
IBM

WebSphere

Business

Integration

Adapters

Adapter

for

JDBC

User

Guide

V

2.4.x

���

IBM

WebSphere

Business

Integration

Adapters

Adapter

for

JDBC

User

Guide

V

2.4.x

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

121.

19December2003

This

edition

of

this

document

applies

to

the

adapter

for

JDBC

version

2.4.x

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2000,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

release

2.4.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

release

2.3.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

New

in

release

2.2.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

release

2.1.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

release

2.0.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

release

1.9.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

New

in

release

1.8.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

release

1.7.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

release

1.6.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

New

in

release

1.5.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

Chapter

1.

Overview

of

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Connector

components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

How

the

connector

works

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Chapter

2.

Installing

and

configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Adapter

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Installing

the

adapter

and

related

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Installed

file

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Enabling

the

application

for

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Enabling

multi-driver

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Enabling

the

custom

business

object

handler

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Creating

multiple

instances

of

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Starting

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Stopping

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

3.

Understanding

business

objects

for

the

connector

.

.

.

.

.

.

.

.

.

.

.

. 31

Business

object

and

attribute

naming

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Business

object

verb

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Business

object

attribute

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Business

object

application-specific

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

.

.

.

.

.

.

.

.

. 65

Installation

and

usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Using

JDBCODA

in

business

object

designer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Contents

of

the

generated

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Sample

business

object

definition

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Inserting

attributes

that

contain

child

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Adding

information

to

the

business

object

definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Chapter

5.

Troubleshooting

and

error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Startup

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Event

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

©

Copyright

IBM

Corp.

2000,

2003

iii

Mapping

(ICS

Integration

Broker

only)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Error

handling

and

logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Loss

of

connection

to

the

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Fetch

out-of-sequence

error

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Inability

to

locate

event

or

archive

tables

when

DB2

is

used

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Enabling

the

connector

to

work

with

a

DB2

database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Resource-busy

error

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

JDBCODA

behaves

improperly

because

of

unsupported

JDBC

driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 85

New

and

deleted

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Appendix

B.

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Overview

of

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Starting

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Running

Configurator

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Changing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Using

Connector

Configurator

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Appendix

C.

Business

object

samples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

AfterUpdateSPSampleBO.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

BeforeCreateSPSampleBO.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

BOwithDifferentParameterOrder.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

BOwithIOandOPParams.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

BOwithFewerSPParamsthanBOAttribs.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

CreateSPUpdateSPSampleBO.txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Appendix

D.

Support

for

null

and

blank

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Pass

and

Fail

Scenarios

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Functionality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

iv

Adapter

for

JDBC

User

Guide

Figures

1.

Business

object

request

architecture

.

.

.

.

. 2

2.

Typical

single-cardinality

relationship

.

.

.

. 33

3.

Multiple-cardinality

business

object

relationship

.

.

.

.

.

.

.

.

.

.

.

. 35

4.

Single-cardinality

business

object

with

relationship

stored

in

the

child

.

.

.

.

.

. 35

5.

Example

of

relationships

among

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

6.

Selecting

the

ODA

.

.

.

.

.

.

.

.

.

. 69

7.

Configuring

agent

initialization

properties

70

8.

Tree

of

Schema

with

Expanded

Nodes

.

.

. 71

9.

Confirming

Selection

of

Database

Objects

72

10.

Associating

Stored

Procedures

with

Stored

Procedure

Attributes

.

.

.

.

.

.

.

.

. 73

©

Copyright

IBM

Corp.

2000,

2003

v

vi

Adapter

for

JDBC

User

Guide

About

this

document

The

IBMR

WebSphereR

Business

Integration

Adapter

portfolio

supplies

integration

connectivity

for

leading

e-business

technologies,

enterprise

applications,

and

legacy

and

mainframe

systems.

The

product

set

includes

tools

and

templates

for

customizing,

creating,

and

managing

components

for

business

process

integration.

This

document

describes

the

installation,

configuration,

and

business

object

development

for

the

adapter

for

JDBC.

Audience

This

document

is

for

consultants,

developers,

and

system

administrators

who

use

the

connector

at

customer

sites.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Adapters

installations,

and

includes

reference

material

on

specific

components.

You

can

install

related

documentation

from

the

following

sites:

v

For

general

adapter

information;

for

using

adapters

with

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker);

and

for

using

adapters

with

WebSphere

Application

Server,

see

the

IBM

WebSphere

Business

Integration

Adapters

InfoCenter:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v

For

using

adapters

with

WebSphere

InterChange

Server,

see

the

IBM

WebSphere

InterChange

Server

InfoCenters:

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v

For

more

information

about

WebSphere

message

brokers:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v

For

more

information

about

WebSphere

Application

Server:

http://www.ibm.com/software/webservers/appserv/library.html

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic

Indicates

a

variable

name

or

a

cross-reference.

©

Copyright

IBM

Corp.

2000,

2003

vii

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

blue

outline

Blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

ProductDir

Represents

the

directory

where

the

IBM

WebSphere

Business

Integration

Adapters

product

is

installed.

The

default

product

directory

is

WebSphereAdapters.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

|

In

a

syntax

line,

a

pipe

separates

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

Angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

product

pathnames

are

relative

to

the

directory

where

the

connector

for

JDBC

is

installed

on

your

system.

UNIX:/Windows:

Paragraphs

beginning

with

either

of

these

indicate

notes

listing

operating

system

differences.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

viii

Adapter

for

JDBC

User

Guide

New

in

this

release

New

in

release

2.4.x

Updated

in

December

2003.

Beginning

with

version

2.1.0,

the

adapter

for

JDBC

is

no

longer

supported

on

Microsoft

Windows

NT.

The

release

of

this

document

for

adapter

version

2.4.x

also

contains

the

following

new

or

corrected

information:

v

Information

formerly

in

Chapter

2

about

installing

the

connector

has

been

removed.

See

that

chapter

for

the

new

location

of

that

information.

v

Under

“Configuring

the

connector”in

Chapter

2,

the

connector-specific

configuration

properties

of

ApplicationPassword

and

ApplicationUserName

are

not

required

when

trusted

authentication

is

being

used.

v

Under

“Business

object

verb

processing

”in

Chapter

3,

the

instructions

for

DeltaUpdate

operations

have

been

added

and

the

instructions

for

Delete

operations

have

been

revised.

v

Under

“Business

object

application-specific

information”

in

Chapter

3,

information

has

been

added

to

describe

how

a

CLOB

datatype

would

be

defined.

v

In

the

same

section

of

Chapter

3

under

“Generating

a

business

object’s

unique

identifier,”

information

regarding

IBM

DB2

has

been

added.

v

Stored

procedures

have

been

added

to

the

section

in

Chapter

4,

“Expanding

nodes

and

selecting

tables,

views

and

stored

procedures.”And,

details

about

stored

procedure

attributes

have

been

added

under

“Providing

additional

information.”

New

in

release

2.3.x

Updated

in

July

2003.

The

release

of

this

document

for

adapter

version

2.3.x

contains

the

following

new

or

corrected

information:

v

The

adapter

can

now

use

WebSphere

Application

Server

as

an

integration

broker.
v

The

adapter

now

runs

on

the

following

platforms:

–

HP-UX11i

–

AIX

5.x

–

Solaris

7

and

8
v

Support

for

return

of

result

set

from

Oracle

stored

procedures

has

been

added.

v

Support

for

CLOB

data

types

has

been

added.

v

Grandparent

access

support

for

copy

attributes

has

been

added.

Copy

attributes

can

now

be

accessed

from

the

parent,

which

allows

propagation

of

attributes

down

the

business

object

hierarchy.

v

The

restriction

has

been

removed

that

an

eventid

must

be

a

numeric

data

type.

©

Copyright

IBM

Corp.

2000,

2003

ix

New

in

release

2.2.x

Updated

in

March

2003.

The

“CrossWorlds”

name

is

no

longer

used

to

describe

an

entire

system

or

to

modify

the

names

of

components

or

tools,

which

are

otherwise

mostly

the

same

as

before.

For

example

“CrossWorlds

System

Manager”

is

now

“System

Manager,”

and

“CrossWorlds

InterChange

Server”

is

now

“WebSphere

InterChange

Server.”

The

release

of

this

document

for

connector

version

2.2.x

contains

the

following

new

or

corrected

information:

v

Support

has

been

added

for

the

following:

–

Wrapper

objects

at

the

top-level

of

business

objects

–

LIKE

operator

–

Hex/binary

data

–

Stored

procedures

for

the

RetrieveUpdate

verb

–

Verb

Application

Specific

Information

for

RetrieveByContent

–

Verb

Application

Specific

Information

in

the

WHERE

clause

when

the

WHERE

clause

length

is

0

in

RetrieveByContent
v

The

ConnectorID

property

has

been

changed

from

an

int

to

a

String

to

allow

for

a

more

descriptive

name.

v

The

DRIVERLIB

variable

has

been

added

to

point

to

the

native

libraries

used

by

the

custom

JDBC

drivers.

v

More

functionality

has

been

added

to

check

for

loss

of

database

connectivity

during

object

processing.

v

The

Schema

Name

property

is

now

used

when

retrieving

and

archiving

events.

v

Sample

business

objects

have

been

added,

RetrieveResultSet_SampleBOwithMcardChild

and

RetrieveResultSet_SampleBOwithScardChild,

(located

in

the

\connectors\JDBC\Samples

directory).

New

in

release

2.1.x

The

orjdbcobjconverter.pl

Perl

script

(used

to

convert

an

Oracle

object

to

a

JDBC-specific

object)

is

no

longer

installed

with

the

connector.

Instead,

you

can

obtain

this

script

from

the

IBM

eCare

support

Web

site

(http://www.ibm.com/software/integration/cw/support).

New

in

release

2.0.x

The

connector

has

been

internationalized.

For

more

information,

see

“Processing

Locale-Dependent

Data,”

on

page

6

and

Appendix

A,

Standard

Configuration

Properties

for

IBM

CrossWorlds

Connectors

New

in

release

1.9.x

The

IBM

WebSphere

Business

Integration

Adapter

for

JDBC

includes

the

connector

for

JDBC.

This

adapter

supports

two

integration

brokers:

InterChange

Server

(ICS)

and

WebSphere

MQIntegrator.

An

integration

broker

is

an

application

that

performs

integration

of

heterogeneous

sets

of

applications;

it

provides

services

such

as

data

routing.

The

IBM

WebSphere

Business

Integration

Adapter

for

JDBC

includes

the

following:

x

Adapter

for

JDBC

User

Guide

v

An

application

component

specific

to

JDBC

v

JDBCODA

v

A

sample

business

object

(located

in

the

\connectors\JDBC\Samples

directory)

v

IBM

WebSphere

Adapter

Framework,

which

consists

of

the

following:

–

Connector

Framework

–

Development

tools

(including

Business

Object

Designer

and

Connector

Configurator)

–

APIs

(including

ODK,

JCDK,

and

CDK)

This

manual

provides

information

about

using

the

adapter

with

both

the

ICS

and

WebSphere

MQIntegrator

integration

brokers.

Note:

Because

the

connector

has

not

been

internationalized,

do

not

run

it

against

InterChange

Server

version

4.1.1

if

you

cannot

guarantee

that

only

ISO

Latin-1

data

will

be

processed.

New

in

release

1.8.x

JDBCODA,

which

generates

business

object

definitions

for

the

connector,

has

been

enhanced,

and

the

documentation

of

it

has

been

improved.

See

Chapter

4,

“Generating

business

object

definitions

using

JDBCODA,”

on

page

65.

New

in

release

1.7.x

CrossWorlds

installation

now

provides

the

IBM

branded

JDBC

driver

for

the

MS

SQL

Server

to

replace

the

WebLogic

JDBC

driver,

and

continues

to

provide

the

Oracle

thin

driver.

New

in

release

1.6.x

The

release

of

this

document

for

connector

version

1.6.x

contains

the

following

new

or

corrected

information:

v

An

Object

Discovery

Agent

utility

has

been

developed

to

create

business

objects

for

the

connector.

This

should

be

used

instead

of

the

JDBCBORGEN

provided

with

earlier

connector

releases.

See

Chapter

4,

“Generating

business

object

definitions

using

JDBCODA,”

on

page

65.

v

The

CheckForEventTableInInit

property

description

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

CloseDBConnection

property

description

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

SPBeforePollCall

property

description

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

Support

has

been

added

for

stored

procedures

returning

ResultSet.

See

“Business

object

retrieve

operations”

on

page

48

and

“Business

object

RetrieveByContent

operations”

on

page

49.

v

Support

has

been

added

for

fixed

length

string

attributes.

See

the

description

in

Table

11

on

page

55.

v

Support

has

been

added

for

a

custom

BO

handler.

New

in

this

release

xi

New

in

release

1.5.x

The

release

of

this

document

for

connector

version

1.5.x

contains

the

following

new

or

corrected

information:

v

The

ArchiveTableName

property

description

has

been

updated.

See

the

“ArchiveTableName”

on

page

17

for

details.

v

The

AutoCommit

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

DateFormat

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

EventKeyDel

property

has

been

updated

to

accommodate

name

value

pairs.

See

“EventKeyDel”

on

page

20

for

details.

v

The

EventQueryType

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

PingQuery

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

PreserveUIDSeq

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

The

SchemaName

property

has

been

added

to

the

“Connector-specific

properties”

on

page

15.

v

Support

for

the

stored

procedures

for

the

RetrieveByContent

verb.

See

“Business

object

RetrieveByContent

operations”

on

page

49

for

details.

v

Support

for

retrieving

business

objects,

based

on

non-key

values,

for

Event

Processing.

See

“Retrieving

business

objects

for

event

processing”

on

page

4

for

details.

xii

Adapter

for

JDBC

User

Guide

Chapter

1.

Overview

of

the

connector

This

chapter

describes

the

connector

component

of

the

IBM

WebSphere

Business

Integration

Adapter

for

JDBC.

This

chapter

contains

the

following

sections:

v

“Connector

components”

v

“How

the

connector

works”

on

page

2

Connector

components

Connectors

consist

of

two

parts:

the

connector

framework

and

the

application-specific

component.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

application-specific

component

contains

code

tailored

to

a

particular

application

or

technology

(in

this

case,

JDBC).

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

The

connector

for

JDBC

enables

the

integration

broker

to

exchange

business

objects

with

an

application

built

on

any

database

supported

by

a

driver

that

follows

the

JDBC

2.0

or

above

specification.

This

section

presents

a

high-level

description

of

the

connector’s

architecture

and

use

of

different

JDBC

drivers.

For

specifying

the

driver

to

be

used

by

the

connector

to

connect

to

the

database,

see

“Enabling

multi-driver

support”

on

page

13.

The

connector

connects

to

the

application

database

by

using

the

JDBC

Connect

mechanism.

One

connector-specific

configuration

parameter

(DatabaseURL)

allows

you

to

specify

the

name

of

the

database

server

to

which

the

connector

should

connect.

For

information

on

the

configuration

parameters,

see

“Configuring

the

connector”

on

page

14.

When

the

connector

is

started,

it

establishes

a

connection

pool

with

the

database.

It

uses

connections

from

this

pool

for

all

transaction

processing

with

the

database.

On

termination

of

the

connector,

all

connections

in

the

pool

are

closed.

Connector

architecture

Figure

1

shows

the

connector

components

and

their

relationships

within

the

business

integration

system.

©

Copyright

IBM

Corp.

2000,

2003

1

How

the

connector

works

This

section

describes

how

meta-data

enhances

the

connector’s

flexibility,

and

presents

a

high-level

description

of

business

object

processing

and

event

notification.

The

connector

and

meta-data

The

connector

is

meta-data-driven.

Meta-data,

in

the

IBM

WebSphere

Business

Integration

Adapter

environment,

is

application-specific

data

that

is

stored

in

business

objects

and

that

assists

the

connector

in

its

interaction

with

the

application.

A

meta-data-driven

connector

handles

each

business

object

that

it

supports

based

on

meta-data

encoded

in

the

business

object

definition

rather

than

on

instructions

hard

coded

in

the

connector.

Business

object

meta-data

includes

the

structure

of

a

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

information.

Because

the

connector

is

meta-data

driven,

it

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

code.

The

connector

executes

SQL

statements

or

stored

procedures

to

retrieve

or

change

data

in

the

database/application.

To

build

dynamic

SQL

statements

or

stored

procedures,

the

connector

uses

application-specific

meta-data.

These

SQL

statements

and

stored

procedures

perform

the

required

retrieval

from

or

changes

to

the

database/application

for

the

business

object

and

for

the

verb

that

the

connector

is

processing.

For

information

using

application-specific

information,

see

Chapter

3,

“Understanding

business

objects

for

the

connector,”

on

page

31.

Generic services (Java)

Connector agent

Connector controller
Application

Database

Application objects
tables/stored
procedures

Event
table

Archive
table

Business
object
handlers

Application
event
notification
manager

Global
functions

Database
triggers Polling/Event

management

Event
notification

Archiving

Figure

1.

Business

object

request

architecture

2

Adapter

for

JDBC

User

Guide

Business

object

processing

This

section

provides

an

overview

of

how

the

connector

processes

business

object

requests

and

application

events.

For

more

detailed

information,

see

“Business

object

verb

processing”

on

page

36.

Processing

business

object

requests

When

the

connector

receives

a

request

to

perform

an

application

operation,

the

connector

processes

hierarchical

business

objects

recursively;

that

is,

it

performs

the

same

steps

for

each

child

business

object

until

it

has

processed

all

individual

business

objects.

The

order

in

which

the

connector

processes

child

business

objects

and

the

top-level

business

object

depends

on

whether

the

child

business

objects

are

contained

with

or

without

ownership

and

whether

they

are

contained

with

single

cardinality

or

multiple

cardinality.

Note:

The

term

hierarchical

business

object

refers

to

a

complete

business

object,

including

all

the

child

business

objects

that

it

contains

at

any

level.

The

term

individual

business

object

refers

to

a

single

business

object,

independent

of

any

child

business

objects

it

might

contain

or

that

contain

it.

The

term

top-level

business

object

refers

to

the

individual

business

object

at

the

top

of

the

hierarchy

that

does

not

itself

have

a

parent

business

object.

Business

object

retrieval:

When

an

integration

broker

asks

the

connector

to

retrieve

a

hierarchical

business

object

from

the

database,

the

connector

attempts

to

return

a

business

object

that

exactly

matches

the

current

database

representation

of

that

business

object.

In

other

words,

all

simple

attributes

of

each

individual

business

object

returned

to

the

integration

broker

match

the

value

of

the

corresponding

field

in

the

database.

Also,

the

number

of

individual

business

objects

in

each

array

contained

by

the

returned

business

object

match

the

number

of

children

in

the

database

for

that

array.

To

perform

such

a

retrieval,

the

connector

uses

the

primary

key

values

in

the

top-level

business

object

to

recursively

descend

through

the

corresponding

data

in

the

database.

Business

object

RetrievalByContent:

When

an

integration

broker

asks

the

connector

to

retrieve

a

hierarchical

business

object

based

on

values

in

non-key

attributes

in

the

top-level

business

object,

the

connector

uses

the

value

of

all

non-null

attributes

as

the

criteria

for

retrieving

the

data.

Business

object

creation:

When

an

integration

broker

asks

the

connector

to

create

a

hierarchical

business

object

in

the

database,

the

connector

performs

the

following

steps:

1.

Recursively

creates

each

single-cardinality

child

business

object

contained

with

ownership

into

the

database.

2.

Processes

each

single-cardinality

child

business

object

contained

without

ownership.

3.

Creates

the

top-level

business

object

in

the

database.

4.

Creates

each

single-cardinality

child

business

object

that

stores

the

parent/child

relationship

in

the

child.

5.

Creates

each

multiple-cardinality

child

business

object.

Business

object

modification:

When

an

integration

broker

asks

the

connector

to

update

a

hierarchical

business

object

in

the

database,

the

connector

performs

the

following

steps:

Chapter

1.

Overview

of

the

connector

3

1.

Uses

the

primary

key

values

of

the

source

business

object

to

retrieve

the

corresponding

entity

from

the

database.

2.

Recursively

updates

all

single-cardinality

children

of

the

top-level

business

object.

3.

For

single-cardinality

child

business

objects

that

store

the

relationship

in

the

parent,

sets

each

foreign

key

value

in

the

parent

to

the

value

of

the

primary

key

in

the

corresponding

single-cardinality

child

business

object.

4.

Updates

all

simple

attributes

of

the

retrieved

business

object

except

those

whose

corresponding

attribute

in

the

source

business

object

contain

the

value

CxIgnore.

5.

Sets

all

foreign

key

values

in

each

child

that

stores

the

parent/child

relationship

in

the

child

(both

multiple-cardinality

and

single-cardinality)

to

the

primary

key

value

of

its

corresponding

parent

business

object.

6.

Processes

all

arrays

of

the

retrieved

business

object.

Business

object

deletion:

When

an

integration

broker

asks

the

connector

to

delete

a

hierarchical

business

object

from

the

database,

the

connector

performs

the

following

steps:

1.

Deletes

the

single-cardinality

children.

2.

Deletes

the

multiple-cardinality

children.

3.

Deletes

the

top-level

business

object.

Processing

application

events

The

connector

handles

the

Create,

Update,

and

Delete

events

generated

by

the

application

in

the

manner

described

below.

Create

notification:

When

the

connector

encounters

a

Create

event

in

the

event

table,

it

creates

a

business

object

of

the

type

specified

by

the

event,

sets

the

key

values

for

the

business

object

(using

the

keys

specified

in

the

event

table),

and

retrieves

the

business

object

from

the

database.

After

it

retrieves

the

business

object,

the

connector

sends

it

with

the

Create

verb

to

the

integration

broker.

Update

notification:

When

the

connector

encounters

an

Update

event

in

the

event

table,

it

creates

a

business

object

of

the

type

specified

by

the

event,

sets

the

key

values

for

the

business

object

(using

the

keys

specified

in

the

event

table),

and

retrieves

the

business

object

from

the

database.

After

it

retrieves

the

business

object,

the

connector

sends

it

with

the

Update

verb

to

the

integration

broker.

Delete

notification:

When

the

connector

encounters

a

Delete

event

in

the

event

table,

it

creates

a

business

object

of

the

type

specified

by

the

event,

sets

the

key

values

for

the

business

object

(using

the

keys

specified

in

the

event

table),

and

sends

it

with

the

Delete

verb

to

the

integration

broker.

All

values

other

than

the

key

values

are

set

to

CxIgnore.

If

any

of

the

non-key

fields

are

significant

at

your

site,

modify

the

value

of

the

fields

as

needed.

The

connector

handles

logical

and

physical

Delete

operations

that

are

triggered

by

its

application.

In

the

case

of

physical

deletes,

the

SmartFiltering

mechanism

removes

all

of

the

business

object’s

unprocessed

events

(such

as

Create

or

Update)

before

inserting

the

Delete

event

into

the

event

table.

In

the

case

of

logical

deletes,

the

connector

inserts

a

Delete

event

in

the

event

table

without

removing

other

events

for

the

business

object.

Retrieving

business

objects

for

event

processing:

A

Retrieve

can

be

done

in

two

ways

on

a

business

object

for

event

processing.

The

first

is

a

Retrieve

based

on

key

attributes

in

a

business

object.

The

second

is

a

Retrieve

based

on

both

key

and

4

Adapter

for

JDBC

User

Guide

non-key

attributes.

In

this

case,

the

business

object

needs

to

support

the

RetrieveByContent

verb

and

must

use

name_value

pair

for

the

object

keys.

Note:

If

the

object

key

does

not

use

name_value

pair,

the

keys

in

the

object

key

field

should

follow

the

same

order

as

the

keys

in

the

business

object.

Event

notification

The

connector’s

event

detection

mechanism

uses

an

event

table,

an

archive

table,

stored

procedures,

and

database

triggers.

Because

there

are

potential

failure

points

associated

with

the

processing

of

events,

the

event

management

process

does

not

delete

an

event

from

the

event

table

until

it

has

been

inserted

it

into

the

archive

table.

The

database

triggers

populate

an

event

table

whenever

an

event

of

interest

occurs

in

the

database.

The

connector

polls

this

table

at

a

regular,

configurable

interval,

retrieves

the

events,

and

processes

the

events

first

by

priority

and

then

sequentially.

When

the

connector

has

processed

an

event,

the

event’s

status

is

updated.

Note:

You

must

add

the

triggers

to

the

database

as

part

of

the

installation

procedure.

The

setting

of

its

ArchiveProcessed

property

determines

whether

the

connector

archives

an

event

into

the

archive

table

after

updating

its

status.

For

more

information

on

the

ArchiveProcessed

property,

see

“Configuring

the

connector”

on

page

14.

Table

1

illustrates

the

archiving

behavior

depending

on

the

setting

of

the

ArchiveProcessed

property.

Table

1.

Archiving

behavior

Archive

processed

setting

Reason

deleted

from

event

table

Connector

behavior

true

or

no

value

Successfully

processed

Archived

with

status

of

Sent

to

InterChange

Unsuccessfully

processed

Archived

with

status

of

Error

No

subscription

for

business

object

Archived

with

status

of

Unsubscribed

false

Successfully

processed

Not

archived

and

deleted

from

event

table

Unsuccessfully

processed

Remains

in

event

table

with

status

of

Error

No

subscription

for

business

object

Remains

in

event

table

with

status

of

Unsubscribed

SmartFiltering

is

a

mechanism

within

the

database

triggers

that

minimizes

the

amount

of

processing

the

integration

broker

and

connector

must

perform.

For

example,

if

an

application

has

updated

the

Contract

business

object

15

times

since

the

connector

last

polled

for

events,

the

SmartFiltering

stores

those

changes

as

a

single

Update

event.

Handling

lost

database

connections

There

are

numerous

reasons

for

losing

a

database

connection.

If

this

occurs,

the

connector

terminates.

The

JDBC

specification

does

not

provide

a

mechanism

for

Chapter

1.

Overview

of

the

connector

5

detecting

lost

connections.

As

this

connector

supports

different

databases,

there

is

no

single

error

code

definition

for

a

lost

connection

to

a

database.

The

PingQuery

property

is

provided

to

handle

this

detection.

If

a

failure

occurs

during

a

service

call

request,

the

connector

executes

this

PingQuery

to

confirm

that

the

failure

was

not

due

to

a

lost

connection

to

a

database.

If

the

PingQuery

fails

and

the

AutoCommit

property

is

set

to

false,

the

connector

will

attempt

to

create

a

new

connection

to

the

database.

If

it

succeeds

in

creating

a

new

connection

to

the

database,

it

will

continue

processing,

otherwise,

the

connector

returns

an

APPRESPONSETIMEOUT,

which

results

in

the

termination

of

the

connector.

The

PingQuery

is

executed

if

a

failure

occurs

when

accessing

a

database

for

any

type

of

transaction.

For

example:

v

While

accessing

the

event

and

archive

tables

v

While

retrieving

the

business

object

that

is

related

to

the

event

v

While

creating

or

updating

a

record

pertaining

to

a

business

object

Processing

locale-dependent

data

The

connector

has

been

internationalized

so

that

it

can

support

double-byte

character

sets,

and

deliver

message

text

in

the

specified

language.

When

the

connector

transfers

data

from

a

location

that

uses

one

character

code

set

to

a

location

that

uses

a

different

code

set,

it

performs

character

conversion

to

preserve

the

meaning

of

the

data.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

Most

components

in

the

WebSphere

business

integration

system

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

WebSphere

business

integration

system

components,

there

is

no

need

for

character

conversion.

To

log

error

and

informational

messages

in

the

appropriate

language

and

for

the

appropriate

country

or

territory,

configure

the

Locale

standard

configuration

property

for

your

environment.

For

more

information

on

these

properties,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

85.

6

Adapter

for

JDBC

User

Guide

Chapter

2.

Installing

and

configuring

the

connector

This

chapter

describes

how

to

install

and

configure

the

IBM

WebSphere

Business

Integration

Adapter

for

JDBC

and

how

to

configure

applications

to

work

with

the

connector.

It

contains

the

following

sections:

v

“Adapter

environment”

v

“Prerequisites”

on

page

8

v

“Installing

the

adapter

and

related

files”

on

page

9

v

“Installed

file

structure”

on

page

9

v

“Enabling

the

application

for

the

connector”

on

page

10

v

“Enabling

multi-driver

support”

on

page

13

v

“Enabling

the

custom

business

object

handler

class”

on

page

14

v

“Configuring

the

connector”

on

page

14

v

“Starting

the

connector”

on

page

28

Adapter

environment

Before

installing,

configuring,

and

using

the

adapter,

you

must

understand

its

environment

requirements.

They

are

listed

in

the

following

section.

v

“Broker

compatibility”

v

“Adapter

platforms”

on

page

8

v

“Globalization”

on

page

8

Broker

compatibility

The

adapter

framework

that

an

adapter

uses

must

be

compatible

with

the

version

of

the

integration

broker

(or

brokers)

with

which

the

adapter

is

communicating.

Version

2.4.x

of

the

adapter

for

JDBC

is

supported

on

the

following

adapter

framework

and

integration

brokers:

v

Adapter

framework:

WebSphere

Business

Integration

Adapter

Framework

versions

2.1,

2.2,

2.3.x,

and

2.4.

v

Integration

brokers:

-

WebSphere

InterChange

Server,

versions

4.1.1,

4.2,

4.2.1,

4.2.2

-

WebSphere

MQ

Integrator,

version

2.1.0

-

WebSphere

MQ

Integrator

Broker,

version

2.1.0

-

WebSphere

Business

Integration

Message

Broker,

version

5.0

-

WebSphere

Application

Server

Enterprise,

version

5.0.2,

with

WebSphere

Studio

Application

Developer

Integration

Edition,

version

5.0.1

See

Release

Notes

for

any

exceptions.

Note:

For

instructions

on

installing

your

integration

broker

and

its

prerequisites,

see

the

following

guides.

For

WebSphere

InterChange

Server

(ICS),

see

IBM

WebSphere

InterChange

Server

System

Installation

Guide

for

UNIX

or

for

Windows.

For

WebSphere

message

brokers,

see

Implementing

Adapters

with

WebSphere

Message

Brokers.

For

WebSphere

Application

Server,

see

Implementing

Adapters

with

WebSphere

Application

Server.

©

Copyright

IBM

Corp.

2000,

2003

7

Adapter

platforms

The

adapter

is

supported

on

the

following

software.

Operating

systems:

v

AIX

4.3.3,

AIX

5.1,

AIX

5.2

v

Solaris

7.0,

Solaris

8.0

v

Windows

2000

Databases:

Any

database

for

which

JDBC

drivers

are

available.

Third-party

software:

v

JDBC

drivers

Adapter

dependencies

The

adapter

for

JDBC

requires

the

following

software.

v

JDBC

driver

files

Globalization

This

adapter

is

DBCS

(double-byte

character

set)-enabled

and

is

translated.

Prerequisites

Before

you

use

the

connector,

you

must

do

the

following:

v

Install

the

Adapter

Development

Kit.

If

the

connector

runs

on

a

different

machine

from

the

integration

broker,

install

the

Adapter

Development

Kit

that

is

compatible

with

the

version

of

your

integration

broker.

v

Install

the

JDBC

driver

that

will

be

used.

v

Verify

that

all

required

vendor-specific

software,

including

JDBC

driver

requirements,

has

been

installed.

For

example,

if

you

are

using

the

JDBC

Type

2

driver

for

an

Oracle

database,

you

must

install

the

OracleOCI

libraries.

v

Verify

the

existence

of

a

user

account

in

the

application.

The

connector

processes

data

in

any

application

built

on

any

database

supported

by

a

driver

that

follows

the

JDBC

specification.

For

the

connector

to

process

data

in

the

database,

with

which

it

talks

directly,

it

must

have

access

to

a

user

account

and

password

that

is

valid

for

the

application.

The

user

account

must

have

the

privileges

to

retrieve,

insert,

update,

and

delete

data

from

the

application’s

database.

If

you

do

not

already

have

such

an

account,

you

must

create

one.

v

Verify

the

character

code

set

of

the

connected

database.

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encodings

for

characters

in

most

known

character

sets

(both

single-byte

and

multibyte).

Because

the

connector

is

written

in

Java,

it

understands

Unicode.

8

Adapter

for

JDBC

User

Guide

Installing

the

adapter

and

related

files

For

information

on

installing

WebSphere

Business

Integration

adapter

products,

refer

to

the

Installation

Guide

for

WebSphere

Business

Integration

Adapters,

located

in

the

WebSphere

Business

Integration

Adapters

Infocenter

at

the

following

site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Installed

file

structure

The

following

subsections

describe

the

installed

file

structure

of

the

adapter

on

a

UNIX

or

Windows

system.

Note:

Unless

otherwise

indicated,

the

remaining

sections

in

this

chapter

apply

to

both

UNIX

and

Windows

installations

of

the

connector.

Installing

on

a

UNIX

system

For

instructions

on

installing

the

JDBC

adapter

on

a

UNIX

system,

see

the

Installation

Guide

for

WebSphere

Business

Integration

Adapters.

Table

2

describes

the

UNIX

file

structure

used

by

the

connector.

Table

2.

Installed

UNIX

file

structure

for

the

connector

Subdirectory

of

$ProductDir

Description

connectors/JDBC

Contains

the

connector

CWJDBC.jar

and

the

start_JDBC.sh

files.

The

start_JDBC.sh

file

is

a

system

startup

script

for

the

connector.

It

is

called

from

the

generic

connector

manager

script.

When

you

click

Install

from

Connector

Configurator

(WebSphere

MQ

Integrator

Broker

as

the

integration

broker)

or

the

Connector

Configuration

screen

of

System

Manager

(ICS

as

the

integration

broker),

the

installer

creates

a

customized

wrapper

for

this

connector

manager

script.

When

the

connector

works

with

ICS,

use

this

customized

wrapper

to

start

and

stop

the

connector.

When

the

connector

works

with

WebSphere

MQ

Integrator

Broker,

use

this

customized

wrapper

only

to

start

the

connector.

Use

the

mqsiremotestopadapter

command

to

stop

the

connector.

connectors/JDBC/dependencies

Contains

the

SQL

scripts

that

create

the

event,

archive,

and

unique

identifier

tables.

connectors/messages

Contains

the

JDBCConnector.txt

file

as

well

as

the

JDBCConnector_ll_TT.txt

files

(message

files

specific

to

a

language

(ll)

and

a

country

or

territory

(TT)).

repository/JDBC

Contains

the

CN_JDBC.txt

file.

connectors/JDBC/Samples

Contains

README_Samples.txt

and

sample

files

for

creating

different

stored

procedures

and

business

objects.

/lib

Contains

the

WBIA.

jar

file.

/bin

Contains

the

CWConnEnv.sh

file.

For

more

information

on

installing

the

connector

component,

refer

to

one

of

the

following

guides,

depending

on

the

integration

broker

you

are

using:

v

System

Installation

Guide

for

UNIX

(when

ICS

is

used

as

the

integration

broker)

Chapter

2.

Installing

and

configuring

the

connector

9

v

IBM

WebSphere

Business

Integration

Adapters

Implementation

Guide

for

WebSphere

MQ

Integrator

Broker

(when

WebSphere

MQ

Integrator

Broker

is

used

as

the

integration

broker)

Installed

file

structure

on

a

Windows

system

For

instructions

on

installing

the

JDBC

adapter

on

a

Windows

system,

see

the

Installation

Guide

for

WebSphere

Business

Integration

Adapters.

Table

3

describes

the

Windows

file

structure

used

by

the

connector.

Table

3.

Installed

Windows

file

structure

for

the

connector

Subdirectory

of

%ProductDir%

Description

connectors\JDBC

Contains

the

connector

CWJDBC.jar

and

the

start_JDBC.bat

files.

connectors\JDBC\dependencies

Contains

the

SQL

scripts

that

create

the

event,

archive,

and

unique

identifier

tables.

connectors\messages

Contains

the

JDBCConnector.txt

file

as

well

as

the

JDBCConnector_ll_TT.txt

files

(message

files

specific

to

a

language

(ll)

and

a

country

or

territory

(TT)).

repository\JDBC

Contains

the

CN_JDBC.txt

file.

connectors\JDBC\Samples

Contains

README_Samples.txt

and

sample

files

for

creating

different

stored

procedures

and

business

objects.

\lib

Contains

the

WBIA.

jar

file.

\bin

Contains

the

CWConnEnv.bat

file.

Installer

adds

an

icon

for

the

connector

file

to

the

IBM

WebSphere

Business

Integration

Adapters

menu.

For

a

fast

way

to

start

the

connector,

create

a

shortcut

to

this

file

on

the

desktop.

For

more

information

on

installing

the

connector

component,

refer

to

one

of

the

following

guides,

depending

on

the

integration

broker

you

are

using:

v

System

Installation

Guide

for

Windows

(when

ICS

is

used

as

the

integration

broker)

v

IBM

WebSphere

Business

Integration

Adapters

Implementation

Guide

for

WebSphere

MQ

Integrator

Broker

(when

WebSphere

MQ

Integrator

Broker

is

used

as

the

integration

broker)

Enabling

the

application

for

the

connector

You

must

set

up

the

event

notification

mechanism

in

the

database

before

the

connector

can

process

event

delivery.

To

do

this,

you

must

complete

the

following

tasks:

v

Create

the

event

and

archive

tables

in

the

database.

v

Install

database

triggers

on

the

application’s

tables

to

support

the

required

business

objects.

It

is

assumed

that

you

develop

your

own

database

triggers.

v

Optionally,

install

a

counter

table.

Perform

this

step

only

if

you

require

the

connector

to

generate

a

unique

ID

when

creating

a

business

object.

For

more

information

on

generating

unique

IDs,

see

the

UID=CW.uidcolumnname[=UseIfMissing]

parameter.

The

sections

that

follow

provide

information

on

creating

and

configuring

the

event

and

archive

tables.

10

Adapter

for

JDBC

User

Guide

Event

and

archive

tables

The

connector

uses

the

event

table

to

queue

events

for

pickup.

If

you

have

set

the

ArchiveProcessed

property

to

true

or

to

no

value,

the

connector

uses

the

archive

table

to

store

events

after

updating

their

status

in

the

event

table.

For

each

event,

the

connector

gets

the

business

object’s

name,

verb,

and

key

from

the

event

table.

The

connector

uses

this

information

to

retrieve

the

entire

entity

from

the

application.

If

the

entity

was

changed

after

the

event

was

first

logged,

the

connector

gets

the

initial

event

and

all

subsequent

changes.

In

other

words,

if

an

entity

is

created

and

updated

before

the

connector

gets

it

from

the

event

table,

the

connector

gets

both

data

changes

in

the

single

retrieval.

The

following

three

outcomes

are

possible

for

each

event

processed

by

a

connector:

v

Event

was

processed

successfully

v

Event

was

not

processed

successfully

v

Event

was

not

subscribed

to

(for

subscription

information

specific

to

your

integration

broker,

refer

to

the

broker’s

implementation

guide)

If

events

are

not

deleted

from

the

event

table

after

the

connector

picks

them

up,

they

occupy

unnecessary

space

there.

However,

if

they

are

deleted,

all

events

that

are

not

processed

are

lost

and

you

cannot

audit

the

event

processing.

Therefore,

it

is

recommended

that

you

also

create

an

archive

table

and

keep

the

ArchiveProcessed

property

set

to

true.

Whenever

an

event

is

deleted

from

the

event

table,

the

connector

inserts

it

into

the

archive

table.

Note:

If

problems

accessing

the

application

database

cause

the

connector

to

fail

while

deleting

an

event

from

the

event

table

or

inserting

an

event

into

the

archive

table,

the

connector

returns

APPRESPONSETIMEOUT.

Configuring

event

and

archive

processing

To

configure

event

and

archive

processing,

you

must

use

configuration

properties

to

specify

the

following

information:

v

The

name

of

the

event

table

(EventTableName).

You

need

not

specify

a

value

for

this

property

if

you

use

the

connector

only

to

process

business

object

requests.

v

The

interval

frequency

(“PollFrequency”

on

page

97).

v

The

number

of

events

for

each

polling

interval

(PollQuantity).

v

The

name

of

the

archive

table

(ArchiveTableName).

v

Whether

the

connector

archives

unsubscribed

and

unprocessed

events

(ArchiveProcessed).

For

subscription

information

specific

to

your

integration

broker,

refer

to

the

broker’s

implementation

guide.

v

The

unique

ID

of

the

connector,

which

is

important

when

multiple

connectors

poll

the

same

table

(ConnectorID).

You

can

also

specify

a

value

for

the

EventOrderBy

property

to

specify

the

order

of

events

to

be

processed.

For

information

on

these

and

other

configuration

properties,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

85and

Table

6

on

page

15.

Note:

Creation

of

the

event

and

archive

tables

is

optional.

However,

if

you

specify

a

value

for

EventTableName

but

do

not

use

the

connector

to

poll

for

events

and

do

not

create

an

event

table,

the

connector

times

out.

To

prevent

such

time-out,

leave

the

value

of

EventTableName

as

null

(as

a

string).

Chapter

2.

Installing

and

configuring

the

connector

11

By

default,

the

name

of

the

event

queue

table

is

xworlds_events,

and

the

name

of

the

archive

queue

table

is

xworlds_archive_events.

To

use

the

connector

only

for

request

processing,

use

the

-fno

option

when

starting

it

and

set

the

value

of

EventTableName

to

null

(as

a

string).

If

the

driver

being

used

does

not

support

Java

class

DatabaseMetaData,

and

you

want

the

connector

to

avoid

the

checking

for

the

existence

of

event

and

archive

tables,

disable

the

CheckForEventTableInInit

by

setting

its

value

to

false.

By

default,

it

is

true.

It

is

recommended

that

the

value

not

be

set

to

false.

Note:

If

your

site

will

not

archive

events

into

the

archive

table,

set

the

value

of

ArchiveProcessed

to

false.

SQL

scripts

for

installing

the

event

and

archive

tables

The

scripts

to

install

the

event,

archive,

and

unique

identifier

tables

for

a

DB2

database

are:

v

event_table_db2.sql

v

event_package_db2.sql

v

archive_table_db2.sql

v

uid_table_db2.sql

The

scripts

to

install

the

event,

archive,

and

unique

identifier

tables

for

an

Oracle

database

are:

v

event_table_oracle.sql

v

event_package_oracle.sql

v

archive_table_oracle.sql

v

uid_table_oracle.sql

The

scripts

to

install

the

event,

archive,

and

unique

identifier

tables

for

a

Microsoft

SQL

Server

database

are:

v

event_table_mssqlserver.sql

v

event_package_mssqlserver.sql

v

archive_table_mssqlserver.sql

v

uid_table_mssqlserver.sql

These

files

are

located

in

the

following

directories:

UNIX:

connectors/JDBC/dependencies/

Windows:

connectors\JDBC\dependencies\

Note:

These

scripts

are

provided

only

as

a

template

to

assist

you

in

creating

the

required

tables

for

the

connector.

For

other

databases,

please

create

your

scripts

using

these

as

guidelines.

The

order

and

data

type

in

the

table

columns

is

very

important.

Please

refer

to

the

“Event

and

archive

table

schema”

on

page

13

to

view

the

correct

order

and

type.

It

is

recommended

that

the

DBA

or

person

implementing

the

connector

modify

these

scripts

to

meet

specific

installation

and

query

optimization

requirements.

For

12

Adapter

for

JDBC

User

Guide

example,

these

scripts

do

not

create

indexes

on

the

tables.

It

is

the

responsibility

of

the

person

implementing

the

connector

to

create

indexes

to

enhance

performance

with

the

query

optimizer.

Event

and

archive

table

schema

Table

4

describes

the

columns

in

the

event

and

archive

tables.

Table

4.

Event

and

archive

table

schema

Name

Description

Type

Constraint

event_id

Internal

identifier

of

the

event

NUMBER

Primary

key

connector_id

Unique

ID

of

the

connector

for

which

the

event

is

destined.

This

value

is

important

when

multiple

connectors

poll

the

same

table.

VARCHAR

object_key

Primary

key

of

the

business

object.

The

key

can

be

represented

as

a

name_value

pair,

or

as

a

set

of

keys

delimited

by

a

colon

or

other

configurable

delimiter

(for

example,

1000065:10056:2333).

See

the

“EventKeyDel”

on

page

20

property

for

more

information.

VARCHAR

Not

null

object_name

Name

of

the

business

object

VARCHAR

Not

null

object_verb

Verb

associated

with

the

event

VARCHAR

Not

null

event_priority

Event

priority

(0

is

highest,

n

is

lowest),

which

the

connector

uses

to

get

events

on

a

priority

basis.

The

connector

does

not

use

this

value

to

lower

or

raise

priorities.

NUMBER

Not

null

event_time

Date

and

time

the

event

occurred

DATETIME

Default

current

date/time

(for

archive

table,

actual

event

time)

archive_time

Date

and

time

the

event

was

archived

(applies

only

to

the

archive

table)

DATETIME

Archive

date/time

event_status

-2

(Error

sending

event

to

the

integration

broker)

NUMBER

Not

null

-1

(Error

processing

event)

0

(Ready

for

poll)

1

(Sent

to

the

integration

broker)

2

(No

Subscriptions

for

the

business

object)

3

(In

Progress).

This

status

is

used

only

in

the

event

table

and

not

in

the

archive

table.

event_comment

Description

of

the

event

or

error

string

VARCHAR

Enabling

multi-driver

support

You

can

specify

the

driver

by

doing

the

following:

1.

Install

the

driver

on

your

machine.

2.

Put

all

dynamic

libraries

that

the

connector

requires

at

runtime

in

the

connectors/JDBC

directory

under

the

product

directory.

3.

Edit

the

connector’s

start

file

to

include

all

relevant

class

pathnames

(including

license

information

if

required)

in

the

JDBCDRIVERPATH

variable.

On

UNIX,

the

start

file

is:

$ProductDir/connectors/JDBC/start_JDBC.sh

On

Windows,

the

start

file

is:

%ProductDir%\connectors\JDBC\start_JDBC.bat

4.

Specify

a

value

for

the

JDBCDriverClass

configuration

property.

Chapter

2.

Installing

and

configuring

the

connector

13

Note:

For

all

features

that

it

supports,

the

connector

can

operate

with

any

driver

that

follows

the

JDBC

2.0

or

above

specification.

If

the

driver

does

not

support

a

particular

feature,

the

connector

does

not

function

properly.

For

example,

if

the

driver

does

not

support

all

method

calls

used

by

JDBCODA,

the

JDBCODA

log

indicates

the

process

that

the

driver

does

not

support.

In

such

a

case,

you

must

use

a

different

driver.

Enabling

the

custom

business

object

handler

class

The

connector

supports

the

custom

business

object

handler

class,

CustomBOH.

It

implements

the

JDBCBOhandlerInterface

interface.

The

syntax

of

this

interface

is:

public

interface

JDBCBOhandlerInterface{

public

int

doVerbForCustom(CWConnectorBusObj

busObj)

throws

VerbProcessingFailedException,

ConnectionFailureException;

}

When

you

implement

the

doVerbForCustom

method,

ensure

that

it

throws

but

does

not

catch

the

two

exceptions.

Also

set

the

status

and

message

of

each

exception

before

throwing

them.

v

VerbProcessingFailedException—Thrown

when

the

operation

specified

by

the

verb

fails.

v

ConnectionFailureException—Thrown

when

the

connector

can

not

establish

a

connection

with

the

application.

To

enable

the

connector

to

support

this

business

object

handler:

v

Specify

the

CustomBOH

class

name

in

the

verb

application-specific

information.

The

connector

obtains

the

name

of

the

custom

business

object

handler

class

from

the

verb

application-specific

information.

Use

the

following

syntax:

CustomBOH=customBOhandlerClassName

For

example,

assume

the

verb

application-specific

information

is

specified

as

follows:

CustomBOH=JDBCBOhandlerForOverrideSQL

In

this

case,

JDBCBOhandlerForOverrideSQL

is

the

name

of

the

custom

business

object

handler

class.

v

Ensure

that

CustomBOH

belongs

to

com.crossworlds.connectors.JDBC

If

the

connector

finds

“CustomBOH=“

in

the

verb

application-specific

information

and

finds

the

class

in

the

com.crossworlds.connectors.JDBC

package,

it

executes

the

custom

business

object

handler.

If

it

does

not

find

CustomBOH,

it

throws

an

error

saying

that

it

could

not

find

the

class.

Configuring

the

connector

You

must

set

the

connector’s

standard

and

connector-specific

configuration

properties

before

you

can

run

it.

Use

one

of

the

following

tools

to

set

a

connector’s

configuration

properties:

v

Connector

Configurator

(if

ICS

is

the

integration

broker)--Access

this

tool

from

the

System

Manager.

v

Connector

Configurator

(if

WebSphere

MQ

Integrator

Broker

is

the

integration

broker)--Access

this

tool

from

the

IBM

WebSphere

Business

Integration

Adapter

program

folder.

For

more

information

about

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

101.

14

Adapter

for

JDBC

User

Guide

Standard

connector

properties

Standard

configuration

properties

provide

information

that

all

connectors

use.

See

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

85

for

detailed

information

about

these

properties.

Important:

Because

the

connector

for

JDBC

supports

both

the

ICS

and

WebSphere

MQ

Integrator

Broker

integration

brokers,

configuration

properties

for

both

brokers

are

relevant

to

the

connector.

In

addition,

refer

to

Table

5

for

configuration

information

specific

to

the

IBM

WebSphere

Business

Integration

Adapter

for

JDBC.

The

information

in

this

table

supplements

the

information

in

the

appendix.

Table

5.

Property

information

specific

to

this

connector

Property

Notes

CharacterEncoding

This

connector

does

not

use

the

CharacterEncoding

property

Locale

Because

this

connector

has

been

internationalized,

you

can

change

the

value

of

the

Locale

property.

Note:

If

you

are

using

WebSphere

MQ

Integrator

Broker

as

your

broker,

you

must

use

the

same

locale

for

the

adapter,

the

broker,

and

any

applications.

Note

that

you

must

provide

a

value

for

the

ApplicationName

configuration

property

before

running

the

connector.

Connector-specific

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

at

runtime.

Connector-specific

properties

also

provide

a

way

of

changing

static

information

or

logic

within

the

connector

without

having

to

recode

and

rebuild

it.

Table

6

lists

the

connector-specific

configuration

properties

for

the

connector.

See

the

sections

that

follow

for

explanations

of

the

properties.

Table

6.

Connector-specific

configuration

properties

Name

Possible

values

Default

value

Required

ApplicationPassword

Password

for

connector

user

account

Yes*

ApplicationUserName

Name

of

connector

user

account

Yes*

ArchiveProcessed

true

or

false

true

No

ArchiveTableName

Name

of

archive

queue

table

xworlds_archive_events

Yes

if

Archive

Processed

is

true

AutoCommit

true

or

false

false

No

CheckforEventTableInInit

true

or

false

true

No

ChildUpdatePhyDelete

true

or

false

false

No

CloseDBConnection

true

or

false

false

No

ConnectorID

Unique

ID

for

the

connector

null

No

DatabaseURL

Name

of

the

database

server

Yes

Chapter

2.

Installing

and

configuring

the

connector

15

Table

6.

Connector-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

DateFormat

A

time

pattern

String

MM/dd/yyyy

HH:mm:ss

No

DriverConnectionProperties

Additional

JDBC

driver

connection

properties

No

EventKeyDel

Delimiter

character

or

characters

for

object

key

column

of

event

table

semicolon

(;)

No

EventOrderBy

none,

ColumnName,

ColumnName,

...]

No

EventQueryType

Fixed

or

Dynamic

Fixed

No

EventTableName

Name

of

event

queue

table

xworlds_events

Yes,

if

polling

is

required;

null

(as

a

string)

if

polling

is

not

required

JDBCDriverClass

driver

classname

Yes

MaximumDatabaseConnections

Number

of

simultaneous

database

connections

5

Yes

PingQuery

SELECT

1

FROM

<tablename>

No

PollQuantity

Values

are

1

to

500

1

No

PreserveUIDSeq

true

or

false

true

No

RDBMS.initsession

SQL

statement

that

initializes

every

database

session

No

RDBMSVendor

MSSQLServer,

Oracle,

Others

Yes

ReplaceAllStr

true

or

false

false

No

ReplaceStrList

A

set

composed

of

a

single

character,

a

character

delimiter,

and

the

character’s

substitution

string.

Also,

multiple

such

sets

with

a

termination

delimiter

between

them.

Q,DSQNote:

In

the

connector

configuration

tool,

these

characters

represent

a

single

quotation

mark,

followed

by

a

comma,

followed

by

two

single

quotation

marks.

No

RetryCountAndInterval

Count,

interval

in

seconds

3,20

No

SchemaName

Schema

on

which

the

events

reside

No

SPBeforePollCall

Name

of

the

stored

procedure

to

be

executed

for

each

poll

call

No

StrDelimiter

The

character

and

termination

delimiters

used

in

the

ReplaceStrList

property

,:

No

TimingStats

0,

1,

2

0

No

UniqueIDTableName

Name

of

table

used

for

generation

of

IDs

xworlds_uid

No

UseDefaults

true

or

false

false

Yes

UseDefaultsForCreatingChildBOs

true

or

false

false

No

UseDefaultsForRetrieve

true

or

false

false

No

*ApplicationPassword

and

ApplicationUserName

are

not

required

if

you

are

using

trusted

authentication.

16

Adapter

for

JDBC

User

Guide

ApplicationPassword

Password

for

the

connector’s

user

account.

There

is

no

default

value.

ApplicationUserName

Name

of

the

connector’s

user

account.

There

is

no

default

value.

ArchiveProcessed

Specifies

whether

the

connector

archives

events

for

which

there

are

no

current

subscriptions.

Set

this

property

to

true

to

cause

events

to

be

inserted

into

the

archive

table

after

they

are

deleted

from

the

event

table.

Set

this

property

to

false

to

cause

the

connector

not

to

perform

archive

processing.

In

this

case,

it

does

not

check

the

value

of

the

ArchiveTableName

property.

If

ArchiveProcessed

is

set

to

false,

the

connector

performs

the

following

behavior:

v

If

the

event

is

successfully

processed,

the

connector

deletes

it

from

the

event

table

and

does

not

archive

it.

v

If

the

connector

does

not

subscribe

to

the

event’s

business

object,

the

connector

leaves

the

event

in

the

event

table

and

changes

its

event

status

to

Unsubscribed.

For

subscription

information

specific

to

your

integration

broker,

refer

to

the

broker’s

implementation

guide.

v

If

the

business

object

encounters

a

problem

while

being

processed,

the

connector

leaves

the

event

in

the

event

table

with

event

status

of

Error.

If

this

property

is

set

to

false

and

the

poll

quantity

is

low,

the

connector

appears

to

be

polling

the

event

table,

but

it

is

simply

picking

up

the

same

events

repeatedly.

If

this

property

has

no

value,

the

connector

assumes

the

value

to

be

true.

If

the

ArchiveTableName

property

also

has

no

value,

the

connector

assumes

the

archive

table’s

name

is

xworlds_archive_events.

The

default

value

is

true.

ArchiveTableName

Name

of

archive

queue

table.

If

the

ArchiveProcessed

property

is

set

to

false,

it

is

unnecessary

to

set

a

value

for

this

property.

The

default

name

is

xworlds_archive_events.

AutoCommit

This

property

makes

the

AutoCommit

setting

configurable.

When

set

to

true,

all

transactions

are

automatically

committed.

Some

databases

(such

as

Sybase)

require

AutoCommit

to

be

set

to

true.

If

set

to

false,

stored

procedures

on

Sybase

to

fail.

If

the

database

connection

is

lost,

the

connector

will

attempt

to

create

a

new

connection

to

restart

the

complete

processing

as

long

as

AutoCommit

is

set

to

false.

If

the

new

connection

is

invalid,

or

if

AutoCommit

is

set

to

true,

the

connector

returns

APPRESPONSETIMEOUT,

which

results

in

the

termination

of

the

connector.

Chapter

2.

Installing

and

configuring

the

connector

17

The

default

value

is

false.

CheckforEventTableInInit

Setting

this

connector

property

to

false

prevents

the

connector

from

checking

for

the

existence

of

the

event

and

archive

tables

during

connector

initialization.

It

is

recommended

that

you

always

set

it

to

true

unless

the

JDBC

driver

you

are

using

does

not

support

the

JDBC

class

DatabaseMetaData.

When

the

property

is

set

to

false,

although

the

connector

does

not

check

for

the

existence

of

EventTable

and

ArchiveTable,

the

event

and

archive

tables

should

always

exist

because

the

connector

uses

them

during

the

initialization

process.

To

prevent

the

connector

from

using

the

event

and

archive

tables

during

initialization,

set

the

property

EventTableName

to

null.

The

default

value

is

true.

ChildUpdatePhyDelete

During

an

update

operation,

specifies

how

the

connector

handles

data

represented

by

a

child

business

object

that

is

missing

from

the

incoming

business

object

but

exists

in

the

database.

Set

this

property

to

true

to

cause

the

connector

to

physically

delete

the

data

record

from

the

database.

Set

this

property

to

false

to

cause

the

connector

to

logically

delete

the

data

record

from

the

database

by

setting

the

status

column

to

the

appropriate

value.

The

application-specific

information

obtains

the

name

of

the

status

column

and

its

value

from

the

StatusColumnValue

(SCN)

parameter

specified

in

its

business-object

level

application-specific

information.

For

more

information,

see

“Application-specific

information

at

the

business-object

level”

on

page

54.

Default

value

is

false.

CloseDBConnection

This

property

makes

the

closing

of

the

database

connection

configurable.

When

set

to

true,

for

every

service

call

request

and

poll

call,

the

database

connection

is

closed.

Setting

this

property

to

true

impairs

performance

and

is

not

advisable.

The

default

value

is

false.

ConnectorID

A

unique

ID

for

the

connector.

This

ID

is

useful

to

retrieve

events

for

a

particular

instance

of

the

connector.

Default

value

is

null.

DatabaseURL

Name

of

the

database

server

to

which

the

connector

should

connect.

If

you

use

the

WebSphere

business

integration

system

branded

SQLServer

driver,

the

recommended

URL

is:

jdbc:ibm-crossworlds:sqlserver://MachineName:PortNumber;DatabaseName=DBname

18

Adapter

for

JDBC

User

Guide

Important

If

AutoCommit

is

set

to

false,

you

must

set

an

additional

parameter,

SelectMethod:

jdbc:ibm-
crossworlds:sqlserver://MachineName:PortNumber;DatabaseName=DBname;

SelectMethod=cursorBy

default,

SelectMethod

is

set

to

direct.

For

more

information,

see

“AutoCommit”

on

page

17.

You

must

provide

a

value

for

this

property

in

order

for

the

connector

to

process

successfully.

DateFormat

Specifies

the

date

format

that

the

connector

expects

to

receive

and

return.

This

property

supports

any

format

that

is

based

on

the

syntax

as

contained

in

Table

7.

Table

7

Defines

the

time

format

syntax

using

a

time

pattern

string.

In

this

pattern,

all

ASCII

letters

are

reserved

as

pattern

letters.

Table

7.

Time

format

syntax

Symbol

Meaning

Presentation

Example

G

era

designator

(Text)

AD

y

year

(Number)

1996

M

month

in

year

(Text

&

Number)

July

&

07

d

day

in

month

(Number)

10

h

hour

in

am/pm(1-12)

(Number)

12

H

hour

in

day(0-23)

(Number)

0

m

minute

in

hour

(Number)

30

s

second

in

minute

(Number)

55

S

millisecond

(Number)

978

E

day

in

week

(Text)

Tuesday

D

day

in

year

(Number)

189

F

day

of

week

in

month

(Number)

2

(2nd

Wed

in

July)

w

week

in

year

(Number)

27

W

week

in

month

(Number)

2

a

am/pm

marker

(Text)

PM

k

hour

in

day(1-24)

(Number)

24

K

hour

in

am/pm(0-11)

(Number)

0

z

time

zone

(Text)

Pacific

Standard

Time

’

escape

for

text

(Delimiter)

’’

single

quote

(Literal)

‘

Table

8.

Examples

using

the

US

locale

Format

pattern

Result

“yyyy.MM.dd

G

‘at’

hh:mm:ss

z”

1996.07.10

AD

at

15:08:56

PDT

Chapter

2.

Installing

and

configuring

the

connector

19

Table

8.

Examples

using

the

US

locale

(continued)

Format

pattern

Result

“EEE,

MMM

d,

‘’yy”

Wed,

July

10,

‘96

“h:mm

a”

12:08

PM

“hh

‘o’’clock’

a,

zzzz”

12

o’clock

PM,

Pacific

Daylight

Time

“K:mm

a,

z”

0:00

PM,

PST

“yyyy.MMMMM.dd

GGG

hh:mm

aaa”

1996.July.10

AD

12:08

PM

DriverConnectionProperties

Besides

the

user

name

and

password,

a

JDBC

driver

might

need

additional

properties

or

information.

The

DriverConnectionProperties

connector

property

will

take

additional

properties

that

a

JDBC

driver

needs,

as

name-value

pairs.

The

properties

should

be

specified

as

follows:

property1=value1[;property2=value2...]

The

properties

must

be

given

as

name

value

pairs,

separated

by

semi-colons.

The

property

is

separated

from

its

value

by

an

equals

sign

(with

no

extra

spaces).

For

example,

assume

the

JDBC

driver

needs

license

information

and

port

number.

The

property

name

it

expects

for

license

information

is

MyLicense

and

the

value

is

ab23jk5.

The

property

name

it

expects

for

port

number

is

PortNumber

and

value

is

1200.

The

DriverConnectionProperties

should

be

set

to

the

value

MyLicense=ab23jk5;PortNumber=1200.

EventKeyDel

Specifies

the

delimiter

when

the

object_key

column

of

the

event

table

contains

multiple

attribute

values.

There

are

two

ways

to

retrieve

the

business

object

that

has

been

created,

updated,

or

deleted

in

the

triggering

application.

v

The

first

is

to

populate

the

object_key

column

with

values

for

attributes

that

are

keys

in

a

business

object.

Set

the

EventKeyDel

configuration

property

to

a

single

character

that

is

not

part

of

the

key

field.

For

example,

if

the

delimiter

is

specified

as

“;”,

then

the

object_key

will

be

as

follows:

xxx;123

v

The

second

is

to

populate

the

object_key

column

with

values

for

any

attribute

in

a

business

object.

These

values

should

be

represented

as

name_value

pair.

The

first

delimiter

will

be

for

the

name_value

and

the

second

is

for

the

keys.

For

example,

if

the

delimiter

is

specified

as

“=;”,

then

the

object_key

will

be

as

follows:

CustomerName=xxx;CustomerId=123;

If

the

delimiter

is

specified

as

“=:”,

then

the

object_key

will

be

as

follows:

CustomerName=xxx:CustomerId=123:

Note:

The

order

that

the

key

values

are

defined

should

follow

the

same

order

as

the

key

attributes

in

a

business

object.

Important:

If

you

use

Date

attribute

data,

avoid

using

a

colon

(:)

delimiter,

because

it

may

be

included

in

the

attribute’s

data.

The

default

value

is

a

semicolon

(;),

which

is

based

on

keys,

not

name_value

pairs.

EventOrderBy

Specifies

whether

to

turn

off

the

ordering

of

events,

or

specifies

an

order

of

event

processing

that

is

different

from

the

default

order.

20

Adapter

for

JDBC

User

Guide

By

default,

at

each

poll

the

connector

pulls

only

the

number

of

events

specified

in

its

PollQuantity

property,

and

orders

event

processing

by

the

values

in

the

event_time

and

event_priority

columns

of

the

Event

table.

To

cause

the

connector

not

to

order

events,

set

the

value

of

this

property

to

none.

To

cause

the

connector

to

order

by

different

columns

in

the

Event

table,

specify

the

names

of

those

columns.

Separate

column

names

with

a

comma

(,).

Specifying

a

value

for

this

property

overwrites

the

default

value.

There

is

no

default

value

for

this

property.

EventQueryType

The

EventQueryType

property

is

used

to

indicate

whether

the

connector

should

dynamically

generate

a

query

to

retrieve

events

from

the

event

table

or

use

its

built

in

query.

For

the

dynamically

generated

query,

the

connector

maps

its

event

structure

to

the

columns

in

the

event

table.

The

order

of

the

data

in

the

table

columns

is

very

important.

Please

refer

to

the

“Event

and

archive

table

schema”

on

page

13

to

view

the

correct

order.

If

the

value

in

the

EventQueryType

is

Fixed

(as

a

string),

the

default

query

is

executed.

If

set

to

Dynamic

(as

a

string),

a

new

query

is

built

by

getting

the

column

names

from

the

table

that

is

specified

in

the

“EventTableName”

property.

The

event

table

column

names

can

change

but

the

order

and

data

type

of

the

columns

must

remain

the

same

as

specified

in

the

event

table

creation

section.

“EventOrderBy”

on

page

20

will

be

appended

to

either

the

default

or

the

dynamically

generated

query.

If

the

EventQueryType

property

is

not

added

or

it

contains

no

value,

it

is

defaulted

to

Fixed.

Default

value

is

Fixed

(as

a

string).

EventTableName

Name

of

event

queue

table,

which

is

used

by

the

connector’s

polling

mechanism.

The

default

name

is

xworlds_events.

Set

this

to

null

(as

a

string)

when

polling

is

turned

off

for

the

connector.

This

prevents

validation

of

the

existence

of

the

event

and

archive

tables.

For

a

user

defined

event

table,

ensure

that

the

event_id

maps

to

one

of

the

following

JDBC

types:

INTEGER,

BIGINT,

NUMERIC,

VARCHAR.

JDBCDriverClass

Specifies

the

class

name

of

a

driver.

To

use

a

particular

JDBC

driver,

specify

the

driver’s

class

name

in

this

configuration

property.

For

example,

to

specify

the

Oracle

thin

driver,

set

the

value

of

this

property

to:

oracle.jdbc.driver.OracleDriver.

For

more

information,

see

“Enabling

multi-driver

support”

on

page

13

and

“UseDefaultsForCreatingChildBOs”

on

page

26.

No

default

value

is

provided.

Chapter

2.

Installing

and

configuring

the

connector

21

MaximumDatabaseConnections

Specifies

the

maximum

number

of

simultaneous

database

connections

allowed.

At

runtime,

the

number

of

open

database

connections

is

the

sum

of

this

value

plus

1.

If

the

“PreserveUIDSeq”

property

is

set

to

false,

at

runtime,

the

number

of

open

database

connections

is

the

sum

of

this

value

plus

2.

The

default

value

is

5.

PingQuery

Specifies

the

SQL

statement

or

stored

procedure

that

the

connector

executes

to

check

database

connectivity.

The

following

is

an

example

of

an

SQL

statement

used

as

a

ping

query:

SELECT

1

FROM

<tablename>

The

following

is

an

example

of

a

stored

procedure

call

(sampleSP)

used

as

a

ping

query

with

an

Oracle

or

DB2

database:

call

sampleSP(

)

Note

that

stored

procedure

calls

cannot

have

output

parameters.

If

an

input

parameter

is

required

by

the

database,

the

input

value

must

be

specified

as

part

of

the

ping

query.

For

example:

Call

checkproc(2)

There

is

no

default

value.

For

more

information,

see

“Handling

lost

database

connections”

on

page

5

and

“Loss

of

connection

to

the

application”

on

page

82.

PollQuantity

Number

of

rows

in

the

database

table

that

the

connector

retrieves

per

polling

interval.

Allowable

values

are

1

to

500.

The

default

value

is

1.

PreserveUIDSeq

Specifies

whether

or

not

the

incoming

unique

ID

sequence

will

be

preserved

in

the

unique

identifier

table.

If

set

to

true,

the

unique

ID

is

not

committed

until

the

business

object

is

successfully

processed

in

the

destination

application.

All

other

processes

attempting

to

access

the

unique

identifier

table

must

wait

until

the

transaction

is

committed.

If

set

to

false,

the

unique

ID

is

committed

when

the

business

object

requests

it.

The

business

object

processing

and

the

unique

ID

processing

each

have

their

own

transaction

block

(internal

to

the

connector).

This

is

only

possible

if

the

transaction

relating

to

the

unique

identifier

table

has

its

own

connection.

Note:

If

this

property

is

not

added

to

the

connector

configuration,

the

default

behavior

is

the

same

as

if

this

property

were

added

and

set

to

true.

Also,

if

“AutoCommit”

on

page

17

is

set

to

true,

the

connector

executes

the

same

behavior

as

if

PreserveUIDSeq

is

set

to

false.

If

the

“PreserveUIDSeq”

property

is

set

to

false,

at

runtime,

the

number

of

open

database

connections

is

the

sum

of

this

value

plus

2.

22

Adapter

for

JDBC

User

Guide

The

default

value

is

true.

RDBMS.initsession

SQL

statement

that

initializes

every

session

with

the

database.

The

connector

takes

a

query

and

executes

it

at

startup.

There

should

not

be

a

return

value

for

this

query.

The

property

name

is

required,

but

a

value

is

not.

There

is

no

default

value.

RDBMSVendor

Specifies

which

RDBMS

the

connector

uses

for

special

processing.

Set

the

value

of

this

property

to

Oracle

or

MSSQLServer

if

you

are

using

an

Oracle

or

Microsoft

SQL

Server

database.

If

you

are

using

a

different

database,

set

the

value

to

the

name

of

that

database,

or

leave

the

value

blank.

If

using

a

non-default

database,

ensure

that

the

proper

driver

is

loaded.

If

this

property

is

set

to

Others,

the

connector

determines

which

database

to

use

by

locating

the

driver.

A

value

is

required

for

the

connector

to

process

successfully.

No

default

value

is

provided.

ReplaceAllStr

Specifies

whether

the

connector

replaces

all

instances

of

each

character

identified

in

the

ReplaceStrList

property

with

the

substitution

string

specified

in

that

property.

The

connector

evaluates

ReplaceAllStr

only

if

the

ESC=[true|false]

parameter

of

each

attribute’s

AppSpecificInfo

property

does

not

contain

a

value.

In

other

words,

if

the

ESC

parameter

has

been

specified,

its

value

takes

precedence

over

the

value

set

for

the

ReplaceAllStr

property.

To

cause

the

connector

to

use

the

value

of

ReplaceAllStr,

verify

that

the

ESC

parameter

has

not

been

specified.

The

default

value

of

ReplaceAllStr

is

false.

Note:

The

ESC

parameter

and

the

ReplaceAllStr

and

ReplaceStrList

properties

provide

support

for

database

escape

character

functionality

(for

example,

escaping

single

quotes).

Because

the

same

functionality

is

also

available

from

the

Prepared

Statements

provided

by

the

JDBC

driver,

these

properties

will

be

deprecated

in

future

releases

of

the

connector.

The

connector

currently

supports

the

use

of

the

JDBC

Prepared

Statements.

ReplaceStrList

Specifies

one

or

more

substitution

sets,

each

composed

of

an

individual

character

to

be

replaced,

a

character

delimiter,

and

a

substitution

string.

The

connector

performs

this

substitution

on

an

attribute’s

value

only

if

a

value

has

been

specified

for

the

ESC=[true|false]

parameter

of

the

attribute’s

AppSpecificInfo

property

or

for

the

connector’s

ReplaceAllStr

property.

Note:

The

ESC

parameter

and

the

ReplaceAllStr

and

ReplaceStrList

properties

provide

support

for

database

escape

character

functionality

(for

example,

escaping

single

quotes).

Because

the

same

functionality

is

also

available

from

the

Prepared

Statements

provided

by

the

JDBC

driver,

these

properties

will

be

deprecated

in

future

releases

of

the

connector.

The

connector

currently

supports

the

use

of

the

JDBC

Prepared

Statements.

The

syntax

for

this

attribute

is:

single_char1,substitution_str1[:single_char2,substitution_str2[:...]]

Chapter

2.

Installing

and

configuring

the

connector

23

where:

single_char

A

character

to

be

replaced.

single_char

The

substitution

string

that

the

connector

uses

to

replace

the

character.

single_char

The

character

delimiter,

which

separates

the

character

to

be

replaced

from

the

string

that

replaces

it.

By

default,

the

character

delimiter

is

a

comma

(,).

You

can

configure

this

delimiter

by

setting

the

first

delimiter

in

the

StrDelimiter

property.

single_char

The

termination

delimiter,

which

separates

substitution

sets

(each

of

which

is

composed

of

the

character

to

be

replaced,

a

character

delimiter,

and

the

substitution

string).

By

default,

the

termination

delimiter

is

a

colon

(:).

You

can

configure

this

delimiter

by

setting

the

second

delimiter

in

the

StrDelimiter

property.

For

example,

assume

you

want

to

replace

a

single

percent

sign

(%)

with

two

percent

signs

(%%),

and

a

caret

(^)

with

a

backslash

and

a

caret

(\^).

By

default,

StrDelimiter

specifies

a

comma

(,)

as

the

character

delimiter,

and

a

colon

(:)

as

the

termination

delimiter.

If

you

keep

the

default

delimiters,

use

the

following

string

as

the

value

of

ReplaceStrList:

%,%%:^,\^

Note:

A

restriction

of

the

connector

configuration

tool

prevents

entering

single

quotation

marks.

Therefore,

you

must

represent

a

single

quotation

with

the

character

Q,

and

two

single

quotations

with

the

characters

DSQ.

In

the

above

example,

if

you

also

want

to

substitute

a

single

quotation

mark

(’)

with

two

single

quotation

marks

(’’),

use

the

following

notation:

Q,DSQ:%,%%:^,\^

RetryCountAndInterval

Specifies

the

number

of

attempts

and

the

interval

in

seconds

that

the

connector

should

use

when

it

is

unable

to

lock

data

while

performing

an

update

operation.

Before

it

performs

an

update,

the

connector

locks

rows

related

to

the

update

and

attempts

to

retrieve

current

data.

If

the

connector

cannot

lock

the

rows,

it

tries

again

to

get

the

lock

for

the

count

and

interval

specified

in

this

configuration

property.

The

connector

eventually

times

out

if

the

lock

is

not

obtainable

within

the

values

specified

here.

Specify

the

value

in

the

format:

count,

interval

in

seconds.

For

example,

a

value

of

3,20

specifies

three

retries

with

an

interval

of

20

seconds

in

between.

The

default

is

3,20.

SchemaName

This

property

limits

the

search

for

the

event

and

archive

tables

within

that

particular

schema.

If

this

property

is

not

added

or

if

it

is

left

empty,

the

connector

will

search

all

of

the

schemas

that

the

user

has

access

to.

This

SchemaName

is

also

used

when

building

the

queries

to

access

the

event

and

archive

tables.

24

Adapter

for

JDBC

User

Guide

The

Oracle

Database

provides

support

for

schema

names.

For

MSSQL

server

or

DB2,

a

schema

name

can

refer

to

a

database

owner

name;

however,

refer

to

the

respective

JDBC

driver

documentation

for

specific

information.

Note:

DB2

schema

names

are

case

sensitive.

You

must

specify

the

schema

name

in

uppercase

letters.

No

default

value

is

provided.

SPBeforePollCall

This

property

names

the

stored

procedure

that

is

executed

for

every

poll

call.

If

the

property

SPBeforePollCall

has

a

value

(the

name

of

a

stored

procedure),

then

at

the

start

of

each

poll

call,

the

connector

calls

the

stored

procedure,

passing

it

the

values

of

the

connector

properties

ConnectorID

and

PollQuantity.

The

procedure

will

update

PollQuantity

number

of

rows,

setting

the

connector-id

column

to

ConnectorID

where

status=0

and

connector-id

is

null.

This

enables

load

balancing

in

the

connector.

Note:

In

the

case

where

a

poll

call

fails

prematurely

(the

database

is

down,

or

the

connection

is

lost),

the

connector-id

remains

set.

This

may

result

in

records

being

skipped

during

polling.

It

is

therefore

recommended

that

periodically,

the

connector-id

is

reset

back

to

null

for

all

records

in

the

event

table

with

a

status

of

0.

StrDelimiter

Specifies

the

character

and

termination

delimiters

for

use

in

the

ReplaceStrList

property.

v

The

character

delimiter

separates

the

character

to

be

replaced

from

the

string

that

replaces

it.

The

character

delimiter

occupies

the

first

(left-hand)

position

of

this

property’s

values

and

defaults

to

a

comma

(,).

v

The

termination

delimiter

separates

substitution

sets

(each

of

which

is

composed

of

the

character

to

be

replaced,

a

character

delimiter,

and

the

substitution

string).

The

termination

delimiter

occupies

the

second

(right-hand)

position

of

this

property’s

values

and

defaults

to

a

colon

(:).

You

can

specify

your

own

value

for

either

or

both

of

these

delimiters.

If

you

do

so,

do

not

specify

a

space

or

other

character

between

them.

Default

value

is

a

comma

followed

immediately

by

a

colon

(,:)

TimingStats

Allows

you

to

time

each

verb

operation

of

the

connector

to

look

for

problems.

Available

settings

are:

0

(No

timing

statistics)

1

(Timing

displayed

at

entry

and

exit

of

the

verb

operation

for

an

entire

hierarchical

business

object).

2

(Timing

displayed

at

entry

and

exit

of

each

verb

operation

for

each

individual

business

object

in

a

hierarchical

business

object).

Timing

messages

are

log

messages

rather

than

trace

messages.

They

can

be

turned

on

and

off,

independent

of

trace

levels.

The

default

value

is

0.

Chapter

2.

Installing

and

configuring

the

connector

25

UniqueIDTableName

Specifies

the

table

that

contains

the

latest

value

used

for

generation

of

a

unique

ID.

By

default,

the

table

has

one

column

(id).

You

can

customize

the

table

to

add

a

column

for

each

attribute

that

requires

generation

of

a

UID.

The

default

value

is

xworlds_uid.

UseDefaults

If

UseDefaults

is

set

to

true

or

is

not

set,

the

connector

checks

whether

a

valid

value

or

a

default

value

is

provided

for

each

required

business

object

attribute.

If

a

value

is

provided,

the

Create

succeeds;

otherwise,

it

fails.

If

UseDefaults

is

set

to

false,

the

connector

checks

only

whether

a

valid

value

is

provided

for

each

required

business

object

attribute;

the

Create

operation

fails

if

a

valid

value

is

not

provided.

The

default

value

is

false.

UseDefaultsForCreatingChildBOs

If

UseDefaultsForCreatingChildBOs

is

set

to

true

or

is

not

set,

the

connector

checks

whether

a

valid

value

or

a

default

value

is

provided

for

each

required

business

object

attribute.

If

a

value

is

provided,

the

Create

succeeds;

otherwise,

it

fails.

If

UseDefaultsForCreatingChildBOs

is

set

to

false,

the

connector

checks

only

whether

a

valid

value

is

provided

for

each

required

business

object

attribute;

the

Create

operation

fails

if

a

valid

value

is

not

provided.

UseDefaultsForRetrieve

For

polling:

If

UseDefaultsForRetrieve

is

not

defined

and

set

to

true,

the

default

values

will

be

set

in

the

BO

before

it

is

retrieved

from

the

database

and

dispatched

to

the

server.

If

UseDefaultsForRetrieve

is

defined

and

set

to

false,

the

default

values

will

not

be

set

in

the

BO

before

it

is

retrieved

from

the

database

and

dispatched

to

the

server.

For

request

processing:

If

UseDefaultsForRetrieve

is

not

defined

and

set

to

false,

the

default

values

will

not

be

set

in

the

BO

before

it

is

retrieved

from

the

database

and

dispatched

to

the

server.

If

UseDefaultsForRetrieve

is

defined

and

set

to

true,

the

default

values

will

be

set

in

the

BO

before

it

is

retrieved

from

the

database

and

dispatched

to

the

server.

Creating

multiple

instances

of

the

connector

Creating

multiple

instances

of

a

connector

is

in

many

ways

the

same

as

creating

a

custom

connector.

You

can

set

your

system

up

to

create

and

run

multiple

instances

of

a

connector

by

following

the

steps

below.

You

must:

v

Create

a

new

directory

for

the

connector

instance

v

Make

sure

you

have

the

requisite

business

object

definitions

v

Create

a

new

connector

definition

file

v

Create

a

new

start-up

script

26

Adapter

for

JDBC

User

Guide

Create

a

new

directory

You

must

create

a

connector

directory

for

each

connector

instance.

This

connector

directory

should

be

named:

ProductDir\connectors\connectorInstance

where

connectorInstance

uniquely

identifies

the

connector

instance.

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

ProductDir\repository\connectorInstance

Create

business

object

definitions

If

the

business

object

definitions

for

each

connector

instance

do

not

already

exist

within

the

project,

you

must

create

them.

1.

If

you

need

to

modify

business

object

definitions

that

are

associated

with

the

initial

connector,

copy

the

appropriate

files

and

use

Business

Object

Designer(?)

to

import

them.

You

can

copy

any

of

the

files

for

the

initial

connector.

Just

rename

them

if

you

make

changes

to

them.

2.

Files

for

the

initial

connector

should

reside

in

the

following

directory:

ProductDir\repository\initialConnectorInstance

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

ProductDir\repository.

Create

a

connector

definition

You

create

a

configuration

file

(connector

definition)

for

the

connector

instance

in

Connector

Configurator.

To

do

so:

1.

Copy

the

initial

connector’s

configuration

file

(connector

definition)

and

rename

it.

2.

Make

sure

each

connector

instance

correctly

lists

its

supported

business

objects

(and

any

associated

meta-objects).

3.

Customize

any

connector

properties

as

appropriate.

Create

a

start-up

script

To

create

a

startup

script:

1.

Copy

the

initial

connector’s

startup

script

and

name

it

to

include

the

name

of

the

connector

directory:

dirname

2.

Put

this

startup

script

in

the

connector

directory

you

created

in

“Create

a

new

directory.”

3.

Create

a

startup

script

shortcut

(Windows

only).

4.

Copy

the

initial

connector’s

shortcut

text

and

change

the

name

of

the

initial

connector

(in

the

command

line)

to

match

the

name

of

the

new

connector

instance.

You

can

now

run

both

instances

of

the

connector

on

your

integration

server

at

the

same

time.

For

more

information

on

creating

custom

connectors,

refer

to

the

Connector

Development

Guide

for

C++

or

for

Java.

Chapter

2.

Installing

and

configuring

the

connector

27

Starting

the

connector

A

connector

must

be

explicitly

started

using

its

connector

start-up

script.

The

startup

script

should

reside

in

the

connector’s

runtime

directory:

ProductDir\connectors\connName

where

connName

identifies

the

connector.

The

name

of

the

startup

script

depends

on

the

operating-system

platform,

as

Table

9

shows.

Table

9.

Startup

scripts

for

a

connector

Operating

system

Startup

script

UNIX-based

systems

connector_manager_connName

Windows

start_connName.bat

You

can

invoke

the

connector

startup

script

in

any

of

the

following

ways:

v

On

Windows

systems,

from

the

Start

menu

Select

Programs>IBM

WebSphere

Business

Integration

Adapters>Adapters>Connectors.

By

default,

the

program

name

is

“IBM

WebSphere

Business

Integration

Adapters”.

However,

it

can

be

customized.

Alternatively,

you

can

create

a

desktop

shortcut

to

your

connector.

v

From

the

command

line

–

On

Windows

systems:

start_connName

connName

brokerName

[-cconfigFile

]

–

On

UNIX-based

systems:

connector_manager_connName

-start

where

connName

is

the

name

of

the

connector

and

brokerName

identifies

your

integration

broker,

as

follows:

–

For

WebSphere

InterChange

Server,

specify

for

brokerName

the

name

of

the

ICS

instance.

–

For

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

specify

for

brokerName

a

string

that

identifies

the

broker.

Note:

For

a

WebSphere

message

broker

or

WebSphere

Application

Server

on

a

Windows

system,

you

must

include

the

-c

option

followed

by

the

name

of

the

connector

configuration

file.

For

ICS,

the

-c

is

optional.

v

From

Adapter

Monitor

(WebSphere

Business

Integration

Adapters

product

only),

which

is

launched

when

you

start

System

Manager

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

From

System

Monitor

(WebSphere

InterChange

Server

product

only)

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

starts

when

the

Windows

system

boots

(for

an

Auto

service)

or

when

you

start

the

service

through

the

Windows

Services

window

(for

a

Manual

service).

28

Adapter

for

JDBC

User

Guide

For

more

information

on

how

to

start

a

connector,

including

the

command-line

startup

options,

refer

to

one

of

the

following

documents:

v

For

WebSphere

InterChange

Server,

refer

to

the

System

Administration

Guide.

v

For

WebSphere

message

brokers,

refer

to

Implementing

Adapters

with

WebSphere

Message

Brokers.

v

For

WebSphere

Application

Server,

refer

to

Implementing

Adapters

with

WebSphere

Application

Server.

Stopping

the

connector

The

way

to

stop

a

connector

depends

on

the

way

that

the

connector

was

started,

as

follows:

v

If

you

started

the

connector

from

the

command

line,

with

its

connector

startup

script:

–

On

Windows

systems,

invoking

the

startup

script

creates

a

separate

“console”

window

for

the

connector.

In

this

window,

type

“Q”

and

press

Enter

to

stop

the

connector.

–

On

UNIX-based

systems,

connectors

run

in

the

background

so

they

have

no

separate

window.

Instead,

run

the

following

command

to

stop

the

connector:

connector_manager_connName

-stop

where

connName

is

the

name

of

the

connector.
v

From

Adapter

Monitor

(WebSphere

Business

Integration

Adapters

product

only),

which

is

launched

when

you

start

System

Manager

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

From

System

Monitor

(WebSphere

InterChange

Server

product

only)

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

stops

when

the

Windows

system

shuts

down.

Chapter

2.

Installing

and

configuring

the

connector

29

30

Adapter

for

JDBC

User

Guide

Chapter

3.

Understanding

business

objects

for

the

connector

This

chapter

describes

how

the

connector

for

JDBC

processes

business

objects

and

describes

the

assumptions

the

connector

makes

when

retrieving

and

modifying

data.

It

contains

the

following

sections:

v

“Business

object

and

attribute

naming

conventions”

v

“Business

object

structure”

v

“Business

object

verb

processing”

on

page

36

v

“Business

object

attribute

properties”

on

page

50

v

“Business

object

application-specific

information”

on

page

53

You

can

use

this

information

as

a

guide

to

modifying

existing

business

objects

or

as

suggestions

for

implementing

new

ones.

For

information

on

the

utility

that

automates

the

creation

of

WebSphere

Business

Integration

Adapter

business

object

definition

files

from

database

tables,

see

Chapter

4,

“Generating

business

object

definitions

using

JDBCODA,”

on

page

65.

The

connector

makes

assumptions

about

the

structure

of

its

supported

business

objects,

the

relationships

between

parent

and

child

business

objects,

the

format

of

the

application-specific

information,

and

the

database

representation

of

the

business

object.

Therefore,

when

you

create

or

modify

a

business

object

that

will

be

processed

by

the

connector,

your

modifications

must

conform

to

the

rules

the

connector

is

designed

to

follow.

If

they

do

not,

the

connector

cannot

process

new

or

modified

business

objects

correctly.

Business

object

and

attribute

naming

conventions

The

name

of

a

business

object

used

by

the

connector

can

consist

only

of

alphanumeric

characters

or

the

underscore

character.

Business

object

attribute

names

also

can

consist

only

of

alphanumeric

characters

or

the

underscore

character.

Business

object

structure

In

most

cases,

the

connector

assumes

that

every

individual

business

object

is

represented

by

one

database

table

or

view,

and

that

each

simple

attribute

(that

is,

an

attribute

that

represents

a

single

value,

such

as

a

String

or

Integer

or

Date)

within

the

object

is

represented

by

a

column

in

that

table

or

view.

Thus,

attributes

within

the

same

individual

business

object

cannot

be

stored

in

different

database

tables.

However,

the

following

situations

are

possible:

v

The

database

table

might

have

more

columns

than

the

corresponding

individual

business

object

has

simple

attributes

(that

is,

some

columns

in

the

database

are

not

represented

in

the

business

object).

Include

in

your

design

only

those

columns

needed

for

the

business

object

processing.

v

The

individual

business

object

might

have

more

simple

attributes

than

the

corresponding

database

table

has

columns

(that

is,

some

attributes

in

the

business

object

are

not

represented

in

the

database).

The

attributes

that

do

not

have

a

representation

in

the

database

either

have

no

application-specific

information

or

are

set

with

a

default

value

or

specify

stored

procedures.

v

The

individual

business

object

can

represent

a

view

that

spans

multiple

database

tables.

The

connector

can

use

such

a

business

object

when

processing

Create,

©

Copyright

IBM

Corp.

2000,

2003

31

Retrieve,

Update,

and

Delete

events

triggered

in

the

application.

However,

when

processing

business

object

requests,

the

connector

can

use

such

a

business

object

only

for

Retrieve

requests.

v

The

individual

business

object

can

represent

a

wrapper

object

that

is

used

as

a

container

for

unrelated

business

objects.

The

wrapper

object

is

not

represented

by

a

database

table

or

view.

Wrapper

objects

may

not

be

used

as

children

of

other

objects.

Note:

If

a

business

object

is

based

on

a

stored

procedure,

each

simple

attribute

(other

than

the

special

SP

attributes)

may

or

may

not

have

application-specific

information.

For

more

information,

see

“Stored

procedures”

on

page

44.

WebSphere

Business

Integration

Adapter

business

objects

can

be

flat

or

hierarchical.

All

the

attributes

of

a

flat

business

object

are

simple

and

represent

a

single

value.

A

hierarchical

business

object

has

attributes

that

represent

a

child

business

object,

an

array

of

child

business

objects,

or

a

combination

of

both.

In

turn,

each

child

business

object

can

contain

a

child

business

object

or

an

array

of

business

objects,

and

so

on.

A

single-cardinality

relationship

occurs

when

an

attribute

in

a

parent

business

object

represents

a

single

child

business

object.

In

this

case,

the

attribute

is

of

the

same

type

as

the

child

business

object.

A

multiple-cardinality

relationship

occurs

when

an

attribute

in

the

parent

business

object

represents

an

array

of

child

business

objects.

In

this

case,

the

attribute

is

an

array

of

the

same

type

as

the

child

business

objects.

Note:

The

term

hierarchical

business

object

refers

to

a

complete

business

object,

including

all

the

child

business

objects

that

it

contains

at

any

level.

The

term

individual

business

object

refers

to

a

single

business

object,

independent

of

any

child

business

objects

it

might

contain

or

that

contain

it.

The

term

top-level

business

object

refers

to

the

individual

business

object

at

the

top

of

the

hierarchy

that

does

not

itself

have

a

parent

business

object.

The

connector

supports

the

following

relationships

among

business

objects:

v

“Single-cardinality

relationships”

v

“Single-cardinality

relationships

and

data

without

ownership”

on

page

33

v

“Multiple-cardinality

relationships”

on

page

34

v

“Single-cardinality

relationships

that

store

the

relationship

in

the

child”

on

page

35

v

“Wrapper

objects”

on

page

36

In

each

type

of

cardinality,

the

relationship

between

the

parent

and

child

business

objects

is

described

by

the

application-specific

information

of

the

key

attribute

of

the

business

object

storing

the

relationship.

For

more

information

on

this

application-specific

information,

see

“FK=[fk_object_name.]fk_attribute_name”

on

page

55

in

Table

11

on

page

55.

Single-cardinality

relationships

Typically,

a

business

object

that

contains

a

single-cardinality

child

business

object

has

at

least

two

attributes

that

represent

the

relationship.

The

type

of

one

attribute

is

the

same

as

the

child’s

type.

The

other

attribute

is

a

simple

attribute

that

32

Adapter

for

JDBC

User

Guide

contains

the

child’s

primary

key

as

a

foreign

key

in

the

parent.

The

parent

has

as

many

foreign-key

attributes

as

the

child

has

primary-key

attributes.

Because

the

foreign

keys

that

establish

the

relationship

are

stored

in

the

parent,

each

parent

can

contain

only

one

single-cardinality

child

of

a

given

type.

Figure

2

illustrates

a

typical

single-cardinality

relationship.

In

the

example,

fk1

is

the

simple

attribute

that

contains

the

child’s

primary

key,

and

child[1]

is

the

attribute

that

represents

the

child

business

object.

Single-cardinality

relationships

and

data

without

ownership

Typically,

each

parent

business

object

owns

the

data

within

the

child

business

object

that

it

contains.

For

example,

if

each

Customer

business

object

contains

a

single

Address

business

object,

when

a

new

customer

is

created,

a

new

row

is

inserted

into

both

the

customer

and

the

address

tables.

The

new

address

is

unique

to

the

new

customer.

Likewise,

when

deleting

a

customer

from

the

customer

table,

the

customer’s

address

is

also

deleted

from

the

address

table.

However,

there

are

situations

where

multiple

hierarchical

business

objects

contain

the

same

data,

which

none

of

them

owns.

For

example,

assume

that

an

Address

business

object

has

a

StateProvince[1]

attribute

that

represents

the

StateProvince

lookup

table

with

single

cardinality.

Because

the

lookup

table

is

rarely

updated

and

is

maintained

independently

of

the

address

data,

creation

or

modification

of

address

data

does

not

affect

the

data

in

the

lookup

table.

The

connector

either

finds

an

existing

state

or

province

name

or

fails.

It

does

not

add

or

change

values

in

the

lookup

table.

When

multiple

business

objects

contain

the

same

single-cardinality

child

business

object,

the

foreign-key

attribute

in

each

parent

business

object

must

specify

the

relationship

as

NO_OWNERSHIP.

When

an

integration

broker

sends

the

connector

a

hierarchical

business

object

with

a

Create,

Delete,

or

Update

request,

the

connector

ignores

single-cardinality

children

contained

without

ownership.

The

connector

performs

only

retrieves

on

these

business

objects.

If

the

connector

fails

to

retrieve

such

a

single-cardinality

business

object,

it

returns

an

error

and

stops

processing.

For

information

on

how

to

specify

the

relationship

without

ownership,

see

“Attributes

that

represent

a

single-cardinality

child

business

object”

on

page

61.

For

more

information

on

specifying

foreign

key

relationships,

see

“Specifying

an

attribute’s

foreign

key”

on

page

57.

ParentBOName

pk

Verb

fk1 ChildBOName

Verb

child_pk
.
.

..

..

child[1]

Figure

2.

Typical

single-cardinality

relationship

Chapter

3.

Understanding

business

objects

for

the

connector

33

Denormalized

data

and

data

without

ownership

In

addition

to

facilitating

use

of

static

lookup

tables,

containment

without

ownership

provides

another

capability:

synchronizing

normalized

and

denormalized

data.

Synchronizing

from

normalized

to

denormalized

data:

Specifying

a

relationship

as

NO_OWNERSHIP

allows

you

to

create

or

change

data

when

you

synchronize

from

a

normalized

application

to

a

denormalized

one.

For

example,

assume

that

your

normalized

source

application

stores

data

in

two

tables,

A

and

B.

Assume

further

that

your

denormalized

destination

application

stores

all

the

data

in

a

single

table

such

that

each

entity

A

redundantly

stores

B

data.

In

this

example,

to

synchronize

a

change

in

table

B

data

from

your

source

application

to

your

destination

application,

you

must

trigger

a

table

A

event

whenever

table

B

data

changes.

Moreover,

because

table

B

data

is

stored

redundantly

in

table

A,

you

must

send

a

business

object

for

each

row

in

table

A

that

contains

the

changed

data

from

table

B.

Synchronizing

from

denormalized

to

normalized

data:

When

synchronizing

data

from

a

denormalized

source

application

to

a

normalized

destination

application,

the

connector

does

not

create,

delete,

or

update

data

contained

without

ownership

in

the

normalized

application.

When

synchronizing

data

to

a

normalized

application,

the

connector

ignores

all

single-cardinality

children

contained

without

ownership.

In

order

to

create,

remove,

or

modify

such

child

data,

you

must

process

the

data

manually.

Multiple-cardinality

relationships

Typically,

a

business

object

that

contains

an

array

of

child

business

objects

has

only

one

attribute

that

represents

the

relationship.

The

type

of

the

attribute

is

an

array

of

the

same

type

as

the

child

business

objects.

In

order

for

a

parent

to

contain

more

than

one

child,

the

foreign

keys

that

establish

the

relationship

are

stored

in

each

child.

Therefore,

each

child

has

at

least

one

simple

attribute

that

contains

the

parent’s

primary

key

as

a

foreign

key.

The

child

has

as

many

foreign-key

attributes

as

the

parent

has

primary

key

attributes.

Because

the

foreign

keys

that

establish

the

relationship

are

stored

in

the

child,

each

parent

can

have

zero

or

more

children.

Figure

3

illustrates

a

multiple-cardinality

relationship.

In

the

example,

parentId

is

the

simple

attribute

that

contains

the

parent’s

primary

key,

and

child[n]

is

the

attribute

that

represents

the

array

of

child

business

objects.

34

Adapter

for

JDBC

User

Guide

Single-cardinality

relationships

that

store

the

relationship

in

the

child

Some

applications

store

a

single

child

entity

so

that

the

relationship

is

stored

in

the

child

rather

than

in

the

parent.

In

other

words,

the

child

contains

a

foreign

key

whose

value

is

identical

to

the

value

stored

in

the

parent’s

primary

key.

Figure

4

illustrates

this

special

type

of

single-cardinality

relationship.

Applications

use

this

type

of

single-cardinality

relationship

when

child

data

does

not

exist

independently

of

its

parent

and

can

be

accessed

only

through

its

parent.

Such

child

data

is

never

owned

by

more

than

one

parent,

and

requires

that

the

parent

and

its

primary-key

value

exist

before

the

child

and

its

foreign-key

value

can

be

created.

To

accommodate

such

applications,

the

connector

also

supports

hierarchical

business

objects

that

contain

a

child

with

single

cardinality

but

store

the

relationship

in

the

child

rather

than

in

the

parent.

To

specify

that

a

parent

business

object

contains

a

single-cardinality

child

in

this

special

way,

when

you

specify

the

application-specific

information

of

the

attribute

Verb

Verb

ID
parentID
..

ParentBOName

ID=ABC

Verb

..

child[n]

parentID
..

ChildBOName

Verb

ID
parentID
..

..

OName

OName

Figure

3.

Multiple-cardinality

business

object

relationship

ChildBOName

Verb

ID=12AB
parentID
..

ParentBOName

ID=ABC

Verb

..
child[1]

..

Figure

4.

Single-cardinality

business

object

with

relationship

stored

in

the

child

Chapter

3.

Understanding

business

objects

for

the

connector

35

that

contains

the

child,

do

not

include

the

CONTAINMENT

parameter.

For

more

information,

see

“Attributes

that

represent

a

single-cardinality

child

business

object”

on

page

61.

Wrapper

objects

The

wrapper

object

is

a

top-level

business

object

that

does

not

correspond

to

any

database

table

or

view.

The

wrapper

object

is

denoted

by

the

top-level

business

object

property

of

WRAPPER

with

a

value

of

true.

The

wrapper

object

is

a

dummy

parent

that

is

used

as

a

container

for

unrelated

children.

In

processing

the

wrapper

object,

the

connector

ignores

the

top-level

business

object

and

processes

only

the

children.

The

wrapper

object

may

contain

N

cardinality

or

N-1

cardinality

entities

or

both.

A

N

cardinality

entity

should

have

at

least

one

unique

attribute

marked

as

a

primary

key

and

at

least

one

attribute

marked

as

a

foreign

key.

This

foreign

key

will

then

be

added

as

a

primary

key

in

the

wrapper

object.

The

entity’s

foreign

key

will

reference

the

wrapper

object’s

primary

key

that

was

just

added.

In

the

case

of

a

N-1

cardinality

entity,

the

primary

key

should

be

marked

as

both

a

primary

key

and

a

foreign

key,

referencing

the

primary

key

in

the

wrapper,

which

is

the

same

as

the

primary

key

in

the

N-1

entity.

Business

object

verb

processing

This

section

describes

the

following

aspects

of

processing

a

business

object’s

verbs:

v

“Verb

determination,”

which

explains

how

the

connector

determines

the

verb

to

use

for

each

individual,

source

business

object

v

“Afterimages

and

deltas,”

which

defines

the

terms

and

explains

how

the

connector

works

with

afterimages

v

“Verb

processing”

on

page

38,

which

explains

the

steps

the

connector

takes

when

creating,

retrieving,

updating,

or

deleting

a

business

object

v

“SQL

statements”

on

page

44,

which

explains

how

the

connector

uses

simple

SQL

statements

for

selecting,

updating,

retrieving

or

deleting

operations

v

“Stored

procedures”

on

page

44,

which

explains

how

the

connector

uses

stored

procedures

v

“Transaction

commit

and

rollback”

on

page

50,

which

briefly

explains

how

the

connector

uses

transaction

blocks

Verb

determination

A

top-level

business

object

and

each

of

its

individual

child

business

objects

can

contain

their

own

verbs.

Therefore,

an

integration

broker

can

pass

a

business

object

that

has

different

verbs

for

parent

and

child

business

objects

to

the

connector.

When

this

occurs,

the

connector

uses

the

verb

of

the

top-level

parent

business

object

to

determine

how

to

process

the

entire

business

object.

For

more

information,

see

“Verb

processing”

on

page

38.

Afterimages

and

deltas

An

afterimage

is

the

state

of

a

business

object

after

all

changes

have

been

made

to

it.

A

delta

is

a

business

object

used

in

an

update

operation

that

contains

only

key

values

and

the

data

to

be

changed.

Because

the

connector

supports

only

afterimages,

when

it

receives

a

business

object

for

update,

the

connector

assumes

that

the

business

object

represents

the

desired

state

of

the

data

after

update.

36

Adapter

for

JDBC

User

Guide

Therefore,

when

an

integration

broker

sends

a

business

object

with

the

Update

verb

to

the

connector,

the

connector

changes

the

current

representation

of

the

business

object

in

the

database

so

that

it

exactly

matches

the

source

business

object.

To

do

this,

the

connector

changes

simple

attribute

values

and

adds

or

removes

child

business

objects.

For

example,

assume

the

current

state

of

Contract

2345

in

the

database

is

as

follows:

Contract

contract_id=2345

Update

A

B

C

child_data(n)

address_data(1)
phone_data(1)

Address

D

E

F

G

Assume

further

that

the

integration

broker

passes

the

following

business

object

to

the

connector:

Contract

contract_id=2345

Update

A

B

H

child_data(n)

address_data(1)
phone_data(1)

Address

F

G

I

J

Phone

To

process

the

update,

the

connector

applies

the

following

changes

to

the

database:

v

Update

the

simple

attributes

in

the

top-level

Contract

and

Address

business

objects

v

Create

the

Phone

business

object

v

Update

the

simple

attributes

in

the

child

business

objects

A,

B,

F

and

G

v

Delete

the

child

business

objects

C,

D

and

E

v

Create

the

child

business

objects

H,

I

and

J

Because

the

connector

assumes

that

each

business

object

it

receives

from

the

integration

broker

represents

an

afterimage,

it

is

important

to

ensure

that

each

business

object

sent

to

such

a

connector

for

updating

contains

valid

existing

child

business

objects.

Even

if

none

of

a

child

business

object’s

simple

attributes

have

changed,

the

child

business

object

must

be

included

in

the

source

business

object.

Chapter

3.

Understanding

business

objects

for

the

connector

37

There

is

a

way,

however,

that

you

can

prevent

some

connectors

from

deleting

missing

child

business

objects

during

an

update

operation.

You

can

use

the

application-specific

information

for

the

attribute

that

represents

the

child

or

array

of

children

to

instruct

the

connector

to

keep

child

business

objects

that

are

not

included

in

the

source

business

object.

To

do

so,

set

KEEP_RELATIONSHIP

to

true.

For

more

information,

see

“Specifying

an

attribute’s

foreign

key”

on

page

57.

Verb

processing

This

section

outlines

the

steps

the

connector

takes

when

creating,

retrieving,

updating,

or

deleting

a

business

object

that

it

receives

from

an

integration

broker.

The

connector

processes

hierarchical

business

objects

recursively;

that

is,

it

performs

the

same

steps

for

each

child

business

object

until

it

has

processed

all

individual

business

objects.

Note:

A

top-level

business

object

that

is

a

wrapper

supports

the

create,

retrieve,

update

and

delete

verbs.

The

only

difference

in

processing

a

wrapper

object

is

that

the

wrapper

object

is

not

processed,

only

the

objects

that

it

contains

are

processed.

Business

object

comparison

At

various

points

in

the

processing

outlined

below,

the

connector

compares

two

business

objects

to

see

if

they

are

the

same.

For

example,

during

an

update

operation,

the

connector

determines

whether

a

particular

business

object

exists

in

an

array

of

business

objects.

To

perform

the

check,

the

connector

compares

the

business

object

to

each

business

object

within

the

array.

For

two

business

objects

to

be

identical,

the

following

two

conditions

must

be

satisfied:

v

The

type

of

the

business

objects

being

compared

must

be

the

same.

For

example,

a

Customer

business

object

is

never

considered

identical

to

a

Contact

business

object

even

if

all

of

their

attributes

are

exactly

the

same.

v

All

corresponding

key

attributes

in

the

two

business

objects

must

contain

identical

values.

If

a

key

attribute

is

set

to

CxIgnore

in

both

business

objects,

the

connector

considers

them

identical.

However,

if

a

key

attribute

is

set

to

CxIgnore

in

one

business

object

but

not

in

the

other,

the

business

objects

are

not

identical.

Create

operations

When

creating

a

business

object,

the

connector

returns

a

status

either

of

VALCHANGE

if

the

operation

was

successful

(regardless

of

whether

the

operation

caused

changes

to

the

business

object),

or

FAIL

if

the

operation

failed.

The

connector

performs

the

following

steps

when

creating

a

hierarchical

business

object:

1.

Recursively

inserts

each

single-cardinality

child

business

object

contained

with

ownership

into

the

database.

In

other

words,

the

connector

creates

the

child

and

all

child

business

objects

that

the

child

and

its

children

contain.

If

the

business

object

definition

specifies

that

an

attribute

represents

a

child

business

object

with

single

cardinality

and

that

attribute

is

empty,

the

connector

ignores

the

attribute.

However,

if

the

business

object

definition

requires

that

attribute

to

represent

a

child

and

it

does

not,

the

connector

returns

an

error

and

stops

processing.

2.

Processes

each

single-cardinality

child

business

object

contained

without

ownership

as

follows:

a.

Recursively

attempts

to

retrieve

the

child

from

the

database

using

the

key

values

passed

in

by

the

integration

broker.

38

Adapter

for

JDBC

User

Guide

b.

If

the

retrieve

is

unsuccessful,

indicating

that

the

child

does

not

currently

exist

in

the

database,

the

connector

returns

an

error

and

stops

processing.

If

the

retrieve

is

successful,

the

connector

recursively

updates

the

child

business

object.

Note:

For

this

approach

to

work

correctly

when

the

child

business

object

already

exists

in

the

application

database,

ensure

that

primary

key

attributes

in

child

business

objects

are

cross-referenced

correctly

on

create

operations.

If

the

child

business

object

does

not

already

exist

in

the

application

database,

set

the

primary

key

attributes

to

CxBlank.

3.

Inserts

the

top-level

business

object

in

the

database

as

follows:

a.

Sets

each

of

its

foreign-key

values

to

the

primary-key

values

of

the

corresponding

child

business

object

represented

with

single

cardinality.

Because

values

in

child

business

objects

can

be

set

by

database

sequences

or

counters

or

by

the

database

itself

during

the

creation

of

the

child,

this

step

ensures

that

the

foreign-key

values

in

the

parent

are

correct

before

the

connector

inserts

the

parent

in

the

database.

b.

Generates

a

new

unique

ID

value

for

each

attribute

that

is

set

automatically

by

the

database.

The

name

of

the

database

sequence

or

counter

is

stored

in

the

attribute’s

application-specific

information.

If

an

attribute

has

an

associated

database

sequence

or

counter,

the

value

generated

by

the

connector

overwrites

any

value

passed

in

by

the

integration

broker.

For

more

information

on

specifying

a

database

sequence

or

counter,

see

UID=AUTO

in

“Application-specific

information

for

simple

attributes”

on

page

55.

c.

Copies

the

value

of

an

attribute

to

the

value

of

another

attribute

as

specified

by

the

CA

(CopyAttribute)

parameter

of

the

attribute’s

application-specific

information.

For

more

information

on

using

the

CA

parameter,

see

CA=set_attr_name

in

“Application-specific

information

for

simple

attributes”

on

page

55.

d.

Inserts

the

top-level

business

object

into

the

database.

Note:

A

top-level

business

object

that

is

a

wrapper

will

not

be

inserted

into

the

database.

4.

Processes

each

of

its

single-cardinality

child

business

objects

that

stores

the

parent/child

relationship

in

the

child,

as

follows:

a.

Sets

the

foreign-key

values

in

the

child

to

reference

the

value

in

the

corresponding

primary-key

attributes

in

the

parent.

Because

the

parent’s

primary-key

values

may

have

been

generated

during

the

creation

of

the

parent,

this

ensures

that

the

foreign-key

values

in

each

child

are

correct

before

the

connector

inserts

the

child

into

the

database.

b.

Inserts

the

child

into

the

database.
5.

Processes

each

of

its

multiple-cardinality

child

business

objects,

as

follows:

a.

Sets

the

foreign-key

values

in

each

child

to

reference

the

value

in

the

corresponding

primary-key

attributes

in

the

parent.

Because

the

parent’s

primary-key

values

may

have

been

generated

during

the

creation

of

the

parent,

this

ensures

that

the

foreign-key

values

in

each

child

are

correct

before

the

connector

inserts

the

child

into

the

database.

b.

Inserts

each

of

its

multiple-cardinality

child

business

objects

into

the

database.

Chapter

3.

Understanding

business

objects

for

the

connector

39

Retrieve

operations

The

connector

performs

the

following

steps

when

retrieving

a

hierarchical

business

object:

1.

Removes

all

child

business

objects

from

the

top-level

business

object

that

it

received

from

the

integration

broker.

2.

Retrieves

the

top-level

business

object

from

the

database.

v

If

the

retrieval

returns

1

row,

the

connector

continues

processing.

v

If

the

retrieval

returns

no

rows,

indicating

that

the

top-level

business

object

does

not

exist

in

the

database,

the

connector

returns

BO_DOES_NOT_EXIST.

v

If

the

retrieval

returns

more

than

one

row,

the

connector

returns

FAIL.

Note:

A

business

object

can

have

attributes

that

do

not

correspond

to

any

database

column,

such

as

placeholder

attributes.

During

retrieval,

the

connector

does

not

change

such

attributes

in

the

top-level

business

object;

they

remain

set

to

the

values

received

from

the

integration

broker.

In

child

business

objects,

the

connector

sets

such

attributes

to

their

default

values

during

retrieval.

Note:

A

top-level

business

object

that

is

a

wrapper

must

contain

any

attribute

values

from

the

objects

at

the

level

immediately

below

the

wrapper

object,

which

would

be

necessary

to

retrieve

the

objects,

including

keys

and

placeholder

attributes.

The

wrapper

object

must

have

all

keys

and

placeholder

attributes

populated.

Simple

attributes

in

the

wrapper

object

that

will

be

used

as

foreign

keys

in

the

objects

one

level

below

the

wrapper

should

be

marked

as

keys

in

the

wrapper

object.

3.

Recursively

retrieves

all

multiple-cardinality

child

business

objects.

Note:

The

connector

does

not

enforce

uniqueness

when

populating

an

array

of

business

objects.

It

is

the

database’s

responsibility

to

ensure

uniqueness.

If

the

database

returns

duplicate

child

business

objects,

the

connector

returns

duplicate

children.

4.

Recursively

retrieves

each

of

the

single-cardinality

children

regardless

of

whether

the

child

business

object

is

contained

with

or

without

ownership.

Note:

All

single

cardinality

child

business

objects

are

processed

based

on

occurrence

in

the

business

object

and

before

the

parent

business

object

is

processed.

Child

object

ownership

and

non-ownership

do

not

determine

the

processing

sequence,

but

do

determine

the

type

of

processing.

RetrieveByContent

operations

A

RetrieveByContent

verb

is

applicable

only

for

the

top-level

business

object,

because

the

connector

performs

a

retrieval

based

on

attributes

only

in

the

top-level

business

object.

If

a

top-level

business

object

uses

the

RetrieveByContent

verb,

all

of

the

attributes

(including

non-key

attributes)

that

are

not

null

are

used

as

retrieval

criteria.

If

more

than

one

row

is

returned,

the

connector

uses

the

first

row

as

the

result

row

and

returns

MULTIPLE_HITS.

Note:

A

RetrieveByContent

verb

is

not

applicable

for

a

top-level

business

object

that

is

a

wrapper.

40

Adapter

for

JDBC

User

Guide

Update

operations

When

updating

a

business

object,

the

connector

returns

a

status

either

of

VALCHANGE

if

the

operation

was

successful

(regardless

of

whether

the

operation

caused

changes

to

the

business

object),

or

FAIL

if

the

operation

failed.

When

working

with

an

Oracle

database,

the

connector

locks

data

while

retrieving

it

to

ensure

data

integrity.

The

connector

performs

the

following

steps

when

updating

a

hierarchical

business

object:

1.

Uses

the

primary-key

values

of

the

source

business

object

to

retrieve

the

corresponding

entity

from

the

database.

The

retrieved

business

object

is

an

accurate

representation

of

the

current

state

of

the

data

in

the

database.

v

If

the

retrieval

fails,

indicating

that

the

top-level

business

object

does

not

exist

in

the

database,

the

connector

returns

BO_DOES_NOT_EXIST

and

the

update

fails.

Note:

A

top-level

business

object

that

is

a

wrapper

does

not

have

to

exist

in

the

database.

However,

it

must

contain

any

attribute

values

from

the

objects

at

the

level

immediately

below

the

wrapper

object,

which

would

be

necessary

to

retrieve

the

objects

including

keys

and

placeholder

attributes.

The

wrapper

object

must

have

all

keys

and

placeholder

attributes

populated.

Simple

attributes

in

the

wrapper

object

that

will

be

used

as

foreign

keys

in

the

objects

one

level

below

the

wrapper

should

be

marked

as

keys

in

the

wrapper

object.

v

If

the

retrieval

succeeds,

the

connector

compares

the

retrieved

business

object

to

the

source

business

object

to

determine

which

child

business

objects

require

changes

in

the

database.

The

connector

does

not,

however,

compare

values

in

the

source

business

object’s

simple

attributes

to

those

in

the

retrieved

business

object.

The

connector

updates

the

value

of

all

non-key

simple

attributes.

If

all

the

simple

attributes

in

the

top-level

business

object

represent

keys,

the

connector

cannot

generate

an

update

query

for

the

top-level

business

object.

In

this

case,

the

connector

logs

a

warning

and

continues

to

step

2.
2.

Recursively

updates

all

single-cardinality

children

of

the

top-level

business

object.

If

the

business

object

definition

requires

that

an

attribute

represent

a

child

business

object,

the

child

must

exist

in

both

the

source

business

object

and

the

retrieved

business

object.

If

it

does

not,

the

update

fails,

and

the

connector

returns

an

error.

The

connector

handles

single-cardinality

children

contained

with

ownership

in

one

of

the

following

ways:

v

If

the

child

is

present

in

both

the

source

and

the

retrieved

business

objects,

instead

of

updating

the

already

existing

child

in

the

database,

the

connector

deletes

the

existing

child

and

creates

the

new

child.

v

If

the

child

is

present

in

the

source

business

object

but

not

in

the

retrieved

business

object,

the

connector

recursively

creates

it

in

the

database.

v

If

the

child

is

present

in

the

retrieved

business

object

but

not

in

the

source

business

object,

the

connector

recursively

deletes

it

from

the

database.

The

type

of

delete,

physical

or

logical,

depends

on

the

value

of

its

ChildUpdatePhyDelete

property.

For

single-cardinality

children

contained

without

ownership,

the

connector

attempts

to

retrieve

every

child

from

the

database

that

is

present

in

the

source

Chapter

3.

Understanding

business

objects

for

the

connector

41

business

object.

If

it

successfully

retrieves

the

child,

the

connector

populates

the

child

business

object

but

does

not

update

it,

as

single

cardinality

children

contained

without

ownership

are

never

modified

by

the

connector.

3.

For

single-cardinality

child

business

objects

that

store

the

relationship

in

the

parent,

sets

each

foreign-key

value

in

the

parent

to

the

value

of

the

primary

key

in

the

corresponding

single-cardinality

child

business

object.

This

step

is

necessary

because

single-cardinality

children

may

have

been

added

to

the

database

during

previous

steps,

resulting

in

the

generation

of

new

unique

IDs.

4.

Updates

all

simple

attributes

of

the

retrieved

business

object

except

those

whose

corresponding

attribute

in

the

source

business

object

contain

the

value

CxIgnore.

Because

the

business

object

being

updated

must

be

unique,

the

connector

verifies

that

only

one

row

is

processed

as

a

result.

It

returns

an

error

if

more

than

one

row

is

returned.

5.

Sets

all

foreign-key

values

in

each

child

that

stores

the

parent/child

relationship

in

the

child

(both

multiple-cardinality

and

single-cardinality)

to

the

primary-key

value

of

its

corresponding

parent

business

object.

(When

ICS

is

used

as

the

integration

broker,

these

values

have

typically

been

cross-referenced

during

data

mapping.)

However,

this

step

is

important

to

ensure

that

the

foreign-key

values

of

new

children

that

store

the

relationship

in

the

child

are

correct

before

the

connector

updates

those

children.

6.

Processes

each

multiple-cardinality

child

of

the

retrieved

business

object

in

one

of

the

following

ways:

v

If

the

child

exists

in

both

the

source

and

the

retrieved

business

objects’

arrays,

the

connector

recursively

updates

it

in

the

database.

v

If

the

child

exists

in

the

source

array

but

not

in

the

retrieved

business

object’s

array,

the

connector

recursively

creates

it

in

the

database.

v

If

the

child

exists

in

the

retrieved

business

object’s

array

but

not

in

the

source

array,

the

connector

recursively

deletes

it

from

the

database

unless

the

application-specific

information

for

the

attribute

that

represents

the

child

in

the

parent

has

KEEP_RELATIONSHIP

set

to

true.

In

this

case,

the

connector

does

not

delete

the

child

from

the

database.

For

more

information,

see

“Specifying

an

attribute’s

foreign

key”

on

page

57.

The

type

of

delete,

physical

or

logical,

depends

on

the

value

of

its

ChildUpdatePhyDelete

property.

Note:

The

integration

broker

must

ensure

that

business

objects

contained

with

multiple

cardinality

in

the

source

business

object

are

unique

(that

is,

that

an

array

does

not

contain

two

or

more

copies

of

the

same

business

object).

If

the

connector

receives

duplicates

of

a

business

object

in

a

source

array,

it

processes

the

business

object

twice,

with

possibly

unpredictable

results.

DeltaUpdate

operations

DeltaUpdate

verb

processing

is

different

from

update

verb

processing

as

follows:

1.

On

a

DeltaUpdate

no

retrieve

is

done

before

updating,

as

is

done

in

update

verb

processing.

2.

No

comparisons

are

made

between

the

incoming

business

object

and

the

business

object

in

the

database.

3.

All

children

will

be

processed

based

on

the

verb

set

in

each

child

object.

If

a

child

doesn’t

have

a

verb

set

in

it,

the

connector

will

return

an

error.

When

delta

updating

a

business

object,

the

connector

returns

a

status

of

either

VALCHANGE

if

the

operation

was

successful

(regardless

of

whether

the

operation

caused

changes

to

the

business

object)

or

FAIL

if

the

operation

failed.

42

Adapter

for

JDBC

User

Guide

The

connector

performs

the

following

steps

when

delta

updating

a

hierarchical

business

object:

1.

Recursively

processes

all

single-cardinality

children

of

the

parent

object.

If

a

child

is

marked

as

IsRequired

in

the

business

object

specification,

it

must

be

present

in

the

inbound

object.

If

not,

the

delta

update

will

fail

and

the

connector

will

return

an

error.

2.

Sets

all

foreign

key

values

in

the

parent

that

reference

attributes

in

single-cardinality

children

to

their

corresponding

child

values.

This

is

necessary

because

single-cardinality

children

may

have

been

added

to

the

database

during

the

previous

steps,

resulting

in

the

generation

of

new

sequence

values.

3.

Updates

the

current

object

being

processed

via

an

SQL

UPDATE

statement

or

a

stored

procedure.

All

simple

attributes

of

the

individual

business

object

are

updated,

except

those

attributes

set

to

IsIgnore

in

the

inbound

business

object.

The

connector

does

not

compare

the

inbound

object

to

the

current

object

on

an

attribute

level

to

determine

which

attributes

need

to

be

added

to

the

update

statement;

they

are

all

updated.

Since

the

object

being

updated

should

be

unique,

the

connector

checks

to

make

sure

that

only

one

row

is

processed

as

a

result.

An

error

is

returned

if

more

than

one

row

is

processed.

4.

Sets

all

foreign

key

values

in

all

cardinality

N

children

of

the

current

object

that

reference

parent

attributes

to

the

corresponding

parent

values.

Usually

these

values

will

already

be

cross-referenced

during

data

mapping;

however,

this

may

not

be

the

case

for

new

children

in

cardinality

N

containers.

This

ensures

that

the

foreign

key

values

in

all

cardinality

N

children

are

correct

before

those

children

are

updated.

5.

Updates

all

cardinality

N

containers

of

the

current

object.

When

the

child

objects

are

processed,

each

child’s

verb

is

taken

and

the

appropriate

operation

is

done.

The

allowed

verbs

on

a

child

in

DeltaUpdate

are

Create,

Delete

and

DeltaUpdate.

v

If

a

Create

verb

is

found

in

the

child,

the

child

gets

created

in

the

database

if

it

is

an

ownership

child.

Non-ownership

children

are

retrieved

to

validate

their

existence

in

the

database.

v

If

a

Delete

verb

is

found

in

the

child,

that

child

gets

deleted.

v

If

a

DeltaUpdate

verb

is

found

in

the

child,

the

child

gets

updated

in

the

database.

Delete

operations

When

deleting

a

business

object,

the

connector

returns

a

status

of

SUCCESS

if

the

operation

was

successful

or

FAIL

if

the

operation

failed.

The

parent

business

object

is

first

retrieved

and

then

the

adapter

recursively

deletes

all

single-cardinality

children

that

have

an

ownership

relationship

to

the

parent,

then

the

parent

business

object

itself,

and

finally

all

cardinality

N

children.

Single-cardinality

no-ownership

children

are

never

deleted.If

the

business

object

does

not

exist,

the

connector

returns

a

FAIL.

The

connector

supports

logical

and

physical

deletes,

depending

on

the

Status

Column

Name

(SCN)

value

in

the

object’s

application-specific

information.

If

the

SCN

value

is

defined,

the

connector

performs

a

logical

delete.

If

the

SCN

value

is

not

defined,

the

connector

performs

a

physical

delete.

Physical

deletes:

The

connector

performs

the

following

steps

when

physically

deleting

a

hierarchical

business

object:

1.

Recursively

deletes

all

single-cardinality

child

business

objects

contained

with

ownership.

Chapter

3.

Understanding

business

objects

for

the

connector

43

2.

Deletes

the

top-level

business

object.

3.

Recursively

deletes

all

multiple-cardinality

child

business

objects.

Note:

A

top-level

business

object

that

is

a

wrapper

does

not

have

a

corresponding

database

table,

hence

it

will

not

be

deleted

from

the

database.

Any

simple

attribute

values

for

a

wrapper

will

be

ignored.

Logical

deletes:

When

logically

deleting

a

business

object,

the

connector

performs

the

following

steps:

1.

Issues

an

UPDATE

that

sets

the

business

object‘s

status

attribute

to

the

value

specified

by

the

business

object’s

application-specific

information.

The

connector

ensures

that

only

one

database

row

is

updated

as

a

result,

and

it

returns

an

error

if

this

is

not

the

case.

2.

Recursively

logically

deletes

all

single-cardinality

children

contained

with

ownership

and

all

multiple-cardinality

children.

The

connector

does

not

delete

single-cardinality

children

contained

without

ownership.

SQL

statements

The

connector

can

use

simple

SQL

statements

for

select,

update,

retrieve

or

delete

operations.

The

column

names

for

SQL

statements

are

derived

from

an

attribute’s

AppSpecificInfo

property.

Each

query

spans

one

table

only,

unless

posted

to

a

view.

Stored

procedures

A

stored

procedure

is

a

group

of

SQL

statements

that

form

a

logical

unit

and

perform

a

particular

task.

A

stored

procedure

encapsulates

a

set

of

operations

or

queries

for

the

connector

to

execute

on

an

object

in

a

database

server.

The

connector

calls

stored

procedures

in

the

following

circumstances:

v

Before

processing

a

business

object,

to

perform

preparatory

operational

processes

v

After

processing

a

business

object,

to

perform

post-operational

processes

v

To

perform

a

set

of

operations

on

a

business

object,

instead

of

using

a

simple

INSERT,

RETRIEVE,

UPDATE,

or

DELETE

statement

When

it

processes

a

hierarchical

business

object,

the

connector

can

use

a

stored

procedure

to

process

the

top-level

business

object

or

any

of

its

child

business

objects.

However,

each

business

object

or

array

of

business

objects

must

have

its

own

stored

procedure.

Specifying

a

stored

procedure

This

section

describes

the

steps

you

must

perform

to

cause

the

connector

to

use

a

stored

procedure

for

a

business

object.

It

contains

the

following

sections:

v

“Adding

attributes

to

the

business

object”

v

“Syntax

of

a

stored

procedure”

on

page

45

v

“Examples

of

stored

procedures”

on

page

46

v

“Specifying

the

stored

procedure”

on

page

46

Adding

attributes

to

the

business

object:

You

must

add

a

special

kind

of

attribute

to

the

business

object

for

each

type

of

stored

procedure

that

the

connector

processes.

These

attributes

represent

only

the

stored

procedure’s

type

and

the

application-specific

information

that

defines

it.

These

attributes

do

not

use

the

application-specific

information

parameters

available

for

a

standard

simple

attribute.

44

Adapter

for

JDBC

User

Guide

Name

the

attribute

according

to

the

type

of

stored

procedure

to

be

used.

For

example,

to

cause

the

connector

to

use

AfterUpdate

and

BeforeRetrieve

stored

procedures,

add

the

AfterUpdateSP

and

BeforeRetrieveSP

attributes.

The

connector

recognizes

the

following

business

object

attribute

names:

BeforeCreateSP

AfterCreateSP

CreateSP

BeforeUpdateSP

AfterUpdateSP

UpdateSP

BeforeDeleteSP

AfterDeleteSP

DeleteSP

BeforeRetrieveSP

AfterRetrieveSP

RetrieveSP

BeforeRetrieveByContentSP

AfterRetrieveByContentSP

RetrieveByContentSP

BeforeRetrieveUpdateSP

AfterRetrieveUpdateSP

RetrieveUpdateSP

Note:

Create

an

attribute

only

for

those

stored

procedures

that

you

want

the

connector

to

execute.

Use

the

application-specific

information

or

mapping

(only

if

ICS

is

used

as

the

integration

broker)

to

specify

values

for

these

attributes

before

the

business

object

is

sent

to

the

connector.

The

connector

must

be

restarted

to

recognize

changes

to

these

values

for

subsequent

calls

on

a

business

object.

Syntax

of

a

stored

procedure:

The

syntax

for

specifying

a

stored

procedure

is:

SPN=StoredProcedureName;RS=true|false[;IP=Attribute_Name1[:Attribute_Name2[:...]]]

[;OP=Attribute_Name1|

RS[:Attribute_Name2|

RS[:...]]]

[;IO=Attribute_Name1[:Attribute_Name2[:...]]]

where:

StoredProcedureName

The

name

of

the

stored

procedure.

RS

Is

true

if

the

stored

procedure

returns

a

result

set

or

false

if

it

does

not.

By

default,

false.

If

the

value

is

true,

the

ColumnName

property

in

an

attribute’s

application-specific

information

points

to

the

appropriate

column

in

the

result

set.

If

RS

is

part

of

the

output

parameter

list,

then

that

particular

parameter

returns

a

result

set.

Only

one

result

set

OUT

parameter

is

supported.

If

more

than

one

result

set

is

returned

as

an

OUT

parameter,

only

the

first

result

set

is

returned

and

all

others

are

ignored.

Currently,

this

feature

is

supported

for

Oracle

8i

and

above,

stored

procedures

that

use

the

Oracle

JDBC

Driver.

For

the

stored

procedure

in

the

database,

the

corresponding

parameter

should

return

a

REFCURSORtype.

IP

Input

Parameters:

The

list

of

business

object

attributes

whose

values

the

connector

should

use

as

input

values

when

executing

the

stored

procedure.

Chapter

3.

Understanding

business

objects

for

the

connector

45

OP

Output

Parameters:

The

list

of

business

object

attributes

to

which

the

connector

should

return

values

after

executing

the

stored

procedure.

See

RS

for

a

description

of

the

result

set.

IO

InputOutput

Parameters:

The

list

of

business

object

attributes

whose

values

the

connector

should

use

as

input

values

and

to

which

the

connector

should

return

values

after

executing

the

stored

procedure.

Note:

The

order

of

StoredProcedureName,

RS,

and

parameters

is

important;

the

order

of

parameters

among

themselves

is

not

important.

In

other

words,

it

makes

no

difference

to

the

connector

if

the

stored

procedure

groups

all

parameters

of

each

type

or

intersperses

the

types

of

parameters.

When

multiple

parameters

of

the

same

type

are

grouped

together,

separate

the

values

with

a

colon

delimiter;

you

need

not

repeat

the

parameter’s

name

for

each

value.

Separate

parameters

of

different

types

with

a

semicolon

delimiter.

When

specifying

parameter

values,

do

not

put

a

blank

space

on

either

side

of

the

equal

sign

(=).

Examples

of

stored

procedures:

The

following

examples

use

stored

procedures

named

CustomerInsert

and

VendorInsert

that

get

values

from

two

input

attributes,

and

return

values

to

four

output

attributes.

The

examples

illustrate

different

structures

for

stored

procedures.

v

Parameters

of

the

same

type

are

grouped

together

(IP,

IP,

OP,

OP,

OP,

IO):

SPN=CustomerInsert;RS=false;IP=LastName:FirstName;OP=CustomerName:

CustomerID:ErrorStatus:ErrorMessage;IO=VendorID

v

Parameters

of

the

same

type

are

interspersed

(IP,

OP,

OP,

OP,

IP,

IO,

OP):

SPN=VendorInsert;RS=false;IP=LastName;OP=CustomerName:

CustomerID:ErrorStatus;IP=FirstName;IO=VendorID;OP=ErrorMessage

The

connector

supports

only

the

simple

data

types

supported

by

the

JDBC

driver.

Specifying

the

stored

procedure:

There

are

two

ways

to

specify

the

stored

procedure

name

and

its

parameter

values:

v

Attribute’s

AppSpecificInfo

property

If

the

length

of

the

text

that

specifies

the

stored

procedure

is

less

than

or

equal

to

4000

bytes,

you

can

specify

the

value

in

the

attribute’s

AppSpecificInfo

property.

You

can

use

this

property

to

specify

the

stored

procedure

regardless

of

whether

the

connector

has

polled

for

the

business

object

(that

is,

the

business

object

represents

an

application

event)

or

has

received

the

business

object

as

an

integration

broker

request.

The

following

example

illustrates

specification

of

the

stored

procedure

in

application-specific

information.

In

this

case,

the

value

specified

for

the

MaxLength

property

is

not

important

to

the

stored

procedure.

[Attribute]

Name

=

BeforeCreateSP

Type

=

String

MaxLength

=

15

IsKey

=

false

IsRequired

=

false

AppSpecificInfo

=SPN=ContactInsert;IP=LastName:FirstName;OP=CustomerName:

CustomerID:ErrorStatus:ErrorMessage

[End]

46

Adapter

for

JDBC

User

Guide

v

Attribute’s

value

(relevant

only

if

ICS

is

used

as

the

integration

broker)

If

the

length

of

the

text

that

specifies

the

stored

procedure

is

more

than

4000

bytes,

you

must

use

mapping

to

specify

the

stored

procedure.

You

can

use

mapping

to

specify

the

stored

procedure

only

if

the

business

object

represents

an

integration

broker

request.

In

other

words,

you

cannot

use

an

attribute’s

value

to

specify

a

stored

procedure

when

the

connector

is

polling

for

events.

If

the

text

of

the

stored

procedure

is

longer

than

4000

bytes

and

you

use

mapping

to

specify

it,

remember

to

expand

the

value

of

the

MaxLength

property

to

accommodate

the

full

text.

Note:

If

a

stored

procedure

that

handles

a

create,

update,

or

delete

operation

is

executed

on

a

hierarchical

business

object

containing

an

array

of

child

business

objects,

the

connector

processes

each

child

business

object

individually.

For

example,

if

the

connector

executes

a

BeforeCreate

stored

procedure,

it

does

not

process

the

array

as

a

unit

but

processes

each

member

in

the

array.

When

it

processes

a

BeforeRetrieve

stored

procedure,

the

connector

operates

on

a

single

business

object.

When

it

processes

an

AfterRetrieve

stored

procedure,

the

connector

operates

on

all

business

objects

returned

by

the

retrieval.

Processing

business

objects

using

stored

procedures

or

simple

SQL

statements

The

following

sections

explain

how

the

connector

processes

the

stored

procedures:

v

“Business

object

create

operations”

v

“Business

object

update

operations”

on

page

48

v

“Business

object

delete

operations”

on

page

48

v

“Business

object

retrieve

operations”

on

page

48

v

“Business

object

RetrieveByContent

operations”

on

page

49

v

“Business

object

Retrieve-for-Update

operations”

on

page

50

Business

object

create

operations:

A

Create

stored

procedure

usually

returns

values

that

the

connector

uses

to

populate

the

simple

attributes

in

the

top-level

business

object.

The

connector

performs

the

following

steps

when

processing

the

Create

stored

procedures

(BeforeCreate,

Create,

AfterCreate):

1.

Checks

whether

the

business

object

contains

a

BeforeCreateSP

attribute.

If

it

does,

calls

the

BeforeCreate

stored

procedure.

2.

If

the

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

value

of

simple

attributes

in

the

business

object.

3.

Creates

the

single-cardinality

child

business

objects.

4.

Sets

each

of

the

top-level

business

object’s

foreign

key

values

to

the

primary-key

value

of

each

single-cardinality

child

business

object.

5.

Checks

whether

the

business

object

contains

a

CreateSP

attribute.

If

it

does,

calls

the

Create

stored

procedure

to

create

the

top-level

business

object.

If

it

does

not,

builds

and

executes

an

INSERT

statement

to

create

the

top-level

business

object.

6.

If

the

Create

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

value

of

simple

attributes

in

the

business

object.

7.

Sets

the

foreign-key

value

in

each

multiple-cardinality

child

to

the

value

of

its

parent’s

primary-key

attribute.

8.

Creates

the

multiple-cardinality

child

business

objects.

9.

Checks

whether

the

business

object

contains

an

AfterCreateSP

attribute.

If

it

does,

calls

the

AfterCreate

stored

procedure.

Chapter

3.

Understanding

business

objects

for

the

connector

47

10.

If

the

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

values

of

simple

attributes

in

the

business

object.

The

connector

can

use

values

returned

in

step

10

to

change

the

values

of

a

business

object

that

it

created

in

steps

3

or

5.

Business

object

update

operations:

An

Update

stored

procedure

usually

returns

values

that

the

connector

uses

to

populate

the

simple

attributes

in

the

top-level

business

object.

The

connector

performs

the

following

steps

when

processing

the

Update

stored

procedures

(BeforeUpdate,

Update,

AfterUpdate):

1.

Checks

whether

the

business

object

contains

a

BeforeUpdateSP

attribute.

If

it

does,

calls

the

BeforeUpdate

stored

procedure.

2.

If

the

BeforeUpdate

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

value

of

simple

attributes

in

the

business

object.

3.

Updates

the

single-cardinality

child

business

objects.

4.

Sets

each

of

the

top-level

business

object’s

foreign-key

values

to

the

primary-key

value

of

each

child

business

object

contained

with

single

cardinality.

5.

Checks

whether

the

business

object

contains

an

UpdateSP

attribute.

If

it

does,

calls

the

Update

stored

procedure

to

update

the

top-level

business

object.

If

it

does

not,

builds

and

executes

an

UPDATE

statement

to

update

the

top-level

business

object.

6.

If

the

Update

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

value

of

simple

attributes

in

the

business

object.

7.

Sets

foreign-key

values

in

the

multiple-cardinality

children

to

reference

the

value

in

the

corresponding

primary-key

attributes

in

the

parent.

8.

Updates

the

multiple-cardinality

child

business

objects.

9.

Checks

whether

the

business

object

contains

an

AfterUpdateSP

attribute.

If

it

does,

calls

the

AfterUpdate

stored

procedure.

10.

If

the

stored

procedure

returns

values

through

output

parameters,

uses

the

values

to

set

the

value

of

simple

attributes

in

the

business

object.

Business

object

delete

operations:

A

Delete

stored

procedure

does

not

return

values

to

the

connector.

The

connector

performs

the

following

steps

when

processing

the

Delete

stored

procedures

(BeforeDelete,

Delete,

AfterDelete):

1.

Checks

whether

the

business

object

contains

a

BeforeDeleteSP

attribute.

If

it

does,

calls

the

BeforeDelete

stored

procedure.

2.

Deletes

the

single-cardinality

child

business

objects.

3.

Deletes

the

multiple-cardinality

child

business

objects.

4.

Checks

whether

the

business

object

contains

a

DeleteSP

attribute.

If

it

does,

calls

the

Delete

stored

procedure

to

delete

the

top-level

business

object.

If

it

does

not,

builds

and

executes

a

DELETE

statement.

5.

Checks

whether

the

business

object

contains

an

AfterDeleteSP

attribute.

If

it

does,

calls

the

AfterDelete

stored

procedure.

Business

object

retrieve

operations:

For

simple

RETRIEVE

operations,

stored

procedures

can

be

used

for

top-level

business

object,

single

cardinality

children,

as

well

as

multiple

cardinality

children.

The

order

of

the

procedures

is

as

follows:

v

BeforeRetrieve

v

Retrieve

v

AfterRetrieve

48

Adapter

for

JDBC

User

Guide

The

connector

creates

a

temporary

object

to

retrieve

a

single

cardinality

child

business

object

or

a

multiple

cardinality

child

business

object.

The

connector

applies

the

BeforeRetrieve

stored

procedure

to

the

temporary

business

object.

The

AfterRetrieve

stored

procedure

is

applied

to

each

of

the

child

objects

retrieved

for

the

container.

The

connector

executes

the

AfterRetrieve

stored

procedure

after

it

executes

a

Retrieve

query

generated

dynamically

from

the

business

object

meta-data

or

stored

procedure

on

the

business

object.

According

to

the

JDBC

specification

there

are

three

types

of

StoredProcedure

calls

as

follows:

v

{call

<spName>(?,?,?)}

v

{call

<spName>}

v

{?=

call

<spName>(?,?,?)}

The

connector

supports

the

first

two

types.

It

will

process

the

ResultSet

that

is

returned

from

StoredProcedure.

In

the

stored

procedure

syntax,

if

RS=true,

the

result

set

from

the

stored

procedure

is

processed.

If

RS=false,

the

result

set

is

not

processed.

By

default

the

value

of

RS

is

false.

After

the

result

set

values

are

processed,

the

stored

procedure

output

variables

are

processed.

If

RS=true,

multiple

cardinality

children

cannot

specify

the

output

variables

in

the

related

stored

procedure.

Note:

Result

set

processing

is

supported

only

for

Retrieve

verb

operations

and

for

RetrieveSP

only.

Processing

result

set

returned

from

retrieve

stored

procedure

(RetrieveSP)::

ResultSetMetaData

is

obtained

for

the

result

set

returned

from

the

stored

procedure.

Values

of

all

the

columns

in

the

result

set

are

obtained

and

set

on

the

corresponding

attribute

of

the

business

object.

The

ColumnName

property

of

an

attribute’s

application-specific

information

should

contain

the

ResultSet

column

name

to

match

the

attribute

to

the

column.

For

single

cardinality

objects,

the

corresponding

result

set

should

consist

of

only

one

row.

If

multiple

rows

are

returned

in

the

result

set,

an

error

is

reported.

For

multiple

cardinality

children,

multiple

rows

can

be

returned

through

the

result

set.

For

each

row

returned,

a

new

object

is

created

and

added

to

the

container.

The

container

is

then

added

to

the

parent

object

at

the

required

attribute

index.

Business

object

RetrieveByContent

operations:

For

simple

RetrieveByContent

operations,

stored

procedures

can

be

used

only

for

the

top-level

business

object

and

its

single-cardinality

children;

that

is,

they

cannot

be

used

to

return

a

result

set

or

multiple

rows.

The

order

of

the

procedures

is

as

follows:

v

BeforeRetrieveByContent

v

RetrieveByContent

v

AfterRetrieveByContent

The

connector

creates

a

temporary

object

to

retrieve

a

single

cardinality

child

business

object

or

a

multiple

cardinality

child

business

object.

For

multiple

cardinality

business

objects,

the

connector

applies

the

BeforeRetrieveByContent

stored

procedure

to

the

temporary

business

object.

The

AfterRetrieveByContent

stored

procedure

is

applied

to

each

of

the

child

objects

retrieved

for

the

container.

Chapter

3.

Understanding

business

objects

for

the

connector

49

The

connector

executes

the

AfterRetrieveByContent

stored

procedure

after

it

executes

a

RetrieveByContent

query

generated

dynamically

from

the

business

object

meta-data

or

stored

procedure

on

the

business

object.

In

this

case,

even

though

the

retrieval

of

a

hierarchical

business

object

also

retrieves

its

child

business

objects,

the

connector

executes

the

AfterRetrieveByContent

stored

procedure

on

every

business

object

present

in

the

array.

Business

object

Retrieve-for-Update

operations:

The

following

stored

procedures

are

called

on

the

top-level

business

object

and

retrieve

all

child

business

objects

in

the

same

way

as

the

simple

Retrieve.

The

order

of

the

procedures

is

as

follows:

v

BeforeRetrieveUpdate

v

RetrieveUpdate

v

AfterRetrieveUpdate

These

stored

procedures

perform

the

same

operations

as

BeforeRetrieve

and

AfterRetrieve.

They

have

distinguishing

names

so

that

you

can

create

separate

attributes

to

cause

the

connector

to

perform

both

BeforeRetrieve

and

BeforeRetrieveUpdate

operations,

as

well

as

AfterRetrieve

and

AfterRetrieveUpdate

operations.

The

connector

creates

a

temporary

object

to

retrieve

a

single

cardinality

child

business

object

or

a

multiple

cardinality

child

business

object.

For

multiple

cardinality

business

objects,

the

connector

applies

the

BeforeRetrieveUpdate

stored

procedure

to

the

temporary

business

object.

The

AfterRetrieveUpdate

stored

procedure

is

applied

to

each

of

the

child

objects

retrieved

for

the

container.

The

connector

executes

the

AfterRetrieveUpdate

stored

procedure

after

it

executes

a

RETRIEVE

query

generated

dynamically

from

the

business

object

meta-data

or

stored

procedure

on

the

business

object.

In

this

case,

even

though

the

retrieval

of

a

hierarchical

business

object

also

retrieves

its

child

business

objects,

the

connector

executes

the

AfterRetrieveUpdate

stored

procedure

on

every

business

object

present

in

the

array.

Transaction

commit

and

rollback

Whenever

the

connector

receives

a

business

object

for

processing,

it

begins

a

transaction

block.

All

SQL

statements

that

the

connector

executes

while

processing

that

business

object

are

encapsulated

within

the

transaction

block.

When

the

connector

finishes

processing

the

business

object,

it

commits

the

transaction

block

if

the

processing

was

successful,

or

rolls

back

the

transaction

if

it

encountered

an

error.

Business

object

attribute

properties

Business

object

architecture

defines

various

properties

that

apply

to

attributes.

This

section

describes

how

the

connector

interprets

several

of

these

properties

and

describes

how

to

set

them

when

modifying

a

business

object.

Name

property

Each

business

object

attribute

must

have

a

unique

name.

50

Adapter

for

JDBC

User

Guide

Type

property

Each

business

object

attribute

must

have

a

type,

such

as

Integer,

String,

or

the

type

of

a

child

business

object.

When

the

connector

encounters

an

attribute

of

type

Date,

Long

Text,

or

String,

the

connector

wraps

the

value

in

quotation

marks

and

handles

the

value

as

character

data.

Cardinality

property

Each

business

object

attribute

that

represents

a

child

or

array

of

child

business

objects

has

the

value

of

1

or

n,

respectively,

in

this

attribute.

All

attributes

that

represent

child

business

objects

also

have

a

ContainedObjectVersion

property

(which

specifies

the

child’s

version

number)

and

a

Relationship

property

(which

specifies

the

value

Containment).

Max

length

property

If

the

attribute

is

of

type

String,

this

property

specifies

the

maximum

length

allowed

for

the

attribute’s

value.

Key

property

At

least

one

simple

attribute

in

each

business

object

must

be

specified

as

the

key.

To

define

an

attribute

as

a

key,

set

this

property

to

Yes.

If

the

business

object

attribute

is

of

type

String,

it

is

recommended

that

the

data

type

in

the

database

is

of

type

Varchar

instead

of

char.

Note:

The

connector

does

not

support

specifying

an

attribute

that

represents

a

child

business

object

or

an

array

of

child

business

objects

as

a

key

attribute.

If

the

key

property

is

set

to

true

for

a

simple

attribute,

the

connector

adds

that

attribute

to

the

WHERE

clause

of

SELECT,

UPDATE,

RETRIEVE,

and

DELETE

SQL

statements

that

it

generates

while

processing

the

business

object.

If

the

key

property

is

set

to

true

for

an

attribute

in

a

child

that

stores

the

parent/child

relationship

in

the

child

(both

multiple-cardinality

and

single-cardinality),

the

connector

uses

the

parent’s

primary

keys

in

the

WHERE

clause

of

the

SELECT

statement,

and

it

does

not

use

the

Key

property.

For

information

on

specifying

the

name

of

business

object

attributes

whose

values

are

used

to

set

the

child’s

foreign-key

attributes,

see

“Application-specific

information

at

the

attribute

level”

on

page

55.

Foreign

key

property

The

connector

uses

this

property

to

determine

whether

an

attribute

is

a

foreign

key.

Required

property

The

Required

property

specifies

whether

an

attribute

must

contain

a

value.

If

this

property

is

specified

for

an

attribute

that

represents

a

single-cardinality

child

business

object,

the

connector

requires

the

parent

business

object

to

contain

a

child

business

object

for

this

attribute.

When

the

connector

receives

a

business

object

with

a

Create

request,

the

connector

causes

the

Create

operation

to

fail

if

both

of

the

following

conditions

are

true:

v

The

business

object

does

not

have

a

valid

value

or

a

default

value

for

a

required

attribute.

Chapter

3.

Understanding

business

objects

for

the

connector

51

v

Application-specific

information

does

not

specify

that

the

connector

generate

the

unique

ID.

When

the

connector

receives

a

business

object

with

a

Retrieve

request

and

the

business

object

does

not

have

a

valid

value

or

a

default

value

for

a

required

attribute,

the

connector

causes

the

retrieval

operation

to

fail.

The

connector

does

not

use

this

property

for

attributes

that

contain

an

array

of

child

business

objects.

Note:

If

the

key

attribute

uses

a

sequence

or

counter

or

is

populated

by

the

database

(UID=AUTO),

it

should

not

be

marked

as

Required.

AppSpecificInfo

For

information

on

this

property,

see

“Application-specific

information

at

the

attribute

level”

on

page

55.

Default

value

property

This

property

specifies

a

default

value

that

the

connector

uses

to

populate

a

simple

attribute

if

it

is

not

populated

with

a

value

from

the

database

table.

The

connector

does

not

evaluate

this

property

for

attributes

that

represent

a

child

business

object

or

an

array

of

child

business

objects.

The

connector

evaluates

this

property

only

if

the

UseDefaults

configuration

property

is

set

to

true.

For

more

information,

see

Table

6

on

page

15.

Special

attribute

value

Simple

attributes

in

business

objects

can

have

the

special

value,

CxIgnore.

When

it

receives

a

business

object

from

the

integration

broker,

the

connector

ignores

all

attributes

with

a

value

of

CxIgnore.

It

is

as

if

those

attributes

were

invisible

to

the

connector.

When

the

connector

retrieves

data

from

the

database

and

the

SELECT

statement

returns

a

null

value

for

an

attribute,

the

connector

sets

the

value

of

that

attribute

to

CxIgnore

by

default.

If

a

value

has

been

specified

for

the

UNVL

parameter

of

the

attribute’s

application-specific

information,

the

connector

uses

that

value

to

represent

the

null.

Because

the

connector

requires

every

business

object

to

have

at

least

one

primary-key

attribute,

developers

should

ensure

that

WebSphere

Business

Integration

Adapter

business

objects

passed

to

the

connector

have

at

least

one

primary

key

that

is

not

set

to

CxIgnore.

The

only

exception

to

this

requirement

is

a

business

object

whose

primary

key

is

to

be

generated

by

the

connector

using

a

counter

or

sequence,

or

is

generated

by

the

database.

When

the

connector

inserts

data

into

the

database

and

a

business

object

attribute

has

no

value

specified,

it

uses

the

value

specified

by

the

attribute’s

UseNullValue

property.

For

more

information

about

UseNullValue,

see

UNVL=value

in

Table

11

on

page

55.

52

Adapter

for

JDBC

User

Guide

Business

object

application-specific

information

Application-specific

information

in

business

object

definitions

provides

the

connector

with

application-dependent

instructions

on

how

to

process

business

objects.

The

connector

parses

the

application-specific

information

from

the

attributes

or

verb

of

a

business

object

or

from

the

business

object

itself

to

generate

queries

for

create,

update,

retrieve,

and

delete

operations.

The

connector

stores

some

of

the

business

object’s

application-specific

information

in

cache

and

uses

this

information

to

build

queries

for

all

the

verbs.

If

you

extend

or

modify

an

application-specific

business

object,

you

must

make

sure

that

the

application-specific

information

in

the

business

object

definition

matches

the

syntax

that

the

connector

expects.

This

section

provides

information

on

the

object-level,

attribute,

and

verb

application-specific

information

format

for

business

objects

supported

by

the

connector.

Table

10

provides

an

overview

of

the

functionality

available

in

business

object

application-specific

information.

Table

10.

Overview

of

application-specific

information

in

supported

business

objects

Scope

of

application-specific

information

Functionality

Entire

business

object

Specifies:

v

The

name

of

the

corresponding

database

table.

v

Defines

the

column

whose

value

the

connector

uses

in

the

WHERE

clause

to

perform

a

logical

(or

soft)

delete.

v

That

the

top-level

business

object

is

a

wrapper.

Simple

attributes

Specifies:

v

The

database

column

name

for

an

attribute.

v

The

foreign

key

relationship

between

an

attribute

in

the

current

business

object

and

a

parent

or

child

business

object.

v

Automatic

generation

of

unique

identifier

values.

v

The

name

of

another

attribute

within

the

same

business

object

whose

value

the

connector

must

use

to

set

the

value

of

the

current

attribute.

v

Whether

to

use

the

current

attribute

when

sorting

a

retrieval.

v

The

value

to

use

when

the

value

of

the

current

attribute

is

null.

v

String

substitution

behavior.

v

Whether

to

use

the

LIKE

operator

or

=

operator

when

comparing

strings.

v

The

value

to

use

as

the

wildcard

position

when

the

LIKE

operator

is

used.

Attributes

that

contain

a

child

or

an

array

of

child

business

objects

Specifies

whether

a

single-cardinality

child

is

owned

by

the

parent.

Specifies

whether

the

connector

deletes

child

data

during

an

update

operation

if

the

data

is

not

represented

in

the

source

business

object.

Chapter

3.

Understanding

business

objects

for

the

connector

53

Table

10.

Overview

of

application-specific

information

in

supported

business

objects

(continued)

Scope

of

application-specific

information

Functionality

Business

object

verb

Used

only

for

the

Retrieve

verb,

this

text

specifies

the

attributes

to

be

included

in

the

WHERE

clause

for

a

retrieval.

You

can

also

specify

operators

and

attribute

values.

The

following

sections

discuss

this

functionality

in

more

detail.

Application-specific

information

at

the

business-object

level

Application-specific

information

at

the

business-object

level

allows

you

to:

v

Specify

the

name

of

the

corresponding

database

table.

v

Provide

the

information

necessary

to

perform

a

physical

or

logical

delete.

v

Specify

that

the

top-level

business

object

is

a

wrapper

object.

At

the

business-object

level,

application-specific

information

format

consists

of

parameters

separated

by

colon

(:)

or

semicolon

(;)

delimiters:

TN=TableName;

SCN=StatusColumnName:StatusValue

where

TableName

identifies

the

database

table,

StatusColumnName

is

the

name

of

the

database

column

used

to

perform

logical

deletes,

and

StatusValue

is

the

value

that

signifies

that

a

business

object

is

inactive

or

deleted.

For

example,

assume

that

a

Customer

business

object

has

the

following

value

specified

for

its

business

object

application-specific

information:

TN=CUSTOMER;

SCN=CUSTSTATUS:DELETED

Assume

also

that

the

connector

receives

a

request

to

delete

the

customer.

Such

a

value

causes

the

connector

to

issue

the

following

SQL

statement:

UPDATE

CUSTOMER

SET

CUSTSTATUS

=

’DELETED’

WHERE

CUSTOMER_ID

=

2345

If

the

SCN

parameter

is

not

included

or

no

value

is

specified

for

it,

the

connector

physically

deletes

the

business

object

from

the

database.

In

other

words,

if

the

business

object

with

the

Delete

verb

includes

the

SCN

parameter

in

its

application-specific

information,

the

connector

performs

a

logical

delete.

If

the

business

object

with

the

Delete

verb

does

not

include

the

SCN

parameter

in

its

application-specific

information,

the

connector

performs

a

physical

delete.

Both

update

and

delete

operations

may

use

the

value

of

the

SCN

property:

v

When

performing

an

update,

the

connector

uses

the

value

of

its

ChildUpdatePhyDelete

property

to

determine

whether

to

physically

or

logically

delete

missing

child

data.

If

logically

deleting

the

child

data,

it

uses

the

value

of

its

SCN

parameter

to

obtain

the

name

of

the

status

column

and

the

text

of

the

status

value.

For

more

information,

see

“Update

operations”

on

page

41.

v

When

performing

a

delete,

the

connector

uses

the

value

of

its

SCN

parameter

to

determine

whether

to

physically

or

logically

delete

the

entire

business

object.

If

the

SCN

parameter

contains

a

value,

the

connector

performs

a

logical

delete.

If

the

SCN

parameter

does

not

contain

a

value,

the

connector

performs

a

physical

delete.

For

more

information,

see

“Delete

operations”

on

page

43.

54

Adapter

for

JDBC

User

Guide

At

the

business-object

level,

application-specific

information

may

be

used

to

specify

a

wrapper:

WRAPPER=true|false

If

the

wrapper

parameter

is

set

to

true,

the

top-level

business

object

is

a

wrapper

object.

The

wrapper

object

is

not

represented

by

a

database

table

or

view.

A

wrapper

is

used

as

a

container

for

unrelated

business

objects.

The

connector

ignores

the

top-level

object

and

processes

only

the

children.

The

wrapper

object

may

contain

N

cardinality

or

N-1

cardinality

entities

or

both.

Application-specific

information

at

the

attribute

level

The

application-specific

information

for

attributes

differs

depending

on

whether

the

attribute

is

a

simple

attribute

or

an

attribute

that

represents

a

child

or

an

array

of

child

business

objects.

The

application-specific

information

for

an

attribute

that

represents

a

child

also

differs

depending

on

whether

the

parent/child

relationship

is

stored

in

the

child

or

in

the

parent.

For

information

on

application-specific

information

for

attributes

that

represent

a

child

or

array

of

child

business

objects,

see

“Specifying

an

attribute’s

foreign

key”

on

page

57.

Application-specific

information

for

simple

attributes

For

simple

attributes,

application-specific

information

format

consists

of

eleven

name-value

parameters,

each

of

which

includes

the

parameter

name

and

its

value.

Each

parameter

set

is

separated

from

the

next

by

a

colon

(:)

delimiter.

The

format

of

attribute

application-specific

information

is

shown

below.

Square

brackets

([

])

surround

an

optional

parameter.

A

vertical

bar

(|)

separates

the

members

of

a

set

of

options.

Reserve

the

colon

as

a

delimiter.

CN=col_name:[FK=[fk_object_name.]fk_attribute_name]:

[UID=[AUTO|uid_name|

schema_name.uid_name[=UseIfMissing]|CW.uidcolumnname

[=UseIfMissing]]]:

[PH=true|false]:[CA=set_attr_name|

..set_attr_name]:[OB=[ASC|DESC]]:[UNVL=value]:

[ESC=true|false]:[FIXEDCHAR=true|false]:

[BYTEARRAY=true|false]:[USE_LIKE=true|false:

[WILDCARD_POSITION=non-negative

number|NONE|BEGIN|END|BOTH]]:

[CLOB=true]

The

only

required

parameter

for

a

simple

attribute

that

you

want

the

connector

to

process

is

the

column

name.

For

example,

to

specify

only

the

column

name,

use

the

following

format:

CN=customer_id

Table

11

describes

each

name-value

parameter.

Table

11.

Name-value

parameters

in

attribute

application-specific

information

Parameter

Description

CN=col_name

The

name

of

the

database

column

for

this

attribute.

FK=[fk_object_name.]fk_attribute_name

The

value

of

this

property

depends

on

whether

the

parent/child

relationship

is

stored

in

the

parent

business

object

or

the

child

If

an

attribute

is

not

a

foreign

key,

do

not

include

this

parameter

in

the

application-specific

information.

For

more

information,

see

“Specifying

an

attribute’s

foreign

key”

on

page

57.

Chapter

3.

Understanding

business

objects

for

the

connector

55

Table

11.

Name-value

parameters

in

attribute

application-specific

information

(continued)

Parameter

Description

UID=AUTO

UID=uid_name|

schema_name.uid_name

[=UseIfMissing]

UID=CW.uidcolumnname[=UseIfMissing]

The

connector

uses

this

parameter

to

generate

the

unique

ID

for

the

business

object.

If

an

attribute

does

not

require

generation

of

a

unique

ID,

do

not

include

this

parameter

in

the

application-specific

information.

See

the

PreserveUIDSeq

property

description

for

details

on

preserving

the

unique

ID

during

business

object

processing.

For

more

information,

see

“Generating

a

business

object’s

unique

identifier”

on

page

60.

Note:

CW

is

a

keyword

used

to

represent

the

type

of

UID

and

does

not

represent

the

tablename.

PH=true|false

If

PH=true,

then

the

corresponding

simple

attribute

is

a

placeholder

attribute.

A

simple

attribute

is

also

a

placeholder

if

its

ASI

is

blank

or

null.

CA=set_attr_name|

..set_attr_name

If

set_attr_name

is

set

to

the

name

of

another

attribute

within

the

current

individual

business

object,

the

connector

uses

the

value

of

the

specified

attribute

to

set

the

value

of

this

attribute

before

it

adds

the

business

object

to

the

database

during

a

Create

operation.

The

value

of

set_attr_name

cannot

reference

an

attribute

in

a

child

business

object,

but

it

can

reference

an

attribute

in

the

parent

business

object

if

there

if

set_attr_nameis

preceded

by

the

two

periods.

If

you

do

not

include

this

parameter

in

the

application-specific

information,

the

connector

uses

the

value

of

the

current

attribute

without

copying

the

attribute’s

value

(CA)

from

another

attribute.

OB=[ASC|DESC]

If

a

value

is

specified

for

this

parameter

and

the

attribute

is

in

a

child

business

object,

the

connector

uses

the

value

of

the

attribute

in

the

ORDER

BY

clause

of

retrieval

queries.

The

connector

can

retrieve

child

business

objects

in

ascending

order

or

descending

order.

Use

ASC

to

specify

retrieval

in

ascending

order.

Use

DESC

to

specify

retrieval

in

descending

order.

If

you

do

not

include

this

parameter

in

the

application-specific

information,

the

connector

does

not

use

this

attribute

when

specifying

retrieval

order.

UNVL=value

Specifies

the

value

the

connector

uses

to

represent

a

null

when

it

retrieves

a

business

object

with

null-valued

attributes.

If

you

do

not

include

this

parameter

in

the

application-specific

information,

the

connector

inserts

a

CxIgnore

for

the

attribute’s

value.

ESC=[true|false]

Determines

whether

the

connector

replaces

all

instances

of

each

character

identified

in

the

ReplaceAllStr

property

with

the

substitution

strings

also

specified

in

the

ReplaceStrList

property.

If

this

parameter

does

not

contain

a

value,

the

connector

uses

the

value

of

the

ReplaceStrList

property

to

make

this

determination.

Note:

The

ESC

parameter

and

the

ReplaceAllStr

and

ReplaceStrList

properties

provide

support

for

database

escape

character

functionality

(for

example,

escaping

single

quotes).

Because

the

same

functionality

is

also

available

from

the

Prepared

Statements

provided

by

the

JDBC

driver,

these

properties

will

be

deprecated

in

future

releases

of

the

connector.

The

connector

currently

supports

the

use

of

the

JDBC

Prepared

Statements.

FIXEDCHAR=true|false

Specifies

whether

the

attribute

is

of

fixed

length

when

the

columns

in

the

table

are

of

type

CHAR,

not

VARCHAR.

For

example,

if

a

particular

attribute

is

linked

to

a

column

that

is

of

type

CHAR,

the

connector

expects

FIXEDCHAR

in

length;

for

the

application

specific

information

of

that

attribute

specify

FIXEDCHAR=true.

Ensure

that

the

MaxLength

property

of

the

attribute

is

of

the

CHAR

length,

which

is

specified

in

the

database.

By

default,

FIXEDCHAR=false.

BYTEARRAY=true|false

If

BYTEARRAY=true,

the

connector

will

read

and

write

binary

data

to

the

database

and

will

send

that

data

as

a

string

to

ICS

or

WebSphere

MQ

Integrator

Broker.

BYTEARRAY=false

is

the

default.

For

more

information,

see

“Working

with

binary

data”

on

page

61.

56

Adapter

for

JDBC

User

Guide

Table

11.

Name-value

parameters

in

attribute

application-specific

information

(continued)

Parameter

Description

USE_LIKE=true|false

Specifies

whether

the

connector

compares

strings

using

the

=

operator

or

the

LIKE

operator.

If

USE_LIKE

is

set

to

true,

wildcard

queries

can

be

performed

by

setting

WILDCARD_POSITION.

If

USE_LIKE

is

set

to

false,

the

=operator

will

be

used.

WILDCARD_POSITION=non-negative

number|NONE|BEGIN|END|BOTH

If

USE_LIKE

is

true,

the

WILDCARD_POSITION

is

used

to

specify

the

position

that

is

the

wildcard.

This

value

can

be

any

non-negative

number,

NONE,

BEGIN,

END,

or

BOTH.

For

example,

using

BEGIN

will

place

the

wildcard

character

in

the

first

position

of

the

string

(%string).

Using

END

will

place

the

wildcard

character

in

the

last

position

of

the

string

(string%).

Using

BOTH

will

place

wildcard

characters

in

both

the

first

and

last

position

in

the

string

(%string%).

CLOB=true

Only

applicable

for

String

Attribute

Type.

Specifies

that

the

database

column

that

corresponds

to

this

attribute

is

a

CLOB

datatype.

Note:

A

CLOB

datatype

is

defined

as

follows:.

v

The

CLOB

attribute

has

a

String

Type

whose

length

is

used

to

define

the

length

of

the

CLOB

v

The

CLOB

attribute

has

ASI=CN=xyz;

CLOB=true

v

Any

other

attribute

type

with

reference

to

CLOB

in

the

ASI

would

result

in

an

error

v

CLOB=false

would

result

in

an

error

A

regular

String

Type

would

be

the

same

and

with

no

reference

to

CLOB

in

the

ASI.

CLOB

datatypes

of

4k

and

larger

can

be

inserted

or

updated.

But

they

can

be

used

only

with

Oracle

and

require

the

latest

thin

driver

withCLOB

support.

Using

any

other

driver

may

cause

errors.

Note:

If

none

of

the

application-specific

information

in

any

of

a

business

object’s

attributes

cause

the

connector

to

build

or

execute

a

query,

the

connector

logs

a

warning

and

continues

operating.

It

does

not

throw

an

exception

or

return

a

failure.

Specifying

an

attribute’s

foreign

key:

The

value

of

this

property

depends

on

whether

the

parent/child

relationship

is

stored

in

the

parent

business

object

or

the

child:

v

Stored

in

the

parent—set

the

value

to

include

both

the

type

of

the

child

business

object

and

the

name

of

the

attribute

in

the

child

to

be

used

as

the

foreign

key.

v

In

the

child—set

the

value

to

include

only

the

name

of

the

attribute

in

the

parent

to

be

used

as

the

foreign

key.

If

the

value

of

fk_object_name

does

not

match

the

type

of

the

child

business

object,

and

the

value

of

fk_attribute_name

does

not

match

the

name

of

the

attribute

in

the

parent

or

child

(as

applicable),

the

connector

cannot

process

this

attribute

as

a

foreign

key.

The

case

of

the

business

object’s

name

and

the

attribute’s

name

is

significant.

For

example,

assume

that

the

Customer

business

object

contains

the

Addr[1]

attribute,

which

represents

the

Address

child

business

object,

and

the

AID

attribute,

which

stores

the

primary

key

of

the

child

business

object

as

a

foreign

key.

In

this

case,

the

application-specific

information

of

the

parent’s

foreign

key

attribute

must

contain

the

type

of

the

child

business

object

(Address)

as

well

as

the

name

of

its

primary

key

attribute

(ID).

In

this

example,

the

application-specific

information

of

the

AID

attribute

would

include

FK=Address.ID.

Chapter

3.

Understanding

business

objects

for

the

connector

57

Naming

a

foreign

key

attribute:

Multiple

parent

business

objects

can

contain

the

same

child

business

object,

regardless

of

whether

the

child

is

stored

with

single

cardinality

or

multiple

cardinality,

and

regardless

of

whether

the

parent/child

relationship

is

stored

on

the

parent

or

on

the

child.

However,

all

parent

business

objects

that

store

the

parent/child

relationship

must

use

identically

named

attributes

to

contain

the

child’s

primary

key.

Moreover,

all

child

business

objects

that

store

the

parent/child

relationship

must

use

identically

named

attributes

to

contain

the

parent’s

primary

key.

Figure

5

illustrates

these

relationships.

Figure

5

illustrates

the

following

relationships:

v

The

ORGS[n]

attribute

of

Customer

ABC

and

Contact

DEF

represents

an

array

of

Organization

business

objects.

The

foreign

key

value

for

each

business

object

in

the

array

of

Organizations

corresponds

to

the

primary

key

value

in

the

ID

attribute

in

the

Customer

and

Contact

business

objects.

In

this

case,

each

business

object

in

the

array

is

contained

by

multiple

parents.

The

application-specific

information

for

the

ORGS

attribute

might

be:

KEEP_RELATIONSHIP=true

For

more

information

on

the

KEEP_RELATIONSHIP

parameter,

see

“Application-specific

information

for

attributes

that

represent

children”

on

page

61.

The

application-specific

information

for

the

parentID

attribute

of

each

child

in

the

array

of

Organizations

contains

the

name

of

the

column

in

the

database

that

corresponds

to

the

current

attribute,

and

specifies

the

current

attribute’s

foreign

key

by

containing

the

name

of

the

parent’s

primary

key

attribute;

for

example:

Verb
Organization

Verb

ID
parentID
..

ShippingData

Verb

ID=12AB
parentID
..

Customer

ID=ABC

Verb

AID

..

ORGS[n]

Organization

Addr[1]

Ship[1]

Contact

ID=DEF

Verb

RID

..

ORGS[n]

Reg[1]

parentID
..

Organization

Verb

ID
parentID
..

Address

Verb

ID=AB12

StateProvince

Verb

ID
.
.

SPID
StateProv[1]
..

Region

Verb

ID=DE56
SPID
StateProv[1]
..

Figure

5.

Example

of

relationships

among

business

objects

58

Adapter

for

JDBC

User

Guide

CN=ORG_ID:FK=ID

Note:

For

multiple

business

objects

to

contain

the

same

child

(where

the

parent/child

relationship

is

stored

in

the

child),

all

parent

business

objects

must

use

an

identically

named

attribute

to

contain

the

foreign

key

for

the

child.

The

foreign

key

parameter

of

that

child’s

application-specific

information

identifies

only

the

attribute’s

name

and

not

the

type

of

the

parent

business

object.

The

connector

assumes

that

the

direct

parent

is

the

owner

of

each

child.

v

The

Addr[1]

attribute

of

Customer

represents

the

Address

business

object

with

ownership.

The

AID

attribute

of

Customer

identifies

the

primary

key

of

the

Address

business

object

as

a

foreign

key

in

the

parent.

In

this

case,

the

parent’s

foreign

key

attribute

must

contain

the

type

of

the

child

business

object

as

well

as

the

name

of

its

primary

key

attribute.

The

single-cardinality

child,

Address,

is

contained

by

only

one

parent.

The

application-specific

information

for

the

Addr

attribute

is:

CONTAINMENT=OWNERSHIP

The

application-specific

information

for

the

AID

attribute

contains

the

name

of

the

column

in

the

database

that

corresponds

to

the

current

attribute,

and

specifies

the

current

attribute’s

foreign

key

by

containing

the

type

of

the

child

business

object

and

the

name

of

its

primary

key

attribute;

for

example:

CN=FK_AD:FK=Address.ID

The

application-specific

information

for

the

child’s

primary-key

attribute

is

CN=pk

v

The

StateProv[1]

attributes

of

the

Address

and

Region

business

objects

represent

the

StateProvince

business

object

without

ownership.

The

SPID

attributes

of

the

Address

and

Region

business

objects

contain

the

type

of

the

child

business

object

(StateProvince)

and

the

name

of

its

primary

key

attribute,

which

serve

as

the

parent’s

foreign

key.

The

same

single-cardinality

child,

StateProvince,

is

contained

by

multiple

parents.

The

application-specific

information

for

the

SPID

attribute

is:

CONTAINMENT=NO_OWNERSHIP

For

more

information

on

the

CONTAINMENT

parameter,

see

“Application-specific

information

for

attributes

that

represent

children”

on

page

61.

The

application-specific

information

for

the

Address

SPID

attribute

contains

the

name

of

the

column

in

the

database

that

corresponds

to

the

current

attribute,

and

specifies

the

current

attribute’s

foreign

key

by

containing

the

type

of

the

child

business

object

and

the

name

of

its

primary

key

attribute;

for

example:

CN=FK_SP:FK=StateProvince.ID

The

application-specific

information

for

the

child’s

primary

key

attribute

is:

CN=SP_ID

Note:

For

multiple

business

objects

(that

store

the

parent/child

relationship

in

the

parent)

to

contain

the

same

child,

all

child

business

objects

must

use

an

identically

named

attribute

to

contain

the

foreign

key

for

the

parent.

v

The

Ship[1]

attribute

of

Customer

represents

a

ShippingData

business

object

that

contains

the

customer’s

shipping

information.

The

ID

attribute

of

Customer

functions

as

the

foreign

key

for

the

shipping

data.

In

this

case,

because

Chapter

3.

Understanding

business

objects

for

the

connector

59

ShippingData

cannot

exist

independently

of

its

parent

and

is

created

only

after

its

parent

is

created,

the

parent/child

relationship

is

stored

in

the

child.

The

application-specific

information

for

the

child’s

parentID

attribute

contains

the

name

of

the

column

in

the

database

that

corresponds

to

the

current

attribute,

and

specifies

the

current

attribute’s

foreign

key

by

containing

the

name

of

its

parent’s

primary

key

attribute;

for

example:

CN=SD_ID:FK=ID

Generating

a

business

object’s

unique

identifier:

The

connector

uses

the

UID

parameter

to

generate

the

unique

ID

for

the

business

object.

The

connector

generates

unique

IDs

by

using

sequences

(as

Oracle

does),

or

counters

(which

are

structured

as

tables),

and

then

issues

the

INSERT

statement.

IBM

DB2

and

Microsoft

SQL

Server

do

not

require

that

the

ID

be

passed

in

an

INSERT

statement.

Instead,

they

generate

the

ID

at

the

time

of

creation.

After

successful

creation

of

the

business

object,

the

connector

can

retrieve

and

use

this

value.

The

connector

uses

a

sequence

or

counter

to

generate

the

ID

value

and

then

issues

the

INSERT

statement:

v

If

UID

=

AUTO,

the

database

generates

the

ID

and

the

connector

must

retrieve

it.

This

setting

is

only

available

for

IBM

DB2

and

Microsoft

SQL

Server

databases.

v

If

UID

=

uid_name,

the

value

of

uid_name

provides

the

name

of

the

Oracle

sequence

that

the

connector

uses

to

generate

a

unique

ID

for

the

attribute.

After

the

connector

fetches

the

sequence

value,

it

populates

the

key

attribute

and

issues

the

INSERT

statement.

This

syntax

is

currently

used

only

for

Oracle

databases.

v

If

UID

=

uid_name=UseIfMissing

and

if

the

value

of

the

attribute

is

not

CxIgnore,

the

connector

uses

the

attribute’s

value

rather

than

generating

a

unique

ID.

The

=UseIfMissing

parameter

cannot

contain

blanks

and

is

case-insensitive.

This

option

is

available

only

for

Oracle

databases.

v

If

UID=CW.uidcolumnname,

the

connector

uses

a

counter

table

to

generate

a

unique

ID

for

the

attribute.

The

table,

whose

name

is

configurable,

is

created

with

a

single

column

named

id.

You

can

customize

the

table

to

add

a

column

for

each

attribute

that

requires

generation

of

a

UID.

Use

the

uidcolumnname

parameter

to

specify

the

name

of

the

column

for

the

connector

to

use

when

generating

the

unique

ID.

Note

that

the

connector

supports

only

the

numeric

data

type

for

columns

that

require

generation

of

a

UID.

For

information

on

configuring

the

table’s

name,

see

UniqueIDTableName.

The

scripts

for

installing

this

table

are:

\connectors\JDBC\dependencies\uid_table_oracle.sql

\connectors\JDBC\dependencies\uid_table_mssqlserver.sql

\connectors\JDBC\dependencies\uid_table_db2.sql

v

If

UID=CW.uidcolumnname=UseIfMissing

and

if

the

value

of

the

attribute

is

not

CxIgnore,

the

connector

uses

the

attribute’s

value

rather

than

generating

a

unique

ID.

The

=UseIfMissing

parameter

cannot

contain

blanks

and

is

case-insensitive.

See

the

“PreserveUIDSeq”

on

page

22

property

for

information

on

preserving

the

unique

ID

sequence

during

processing.

60

Adapter

for

JDBC

User

Guide

Application-specific

information

for

attributes

that

represent

children

Attributes

that

represent

a

single-cardinality

child

business

object

can

specify

whether

the

child

is

owned

by

the

parent

or

shared

among

multiple

parents.

Attributes

that

represent

a

single-cardinality

child

or

an

array

of

child

business

objects

can

specify

the

connector’s

behavior

when

updating

the

parent

and

a

subset

of

the

children.

Attributes

that

represent

a

single-cardinality

child

business

object:

The

format

of

the

application-specific

information

for

attributes

that

represent

a

single-cardinality

child

business

object

is:

CONTAINMENT=

[OWNERSHIP|NO_OWNERSHIP]

Set

CONTAINMENT

to

OWNERSHIP

to

represent

a

single-cardinality

relationship

where

the

parent

owns

the

child

business

object.

Set

CONTAINMENT

to

NO_OWNERSHIP

to

represent

a

single-cardinality

relationship

where

the

parent

shares

the

child

business

object.

Do

not

include

the

CONTAINMENT

parameter

when

you

represent

a

single-cardinality

relationship

that

stores

the

relationship

in

the

child

rather

than

in

the

parent.

For

more

information,

see

“Single-cardinality

relationships

and

data

without

ownership”

on

page

33

and

“Single-cardinality

relationships

that

store

the

relationship

in

the

child”

on

page

35.

Attributes

that

represent

a

child

that

stores

the

parent’s

key:

For

Update

operations

on

an

array

of

business

objects

that

store

the

parent/child

relationship

in

the

child,

there

is

a

special

value

for

the

attribute

that

represents

the

child:

you

can

set

KEEP_RELATIONSHIP

to

true

to

prevent

the

connector

from

deleting

existing

child

data

that

is

not

represented

in

the

source

business

object.

For

example,

assume

an

existing

contract

is

associated

with

an

existing

site,

such

as

New

York.

Assume

further

that

the

connector

receives

a

request

to

update

a

Contract

business

object

that

contains

a

single

child

business

object

that

associates

San

Francisco

as

the

site.

If

KEEP_RELATIONSHIP

evaluates

to

true

for

the

attribute

that

represents

the

site

data,

the

connector

updates

the

contract

to

add

its

association

with

San

Francisco

and

does

not

delete

its

association

with

New

York.

However,

if

KEEP_RELATIONSHIP

evaluates

to

false,

the

connector

deletes

all

existing

child

data

that

is

not

contained

in

the

source

business

object.

In

such

a

case,

the

contract

is

associated

only

with

San

Francisco.

The

format

for

this

application-specific

information

is:

KEEP_RELATIONSHIP=[true|false]

Case

is

ignored

in

checking

for

this

application-specific

information.

Working

with

binary

data:

If

BYTEARRAY=true,

the

connector

will

read

and

write

binary

data

to

the

database.

Since

there

is

no

support

for

binary

data

in

the

current

version

of

the

WebSphere

business

integration

system,

the

binary

data

is

converted

to

a

String

and

then

sent

to

the

integration

broker.

The

format

of

this

string

is

a

hexadecimal

number

with

2

characters

per

byte.

For

example,

if

the

binary

data

in

the

database

is

3

bytes

with

the

(decimal)

values

(1,

65,

255),

the

string

will

be

″0141ff″.

Chapter

3.

Understanding

business

objects

for

the

connector

61

Application-specific

information

format

for

verbs

The

connector

uses

verb

application-specific

information

for

the

Retrieve

and

RetrieveByContent

verbs.

This

text

allows

you

to

specify

the

attributes

to

be

included

in

the

WHERE

clause

for

a

retrieval.

You

can

also

specify

operators

and

attribute

values.

The

syntax

for

application-specific

information

for

the

Retrieve

and

RetrieveByContent

verbs

is

shown

below:

[condition_variable

conditional_operator

@

[...]:[..]attribute_name

[,

...]]

where:

condition_variable

The

name

of

the

database

column.

conditonal_operator

The

operator

supported

by

the

database,

for

example

=,

>,

OR,

AND,

and

IN

(value1,

value2).

@

A

variable

that

is

substituted

with

the

value

retrieved

by

getAttrValue(attribute_name).

The

substitution

is

positional;

that

is,

the

connector

substitutes

the

first

@

with

the

value

of

the

first

attribute_name

variable

specified

after

the

:

delimiter.

..

The

attribute

specified

in

the

attribute_name

variable

belongs

to

the

immediate

parent

business

object;

if

this

value

is

missing,

the

attribute

belongs

in

the

current

business

object.

attribute_name

The

name

of

the

attribute

whose

value

the

connector

substitutes

for

@.

To

understand

the

syntax

of

this

property,

assume

that

an

Item

business

object

has

an

item_id

attribute

whose

value

is

XY45

and

a

Color

attribute

whose

value

is

RED.

Assume

further

that

you

specify

the

Retrieve

verb’s

AppSpecificInfo

property

as:

Color=’RED’

The

above

application-specific

information

value

causes

the

connector

to

build

the

following

WHERE

clause

for

a

retrieval:

where

item_id=XY45

and

Color

=

’RED’

For

a

more

complicated

example,

assume

that

the

Customer

business

object

has

a

customer_id

attribute

whose

value

is

1234

and

a

creation_date

attribute

whose

value

is

01/01/90.

Assume

also

that

this

business

object’s

parent

has

a

quantity

attribute

whose

value

is

20.

Assume

further

that

you

specify

the

Retrieve

verb’s

AppSpecificInfo

property

as:

creation_date

>

@

OR

quantity

=

@

AND

customer_status

IN

(’GOLD’,

’PLATINUM’)

:

creation_date,

..quantity

The

above

application-specific

information

value

causes

the

connector

to

build

the

following

WHERE

clause

for

a

retrieval:

where

customer_id=1234

and

creation_date

>

’01/01/90’

OR

quantity

=

20

AND

customer_status

IN

(’GOLD’,

’PLATINUM’)

62

Adapter

for

JDBC

User

Guide

The

connector

gets

the

date

value

(’01/01/90’)

from

the

creation_date

attribute

in

the

current

business

object.

It

gets

the

quantity

value

(20)

from

the

quantity

attribute

in

the

parent

business

object

(as

indicated

by

..quantity

in

the

application-specific

information.

After

the

connector

parses

the

application-specific

information

for

the

Retrieve

verb,

it

adds

the

text

to

the

WHERE

clause

of

the

RETRIEVE

statement

that

it

constructs

from

the

business

object’s

primary

or

foreign

keys.

The

connector

adds

the

leading

AND

to

the

WHERE

clause.

The

value

of

the

application-specific

information

must

be

valid

SQL

syntax.

In

the

case

of

RetrieveByContent,

the

application-specific

information

is

added

to

the

WHERE

clause

of

the

RETRIEVE

statement

that

it

constructs

from

the

business

object’s

attributes

that

have

their

values

populated.

The

WHERE

clause

can

also

refer

to

placeholder

attributes

instead

of

the

actual

attributes

in

the

parent

business

object.

These

placeholders

do

not

have

any

application-specific

information.

An

attribute

can

be

a

placeholder

if

it

satisfies

one

of

the

following

conditions

for

its

ASI:

1.

Simple

attribute

with

ASI=null

or

’’

2.

Simple

attribute

with

ASI=PH=TRUE

For

example:

An

Order

business

object

contains

a

multiple

cardinality

line

item

business

object,

and

retrieval

of

only

specific

line

items

is

needed.

This

retrieval

can

be

handled

through

a

placeholder

attribute

in

the

Order

business

object.

This

placeholder

is

required

in

the

parent

object

because

the

child

objects

are

all

pruned.

The

placeholder

attribute

can

be

populated

at

runtime

by

the

integration

broker

with

a

list

of

the

specific

line

items,

separated

by

a

comma

(,).

For

this

example,

you

would

add

the

following

information

to

the

WHERE

clause

for

the

retrieve

verb

on

the

child

line

item

business

object:

line_item_id

in(@,@,@):..placeholder1,..placeholder2,..placeholder3

Where

line_item_id

in

is

the

ID

in

the

child

business

object,

placeholder

is

the

attribute

in

the

parent.

If

placeholder

contains

the

values

12,13,14

the

query

would

select

the

following

from

the

WHERE

clause:

line_item_id

in(12,13,14)

Where

SELECT:..FROM:..WHERE

x

in

(1,2,3)

is

a

standard

database

SQL

syntax.

In

the

RetrieveByContent

verb,

if

the

length

of

the

WHERE

clause

is

0,

the

connector

will

use

the

application-specific

information

in

the

WHERE

clause

of

the

RETRIEVE

statement.

With

this

feature,

the

user

can

send

a

business

object

with

no

attribute

values

populated

and

specify

verb

application-specific

information

for

RetrieveByContent,

and

the

connector

will

build

the

WHERE

clause

based

on

what

was

specified

in

the

verb

application-specific

information

alone.

Chapter

3.

Understanding

business

objects

for

the

connector

63

64

Adapter

for

JDBC

User

Guide

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

This

chapter

describes

JDBCODA,

an

object

discovery

agent

(ODA),

which

generates

business

object

definitions

for

the

connector

for

JDBC.

Because

the

connector

works

with

objects

that

are

table-based

or

view-based,

JDBCODA

uses

database

tables

and

views

to

discover

business

object

requirements

specific

to

its

JDBC

data

source.

Note:

Familiarity

with

database

concepts

and

JDBC

drivers

(for

configuration

purposes)

can

aid

in

understanding

how

JDBCODA

operates.

This

chapter

contains

the

following

sections:

v

“Installation

and

usage”

v

“Using

JDBCODA

in

business

object

designer”

on

page

68

v

“Contents

of

the

generated

definition”

on

page

74

v

“Sample

business

object

definition

file”

on

page

77

v

“Inserting

attributes

that

contain

child

business

objects”

on

page

78

v

“Adding

information

to

the

business

object

definition”

on

page

78

Installation

and

usage

This

section

discusses

the

following:

v

“Installing

JDBCODA”

v

“Before

using

JDBCODA”

on

page

66

v

“Launching

JDBCODA”

on

page

67

v

“Running

multiple

instances

of

JDBCODA”

on

page

67

v

“Working

with

error

and

trace

message

files”

on

page

67

Installing

JDBCODA

To

install

JDBCODA,

use

the

Installer

for

IBM

WebSphere

Business

Integration

Adapter.

Follow

the

instructions

in

the

System

Installation

Guide

for

UNIX

or

for

Windows.

When

the

installation

is

complete,

the

following

files

are

installed

in

the

directory

on

your

system

where

you

have

installed

the

product:

v

ODA\JDBC\JDBCODA.jar

v

ODA\messages\JDBCODAAgent.txt

v

ODA\messages\JDBCODAAgent_ll_TT.txt

(message

files

specific

to

a

language

(ll)

and

a

country

or

territory

(TT).

v

ODA\JDBC\start_JDBCODA.bat

(Windows

only)

v

ODA/JDBC/start_JDBCODA.sh

(UNIX

only)

v

bin\CWODAEnv.bat

(Windows

only)

v

bin/CWODAEnv.sh

(UNIX

only)

Note:

Except

as

otherwise

noted,

this

document

uses

backslashes

(\)

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

©

Copyright

IBM

Corp.

2000,

2003

65

Before

using

JDBCODA

Before

you

can

run

JDBCODA,

you

must:

v

Install

the

appropriate

JDBC

driver.

Important:

JDBCODA

can

connect

to

any

database

using

a

JDBC

driver

that

supports

JDBC

2.0

or

above.

v

Because

JDBCODA

generates

business

object

names

and

attribute

names

from

the

names

of

corresponding

database

tables

and

columns,

and

because

business

object

names

and

attribute

names

must

be

in

ISO

Latin-1,

verify

that

the

appropriate

database

components

have

Latin-1

names.

If

they

do

not,

you

have

the

following

choices:

–

Create

the

business

object

definition

manually

in

Business

Object

Designer.

–

Edit

the

definition

generated

by

JDBCODA

so

that

all

business

object

names

and

attribute

names

are

in

Latin-1.
v

Open

for

editing

the

shell

or

batch

file

and

configure

the

values

described

in

Table

12.

Table

12.

Shell

and

batch

file

configuration

variables

Variable

Explanation

Example

AGENTNAME

Name

of

the

ODA

UNIX:

AGENTNAME=JDBCODA

Windows:

set

AGENTNAME=JDBCODA

AGENT

Name

of

the

ODA’s

jar

file

UNIX:

AGENT=$CROSSWORLDS/ODA/JDBC/JDBCODA.jar

Windows:

set

AGENT=

%CROSSWORLDS%\ODA\JDBC\JDBCODA.jar

DRIVERPATH

Path

of

JDBC

driver

library;

JDBCODA

uses

the

driver

classes

to

establish

a

connection

to

a

specified

database

UNIX:

DRIVERPATH=$CROSSWORLDS/lib/

\

xwutil.jar:$CROSSWORLDS/lib/

\

xwbase.jar:$CROSSWORLDS/lib/

\

xwsqlserver.jar:$CROSSWORLDS/lib/

\

spy/lib/spy.jar

Windows:

set

DRIVERPATH=%CROSSWORLDS%\

/

lib\xwutil.jar;%CROSSWORLDS%\lib\

/

xwbase.jar;%CROSSWORLDS%\lib\

/

xwsqlserver.jar;%CROSSWORLDS%\lib\

/

spy\lib\spy.jar

DRIVERLIB

Path

of

the

native

libraries

used

by

the

JDBC

driver

UNIX:DRIVERLIB=$CROSSWORLDS/bin/db2jdbc.dll

Windows:

DRIVERLIB=%CROSSWORLDS%\bin\db2jdbc.dll

After

installing

the

JDBC

driver

and

setting

configuration

values

in

the

shell

or

batch

file,

you

must

do

the

following

to

generate

business

objects:

1.

Launch

the

ODA.

2.

Launch

Business

Object

Designer.

3.

Follow

a

six-step

process

in

Business

Object

Designer

to

configure

and

run

the

ODA.

The

following

sections

describe

these

steps

in

detail.

66

Adapter

for

JDBC

User

Guide

Launching

JDBCODA

You

can

launch

the

JDBCODA

with

the

startup

script

appropriate

for

your

operating

system.

UNIX:

start_JDBCODA.sh

Windows:

start_JDBCODA.bat

You

configure

and

run

JDBCODA

using

Business

Object

Designer.

Business

Object

Designer

locates

each

ODA

by

the

name

specified

in

the

AGENTNAME

variable

of

each

script

or

batch

file.

The

default

ODA

name

for

this

connector

is

JDBCODA.

Running

multiple

instances

of

JDBCODA

It

is

recommended

that

you

change

the

name

of

the

ODA

when

you

run

multiple

instances

of

it.

To

create

additional

uniquely

named

instances

of

JDBCODA:

v

Create

a

separate

script

or

batch

file

for

each

instance.

v

Specify

a

unique

name

in

the

AGENTNAME

variable

of

each

script

or

batch

file.

It

is

recommended

that

you

prefix

each

name

with

the

name

of

the

host

machine

when

you

run

ODA

instances

on

different

machines.

Figure

6

on

page

69

illustrates

the

window

in

Business

Object

Designer

from

which

you

select

the

ODA

to

run.

Working

with

error

and

trace

message

files

Error

and

trace

message

files

(the

default

is

JDBCODAAgent.txt)

are

located

in

\ODA\messages\,

which

is

under

the

product

directory.

These

files

use

the

following

naming

convention:

AgentNameAgent.txt

If

you

create

multiple

instances

of

the

ODA

script

or

batch

file

and

provide

a

unique

name

for

each

represented

ODA,

you

can

have

a

message

file

for

each

ODA

instance.

Alternatively,

you

can

have

differently

named

ODAs

use

the

same

message

file.

There

are

two

ways

to

specify

a

valid

message

file:

v

If

you

change

the

name

of

an

ODA

and

do

not

create

a

message

file

for

it,

you

must

change

the

name

of

the

message

file

in

Business

Object

Designer

as

part

of

ODA

configuration.

Business

Object

Designer

provides

a

name

for

the

message

file

but

does

not

actually

create

the

file.

If

the

file

displayed

as

part

of

ODA

configuration

does

not

exist,

change

the

value

to

point

to

an

existing

file.

v

You

can

copy

the

existing

message

file

for

a

specific

ODA,

and

modify

it

as

required.

Business

Object

Designer

assumes

you

name

each

file

according

to

the

naming

convention.

For

example,

if

the

AGENTNAME

variable

specifies

JDBCODA1,

the

tool

assumes

that

the

name

of

the

associated

message

file

is

JDBCODA1Agent.txt.

Therefore,

when

Business

Object

Designer

provides

the

filename

for

verification

as

part

of

ODA

configuration,

the

filename

is

based

on

the

ODA

name.

Verify

that

the

default

message

file

is

named

correctly,

and

correct

it

as

necessary.

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

67

Important:

Failing

to

correctly

specify

the

message

file’s

name

when

you

configure

the

ODA

causes

it

to

run

without

messages.

For

more

information

on

specifying

the

message

file

name,

see

“Configure

initialization

properties”

on

page

69.

During

the

configuration

process,

you

specify:

v

The

name

of

the

file

into

which

JDBCODA

writes

error

and

trace

information

v

The

level

of

tracing,

which

ranges

from

0

to

5.

Table

13

describes

these

values.

Table

13.

Tracing

levels

Trace

level

Description

0

Logs

all

errors

1

Traces

all

entering

and

exiting

messages

for

method

2

Traces

the

ODA’s

properties

and

their

values

3

Traces

the

names

of

all

business

objects

4

Traces

details

of

all

spawned

threads

5

v

Indicates

the

ODA

initialization

values

for

all

of

its

properties

v

Traces

a

detailed

status

of

each

thread

that

JDBCODA

spawned

v

Traces

the

business

object

definition

dump

For

information

on

where

you

configure

these

values,

see

“Configure

initialization

properties”

on

page

69.

Using

JDBCODA

in

business

object

designer

This

section

describes

how

to

use

JDBCODA

in

Business

Object

Designer

to

generate

business

object

definitions.

For

information

on

launching

Business

Object

Designer,

see

the

Business

Object

Development

Guide.

After

you

launch

an

ODA,

you

must

launch

Business

Object

Designer

to

configure

and

run

it.

There

are

six

steps

in

Business

Object

Designer

to

generate

a

business

object

definition

using

an

ODA.

Business

Object

Designer

provides

a

wizard

that

guides

you

through

each

of

these

steps.

After

starting

the

ODA,

do

the

following

to

start

the

wizard:

1.

Open

Business

Object

Designer.

2.

From

the

File

menu,

select

the

New

Using

ODA...

submenu.

Business

Object

Designer

displays

the

first

window

in

the

wizard,

named

Select

Agent.

Figure

6

on

page

69

illustrates

this

window.

To

select,

configure,

and

run

the

ODA,

follow

these

steps:

1.

“Select

the

ODA”

on

page

69

2.

“Configure

initialization

properties”

on

page

69

3.

“Expanding

nodes

and

selecting

tables,

views

and

stored

procedures”

on

page

71

4.

“Confirming

database

object

selections”

on

page

71

5.

“Generating

definitions”

on

page

72

and,

optionally,

“Providing

additional

information”

on

page

72

68

Adapter

for

JDBC

User

Guide

6.

“Saving

definitions”

on

page

74

Select

the

ODA

Figure

6

illustrates

the

first

dialog

box

in

Business

Object

Designer’s

six-step

wizard.

From

this

window,

select

the

ODA

to

run.

To

select

the

ODA:

1.

Click

the

Find

Agents

button

to

display

all

registered

or

currently

running

ODAs

in

the

Located

agents

field.

Note:

If

Business

Object

Designer

does

not

locate

your

desired

ODA,

check

the

setup

of

the

ODA.

2.

Select

the

desired

ODA

from

the

displayed

list.

Business

Object

Designer

displays

your

selection

in

the

Agent’s

name

field.

Configure

initialization

properties

The

first

time

Business

Object

Designer

communicates

with

JDBCODA,

it

prompts

you

to

enter

a

set

of

initialization

properties

as

shown

in

Figure

7.

You

can

save

these

properties

in

a

named

profile

so

that

you

do

not

need

to

re-enter

them

each

time

you

use

JDBCODA.

For

information

on

specifying

an

ODA

profile,

see

the

Business

Object

Development

Guide.

Figure

6.

Selecting

the

ODA

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

69

Configure

the

JDBCODA

properties

described

in

Table

14.

Table

14.

JDBCODA

properties

Row

number

Property

name

Property

type

Description

1

UserName

String

Name

of

the

user

with

authorization

to

connect

to

the

database

2

Password

String

Password

of

the

user

with

authorization

to

connect

to

the

database

3

DatabaseUrl

String

URL

that

enables

a

connection

to

the

database.

For

example:

jdbc:oracle:thin:@MACHINENAME:1521:SIDNAME

4

DatabaseDriver

String

Name

of

the

driver

used

to

establish

the

connection.

For

example:

oracle.jdbc.driver.OracleDriver

5

DefaultBOPrefix

String

Text

that

is

prepended

to

the

name

of

the

business

object

to

make

it

unique.

You

can

change

this

later,

if

required,

when

Business

Object

Designer

prompts

you

for

business

object

properties.

For

more

information,

see

“Providing

additional

information”

on

page

72.

6

TraceFileName

String

File

into

which

JDBCODA

writes

trace

information.

If

the

file

does

not

exist,

JDBCODA

creates

it

in

the

\ODA\JDBC

directory.

If

the

file

already

exists,

JDBCODA

appends

to

it.

JDBCODA

names

the

file

according

to

the

naming

convention.

For

example,

if

the

agent

is

named

JDBCODA,

it

generates

a

trace

file

named

JDBCODAtrace.txt.

Use

this

property

to

specify

a

different

name

for

this

file.

7

TraceLevel

Integer

Level

of

tracing

enabled

for

JDBCODA

8

MessageFile

String

Name

of

the

error

and

message

file.

JDBCODA

displays

the

filename

according

to

the

naming

convention.

For

example,

if

the

agent

is

named

JDBCODA,

the

value

of

the

message

file

property

displays

as

JDBCODAAgent.txt.Important:

The

error

and

message

file

must

be

located

in

the

\ODA\messages

directory.

Use

this

property

to

verify

or

specify

an

existing

file.

Figure

7.

Configuring

agent

initialization

properties

70

Adapter

for

JDBC

User

Guide

Important

Correct

the

name

of

the

message

file

if

the

default

value

displayed

in

Business

Object

Designer

represents

a

non-existent

file.

If

the

name

is

not

correct

when

you

move

forward

from

this

dialog

box,

Business

Object

Designer

displays

an

error

message

in

the

window

from

which

the

ODA

was

launched.

This

message

does

not

popup

in

Business

Object

Designer.

Failing

to

specify

a

valid

message

file

causes

the

ODA

to

run

without

messages.

Expanding

nodes

and

selecting

tables,

views

and

stored

procedures

After

you

configure

all

initialization

properties

for

JDBCODA,

Business

Object

Designer

connects

to

the

specified

database

and

displays

a

tree

with

all

the

schema

names

in

the

database.

These

names,

which

are

presented

as

nodes

in

the

tree,

are

expandable.

Click

on

them

to

display

all

the

tables,

views

and

stored

procedures

in

each

schema.

Figure

8

illustrates

this

dialog

box

with

some

schema

expanded.

To

identify

all

the

database

objects

that

store

data

for

the

generated

business

object

definition,

select

all

the

required

tables,

views

and

stored

procedures,

and

click

Next.

For

information

on

how

to

filter

the

objects

returned,

see

the

Business

Object

Development

Guide.

Confirming

database

object

selections

After

you

identify

all

the

database

objects

to

be

associated

with

the

generated

business

object

definition,

Business

Object

Designer

displays

the

dialog

box

with

only

the

selected

tables

and

views.

Figure

9

illustrates

this

dialog

box.

Figure

8.

Tree

of

Schema

with

Expanded

Nodes

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

71

This

window

provides

the

following

options:

v

To

confirm

the

selection,

click

Next.

v

If

the

selection

is

not

correct,

click

Back

to

return

to

the

previous

window

and

make

the

necessary

changes.

When

the

selection

is

correct,

click

Next.

Generating

definitions

After

you

confirm

the

database

objects,

the

next

dialog

box

informs

you

that

Business

Object

Designer

is

generating

the

definitions.

Providing

additional

information

If

the

JDBCODA

needs

additional

information,

Business

Object

Designer

displays

the

BO

Properties

window,

which

prompts

you

for

the

information.

In

the

BO

Properties

window,

enter

or

change

the

following

information:

v

Prefix—The

text

that

is

prepended

to

the

name

of

the

business

object

to

make

it

unique.

If

you

are

satisfied

with

the

value

you

entered

for

the

DefaultBOPrefix

property

in

the

Configure

Agent

window

(Figure

7),

you

do

not

need

to

change

the

value

here.

v

Verbs—

Click

in

the

Value

field

and

select

one

or

more

verbs

from

the

pop-up

menu.

These

are

the

verbs

supported

by

the

business

object.

v

Add

Stored

Procedure—Click

Yes

or

No

in

the

Value

field:

–

If

you

select

Yes

and

click

OK,

JDBCODA

displays

a

window

that

provides

a

list

of

all

stored

procedure

attributes.

Select

the

stored

procedure

attributes

that

you

want

added

to

the

business

object.

–

Select

No

to

ensure

that

no

stored

procedure

attributes

are

added

to

the

generated

business

object

definition.

The

default

is

Yes.

Figure

9.

Confirming

Selection

of

Database

Objects

72

Adapter

for

JDBC

User

Guide

Note:

If

a

field

in

the

BO

Properties

dialog

box

has

multiple

values,

the

field

appears

to

be

empty

when

the

dialog

box

first

displays.

Click

in

the

field

to

display

a

drop-down

list

of

its

values.

The

stored

procedure

attributes

to

be

added

to

the

business

object

can

be

associated

with

one

of

the

stored

procedures

in

the

database

in

that

schema.

You

can

choose

a

stored

procedure

from

a

drop

down

list

of

all

stored

procedures

in

the

database

in

that

schema,

against

each

stored

procedure

attribute.

This

information

will

generate

the

necessary

ASI

information

for

that

attribute.

The

ASI

(application-specific

information)

for

the

object

level

will

look

like

TN=tableName

And

for

the

attribute

level,

the

ASI

will

look

like

CN=ColumnName

If

a

business

object

is

being

generated

from

a

stored

procedure,

and

if

JDBC

Adapter

stored

procedure

attributes,

such

as

SPForCreate,

are

associated

with

it,

then

the

ODA

provides

a

list

of

all

stored

procedure

names

in

that

schema

against

the

stored

procedure

attributes

and

enables

you

to

associate

the

required

stored

procedure

with

the

business

object.

This

will

generate

the

ASI

for

the

JDBC

Adapter

stored

procedure

attribute

as

follows:

SPN=stored

procedure

Name;

IN=a1:a2;

OUT=b1:b2;

IO=c1:c2

Where

IN

means

the

parameter

of

the

stored

procedure

is

INPUT

type,

OUT

means

the

parameter

is

OUTPUT

type,

and

IO

means

it

is

INPUT/OUTPUT

type.

The

ODA

will

not

set

RS

to

true

or

false

on

the

ASI,

so

you

need

to

set

it

manually.

The

verbs

added

to

the

business

object

are

the

standard

verbs,

essentially

Retrieve,

RetrieveByContent,

Create,

Update

and

Delete.

If

the

return

parameter

of

the

stored

procedure

is

of

ResultSet

Type,

the

ODA

will

analyst

the

result

set

and

create

a

business

object,

making

the

columns

of

the

result

set

attributes

of

the

business

object.

The

ASI

for

the

stored

procedure

columns

will

Figure

10.

Associating

Stored

Procedures

with

Stored

Procedure

Attributes

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

73

be

set

as

CN=StoredProcedureColumnName.

The

ODA

sets

the

key

attributes

based

on

the

JDBC

metadata

information

returned

by

the

driver.

If

none

is

returned,

the

ODA

does

not

mark

any

attributes

by

default

as

keys.

All

other

attributes,

such

as

length

and

type,

are

set

as

for

the

attributes

generated

from

tables.

Saving

definitions

After

you

provide

all

required

information

in

the

BO

Properties

dialog

box

and

click

OK,

Business

Object

Designer

displays

the

final

dialog

box

in

the

wizard.

Here,

you

can

save

the

definition

to

the

server

or

to

a

file,

or

you

can

open

the

definition

for

editing

in

Business

Object

Designer.

For

more

information,

and

to

make

further

modifications,

see

the

Business

Object

Development

Guide.

Contents

of

the

generated

definition

The

business

object

definition

that

JDBCODA

generates

contains:

v

An

attribute

for

each

column

in

the

specified

database

tables

and

views

v

The

verbs

specified

in

the

BO

Properties

window

v

Application-specific

information:

–

At

the

business-object

level

–

For

each

attribute

–

For

each

verb

This

section

describes:

v

“Business-object-level

properties”

v

“Attribute

properties”

on

page

75

v

“Verbs”

on

page

77

Business-object-level

properties

JDBCODA

generates

the

following

information

at

the

business-object

level:

v

Name

of

the

business

object

v

Version—defaults

to

1.0.0

v

Application-specific

information

Application-specific

information

at

the

business-object

level

allows

you

to:

v

Specify

the

name

of

the

corresponding

database

table

v

Provide

the

information

necessary

to

perform

a

physical

or

logical

delete

At

the

business-object

level,

application-specific

information

format

consists

of

parameters

separated

by

semicolon

(;)

delimiters.

The

name

of

the

parameter

and

its

value

are

separated

by

a

colon

(:)

delimiter.

The

syntax

is:

TN=TableName;

SCN=StatusColumnName:StatusValue

where

TableName

identifies

the

database

table,

StatusColumnName

is

the

name

of

the

database

column

used

to

perform

logical

deletes,

and

StatusValue

is

the

value

that

signifies

that

a

business

object

is

inactive

or

deleted.

The

AppSpecificInfo

that

JDBCODA

generates

at

this

level

contains

a

value

only

for

the

name

of

the

database

table

or

view.

For

information

on

specifying

a

value

for

the

status

column,

see

“Application-specific

information

at

the

business-object

level”

on

page

54.

74

Adapter

for

JDBC

User

Guide

Attribute

properties

This

section

describes

the

properties

that

JDBCODA

generates

for

each

attribute.

For

more

information

about

the

attributes,

see

“Business

object

attribute

properties”

on

page

50.

Name

property

JDBCODA

obtains

the

value

of

the

attribute’s

name

from

the

column

name

in

the

database

table

or

view.

Data

type

property

When

setting

the

type

of

an

attribute,

JDBCODA

converts

the

data

type

of

a

column

in

the

table

or

view

to

a

corresponding

IBM

WebSphere

Business

Integration

Adapter

Business

Object

type.

This

conversion

is

done

in

two

steps.

First,

the

data

type

in

the

database

is

converted

to

a

JDBC

type.

Then,

the

JDBC

type

is

converted

to

an

IBM

WebSphere

Business

Integration

Adapter

Business

Object

type.

The

first

conversion

is

done

by

the

JDBC

driver

that

you

are

using.

Please

refer

to

the

JDBC

specification

(2.0

and

above)

for

details

on

individual

database

type

mapping

to

a

JDBC

type.

Table

14

shows

the

conversion

from

the

JDBC

Type

to

the

corresponding

IBM

WebSphere

Business

Integration

Adapter

Business

Object

type.

Table

15.

Correspondence

of

data

types

JDBC

type

WebSphere

Business

Integration

Adapter

business

object

type

BIT

BOOLEAN

CHAR

STRING

VARCHAR

STRING

LONGVARCHAR

STRING

INTEGER

INTEGER

NUMERIC

INTEGER

SMALLINT

INTEGER

TINYINT

INTEGER

BIGINT

INTEGER

DATE

DATE

TIME

DATE

TIMESTAMP

DATE

DECIMAL

STRING

DOUBLE

DOUBLE

FLOAT

DOUBLE

REAL

FLOAT

BINARY

STRING,

add

BYTEARRAY=TRUE

to

AppSpecificInfo

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

75

Table

15.

Correspondence

of

data

types

(continued)

JDBC

type

WebSphere

Business

Integration

Adapter

business

object

type

VARBINARY

STRING,

add

BYTEARRAY=TRUE

to

AppSpecificInfo

Note:

If

a

column’s

data

type

is

not

one

of

those

shown

in

Table

15

on

page

75,

JDBCODA

skips

the

column

and

displays

a

message

stating

that

the

column

cannot

be

processed.

Cardinality

property

JDBCODA

sets

the

cardinality

of

all

simple

attributes

to

1.

MaxLength

property

JDBCODA

obtains

the

length

of

a

string

from

the

length

specified

for

the

varchar,

char,

or

text

data

type.

IsKey

property

If

the

column

is

a

primary

key

in

the

table,

JDBCODA

marks

it

as

a

key

attribute.

However,

if

a

view,

instead

of

a

table,

is

selected

as

the

source

node

to

generate

Business

Objects,

JDBCODA

does

not

mark

the

column

as

a

key

attribute.

In

this

case,

the

key

attribute

needs

to

be

set

manually.

IsForeignKey

property

JDBCODA

does

not

set

the

IsForeignKey

property.

You

can

set

it

in

Business

Object

Designer.

IsRequired

property

If

a

field

is

designated

not

null

in

the

table

or

view,

JDBCODA

marks

it

as

a

required

attribute.

However,

JDBCODA

does

not

mark

the

key

field

as

required

because

there

may

be

a

sequence

associated

with

it,

or

it

may

be

an

identity

column.

AppSpecificInfo

property

JDBCODA

includes

two

parameters

for

the

AppSpecificInfo

property

at

the

attribute

level.

The

syntax

of

the

specified

parameters

are:

CN=ColumnName

where

ColumnName

is

the

name

of

the

column

in

the

database

table

or

view

associated

with

the

specific

attribute.

BYTEARRAY=true|false

JDBCODA

recognizes

columns

with

binary

data

and

creates

an

attribute

of

type

String

with

an

AppSpecificInfo

property

of

BYTEARRAY=true.

Note:

You

can

set

additional

AppSpecificInfo

parameters

in

Business

Object

Designer.

For

information

about

these

parameters,

see

“Application-specific

information

at

the

attribute

level”

on

page

55.

76

Adapter

for

JDBC

User

Guide

Verbs

JDBCODA

generates

the

verbs

specified

in

the

BO

Properties

window.

It

creates

an

AppSpecificInfo

property

for

each

verb

but

does

not

populate

it.

For

more

information,

see

“Application-specific

information

format

for

verbs”

on

page

62.

Sample

business

object

definition

file

A

sample

business

object

definition

follows:

[BusinessObjectDefinition]

Name

=

CUSTOMER

Version

=

1.0.0

AppSpecificInfo

=

TN=ra_customers;SCN=

[Attribute]

Name

=

customer_id

Type

=

Integer

Cardinality

=

1

MaxLength

=

0

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

CN=customer_id

DefaultValue

=

[End]

*******Other

attributes

[Attribute]

Name

=

ObjectEventId

Type

=

String

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

DefaultValue

=

[End]

[Verb]

Name

=

Delete

AppSpecificInfo

=

[End]

[Verb]

Name

=

Update

AppSpecificInfo

=

[End]

[Verb]

Name

=

Create

AppSpecificInfo

=

[End]

[Verb]

Name

=

Retrieve

AppSpecificInfo

=

[End]

[End]

Chapter

4.

Generating

business

object

definitions

using

JDBCODA

77

Inserting

attributes

that

contain

child

business

objects

Use

Business

Object

Designer

to

insert

attributes

that

represent

single-cardinality

or

multiple-cardinality

child

business

objects.

For

more

information,

see

the

Business

Object

Development

Guide.

Adding

information

to

the

business

object

definition

Because

the

database

tables

and

views

may

not

have

all

the

information

that

a

business

object

definition

requires,

it

may

be

necessary

to

add

information

to

the

business

object

definition

that

JDBCODA

creates.

For

more

information,

see

Chapter

3,

“Understanding

business

objects

for

the

connector,”

on

page

31.

To

examine

the

business

object

definition

or

add

information,

you

can

use

Business

Object

Designer

or

a

text

editor.

To

reload

a

revised

definition

into

the

IBM

WebSphere

Business

Integration

Adapter

repository,

you

can

use

Business

Object

Designer

or,

if

ICS

is

the

integration

broker,

the

repos_copy

command.

78

Adapter

for

JDBC

User

Guide

Chapter

5.

Troubleshooting

and

error

handling

The

chapter

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

connector

for

JDBC.

It

contains

the

following

sections:

v

“Startup

problems”

v

“Event

processing”

v

“Mapping

(ICS

Integration

Broker

only)”

v

“Error

handling

and

logging”

on

page

80

v

“Loss

of

connection

to

the

application”

on

page

82

v

“Inability

to

locate

event

or

archive

tables

when

DB2

is

used”

on

page

82

v

“Resource-busy

error”

on

page

83

v

“JDBCODA

behaves

improperly

because

of

unsupported

JDBC

driver”

on

page

83

Startup

problems

If

you

encounter

difficulties

when

trying

to

start

the

connector,

check

to

make

sure

that

integration

broker

is

up

and

running.

Event

processing

If

there

are

events

in

the

event

table,

and

they

are

not

being

processed

while

the

connector

is

running,

ensure

that:

v

The

relevant

business

process

is

running.

v

The

name

of

the

business

object

in

the

event

table

matches

the

name

of

the

business

object

specified

for

the

business

process

port.

Mapping

(ICS

Integration

Broker

only)

This

section

discusses

the

following:

v

“Mapping

problems”

v

“Date

conversion”

Mapping

problems

If

the

business

objects

are

not

being

mapped

or

mapping

is

not

being

invoked,

check

to

make

sure

the

maps

have

been

installed

in

the

correct

directory.

Date

conversion

Note:

This

date

conversion

procedure

applies

only

to

versions

of

the

connector

prior

to

version

1.5.0.

Use

maps

to

convert

data

stored

in

Date

format

in

the

database

to

the

String

format

used

by

a

WebSphere

Business

Integration

Adapter

business

object.

For

example,

assume

that

you

want

to

convert

the

following

date,

which

is

stored

in

an

Oracle

database:

Sun

Jan

01

00:00:00

CEST

1999

©

Copyright

IBM

Corp.

2000,

2003

79

to

the

following

string,

which

is

processed

in

a

WebSphere

Business

Integration

Adapter

for

JDBC

business

object:

Jan

01

1999

00:00:00

To

perform

this

conversion,

use

the

DtpDate()

and

DtpSplitString()

constructors

defined

for

data

transformation

in

mapping.

For

the

syntax

and

a

description

of

these

constructors

and

the

classes

whose

objects

they

construct,

see

the

Map

Development

Guide.

To

use

a

map

to

convert

the

Date

value

to

a

String,

follow

these

steps:

1.

Use

DtpSplitString()

with

a

space

delimiter

to

split

the

string

into

its

six

pieces

and

rearrange

it

into

an

order

that

DtpDate

can

use.

To

convert

the

example

date,

use:

DtpSplitString

OurSplitString

=

new

DtpSplitString

("Sun

Jan

01

00:00:00

CEST

1999","

");

In

the

above

statement,

OurSplitString

is

a

user-defined

variable

of

type

DtpSplitString,

and

a

space

is

specified

as

the

delimiter.

2.

Use

the

nextElement()

method

of

the

DtpSplitString

class

to

loop

through

the

newly

created

OurSplitString

variable,

putting

each

of

the

variable’s

six

elements

into

an

array

whose

elements

are

of

type

String.

The

following

example

specifies

OurStringPieces

as

the

output

array:

String[]

OurStringPieces

=

new

String[6];

for

(i=0;i<=5;i=i+1){

OurStringPieces[i]=OurSplitString.nextElement();

}

This

looping

produces

the

following

array

elements:

OurStringPieces[0]

=

Sun

OurStringPieces[1]

=

Jan

OurStringPieces[2]

=

01

OurStringPieces[3]

=

00:00:00

OurStringPieces[4]

=

CEST

OurStringPieces[5]

=

1999

3.

Concatenate

the

pieces

of

the

string

needed

for

DtpDate

input.

The

example

conversion

uses

″M

D

Y

h:m:s″

as

the

input

format

for

DtpDate,

which

requires

the

converted

string

to

look

like

″Jan

01

1999

00:00:00″.

This

example

String

uses

elements

1,

2,

5,

and

3

of

the

OurStringPieces

array:

OurConcatenatedString

=

OurStringPieces[1]+OurStringPieces[2]+OurStringPieces[5]+OurStringPieces[3];

4.

Use

your

new

concatenated

string

as

input

into

DtpDate:

DtpDate

OurDtpDate

=

new

DtpDate(OurConcatenatedString,"M

D

Y

h:m:s");

After

you

have

put

the

Date

value

into

DtpDate

format,

you

are

ready

to

work

with

the

date

in

your

map.

Error

handling

and

logging

The

connector

logs

an

error

message

whenever

it

encounters

a

condition

that

causes

its

current

processing

of

a

business

object

and

verb

to

fail.

When

such

an

error

occurs,

the

connector

also

prints

a

textual

representation

of

the

failed

business

object

as

it

was

received.

It

writes

the

text

to

the

connector

log

file

or

the

standard

output

stream,

depending

on

its

configuration.

You

can

use

the

text

as

an

aid

in

determining

the

source

of

the

error.

80

Adapter

for

JDBC

User

Guide

Error

types

Table

16

describes

the

types

of

tracing

messages

that

the

connector

outputs

at

each

trace

level.

These

messages

are

in

addition

to

any

tracing

messages

output

by

the

IBM

WebSphere

Business

Integration

Adapter

architecture,

such

as

the

Java

connector

execution

wrapper

and

the

WebSphere

MQ

message

interface.

Table

16.

Connector

tracing

messages

Tracing

level

Tracing

messages

Level

0

Message

that

identifies

the

connector

version.

No

other

tracing

is

done

at

this

level.

This

is

the

default

value.

Level

1

v

Status

messages

v

Messages

that

provide

identifying

(key)

information

for

each

business

object

processed

v

Messages

delivered

each

time

the

pollForEvents

method

is

executed

Level

2

v

Business

object

handler

messages

that

contain

information

such

as

the

arrays

and

child

business

objects

that

the

connector

encounters

or

retrieves

during

the

processing

of

a

business

object

v

Messages

logged

each

time

a

business

object

is

posted

to

the

integration

broker,

either

from

gotApplEvent()

or

executeCollaboration()

v

Messages

that

indicate

that

a

business

object

has

been

received

as

an

integration

broker

request

Level

3

v

Foreign

key

processing

messages

that

contain

such

information

as

when

the

connector

has

found

or

has

set

a

foreign

key

in

a

business

object

v

Messages

that

provide

information

about

business

object

processing.

For

example,

these

messages

are

delivered

when

the

connector

finds

a

match

between

business

objects,

or

finds

a

business

object

in

an

array

of

child

business

objects

Level

4

v

Application-specific

information

messages,

for

example,

messages

showing

the

values

returned

by

the

functions

that

parse

the

business

object’s

application-specific

information

fields

v

Messages

that

identify

when

the

connector

enters

or

exits

a

function,

which

helps

trace

the

process

flow

of

the

connector

v

All

thread-specific

messages.

If

the

connector

spawns

multiple

threads,

a

message

appears

for

the

creation

of

each

new

thread

Level

5

v

Messages

that

indicate

connector

initialization,

for

example,

messages

showing

the

value

of

each

configuration

property

retrieved

from

the

integration

broker

v

Messages

that

include

statements

executed

in

the

application.

At

this

trace

level,

the

connector

log

file

contains

all

statements

executed

in

the

destination

application

and

the

value

of

any

variables

that

are

substituted.

v

Messages

that

comprise

a

representation

of

a

business

object

before

the

connector

begins

processing

it

(displaying

its

state

as

the

connector

receives

it)

and

after

the

connector

has

completed

its

processing

(displaying

its

state

as

the

connector

returns

it)

v

Messages

that

comprise

a

business

object

dump

v

Messages

that

indicate

the

status

of

each

thread

the

connector

spawns

while

it

is

running

Chapter

5.

Troubleshooting

and

error

handling

81

Error

messages

Connector

message

file

All

the

error

messages

that

the

connector

generates

are

stored

in

a

message

file

named

JDBCConnector.txt

or

JDBCConnector_II_TT.txt

(where

ll

specifies

a

language,

and

TT

specifies

a

country

or

territory).

Each

error

has

an

error

number

followed

by

the

error

message.

For

example:

20017

Connector

Infrastructure

version

does

not

match.

20018

Connection

from

{1}

to

the

Application

is

lost!

Please

enter

’q’

to

stop

the

connector,

then

restart

it

after

the

problem

is

fixed.

20019

Error:

ev_id

is

NULL

in

pollForEvent().

Loss

of

connection

to

the

application

If

the

connector

fails

to

establish

connection,

it

sends

FAIL

to

the

integration

broker

and

terminates.

When

AutoCommit

is

set

to

false

and

the

PingQuery

fails,

the

connector

will

attempt

to

create

a

new

connection

to

the

database.

If

it

succeeds

in

creating

a

new

connection

to

the

database

it

will

continue

processing,

otherwise

the

connector

returns

an

APPRESPONSETIMEOUT,

which

results

in

the

termination

of

the

connector.

Fetch

out-of-sequence

error

The

AutoCommit

property

must

be

set

to

false

when

using

Oracle

database

version

8.0

and

8.1

with

Sun

Solaris

or

Oracle

8.1

with

Windows

2000.

Otherwise,

you

will

experience

ORA-01002

(fetch

out

of

sequence)

error

messages.

In

prior

versions

of

Oracle

databases

this

error

will

not

occur.

Setting

AutoCommit

to

false

will

improve

performance.

Inability

to

locate

event

or

archive

tables

when

DB2

is

used

During

startup,

the

connector

attempts

to

locate

the

event

and

archive

tables

within

the

database

specified

by

the

SchemaName

configuration

property.

If

you

are

using

DB2

as

the

database,

the

connector

sometimes

fails

to

locate

the

event

and

archive

tables

and

returns

the

following

error:

Event/Archive

table

table_name

does

not

exist

in

the

database.

To

avoid

this

problem,

always

specify

DB2

schema

names

in

upper

case

(for

example,

SUSER)

in

the

connector’s

SchemaName

configuration

property.

Enabling

the

connector

to

work

with

a

DB2

database

Before

you

can

use

the

connector

with

a

DB2

database,

you

must

perform

the

following

steps:

1.

Copy

the

file

named

db2java.zip

from

the

DB2

host

to

the

$ProductDir\lib

directory

on

the

machine

on

which

the

connector

is

going

to

run.

2.

Copy

the

file

named

db2jdbc.dll

from

the

DB2

host

to

the

$ProductDir\bin

directory

on

the

machine

on

which

the

connector

is

going

to

run.

3.

Depending

on

your

operating

system,

change

the

following

in

the

connector’s

startup

file

(start_JDBC.sh

or

start_JDBC.bat):

UNIX:

JDBCDRIVERPATH=$ProductDir/lib/db2java.zip

82

Adapter

for

JDBC

User

Guide

Windows:

set

JDBCDRIVERPATH=%ProductDir%\lib\db2java.zip

4.

On

the

DB2

host

machine,

start

the

DB2/bin/db2jstrt

process.

Be

sure

to

specify

the

number

of

the

port

you

are

using

(for

example,

DB2/bin/db2jstrt

50000).

5.

Set

the

value

of

the

connector’s

JDBCDriverClass

property

to

COM.ibm.db2.jdbc.net.DB2Driver

(or

COM.ibm.db2.jdbc.app.DB2Driver

if

the

DB2

database

is

on

the

same

machine

on

which

the

connector

is

going

to

run).

6.

Set

the

value

of

the

connector’s

DatabaseURL

property

to

jdbc:db2://MachineName:PortNumber/DBname

(or

jdbc:db2:DBname

if

the

DB2

database

is

on

the

same

machine

on

which

the

connector

is

going

to

run).

Resource-busy

error

Note:

This

connector

only

encounters

this

error

when

it

is

running

on

an

Oracle

database.

The

connector

sometimes

encounters

an

error

like

the

following

when

retrieving

or

changing

data

in

an

application.

[Time:

2001/05/29

16:30:07.356]

[System:

ConnectorAgent]

[SS:

SOVTConnector]

[Type:

Trace]

[Mesg:

Select

CLIENT,COUNTRY,STRT_CODE,CITY_CODE,CITYP_CODE,

STRTYPEAB,COMMU_CODE,REGIOGROUP,TAXJURCODE

from

ADRSTREET

where

CLIENT=’100’

and

COUNTRY=’DE’

and

STRT_CODE=’000001114136’

FOR

UPDATE

NOWAIT]

[Time:

2001/05/29

16:30:07.526]

[System:

ConnectorAgent]

[SS:

SOVTConnector]

[Type:

Trace

]

[Mesg:

:logMsg]

[Time:

2001/05/29

16:30:07.536]

[System:

ConnectorAgent]

[SS:

SOVTConnector]

[Type:

Error

]

[MsgID:

37002]

[Mesg:

Execution

of

Retrieve

statement

failed

:

java.

sql.SQLException:

ORA-00054:

Versuch,

mit

NOWAIT

eine

bereits

belegte

Ressourceanzufordern.]

This

error

occurs

when

the

connector

tries

to

update

a

record

that

is

currently

locked.

The

record

may

be

locked

by

another

process,

or

because

the

connector

is

multi-threaded,

it

may

be

locked

by

the

connector

itself.

Note

that

records

must

be

locked

during

the

update

process.

The

connector

attempts

to

retrieve

an

afterimage

of

the

object

received

by

the

integration

broker

and,

in

the

process,

locks

the

entire

object

in

the

database

to

preserve

data

integrity.

To

resolve

this

problem,

you

can

stop

the

process

that

is

preventing

the

connector

from

obtaining

a

lock

on

the

record,

or

you

can

adjust

the

RetryCountInterval

configuration

property

for

the

connector.

JDBCODA

behaves

improperly

because

of

unsupported

JDBC

driver

If

the

JDBC

driver

does

not

support

a

feature

of

JDBCODA,

the

object

discovery

agent

does

not

function

properly.

For

example,

if

the

driver

does

not

support

all

method

calls

that

JDBCODA

uses,

the

JDBCODA

log

indicates

the

failed

process.

The

following

is

an

example

from

the

log:

[Time:

2002/05/15

17:00:55.147]

[System:

Object

Discovery

Agent]

[SS:

null]

[Type:

6]

[Mesg:

A

SQL

Error

occurred

in

getting

Schema

Names

from

Database.

Reason

[ProductName][ODBC

ProductName

Driver]Optional

feature

not

implemented]

In

such

a

case,

you

must

use

a

different

JDBC

driver.

Chapter

5.

Troubleshooting

and

error

handling

83

84

Adapter

for

JDBC

User

Guide

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

WebSphere

Business

Integration

adapters.

The

information

covers

connectors

running

on

the

following

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI).

v

WebSphere

Application

Server

(WAS)

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter

running

with

that

broker.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

New

and

deleted

properties

These

standard

properties

have

been

added

in

this

release.

New

properties

v

XMLNameSpaceFormat

Deleted

properties

v

RestartCount

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

You

configure

connector

properties

from

Connector

Configurator,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator,

refer

to

the

Connector

Configurator

appendix.

Note:

Connector

Configurator

and

System

Manager

run

only

on

the

Windows

system.

If

you

are

running

the

connector

on

a

UNIX

system,

you

must

have

a

Windows

machine

with

these

tools

installed.

To

set

connector

properties

©

Copyright

IBM

Corp.

2000,

2003

85

for

a

connector

that

runs

on

UNIX,

you

must

start

up

System

Manager

on

the

Windows

machine,

connect

to

the

UNIX

integration

broker,

and

bring

up

Connector

Configurator

for

the

connector.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

(only

if

WebSphere

InterChange

Server

is

the

integration

broker)

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

If

the

connector

is

working

in

stand-alone

mode

(independently

of

System

Manager),

for

example

with

one

of

the

WebSphere

message

brokers,

you

can

only

change

properties

through

the

configuration

file.

In

this

case,

a

dynamic

update

is

not

possible.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

(ICS

only)

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

17

on

page

87

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

86

Adapter

for

JDBC

User

Guide

Table

17.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

MQ

or

IDL:

Repository

directory

is

<REMOTE>

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS,

WMQI,

WAS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

True

Dynamic

Repository

directory

is

<REMOTE>

ControllerTraceLevel

0-5

0

Dynamic

Repository

directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

MQ,

IDL,

or

JMS

JMS

Component

restart

If

Repository

directory

is

local,

then

value

is

JMS

only

DuplicateEventElimination

True

or

False

False

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

Appendix

A.

Standard

configuration

properties

for

connectors

87

Table

17.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

CxCommon.Messaging

.jms.SonicMQFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

If

FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

If

FactoryClassName

is

Sonic,

use

localhost:2506.

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

directory

is

<REMOTE>

ListenerConcurrency

1-

100

1

Component

restart

Delivery

Transport

must

be

MQ

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

True

or

False

False

Component

restart

Repository

Directory

must

be

<REMOTE>

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

must

be

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

True

OADAutoRestartAgent

True

or

False

False

Dynamic

Repository

Directory

must

be

<REMOTE>

88

Adapter

for

JDBC

User

Guide

Table

17.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

must

be

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

must

be

<REMOTE>

PollEndTime

HH:MM

HH:MM

Component

restart

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container

Managed

Events

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

For

ICS:

set

to

<REMOTE>

For

WebSphere

MQ

message

brokers

and

WAS:

set

to

C:\crossworlds\

repository

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS:

required

only

if

Repository

directory

is

<REMOTE>

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

RHF2MessageDomain

mrm,

xml

mrm

Component

restart

Only

if

DeliveryTransport

is

JMS

and

WireFormat

is

CwXML.

Appendix

A.

Standard

configuration

properties

for

connectors

89

Table

17.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SourceQueue

Valid

WebSphere

MQ

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

Transport

is

JMS

SynchronousResponseQueue

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS

WireFormat

CwXML,

CwBO

CwXML

Agent

restart

CwXML

if

Repository

Directory

is

not

<REMOTE>:

CwBO

if

Repository

Directory

is

<REMOTE>

WsifSynchronousRequest

Timeout

0

-

any

number

(millisecs)

0

Component

restart

WAS

only

XMLNameSpaceFormat

short,

long

short

Agent

restart

WebSphere

MQ

message

brokers

and

WAS

only

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

90

Adapter

for

JDBC

User

Guide

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

type

that

you

are

using.

The

options

are

ICS,

WebSphere

message

brokers

(WMQI,

WMQIB

or

WBIMB)

or

WAS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

ConcurrentEventTriggeredFlows

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

Appendix

A.

Standard

configuration

properties

for

connectors

91

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

ControllerStoreAndForwardMode

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

92

Adapter

for

JDBC

User

Guide

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

v

If

ICS

is

the

broker

type,

the

value

of

the

DeliveryTransport

property

can

be

MQ,

IDL,

or

JMS,

and

the

default

is

IDL.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

value

may

only

be

JMS.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

MQ

or

IDL.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

saves

having

to

write

potentially

large

events

to

the

repository

database.

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector’s

polling

thread

picks

up

an

event,

places

it

in

the

connector’s

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector’s

polling

thread

to

pick

up

an

event,

go

over

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

in

the

following

environment:

v

AIX

5.0

v

WebSphere

MQ

5.3.0.1

v

When

ICS

is

the

integration

broker

Appendix

A.

Standard

configuration

properties

for

connectors

93

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

If

your

installation

uses

less

than

768M

of

process

heap

size,

IBM

recommends

that

you

set:

v

The

LDR_CNTRL

environment

variable

in

the

CWSharedEnv.sh

script.

This

script

resides

in

the

\bin

directory

below

the

product

directory.

With

a

text

editor,

add

the

following

line

as

the

first

line

in

the

CWSharedEnv.sh

script:

export

LDR_CNTRL=MAXDATA=0x30000000

This

line

restricts

heap

memory

usage

to

a

maximum

of

768

MB

(3

segments

*

256

MB).

If

the

process

memory

grows

more

than

this

limit,

page

swapping

can

occur,

which

can

adversely

affect

the

performance

of

your

system.

v

The

IPCCBaseAddress

property

to

a

value

of

11

or

12.

For

more

information

on

this

property,

see

the

System

Installation

Guide

for

UNIX.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

1m.

94

Adapter

for

JDBC

User

Guide

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

ListenerConcurrency

This

property

supports

multi-threading

in

MQ

Listener

when

ICS

is

the

integration

broker.

It

enables

batch

writing

of

multiple

events

to

the

database,

thus

improving

system

performance.

The

default

value

is

1.

This

property

applies

only

to

connectors

using

MQ

transport.

The

DeliveryTransport

property

must

be

set

to

MQ.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

Appendix

A.

Standard

configuration

properties

for

connectors

95

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

LogAtInterchangeEnd

Applicable

only

if

RespositoryDirectory

is

<REMOTE>.

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control

and

is

applicable

only

if

the

value

of

the

RepositoryDirectory

property

is

<REMOTE>.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

96

Adapter

for

JDBC

User

Guide

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

trueto

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature.

see

the

Installation

Guide

for

Windows

or

for

UNIX.

The

default

value

is

false.

OADMaxNumRetry

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

value

is

1000.

OADRetryTimeInterval

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

Appendix

A.

Standard

configuration

properties

for

connectors

97

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

the

integration

broker

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

When

the

integration

broker

is

ICS,

this

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

repository.

When

the

integration

broker

is

a

WebSphere

message

broker

or

WAS,

this

value

must

be

set

to

<local

directory>.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

required

only

if

RepositoryDirectory

is

<REMOTE>.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

When

the

integration

broker

is

ICS,

the

server

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

98

Adapter

for

JDBC

User

Guide

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

The

default

is

1.

RHF2MessageDomain

WebSphere

message

brokers

and

WAS

only.

This

property

allows

you

to

configure

the

value

of

the

field

domain

name

in

the

JMS

header.

When

data

is

sent

to

WMQI

over

JMS

transport,

the

adapter

framework

writes

JMS

header

information,

with

a

domain

name

and

a

fixed

value

of

mrm.

A

connfigurable

domain

name

enables

users

to

track

how

the

WMQI

broker

processes

the

message

data.

A

sample

header

would

look

like

this:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The

default

value

is

mrm,

but

it

may

also

be

set

to

xml.

This

property

only

appears

when

DeliveryTransport

is

set

to

JMSand

WireFormat

is

set

to

CwXML.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

92.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

Appendix

A.

Standard

configuration

properties

for

connectors

99

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

Message

format

on

the

transport.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

setting

is

CwXML.

v

If

the

value

of

RepositoryDirectory

is

<REMOTE>,

the

setting

isCwBO.

WsifSynchronousRequest

Timeout

WAS

integration

broker

only.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified,

time

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

XMLNameSpaceFormat

WebSphere

message

brokers

and

WAS

integration

broker

only.

A

strong

property

that

allows

the

user

to

specify

short

and

long

name

spaces

in

the

XML

format

of

business

object

definitions.

The

default

value

is

short.

100

Adapter

for

JDBC

User

Guide

Appendix

B.

Connector

Configurator

This

appendix

describes

how

to

use

Connector

Configurator

to

set

configuration

property

values

for

your

adapter.

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

configuration

file

v

Set

properties

in

a

configuration

file

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator”

on

page

101

v

“Starting

Connector

Configurator”

on

page

102

v

“Creating

a

connector-specific

property

template”

on

page

103

v

“Creating

a

new

configuration

file”

on

page

105

v

“Setting

the

configuration

file

properties”

on

page

108

v

“Using

Connector

Configurator

in

a

globalized

environment”

on

page

114

Overview

of

Connector

Configurator

Connector

Configurator

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

these

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

and

WebSphere

Business

Integration

Message

Broker,

collectively

referred

to

as

the

WebSphere

Message

Brokers

(WMQI)

v

WebSphere

Application

Server

(WAS)

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

with

ICS,

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

The

mode

in

which

you

run

Connector

Configurator,

and

the

configuration

file

type

you

use,

may

differ

according

to

which

integration

broker

you

are

running.

For

example,

if

WMQI

is

your

broker,

you

run

Connector

Configurator

directly,

and

not

from

within

System

Manager

(see

“Running

Configurator

in

stand-alone

mode”

on

page

102).

©

Copyright

IBM

Corp.

2000,

2003

101

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

103

to

set

up

a

new

one.

Note:

Connector

Configurator

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Starting

Connector

Configurator

You

can

start

and

run

Connector

Configurator

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

in

stand-alone

mode

You

can

run

Connector

Configurator

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

InterChange

Server>IBM

WebSphere

Business

Integration

Toolset>Development>Connector

Configurator.

v

Select

File>New>Configuration

File.

v

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

You

may

choose

to

run

Connector

Configurator

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

107.)

102

Adapter

for

JDBC

User

Guide

Running

Configurator

from

System

Manager

You

can

run

Connector

Configurator

from

System

Manager.

To

run

Connector

Configurator:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator.

The

Connector

Configurator

window

opens

and

displays

a

New

Connector

dialog

box.

4.

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

opens

and

displays

the

configuration

file

with

the

integration

broker

type

and

file

name

at

the

top.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

103.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

Appendix

B.

Connector

Configurator

103

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

104

Adapter

for

JDBC

User

Guide

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependences

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator.

Creating

a

new

configuration

file

When

you

create

a

new

configuration

file,

your

first

step

is

to

select

an

integration

broker.

The

broker

you

select

determines

the

properties

that

will

appear

in

the

configuration

file.

To

select

a

broker:

v

In

the

Connector

Configurator

home

menu,

click

File>New>Connector

Configuration.

The

New

Connector

dialog

box

appears.

v

In

the

Integration

Broker

field,

select

ICS,

WebSphere

Message

Brokers

or

WAS

connectivity.

v

Complete

the

remaining

fields

in

the

New

Connector

window,

as

described

later

in

this

chapter.

You

can

also

do

this:

v

In

the

System

Manager

window,

right-click

on

the

Connectors

folder

and

select

Create

New

Connector.

Connector

Configurator

opens

and

displays

the

New

Connector

dialog

box.

Appendix

B.

Connector

Configurator

105

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

Click

ICS

or

WebSphere

Message

Brokers

or

WAS.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

window,

as

described

later

in

this

chapter.

Using

an

existing

file

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

ICS

repository

file.

Definitions

used

in

a

previous

ICS

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

106

Adapter

for

JDBC

User

Guide

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

ICS

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector

in

an

ICS

environment.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator.

3.

Click

File>Open>From

Project.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

The

title

of

the

configuration

screen

displays

the

integration

broker

and

connector

name

as

specified

in

the

file.

Make

sure

you

have

the

correct

broker.

If

not,

change

the

broker

value

before

you

configure

the

connector.

To

do

so:

1.

Under

the

Standard

Properties

tab,

select

the

value

field

for

the

BrokerType

property.

In

the

drop-down

menu,

select

the

value

ICS,

WMQI,

or

WAS.

2.

The

Standard

Properties

tab

will

display

the

properties

associated

with

the

selected

broker.

You

can

save

the

file

now

or

complete

the

remaining

configuration

fields,

as

described

in

“Specifying

supported

business

object

definitions”

on

page

110..

3.

When

you

have

finished

your

configuration,

click

File>Save>To

Project

or

File>Save>To

File.

If

you

are

saving

to

file,

select

*.cfg

as

the

extension,

select

the

correct

location

for

the

file

and

click

Save.

Appendix

B.

Connector

Configurator

107

If

multiple

connector

configurations

are

open,

click

Save

All

to

File

to

save

all

of

the

configurations

to

file,

or

click

Save

All

to

Project

to

save

all

connector

configurations

to

a

System

Manager

project.

Before

it

saves

the

file,

Connector

Configurator

checks

that

values

have

been

set

for

all

required

standard

properties.

If

a

required

standard

property

is

missing

a

value,

Connector

Configurator

displays

a

message

that

the

validation

failed.

You

must

supply

a

value

for

the

property

in

order

to

save

the

configuration

file.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Connector

Configurator

requires

values

for

properties

in

these

categories

for

connectors

running

on

all

brokers:

v

Standard

Properties

v

Connector-specific

Properties

v

Supported

Business

Objects

v

Trace/Log

File

values

v

Data

Handler

(applicable

for

connectors

that

use

JMS

messaging

with

guaranteed

event

delivery)

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

connectors

running

on

ICS,

values

for

these

properties

are

also

required:

v

Associated

Maps

v

Resources

v

Messaging

(where

applicable)

Important:

Connector

Configurator

accepts

property

values

in

either

English

or

non-English

character

sets.

However,

the

names

of

both

standard

and

connector-specific

properties,

and

the

names

of

supported

business

objects,

must

use

the

English

character

set

only.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

108

Adapter

for

JDBC

User

Guide

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

v

The

Update

Method

field

is

informational

and

not

configurable.

This

field

specifies

the

action

required

to

activate

a

property

whose

value

has

changed.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties.”

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

Appendix

B.

Connector

Configurator

109

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

86.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

If

ICS

is

your

broker

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name:

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

110

Adapter

for

JDBC

User

Guide

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level:

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

If

a

WebSphere

Message

Broker

is

your

broker

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

object

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

the

list.

The

Message

Set

ID

is

an

optional

field

for

WebSphere

Business

Integration

Message

Broker

5.0,

and

need

not

be

unique

if

supplied.

However,

for

WebSphere

MQ

Integrator

and

Integrator

Broker

2.1,

you

must

supply

a

unique

ID.

If

WAS

is

your

broker

When

WebSphere

Application

Server

is

selected

as

your

broker

type,

Connector

Configurator

does

not

require

message

set

IDs.

The

Supported

Business

Objects

tab

shows

a

Business

Object

Name

column

only

for

supported

business

objects.

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

objects

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

this

list.

Associated

maps

(ICS

only)

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

Appendix

B.

Connector

Configurator

111

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

ICS

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

4.

Deploy

the

project

to

ICS.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

(ICS)

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

112

Adapter

for

JDBC

User

Guide

Messaging

(ICS)

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport

standard

property

and

ICS

as

the

broker

type.

These

properties

affect

how

your

connector

will

use

queues.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Not

all

adapters

make

use

of

data

handlers.

See

the

descriptions

under

ContainerManagedEvents

in

Appendix

A,

Standard

Properties,

for

values

to

use

for

these

properties.

For

additional

details,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

Saving

your

configuration

file

When

you

have

finished

configuring

your

connector,

save

the

connector

configuration

file.

Connector

Configurator

saves

the

file

in

the

broker

mode

that

you

selected

during

configuration.

The

title

bar

of

Connector

Configurator

always

displays

the

broker

mode

(ICS,

WMQI

or

WAS)

that

it

is

currently

using.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

Appendix

B.

Connector

Configurator

113

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

following

implementation

guides:

v

For

ICS:

Implementation

Guide

for

WebSphere

InterChange

Server

v

For

WebSphere

Message

Brokers:

Implementing

Adapters

with

WebSphere

Message

Brokers

v

For

WAS:

Implementing

Adapters

with

WebSphere

Application

Server

Changing

a

configuration

file

You

can

change

the

integration

broker

setting

for

an

existing

configuration

file.

This

enables

you

to

use

the

file

as

a

template

for

creating

a

new

configuration

file,

which

can

be

used

with

a

different

broker.

Note:

You

will

need

to

change

other

configuration

properties

as

well

as

the

broker

mode

property

if

you

switch

integration

brokers.

To

change

your

broker

selection

within

an

existing

configuration

file

(optional):

v

Open

the

existing

configuration

file

in

Connector

Configurator.

v

Select

the

Standard

Properties

tab.

v

In

the

BrokerType

field

of

the

Standard

Properties

tab,

select

the

value

that

is

appropriate

for

your

broker.

When

you

change

the

current

value,

the

available

tabs

and

field

selections

on

the

properties

screen

will

immediately

change,

to

show

only

those

tabs

and

fields

that

pertain

to

the

new

broker

you

have

selected.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

in

a

globalized

environment

Connector

Configurator

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

114

Adapter

for

JDBC

User

Guide

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

B.

Connector

Configurator

115

116

Adapter

for

JDBC

User

Guide

Appendix

C.

Business

object

samples

This

appendix

details

the

sample

business

objects

that

are

included

with

the

connector

for

JDBC.

The

JDBC

connector

includes

the

following

business

object

samples:

v

AfterUpdateSPSampleBO.txt

v

BeforeCreateSPSampleBO.txt

v

BOwithDifferentParameterOrder.txt

v

BOwithIOandOPParams.txt

v

BOwithFewerSPParamsthanBOAttribs.txt

v

CreateSPUpdateSPSampleBO.txt

AfterUpdateSPSampleBO.txt

Attribute

name:

AfterUpdateSP

Contains

the

Jdbctest_Customer

business

object.

Application-specific

information

of

this

attribute

contains

the

following

information:

SPN=UpdateAllColumns;IP=fid:CustomerName:CustomerNumber:CustomerDesc.

UpdateAllColumns

is

the

name

of

the

stored

procedure

that

uses

all

four

business

object

attributes

(fid,CustomerName,CustomerNumberandCustomerDesc)

as

input

parameters.

This

stored

procedure

is

executed

after

the

Update

operation

is

completed.

BeforeCreateSPSampleBO.txt

Attribute

name:BeforeCreateSP

Contains

the

Jdbctest_Customer

business

object.

Application-

specific

information

of

this

attribute

contains

the

following

information:

SPN=GetCustomerID;OP=fid

GetCustomerID

is

the

name

of

the

stored

procedure

that

uses

the

fid

business

object

attribute

as

an

output

parameter

(preferably

to

get

an

ID

value

from

a

MasterID

table).

The

stored

procedure

is

executed

before

the

Create

operation

is

completed.

BOwithDifferentParameterOrder.txt

Attribute

name:AfterRetrieveSP

Contains

the

Jdbctest_Address

business

object.

Application-

specific

information

of

this

attribute

contains

the

following

information:

SPN=UpdateAddress;IP=addressid;IP=zipcode:city:street.

UpdateAddress

is

the

name

of

the

stored

procedure

that

uses

all

the

business

object

attributes

as

input

parameters

(preferably

to

update

the

address

in

a

table

other

than

Jdbctest_Address).

Note

that

the

parameter

order

differs

from

that

of

the

business

object

attribute

order

and

that

it

contains

more

than

one

name:value

pair

for

the

input

parameters.

The

stored

procedure

is

executed

after

the

Retrieve

operation

is

completed.

©

Copyright

IBM

Corp.

2000,

2003

117

BOwithIOandOPParams.txt

Attribute

name:RetireveSP

Contains

the

Jdbctest_Address

business

object.

Application-

specific

information

of

this

attribute

contains

the

following

information:

SPN=RetrieveAddress;IO=addressid;OP=street:city:zipcode.

RetrieveAddress

is

the

name

of

the

stored

procedure

that

uses

the

business

object

attribute

addressid

as

an

input/output

parameter.

It

also

uses

the

remaining

business

object

attributes

as

output

parameters:

zipcode,

city,

street

.

The

stored

procedure

is

executed

instead

of

the

Retrieve

operation.

BOwithFewerSPParamsthanBOAttribs.txt

Attribute

name:AfterUpdateSP

Contains

the

Jdbctest_Address

business

object.

Application-

specific

information

of

this

attribute

contains

the

following

information:

SPN=UpdateZipOnly;IP=addressid:zipcode.

UpdateZipOnly

is

the

name

of

the

stored

procedure

that

uses

the

addressid

and

zipcode

business

object

attributes

as

input

parameters.

Note

that

the

total

number

of

stored

procedure

parameters

is

less

than

the

total

number

of

business

object

attributes.

CreateSPUpdateSPSampleBO.txt

Attribute

name:CreateSP

Contains

the

Jdbctest_Address

business

object.

Application-

specific

information

of

this

attribute

contains

the

following

information:

SPN=CreateAddress;IP=addressid;IP=street:city:zipcode.

CreateAddress

is

the

name

of

the

stored

procedure

that

uses

all

four

business

object

attributes

as

input

parameters.

Note

that

it

contains

more

than

one

name:value

pair

for

the

input

parameters.

The

stored

procedure

is

executed

instead

of

the

Create

operation.

This

business

object

also

contains

the

UpdateSP

attribute.

It

contains

the

following

text:

SPN=UpdateCity;IP=addressid:city.

UpdateCity

is

the

name

of

the

stored

procedure

that

uses

addressid

and

city

as

input

parameters.

Note

that

the

total

number

of

stored

procedure

parameters

is

less

than

the

total

number

of

business

attributes.

The

stored

procedure

is

executed

instead

of

the

Update

operation.

118

Adapter

for

JDBC

User

Guide

Appendix

D.

Support

for

null

and

blank

values

This

appendix

details

different

pass

and

fail

scenarios

where

the

key

value

in

a

business

object

is

blank

or

null.

This

appendix

also

contains

the

functional

changes

required

for

blank

or

null

business

object

values.

Pass

and

Fail

Scenarios

If

a

key

value

in

a

business

object

is

blank

or

has

a

null

value

in

the

database,

then

build

the

where

clause

with

the

″is

null″

type

instead

of

the

″=″

operator

type.

IBM

recommends

that

business

objects

have

at

least

one

key

attribute

that

does

not

have

a

blank

value.

The

following

scenario

is

a

parent

object

with

one

key

that

has

a

null

value.

This

scenario

fails

under

these

conditions.

Table

18.

Customer

Attribute

Type

cid

Integer

(Key)

name

String

comments

String

The

following

scenario

is

a

parent

object

with

two

keys

and

one

key

has

a

null

value.

This

scenario

passes

under

these

conditions.

Table

19.

Customer

Attribute

Type

cid

Integer

(Key)

name

String

comments

String

In

scenario

two,

build

the

retrieve

query

by

selecting

cid,

name,

and

comments

from

customer,

where

cid=1000

and

name

is

set

to

null.

The

following

scenario

is

a

parent

object

with

one

child

object

in

a

container

object

with

a

foreign

key

reference.

This

scenario

fails

under

these

conditions.

Table

20.

Customer

Attribute

Type

cid

Integer

(Key)

name

String

(Key)

comments

String

Address

Address

Aid

Integer

(Key)

ASI:FK=cid

Acity

String

©

Copyright

IBM

Corp.

2000,

2003

119

Table

20.

Customer

(continued)

Attribute

Type

Azip

String

If

cid

contains

a

null

value,

then

build

the

retrieve

query

by

selecting

Aid,

Acity,

and

Azip

from

address.

Set

the

value

of

Aid

to

null.

The

following

scenario

is

a

parent

object

with

one

child

object

in

a

container

object

with

two

key

references.

This

scenario

passes

under

these

conditions.

Table

21.

Customer

Attribute

Type

cid

Integer

(Key)

name

String

comments

String

Address

Address

Aid

Integer

(Key)

ASI:FK=cid

Acity

String

(Key)

ASI:FK=name

Azip

String

If

name

has

a

null

value,

then

build

the

Retrieve

query

by

selecting

Aid,

Acity,

and

Azip

from

address,

where

Aid=Cid

and

Acity

has

a

null

value.

Functionality

If

the

connector

encounters

a

blank

value

on

a

key,

it

then

compares

that

value

with

the

UseNull

value

in

the

attribute.

If

the

value

is

true,

then

the

connector

adds

null

value

to

the

query.

This

affects

the

following

verb

operations:

v

Retrieve

v

RetrieveBy

Content

v

Update

v

Delete

120

Adapter

for

JDBC

User

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2000,

2003

121

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

122

Adapter

for

JDBC

User

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

IBM

WebSphere

Business

Integration

Adapter

Framework

V2.4.

Notices

123

124

Adapter

for

JDBC

User

Guide

����

Printed

in

USA

	Contents
	Figures
	About this document
	Audience
	Related documents
	Typographic conventions

	New in this release
	New in release 2.4.x
	New in release 2.3.x
	New in release 2.2.x
	New in release 2.1.x
	New in release 2.0.x
	New in release 1.9.x
	New in release 1.8.x
	New in release 1.7.x
	New in release 1.6.x
	New in release 1.5.x

	Chapter 1. Overview of the connector
	Connector components
	Connector architecture

	How the connector works
	The connector and meta-data
	Business object processing
	Event notification
	Handling lost database connections
	Processing locale-dependent data

	Chapter 2. Installing and configuring the connector
	Adapter environment
	Broker compatibility
	Adapter platforms
	Adapter dependencies
	Globalization

	Prerequisites
	Installing the adapter and related files
	Installed file structure
	Installing on a UNIX system
	Installed file structure on a Windows system

	Enabling the application for the connector
	Event and archive tables
	Configuring event and archive processing
	SQL scripts for installing the event and archive tables
	Event and archive table schema

	Enabling multi-driver support
	Enabling the custom business object handler class
	Configuring the connector
	Standard connector properties
	Connector-specific properties

	Creating multiple instances of the connector
	Create a new directory

	Starting the connector
	Stopping the connector

	Chapter 3. Understanding business objects for the connector
	Business object and attribute naming conventions
	Business object structure
	Single-cardinality relationships
	Single-cardinality relationships and data without ownership
	Multiple-cardinality relationships
	Single-cardinality relationships that store the relationship in the child
	Wrapper objects

	Business object verb processing
	Verb determination
	Afterimages and deltas
	Verb processing
	SQL statements
	Stored procedures
	Transaction commit and rollback

	Business object attribute properties
	Name property
	Type property
	Cardinality property
	Max length property
	Key property
	Foreign key property
	Required property
	AppSpecificInfo
	Default value property
	Special attribute value

	Business object application-specific information
	Application-specific information at the business-object level
	Application-specific information at the attribute level
	Application-specific information format for verbs

	Chapter 4. Generating business object definitions using JDBCODA
	Installation and usage
	Installing JDBCODA
	Before using JDBCODA
	Launching JDBCODA
	Running multiple instances of JDBCODA
	Working with error and trace message files

	Using JDBCODA in business object designer
	Select the ODA
	Configure initialization properties
	Expanding nodes and selecting tables, views and stored procedures
	Confirming database object selections
	Generating definitions
	Providing additional information
	Saving definitions

	Contents of the generated definition
	Business-object-level properties
	Attribute properties
	Verbs

	Sample business object definition file
	Inserting attributes that contain child business objects
	Adding information to the business object definition

	Chapter 5. Troubleshooting and error handling
	Startup problems
	Event processing
	Mapping (ICS Integration Broker only)
	Mapping problems
	Date conversion

	Error handling and logging
	Error types
	Error messages

	Loss of connection to the application
	Fetch out-of-sequence error
	Inability to locate event or archive tables when DB2 is used
	Enabling the connector to work with a DB2 database
	Resource-busy error
	JDBCODA behaves improperly because of unsupported JDBC driver

	Appendix A. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS only)
	Resources (ICS)
	Messaging (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Business object samples
	AfterUpdateSPSampleBO.txt
	BeforeCreateSPSampleBO.txt
	BOwithDifferentParameterOrder.txt
	BOwithIOandOPParams.txt
	BOwithFewerSPParamsthanBOAttribs.txt
	CreateSPUpdateSPSampleBO.txt

	Appendix D. Support for null and blank values
	Pass and Fail Scenarios
	Functionality

	Notices
	Programming interface information
	Trademarks and service marks

