
IBM

WebSphere

Business

Integration

Adapters

Adapter

for

COM

User

Guide

Version

1.1.x

���

IBM

WebSphere

Business

Integration

Adapters

Adapter

for

COM

User

Guide

Version

1.1.x

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

85.

19December2003

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

adapter

for

COM,

version

1.1.x,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Prerequisites

for

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vi

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

New

in

Release

1.1.x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Chapter

1.

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Adapter

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Architecture

of

the

COM

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Business

object

requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Verb

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Custom

business

object

handlers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

DCOM

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Processing

locale-dependent

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Chapter

2.

Installing

the

adapter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Overview

of

installation

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Connector

file

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Post-installation

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Chapter

3.

Configuring

the

adapter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Overview

of

configuration

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Creating

multiple

connector

instances

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Configuring

the

startup

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Starting

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Stopping

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Using

log

and

trace

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

4.

Understanding

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Defining

metadata

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Connector

business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Mapping

attributes:

COM,

Java,

and

business

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Sample

business

object

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Generating

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Chapter

5.

Creating

and

modifying

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Overview

of

the

ODA

for

COM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Generating

business

object

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Specifying

business

object

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Uploading

business

object

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Chapter

6.

Troubleshooting

and

error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 53

New

and

deleted

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

©

Copyright

IBM

Corp.

2003

iii

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Appendix

B.

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Overview

of

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Starting

Connector

Configurator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Running

Configurator

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Changing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Using

Connector

Configurator

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

iv

Adapter

for

COM

User

Guide

About

this

document

The

IBM(R)

WebSphere(R)

Business

Integration

Adapter

portfolio

supplies

integration

connectivity

for

leading

e-business

technologies,

enterprise

applications,

legacy,

and

mainframe

systems.

The

product

set

includes

tools

and

templates

for

customizing,

creating,

and

managing

components

for

business

process

integration.

This

document

describes

the

installation,

configuration,

business

object

development,

and

troubleshooting

for

the

IBM

WebSphere

Business

Integration

adapter

for

COM.

Audience

This

document

is

for

consultants,

developers,

and

system

administrators

who

support

and

manage

the

WebSphere

business

integration

system

at

customer

sites.

Prerequisites

for

this

document

Users

of

this

document

should

be

familiar

with

the

WebSphere

business

integration

system,

with

business

object

and

collaboration

development,

and

with

the

COM

technology.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Adapters

installations,

and

includes

reference

material

on

specific

components.

You

can

install

related

documentation

from

the

following

sites:

v

For

general

adapter

information;

for

using

adapters

with

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker);

and

for

using

adapters

with

WebSphere

Application

Server:

–

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
v

For

using

adapters

with

InterChange

Server:

–

http://www.ibm.com/websphere/integration/wicserver/infocenter

–

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
v

For

more

information

about

message

brokers

(WebSphere

MQ

Integrator

Broker,

WebSphere

MQ

Integrator,

and

WebSphere

Business

Integration

Message

Broker):

–

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
v

For

more

information

about

WebSphere

Application

Server:

–

http://www.ibm.com/software/webservers/appserv/library.html

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

©

Copyright

IBM

Corp.

2003

v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
 http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

filename,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

TM

text

system

variable

or

user

variable.

ProductDir

Represents

the

directory

where

the

product

is

installed.

vi

Adapter

for

COM

User

Guide

New

in

this

release

New

in

Release

1.1.x

Updated

in

December

2003.

For

version

1.1.x

of

the

adapter

for

COM,

the

following

items

are

new

in

this

release:

v

Adapter

installation

information

has

been

moved

from

this

guide.

See

“Install

the

adapter

for

COM

and

related

files”

on

page

13

for

the

new

location

of

that

information.

v

Beginning

with

the

1.1.x

version,

the

adapter

for

COM

is

no

longer

supported

on

Microsoft

Windows

NT.

©

Copyright

IBM

Corp.

2003

vii

viii

Adapter

for

COM

User

Guide

Chapter

1.

Overview

v

“Adapter

environment”

v

“Terminology”

on

page

3

v

“Architecture

of

the

COM

connector”

on

page

4

v

“Business

object

requests”

on

page

8

v

“Verb

processing”

on

page

8

v

“Custom

business

object

handlers”

on

page

9

v

“DCOM

support”

on

page

12

v

“Processing

locale-dependent

data”

on

page

12

The

connector

for

COM

is

a

run

time

component

of

the

WebSphere

Business

Integration

adapter

for

COM.

The

COM

Adapter

includes

a

connector,

message

files,

configuration

tools,

and

an

Object

Discovery

Agent

(ODA).

The

connector

allows

the

WebSphere

integration

broker

to

exchange

business

objects

with

applications,

or

Common

Object

Model

(COM)

components,

running

on

a

COM

server.

Connectors

consist

of

two

components:

the

connector

framework

and

the

application-specific

component.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

application-specific

component

contains

code

tailored

to

a

particular

technology

(in

this

case,

COM)

or

application.

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

This

document

contains

information

about

both

the

connector

framework

and

the

application-specific

component.

It

refers

to

both

of

these

components

as

the

connector.

Note:

The

term

connector

component

refers

to

a

part

of

a

connector,

and

should

not

be

confused

with

the

term

COM

component,

which

refers

to

the

binary

software

components

used

in

the

COM

software

architecture.

Adapter

environment

Before

installing,

configuring,

and

using

the

adapter,

you

must

understand

its

environment

requirements.

v

“Broker

compatibility”

v

“Adapter

standards”

on

page

2

v

“Adapter

platforms”

on

page

2

v

“Adapter

dependencies”

on

page

2

Broker

compatibility

The

adapter

framework

that

an

adapter

uses

must

be

compatible

with

the

version

of

the

integration

broker

(or

brokers)

with

which

the

adapter

is

communicating.

Version

1.1.x

of

the

adapter

for

COM

is

supported

on

the

following

versions

of

the

adapter

framework

and

with

the

following

integration

brokers:

©

Copyright

IBM

Corp.

2003

1

v

Adapter

framework:

–

WebSphere

Business

Integration

Adapter

Framework,

version

2.10,

2.2.0,

2.3.0,

2.3.1,

2.4.0
v

Integration

brokers:

–

WebSphere

InterChange

Server,

version

4.1.1,

4.2.0,

4.2.1,

4.2.2

–

WebSphere

MQ

Integrator,

version

2.1.0

–

WebSphere

MQ

Integrator

Broker,

version

2.1.0

–

WebSphere

Business

Integration

Message

Broker

5.0

–

WebSphere

Application

Server

Enterprise,

version

5.0.2,

with

WebSphere

Studio

Application

Developer

Integration

Edition,

version

5.0.1

See

Release

Notes

for

any

exceptions.

Note:

For

instructions

on

installing

the

integration

broker

and

its

prerequisites,

see

the

following

documentation.

v

For

WebSphere

InterChange

Server

(ICS),

see

the

System

Installation

Guide

for

UNIX

or

for

Windows.

v

For

message

brokers

(WebSphere

MQ

Integrator

Broker,

WebSphere

MQ

Integrator,

and

WebSphere

Business

Integration

Message

Broker),

see

Implementing

Adapters

with

WebSphere

Message

Brokers,

and

the

installation

documentation

for

the

message

broker.

Some

of

this

can

be

found

at

the

following

Web

site:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v

For

WebSphere

Application

Server,

see

Implementing

Adapters

with

WebSphere

Application

Server

and

the

documentation

at

http://www.ibm.com/software/webservers/appserv/library.html

Adapter

standards

The

adapter

is

written

to

the

COM

2.0

specification

and

as

such

is

compatible

with

COM

applications

designed

to

this

standard.

For

information

about

COM,

see

http://www.microsoft.com/com/tech/com.asp

Adapter

platforms

The

adapter

runs

on

the

Windows

2000

platform.

Adapter

dependencies

The

connector

has

the

following

dependencies.

JDK

software

The

Java

Development

Kit

(JDK),

Version

1.3.x,

is

a

prerequisite

of

installing

the

adapter

for

COM.

If

you

do

not

already

have

this

version

of

the

JDK

installed,

the

WebSphere

Business

Integration

Adapter

Framework,

Version

2.4

software

package

(Windows

version

only)

provides

a

separate

installation

for

the

IBM

JDK,

Version

1.3.1.

Note

that

the

IBM

JDK,

Version

1.3.1

is

not

installed

as

part

of

the

WebSphere

Business

Integration

Adapter

Framework

installation.

You

must

run

a

separate

installation

to

install

the

JDK.

For

details

about

how

to

install

the

JDK

from

WebSphere

Business

Integration

Adapter

Framework,

refer

to

that

software

package.

2

Adapter

for

COM

User

Guide

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html
http://www.microsoft.com/com/tech/com.asp

COMProxy

The

connector

uses

COMProxy,

an

interface

tool

that

allows

Java

programs

to

communicate

with

ActiveX

objects.

This

tool

generates

the

Java

proxy

objects

that

the

connector

requires

to

invoke

COM

components.

The

properties,

structures,

and

methods

of

a

COM

component

are

typically

defined

in

a

type

library

file

(.tlb,

.dll,

.ole,

.olb,

or

.exe).

Using

the

Java

Native

Interface

and

COM

technology,

COMProxy

allows

a

COM

component

to

be

treated

just

like

a

Java

object.

v

The

connector’s

startup

script

ensures

that

the

following

COMProxy

classes

in

the

package

com.ibm.adapters.utils.comproxy

are

included

in

the

classpath

at

run

time:

–

ActiveXCanvas.class

–

COMconstants.class

–

ComException.class

–

Dispatch.class

–

JVariant.class

–

OleEnvironment.class

v

The

COMProxy

C++

run

time

library

(BIA_COMProxy.dll)

is

included

in

the

adapter

for

interfacing

with

the

COM

server.

The

connector’s

startup

script

ensures

that

this

DLL

is

in

the

connector’s

java.library.path.

v

The

connector

supports

COM

objects

that

implement

the

Dispatch

(OLE

Automation)

interface

type.

Terminology

The

following

terms

are

used

in

this

guide:

v

ASI

(Application-Specific

Information)

Metadata

tailored

to

a

particular

application

or

technology.

ASI

exists

at

both

the

attribute

and

business

object

level

of

a

business

object.

See

also

Verb

ASI.

v

BO

(Business

Object)

A

set

of

attributes

that

represent

a

business

entity

(such

as

Employee)

and

an

action

on

the

data

(such

as

a

create

or

update

operation).

Components

of

the

WebSphere

business

integration

system

use

business

objects

to

exchange

information

and

trigger

actions.

v

BO

(Business

Object)

handler

A

connector

component

that

contains

methods

that

interact

with

an

application

and

that

transforms

request

business

objects

into

application

operations.

v

COM

component

The

connector

interacts

with

a

COM

server

by

processing

between

a

business

object

and

a

COM

component

object.

During

connector

processing,

a

COM

component,

which

is

part

of

a

COM

application,

is

represented

in

the

connector

by

a

proxy

object.

A

proxy

is

a

Java

class

that

represents

a

COM

component.

v

COMProxy

The

interface

tool

that

allows

Java

programs

to

communicate

with

ActiveX

objects.

This

tool

generates

the

Java

proxy

objects

that

the

connector

requires

to

invoke

COM

components.

The

properties,

structures,

and

methods

of

a

COM

component

are

typically

defined

in

a

type

library

file

(.tlb,

.dll,

.ole,

.olb,

or

.exe).

Using

the

Java

Native

Interface

and

COM

technology,

COMProxy

allows

a

COM

component

to

be

treated

just

like

a

Java

object.

v

Connection

factory

A

special

kind

of

proxy

object

that

refers

to

an

application.

If

the

appropriate

connector

properties

are

set,

the

factory

object,

which

is

persistent

for

the

life

of

the

connector,

can

create

connections

that

are

placed

in

the

connection

pool.

The

number

of

connections

created

depends

on

the

value

specified

in

the

PoolSize

property.

Chapter

1.

Overview

3

v

Connection

object

A

special

kind

of

proxy

object

that

is

an

instance

of

the

connection

class.

A

connection

is

a

reference

to

an

application

that

can

contain

state

information.

For

every

instance

of

a

connection

on

the

adapter

side,

there

is

a

corresponding

object

on

the

COM

side.

Connections

can

be

instantiated

in

batches,

retrieved

at

will,

sent

back

to

the

connection

pool,

and

be

re-used

by

another

thread.

v

Connection

pool

A

repository

used

to

store

and

retrieve

connection

objects.

v

Foreign

key

A

simple

attribute

whose

value

uniquely

identifies

a

child

business

object.

Typically,

this

attribute

identifies

a

child

business

object

to

its

parent

by

containing

the

child’s

primary

key

value.

The

connector

for

COM

uses

the

foreign

key

to

specify

poolable

connection

objects.

v

ODA

(Object

Discovery

Agent)

A

tool

that

automatically

generates

a

business

object

definition

by

examining

specified

entities

within

the

application

and

“discovering”

the

elements

of

these

entities

that

correspond

to

business

object

attributes.

When

you

install

the

adapter,

the

ODA

is

automatically

installed.

Business

Object

Designer

provides

a

graphical

user

interface

to

access

the

ODA

and

to

work

with

it

interactively.

v

Per-call

object

pool

A

programmatic

entity

for

storing

objects

that

need

to

pass

from

one

method

to

the

next

during

a

single

doVerbFor

method

call.

Stored

objects

may

be

proxy

objects

or

simple

attributes.

v

Proxy

class

A

Java

class

that

represents

a

COM

component

class

in

the

connector.

The

connector

creates

a

proxy

object

instance

of

the

proxy

class

name

specified

in

the

business

object’s

ASI.

v

Verb

ASI

(application-specific

information)

For

a

given

verb,

the

verb

ASI

specifies

how

the

connector

should

process

the

business

object

when

that

verb

is

active.

It

can

contain

the

name

of

the

method

to

call

to

process

the

current

request

business

object.

Architecture

of

the

COM

connector

To

illustrate

the

architecture

of

the

connector,

this

section

describes

request

processing

at

a

high-level,

as

illustrated

in

Figure

1

on

page

5,

and

then

the

details

of

how

the

connector

works,

as

illustrated

in

Figure

2

on

page

6.

4

Adapter

for

COM

User

Guide

1.

The

connector

receives

a

business

object

request

from

the

integration

broker.

2.

The

connector

creates

a

proxy

object

instance

of

the

business

object.

The

proxy

object

instance

acts

as

a

representation

of

the

COM

object

to

which

the

connector

is

sending

the

request.

For

details

about

how

the

connector

creates

and

processes

the

proxy

object,

see

“How

the

connector

works.”

3.

The

connector

processes

the

proxy

object

by

using

it

to

invoke

the

corresponding

COM

object

running

on

COM

server

and

write

data

to

the

COM

application.

4.

The

connector

updates

the

proxy

object

by

reading,

or

getting,

data

from

COM

server

object.

5.

The

adapter

returns

a

message

to

the

integration

broker

indicating

that

the

original

object

request

was

either

successful

or

unsuccessful

(a

FAIL

status).

If

the

request

was

successful,

the

connector

also

returns

the

updated

business

object

to

the

broker.

How

the

connector

works

This

section

describes

how

the

different

parts

of

the

connector

process

a

business

object,

as

illustrated

in

Figure

2

on

page

6.

Integration broker

Application

COM Server

Business

Adapter for COM

1

2

3

4

5

(collaboration)
Process

Figure

1.

Request

processing

in

the

connector

for

COM

Chapter

1.

Overview

5

1.

When

you

first

start

up

the

connector,

the

connector’s

Agent

class

performs

the

following

initialization

processes:

v

Instantiates

the

OLE

environment.

v

Does

one

of

the

following,

depending

on

how

the

connector

properties

have

been

set.

For

details

about

the

connector

properties

and

how

they

affect

each

of

the

following

scenarios,

see

“Connector-specific

properties”

on

page

16.

–

Scenario

1:

Creates

a

connection

factory

object

instance,

which

is

an

object

that

refers

to

an

application.

The

factory

object

is

persistent

for

the

life

of

the

connector

and

creates

connections

that

are

placed

in

the

connection

pool.

The

number

of

connections

created

depends

on

the

value

specified

in

the

connector

PoolSize

property.

Application

Connector modules

Connector
framework

COMProxy
Init OLEEnv

init()

Connector (application-specific component of the adapter)

AgentInit()

Connection Pool

Connection

Connection
Factory

Generic BO Handler

DoVerbFor()

Dispatch()

InvokerLoader

Per Call Object Pool

Object Reference

COMServer

Synchronizer

Figure

2.

The

connector

for

COM

6

Adapter

for

COM

User

Guide

–

Scenario

2:

Creates

connection

objects

only

that

are

placed

in

the

connection

pool.

The

number

of

connections

depends

on

the

value

specified

in

the

PoolSize

property.

No

factory

object

is

created

in

this

scenario.

–

Scenario

3:

Creates

a

factory

proxy

object

against

which

the

business

object

will

call

methods

(the

factory

class

matches

the

proxy

class

ASI

of

the

BO).

In

this

scenario,

no

connections

are

created.

2.

The

integration

broker

sends

a

request,

in

the

form

of

a

business

object,

to

the

connector.

3.

The

connector’s

BO

handler

receives

the

object.

4.

The

doVerbFor()

method

of

the

BO

handler

calls

the

Dispatch()

method,

which

reads

the

BO

ASI

to

obtain

the

proxy

class

name.

The

Dispatch()

method

gets

the

proxy

class

name

and

sends

it

to

the

Loader.

5.

The

Loader

uses

the

proxy

class

name

to

load

the

proxy

class

(qualified

using

valid

Java

class

notation,

ie.

Mypackage.myclass)

and

create

a

proxy

object

instance,

loading

it

in

the

per-call

object

pool.

The

Loader

checks

to

see

if

the

object

is

one

of

the

following:

v

Is

it

a

connection?

If

so,

retrieve

it

as

a

connection

object

from

the

connection

pool.

v

Is

it

a

factory

object?

If

so,

retrieve

it

as

a

static

object

from

the

connection

factory.

6.

Dispatch

then

reads

through

the

BO’s

verb

ASI

and

builds

a

list

of

methods.

The

verb

ASI

is

an

ordered

list

of

attribute

names.

Each

attribute

represents

a

method

on

the

proxy

object.

In

other

words,

the

verb

ASI

is

not

a

list

of

methods,

but

a

list

of

attributes,

each

one

having

a

value

that

represents

a

proxy

object

method.

7.

For

each

method

on

the

verb

ASI

list,

the

InvokeMethods()

method

of

the

BO

handler

calls

InvokeMethod()

to

do

one

of

the

following:

v

Call

Invoker,

if

the

method

is

a

regular

method.

If

the

argument

is

marked

as

a

foreign

key,

store

it

in

the

per-call

object

pool.

If

the

attribute

is

not

populated,

check

the

attribute

ASI

for

use_attribute_value.

If

the

use_attribute_value

ASI

is

present,

attempt

to

pull

the

object

from

the

per-call

object

pool.

v

Call

the

Load

(LoadFromProxy

function)

and

Store

(WriteToProxy

function)

operations

of

Synchronizer

(the

BO

handler’s

object

synchronization

process)

against

all

attributes

on

the

proxy

object.

The

operation

called

depends

on

what

is

in

the

verb

ASI.

LoadFromProxy

(Load)

and

WriteToProxy

(Store)

are

pre-defined

functions

that

you

can

include

in

the

verb

ASI.

Their

purpose

is

to

synchronize

a

business

object’s

simple

attributes

to

a

COM

component’s

public

properties.

v

Call

Load

or

Store

operations

against

a

single,

specific

attribute

(LoadFromProxy

gets

the

proxy

property

and

sets

the

BO

property

to

that

value;

WriteToProxy

sets

the

proxy

property

with

values

from

the

BO).

Note:

If

the

verb

ASI

is

empty,

the

BO

handler

will

search

for

a

method

on

the

BO

with

populated

parameters

and

call

that.

Only

one

method

can

have

populated

parameters.

Otherwise,

if

multiple

methods

are

populated

and

the

verb

ASI

is

empty,

then

the

connector

logs

an

error

and

returns

a

FAIL

code.

8.

For

each

method

of

the

proxy

object,

Invoker

constructs

the

parameters

and

arguments

of

the

method

by

doing

the

following:

Chapter

1.

Overview

7

v

If

it

encounters

a

BO

type

(rather

than

a

simple

data

type,

such

as

a

String)

in

the

attribute,

Invoker

recursively

calls

the

Dispatch()

method

on

the

active

BO

handler.

v

Dispatch()

returns

a

proxy

object

that

the

parent

method

can

use

to

invoke

its

method

call.

v

The

BO

handler’s

synchronization

process,

called

Synchronizer,

invokes

WriteToProxy

to

store

(set)

a

value

in

each

property

of

the

COM

component

(proxy

object),

thus

updating

data

on

the

COM

server.

The

value

stored

is

from

the

corresponding

attribute

on

the

business

object

that

the

COM

component

corresponds

to.

9.

When

values

are

returned

from

the

COM

server,

the

LoadFromProxy

function

calls

the

“getters”

of

the

proxy

object

and

loads

the

data

returned

from

the

proxy

object

onto

the

BO.

10.

The

connector

returns

the

business

object

to

the

integration

broker.

Business

object

requests

Business

object

requests

are

processed

when

the

integration

broker

sends

a

business

object

to

the

connector.

The

only

requirement

of

the

business

object

is

that

it

must

map

to

the

corresponding

COM

component

object

that

the

proxy

object

will

represent.

The

proxy

class

is

a

Java

class

that

represents

a

COM

component

in

the

connector.

The

connector

creates

a

proxy

object

instance

of

the

proxy

class

name

specified

in

the

business

object’s

ASI.

Verb

processing

The

connector

processes

business

objects

passed

to

it

by

a

broker

based

on

the

verb

for

each

business

object.

When

the

connector

framework

receives

a

request

from

the

broker,

it

calls

the

doVerbFor()

method

of

the

business-object-handler

class

associated

with

the

business

object

definition

of

the

request

business

object.

The

role

of

the

doVerbFor()

method

is

to

determine

the

verb

processing

to

perform,

based

on

the

active

verb

of

the

request

business

object.

It

obtains

information

from

the

request

business

object

to

build

and

send

requests

for

operations

to

the

application.

When

the

connector

framework

passes

the

request

business

object

to

doVerbFor(),

this

method

retrieves

the

business

object

ASI

and

invokes

the

BO

handler,

which

in

turn

reads

the

verb

ASI

and

translates

it

into

a

series

of

callable

functions.

The

verb

ASI

is

an

ordered

list

of

the

methods

that

need

to

be

called

for

that

verb.

The

order

in

which

the

calls

are

made

is

critical

to

the

successful

processing

of

the

object.

The

connector

supports

processing

multiple

components

in

a

single

doVerbFor()call.

For

examples

of

the

sequence

of

calls

that

the

connector

makes

during

verb

processing,

see

“Sample

business

object

properties”

on

page

31

and

Figure

16

on

page

44.

If

the

verb

ASI

is

blank,

the

BO

handler

searches

for

a

method

with

populated

parameters

and

calls

that.

Only

one

method

can

be

populated;

otherwise,

if

multiple

methods

are

populated

yet

the

verb

ASI

is

blank,

the

connector

logs

an

error

and

returns

a

FAIL

code.

For

details

about

error

processing,

see

“Error

handling”

on

page

49.

8

Adapter

for

COM

User

Guide

The

connector

does

not

support

any

specific

verbs,

but

using

the

ODA,

the

user

can

configure

custom

verbs.The

standard,

pre-existing

verbs

are

Create,

Retrieve,

Update,

and

Delete.

These

can

be

given

whatever

semantic

meaning

you

provide

through

the

Object

Discovery

Agent

(ODA)

running

in

Business

Object

Designer.

For

details

about

using

the

ODA

to

assign

a

method

call

sequence

to

a

verb,

see

Chapter

5,

“Creating

and

modifying

business

objects,”

on

page

37.

Note:

You

can

specify

two

pre-defined

functions

in

the

verb

ASI:

LoadFromProxy

and

WriteToProxy.

Their

purpose

is

to

synchronize

a

business

object’s

simple

attributes

to

a

COM

component’s

public

properties.

Custom

business

object

handlers

When

you

create

a

business

object,

you

can

override

the

default

BO

handler

by

specifying

the

CBOH

keyword

in

the

BO

verb

ASI.

At

connector

run

time,

the

doVerbFor()

method

retrieves

the

business

object

ASI.

If

it

detects

the

CBOH

keyword,

doVerbFor()

invokes

the

custom

BO

handler.

A

custom

BO

handler

can

access

proxy

classes

directly.

Therefore,

it

bypasses

the

Loader,

the

Invoker,

and

the

process

of

retrieving

connections

from

the

connection

pool.

These

processes

are

described

in

Step

5

on

page

7

and

Step

7

on

page

7.

The

connector

supports

custom

BO

handlers

on

parent-level

business

objects

only.

For

details

about

creating

a

custom

BO

handler,

see

the

Connector

Development

Guide.

Custom

BO

handler

example

The

following

example

of

a

custom

BO

handler

assumes

that

a

business

object

has

been

defined

with

a

verb

ASI

of

CBOH=comadaptertest.Lotus123BOHandler.

The

business

object

has

an

attribute

ASI

of

CellAddress=A1,

where

A1

is

the

address

in

which

the

attribute

will

appear

in

the

worksheet.

The

custom

BO

handler

puts

the

attribute

on

the

worksheet,

using

the

cell

address

specified

by

the

attribute

ASI.

package

comadaptertest;

import

com.crossworlds.cwconnectorapi.*;

import

com.crossworlds.cwconnectorapi.exceptions.*;

import

java.util.*;

import

com.ibm.adapters.utils.comproxy.*;

import

lotus123.*;

public

class

Lotus123BOHandler

implements

CWCustomBOHandlerInterface

{

public

int

doVerbForCustom(CWConnectorBusObj

bo)

throws

VerbProcessingFailedException

{

Application

currentApplication;

Document

currentDocument;

CWConnectorUtil.traceWrite(CWConnectorUtil.LEVEL4,

"Entering

AdapterBOHandler.doVerbFor()");

try

{

currentDocument

=

new

Document();

//

Get

the

application

object.

currentApplication

=

new

Application(currentDocument.

get_Parent());

//

Make

the

application

visible.

Chapter

1.

Overview

9

currentApplication.set_Visible(new

Boolean("true"));

currentDocument

=

new

Document(currentApplication.

NewDocument());

}

catch

(ComException

e)

{

CWConnectorUtil.generateAndLogMsg(91000,

CWConnectorUtil.XRD_ERROR,

CWConnectorUtil.

CONNECTOR_MESSAGE_FILE,

e.getMessage());

CWConnectorExceptionObject

vSub

=

new

CWConnectorExceptionObject();

vSub.setMsg(e.getMessage());

vSub.setStatus(CWConnectorConstant.

APPRESPONSETIMEOUT);

throw

new

VerbProcessingFailedException(vSub);

}

//do

verb

processing

on

this

business

object

dispatch(bo,

currentDocument);

CWConnectorUtil.traceWrite(CWConnectorUtil.

LEVEL4,

"Leaving

AdapterBOHandler.doVerbFor()");

return

CWConnectorConstant.SUCCEED;

}

//doVerbFor

private

void

dispatch(CWConnectorBusObj

bo,

Document

currentDocument)

throws

VerbProcessingFailedException

{

CWConnectorUtil.traceWrite(CWConnectorUtil.

LEVEL4,

"Entering

dispatch");

CWConnectorUtil.traceWrite(CWConnectorUtil.

LEVEL3,

"Processing

business

object"

+

bo.getName());

try

{

//put

this

object

out

onto

the

spreadsheet.

//Follow

ASI

for

Cell

addresses

businessObjectToWorksheet(bo,

currentDocument);

}

catch

(ComException

e)

{

CWConnectorUtil.generateAndLogMsg(90001,

CWConnectorUtil.XRD_ERROR,

CWConnectorUtil.

CONNECTOR_MESSAGE_FILE,

e.getMessage());

CWConnectorExceptionObject

vSub

=

new

CWConnectorExceptionObject();

vSub.setMsg(e.getMessage());

vSub.setStatus(CWConnectorConstant.

APPRESPONSETIMEOUT);

throw

new

VerbProcessingFailedException(vSub);

}

catch

(CWException

e)

{

CWConnectorExceptionObject

vSub

=

new

CWConnectorExceptionObject();

vSub.setMsg(e.getMessage());

vSub.setStatus(CWConnectorConstant.FAIL);

throw

new

VerbProcessingFailedException(vSub);

}

}

public

static

void

businessObjectToWorksheet(CWConnectorBusObj

bo,

Document

currentDocument)

throws

CWException

{

String

incomingAttribute

=

"";

int

attrCount

=

bo.getAttrCount()

-

1;

//ignore

objeventID

Ranges

ranges;

Range

currentRange;

10

Adapter

for

COM

User

Guide

ranges

=

new

Ranges(currentDocument.get_Ranges());

for

(int

i

=

0;

i

<

attrCount;

i++)

{

try

{

if

((!bo.isObjectType(i))

&&

(!bo.isIgnore(i)))

{

if

(bo.isBlank(i))

incomingAttribute

=

"";

else

incomingAttribute

=

bo.getStringValue(i);

String

CellAddress

=

getCellAddress(bo,

i);

currentRange

=

new

Range(ranges.Item(new

String(CellAddress)));

currentRange.set_Contents(incomingAttribute);

if

(CWConnectorUtil.isTraceEnabled

(CWConnectorUtil.LEVEL5))

{

CWConnectorUtil.traceWrite

(CWConnectorUtil.LEVEL5,

"Application

datum

from

BO

to

application

"

+

CellAddress

+

"="

+

incomingAttribute);

}

}

}

catch

(AttributeNotFoundException

e)

{

CWConnectorUtil.generateAndLogMsg(91012,

CWConnectorUtil.XRD_ERROR,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

bo.getAttrName(i),

bo.getName());

throw

e;

}

catch

(WrongAttributeException

e)

{

CWConnectorUtil.generateAndLogMsg(91013,

CWConnectorUtil.XRD_ERROR,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

bo.getAttrName(i),

bo.getName());

throw

e;

}

}

}

public

static

String

getCellAddress(CWConnectorBusObj

bo,

int

i)

throws

CWException

{

String

columnName

=

null;

try

{

columnName

=

getNameFromASI

(bo.getAttrASIHashtable(i,

":"),

"CellAddress");

}

catch

(WrongASIFormatException

e)

{

CWConnectorUtil.generateAndLogMsg(91014,

CWConnectorUtil.XRD_ERROR,

CWConnectorUtil.CONNECTOR_MESSAGE_FILE,

bo.getAttrName(i),

"ColumnName");

throw

e;

}

return

columnName;

}

private

static

String

getNameFromASI(Hashtable

asi,

String

fieldName)

throws

CWException,

WrongASIFormatException

{

String

resultName

=

(String)

asi.get(fieldName);

if

(resultName

==

null

||

resultName.equals(""))

throw

new

WrongASIFormatException();

resultName

=

resultName.toUpperCase();

Chapter

1.

Overview

11

CWConnectorUtil.traceWrite(CWConnectorUtil.LEVEL4,

"Found

"

+

fieldName

+

"

=

"

+

resultName);

return

resultName;

}

}

DCOM

support

The

Distributed

Component

Object

Model

(DCOM)

is

a

protocol

that

enables

software

components

to

communicate

directly

over

a

network.

It

extends

COM

to

support

communication

among

objects

on

different

computers—on

a

LAN,

a

WAN,

or

even

the

Internet.

With

DCOM,

an

application

can

be

distributed

across

various

locations.

The

connector

provides

DCOM

support

by

allowing

you

to

specify

the

remote

server

name

when

you

create

an

object

at

another

location.

The

remote

server

name

can

be

specified

as

a

fixed

configuration

in

the

system

registry

of

the

machine

where

the

connector

is

running

or

in

the

DCOM

Class

Store.

By

registering

the

remote

server,

the

connector

has

transparent

access

to

the

DCOM

components.

Processing

locale-dependent

data

The

connector

has

been

internationalized

so

that

it

can

support

delivery

of

double-byte

character

sets

going

into

a

COM

interface

that

also

supports

double-byte

character

sets,

and

deliver

message

text

in

the

specified

language.

When

the

connector

transfers

data

from

a

location

that

uses

one

character

code

to

a

location

that

uses

a

different

code

set,

it

performs

character

conversion

to

preserve

the

meaning

of

the

data.

The

Java

run

time

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

Most

components

in

the

WebSphere

business

integration

system

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

integration

components,

there

is

no

need

for

character

conversion.

12

Adapter

for

COM

User

Guide

Chapter

2.

Installing

the

adapter

v

“Overview

of

installation

tasks”

v

“Install

the

adapter

for

COM

and

related

files”

v

“Connector

file

structure”

This

chapter

describes

how

to

install

the

connector.

Overview

of

installation

tasks

To

install

the

connector

for

COM,

you

must

perform

the

following

tasks:

Confirm

adapter

prerequisites

Before

you

install

the

adapter,

confirm

that

all

the

environment

prerequisites

for

installing

and

running

the

adapter

are

on

your

system.

For

details,

see

“Adapter

environment”

on

page

1.

Install

the

integration

broker

Installing

the

integration

broker,

a

task

that

includes

installing

the

WebSphere

business

integration

system

and

starting

the

broker,

is

described

in

the

documentation

for

your

broker.

For

details

about

the

brokers

that

the

connector

for

COM

supports,

see

“Broker

compatibility”

on

page

1.

For

details

about

installing

the

broker,

see

the

appropriate

implementation

documentation

of

the

broker

you

are

using.

Install

the

adapter

for

COM

and

related

files

For

information

on

installing

WebSphere

Business

Integration

adapter

products,

refer

to

the

Installation

Guide

for

WebSphere

Business

Integration

Adapters,

located

in

the

WebSphere

Business

Integration

Adapters

Infocenter

at

the

following

site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

The

utility

installs

the

connector

into

the

ProductDir\connectors\COM

directory,

and

adds

a

shortcut

for

the

connector

to

the

Start

menu.

Note

that

ProductDir

represents

the

directory

where

the

connector

is

installed.

Table

1

describes

the

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

the

Installer.

Table

1.

File

structure

for

the

connector

Subdirectory

of

ProductDir

Description

\connectors\COM\BIA_COM.jar

Contains

classes

used

by

the

COM

connector

only

\connectors\COM\start_COM.bat

The

startup

script

for

the

generic

connector

\connectors\COM\ext\

A

directory

where

the

ODA-generated

.jar

files

can

be

saved.

If

you

save

to

this

directory,

specify

the

directory

in

the

startup

script

(start_COM.bat).

©

Copyright

IBM

Corp.

2003

13

Table

1.

File

structure

for

the

connector

(continued)

Subdirectory

of

ProductDir

Description

\connectors\COM\BIA_COMProxy.dll

The

COMProxy

C++

run

time

library

that

defines

the

properties,

structures,

and

methods

of

the

Java

proxies

used

to

invoke

COM

components.

Enables

the

connector

to

interface

with

a

COM

Server.

\connectors\messages\BIA_COMConnector.txt

Message

file

for

the

connector

\ODA\COM\BIA_COMODA.jar

The

COM

ODA

\ODA\COM\start_COMODA.bat

The

ODA

startup

file

\ODA\COM\BIA_COMProxyGen.exe

Generates

the

proxy

classes

that

will

be

used

by

the

connector

to

create

proxy

object

instances

of

those

classes

\ODA\messages\BIA_COMODAAgent_de_DE.txt

Message

file

for

the

ODA

(German

text

strings)

\ODA\messages\BIA_COMODAAgent_en_US.txt

Message

file

for

the

ODA

(US

English

text

strings)

\ODA\messages\BIA_COMODAAgent_es_ES.txt

Message

file

for

the

ODA

(Spanish

text

strings)

\ODA\messages\BIA_COMODAAgent_fr_FR.txt

Message

file

for

the

ODA

(French

text

strings)

\ODA\messages\BIA_COMODAAgent_it_IT.txt

Message

file

for

the

ODA

(Italian

text

strings)

\ODA\messages\BIA_COMODAAgent_ja_JP.txt

Message

file

for

the

ODA

(Japanese

text

strings)

\ODA\messages\BIA_COMODAAgent_ko_KR.txt

Message

file

for

the

ODA

(Korean

text

strings)

\ODA\messages\BIA_COMODAAgent_pt_BR.txt

Message

file

for

the

ODA

(Portuguese

-

Brazil

-text

strings)

\ODA\messages\BIA_COMODAAgent_zh_CN.txt

Message

file

for

the

ODA

(Simplified

Chinese

text

strings)

\ODA\messages\BIA_COMODAAgent_zh_TW.txt

Message

file

for

the

ODA

(Traditional

Chinese

text

strings)

\repository\COM\BIA_CN_COM.txt

Repository

definition

for

the

connector.

The

default

name

is

BIA_CN_COM.txt.

Note:

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

Post-installation

tasks

After

you

install

the

adapter,

you

must

configure

it

before

you

can

run

it.

For

details,

see

Chapter

3,

“Configuring

the

adapter,”

on

page

15.

14

Adapter

for

COM

User

Guide

Chapter

3.

Configuring

the

adapter

v

“Overview

of

configuration

tasks”

v

“Configuring

the

connector”

v

“Creating

multiple

connector

instances”

on

page

19

v

“Configuring

the

startup

file”

on

page

20

v

“Starting

the

connector”

on

page

20

v

“Stopping

the

connector”

on

page

22

v

“Using

log

and

trace

files”

on

page

22

Overview

of

configuration

tasks

After

installation

and

before

startup,

you

must

configure

components

as

described

in

this

section.

Configure

the

connector

Configuring

the

connector

includes

setting

up

and

configuring

the

connector.

For

details,

see

“Configuring

the

connector.”

Configure

the

business

objects

You

configure

business

objects

through

an

ODA

(Object

Discovery

Agent).

The

ODA

enables

you

to

generate

business

object

definitions.

A

business

object

definition

is

a

template

for

a

business

object.

The

ODA

examines

specified

application

objects,

“discovers”

the

elements

of

those

objects

that

correspond

to

business

object

attributes,

and

generates

business

object

definitions

to

represent

the

information.

Business

Object

Designer

provides

a

graphical

interface

to

access

the

Object

Discovery

Agent

and

to

work

with

it

interactively.

For

details

about

using

the

ODA,

see

Chapter

5,

“Creating

and

modifying

business

objects,”

on

page

37.

Configuring

the

connector

Connectors

have

two

types

of

configuration

properties:

standard

configuration

properties

and

adapter-specific

configuration

properties.

You

must

set

the

values

of

these

properties

using

Connector

Configurator

before

running

the

adapter.

For

further

information,

see

Appendix

B,

“Connector

Configurator,”

on

page

69.

A

connector

obtains

its

configuration

values

at

startup.

During

a

run

time

session,

you

may

want

to

change

the

values

of

one

or

more

connector

properties.

Changes

to

some

connector

configuration

properties,

such

as

AgentTraceLevel,

take

effect

immediately.

Changes

to

other

connector

properties

require

connector

component

restart

or

system

restart

after

a

change.

To

determine

whether

a

property

is

dynamic

(taking

effect

immediately)

or

static

(requiring

either

connector

component

restart

or

system

restart),

refer

to

the

Update

Method

column

in

the

Connector

Properties

window

of

the

System

Manager.

Standard

connector

properties

Standard

connector

configuration

properties

provide

information

that

all

adapters

use.

See

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

53

for

documentation

of

these

properties.

©

Copyright

IBM

Corp.

2003

15

The

following

table

provides

information

specific

to

this

connector

about

standard

configuration

properties

listed

in

the

appendix.

Property

Description

DuplicateEvent

Elimination

The

connector

does

not

use

this

property.

Locale

Because

this

connector

has

been

internationalized,

you

can

change

the

value

of

this

property.

PollEndTime

The

connector

does

not

use

this

property.

PollFrequency

The

connector

does

not

use

this

property.

PollStartTime

The

connector

does

not

use

this

property.

You

must

provide

a

value

for

the

ApplicationName

configuration

property

before

running

the

connector.

Connector-specific

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

at

run

time.

These

properties

also

provide

a

way

for

you

to

change

static

information

or

logic

within

the

connector

without

having

to

recode

and

rebuild

it.

To

configure

connector-specific

properties,

use

Connector

Configurator.

Click

the

Application

Config

Properties

tab

to

add

or

modify

configuration

properties.

For

more

information,

see

Appendix

B,

“Connector

Configurator,”

on

page

69.

Note

that

all

the

connector-specific

properties

are

optional

in

that

you

can

choose

to

set

them

based

on

your

specific

connector

configuration

requirements:

Do

you

want

the

connector

to

create

both

factory

objects

and

connections,

only

a

factory

object,

or

only

connections?

Table

2

lists

the

connector-specific

configuration

properties

for

the

connector,

along

with

their

descriptions

and

possible

values.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

See

the

sections

that

follow

for

details

about

the

properties,

including

a

representation

of

the

hierarchical

relationship

of

the

properties

in

Figure

3

on

page

17.

Table

2.

Connector-specific

configuration

properties

Name

Possible

values

Default

value

+

Factory

None

None

+

+

FactoryClass

The

class

name

None

+

+

FactoryInitializer

Method

name

of

the

initializer

None

+

+

+

Arguments

Any

encrypted

or

non-encrypted

strings

None

+

+

FactoryMethod

Method

name

None

+

+

+

Arguments

Any

encrypted

or

non-encrypted

strings

None

+

ConnectionPool

None

None

+

+

ConnectionClass

Class

name

None

+

+

ConnectionInitializer

Method

name

of

the

initializer

None

+

+

+

Arguments

Any

encrypted

or

non-encrypted

strings

None

+

+

PoolSize

Any

integer

0

+

ThreadingModel

Apartment,

Free

Free

16

Adapter

for

COM

User

Guide

Figure

3

illustrates

the

hierarchical

relationship

of

the

connector-specific

properties.

n Arguments (Argument1 to ArgumentN)

Connector properties

Factory

ConnectionPool

ThreadingModel

FactoryClass

ConnectionClass

FactoryInitializer

FactoryMethod

ConnectionInitializer

PoolSize

n Arguments (Argument1 to ArgumentN)

n Arguments (Argument1 to ArgumentN)

Factory

A

hierarchical

property

that

represents

the

Factory

class

information.

FactoryClass

The

name

of

the

factory

class.

v

If

you

specify

a

FactoryClass,

a

ConnectionClass,

and

a

FactoryMethod,

the

connector

instantiates

a

factory

proxy

object

and

connections

(Scenario

1

in

step

1

on

page

6,

of

How

the

connector

works).

v

If

you

do

not

specify

a

FactoryClass,

then

specify

a

ConnectionClass,

in

which

case

a

connection

pool

of

the

specified

connection

class

and

size

is

created

when

you

initialize

the

connector

(Scenario

2

in

step

1

on

page

6).

v

If

you

specify

a

FactoryClass

only,

the

connector

will

instantiate

a

factory

proxy

object

(Scenario

3

in

step

1

on

page

6)

and

will

not

use

connections.

Figure

3.

Hierarchy

of

connector-specific

properties

Chapter

3.

Configuring

the

adapter

17

FactoryInitializer

The

method

name

of

the

initializer

for

the

FactoryClass.

This

method

never

acts

as

a

constructor.

Arguments

String

values

representing

the

parameters

of

the

FactoryInitializer

method.

These

can

be

any

encrypted

or

non-encrypted

strings.

FactoryMethod

The

method

name

of

the

FactoryMethod

on

the

FactoryClass.

If

you

specify

a

FactoryMethod,

the

connection

pool

obtains

connections

using

the

FactoryMethod.

ConnectionInitializer

is

called

after

a

connection

object

is

created.

The

connection

may

or

may

not

come

from

the

FactoryMethod.

Arguments

The

parameters

of

the

FactoryMethod

must

be

arguments

(Argument1,

Argument2,

and

so

on)

on

the

Factory,

listed

in

proper

sequential

order.

The

property

names

are

Argument1,

Argument2,

and

so

on,

for

as

many

parameters

as

the

method

takes.

The

value

of

each

argument

is

any

encrypted

or

non-encrypted

string.

ConnectionPool

The

property

for

the

Connection

class

information.

ConnectionClass

The

name

of

the

poolable

connection

class.

v

If

you

specify

a

ConnectionClass

and

a

FactoryClass,

the

connector

instantiates

a

factory

proxy

object

and

a

connection

pool

instance

is

created

for

storing

connections.

The

connections

are

created

by

the

Factory.

(Scenario

1

in

step

1

on

page

6).

v

If

you

specify

a

ConnectionClass,

but

not

a

FactoryClass,

then,

when

the

connector

is

initialized,

a

connection

pool

instance

is

created

for

storing

connections

(Scenario

2

in

step

1

on

page

6).

In

this

scenario,

the

connections

are

not

created

by

the

Factory.

The

size

of

the

pool

(number

of

connections)

is

based

on

the

value

you

specify

in

the

PoolSize

property.

Since

a

connection

is

a

reference

to

an

application

with

some

kind

of

state

information,

note

that

if

you

use

connection

pooling

on

a

single-use

server,

multiple

instances

of

the

application

referenced

by

the

connection

are

created.

Each

instance

is

called

on

a

single

BO

handler

thread.

Likewise,

if

you

use

connection

pooling

on

a

multi-use

server

(one

instance

of

a

server

object

can

be

re-used

to

create

a

connection),

then

you

have

to

set

up

a

factory

and

factory

method

call

to

create

the

connection

pool.

In

this

case,

each

BO

handler

thread

pulls

a

discrete

connection

from

the

pool

to

be

used

during

processing.

ConnectionInitializer

The

name

of

the

poolable

ConnectionClass

initializer

method.

This

method

never

acts

as

a

constructor.

ConnectionInitializer

is

called

after

the

connection

object

is

created,

whether

or

not

the

connection

comes

from

the

Factory.

18

Adapter

for

COM

User

Guide

Arguments

String

values

representing

parameters

for

the

initializer.

The

values

may

be

encrypted

or

non-encrypted

strings.

PoolSize

Determines

the

size

of

the

connection

pool.

This

property

is

required

if

you

specify

a

ConnectionClass.

ThreadingModel

Indicates

whether

the

connector

uses

the

Multi-Threaded

Apartment

(MTA)

or

the

Single

Threaded

Apartment

(STA)

threading

model.

If

this

property

is

set

to

Apartment,

the

connector

runs

in

STA

mode

(not

threadsafe).

STA

mode

causes

the

connector

to

be

single-threaded.

If

the

property

is

set

to

Free,

the

connector

runs

in

MTA

mode.

In

MTA

mode

(threadsafe),

multi-threaded

clients

can

make

direct

calls

to

the

object.

The

default

value

is

Free

(threadsafe,

Multi-Threaded

Apartment

mode).

Note:

If

you

are

running

in

Single-Threaded

Apartment

mode

(you

have

set

the

property

value

to

Apartment),

the

connection

pool

and

factory

are

disabled.

Creating

multiple

connector

instances

Creating

multiple

instances

of

a

connector

is

in

many

ways

the

same

as

creating

a

custom

connector.

You

can

set

your

system

up

to

create

and

run

multiple

instances

of

a

connector

by

following

the

steps

below.

You

must:

v

Create

a

new

directory

for

the

connector

instance

v

Make

sure

you

have

the

requisite

business

object

definitions

v

Create

a

new

connector

definition

file

v

Create

a

new

start-up

script

Create

a

new

directory

You

must

create

a

connector

directory

for

each

connector

instance.

This

connector

directory

should

be

named:

ProductDir\connectors\connectorInstance

where

connectorInstance

uniquely

identifies

the

connector

instance.

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

ProductDir\repository\connectorInstance

Create

business

object

definitions

If

the

business

object

definitions

for

each

connector

instance

do

not

already

exist

within

the

project,

you

must

create

them.

1.

If

you

need

to

modify

business

object

definitions

that

are

associated

with

the

initial

connector,

copy

the

appropriate

files

and

use

Business

Object

Designer(?)

to

import

them.

You

can

copy

any

of

the

files

for

the

initial

connector.

Just

rename

them

if

you

make

changes

to

them.

2.

Files

for

the

initial

connector

should

reside

in

the

following

directory:

ProductDir\repository\initialConnectorInstance

Chapter

3.

Configuring

the

adapter

19

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

ProductDir\repository.

Create

a

connector

definition

You

create

a

configuration

file

(connector

definition)

for

the

connector

instance

in

Connector

Configurator.

To

do

so:

1.

Copy

the

initial

connector’s

configuration

file

(connector

definition)

and

rename

it.

2.

Make

sure

each

connector

instance

correctly

lists

its

supported

business

objects

(and

any

associated

meta-objects).

3.

Customize

any

connector

properties

as

appropriate.

Create

a

start-up

script

To

create

a

startup

script:

1.

Copy

the

initial

connector’s

startup

script

and

name

it

to

include

the

name

of

the

connector

directory:

dirname

2.

Put

this

startup

script

in

the

connector

directory

you

created

in

“Create

a

new

directory”

on

page

19.

3.

Create

a

startup

script

shortcut

(Windows

only).

4.

Copy

the

initial

connector’s

shortcut

text

and

change

the

name

of

the

initial

connector

(in

the

command

line)

to

match

the

name

of

the

new

connector

instance.

You

can

now

run

both

instances

of

the

connector

on

your

integration

server

at

the

same

time.

For

more

information

on

creating

custom

connectors,

refer

to

the

Connector

Development

Guide

for

C++

or

for

Java.

Configuring

the

startup

file

Before

you

start

the

connector

for

COM,

you

must

configure

the

startup

file.

To

complete

the

configuration

of

the

connector

for

Windows

platforms,

you

must

modify

the

start_COM.bat

file:

1.

Open

the

start_COM.bat

file.

2.

Scroll

to

the

section

beginning

with

“SET

JCLASSES...″

3.

Edit

the

JCLASSES

variable

to

point

to

the

.jar

file

created

by

the

ODA.

For

example,

if

the

.jar

file

created

by

the

ODA

is

c:\WebSphereAdapters\connectors\COM\SampleLotus123.jar,

then

set

the

JCLASSES

variable

to

JCLASSES=

c:\WebSphereAdapters\connectors\COM\SampleLotus123.jar;%JCLASSES%

Starting

the

connector

A

connector

must

be

explicitly

started

using

its

connector

start-up

script.

The

startup

script

should

reside

in

the

connector’s

runtime

directory:

ProductDir\connectors\connName

where

connName

identifies

the

connector.

The

name

of

the

startup

script

depends

on

the

operating-system

platform,

as

Table

3

shows.

20

Adapter

for

COM

User

Guide

Table

3.

Startup

scripts

for

a

connector

Operating

system

Startup

script

UNIX-based

systems

connector_manager_connName

Windows

start_connName.bat

You

can

invoke

the

connector

startup

script

in

any

of

the

following

ways:

v

On

Windows

systems,

from

the

Start

menu

Select

Programs>IBM

WebSphere

Business

Integration

Adapters>Adapters>Connectors.

By

default,

the

program

name

is

“IBM

WebSphere

Business

Integration

Adapters”.

However,

it

can

be

customized.

Alternatively,

you

can

create

a

desktop

shortcut

to

your

connector.

v

From

the

command

line

–

On

Windows

systems:

start_connName

connName

brokerName

[-cconfigFile

]

–

On

UNIX-based

systems:

connector_manager_connName

-start

where

connName

is

the

name

of

the

connector

and

brokerName

identifies

your

integration

broker,

as

follows:

–

For

WebSphere

InterChange

Server,

specify

for

brokerName

the

name

of

the

ICS

instance.

–

For

WebSphere

message

brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

or

WebSphere

Application

Server,

specify

for

brokerName

a

string

that

identifies

the

broker.

Note:

For

a

WebSphere

message

broker

or

WebSphere

Application

Server

on

a

Windows

system,

you

must

include

the

-c

option

followed

by

the

name

of

the

connector

configuration

file.

For

ICS,

the

-c

is

optional.

v

From

Adaptor

Monitor

(WebSphere

Business

Integration

Adapters

product

only),

which

is

launched

when

you

start

System

Manager

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

From

System

Monitor

(WebSphere

InterChange

Server

product

only)

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

starts

when

the

Windows

system

boots

(for

an

Auto

service)

or

when

you

start

the

service

through

the

Windows

Services

window

(for

a

Manual

service).

For

more

information

on

how

to

start

a

connector,

including

the

command-line

startup

options,

refer

to

one

of

the

following

documents:

v

For

WebSphere

InterChange

Server,

refer

to

the

System

Administration

Guide.

v

For

WebSphere

message

brokers,

refer

to

Implementing

Adapters

with

WebSphere

Message

Brokers.

v

For

WebSphere

Application

Server,

refer

to

Implementing

Adapters

with

WebSphere

Application

Server.

Chapter

3.

Configuring

the

adapter

21

Stopping

the

connector

The

way

to

stop

a

connector

depends

on

the

way

that

the

connector

was

started,

as

follows:

v

If

you

started

the

connector

from

the

command

line,

with

its

connector

startup

script:

–

On

Windows

systems,

invoking

the

startup

script

creates

a

separate

“console”

window

for

the

connector.

In

this

window,

type

“Q”

and

press

Enter

to

stop

the

connector.

–

On

UNIX-based

systems,

connectors

run

in

the

background

so

they

have

no

separate

window.

Instead,

run

the

following

command

to

stop

the

connector:

connector_manager_connName

-stop

where

connName

is

the

name

of

the

connector.
v

From

Adaptor

Monitor

(WebSphere

Business

Integration

Adapters

product

only),

which

is

launched

when

you

start

System

Manager

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

From

System

Monitor

(WebSphere

InterChange

Server

product

only)

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

stops

when

the

Windows

system

shuts

down.

Using

log

and

trace

files

The

adapter

components

provide

several

levels

of

message

logging

and

tracing.

The

connector

uses

the

adapter

framework

to

log

error,

informational,

and

trace

messages.

Error

and

informational

messages

are

recorded

in

the

log

file,

and

trace

messages

and

their

corresponding

trace

levels

(0

to

5)

are

recorded

in

a

trace

file.

For

details

about

logging

and

trace

levels,

see

Chapter

6,

“Troubleshooting

and

error

handling,”

on

page

49.

You

configure

both

the

log

and

trace

file

names,

as

well

as

the

trace

level,

in

Connector

Configurator.

For

details

about

this

tool,

see

Appendix

B,

“Connector

Configurator,”

on

page

69.

Note

that

the

ODA

has

no

logging

capability.

Error

messages

are

sent

directly

to

the

user

interface.

Trace

files

and

the

trace

level

are

configured

in

Business

Object

Designer.

The

process

is

described

in

“Configure

the

agent”

on

page

38.

The

ODA

trace

levels

are

the

same

as

the

connector

trace

levels,

defined

in

“Tracing”

on

page

50.

22

Adapter

for

COM

User

Guide

Chapter

4.

Understanding

business

objects

This

chapter

describes

the

structure

of

business

objects,

how

the

adapter

processes

the

business

objects,

and

the

assumptions

the

adapter

makes

about

them.

The

chapter

contains

the

following

sections:

v

“Defining

metadata”

v

“Connector

business

object

structure”

on

page

24

v

“Mapping

attributes:

COM,

Java,

and

business

object”

on

page

29

v

“Sample

business

object

properties”

on

page

31

v

“Generating

business

objects”

on

page

34

Defining

metadata

The

connector

for

COM

is

metadata-driven.

In

the

WebSphere

business

integration

system,

metadata

is

defined

as

application-specific

information

that

describes

a

COM

application

object’s

data

structures.

The

metadata

is

used

to

construct

business

object

definitions,

which

the

connector

uses

at

run

time

to

build

business

objects.

After

installing

the

connector,

but

before

you

can

run

it,

you

must

create

the

business

objects

definitions.

The

business

objects

that

the

connector

processes

can

have

any

name

allowed

by

the

integration

broker.

For

information

about

naming

conventions,

see

Naming

Components

Guide.

A

metadata-driven

connector

handles

each

business

object

that

it

supports

according

to

the

metadata

encoded

in

the

business

object

definition.

This

enables

the

connector

to

handle

new

or

modified

business

object

definitions

without

requiring

modifications

to

the

code.

New

objects

can

be

created

through

the

Object

Discovery

Agent

(ODA)

in

Business

Object

Designer.

To

modify

an

existing

object,

use

Business

Object

Designer

directly

(without

going

through

the

ODA).

Application-specific

metadata

includes

the

structure

of

the

business

object

and

the

settings

of

its

attribute

properties.

Actual

data

values

for

each

business

object

are

conveyed

in

message

objects

at

run

time.

The

connector

makes

assumptions

about

the

structure

of

its

supported

business

objects,

the

relationships

between

parent

and

child

business

objects,

and

the

format

of

the

data.

Therefore,

it

is

important

that

the

structure

of

the

business

object

exactly

match

the

structure

defined

for

the

corresponding

COM

object

or

the

adapter

will

not

be

able

to

process

business

objects

correctly.

If

you

need

to

make

changes

to

the

business

object

structure,

make

them

to

the

corresponding

object

in

COM

and

then

export

the

changes

to

the

type

library

for

input

into

the

ODA.

For

more

information

on

modifying

business

object

definitions,

see

WebSphere

Business

Integration

Adapters

Business

Object

Development

Guide.

©

Copyright

IBM

Corp.

2003

23

Connector

business

object

structure

The

connector

processes

business

objects

used

by

COM

components.

This

section

describes

the

key

concepts

related

to

the

structure

of

business

objects

processed

by

the

COM

connector.

Attributes

For

each

attribute

present

in

a

COM

component

defined

in

a

type

library

file

(.tlb,

.dll,

.olb,

.ole,

or

.exe),

a

corresponding

business

object

attribute

is

generated

by

the

ODA.

The

type

library

file

contains

interfaces,

each

with

methods

and

properties.

It

is

used

by

the

ODA

to

compile

proxy

object

definitions.

If

an

attribute

in

the

COM

class

is

not

a

simple

attribute,

and

instead

is

a

component,

then

the

BO

attribute

maps

to

a

child

object

whose

definition

matches

the

corresponding

component

in

the

COM

object.

Business

objects

can

be

flat

or

hierarchical.

A

flat

business

object

only

contains

simple

attributes,

that

is,

attributes

that

represent

a

single

value

(such

as

a

string)

and

do

not

point

to

child

business

objects.

A

hierarchical

business

object

contains

both

simple

attributes

and

child

business

objects

or

arrays

of

child

business

objects

that

contain

attribute

values.

A

cardinality

1

container

object,

or

single-cardinality

relationship,

occurs

when

an

attribute

in

a

parent

business

object

contains

a

single

child

business

object.

In

this

case,

the

child

business

object

represents

a

collection

that

can

contain

only

one

record.

The

attribute

type

is

the

child

business

object.

A

cardinality

n

container

object,

or

multiple-cardinality

relationship,

occurs

when

an

attribute

in

the

parent

business

object

contains

an

array

of

child

business

objects.

In

this

case,

the

child

business

object

represents

a

collection

that

can

contain

multiple

records.

The

attribute

type

is

the

same

as

that

of

the

array

of

child

business

objects.

Methods

For

each

method

defined

in

the

COM

type

library

file,

an

attribute

is

created

in

the

business

object.

The

attribute

type

is

a

child

BO

containing

attributes

that

represent

method

parameters.

The

attributes

of

the

child

BO

appear

in

the

exact

same

order

as

the

parameters

of

the

COM

method.

The

child

BO

also

has

a

Return_Value

attribute,

appearing

last

in

the

order

of

arguments,

that

represents

the

result

of

the

COM

method

call.

These

attributes

(of

the

child

BO)

can

be

simple

type

or

object

type

(complex),

depending

on

the

type

of

the

method

parameter

or

return

value.

The

return

value

is

always

last

in

the

order

of

arguments.

Whenever

properties

or

method

names

contain

special

characters,

the

attribute

names

corresponding

to

these

are

modified

to

suite

WebSphere

Business

Integration

format

and

the

attribute

ASI

would

be

used

to

set

the

actual

name

of

the

property

or

method.

Application-specific

information

Application-specific

information

provides

the

connector

with

application-
dependent

instructions

on

how

to

process

business

objects.

If

you

extend

or

modify

a

business

object

definition,

you

must

make

sure

that

the

application-specific

information

in

the

definition

matches

the

syntax

that

the

connector

expects.

24

Adapter

for

COM

User

Guide

Application-specific

information

is

represented

as

a

name-value

pair

and

can

be

specified

for

the

overall

business

object,

for

each

business

object

attribute,

and

for

each

verb.

Business

object-level

ASI

Object-level

ASI

provides

fundamental

information

about

the

nature

of

a

business

object

and

the

objects

it

contains.

Table

4

describes

the

business

object-level

ASI

of

business

objects

that

represent

proxy

objects.

Note:

ASI

names

are

not

recognized

for

business

objects

that

represent

methods,

method

parameters,

and

method

return

values.

For

details

about

business

object

attributes

created

for

methods

of

COM

objects,

see

“Methods”

on

page

24.

Table

4.

Object-level

ASI

Object-level

ASI

Description

proxy_class=

<nameOfProxyClass>

The

name

of

the

proxy

class

that

the

business

object

represents.

Use

this

ASI

to

map

a

proxy

class

to

a

business

object.

You

must

specify

this

using

valid

Java

Package

notation

(for

example,

java.lang.Vector).

auto_load_or_write=true

Indicates

that

a

business

object

represents

a

record

structure

that

is

used

both

as

an

argument

and

as

a

return

value.

This

ASI

tells

the

adapter

to

write

to

the

proxy

object

(WriteToProxy)

before

the

function

call

on

arguments

for

child

object

arguments,

and

then

read

the

proxy

object

(LoadFromProxy)

after

the

function

call

returns

a

value.

Verb

ASI

Every

business

object

contains

a

verb.

The

verb

describes

how

the

data

in

the

business

object

should

be

handled

by

the

receiving

application.

The

verb

ASI

contains

a

sequence

of

attribute

names,

each

of

which

contains

a

method

for

the

generic

business

object

handler

to

call.

Typically,

the

method

to

be

invoked

belongs

to

the

object

itself

(versus

belonging

to

a

parent

of

the

business

object),

in

which

case

you

specify

the

method

in

the

object’s

verb

ASI.

For

example,

a

component

that

has

the

method

IncrementCounter

would

require

that

you

specify

that

method

in

the

corresponding

business

object’s

verb

ASI.

If

the

method

to

be

invoked

belongs

to

a

parent

in

the

business

object

hierarchy,

then

that

parent

can

be

referenced

by

prefixing

the

method

name

with

the

PARENT

tag.

For

example,

Figure

4

on

page

26

illustrates

a

business

object

hierarchy

whereby

ContactDetails

is

a

child

object

of

Contact,

which

itself

is

a

child

of

Chapter

4.

Understanding

business

objects

25

PSRCustomerAccount.

PSRCustomerAccount

Address Contact

ContactDetails

If

a

method

that

belongs

to

PSRCustomerAccount

is

called

on

the

ContactDetails

business

object,

then

the

verb

ASI

for

ContactDetails

represents

the

business

object

hierarchy

as

follows:

PARENT.PARENT.<methodName>

If

the

method

belongs

instead

to

the

Contact

business

object,

then

the

verb

ASI

for

ContactDetails

must

be

set

as:

PARENT.<methodName>

Note

that

only

methods

that

belong

to

parent

objects

within

the

hierarchy

can

be

called.

Furthermore,

a

parent

business

object

cannot

invoke

a

child’s

method.

The

connector

developer

determines

the

COM

operations

assigned

to

the

verb.

Supported

verbs

include:

v

Create

v

Delete

v

Retrieve

v

Update

The

following

keywords

can

be

used

in

the

verb

ASI

sequence

of

attribute

names:

Table

5.

Keywords

allowed

in

verb

ASI

Keyword

Description

LoadFromProxy=

<attributeName>

Calls

the

getter

method

for

the

specified

proxy

object

attribute,

thus

loading

the

attribute

from

the

proxy

to

the

business

object.

WriteToProxy

=

<attributeName>

Calls

the

setter

method

for

the

specified

proxy

object

attribute,

thus

writing

the

attribute

value

from

the

business

object

to

the

corresponding

proxy

object.

LoadFromProxy

(no

attribute

name)

Calls

all

getter

methods

for

non-method

attributes

on

the

current

BO

from

the

proxy

object.

WriteToProxy

(no

attribute

name)

Calls

all

setter

methods

for

non-method

attributes

on

the

current

BO

to

the

proxy

object.

Figure

4.

Business

object

hierarchy

and

verb

ASI

26

Adapter

for

COM

User

Guide

Table

5.

Keywords

allowed

in

verb

ASI

(continued)

Keyword

Description

CBOH=<custom

BO

handler

className>

The

class

name

of

a

custom

BO

handler,

in

cases

where

the

generic

BO

handler

is

not

used.

For

information

about

custom

BO

handlers,

see

“Custom

business

object

handlers”

on

page

9.

For

a

given

object,

you

can

specify

the

four

supported

verbs

(Create,

Retrieve,

Delete,

and

Update)

and

assign

as

actions

of

each

verb

n

plus

two

methods,

where

n

equals

the

number

of

methods

in

the

corresponding

COM

component.

The

two

additional

methods

are

those

supported

by

the

connector

(LoadFromProxy

and

WriteToProxy),

defined

in

Table

5

on

page

26.

Attribute-level

ASI

The

attribute-level

ASI

of

a

business

object

can

be

for

complex

attributes,

which

contain

child

objects,

and

simple

attributes.

For

a

complex

attribute,

the

ASI

varies,

depending

on

whether

the

contained

child

is

a

property

or

a

method

of

an

object.

The

mapping

of

all

the

attribute-types

in

the

original

COM

type

library

to

the

ODA-generated

business

object

is

defined

in

Table

9

on

page

29.

Table

6

describes

the

ASI

for

simple

attributes.

A

simple

attribute

is

always

a

non-child,

for

example

a

boolean,

string,

or

integer

value.

Table

6.

Attribute-level

ASI

for

simple

attributes

Attribute

Description

Name

Specifies

the

business

object

field

name.

Type

Specifies

the

business

object

field

type.

See

Table

9

on

page

29

for

details

about

mapping

COM

component

types

to

Java

proxy

types

and

business

object

attribute

types.

MaxLength

Not

used.

IsKey

Each

business

object

must

have

at

least

one

key

attribute,

which

you

specify

by

setting

the

key

property

to

true

for

an

attribute.

Note

that

this

attribute

is

used

by

Business

Object

Designer,

rather

than

by

the

connector.

IsForeignKey

Specifies

that

the

connector

should

check

whether

or

not

the

object

must

be

stored

in

the

per

call

object

pool

(see

Step

7

on

page

7).

IsRequired

Not

used.

AppSpecInfo

Holds

the

original

Java

type.

This

attribute

is

formatted

as

follows:

property=<propertyName>,

type=<typeName>

property

is

the

name

of

the

COM

object

property.

Use

this

name-value

pair

to

capture

the

original

COM

object

property

name.

type

is

the

Java

type

of

a

simple

attribute.

See

Table

9

on

page

29

for

details

about

mapping

COM

component

types

to

Java

proxy

types

and

business

object

attribute

types.

This

attribute

should

be

set

to

proxy

if

the

attribute

is

a

business

object.

If

it

does

not

map

to

a

business

object

and

is

not

intended

to

be

de-referenced,

as

in

the

case

of

a

simple

attribute,

you

can

specify

type=PlaceholderOnly.

This

tells

the

BO

handler

to

not

de-reference

and

not

populate

the

attribute.

The

attribute

can

thus

continue

to

be

used

as

part

of

a

multi-call

flow

if

it

is

marked

as

a

foreign

key

(IsForeignKey

is

checked),

or

if

use_attribute_value

is

set

to

a

compatible

value.

Chapter

4.

Understanding

business

objects

27

Table

6.

Attribute-level

ASI

for

simple

attributes

(continued)

Attribute

Description

DefaultValue

Not

used.

Table

7

describes

the

ASI

for

complex

attributes

containing

child

objects

that

are

not

methods.

Table

7.

Attribute-level

ASI

for

attributes

containing

non-method

child

objects

Attribute

Description

type

The

type

of

the

contained

object.

Set

to

proxy

if

the

type

is

a

business

object.

ContainedObjectVersion

Not

used.

Relationship

Specifies

that

the

child

is

a

container

attribute.

Set

to

Containment.

IsKey

Not

used

IsForeignKey

Not

used

Is

Required

Not

used

AppSpecificInfo

Holds

the

original

COM

application

field

Name.

This

attribute

is

formatted

as

follows:

property=propertyName,

use_attribute_value=<(optional)BOName.AttributeName>,

type=<typeName>

property

is

the

name

of

the

COM

object

property.

Use

this

name-value

pair

to

capture

the

original

COM

object

property

name.

In

the

case

of

an

attribute

that

holds

an

argument

to

a

method,

do

not

set

a

value

for

property,

as

the

argument

does

not

have

a

name

and

is

simply

an

argument

of

any

standard

type.

use_attribute_value

is

the

business

object

name

formatted

as

BOName.AttributeName.

Setting

this

ASI

causes

the

adapter

to

access

the

attribute

from

the

per

call

object

pool.

Note

that

this

value

is

not

set

in

the

ODA

when

you

create

the

business

object,

but

rather

via

Business

Object

Designer.

type

is

the

Java

type

of

a

property.

This

should

be

set

to

proxy

if

the

attribute

is

non-simple,

in

other

words,

if

it

holds

a

business

object

(the

corresponding

COM

type

is

IDispatch*.

See

Table

9

on

page

29

for

the

mapping

of

types

across

COM,

Java,

and

business

objects.)

Cardinality

Set

to

1.

Table

8

describes

the

ASI

of

complex

attributes

containing

child

objects

that

are

methods.

Table

8.

Attribute-level

ASI

for

attributes

containing

method

child

objects

Attribute

Description

Name

The

business

object

field

name

type

The

business

object.

Relationship

Set

to

Containment,

indicating

that

this

is

a

child

object.

IsKey

Set

to

true

if

the

attribute

name

equals

UniqueName,

otherwise

it

is

set

to

false.

IsForeignKey

Set

to

false.

28

Adapter

for

COM

User

Guide

Table

8.

Attribute-level

ASI

for

attributes

containing

method

child

objects

(continued)

Attribute

Description

Is

Required

Set

to

false.

AppSpecificInfo

Holds

the

original

COM

application

field

name,

which

represents

the

name

of

the

method

call

placed

to

the

external

COM

server.

This

attribute

is

formatted

as:

method_name=<nameOfMethod>

Cardinality

Set

to

1.

Note

that

methods

have

arguments

and

return

values.

Arguments

and

return

values

can

be

complex

(containing

child

objects)

or

simple.

Mapping

attributes:

COM,

Java,

and

business

object

This

section

provides

a

list

of

the

COM

types

defined

in

a

type

library

and

their

corresponding

Java

constructs

and

business

object

attributes.

For

all

business

object

attributes

that

are

not

child

business

objects,

the

data

type

is

String.

In

a

business

object,

the

ASI

holds

the

actual

data

type

of

the

attribute

and

is

used

when

invoking

methods

against

the

Java

proxy

object.

For

details

about

business

object

ASI,

see

“Application-specific

information”

on

page

24.

Note:

If

a

COM

type

is

not

supported

by

the

COMProxy

interface

tool,

then

it

is

not

supported

by

the

connector.

Table

9.

Object

mapping:

COM,

JAVA,

and

business

object

COM

type

Java

primitive

Java

boxed

COMProxy

internal

Business

object

Attribute

ASI

type=

Float

float

Float

VT_R4

Float

float

Float*

float[]

Float[]

VT_R4

|

VT_BYREF

Float

float_refererence

BSTR

No

primitive

type

exists

String

VT_BSTR

String

String

BSTR*

No

primitive

type

exists

String[]

VT_BSTR

|

VT_BYREF

String

String_reference

Int

int

Integer

VT_I4

Integer

int

int*

int[]

Int[]

VT_I4

|

VT_BYREF

Integer

int_reference

IDispatch*

No

primitive

type

exists

Object

VT_DISPATCH

Business

object

proxy

IDispatch**

No

primitive

type

exists

Object[]

VT_DISPATCH

|

VT_ARRAY

Business

object

ArrayOf_proxy

Short

short

Short

VT_I2

Integer

short

Short*

short[]

Short[]

VT_I2

|

VT_BYREF

Integer

short_reference

VARIANT

No

primitive

type

exists

Object

VT_VARIANT

String

variant

VARIANT_BOOL

boolean

Boolean

VT_BOOL

Boolean

boolean

VARIANT_BOOL*

boolean[]

Boolean[]

VT_BOOL

|

VT_BYREF

Boolean

boolean_reference

Chapter

4.

Understanding

business

objects

29

Table

9.

Object

mapping:

COM,

JAVA,

and

business

object

(continued)

COM

type

Java

primitive

Java

boxed

COMProxy

internal

Business

object

Attribute

ASI

type=

Long

int

Integer

VT_I4

Integer

int

Long*

int[]

Integer

VT_I4

|

VT_BYREF

Integer

int_reference

CURRENCY

long

Long

VT_CY

Integer

long

CURRENCY*

long[]

Long[]

VT_CY

|

VT_BYREF

Integer

long_reference

DATE

No

primitive

type

exists

java.util.Date

VT_DATE

Date

Date

DATE*

No

primitive

type

exists

Date[]

VT_DATE

|

VT_BYREF

Date

Date_reference

double

double

Double

VT_R8

Double

double

double*

double[]

Double[]

VT_R8

|

VT_BYREF

Double

double_reference

unsigned

char

byte

Byte

VT_UI1

Integer

byte

unsigned

char*

byte[]

Byte[]

VT_UI1

|

VT_BYREF

Integer

byte_reference

Decimal

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

Decimal*

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

hyper

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

hyper*

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

Small

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

Small*

No

primitive

type

exists

Not

supported

Not

supported

Not

supported

Not

supported

SAFEARRAY(type)

type[]

Type[]

VT_ARRAY

Cardinality

n

business

object

child

with

single

attribute

ArrayOf_type

Enum

int

Integer

VT_INT

Integer

int

Note:

In

cases

where

the

attribute

is

not

intended

to

be

de-referenced,

the

ASI

type=PlaceholderOnly

should

be

used.

This

tells

the

adapter

to

not

populate

this

attribute.

The

attribute

may

still

be

used

as

part

of

a

multi-call

flow

if

it

is

either

marked

as

a

foreign

key

(IsForeignKey

is

set

to

true),

or

has

the

ASI

use_attribute_value

pointing

to

a

compatible

attribute.

Array

types

Note

the

following

about

array

types:

v

To

use

an

array

type,

specify

an

ASI

of

type=ArrayOf_<value>,

where

value

is

one

of

the

attribute

ASI

values

listed

in

Table

9

on

page

29.

For

example,

type=ArrayOf_int

specifies

an

array

of

int

variables.

These

are

mapped

to

a

cardinality

n

business

object

that

contains

the

element.

30

Adapter

for

COM

User

Guide

v

An

Object

array

(Object[])

in

Java

has

a

corresponding

ASI

type

of

ArrayOf_proxy.

The

processing

of

proxy

objects

is

done

against

every

element

of

the

array.

If

the

proxy

array

is

an

argument

to

a

function,

verb

processing

will

occur

on

every

object

in

the

array

before

executing

the

method.

If

the

array

is

a

return

value,

verb

processing

will

occur

on

every

object

in

the

array

after

executing

the

method.

v

A

sized

array

may

be

used

as

input

but

not

as

output.

v

A

SafeArray

is

supported

as

both

an

input

and

a

return

value.

Sample

business

object

properties

This

section

provides

the

following

examples

that

illustrate

how

the

adapter

processes

a

business

object:

v

“Connector

call

sequence

sample”

v

“Business

object

sample”

Connector

call

sequence

sample

The

following

sample

code

illustrates

connector

code

that

writes

a

simple

message

(″Hello

World″)

to

WebSphere

MQ.

/**

*Create

the

MQSession

object

and

access

the

MQQueueManager

and

(local)

MQQueue

**/

MQSession

MQSess

=

new

MQSession();

iDispatch

=

MQSess.AccessQueueManager("COMTest");

MQQueueManager

QMgr

=

new

MQQueueManager(iDispatch);

QMgr.Connect();

MQQueue

MyQueue=new

MQQueue(QMgr.AccessQueue_4("SYSTEM.DEFAULT.LOCAL.QUEUE",17));

MyQueue.Open();

MQMessage

PutMsg

=

new

MQMessage(MQSess.AccessMessage());

//write

a

string

to

the

message

PutMsg.WriteString("Hello

World";);

//put

the

message

on

the

queue

MyQueue.Put(PutMsg);

MyQueue.Close();

QMgr.Disconnect();

Business

object

sample

The

following

sample

screens

illustrate

the

business

object

structure

and

application

specific

information

required

for

the

code

in

the

“Connector

call

sequence

sample”

to

function

properly.

The

business

object

illustrated

in

these

sample

screens

uses

the

Create

verb.

Chapter

4.

Understanding

business

objects

31

Figure

5

illustrates

the

top-level

business

object,

MQ_MQSession,

which

corresponds

to

the

first

object

created

in

the

method

sequence.

The

Create

verb

ASI

contains

AccessQueueManager,

which

is

the

function

that

will

allow

access

to

an

MQQueueManager

object.

AccessQueueManager

returns

an

object

of

type

Integer.

This

object

can

be

passed

into

the

constructor

of

MQQueueManager

to

create

an

instance

of

the

MQQueueManager

proxy.

Note

that

the

business

object

level

ASI

contains

the

string

proxy_class=MQTest.MQSession,

which

is

the

proxy

object

that

represents

the

COM

component

for

this

business

object.

For

a

description

of

the

proxy_class

ASI,

see

Table

4

on

page

25.

Figure

5.

Business

object

level

ASI

and

supported

verbs

32

Adapter

for

COM

User

Guide

Figure

6

illustrates

the

business

object

hierarchy,

from

the

parent

(MQSession)

all

the

way

down

to

the

lowest-level

child.

AccessQueueManager

is

a

method

that

returns

an

iDispatch

pointer,

which

is

mapped

to

MQQueueManager

(designated

as

the

Return_Value

attribute

in

the

business

object).

MQQueueManager

is

a

proxy

object,

represented

by

the

child

object

MQ_MQQueueManager

in

the

business

object

structure

shown

in

Figure

6.

Figure

7

illustrates

the

method

sequence

on

MQ_MQQueueManager.

The

sequence

is

made

up

of

the

following

three

methods:

1.

Connect

2.

AccessQueue_4

3.

Disconnect

Note

that

in

the

BO

structure

illustrated

in

Figure

6,

AccessQueue_4

returns

a

proxy

object,

called

MQ_MQQueue.

Therefore,

the

connector

will

process

this

returned

proxy

object

(which

is

the

child

of

AccessQueue_4)

after

executing

AccessQueue4

and

before

executing

Disconnect,

the

third

and

last

method

in

the

call

sequence

of

MQ_MQQueueManager.

Figure

6.

Business

object

hierarchy

for

the

MQSession

object

Figure

7.

Method

call

sequence

for

MQ_MQQueueManager

Chapter

4.

Understanding

business

objects

33

Figure

8

illustrates

the

method

sequence

for

MQ_MQQueue,

the

child

of

AccessQueue_4.

The

call

sequence

is

made

up

of

the

following

three

methods:

1.

Open

2.

Put

3.

Close

The

Put

method

takes

MQMessage

as

an

argument,

so

the

connector

must

create

the

MQMessage

object

(and

execute

methods

on

it)

before

executing

the

Put

method.

Note

that

the

recursive

nature

of

the

connector’s

processing

behavior

means

that

Put

is

executed

before

the

Disconnect

method

of

MQ_MQQueueManager

(Figure

7

on

page

33),

the

parent

of

AccessQueue_4.

Figure

9

illustrates

the

method

sequence

for

MQMessage.

This

sequence

calls

only

the

WriteString

method,

which

takes

a

simple

string

as

an

argument.

In

this

example,

the

argument

is

the

″Hello

World″

message.

The

message

is

written

to

WebSphere

MQ

and

then

the

connector

continues

processing

methods

in

the

recursive

sequence

described

in

this

section:

after

calling

WriteString,

the

connector

″backtracks″

up

the

hierarchy

and

executes

the

Close

method

of

MQ_MQQueue

(Figure

8),

followed

by

the

Disconnect

method

of

MQ_MQQueueManager

(Figure

7

on

page

33).

Generating

business

objects

Each

time

an

event

occurs

during

run

time,

a

COM

application

sends

a

message

object

containing

object-level

data

and

information

about

the

type

of

transaction.

The

connector

maps

this

data

to

the

corresponding

business

object

definition,

to

create

an

application-specific

business

object.

The

connector

sends

these

business

objects

on

to

the

integration

broker

for

processing.

It

also

receives

business

objects

back

from

the

integration

broker,

which

it

passes

back

to

the

COM

application.

Note:

If

the

object

model

in

the

COM

application

is

changed,

use

the

ODA

to

create

a

new

definition.

If

the

business

object

definitions

in

the

integration

broker

repository

do

not

match

exactly

the

data

that

the

COM

application

sends,

the

connector

is

not

able

to

create

a

business

object

and

the

transaction

will

fail.

Figure

8.

Method

call

sequence

for

MQ_MQQueue

Figure

9.

Method

call

sequence

for

MQMessage

34

Adapter

for

COM

User

Guide

Business

Object

Designer

provides

a

graphical

interface

that

enables

you

to

create

and

modify

business

object

definitions

for

use

at

run

time.

For

details,

see

Chapter

5,

“Creating

and

modifying

business

objects,”

on

page

37.

Chapter

4.

Understanding

business

objects

35

36

Adapter

for

COM

User

Guide

Chapter

5.

Creating

and

modifying

business

objects

v

“Overview

of

the

ODA

for

COM”

v

“Generating

business

object

definitions”

v

“Specifying

business

object

information”

on

page

42

v

“Uploading

business

object

files”

on

page

47

Overview

of

the

ODA

for

COM

An

ODA

(Object

Discovery

Agent)

enables

you

to

generate

business

object

definitions.

A

business

object

definition

is

a

template

for

a

business

object.

The

ODA

examines

specified

application

objects,

“discovers”

the

elements

of

those

objects

that

correspond

to

business

object

attributes,

and

generates

business

object

definitions

to

represent

the

information.

Business

Object

Designer

provides

a

graphical

interface

to

access

the

Object

Discovery

Agent

and

to

work

with

it

interactively.

The

Object

Discovery

Agent

(ODA)

for

COM

generates

business

object

definitions

from

metadata

contained

in

COM

type

library

files.

The

Business

Object

Designer

wizard

automates

the

process

of

creating

these

definitions.

You

use

the

ODA

to

create

business

objects

and

Connector

Configurator

to

configure

the

connector

to

support

them.

For

information

about

Connector

Configurator,

see

Appendix

B,

“Connector

Configurator,”

on

page

69.

Generating

business

object

definitions

This

section

describes

how

to

use

the

COM

ODA

in

Business

Object

Designer

to

generate

business

object

definitions.

For

information

on

launching

and

using

Business

Object

Designer,

see

IBM

WebSphere

Business

Integration

Adapters

Business

Object

Development

Guide.

Starting

the

ODA

The

ODA

can

be

run

from

any

machine

that

can

mount

the

file

system

on

which

the

metadata

repository

(the

type

library

files)

resides,

using

the

start_COMODA.bat

start

file.

This

file

contains

start

parameters,

including

the

paths

to

certain

required

COM

and

connector

.jar

files.

These

.jar

files

must

also

be

accessible

from

the

machine

on

which

you

are

running

the

ODA.

The

ODA

for

COM

has

a

default

name

of

COMODA.

The

name

can

be

changed

by

changing

the

value

of

the

AGENTNAME

variable

in

the

start

script.

To

start

the

ODA,

run

this

command:

start_COMODA

Note

that

this

startup

file

requires

that

the

directory

of

the

Java

compiler

(javac.exe),

be

included

in

the

PATH

environment

variable.

For

example,

if

javac.exe

is

in

the

directory

c:\jdk131_02\bin,

then

include

the

following

line

in

start_COMODA.bat:

set

PATH=c:\jdk131_02\bin;%PATH%

©

Copyright

IBM

Corp.

2003

37

Running

Business

Object

Designer

Business

Object

Designer

provides

a

wizard

that

guides

you

through

the

steps

to

generate

a

business

object

definition

using

the

ODA.

The

steps

are

as

follows:

Select

the

agent

To

select

the

agent,

follow

these

steps.

1.

Start

Business

Object

Designer.

2.

Click

File

>

New

Using

ODA.

The

Business

Object

Wizard

-

Step

1

of

6

-

Select

Agent

screen

appears.

3.

Select

the

ODA/AGENTNAME

(from

the

start_COMODA

script)

in

the

Located

agents

list

and

click

Next.

(You

may

have

to

click

Find

Agents

if

the

desired

agent

is

not

listed.)

[local host:57037]

Configure

the

agent

After

you

click

Next

on

the

Select

Agent

screen,

the

Business

Object

Wizard

-

Step

2

of

6

-

Configure

Agent

screen

appears.

Figure

11

on

page

39

illustrates

this

screen

with

sample

values.

Figure

10.

Select

Agent

Screen

38

Adapter

for

COM

User

Guide

The

properties

you

set

on

this

screen

are

described

in

Table

10.

You

can

save

all

the

values

you

enter

on

this

screen

to

a

profile.

Instead

of

retyping

the

property

data

next

time

you

run

the

ODA,

you

simply

select

a

profile

from

the

drop-down

menu

and

re-use

the

saved

values.

You

can

save

multiple

profiles,

each

with

a

different

set

of

specified

values.

Table

10.

Configure

Agent

properties

Property

name

Default

value

Type

Description

TypeLibraryPath

None

String

(required)

The

path

to

the

local

type

library

file

(.tlb,

.dll,

.ole,

.olb,

or

.exe)

that

defines

the

COM

interface.

PackageName

None

String

(required)

The

package

in

which

all

the

proxy

files

generated

by

COMProxy

are

stored.

COMProxy

generates

the

Java

proxy

objects

that

the

connector

requires

to

invoke

COM

components.

SaveToDirectory

None

String

(required)

The

directory

in

which

the

package

specified

in

PackageName

is

stored.

JarFileName

None

String

(required)

The

.jar

file

in

which

the

proxy

classes

generated

by

the

ODA

will

be

stored

Note

that

the

ODA

determines

the

directory

location

where

this

file

is

placed.

BOPrefix

None

String

The

prefix

that

the

ODA

will

add

to

the

names

of

the

business

objects

it

generates.

TraceFileName

None

String

The

name

of

the

trace

message

file;

for

example,

COMODAtrace.txt.

TraceLevel

5

Integer

(required)

The

tracing

level

(from

0

to

5)

for

the

Agent.

For

details

about

tracing

levels,

see

“Tracing”

on

page

50.

Figure

11.

Configure

Agent

screen

Chapter

5.

Creating

and

modifying

business

objects

39

Table

10.

Configure

Agent

properties

(continued)

Property

name

Default

value

Type

Description

MessageFile

None

String

(required)

The

name

of

the

message

file

that

contains

all

the

messages

displayed

by

the

ODA.

For

COM,

the

name

of

this

file

is

BIA_COMODAAgent.txt.

If

you

do

not

correctly

specify

the

name

of

the

message

file,

the

ODA

will

run

without

messages.

1.

Use

the

New

and

Save

buttons

in

the

Profiles

group

box

the

first

time

you

run

the

ODA

to

create

a

new

profile.

When

you

use

the

ODA

again,

you

can

select

an

existing

profile.

2.

Type

the

name

of

each

property,

its

value,

type

and

description,

as

defined

in

Table

10

on

page

39.

Note:

If

you

use

a

profile,

the

property

values

are

filled

in

for

you,

though

you

can

modify

the

values

as

needed.

Select

a

business

object

The

Business

Object

Wizard

-

Step

3

of

6

-

Select

Source

screen

appears,

as

illustrated

in

Figure

12.

The

screen

lists

the

components

that

have

been

defined

in

the

COM

type

library

file.

Use

this

screen

to

select

any

number

of

COM

components

for

which

the

ODA

will

generate

business

object

definitions.

1.

If

necessary,

expand

a

COM

component

to

see

a

list

of

methods

of

the

component.

2.

Select

the

COM

object(s)

you

want

to

use.

In

Figure

12,

the

name

method

is

selected.

3.

Click

Next.

Figure

12.

Select

Source

screen

40

Adapter

for

COM

User

Guide

Confirm

the

object

selection

The

Business

Object

Wizard

-

Step

4

of

6

-

Confirm

source

nodes

for

business

object

definitions

screen

appears.

It

shows

the

object(s)

you

selected.

Click

Back

to

make

changes

or

Next

to

confirm

that

the

list

is

correct.

The

Business

Object

Wizard

-

Step

5

of

6

-

Generating

business

objects...

screen

appears

with

a

message

stating

that

the

wizard

is

generating

the

business

objects.

Note

that

if

you

selected

a

method

(see

“Select

a

business

object”

on

page

40),

that

has

a

parameter

or

return

value

with

a

Java

type

of

Object

or

Object[],

the

ODA

displays

the

BO

Properties

screen,

illustrated

in

Figure

14

on

page

42.

Use

this

screen

to

map

an

object

of

such

a

type

to

either

a

COM

component

or

String.

The

drop-down

menu

in

the

Value

column

lists

only

components

from

the

current

type

library.

For

a

complete

list

of

the

mapping

of

COM

and

Java

types

to

business

object

ASI,

see

Table

9

on

page

29.

Figure

13.

Confirm

source

node

screen

Chapter

5.

Creating

and

modifying

business

objects

41

The

ODA

assigns

a

name

to

this

screen

that

provides

details

about

the

component

name,

the

method

name

of

the

component

that

the

ODA

is

currently

processing,

and

the

name

of

the

method

parameter

whose

data

type

is

Object

or

Object[].

Specifying

business

object

information

After

you

create

a

business

object,

you

can

specify

the

verbs

that

are

valid

for

the

object

and

the

method

sequence

of

a

given

verb

on

the

object.

This

section

describes

how

to

specify

this

information,

using

the

ODA

with

Business

Object

Designer.

For

a

detailed

description

of

these

categories

of

information

and

what

they

mean

for

business

object

structure

in

the

COM

connector,

see

Chapter

4,

“Understanding

business

objects,”

on

page

23.

Selecting

verbs

In

Business

Object

Designer,

the

first

screen

that

appears

when

you

finish

creating

a

business

object

and

then

open

it

in

a

separate

window

is

the

BO

Properties

-

Select

Verbs

for

component

screen.

Figure

15

on

page

43

illustrates

this

screen

for

the

name

business

object

created

in

Figure

12

on

page

40

and

Figure

13

on

page

41.

Figure

14.

BO

Properties

screen

42

Adapter

for

COM

User

Guide

On

this

screen

you

specify

the

verbs

that

the

business

objects

supports.

The

ODA

allows

you

to

specify

the

four

supported

verbs

(Create,

Retrieve,

Delete,

and

Update)

and

assign

as

actions

of

each

verb

n

plus

two

methods,

where

n

equals

the

number

of

methods

in

the

corresponding

COM

component.

The

two

additional

methods

are

those

supported

by

the

connector

(LoadFromProxy

and

WriteToProxy).

To

specify

additional

verbs

beyond

the

supported

four,

or

to

edit

verb

information

after

you

create

a

business

object,

use

Business

Object

Designer.

For

details

about

business

object

verbs

for

the

COM

connector,

see

“Verb

ASI”

on

page

25

1.

In

the

Value

list

for

the

Verbs

property,

select

the

verbs

that

you

want

the

business

object

to

support.

You

can

select

one

or

more

verbs.

You

can

also

deselect

a

verb

at

any

time.

2.

Click

OK.

Specifying

the

verb

ASI

For

each

verb

selected

in

Step

1

of

“Selecting

verbs”

on

page

42,

a

separate

window

appears

where

you

specify

the

method

sequence

that

must

be

executed

for

the

verb.

Figure

16

on

page

44

illustrates

this

screen

for

the

Create

verb

of

the

name

business

object

created

in

Figure

12

on

page

40

and

Figure

13

on

page

41.

Figure

15.

Select

verb

for

component

screen

Chapter

5.

Creating

and

modifying

business

objects

43

1.

In

the

Value

list

for

the

MethodSequence

property,

click

the

method

that

you

want

the

business

object

to

execute

first

for

the

verb.

In

Figure

16,

the

method

sequence

is

as

follows:

v

The

first

method

that

will

be

executed

in

the

sequence

of

methods

for

the

Create

verb

is

LoadFromProxy.

v

The

second

method

in

the

sequence

is

name.

v

The

third

method

in

the

sequence

is

WriteToProxy.

The

name

method

is

provided

by

the

Siebel

business

object

component

(defined

in

the

type

library

file).

The

LoadFromProxy

and

WriteToProxy

methods

are

provided

by

the

ODA.

By

specifying

a

method

sequence

for

the

verb,

you

are

creating

the

verb

ASI

that

is

associated

with

that

verb.

If

necessary,

this

verb

ASI

can

be

modified

later

using

Business

Object

Designer.

2.

Click

OK.

For

a

list

of

the

keywords

supported

by

the

COM

verb

ASI,

see

Table

5

on

page

26.

Open

the

business

object

in

a

separate

window

The

Business

Object

Wizard

-

Step

6

of

6

-

Save

business

objects

screen

appears.

Figure

16.

Setting

the

verb

method

sequence

44

Adapter

for

COM

User

Guide

You

can

optionally

open

the

new

business

objects

in

separate

windows

within

Business

Object

Designer,

or

(after

specifying

a

key

for

the

top-level

business

object)

you

can

save

the

generated

business

object

definitions

to

a

file.

To

open

the

business

objects

in

separate

windows

1.

Select

Open

the

new

BOs

in

separate

windows.

2.

Click

Finish.

Each

business

object

appears

in

a

separate

window

where

you

can

view

and

set

the

ASI

information

for

the

business

objects

and

business

object

verbs

you

just

created.

For

details,

see

“Selecting

verbs”

on

page

42

and

“Specifying

the

verb

ASI”

on

page

43.

To

save

the

business

objects

to

a

file

(only

after

you

specify

a

key

for

the

parent-level

business

object,

as

illustrated

in

Figure

18

on

page

46):

1.

Select

Save

a

copy

of

the

business

objects

to

a

separate

file.

A

dialog

box

appears.

2.

Type

the

location

in

which

you

want

the

copy

of

the

new

business

object

definitions

to

be

saved.

Business

Object

Designer

saves

the

files

to

the

specified

location.

If

you

have

finished

working

with

the

ODA,

you

can

shut

it

down

by

checking

“Shutdown

ODA

COM

ODA”

before

clicking

Finish.

Specifying

the

attribute-level

ASI

After

you

define

the

verb

ASI

(by

specifying

a

method

sequence

that

must

be

executed

for

each

verb),

Business

Object

Designer

displays

the

attributes

for

the

business

object.

For

details

about

the

attribute-level

ASI

in

the

COM

connector,

see

“Attribute-level

ASI”

on

page

27.

Figure

17.

Save

business

objects

screen

Chapter

5.

Creating

and

modifying

business

objects

45

The

attributes

are

listed

on

the

Attributes

tab

in

the

order

in

which

they

appear

in

the

business

object

structure,

as

defined

by

the

numeric

value

in

the

Pos

column.

Simple

COM

object

attributes

are

represented

as

simple

attributes

and

their

ASI

contains

the

original

COM

attribute

name

and

type.

For

each

attribute,

the

screen

provides

the

name

of

the

attribute,

its

type,

and

the

ASI

information.

Figure

18

illustrates

method

attribute

ASI.

The

name

attribute

of

the

business

object

has

an

ASI

that

maps

the

attribute

to

the

original

COM

component

method.

In

this

example,

the

original

method

is

indicated

under

the

App

Spec

Info

column,

by

the

method_name=name

ASI.

In

addition,

name

(a

child

business

object)

has

the

following

child

object

attributes:

v

errCode,

which

is

a

parameter

of

the

original

method

in

the

COM

type

library.

This

attribute

has

an

ASI

of

type,

which

in

the

COM

type

library

file

is

set

to

short_reference.

In

the

business

object,

the

type

is

mapped

to

Integer.

v

return_value,

which

is

used

to

capture

the

return

value

of

the

name

method.

In

the

COM

type

library

file,

the

method

is

defined

as

having

a

return

value

of

type

BSTR,

and

in

the

business

object

ASI,

the

type

is

set

to

String.

Note

that

if

a

method

in

the

COM

type

library

does

not

return

a

value,

the

return_value

attribute

is

not

included

in

the

list

of

business

object

attributes.

On

this

screen,

you

should

specify

whether

or

not

a

parent-level

object

is

a

key

(which

is

required

by

the

ODA

for

saving

the

business

objects

to

a

separate

file).

You

can

also

use

this

screen

to

set

child

object

keys

as

needed

and

to

specify

the

following

information:

v

Is

the

attribute

required

for

the

connector

to

process

the

business

object?

If

so,

click

the

Required

check

box.

v

Is

the

maximum

length

of

the

attribute

different

from

the

value

that

appears

in

the

Maximum

Length

column.

v

Does

the

attribute

have

a

default

value?

If

so,

type

the

value

in

the

Default

column.

Note:

While

you

can

create

a

business

object

through

the

ODA

(running

in

Business

Object

Designer)

and

set

the

parent

level

key(s),

do

not

configure

the

foreign

key

in

this

manner.

The

foreign

key

is

non-ASI

meta

data

and

therefore

must

always

be

configured

without

the

ODA

(in

Business

Object

Designer,

click

File

>

New

to

create

a

new

business

object

without

using

the

ODA).

Figure

18.

Setting

the

attribute

ASI

46

Adapter

for

COM

User

Guide

Specifying

the

business

object-level

ASI

After

specifying

the

attribute-level

ASI,

you

can

view

and

modify

the

business

object-level

ASI.

For

details

about

business

object-level

ASI,

see

“Business

object-level

ASI”

on

page

25.

The

business

object-level

ASI

is

listed

on

the

General

tab.

The

ASI

value

that

appears

in

the

field

Business

Object

Level

Application-specific

information

contains

the

name

of

the

proxy

class

that

represents

this

business

object.

The

connector

uses

this

information

to

map

a

proxy

class

to

a

business

object.

This

screen

also

lists

all

the

verbs

that

are

supported

by

the

business

object

and

provides

the

ASI

for

each

verb,

as

it

was

defined

in

“Specifying

the

verb

ASI”

on

page

43.

If

a

verb

is

blank,

then

a

method

sequence

will

not

be

executed

for

that

verb.

Figure

19

illustrates

the

business

object-level

ASI

for

the

name

business

object.

The

only

verb

that

will

execute

a

method

sequence

for

this

business

object

is

Create,

which

has

a

verb

ASI

with

the

method

sequence

illustrated

here

(it

was

originally

set

in

Figure

16

on

page

44).

On

this

screen

you

can

modify

the

ASI

of

the

business

object

and

its

supporting

verbs.

Uploading

business

object

files

The

newly

created

business

object

definition

files

must

be

uploaded

to

the

integration

broker

once

they

have

been

created.

The

process

depends

on

whether

you

are

running

WebSphere

InterChange

Server,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Application

Server.

v

WebSphere

InterChange

Server:

If

you

have

saved

your

business

object

definition

files

to

a

local

machine

and

must

upload

them

to

the

repository

on

the

server,

refer

to

the

InterChange

Server

implementation

documentation.

v

WebSphere

MQ

Integrator

Broker:

You

must

export

the

business

object

definitions

out

of

Business

Object

Designer

and

into

the

integration

broker.

For

details,

refer

to

the

implementation

documentation

of

WebSphere

MQ

Integrator

Broker.

v

WebSphere

Application

Server:

For

details,

see

the

implementation

documentation

of

WebSphere

Application

Server.

Figure

19.

Setting

the

business

object

level

ASI

Chapter

5.

Creating

and

modifying

business

objects

47

48

Adapter

for

COM

User

Guide

Chapter

6.

Troubleshooting

and

error

handling

This

chapter

describes

how

the

adapter

for

COM

handles

errors.

The

adapter

generates

logging

and

tracing

messages.

This

chapter

describes

these

messages

and

provides

troubleshooting

tips.

The

chapter

contains

the

following

sections:

v

“Error

handling”

v

“Logging”

on

page

50

v

“Tracing”

on

page

50

Error

handling

All

messages

generated

by

the

connector

are

stored

in

a

message

file

named

BIA_COMConnector.txt.

(The

name

of

the

file

is

determined

by

the

LogFileName

standard

connector

configuration

property.)

Each

message

has

a

message

number

followed

by

the

message:

Message

number

Message

text

The

connector

handles

specific

errors

as

described

in

the

following

sections.

COM

exception

generated

by

COMProxy

The

COMProxy

interface

tool

can

generate

a

variety

of

errors.

For

example,

if

the

COM

application

is

down,

or

the

COM

call

returns

a

failure,

the

COMProxy

tool

throws

an

exception.

The

connector

handles

such

COMProxy

exceptions

by

logging

and

returning

a

FAIL

code.

The

HRESULT

of

the

COM

call

is

contained

in

the

COM

exception.

To

aid

in

debugging,

the

connector

logs

the

HRESULT,

and

returns

it

in

the

message

field

of

the

VerbProcessingFailed

exception.

The

exception

also

contains

information

about

which

call

in

the

sequence

failed.

ClassNotFound

for

proxy

When

the

Loader

receives

the

proxy

class

name

and

tries

to

create

a

proxy

object

of

that

class,

an

exception

is

raised

if

it

cannot

find

the

class.

The

connector

logs

the

error,

which

includes

the

name

of

the

class

not

found,

and

returns

a

FAIL

code.

InstantiationException

in

Loader

When

the

Loader

receives

the

proxy

class

name

and

tries

to

create

a

proxy

object

of

that

class,

an

exception

is

raised

if

it

cannot

create

the

object

instance.

The

connector

logs

the

error,

which

includes

the

class

name

of

the

object

that

cannot

be

instantiated,

and

returns

a

FAIL

code.

InstantiationException

or

ClassNotFound

during

setup

of

factory

or

connection

pool

A

fatal

exception

is

raised

if

one

of

the

following

occurs:

v

The

Agent

Init()

method

cannot

find

the

Factory

class

or

Connection

class

specified

in

the

connector’s

configuration

properties.

v

The

Agent

Init()

method

cannot

instantiate

a

Factory

or

Connection

object

of

the

specified

class.

©

Copyright

IBM

Corp.

2003

49

The

connector

logs

the

error

and

returns

an

APP_RESPONSE_TIMEOUT

code.

IIlegal

AccessException

in

Loader

or

Invoker

The

connector

raises

an

exception

due

to

invalid

code

or

improper

access

(public

or

private)

on

a

method

by

the

COMProxy

tool.

The

connector

logs

the

error

and

returns

a

FAIL

code.

NoSuchMethodException

in

Invoker

The

connector

raises

an

exception

if

a

method

is

specified

on

the

business

object

that

does

not

exist

in

the

corresponding

proxy

object.

The

connector

logs

the

error

and

returns

a

FAIL

code.

InvocationTargetException

in

Invoker

The

connector

raises

an

exception

when

the

COM

application

(with

which

the

connector

is

exchanging

business

objects)

raises

an

exception.

The

connector

logs

the

error

and

returns

a

FAIL

code.

Invalid

argument

(CXIgnore)

in

a

method

object

in

Invoker

The

connector

raises

an

exception

when

a

method

is

included

in

the

business

object’s

verb

ASI,

but

the

arguments

of

that

method

have

not

been

populated.

The

connector

logs

the

error

and

returns

a

FAIL

code.

Cast

failure

or

wrong

attribute

type

The

connector

raises

an

exception

if

a

proxy

object

method

takes

or

returns

a

different

data

type

than

what

has

been

specified

in

the

business

object.

The

connector

logs

the

error

and

returns

a

FAIL

code.

Invalid

verb

ASI

The

connector

raises

an

exception

if

the

verb

ASI

of

the

business

object

being

passed

to

it

is

formatted

incorrectly

or

uses

improper

syntax.

Examples

of

this

include

a

verb

ASI

that

does

not

contain

a

proper

method

sequence,

or

a

child

business

object

that

specifies

CBOH

(custom

BO

handler)

for

an

active

verb.

The

connector

logs

the

error

and

returns

a

FAIL

code.

Logging

All

errors

described

in

“Error

handling”

on

page

49

must

be

read

from

the

message

file

(BIA_COMConnector.txt).

Tracing

Tracing

is

an

optional

debugging

feature

you

can

turn

on

to

closely

follow

connector

behavior.

Trace

messages,

by

default,

are

written

to

STDOUT.

For

more

on

configuring

trace

messages,

see

the

connector

configuration

properties

in

“Configuring

the

connector”

on

page

15.

For

more

information

on

tracing,

including

how

to

enable

and

set

it,

see

the

Connector

Development

Guide.

50

Adapter

for

COM

User

Guide

Table

11

lists

the

recommended

content

for

connector

tracing

message

levels.

Table

11.

Tracing

messages

content

Level

Description

Level

0

Use

this

level

for

trace

messages

that

identify

the

connector

version.

No

other

tracing

is

performed

at

this

level.

Level

1

Use

this

level

for

trace

messages

that:

v

Provide

status

information.

v

Provide

key

information

on

each

business

object

processed.

v

Record

each

time

a

polling

thread

detects

a

new

message

in

an

input

queue.

Level

2

Use

this

level

for

trace

messages

that:

v

Identify

the

BO

handler

used

for

each

object

that

the

connector

processes.

v

Log

each

time

a

business

object

is

posted

to

the

integration

broker.

v

Indicate

each

time

a

request

business

object

is

received.

Level

3

Use

this

level

for

trace

messages

that:

v

Identify

the

foreign

keys

being

processed,

if

applicable.

These

messages

appear

when

the

connector

has

encountered

a

foreign

key

in

a

business

object

or

when

the

connector

sets

a

foreign

key

in

a

business

object.

v

Relate

to

business

object

processing.

Examples

of

this

include

finding

a

match

between

business

objects,

or

finding

a

business

object

in

an

array

of

child

business

objects.

Level

4

Use

this

level

for

trace

messages

that:

v

Identify

application-specific

information.

Examples

of

this

include

the

values

returned

by

the

methods

that

process

the

application-specific

information

fields

in

business

objects.

v

Identify

when

the

connector

enters

or

exits

a

function.

These

messages

help

trace

the

process

flow

of

the

connector.

v

Record

any

thread-specific

processing.

For

example,

if

the

connector

spawns

multiple

threads,

a

message

logs

the

creation

of

each

new

thread.

Level

5

Use

this

level

for

trace

messages

that:

v

Indicate

connector

initialization.

This

type

of

message

can

include,

for

example,

the

value

of

each

connector

configurator

property

that

has

been

retrieved

from

the

broker.

v

Detail

the

status

of

each

thread

that

the

connector

spawns

while

it

is

running.

v

Represent

statements

executed

in

the

application.

The

connector

log

file

contains

all

statements

executed

in

the

target

application

and

the

value

of

any

variables

that

are

substituted,

where

applicable.

v

Record

business

object

dumps.

The

connector

should

output

a

text

representation

of

a

business

object

before

it

begins

processing

(showing

the

object

that

the

connector

receives

from

the

collaboration)

as

well

as

after

it

finishes

processing

the

object

(showing

the

object

that

the

connector

returns

to

the

collaboration).

Chapter

6.

Troubleshooting

and

error

handling

51

52

Adapter

for

COM

User

Guide

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

WebSphere

Business

Integration

adapters.

The

information

covers

connectors

running

on

the

following

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

The

WebSphere

message

brokers:

WebSphere

MQ

Integrator

(WMQI)

and

Integrator

Broker

(WMQIB),

and

WebSphere

Business

Integration

Message

Broker

(WBIMB).

v

WebSphere

Application

Server

(WAS)

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter

running

with

that

broker.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

New

and

deleted

properties

These

standard

properties

have

been

added

in

this

release.

New

properties

v

XMLNameSpaceFormat

Deleted

properties

v

RestartCount

v

RHF2MessageDomain

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

You

configure

connector

properties

from

Connector

Configurator,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator,

refer

to

the

Connector

Configurator

appendix.

Note:

Connector

Configurator

and

System

Manager

run

only

on

the

Windows

system.

If

you

are

running

the

connector

on

a

UNIX

system,

you

must

have

©

Copyright

IBM

Corp.

2003

53

a

Windows

machine

with

these

tools

installed.

To

set

connector

properties

for

a

connector

that

runs

on

UNIX,

you

must

start

up

System

Manager

on

the

Windows

machine,

connect

to

the

UNIX

integration

broker,

and

bring

up

Connector

Configurator

for

the

connector.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

(only

if

WebSphere

InterChange

Server

is

the

integration

broker)

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

If

the

connector

is

working

in

stand-alone

mode

(independently

of

System

Manager),

for

example

with

one

of

the

WebSphere

message

brokers,

you

can

only

change

properties

through

the

configuration

file.

In

this

case,

a

dynamic

update

is

not

possible.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

(ICS

only)

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

12

on

page

55

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

54

Adapter

for

COM

User

Guide

Table

12.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

MQ

or

IDL:

Repository

directory

is

<REMOTE>

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS,

WMQI,

WAS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

True

Dynamic

Repository

directory

is

<REMOTE>

ControllerTraceLevel

0-5

0

Dynamic

Repository

directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

MQ,

IDL,

or

JMS

JMS

Component

restart

If

Repository

directory

is

local,

then

value

is

JMS

only

DuplicateEventElimination

True

or

False

False

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

Appendix

A.

Standard

configuration

properties

for

connectors

55

Table

12.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

CxCommon.Messaging

.jms.SonicMQFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

If

FactoryClassName

is

IBM,

use

crossworlds.queue.

manager.

If

FactoryClassName

is

Sonic,

use

localhost:2506.

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

directory

is

<REMOTE>

ListenerConcurrency

1-

100

1

Component

restart

Delivery

Transport

must

be

MQ

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

True

or

False

False

Component

restart

Repository

Directory

must

be

<REMOTE>

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

must

be

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

True

OADAutoRestartAgent

True

or

False

False

Dynamic

Repository

Directory

must

be

<REMOTE>

56

Adapter

for

COM

User

Guide

Table

12.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

must

be

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

must

be

<REMOTE>

PollEndTime

HH:MM

HH:MM

Component

restart

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container

Managed

Events

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

For

ICS:

set

to

<REMOTE>

For

WebSphere

MQ

message

brokers

and

WAS:

set

to

C:\crossworlds\

repository

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS:

required

only

if

Repository

directory

is

<REMOTE>

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

SourceQueue

Valid

WebSphere

MQ

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

Appendix

A.

Standard

configuration

properties

for

connectors

57

Table

12.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

Transport

is

JMS

SynchronousResponseQueue

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS

WireFormat

CwXML,

CwBO

CwXML

Agent

restart

CwXML

if

Repository

Directory

is

not

<REMOTE>:

CwBO

if

Repository

Directory

is

<REMOTE>

WsifSynchronousRequest

Timeout

0

-

any

number

(millisecs)

0

Component

restart

WAS

only

XMLNameSpaceFormat

short,

long

short

Agent

restart

WebSphere

MQ

message

brokers

and

WAS

only

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

58

Adapter

for

COM

User

Guide

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

type

that

you

are

using.

The

options

are

ICS,

WebSphere

message

brokers

(WMQI,

WMQIB

or

WBIMB)

or

WAS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

ConcurrentEventTriggeredFlows

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

Appendix

A.

Standard

configuration

properties

for

connectors

59

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

ControllerStoreAndForwardMode

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Applicable

only

if

RepositoryDirectory

is

<REMOTE>.

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

60

Adapter

for

COM

User

Guide

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

MQ

for

WebSphere

MQ,

IDL

for

CORBA

IIOP,

or

JMS

for

Java

Messaging

Service.

v

If

ICS

is

the

broker

type,

the

value

of

the

DeliveryTransport

property

can

be

MQ,

IDL,

or

JMS,

and

the

default

is

IDL.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

value

may

only

be

JMS.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

MQ

or

IDL.

WebSphere

MQ

and

IDL

Use

WebSphere

MQ

rather

than

IDL

for

event

delivery

transport,

unless

you

must

have

only

one

product.

WebSphere

MQ

offers

the

following

advantages

over

IDL:

v

Asynchronous

communication:

WebSphere

MQ

allows

the

application-specific

component

to

poll

and

persistently

store

events

even

when

the

server

is

not

available.

v

Server

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

server

side.

In

optimized

mode,

WebSphere

MQ

stores

only

the

pointer

to

an

event

in

the

repository

database,

while

the

actual

event

remains

in

the

WebSphere

MQ

queue.

This

saves

having

to

write

potentially

large

events

to

the

repository

database.

v

Agent

side

performance:

WebSphere

MQ

provides

faster

performance

on

the

application-specific

component

side.

Using

WebSphere

MQ,

the

connector’s

polling

thread

picks

up

an

event,

places

it

in

the

connector’s

queue,

then

picks

up

the

next

event.

This

is

faster

than

IDL,

which

requires

the

connector’s

polling

thread

to

pick

up

an

event,

go

over

the

network

into

the

server

process,

store

the

event

persistently

in

the

repository

database,

then

pick

up

the

next

event.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

in

the

following

environment:

v

AIX

5.0

v

WebSphere

MQ

5.3.0.1

v

When

ICS

is

the

integration

broker

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

If

your

installation

uses

less

than

768M

of

process

heap

size,

IBM

recommends

that

you

set:

v

The

LDR_CNTRL

environment

variable

in

the

CWSharedEnv.sh

script.

This

script

resides

in

the

\bin

directory

below

the

product

directory.

With

a

text

editor,

add

the

following

line

as

the

first

line

in

the

CWSharedEnv.sh

script:

export

LDR_CNTRL=MAXDATA=0x30000000

Appendix

A.

Standard

configuration

properties

for

connectors

61

This

line

restricts

heap

memory

usage

to

a

maximum

of

768

MB

(3

segments

*

256

MB).

If

the

process

memory

grows

more

than

this

limit,

page

swapping

can

occur,

which

can

adversely

affect

the

performance

of

your

system.

v

The

IPCCBaseAddress

property

to

a

value

of

11

or

12.

For

more

information

on

this

property,

see

the

System

Installation

Guide

for

UNIX.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

This

property

is

applicable

only

if

the

RepositoryDirectory

value

is

<REMOTE>.

The

default

value

is

1m.

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

62

Adapter

for

COM

User

Guide

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

ListenerConcurrency

This

property

supports

multi-threading

in

MQ

Listener

when

ICS

is

the

integration

broker.

It

enables

batch

writing

of

multiple

events

to

the

database,

thus

improving

system

performance.

The

default

value

is

1.

This

property

applies

only

to

connectors

using

MQ

transport.

The

DeliveryTransport

property

must

be

set

to

MQ.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

Appendix

A.

Standard

configuration

properties

for

connectors

63

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

Connector

Configurator.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

LogAtInterchangeEnd

Applicable

only

if

RespositoryDirectory

is

<REMOTE>.

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control

and

is

applicable

only

if

the

value

of

the

RepositoryDirectory

property

is

<REMOTE>.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

64

Adapter

for

COM

User

Guide

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

trueto

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature.

see

the

Installation

Guide

for

Windows

or

for

UNIX.

The

default

value

is

false.

OADMaxNumRetry

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

value

is

1000.

OADRetryTimeInterval

Valid

only

when

the

RepositoryDirectory

is

<REMOTE>.

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

Appendix

A.

Standard

configuration

properties

for

connectors

65

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

the

integration

broker

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

When

the

integration

broker

is

ICS,

this

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

repository.

When

the

integration

broker

is

a

WebSphere

message

broker

or

WAS,

this

value

must

be

set

to

<local

directory>.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

required

only

if

RepositoryDirectory

is

<REMOTE>.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

When

the

integration

broker

is

ICS,

the

server

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

66

Adapter

for

COM

User

Guide

The

default

is

1.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

59.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

Message

format

on

the

transport.

v

If

the

RepositoryDirectory

is

a

local

directory,

the

setting

is

CwXML.

v

If

the

value

of

RepositoryDirectory

is

<REMOTE>,

the

setting

isCwBO.

WsifSynchronousRequest

Timeout

WAS

integration

broker

only.

Appendix

A.

Standard

configuration

properties

for

connectors

67

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified,

time

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

XMLNameSpaceFormat

WebSphere

message

brokers

and

WAS

integration

broker

only.

A

strong

property

that

allows

the

user

to

specify

short

and

long

name

spaces

in

the

XML

format

of

business

object

definitions.

The

default

value

is

short.

68

Adapter

for

COM

User

Guide

Appendix

B.

Connector

Configurator

This

appendix

describes

how

to

use

Connector

Configurator

to

set

configuration

property

values

for

your

adapter.

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector

v

Create

a

configuration

file

v

Set

properties

in

a

configuration

file

Note:

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes

and

follow

the

conventions

for

each

operating

system.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator”

on

page

69

v

“Starting

Connector

Configurator”

on

page

70

v

“Creating

a

connector-specific

property

template”

on

page

71

v

“Creating

a

new

configuration

file”

on

page

73

v

“Setting

the

configuration

file

properties”

on

page

76

v

“Using

Connector

Configurator

in

a

globalized

environment”

on

page

83

Overview

of

Connector

Configurator

Connector

Configurator

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

these

integration

brokers:

v

WebSphere

InterChange

Server

(ICS)

v

WebSphere

MQ

Integrator

(WMQI),

WebSphere

MQ

Integrator

Broker

(WMQI)

and

WebSphere

Business

Integration

Message

Broker

(WBIMB),

collectively

referred

to

as

the

MQ

message

brokers.

v

WebSphere

Application

Server

(WAS)

You

use

Connector

Configurator

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and,

with

ICS,

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

The

mode

in

which

you

run

Connector

Configurator,

and

the

configuration

file

type

you

use,

may

differ

according

to

which

integration

broker

you

are

running.

For

example,

if

WMQI

is

your

broker,

you

run

Connector

Configurator

directly,

and

not

from

within

System

Manager

(see

“Running

Configurator

in

stand-alone

mode”

on

page

70).

©

Copyright

IBM

Corp.

2003

69

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

71

to

set

up

a

new

one.

Note:

Connector

Configurator

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Starting

Connector

Configurator

You

can

start

and

run

Connector

Configurator

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

in

stand-alone

mode

You

can

run

Connector

Configurator

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

InterChange

Server>IBM

WebSphere

Business

Integration

Toolset>Development>Connector

Configurator.

v

Select

File>New>Configuration

File.

v

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

You

may

choose

to

run

Connector

Configurator

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

75.)

70

Adapter

for

COM

User

Guide

Running

Configurator

from

System

Manager

You

can

run

Connector

Configurator

from

System

Manager.

To

run

Connector

Configurator:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator.

The

Connector

Configurator

window

opens

and

displays

a

New

Connector

dialog

box.

4.

When

you

click

the

pull-down

menu

next

to

System

Connectivity

Integration

Broker,

you

can

select

ICS,

WebSphere

Message

Brokers

or

WAS,

depending

on

your

broker.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

Connector

Configurator

opens

and

displays

the

configuration

file

with

the

integration

broker

type

and

file

name

at

the

top.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

71.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

Appendix

B.

Connector

Configurator

71

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

72

Adapter

for

COM

User

Guide

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependences

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator.

Creating

a

new

configuration

file

When

you

create

a

new

configuration

file,

your

first

step

is

to

select

an

integration

broker.

The

broker

you

select

determines

the

properties

that

will

appear

in

the

configuration

file.

To

select

a

broker:

v

In

the

Connector

Configurator

home

menu,

click

File>New>Connector

Configuration.

The

New

Connector

dialog

box

appears.

v

In

the

Integration

Broker

field,

select

ICS,

WebSphere

Message

Brokers

or

WAS

connectivity.

v

Complete

the

remaining

fields

in

the

New

Connector

window,

as

described

later

in

this

chapter.

You

can

also

do

this:

v

In

the

System

Manager

window,

right-click

on

the

Connectors

folder

and

select

Create

New

Connector.

Connector

Configurator

opens

and

displays

the

New

Connector

dialog

box.

Appendix

B.

Connector

Configurator

73

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

Click

ICS

or

WebSphere

Message

Brokers

or

WAS.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

window,

as

described

later

in

this

chapter.

Using

an

existing

file

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

ICS

repository

file.

Definitions

used

in

a

previous

ICS

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

74

Adapter

for

COM

User

Guide

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg,

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

ICS

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector

in

an

ICS

environment.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator.

3.

Click

File>Open>From

Project.

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

The

title

of

the

configuration

screen

displays

the

integration

broker

and

connector

name

as

specified

in

the

file.

Make

sure

you

have

the

correct

broker.

If

not,

change

the

broker

value

before

you

configure

the

connector.

To

do

so:

1.

Under

the

Standard

Properties

tab,

select

the

value

field

for

the

BrokerType

property.

In

the

drop-down

menu,

select

the

value

ICS,

WMQI,

or

WAS.

2.

The

Standard

Properties

tab

will

display

the

properties

associated

with

the

selected

broker.

You

can

save

the

file

now

or

complete

the

remaining

configuration

fields,

as

described

in

“Specifying

supported

business

object

definitions”

on

page

78..

3.

When

you

have

finished

your

configuration,

click

File>Save>To

Project

or

File>Save>To

File.

If

you

are

saving

to

file,

select

*.cfg

as

the

extension,

select

the

correct

location

for

the

file

and

click

Save.

Appendix

B.

Connector

Configurator

75

If

multiple

connector

configurations

are

open,

click

Save

All

to

File

to

save

all

of

the

configurations

to

file,

or

click

Save

All

to

Project

to

save

all

connector

configurations

to

a

System

Manager

project.

Before

it

saves

the

file,

Connector

Configurator

checks

that

values

have

been

set

for

all

required

standard

properties.

If

a

required

standard

property

is

missing

a

value,

Connector

Configurator

displays

a

message

that

the

validation

failed.

You

must

supply

a

value

for

the

property

in

order

to

save

the

configuration

file.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Connector

Configurator

requires

values

for

properties

in

these

categories

for

connectors

running

on

all

brokers:

v

Standard

Properties

v

Connector-specific

Properties

v

Supported

Business

Objects

v

Trace/Log

File

values

v

Data

Handler

(applicable

for

connectors

that

use

JMS

messaging

with

guaranteed

event

delivery)

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

connectors

running

on

ICS,

values

for

these

properties

are

also

required:

v

Associated

Maps

v

Resources

v

Messaging

(where

applicable)

Important:

Connector

Configurator

accepts

property

values

in

either

English

or

non-English

character

sets.

However,

the

names

of

both

standard

and

connector-specific

properties,

and

the

names

of

supported

business

objects,

must

use

the

English

character

set

only.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

76

Adapter

for

COM

User

Guide

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

Value

fields

are

configurable.

v

The

Update

Method

field

is

informational

and

not

configurable.

This

field

specifies

the

action

required

to

activate

a

property

whose

value

has

changed.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties.”

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

Appendix

B.

Connector

Configurator

77

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

54.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

For

you

to

specify

a

supported

business

object,

the

business

objects

and

their

maps

must

exist

in

the

system.

v

Business

object

definitions

and

map

definitions

should

be

saved

into

System

Manager

projects.

v

Business

object

definitions

and

MQ

message

set

files

should

exist

if

are

using

a

WebSphere

Message

Broker

as

your

integration

broker.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

If

ICS

is

your

broker

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name:

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

78

Adapter

for

COM

User

Guide

2.

From

the

Edit

menu

of

the

Connector

Configurator

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

Agent

support:

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level:

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

If

a

WebSphere

Message

Broker

is

your

broker

The

MQ

message

set

files

(*.set

files)

contain

message

set

IDs

that

Connector

Configurator

requires

for

designating

the

connector’s

supported

business

objects.

See

Implementing

Adapters

with

WebSphere

MQ

Integrator

Broker

for

information

about

creating

the

MQ

message

set

files.

Each

time

that

you

add

business

object

definitions

to

the

system,

you

must

use

Connector

Configurator

to

designate

those

business

objects

as

supported

by

the

connector.

To

specify

supported

business

objects:

1.

Select

the

Supported

Business

Objects

tab

and,

if

System

Manager

is

running,

use

the

drop

list

to

specify

a

business

object

name.

2.

If

System

Manager

is

not

running,

enter

the

Business

Object

Name.

3.

Enter

the

Message

Set

ID

(optional).

If

WAS

is

your

broker

When

WebSphere

Application

Server

is

selected

as

your

broker

type,

Connector

Configurator

does

not

require

message

set

IDs.

The

Supported

Business

Objects

tab

shows

a

Business

Object

Name

column

only

for

supported

business

objects.

If

you

are

working

in

stand-alone

mode

(not

connected

to

System

Manager),

you

must

enter

the

business

object

name

manually.

If

you

have

System

Manager

running,

you

can

select

the

empty

box

under

the

Business

Object

Name

column

in

the

Supported

Business

Objects

tab.

A

combo

box

appears

with

a

list

of

the

business

objects

available

from

the

Integration

Component

Library

project

to

which

the

connector

belongs.

Select

the

business

object

you

want

from

this

list.

Appendix

B.

Connector

Configurator

79

Associated

maps

(ICS

only)

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

WebSphere

InterChange

Server.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

ICS

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

window,

click

Save

to

Project.

4.

Deploy

the

project

to

ICS.

5.

Reboot

the

server

for

the

changes

to

take

effect.

80

Adapter

for

COM

User

Guide

Resources

(ICS)

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

Messaging

(ICS)

The

messaging

properties

are

available

only

if

you

have

set

MQ

as

the

value

of

the

DeliveryTransport

standard

property

and

ICS

as

the

broker

type.

These

properties

affect

how

your

connector

will

use

queues.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Not

all

adapters

make

use

of

data

handlers.

See

the

descriptions

under

ContainerManagedEvents

in

Appendix

A,

Standard

Properties,

for

values

to

use

for

these

properties.

For

additional

details,

see

the

Connector

Development

Guide

for

C++

or

the

Connector

Development

Guide

for

Java.

Appendix

B.

Connector

Configurator

81

Saving

your

configuration

file

When

you

have

finished

configuring

your

connector,

save

the

connector

configuration

file.

Connector

Configurator

saves

the

file

in

the

broker

mode

that

you

selected

during

configuration.

The

title

bar

of

Connector

Configurator

always

displays

the

broker

mode

(ICS,

WMQI

or

WAS)

that

it

is

currently

using.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

InterChange

Server

Project,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

If

you

have

saved

a

configuration

to

an

Integration

Component

Library,

you

need

to

deploy

it.

v

If

you

are

using

ICS

as

your

integration

broker,

copy

the

configuration

from

the

Integration

Component

Library

to

a

user

InterChange

Server

Project

and

use

System

Manager

to

deploy

the

user

project.

v

If

you

are

using

WMQI

as

your

integration

broker,

copy

the

configuration

file

from

the

Integration

Component

Library

to

a

user

Message

Broker

Project

and

use

System

Manager

to

deploy

to

an

integrator

broker.

v

If

you

are

using

WBIMB

as

your

integration

broker,

copy

the

configuration

file

from

the

Integration

Component

Library

to

a

user

Message

Broker

Project

and

use

System

Manager

to

deploy

to

a

Message

Broker

workspace.

v

If

you

are

using

WAS

as

your

integration

broker,

copy

the

configuration

from

the

Integration

Component

Library

to

a

user

WAS

Project

and

use

System

Manager

to

deploy

the

user

project.

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

following

implementation

guides:

v

For

ICS:

Implementation

Guide

for

WebSphere

InterChange

Server

v

For

WebSphere

Message

Brokers:

Implementing

Adapters

with

WebSphere

Message

Brokers

v

For

WAS:

Implementing

Adapters

with

WebSphere

Application

Server

Changing

a

configuration

file

You

can

change

the

integration

broker

setting

for

an

existing

configuration

file.

This

enables

you

to

use

the

file

as

a

template

for

creating

a

new

configuration

file,

which

can

be

used

with

a

different

broker.

Note:

You

will

need

to

change

other

configuration

properties

as

well

as

the

broker

mode

property

if

you

switch

integration

brokers.

To

change

your

broker

selection

within

an

existing

configuration

file

(optional):

v

Open

the

existing

configuration

file

in

Connector

Configurator.

v

Select

the

Standard

Properties

tab.

v

In

the

BrokerType

field

of

the

Standard

Properties

tab,

select

the

value

that

is

appropriate

for

your

broker.

When

you

change

the

current

value,

the

available

tabs

and

field

selections

on

the

properties

screen

will

immediately

change,

to

show

only

those

tabs

and

fields

that

pertain

to

the

new

broker

you

have

selected.

82

Adapter

for

COM

User

Guide

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

in

a

globalized

environment

Connector

Configurator

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

B.

Connector

Configurator

83

84

Adapter

for

COM

User

Guide

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2003

85

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

86

Adapter

for

COM

User

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

The

adapter

for

COM

includes

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org/).

WebSphere

Business

Integration

Adapter

Framework

V2.4.0

Notices

87

http://www.eclipse.org/

88

Adapter

for

COM

User

Guide

����

Printed

in

USA

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in Release 1.1.x

	Chapter 1. Overview
	Adapter environment
	Broker compatibility
	Adapter standards
	Adapter platforms
	Adapter dependencies

	Terminology
	Architecture of the COM connector
	How the connector works

	Business object requests
	Verb processing
	Custom business object handlers
	Custom BO handler example

	DCOM support
	Processing locale-dependent data

	Chapter 2. Installing the adapter
	Overview of installation tasks
	Confirm adapter prerequisites
	Install the integration broker
	Install the adapter for COM and related files

	Connector file structure
	Post-installation tasks

	Chapter 3. Configuring the adapter
	Overview of configuration tasks
	Configure the connector
	Configure the business objects

	Configuring the connector
	Standard connector properties
	Connector-specific properties

	Creating multiple connector instances
	Create a new directory

	Configuring the startup file
	Starting the connector
	Stopping the connector
	Using log and trace files

	Chapter 4. Understanding business objects
	Defining metadata
	Connector business object structure
	Attributes
	Methods
	Application-specific information

	Mapping attributes: COM, Java, and business object
	Array types

	Sample business object properties
	Connector call sequence sample
	Business object sample

	Generating business objects

	Chapter 5. Creating and modifying business objects
	Overview of the ODA for COM
	Generating business object definitions
	Starting the ODA
	Running Business Object Designer

	Specifying business object information
	Selecting verbs
	Specifying the verb ASI
	Open the business object in a separate window
	Specifying the attribute-level ASI
	Specifying the business object-level ASI

	Uploading business object files

	Chapter 6. Troubleshooting and error handling
	Error handling
	COM exception generated by COMProxy
	ClassNotFound for proxy
	InstantiationException in Loader
	InstantiationException or ClassNotFound during setup of factory or connection pool
	IIlegal AccessException in Loader or Invoker
	NoSuchMethodException in Invoker
	InvocationTargetException in Invoker
	Invalid argument (CXIgnore) in a method object in Invoker
	Cast failure or wrong attribute type
	Invalid verb ASI

	Logging
	Tracing

	Appendix A. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS only)
	Resources (ICS)
	Messaging (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Notices
	Programming interface information
	Trademarks and service marks

