385,

386

getDefaultlong()

method

163,

272,

385,

386

getDefaultString()

method

163,

273,

385

getdoubleValue()

method

166,

274,

385,

386

getEffectiveDate()

method

178,

307

getEncryptionFlag()

method

73,

392

getErrorString()

method

206,

342

getEventID()

method

177,

183,

308

getEventSource()

method

178,

308

getEventStore()

method

(CWConnectorAgent)

176,

181,

238

getEventStore()

method

(CWConnectorEventStoreFactory)

238,

331

getEventTimeStamp()

method

177,

308

getExceptionObject()

method

203,

382

getExpl()

method

203,

333

getfloatValue()

method

166,

274,

385,

386

getFormattedMessage()

method

473

getGlobalEncoding()

method

62,

362

getGlobalLocale()

method

60,

363

getHierarchicalConfigProp()

method

73,

364

getHierChildProp()

method

74,

393

getHierChildProps()

method

74,

394

getHierProp()

method

395

getIDValues()

method

177,

183,

309

getIgnoreValue()

method

171,

365

getintValue()

method

166,

275,

385,

386

getKeyDelimiter()

method

177,

309

getLocale()

method

60,

276

getLongTextValue()

method

166,

276

getlongValue()

method

166,

277,

385,

386

getMaxlength()

method

437

getMaxLength()

method

163,

278,

385,

386

getMessage()

method

203,

382

getMsg()

method

203,

334

getMsgNumber()

method

203,

334

getMsgType()

method

203,

335

getName()

method

(CWConnectorBOHandler)

252

getName()

method

(CWConnectorBusObj)

161,

278

getName()

method

(CWProperty)

73,

396

getNextEvent()

method

175,

178,

182,

314,

323

getObjectCount()

method

110,

171,

278,

385

getParentBusinessObject()

method

279

getPriority()

method

177,

310

getPropType()

method

73,

396

getStatus()

method

(CWConnectorEvent)

178,

310

getStatus()

method

(CWConnectorExceptionObject)

203,

335

getStatus()

method

(CWConnectorReturnStatusDescriptor)

206,

342

getStatus()

method

(CWException)

203,

383

getStringValue()

method

166,

279,

385,

386

getStringValues()

method

74,

396

getSupportedBONames()

method

365

getSupportedVerbs()

method

157,

161,

280

getTerminate()

method

175,

186,

324

getTriggeringUser()

method

178,

311

getTypeName()

method

161,

163,

166,

167,

281,

385

getTypeNum()

method

161,

163,

166,

167,

282,

385

getVerb()

method

(CWConnectorBusObj)

86,

155,

261,

282

getVerb()

method

(CWConnectorEvent)

177,

183,

187,

311

getVerbAppText()

method

159,

161,

283

getVersion()

method

65,

149,

239,

366

gotApplEvent()

method

141,

187,

240,

315,

322

H
hasAllKeys()

method

283

hasAllPrimaryKeys()

method

284

hasAnyActivePrimaryKey()

method

285

hasCardinality()

method

163,

285,

385

hasChildren()

method

74,

397

hasName()

method

286,

385

hasType()

method

163,

286,

385

hasValue()

method

74,

398

Hierarchical

business

object

108

Create

operation

86

Delete

operation

103

processing

108

Retrieve

operation

89

RetrieveByContent

operation

95

Update

operation

96

Hierarchical

connector

configuration

property

73,

74

cardinality

73,

390

checking

for

child

properties

397,

398

class

for

73,

389,

447

encryption

flag

73,

392,

399,

450,

452

instantiating

389,

447

metadata

73

name

73,

396,

450

retrieving

73,

360,

364,

460,

465

retrieving

child

properties

74,

391,

393,

394,

395,

448,

449

retrieving

string

values

74,

391,

396,

450

setting

values

399,

452

type

73,

396

HIERARCHICAL

connector-property

constant

304,

396

I
IBM

Tivoli

Monitoring

for

Transaction

Performance

52

Ignore

attribute

value

169

changing

to

default

297,

367,

422,

467

checking

for

170,

288,

368,

419,

468

obtaining

171,

365,

464

setting

to

131,

170,

171

IgnoreMissingChildObject

connector

configuration

property

93,

94,

96,

522

IN_PROGRESS

event-status

constant

116,

313,

325

In-Progress

event

323,

325

retrieving

310

setting

306,

327,

328

updating

event

status

to

182,

314,

323

InDoubtEvents

connector

configuration

property

66,

149,

325,

524

Informational

message

137,

145,

251,

339,

342,

406,

471,

472,

473

INFRASTRUCTURE_MESSAGE_FILE

message-file

constant

144,

345

init()

method

65

initAndValidateAttributes()

method

86,

366,

526

InProgressEventRecoveryFailedException

exception

149,

235,

384

INTEGER

attribute-type

constant

247,

282

Integration

broker

3

InterChange

Server

(ICS)

3

connecting

to

64

transport

mechanisms

with

14

InterchangeSystem.txt

message

file

142

location

143

message-file

constant

144,

345,

457

INTSTRING

attribute-type

constant

247,

281

INVALID_TYPE_NUM

attribute-type

constant

247,

282

542

Connector

Development

Guide

for

Java

INVALID_TYPE_STRING

attribute-type

constant

247,

281

InvalidAttributePropertyException

exception

384,

386

InvalidStatusChangeException

exception

318,

323,

325,

326,

329,

384

InvalidVerbException

exception

302,

384,

386

isAgentCapableOfPolling()

method

241

isAttrPresent()

287,

418

isBlank()

method

164,

170,

287

isBlankValue()

method

368

isForeignKeyAttr()

method

163,

288,

385

isIgnore()

method

164,

170,

288

isIgnoreValue()

method

368

isKeyAttr()

method

163,

289,

385

isMultipleCard()

method

110,

171,

289,

385

isObjectType()

method

110,

163,

164,

171,

290,

385

isRequiredAttr()

method

163,

290,

385

isSubscribed()

method

183,

241,

243,

314,

429

isTraceEnabled()

method

144,

368

isType()

method

163,

291,

385

isVerbSupported()

method

161,

291

J
Java

Connector

Development

Kit

(JCDK)

27

Java

connector

library

17

CWConnectorAgent

233

CWConnectorAttrType

247

CWConnectorBOHandler

249

CWConnectorBusObj

255

CWConnectorConstant

303

CWConnectorEvent

305

CWConnectorEventStatusConstants

313

CWConnectorEventStore

317

CWConnectorEventStoreFactory

331

CWConnectorExceptionObject

333

CWConnectorLogAndTrace

339

CWConnectorReturnStatusDescriptor

341

CWConnectorUtil

345

CWCustomBOHandlerInterface

379

CWException

381

CWProperty

389

exceptions

202,

333,

381

outcome-status

values

201

overview

231

return

codes

201

tracing

375

version

of

366,

375

Java

Development

Kit

(JDK)

28

Java

Messaging

Service

(JMS)

15,

16,

131

JavaConnectorUtil

class

(low-level)

345,

403,

457,

470

CONNECTOR_MESSAGE_FILE

457,

460

createBusinessObject()

458

createContainer()

459

generateMsg()

459

getAllConfigProp()

460

getAllConnectorAgentProperties()

461

getAllStandardProperties()

461

getAllUserProperties()

462

getBlankValue()

462

getConfigProp()

463

getEncoding()

463

getIgnoreValue()

464

getLocale()

464

getOneConfigProp()

465

getSupportedBusObjNames()

465

INFRASTRUCTURE_MESSAGE_FILE

457

initAndValidateAttributes()

466

JavaConnectorUtil

class

(low-level)

(continued)
isBlankValue()

468

isIgnoreValue()

468

isTraceEnabled()

468

LEVEL1

457

LEVEL2

457

LEVEL3

457

LEVEL4

457

LEVEL5

457

logMsg()

469

message-file

constants

457

message-type

constants

457

method

summary

457

static

constants

457

trace-level

constants

457

traceWrite()

469

XRD_ERROR

457

XRD_FATAL

457

XRD_INFO

457

XRD_TRACE

457

XRD_WARNING

457

K
Key

attribute

163,

288,

289

Key

attribute

property

525

Key

attribute

value
checking

for

283,

284,

285,

440

comparing

259

foreign

440

Key

delimiter

305,

309

L
LEVEL0

trace-level

constant

339

LEVEL1

trace-level

constant

339,

358,

359,

376,

470

LEVEL2

trace-level

constant

339,

358,

359,

376,

470

LEVEL3

trace-level

constant

339,

358,

359,

376,

470

LEVEL4

trace-level

constant

339,

358,

359,

376,

470

LEVEL5

trace-level

constant

339,

358,

359,

376,

470

Locale

57,

76,

356,

459

business-object

60,

276,

299,

356,

416,

423

connector-framework

60,

363,

464

Log

destination

137,

139,

369,

469

LogAtInterchangeEnd

connector

configuration

property

66,

78,

112,

138,

157,

325,

357,

370,

469

Logging

17,

137,

360,

369,

411,

460,

469

business

object

information

261

internationalizing

58

message

destination

139

sending

a

message

138

Logical

delete

97,

100,

103,

130

logMsg()

method

138,

144,

369

LogonFailedException

exception

235,

384

LogonFailureException

exception

149

LONGTEXT

attribute-type

constant

247,

282

LONGTEXTSTRING

attribute-type

constant

247,

281

Low-level

Java

connector

library
BOHandlerBase

405

BusinessObjectInterface

409

ConnectorBase

425

CxObjectAttr

435

CxObjectContainerInterface

443

CxProperty

447

CxStatusConstants

455

exceptions

473

Index

543

Low-level

Java

connector

library

(continued)
JavaConnectorUtil

457

overview

403

ReturnStatusDescriptor

471

M
Mapping

11,

210

Max

Length

attribute

property

163,

278,

525

MaxDoublePrecision

298

MaxFloatPrecision

299

Message

137,

471,

472,

473

destination

139

explanation

142,

203,

333,

336

for

exception

object

382

for

exception-detail

object

334

format

142

generating

143

message

text

142,

144,

203,

334,

336,

382

message

types

203

number

142,

144,

203,

334,

337

retrieving

334,

342,

382

setting

336,

342

source

142

types

145,

335,

337

Message

file

142,

146

constants

for

144,

345

generating

message

from

359,

459

location

142

name

of

142

Message

logging

69,

137,

146

generating

messages

144

message

file

142

tracing

139

Message

queues

207

MESSAGE_RECIPIENT

server

configuration

parameter

138

Messaging

system

15

Metadata

45

MimeType

connector

configuration

property

133

monitoring,

of

transactions

52

MonitorQueue

connector

configuration

property

135

MULTI_VALUED

connector-property

constant

304,

390

MULTIPLE_HITS

outcome

status

167,

169,

201,

202,

303,

335

doVerbFor()

250,

261,

406,

411

doVerbForCustom()

380

RetrieveByContent

verb

96

MULTIPLECARDSTRING

attribute-type

constant

247,

281

Multipurpose

Internet

Mail

Extensions

(MIME)

format

75,

133,

347,

349,

351,

353,

370,

372,

374

N
NO_SUBSCRIPTION_FOUND

outcome

status

188,

201,

202,

240,

303,

428

NotSupportedException

exception

365,

384

O
OBJECT

attribute-type

constant

110,

247,

282

Object

Discovery

Agent

(ODA)

6

ADK

support

25

development

support

26

Object

Request

Broker

(ORB)

15,

64

objectClone()

method

292

ObjectEventId

attribute

84,

106,

115,

164,

165,

186

P
Package

AppSide_Connector

405,

425,

457

CxCommon

409,

435,

443,

455,

471

Par
See

xception

exception

ParallelProcessDegree

connector

configuration

property

242,

362,

364,

430,

463

Physical

delete

103,

130

PollAttributeDelimiter

connector

configuration

property

115,

177

pollForEvents()

method

63,

67,

125,

126,

134,

141,

178,

200,

244,

261,

429

PollFrequency

connector

configuration

property

63,

125,

244,

432

Polling

67,

68,

126,

130,

178,

200

archiving

the

event

127,

191

basic

logic

126,

179

checking

for

subscriptions

183

determining

if

connector

process

can

poll

241

duplicate

event

elimination

134

guaranteed

event

delivery

and

134,

135

interval

for

125

mechanism

for

125

poll

method

126,

244,

432

releasing

resources

193,

319

retrieving

application

data

185,

205

retrieving

event

information

182

retrieving

event

records

180

sending

the

event

186

setting

the

verb

187

setting

up

subscription

handler

180

standard

behavior

125

verifying

the

connection

180

PollQuantity

connector

configuration

property

133,

134,

181,

320,

523

Primary

key

86,

109,

259,

283,

284,

285,

289

PropertyNotSetException

exception

235,

384

prune()

method

292

Publish-and-subscript

model

20

R
readerToBO()

method

76,

370

READY_FOR_POLL

event-status

constant

116,

313

Ready-for-Poll

event

320,

323,

325,

326

retrieving

310

setting

306,

327,

328

updating

event

status

to

314,

326

READY_FOR_ROLL

event-status

constant
updating

event

status

to

188

recoverInProgressEvents()

method

149,

175,

178,

235,

324

removeAllObjects()

method

293,

385

removeBusinessObjectAt()

method

293,

385

Repository

29,

64,

207,

208

Request

business

object

23,

155,

159,

168

Request

processing

7,

22,

25,

38,

79,

112

extending

business-object-handler

base

class

82,

152

standard

behavior

521

transport

layer

and

15,

17

Required

attribute

property

163,

290,

367,

525

resubmitArchivedEvents()

method

175,

178,

326

Retrieve

verb
constant

for

157,

303

implementation

90

outcome

status

94,

167

544

Connector

Development

Guide

for

Java

Retrieve

verb

(continued)
overview

89

processing

blank

values

170

processing

Ignore

values

170

standard

behavior

89

using

attribute

values

for

159,

165,

166

RetrieveByContent

verb

322

constant

for

158,

304

implementation

95

outcome

status

95,

167

overview

94

using

attribute

values

for

165,

166

RETRIEVEBYCONTENT_FAILED

outcome

status

167,

201,

202,

303,

322,

335

doVerbFor()

251,

261,

406,

411

doVerbForCustom()

380

RetrieveByContent

verb

96

RetrieveVerb

property

321

Return-status

descriptor

69,

204,

207

class

for

341,

471

containing

verb-processing

status

168,

204

creating

205,

341

explicitly

accessing

205,

236

implicitly

accessing

205

message

206,

342

populating

168

status

206,

342,

343

ReturnStatusDescriptor

class

(low-level)

341,

403,

471,

472

getErrorString()

471

getStatus()

471

method

summary

471

setErrorString()

406,

472

setStatus()

406,

472

S
Serialized

data

75,

76

as

a

byte

array

76,

347,

353

as

a

Reader

object

76,

370

as

a

stream

349,

372

as

a

string

76,

351,

374

supported

forms

of

76

Service

call

request

11,

15,

20,

23

Service

call

response

20,

24

setAttrValues()

method

166,

294

setbooleanValue()

method

166,

294,

385,

386

setBusObjValue()

method

166,

295,

385,

386

setDEEId()

method

136,

296

setDefaultAttrValues()

method

297

setdoubleValue()

method

166,

297,

385,

386

setEncryptionFlag()

method

73,

399

setErrorString()

method

206,

342

setEventSource()

method

178,

312

setEventStatus()

method

175,

178,

326

setEventsToProcess()

method

175,

327

setEventStoreStatus()

method

329

setExpl()

method

203,

336

setfloatValue()

method

166,

298,

385,

386

setintValue()

method

166,

299,

385,

386

setLocale()

method

60,

299

setLongTextValue()

method

166,

300

setMsg()

method

203,

251,

336

setMsgNumber()

method

203,

337

setMsgType()

method

203,

337

setName()

method

252

setStatus()

method

(CWConnectorExceptionObject)

203,

251,

338

setStatus()

method

(CWConnectorReturnStatusDescriptor)

206,

343

setStatus()

method

(CWException)

203,

383

setStringValue()

method

166,

301,

385,

386

setTerminate()

method

175,

322,

328

setValues()

method

399

setVerb()

method

187,

302,

386

SIMPLE

connector-property

constant

304,

396

SINGLE_VALUED

connector-property

constant

304,

390

SINGLECARDSTRING

attribute-type

constant

247,

281

SourceQueue

connector

configuration

property

133

SpecNameNotFoundException

exception

366,

384,

385

SQL

statement

166

start_connName.bat

file

211

StatusChangeFailedException

exception

181,

192,

323,

325,

326,

329,

384

streamToBO()

method

76,

372

STRING

attribute-type

constant

247,

282

stringToBo()

method

76,

374

STRSTRING

attribute-type

constant

247,

281

Subscription

handler

13,

180,

428

Subscription

handling

12

Subscription

manager

17,

180,

243,

431

SUCCEED

outcome

status

201,

303

archiveEvent()

202,

318

Create

verb

88

doVerbFor()

167,

202,

250,

260,

405,

410

doVerbForCustom()

379

Exists

verb

105

gotApplEvent()

188,

202,

240,

428

init()

430

pollForEvents()

68,

188,

192,

202,

244,

432

recoverInProgressEvents()

324

terminate()

200,

202,

245,

433

Update

verb

102

SUCCESS

event-status

constant

116,

192,

313

retrieving

310

setting

306,

327,

328

updating

event

status

to

188

T
Table-based

application
application-specific

information

80,

81

business

object

handler

79

business

object

structure

106,

109

database

triggers

122

metadata-driven

design

and

45,

46

terminate()

method

68,

245

Tivoli

Monitoring

for

Transaction

Performance

52

Top-level

business

object

108

Trace

level

360,

368,

457,

460,

468

Trace

message

139,

141,

145,

339,

376,

469

traceCWConnectorAPIVersion()

method

375

TraceFileName

connector

configuration

property

376

TraceLevel

connector

configuration

property

139,

376,

470

traceWrite()

method

140,

144,

376

Tracing

17,

139,

368,

411,

468

business

object

information

261

enabling

139

internationalizing

58

message

destination

139

sending

a

message

139

trace

levels

140

Transaction

84

transaction

monitoring

52

Triggering

event

19,

236

Index

545

Triggering

user

178,

306,

311

Troubleshooting

139

U
UNABLETOLOGIN

outcome

status

201,

303,

335,

430

UNSUBSCRIBED

event-status

constant

116,

192,

313

retrieving

310

setting

306,

327,

328

updating

event

status

to

184,

188,

191,

314

Update

verb
constant

for

157,

303

outcome

status

102,

167

overview

96

processing

blank

values

170

processing

Ignore

values

170

retrieving

application

data

for

185

standard

behavior

97

using

attribute

values

for

160,

165,

166

updateEventStatus()

method

175,

178,

182,

184,

191,

328

UseDefaults

connector

configuration

property

367,

467,

526

V
VALCHANGE

outcome

status

201,

303

Create

verb

88

Delete

verb

104

doVerbFor()

167,

169,

202,

250,

261,

406,

411

doVerbForCustom()

380

Retrieve

verb

94

RetrieveByContent

verb

95,

96

Update

verb

102

VALDUPES

outcome

status

167,

201,

202,

303

Create

verb

88

doVerbFor()

250,

261,

406,

411

doVerbForCustom()

380

Verb
active

261

branching

on

157

obtaining

155,

282,

418

processing

250,

260,

379,

405,

410

setting

302,

423

application-specific

information

80,

161,

283,

418

basic

processing

157

branching

on

157

checking

if

supported

419

comparing

260

copying

292,

410

determining

if

supported

291

in

child

business

object

84

Verb

(continued)
metadata-driven

processing

159

method

for

86,

158

performing

action

of

250,

260,

379,

405,

410

performing

operation

for

85,

159

recommendations

84

retrieving

280,

418

retrieving

from

request

business

object

155,

282

setting

302,

423

supported

155,

161,

280,

291

verb

stability

84,

183,

187

VERB_CREATE

verb

constant

157,

280,

303

VERB_DELETE

verb

constant

158,

280,

303

VERB_EXISTS

verb

constant

158,

304

VERB_RETRIEVE

verb

constant

157,

280,

303

VERB_RETRIEVEBYCONTENT

verb

constant

158,

304

VERB_UPDATE

verb

constant

157,

280,

303

VerbProcessingFailedException

exception

155,

251,

380,

384

W
Warning

137,

145,

339

WBIA.jar

file

18,

208,

231

wbiart.jar

file

403

WebSphere

Application

Server

3

starting

connectors

with

64

WebSphere

Business

Integration

Message

Broker

3

starting

connectors

with

64

WebSphere

business

integration

system

3

WebSphere

InterChange

Server
starting

connectors

with

64

WebSphere

MQ

Integrator

Broker

3

business

object

subscriptions

22,

183,

244,

432

starting

connectors

with

64

transport

mechanisms

with

17

WrongASIFormatException

exception

384

WrongAttributeException

exception

384,

385

X
XRD_ERROR

message-type

constant

145,

335,

339,

357,

360,

369,

460,

469

XRD_FATAL

message-type

constant

145,

335,

339,

357,

360,

369,

460,

469

XRD_INFO

message-type

constant

145,

339,

357,

360,

369,

460,

469

XRD_TRACE

message-type

constant

140,

145,

339,

357,

360,

369,

460,

469

XRD_WARNING

message-type

constant

145,

339,

357,

360,

369,

460,

469

546

Connector

Development

Guide

for

Java

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions
	Markup conventions

	New in this release
	New in WebSphere Business Integration Adapter Framework v2.6.0
	New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integration Adapter Framework v2.4.1
	New in WebSphere InterChange Server v4.2.2 and WebSphere Business Integration Adapters v2.4.0
	New in WebSphere InterChange Server v4.2.1 and WebSphere Business Integration Adapters v2.3.0
	New in WebSphere Business Integration Adapters 2.2.0
	New in WebSphere Business Integration Adapters 2.1
	New in WebSphere Business Integration Adapters 2.0.1
	New in WebSphere Business Integration Adapters 2.0

	Part 1. Getting started
	Chapter 1. Introduction to connector development
	Adapters in the WebSphere business integration system
	Business objects
	Connectors

	Connector components
	Connector framework
	Application-specific component

	Event-triggered flow
	Event notification
	Request processing

	Tools for adapter development
	Development support for business objects
	Development support for ODAs
	Development support for connectors

	Overview of the connector development process
	Setting up the development environment
	Stages of connector development

	Part 2. Building a connector
	Chapter 2. Designing a connector
	Scope of a connector development project
	Designing the connector architecture
	Understanding the application environment
	Determining connector directionality
	Getting data in and out of the application

	Designing application-specific business objects
	Determining the application entities
	Determining the scope of business object development
	Assessing support for metadata-driven design

	Event notification
	Event notification level of detail
	Event notification support for business logic

	Communication across operating systems
	Communication across other systems
	Common Event Infrastructure support
	Application Response Measurement instrumentation support

	Summary set of planning questions
	Evaluating the findings

	An internationalized connector
	What is a locale?
	Design considerations for an internationalized connector

	Chapter 3. Providing general connector functionality
	Running a connector
	Starting up a connector
	Polling for events
	Shutting down the connector

	Extending the connector base class
	Handling errors
	Using connector configuration property values
	What is a connector configuration property?
	Defining and setting connector configuration properties
	Retrieving connector configuration properties

	Calling a data handler
	Determining direction of the data conversion
	Accessing the serialized data
	Identifying the data handler to instantiate

	Handling loss of connection to an application

	Chapter 4. Request processing
	Designing business object handlers
	Implementing metadata-driven business object handlers
	Implementing multiple business object handlers

	Extending the business-object-handler base class
	Handling the request
	Basic logic for doVerbFor()
	General recommendations on verb implementations

	Performing the verb action
	Handling the Create verb
	Standard processing for a Create verb
	Implementation of a Create verb operation
	Outcome status for Create verb processing

	Handling the Retrieve verb
	Standard processing for a Retrieve verb
	Implementation of a Retrieve verb operation
	Example: Retrieve operation
	Retrieving child objects
	Outcome status for Retrieve verb processing

	Handling the RetrieveByContent verb
	Implementation for a RetrieveByContent verb operation
	Outcome status for RetrieveByContent processing

	Handling the Update verb
	Standard processing for an Update verb
	Implications of business objects representing logical Delete events
	Outcome status for Update verb processing

	Handling the Delete verb
	Standard processing for a Delete verb
	Outcome status for Delete verb processing

	Handling the Exists verb
	Standard processing for an Exists verb
	Outcome status for Exists verb processing

	Processing business objects
	Processing flat business objects
	Processing hierarchical business objects

	Indicating the connector response
	Handling loss of connection to the application

	Chapter 5. Event notification
	Overview of an event-notification mechanism
	Implementing an event store for the application
	Standard contents of an event record
	Event status
	Possible implementations of an event store

	Implementing event detection
	Event detection mechanisms
	Event detection: standard behavior

	Implementing event retrieval
	Event retrieval mechanisms
	Using a polling mechanism

	Implementing the poll method
	Basic logic for pollForEvents()
	Other polling issues

	Special considerations for event processing
	Processing Delete events
	Using guaranteed event delivery

	Chapter 6. Message logging
	Error and informational messages
	Indicating a log destination
	Sending a message to the log destination

	Trace messages
	Enabling tracing
	Identifying a trace destination
	Sending a trace message to the trace destination
	Recommended content for trace messages

	Message file
	Message format
	Name and location of a message file
	Generating a message string

	Chapter 7. Implementing a Java connector
	Extending the Java connector base class
	Beginning execution of the connector
	Initializing the connector
	Obtaining the Java business object handler

	Creating a business object handler
	Extending the Java business-object-handler base class
	Implementing the doVerbFor() method
	Creating a custom business object handler

	Implementing an event-notification mechanism
	Obtaining access to the event store
	Implementing the pollForEvents() method
	Default implementation of the Java pollForEvents()

	Shutting down the connector
	Handling errors and status
	Java return codes
	Exceptions
	Return-status descriptor

	Chapter 8. Adding a connector to the business integration system
	Naming the connector
	Compiling the connector
	Creating the connector definition
	Defining the connector

	Creating the initial configuration file
	Starting up a new connector
	Preparing the connector directory
	Creating startup scripts

	Part 3. Java connector library API reference
	Chapter 9. Overview of the Java connector library
	Classes and interfaces

	Chapter 10. CWConnectorAgent class
	CWConnectorAgent()
	agentInit()
	executeCollaboration()
	getCollabNames()
	getConnectorBOHandlerForBO()
	getEventStore()
	getVersion()
	gotApplEvent()
	isAgentCapableOfPolling()
	isSubscribed()
	pollForEvents()
	terminate()

	Chapter 11. CWConnectorAttrType class
	Attribute-type constants

	Chapter 12. CWConnectorBOHandler class
	CWConnectorBOHandler()
	doVerbFor()
	getName()
	setName()

	Chapter 13. CWConnectorBusObj class
	areAllPrimaryKeysTheSame()
	compare()
	doVerbFor()
	dump()
	getAppText()
	getAttrASIHashtable()
	getAttrCount()
	getAttrIndex()
	getAttrName()
	getbooleanValue()
	getBusinessObjectVersion()
	getBusObjASIHashtable()
	getBusObjValue()
	getCardinality()
	getDefault()
	getDefaultboolean()
	getDefaultdouble()
	getDefaultfloat()
	getDefaultint()
	getDefaultlong()
	getDefaultString()
	getdoubleValue()
	getfloatValue()
	getintValue()
	getLocale()
	getLongTextValue()
	getlongValue()
	getMaxLength()
	getName()
	getObjectCount()
	getParentBusinessObject()
	getStringValue()
	getSupportedVerbs()
	getTypeName()
	getTypeNum()
	getVerb()
	getVerbAppText()
	hasAllKeys()
	hasAllPrimaryKeys()
	hasAnyActivePrimaryKey()
	hasCardinality()
	hasName()
	hasType()
	isAttrPresent()
	isBlank()
	isForeignKeyAttr()
	isIgnore()
	isKeyAttr()
	isMultipleCard()
	isObjectType()
	isRequiredAttr()
	isType()
	isVerbSupported()
	objectClone()
	prune()
	removeAllObjects()
	removeBusinessObjectAt()
	setAttrValues()
	setbooleanValue()
	setBusObjValue()
	setDEEId()
	setDefaultAttrValues()
	setdoubleValue()
	setfloatValue()
	setintValue()
	setLocale()
	setLongTextValue()
	setStringValue()
	setVerb()

	Chapter 14. CWConnectorConstant class
	Outcome-status constants
	Verb constants
	Connector-property constants

	Chapter 15. CWConnectorEvent class
	CWConnectorEvent()
	getBusObjName()
	getConnectorID()
	getEffectiveDate()
	getEventID()
	getEventSource()
	getEventTimeStamp()
	getIDValues()
	getKeyDelimiter()
	getPriority()
	getStatus()
	getTriggeringUser()
	getVerb()
	setEventSource()

	Chapter 16. CWConnectorEventStatusConstants class
	Event-status constants

	Chapter 17. CWConnectorEventStore class
	CWConnectorEventStore()
	archiveEvent()
	cleanupResources()
	deleteEvent()
	fetchEvents()
	getBO()
	getNextEvent()
	getTerminate()
	recoverInProgressEvents()
	resubmitArchivedEvents()
	setEventStatus()
	setEventsToProcess()
	setTerminate()
	updateEventStatus()
	Deprecated Methods

	Chapter 18. CWConnectorEventStoreFactory interface
	getEventStore()

	Chapter 19. CWConnectorExceptionObject class
	CWConnectorExceptionObject()
	getExpl()
	getMsg()
	getMsgNumber()
	getMsgType()
	getStatus()
	setExpl()
	setMsg()
	setMsgNumber()
	setMsgType()
	setStatus()

	Chapter 20. CWConnectorLogAndTrace class
	Message-type constants
	Trace-level constants

	Chapter 21. CWConnectorReturnStatusDescriptor class
	CWConnectorReturnStatusDescriptor()
	getErrorString()
	getStatus()
	setErrorString()
	setStatus()

	Chapter 22. CWConnectorUtil class
	Message-file constants
	Methods
	CWConnectorUtil()
	boToByteArray()
	boToStream()
	boToString()
	byteArrayToBo()
	createAndCopyKeyVals()
	createAndSetDefaults()
	createBusObj()
	generateAndLogMsg()
	generateAndTraceMsg()
	generateMsg()
	getAllConfigProperties()
	getAllConnectorAgentProperties()
	getBlankValue()
	getConfigProp()
	getGlobalEncoding()
	getGlobalLocale()
	getHierarchicalConfigProp()
	getIgnoreValue()
	getSupportedBONames()
	getVersion()
	initAndValidateAttributes()
	isBlankValue()
	isIgnoreValue()
	isTraceEnabled()
	logMsg()
	readerToBO()
	streamToBO()
	stringToBo()
	traceCWConnectorAPIVersion()
	traceWrite()

	Deprecated Methods

	Chapter 23. CWCustomBOHandlerInterface interface
	doVerbForCustom()

	Chapter 24. CWException class
	Methods
	CWException()
	getExceptionObject()
	getMessage()
	getStatus()
	setStatus()
	Exception subclasses
	Exception subclass constructor

	Chapter 25. CWProperty class
	CWProperty()
	getCardinality()
	getChildPropValue()
	getChildPropsWithPrefix()
	getEncryptionFlag()
	getHierChildProp()
	getHierChildProps()
	getHierProp()
	getName()
	getPropType()
	getStringValues()
	hasChildren()
	hasValue()
	setEncryptionFlag()
	setValues()

	Part 4. Java low-level connector library API reference
	Chapter 26. Overview of the low-level Java connector library
	Classes and interfaces

	Chapter 27. BOHandlerBase class
	doVerbFor()
	getName()
	setName()

	Chapter 28. BusinessObjectInterface interface
	clone()
	doVerbFor()
	dump()
	getAppText()
	getAttrCount()
	getAttrDesc()
	getAttribute()
	getAttributeIndex()
	getAttributeType()
	getAttrName()
	getAttrValue()
	getBusinessObjectVersion()
	getDefaultAttrValue()
	getLocale()
	getName()
	getParentBusinessObject()
	getVerb()
	getVerbAppText()
	isAttrPresent()
	isBlank()
	isIgnore()
	isVerbSupported()
	makeNewAttrObject()
	setAttributeWithCreate()
	setAttrValue()
	setDefaultAttrValues()
	setLocale()
	setVerb()

	Chapter 29. ConnectorBase class
	executeCollaboration()
	getBOHandlerForBO()
	getCollabNames()
	getSupportedBusObjNames()
	getVersion()
	gotApplEvent()
	init()
	isAgentCapableOfPolling()
	isSubscribed()
	pollForEvents()
	terminate()
	Deprecated methods

	Chapter 30. CxObjectAttr class
	Attribute-type constants
	Methods
	equals()
	getAppText()
	getCardinality()
	getDefault()
	getMaxLength()
	getName()
	getRelationType()
	getTypeName()
	getTypeNum()
	hasCardinality()
	hasName()
	hasType()
	isForeignKeyAttr()
	isKeyAttr()
	isMultipleCard()
	isObjectType()
	isRequiredAttr()
	isType()

	Chapter 31. CxObjectContainerInterface interface
	getBusinessObject()
	getObjectCount()
	insertBusinessObject()
	removeAllObjects()
	removeBusinessObjectAt()
	setBusinessObject()

	Chapter 32. CxProperty class
	CxProperty()
	getAllChildProps()
	getChildProp()
	getEncryptionFlag()
	getName()
	getStringValues()
	hasChildren()
	setEncryptionFlag()
	setValues()

	Chapter 33. CxStatusConstants class
	Outcome-status constants

	Chapter 34. JavaConnectorUtil class
	Static constants
	Methods
	createBusinessObject()
	createContainer()
	generateMsg()
	getAllConfigProp()
	getAllConnectorAgentProperties()
	getAllStandardProperties()
	getAllUserProperties()
	getBlankValue()
	getConfigProp()
	getEncoding()
	getIgnoreValue()
	getLocale()
	getOneConfigProp()
	getSupportedBusObjNames()
	initAndValidateAttributes()
	isBlankValue()
	isIgnoreValue()
	isTraceEnabled()
	logMsg()
	traceWrite()

	Chapter 35. ReturnStatusDescriptor class
	getErrorString()
	getStatus()
	setErrorString()
	setStatus()

	Chapter 36. Low-level Java exceptions
	Exception subclasses
	Methods
	getFormattedMessage()

	Part 5. Appendixes
	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Connector Script Generator
	Appendix D. Connector feature checklist
	Guidelines for using the connector feature checklist
	Standard behavior for request processing
	Standard behavior for the event notification
	General standards

	Notices
	Programming interface information
	Trademarks and service marks

	Index

