
IBM

 

WebSphere

 

Business

 

Integration

 

Adapters

 

IBM

 

WebSphere

 

InterChange

 

Server

Business

 

Object

 

Development

 

Guide

    

���



Note!

 

Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

read

 

the

 

information

 

in

 

“Notices”

 

on

 

page

 

273.

20February2004

 

This

 

edition

 

of

 

this

 

document

 

applies

 

to

 

IBM

 

WebSphere

 

InterChange

 

Server,

 

version

 

4.2.2,

 

IBM

 

WebSphere

 

Business

 

Integration

 

Adapter

 

Framework

 

version

 

2.4,

 

and

 

to

 

all

 

subsequent

 

releases

 

and

 

modifications

 

until

 

otherwise

 

indicated

 

in

 

new

 

editions.

 

To

 

send

 

us

 

your

 

comments

 

about

 

this

 

document,

 

e-mail

 

doc-comments@us.ibm.com.

 

We

 

look

 

forward

 

to

 

hearing

 

from

 

you.

 

When

 

you

 

send

 

information

 

to

 

IBM,

 

you

 

grant

 

IBM

 

a

 

nonexclusive

 

right

 

to

 

use

 

or

 

distribute

 

the

 

information

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

2002,

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 



Contents

 

About

 

this

 

document

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. ix

 

Audience

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. ix

 

Related

 

documents

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. ix

 

Typographic

 

conventions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. x

 

New

 

in

 

this

 

release

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

New

 

in

 

Business

 

Object

 

Designer

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

New

 

in

 

the

 

2.3.0

 

release

 

of

 

Adapter

 

Framework

 

and

 

WebSphere

 

InterChange

 

Server

 

version

 

4.2.1

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

New

 

in

 

the

 

2.2.0

 

release

 

of

 

Adapter

 

Framework

 

and

 

WebSphere

 

InterChange

 

Server

 

version

 

4.2.0

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

New

 

in

 

the

 

2.1.0

 

release

 

of

 

Adapter

 

Framework

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

New

 

in

 

the

 

2.0.1

 

release

 

of

 

Adapter

 

Framework

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

New

 

in

 

the

 

2.0

 

release

 

of

 

Adapter

 

Framework

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

New

 

in

 

the

 

CrossWorlds

 

4.1.1

 

release

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

New

 

in

 

the

 

CrossWorlds

 

4.1.0

 

release

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xiii

 

New

 

in

 

the

 

CrossWorlds

 

4.0.1

 

release

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xiii

 

New

 

in

 

the

 

CrossWorlds

 

4.0.0

 

release

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xiii

 

Part

 

1.

 

Designing

 

and

 

developing

 

business

 

objects

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Chapter

 

1.

 

Business

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Business

 

objects

 

in

 

the

 

WebSphere

 

business

 

integration

 

system

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Business

 

object

 

definitions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

 

Business

 

object

 

instances

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Business

 

object

 

structure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 12

 

Flat

 

business

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 12

 

Hierarchical

 

business

 

objects

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 12

 

Overview

 

of

 

the

 

development

 

process

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 13

 

Setting

 

up

 

the

 

development

 

environment

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 13

 

Stages

 

of

 

business

 

object

 

development

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 14

 

Chapter

 

2.

 

Business

 

object

 

design

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 17

 

Determining

 

business

 

object

 

structure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 17

 

Representing

 

one

 

entity

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

Representing

 

multiple

 

entities

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 19

 

Design

 

considerations

 

for

 

multiple

 

entities

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Designing

 

application-specific

 

business

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 29

 

Contents

 

of

 

application-specific

 

business

 

object

 

definitions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 30

 

Designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 36

 

Designing

 

generic

 

business

 

objects

 

(InterChange

 

Server

 

only)

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 37

 

Generic

 

business

 

object

 

design

 

standards

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 39

 

Designing

 

for

 

event

 

isolation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 39

 

Attributes

 

in

 

a

 

generic

 

business

 

object

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 40

 

Evaluating

 

existing

 

generic

 

business

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 40

 

Determining

 

mapping

 

requirements

 

for

 

business

 

objects

 

(InterChange

 

Server

 

only)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 41

 

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 43

 

Working

 

with

 

projects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 43

 

If

 

Business

 

Object

 

Designer

 

is

 

running

 

without

 

System

 

Manager

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 43

 

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Starting

 

Business

 

Object

 

Designer

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 46

 

Opening

 

a

 

business

 

object

 

definition

 

from

 

Business

 

Object

 

Designer

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 47

 

Opening

 

a

 

business

 

object

 

definition

 

from

 

a

 

project

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 47

 

Opening

 

a

 

definition

 

from

 

a

 

file

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 48

 

Preventing

 

duplicate

 

definition

 

names

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 48

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

iii



Working

 

with

 

business

 

object

 

definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 50

 

Opening

 

a

 

business

 

object

 

definition

 

and

 

its

 

contained

 

child

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 50

 

Business

 

Object

 

Designer

 

functionality

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

 

File

 

menu

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

 

Edit

 

menu

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

View

 

menu

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 54

 

Tools

 

menu

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 54

 

Window

 

menu

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 54

 

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Creating

 

a

 

business

 

object

 

definition

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Creating

 

a

 

flat

 

business

 

object

 

definition

 

manually

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Creating

 

a

 

hierarchical

 

business

 

object

 

definition

 

manually

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Deleting

 

a

 

business

 

object

 

definition

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Deleting

 

a

 

definition

 

using

 

Business

 

Object

 

Designer

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Deleting

 

a

 

definition

 

using

 

System

 

Manager

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Before

 

using

 

an

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Using

 

the

 

sample

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 66

 

Entering

 

values

 

and

 

saving

 

a

 

profile

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 75

 

Setting

 

up

 

logging

 

and

 

tracing

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 75

 

Moving

 

through

 

the

 

source-node

 

hierarchy

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Providing

 

additional

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 82

 

Using

 

multiple

 

ODAs

 

simultaneously

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 83

 

Part

 

2.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 85

 

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 87

 

Running

 

an

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 87

 

Selecting

 

the

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 89

 

Obtaining

 

ODA

 

configuration

 

properties

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 89

 

Selecting

 

and

 

confirming

 

source

 

data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

 

Generating

 

content

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

 

Saving

 

content

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 95

 

Overview

 

of

 

the

 

ODA

 

development

 

process

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 95

 

Tools

 

for

 

ODA

 

development

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 95

 

ODA

 

development

 

process

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 98

 

Extending

 

the

 

ODA

 

base

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 99

 

Starting

 

the

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 101

 

Obtaining

 

configuration

 

properties

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 101

 

Initializing

 

ODA

 

metadata

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 103

 

Initializing

 

the

 

ODA

 

start

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 105

 

Determining

 

the

 

ODA

 

generated

 

content

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 107

 

Choosing

 

the

 

ODA

 

content

 

type

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 107

 

Choosing

 

the

 

ODA

 

content

 

protocol

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 108

 

Generating

 

business

 

object

 

definitions

 

as

 

content

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 110

 

Generating

 

source

 

nodes

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 111

 

Generating

 

business

 

object

 

definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 118

 

Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 131

 

Generating

 

binary

 

files

 

as

 

content

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Using

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Generating

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 135

 

Providing

 

access

 

to

 

generated

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 139

 

Working

 

with

 

agent

 

properties

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 140

 

Defining

 

the

 

agent

 

property

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 141

 

Defining

 

the

 

property

 

value

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 142

 

Setting

 

conditions

 

on

 

the

 

property

 

value

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 146

 

Shutting

 

down

 

the

 

ODA

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 150

 

Handling

 

trace

 

and

 

error

 

messages

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 150

 

Indicating

 

a

 

log

 

destination

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 150

   

iv

 

Business

 

Object

 

Development

 

Guide



Sending

 

a

 

message

 

to

 

the

 

trace

 

file

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 151

 

Message

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 153

 

Handling

 

exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

What

 

is

 

an

 

ODK

 

exception?

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

Exceptions

 

from

 

the

 

ODK

 

API

 

library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

Chapter

 

6.

 

Adding

 

an

 

Object

 

Discovery

 

Agent

 

to

 

the

 

business

 

integration

 

system

 

.

 

.

 

. 159

 

Naming

 

the

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 159

 

Compiling

 

the

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 159

 

Starting

 

up

 

a

 

new

 

ODA

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 160

 

Preparing

 

the

 

ODA

 

runtime

 

directory

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 160

 

Creating

 

startup

 

scripts

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 161

 

Part

 

3.

 

ODK

 

class

 

reference

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 163

 

Chapter

 

7.

 

Overview

 

of

 

the

 

ODK

 

API

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 165

 

Classes

 

and

 

interfaces

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 165

 

Chapter

 

8.

 

AgentMetaData

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

agentVersion

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

searchableNodes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

searchPatternDesc

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 168

 

supportedContent

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 168

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 169

 

AgentMetaData()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 170

 

toXml()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 171

 

Chapter

 

9.

 

AgentProperty

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

Property-type

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

allDefaultValues

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 174

 

allDependencies

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 174

 

allValidValues

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 174

 

allValues

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 175

 

cardinality

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 175

 

description

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 176

 

isHidden

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 176

 

isMultiple

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 177

 

isReadOnly

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 177

 

isRequired

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 178

 

propName

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 178

 

type

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

AgentProperty()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

copy()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 180

 

Chapter

 

10.

 

BusObjAttr

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

Attribute

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

BusObjAttr()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

getAppText()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

getAttrType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

 

getAttrTypeName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

 

getBOVersion()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

getCardinality()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

getComments()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 188

 

getDefault()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 188

 

getMaxLength()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 188

   

Contents

 

v



getName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 188

 

getRelationType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 189

 

isForeignKey()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 189

 

isKey()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 189

 

isRequiredKey()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

 

isRequiredServerBound()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

 

isSimpleType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

 

setAppText()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

 

setAttrType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

 

setBOVersion()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 192

 

setCardinality()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 192

 

setComments()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 193

 

setDefault()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 193

 

setIsForeignKey()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 193

 

setIsKey()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 193

 

setIsRequiredKey()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

setMaxLength()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

setName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

setRelationType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 195

 

Chapter

 

11.

 

BusObjAttrType

 

interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Attribute-type

 

constants

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Static

 

member

 

variable

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Chapter

 

12.

 

BusObjDef

 

class

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 199

 

BusObjDef()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 199

 

addDefaultVerbs()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 200

 

getAppInfo()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 200

 

getAttrCount()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

getAttribute()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

getAttributeIndex()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 202

 

getAttributeList()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 202

 

getName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 203

 

getVerb()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 203

 

getVerbCount()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 204

 

getVerbList()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 204

 

getVersion()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 204

 

insertAttribute()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 205

 

insertVerb()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 205

 

removeAttribute()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 206

 

removeVerb()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 207

 

setAppInfo()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 207

 

setAttributeList()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 208

 

setVerbList()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 208

 

Chapter

 

13.

 

BusObjVerb

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 211

 

BusObjVerb()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 211

 

clone()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 211

 

getAppInfo()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

getName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

setAppInfo()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

setName()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 213

 

Chapter

 

14.

 

CompleteCondition

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Operator

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

allDependentConditions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

 

allInputConditions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

 

CompleteCondition()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

   

vi

 

Business

 

Object

 

Development

 

Guide



copy()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 217

 

Chapter

 

15.

 

ContentMetaData

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

contentType

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

count

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

length

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

ContentMetaData()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 221

 

badContent()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 221

 

contentNotReady()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 221

 

contentUnavailable()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 222

 

Chapter

 

16.

 

ContentType

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

BinaryFile

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

BusinessObject

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 224

 

ContentType()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 224

 

equals()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 224

 

from_int()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

toString()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

value()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

xmlObject()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

Chapter

 

17.

 

DependentCondition

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 227

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 227

 

isDynamic

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 227

 

operatorType

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 227

 

propertyName

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 228

 

specificValue

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 228

 

typeOfSpecificValue

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 228

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 229

 

DependentCondition()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 229

 

copy()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 230

 

Chapter

 

18.

 

IGeneratesBinFiles

 

interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

generateBinFiles()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

getBinFile()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 232

 

getContentProtocol()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 233

 

Chapter

 

19.

 

IGeneratesBoDefs

 

interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 235

 

generateBoDefs()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 235

 

getBoDefs()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 236

 

getContentProtocol()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 237

 

getTreeNodes()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 238

 

Chapter

 

20.

 

InputCondition

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 241

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 241

 

isDynamic

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 241

 

operatorType

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 241

 

specificValue

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 242

 

typeOfSpecificValue

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 242

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

InputCondition()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

copy()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

Chapter

 

21.

 

ODKAgentBase2

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 245

 

getAgentProperties()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 245

   

Contents

 

vii



getMetaData()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 246

 

getVersion()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 247

 

init()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 247

 

terminate()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 247

 

Deprecated

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 248

 

Chapter

 

22.

 

ODKConstant

 

interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

String-value

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

User-response-dialog

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

Cardinality

 

constants

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 250

 

Trace-level

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Message-type

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Node-nature

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Content-protocol

 

constants

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Content-index

 

constant

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Chapter

 

23.

 

ODKException

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

ODKException()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

getMsg()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

Exception

 

subclasses

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 254

 

Chapter

 

24.

 

ODKUtility

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

contentComplete()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

getAgentProperty()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 256

 

getAllAgentProperties()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 257

 

getAllBOSpecificProperties()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 257

 

getBOSpecificProperty()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 258

 

getBOSpecificProps()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 258

 

getClientFile()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 259

 

getMsg()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 260

 

getODKUtility()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 261

 

sendMsg()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 262

 

sendStatusMsg()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 264

 

trace()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 264

 

Deprecated

 

Methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 266

 

Chapter

 

25.

 

TreeNode

 

class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 267

 

Member

 

variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 267

 

description

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 267

 

isExpandable

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 268

 

isGeneratable

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 268

 

name

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 268

 

nodes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 268

 

polymorphicNature

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 269

 

Method

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 269

 

TreeNode()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 270

 

Part

 

4.

 

Appendixes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 271

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 273

 

Programming

 

interface

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 274

 

Trademarks

 

and

 

service

 

marks

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 274

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 277

  

viii

 

Business

 

Object

 

Development

 

Guide



About

 

this

 

document

 

IBM(R)

 

WebSphere(R)

 

Business

 

Integration

 

Adapter

 

Portfolio

 

supplies

 

integration

 

connectivity

 

for

 

leading

 

e-business

 

technologies

 

and

 

enterprise

 

applications.

 

The

 

system

 

includes

 

tools

 

and

 

templates

 

for

 

customizing,

 

creating,

 

and

 

managing

 

components

 

for

 

business

 

process

 

integration.

 

This

 

document

 

describes

 

how

 

to

 

use

 

Business

 

Object

 

Designer

 

to

 

create

 

business

 

object

 

definitions,

 

both

 

manually

 

and

 

using

 

an

 

Object

 

Discovery

 

Agent

 

(ODA).

 

Object

 

Discovery

 

Agents

 

are

 

designed

 

to

 

“discover”

 

business

 

object

 

requirements

 

specific

 

to

 

a

 

data

 

source

 

and

 

to

 

generate

 

definitions

 

from

 

those

 

requirements.

 

Business

 

Object

 

Designer

 

provides

 

a

 

graphical

 

user

 

interface

 

(GUI)

 

to

 

the

 

available

 

Object

 

Discovery

 

Agents,

 

and

 

helps

 

manage

 

the

 

discovery

 

and

 

definition

 

generation

 

processes.

 

This

 

document

 

also

 

explains

 

how

 

to

 

use

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

to

 

create

 

Object

 

Discovery

 

Agents.

 

Audience

 

This

 

document

 

is

 

for

 

IBM

 

customers,

 

consultants,

 

or

 

resellers

 

who

 

create

 

or

 

modify

 

business

 

objects.

 

Before

 

you

 

start,

 

you

 

should

 

be

 

familiar

 

with

 

all

 

the

 

concepts

 

explained

 

in

 

Technical

 

Introduction

 

to

 

IBM

 

WebSphere

 

InterChange

 

Server

 

if

 

your

 

integration

 

broker

 

is

 

WebSphere

 

InterChange

 

Server

 

or

 

in

 

Implementation

 

Guide

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

if

 

your

 

integration

 

broker

 

is

 

WebSphere

 

MQ

 

Integrator

 

Broker.

 

Related

 

documents

 

You

 

can

 

install

 

the

 

documentation

 

or

 

read

 

it

 

directly

 

online

 

at

 

one

 

of

 

the

 

following

 

sites:

 

v

   

For

 

general

 

adapter

 

information;

 

for

 

using

 

adapters

 

with

 

WebSphere

 

message

 

brokers

 

(WebSphere

 

MQ

 

Integrator,

 

WebSphere

 

MQ

 

Integrator

 

Broker,

 

WebSphere

 

Business

 

Integration

 

Message

 

Broker);

 

and

 

for

 

using

 

adapters

 

with

 

WebSphere

 

Application

 

Server:

 

http://www.ibm.com/websphere/integration/wbiadapters/infocenter.

 

v

   

For

 

using

 

adapters

 

with

 

InterChange

 

Server:

 

http://www.ibm.com/websphere/integration/wicserver/infocenter.

 

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter.

 

v

   

For

 

more

 

information

 

about

 

message

 

brokers

 

(WebSphere

 

MQ

 

Integrator

 

Broker,

 

WebSphere

 

MQ

 

Integrator,

 

and

 

WebSphere

 

Business

 

Integration

 

Message

 

Broker):

 

http://www.ibm.com/software/integration/mqfamily/library/manualsa/.

 

v

   

For

 

more

 

information

 

about

 

WebSphere

 

Application

 

Server:

 

http://www.ibm.com/software/webservers/appserv/library.html.

These

 

sites

 

contain

 

simple

 

directions

 

for

 

downloading,

 

installing,

 

and

 

viewing

 

the

 

documentation.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

ix

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html


Typographic

 

conventions

 

This

 

document

 

uses

 

the

 

following

 

conventions:

  

courier

 

font

 

Indicates

 

a

 

literal

 

value,

 

such

 

as

 

a

 

command

 

name,

 

file

 

name,

 

information

 

that

 

you

 

type,

 

or

 

information

 

that

 

the

 

system

 

prints

 

on

 

the

 

screen.

 

italic,

 

italic

 

Indicates

 

a

 

new

 

term

 

the

 

first

 

time

 

that

 

it

 

appears,

 

a

 

variable

 

name,

 

or

 

a

 

cross-reference.

 

bold

 

Indicates

 

a

 

GUI

 

element.

 

blue

 

outline

 

A

 

blue

 

outline,

 

which

 

is

 

visible

 

only

 

when

 

you

 

view

 

the

 

manual

 

online,

 

indicates

 

a

 

cross-reference

 

hyperlink.

 

Click

 

inside

 

the

 

outline

 

to

 

jump

 

to

 

the

 

object

 

of

 

the

 

reference.

 

{

 

}

 

In

 

a

 

syntax

 

line,

 

curly

 

braces

 

surround

 

a

 

set

 

of

 

options

 

from

 

which

 

you

 

must

 

choose

 

one

 

and

 

only

 

one.

 

[

 

]

 

In

 

a

 

syntax

 

line,

 

square

 

brackets

 

surround

 

an

 

optional

 

parameter.

 

...

 

In

 

a

 

syntax

 

line,

 

ellipses

 

indicate

 

a

 

repetition

 

of

 

the

 

previous

 

parameter.

 

For

 

example,

 

option[,...]

 

means

 

that

 

you

 

can

 

enter

 

multiple,

 

comma-separated

 

options.

 

<

 

>

 

In

 

a

 

naming

 

convention,

 

angle

 

brackets

 

surround

 

individual

 

elements

 

of

 

a

 

name

 

to

 

distinguish

 

them

 

from

 

each

 

other,

 

as

 

in

 

<server_name><connector_name>tmp.log.

 

/,

 

\

 

In

 

this

 

document,

 

backslashes

 

(\)

 

are

 

used

 

as

 

the

 

convention

 

for

 

directory

 

paths.

 

For

 

UNIX

 

installations,

 

substitute

 

slashes

 

(/)

 

for

 

backslashes.

 

All

 

IBM

 

product

 

path

 

names

 

are

 

relative

 

to

 

the

 

directory

 

where

 

the

 

IBM

 

product

 

is

 

installed

 

on

 

your

 

system.

 

ProductDir

 

Represents

 

the

 

directory

 

where

 

the

 

product

 

is

 

installed.

 

For

 

the

 

IBM

 

WebSphere

 

InterChange

 

Server

 

environment,

 

the

 

default

 

product

 

directory

 

is

 

IBM\WebSphereICS.

 

For

 

the

 

IBM

 

WebSphere

 

Business

 

Integration

 

Adapters

 

environment,

 

the

 

default

 

product

 

directory

 

is

 

WebSphereAdapters.

   

UNIX

 

Sections

 

wrapped

 

with

 

such

 

statements

 

indicate

 

notes

 

listing

 

operating

 

system

 

differences.

%text%

 

and

 

$text

 

Text

 

within

 

percent

 

(%)

 

signs

 

indicates

 

the

 

value

 

of

 

the

 

Windows

 

text

 

system

 

variable

 

or

 

user

 

variable.

 

The

 

equivalent

 

notation

 

in

 

a

 

UNIX

 

environment

 

is

 

$text,

 

indicating

 

the

 

value

 

of

 

the

 

text

 

UNIX

 

environment

 

variable.

   

x

 

Business

 

Object

 

Development

 

Guide



New

 

in

 

this

 

release

 

This

 

chapter

 

describes

 

the

 

following

 

new

 

features

 

of

 

the

 

IBM

 

WebSphere

 

business

 

integration

 

system,

 

which

 

are

 

covered

 

in

 

this

 

document:

 

New

 

in

 

Business

 

Object

 

Designer

 

This

 

guide

 

documents

 

the

 

following

 

new

 

features

 

of

 

Business

 

Object

 

Designer:

 

v

   

Improved

 

steps

 

for

 

opening

 

a

 

business

 

object

 

definition

 

from

 

a

 

project

 

and

 

deleting

 

a

 

business

 

object

 

definition

 

from

 

a

 

project.

 

v

   

Enhanced

 

Business

 

Object

 

Wizard

 

screens

 

for

 

steps

 

3

 

through

 

6.

 

v

   

Process

 

Designer

 

can

 

be

 

started

 

from

 

the

 

Tools

 

menu

 

of

 

Business

 

Object

 

Designer.

New

 

in

 

the

 

2.3.0

 

release

 

of

 

Adapter

 

Framework

 

and

 

WebSphere

 

InterChange

 

Server

 

version

 

4.2.1

 

These

 

releases

 

provided

 

the

 

following

 

new

 

functionality:

 

v

   

Business

 

Object

 

Designer

 

can

 

now

 

be

 

started

 

from

 

the

 

System

 

Manager

 

tool

 

that

 

is

 

new

 

with

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

V2.3.0.

 

v

   

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

has

 

been

 

significantly

 

enhanced

 

to

 

provide

 

the

 

following

 

new

 

features

 

for

 

an

 

Object

 

Discovery

 

Agent

 

(ODA):

 

–

   

Ability

 

to

 

generate

 

files

 

as

 

content

 

in

 

addition

 

to

 

generation

 

of

 

business

 

object

 

definitions

 

–

   

Ability

 

to

 

associate

 

an

 

operating-system

 

file

 

with

 

a

 

node

 

in

 

the

 

source-node

 

hierarchy

 

–

   

Ability

 

to

 

determine

 

how

 

content

 

generation

 

is

 

initiated:

 

-

   

By

 

Business

 

Object

 

Designer’s

 

Business

 

Object

 

Wizard

 

-

   

By

 

some

 

user-defined

 

method,

 

which

 

creates

 

content

 

“spontaneously”

 

and

 

notifies

 

Business

 

Object

 

Wizard

 

when

 

it

 

is

 

complete

 

Development

 

of

 

all

 

new

 

ODAs

 

should

 

use

 

this

 

new

 

ODK

 

API.

 

For

 

information

 

on

 

how

 

to

 

use

 

the

 

new

 

ODK

 

API,

 

see

 

Chapter

 

5,

 

“Developing

 

an

 

Object

 

Discovery

 

Agent,”

 

on

 

page

 

87.

 

Classes

 

and

 

methods

 

of

 

the

 

new

 

ODK

 

API

 

are

 

described

 

in

 

Part

 

3,

 

“ODK

 

class

 

reference,”

 

on

 

page

 

163.

 

In

 

addition,

 

the

 

manual

 

now

 

provides

 

information

 

on

 

how

 

to

 

compile

 

an

 

ODA

 

and

 

prepare

 

it

 

for

 

execution

 

in

 

Chapter

 

6,

 

“Adding

 

an

 

Object

 

Discovery

 

Agent

 

to

 

the

 

business

 

integration

 

system,”

 

on

 

page

 

159.

New

 

in

 

the

 

2.2.0

 

release

 

of

 

Adapter

 

Framework

 

and

 

WebSphere

 

InterChange

 

Server

 

version

 

4.2.0

 

The

 

“CrossWorlds”

 

name

 

is

 

no

 

longer

 

used

 

to

 

describe

 

an

 

entire

 

system

 

or

 

to

 

modify

 

the

 

names

 

of

 

components

 

or

 

tools,

 

which

 

are

 

otherwise

 

mostly

 

the

 

same

 

as

 

before.

 

For

 

example

 

“CrossWorlds

 

System

 

Manager”

 

is

 

now

 

“System

 

Manager,”

 

and

 

“CrossWorlds

 

InterChange

 

Server”

 

is

 

now

 

“WebSphere

 

InterChange

 

Server.”

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

xi



This

 

book

 

has

 

been

 

updated

 

to

 

reflect

 

changes

 

to

 

the

 

functionality

 

of

 

Business

 

Object

 

Designer

 

and

 

the

 

development

 

environment

 

it

 

supports

 

when

 

it

 

runs

 

from

 

System

 

Manager

 

(WebSphere

 

InterChange

 

Server

 

only).

 

Object

 

Discovery

 

Agents

 

must

 

now

 

be

 

started

 

using

 

a

 

startup

 

script

 

or

 

batch

 

file.

 

The

 

use

 

of

 

object

 

activation

 

daemons

 

is

 

no

 

longer

 

supported.

 

The

 

maximum

 

length

 

of

 

application-specific

 

information

 

for

 

business

 

objects,

 

business

 

object

 

attributes,

 

and

 

business

 

object

 

verbs

 

has

 

been

 

increased

 

to

 

1000

 

characters

 

from

 

255.

 

New

 

in

 

the

 

2.1.0

 

release

 

of

 

Adapter

 

Framework

 

The

 

changes

 

made

 

in

 

the

 

2.1.0

 

release

 

of

 

WebSphere

 

Business

 

Integration

 

Adapter

 

Framework

 

do

 

not

 

affect

 

the

 

content

 

of

 

this

 

document.

 

New

 

in

 

the

 

2.0.1

 

release

 

of

 

Adapter

 

Framework

 

Connectors

 

(adapters)

 

internationalized

 

for

 

InterChange

 

Server

 

in

 

release

 

4.1.1

 

now

 

run

 

internationalized

 

on

 

the

 

WebSphere

 

Business

 

Integration

 

Adapter

 

Framework.

 

Additional

 

adapters

 

have

 

also

 

been

 

internationalized

 

and

 

additional

 

locales

 

are

 

now

 

supported.

 

The

 

locales

 

supported

 

by

 

a

 

specific

 

adapter

 

are

 

listed

 

in

 

its

 

release

 

note.

 

To

 

access

 

the

 

release

 

notes,

 

use

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

information

 

center:

 

http://www.ibm.com/software/websphere/wbiadapters/infocenter

 

New

 

in

 

the

 

2.0

 

release

 

of

 

Adapter

 

Framework

 

Business

 

Object

 

Designer,

 

the

 

Object

 

Discovery

 

Agents,

 

and

 

the

 

ODA

 

Development

 

Kit

 

are

 

now

 

supported

 

with

 

the

 

WebSphere

 

MQ

 

Integrator

 

integration

 

broker.

 

For

 

more

 

information

 

about

 

this

 

integration

 

broker,

 

see

 

Implementation

 

Guide

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker.

 

These

 

components

 

continue

 

to

 

support

 

InterChange

 

Server

 

as

 

an

 

integration

 

broker.

 

In

 

addition,

 

for

 

this

 

release,

 

this

 

manual

 

now

 

has

 

an

 

index

 

to

 

provide

 

more

 

efficient

 

access

 

to

 

information.

 

New

 

in

 

the

 

CrossWorlds

 

4.1.1

 

release

 

The

 

IBM

 

CrossWorlds

 

4.1.1

 

release

 

provides

 

an

 

internationalized

 

version

 

of

 

InterChange

 

Server,

 

its

 

tools,

 

and

 

many

 

connectors.

 

These

 

internationalized

 

products

 

have

 

been

 

localized

 

for

 

the

 

English

 

and

 

Japanese

 

locales

 

(A

 

locale

 

includes

 

culture-specific

 

conventions

 

and

 

a

 

character

 

code

 

set.).

 

Business

 

Object

 

Designer

 

has

 

been

 

internationalized

 

to

 

support

 

non-English

 

characters

 

in

 

all

 

fields

 

except

 

the

 

following:

 

v

   

Name

 

of

 

business

 

object

 

definition

 

v

   

Name

 

of

 

attribute

 

v

   

Name

 

of

 

supported

 

verb

These

 

fields

 

can

 

only

 

contain

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

U.S.

 

English

 

(en_US)

 

locale.

   

xii

 

Business

 

Object

 

Development

 

Guide

http://www.ibm.com/websphere/integration/wbiadapters/infocenter


New

 

in

 

the

 

CrossWorlds

 

4.1.0

 

release

 

This

 

document

 

reflects

 

changes

 

to

 

Business

 

Object

 

Designer

 

when

 

using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

generate

 

a

 

business

 

object

 

definition.

 

These

 

changes

 

include:

 

v

   

The

 

new

 

MessageFile

 

configuration

 

property

 

v

   

The

 

character

 

used

 

to

 

separate

 

elements

 

in

 

the

 

path

 

when

 

a

 

user

 

manually

 

specifies

 

an

 

object

 

from

 

a

 

source

 

node

New

 

in

 

the

 

CrossWorlds

 

4.0.1

 

release

 

The

 

changes

 

made

 

in

 

CrossWorlds

 

4.0.1

 

do

 

not

 

affect

 

the

 

content

 

of

 

this

 

document.

 

New

 

in

 

the

 

CrossWorlds

 

4.0.0

 

release

 

This

 

document

 

was

 

first

 

issued

 

with

 

CrossWorlds

 

release

 

4.0.0.

   

New

 

in

 

this

 

release

 

xiii



xiv

 

Business

 

Object

 

Development

 

Guide



Part

 

1.

 

Designing

 

and

 

developing

 

business

 

objects

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

1



2

 

Business

 

Object

 

Development

 

Guide



Chapter

 

1.

 

Business

 

objects

 

A

 

business

 

integration

 

system

 

uses

 

business

 

objects

 

to

 

carry

 

data

 

and

 

processing

 

instructions

 

between

 

an

 

integration

 

broker

 

and

 

connectors

 

or

 

an

 

access

 

client

 

(if

 

the

 

integration

 

broker

 

is

 

InterChange

 

Server).

 

Business

 

objects

 

represent

 

a

 

request

 

from

 

an

 

integration

 

broker,

 

an

 

event

 

in

 

an

 

application

 

or

 

Web

 

server,

 

or

 

a

 

call

 

from

 

an

 

external

 

site.

 

This

 

manual

 

presents

 

information

 

on

 

developing

 

and

 

designing

 

business

 

objects,

 

as

 

well

 

as

 

developing

 

your

 

own

 

object

 

discovery

 

agent.

 

The

 

main

 

topics

 

in

 

this

 

chapter

 

are:

 

v

   

“Business

 

objects

 

in

 

the

 

WebSphere

 

business

 

integration

 

system”

 

v

   

“Business

 

object

 

structure”

 

on

 

page

 

12

 

v

   

“Overview

 

of

 

the

 

development

 

process”

 

on

 

page

 

13

 

This

 

chapter

 

assumes

 

that

 

you

 

have

 

a

 

basic

 

understanding

 

of

 

the

 

integration

 

broker

 

in

 

your

 

environment.

 

Table

 

1

 

references

 

documentation

 

for

 

the

 

integration

 

brokers:

  

Table

 

1.

 

Prerequisite

 

documents

 

Integration

 

broker

 

Prerequisite

 

documents

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

Implementing

 

Adapters

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

WebSphere

 

Application

 

Server

 

Implementing

 

Adapters

 

for

 

WebSphere

 

Application

 

Server

 

WebSphere

 

InterChange

 

Server

 

v

   

Technical

 

Introduction

 

to

 

IBM

 

WebSphere

 

InterChange

 

Server

 

v

   

Implementation

 

Guide

 

For

 

WebSphere

 

InterChange

 

Server

   

Business

 

objects

 

in

 

the

 

WebSphere

 

business

 

integration

 

system

 

The

 

WebSphere

 

business

 

integration

 

system

 

consists

 

of

 

the

 

following

 

components:

 

v

   

A

 

set

 

of

 

adapters

 

An

 

adapter

 

is

 

a

 

set

 

of

 

software

 

modules

 

that

 

communicate

 

with

 

an

 

integration

 

broker

 

and

 

with

 

applications

 

or

 

technologies

 

to

 

perform

 

tasks

 

such

 

as

 

running

 

application

 

logic

 

and

 

exchanging

 

data.

 

v

   

An

 

integration

 

broker

 

The

 

task

 

of

 

an

 

integration

 

broker

 

is

 

to

 

integrate

 

data

 

among

 

heterogeneous

 

applications.

 

The

 

WebSphere

 

business

 

integration

 

system

 

can

 

include

 

any

 

of

 

the

 

integration

 

brokers

 

in

 

Table

 

1.

In

 

the

 

WebSphere

 

business

 

integration

 

system,

 

information

 

sent

 

or

 

received

 

between

 

components

 

is

 

packaged

 

in

 

the

 

form

 

of

 

a

 

business

 

object,

 

as

 

follows:

 

v

   

For

 

data

 

that

 

is

 

transferred

 

between

 

an

 

adapter

 

and

 

an

 

integration

 

broker,

 

you

 

design

 

application-specific

 

business

 

objects

 

that

 

model

 

the

 

appropriate

 

application

 

entities.

 

v

   

For

 

data

 

that

 

is

 

processed

 

within

 

the

 

business

 

logic

 

of

 

an

 

InterChange

 

Server

 

collaboration

 

object,

 

you

 

design

 

generic

 

business

 

objects

 

that

 

contain

 

a

 

superset

 

of

 

information

 

for

 

the

 

application

 

entities

 

that

 

need

 

to

 

communicate.

 

Maps

 

transform

 

data

 

between

 

generic

 

business

 

objects

 

and

 

application-specific

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

3



business

 

objects

 

so

 

that

 

adapters

 

can

 

communicate

 

with

 

their

 

applications

 

using

 

application-specific

 

entities,

 

while

 

collaboration

 

objects

 

can

 

apply

 

business

 

logic

 

in

 

an

 

application-independent

 

way.

Both

 

application-specific

 

business

 

objects

 

and

 

generic

 

objects

 

are

 

modeled

 

during

 

design-time

 

as

 

business

 

object

 

definitions,

 

which

 

are

 

stored

 

in

 

the

 

business

 

integration

 

system.

 

At

 

run

 

time,

 

data

 

is

 

populated

 

in

 

a

 

business

 

object

 

instance

 

(often

 

called

 

a

 

“business

 

object”),

 

which

 

is

 

based

 

on

 

the

 

appropriate

 

definition.

 

The

 

business

 

object

 

moves

 

through

 

the

 

business

 

integration

 

system

 

as

 

dictated

 

by

 

its

 

routing

 

and

 

business

 

logic

 

rules.

 

Business

 

object

 

definitions

 

A

 

business

 

object

 

definition

 

represents

 

a

 

template

 

for

 

data

 

that

 

can

 

be

 

treated

 

as

 

a

 

collective

 

unit.

 

It

 

contains

 

a

 

business

 

object

 

header,

 

which

 

specifies

 

the

 

name

 

and

 

version

 

of

 

the

 

business

 

object

 

definition.

 

In

 

addition,

 

the

 

business

 

object

 

definition

 

contains

 

the

 

following

 

information:

 

v

   

“Business

 

object

 

attributes

 

and

 

attribute

 

properties”

 

v

   

“Business

 

object

 

verbs”

 

on

 

page

 

7

 

v

   

“Business

 

object

 

application-specific

 

information”

 

on

 

page

 

7

Figure

 

1

 

shows

 

the

 

parts

 

of

 

a

 

business

 

object

 

definition.

    

Business

 

object

 

attributes

 

and

 

attribute

 

properties

 

A

 

business

 

object

 

contains

 

attributes,

 

each

 

attribute

 

representing

 

one

 

entity

 

of

 

data.

 

In

 

the

 

business

 

object

 

definition,

 

you

 

define

 

the

 

name

 

of

 

each

 

attribute

 

as

 

well

 

as

 

Business object name

Verb1

Attribute1

Business object
header

Business object
attributes

Supported
verbs

Type
AppSpecificInfo=
...

AppSpecificInfo=

Verbn

Attribute2
Type
AppSpecificInfo=
...

Attributen
Type
AppSpecificInfo=
...

AppSpecificInfo=

Version
AppSpecificInfo

  

Figure

 

1.

 

Business

 

object

 

definition

 

parts

  

4

 

Business

 

Object

 

Development

 

Guide



other

 

attribute

 

properties.

 

The

 

business

 

object

 

instance

 

holds

 

a

 

value

 

for

 

each

 

attribute

 

(or

 

indicates

 

that

 

the

 

attribute

 

does

 

not

 

have

 

a

 

value).

 

Business

 

object

 

definitions

 

include

 

various

 

properties

 

that

 

apply

 

to

 

attributes.

 

These

 

properties

 

provide

 

the

 

connector,

 

data

 

handler,

 

and

 

other

 

components

 

with

 

information

 

on

 

the

 

types,

 

sizes,

 

and

 

default

 

values

 

of

 

attributes.

 

The

 

attribute

 

properties

 

are

 

discussed

 

in

 

the

 

sections

 

that

 

follow.

 

Name

 

property:

   

Each

 

business

 

object

 

attribute

 

must

 

have

 

a

 

unique

 

name

 

within

 

the

 

business

 

object

 

definition.

 

The

 

name

 

should

 

describe

 

the

 

data

 

that

 

the

 

attribute

 

contains.

 

The

 

name

 

can

 

be

 

up

 

to

 

80

 

characters;

 

it

 

can

 

contain

 

alphanumeric

 

characters

 

and

 

underscores

 

but

 

cannot

 

contain

 

spaces,

 

punctuation,

 

or

 

special

 

characters.

 

Notes:

  

1.

   

When

 

designing

 

an

 

application-specific

 

business

 

object,

 

check

 

its

 

adapter

 

user

 

guide

 

or

 

the

 

Data

 

Handler

 

Guide

 

for

 

specific

 

naming

 

requirements

 

and

 

recommendations.

 

2.

   

This

 

attribute

 

name

 

must

 

use

 

only

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

U.S.

 

English

 

locale

 

(en_US).

Type

 

property:

   

The

 

Type

 

property

 

defines

 

the

 

data

 

type

 

of

 

the

 

attribute:

 

v

   

For

 

a

 

simple

 

attribute,

 

the

 

supported

 

types

 

are

 

Boolean,

 

Integer,

 

Float,

 

Double,

 

String,

 

Date,

 

and

 

LongText.

 

v

   

For

 

a

 

complex

 

attribute,

 

the

 

type

 

is

 

a

 

business

 

object

 

definition:

 

–

   

If

 

the

 

attribute

 

represents

 

a

 

child

 

business

 

object,

 

specify

 

its

 

type

 

as

 

the

 

name

 

of

 

the

 

child

 

business

 

object

 

definition

 

and

 

specify

 

the

 

cardinality

 

as

 

1

 

(single

 

cardinality).

 

–

   

If

 

the

 

attribute

 

represents

 

an

 

array

 

of

 

child

 

business

 

objects,

 

specify

 

the

 

type

 

as

 

the

 

name

 

of

 

the

 

child

 

business

 

object

 

definition

 

and

 

specify

 

the

 

cardinality

 

as

 

n

 

(multiple

 

cardinality).

Note:

  

All

 

attributes

 

that

 

represent

 

child

 

business

 

objects

 

also

 

have

 

a

 

ContainedObjectVersion

 

property

 

(which

 

specifies

 

the

 

version

 

number

 

of

 

the

 

child

 

object’s

 

business

 

object

 

definition)

 

and

 

a

 

Relationship

 

property

 

(which

 

specifies

 

the

 

value

 

Containment).

 

Cardinality

 

property:

   

Each

 

simple

 

attribute

 

has

 

single

 

cardinality

 

(cardinality

 

1).

 

Each

 

complex

 

attribute,

 

which

 

represents

 

a

 

child

 

business

 

object

 

or

 

array

 

of

 

child

 

business

 

objects,

 

has

 

single

 

cardinality

 

or

 

multiple

 

cardinality

 

(cardinality

 

n),

 

respectively.

 

For

 

more

 

information

 

on

 

cardinality,

 

see

 

“Hierarchical

 

business

 

objects”

 

on

 

page

 

12.

 

Note:

  

When

 

specified

 

for

 

a

 

required

 

attribute,

 

single

 

cardinality

 

indicates

 

that

 

a

 

child

 

business

 

object

 

must

 

exist,

 

and

 

multiple

 

cardinality

 

indicates

 

zero

 

to

 

many

 

instances

 

of

 

a

 

child

 

business

 

object.

 

Key

 

property:

   

At

 

least

 

one

 

attribute

 

in

 

each

 

business

 

object

 

must

 

be

 

specified

 

as

 

the

 

key.

 

The

 

key

 

attribute

 

contains

 

a

 

value

 

that

 

uniquely

 

identifies

 

the

 

business

 

object.

 

To

 

define

 

an

 

attribute

 

as

 

a

 

key,

 

set

 

its

 

Key

 

property

 

to

 

true.

 

Note:

  

A

 

key

 

value

 

in

 

a

 

business

 

object

 

is

 

often

 

referred

 

to

 

as

 

its

 

primary

 

key.

 

When

 

you

 

specify

 

as

 

key

 

a

 

complex

 

attribute:

   

Chapter

 

1.

 

Business

 

objects

 

5



v

   

If

 

the

 

attribute

 

represents

 

a

 

child

 

business

 

object,

 

the

 

key

 

is

 

the

 

concatenation

 

of

 

the

 

keys

 

in

 

the

 

child

 

business

 

object.

 

v

   

If

 

the

 

attribute

 

represents

 

an

 

array

 

of

 

child

 

business

 

objects,

 

the

 

key

 

is

 

the

 

concatenation

 

of

 

the

 

keys

 

in

 

the

 

child

 

business

 

object

 

at

 

location

 

0

 

in

 

the

 

array.

Foreign

 

key

 

property:

   

The

 

Foreign

 

Key

 

property

 

is

 

typically

 

used

 

in

 

application-specific

 

business

 

objects

 

to

 

specify

 

that

 

the

 

value

 

of

 

an

 

attribute

 

holds

 

the

 

primary

 

key

 

of

 

another

 

business

 

object,

 

which

 

links

 

business

 

objects.

 

The

 

attribute

 

that

 

holds

 

the

 

primary

 

key

 

of

 

another

 

business

 

object

 

is

 

called

 

a

 

foreign

 

key.

 

Define

 

the

 

Foreign

 

Key

 

property

 

as

 

true

 

for

 

each

 

attribute

 

that

 

represents

 

a

 

foreign

 

key.

 

You

 

can

 

also

 

use

 

the

 

Foreign

 

Key

 

property

 

for

 

other

 

processing

 

instructions.

 

For

 

example,

 

this

 

property

 

can

 

be

 

used

 

to

 

specify

 

what

 

kind

 

of

 

foreign

 

key

 

lookup

 

the

 

connector

 

performs.

 

In

 

this

 

case,

 

you

 

might

 

set

 

Foreign

 

Key

 

to

 

true

 

to

 

instruct

 

the

 

connector

 

to

 

check

 

for

 

the

 

existence

 

of

 

the

 

entity

 

in

 

the

 

database

 

and

 

create

 

the

 

relationship

 

only

 

if

 

the

 

record

 

for

 

the

 

entity

 

exists.

 

Required

 

property:

   

The

 

Required

 

property

 

specifies

 

whether

 

an

 

attribute

 

must

 

contain

 

a

 

value.

 

If

 

a

 

particular

 

attribute

 

in

 

the

 

business

 

object

 

must

 

contain

 

a

 

value

 

to

 

be

 

able

 

to

 

process

 

the

 

business

 

object

 

data,

 

set

 

the

 

Required

 

property

 

for

 

the

 

attribute

 

to

 

true.

 

For

 

information

 

on

 

enforcing

 

the

 

Required

 

property

 

for

 

attributes

 

within

 

an

 

application-specific

 

business

 

object,

 

see

 

the

 

section

 

on

 

initAndValidateAttributes()

 

in

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

and

 

Connector

 

Development

 

Guide

 

for

 

Java.

 

AppSpecificInfo:

   

The

 

AppSpecificInfo

 

property

 

can

 

contain

 

a

 

String

 

of

 

up

 

to

 

1000

 

characters

 

that

 

is

 

specified

 

primarily

 

for

 

an

 

application-specific

 

business

 

object.

 

For

 

information

 

on

 

this

 

property,

 

see

 

“Business

 

object

 

application-specific

 

information”

 

on

 

page

 

7.

 

Note:

  

Application-specific

 

information

 

is

 

not

 

available

 

in

 

the

 

mapping

 

process.

 

Max

 

Length

 

property:

   

The

 

Max

 

Length

 

property

 

is

 

set

 

to

 

the

 

number

 

of

 

bytes

 

that

 

a

 

String-type

 

attribute

 

can

 

contain.

 

Although

 

this

 

value

 

is

 

not

 

enforced

 

by

 

the

 

WebSphere

 

business

 

integration

 

system,

 

specific

 

connectors

 

or

 

data

 

handlers

 

might

 

use

 

this

 

value.

 

Check

 

the

 

guide

 

for

 

the

 

specific

 

adapter

 

or

 

the

 

guide

 

for

 

the

 

data

 

handler

 

that

 

processes

 

the

 

business

 

object

 

to

 

determine

 

minimum

 

and

 

maximum

 

allowed

 

lengths.

 

Important:

  

The

 

Max

 

Length

 

property

 

is

 

very

 

important

 

when

 

you

 

use

 

a

 

fixed-width

 

data

 

handler.

 

Note:

  

Attribute

 

length

 

is

 

not

 

available

 

in

 

the

 

mapping

 

process.

 

Default

 

value

 

property:

   

The

 

Default

 

Value

 

property

 

can

 

specify

 

a

 

default

 

value

 

for

 

an

 

attribute.

 

If

 

this

 

property

 

is

 

specified

 

for

 

an

 

application-specific

 

business

 

object,

 

and

 

the

 

UseDefaults

 

connector

 

configuration

 

property

 

is

 

set

 

to

 

true,

 

the

 

connector

 

can

 

use

 

the

 

default

 

values

 

specified

 

in

 

the

 

business

 

object

 

definition

 

to

 

provide

 

values

 

for

 

attributes

 

that

 

have

 

no

 

values

 

at

 

run

 

time.

 

For

 

more

 

information

 

on

 

how

 

the

 

Default

 

Value

 

property

 

is

 

used,

 

see

 

the

 

section

 

on

 

initAndValidateAttributes()

 

in

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

and

 

Connector

 

Development

 

Guide

 

for

 

Java.

   

6

 

Business

 

Object

 

Development

 

Guide



Notes:

  

1.

   

The

 

attribute’s

 

default

 

value

 

can

 

use

 

any

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

current

 

locale.

 

2.

   

For

 

an

 

attribute

 

whose

 

type

 

is

 

String,

 

you

 

can

 

specify

 

a

 

blank

 

character

 

as

 

a

 

default

 

value.

Comments

 

property:

   

The

 

Comments

 

property

 

allows

 

you

 

to

 

specify

 

a

 

comment

 

for

 

an

 

attribute.

 

Unlike

 

the

 

AppSpecificInfo

 

property,

 

which

 

is

 

used

 

to

 

process

 

a

 

business

 

object,

 

the

 

Comments

 

property

 

provides

 

only

 

documentation

 

information,

 

which

 

may

 

assist

 

other

 

developers

 

in

 

understanding

 

your

 

design

 

decisions.

 

Note:

  

The

 

attribute’s

 

comments

 

can

 

use

 

any

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

current

 

locale.

 

However,

 

the

 

newline

 

character

 

is

 

invalid.

 

ObjectEventId

 

attribute:

   

The

 

ObjectEventId

 

attribute

 

is

 

not

 

only

 

required,

 

but

 

it

 

must

 

be

 

the

 

last

 

attribute

 

in

 

every

 

business

 

object.

 

The

 

WebSphere

 

business

 

integration

 

system

 

uses

 

this

 

attribute

 

to

 

identify

 

and

 

track

 

an

 

event

 

flow

 

in

 

the

 

system.

 

The

 

ObjectEventId

 

attribute

 

stores

 

a

 

unique

 

value

 

that

 

identifies

 

each

 

event

 

in

 

the

 

WebSphere

 

business

 

integration

 

system.The

 

connector

 

framework

 

generates

 

values

 

for

 

this

 

attribute

 

in

 

the

 

parent

 

business

 

object

 

and

 

in

 

each

 

child.

 

Important:

  

Do

 

not

 

map

 

the

 

ObjectEventId

 

attribute

 

or

 

have

 

a

 

connector

 

or

 

data

 

handler

 

populate

 

it.

 

The

 

business

 

integration

 

system

 

handles

 

the

 

value

 

of

 

this

 

attribute.

 

Business

 

object

 

verbs

 

The

 

business

 

object

 

definition

 

includes

 

a

 

list

 

of

 

the

 

verbs

 

that

 

the

 

business

 

object

 

can

 

support.

 

These

 

verbs

 

correspond

 

to

 

operations

 

that

 

are

 

valid

 

on

 

the

 

data

 

within

 

the

 

business

 

object.

 

At

 

run

 

time,

 

a

 

business

 

object

 

contains

 

one

 

active

 

verb,

 

which

 

describes

 

the

 

operation

 

to

 

perform

 

on

 

the

 

data

 

in

 

that

 

particular

 

business

 

object.

 

Table

 

2

 

lists

 

the

 

basic

 

verbs

 

that

 

a

 

business

 

object

 

definition

 

can

 

support.

  

Table

 

2.

 

Basic

 

verbs

 

Verb

 

Function

 

Create

 

Make

 

a

 

new

 

entity

 

in

 

the

 

application.

 

Retrieve

 

Using

 

key

 

values,

 

return

 

a

 

complete

 

business

 

object.

 

Update

 

Change

 

the

 

value

 

in

 

one

 

or

 

more

 

fields

 

in

 

the

 

application

 

entity.

 

Delete

 

Remove

 

the

 

entity

 

from

 

the

 

application.

 

This

 

operation

 

must

 

be

 

a

 

true

 

physical

 

delete.

   

In

 

addition

 

to

 

the

 

basic

 

verbs

 

in

 

Table

 

2,

 

a

 

business

 

object

 

definition

 

might

 

also

 

need

 

to

 

support

 

one

 

or

 

more

 

of

 

the

 

following

 

verbs:

 

v

   

RetrieveByContent—Using

 

non-key

 

values,

 

return

 

a

 

complete

 

business

 

object.

 

v

   

Exist—Check

 

for

 

the

 

existence

 

of

 

a

 

specified

 

entity

 

but

 

do

 

not

 

retrieve

 

it.

 

v

   

Custom—Perform

 

an

 

application-specific

 

operation.

Business

 

object

 

application-specific

 

information

 

A

 

business

 

object

 

definition

 

can

 

provide

 

application-specific

 

information,

 

whose

 

content

 

provides

 

metadata

 

to

 

the

 

component

 

that

 

processes

 

the

 

business

 

object.

 

A

   

Chapter

 

1.

 

Business

 

objects

 

7



common

 

use

 

of

 

application-specific

 

information

 

is

 

to

 

provide

 

a

 

connector

 

or

 

data

 

handler

 

with

 

application-dependent

 

instructions

 

on

 

how

 

to

 

process

 

the

 

business

 

object.

 

The

 

application-specific

 

information

 

is

 

a

 

string

 

that

 

is

 

entered

 

during

 

business

 

object

 

design

 

and

 

read

 

at

 

run

 

time

 

by

 

a

 

connector

 

or

 

data

 

handler.

 

Note:

  

Connectors

 

that

 

are

 

designed

 

to

 

use

 

the

 

application-specific

 

information

 

in

 

definitions

 

of

 

their

 

application-specific

 

business

 

objects

 

are

 

called

 

metadata-driven

 

connectors.

 

Because

 

the

 

processing

 

information

 

is

 

configurable,

 

rather

 

than

 

hard-coded,

 

a

 

metadata-driven

 

connector

 

is

 

more

 

flexible

 

and

 

easier

 

to

 

maintain

 

than

 

one

 

that

 

is

 

not

 

metadata-driven.

 

For

 

information

 

on

 

how

 

to

 

design

 

a

 

metadata-driven

 

connector,

 

see

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

and

 

Connector

 

Development

 

Guide

 

for

 

Java.

 

Within

 

a

 

business

 

object

 

definition,

 

you

 

can

 

provide

 

application-specific

 

information

 

at

 

one

 

of

 

three

 

levels:

 

v

   

The

 

business

 

object

 

definition

 

v

   

An

 

attribute

 

within

 

the

 

business

 

object

 

definition

 

v

   

The

 

business

 

object

 

verb

Application-specific

 

information

 

is

 

stored

 

in

 

a

 

field

 

in

 

the

 

business

 

object

 

definition

 

called

 

the

 

AppSpecificInfo

 

property.

 

The

 

value

 

of

 

the

 

AppSpecificInfo

 

property

 

is

 

a

 

text

 

string

 

that

 

can

 

include

 

any

 

information

 

about

 

the

 

business

 

object

 

or

 

application.

 

Figure

 

2

 

illustrates

 

the

 

major

 

elements

 

of

 

a

 

business

 

object

 

definition

 

and

 

the

 

application-specific

 

property

 

for

 

each

 

element.

  

This

 

section

 

covers

 

the

 

following

 

topics:

 

v

   

Application-specific

 

information

 

for

 

a

 

business

 

object

 

v

   

Application-specific

 

information

 

for

 

an

 

attribute

 

v

   

Application-specific

 

information

 

for

 

a

 

verb

Application-specific

 

information

 

for

 

a

 

business

 

object:

   

The

 

application-specific

 

information

 

at

 

the

 

business

 

object

 

level

 

provides

 

information

 

that

 

the

 

connector

 

or

 

data

 

handler

 

uses

 

to

 

process

 

the

 

data.

 

Business

 

object-level

 

application-specific

 

information

 

is

 

used

 

whenever

 

processing

 

instructions

 

are

 

relevant

 

for

 

an

 

entire

 

Business object name
Version
AppSpecificInfo =

Attribute
AppSpecificInfo =

Attribute

Verb
AppSpecificInfo =

AppSpecificInfo =

Business object
header

Attribute
AppSpecificInfo =

Business object
attributes

Business object
verb

  

Figure

 

2.

 

Business

 

object

 

definition

 

showing

 

the

 

application-specific

 

property

 

for

 

each

 

element

  

8

 

Business

 

Object

 

Development

 

Guide



business

 

object

 

hierarchy.

 

For

 

example,

 

the

 

object-level

 

application-specific

 

information

 

might

 

do

 

one

 

or

 

more

 

of

 

the

 

following:

 

v

   

Define

 

the

 

scope

 

of

 

business

 

object

 

transaction

 

processing

 

v

   

For

 

applications

 

that

 

require

 

object

 

processing

 

in

 

an

 

application

 

extension,

 

contain

 

the

 

name

 

of

 

the

 

function

 

to

 

call

 

to

 

handle

 

the

 

business

 

object

 

v

   

Specify

 

the

 

name

 

of

 

the

 

table

 

or

 

form

 

in

 

which

 

the

 

record

 

belongs

 

v

   

Specify

 

the

 

name

 

of

 

an

 

attribute

 

within

 

the

 

business

 

object

 

that

 

represents

 

a

 

logical

 

or

 

“soft”

 

delete

Figure

 

3

 

illustrates

 

application-specific

 

information

 

that

 

identifies

 

a

 

form

 

or

 

table

 

name

 

in

 

an

 

application.

 

The

 

connector

 

can

 

get

 

the

 

table

 

or

 

form

 

name

 

from

 

the

 

AppSpecificInfo

 

property

 

and

 

use

 

it

 

in

 

an

 

API

 

call

 

to

 

retrieve

 

data

 

from

 

the

 

application.

  

Application-specific

 

information

 

for

 

an

 

attribute:

   

Each

 

attribute

 

of

 

a

 

business

 

object

 

definition

 

can

 

have

 

application-specific

 

information

 

associated

 

with

 

it.

 

Attribute-level

 

application-specific

 

information

 

is

 

used

 

whenever

 

processing

 

instructions

 

are

 

relevant

 

for

 

the

 

single

 

attribute.

 

For

 

example,

 

this

 

information

 

can

 

specify

 

a

 

field

 

on

 

a

 

form,

 

a

 

column

 

in

 

a

 

table,

 

or

 

whatever

 

the

 

connector

 

needs

 

to

 

locate

 

or

 

work

 

with

 

the

 

attribute.

 

If

 

certain

 

attributes

 

of

 

a

 

business

 

object

 

are

 

located

 

on

 

a

 

particular

 

subform

 

in

 

the

 

application,

 

the

 

AppSpecificInfo

 

property

 

is

 

a

 

good

 

candidate

 

for

 

a

 

place

 

to

 

encode

 

this

 

information.

 

Figure

 

4

 

illustrates

 

the

 

AppSpecificInfo

 

property

 

for

 

an

 

attribute.

 

In

 

this

 

example,

 

the

 

application-specific

 

information

 

specifies

 

the

 

name

 

of

 

a

 

subform

 

and

 

field.

  

Business object name

Name of the form in
the application

  

Figure

 

3.

 

Application-specific

 

information

 

for

 

a

 

business

 

object

  

Chapter

 

1.

 

Business

 

objects

 

9



Figure

 

5

 

illustrates

 

the

 

relationship

 

of

 

form,

 

subform,

 

and

 

field

 

name

 

as

 

provided

 

in

 

the

 

object-level

 

and

 

attribute-level

 

application-specific

 

information.

 

This

 

example

 

assumes

 

that

 

a

 

billing

 

application

 

is

 

based

 

on

 

forms,

 

and

 

that

 

the

 

way

 

to

 

interact

 

with

 

invoices

 

in

 

this

 

application

 

is

 

through

 

the

 

Invoice

 

form,

 

which

 

is

 

a

 

subform

 

of

 

a

 

main

 

CustAccount

 

form.

 

The

 

Invoice

 

subform

 

has

 

the

 

following

 

fields:

 

CustName,

 

CustAddr,

 

InvNum,

 

DollarAmount,

 

and

 

Terms.

  

Figure

 

5

 

uses

 

the

 

attribute-level

 

AppSpecificInfo

 

property

 

to

 

store

 

the

 

name

 

of

 

the

 

Invoice

 

subform

 

and

 

the

 

attribute’s

 

corresponding

 

field

 

name.

 

The

 

example

 

uses

 

name-value

 

pairs

 

to

 

specify

 

the

 

information.

 

Application-specific

 

information

 

for

 

a

 

verb:

   

Each

 

verb

 

definition

 

can

 

include

 

application-specific

 

information

 

that

 

provides

 

the

 

connector

 

or

 

data

 

handler

 

with

 

instructions

 

on

 

how

 

to

 

process

 

the

 

business

 

object

 

when

 

that

 

verb

 

is

 

active.

 

Note:

  

The

 

business

 

object

 

handler,

 

which

 

is

 

the

 

part

 

of

 

a

 

connector

 

that

 

handles

 

requests

 

sent

 

from

 

the

 

integration

 

broker

 

to

 

the

 

connector,

 

can

 

be

 

designed

 

to

 

use

 

the

 

application-specific

 

information

 

in

 

the

 

verbs

 

of

 

their

 

Attribute name Name of a subform
and field in the
application

  

Figure

 

4.

 

Application-specific

 

information

 

for

 

an

 

attribute.

Application-specific
business object definition
for an invoice

BillingApp_Invoice

CustName

InvoiceNumber Name
Address
Phone
Invoice

CustName
CustAddr
InvNum
DollarAmount
TermsAppSpecificInfo =

FM=Invoice;FL=InvNum
.
.

.

.

AppSpecificInfo=FM=CustAccount Application form

Version = 1.0.0

CustAccount

Invoice

Application subform

  

Figure

 

5.

 

Using

 

business

 

object

 

definition

 

application-specific

 

information

  

10

 

Business

 

Object

 

Development

 

Guide



application-specific

 

business

 

object

 

definitions.

 

Such

 

business

 

object

 

handlers

 

are

 

called

 

metadata-driven

 

business

 

object

 

handlers.

 

Because

 

the

 

processing

 

information

 

is

 

configurable,

 

rather

 

than

 

hard-coded,

 

a

 

metadata-driven

 

business

 

object

 

handler

 

is

 

more

 

flexible

 

and

 

easier

 

to

 

maintain

 

than

 

one

 

that

 

is

 

not

 

metadata-driven.

 

For

 

information

 

on

 

how

 

to

 

design

 

a

 

metadata-driven

 

business

 

object

 

handler,

 

see

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

and

 

Connector

 

Development

 

Guide

 

for

 

Java.

 

For

 

example,

 

if

 

the

 

connector

 

is

 

using

 

an

 

API

 

to

 

handle

 

updates

 

to

 

the

 

application

 

database,

 

the

 

application-specific

 

information

 

can

 

provide

 

the

 

connector

 

with

 

information

 

to

 

run

 

an

 

API.

 

The

 

verb

 

application-specific

 

information

 

can

 

also

 

specify

 

the

 

name

 

of

 

a

 

function

 

to

 

call

 

in

 

the

 

application

 

to

 

handle

 

the

 

processing

 

of

 

a

 

business

 

object.

 

Business

 

object

 

instances

 

While

 

the

 

business

 

object

 

definition

 

represents

 

the

 

template

 

for

 

a

 

collection

 

of

 

data,

 

a

 

business

 

object

 

instance

 

(often

 

just

 

called

 

a

 

“business

 

object”)

 

is

 

the

 

run-time

 

entity

 

that

 

contains

 

the

 

actual

 

data.

 

The

 

business

 

object

 

is

 

what

 

is

 

passed

 

between

 

components

 

of

 

the

 

business

 

integration

 

system.

 

The

 

business

 

object

 

contains

 

the

 

following

 

information:

 

v

   

Attributes,

 

each

 

of

 

which

 

contains

 

the

 

data

 

for

 

the

 

associated

 

business

 

object.

 

One

 

of

 

the

 

attributes

 

is

 

usually

 

a

 

key

 

attribute,

 

which

 

contains

 

a

 

value

 

that

 

uniquely

 

identifies

 

this

 

business

 

object

 

among

 

all

 

business

 

objects

 

of

 

the

 

same

 

definition.

 

v

   

An

 

active

 

verb,

 

which

 

should

 

be

 

one

 

of

 

the

 

supported

 

verbs

 

for

 

the

 

business

 

object

 

definition

Figure

 

6

 

shows

 

the

 

Customer

 

business

 

object

 

definition

 

and

 

a

 

corresponding

 

business

 

object

 

instance

 

for

 

this

 

definition.

    

Business object definition

CustomerId

CustomerName

CustomerStatus

CustomerRegion

ObjectEventId

Customer

Business object

8776

Trievers Inc

Active

NE

1027111552889_1

Customer

Create

Retrieve

Update

Delete

Create

  

Figure

 

6.

 

Business

 

object

 

definition

 

and

 

sample

 

business

 

object.

  

Chapter

 

1.

 

Business

 

objects

 

11



Business

 

object

 

structure

 

The

 

structure

 

of

 

a

 

business

 

object

 

can

 

be

 

either

 

of

 

the

 

following:

 

v

   

Flat

 

business

 

objects

 

v

   

Hierarchical

 

business

 

objects

The

 

following

 

sections

 

show

 

examples

 

of

 

flat

 

and

 

hierarchical

 

business

 

object

 

structures,

 

and

 

provide

 

information

 

on

 

how

 

the

 

business

 

object

 

structure

 

affects

 

connector

 

logic.

 

Flat

 

business

 

objects

 

A

 

business

 

object

 

definition

 

for

 

a

 

flat

 

business

 

object

 

contains

 

one

 

or

 

more

 

simple

 

attributes

 

and

 

a

 

list

 

of

 

supported

 

verbs.

 

A

 

simple

 

attribute

 

represents

 

one

 

value,

 

such

 

as

 

a

 

String

 

or

 

Integer

 

or

 

Date.

 

All

 

simple

 

attributes

 

have

 

single

 

cardinality.

 

The

 

Customer

 

business

 

object

 

in

 

Figure

 

6

 

is

 

an

 

example

 

of

 

a

 

flat

 

business

 

object.

 

For

 

more

 

information,

 

see

 

“Business

 

object

 

attributes

 

and

 

attribute

 

properties”

 

on

 

page

 

4.

 

Hierarchical

 

business

 

objects

 

Hierarchical

 

business

 

object

 

definitions

 

define

 

the

 

structure

 

of

 

multiple

 

related

 

entities,

 

encapsulating

 

not

 

only

 

each

 

individual

 

entity

 

but

 

also

 

aspects

 

of

 

the

 

relationship

 

between

 

entities.

 

In

 

addition

 

to

 

containing

 

at

 

least

 

one

 

simple

 

attribute,

 

a

 

hierarchical

 

business

 

object

 

has

 

one

 

or

 

more

 

attributes

 

that

 

are

 

complex;

 

that

 

is,

 

the

 

attribute

 

itself

 

contains

 

one

 

or

 

more

 

business

 

objects,

 

called

 

child

 

business

 

objects.

 

The

 

business

 

object

 

that

 

contains

 

the

 

complex

 

attribute

 

is

 

called

 

the

 

parent

 

business

 

object.

 

There

 

are

 

two

 

types

 

of

 

relationships

 

between

 

parent

 

and

 

child

 

business

 

objects:

 

v

   

Single

 

cardinality—When

 

an

 

attribute

 

in

 

a

 

parent

 

business

 

object

 

represents

 

a

 

single

 

child

 

business

 

object.

 

The

 

type

 

of

 

the

 

attribute

 

is

 

set

 

to

 

the

 

name

 

of

 

the

 

child

 

business

 

object,

 

and

 

the

 

cardinality

 

is

 

set

 

to

 

1.

 

v

   

Multiple

 

cardinality—When

 

an

 

attribute

 

in

 

the

 

parent

 

business

 

object

 

represents

 

an

 

array

 

of

 

child

 

business

 

objects.

 

The

 

type

 

of

 

the

 

attribute

 

is

 

set

 

to

 

the

 

name

 

of

 

the

 

child

 

business

 

object,

 

and

 

the

 

cardinality

 

is

 

set

 

to

 

n.

In

 

turn,

 

each

 

child

 

business

 

object

 

can

 

contain

 

attributes

 

that

 

contain

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

business

 

objects,

 

and

 

so

 

on.

 

The

 

business

 

object

 

at

 

the

 

top

 

of

 

the

 

hierarchy,

 

which

 

itself

 

does

 

not

 

have

 

a

 

parent,

 

is

 

called

 

the

 

top-level

 

business

 

object.

 

Any

 

single

 

business

 

object,

 

independent

 

of

 

its

 

child

 

business

 

objects

 

it

 

might

 

contain

 

(or

 

that

 

might

 

contain

 

it)

 

is

 

called

 

an

 

individual

 

business

 

object.

 

In

 

a

 

typical

 

business

 

object

 

hierarchy,

 

a

 

top-level

 

business

 

object

 

definition

 

contains

 

one

 

or

 

more

 

simple

 

attributes,

 

one

 

or

 

more

 

attributes

 

that

 

represent

 

a

 

child

 

or

 

array

 

of

 

child

 

business

 

objects,

 

and

 

a

 

list

 

of

 

supported

 

verbs.

 

Figure

 

7

 

shows

 

a

 

typical

 

hierarchical

 

business

 

object.

 

The

 

top-level

 

business

 

object,

 

Customer,

 

has

 

both

 

single-cardinality

 

attributes

 

and

 

multiple-cardinality

 

attributes

 

with

 

child

 

business

 

objects:

 

v

   

Its

 

Address

 

attribute

 

is

 

a

 

complex

 

attribute

 

with

 

multiple

 

cardinality.

 

Customer

 

is

 

the

 

parent

 

business

 

object

 

for

 

each

 

of

 

the

 

Address

 

child

 

business

 

objects.

 

v

   

Its

 

CustProfile

 

attribute

 

is

 

a

 

complex

 

attribute

 

with

 

single

 

cardinality.

 

Customer

 

is

 

the

 

parent

 

business

 

object

 

for

 

the

 

single

 

CustProfile

 

child

 

business

 

object.

    

12

 

Business

 

Object

 

Development

 

Guide



In

 

Figure

 

7,

 

the

 

Customer

 

and

 

CustProfile

 

business

 

objects,

 

as

 

well

 

as

 

each

 

of

 

the

 

Address

 

business

 

objects

 

is

 

an

 

individual

 

business

 

object.

 

Note:

  

When

 

a

 

top-level

 

business

 

object

 

contains

 

information

 

used

 

to

 

process

 

its

 

child

 

business

 

objects,

 

it

 

is

 

called

 

a

 

wrapper

 

business

 

object.

 

For

 

example,

 

the

 

XML

 

connector

 

requires

 

a

 

wrapper

 

business

 

object

 

to

 

contain

 

information

 

that

 

determines

 

the

 

format

 

of

 

its

 

child

 

data

 

business

 

objects

 

and

 

routes

 

the

 

children.

 

When

 

designing

 

the

 

structure

 

of

 

a

 

hierarchical

 

application-specific

 

business

 

object,

 

you

 

need

 

to

 

determine:

 

v

   

How

 

entity

 

data

 

is

 

represented

 

in

 

the

 

business

 

object

 

v

   

How

 

the

 

primary

 

application

 

entity

 

relates

 

to

 

child

 

entities

 

v

   

If

 

an

 

application

 

entity

 

includes

 

data

 

from

 

different

 

entities,

 

you

 

must

 

decide:

 

–

   

Whether

 

the

 

application-specific

 

business

 

object

 

needs

 

to

 

include

 

related

 

data

 

–

   

How

 

to

 

define

 

the

 

relationship

 

between

 

the

 

related

 

data

For

 

more

 

information,

 

see

 

“Design

 

considerations

 

for

 

multiple

 

entities”

 

on

 

page

 

25.

 

Overview

 

of

 

the

 

development

 

process

 

This

 

section

 

provides

 

an

 

overview

 

of

 

the

 

business

 

object

 

development

 

process.

 

Setting

 

up

 

the

 

development

 

environment

 

Before

 

you

 

start

 

the

 

development

 

process,

 

the

 

following

 

must

 

be

 

true:

 

v

   

The

 

WebSphere

 

business

 

integration

 

system

 

is

 

installed

 

on

 

a

 

computer

 

that

 

you

 

can

 

access.

 

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Address

Place holder

CustProfile

Type = Address
Relationship = Containment
Cardinality = n

Type = CustProfile
Relationship = Containment
Cardinality = 1

AddressId

ObjectEventId

AddressInfo

CustomerId

AppSpecificInfo = addr_key

AppSpecificInfo = cust_key

AppSpecificInfo = address

CustProfileId

ObjectEventId

CustomerId

AppSpecificInfo = profile_key

AppSpecificInfo = cust_key

Cardinality 1

Cardinality n
arrayCustomer Address

AppSpecificInfo = address

CustProfile
AppSpecificInfo = profile

  

Figure

 

7.

 

Example

 

of

 

a

 

hierarchical

 

business

 

object

 

definition

  

Chapter

 

1.

 

Business

 

objects

 

13



For

 

information

 

on

 

how

 

to

 

install

 

and

 

start

 

up

 

the

 

WebSphere

 

business

 

integration

 

system,

 

refer

 

to

 

the

 

appropriate

 

guide

 

as

 

suggested

 

below:

 

–

   

If

 

the

 

integration

 

broker

 

is

 

InterChange

 

Server

 

running

 

on

 

Windows,

 

see

 

the

 

System

 

Installation

 

Guide

 

for

 

Windows.

 

–

   

If

 

the

 

integration

 

broker

 

is

 

InterChange

 

Server

 

running

 

on

 

UNIX,

 

see

 

the

 

System

 

Installation

 

Guide

 

for

 

UNIX.

 

–

   

If

 

the

 

integration

 

broker

 

is

 

WebSphere

 

MQ

 

Integrator

 

Broker,

 

see

 

the

 

Implementation

 

Guide

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker.
v

   

If

 

your

 

broker

 

is

 

InterChange

 

Server,

 

the

 

broker

 

and

 

its

 

repository’s

 

database

 

server

 

are

 

running.

 

This

 

step

 

is

 

required

 

only

 

when

 

you

 

are

 

ready

 

to

 

save

 

the

 

definition

 

to

 

the

 

repository

 

or

 

to

 

delete

 

a

 

definition

 

from

 

the

 

repository.

 

For

 

development

 

only,

 

you

 

can

 

run

 

Business

 

Object

 

Designer

 

locally,

 

without

 

connecting

 

to

 

InterChange

 

Server.

 

v

   

If

 

you

 

plan

 

to

 

generate

 

a

 

business

 

object

 

definition

 

using

 

an

 

Object

 

Discovery

 

Agent,

 

you

 

must

 

have

 

started

 

the

 

Object

 

Activation

 

Daemon

 

(OAD)

 

before

 

you

 

use

 

this

 

ODA

 

to

 

generate

 

business

 

object

 

definitions.

 

For

 

more

 

information,

 

see

 

“Before

 

using

 

an

 

ODA”

 

on

 

page

 

64.

Stages

 

of

 

business

 

object

 

development

 

The

 

stages

 

of

 

business

 

object

 

development

 

are

 

as

 

follows:

 

1.

   

Understand

 

the

 

data

 

requirements

 

that

 

are

 

critical

 

to

 

the

 

business

 

process

 

integration.

 

v

   

If

 

creating

 

an

 

application-specific

 

business

 

object,

 

understand

 

the

 

relationship

 

among

 

the

 

connector,

 

the

 

data

 

handler,

 

and

 

the

 

supported

 

application-specific

 

business

 

objects.

 

v

   

If

 

creating

 

a

 

generic

 

business

 

object

 

for

 

use

 

with

 

the

 

InterChange

 

Server,

 

understand

 

the

 

relationship

 

between

 

the

 

collaboration

 

object

 

and

 

the

 

business

 

object.
2.

   

Develop

 

the

 

business

 

object

 

definitions

 

in

 

one

 

of

 

two

 

ways:

 

a.

   

Generation

 

from

 

a

 

data

 

source—the

 

WebSphere

 

business

 

integration

 

system

 

provides

 

tools

 

that

 

facilitate

 

generation

 

of

 

a

 

business

 

object

 

definition

 

for

 

some

 

connectors.

 

Such

 

tools

 

are

 

Object

 

Discovery

 

Agents

 

or

 

command

 

line

 

tools

 

that

 

are

 

designed

 

to

 

connect

 

to

 

an

 

application

 

and

 

“discover”

 

business

 

object

 

requirements

 

specific

 

to

 

a

 

business

 

entity

 

and

 

to

 

generate

 

definitions

 

from

 

those

 

requirements.

 

Business

 

Object

 

Designer

 

presents

 

a

 

graphical

 

user

 

interface

 

to

 

Object

 

Discovery

 

Agents,

 

and

 

helps

 

manage

 

the

 

discovery

 

and

 

definition

 

generation

 

processes.

 

Check

 

the

 

user

 

guides

 

for

 

the

 

adapter

 

and

 

data

 

handler

 

you

 

will

 

be

 

using

 

to

 

determine

 

if

 

they

 

have

 

an

 

available

 

tool

 

or

 

utility.

 

You

 

can

 

also

 

check

 

the

 

Connector

 

Feature

 

Checklist,

 

which

 

is

 

available

 

on

 

the

 

main

 

documentation

 

page

 

under

 

the

 

Connectors

 

category.

 

If

 

a

 

custom

 

adapter

 

is

 

being

 

developed

 

to

 

communicate

 

with

 

an

 

application,

 

you

 

can

 

use

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

to

 

create

 

a

 

custom

 

Object

 

Discovery

 

Agent

 

for

 

the

 

adapter.

 

b.

   

Manual—Business

 

Object

 

Designer

 

is

 

a

 

graphical

 

user

 

interface

 

that

 

facilitates

 

the

 

manual

 

creation

 

of

 

business

 

object

 

definitions.

 

This

 

interface

 

is

 

most

 

useful

 

for

 

developing

 

generic

 

business

 

objects

 

to

 

use

 

with

 

InterChange

 

Server,

 

as

 

there

 

is

 

no

 

application

 

in

 

which

 

object

 

discovery

 

can

 

be

 

performed.
3.

   

If

 

you

 

used

 

a

 

tool

 

to

 

automatically

 

generate

 

the

 

business

 

object

 

definition

 

from

 

a

 

data

 

source,

 

verify

 

that

 

the

 

generated

 

structure

 

and

 

application-specific

   

14

 

Business

 

Object

 

Development

 

Guide



information

 

conforms

 

to

 

requirements.

 

Reference

 

the

 

adapter

 

user

 

guide

 

for

 

the

 

connector

 

that

 

uses

 

the

 

business

 

object

 

definition

 

determine

 

any

 

special

 

configuring

 

that

 

you

 

must

 

do

 

manually.

 

4.

   

Test

 

and

 

debug

 

the

 

business

 

object

 

by

 

running

 

it

 

through

 

the

 

system;

 

edit

 

it

 

as

 

necessary.

The

 

following

 

illustration

 

shows

 

a

 

visual

 

overview

 

of

 

the

 

business

 

object

 

development

 

process

 

and

 

provides

 

a

 

quick

 

reference

 

to

 

chapters

 

where

 

you

 

can

 

find

 

information

 

on

 

specific

 

topics.

    

Chapter

 

1.

 

Business

 

objects

 

15



Task: Steps:

Designing business
objects

Identify data requirements

Understanding the relationship among
connector, data handler, and
application-specific business object

If using the ICS integration broker,
understand the relationship between
the collaboration and the generic
business object

Refer to:

Understanding
Business Object
Designer

Working with business
object definitions

Launching Business Object
Designer

Using Business Object Designer

Working locally or connected to ICS

Creating a business object definition
manually

Creating a business object definition
using an Object Discovery Agent
(ODA)

Deleting a business object definition

Chapter 2

Chapter 3

Creating an Object
Discovery Agent

Chapter 4

Understanding the application and
its requirements

Learning about the structure of
an ODA

Understanding the relationship
between the ODA and Business
Object Designer

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 13

Chapter 12

Chapter 14

Chapter 15

Chapter 16

Learning about ODK classes

16

 

Business

 

Object

 

Development

 

Guide



Chapter

 

2.

 

Business

 

object

 

design

 

The

 

key

 

to

 

the

 

design

 

of

 

business

 

objects

 

is

 

to

 

develop

 

a

 

business

 

object

 

definition

 

that

 

models

 

as

 

closely

 

(and

 

efficiently)

 

as

 

possible

 

the

 

data

 

that

 

needs

 

to

 

be

 

transmitted

 

between

 

components

 

of

 

the

 

business

 

integration

 

system:

 

v

   

For

 

data

 

that

 

is

 

transferred

 

between

 

a

 

connector

 

and

 

an

 

integration

 

broker,

 

you

 

design

 

application-specific

 

business

 

objects

 

that

 

model

 

the

 

appropriate

 

application

 

entities.

 

These

 

entities

 

might

 

correspond

 

to

 

data

 

structures

 

or

 

technology

 

standards

 

used

 

by

 

a

 

particular

 

application,

 

or

 

to

 

specific

 

technology

 

standards

 

used

 

by

 

a

 

web

 

server.

 

v

   

For

 

data

 

that

 

is

 

processed

 

within

 

the

 

business

 

logic

 

of

 

an

 

InterChange

 

Server

 

collaboration

 

object,

 

you

 

design

 

generic

 

business

 

objects

 

that

 

contain

 

a

 

superset

 

of

 

information

 

for

 

the

 

application

 

entities

 

that

 

need

 

to

 

communicate.

 

When

 

the

 

collaboration

 

object

 

exchanges

 

information

 

with

 

an

 

application,

 

maps

 

convert

 

the

 

data

 

between

 

the

 

generic

 

business

 

object

 

and

 

application-specific

 

business

 

object

 

structures.

This

 

chapter

 

presents

 

information

 

on

 

the

 

structure

 

of

 

business

 

objects

 

for

 

the

 

WebSphere

 

business

 

integration

 

system,

 

and

 

makes

 

recommendations

 

for

 

designing

 

both

 

application-specific

 

and

 

generic

 

business

 

objects.

 

The

 

material

 

presented

 

here

 

assumes

 

that:

 

v

   

You

 

understand

 

the

 

basic

 

object

 

concepts

 

described

 

in

 

the

 

Technical

 

Introduction

 

to

 

IBM

 

WebSphere

 

InterChange

 

Server

 

if

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server.

 

v

   

You

 

understand

 

the

 

basic

 

concepts

 

described

 

in

 

the

 

Implementing

 

Adapters

 

for

 

WebSphere

 

Application

 

Server

 

if

 

your

 

integration

 

broker

 

is

 

WebSphere

 

Application

 

Server.

 

v

   

You

 

understand

 

the

 

basic

 

concepts

 

described

 

in

 

the

 

Implementation

 

Guide

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

if

 

your

 

integration

 

broker

 

is

 

WebSphere

 

MQ

 

Integrator

 

Broker.

 

The

 

main

 

topics

 

of

 

this

 

chapter

 

are:

 

v

   

“Determining

 

business

 

object

 

structure”

 

v

   

“Designing

 

application-specific

 

business

 

objects”

 

on

 

page

 

29

 

v

   

“Designing

 

generic

 

business

 

objects

 

(InterChange

 

Server

 

only)”

 

on

 

page

 

37

 

v

   

“Determining

 

mapping

 

requirements

 

for

 

business

 

objects

 

(InterChange

 

Server

 

only)”

 

on

 

page

 

41

Determining

 

business

 

object

 

structure

 

The

 

purpose

 

of

 

a

 

business

 

object

 

is

 

to

 

transport

 

data

 

between

 

components

 

of

 

a

 

business

 

integration

 

system

 

and

 

the

 

applications

 

that

 

it

 

integrates.

 

Therefore,

 

the

 

business

 

object

 

should

 

model

 

the

 

data

 

that

 

needs

 

to

 

be

 

transported.

 

This

 

data

 

is

 

usually

 

associated

 

with

 

an

 

entity

 

in

 

an

 

application

 

or

 

technology

 

that

 

the

 

business

 

integration

 

system

 

integrates.

 

The

 

structure

 

of

 

a

 

business

 

object

 

can

 

be

 

either

 

of

 

the

 

following:

 

v

   

“Representing

 

one

 

entity”

 

on

 

page

 

18

 

v

   

“Representing

 

multiple

 

entities”

 

on

 

page

 

19

 

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

17



In

 

addition,

 

this

 

section

 

provides

 

“Design

 

considerations

 

for

 

multiple

 

entities”

 

on

 

page

 

25.

 

Representing

 

one

 

entity

 

The

 

simplest

 

business

 

object

 

design

 

is

 

a

 

flat

 

business

 

object

 

that

 

represents

 

one

 

entity.

 

All

 

the

 

attributes

 

of

 

a

 

flat

 

business

 

object

 

are

 

simple

 

(that

 

is,

 

each

 

attribute

 

represents

 

one

 

value,

 

such

 

as

 

a

 

String

 

or

 

Integer

 

or

 

Date).

 

For

 

more

 

information,

 

see

 

“Flat

 

business

 

objects”

 

on

 

page

 

12.

 

In

 

the

 

case

 

of

 

an

 

application-specific

 

business

 

object,

 

a

 

flat

 

business

 

object

 

can

 

represent

 

one

 

entity

 

in

 

an

 

application

 

or

 

in

 

a

 

technology

 

standard.

 

For

 

example,

 

assume

 

an

 

application

 

has

 

a

 

database

 

table

 

that

 

describes

 

a

 

record.

 

Assume

 

further

 

that

 

this

 

table

 

has

 

five

 

columns

 

named

 

ObjectID,

 

UserName,

 

TimeStamp,

 

Detail,

 

and

 

Status

 

(see

 

Figure

 

8).

 

The

 

ObjectID

 

is

 

the

 

primary

 

key

 

for

 

each

 

row,

 

and

 

its

 

value

 

is

 

generated

 

by

 

the

 

application.

 

This

 

table

 

has

 

no

 

relationships

 

to

 

other

 

tables.

  

As

 

Figure

 

8

 

shows,

 

the

 

Record

 

business

 

object

 

you

 

design

 

to

 

represent

 

the

 

table

 

might

 

have

 

five

 

attributes,

 

one

 

for

 

each

 

column,

 

with

 

the

 

key

 

attribute

 

corresponding

 

to

 

the

 

ObjectID

 

column.

 

Use

 

of

 

flat

 

business

 

objects

 

can

 

simplify

 

corresponding

 

connector

 

design

 

in

 

the

 

following

 

ways:

 

v

   

On

 

a

 

Create

 

operation,

 

the

 

connector

 

might

 

cycle

 

through

 

the

 

attributes,

 

extracting

 

the

 

non-key

 

attribute

 

values

 

from

 

the

 

business

 

object

 

instance

 

and

 

extracting

 

processing

 

instructions

 

from

 

the

 

business

 

object

 

definition.

 

When

 

it

 

has

 

assembled

 

the

 

information

 

it

 

needs

 

to

 

process

 

the

 

business

 

object,

 

the

 

connector

 

might

 

start

 

an

 

application

 

function

 

call

 

or

 

SQL

 

statement

 

to

 

create

 

a

 

new

 

row

 

for

 

the

 

record

 

in

 

the

 

table.

 

The

 

connector

 

then

 

returns

 

a

 

value

 

for

 

the

 

key

 

to

 

the

 

business

 

integration

 

system.

 

v

   

On

 

a

 

Retrieve

 

operation,

 

the

 

connector

 

might

 

extract

 

the

 

primary

 

key

 

from

 

the

 

business

 

object

 

request,

 

use

 

the

 

key

 

value

 

to

 

retrieve

 

the

 

current

 

set

 

of

 

data

 

for

 

the

 

row,

 

and

 

return

 

a

 

business

 

object

 

with

 

the

 

complete

 

set

 

of

 

values.

This

 

type

 

of

 

business

 

object

 

is

 

straightforward

 

in

 

its

 

design

 

and

 

in

 

the

 

connector

 

logic

 

required

 

to

 

process

 

it.

 

Typically,

 

however,

 

application

 

entities

 

are

 

more

 

complex

 

and

 

include

 

information

 

that

 

is

 

stored

 

in

 

other

 

objects.

 

Application table Business object definition

ObjectID

UserName

UserName TimeStampObjectID

DetailText

TimeStamp

ObjectEventId

RecordStatus

Status

Detail

  

Figure

 

8.

 

Flat

 

business

 

object

 

representing

 

one

 

entity

  

18

 

Business

 

Object

 

Development

 

Guide



Representing

 

multiple

 

entities

 

A

 

business

 

object

 

can

 

represent

 

application

 

entities

 

that

 

include

 

data

 

from

 

other

 

entities

 

in

 

one

 

of

 

the

 

ways

 

shown

 

in

 

Table

 

3.

  

Table

 

3.

 

Representing

 

multiple

 

entities.

 

Structure

 

of

 

business

 

object

 

Type

 

of

 

data

 

organization

 

Type

 

of

 

parent/child

 

relationship

 

Parent

 

business

 

object

 

can

 

have

 

one

 

or

 

more

 

child

 

business

 

objects

 

that

 

represent

 

the

 

other

 

entities.

 

One-to-one

 

One-to-many

 

Structural

 

Parent

 

business

 

object

 

can

 

have

 

one

 

or

 

more

 

foreign-key

 

attributes

 

that

 

reference

 

other

 

top-level

 

business

 

objects

 

that

 

represent

 

the

 

other

 

entities.

 

One-to-one

 

One-to-many

 

Many-to-many

 

Many-to-one

 

Semantic

 

If

 

the

 

application

 

and

 

its

 

interface

 

permit,

 

a

 

flat

 

business

 

object

 

can

 

include

 

attributes

 

that

 

directly

 

reference

 

other

 

entities.

 

One-to-one

 

None

   

When

 

deciding

 

how

 

to

 

structure

 

business

 

objects

 

that

 

represent

 

multiple

 

entities,

 

consider

 

these

 

guidelines:

 

v

   

If

 

the

 

relationship

 

between

 

entities

 

is

 

a

 

one-to-many

 

relationship,

 

represent

 

the

 

data

 

in

 

the

 

subordinate

 

entities

 

as

 

child

 

business

 

objects.

 

For

 

example:

 

–

   

When

 

working

 

with

 

database

 

tables,

 

if

 

an

 

entity

 

row

 

is

 

related

 

to

 

one

 

or

 

more

 

rows

 

in

 

another

 

entity

 

and

 

is

 

the

 

only

 

entity

 

that

 

relates

 

to

 

the

 

subordinate

 

entity,

 

create

 

a

 

separate

 

child

 

business

 

object

 

for

 

each

 

related

 

row.

 

–

   

When

 

working

 

with

 

a

 

DTD,

 

if

 

an

 

XML

 

element

 

has

 

an

 

attribute

 

with

 

a

 

cardinality

 

of

 

*,

 

create

 

a

 

separate

 

child

 

business

 

object

 

for

 

each

 

related

 

element

 

attribute.
v

   

If

 

the

 

relationship

 

between

 

entities

 

is

 

a

 

many-to-many

 

relationship,

 

represent

 

the

 

data

 

in

 

the

 

related

 

entities

 

as

 

top-level

 

business

 

objects

 

that

 

are

 

referenced

 

by

 

the

 

parent

 

rather

 

than

 

contained

 

by

 

the

 

parent.

 

v

   

If

 

a

 

business

 

object

 

definition

 

for

 

an

 

entity

 

includes

 

many

 

attributes

 

from

 

another

 

entity

 

and

 

the

 

attributes

 

from

 

the

 

second

 

entity

 

form

 

a

 

logical

 

grouping,

 

you

 

may

 

want

 

to

 

create

 

a

 

child

 

business

 

object

 

definition

 

for

 

the

 

second

 

entity

 

rather

 

than

 

locate

 

all

 

the

 

attributes

 

for

 

both

 

entities

 

in

 

the

 

same

 

business

 

object

 

definition.

 

v

   

If

 

an

 

existing

 

business

 

object

 

already

 

contains

 

other

 

child

 

business

 

objects,

 

creating

 

one

 

or

 

more

 

child

 

business

 

objects

 

that

 

represent

 

new

 

entities

 

makes

 

the

 

business

 

object

 

structure

 

consistent.

The

 

following

 

sections

 

describe

 

each

 

of

 

these

 

representations

 

in

 

more

 

detail.

 

Structural

 

relationships

 

In

 

a

 

structural

 

relationship,

 

the

 

parent

 

business

 

object

 

physically

 

contains

 

the

 

child

 

business

 

object.

 

Such

 

a

 

business

 

object

 

is

 

a

 

hierarchical

 

business

 

object:

 

at

 

least

 

one

 

of

 

its

 

attributes

 

is

 

complex

 

(that

 

is,

 

it

 

contains

 

either

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects).

 

The

 

Relationship

 

attribute

 

property

 

for

 

this

 

attribute

 

is

 

containment,

 

to

 

indicate

 

a

 

containment

 

relationship.

 

The

 

type

 

of

 

this

 

attribute

 

is

 

the

 

type

 

of

 

the

 

child

 

business

 

object

 

(or

 

objects)

 

it

 

represents.

 

For

 

more

 

information,

 

see

 

“Hierarchical

 

business

 

objects”

 

on

 

page

 

12.

 

The

 

following

 

hierarchical

 

business

 

objects

 

represent

 

structural

 

relationships:

   

Chapter

 

2.

 

Business

 

object

 

design

 

19



v

   

Because

 

an

 

order

 

is

 

composed

 

of

 

line

 

items,

 

an

 

Order

 

business

 

object

 

contains

 

an

 

array

 

of

 

LineItem

 

business

 

objects.

 

The

 

containment

 

relationship

 

has

 

multiple-cardinality

 

because

 

each

 

order

 

can

 

contain

 

multiple

 

line

 

items.

 

This

 

structure

 

represents

 

a

 

one-to-many

 

relationship.

 

v

   

Because

 

an

 

employee

 

is

 

associated

 

with

 

one

 

home

 

address,

 

an

 

Employee

 

business

 

object

 

contains

 

one

 

Address

 

business

 

object.

 

The

 

containment

 

relationship

 

has

 

single-cardinality

 

because

 

each

 

employee

 

can

 

be

 

associated

 

with

 

only

 

one

 

home

 

address.

 

This

 

structure

 

represents

 

a

 

one-to-one

 

relationship.

In

 

both

 

cases,

 

because

 

the

 

parent

 

business

 

object

 

contains

 

the

 

child

 

or

 

array

 

of

 

children,

 

the

 

relationship

 

is

 

defined

 

structurally.

 

A

 

structural

 

relationship

 

assumes

 

that

 

the

 

parent

 

business

 

object

 

owns

 

the

 

data

 

within

 

the

 

child

 

object.

 

Thus,

 

when

 

a

 

new

 

employee

 

is

 

created,

 

a

 

new

 

row

 

is

 

inserted

 

into

 

the

 

address

 

table

 

to

 

hold

 

that

 

employee’s

 

address.

 

Similarly,

 

when

 

an

 

employee

 

is

 

deleted,

 

the

 

employee’s

 

address

 

is

 

also

 

deleted

 

from

 

the

 

address

 

table.

 

Semantic

 

relationships

 

In

 

a

 

semantic

 

relationship,

 

either

 

the

 

parent

 

business

 

object

 

references

 

the

 

child,

 

or

 

the

 

child

 

references

 

the

 

parent.

 

When

 

one

 

business

 

object

 

references

 

another,

 

it

 

stores

 

a

 

value

 

that

 

uniquely

 

identifies

 

the

 

other,

 

but

 

it

 

does

 

not

 

contain

 

the

 

other.

 

In

 

this

 

case,

 

the

 

component

 

that

 

processes

 

the

 

business

 

object

 

derives

 

the

 

relationship

 

semantically.

 

A

 

semantic

 

relationship

 

is

 

typically

 

defined

 

by

 

a

 

simple

 

attribute

 

that

 

serves

 

as

 

a

 

foreign

 

key.

 

The

 

foreign

 

key

 

attribute

 

is

 

located

 

in

 

one

 

business

 

object

 

and

 

contains

 

the

 

unique

 

identifier

 

(called

 

the

 

primary

 

key)

 

of

 

the

 

other.

 

In

 

other

 

words,

 

both

 

business

 

objects

 

have

 

a

 

primary

 

key

 

attribute

 

that

 

holds

 

its

 

unique

 

identifier.

 

In

 

addition,

 

one

 

of

 

the

 

business

 

objects

 

also

 

has

 

a

 

foreign

 

key

 

attribute

 

that

 

holds

 

the

 

primary

 

key

 

value

 

of

 

the

 

other.

 

The

 

foreign

 

key

 

establishes

 

the

 

link

 

semantically

 

between

 

parent

 

and

 

child.

 

Semantic

 

relationships

 

are

 

important

 

when

 

there

 

is

 

a

 

many-to-many

 

or

 

many-to-one

 

relationship

 

between

 

entities,

 

in

 

other

 

words,

 

when

 

more

 

than

 

one

 

parent

 

has

 

a

 

relationship

 

to

 

the

 

same

 

child.

 

Relating

 

the

 

entities

 

semantically

 

rather

 

than

 

structurally

 

isolates

 

the

 

child’s

 

data,

 

which

 

is

 

important

 

to

 

maintain

 

data

 

consistency.

 

Because

 

the

 

parent

 

does

 

not

 

contain

 

the

 

child

 

in

 

a

 

semantically

 

defined

 

relationship,

 

the

 

connector

 

that

 

handles

 

requests

 

for

 

the

 

parent

 

and

 

child

 

receives

 

them

 

in

 

separate

 

operations.

 

In

 

other

 

words,

 

the

 

requests

 

are

 

sent

 

separately

 

to

 

the

 

connector,

 

which

 

handles

 

the

 

parent

 

and

 

child

 

in

 

separate

 

operations.

 

For

 

more

 

information,

 

see

 

“Data

 

ownership

 

in

 

relationships”

 

on

 

page

 

25

 

and

 

“Choosing

 

between

 

a

 

semantic

 

and

 

a

 

structural

 

relationship”

 

on

 

page

 

27.

 

Consider

 

the

 

design

 

options

 

in

 

Table

 

4

 

for

 

specifying

 

a

 

semantic

 

relationship.

  

Table

 

4.

 

Design

 

options

 

for

 

semantic

 

relationships.

 

Design

 

option

 

Type

 

of

 

relationship

 

“Storing

 

the

 

foreign

 

key

 

in

 

the

 

parent

 

object”

 

on

 

page

 

21

 

One-to-one

 

Many-to-one

 

“Storing

 

the

 

foreign

 

key

 

in

 

the

 

child

 

object”

 

on

 

page

 

22

 

One-to-many

 

“Storing

 

foreign

 

keys

 

in

 

an

 

array

 

of

 

child

 

objects”

 

on

 

page

 

22

 

One-to-many

 

Many-to-many

   

20

 

Business

 

Object

 

Development

 

Guide



Table

 

4.

 

Design

 

options

 

for

 

semantic

 

relationships.

 

(continued)

 

Design

 

option

 

Type

 

of

 

relationship

 

“Storing

 

the

 

foreign

 

key

 

in

 

a

 

business-object

 

tree”

 

on

 

page

 

23

 

One-to-one

   

Storing

 

the

 

foreign

 

key

 

in

 

the

 

parent

 

object:

   

In

 

the

 

simplest

 

use

 

of

 

foreign

 

keys,

 

the

 

foreign

 

key

 

that

 

establishes

 

the

 

relationship

 

is

 

stored

 

in

 

the

 

parent.

 

In

 

this

 

case,

 

a

 

parent

 

can

 

contain

 

a

 

reference

 

to

 

only

 

one

 

child

 

of

 

a

 

given

 

type.

 

The

 

relationship

 

between

 

parent

 

and

 

child

 

is

 

clearly

 

defined

 

in

 

the

 

parent.

 

Therefore,

 

this

 

structure

 

represents

 

a

 

one-to-one

 

relationship.

 

However,

 

multiple

 

parent

 

business

 

objects

 

can

 

reference

 

the

 

same

 

child

 

business

 

object

 

to

 

implement

 

a

 

many-to-one

 

relationship.

 

Note:

  

When

 

the

 

foreign

 

key

 

that

 

establishes

 

the

 

relationship

 

is

 

stored

 

in

 

the

 

parent,

 

a

 

parent

 

can

 

contain

 

multiple

 

attributes

 

that

 

each

 

contain

 

a

 

reference

 

to

 

a

 

child,

 

but

 

each

 

of

 

these

 

attributes

 

typically

 

references

 

a

 

different

 

type

 

of

 

child.

 

In

 

Figure

 

9,

 

the

 

Customer

 

business

 

object

 

has

 

two

 

attributes

 

(AddressId

 

and

 

CustInfo)

 

each

 

of

 

which

 

contain

 

a

 

reference

 

to

 

a

 

child

 

business

 

object.

 

The

 

foreign

 

key

 

attributes

 

in

 

Customer

 

readily

 

identify

 

the

 

parent’s

 

relationship

 

to

 

the

 

two

 

children.

  

Note:

  

In

 

Figure

 

9,

 

the

 

acronym

 

“PK”

 

is

 

used

 

to

 

indicate

 

a

 

primary

 

key

 

and

 

“FK”

 

is

 

used

 

to

 

indicate

 

a

 

foreign

 

key.

 

In

 

addition,

 

these

 

business

 

objects

 

follow

 

the

 

naming

 

convention

 

for

 

generic

 

business

 

objects

 

by

 

naming

 

their

 

primary

 

key

 

attribute

 

ObjectId.

 

In

 

an

 

application-specific

 

business

 

object,

 

it

 

is

 

usually

 

best

 

to

 

name

 

the

 

attribute

 

after

 

the

 

name

 

of

 

its

 

equivalent

 

field

 

or

 

column

 

in

 

the

 

application.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

you

 

can

 

examine

 

the

 

delivered

 

generic

 

Order

 

business

 

object

 

for

 

an

 

example

 

of

 

a

 

parent

 

object

 

that

 

stores

 

a

 

foreign

 

key

 

reference

 

to

 

another

 

object.

 

It

 

contains

 

the

 

CustomerId

 

attribute,

 

which

 

references

 

the

 

top-level

 

generic

 

Customer

 

business

 

object.

 

See

 

Figure

 

11

 

for

 

an

 

illustration

 

of

 

the

 

Order

 

business

 

object.

 

ObjectId (PK)

ObjectId (PK)CustomerName
City

Address business object

Customer business object

State
AddressId (FK)

Customer

Address

ObjectId (PK)

CustomerProfileData

Customer information business object

CustomerAccountData

CustomerInformation

CustInfo (FK)

  

Figure

 

9.

 

One-to-one:

 

Multiple

 

foreign

 

key

 

attributes

 

stored

 

in

 

the

 

parent

 

business

 

object

  

Chapter

 

2.

 

Business

 

object

 

design

 

21



Storing

 

the

 

foreign

 

key

 

in

 

the

 

child

 

object:

   

Alternatively,

 

the

 

foreign

 

key

 

that

 

establishes

 

the

 

relationship

 

can

 

be

 

stored

 

in

 

the

 

child.

 

This

 

case

 

represents

 

a

 

one-to-many

 

relationship;

 

that

 

is,

 

multiple

 

children

 

can

 

reference

 

the

 

same

 

parent.

 

However,

 

because

 

the

 

relationship

 

between

 

parent

 

and

 

child

 

is

 

defined

 

in

 

the

 

child,

 

the

 

relationship

 

is

 

invisible

 

when

 

you

 

examine

 

only

 

the

 

parent.

 

Therefore,

 

if

 

the

 

parent

 

business

 

object

 

triggers

 

an

 

integration

 

flow,

 

those

 

children

 

cannot

 

be

 

retrieved—there

 

is

 

no

 

reference

 

to

 

them

 

in

 

the

 

parent

 

business

 

object

 

that

 

is

 

traveling

 

through

 

the

 

system.

 

In

 

Figure

 

10,

 

the

 

foreign

 

key

 

attribute

 

is

 

stored

 

in

 

each

 

child

 

business

 

object

 

rather

 

than

 

in

 

the

 

parent.

 

This

 

structure

 

allows

 

multiple

 

children

 

to

 

be

 

semantically

 

related

 

to

 

the

 

same

 

parent.

 

In

 

this

 

case,

 

however,

 

because

 

the

 

parent

 

business

 

object

 

has

 

no

 

attributes

 

that

 

contain

 

a

 

reference

 

to

 

a

 

child

 

business

 

object,

 

there

 

is

 

no

 

way

 

to

 

identify

 

the

 

parent’s

 

relationship

 

to

 

its

 

children

 

or,

 

given

 

the

 

parent,

 

to

 

retrieve

 

all

 

of

 

its

 

related

 

children.

  

Note:

  

In

 

Figure

 

10,

 

the

 

acronym

 

“PK”

 

is

 

used

 

to

 

indicate

 

a

 

primary

 

key

 

and

 

“FK”

 

is

 

used

 

to

 

indicate

 

a

 

foreign

 

key.

 

Storing

 

foreign

 

keys

 

in

 

an

 

array

 

of

 

child

 

objects:

   

To

 

represent

 

a

 

one-to-many

 

relationship,

 

the

 

foreign

 

key

 

that

 

actually

 

establishes

 

the

 

relationship

 

is

 

stored

 

in

 

a

 

simple

 

attribute

 

in

 

a

 

child

 

business

 

object.

 

The

 

parent

 

business

 

object

 

structurally

 

contains

 

an

 

array

 

of

 

these

 

children.

 

In

 

other

 

words,

 

the

 

parent

 

contains

 

an

 

array

 

of

 

child

 

business

 

objects,

 

each

 

one

 

of

 

which

 

contains

 

a

 

foreign-key

 

reference

 

to

 

another

 

top-level

 

business

 

object.

 

In

 

addition,

 

multiple

 

parent

 

business

 

objects

 

can

 

reference

 

the

 

same

 

child

 

business

 

object

 

in

 

their

 

child

 

business

 

object

 

arrays

 

to

 

implement

 

a

 

many-to-many

 

relationship.

 

Note:

  

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

there

 

are

 

several

 

business

 

objects

 

you

 

may

 

examine

 

for

 

an

 

example

 

of

 

a

 

parent-child

 

relationship

 

of

 

this

 

type.

 

The

 

generic

 

Order

 

and

 

ContactRef

 

business

 

objects

 

provide

 

an

 

ObjectId (PK)

parentID

Attribute2

ChildBO

ObjectId (PK)

Attribute1

Attribute2

ParentBO

AttributeN ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

  

Figure

 

10.

 

Many-to-one:

 

Foreign

 

key

 

stored

 

in

 

multiple

 

child

 

business

 

objects

  

22

 

Business

 

Object

 

Development

 

Guide



example

 

of

 

this

 

option.

 

Order

 

contains

 

the

 

OrderContactRef

 

attribute,

 

which

 

contains

 

an

 

array

 

of

 

generic

 

ContactRef

 

business

 

objects.

 

Each

 

ContactRef

 

business

 

object

 

contains

 

the

 

ContactId

 

attribute,

 

which

 

holds

 

a

 

reference

 

to

 

the

 

top-level

 

generic

 

Contact

 

business

 

object.

 

In

 

Figure

 

11,

 

the

 

Order

 

business

 

object

 

contains

 

a

 

reference

 

to

 

one

 

Customer

 

business

 

object

 

and

 

structurally

 

contains

 

an

 

array

 

of

 

ContactRef

 

business

 

objects.

 

Each

 

ContactRef

 

business

 

object

 

contains

 

a

 

reference

 

to

 

one

 

Contact

 

business

 

object.

  

Note:

  

In

 

Figure

 

11,

 

the

 

acronym

 

“PK”

 

is

 

used

 

to

 

indicate

 

a

 

primary

 

key

 

and

 

“FK”

 

is

 

used

 

to

 

indicate

 

a

 

foreign

 

key.

 

Storing

 

the

 

foreign

 

key

 

in

 

a

 

business-object

 

tree:

   

In

 

this

 

design,

 

the

 

foreign

 

key

 

that

 

establishes

 

the

 

relationship

 

is

 

stored

 

in

 

a

 

“child”

 

business

 

object

 

whose

 

parent

 

is

 

another

 

business

 

of

 

the

 

same

 

type

 

as

 

itself.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

you

 

can

 

examine

 

the

 

generic

 

InstalledProduct

 

business

 

object

 

for

 

an

 

example

 

of

 

this

 

design.

 

This

 

business

 

object

 

contains

 

the

 

ParentId

 

attribute,

 

which

 

can

 

contain

 

a

 

reference

 

to

 

another

 

InstalledProduct

 

business

 

object,

 

which

 

is

 

the

 

direct

 

parent

 

of

 

the

 

current

 

business

 

object.

 

In

 

Figure

 

12,

 

the

 

ParentId

 

attribute

 

of

 

one

 

InstalledProduct

 

business

 

object

 

contains

 

a

 

reference

 

to

 

the

 

primary

 

key

 

(ObjectId)

 

attribute

 

of

 

its

 

immediate

 

parent

 

InstalledProduct

 

business

 

object.

 

The

 

head

 

of

 

the

 

hierarchy

 

is

 

the

 

business

 

object

 

whose

 

ParentId

 

attribute

 

does

 

not

 

contain

 

a

 

value.

  

ObjectId (PK)

ObjectId (PK)...

Customer business object

Order business object

CustomerId (FK)

Order

Customer

ContactRef business objects

OrderContactRef(n)
...

...

ObjectId (PK)

ContactId (FK)

ContactRef

Contact business objects

ObjectId (PK)

Contact

...

...

  

Figure

 

11.

 

Business

 

object

 

containing

 

a

 

child

 

business

 

object

 

that

 

stores

 

foreign

 

keys

  

Chapter

 

2.

 

Business

 

object

 

design

 

23



Note:

  

In

 

Figure

 

12,

 

the

 

acronym

 

“PK”

 

is

 

used

 

to

 

indicate

 

a

 

primary

 

key

 

and

 

“FK”

 

is

 

used

 

to

 

indicate

 

a

 

foreign

 

key.

 

Because

 

an

 

InstalledProduct

 

business

 

object

 

can

 

contain

 

a

 

reference

 

to

 

its

 

parent

 

business

 

object,

 

the

 

business

 

integration

 

system

 

can

 

synchronize

 

installed

 

products

 

that

 

are

 

part

 

of

 

a

 

large

 

hierarchy.

 

The

 

business

 

integration

 

system

 

can

 

manage

 

the

 

components

 

of

 

a

 

complex

 

installed

 

product

 

hierarchy

 

as

 

individual

 

InstalledProduct

 

business

 

objects.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

you

 

can

 

see

 

the

 

InstalledProductSync

 

collaboration

 

template

 

documentation

 

for

 

more

 

information.

 

Flat

 

business

 

object

 

representing

 

related

 

entities

 

If

 

the

 

application

 

interface

 

provides

 

the

 

capability

 

of

 

joining

 

multiple

 

application

 

entities

 

in

 

one

 

business

 

object,

 

you

 

may

 

be

 

able

 

to

 

define

 

a

 

flat

 

business

 

object

 

that

 

contains

 

attributes

 

referring

 

to

 

a

 

primary

 

entity

 

and

 

to

 

related

 

entities.

 

If

 

the

 

relationship

 

between

 

the

 

entities

 

is

 

a

 

one-to-one

 

relationship,

 

where

 

one

 

instance

 

of

 

the

 

primary

 

entity

 

can

 

be

 

associated

 

with

 

one

 

instance

 

of

 

each

 

related

 

entity,

 

attributes

 

from

 

multiple

 

entities

 

can

 

be

 

included

 

in

 

one

 

business

 

object.

 

When

 

designing

 

an

 

application-specific

 

business

 

object

 

of

 

this

 

type,

 

you

 

may

 

need

 

to

 

use

 

application-specific

 

information

 

to

 

specify

 

the

 

location

 

of

 

attribute

 

data

 

in

 

the

 

application

 

so

 

that

 

the

 

connector

 

can

 

find

 

and

 

process

 

the

 

data

 

correctly.

 

Figure

 

13

 

provides

 

an

 

example

 

of

 

a

 

flat

 

WebSphere

 

business

 

integration

 

system

 

business

 

object

 

that

 

represents

 

data

 

in

 

two

 

entities,

 

one

 

a

 

table

 

containing

 

address

 

data

 

and

 

the

 

other

 

a

 

table

 

containing

 

lookup

 

data

 

for

 

state/province

 

and

 

country

 

abbreviations.

  

ObjectId (PK)

Attribute2

InstalledProduct

AttributeN

Attribute2

AttributeN

ObjectId (PK)

ParentID (FK)

Attribute2

InstalledProduct

AttributeN

ParentID (FK)

ObjectId (PK)

Attribute2

InstalledProduct

AttributeN

Attribute2

AttributeN

ObjectId (PK)

ParentID (FK)

Attribute2

InstalledProduct

AttributeN

ParentID (FK)

  

Figure

 

12.

 

Business

 

object

 

storing

 

a

 

foreign

 

key

 

in

 

its

 

parent

 

of

 

the

 

same

 

type

  

24

 

Business

 

Object

 

Development

 

Guide



This

 

example

 

uses

 

application-specific

 

information

 

to

 

establish

 

a

 

foreign

 

key

 

relationship

 

between

 

the

 

entities.

 

In

 

this

 

case,

 

the

 

connector

 

performs

 

a

 

lookup

 

from

 

a

 

value

 

in

 

an

 

attribute

 

that

 

represents

 

one

 

table

 

to

 

provide

 

a

 

value

 

for

 

an

 

attribute

 

that

 

represents

 

another

 

table.

 

To

 

retrieve

 

this

 

data,

 

the

 

connector

 

performs

 

two

 

table

 

reads.

 

Although

 

flat

 

business

 

objects

 

can

 

encapsulate

 

information

 

from

 

or

 

included

 

in

 

multiple

 

application

 

entities,

 

cross-application

 

integration

 

problems

 

often

 

require

 

more

 

complex

 

integration

 

logic

 

and

 

more

 

complicated

 

data

 

structures

 

than

 

flat

 

business

 

objects

 

can

 

represent.

 

To

 

handle

 

more

 

complexity

 

in

 

application

 

entities

 

and

 

integration

 

requirements,

 

the

 

WebSphere

 

business

 

integration

 

system

 

provides

 

hierarchical

 

business

 

objects.

 

Design

 

considerations

 

for

 

multiple

 

entities

 

This

 

section

 

provides

 

the

 

following

 

considerations

 

when

 

you

 

design

 

business

 

objects

 

for

 

multiple

 

entities:

 

v

   

“Data

 

ownership

 

in

 

relationships”

 

v

   

“Choosing

 

between

 

a

 

semantic

 

and

 

a

 

structural

 

relationship”

 

on

 

page

 

27

Data

 

ownership

 

in

 

relationships

 

The

 

way

 

you

 

design

 

your

 

business

 

objects

 

to

 

represent

 

multiple

 

entities

 

has

 

an

 

effect

 

on

 

the

 

ownership

 

of

 

the

 

data:

 

v

   

A

 

structural

 

relationship

 

assumes

 

that

 

the

 

parent

 

business

 

object

 

owns

 

the

 

child

 

data.

 

v

   

A

 

semantic

 

relationship

 

does

 

not

 

assume

 

that

 

the

 

parent

 

business

 

object

 

owns

 

the

 

data

 

within

 

the

 

child

 

object.

This

 

distinction

 

is

 

significant

 

when

 

considering

 

the

 

data

 

consistency

 

of

 

an

 

entity

 

that

 

is

 

shared

 

by

 

multiple

 

business

 

objects.

 

For

 

example,

 

assume

 

that

 

a

 

customer

 

and

 

a

 

contact

 

share

 

an

 

address.

 

If

 

the

 

Customer

 

and

 

Contact

 

business

 

objects

 

contain

 

a

 

reference

 

to

 

the

 

Address

 

business

 

object

 

(a

 

semantic

 

relationship)

 

instead

 

of

 

containing

 

the

 

business

 

object

 

(a

 

structural

 

relationship),

 

changes

 

to

 

the

 

Address

 

can

 

be

 

made

 

independently

 

of

 

changes

 

to

 

the

 

Customer

 

or

 

Contact.

 

However,

 

if

 

the

 

Customer

 

and

 

Contact

 

business

 

objects

 

each

 

contain

 

the

 

Address

 

business

 

object,

 

changes

 

to

 

the

 

Address

 

made

 

by

 

Customer

 

might

 

overwrite

 

changes

 

made

 

by

 

Contact.

 

In

 

this

 

case,

 

two

 

different

 

collaboration

 

objects

 

(CustomerSync

 

and

 

ContactSync)

 

might

 

update

 

the

 

same

 

address

 

data

 

at

 

the

 

same

 

time,

 

causing

 

data

 

inconsistency.

 

Address

Retrieve

address_id

.

.

city=Burlingame
state=CA
country=USA

fk_state
fk_country

state_description

  

Figure

 

13.

 

Flat

 

business

 

object

 

that

 

represents

 

two

 

entities

  

Chapter

 

2.

 

Business

 

object

 

design

 

25



If

 

Customer

 

and

 

Contact

 

have

 

a

 

semantic

 

rather

 

than

 

structural

 

relationship

 

to

 

the

 

Address

 

business

 

object,

 

you

 

can

 

limit

 

modification

 

of

 

Address

 

data

 

to

 

a

 

third

 

interface.

 

For

 

instance,

 

you

 

might

 

have

 

one

 

interface

 

for

 

each

 

of

 

the

 

Contact

 

and

 

Customer

 

business

 

objects.

 

Then

 

both

 

of

 

those

 

interfaces

 

could

 

delegate

 

management

 

of

 

Address

 

business

 

objects

 

to

 

a

 

third

 

interface.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server

 

this

 

is

 

done

 

by

 

having

 

the

 

CustomerSync

 

and

 

ContactSync

 

collaboration

 

objects

 

call

 

AddressSync

 

through

 

a

 

wrapper

 

collaboration

 

object

 

rather

 

than

 

directly

 

making

 

the

 

changes

 

themselves.

 

For

 

more

 

information

 

on

 

designing

 

business

 

objects

 

to

 

maintain

 

data

 

consistency

 

for

 

InterChange

 

Server

 

integration

 

scenarios,

 

see

 

“Designing

 

for

 

Parallel

 

Execution”

 

in

 

the

 

Collaboration

 

Development

 

Guide.

 

Figure

 

14

 

illustrates

 

the

 

difference

 

between

 

semantically

 

and

 

structurally

 

defining

 

the

 

relationship

 

to

 

a

 

child

 

business

 

object.

  

The

 

figure

 

above

 

illustrates

 

two

 

kinds

 

of

 

relationships

 

to

 

child

 

data:

 

v

   

Semantic—The

 

child

 

Address

 

business

 

object,

 

which

 

is

 

semantically

 

linked

 

to

 

both

 

Customer

 

and

 

Contact,

 

contains

 

the

 

value

 

of

 

its

 

parent’s

 

primary

 

key

 

in

 

a

 

simple

 

foreign-key

 

attribute.

 

In

 

this

 

case,

 

the

 

name

 

of

 

the

 

primary

 

key

 

attribute

 

in

 

both

 

parents

 

is

 

the

 

same,

 

which

 

simplifies

 

the

 

link

 

from

 

child

 

to

 

parent.

 

v

   

Structural—The

 

two

 

business

 

objects

 

that

 

structurally

 

link

 

to

 

Address

 

have

 

an

 

attribute

 

that

 

represents

 

an

 

instance

 

of

 

the

 

child.

 

In

 

this

 

case,

 

the

 

data

 

in

 

the

 

child

 

is

 

related

 

only

 

to

 

the

 

parent

 

that

 

contains

 

it

 

and

 

is

 

not

 

shared.

ObjectId (PK)

ObjectId (PK)

CustomerName

City

Address business object

Customer business object

State

Customer

Address

ObjectId (PK)

CustomerName

Contact business object

...

Contact

Semantically shared data

ObjectId (PK)

ObjectId (PK)

CustomerName

City

Address business object

Customer business object

State

Address (1)

Customer

Address

ObjectId (PK)

CustomerName

Contact business object

Address (1)

Contact

Structurally related data

parentID (FK)

...

...

ObjectId (PK)
City

Address business object

State

Address

  

Figure

 

14.

 

Comparing

 

semantic

 

and

 

structural

 

relationships

  

26

 

Business

 

Object

 

Development

 

Guide



Choosing

 

between

 

a

 

semantic

 

and

 

a

 

structural

 

relationship

 

As

 

Table

 

3

 

on

 

page

 

19

 

shows,

 

both

 

the

 

one-to-one

 

and

 

one-to-many

 

relationships

 

can

 

be

 

represented

 

by

 

a

 

structural

 

or

 

semantic

 

relationship.

 

Table

 

5

 

summarizes

 

these

 

structural

 

and

 

semantic

 

representations.

  

Table

 

5.

 

Representations

 

for

 

one-to-one

 

and

 

one-to-many

 

relationships

 

Type

 

of

 

relationship

 

Structural

 

representation

 

Semantic

 

representation

 

One-to-one

 

(single

 

cardinality)

 

An

 

attribute

 

in

 

a

 

parent

 

business

 

object

 

represents

 

one

 

child

 

business

 

object.

 

An

 

attribute

 

in

 

a

 

parent

 

business

 

object

 

is

 

simple

 

and

 

contains

 

the

 

foreign

 

key

 

to

 

reference

 

one

 

child

 

business

 

object.

 

One-to-many

 

(multiple-cardinality)

 

An

 

attribute

 

in

 

a

 

parent

 

business

 

object

 

represents

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Multiple

 

child

 

business

 

objects

 

each

 

contain

 

a

 

foreign

 

key

 

attribute

 

that

 

stores

 

the

 

parent’s

 

primary

 

key.

   

Figure

 

9

 

and

 

Figure

 

10

 

illustrate

 

business

 

objects

 

whose

 

single-

 

and

 

multiple-cardinality

 

relationships

 

are

 

defined

 

semantically.

 

The

 

business

 

objects

 

in

 

the

 

example

 

might

 

represent

 

data

 

stored

 

in

 

a

 

database.

 

Relationships

 

between

 

business

 

objects

 

that

 

represent

 

such

 

data

 

can

 

be

 

defined

 

both

 

semantically

 

and

 

structurally.

 

For

 

such

 

data,

 

the

 

relationship

 

between

 

a

 

parent

 

and

 

child

 

can

 

be

 

defined

 

both

 

semantically

 

and

 

structurally

 

in

 

the

 

same

 

two

 

business

 

objects.

 

Choosing

 

a

 

semantic

 

relationship:

   

To

 

implement

 

a

 

semantic

 

relationship,

 

the

 

underlying

 

application

 

should

 

be

 

able

 

to

 

support

 

foreign

 

keys.

 

For

 

example,

 

when

 

a

 

business

 

object

 

represents

 

database

 

data,

 

it

 

can

 

establish

 

the

 

relationship

 

between

 

entities

 

both

 

semantically

 

and

 

structurally.

 

Such

 

business

 

objects

 

are

 

designed

 

redundantly.

 

In

 

other

 

words,

 

the

 

component

 

that

 

processes

 

them

 

can

 

locate

 

the

 

child

 

through

 

the

 

parent

 

and

 

the

 

parent

 

through

 

each

 

child.

 

For

 

example,

 

assume

 

an

 

application

 

has

 

a

 

table

 

that

 

represents

 

purchase

 

orders.

 

This

 

table

 

is

 

related

 

by

 

foreign

 

keys

 

to

 

a

 

table

 

that

 

contains

 

line

 

items

 

for

 

a

 

purchase

 

order.

 

Multiple

 

rows

 

in

 

the

 

line

 

items

 

table

 

reference

 

one

 

row

 

in

 

the

 

purchase

 

orders

 

table.

 

Figure

 

15

 

illustrates

 

these

 

tables.

  

PO ID

Purchase orders table

PO date

87

Line item ID PO ID

Line items table

Item desc

2404
... ...

12 87 1 nail"

13 87

PO status

Active
...

Price

$0.12
$0.141 ½ nail"

14 87 2 nail" $0.17

... ... ... ...

... ... ... ...

Quantity

50
22
225

...

...

... ... ...

  

Figure

 

15.

 

Example

 

application

 

tables

 

with

 

a

 

one-to-many

 

semantic

 

relationship.

  

Chapter

 

2.

 

Business

 

object

 

design

 

27



Figure

 

16

 

illustrates

 

business

 

objects

 

that

 

might

 

correspond

 

to

 

these

 

tables.

 

This

 

figure

 

shows

 

a

 

top-level

 

PurchaseOrder

 

business

 

object

 

and

 

three

 

child

 

LineItem

 

business

 

objects.

  

The

 

illustrated

 

PurchaseOrder

 

business

 

object

 

has

 

both

 

a

 

semantic

 

and

 

structural

 

relationship

 

to

 

its

 

LineItem

 

children.

 

The

 

PurchaseOrderId

 

attribute

 

in

 

each

 

child

 

creates

 

the

 

foreign-key

 

semantic

 

link

 

to

 

the

 

parent

 

from

 

the

 

child.

 

The

 

LineItem

 

attribute

 

in

 

the

 

parent,

 

which

 

is

 

defined

 

with

 

cardinality

 

n,

 

creates

 

the

 

structural

 

link

 

to

 

the

 

child

 

from

 

the

 

parent.

 

Note:

  

IBM

 

does

 

not

 

deliver

 

any

 

business

 

objects

 

that

 

have

 

the

 

foreign

 

key

 

stored

 

in

 

the

 

child.

 

This

 

document

 

presents

 

the

 

above

 

example

 

only

 

to

 

illustrate

 

different

 

ways

 

to

 

link

 

parent

 

and

 

child

 

data.

 

Choosing

 

a

 

structural

 

relationship:

   

If

 

the

 

underlying

 

application

 

does

 

not

 

support

 

foreign

 

keys,

 

you

 

probably

 

need

 

to

 

implement

 

a

 

structural

 

relationship.

 

For

 

example,

 

a

 

DTD,

 

which

 

represents

 

one

 

XML

 

document

 

does

 

not

 

support

 

foreign-key

 

information.

 

Therefore,

 

any

 

one-to-one

 

or

 

one-to-many

 

relationships

 

must

 

be

 

defined

 

structurally.

 

The

 

following

 

Order

 

DTD,

 

which

 

contains

 

elements

 

that

 

correspond

 

to

 

an

 

application

 

Order

 

entity,

 

illustrates

 

single-

 

and

 

multiple-cardinality

 

relationships:

 

<!--Order

 

-->

 

<!--

 

Element

 

Declarations

 

-->

 

<!ELEMENT

 

Order

 

(Unit+)>

 

<!ELEMENT

 

Unit

 

(PartNumber?,

 

Quantity,

 

Price,

 

Accessory*)>

 

<!ELEMENT

 

PartNumber

 

(#PCDATA)>

 

<!ELEMENT

 

Quantity

 

(#PCDATA)>

 

<!ELEMENT

 

Price

 

(#PCDATA)>

LineItemId (12)

PurchaseOrderId (87)

Child business objects
Parent business object

PurchaseOrderId (FK=87)

PurchaseOrderDate

PurchaseOrderStatus

LineItem (n)

PurchaseOrder
LineItem

LineItemId (13)

PurchaseOrderId (FK=87)

LineItem

LineItemId(14)

Description

Price

PurchaseOrderId (FK=87)

Quantity

LineItem

Multiple
cardinality
semantic
relationship

Multiple
cardinality
structural
relationship

Type = LineItem

  

Figure

 

16.

 

Sample

 

business

 

objects

 

with

 

multiple-cardinality

 

semantic

 

and

 

structural

 

relationships

  

28

 

Business

 

Object

 

Development

 

Guide



<!ELEMENT

 

Accessory

 

(Quantity,

 

Type)>

 

<!ATTLIST

 

Accessory

 

Name

 

CDATA

 

>

 

<!ELEMENT

 

Type

 

(#PCDATA)>

 

Figure

 

17

 

illustrates

 

a

 

business

 

object

 

that

 

represents

 

the

 

Order

 

DTD.

 

The

 

top-level

 

business

 

object

 

contains

 

the

 

Order

 

business

 

object

 

with

 

one-cardinality

 

relationship,

 

and

 

Order

 

contains

 

the

 

child

 

Unit

 

business

 

objects

 

with

 

a

 

multiple-cardinality

 

relationship.

 

In

 

turn,

 

Unit

 

contains

 

the

 

Accessory

 

business

 

objects

 

with

 

a

 

multiple-cardinality

 

relationship.

  

The

 

relationship

 

of

 

business

 

objects

 

illustrated

 

in

 

Figure

 

17

 

is

 

defined

 

structurally;

 

that

 

is,

 

each

 

parent

 

business

 

object

 

contains

 

an

 

attribute

 

whose

 

type

 

is

 

the

 

same

 

as

 

the

 

child’s

 

and

 

whose

 

relationship

 

is

 

specified

 

as

 

containment.

 

Important:

  

The

 

XML

 

data

 

handler

 

has

 

specific

 

requirements

 

of

 

the

 

top-level

 

business

 

object

 

that

 

represents

 

a

 

DTD.

 

For

 

information

 

about

 

these

 

requirements,

 

see

 

the

 

Data

 

Handler

 

Guide.

 

Designing

 

application-specific

 

business

 

objects

 

An

 

application-specific

 

business

 

object

 

contains

 

data,

 

actions

 

to

 

be

 

performed

 

on

 

the

 

data

 

(verbs),

 

and

 

information

 

about

 

the

 

data

 

(application-specific

 

information).

 

Many

 

connector

 

methods

 

pass

 

an

 

application-specific

 

business

 

object

 

as

 

an

 

argument.

 

For

 

example:

 

v

   

When

 

an

 

application

 

event

 

occurs,

 

some

 

connectors

 

invoke

 

a

 

data

 

handler

 

to

 

convert

 

the

 

data’s

 

format

 

into

 

a

 

business

 

object,

 

which

 

the

 

connector

 

sends

 

to

 

the

 

integration

 

broker.

 

v

   

When

 

an

 

integration

 

broker

 

sends

 

a

 

request

 

to

 

a

 

connector,

 

the

 

connector

 

framework

 

sends

 

the

 

business

 

object

 

as

 

an

 

argument

 

to

 

the

 

connector’s

 

business

 

object

 

handler.

 

In

 

this

 

case,

 

some

 

connectors

 

invoke

 

the

 

data

 

handler

 

to

 

convert

 

XML Declaration

ObjectId

DocType

Unit (n)

Order (1)

Top-level bus obj

Order

PartNumber

Price

Accessory (n)

Quantity

Unit

Multiple-
cardinality
relationship

Name

Type

Quantity

Accessory

Multiple-
cardinality
relationship

Single-
cardinality
relationship

  

Figure

 

17.

 

Single-

 

and

 

multiple-cardinality

 

structural

 

relationships

  

Chapter

 

2.

 

Business

 

object

 

design

 

29



the

 

information

 

in

 

the

 

business

 

object

 

to

 

the

 

format

 

used

 

by

 

the

 

application,

 

which

 

enables

 

the

 

connector

 

to

 

perform

 

operations

 

in

 

the

 

application.

Designing

 

the

 

relationship

 

among

 

the

 

connector,

 

the

 

data

 

handler,

 

and

 

their

 

supported

 

application-specific

 

business

 

objects

 

is

 

one

 

of

 

the

 

tasks

 

in

 

connector

 

and

 

data

 

handler

 

development.

 

Because

 

application-specific

 

business

 

object

 

design

 

can

 

generate

 

requirements

 

for

 

connector

 

and

 

data

 

handler

 

programming

 

logic

 

that

 

must

 

be

 

integrated

 

into

 

the

 

connector

 

development

 

process,

 

the

 

developers

 

of

 

the

 

connector,

 

data

 

handler,

 

and

 

application-specific

 

business

 

objects

 

must

 

work

 

together

 

to

 

develop

 

specifications

 

for

 

those

 

components.

 

The

 

layout

 

and

 

design

 

of

 

an

 

application-specific

 

business

 

object

 

should

 

be

 

determined

 

by

 

the

 

connector

 

or

 

data

 

handler

 

that

 

processes

 

it.

 

Note:

  

For

 

best

 

performance

 

with

 

InterChange

 

Server,

 

application-specific

 

business

 

objects

 

should

 

be

 

smaller

 

than

 

1

 

MB

 

when

 

possible

 

and

 

should

 

never

 

exceed

 

5

 

MB.

 

Larger

 

business

 

objects

 

cause

 

performance

 

problems

 

due

 

to

 

limitations

 

to

 

the

 

Java

 

Virtual

 

Machine

 

upon

 

which

 

the

 

InterChange

 

Server

 

runs.

 

This

 

section

 

covers

 

the

 

following

 

topics:

 

v

   

“Contents

 

of

 

application-specific

 

business

 

object

 

definitions”

 

v

   

“Designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler”

 

on

 

page

 

36

Contents

 

of

 

application-specific

 

business

 

object

 

definitions

 

A

 

business

 

object

 

definition

 

includes

 

the

 

following

 

information:

  

Table

 

6.

 

Contents

 

of

 

a

 

business

 

object

 

definition.

 

Contents

 

of

 

business

 

object

 

definition

 

Description

 

For

 

more

 

information

 

Business

 

object

 

structure

 

The

 

structure

 

of

 

an

 

application-specific

 

business

 

object

 

is

 

typically

 

designed

 

to

 

correspond

 

closely

 

to

 

the

 

application

 

entity

 

(data

 

structure)

 

at

 

the

 

level

 

that

 

the

 

connector

 

or

 

data

 

handler

 

interacts

 

with

 

the

 

application

 

(such

 

as

 

at

 

the

 

table

 

level,

 

the

 

API

 

level,

 

or

 

at

 

different

 

levels

 

within

 

an

 

API).

 

“Structure

 

of

 

application-specific

 

business

 

objects”

 

on

 

page

 

30

 

Attribute

 

properties

 

Attributes

 

contain

 

individual

 

pieces

 

of

 

data

 

within

 

an

 

application

 

entity.

 

They

 

also

 

have

 

properties

 

that

 

provide

 

information

 

such

 

as

 

the

 

data’s

 

type,

 

cardinality,

 

and

 

default

 

value.

 

Attribute

 

properties

 

also

 

specify

 

whether

 

the

 

attribute

 

is

 

required

 

or

 

key.

 

“Attributes

 

in

 

an

 

application-specific

 

business

 

object”

 

on

 

page

 

31

 

Application-specific

 

information

 

An

 

application-specific

 

business

 

object

 

definition

 

often

 

includes

 

text

 

strings

 

that

 

tell

 

the

 

connector

 

how

 

the

 

business

 

object

 

is

 

represented

 

in

 

the

 

application

 

or

 

how

 

to

 

process

 

it.

 

“Business

 

object

 

application-specific

 

information”

 

on

 

page

 

32

   

Structure

 

of

 

application-specific

 

business

 

objects

 

The

 

way

 

a

 

connector

 

or

 

data

 

handler

 

processes

 

business

 

objects

 

is

 

determined

 

in

 

part

 

by

 

the

 

structure

 

of

 

the

 

business

 

objects

 

that

 

it

 

supports.

 

As

 

you

 

design

 

the

   

30

 

Business

 

Object

 

Development

 

Guide



structure

 

of

 

an

 

application-specific

 

business

 

object,

 

you

 

need

 

to

 

determine

 

what

 

structure

 

best

 

represents

 

a

 

particular

 

application

 

entity

 

and

 

how

 

this

 

structure

 

affects

 

the

 

design

 

of

 

connector

 

and

 

data

 

handler

 

logic

 

or

 

how

 

the

 

structure

 

is

 

processed

 

by

 

an

 

existing

 

connector

 

or

 

data

 

handler.

 

While

 

a

 

goal

 

of

 

connector

 

and

 

data

 

handler

 

design

 

is

 

to

 

code

 

a

 

connector

 

or

 

data

 

handler

 

so

 

that

 

it

 

can

 

handle

 

new

 

and

 

changed

 

business

 

objects

 

without

 

modification,

 

it

 

is

 

difficult

 

to

 

create

 

a

 

connector

 

or

 

data

 

handler

 

that

 

can

 

handle

 

any

 

possible

 

business

 

object.

 

Typically,

 

a

 

connector

 

or

 

data

 

handler

 

is

 

designed

 

to

 

make

 

assumptions

 

about

 

the

 

structure

 

of

 

its

 

business

 

objects,

 

the

 

relationships

 

between

 

parent

 

and

 

child

 

business

 

objects,

 

and

 

the

 

possible

 

application

 

representation

 

of

 

business

 

objects.

 

If

 

designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler,

 

your

 

task

 

is

 

to

 

understand

 

these

 

assumptions

 

and

 

design

 

business

 

objects

 

accordingly.

 

A

 

beginning

 

set

 

of

 

questions

 

to

 

consider

 

about

 

the

 

structure

 

of

 

an

 

application-specific

 

business

 

object

 

is:

 

v

   

What

 

is

 

the

 

organization

 

or

 

database

 

schema

 

for

 

the

 

application

 

entity

 

that

 

will

 

be

 

encapsulated

 

in

 

the

 

business

 

object.

 

Does

 

the

 

application

 

entity

 

represent

 

hierarchical

 

data

 

or

 

one-to-many

 

relationships?

 

v

   

Does

 

a

 

business

 

object

 

represent

 

one

 

application

 

entity

 

or

 

more

 

than

 

one

 

application

 

entity?

 

In

 

other

 

words,

 

can

 

attribute

 

values

 

in

 

an

 

individual

 

business

 

object

 

be

 

stored

 

in

 

different

 

application

 

entities?

 

v

   

What

 

kind

 

of

 

relationships

 

between

 

business

 

objects

 

does

 

the

 

connector

 

or

 

data

 

handler

 

handle?

 

How

 

are

 

the

 

relationships

 

modelled

 

in

 

the

 

business

 

objects

 

or

 

how

 

are

 

they

 

processed

 

by

 

the

 

connector

 

or

 

data

 

handler?

For

 

more

 

information

 

about

 

the

 

business

 

object

 

structures

 

that

 

can

 

represent

 

single

 

or

 

multiple

 

application

 

entities,

 

see

 

“Determining

 

business

 

object

 

structure”

 

on

 

page

 

17.

 

Note:

  

Certain

 

connectors

 

may

 

require

 

the

 

top-level

 

business

 

object

 

to

 

contain

 

specific

 

information.

 

For

 

example,

 

the

 

XML

 

connector

 

requires

 

its

 

top-level

 

business

 

object

 

to

 

contain

 

simple

 

attributes

 

for

 

a

 

URL,

 

MIME

 

type,

 

and

 

business

 

object

 

prefix,

 

as

 

well

 

as

 

complex

 

attributes

 

to

 

contain

 

a

 

request

 

business

 

object

 

and

 

a

 

response

 

business

 

object.

 

If

 

you

 

are

 

designing

 

a

 

business

 

object

 

for

 

an

 

existing

 

connector,

 

refer

 

to

 

its

 

adapter

 

user

 

guide

 

for

 

specific

 

structure

 

requirements.

 

For

 

more

 

information,

 

see

 

“Designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler”

 

on

 

page

 

36.

 

Attributes

 

in

 

an

 

application-specific

 

business

 

object

 

The

 

attributes

 

hold

 

the

 

individual

 

pieces

 

of

 

data

 

in

 

an

 

application

 

entity.

 

When

 

defining

 

attributes

 

for

 

an

 

application-specific

 

business

 

object,

 

consider

 

these

 

questions:

 

v

   

What

 

piece

 

of

 

data

 

in

 

the

 

application

 

entity

 

will

 

each

 

attribute

 

represent?

 

For

 

a

 

business

 

object

 

representing

 

a

 

database

 

entity,

 

will

 

each

 

attribute

 

represent

 

a

 

field,

 

such

 

as

 

a

 

table

 

column?

 

For

 

a

 

business

 

object

 

representing

 

an

 

XML

 

document,

 

will

 

each

 

attribute

 

represent

 

an

 

element?

 

v

   

Is

 

it

 

necessary

 

to

 

create

 

an

 

attribute

 

for

 

every

 

single

 

field

 

in

 

the

 

application

 

entity?

 

Some

 

pieces

 

of

 

data

 

in

 

one

 

application

 

entity

 

may

 

not

 

be

 

significant

 

to

 

the

 

other

 

applications

 

in

 

the

 

integration;

 

by

 

leaving

 

them

 

out

 

of

 

the

 

business

 

object

 

definition

 

you

 

can

 

reduce

 

the

 

complexity

 

of

 

the

 

design

 

and

 

prevent

 

the

 

transfer

 

of

 

unnecessary

 

data

 

from

 

decreasing

 

performance.

   

Chapter

 

2.

 

Business

 

object

 

design

 

31



v

   

Will

 

the

 

application-specific

 

business

 

object

 

have

 

fewer

 

simple

 

attributes

 

than

 

the

 

application

 

entity?

 

For

 

example,

 

do

 

you

 

need

 

an

 

attribute

 

for

 

every

 

database

 

table

 

column?

 

v

   

How

 

will

 

the

 

connector

 

operate

 

when

 

the

 

individual

 

business

 

object

 

has

 

more

 

simple

 

attributes

 

than

 

the

 

corresponding

 

database

 

table

 

has

 

columns

 

or

 

the

 

corresponding

 

DTD

 

has

 

tags?

 

In

 

other

 

words,

 

some

 

attributes

 

in

 

the

 

business

 

object

 

are

 

not

 

represented

 

in

 

the

 

database

 

or

 

the

 

DTD.

 

In

 

most

 

cases,

 

these

 

attributes

 

convey

 

information

 

about

 

specific

 

access

 

mechanisms

 

or

 

are

 

used

 

to

 

separate

 

attributes

 

that

 

represent

 

child

 

business

 

objects.

 

The

 

connector

 

or

 

map

 

may

 

employ

 

special

 

logic

 

that

 

requires

 

connector-specific

 

attributes

 

to

 

handle

 

certain

 

application-specific

 

business

 

objects.

As

 

a

 

rule,

 

keep

 

the

 

structure

 

of

 

the

 

business

 

object

 

the

 

same

 

as

 

the

 

structure

 

of

 

the

 

corresponding

 

application

 

entity

 

(such

 

as

 

database

 

tables

 

or

 

DTDs).

 

If

 

the

 

business

 

object

 

is

 

large

 

(contains

 

many

 

attributes),

 

define

 

only

 

the

 

attributes

 

that

 

are

 

used

 

in

 

the

 

business

 

process

 

for

 

which

 

you

 

are

 

designing

 

the

 

business

 

object.

 

However,

 

if

 

the

 

business

 

object

 

is

 

small,

 

define

 

all

 

of

 

the

 

attributes

 

to

 

be

 

available

 

for

 

future

 

use.

 

The

 

number

 

of

 

attributes

 

you

 

define

 

depends

 

on

 

the

 

size

 

of

 

the

 

business

 

objects

 

and

 

the

 

complexity

 

of

 

the

 

relationships

 

between

 

them.

 

In

 

addition

 

to

 

identifying

 

which

 

application

 

entities

 

must

 

exist

 

as

 

attributes

 

in

 

the

 

business

 

object,

 

you

 

should

 

also

 

examine

 

the

 

business

 

process

 

to

 

determine

 

if

 

any

 

additional

 

attributes

 

are

 

required.

 

As

 

part

 

of

 

the

 

analysis

 

of

 

the

 

business

 

process,

 

identify

 

the

 

business

 

object’s

 

requirements.

 

Stepping

 

through

 

a

 

business

 

process

 

reveals

 

how

 

a

 

business

 

object

 

is

 

handled

 

and

 

how

 

the

 

required

 

attributes

 

are

 

used.

 

Variations

 

in

 

the

 

business

 

process

 

and

 

the

 

handling

 

of

 

exceptions

 

might

 

identify

 

additional

 

attributes

 

that

 

are

 

required

 

to

 

process

 

the

 

business

 

object.

 

These

 

additional

 

attributes

 

might

 

not

 

correspond

 

to

 

data

 

that

 

is

 

retrieved

 

or

 

updated

 

in

 

the

 

application.

 

For

 

example,

 

you

 

may

 

need

 

attributes

 

that:

 

v

   

serve

 

as

 

a

 

priority

 

indicator

 

whose

 

value

 

is

 

derived

 

during

 

processing

 

according

 

to

 

the

 

value

 

of

 

an

 

attribute

 

value

 

v

   

serve

 

as

 

lookup

 

that

 

contains

 

routing

 

information

 

based

 

on

 

one

 

or

 

more

 

attribute

 

values

Business

 

object

 

application-specific

 

information

 

After

 

you

 

have

 

defined

 

the

 

structure

 

of

 

an

 

application-specific

 

business

 

object

 

definition

 

and

 

defined

 

the

 

set

 

of

 

attributes

 

that

 

the

 

business

 

object

 

definition

 

contains,

 

you

 

can

 

determine

 

whether

 

the

 

connector

 

or

 

data

 

handler

 

needs

 

additional

 

information

 

about

 

how

 

to

 

process

 

the

 

business

 

object

 

to

 

enable

 

it

 

to

 

handle

 

the

 

requests

 

it

 

receives

 

from

 

the

 

integration

 

broker.

 

The

 

business

 

object

 

definition

 

can

 

include

 

this

 

additional

 

information

 

in

 

application-specific

 

information.

 

Application-specific

 

information

 

provides

 

the

 

connector

 

or

 

data

 

handler

 

with

 

application-dependent

 

instructions

 

on

 

how

 

to

 

process

 

business

 

objects.

 

The

 

recommended

 

approach

 

to

 

designing

 

the

 

relationship

 

between

 

business

 

objects

 

and

 

connectors

 

is

 

to

 

store

 

information

 

in

 

the

 

business

 

object

 

definition

 

that

 

helps

 

a

 

connector

 

interact

 

with

 

an

 

application

 

or

 

data

 

source.

 

Such

 

information,

 

called

 

metadata,

 

can

 

be

 

specified

 

in

 

the

 

application-specific

 

information

 

of

 

each

 

business

 

object,

 

business

 

object

 

attribute,

 

and

 

business

 

object

 

verb.

 

The

 

application-specific

 

information

 

is

 

a

 

string

 

that

 

is

 

entered

 

during

 

business

 

object

 

design

 

and

 

read

 

at

 

run

 

time

 

by

 

a

 

connector

 

or

 

data

 

handler.

 

The

 

connector

   

32

 

Business

 

Object

 

Development

 

Guide



or

 

data

 

handler

 

uses

 

the

 

metadata

 

in

 

the

 

business

 

object

 

definition

 

to

 

process

 

business

 

object

 

instances.

 

Because

 

the

 

connector

 

or

 

data

 

handler

 

has

 

access

 

to

 

its

 

supported

 

business

 

object

 

definitions

 

at

 

run

 

time,

 

it

 

can

 

dynamically

 

determine

 

how

 

to

 

process

 

a

 

particular

 

business

 

object.

 

Consider

 

the

 

following

 

advantages

 

and

 

limitations

 

of

 

application-specific

 

information

 

when

 

designing

 

a

 

business

 

object:

 

v

   

Application-specific

 

information

 

enables

 

a

 

business

 

object

 

to

 

be

 

self-contained

 

with

 

all

 

the

 

information

 

required

 

to

 

process

 

it.

 

The

 

application-specific

 

information

 

in

 

the

 

business

 

object

 

definition

 

can

 

include

 

table

 

and

 

column

 

names,

 

processing

 

instructions,

 

names

 

of

 

functions

 

that

 

the

 

connector

 

calls,

 

or

 

other

 

information

 

about

 

how

 

to

 

process

 

the

 

data

 

in

 

the

 

application.

 

Because

 

an

 

application-specific

 

business

 

object

 

contains

 

all

 

the

 

information

 

needed

 

to

 

process

 

it,

 

the

 

connector

 

can

 

handle

 

new

 

or

 

modified

 

business

 

objects

 

without

 

requiring

 

modifications

 

to

 

the

 

connector

 

source

 

code.

 

The

 

connector

 

can

 

be

 

written

 

in

 

a

 

generic

 

manner,

 

with

 

one

 

business

 

object

 

handler

 

that

 

does

 

not

 

contain

 

hard-coded

 

logic

 

for

 

processing

 

specific

 

business

 

objects.

 

v

   

A

 

metadata-driven

 

connector

 

can

 

build

 

application

 

function

 

calls

 

or

 

SQL

 

statements

 

from

 

the

 

values

 

in

 

a

 

business

 

object

 

instance

 

and

 

the

 

application-specific

 

information

 

in

 

the

 

business

 

object

 

definition.

 

The

 

function

 

calls

 

or

 

SQL

 

statements

 

perform

 

the

 

required

 

changes

 

in

 

the

 

application

 

database

 

for

 

the

 

business

 

object

 

and

 

verb

 

the

 

connector

 

is

 

processing.

 

v

   

The

 

application

 

that

 

a

 

business

 

object

 

represents

 

determines

 

how

 

much

 

application-specific

 

information

 

the

 

business

 

object

 

definition

 

can

 

contain.

 

Depending

 

on

 

the

 

application

 

and

 

its

 

programming

 

interface,

 

a

 

connector

 

and

 

its

 

business

 

objects

 

might

 

be

 

designed

 

so

 

that

 

the

 

connector

 

is

 

almost

 

entirely

 

driven

 

by

 

the

 

application-specific

 

information

 

in

 

its

 

business

 

objects.

 

In

 

this

 

case,

 

the

 

connector

 

may

 

require

 

only

 

one

 

business

 

object

 

handler

 

to

 

transform

 

business

 

objects

 

into

 

requests

 

for

 

application

 

operations.

 

For

 

some

 

applications,

 

however,

 

the

 

application

 

interface

 

may

 

have

 

constraints

 

that

 

force

 

entirely

 

different

 

processing

 

logic

 

for

 

different

 

business

 

objects

 

and,

 

therefore,

 

the

 

implementation

 

of

 

multiple

 

business

 

object

 

handlers.

 

For

 

these

 

applications,

 

only

 

a

 

partially

 

metadata-driven

 

implementation

 

or

 

no

 

data-driven

 

implementation

 

is

 

possible.

 

Depending

 

on

 

the

 

application,

 

business

 

objects

 

vary

 

in

 

how

 

much

 

application-specific

 

information

 

they

 

contain.

 

Most

 

application-specific

 

business

 

objects,

 

however,

 

can

 

be

 

designed

 

to

 

contain

 

some

 

information

 

that

 

assists

 

the

 

connector

 

or

 

data

 

handler

 

with

 

business

 

object

 

processing.

Suggested

 

format

 

of

 

application-specific

 

information:

   

It

 

is

 

recommended

 

that

 

you

 

use

 

name-value

 

pair

 

syntax

 

when

 

you

 

define

 

application-specific

 

information.

 

This

 

syntax

 

specifies

 

the

 

name

 

of

 

the

 

property

 

and

 

its

 

associated

 

value,

 

separated

 

by

 

a

 

equals

 

sign

 

(=),

 

as

 

the

 

following

 

syntax

 

shows:

 

name1=value1;name2=value2

 

For

 

example,

 

the

 

following

 

name-value

 

pair

 

defines

 

a

 

“table

 

name”

 

property:

 

TN=TableName

 

Name-value

 

pairs

 

allow

 

values

 

to

 

be

 

specified

 

in

 

random

 

order.

 

The

 

connector

 

evaluates

 

the

 

name

 

of

 

each

 

parameter

 

before

 

interpreting

 

the

 

value.

 

It

 

is

 

recommended

 

that

 

you

 

separate

 

name-value

 

pairs

 

with

 

a

 

delimiter

 

that:

 

v

   

defaults

 

to

 

a

 

semicolon

 

(;)

   

Chapter

 

2.

 

Business

 

object

 

design

 

33



v

   

is

 

configurable

Note:

  

If

 

you

 

are

 

creating

 

a

 

business

 

object

 

for

 

an

 

existing

 

connector,

 

check

 

its

 

adapter

 

user

 

guide

 

to

 

determine

 

the

 

syntax

 

that

 

it

 

requires.

 

Not

 

all

 

connectors

 

may

 

default

 

to

 

use

 

a

 

semicolon

 

as

 

a

 

delimiter,

 

or

 

be

 

configurable

 

in

 

that

 

respect.

 

Table

 

7

 

provides

 

examples

 

of

 

parameters

 

that

 

can

 

be

 

included

 

in

 

an

 

attribute’s

 

application-specific

 

information.

 

These

 

parameters

 

are

 

relevant

 

only

 

to

 

a

 

business

 

object

 

that

 

represents

 

data

 

in

 

a

 

database

 

table.

  

Table

 

7.

 

Example

 

name-value

 

parameters

 

for

 

attribute

 

application-specific

 

information.

 

Parameter

 

Description

 

TN=TableName

 

The

 

name

 

of

 

the

 

database

 

table.

 

CN=col_name

 

The

 

name

 

of

 

the

 

database

 

column

 

for

 

this

 

attribute.

 

FK=[..]fk_attributeName]

 

The

 

value

 

of

 

the

 

Foreign

 

Key

 

property

 

defines

 

a

 

parent/child

 

relationship.

 

UID=AUTO

 

This

 

parameter

 

notifies

 

the

 

connector

 

to

 

generate

 

the

 

unique

 

ID

 

for

 

the

 

business

 

object

 

and

 

load

 

the

 

value

 

in

 

this

 

attribute.

 

CA=set_attr_name

 

The

 

Copy

 

Attribute

 

property

 

instructs

 

the

 

connector

 

to

 

copy

 

the

 

value

 

of

 

one

 

attribute

 

into

 

another.

 

If

 

set_attr_name

 

is

 

set

 

to

 

the

 

name

 

of

 

another

 

attribute

 

within

 

the

 

current

 

individual

 

business

 

object,

 

the

 

connector

 

uses

 

the

 

value

 

of

 

the

 

specified

 

attribute

 

to

 

set

 

the

 

value

 

of

 

this

 

attribute

 

before

 

it

 

adds

 

the

 

business

 

object

 

to

 

the

 

database

 

during

 

a

 

Create

 

operation.

 

OB=[ASC|DESC]

 

If

 

a

 

value

 

is

 

specified

 

for

 

the

 

Order

 

By

 

parameter

 

and

 

the

 

attribute

 

is

 

in

 

a

 

child

 

business

 

object,

 

the

 

connector

 

uses

 

the

 

value

 

of

 

the

 

attribute

 

in

 

the

 

ORDER

 

BY

 

clause

 

of

 

retrieval

 

queries

 

to

 

determine

 

whether

 

to

 

retrieve

 

the

 

child

 

business

 

object

 

in

 

ascending

 

order

 

or

 

descending

 

order.

 

UNVL=value

 

Specifies

 

the

 

value

 

the

 

connector

 

uses

 

to

 

represent

 

a

 

null

 

when

 

it

 

retrieves

 

a

 

business

 

object

 

with

 

null-valued

 

attributes.

   

One

 

attribute’s

 

application-specific

 

information

 

might

 

combine

 

several

 

of

 

the

 

example

 

parameters

 

listed

 

above.

 

This

 

example

 

uses

 

semicolon

 

(;)

 

delimiters

 

to

 

separate

 

the

 

parameters:

 

TN=LineItems;CN=POid;FK=..PO_ID

 

The

 

application-specific

 

information

 

in

 

this

 

example

 

specifies

 

the

 

name

 

of

 

the

 

table,

 

the

 

name

 

of

 

the

 

column,

 

and

 

that

 

the

 

current

 

attribute

 

is

 

a

 

foreign

 

key

 

that

 

links

 

the

 

child

 

business

 

object

 

to

 

its

 

parent.

 

Content

 

of

 

application-specific

 

information:

   

The

 

content

 

of

 

application-specific

 

information

 

can

 

vary

 

considerably

 

in

 

complexity.

 

Some

 

examples

 

are:

 

v

   

The

 

application-specific

 

information

 

in

 

a

 

business

 

object

 

definition

 

can

 

encode

 

the

 

name

 

of

 

the

 

table

 

that

 

the

 

business

 

object

 

corresponds

 

to,

 

and,

 

for

 

each

 

attribute,

 

it

 

can

 

encode

 

the

 

name

 

of

 

the

 

column

 

that

 

the

 

attribute

 

corresponds

 

to.

 

This

 

is

 

a

 

relatively

 

simple

 

implementation

 

of

 

application-specific

 

information,

 

but

 

it

 

may

 

be

 

all

 

that

 

a

 

connector

 

needs.

   

34

 

Business

 

Object

 

Development

 

Guide



v

   

A

 

more

 

complex

 

implementation

 

of

 

application-specific

 

information

 

might

 

contain

 

a

 

set

 

of

 

parameters

 

that

 

specify

 

how

 

the

 

connector

 

handles

 

various

 

business

 

object

 

operations.

 

v

   

At

 

its

 

most

 

complex,

 

application-specific

 

information

 

might

 

include

 

conditions,

 

direct

 

connector

 

transaction

 

processing,

 

specify

 

methods

 

of

 

data

 

retrieval,

 

and

 

provide

 

preprocessing

 

capabilities.

If

 

the

 

business

 

object

 

definition

 

includes

 

application-specific

 

information

 

and

 

the

 

connector

 

has

 

been

 

designed

 

to

 

make

 

use

 

of

 

it,

 

the

 

connector

 

can

 

extract

 

the

 

content

 

of

 

the

 

application-specific

 

information

 

from

 

the

 

business

 

object

 

definition

 

and

 

use

 

it

 

for

 

processing.

 

Example:

 

How

 

a

 

connector

 

processes

 

application-specific

 

information:

   

As

 

an

 

example

 

of

 

how

 

a

 

connector

 

processes

 

application-specific

 

information,

 

assume

 

that

 

your

 

application

 

is

 

based

 

on

 

tables

 

and

 

that

 

you

 

want

 

to

 

work

 

with

 

an

 

application

 

table

 

called

 

CURRENTCUST,

 

which

 

stores

 

information

 

on

 

customers.

 

This

 

table

 

has

 

two

 

columns:

 

CSTName

 

and

 

CSTCity.

 

In

 

the

 

AppSpecificInfo

 

property

 

of

 

the

 

business

 

object

 

header,

 

you

 

can

 

store

 

the

 

table

 

name.

 

In

 

the

 

AppSpecificInfo

 

property

 

of

 

each

 

attribute,

 

you

 

can

 

store

 

the

 

column

 

names.

 

In

 

addition,

 

because

 

the

 

connector

 

for

 

this

 

application

 

uses

 

SQL

 

statements

 

to

 

interact

 

with

 

the

 

database,

 

you

 

can

 

design

 

the

 

verb

 

application-specific

 

information

 

to

 

hold

 

SQL

 

verbs

 

and

 

keywords.

 

Figure

 

18

 

illustrates

 

how

 

this

 

Customer

 

business

 

object

 

definition

 

might

 

look.

  

When

 

a

 

metadata-driven

 

connector

 

receives

 

an

 

instance

 

of

 

this

 

business

 

object

 

from

 

an

 

integration

 

broker,

 

it

 

extracts

 

the

 

table

 

name

 

and

 

column

 

names

 

from

 

the

 

application-specific

 

information

 

properties

 

in

 

the

 

business

 

object

 

definition,

 

and

 

then

 

extracts

 

the

 

attribute

 

and

 

verb

 

values

 

from

 

the

 

business

 

object

 

instance.

 

Using

 

the

 

table

 

and

 

column

 

names,

 

the

 

attribute

 

values,

 

and

 

the

 

SQL

 

keywords

 

in

 

the

 

verb

 

application-specific

 

information,

 

the

 

connector

 

can

 

build

 

an

 

SQL

 

statement.

 

Figure

 

19

 

shows

 

an

 

example

 

of

 

this

 

type

 

of

 

processing.

 

The

 

connector

 

extracts

 

the

 

verb

 

processing

 

instructions

 

and

 

the

 

table

 

and

 

column

 

names

 

from

 

the

 

business

 

CURRENTCUST table

Application-specific
business object definition

Customer

Name

City

AppSpecificInfo = CSTName""

AppSpecificInfo = CURRENTCUST

AppSpecificInfo = CSTCity""

Create
AppSpecificInfo = INSERT INTO

Update
AppSpecificInfo = UPDATE WHERE

Delete
AppSpecificInfo = DELETE FROM

Version = 1.0

Attributes

Verbs

Header CSTName CSTCity

  

Figure

 

18.

 

Application-specific

 

information

 

in

 

a

 

business

 

object

 

definition.

  

Chapter

 

2.

 

Business

 

object

 

design

 

35



object

 

definition.

 

It

 

then

 

gets

 

the

 

attribute

 

values

 

from

 

the

 

business

 

object

 

instance.

 

Using

 

this

 

information,

 

the

 

connector

 

builds

 

an

 

SQL

 

INSERT

 

statement

 

to

 

update

 

the

 

CURRENTCUST

 

table

 

with

 

the

 

new

 

information.

  

As

 

mentioned

 

above,

 

a

 

business

 

object

 

definition

 

can

 

include

 

AppSpecificInfo

 

text

 

for

 

the

 

business

 

object

 

as

 

a

 

whole,

 

and

 

for

 

its

 

attributes

 

and

 

verbs.

 

The

 

following

 

sections

 

provide

 

more

 

information

 

on

 

the

 

use

 

of

 

application-specific

 

information

 

in

 

these

 

components

 

of

 

a

 

business

 

object.

   

Important

 

The

 

length

 

of

 

application-specific

 

information

 

is

 

restricted

 

to

 

1000

 

characters.

 

Figure

 

5

 

uses

 

the

 

attribute-level

 

AppSpecificInfo

 

property

 

to

 

store

 

the

 

name

 

of

 

the

 

Invoice

 

subform

 

and

 

the

 

attribute’s

 

corresponding

 

field

 

name.

 

The

 

example

 

uses

 

name-value

 

pairs

 

to

 

specify

 

the

 

information.

 

Tips

 

on

 

designing

 

application-specific

 

information:

   

When

 

designing

 

business

 

objects

 

to

 

maximize

 

the

 

metadata-driven

 

behavior

 

of

 

a

 

connector,

 

follow

 

these

 

general

 

recommendations

 

for

 

storing

 

application-specific

 

information

 

in

 

the

 

business

 

object

 

definition:

 

v

   

Store

 

entity

 

names,

 

such

 

as

 

table

 

or

 

form

 

names,

 

in

 

the

 

business

 

object-level

 

AppSpecificInfo

 

property

 

of

 

a

 

top-level

 

business

 

object.

 

Store

 

subform

 

names

 

or

 

table

 

names

 

in

 

the

 

business

 

object-level

 

AppSpecificInfo

 

property

 

of

 

a

 

child

 

business

 

object.

 

v

   

Store

 

field

 

names,

 

column

 

names,

 

and

 

other

 

information

 

related

 

to

 

business

 

object

 

attributes

 

in

 

the

 

attribute

 

AppSpecificInfo

 

property.

 

v

   

Store

 

verb

 

processing

 

instructions

 

in

 

the

 

verb

 

AppSpecificInfo

 

property.

The

 

careful

 

use

 

of

 

the

 

AppSpecificInfo

 

property

 

enables

 

a

 

connector

 

to

 

handle

 

a

 

variety

 

of

 

business

 

objects

 

in

 

the

 

same

 

way.

 

If

 

an

 

application

 

is

 

consistent

 

in

 

how

 

it

 

handles

 

data

 

operations,

 

and

 

if

 

for

 

all

 

operations

 

the

 

connector

 

performs

 

consistent

 

tasks,

 

the

 

business

 

object

 

can

 

be

 

designed

 

to

 

enable

 

a

 

completely

 

metadata-driven

 

connector.

 

Designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler

 

If

 

you

 

are

 

designing

 

an

 

application-specific

 

business

 

object

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler,

 

your

 

first

 

step

 

is

 

to

 

consult

 

its

 

adapter

 

user

 

guide

 

for

 

its

 

requirements

 

on

 

specifying

 

application-specific

 

information

 

and

 

using

 

business

 

object

 

handlers.

 

Keep

 

the

 

following

 

points

 

in

 

mind

 

when

 

designing

 

business

 

objects

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler:

 

Name = Fred Smith

City = New York

Verb = Create

INSERT INTO
CURRENTCUST (CSTName, CSTCity)
VALUES ( Fred Smith , New York )" " " "

CURRENTCUST table

John Jones

Fred Smith

Chicago

New York

CSTName CSTCity

Business object

SQL statement
Customer

  

Figure

 

19.

 

Using

 

application-specific

 

information

 

to

 

build

 

an

 

SQL

 

statement

 

for

 

a

 

Create

 

operation

  

36

 

Business

 

Object

 

Development

 

Guide



v

   

To

 

determine

 

if

 

there

 

is

 

an

 

available

 

Object

 

Discovery

 

Agent,

 

check

 

the

 

adapter

 

user

 

guide

 

for

 

the

 

connector

 

and

 

the

 

documentation

 

for

 

the

 

data

 

handler

 

that

 

will

 

process

 

your

 

business

 

object.

 

Using

 

the

 

Object

 

Discovery

 

Agent

 

can

 

greatly

 

facilitate

 

the

 

business

 

object

 

design

 

effort,

 

particularly

 

when

 

the

 

entity

 

involved

 

is

 

large.

 

v

   

Determine

 

whether

 

there

 

is

 

an

 

existing

 

business

 

object

 

available

 

that

 

models

 

the

 

application

 

entity,

 

such

 

as

 

a

 

sample.

 

Determine

 

whether

 

the

 

effort

 

to

 

customize

 

the

 

existing

 

business

 

object

 

is

 

less

 

than

 

creating

 

an

 

entirely

 

new

 

one

 

and

 

if

 

so

 

then

 

consider

 

using

 

the

 

sample

 

business

 

object.

   

Important

 

IBM

 

does

 

not

 

support

 

sample

 

business

 

objects,

 

but

 

they

 

can

 

be

 

very

 

useful

 

as

 

a

 

starting

 

point

 

for

 

business

 

object

 

design.

v

   

If

 

there

 

are

 

no

 

existing

 

business

 

objects

 

for

 

the

 

entities

 

you

 

need

 

to

 

model

 

and

 

an

 

Object

 

Discovery

 

Agent

 

does

 

not

 

already

 

exist

 

for

 

the

 

application,

 

you

 

can

 

develop

 

a

 

new

 

Object

 

Discovery

 

Agent

 

for

 

the

 

application.

 

This

 

might

 

not

 

be

 

an

 

efficient

 

approach

 

if

 

there

 

are

 

very

 

few

 

business

 

objects

 

that

 

are

 

required

 

for

 

the

 

application

 

or

 

if

 

the

 

entities

 

are

 

very

 

small.

 

For

 

more

 

information,

 

see

 

Chapter

 

5,

 

“Developing

 

an

 

Object

 

Discovery

 

Agent,”

 

on

 

page

 

87.

 

v

   

Whether

 

you

 

use

 

an

 

Object

 

Discovery

 

Agent

 

or

 

an

 

existing

 

business

 

object,

 

it

 

is

 

still

 

important

 

to

 

examine

 

and

 

confirm

 

all

 

the

 

data

 

definition

 

requirements,

 

such

 

as

 

the

 

object

 

key,

 

foreign

 

keys,

 

child

 

business

 

objects,

 

default

 

values,

 

data

 

types,

 

and

 

size

 

limitations.

 

The

 

following

 

factors

 

result

 

in

 

this

 

requirement:

 

–

   

Object

 

Discovery

 

Agents

 

can

 

facilitate

 

the

 

design

 

effort,

 

but

 

cannot

 

discovery

 

all

 

of

 

the

 

requirements

 

surrounding

 

an

 

application

 

entity.

 

–

   

With

 

existing

 

business

 

objects,

 

the

 

threat

 

is

 

that

 

applications

 

can

 

be

 

installed

 

and

 

configured

 

different

 

ways

 

to

 

accommodate

 

customer-specific

 

needs.

 

A

 

business

 

object

 

that

 

accurately

 

models

 

an

 

entity

 

in

 

one

 

application

 

installation

 

may

 

not

 

accurately

 

model

 

that

 

entity

 

in

 

another

 

installation

 

of

 

that

 

application.

While

 

designing

 

the

 

application-specific

 

business

 

object,

 

keep

 

in

 

mind

 

that

 

its

 

primary

 

role

 

is

 

to

 

model

 

the

 

entity

 

in

 

the

 

data

 

source.

 

It

 

is

 

also

 

important

 

to

 

identify

 

how

 

its

 

associated

 

connector

 

or

 

data

 

handler

 

handles

 

its

 

processing,

 

and

 

what

 

are

 

the

 

requirements

 

of

 

the

 

business

 

process

 

in

 

which

 

it

 

participates.

 

Designing

 

generic

 

business

 

objects

 

(InterChange

 

Server

 

only)

 

A

 

generic

 

business

 

object

 

reflects

 

a

 

superset

 

of

 

information

 

that

 

represents

 

entities

 

used

 

by

 

multiple

 

diverse

 

applications

 

or

 

programmatic

 

entities.

 

InterChange

 

Server

 

collaboration

 

objects

 

use

 

generic

 

business

 

objects

 

so

 

they

 

can

 

provide

 

information

 

for

 

a

 

variety

 

of

 

diverse

 

applications.

 

Therefore,

 

designing

 

generic

 

business

 

objects

 

is

 

part

 

of

 

the

 

task

 

of

 

collaboration

 

object

 

development.

 

When

 

designing

 

a

 

generic

 

business

 

object,

 

take

 

into

 

account

 

the

 

following:

 

v

   

Understand

 

the

 

data

 

requirements

 

that

 

are

 

critical

 

to

 

the

 

business

 

process

 

integration.

 

v

   

Study

 

the

 

business

 

logic

 

that

 

the

 

business

 

object

 

participates

 

in,

 

and

 

all

 

requirements

 

based

 

on

 

that

 

logic.

 

The

 

following

 

two

 

considerations

 

illustrate

 

the

 

complexity

 

of

 

business

 

logic

 

analysis:

 

–

   

Processing

 

prerequisite

 

data

   

Chapter

 

2.

 

Business

 

object

 

design

 

37



Sometimes

 

the

 

application

 

that

 

triggers

 

the

 

collaboration

 

object

 

does

 

not

 

provide

 

all

 

the

 

data

 

required

 

to

 

process

 

the

 

triggering

 

business

 

object.

 

The

 

additional

 

data

 

may

 

reside

 

in

 

other

 

applications,

 

including

 

the

 

destination

 

application.

 

For

 

example,

 

a

 

Sales

 

Force

 

Automation

 

(SFA)

 

application

 

(such

 

as

 

Siebel)

 

may

 

generate

 

a

 

quote

 

that

 

needs

 

to

 

be

 

logged

 

as

 

an

 

Order

 

in

 

an

 

order

 

management

 

system

 

(such

 

as

 

SAP).

 

However,

 

before

 

the

 

Quote

 

can

 

become

 

an

 

Order,

 

it

 

may

 

require

 

additional

 

information

 

not

 

available

 

in

 

the

 

SFA

 

application.

 

For

 

example,

 

an

 

Order

 

may

 

require

 

such

 

additional

 

data

 

as

 

customer

 

credit

 

status

 

(from

 

a

 

financial

 

system),

 

contact

 

information

 

(from

 

a

 

customer

 

support

 

system),

 

or

 

Availability

 

To

 

Promise

 

information

 

(from

 

a

 

warehousing

 

system).

 

When

 

you

 

design

 

the

 

generic

 

Order

 

business

 

object,

 

you

 

may

 

have

 

to

 

include

 

attributes

 

and

 

design

 

a

 

structure

 

that

 

supports

 

data

 

which

 

is

 

not

 

present

 

in

 

the

 

source

 

application

 

necessarily,

 

but

 

may

 

be

 

present

 

in

 

other

 

applications

 

involved

 

in

 

the

 

interface.

 

–

   

Cross-referencing

 

between

 

individual

 

application

 

entities

 

Determine

 

how

 

and

 

whether

 

individual

 

application

 

entities

 

correspond

 

to

 

each

 

other

 

or

 

are

 

cross-referenced

 

to

 

each

 

other

 

generically

 

in

 

the

 

business

 

process.

 

For

 

example,

 

a

 

customer

 

in

 

Oracle

 

is

 

represented

 

as

 

a

 

Customer

 

whose

 

address

 

is

 

represented

 

as

 

an

 

Address.

 

A

 

customer

 

in

 

SAP

 

is

 

represented

 

as

 

a

 

“SoldTo”

 

entity

 

whose

 

address

 

is

 

represented

 

as

 

a

 

“ship-to”

 

entity.

 

A

 

customer

 

in

 

Clarify

 

is

 

represented

 

as

 

a

 

“Business

 

Organization”

 

whose

 

address

 

is

 

represented

 

as

 

a

 

“Site”.

 

Study

 

the

 

functionality

 

and

 

relationships

 

between

 

an

 

application’s

 

entities

 

to

 

determine

 

the

 

business

 

objects

 

and

 

processes

 

involved

 

in

 

integrating

 

data

 

between

 

applications.
v

   

Understand

 

what

 

required

 

data

 

is

 

common

 

or

 

shared

 

across

 

all

 

applications

 

participating

 

in

 

the

 

business

 

process

 

and

 

is

 

critical

 

to

 

the

 

integration

 

of

 

that

 

process.

 

The

 

attributes

 

and

 

their

 

relationships

 

should

 

determine

 

at

 

a

 

minimum

 

the

 

mandatory

 

attributes

 

(the

 

lowest

 

common

 

denominator

 

of

 

attributes)

 

and

 

the

 

transformations

 

that

 

the

 

business

 

integration

 

system

 

must

 

perform

 

between

 

these

 

application-specific

 

business

 

objects.

 

Consider

 

the

 

following

 

integration

 

possibilities:

 

–

   

The

 

business

 

process

 

integrates

 

data

 

from

 

an

 

Enterprise

 

Resource

 

Management

 

(ERP)

 

system

 

to

 

a

 

Customer

 

Relationship

 

Management

 

(CRM)

 

system.

 

In

 

this

 

case,

 

the

 

business

 

object

 

probably

 

does

 

not

 

need

 

to

 

be

 

very

 

complex

 

because

 

most

 

CRM

 

systems

 

do

 

not

 

accommodate

 

most

 

of

 

the

 

data

 

stored

 

in

 

an

 

ERP

 

system.

 

–

   

The

 

business

 

process

 

integrates

 

data

 

between

 

two

 

ERP

 

systems.

 

In

 

this

 

case,

 

it

 

is

 

likely

 

that

 

the

 

business

 

object

 

will

 

be

 

highly

 

complex.

 

–

   

The

 

business

 

process

 

integrates

 

data

 

from

 

a

 

CRM

 

system

 

to

 

an

 

ERP

 

system.

 

In

 

this

 

case,

 

your

 

design

 

must

 

reflect

 

how

 

much

 

of

 

the

 

data

 

actually

 

originates

 

in

 

the

 

CRM

 

system

 

(and

 

thus

 

must

 

be

 

represented

 

by

 

attributes

 

in

 

the

 

generic

 

business

 

object)

 

and

 

how

 

much

 

of

 

it

 

can

 

be

 

defaulted

 

in

 

the

 

destination

 

application

 

itself

 

(and

 

thus

 

provided

 

as

 

default

 

values

 

in

 

the

 

application-specific

 

business

 

object).
v

   

If

 

they

 

exist,

 

study

 

the

 

application-specific

 

business

 

objects

 

to

 

which

 

the

 

generic

 

business

 

object

 

will

 

map.

 

Analyze

 

the

 

structure

 

and

 

the

 

attributes

 

of

 

all

 

business

 

objects

 

to

 

derive

 

a

 

generic

 

business

 

object

 

that

 

is

 

suitable

 

to

 

all

 

applications.

 

v

   

Consider

 

whether

 

there

 

is

 

a

 

standard

 

for

 

the

 

type

 

of

 

business

 

object

 

you

 

are

 

designing.

 

For

 

example,

 

there

 

might

 

be

 

an

 

appropriate

 

model

 

for

 

the

 

entity

   

38

 

Business

 

Object

 

Development

 

Guide



provided

 

by

 

the

 

Electronic

 

Data

 

Interchange

 

(EDI),

 

Open

 

Applications

 

Group

 

(OAG),

 

or

 

Object

 

Management

 

Group

 

(OMG)

 

initiatives.

Generic

 

business

 

object

 

design

 

standards

 

To

 

be

 

consistent

 

with

 

IBM-delivered

 

generic

 

business

 

objects,

 

use

 

the

 

following

 

standards

 

when

 

designing

 

a

 

generic

 

business

 

object:

 

v

   

The

 

first

 

attribute

 

of

 

every

 

object

 

should

 

be

 

its

 

key

 

and

 

should

 

be

 

named

 

ObjectId.

 

v

   

If

 

an

 

attribute

 

represents

 

a

 

foreign

 

key,

 

its

 

name

 

should

 

concatenate

 

the

 

name

 

of

 

the

 

foreign

 

business

 

object

 

and

 

Id;

 

for

 

example:

 

CustomerId,

 

ItemId,

 

and

 

OrderId.

 

v

   

Be

 

consistent.

 

If

 

you

 

use

 

an

 

abbreviation

 

in

 

an

 

attribute

 

name,

 

use

 

the

 

same

 

abbreviation

 

in

 

parent

 

and

 

child

 

business

 

objects.

 

If

 

possible,

 

use

 

the

 

same

 

abbreviation

 

for

 

all

 

relevant

 

attribute

 

names.

 

For

 

example,

 

if

 

you

 

abbreviate

 

Number

 

to

 

Num,

 

do

 

so

 

consistently.

 

v

   

Follow

 

the

 

naming

 

guidelines

 

provided

 

in

 

Naming

 

IBM

 

WebSphere

 

InterChange

 

Server

 

Components.

Designing

 

for

 

event

 

isolation

 

When

 

designing

 

a

 

generic

 

business

 

object,

 

it

 

is

 

recommended

 

that

 

you

 

consider

 

the

 

needs

 

of

 

event

 

isolation,

 

as

 

explained

 

in

 

the

 

Collaboration

 

Development

 

Guide

 

(in

 

the

 

section

 

entitled

 

“Designing

 

for

 

Parallel

 

Execution”).

 

To

 

prevent

 

more

 

than

 

one

 

collaboration

 

object

 

from

 

updating

 

the

 

same

 

data

 

at

 

the

 

same

 

time,

 

each

 

business

 

object

 

should

 

be

 

modified

 

by

 

only

 

one

 

type

 

of

 

collaboration

 

object.

 

In

 

other

 

words,

 

a

 

Customer

 

business

 

object

 

should

 

be

 

modified

 

only

 

by

 

a

 

CustomerSync

 

collaboration

 

object.

 

If

 

a

 

collaboration

 

object

 

modifies

 

a

 

business

 

object

 

that

 

contains

 

a

 

child

 

business

 

object,

 

and

 

the

 

child

 

business

 

object

 

is

 

also

 

contained

 

by

 

a

 

different

 

top-level

 

business

 

object

 

that

 

has

 

its

 

own

 

modifying

 

collaboration

 

object,

 

design

 

the

 

top-level

 

business

 

objects

 

to

 

contain

 

the

 

child

 

semantically

 

rather

 

than

 

structurally.

 

Develop

 

a

 

third

 

collaboration

 

object

 

to

 

modify

 

the

 

shared

 

child.

 

The

 

collaboration

 

objects

 

that

 

own

 

the

 

two

 

top-level

 

business

 

objects

 

should

 

then

 

delegate

 

processing

 

of

 

the

 

shared

 

child

 

to

 

the

 

third

 

collaboration

 

object.

 

For

 

example,

 

if

 

both

 

Customer

 

and

 

Contact

 

business

 

objects

 

contain

 

the

 

same

 

address

 

data,

 

design

 

the

 

Address

 

business

 

object

 

as

 

a

 

top-level

 

business

 

object

 

that

 

is

 

referenced

 

by

 

Customer

 

and

 

Contact,

 

but

 

not

 

contained

 

by

 

them.

 

Then

 

develop

 

a

 

separate

 

Address

 

collaboration

 

object

 

to

 

modify

 

address

 

data.

 

In

 

another

 

example,

 

however,

 

if

 

the

 

Order

 

business

 

object

 

is

 

the

 

only

 

business

 

object

 

that

 

modifies

 

OrderLineItem

 

data,

 

you

 

can

 

design

 

Order

 

to

 

contain

 

the

 

OrderLineItem

 

child

 

business

 

objects

 

rather

 

than

 

merely

 

reference

 

them.

 

In

 

other

 

words,

 

design

 

the

 

Customer

 

and

 

Contact

 

business

 

objects

 

so

 

that

 

they

 

contain

 

a

 

foreign-key

 

attribute

 

that

 

references

 

the

 

Address

 

business

 

object,

 

that

 

is,

 

that

 

contains

 

only

 

the

 

key

 

value

 

for

 

Address.

 

Do

 

not

 

design

 

them

 

to

 

contain

 

an

 

attribute

 

that

 

represents

 

a

 

full-valued

 

Address

 

business

 

object.

 

But

 

design

 

the

 

Order

 

business

 

object

 

to

 

contain

 

an

 

attribute

 

that

 

represents

 

a

 

full-valued

 

OrderLineItem

 

business

 

object.

 

Note:

  

Designing

 

shared

 

business

 

objects

 

as

 

referenced

 

rather

 

than

 

contained

 

can

 

simplify

 

business

 

object

 

distribution.

 

If

 

the

 

same

 

child

 

business

 

object

 

is

   

Chapter

 

2.

 

Business

 

object

 

design

 

39



defined

 

in

 

multiple

 

business

 

object

 

definitions,

 

the

 

repos_copy

 

utility

 

attempts

 

to

 

load

 

the

 

same

 

business

 

object

 

twice

 

during

 

installation,

 

causing

 

rollback.

 

For

 

information

 

on

 

repos_copy

 

flags

 

that

 

change

 

this

 

default

 

behavior,

 

see

 

the

 

System

 

Administration

 

Guide.

 

Attributes

 

in

 

a

 

generic

 

business

 

object

 

When

 

defining

 

attributes

 

for

 

a

 

generic

 

business

 

object,

 

study

 

the

 

attributes

 

of

 

the

 

application-specific

 

business

 

objects

 

to

 

which

 

the

 

generic

 

business

 

object

 

will

 

map.

 

Consider

 

these

 

guidelines:

 

v

   

Note

 

the

 

similarities

 

between

 

entities

 

in

 

the

 

application-specific

 

business

 

objects’s

 

attributes.

 

Define

 

attributes

 

for

 

the

 

generic

 

business

 

object

 

that

 

most

 

simply

 

match

 

those

 

in

 

the

 

application-specific

 

business

 

objects.

 

v

   

Note

 

the

 

differences

 

between

 

entities

 

in

 

the

 

application-specific

 

business

 

objects’

 

attributes.

 

If

 

one

 

application-specific

 

business

 

object

 

splits

 

data

 

into

 

multiple

 

fields

 

while

 

another

 

combines

 

the

 

same

 

data

 

into

 

one

 

field,

 

determine

 

which

 

design

 

best

 

simplifies

 

mapping

 

between

 

the

 

two

 

application

 

entities.

 

For

 

more

 

information,

 

see

 

“Designing

 

for

 

an

 

existing

 

connector

 

or

 

data

 

handler”

 

on

 

page

 

36.

 

v

   

Consider

 

requirements

 

generated

 

by

 

the

 

processing

 

performed

 

by

 

the

 

collaboration

 

object.

 

For

 

example,

 

if

 

the

 

collaboration

 

object

 

processes

 

prerequisites

 

as

 

described

 

in

 

“Designing

 

generic

 

business

 

objects

 

(InterChange

 

Server

 

only)”

 

on

 

page

 

37,

 

ensure

 

that

 

the

 

generic

 

business

 

object

 

contains

 

all

 

attributes

 

required

 

to

 

store

 

the

 

prerequisite

 

data.

 

v

   

Develop

 

the

 

generic

 

business

 

object

 

and

 

interface

 

to

 

accommodate

 

the

 

largest

 

number

 

of

 

applications

 

involved

 

in

 

the

 

interface.

 

For

 

instance,

 

if

 

there

 

are

 

four

 

applications

 

involved

 

in

 

an

 

interface

 

and

 

three

 

of

 

them

 

encapsulate

 

data

 

in

 

a

 

child

 

object

 

but

 

the

 

fourth

 

contains

 

that

 

data

 

at

 

the

 

parent-level

 

object,

 

then

 

design

 

the

 

generic

 

business

 

object

 

so

 

that

 

it

 

encapsulates

 

the

 

data

 

in

 

a

 

child

 

object

 

as

 

well—this

 

results

 

in

 

mapping

 

and

 

other

 

related

 

tasks

 

being

 

that

 

much

 

easier.

 

v

   

Take

 

future

 

development

 

efforts

 

into

 

account;

 

you

 

may

 

want

 

to

 

design

 

a

 

generic

 

business

 

object

 

to

 

accommodate

 

data

 

structures

 

that

 

will

 

be

 

required

 

at

 

a

 

later

 

point

 

to

 

minimize

 

the

 

effort

 

and

 

change

 

impact

 

at

 

that

 

time.

 

Do

 

not,

 

however,

 

significantly

 

increase

 

the

 

scope

 

of

 

development

 

for

 

a

 

future

 

project

 

that

 

may

 

never

 

come

 

to

 

be.

In

 

general,

 

a

 

generic

 

business

 

object

 

definition

 

should

 

include

 

attributes

 

that

 

capture

 

all

 

the

 

data

 

elements

 

that

 

are

 

to

 

be

 

transformed

 

among

 

all

 

the

 

application-specific

 

business

 

objects

 

to

 

which

 

the

 

generic

 

business

 

object

 

will

 

map.

 

Names

 

of

 

the

 

attributes

 

should

 

be

 

as

 

intuitive

 

as

 

possible.

 

For

 

example,

 

if

 

several

 

applications

 

refer

 

to

 

an

 

entity

 

as

 

a

 

Customer

 

and

 

one

 

application

 

refers

 

to

 

the

 

same

 

entity

 

as

 

a

 

Business

 

Organization,

 

use

 

the

 

more

 

common

 

terminology

 

to

 

name

 

the

 

generic

 

attributes.

 

Note:

  

The

 

name

 

of

 

an

 

attribute

 

can

 

contain

 

only

 

alphanumeric

 

characters

 

and

 

underscore

 

(_).

 

Evaluating

 

existing

 

generic

 

business

 

objects

 

You

 

may

 

be

 

able

 

to

 

facilitate

 

development

 

of

 

a

 

generic

 

business

 

object

 

by

 

copying

 

and

 

customizing

 

an

 

existing

 

one.

   

40

 

Business

 

Object

 

Development

 

Guide



To

 

evaluate

 

a

 

generic

 

business

 

object,

 

examine

 

the

 

data

 

involved

 

in

 

the

 

interface.

 

A

 

guideline

 

is

 

that

 

if

 

80%

 

or

 

more

 

of

 

the

 

data

 

exists

 

in

 

a

 

delivered

 

generic

 

business

 

object,

 

customize

 

the

 

existing

 

object.

 

When

 

performing

 

this

 

analysis,

 

it

 

is

 

more

 

important

 

to

 

look

 

at

 

the

 

business

 

object

 

structure

 

than

 

the

 

attributes.

 

Attributes

 

are

 

relatively

 

easy

 

to

 

add

 

and

 

remove,

 

whereas

 

structural

 

or

 

hierarchical

 

changes

 

can

 

require

 

much

 

more

 

effort.

 

If

 

you

 

decide

 

to

 

customize

 

an

 

existing

 

generic

 

business

 

object,

 

examine

 

the

 

business

 

object

 

definition

 

to

 

determine

 

whether

 

it

 

is

 

missing

 

one

 

or

 

more

 

desired

 

attributes.

 

Missing

 

attributes

 

become

 

more

 

apparent

 

during

 

mapping

 

design.

 

If

 

the

 

generic

 

business

 

object

 

requires

 

one

 

or

 

more

 

additional

 

attributes,

 

create

 

a

 

child

 

business

 

object

 

that

 

contains

 

the

 

additional

 

attributes.

 

Isolating

 

custom

 

attributes

 

in

 

child

 

business

 

objects

 

facilitates

 

future

 

upgrade

 

of

 

IBM-delivered

 

business

 

objects.

 

If

 

you

 

embed

 

custom

 

attributes

 

in

 

an

 

IBM-delivered

 

business

 

object,

 

upgrading

 

to

 

a

 

new

 

version

 

of

 

the

 

business

 

object

 

requires

 

re-embedding

 

those

 

attributes

 

in

 

the

 

new

 

business

 

object.

 

Isolating

 

the

 

custom

 

attributes

 

in

 

their

 

own

 

business

 

object

 

allows

 

you

 

to

 

add

 

one

 

attribute

 

to

 

the

 

new

 

IBM

 

business

 

object—the

 

attribute

 

that

 

creates

 

the

 

relationship

 

between

 

the

 

parent

 

and

 

the

 

custom

 

child

 

business

 

object.

 

If

 

you

 

are

 

customizing

 

a

 

hierarchical

 

business

 

object

 

that

 

requires

 

additional

 

attributes

 

in

 

both

 

the

 

parent

 

and

 

the

 

child,

 

create

 

separate

 

child

 

business

 

objects

 

for

 

each.

 

It

 

is

 

recommended

 

that

 

you

 

name

 

custom

 

attributes

 

and

 

business

 

objects

 

in

 

a

 

way

 

that

 

readily

 

identifies

 

them.

 

A

 

simple

 

convention

 

is

 

to

 

add

 

an

 

_x

 

suffix

 

to

 

each

 

custom

 

name.

 

For

 

example,

 

if

 

you

 

create

 

a

 

custom

 

child

 

business

 

object

 

that

 

adds

 

attributes

 

to

 

the

 

generic

 

Order

 

business

 

object,

 

name

 

the

 

child

 

Order_x.

 

Doing

 

so

 

allows

 

alphabetic

 

listing

 

to

 

keep

 

related

 

names

 

together.

 

If

 

it

 

is

 

more

 

important

 

to

 

identify

 

custom

 

business

 

objects

 

or

 

attributes

 

than

 

to

 

alphabetize

 

the

 

custom

 

object

 

with

 

its

 

generic

 

object,

 

add

 

an

 

x_

 

prefix

 

to

 

each

 

custom

 

name.

 

For

 

more

 

information,

 

see

 

Naming

 

IBM

 

WebSphere

 

InterChange

 

Server

 

Components.

 

Determining

 

mapping

 

requirements

 

for

 

business

 

objects

 

(InterChange

 

Server

 

only)

 

When

 

an

 

application-specific

 

business

 

object

 

has

 

been

 

designed

 

to

 

match

 

an

 

application

 

entity,

 

it

 

may

 

not

 

match

 

its

 

corresponding

 

generic

 

business

 

object.

 

Therefore,

 

you

 

must

 

create

 

maps

 

between

 

the

 

application-specific

 

business

 

object

 

and

 

the

 

generic

 

business

 

object

 

so

 

that

 

the

 

application

 

data

 

can

 

be

 

transported

 

across

 

the

 

WebSphere

 

business

 

integration

 

system.

 

An

 

application-specific

 

business

 

object

 

may

 

not

 

need

 

to

 

include

 

all

 

the

 

fields

 

or

 

columns

 

or

 

elements

 

in

 

an

 

application

 

entity.

 

Use

 

the

 

functional

 

requirements

 

of

 

the

 

application

 

and

 

the

 

business

 

processes

 

in

 

which

 

it

 

participates

 

to

 

identify

 

which

 

attributes

 

belong

 

in

 

the

 

application-specific

 

business

 

object.

 

You

 

can

 

also

 

examine

 

the

 

correspondence

 

between

 

the

 

generic

 

business

 

object

 

and

 

the

 

application

 

entity.

 

You

 

may

 

choose

 

to

 

include

 

fields

 

in

 

the

 

application-specific

 

business

 

object

 

that

 

correspond

 

those

 

in

 

the

 

generic,

 

which

 

allows

 

these

 

data

 

elements

 

to

 

participate

 

in

 

the

 

business

 

process.

 

When

 

designing

 

the

 

business

 

object,

 

note

 

the

 

differences

 

between

 

the

 

application

 

entity

 

and

 

the

 

generic

 

business

 

object.

 

These

 

differences

 

define

 

what

 

kind

 

of

 

data

 

transformation

 

needs

 

to

 

take

 

place.

 

You

 

may

 

need

 

to

 

design

 

mapping

 

to:

   

Chapter

 

2.

 

Business

 

object

 

design

 

41



v

   

Combine

 

multiple

 

fields

 

in

 

the

 

application

 

entity

 

to

 

fill

 

one

 

attribute

 

in

 

the

 

generic

 

business

 

object

 

v

   

Split

 

a

 

field

 

in

 

the

 

application

 

entity

 

to

 

fill

 

multiple

 

attributes

 

in

 

the

 

generic

 

business

 

object

 

v

   

Ignore

 

a

 

field

 

that

 

is

 

present

 

in

 

the

 

generic

 

business

 

object

 

but

 

that

 

is

 

not

 

relevant

 

to

 

the

 

application

 

entity

 

v

   

Handle

 

differences

 

in

 

semantic

 

or

 

structural

 

relationships

 

between

 

an

 

application-specific

 

business

 

object

 

and

 

a

 

generic

 

business

 

object

 

v

   

Handle

 

foreign

 

key

 

relationships

 

and

 

other

 

types

 

of

 

relationships

 

between

 

application

 

entities

 

v

   

Establish

 

associations

 

between

 

data,

 

for

 

example:

 

–

   

Establish

 

a

 

lookup

 

association

 

between

 

data

 

in

 

non-key

 

attributes,

 

such

 

as

 

an

 

association

 

that

 

transforms

 

code

 

values

 

(for

 

example,

 

marital

 

status

 

or

 

currency

 

code)

 

between

 

applications.

 

–

   

Establish

 

an

 

identity

 

association

 

between

 

data

 

in

 

business

 

objects,

 

such

 

as

 

an

 

association

 

that

 

transforms

 

the

 

key

 

attributes

 

(for

 

example,

 

unique

 

identifiers

 

and

 

product

 

codes)

 

between

 

applications.

To

 

assist

 

with

 

mapping

 

and

 

design

 

concepts,

 

the

 

relationship

 

among

 

fields

 

in

 

a

 

table,

 

attributes

 

in

 

an

 

application-specific

 

business

 

object,

 

and

 

attributes

 

in

 

a

 

generic

 

business

 

object

 

is

 

shown

 

in

 

a

 

highly

 

simplified

 

way

 

in

 

Figure

 

20.

 

The

 

differences

 

between

 

the

 

application-specific

 

business

 

object

 

and

 

the

 

generic

 

business

 

object

 

are

 

handled

 

in

 

mapping.

 

If

 

the

 

business

 

object

 

has

 

attributes

 

that

 

do

 

not

 

have

 

a

 

representation

 

in

 

the

 

database,

 

the

 

connector

 

can

 

provide

 

a

 

default

 

value

 

for

 

the

 

attribute.

  

For

 

information

 

on

 

creating

 

maps,

 

see

 

the

 

Map

 

Development

 

Guide.

 

Generic business
object definitionCustomer table

Application-specific
business object definition

CustomerNameLastName

Credit_Limit

SalesRep

PricingGroup

Name Credit_Limit SalesRepID

CustomerType

SalesRep

CustId CustomerID

Customer Customer

FirstName

  

Figure

 

20.

 

High-level

 

view

 

of

 

field/attribute

 

relationships.

  

42

 

Business

 

Object

 

Development

 

Guide



Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

The

 

Business

 

Object

 

Designer

 

tool

 

is

 

used

 

to

 

create,

 

edit,

 

and

 

delete

 

business

 

object

 

definitions.

 

This

 

chapter

 

provides

 

an

 

overview

 

of

 

how

 

to

 

start

 

and

 

use

 

Business

 

Object

 

Designer.

 

The

 

main

 

topics

 

of

 

this

 

chapter

 

are:

 

v

   

“Working

 

with

 

projects”

 

v

   

“Starting

 

Business

 

Object

 

Designer”

 

on

 

page

 

46

 

v

   

“Opening

 

a

 

business

 

object

 

definition

 

from

 

Business

 

Object

 

Designer”

 

on

 

page

 

47

 

v

   

“Working

 

with

 

business

 

object

 

definitions”

 

on

 

page

 

50

 

v

   

“Business

 

Object

 

Designer

 

functionality”

 

on

 

page

 

52

Working

 

with

 

projects

 

Business

 

Object

 

Designer

 

uses

 

the

 

concept

 

of

 

a

 

project

 

to

 

define

 

a

 

virtual

 

work

 

area

 

in

 

which

 

business

 

object

 

definitions

 

are

 

created,

 

modified,

 

or

 

deleted.

 

Depending

 

on

 

your

 

environment,

 

the

 

“project”

 

to

 

which

 

Business

 

Object

 

Designer

 

refers

 

in

 

its

 

dialog

 

boxes

 

can

 

be

 

either

 

of

 

the

 

following:

  

Table

 

8.

 

Projects

 

in

 

Business

 

Object

 

Designer.

 

Business

 

Object

 

Designer

 

environment

 

Project

 

You

 

are

 

not

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager.

 

A

 

virtual

 

work

 

area

 

into

 

which

 

you

 

have

 

imported

 

business

 

object

 

definitions

 

from

 

a

 

local

 

directory

 

to

 

work

 

with

 

during

 

your

 

current

 

Business

 

Object

 

Designer

 

session.

 

Also

 

called

 

a

 

local

 

project.

 

You

 

are

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager.

 

An

 

Integration

 

Component

 

Library

 

(ICL)

 

on

 

the

 

Windows

 

machine

 

where

 

Business

 

Object

 

Designer

 

and

 

System

 

Manager

 

are

 

running.

 

Also

 

called

 

an

 

ICL-based

 

project.

   

The

 

use

 

of

 

each

 

type

 

of

 

project

 

is

 

explained

 

in

 

more

 

detail

 

below.

 

If

 

Business

 

Object

 

Designer

 

is

 

running

 

without

 

System

 

Manager

 

If

 

you

 

are

 

not

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager,

 

Business

 

Object

 

Designer

 

uses

 

a

 

local

 

project

 

as

 

“the

 

project”.

 

A

 

local

 

project

 

is

 

a

 

virtual

 

work

 

area

 

into

 

which

 

you

 

can

 

import

 

business

 

object

 

definitions

 

you

 

want

 

to

 

work

 

with.

 

How

 

Business

 

Object

 

Designer

 

works

 

with

 

a

 

local

 

project

 

Listed

 

below

 

is

 

a

 

high-level

 

summary

 

of

 

how

 

Business

 

Object

 

Designer

 

functions

 

operate

 

on

 

a

 

local

 

project.

 

More

 

detailed

 

information

 

about

 

performing

 

these

 

tasks

 

is

 

provided

 

in

 

the

 

topics

 

starting

 

with

 

“Starting

 

Business

 

Object

 

Designer”

 

on

 

page

 

46.

 

v

   

Editing

 

existing

 

Business

 

object

 

definitions:

 

To

 

edit

 

an

 

existing

 

business

 

object

 

definition,

 

click

 

File

 

>

 

Open

 

From

 

File.

 

This

 

menu

 

item

 

imports

 

the

 

business

 

object

 

definition

 

from

 

a

 

local

 

directory

 

into

 

your

 

project

 

and

 

optionally

 

opens

 

it

 

for

 

editing.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

43



To

 

edit

 

an

 

existing

 

business

 

object

 

definition

 

that

 

has

 

already

 

been

 

imported

 

into

 

your

 

project

 

but

 

that

 

is

 

now

 

closed,

 

click

 

File

 

>

 

Open.

 

v

   

Creating

 

a

 

new

 

business

 

object

 

definition:

 

To

 

create

 

a

 

new

 

business

 

object

 

definition,

 

click

 

File

 

>

 

New

 

or

 

File

 

>

 

New

 

Using

 

ODA.

 

v

   

Saving

 

a

 

business

 

object

 

definition:

 

To

 

save

 

a

 

new

 

or

 

modified

 

business

 

object

 

definition,

 

click

 

Save

 

on

 

the

 

menu

 

bar.

 

You

 

are

 

prompted

 

to

 

save

 

it

 

to

 

a

 

local

 

directory.

 

To

 

save

 

a

 

business

 

object

 

definition

 

under

 

a

 

different

 

name

 

or

 

directory,

 

click

 

Save

 

As.

 

v

   

Deleting

 

business

 

object

 

definitions:

 

To

 

delete

 

a

 

business

 

object

 

definition

 

from

 

the

 

Windows

 

directory

 

where

 

it

 

resides,

 

use

 

the

 

tools

 

provided

 

by

 

Windows.

 

You

 

cannot

 

use

 

the

 

Delete

 

function

 

in

 

Business

 

Object

 

Designer

 

to

 

do

 

this.

 

To

 

delete

 

a

 

business

 

object

 

definition

 

from

 

a

 

local

 

project,

 

select

 

File

 

>

 

Delete.

 

You

 

are

 

prompted

 

to

 

select

 

a

 

business

 

object

 

definition

 

to

 

delete

 

from

 

your

 

project.

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager

 

When

 

you

 

run

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager,

 

you

 

have

 

access

 

to

 

additional,

 

more

 

sophisticated,

 

functionality

 

for

 

developing

 

and

 

managing

 

business

 

object

 

definitions.

 

In

 

System

 

Manager,

 

business

 

object

 

definitions,

 

along

 

with

 

other

 

business

 

integration

 

components

 

such

 

as

 

collaborations

 

and

 

maps,

 

are

 

stored

 

in

 

Integration

 

Component

 

Libraries

 

(ICLs).

 

ICLs

 

are

 

repositories

 

of

 

business

 

integration

 

components,

 

which

 

you

 

can

 

use

 

as

 

building

 

blocks

 

to

 

construct

 

business

 

integration

 

solutions.

 

Each

 

ICL

 

contains

 

a

 

collection

 

of

 

folders,

 

one

 

for

 

each

 

type

 

of

 

integration

 

component,

 

as

 

shown

 

in

 

Figure

 

21.

  

The

 

methodology

 

for

 

developing

 

and

 

deploying

 

business

 

object

 

definitions

 

is

 

as

 

follows.

 

You

 

develop

 

a

 

business

 

object

 

definition

 

in

 

Business

 

Object

 

Designer

 

and

 

save

 

it

 

to

 

the

 

business

 

objects

 

folder

 

in

 

an

 

ICL.

 

When

 

you

 

want

 

to

 

use

 

that

 

business

 

object

 

definition

 

in

 

a

 

business

 

integration

 

solution,

 

you

 

associate

 

the

 

definition

 

with

 

one

 

or

 

more

 

user

 

projects.

 

Each

 

user

 

project

 

includes

 

all

 

the

 

business

 

integration

 

components

 

needed

 

to

 

implement

 

a

 

particular

 

business

 

integration

 

solution.

 

For

 

example,

 

in

 

a

 

user

 

project

 

that

 

contains

 

the

 

components

 

needed

 

for

 

the

 

implementation

 

of

 

the

 

PeopleSoft

 

adapter,

 

the

 

business

 

objects

 

folder

 

contains

 

all

 

the

 

business

 

object

 

definitions

 

needed

 

by

 

that

 

adapter.

   

Figure

 

21.

 

Integration

 

Component

 

Libraries

 

in

 

System

 

Manager.

  

44

 

Business

 

Object

 

Development

 

Guide



Like

 

an

 

ICL,

 

each

 

user

 

project

 

contains

 

a

 

collection

 

of

 

business

 

integration

 

component

 

folders.

 

However,

 

a

 

user

 

project

 

contains

 

only

 

virtual

 

copies

 

of

 

ICL

 

components.

 

When

 

you

 

change

 

a

 

business

 

object

 

definition,

 

you

 

modify

 

the

 

instance

 

in

 

the

 

ICL.

 

The

 

changes

 

you

 

make

 

are

 

automatically

 

propagated

 

to

 

every

 

user

 

project

 

that

 

includes

 

the

 

business

 

object

 

definition.

 

In

 

other

 

words,

 

if

 

a

 

particular

 

business

 

object

 

definition

 

is

 

included

 

in

 

two

 

user

 

projects,

 

and

 

a

 

change

 

is

 

made

 

to

 

that

 

definition

 

in

 

the

 

Integration

 

Component

 

Library,

 

the

 

change

 

is

 

automatically

 

reflected

 

in

 

the

 

virtual

 

copies

 

residing

 

in

 

the

 

user

 

projects.

 

This

 

linkage

 

between

 

business

 

object

 

definitions

 

in

 

an

 

ICL

 

and

 

their

 

virtual

 

copies

 

in

 

the

 

user

 

projects

 

allows

 

you

 

to

 

modify

 

and

 

maintain

 

business

 

object

 

definitions

 

in

 

one

 

central

 

location

 

while

 

deploying

 

them

 

in

 

multiple

 

business

 

integration

 

solutions.

  

For

 

more

 

information

 

about

 

developing

 

business

 

integration

 

components

 

using

 

Integration

 

Component

 

Libraries,

 

see

 

the

 

implementation

 

guide

 

for

 

your

 

system.

 

How

 

Business

 

Object

 

Designer

 

works

 

with

 

an

 

ICL-based

 

project

 

When

 

you

 

are

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager,

 

it

 

uses

 

as

 

“the

 

project”

 

the

 

Integration

 

Component

 

Library

 

you

 

have

 

selected.

 

Listed

 

below

 

is

 

a

 

high-level

 

summary

 

of

 

how

 

Business

 

Object

 

Designer

 

functions

 

operate

 

on

 

an

 

ICL-based

 

project.

 

More

 

detailed

 

information

 

about

 

performing

 

these

 

tasks

 

is

 

provided

 

in

 

the

 

topics

 

starting

 

with

 

“Starting

 

Business

 

Object

 

Designer”

 

on

 

page

 

46

 

v

   

Editing

 

existing

 

Business

 

object

 

definitions:

 

To

 

edit

 

a

 

business

 

object

 

definition

 

stored

 

in

 

a

 

project,

 

click

 

File

 

>

 

Open.

 

v

   

Creating

 

new

 

business

 

object

 

definitions:

 

To

 

create

 

a

 

new

 

business

 

object

 

definition,

 

click

 

File

 

>

 

New

 

or

 

File

 

>

 

New

 

Using

 

ODA.

 

v

   

Saving

 

business

 

object

 

definitions:

 

To

 

save

 

a

 

new

 

or

 

modified

 

business

 

object

 

definition,

 

click

 

File

 

>

 

Save.

 

The

 

business

 

object

 

is

 

saved

 

to

 

the

 

business

 

objects

 

folder

 

in

 

the

 

project.

 

To

 

save

 

a

 

new

 

or

 

modified

 

business

 

object

 

definition

 

using

 

a

 

different

 

name,

 

click

 

File

 

>

 

Save

 

As.

 

v

   

Deleting

 

business

 

object

 

definitions:

 

To

 

delete

 

a

 

business

 

object

 

definition,

 

select

 

Delete

 

from

 

the

 

menu

 

bar.

 

You

 

are

 

prompted

 

to

 

select

 

a

 

business

 

object

 

definition

 

to

 

delete

 

from

 

your

 

project.

User project for Retek adapter

User project for Siebel adapter

Integration
component
library Business

Object
Designer

Customer
BO Definition

Customer
BO Definition

Customer
BO Definition

Customer
BO Definition

  

Figure

 

22.

 

Changes

 

to

 

business

 

object

 

definitions

 

in

 

an

 

ICL

 

propagate

 

automatically

 

to

 

virtual

 

copies

 

in

 

user

 

projects.

  

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

45



When

 

you

 

run

 

Business

 

Object

 

Designer

 

without

 

System

 

Manager,

 

you

 

do

 

not

 

have

 

access

 

to

 

the

 

Integration

 

Component

 

Libraries.

 

In

 

this

 

environment,

 

Business

 

Object

 

Designer

 

uses

 

a

 

local

 

project

 

as

 

described

 

in

 

“If

 

Business

 

Object

 

Designer

 

is

 

running

 

without

 

System

 

Manager”

 

on

 

page

 

43.

 

Starting

 

Business

 

Object

 

Designer

 

You

 

can

 

open

 

Business

 

Object

 

Designer

 

in

 

any

 

of

 

the

 

ways

 

listed

 

in

 

Table

 

9.

 

After

 

opening

 

Business

 

Object

 

Designer,

 

you

 

can

 

create

 

a

 

business

 

object

 

definition

 

manually

 

or

 

use

 

an

 

Object

 

Discovery

 

Agent

 

to

 

generate

 

a

 

definition

 

for

 

an

 

application-specific

 

business

 

object.

 

For

 

more

 

information,

 

see

 

Chapter

 

4,

 

“Developing

 

business

 

object

 

definitions,”

 

on

 

page

 

55.

  

Table

 

9.

 

Ways

 

to

 

open

 

Business

 

Object

 

Designer.

 

From

 

System

 

Manager

 

v

   

Select

 

the

 

business

 

objects

 

folder

 

in

 

an

 

Integration

 

Component

 

Library,

 

then

 

do

 

either

 

of

 

the

 

following:

 

–

   

Click

 

Business

 

Object

 

Designer

 

from

 

the

 

Tools

 

menu.

 

–

   

Click

 

the

 

Business

 

Object

 

Designer

 

tool

 

bar

 

icon.

v

   

Right-click

 

the

 

business

 

objects

 

folder

 

in

 

an

 

Integration

 

Component

 

Library.

 

v

   

Double-click

 

a

 

business

 

object

 

definition.

 

Using

 

a

 

Windows

 

shortcut

 

(InterChange

 

Server)

 

Click

 

Programs

 

>

 

IBM

 

WebSphere

 

InterChange

 

Server

 

>

 

IBM

 

WebSphere

 

Business

 

Integration

 

Toolset

 

>

 

Development

 

>

 

Business

 

Object

 

Designer.

 

Using

 

a

 

Windows

 

shortcut

 

(WebSphere

 

Business

 

Integration

 

Adapters

 

with

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

or

 

WebSphere

 

Application

 

Server)

 

Click

 

Programs

 

>

 

IBM

 

WebSphere

 

Business

 

Integration

 

Adapters

 

>

 

Tools

 

>

 

Business

 

Object

 

Designer.

 

From

 

another

 

development

 

tool

 

(InterChange

 

Server

 

only)

 

Do

 

either

 

of

 

the

 

following:

 

v

   

On

 

the

 

Tools

 

menu,

 

click

 

Business

 

Object

 

Designer.

 

v

   

From

 

the

 

tool

 

bar,

 

double-click

 

the

 

Business

 

Object

 

Designer

 

icon.

   

When

 

you

 

open

 

Business

 

Object

 

Designer

 

directly

 

from

 

System

 

Manager,

 

without

 

first

 

selecting

 

a

 

business

 

object

 

definition,

 

the

 

New

 

Business

 

Object

 

dialog

 

box

 

opens

 

automatically.

 

If

 

System

 

Manager

 

is

 

not

 

running,

 

Business

 

Object

 

Designer

 

opens

 

but

 

the

 

New

 

Business

 

Object

 

dialog

 

box

 

does

 

not

 

open.

    

46

 

Business

 

Object

 

Development

 

Guide



When

 

you

 

open

 

Business

 

Object

 

Designer

 

by

 

double-clicking

 

a

 

business

 

object

 

definition,

 

the

 

selected

 

definition

 

is

 

displayed

 

in

 

Business

 

Object

 

Designer’s

 

work

 

area.

 

Opening

 

a

 

business

 

object

 

definition

 

from

 

Business

 

Object

 

Designer

 

Once

 

you

 

open

 

Business

 

Object

 

Designer,

 

you

 

can

 

open

 

object

 

definitions

 

stored

 

in

 

a

 

file.

 

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager,

 

you

 

can

 

also

 

open

 

business

 

object

 

definitions

 

stored

 

in

 

an

 

Integration

 

Component

 

Library.

 

This

 

section

 

describes:

 

v

   

“Opening

 

a

 

business

 

object

 

definition

 

from

 

a

 

project”

 

v

   

“Preventing

 

duplicate

 

definition

 

names”

 

on

 

page

 

48

 

v

   

“Opening

 

a

 

definition

 

from

 

a

 

file”

 

on

 

page

 

48

Opening

 

a

 

business

 

object

 

definition

 

from

 

a

 

project

 

If

 

Business

 

Object

 

Designer

 

is

 

already

 

open,

 

you

 

can

 

do

 

the

 

following

 

to

 

open

 

a

 

business

 

object

 

definition

 

from

 

a

 

project.

 

Note:

  

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager,

 

the

 

project

 

is

 

an

 

ICL-based

 

project.

 

Otherwise,

 

the

 

project

 

is

 

a

 

local

 

project,

 

which

 

contains

 

only

 

business

 

object

 

definitions

 

you

 

have

 

imported

 

into

 

it.

 

See

 

“Working

 

with

 

projects”

 

on

 

page

 

43

 

for

 

more

 

information

 

about

 

projects

 

in

 

Business

 

Object

 

Designer.

 

1.

   

From

 

the

 

list

 

of

 

business

 

object

 

definitions

 

in

 

the

 

project,

 

highlight

 

the

 

name

 

of

 

the

 

definition

 

you

 

want

 

to

 

open.

 

2.

   

To

 

select

 

multiple

 

business

 

object

 

definitions

 

in

 

the

 

project,

 

do

 

one

 

of

 

the

 

following:

 

v

   

When

 

selecting

 

consecutive

 

names,

 

select

 

the

 

first

 

name

 

and,

 

while

 

pressing

 

the

 

Shift

 

key,

 

click

 

the

 

last

 

name.

 

v

   

When

 

selecting

 

non-consecutive

 

names,

 

press

 

the

 

Ctrl

 

key

 

and

 

click

 

as

 

you

 

select

 

each

 

name.

  

Figure

 

23.

 

New

 

Business

 

Object

 

dialog

 

box

  

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

47



3.

   

After

 

selecting

 

the

 

definitions

 

to

 

be

 

opened,

 

right-click

 

and

 

then

 

click

 

Open.

 

Business

 

Object

 

Designer

 

displays

 

a

 

window

 

for

 

each

 

selected

 

definition.

Opening

 

a

 

definition

 

from

 

a

 

file

 

To

 

open

 

a

 

business

 

object

 

definition

 

that

 

is

 

stored

 

in

 

a

 

local

 

directory,

 

do

 

the

 

following:

 

1.

   

Click

 

File

 

>

 

Open

 

From

 

File.

 

The

 

Import

 

dialog

 

box

 

opens.

 

The

 

dialog

 

box

 

defaults

 

to

 

filter

 

files

 

of

 

type

 

XML

 

Schema

 

Definition

 

(with

 

a

 

.xsd

 

extension).

 

You

 

can

 

also

 

select

 

a

 

different

 

file

 

type

 

from

 

the

 

Files

 

of

 

type

 

list,

 

or

 

you

 

can

 

select

 

all

 

file

 

types.

 

2.

   

In

 

the

 

Import

 

dialog

 

box,

 

browse

 

until

 

you

 

locate

 

the

 

file,

 

select

 

it,

 

and

 

click

 

Open.

 

Figure

 

24

 

illustrates

 

this

 

dialog

 

box.

 

Note:

  

If

 

Business

 

Object

 

Designer

 

is

 

not

 

running

 

from

 

System

 

Manager,

 

the

 

To

 

Project

 

list,

 

which

 

lets

 

you

 

specify

 

the

 

ICL-based

 

project

 

to

 

receive

 

the

 

imported

 

business

 

object

 

definition,

 

is

 

omitted

 

from

 

the

 

dialog

 

box.

 

Instead,

 

the

 

business

 

object

 

definition

 

is

 

imported

 

into

 

your

 

local

 

project.

  

If

 

the

 

Open

 

the

 

imported

 

business

 

objects

 

check

 

box

 

is

 

selected

 

then

 

Business

 

Object

 

Designer

 

also

 

opens

 

the

 

business

 

object

 

definition

 

for

 

editing.

 

Otherwise,

 

the

 

business

 

object

 

definition

 

is

 

imported

 

into

 

the

 

project

 

but

 

not

 

opened

 

for

 

editing.

 

For

 

more

 

information,

 

see

 

“Working

 

with

 

business

 

object

 

definitions”

 

on

 

page

 

50.

 

Preventing

 

duplicate

 

definition

 

names

 

Business

 

Object

 

Designer

 

does

 

not

 

allow

 

you

 

to

 

have

 

two

 

business

 

objects

 

with

 

the

 

same

 

name

 

in

 

the

 

same

 

project,

 

which

 

might

 

occur

 

in

 

either

 

of

 

the

 

following

 

situations:

 

v

   

You

 

attempt

 

to

 

open

 

a

 

definition

 

from

 

file

 

that

 

is

 

identical

 

to

 

one

 

you

 

already

 

have

 

in

 

your

 

project.

 

v

   

You

 

attempt

 

to

 

create

 

a

 

new

 

definition

 

that

 

is

 

identical

 

to

 

one

 

that

 

already

 

exists

 

in

 

your

 

project.

   

Figure

 

24.

 

Import

 

Business

 

Objects

 

dialog

 

box

  

48

 

Business

 

Object

 

Development

 

Guide



In

 

this

 

case,

 

Business

 

Object

 

Designer

 

displays

 

an

 

error

 

message

 

with

 

the

 

text:

 

Business

 

object

 

with

 

this

 

name

 

already

 

exists.

If

 

you

 

attempt

 

to

 

open

 

a

 

definition

 

from

 

a

 

file

 

and

 

your

 

local

 

or

 

ICL-based

 

project

 

already

 

contains

 

a

 

definition

 

with

 

the

 

same

 

name,

 

Business

 

Object

 

Designer

 

displays

 

the

 

Import

 

Results

 

dialog

 

box

 

illustrated

 

in

 

Figure

 

25.

  

In

 

the

 

Import

 

Results

 

dialog

 

box,

 

do

 

the

 

following

 

for

 

each

 

business

 

object

 

definition

 

listed

 

as

 

having

 

a

 

duplicate

 

name:

 

1.

   

Click

 

Action

 

and

 

select

 

an

 

action

 

from

 

the

 

list.

 

An

 

explanation

 

of

 

each

 

action

 

is

 

provided

 

below.

 

2.

   

If

 

you

 

selected

 

Keep

 

Import/Rename

 

Local

 

or

 

Keep

 

Local/Rename

 

Import,

 

type

 

the

 

new

 

name

 

for

 

the

 

business

 

object

 

definition

 

in

 

the

 

Name

 

column

 

as

 

shown

 

in

 

Figure

 

25.

Alternatively,

 

you

 

can

 

use

 

Select

 

All

 

BO

 

Action

 

as

 

to

 

specify

 

either

 

of

 

two

 

actions

 

for

 

every

 

business

 

object

 

definition

 

listed

 

as

 

a

 

duplicate

 

name.

 

To

 

overwrite

 

all

 

the

 

business

 

object

 

definitions

 

in

 

your

 

project

 

with

 

the

 

definitions

 

you

 

are

 

importing,

 

select

 

Overwrite

 

Local.

 

To

 

refrain

 

from

 

importing

 

the

 

business

 

object

 

definitions

 

that

 

have

 

duplicate

 

names,

 

select

 

Don’t

 

Import.

 

The

 

Actions

 

list

 

in

 

the

 

Import

 

Results

 

dialog

 

box

 

provides

 

the

 

following

 

options:

 

v

   

Keep

 

Import\Rename

 

Local—Allows

 

you

 

to

 

change

 

the

 

name

 

of

 

the

 

definition

 

in

 

your

 

project

 

and

 

leave

 

unchanged

 

the

 

name

 

of

 

the

 

definition

 

in

 

the

 

file.

 

To

 

make

 

this

 

change,

 

enter

 

the

 

new

 

name

 

in

 

the

 

New

 

Name

 

column

 

as

 

shown

 

in

 

Figure

 

25.

 

v

   

Keep

 

Local\Rename

 

Import—Allows

 

you

 

to

 

change

 

the

 

name

 

of

 

the

 

definition

 

in

 

the

 

file

 

and

 

leave

 

unchanged

 

the

 

name

 

of

 

the

 

definition

 

in

 

your

 

project.

 

To

 

make

 

this

 

change,

 

enter

 

the

 

new

 

name

 

in

 

the

 

New

 

Name

 

column

 

as

 

shown

 

in

 

Figure

 

25.

 

v

   

Overwrite

 

Local—Overwrites

 

the

 

definition

 

currently

 

stored

 

your

 

project

 

with

 

the

 

definition

 

stored

 

in

 

the

 

file.

   

Figure

 

25.

 

Preventing

 

duplicate

 

names:

 

Keep

 

Local

 

or

 

Import

  

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

49



v

   

Don’t

 

Import—Cancels

 

the

 

action

 

to

 

import

 

the

 

definition

 

stored

 

in

 

the

 

file.

Working

 

with

 

business

 

object

 

definitions

 

Business

 

Object

 

Designer

 

provides

 

a

 

tabbed

 

dialog

 

box

 

with

 

two

 

screens

 

for

 

creating

 

and

 

editing

 

a

 

definition:

 

v

   

General

 

tab

 

—

 

specify

 

or

 

change

 

application-specific

 

information

 

and

 

verbs

 

at

 

the

 

business

 

object-level.

 

v

   

Attributes

 

tab

 

—

 

specify

 

or

 

change

 

attribute

 

properties.

When

 

you

 

first

 

create

 

or

 

open

 

a

 

definition,

 

the

 

Attributes

 

tab

 

opens.

 

Figure

 

26

 

illustrates

 

the

 

environment

 

for

 

defining

 

and

 

editing

 

attributes.

  

For

 

information

 

on

 

using

 

the

 

General

 

and

 

Attributes

 

tabs,

 

see

 

“Creating

 

a

 

business

 

object

 

definition”

 

on

 

page

 

55.

 

Opening

 

a

 

business

 

object

 

definition

 

and

 

its

 

contained

 

child

 

Business

 

Object

 

Designer

 

allows

 

you

 

to

 

open

 

separate

 

windows

 

to

 

edit

 

definitions

 

for

 

a

 

parent

 

business

 

object

 

definition

 

and

 

its

 

contained

 

child.

 

Figure

 

27

 

illustrates

 

the

 

separate

 

windows

 

for

 

editing

 

parent

 

and

 

child

 

business

 

objects.

    

Figure

 

26.

 

Defining

 

and

 

editing

 

attributes

  

50

 

Business

 

Object

 

Development

 

Guide



Notice

 

that

 

the

 

Address

 

attribute

 

in

 

the

 

Contact

 

business

 

object

 

is

 

collapsed

 

in

 

Figure

 

27.

 

You

 

can

 

expand

 

the

 

attribute

 

so

 

that

 

the

 

Contact

 

window

 

displays

 

all

 

attributes

 

of

 

the

 

Address

 

business

 

object,

 

which

 

enables

 

you

 

to

 

edit

 

the

 

child

 

directly

 

from

 

the

 

parent.

 

To

 

prevent

 

you

 

from

 

changing

 

the

 

same

 

definition

 

in

 

two

 

places,

 

however,

 

the

 

tool

 

automatically

 

closes

 

a

 

child

 

business

 

object’s

 

window

 

whenever

 

you

 

expand

 

a

 

child

 

business

 

object

 

within

 

its

 

parent

 

business

 

object.

 

Figure

 

28

 

illustrates

 

the

 

tool

 

after

 

Contact’s

 

Address

 

attribute

 

has

 

been

 

expanded

 

and

 

the

 

Address

 

window

 

has

 

been

 

closed.

    

Address business
object
definition

Contact business
object
definition

Contained Address
business object
definition

  

Figure

 

27.

 

Separate

 

windows

 

for

 

parent

 

and

 

child

 

business

 

objects

Expanded
Address
attribute

  

Figure

 

28.

 

Expanding

 

a

 

parent

 

business

 

object’s

 

attribute

 

that

 

represents

 

the

 

child

 

business

 

object

  

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

51



Business

 

Object

 

Designer

 

functionality

 

You

 

can

 

access

 

Business

 

Object

 

Designer

 

functions

 

in

 

either

 

of

 

the

 

following

 

ways:

 

v

   

From

 

the

 

menu

 

bar

 

v

   

Using

 

toolbar

 

icons.

The

 

following

 

sections

 

provide

 

an

 

overview

 

Business

 

Object

 

Designer’s

 

menus

 

and

 

menu

 

options.

 

File

 

menu

 

The

 

File

 

menu

 

contains

 

the

 

following

 

items:

 

v

   

New

 

BO

 

—

 

Creates

 

a

 

business

 

object

 

definition

 

manually.

 

For

 

more

 

information,

 

see

 

“Creating

 

a

 

business

 

object

 

definition”

 

on

 

page

 

55.

 

v

   

New

 

Using

 

ODA

 

—

 

Presents

 

the

 

Business

 

Object

 

Wizard,

 

which

 

allows

 

you

 

to

 

create

 

a

 

business

 

object

 

definition

 

from

 

an

 

Object

 

Discovery

 

Agent.

 

For

 

more

 

information,

 

see

 

“Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition”

 

on

 

page

 

64.

 

v

   

Open

 

—

 

Opens

 

a

 

business

 

object

 

definition

 

located

 

in

 

the

 

project.

 

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager,

 

the

 

project

 

is

 

an

 

ICL-based

 

project.

 

Otherwise,

 

the

 

project

 

is

 

a

 

local

 

project.

 

See

 

“Working

 

with

 

projects”

 

on

 

page

 

43

 

for

 

more

 

information

 

about

 

projects.

 

v

   

Open

 

From

 

File

 

—

 

Imports

 

and

 

optionally

 

opens

 

a

 

business

 

object

 

definition

 

from

 

a

 

local

 

directory.

 

v

   

Save

 

—

 

Saves

 

the

 

business

 

object

 

definition

 

as

 

follows

 

to

 

the

 

project.

 

If

 

you

 

modified

 

an

 

existing

 

business

 

object

 

definition:

 

–

   

If

 

the

 

project

 

is

 

ICL-based,

 

the

 

business

 

object

 

definition

 

is

 

saved

 

in

 

the

 

project

 

where

 

it

 

originated.

 

–

   

If

 

the

 

project

 

is

 

local,

 

the

 

business

 

object

 

definition

 

is

 

saved

 

to

 

its

 

existing

 

file.

 

If

 

you

 

created

 

a

 

new

 

business

 

object

 

definition:

 

–

   

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

manager,

 

you

 

are

 

prompted

 

to

 

select

 

the

 

ICL

 

in

 

which

 

you

 

want

 

to

 

save

 

the

 

business

 

object

 

definition.

 

–

   

Otherwise,

 

you

 

are

 

prompted

 

to

 

specify

 

the

 

local

 

destination

 

directory

 

and

 

file

 

name

 

for

 

the

 

business

 

object

 

definition.
The

 

business

 

object

 

definition

 

can

 

be

 

saved

 

as

 

a

 

file

 

of

 

type:

 

.xsd

 

XML

 

Schema

 

Definition.

 

This

 

is

 

the

 

default

 

file

 

type.

 

.in

 

or

 

.txt

 

InterChange

 

Server

 

.xls

 

Spreadsheet
v

   

Save

 

As

 

—

 

Saves

 

the

 

business

 

object

 

definition

 

with

 

a

 

new

 

name.

 

The

 

name

 

of

 

the

 

file

 

containing

 

the

 

business

 

object

 

definition

 

must

 

be

 

unique

 

within

 

the

 

destination

 

project.

 

If

 

you

 

modified

 

an

 

existing

 

business

 

object

 

definition:

 

–

   

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager,

 

the

 

business

 

object

 

definition

 

is

 

saved

 

to

 

the

 

ICL-based

 

project.

 

–

   

If

 

the

 

business

 

object

 

definition

 

was

 

opened

 

from

 

a

 

file,

 

the

 

modified

 

business

 

object

 

definition

 

is

 

saved

 

to

 

that

 

file.

 

If

 

you

 

created

 

a

 

new

 

business

 

object

 

definition:

 

–

   

If

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager,

 

you

 

are

 

prompted

 

to

 

select

 

the

 

ICL

 

where

 

the

 

business

 

object

 

definition

 

is

 

to

 

be

 

saved.

   

52

 

Business

 

Object

 

Development

 

Guide



–

   

Otherwise,

 

you

 

are

 

prompted

 

to

 

specify

 

a

 

local

 

destination

 

directory

 

and

 

file

 

name

 

for

 

the

 

business

 

object

 

definition.

 

The

 

business

 

object

 

definition

 

can

 

be

 

saved

 

as

 

a

 

file

 

of

 

type:

 

.xsd

 

XML

 

Schema

 

Definition.

 

This

 

is

 

the

 

default

 

file

 

type.

 

.in

 

or

 

.txt

 

InterChange

 

Server

 

.xls

 

Spreadsheet
v

   

Save

 

All—Saves

 

all

 

open

 

business

 

object

 

definitions

 

as

 

described

 

under

 

the

 

Save

 

menu

 

item

 

on

 

52.

 

v

   

Save

 

Copy

 

to

 

File—Exports

 

a

 

copy

 

of

 

the

 

business

 

object

 

definition

 

to

 

a

 

separate

 

file.

 

v

   

Copy

 

All

 

to

 

One

 

File—Exports

 

all

 

business

 

object

 

definitions

 

in

 

a

 

project

 

as

 

one

 

file

 

in

 

repos-copy

 

format.

 

v

   

Close—Closes

 

the

 

selected

 

definition.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Close

 

All—Closes

 

all

 

open

 

definitions.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Delete

 

—

 

Allows

 

you

 

to

 

delete

 

a

 

business

 

object

 

definition

 

from

 

a

 

project.

 

Note:

  

Business

 

Object

 

Designer

 

only

 

lets

 

you

 

delete

 

business

 

object

 

definitions

 

from

 

the

 

project.

 

If

 

your

 

project

 

is

 

ICL-based,

 

the

 

business

 

object

 

definitions

 

you

 

delete

 

are

 

removed

 

from

 

the

 

specified

 

ICL.

 

If

 

your

 

project

 

is

 

local,

 

the

 

business

 

object

 

definitions

 

you

 

delete

 

are

 

removed

 

from

 

the

 

local

 

project

 

but

 

the

 

files

 

that

 

contain

 

business

 

object

 

definitions

 

in

 

local

 

directories

 

are

 

not

 

affected.

 

To

 

delete

 

local

 

files,

 

use

 

the

 

tools

 

provided

 

by

 

Windows.

 

v

   

Print

 

Setup

 

—

 

Allows

 

you

 

to

 

specify

 

the

 

printer

 

and

 

printing

 

properties.

 

v

   

Print

 

Preview

 

—

 

Displays

 

a

 

preview

 

of

 

the

 

definition

 

to

 

be

 

printed.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Print

 

—

 

Allows

 

you

 

to

 

print

 

the

 

selected

 

definition.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Exit

 

—

 

Allows

 

you

 

to

 

exit

 

Business

 

Object

 

Designer.

Edit

 

menu

 

All

 

options

 

of

 

the

 

Edit

 

menu

 

are

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

The

 

Edit

 

menu

 

contains

 

the

 

following

 

items:

 

v

   

Cut

 

—

 

Deletes

 

an

 

attribute

 

from

 

the

 

definition

 

or

 

text

 

from

 

a

 

column.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

text

 

has

 

been

 

selected

 

in

 

a

 

column

 

or

 

no

 

attribute

 

has

 

been

 

selected

 

(by

 

clicking

 

in

 

the

 

left-most

 

column).

 

See

 

Figure

 

26

 

on

 

page

 

50

 

for

 

an

 

illustration

 

of

 

the

 

window

 

for

 

editing

 

attributes.

 

v

   

Copy

 

—

 

Copies

 

an

 

attribute

 

in

 

the

 

definition

 

or

 

text

 

in

 

a

 

column.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

text

 

has

 

been

 

selected

 

in

 

a

 

column

 

or

 

no

 

attribute

 

has

 

been

 

selected

 

(by

 

clicking

 

in

 

the

 

left-most

 

column).

 

See

 

Figure

 

26

 

on

 

page

 

50

 

for

 

an

 

illustration

 

of

 

the

 

window

 

for

 

editing

 

attributes.

 

v

   

Paste

 

—

 

Pastes

 

a

 

cut

 

or

 

copied

 

attribute

 

into

 

the

 

definition,

 

or

 

cut

 

or

 

copied

 

text

 

into

 

the

 

selected

 

column.

 

By

 

default,

 

the

 

tool

 

pastes

 

a

 

buffered

 

attribute

 

at

 

the

 

bottom

 

of

 

the

 

definition.

 

However,

 

if

 

you

 

insert

 

an

 

empty

 

row

 

at

 

a

 

specific

 

location,

 

you

 

can

 

paste

 

the

 

buffered

 

attribute

 

into

 

the

 

empty

 

row.

 

v

   

Delete

 

Row

 

—

 

Deletes

 

an

 

attribute

 

from

 

the

 

definition.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

attribute

 

has

 

been

 

selected

 

(by

 

clicking

 

in

 

the

 

left-most

 

column).

 

See

 

Figure

 

26

 

on

 

page

 

50

 

for

 

an

 

illustration

 

of

 

the

 

screen

 

for

 

editing

 

attributes.

   

Chapter

 

3.

 

Using

 

Business

 

Object

 

Designer

 

53



v

   

Select

 

All

 

—

 

Selects

 

all

 

attributes

 

in

 

the

 

definition.

 

v

   

Insert

 

Above

 

—

 

Inserts

 

an

 

empty

 

row

 

above

 

the

 

selected

 

attribute.

 

v

   

Insert

 

Below

 

—

 

Inserts

 

an

 

empty

 

row

 

below

 

the

 

selected

 

attribute.

 

v

   

Move

 

Up

 

—

 

Moves

 

the

 

selected

 

attribute

 

up

 

one

 

row.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

attribute

 

has

 

been

 

selected.

 

v

   

Move

 

Down

 

—

 

Moves

 

the

 

selected

 

attribute

 

down

 

one

 

row.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

attribute

 

has

 

been

 

selected.

Note:

  

You

 

can

 

access

 

the

 

Insert

 

Above,

 

Insert

 

Below,

 

Cut,

 

Copy,

 

Paste,

 

and

 

Delete

 

menu

 

items

 

by

 

right-clicking

 

in

 

the

 

left-most

 

column

 

of

 

an

 

attribute.

 

View

 

menu

 

The

 

View

 

menu

 

operations

 

are

 

valid

 

when

 

Business

 

Object

 

Designer

 

first

 

opens

 

and

 

when

 

the

 

working

 

area

 

pertains

 

to

 

the

 

visual

 

appearance

 

of

 

activity

 

diagrams.

 

Many

 

of

 

these

 

operations

 

can

 

be

 

toggled

 

on

 

or

 

off.

 

The

 

View

 

menu

 

displays

 

the

 

following

 

options:

 

v

   

Expand

 

All

 

—

 

Displays

 

all

 

attributes

 

in

 

all

 

child

 

business

 

objects.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Collapse

 

All

 

—

 

Closes

 

display

 

of

 

all

 

attributes

 

in

 

all

 

child

 

business

 

objects.

 

This

 

menu

 

item

 

is

 

not

 

available

 

if

 

no

 

definitions

 

are

 

open.

 

v

   

Preferences

 

—

 

Opens

 

the

 

Business

 

Object

 

Preferences

 

dialog

 

box,

 

which

 

allows

 

you

 

to

 

turn

 

off

 

confirmation

 

of

 

business

 

object

 

deletion.

 

v

   

Toolbars

 

—

 

Contains

 

a

 

submenu

 

with

 

items

 

that

 

control

 

display

 

of

 

the

 

two

 

toolbars

 

of

 

the

 

Business

 

Object

 

Designer.

 

Menu

 

options

 

include:

 

–

   

Standard

 

—

 

When

 

you

 

click

 

this

 

menu

 

item,

 

Business

 

Object

 

Designer

 

displays

 

the

 

buttons

 

for

 

the

 

Standard

 

toolbar.

 

–

   

Programs

 

—

 

When

 

you

 

click

 

this

 

menu

 

item,

 

Business

 

Object

 

Designer

 

displays

 

the

 

buttons

 

for

 

accessing

 

other

 

WebSphere

 

Business

 

Integration

 

Toolset

 

programs.
v

   

Status

 

Bar

 

—

 

When

 

you

 

click

 

this

 

menu

 

item,

 

Business

 

Object

 

Designer

 

displays

 

a

 

one-line

 

status

 

message

 

at

 

the

 

bottom

 

of

 

its

 

main

 

window.

Note:

  

You

 

can

 

access

 

the

 

Expand,

 

Collapse,

 

and

 

Open

 

In

 

Window

 

items

 

when

 

right-clicking

 

in

 

the

 

left-most

 

column

 

of

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Tools

 

menu

 

The

 

Tools

 

menu

 

contains

 

the

 

following

 

items:

 

v

   

Log

 

Viewer

 

—

 

Opens

 

Log

 

Viewer.

 

v

   

Connector

 

Configurator

 

—

 

Opens

 

Connector

 

Configurator.

 

v

   

System

 

Manager

 

—

 

Opens

 

System

 

Manager.

Window

 

menu

 

The

 

Window

 

menu

 

operates

 

as

 

it

 

does

 

in

 

a

 

standard

 

Windows

 

environment.

 

Use

 

the

 

menu

 

options

 

to

 

control

 

display

 

features

 

such

 

as

 

tiling,

 

cascading,

 

and

 

activating

 

open

 

windows.

   

54

 

Business

 

Object

 

Development

 

Guide



Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

This

 

chapter

 

walks

 

you

 

through

 

the

 

basic

 

steps

 

for

 

creating

 

and

 

deleting

 

a

 

business

 

object

 

definition.

 

After

 

you

 

complete

 

this

 

chapter,

 

you

 

will

 

be

 

familiar

 

with

 

the

 

steps

 

for

 

creating

 

a

 

definition

 

both

 

manually

 

and

 

by

 

using

 

an

 

Object

 

Discovery

 

Agent

 

(ODA).

 

Each

 

ODA

 

generates

 

definitions

 

for

 

a

 

specific

 

application.

 

Although

 

this

 

chapter

 

presents

 

the

 

mechanics

 

for

 

creating

 

business

 

object

 

definitions,

 

you

 

should

 

understand

 

the

 

design

 

concepts

 

before

 

you

 

actually

 

create

 

one.

 

For

 

more

 

information,

 

see

 

Chapter

 

2,

 

“Business

 

object

 

design,”

 

on

 

page

 

17.

 

For

 

information

 

on

 

how

 

to

 

create

 

an

 

Object

 

Discovery

 

Agent,

 

see

 

Chapter

 

5,

 

“Developing

 

an

 

Object

 

Discovery

 

Agent,”

 

on

 

page

 

87.

 

The

 

main

 

topics

 

of

 

this

 

chapter

 

are:

 

v

   

“Creating

 

a

 

business

 

object

 

definition”

 

v

   

“Deleting

 

a

 

business

 

object

 

definition”

 

on

 

page

 

62

 

v

   

“Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition”

 

on

 

page

 

64

Creating

 

a

 

business

 

object

 

definition

 

There

 

are

 

two

 

ways

 

to

 

create

 

a

 

business

 

object

 

definition:

 

v

   

Manually—Useful

 

when

 

creating

 

a

 

generic

 

business

 

object

 

or

 

a

 

simple

 

business

 

object,

 

or

 

when

 

modifying

 

a

 

definition

 

generated

 

by

 

an

 

Object

 

Discovery

 

Agent.

 

Business

 

Object

 

Designer

 

provides

 

a

 

graphic

 

interface

 

for

 

the

 

manual

 

creation

 

of

 

a

 

business

 

object

 

definition.

 

This

 

section

 

provides

 

a

 

tutorial

 

that

 

explains:

 

–

   

“Creating

 

a

 

flat

 

business

 

object

 

definition

 

manually”

 

–

   

“Creating

 

a

 

hierarchical

 

business

 

object

 

definition

 

manually”

 

on

 

page

 

62
v

   

Using

 

an

 

Object

 

Discovery

 

Agent—Useful

 

when

 

creating

 

an

 

application-specific

 

business

 

object.

 

The

 

Object

 

Discovery

 

Agent

 

examines

 

specified

 

entities

 

in

 

the

 

application,

 

“discovers”

 

the

 

elements

 

of

 

those

 

objects

 

that

 

correspond

 

to

 

business

 

object

 

attributes

 

and

 

the

 

properties

 

of

 

each

 

attribute,

 

and

 

generates

 

the

 

business

 

object

 

definition.

 

For

 

more

 

information,

 

see

 

“Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition”

 

on

 

page

 

64.

Creating

 

a

 

flat

 

business

 

object

 

definition

 

manually

 

This

 

section

 

describes

 

the

 

manual

 

creation

 

of

 

a

 

business

 

object

 

definition

 

named

 

Hello.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

this

 

business

 

object

 

is

 

used

 

by

 

the

 

SampleHello

 

collaboration,

 

whose

 

creation

 

is

 

described

 

in

 

the

 

tutorial

 

chapter

 

of

 

the

 

Collaboration

 

Development

 

Guide.

 

Figure

 

29

 

illustrates

 

the

 

Hello

 

business

 

object

 

definition

 

that

 

you

 

can

 

create

 

and

 

shows

 

the

 

values

 

that

 

its

 

integration

 

broker

 

might

 

expect

 

from

 

its

 

triggering-event

 

business

 

object.

   

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

55



To

 

create

 

a

 

business

 

object

 

definition

 

manually:

 

1.

   

Start

 

Business

 

Object

 

Designer;

 

for

 

more

 

information,

 

see

 

“Starting

 

Business

 

Object

 

Designer”

 

on

 

page

 

46.

 

2.

   

Click

 

File

 

>

 

New.

 

Business

 

Object

 

Designer

 

displays

 

the

 

New

 

Business

 

Object

 

dialog

 

box.

 

Figure

 

30

 

shows

 

the

 

version

 

of

 

the

 

New

 

Business

 

Object

 

dialog

 

box

 

you

 

see

 

if

 

you

 

are

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager.

 

If

 

you

 

are

 

not

 

running

 

Business

 

Object

 

Designer

 

from

 

System

 

Manager,

 

the

 

Create

 

in

 

Project

 

list

 

is

 

omitted

 

from

 

the

 

dialog

 

box.

  

3.

   

Enter

 

the

 

name

 

Hello

 

for

 

the

 

new

 

business

 

object

 

definition.

 

Names

 

are

 

generally

 

case-sensitive,

 

so

 

type

 

the

 

name

 

exactly

 

as

 

shown

 

here.

 

Note:

  

The

 

name

 

of

 

a

 

business

 

object

 

definition

 

can

 

contain

 

only

 

alphanumeric

 

characters

 

and

 

underscore

 

(_).

 

This

 

name

 

must

 

use

 

only

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

U.S.

 

English

 

locale

 

(en_US).

 

4.

   

Leave

 

the

 

Application

 

Specific

 

Information

 

box

 

empty

 

and

 

click

 

OK.

Business

 

Object

 

Designer

 

displays

 

the

 

business

 

object

 

definition

 

dialog

 

box,

 

as

 

illustrated

 

in

 

Figure

 

31..

  

Name

Greeting

Recipient

SpecialMessage

Attributes:

Business object definition

Hello

"Hello"

"Connector"

"How_are_you"

Attributes:

Business object

  

Figure

 

29.

 

Hello

 

business

 

object

  

Figure

 

30.

 

New

 

Business

 

Object

 

dialog

 

box

  

56

 

Business

 

Object

 

Development

 

Guide



Note:

  

There

 

may

 

be

 

minor

 

differences

 

in

 

the

 

Business

 

Object

 

Designer

 

interface

 

depending

 

on

 

your

 

integration

 

broker.

 

However.

 

the

 

basic

 

functionality

 

of

 

the

 

tool

 

is

 

the

 

same.

 

Adding

 

attributes

 

Each

 

piece

 

of

 

information

 

in

 

the

 

business

 

object

 

is

 

represented

 

by

 

an

 

attribute

 

in

 

the

 

Hello

 

business

 

object

 

definition.

 

You

 

must

 

provide

 

the

 

attribute

 

definitions

 

for

 

the

 

Hello

 

business

 

object.

 

As

 

illustrated

 

in

 

Figure

 

31,,

 

Business

 

Object

 

Designer

 

automatically

 

adds

 

an

 

entry

 

for

 

the

 

required

 

end-of-object

 

marker,

 

ObjectEventId.

   

Important

 

Do

 

not

 

delete,

 

change,

 

or

 

move

 

the

 

ObjectEventId

 

attribute.

 

This

 

attribute

 

is

 

reserved

 

for

 

the

 

WebSphere

 

business

 

integration

 

system’s

 

internal

 

use.

 

Business

 

Object

 

Designer

 

automatically

 

moves

 

this

 

attribute

 

when

 

you

 

save

 

the

 

definition.

 

The

 

row

 

for

 

each

 

attribute

 

defines

 

the

 

attribute’s

 

properties.

 

For

 

information

 

on

 

the

 

attribute

 

properties,

 

see

 

“Business

 

object

 

attributes

 

and

 

attribute

 

properties”

 

on

 

page

 

4.

 

As

 

Figure

 

29

 

on

 

page

 

56

 

shows,

 

the

 

Hello

 

business

 

object

 

definition

 

has

 

the

 

following

 

attributes:

 

Greeting,

 

Recipient,

 

and

 

SpecialMessage.

 

Define

 

the

 

attributes

 

and

 

their

 

properties,

 

one

 

at

 

a

 

time.

 

Adding

 

the

 

Greeting

 

attribute:

   

To

 

add

 

the

 

Greeting

 

attribute:

 

1.

   

Type

 

the

 

attribute

 

name

 

Greeting

 

in

 

the

 

Name

 

column

 

of

 

the

 

first

 

available

 

empty

 

row,

 

which

 

is

 

2

 

for

 

the

 

first

 

attribute.

   

Figure

 

31.

 

Initial

 

display

 

of

 

a

 

new

 

business

 

object

 

definition

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

57



Note:

  

This

 

attribute

 

name

 

must

 

use

 

only

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

U.S.

 

English

 

locale

 

(en_US).

 

2.

   

Click

 

the

 

Type

 

column

 

and

 

select

 

String

 

for

 

the

 

attribute

 

type.

 

The

 

type

 

of

 

an

 

attribute

 

is

 

its

 

data

 

type.

 

Tip:

  

If

 

you

 

have

 

other

 

business

 

objects

 

opened

 

in

 

Business

 

Object

 

Designer,

 

their

 

names

 

appear

 

in

 

the

 

Type

 

list.

 

Displaying

 

existing

 

business

 

objects

 

among

 

the

 

choices

 

for

 

Type

 

allows

 

you

 

to

 

create

 

a

 

hierarchical

 

business

 

object

 

with

 

an

 

attribute

 

whose

 

type

 

is

 

another

 

business

 

object.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server

 

(ICS)

 

and

 

System

 

Manager

 

is

 

running,

 

then

 

every

 

business

 

object

 

definition

 

in

 

the

 

Integration

 

Component

 

Library

 

you

 

are

 

working

 

from

 

is

 

automatically

 

displayed

 

in

 

this

 

list.

 

If

 

your

 

integration

 

broker

 

is

 

a

 

non-ICS

 

broker

 

(such

 

as

 

WebSphere

 

MQ

 

Integrator

 

Broker)

 

or

 

you

 

are

 

using

 

ICS

 

but

 

System

 

Manager

 

is

 

not

 

running,

 

then

 

the

 

only

 

way

 

to

 

add

 

a

 

business

 

object

 

definition

 

as

 

a

 

child

 

to

 

another

 

business

 

object

 

definition

 

is

 

to

 

import

 

that

 

business

 

object

 

definition

 

first

 

into

 

Business

 

Object

 

Designer

 

by

 

clicking

 

File

 

>

 

Open

 

From

 

File.

 

3.

   

Skip

 

the

 

Key,

 

Foreign,

 

Reqd

 

(or

 

Required),

 

and

 

Card

 

columns.

 

These

 

columns

 

specify

 

whether

 

the

 

current

 

attribute

 

is

 

the

 

business

 

object’s

 

primary

 

or

 

foreign

 

key,

 

whether

 

the

 

attribute’s

 

value

 

is

 

required,

 

and

 

whether

 

the

 

attribute

 

represents

 

a

 

child

 

business

 

object

 

or

 

objects.

 

For

 

an

 

explanation

 

of

 

these

 

properties,

 

see

 

Chapter

 

2,

 

“Business

 

object

 

design,”

 

on

 

page

 

17.

 

4.

   

In

 

the

 

Max

 

Length

 

box,

 

leave

 

the

 

default

 

value

 

of

 

255.

 

This

 

box

 

specifies

 

the

 

maximum

 

number

 

of

 

bytes

 

available

 

for

 

this

 

attribute’s

 

value.

 

5.

   

In

 

the

 

Default

 

box,

 

type

 

Hello.

 

This

 

specifies

 

the

 

value

 

to

 

use

 

if

 

no

 

other

 

value

 

is

 

supplied

 

for

 

the

 

attribute

 

at

 

run

 

time.

 

You

 

have

 

now

 

defined

 

the

 

following

 

properties

 

for

 

the

 

Greeting

 

attribute:

  

Name:

 

Greeting

 

Type:

 

String

 

Maximum

 

length:

 

255

 

Default

 

value:

 

Hello

   

6.

   

Ignore

 

all

 

other

 

columns

 

and

 

click

 

the

 

Name

 

column

 

of

 

the

 

third

 

row.

Adding

 

the

 

Recipient

 

attribute:

   

The

 

second

 

attribute,

 

Recipient,

 

is

 

a

 

string.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

the

 

SampleHello

 

collaboration

 

object

 

uses

 

this

 

attribute

 

as

 

follows:

 

v

   

The

 

connector

 

sets

 

the

 

value

 

to

 

Collaboration

 

when

 

it

 

sends

 

a

 

message

 

to

 

the

 

collaboration.

 

v

   

The

 

collaboration

 

sets

 

the

 

value

 

to

 

Connector

 

when

 

it

 

sends

 

a

 

message

 

to

 

the

 

connector.

  

58

 

Business

 

Object

 

Development

 

Guide



At

 

least

 

one

 

attribute

 

in

 

each

 

business

 

object

 

definition

 

must

 

be

 

a

 

key

 

attribute.

 

A

 

key

 

attribute

 

contains

 

a

 

value

 

by

 

which

 

the

 

WebSphere

 

business

 

integration

 

system

 

uniquely

 

identifies

 

instances

 

of

 

the

 

business

 

object.

 

Make

 

the

 

Recipient

 

attribute

 

the

 

key

 

attribute.

 

To

 

add

 

the

 

Recipient

 

attribute,

 

type

 

the

 

text

 

Recipient

 

in

 

the

 

Name

 

column,

 

and

 

follow

 

the

 

steps

 

for

 

adding

 

the

 

Greeting

 

attribute,

 

using

 

the

 

following

 

properties:

  

Name:

 

Recipient

 

Type:

 

String

 

Maximum

 

length:

 

255

 

Default

 

value:

 

Collaboration

 

Key:

 

Yes

 

(A

 

check

 

mark

 

appears

 

in

 

the

 

Key

 

column)

   

Leave

 

the

 

other

 

columns

 

blank

 

and

 

click

 

theName

 

column

 

of

 

the

 

fourth

 

row.

 

Adding

 

the

 

SpecialMessage

 

attribute:

   

The

 

third

 

attribute,

 

SpecialMessage,

 

is

 

a

 

string.

 

If

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server,

 

the

 

SampleHello

 

collaboration

 

expects

 

the

 

value

 

of

 

this

 

attribute

 

to

 

be

 

entered

 

by

 

the

 

system

 

administrator

 

or

 

another

 

person

 

with

 

access

 

to

 

the

 

collaboration

 

configuration

 

properties

 

after

 

the

 

collaboration

 

object

 

has

 

been

 

created.

 

The

 

collaboration

 

dynamically

 

obtains

 

the

 

value

 

of

 

the

 

configuration

 

property

 

and

 

appends

 

it

 

to

 

the

 

message.

 

To

 

add

 

the

 

SpecialMessage

 

attribute,

 

type

 

the

 

text

 

SpecialMessage

 

in

 

the

 

Name

 

column,

 

and

 

follow

 

the

 

steps

 

for

 

adding

 

the

 

Greeting

 

attribute,

 

using

 

the

 

following

 

properties

  

Name:

 

SpecialMessage

 

Type:

 

String

 

Maximum

 

length:

 

255

   

Leave

 

the

 

other

 

columns

 

blank.

 

The

 

Attributes

 

tab

 

now

 

displays

 

three

 

user-defined

 

attributes:

 

Greeting,

 

Recipient,

 

and

 

SpecialMessage.

 

Figure

 

32

 

illustrates

 

the

 

Hello

 

business

 

object’s

 

attributes.

    

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

59



Changing

 

attribute

 

order

 

You

 

can

 

graphically

 

change

 

the

 

sequence

 

order

 

of

 

attributes

 

in

 

the

 

business

 

object

 

definition.

 

For

 

example,

 

to

 

place

 

the

 

key

 

attribute,

 

Recipient,

 

above

 

the

 

Greeting

 

attribute,

 

click

 

the

 

first

 

(leftmost)

 

column

 

and

 

drag

 

the

 

cursor

 

up

 

one

 

row.

 

Specifying

 

the

 

supported

 

verbs

 

You

 

must

 

now

 

specify

 

the

 

verbs

 

that

 

this

 

Hello

 

business

 

object

 

supports.

 

These

 

verbs

 

represent

 

the

 

triggering

 

events

 

that

 

the

 

business

 

object

 

sends

 

to

 

the

 

integration

 

broker.

 

Click

 

the

 

General

 

tab

 

of

 

the

 

Hello

 

business

 

object

 

definition

 

dialog

 

box

 

to

 

display

 

the

 

screen

 

in

 

which

 

you

 

specify

 

the

 

verbs.

 

Figure

 

33

 

illustrates

 

this

 

tab.

    

Figure

 

32.

 

New

 

business

 

object

 

definition

 

with

 

attributes

  

60

 

Business

 

Object

 

Development

 

Guide



The

 

business

 

object

 

supports

 

the

 

four

 

default

 

verbs—Create,

 

Delete,

 

Retrieve,

 

and

 

Update;

 

they

 

appear

 

on

 

the

 

General

 

tab

 

by

 

default.

 

For

 

the

 

purposes

 

of

 

this

 

tutorial,

 

only

 

one

 

triggering

 

event

 

is

 

supported:

 

Create.

 

Therefore,

 

change

 

the

 

business

 

object

 

definition

 

to

 

support

 

only

 

this

 

verb.

 

Important:

  

You

 

must

 

specify

 

at

 

least

 

one

 

verb

 

for

 

each

 

business

 

object

 

definition.

 

Note:

  

The

 

name

 

of

 

a

 

verb

 

can

 

contain

 

only

 

alphanumeric

 

characters

 

and

 

underscore

 

(_).

 

This

 

name

 

must

 

use

 

only

 

characters

 

defined

 

in

 

the

 

code

 

set

 

associated

 

with

 

the

 

U.S.

 

English

 

locale

 

(en_US).

 

To

 

indicate

 

that

 

the

 

Hello

 

business

 

object

 

supports

 

only

 

the

 

Create

 

verb,

 

you

 

can

 

either

 

delete

 

the

 

remaining

 

verbs

 

simultaneously

 

or

 

individually.

 

Deleting

 

multiple

 

verbs:

   

To

 

delete

 

the

 

Delete,

 

Retrieve,

 

and

 

Update

 

verbs:

 

1.

   

Select

 

the

 

Delete

 

verb

 

and,

 

while

 

pressing

 

the

 

Shift

 

key,

 

click

 

the

 

Update

 

verb.

 

2.

   

Press

 

the

 

Delete

 

key.

Deleting

 

individual

 

verbs:

   

To

 

delete

 

each

 

verb

 

individually:

 

1.

   

Click

 

the

 

number

 

to

 

the

 

left

 

of

 

the

 

Delete

 

line

 

in

 

the

 

Supported

 

Verbs

 

table.

 

The

 

row

 

is

 

selected.

 

2.

   

Press

 

the

 

Delete

 

key.

 

3.

   

Repeat

 

steps

 

1

 

and

 

2

 

for

 

the

 

Retrieve

 

and

 

Updateverbs

 

in

 

the

 

Supported

 

Verbs

 

table.

 

4.

   

Leave

 

the

 

Application

 

Specific

 

Info

 

box

 

blank

 

for

 

the

 

Create

 

verb.

You

 

have

 

finished

 

the

 

definition

 

for

 

the

 

Hello

 

business

 

object.

 

This

 

is

 

a

 

good

 

time

 

to

 

save

 

your

 

changes

 

by

 

clicking

 

File

 

>

 

Save.

 

If

 

you

 

are

 

using

 

an

 

ICL-based

 

project,

 

the

 

definition

 

is

 

saved

 

to

 

the

 

ICL.

 

If

 

you

 

are

 

using

 

a

 

local

 

project,

 

you

 

will

 

be

 

prompted

 

to

 

specify

 

a

 

file

 

name

 

and

 

local

 

directory

 

in

 

which

 

to

 

save

 

the

 

definition.

   

Figure

 

33.

 

General

 

editing

 

tab

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

61



Creating

 

a

 

hierarchical

 

business

 

object

 

definition

 

manually

 

This

 

section

 

describes

 

how

 

to

 

create

 

a

 

hierarchical

 

business

 

object

 

definition

 

by

 

defining

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Because

 

the

 

previous

 

section

 

explains

 

how

 

to

 

define

 

a

 

simple

 

attribute

 

and

 

supported

 

verbs,

 

this

 

section

 

explains

 

only

 

the

 

definition

 

of

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object.

 

This

 

example

 

creates

 

a

 

business

 

object

 

named

 

HierarchicalBO

 

that

 

has

 

two

 

attributes:

 

v

   

An

 

attribute

 

named

 

Key

 

that

 

serves

 

as

 

the

 

required

 

business

 

object

 

key.

 

v

   

An

 

attribute

 

named

 

Addr

 

that

 

represents

 

the

 

Address

 

business

 

object

 

with

 

cardinality

 

1.

To

 

manually

 

create

 

a

 

hierarchical

 

business

 

object

 

definition:

 

1.

   

Open

 

Business

 

Object

 

Designer.

 

2.

   

Click

 

File

 

>

 

New.

 

Business

 

Object

 

Designer

 

displays

 

the

 

New

 

Business

 

Object

 

dialog

 

box,

 

as

 

illustrated

 

in

 

Figure

 

30

 

on

 

page

 

56.

 

3.

   

Type

 

the

 

name

 

HierarchicalBO

 

for

 

the

 

new

 

business

 

object

 

definition.

 

4.

   

Leave

 

the

 

Application

 

Specific

 

Information

 

column

 

empty

 

and

 

click

 

OK.

 

Business

 

Object

 

Designer

 

displays

 

the

 

business

 

object

 

definition

 

dialog

 

box,

 

as

 

illustrated

 

in

 

Figure

 

31

 

on

 

page

 

57.

 

5.

   

Create

 

a

 

key

 

attribute

 

in

 

the

 

first

 

available

 

empty

 

row,

 

which

 

is

 

2

 

for

 

the

 

first

 

attribute.

 

Name

 

it

 

Key,

 

specify

 

any

 

simple

 

data

 

type,

 

and

 

click

 

the

 

Key

 

column.

 

6.

   

Create

 

the

 

next

 

attribute

 

in

 

the

 

next

 

available

 

empty

 

row,

 

which

 

is

 

3.

 

Name

 

it

 

Addr.

 

7.

   

Click

 

the

 

Type

 

list

 

and

 

select

 

Address

 

for

 

the

 

attribute

 

type.

 

Note:

  

If

 

the

 

child

 

business

 

object

 

does

 

not

 

exist

 

in

 

the

 

list,

 

you

 

can

 

create

 

it

 

now

 

by

 

selecting

 

New

 

business

 

object

 

in

 

the

 

Type

 

list.

 

You

 

must

 

save

 

the

 

new

 

child

 

business

 

object

 

before

 

you

 

can

 

complete

 

this

 

step.

 

8.

   

Skip

 

the

 

Key,

 

Foreign,

 

and

 

Reqd

 

(or

 

Required)

 

columns.

 

Click

 

the

 

Card

 

list

 

and

 

select

 

1.

 

9.

   

Ignore

 

all

 

other

 

columns.

 

Define

 

supported

 

verbs,

 

and

 

save

 

the

 

definition.

Deleting

 

a

 

business

 

object

 

definition

 

You

 

can

 

delete

 

a

 

business

 

object

 

definition

 

using

 

Business

 

Object

 

Designer

 

or

 

System

 

Manager,

 

if

 

your

 

integration

 

broker

 

is

 

InterChange

 

Server.

 

This

 

section

 

describes:

 

v

   

“Deleting

 

a

 

definition

 

using

 

Business

 

Object

 

Designer”

 

on

 

page

 

63

 

v

   

“Deleting

 

a

 

definition

 

using

 

System

 

Manager”

 

on

 

page

 

64

  

Important

 

You

 

can

 

delete

 

business

 

object

 

definitions

 

from

 

an

 

integration

 

component

 

library

 

through

 

System

 

Manager

 

(if

 

you

 

are

 

using

 

ICS

 

and

 

System

 

Manager

 

is

 

running)

 

or

 

from

 

a

 

project

 

in

 

Business

 

Object

 

Designer.

 

You

 

cannot

 

use

 

the

 

Delete

 

function

 

in

 

Business

 

Object

 

Designer

 

or

 

in

 

System

 

Manager

 

to

 

delete

 

local

 

files

 

that

 

contain

 

business

 

object

 

definitions.

 

To

 

delete

 

local

 

files,

 

use

 

the

 

tools

 

provided

 

by

 

Windows.

  

62

 

Business

 

Object

 

Development

 

Guide



Deleting

 

a

 

definition

 

using

 

Business

 

Object

 

Designer

 

To

 

delete

 

a

 

business

 

object

 

definition

 

from

 

a

 

project

 

using

 

Business

 

Object

 

Designer,

 

do

 

the

 

following:

 

1.

   

Open

 

Business

 

Object

 

Designer.

 

2.

   

From

 

the

 

list

 

of

 

business

 

object

 

definitions

 

in

 

the

 

project,

 

select

 

the

 

name

 

of

 

the

 

definition

 

you

 

want

 

to

 

delete.

 

3.

   

To

 

select

 

multiple

 

names,

 

do

 

one

 

of

 

the

 

following:

 

v

   

To

 

select

 

consecutive

 

names,

 

click

 

the

 

first

 

name

 

and,

 

while

 

pressing

 

the

 

Shift

 

key,

 

click

 

the

 

last

 

name.

 

v

   

To

 

select

 

non-consecutive

 

names,

 

press

 

the

 

Ctrl

 

key

 

and

 

click

 

each

 

name.
4.

   

After

 

selecting

 

the

 

definitions

 

to

 

be

 

deleted,

 

right-click

 

and

 

then

 

click

 

Delete.

 

v

   

Business

 

Object

 

Designer

 

displays

 

the

 

Deleting

 

business

 

object

 

confirmation

 

message.

 

Click

 

Yes

 

to

 

delete

 

the

 

business

 

object

 

definition

 

you

 

selected

 

in

 

Step

 

2

 

or

 

to

 

delete

 

all

 

the

 

business

 

object

 

definitions

 

you

 

selected

 

in

 

Step

 

3.

 

v

   

If

 

the

 

business

 

object

 

definition

 

has

 

dependencies

 

with

 

other

 

business

 

objects,

 

Business

 

Object

 

Designer

 

displays

 

a

 

collapse

 

delete

 

confirmation

 

message.

    

5.

   

If

 

dependencies

 

exist,

 

click

 

the

 

Show

 

dependencies

 

link.

 

All

 

dependencies

 

with

 

other

 

business

 

objects

 

are

 

listed

 

for

 

the

 

business

 

object

 

definition

 

that

 

you

 

want

 

to

 

delete.

     

6.

   

Do

 

one

 

of

 

the

 

following:

   

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

63



v

   

Click

 

Collapse

 

to

 

delete

 

the

 

business

 

object

 

definition

 

that

 

you

 

selected

 

in

 

Step

 

2

 

and

 

all

 

of

 

the

 

business

 

objects

 

that

 

depend

 

on

 

it.

 

v

   

If

 

you

 

selected

 

multiple

 

business

 

objects

 

in

 

Step

 

3,

 

click

 

Collapse

 

All

 

to

 

delete

 

the

 

business

 

objects

 

that

 

you

 

selected

 

and

 

all

 

of

 

the

 

business

 

objects

 

that

 

depend

 

on

 

each

 

of

 

those

 

business

 

objects.

 

v

   

Click

 

Cancel

 

to

 

cancel

 

deleting

 

the

 

business

 

object

 

definition

 

and

 

its

 

dependencies.

Deleting

 

a

 

definition

 

using

 

System

 

Manager

 

To

 

delete

 

a

 

business

 

object

 

definition

 

using

 

System

 

Manager,

 

do

 

the

 

following:

 

1.

   

Start

 

System

 

Manager.

 

2.

   

Expand

 

Integration

 

Component

 

Libraries

 

and

 

then

 

expand

 

the

 

integration

 

component

 

library

 

from

 

which

 

you

 

want

 

to

 

delete

 

a

 

business

 

object

 

definition.

 

3.

   

Open

 

the

 

business

 

objects

 

folder

 

and

 

select

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

to

 

delete.

 

4.

    

Delete

 

the

 

business

 

object

 

definition

 

by

 

doing

 

either

 

of

 

the

 

following:

 

v

   

Click

 

the

 

Delete

 

toolbar

 

icon.

 

v

   

Right-click

 

the

 

business

 

object

 

definition

 

and

 

select

 

Delete.
5.

   

When

 

prompted

 

whether

 

you

 

want

 

to

 

delete,

 

click

 

Yes.

 

6.

   

If

 

the

 

business

 

object

 

definition

 

has

 

dependencies

 

with

 

other

 

business

 

objects,

 

System

 

Manager

 

notifies

 

you

 

with

 

an

 

error

 

message.

 

You

 

must

 

use

 

Business

 

Object

 

Designer

 

to

 

remove

 

these

 

dependencies

 

before

 

you

 

can

 

delete

 

the

 

business

 

object

 

definition

 

with

 

System

 

Manager.

Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition

 

This

 

section

 

describes

 

how

 

to

 

use

 

an

 

Object

 

Discovery

 

Agent

 

(ODA)

 

to

 

generate

 

business

 

object

 

definitions

 

for

 

application-specific

 

business

 

objects.

 

An

 

ODA

 

is

 

an

 

optional

 

component

 

of

 

an

 

adapter.

 

When

 

you

 

install

 

a

 

pre-defined

 

adapter

 

that

 

has

 

an

 

ODA,

 

its

 

ODA

 

is

 

installed

 

automatically.

 

If

 

you

 

are

 

developing

 

a

 

custom

 

adapter

 

and

 

you

 

want

 

to

 

use

 

an

 

ODA

 

to

 

create

 

business

 

object

 

definitions,

 

you

 

can

 

use

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

to

 

develop

 

one.

 

For

 

more

 

information

 

about

 

developing

 

a

 

custom

 

ODA,

 

see

 

Chapter

 

5,

 

“Developing

 

an

 

Object

 

Discovery

 

Agent,”

 

on

 

page

 

87.

 

To

 

configure

 

and

 

run

 

the

 

ODA,

 

use

 

the

 

Business

 

Object

 

Wizard

 

in

 

Business

 

Object

 

Designer.

 

Business

 

Object

 

Wizard

 

is

 

a

 

graphical

 

user

 

interface

 

to

 

ODAs

 

that

 

manages

 

the

 

discovery

 

and

 

content-generation

 

process.

 

This

 

section

 

provides

 

the

 

following

 

information:

 

v

   

“Before

 

using

 

an

 

ODA”

 

v

   

“Using

 

the

 

ODA

 

to

 

create

 

business

 

object

 

definitions”

 

on

 

page

 

67

 

v

   

“Entering

 

values

 

and

 

saving

 

a

 

profile”

 

on

 

page

 

75

 

v

   

“Setting

 

up

 

logging

 

and

 

tracing”

 

on

 

page

 

75

 

v

   

“Moving

 

through

 

the

 

source-node

 

hierarchy”

 

on

 

page

 

78

 

v

   

“Providing

 

additional

 

information”

 

on

 

page

 

82

 

v

   

“Using

 

multiple

 

ODAs

 

simultaneously”

 

on

 

page

 

83

Before

 

using

 

an

 

ODA

 

Before

 

you

 

run

 

an

 

ODA,

 

verify

 

that

 

the

 

following

 

steps

 

have

 

occurred:

 

v

   

System

 

startup

 

files

 

are

 

available

 

and

 

correct.

   

64

 

Business

 

Object

 

Development

 

Guide



v

   

The

 

ODA

 

has

 

been

 

started.

 

v

   

Business

 

Object

 

Designer

 

has

 

been

 

started.

System

 

startup

 

files

 

For

 

the

 

ODA

 

to

 

start,

 

you

 

need

 

to

 

verify

 

that

 

your

 

system

 

has

 

the

 

required

 

files

 

for

 

the

 

ODA.

 

When

 

you

 

install

 

a

 

pre-defined

 

adapter

 

that

 

has

 

an

 

ODA,

 

these

 

ODA

 

system

 

startup

 

files

 

should

 

be

 

installed

 

automatically.

 

If

 

you

 

are

 

developing

 

a

 

custom

 

adapter

 

with

 

a

 

custom

 

ODA,

 

these

 

ODA

 

system

 

startup

 

files

 

should

 

be

 

created

 

as

 

part

 

of

 

the

 

ODA

 

development

 

process.

 

However,

 

IBM

 

recommends

 

that

 

you

 

confirm

 

that

 

the

 

startup

 

script

 

exists

 

and

 

is

 

correct

 

for

 

your

 

ODA:

 

Each

 

ODA

 

requires

 

a

 

startup

 

script,

 

which

 

begins

 

execution

 

of

 

the

 

ODA.

 

Before

 

you

 

start

 

an

 

ODA

 

for

 

the

 

first

 

time,

 

you

 

must

 

make

 

sure

 

that

 

the

 

variables

 

are

 

correctly

 

set

 

within

 

the

 

startup

 

script.

 

Open

 

for

 

editing

 

the

 

shell

 

(start_ODAname.sh)

 

or

 

batch

 

(start_ODAname.bat)

 

file

 

and

 

confirm

 

that

 

the

 

values

 

described

 

in

 

Table

 

10

 

are

 

correct.

  

Table

 

10.

 

ODA

 

shell

 

and

 

batch

 

file

 

configuration

 

variables

 

Variable

 

Explanation

 

Example

 

set

 

AGENTNAME

 

Name

 

of

 

the

 

ODA

 

set

 

AGENTNAME=ODAname

 

set

 

AGENT

 

Name

 

of

 

the

 

ODA’s

 

jar

 

file

 

UNIX:

 

set

 

AGENT

 

=

 

${ProductDir}/ODA/srcDataName/ODAname.jar

 

WINDOWS:

 

set

 

AGENT

 

=

 

%ProductDir%\ODA\srcDataName\ODAname.jar

 

set

 

AGENTCLASS

 

Name

 

of

 

the

 

ODA’s

 

Java

 

class

 

set

 

AGENTCLASS=com.ibm.oda.srcDataName.ODAname

   

For

 

information

 

on

 

the

 

ODA

 

name

 

(ODAname)

 

and

 

its

 

source-data

 

name

 

(srcDataName),

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

Starting

 

the

 

ODA

 

You

 

can

 

start

 

an

 

ODA

 

with

 

the

 

startup

 

script

 

appropriate

 

for

 

your

 

operating

 

system.

   

UNIX

 

start_srcDataNameODA.sh

   

Windows

 

start_srcDataNameODA.bat

  

You

 

configure

 

and

 

run

 

the

 

ODA

 

using

 

the

 

Business

 

Object

 

Wizard

 

in

 

Business

 

Object

 

Designer.

 

Business

 

Object

 

Wizard

 

locates

 

each

 

ODA

 

by

 

the

 

name

 

specified

 

in

 

the

 

AGENTNAME

 

variable

 

of

 

each

 

script

 

or

 

batch

 

file.

 

Note:

  

For

 

information

 

on

 

how

 

to

 

start

 

multiple

 

instances

 

of

 

the

 

ODA,

 

see

 

“Using

 

multiple

 

ODAs

 

simultaneously”

 

on

 

page

 

83.

 

Starting

 

Business

 

Object

 

Designer

 

Once

 

you

 

start

 

the

 

ODA,

 

you

 

must

 

open

 

Business

 

Object

 

Designer

 

to

 

configure

 

and

 

run

 

it.

 

For

 

information

 

on

 

the

 

ways

 

to

 

open

 

Business

 

Object

 

Designer,

 

see

   

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

65



“Starting

 

Business

 

Object

 

Designer”

 

on

 

page

 

46.

 

To

 

run

 

an

 

ODA,

 

Business

 

Object

 

Designer

 

provides

 

Business

 

Object

 

Wizard,

 

which

 

guides

 

you

 

through

 

each

 

step.

 

To

 

start

 

Business

 

Object

 

Wizard,

 

do

 

the

 

following:

 

1.

   

Open

 

Business

 

Object

 

Designer

 

using

 

one

 

of

 

the

 

methods

 

listed

 

in

 

Table

 

9

 

on

 

page

 

46.

 

2.

   

Click

 

File

 

>

 

New

 

Using

 

ODA.

Business

 

Object

 

Wizard

 

begins

 

displays

 

the

 

first

 

dialog

 

box

 

in

 

the

 

wizard,

 

Select

 

Agent.

 

Table

 

11

 

summarizes

 

the

 

steps

 

of

 

Business

 

Object

 

Wizard.

  

Table

 

11.

 

Steps

 

of

 

Business

 

Object

 

Wizard

 

Task

 

Step

 

in

 

Business

 

Object

 

Wizard

 

1.

 

Select

 

the

 

desired

 

ODA

 

Step

 

1:

 

Select

 

Agent

 

2.

 

Obtain

 

the

 

configuration

 

properties,

 

including

 

those

 

that

 

describe

 

the

 

data

 

source

 

to

 

open.

 

Step

 

2:

 

Configure

 

Agent

 

3.

 

Obtain

 

the

 

source

 

data

 

for

 

which

 

the

 

ODA

 

generates

 

the

 

content.

 

Step

 

3:

 

Select

 

Source

 

4.

 

Confirm

 

that

 

the

 

selected

 

source

 

nodes

 

are

 

those

 

desired

 

for

 

content

 

generation.

 

Step

 

4:

 

Confirm

 

Source

 

Nodes

 

5.

 

Initiate

 

the

 

content-generation

 

process.

 

Step

 

5:

 

Generating

 

Business

 

Objects

 

Business

 

Object

 

Properties

 

6.

 

Save

 

the

 

business

 

object

 

definitions

 

in

 

a

 

user-specified

 

format.

 

Step

 

6:

 

Save

 

Business

 

Objects

   

For

 

an

 

example

 

of

 

how

 

Business

 

Object

 

Wizard

 

runs

 

an

 

ODA,

 

see

 

“Using

 

the

 

sample

 

ODA.”

 

Using

 

the

 

sample

 

ODA

 

IBM

 

provides

 

a

 

sample

 

Object

 

Discovery

 

Agent

 

that

 

converts

 

Roman-army

 

soldiers

 

(in

 

XML

 

format)

 

to

 

business

 

object

 

definitions.

 

To

 

familiarize

 

you

 

with

 

using

 

an

 

ODA,

 

the

 

following

 

step-by-step

 

description

 

of

 

generating

 

business

 

object

 

definitions

 

uses

 

this

 

sample

 

ODA.

 

Note:

  

For

 

information

 

on

 

the

 

location

 

and

 

files

 

of

 

this

 

sample

 

ODA,

 

see

 

“Development

 

support

 

for

 

ODAs”

 

on

 

page

 

97.

 

This

 

section

 

includes

 

the

 

following

 

tasks:

 

v

   

“Starting

 

the

 

sample

 

ODA”

 

v

   

“Using

 

the

 

ODA

 

to

 

create

 

business

 

object

 

definitions”

 

on

 

page

 

67

Starting

 

the

 

sample

 

ODA

 

If

 

you

 

have

 

installed

 

the

 

Adapter

 

Development

 

Kit

 

(ADK),

 

the

 

sample

 

ODA

 

and

 

the

 

file

 

to

 

run

 

it

 

are

 

located

 

in

 

the

 

DevelopmentKits\Odk\Samples

 

directory

 

in

 

the

 

product

 

directory.

 

The

 

file

 

to

 

run

 

the

 

sample

 

ODA

 

depends

 

on

 

your

 

operating-system

 

environment,

 

as

 

Table

 

12

 

shows.

  

Table

 

12.

 

Startup

 

script

 

for

 

a

 

sample

 

Roman

 

Army

 

ODA

 

Operating

 

system

 

Startup

 

script

 

Windows

 

start_Agent4.bat

    

66

 

Business

 

Object

 

Development

 

Guide



Note:

  

The

 

sample

 

Roman

 

Army

 

ODA

 

provides

 

five

 

versions

 

to

 

illustrate

 

various

 

features

 

of

 

an

 

ODA.

 

This

 

section

 

runs

 

the

 

fourth

 

version

 

of

 

this

 

sample

 

ODA,

 

which

 

uses

 

the

 

start_Agent4

 

startup

 

script

 

and

 

the

 

ArmyAgent4

 

class

 

file.

 

Because

 

the

 

sample

 

Roman

 

Army

 

ODA

 

provides

 

five

 

versions

 

of

 

itself,

 

all

 

startup

 

scripts

 

call

 

one

 

common

 

startup

 

script

 

called

 

start_AgentX,

 

passing

 

it

 

the

 

name

 

of

 

the

 

ODA

 

class

 

(which

 

is

 

assigned

 

to

 

the

 

AGENTCLASS

 

configuration

 

variable

 

in

 

start_AgentX).

 

Therefore,

 

the

 

start_Agent4

 

startup

 

script

 

should

 

contain

 

a

 

call

 

to

 

start_AgentX,

 

passing

 

it

 

the

 

following

 

path

 

as

 

the

 

name

 

of

 

the

 

ODA

 

class:

 

com.ibm.btools.ODK2.RomanArmy.ArmyAgent4

 

To

 

verify

 

configuration

 

variables

 

for

 

this

 

sample

 

ODA,

 

check

 

the

 

start_AgentX

 

batch

 

or

 

script

 

file

 

to

 

confirm

 

that

 

your

 

confirmation

 

variables

 

match

 

those

 

in

 

Table

 

13.

 

If

 

you

 

move

 

any

 

of

 

the

 

files

 

that

 

version

 

4

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA

 

uses,

 

make

 

sure

 

you

 

change

 

the

 

corresponding

 

configuration

 

variable.

  

Table

 

13.

 

Configuration

 

variables

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA

 

Variable

 

Value

 

for

 

sample

 

Roman

 

Army

 

ODA

 

AGENTNAME

 

set

 

AGENTNAME=Roman

 

AGENT

 

UNIX:

 

set

 

AGENT

 

=

 

${ProductDir}/DevelopmentKits/Odk/Samples/RomanArmy/ArmyODA.jar

 

WINDOWS:

 

set

 

AGENT

 

=

 

%ProductDir%\DevelopmentKits\Odk\Samples\RomanArmy\ArmyODA.jar

 

FILE_LOCATION

 

UNIX:

 

set

 

FILE_LOCATION

 

=

 

${ProductDir}/DevelopmentKits/Samples/Odk/RomanArmy/RomanArmy.xml

 

WINDOWS:

 

set

 

FILE_LOCATION

 

=

 

%ProductDir%\DevelopmentKits\Samples\Odk\RomanArmy\RomanArmy.xml

     

Important

 

You

 

must

 

start

 

the

 

sample

 

ODA

 

before

 

you

 

try

 

to

 

connect

 

to

 

it

 

through

 

Business

 

Object

 

Wizard.

 

Business

 

Object

 

Wizard

 

can

 

only

 

locate

 

those

 

ODAs

 

that

 

have

 

been

 

started.

Using

 

the

 

ODA

 

to

 

create

 

business

 

object

 

definitions

 

To

 

start

 

Business

 

Object

 

Wizard,

 

do

 

the

 

following:

  

1.

   

Open

 

Business

 

Object

 

Designer

 

using

 

a

 

method

 

listed

 

in

 

Table

 

9

 

on

 

page

 

46.

  

2.

   

Click

 

File

 

>

 

New

 

Using

 

ODA.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

first

 

dialog

 

box,

 

Select

 

Agent,

 

shown

 

in

 

Figure

 

34..

    

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

67



3.

   

To

 

select

 

the

 

ODA

 

to

 

which

 

Business

 

Object

 

Wizard

 

connects:

 

a.

   

Click

 

the

 

Find

 

Agents

 

button

 

to

 

display

 

ODAs

 

that

 

are

 

currently

 

running

 

(those

 

that

 

have

 

been

 

started

 

with

 

their

 

startup

 

scripts)

 

in

 

the

 

Located

 

agents

 

list.

 

Note:

  

If

 

Business

 

Object

 

Wizard

 

does

 

not

 

locate

 

your

 

desired

 

ODA,

 

check

 

the

 

startup

 

of

 

the

 

ODA.

 

Business

 

Object

 

Wizard

 

identifies

 

each

 

running

 

ODA

 

by

 

the

 

name

 

specified

 

for

 

the

 

AGENTNAME

 

variable

 

of

 

its

 

startup

 

script

 

or

 

batch

 

file.

 

This

 

sample

 

ODA

 

is

 

named

 

Roman.

 

b.

   

Select

 

the

 

desired

 

ODA

 

from

 

the

 

Located

 

agents

 

list.

 

Business

 

Object

 

Wizard

 

displays

 

your

 

selection

 

as

 

Agent’s

 

name.

 

Alternatively,

 

you

 

can

 

find

 

the

 

ODA

 

by

 

specifying

 

its

 

host

 

name

 

and

 

port

 

number.

 

4.

   

Click

 

Next.

 

Business

 

Object

 

Wizard

 

attempts

 

to

 

connect

 

to

 

the

 

specified

 

ODA.

 

If

 

the

 

ODA

 

has

 

been

 

started,

 

Business

 

Object

 

Wizard

 

displays

 

a

 

status

 

window

 

as

 

it

 

connects

 

to

 

the

 

ODA,

 

as

 

Figure

 

35

 

shows.

    

Figure

 

34.

 

Select

 

Agent

 

dialog

 

box

  

68

 

Business

 

Object

 

Development

 

Guide



5.

   

After

 

Business

 

Object

 

Wizard

 

is

 

connected

 

to

 

the

 

ODA,

 

it

 

displays

 

the

 

second

 

wizard

 

dialog

 

box,

 

Configure

 

Agent,

 

which

 

is

 

shown

 

in

 

Figure

 

36.

 

This

 

dialog

 

box

 

displays

 

the

 

ODA

 

configuration

 

properties

 

required

 

to

 

access

 

the

 

data

 

source

 

and

 

initialize

 

the

 

ODA.

    

Figure

 

35.

 

Connecting

 

to

 

an

 

ODA.

  

Figure

 

36.

 

Configure

 

Agent

 

dialog

 

box

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

69



6.

   

Specify

 

ODA

 

configuration

 

values

 

or

 

select

 

a

 

profile

 

to

 

display

 

previously

 

saved

 

values.

 

One

 

of

 

the

 

required

 

configuration

 

areas

 

for

 

the

 

ODA

 

is

 

to

 

set

 

up

 

the

 

logging

 

and

 

tracing.

 

For

 

more

 

information,

 

see

 

“Setting

 

up

 

logging

 

and

 

tracing”

 

on

 

page

 

75.

 

The

 

first

 

time

 

you

 

use

 

a

 

particular

 

ODA,

 

you

 

specify

 

values

 

for

 

each

 

of

 

its

 

configuration

 

properties.

 

After

 

doing

 

so,

 

you

 

can

 

save

 

the

 

property

 

values

 

in

 

a

 

named

 

profile

 

by

 

clicking

 

the

 

Save

 

button.

 

The

 

next

 

time

 

you

 

use

 

the

 

same

 

ODA,

 

you

 

can

 

select

 

the

 

saved

 

profile

 

from

 

the

 

Select

 

profile

 

box.

 

For

 

more

 

information,

 

see

 

“Entering

 

values

 

and

 

saving

 

a

 

profile”

 

on

 

page

 

75.

  

7.

   

Click

 

Next.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

third

 

wizard

 

dialog

 

box,

 

Select

 

Source,

 

which

 

is

 

shown

 

in

 

Figure

 

37.

 

The

 

Select

 

Source

 

dialog

 

box

 

displays

 

the

 

source-node

 

hierarchy,

 

which

 

is

 

a

 

tree

 

structure

 

with

 

the

 

top-level

 

objects

 

at

 

the

 

top

 

and

 

child

 

objects

 

underneath.

 

In

 

the

 

initial

 

display,

 

the

 

Select

 

Source

 

dialog

 

box

 

usually

 

displays

 

only

 

the

 

top-level

 

source

 

nodes.

   

Important

 

If

 

the

 

ODA

 

is

 

unable

 

to

 

proceed

 

when

 

you

 

click

 

Next,

 

verify

 

that

 

the

 

ODA

 

message

 

file

 

you

 

have

 

specified

 

for

 

the

 

MessageFile

 

configuration

 

property

 

exists

 

in

 

the

 

ProgramDir\ODA\messages

 

directory.

 

For

 

this

 

sample

 

ODA,

 

the

 

default

 

name

 

of

 

this

 

message

 

file

 

is

 

RomanAgent.txt.

 

For

 

more

 

information,

 

see

 

“Specifying

 

the

 

ODA

 

message

 

file”

 

on

 

page

 

77.

 

The

 

nodes

 

of

 

the

 

source-node

 

hierarchy

 

can

 

be

 

table

 

names,

 

business

 

object

 

names,

 

schema,

 

or

 

functions,

 

depending

 

on

 

the

 

ODA’s

 

data

 

source.

 

This

 

sample

 

ODA

 

generates

 

nodes

 

from

 

objects

 

within

 

an

 

XML

 

file

 

called

 

RomanArmy.xml.

 

Figure

 

37

 

shows

 

the

 

single

 

top-level

 

source

 

node

 

for

 

the

 

Roman

 

general

 

specified

 

for

 

the

 

Army

 

general

 

configuration

 

property

 

(see

 

Figure

 

36

 

on

 

page

 

69).

   

Figure

 

37.

 

Initial

 

Select

 

Source

 

dialog

 

box

  

70

 

Business

 

Object

 

Development

 

Guide



8.

   

Select

 

objects

 

in

 

the

 

source-code

 

hierarchy

 

for

 

which

 

you

 

want

 

the

 

ODA

 

to

 

generate

 

business

 

object

 

definitions.

 

To

 

select

 

one

 

source

 

node,

 

click

 

on

 

the

 

node

 

name.

 

To

 

select

 

additional

 

nodes,

 

use

 

the

 

Ctrl

 

key.

 

In

 

Figure

 

38,

 

several

 

source

 

nodes

 

have

 

been

 

expanded

 

and

 

three

 

source

 

nodes

 

(which

 

correspond

 

to

 

XML

 

objects)

 

have

 

been

 

selected.

  

To

 

expand

 

a

 

source

 

node

 

to

 

display

 

its

 

child

 

nodes,

 

do

 

either

 

of

 

the

 

following:

 

v

   

Click

 

the

 

+

 

symbol

 

to

 

the

 

left

 

of

 

the

 

node

 

name.

 

v

   

Right-click

 

the

 

node

 

name.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

pop-up

 

menu

 

shown

 

in

 

Figure

 

39..

 

To

 

expand

 

the

 

selected

 

node,

 

click

 

Retrieve

 

all

 

items.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

next

 

level

 

of

 

source

 

nodes:

 

the

 

child

 

nodes

 

for

 

the

 

expanded

 

parent

 

node.

 

To

 

open

 

lower

 

levels,

 

repeat

 

this

 

process.

   

Figure

 

38.

 

Select

 

Source

 

dialog

 

box

 

with

 

source

 

nodes

 

expanded

 

and

 

selected

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

71



Note:

  

Business

 

Object

 

Wizard

 

provides

 

several

 

other

 

mechanisms

 

to

 

move

 

through

 

the

 

nodes

 

of

 

the

 

source-node

 

hierarchy.

 

For

 

more

 

information,

 

see

 

“Moving

 

through

 

the

 

source-node

 

hierarchy”

 

on

 

page

 

78.

  

9.

   

After

 

you

 

select

 

the

 

source

 

nodes

 

for

 

which

 

business

 

object

 

definitions

 

are

 

to

 

be

 

generated,

 

click

 

Next.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

fourth

 

wizard

 

dialog

 

box,

 

Confirm

 

Source,

 

which

 

is

 

shown

 

in

 

Figure

 

40.

 

This

 

dialog

 

box

 

allows

 

you

 

to

 

confirm

 

your

 

selection

 

of

 

source

 

nodes.

 

Selected

 

source

 

nodes

 

are

 

displayed

 

in

 

a

 

bold

 

font.

 

In

 

Figure

 

40,

 

the

 

source

 

nodes

 

for

 

Cordius,

 

Cicero,

 

and

 

Vulso

 

are

 

selected.

    

Figure

 

39.

 

Right-clicking

 

a

 

node

  

72

 

Business

 

Object

 

Development

 

Guide



If

 

your

 

selection

 

is

 

not

 

correct,

 

click

 

Back

 

to

 

return

 

to

 

the

 

previous

 

dialog

 

box

 

and

 

make

 

the

 

necessary

 

changes.

 

10.

   

When

 

your

 

selection

 

is

 

correct,

 

click

 

Next.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

wizard’s

 

fifth

 

screen,

 

Generating

 

Business

 

Objects,

 

which

 

is

 

shown

 

in

 

Figure

 

41.

 

This

 

screen

 

informs

 

you

 

that

 

the

 

ODA

 

is

 

generating

 

the

 

business

 

object

 

definitions.

    

Figure

 

40.

 

Confirming

 

the

 

objects

 

for

 

which

 

to

 

generate

 

business

 

object

 

definitions

  

Figure

 

41.

 

Generating

 

the

 

definitions

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

73



If

 

the

 

ODA

 

needs

 

additional

 

information,

 

Business

 

Object

 

Wizard

 

prompts

 

you

 

for

 

this

 

information

 

by

 

displaying

 

the

 

BO

 

Properties

 

dialog

 

box.

 

However,

 

this

 

sample

 

ODA

 

does

 

not

 

require

 

additional

 

information.

 

For

 

more

 

information

 

about

 

the

 

BO

 

Properties

 

dialog

 

box,

 

see

 

“Providing

 

additional

 

information”

 

on

 

page

 

82.

 

11.

   

After

 

the

 

ODA

 

completes

 

the

 

generation

 

of

 

business

 

object

 

definitions,

 

Business

 

Object

 

Wizard

 

displays

 

the

 

final

 

dialog

 

box

 

in

 

the

 

wizard,

 

Save

 

Business

 

Objects,

 

shown

 

in

 

Figure

 

42.

 

This

 

dialog

 

box

 

offers

 

the

 

following

 

options

 

to

 

save

 

the

 

business

 

object

 

definitions

 

that

 

the

 

ODA

 

has

 

generated:

 

v

   

Save

 

the

 

business

 

object

 

definitions

 

to

 

an

 

ICL-based

 

project

 

if

 

Business

 

Object

 

Designer

 

is

 

running

 

from

 

System

 

Manager.

 

v

   

Save

 

the

 

business

 

object

 

definitions

 

to

 

a

 

file

 

(for

 

any

 

integration

 

broker).

 

v

   

Open

 

the

 

business

 

object

 

definitions

 

for

 

editing

 

in

 

Business

 

Object

 

Designer.

 

v

   

Shut

 

down

 

the

 

ODA.

  

Important

 

If

 

the

 

ODA

 

generates

 

a

 

business

 

object

 

definition

 

from

 

a

 

data-source

 

object

 

that

 

does

 

not

 

identify

 

a

 

key

 

element,

 

this

 

business

 

object

 

definition

 

will

 

not

 

have

 

a

 

key

 

attribute.

 

Every

 

business

 

object

 

must

 

have

 

at

 

least

 

one

 

key.

 

If

 

the

 

ODA

 

might

 

have

 

generated

 

business

 

object

 

definitions

 

that

 

do

 

not

 

include

 

keys,

 

you

 

might

 

want

 

to

 

choose

 

the

 

“Open

 

the

 

new

 

BOs

 

in

 

separate

 

windows”

 

option

 

instead

 

of

 

saving

 

the

 

business

 

object

 

definitions.

 

Within

 

Business

 

Object

 

Designer,

 

you

 

can

 

verify

 

that

 

each

 

business

 

object

 

definition

 

has

 

a

 

key

 

attribute,

 

adding

 

one

 

if

 

none

 

exists.

 

Business

 

Object

 

Designer

 

does

 

not

 

allow

 

you

 

to

 

save

 

any

 

business

 

object

 

definition

 

that

 

does

 

not

 

include

 

a

 

key.

   

Figure

 

42.

 

Saving

 

the

 

business

 

object

 

definition

  

74

 

Business

 

Object

 

Development

 

Guide



Click

 

Finish

 

to

 

save

 

the

 

business

 

object

 

definitions

 

or

 

Cancel

 

to

 

exit

 

without

 

saving

 

these

 

definitions.

 

In

 

either

 

case,

 

Business

 

Object

 

Wizard

 

disconnects

 

from

 

the

 

ODA.

 

This

 

dialog

 

box

 

also

 

provides

 

the

 

option

 

to

 

have

 

Business

 

Object

 

Wizard

 

shut

 

down

 

the

 

ODA

 

after

 

it

 

disconnects.

 

If

 

you

 

no

 

longer

 

need

 

to

 

use

 

the

 

ODA,

 

select

 

this

 

option.

 

After

 

you

 

click

 

Finish,

 

if

 

you

 

have

 

selected

 

the

 

option

 

to

 

save

 

the

 

business

 

object

 

definitions

 

to

 

a

 

file,

 

a

 

browse

 

window

 

opens

 

and

 

allows

 

you

 

to

 

specify

 

the

 

name

 

of

 

this

 

file,

 

where

 

to

 

save

 

it,

 

and

 

what

 

format

 

to

 

use

 

(text

 

file

 

or

 

ICS-specific

 

format).

 

You

 

have

 

now

 

successfully

 

created

 

business

 

object

 

definitions

 

using

 

an

 

Object

 

Discovery

 

Agent.

 

Entering

 

values

 

and

 

saving

 

a

 

profile

 

You

 

can

 

save

 

a

 

particular

 

set

 

of

 

ODA

 

configuration

 

values

 

in

 

a

 

profile

 

so

 

that

 

they

 

can

 

be

 

available

 

for

 

future

 

uses

 

of

 

the

 

ODA.

 

To

 

save

 

a

 

profile:

 

1.

   

On

 

the

 

Step

 

2,

 

Configure

 

Agent

 

dialog

 

box

 

of

 

the

 

Business

 

Object

 

Wizard,

 

click

 

the

 

New

 

button

 

under

 

Profiles.

 

Note:

  

To

 

base

 

a

 

profile

 

on

 

an

 

existing

 

one,

 

locate

 

the

 

desired

 

profile

 

in

 

the

 

profile

 

drop-down

 

list.

 

Do

 

not

 

click

 

the

 

New

 

button.

 

2.

   

Enter

 

a

 

name

 

for

 

the

 

profile

 

in

 

the

 

Current

 

list

 

(see

 

Figure

 

36

 

on

 

page

 

69

 

for

 

an

 

illustration).

 

Note:

  

If

 

you

 

are

 

basing

 

a

 

profile

 

on

 

an

 

existing

 

one,

 

overwrite

 

the

 

name

 

of

 

the

 

existing

 

profile

 

in

 

the

 

profile

 

drop-down

 

list.

 

3.

   

Enter

 

the

 

desired

 

configuration

 

values

 

in

 

the

 

Configure

 

Agent

 

table.

 

4.

   

Click

 

the

 

Save

 

button.

 

Business

 

Object

 

Wizard

 

saves

 

the

 

profile

 

under

 

the

 

following

 

directory:

 

C:\Documents

 

and

 

Settings\All

 

Users\Application

 

Data\CrossWorlds\

    

BusObjDesigner\profiles.bod

 

Setting

 

up

 

logging

 

and

 

tracing

 

As

 

part

 

of

 

the

 

configuration

 

of

 

the

 

ODA,

 

you

 

must

 

set

 

up

 

the

 

logging

 

and

 

tracing.

 

You

 

specify

 

the

 

logging

 

and

 

tracing

 

information

 

for

 

an

 

ODA

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

Business

 

Object

 

Wizard

 

always

 

provides

 

the

 

standard

 

configuration

 

properties

 

(shown

 

in

 

Table

 

14)

 

for

 

an

 

ODA.

  

Table

 

14.

 

Standard

 

ODA

 

configuration

 

properties.

 

Property

 

name

 

Property

 

type

 

Description

 

TraceFileName

 

String

 

Specifies

 

the

 

file

 

into

 

which

 

the

 

ODA

 

writes

 

trace

 

information.

 

For

 

more

 

information,

 

see

 

“Specifying

 

the

 

trace

 

file

 

and

 

trace

 

level”

 

on

 

page

 

76.

 

TraceLevel

 

Integer

 

Trace

 

level

 

enabled

 

for

 

the

 

ODA.

 

For

 

more

 

information,

 

see

 

“Specifying

 

the

 

trace

 

file

 

and

 

trace

 

level”

 

on

 

page

 

76.

 

MessageFile

 

String

 

Name

 

of

 

the

 

ODA’s

 

error

 

and

 

message

 

file.

 

Use

 

this

 

property

 

to

 

verify

 

or

 

specify

 

an

 

existing

 

file.

 

For

 

more

 

information,

 

see

 

“Specifying

 

the

 

ODA

 

message

 

file”

 

on

 

page

 

77.

   

This

 

section

 

provides

 

the

 

following

 

information:

   

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

75



v

   

“Specifying

 

the

 

trace

 

file

 

and

 

trace

 

level”

 

v

   

“Specifying

 

the

 

ODA

 

message

 

file”

 

on

 

page

 

77

Specifying

 

the

 

trace

 

file

 

and

 

trace

 

level

 

Figure

 

43

 

shows

 

the

 

Configure

 

Agent

 

dialog

 

box

 

in

 

Business

 

Object

 

Wizard,

 

in

 

which

 

you

 

specify

 

the

 

name

 

of

 

the

 

trace

 

file

 

and

 

the

 

trace

 

level.

  

Specifying

 

a

 

trace

 

file:

   

The

 

TraceFileName

 

configuration

 

property

 

specifies

 

the

 

name

 

of

 

the

 

ODA’s

 

trace

 

file.

 

This

 

file

 

is

 

the

 

destination

 

for

 

all

 

trace

 

and

 

error

 

messages

 

that

 

the

 

ODA

 

logs.

 

By

 

default,

 

the

 

ODA

 

run

 

time

 

names

 

the

 

trace

 

file

 

according

 

to

 

the

 

following

 

naming

 

convention:

 

ODAnametrace.txt

 

In

 

the

 

preceding

 

line,

 

ODAname

 

is

 

the

 

name

 

that

 

uniquely

 

identifies

 

the

 

ODA.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

For

 

example,

 

if

 

the

 

ODA

 

is

 

named

 

HTMLODA,

 

it

 

generates

 

a

 

trace

 

file

 

named

 

HTMLODAtrace.txt.

 

Note:

  

Because

 

the

 

ODK

 

API

 

provides

 

one

 

method

 

to

 

log

 

both

 

trace

 

and

 

error

 

messages,

 

an

 

ODA

 

has

 

only

 

one

 

file

 

to

 

hold

 

both

 

these

 

kinds

 

of

 

messages.

 

Therefore,

 

although

 

this

 

file

 

is

 

called

 

a

 

trace

 

file,

 

it

 

also

 

contains

 

any

 

error

 

messages

 

that

 

the

 

ODA

 

generates.

 

If

 

the

 

specified

 

trace

 

file

 

does

 

not

 

exist,

 

the

 

ODA

 

creates

 

it

 

in

 

the

 

ODA’s

 

runtime

 

directory,

 

which

 

is

 

the

 

ODA\srcDataName

 

subdirectory

 

of

 

the

 

product

 

directory.

 

If

 

the

 

specified

 

trace

 

file

 

already

 

exists,

 

the

 

ODA

 

appends

 

to

 

it.

 

When

 

configuring

 

the

 

ODA,

 

you

 

can

 

use

 

specify

 

a

 

different

 

name

 

for

 

the

 

trace

 

file

 

by

 

resetting

 

the

 

TraceFileName

 

property.

 

Setting

 

the

 

trace

 

level:

   

The

 

TraceLevel

 

configuration

 

property

 

specifies

 

the

 

ODA’s

 

system

 

trace

 

level.

 

The

 

ODA’s

 

trace

 

method

 

sends

 

the

 

specified

 

message

 

to

 

the

 

trace

 

file

 

when

 

the

 

message’s

 

trace

 

level

 

is

 

less

 

than

 

or

 

equal

 

to

 

this

 

system

 

trace

 

level.

 

Therefore,

 

the

 

system

 

trace

 

level

 

determines

 

the

 

level

 

of

 

detail

 

that

 

the

 

Specify trace level
Specify trace file name

  

Figure

 

43.

 

Specifying

 

tracing

 

information

  

76

 

Business

 

Object

 

Development

 

Guide



trace

 

messages

 

provide.

 

Table

 

15

 

lists

 

trace

 

levels

 

and

 

their

 

associated

 

behavior.

  

Table

 

15.

 

Trace

 

levels

 

Level

 

Behavior

 

0

 

Writes

 

error

 

messages

 

to

 

the

 

specified

 

trace

 

file.

 

1

 

Traces

 

whenever

 

a

 

method

 

is

 

entered—useful

 

for

 

status

 

messages

 

and

 

key

 

information

 

for

 

each

 

business

 

object

 

definition.

 

2

 

Traces

 

the

 

agent

 

properties

 

and

 

the

 

values

 

received.

 

3

 

v

   

Traces

 

the

 

names

 

of

 

the

 

business

 

object.

 

v

   

Traces

 

the

 

business

 

object

 

properties

 

and

 

the

 

values

 

received.

 

4

 

v

   

Traces

 

the

 

spawning

 

of

 

all

 

threads.

 

v

   

Traces

 

a

 

message

 

whenever

 

a

 

method

 

is

 

entered

 

and

 

exited.

 

5

 

v

   

Indicates

 

the

 

initialization

 

of

 

the

 

Object

 

Discovery

 

Agent

 

and

 

log

 

the

 

values

 

retrieved

 

for

 

all

 

the

 

Object

 

Discovery

 

Agent

 

properties.

 

v

   

Traces

 

detailed

 

status

 

of

 

each

 

thread

 

spawned

 

by

 

the

 

Object

 

Discovery

 

Agent.

 

v

   

Traces

 

the

 

business

 

object

 

definition

 

dump.

   

For

 

information

 

on

 

how

 

to

 

generate

 

trace

 

messages

 

within

 

the

 

ODA,

 

see

 

“Handling

 

trace

 

and

 

error

 

messages”

 

on

 

page

 

150.

 

Specifying

 

the

 

ODA

 

message

 

file

 

The

 

MessageFile

 

configuration

 

property

 

specifies

 

the

 

name

 

of

 

the

 

ODA’s

 

message

 

file.

 

An

 

ODA

 

can

 

store

 

its

 

error

 

and

 

trace

 

messages

 

in

 

this

 

ODA

 

message

 

file.

 

It

 

can

 

then

 

retrieve

 

these

 

messages

 

by

 

message

 

number,

 

instead

 

of

 

creating

 

the

 

message

 

text

 

itself.

 

Isolating

 

messages

 

into

 

the

 

message

 

file

 

provides

 

an

 

easy

 

way

 

for

 

ODA

 

messages

 

to

 

be

 

translated

 

into

 

the

 

languages

 

of

 

the

 

different

 

locales

 

the

 

ODA

 

can

 

run

 

in.

 

By

 

default,

 

the

 

ODA

 

run

 

time

 

names

 

this

 

message

 

file

 

according

 

to

 

the

 

following

 

naming

 

convention:

 

ODAnameAgent.txt

 

In

 

the

 

preceding

 

line,

 

ODAname

 

is

 

the

 

name

 

that

 

uniquely

 

identifies

 

the

 

ODA.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

For

 

example,

 

if

 

the

 

ODA

 

is

 

named

 

HTMLODA,

 

the

 

value

 

of

 

the

 

MessageFile

 

property

 

defaults

 

to

 

HTMLODAAgent.txt.

 

The

 

message

 

file

 

must

 

reside

 

in

 

the

 

following

 

message-file

 

directory:

 

ProductDir\ODA\messages

   

Important

 

If

 

the

 

specified

 

message

 

file

 

does

 

not

 

exist

 

or

 

does

 

not

 

exist

 

in

 

the

 

message-file

 

directory,

 

the

 

ODA

 

generates

 

a

 

runtime

 

exception.

 

You

 

must

 

ensure

 

that

 

the

 

message

 

file

 

(which

 

MessageFile

 

specifies)

 

exists

 

before

 

you

 

continue

 

with

 

the

 

execution

 

of

 

the

 

ODA.

 

If

 

the

 

ODA

 

uses

 

a

 

different

 

message

 

file,

 

set

 

the

 

MessageFile

 

property

 

to

 

specify

 

a

 

different

 

name

 

for

 

the

 

trace

 

file.

   

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

77



If

 

you

 

are

 

using

 

a

 

non-US

 

English

 

locale,

 

Business

 

Object

 

Wizard

 

automatically

 

looks

 

for

 

an

 

ODA

 

message

 

file

 

that

 

includes

 

the

 

name

 

of

 

the

 

locale

 

in

 

the

 

file

 

name,

 

as

 

follows:

 

ODAnameAgent_locale.txt

 

where

 

locale

 

has

 

the

 

format

 

“ll_TT”,

 

with

 

ll

 

as

 

the

 

two-character

 

language

 

name

 

(in

 

lowercase)

 

and

 

TT

 

as

 

the

 

two-character

 

country

 

or

 

territory

 

name

 

(in

 

uppercase).

 

For

 

example,

 

if

 

the

 

ODA

 

named

 

HTMLODA

 

has

 

its

 

message

 

file

 

localized

 

to

 

the

 

Japanese

 

locale,

 

its

 

message

 

file

 

would

 

have

 

the

 

name:

 

HTMLODAAgent_ja_JP.txt

 

Note:

  

When

 

you

 

are

 

logged

 

into

 

a

 

non-US

 

English

 

locale,

 

you

 

do

 

not

 

have

 

to

 

specify

 

the

 

non-US

 

English

 

name

 

in

 

the

 

MessageFile

 

property.

 

For

 

example,

 

if

 

you

 

are

 

using

 

the

 

HTML

 

ODA,

 

you

 

set

 

MessageFile

 

to

 

the

 

US

 

English

 

file

 

name

 

(HTMLODAAgent.txt).

 

If

 

you

 

are

 

logged

 

into

 

a

 

Japanese

 

local,

 

Business

 

Object

 

Wizard

 

locates

 

the

 

correct

 

message

 

file

 

for

 

the

 

Japanese

 

locale:

 

HTMLODAAgent_ja_JP.txt.

 

If

 

you

 

create

 

multiple

 

instances

 

of

 

the

 

ODA

 

script

 

or

 

batch

 

file

 

and

 

provide

 

a

 

unique

 

name

 

for

 

each

 

represented

 

ODA,

 

you

 

can

 

have

 

a

 

message

 

file

 

for

 

each

 

ODA

 

instance.

 

For

 

more

 

information,

 

see

 

“Using

 

multiple

 

ODAs

 

simultaneously”

 

on

 

page

 

83.

 

Moving

 

through

 

the

 

source-node

 

hierarchy

 

The

 

Business

 

Select

 

Source

 

dialog

 

box

 

in

 

Business

 

Object

 

Wizard

 

provides

 

the

 

following

 

mechanisms

 

for

 

moving

 

through

 

the

 

nodes

 

of

 

the

 

source-node

 

hierarchy:

 

v

   

“Limiting

 

display

 

of

 

child

 

nodes”

 

v

   

“Specifying

 

an

 

object

 

path”

 

on

 

page

 

80

 

v

   

“Associating

 

an

 

operating-system

 

file”

 

on

 

page

 

81

Limiting

 

display

 

of

 

child

 

nodes

 

The

 

ways

 

to

 

expand

 

a

 

source

 

node

 

given

 

in

 

step

 

8

 

on

 

page

 

71

 

describe

 

how

 

to

 

display

 

all

 

child

 

nodes

 

of

 

an

 

expandable

 

node.

 

To

 

limit

 

which

 

objects

 

are

 

displayed,

 

you

 

can

 

use

 

either

 

of

 

the

 

following

 

menu

 

items

 

when

 

right-clicking

 

a

 

node

 

name

 

(see

 

Figure

 

39

 

on

 

page

 

72):

 

v

   

Apply

 

filter

 

v

   

Search

 

for

 

items

Using

 

a

 

filter:

   

The

 

Apply

 

Filter

 

menu

 

item

 

allows

 

you

 

to

 

specify

 

a

 

filter,

 

which

 

can

 

limit

 

which

 

of

 

the

 

currently

 

selected

 

source

 

nodes

 

opens.

 

When

 

you

 

click

 

this

 

menu

 

item,

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Apply

 

filter

 

to

 

node

 

dialog

 

box,

 

as

 

shown

 

in

 

Figure

 

44.

    

Figure

 

44.

 

Specifying

 

a

 

filter

 

to

 

limit

 

results

  

78

 

Business

 

Object

 

Development

 

Guide



In

 

the

 

filter

 

text,

 

you

 

can

 

use

 

the

 

asterisk

 

(*)

 

character

 

as

 

a

 

wildcard

 

(to

 

represent

 

zero

 

or

 

more

 

matching

 

characters).

 

This

 

wildcard

 

character

 

can

 

appear

 

in

 

any

 

position

 

and

 

in

 

as

 

many

 

positions

 

as

 

required.

 

For

 

example,

 

SAP*,

 

*SAP,

 

*SAP*,

 

or

 

*S*AP*.

 

When

 

you

 

click

 

OK,

 

Business

 

Object

 

Wizard

 

searches

 

the

 

currently

 

retrieved

 

child

 

nodes

 

of

 

the

 

parent

 

node

 

for

 

those

 

whose

 

names

 

match

 

the

 

filter

 

text.

 

When

 

it

 

expands

 

this

 

parent

 

node,

 

it

 

displays

 

only

 

those

 

child

 

nodes

 

whose

 

names

 

match

 

this

 

text.

 

Important:

  

When

 

Business

 

Object

 

Wizard

 

receives

 

a

 

filter,

 

it

 

searches

 

for

 

matching

 

child

 

nodes

 

of

 

the

 

parent

 

node

 

in

 

the

 

currently

 

retrieved

 

source

 

node;

 

that

 

is,

 

it

 

does

 

not

 

search

 

the

 

data

 

source

 

for

 

matching

 

child

 

nodes.

 

To

 

have

 

Business

 

Object

 

Wizard

 

search

 

the

 

data

 

source,

 

you

 

can

 

specify

 

a

 

search

 

pattern.

 

For

 

more

 

information,

 

see

 

“Specifying

 

a

 

search

 

pattern.”

 

For

 

example,

 

in

 

the

 

sample

 

Roman

 

ODA,

 

the

 

Uulius

 

node

 

has

 

four

 

child

 

nodes:

 

Ares,

 

Cronus,

 

Atlas,

 

and

 

Metis.

 

If

 

you

 

apply

 

the

 

filter

 

in

 

Figure

 

44

 

to

 

the

 

Uulius

 

node

 

(“A*”),

 

Business

 

Object

 

Wizard

 

displays

 

this

 

node

 

as

 

shown

 

in

 

Figure

 

45

 

when

 

you

 

expand

 

the

 

node.

  

If

 

you

 

specify

 

a

 

filter

 

at

 

the

 

top

 

of

 

a

 

node

 

and

 

then

 

expand

 

the

 

node,

 

you

 

can

 

apply

 

the

 

same

 

filter

 

to

 

child

 

objects

 

by

 

right-clicking

 

on

 

the

 

node

 

and

 

clicking

 

Apply

 

parent’s

 

filter.

 

If

 

you

 

click

 

Retrieve

 

all

 

items

 

menu

 

item,

 

the

 

parent

 

node

 

filter

 

is

 

applied

 

to

 

all

 

elements.

 

Specifying

 

a

 

search

 

pattern:

   

The

 

Search

 

for

 

items

 

menu

 

item

 

allows

 

you

 

to

 

specify

 

a

 

search

 

pattern,

 

which

 

can

 

limit

 

which

 

source

 

nodes

 

Business

 

Object

 

Wizard

 

selects

 

from

 

the

 

data

 

source.

 

When

 

you

 

click

 

Search

 

for

 

items,

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box.

 

Figure

 

46

 

on

 

page

 

80

 

illustrates

 

this

 

dialog

 

box.

   

Figure

 

45.

 

Filtered

 

node

 

after

 

expansion

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

79



Note:

  

An

 

ODA

 

must

 

support

 

the

 

search-pattern

 

feature

 

for

 

the

 

Search

 

for

 

items

 

menu

 

item

 

to

 

be

 

enabled.

 

If

 

this

 

menu

 

item

 

is

 

not

 

available,

 

the

 

ODA

 

does

 

not

 

support

 

search

 

patterns.

   

The

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box

 

provides

 

a

 

description

 

of

 

the

 

search

 

criteria

 

that

 

your

 

search

 

pattern

 

can

 

use.

 

In

 

Figure

 

46,

 

the

 

text

 

in

 

this

 

dialog

 

box

 

specifies

 

that

 

the

 

search

 

pattern

 

can

 

consist

 

of

 

one

 

letter.

 

The

 

ODA

 

provides

 

a

 

customized

 

description

 

of

 

the

 

search

 

criteria.

 

Make

 

sure

 

that

 

the

 

search

 

pattern

 

you

 

enter

 

follows

 

the

 

described

 

search

 

criteria.

 

Otherwise,

 

the

 

ODA

 

throws

 

an

 

exception.

 

When

 

you

 

click

 

OK,

 

Business

 

Object

 

Wizard

 

searches

 

the

 

data

 

source

 

for

 

child

 

nodes

 

of

 

the

 

parent

 

node

 

whose

 

names

 

match

 

the

 

search

 

pattern.

 

When

 

it

 

expands

 

this

 

parent

 

node,

 

it

 

displays

 

only

 

those

 

child

 

nodes

 

whose

 

names

 

match

 

this

 

pattern.

 

Important:

  

When

 

Business

 

Object

 

Wizard

 

receives

 

a

 

search

 

pattern,

 

it

 

searches

 

for

 

matching

 

child

 

nodes

 

of

 

the

 

parent

 

node

 

in

 

the

 

data

 

source;

 

that

 

is,

 

it

 

retrieves

 

a

 

new

 

tree

 

node

 

from

 

the

 

data

 

source.

 

It

 

does

 

not

 

simply

 

search

 

the

 

currently

 

retrieved

 

tree

 

node

 

for

 

matching

 

child

 

nodes.

 

To

 

have

 

Business

 

Object

 

Wizard

 

search

 

the

 

currently

 

retrieved

 

tree

 

node,

 

you

 

can

 

specify

 

a

 

filter.

 

For

 

more

 

information,

 

see

 

“Using

 

a

 

filter”

 

on

 

page

 

78.

 

Specifying

 

an

 

object

 

path

 

Instead

 

of

 

moving

 

through

 

the

 

source-node

 

hierarchy,

 

you

 

can

 

specify

 

an

 

exact

 

path

 

for

 

the

 

desired

 

object.

 

To

 

do

 

so,

 

click

 

Use

 

this

 

object

 

instead,

 

at

 

the

 

upper

 

right

 

of

 

the

 

Select

 

Source

 

dialog

 

box.

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Object

 

Path

 

dialog

 

box,

 

shown

 

in

 

Figure

 

47,

 

in

 

which

 

you

 

specify

 

the

 

path.

   

You

 

specify

 

the

 

object

 

path

 

as

 

the

 

fully

 

qualified

 

path

 

of

 

the

 

source

 

node

 

(from

 

the

 

top-level

 

parent

 

node

 

down

 

to

 

the

 

desired

 

node).

 

Node

 

names

 

within

 

this

 

path

 

are

 

separated

 

with

 

a

 

colon

 

(:).

   

Figure

 

46.

 

Specifying

 

a

 

search

 

pattern

 

to

 

limit

 

retrieval

 

results

  

Figure

 

47.

 

Specifying

 

an

 

object’s

 

path.

  

80

 

Business

 

Object

 

Development

 

Guide



Associating

 

an

 

operating-system

 

file

 

To

 

associate

 

an

 

operating-system

 

file

 

with

 

the

 

current

 

node

 

of

 

the

 

source-node

 

hierarchy,

 

right-click

 

on

 

a

 

node

 

and

 

click

 

Associate

 

files

 

(see

 

Figure

 

48).

 

When

 

you

 

associate

 

a

 

file

 

with

 

a

 

source

 

node,

 

the

 

ODA

 

uses

 

the

 

file

 

as

 

the

 

source

 

for

 

that

 

source

 

node’s

 

data

 

(instead

 

of

 

using

 

the

 

ODA’s

 

data

 

source).

 

Note:

  

An

 

ODA

 

must

 

support

 

the

 

associate-files

 

feature

 

for

 

the

 

Associate

 

files

 

menu

 

item

 

to

 

be

 

enabled.

 

If

 

this

 

menu

 

item

 

is

 

not

 

available,

 

the

 

ODA

 

does

 

not

 

support

 

associating

 

files

 

with

 

the

 

current

 

source

 

node.

   

When

 

you

 

click

 

the

 

Associate

 

files

 

menu

 

item,

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Open

 

window

 

shown

 

in

 

Figure

 

49.

 

From

 

this

 

window,

 

you

 

can

 

browse

 

the

 

file

 

structure

 

and

 

choose

 

the

 

file

 

to

 

associate

 

with

 

the

 

current

 

node.

    

Figure

 

48.

 

Associating

 

a

 

file

 

with

 

a

 

source

 

node

  

Figure

 

49.

 

Open

 

window

 

for

 

selecting

 

the

 

file

 

to

 

associate

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

81



After

 

you

 

have

 

selected

 

the

 

file

 

to

 

associate

 

with

 

the

 

source

 

node,

 

click

 

Open.

 

When

 

Business

 

Object

 

Wizard

 

returns

 

control

 

to

 

the

 

Select

 

Source

 

dialog

 

box,

 

the

 

file

 

you

 

selected

 

is

 

displayed

 

under

 

the

 

source

 

node

 

with

 

which

 

it

 

is

 

associated,

 

as

 

Figure

 

50

 

shows.

    

Providing

 

additional

 

information

 

In

 

Step

 

5,

 

Generating

 

Business

 

Objects,

 

if

 

the

 

ODA

 

needs

 

additional

 

information,

 

the

 

BO

 

Properties

 

dialog

 

box

 

opens,

 

as

 

shown

 

in

 

Figure

 

51..

  

Note:

  

If

 

a

 

cell

 

in

 

the

 

BO

 

Properties

 

dialog

 

box

 

has

 

multiple

 

values,

 

it

 

appears

 

to

 

be

 

empty

 

when

 

the

 

dialog

 

box

 

first

 

opens.

 

Click

 

the

 

cell

 

for

 

a

 

list

 

of

 

its

 

values.

  

Figure

 

50.

 

File

 

associated

 

with

 

a

 

source

 

node

  

Figure

 

51.

 

Providing

 

additional

 

information.

  

82

 

Business

 

Object

 

Development

 

Guide



After

 

you

 

provide

 

all

 

required

 

information

 

in

 

the

 

BO

 

Properties

 

dialog

 

box,

 

click

 

OK.

 

The

 

ODA

 

continues

 

with

 

its

 

generation

 

of

 

business

 

object

 

definitions.

 

Using

 

multiple

 

ODAs

 

simultaneously

 

You

 

can

 

run

 

multiple

 

instances

 

of

 

an

 

ODA

 

either

 

on

 

the

 

local

 

host

 

machine

 

or

 

a

 

remote

 

host

 

machine.

 

Each

 

instance

 

runs

 

on

 

a

 

unique

 

port.

 

You

 

can

 

specify

 

this

 

port

 

number

 

when

 

you

 

start

 

each

 

ODA

 

from

 

within

 

Business

 

Object

 

Wizard.

 

To

 

run

 

multiple

 

Object

 

Discovery

 

Agents

 

simultaneously

 

in

 

Business

 

Object

 

Designer,

 

do

 

the

 

following:

 

1.

   

Start

 

each

 

Object

 

Discovery

 

Agent

 

by

 

running

 

its

 

start_ODAname.bat

 

or

 

start_ODAname.sh

 

files.

 

2.

   

Open

 

Business

 

Object

 

Designer.

 

3.

   

Click

 

File

 

>

 

New

 

Using

 

ODA.

 

The

 

first

 

dialog

 

box

 

in

 

the

 

Business

 

Object

 

Wizard,

 

Select

 

Agent,

 

opens

 

(see

 

Figure

 

34

 

on

 

page

 

68).

 

4.

   

Click

 

the

 

Find

 

Agents

 

button

 

to

 

display

 

currently

 

running

 

ODAs

 

in

 

the

 

Located

 

agents

 

list.

 

You

 

can

 

also

 

find

 

the

 

ODA

 

using

 

its

 

host

 

name

 

and

 

port

 

number.

 

5.

   

Select

 

the

 

first

 

ODA

 

from

 

the

 

displayed

 

list.

 

Your

 

selection

 

is

 

listed

 

as

 

Agent’s

 

name.

 

6.

   

Click

 

File

 

>

 

New

 

Using

 

ODA

 

again.

 

7.

   

Click

 

the

 

Find

 

Agents

 

button

 

to

 

display

 

currently

 

running

 

ODAs

 

in

 

the

 

Located

 

agents

 

list,

 

or

 

find

 

the

 

ODA

 

using

 

its

 

host

 

name

 

and

 

port

 

number.

 

8.

   

Select

 

the

 

second

 

ODA

 

from

 

the

 

displayed

 

list.

 

9.

   

Proceed

 

with

 

the

 

configuration

 

of

 

each

 

ODA

 

as

 

described

 

in

 

step

 

4

 

of

 

“Using

 

the

 

ODA

 

to

 

create

 

business

 

object

 

definitions”

 

on

 

page

 

67.

If

 

you

 

create

 

multiple

 

instances

 

of

 

the

 

ODA

 

script

 

or

 

batch

 

file

 

and

 

provide

 

a

 

unique

 

name

 

for

 

each

 

represented

 

ODA,

 

you

 

can

 

have

 

a

 

message

 

file

 

for

 

each

 

ODA

 

instance.

 

Alternatively,

 

you

 

can

 

have

 

differently

 

named

 

ODAs

 

use

 

the

 

same

 

message

 

file.

 

There

 

are

 

two

 

ways

 

to

 

specify

 

a

 

valid

 

message

 

file:

 

v

   

If

 

you

 

change

 

the

 

name

 

of

 

an

 

ODA

 

and

 

do

 

not

 

create

 

a

 

message

 

file

 

for

 

it,

 

you

 

must

 

change

 

the

 

name

 

of

 

the

 

message

 

file

 

in

 

Business

 

Object

 

Wizard

 

as

 

part

 

of

 

ODA

 

configuration.

 

Business

 

Object

 

Wizard

 

provides

 

a

 

name

 

for

 

the

 

message

 

file

 

but

 

does

 

not

 

actually

 

create

 

the

 

file.

 

If

 

the

 

file

 

displayed

 

as

 

part

 

of

 

ODA

 

configuration

 

does

 

not

 

exist,

 

change

 

the

 

value

 

to

 

point

 

to

 

an

 

existing

 

file.

 

v

   

You

 

can

 

copy

 

the

 

existing

 

message

 

file

 

for

 

a

 

specific

 

ODA,

 

and

 

modify

 

it

 

as

 

required.

 

Business

 

Object

 

Wizard

 

assumes

 

you

 

name

 

each

 

file

 

according

 

to

 

the

 

naming

 

convention.

 

For

 

example,

 

if

 

the

 

AGENTNAME

 

variable

 

(within

 

the

 

ODA

 

startup

 

script)

 

specifies

 

HTMLODA,

 

the

 

tool

 

assumes

 

that

 

the

 

name

 

of

 

the

 

associated

 

message

 

file

 

is

 

HTMLODAAgent.txt.

 

Therefore,

 

when

 

Business

 

Object

 

Wizard

 

displays

 

the

 

file

 

name

 

for

 

verification

 

as

 

part

 

of

 

ODA

 

configuration,

 

the

 

file

 

name

 

is

 

based

 

on

 

the

 

ODA

 

name.

 

Verify

 

that

 

the

 

default

 

message

 

file

 

is

 

named

 

correctly,

 

and

 

correct

 

it

 

as

 

necessary.

  

Chapter

 

4.

 

Developing

 

business

 

object

 

definitions

 

83



84

 

Business

 

Object

 

Development

 

Guide



Part

 

2.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

85



86

 

Business

 

Object

 

Development

 

Guide



Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

This

 

chapter

 

presents

 

information

 

on

 

how

 

to

 

use

 

classes

 

defined

 

in

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

to

 

develop

 

an

 

Object

 

Discovery

 

Agent

 

(ODA).

 

An

 

ODA

 

works

 

with

 

Business

 

Object

 

Designer’s

 

Business

 

Object

 

Wizard

 

to

 

develop

 

business

 

object

 

definitions

 

for

 

a

 

specific

 

connector

 

or

 

data

 

handler

 

that

 

works

 

with

 

a

 

specific

 

application,

 

database,

 

or

 

filesystem.

 

The

 

main

 

topics

 

of

 

this

 

chapter

 

are:

 

v

   

“Running

 

an

 

ODA”

 

v

   

“Overview

 

of

 

the

 

ODA

 

development

 

process”

 

on

 

page

 

95

 

v

   

“Extending

 

the

 

ODA

 

base

 

class”

 

on

 

page

 

99

 

v

   

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107

 

v

   

“Starting

 

the

 

ODA”

 

on

 

page

 

101

 

v

   

“Generating

 

business

 

object

 

definitions

 

as

 

content”

 

on

 

page

 

110

 

v

   

“Generating

 

binary

 

files

 

as

 

content”

 

on

 

page

 

133

 

v

   

“Shutting

 

down

 

the

 

ODA”

 

on

 

page

 

150

 

v

   

“Handling

 

trace

 

and

 

error

 

messages”

 

on

 

page

 

150

 

v

   

“Handling

 

exceptions”

 

on

 

page

 

157

Running

 

an

 

ODA

 

At

 

run

 

time,

 

running

 

an

 

ODA

 

involves

 

the

 

following

 

components:

 

v

   

Business

 

Object

 

Designer

 

provides

 

a

 

graphical

 

interface

 

in

 

the

 

form

 

of

 

a

 

wizard

 

to

 

interact

 

with

 

the

 

ODA:

 

Business

 

Object

 

Wizard.

 

The

 

wizard

 

displays

 

a

 

series

 

of

 

dialog

 

boxes

 

to

 

obtain

 

information

 

that

 

the

 

ODA

 

needs

 

to

 

generate

 

the

 

content.

 

v

   

The

 

ODA

 

runtime

 

is

 

the

 

intermediary

 

component

 

between

 

Business

 

Object

 

Wizard

 

and

 

the

 

ODA.

 

It

 

uses

 

the

 

classes

 

of

 

the

 

ODK

 

API

 

and

 

the

 

ODK

 

infrastructure

 

to

 

communicate

 

with

 

the

 

ODA.

 

It

 

is

 

the

 

ODA

 

runtime

 

that

 

you

 

start

 

with

 

the

 

ODA

 

startup

 

script.

 

v

   

The

 

ODA

 

is

 

the

 

component

 

that

 

“discovers”

 

source

 

nodes

 

in

 

the

 

data

 

source

 

and

 

generates

 

the

 

content.

 

The

 

ODA

 

receives

 

information

 

in

 

the

 

dialog

 

boxes

 

of

 

Business

 

Object

 

Wizard

 

from

 

the

 

ODA

 

runtime.

 

It

 

then

 

sends

 

information

 

(such

 

as

 

the

 

generated

 

content)

 

to

 

the

 

ODA

 

runtime,

 

which

 

sends

 

it

 

to

 

Business

 

Object

 

Wizard.

Figure

 

52

 

shows

 

the

 

components

 

of

 

the

 

ODA

 

runtime

 

architecture.

   

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

87



To

 

generate

 

the

 

business

 

object

 

definitions,

 

the

 

ODA

 

must

 

take

 

the

 

following

 

steps:

 

1.

   

Obtain

 

values

 

for

 

the

 

ODA

 

configuration

 

properties

 

(such

 

as

 

user

 

name

 

and

 

database

 

type)

 

that

 

the

 

ODA

 

requires

 

to

 

connect

 

to

 

the

 

data

 

source

 

(such

 

as

 

an

 

application,

 

database,

 

or

 

filesystem).

 

2.

   

Use

 

these

 

configuration

 

properties

 

to

 

connect

 

to

 

the

 

data

 

source.

 

3.

   

Obtain

 

the

 

list

 

of

 

source

 

nodes

 

for

 

which

 

business

 

object

 

definitions

 

are

 

to

 

be

 

created.

 

4.

   

Discover

 

the

 

requirements

 

for

 

the

 

data-source

 

entity

 

underlying

 

the

 

source

 

node

 

(as

 

defined

 

by

 

an

 

application,

 

database

 

table,

 

filesystem,

 

or

 

DTD).

 

5.

   

Generate

 

business

 

object

 

definitions

 

that

 

meet

 

the

 

requirements

 

of

 

the

 

WebSphere

 

business

 

integration

 

system

 

and

 

the

 

component

 

that

 

processes

 

the

 

business

 

object,

 

and

 

return

 

the

 

business

 

object

 

definitions

 

to

 

users.

Note:

  

In

 

addition

 

to

 

business

 

object

 

definitions,

 

an

 

ODA

 

can

 

also

 

generate

 

files

 

as

 

content.

 

For

 

more

 

information,

 

see

 

“Generating

 

content”

 

on

 

page

 

91.

 

Table

 

16

 

summarizes

 

the

 

steps

 

in

 

the

 

running

 

of

 

an

 

ODA

 

and

 

the

 

steps

 

in

 

Business

 

Object

 

Wizard

 

that

 

initiate

 

them.

  

Table

 

16.

 

Running

 

the

 

Object

 

Discovery

 

Agent

 

Task

 

Step

 

in

 

Business

 

Object

 

Wizard

 

For

 

more

 

information

 

1.

 

Select

 

the

 

desired

 

ODA

 

to

 

start

 

Step

 

1:

 

Select

 

Agent

 

“Selecting

 

the

 

ODA”

 

on

 

page

 

89

 

Business Object
Wizard

Business Object Designer

ODA runtime

Data source
(database, application, filesystem)

Object Discovery Agent
(ODA)

  

Figure

 

52.

 

Object

 

Discovery

 

Agent

 

Architecture

  

88

 

Business

 

Object

 

Development

 

Guide



Table

 

16.

 

Running

 

the

 

Object

 

Discovery

 

Agent

 

(continued)

 

Task

 

Step

 

in

 

Business

 

Object

 

Wizard

 

For

 

more

 

information

 

2.

 

Obtain

 

the

 

ODA

 

configuration

 

properties,

 

including

 

those

 

that

 

describe

 

the

 

data

 

source

 

to

 

open.

 

Step

 

2:

 

Configure

 

Agent

 

“Obtaining

 

ODA

 

configuration

 

properties”

 

3.

 

Obtain

 

the

 

source

 

data

 

for

 

which

 

to

 

generate

 

the

 

ODA

 

content.

 

Step

 

3:

 

Select

 

Source

 

“Selecting

 

and

 

confirming

 

source

 

data”

 

on

 

page

 

91

 

4.

 

Confirm

 

the

 

source

 

data

 

that

 

you

 

have

 

selected.

 

Step

 

4:

 

Confirm

 

Source

 

Nodes

 

“Selecting

 

and

 

confirming

 

source

 

data”

 

on

 

page

 

91

 

5.

 

Generate

 

the

 

business

 

object

 

definitions.

 

Step

 

5:

 

Generating

 

Business

 

Objects

 

“Generating

 

content”

 

on

 

page

 

91

 

Business

 

Object

 

Properties

 

“Obtaining

 

business-object

 

properties”

 

on

 

page

 

93

 

6.

 

Save

 

the

 

business

 

object

 

definitions.

 

Step

 

6:

 

Save

 

Business

 

Objects

 

“Saving

 

content”

 

on

 

page

 

95

   

Selecting

 

the

 

ODA

 

When

 

users

 

choose

 

the

 

File

 

>

 

New

 

Using

 

ODA

 

Business

 

Object

 

Designer

 

invokes

 

Business

 

Object

 

Wizard

 

to

 

run

 

the

 

ODA.

 

Step

 

1

 

of

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Select

 

Agent

 

dialog

 

box,

 

which

 

provides

 

graphical

 

access

 

to

 

all

 

available

 

Object

 

Discovery

 

Agents.

 

From

 

this

 

dialog

 

box,

 

users

 

select

 

the

 

ODA

 

to

 

run.

 

Business

 

Object

 

Wizard

 

connects

 

to

 

this

 

ODA

 

with

 

the

 

following

 

steps:

 

v

   

Instantiates

 

an

 

ODA

 

object,

 

which

 

is

 

an

 

object

 

of

 

the

 

ODA

 

class.

 

The

 

ODA

 

class

 

is

 

the

 

extension

 

of

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2.

 

It

 

defines

 

the

 

behavior

 

of

 

the

 

ODA.

 

v

   

Obtains

 

a

 

handle

 

to

 

the

 

ODA

 

object,

 

which

 

can

 

be

 

used

 

to

 

access

 

this

 

object

 

when

 

started.

Note:

  

An

 

ODA

 

must

 

already

 

be

 

started

 

for

 

Business

 

Object

 

Wizard

 

to

 

list

 

it

 

as

 

an

 

ODA

 

available

 

to

 

run.

 

For

 

more

 

information,

 

see

 

“Before

 

using

 

an

 

ODA”

 

on

 

page

 

64.

 

For

 

more

 

information

 

on

 

how

 

to

 

create

 

the

 

ODA

 

class,

 

see

 

“Extending

 

the

 

ODA

 

base

 

class”

 

on

 

page

 

99.

 

Obtaining

 

ODA

 

configuration

 

properties

 

Step

 

2

 

of

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Configure

 

Agent

 

dialog

 

box,

 

which

 

shows

 

the

 

ODA’s

 

configuration

 

properties.

 

Configuration

 

properties

 

are

 

those

 

properties

 

that

 

the

 

ODA

 

needs

 

to

 

be

 

able

 

to

 

begin

 

running.

 

The

 

ODK

 

API

 

represents

 

a

 

configuration

 

property

 

as

 

an

 

agent-property

 

(AgentProperty)

 

object.

 

In

 

this

 

step,

 

the

 

wizard

 

displays

 

the

 

configuration

 

properties,

 

allows

 

you

 

to

 

update

 

them,

 

and

 

then

 

writes

 

the

 

user-initialized

 

properties

 

into

 

the

 

ODA

 

runtime

 

memory.

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

89



As

 

Figure

 

53

 

shows,

 

Business

 

Object

 

Wizard

 

takes

 

the

 

following

 

actions:

 

1.

   

Obtains

 

the

 

configuration

 

properties

 

from

 

the

 

selected

 

ODA

 

and

 

displays

 

them

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box.

 

To

 

obtain

 

the

 

configuration

 

properties

 

from

 

the

 

ODA,

 

the

 

wizard

 

calls

 

the

 

getAgentProperties()

 

method,

 

which

 

is

 

defined

 

in

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2.

 

This

 

method

 

is

 

an

 

abstract

 

method

 

that

 

the

 

ODA

 

developer

 

must

 

implement

 

as

 

part

 

of

 

the

 

ODA

 

class.

 

It

 

returns

 

the

 

ODA’s

 

configuration

 

properties

 

to

 

Business

 

Object

 

Wizard

 

as

 

an

 

array

 

of

 

AgentProperty

 

objects.

 

These

 

configuration

 

properties

 

can

 

include

 

the

 

names,

 

types,

 

any

 

valid

 

values,

 

descriptions,

 

input

 

restrictions,

 

and

 

any

 

default

 

values.

 

In

 

addition

 

to

 

the

 

configuration

 

properties

 

that

 

getAgentProperties()

 

provides,

 

Business

 

Object

 

Wizard

 

always

 

provides

 

a

 

set

 

of

 

standard

 

configuration

 

properties,

 

which

 

are

 

common

 

to

 

all

 

ODAs:

 

v

   

MessageFile

 

v

   

TraceLevel

 

v

   

TraceFileName

 

For

 

more

 

information,

 

see

 

“Obtaining

 

configuration

 

properties”

 

on

 

page

 

101.

 

2.

   

From

 

the

 

Configure

 

Agent

 

dialog

 

box,

 

accepts

 

entered

 

values

 

or

 

changes

 

for

 

the

 

configuration

 

properties.

 

The

 

wizard

 

sends

 

the

 

user-initialized

 

configuration

 

properties

 

to

 

the

 

ODA.

 

Business

 

Object

 

Wizard

 

saves

 

these

 

properties

 

in

 

the

 

ODA

 

runtime

 

memory.

 

Within

 

the

 

ODA,

 

you

 

can

 

access

 

these

 

properties

 

through

 

an

 

instance

 

of

 

the

 

ODKUtility

 

class,

 

which

 

provides

 

the

 

getAgentProperty()

 

and

 

getAllAgentProperties()

 

methods

 

for

 

this

 

purpose.

 

3.

   

Initializes

 

the

 

ODA’s

 

metadata,

 

which

 

provides

 

information

 

about

 

the

 

ODA

 

and

 

its

 

capabilities.

 

After

 

it

 

calls

 

getAgentProperties(),

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getMetaData()

 

method

 

of

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2.

 

This

 

method

 

is

 

an

 

abstract

 

method

 

that

 

the

 

ODA

 

developer

 

must

 

implement

 

as

 

part

 

of

 

the

 

ODA

 

class.

 

It

 

returns

 

an

 

initialized

 

AgentMetaData

 

object

 

that

 

contains

 

the

 

ODA

 

metadata.

 

4.

   

Initializes

 

the

 

ODA

 

based

 

on

 

the

 

user-initialized

 

startup

 

properties.

 

To

 

initialize

 

the

 

ODA,

 

the

 

wizard

 

calls

 

the

 

init()

 

method

 

of

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2.

 

This

 

method

 

is

 

an

 

abstract

 

method

 

that

 

the

 

ODA

 

developer

 

must

 

implement

 

as

 

part

 

of

 

the

 

ODA

 

class.

 

It

 

performs

 

initialization

 

tasks

 

such

 

as

 

resource

 

allocation

 

and

 

creating

 

a

 

connection

 

to

 

the

 

data

 

source.

Object Discovery Agent

getAgentProperties()

Send initialized
configuration-property array

Retrieve with
getAgentProperty() or
getAllAgentProperties()

init()

Display Configure Agent
dialog

Business Object Wizard

Write user-initialized
configuration properties

into ODA-runtime memory

Begin Step 2

Initialize ODA

3

4

1

2

  

Figure

 

53.

 

Configure

 

Agent

 

(Step

 

2)

 

of

 

Business

 

Object

 

Wizard

  

90

 

Business

 

Object

 

Development

 

Guide



This

 

chapter

 

provides

 

the

 

following

 

information

 

on

 

how

 

to

 

implement

 

the

 

methods

 

involved

 

in

 

the

 

initialization

 

of

 

an

 

ODA:

  

Initialization

 

method

 

For

 

more

 

information

 

getAgentProperties()

 

“Obtaining

 

configuration

 

properties”

 

on

 

page

 

101

 

getMetaData()

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103

 

init()

 

“Initializing

 

the

 

ODA

 

start”

 

on

 

page

 

105

   

Selecting

 

and

 

confirming

 

source

 

data

 

Step

 

3

 

of

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Select

 

Source

 

dialog

 

box,

 

which

 

displays

 

the

 

source

 

nodes

 

of

 

the

 

data

 

source.

 

The

 

source

 

nodes

 

are

 

arranged

 

in

 

the

 

source-node

 

hierarchy.

 

Each

 

source

 

node

 

is

 

the

 

name

 

of

 

an

 

object

 

that

 

the

 

ODA

 

has

 

“discovered”

 

in

 

the

 

data

 

source.

 

It

 

can

 

either

 

be

 

expanded

 

to

 

display

 

other

 

child

 

nodes

 

or

 

selected

 

for

 

generation

 

into

 

content.

 

Users

 

can

 

expand

 

this

 

source-node

 

hierarchy

 

to

 

choose

 

objects

 

in

 

the

 

data

 

source

 

for

 

conversion

 

to

 

content.

 

For

 

information,

 

see

 

“Moving

 

through

 

the

 

source-node

 

hierarchy”

 

on

 

page

 

78..

 

In

 

Step

 

3,

 

the

 

wizard

 

takes

 

the

 

following

 

actions:

 

1.

   

Obtains

 

the

 

source-node

 

hierarchy

 

from

 

the

 

selected

 

ODA

 

and

 

displays

 

it

 

top

 

level

 

in

 

the

 

Select

 

Source

 

dialog

 

box.

 

To

 

obtain

 

the

 

source-node

 

hierarchy,

 

the

 

wizard

 

calls

 

the

 

getTreeNodes()

 

method

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

The

 

ODA

 

developer

 

must

 

implement

 

this

 

method

 

as

 

part

 

of

 

the

 

ODA

 

class’s

 

implementation

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

It

 

searches

 

the

 

data

 

source

 

to

 

“discover”

 

source

 

nodes

 

and

 

returns

 

these

 

source

 

nodes

 

to

 

Business

 

Object

 

Wizard

 

as

 

an

 

array

 

of

 

TreeNode

 

objects.

 

When

 

users

 

expand

 

a

 

node

 

for

 

the

 

first

 

time,

 

the

 

wizard

 

calls

 

getTreeNodes()

 

to

 

display

 

that

 

particular

 

level

 

in

 

the

 

source-node

 

hierarchy.

 

Users

 

can

 

traverse

 

this

 

hierarchy

 

to

 

select

 

the

 

level

 

of

 

detail.

 

For

 

more

 

information,

 

see

 

“Moving

 

through

 

the

 

source-node

 

hierarchy”

 

on

 

page

 

78.

 

2.

   

From

 

the

 

Select

 

Source

 

dialog

 

box,

 

keeps

 

track

 

of

 

the

 

names

 

of

 

the

 

source

 

nodes

 

in

 

the

 

hierarchy

 

that

 

you

 

select

 

for

 

content

 

generation.

 

The

 

wizard

 

generates

 

an

 

array

 

that

 

contains

 

the

 

names

 

of

 

the

 

selected

 

source

 

nodes.

Step

 

4

 

of

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Confirm

 

Source

 

Nodes

 

dialog

 

box,

 

which

 

displays

 

the

 

selected

 

source

 

nodes.

 

Users

 

can

 

either

 

confirm

 

the

 

selections

 

or

 

go

 

back

 

to

 

the

 

Select

 

Source

 

dialog

 

box

 

to

 

reselect

 

source

 

nodes.

 

When

 

the

 

Next

 

button

 

is

 

clicked,

 

the

 

wizard

 

begins

 

the

 

content

 

generation.

 

For

 

information

 

on

 

how

 

to

 

implement

 

the

 

getTreeNodes()

 

method,

 

see

 

“Generating

 

source

 

nodes”

 

on

 

page

 

111.

 

Generating

 

content

 

You

 

can

 

write

 

an

 

ODA

 

to

 

generate

 

one

 

or

 

both

 

of

 

the

 

content

 

types

 

listed

 

in

 

Table

 

17.

 

The

 

content

 

type

 

determines

 

the

 

structure

 

of

 

the

 

data

 

that

 

the

 

ODA

 

generates.

 

For

 

an

 

ODA

 

to

 

support

 

a

 

particular

 

content,

 

it

 

must

 

implement

 

the

 

appropriate

 

content-generation

 

interface

 

for

 

the

 

ODA.

 

Table

 

17

 

lists

 

the

 

content

 

types

 

that

 

an

 

ODA

 

can

 

support

 

as

 

well

 

as

 

the

 

associated

 

content-generation

 

interface

 

the

 

ODA

 

must

 

implement.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

91



Table

 

17.

 

Content

 

types

 

for

 

an

 

ODA

 

Content

 

type

 

Description

 

Content-generation

 

interface

 

Business

 

object

 

definitions

 

The

 

ODA

 

generates

 

business

 

object

 

definitions

 

to

 

represent

 

the

 

objects

 

in

 

the

 

data

 

source.

 

IGeneratesBoDefs

 

Binary

 

files

 

The

 

ODA

 

generates

 

file

 

objects

 

to

 

hold

 

information

 

about

 

the

 

generated

 

content.

 

IGeneratesBinFiles

   

Note:

  

With

 

this

 

release,

 

an

 

ODA

 

must

 

support

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

as

 

its

 

content.

 

Therefore,

 

it

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

interface.

 

Additionally,

 

the

 

ODA

 

can

 

support

 

the

 

generation

 

of

 

files

 

as

 

its

 

content

 

by

 

implementing

 

the

 

IGeneratesBinFiles

 

interface.

 

After

 

source

 

nodes

 

are

 

selected

 

and

 

confirmed,

 

Business

 

Object

 

Wizard

 

enters

 

Step

 

5

 

of

 

the

 

content

 

generation.

 

It

 

displays

 

the

 

Generating

 

Business

 

Objects

 

screen

 

and

 

passes

 

the

 

array

 

of

 

user-selected

 

source

 

nodes

 

(from

 

Step

 

4)

 

to

 

the

 

ODA

 

by

 

calling

 

the

 

content-generation

 

method

 

for

 

business

 

object

 

definitions,

 

generateBoDefs().

 

This

 

method

 

generates

 

the

 

corresponding

 

business

 

object

 

definitions

 

for

 

the

 

selected

 

source

 

nodes.

 

Because

 

an

 

ODA

 

must

 

support

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

in

 

the

 

on-request

 

content

 

protocol,

 

Business

 

Object

 

Wizard

 

always

 

calls

 

the

 

generateBoDefs()

 

method.

 

Therefore,

 

the

 

ODA

 

developer

 

must

 

implement

 

this

 

method

 

as

 

part

 

of

 

the

 

ODA’s

 

implementation

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

Whether

 

the

 

ODA

 

generates

 

file

 

content

 

depends

 

on

 

whether

 

it

 

implements

 

the

 

IGeneratesBinFiles

 

interface.

 

If

 

the

 

ODA

 

class

 

implements

 

this

 

interface,

 

the

 

method

 

that

 

actually

 

provides

 

the

 

generated

 

content

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

uses

 

for

 

the

 

file

 

content

 

type,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

uses

 

the

 

on-request

 

content

 

protocol

 

to

 

generate

 

content,

 

Business

 

Object

 

Wizard

 

initiates

 

content

 

generation

 

as

 

part

 

of

 

Step

 

5

 

by

 

calling

 

the

 

content-generation

 

method,

 

generatesBinFiles().

 

It

 

passes

 

to

 

this

 

method

 

the

 

array

 

of

 

user-selected

 

source

 

nodes.

 

Therefore,

 

for

 

the

 

ODA

 

to

 

support

 

file

 

content,

 

the

 

ODA

 

developer

 

must

 

implement

 

this

 

method

 

as

 

part

 

of

 

the

 

ODA’s

 

implementation

 

of

 

the

 

IGeneratesBinFiles

 

interface.

 

v

   

If

 

the

 

ODA

 

uses

 

the

 

callback

 

content

 

protocol

 

to

 

generate

 

content,

 

the

 

ODA

 

(or

 

some

 

external

 

process)

 

initiates

 

content

 

generation

 

by

 

calling

 

a

 

user-defined

 

method.

 

The

 

ODA

 

developer

 

must

 

implement

 

a

 

mechanism

 

to

 

generate

 

the

 

files.

Therefore,

 

whether

 

Business

 

Object

 

Wizard

 

calls

 

the

 

content-generation

 

method

 

for

 

files,

 

generateBinFiles(),

 

depends

 

on

 

the

 

following:

 

v

   

Whether

 

the

 

ODA

 

implements

 

that

 

IGeneratesBinFiles

 

interface

 

v

   

If

 

it

 

implements

 

IGeneratesBinFiles,

 

which

 

content

 

protocol

 

the

 

ODA

 

uses

 

to

 

generate

 

files

Note:

  

For

 

more

 

information

 

on

 

content

 

protocols,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

Regardless

 

of

 

the

 

content

 

protocol

 

uses,

 

the

 

generation

 

of

 

content

 

involves

 

the

 

following

 

steps:

 

1.

   

Optionally,

 

obtaining

 

any

 

additional

 

information,

 

such

 

as

 

verb

 

values,

 

as

 

business-object

 

properties.

   

92

 

Business

 

Object

 

Development

 

Guide



2.

   

Generating

 

the

 

requested

 

content

 

and

 

saving

 

it

 

in

 

the

 

generated-content

 

structure

 

in

 

ODA

 

memory.

The

 

following

 

sections

 

summarize

 

these

 

steps.

 

For

 

a

 

more

 

detailed

 

overview

 

of

 

the

 

content-generation

 

process,

 

Table

 

18

 

shows

 

where

 

to

 

find

 

more

 

information

 

for

 

each

 

of

 

the

 

supported

 

content

 

types.

  

Table

 

18.

 

Content-generation

 

process

 

Content

 

type

 

For

 

more

 

information

 

Business

 

object

 

definitions

 

“Generating

 

business

 

object

 

definitions”

 

on

 

page

 

118

 

Binary

 

files

 

“Generating

 

files”

 

on

 

page

 

135

   

Obtaining

 

business-object

 

properties

 

Often

 

the

 

ODA

 

needs

 

additional

 

information

 

before

 

it

 

can

 

generate

 

the

 

business

 

object

 

definitions.

 

The

 

ODA

 

can

 

request

 

this

 

additional

 

information

 

by

 

defining

 

business-object

 

properties.

 

The

 

ODK

 

API

 

represents

 

a

 

business-object

 

property

 

as

 

an

 

agent-property

 

(AgentProperty)

 

object.

 

To

 

collect

 

business-object

 

properties,

 

the

 

ODA

 

can

 

have

 

Business

 

Object

 

Wizard

 

display

 

the

 

BO

 

Properties

 

dialog

 

box.

 

In

 

this

 

dialog

 

box,

 

the

 

wizard

 

displays

 

the

 

business-object

 

properties,

 

allows

 

updates,

 

and

 

writes

 

the

 

user-initialized

 

properties

 

into

 

the

 

ODA

 

runtime

 

memory,

 

as

 

Figure

 

51

 

on

 

page

 

82

 

shows.

 

To

 

display

 

the

 

BO

 

Properties

 

dialog

 

box,

 

the

 

content-generation

 

method

 

of

 

the

 

ODA

 

calls

 

the

 

getBOSpecificProps()

 

method

 

(defined

 

in

 

the

 

ODKUtility

 

class).

   

As

 

Figure

 

54

 

shows,

 

the

 

getBOSpecificProps()

 

method

 

takes

 

the

 

following

 

steps:

 

1.

   

Sends

 

the

 

business-object

 

properties

 

to

 

Business

 

Object

 

Wizard,

 

which

 

displays

 

them

 

in

 

the

 

BO

 

Properties

 

dialog

 

box.

 

To

 

send

 

the

 

business-object

 

properties,

 

the

 

getBOSpecificProps()

 

method

 

sends

 

as

 

an

 

argument

 

the

 

initialized

 

array

 

of

 

agent-property

 

(AgentProperty)

 

objects,

 

one

 

object

 

for

 

each

 

business-object

 

property

 

to

 

display.

 

2.

   

From

 

the

 

BO

 

Properties

 

dialog

 

box,

 

values

 

can

 

be

 

added

 

or

 

changed.

 

After

 

the

 

Next

 

button

 

is

 

clicked,

 

the

 

wizard

 

sends

 

the

 

user-initialized

 

business-object

 

properties

 

back

 

to

 

the

 

getBOSpecificProps()

 

method

 

in

 

the

 

ODA.

 

You

 

can

 

access

 

these

 

business-object

 

properties

 

within

 

the

 

ODA

 

through

 

the

 

Java

 

Hashtable

 

object

 

that

 

getBOSpecificProps()

 

returns.

 

Alternatively,

 

you

 

can

 

Object Discovery Agent

getBoSpecificProps()
(send initialized
business-property array)

Retrieve directly through
Hashtable object, or with
getBOSpecificProperty() or
getAllBOSpecificProperties()

Business Object Wizard

Write user-initialized
business-object properties
into ODA-runtime memory

Display BO Properties
dialog

2

1

  

Figure

 

54.

 

Obtaining

 

business-object

 

properties

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

93



access

 

these

 

properties

 

through

 

an

 

instance

 

of

 

the

 

ODKUtility

 

class,

 

which

 

provides

 

the

 

getBOSpecificProperty()

 

and

 

getAllBOSpecificProperties()

 

methods.

The

 

ODA

 

can

 

call

 

getBOSpecificProps()

 

repeatedly

 

to

 

obtain

 

different

 

sets

 

of

 

business-object

 

properties.

 

For

 

more

 

information

 

on

 

how

 

to

 

use

 

the

 

getBOSpecificProps()

 

method,

 

see

 

“Requesting

 

business-object

 

properties”

 

on

 

page

 

119.

 

Providing

 

generated

 

content

 

The

 

ODA

 

provides

 

its

 

generated

 

content

 

to

 

Business

 

Object

 

Wizard

 

in

 

two

 

parts:

 

v

   

The

 

content

 

metadata

 

A

 

content-metadata

 

(ContentMetaData)

 

object

 

contains

 

information

 

about

 

the

 

ODA’s

 

generated

 

content.

 

Business

 

Object

 

Wizard

 

uses

 

this

 

information

 

to

 

determine

 

which

 

content-retrieval

 

method

 

to

 

use

 

to

 

retrieve

 

the

 

generated

 

content.

 

v

   

The

 

content

 

itself

 

The

 

ODA

 

writes

 

the

 

generated

 

content

 

to

 

a

 

generated-content

 

structure,

 

somewhere

 

that

 

is

 

accessible

 

by

 

the

 

methods

 

of

 

the

 

ODA

 

class.

 

For

 

example,

 

it

 

could

 

write

 

the

 

content

 

to

 

an

 

array

 

that

 

is

 

a

 

member

 

variable

 

of

 

the

 

ODA

 

class.

The

 

method

 

that

 

provides

 

the

 

generated

 

content

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

uses

 

for

 

a

 

particular

 

content

 

type,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

uses

 

the

 

on-request

 

content

 

protocol

 

to

 

generate

 

content,

 

it

 

is

 

the

 

content-generation

 

method

 

that

 

populates

 

the

 

generated-content

 

structure

 

and

 

returns

 

a

 

content-metadata

 

object

 

to

 

Business

 

Object

 

Wizard.

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

content-generation

 

method

 

based

 

on

 

the

 

content

 

type,

 

as

 

follows:

 

–

   

For

 

business

 

object

 

definitions,

 

generateBoDefs()

 

in

 

the

 

IGeneratesBoDefs

 

interface

 

–

   

For

 

files,

 

generateBinFiles()

 

in

 

the

 

IGenerateBinFiles

 

interface
v

   

If

 

the

 

ODA

 

uses

 

the

 

callback

 

content

 

protocol

 

to

 

generate

 

content,

 

it

 

is

 

a

 

user-defined

 

method

 

that

 

populates

 

the

 

generated-content

 

structure

 

and

 

sends

 

a

 

content-metadata

 

object

 

to

 

Business

 

Object

 

Wizard.

Note:

  

For

 

more

 

information

 

on

 

content

 

protocols,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

The

 

following

 

table

 

shows

 

where

 

to

 

find

 

more

 

information

 

on

 

how

 

to

 

provide

 

generated

 

content:

  

Content

 

type

 

For

 

more

 

information

 

Business

 

object

 

definitions

 

“Providing

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

130

 

Binary

 

files

 

“Providing

 

generated

 

files”

 

on

 

page

 

138

   

To

 

retrieve

 

the

 

generated

 

content,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

appropriate

 

content-retrieval

 

method

 

as

 

Table

 

19

 

shows.

   

94

 

Business

 

Object

 

Development

 

Guide



Table

 

19.

 

Content-retrieval

 

methods

 

Content

 

type

 

Content-retrieval

 

method

 

For

 

more

 

information

 

Business

 

object

 

definitions

 

IGeneratesBoDefs.getBoDefs()

 

“Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

131

 

Binary

 

files

 

IGeneratesBinFiles.getBinFile()

 

“Providing

 

access

 

to

 

generated

 

files”

 

on

 

page

 

139

   

The

 

content-retrieval

 

method

 

accesses

 

the

 

generated-content

 

structure

 

within

 

the

 

ODA

 

object

 

and

 

returns

 

specified

 

content

 

in

 

an

 

array

 

to

 

Business

 

Object

 

Wizard.

 

Business

 

Object

 

Wizard

 

must

 

have

 

access

 

to

 

the

 

generated

 

content

 

before

 

it

 

can

 

process

 

the

 

request

 

to

 

save

 

the

 

content

 

in

 

Step

 

6.

 

For

 

more

 

information,

 

see

 

“Saving

 

content.”

 

Saving

 

content

 

Step

 

6

 

of

 

Business

 

Object

 

Wizard

 

displays

 

the

 

Save

 

Business

 

Objects

 

dialog

 

box,

 

which

 

provides

 

options

 

for

 

saving

 

the

 

generated

 

business

 

object

 

definitions.

 

As

 

Figure

 

42

 

on

 

page

 

74

 

shows,

 

Business

 

Object

 

Wizard

 

provides

 

the

 

ability

 

to

 

save

 

generated

 

content

 

to

 

an

 

ICL

 

project

 

or

 

a

 

file,

 

or

 

to

 

open

 

each

 

business

 

object

 

definition

 

in

 

Business

 

Object

 

Designer.

 

To

 

save

 

the

 

generated

 

business

 

object

 

definitions

 

in

 

the

 

specified

 

format,

 

Business

 

Object

 

Wizard

 

must

 

access

 

the

 

generated

 

content.

 

It

 

has

 

retrieved

 

this

 

content

 

in

 

the

 

previous

 

step

 

(Step

 

5),

 

using

 

the

 

ODA’s

 

content-retrieval

 

method

 

listed

 

in

 

Table

 

19.

 

Overview

 

of

 

the

 

ODA

 

development

 

process

 

This

 

section

 

provides

 

the

 

following

 

information

 

about

 

the

 

process

 

to

 

develop

 

an

 

ODA:

 

v

   

“Tools

 

for

 

ODA

 

development”

 

v

   

“ODA

 

development

 

process”

 

on

 

page

 

98

Tools

 

for

 

ODA

 

development

 

An

 

ODA

 

is

 

one

 

of

 

the

 

possible

 

components

 

of

 

an

 

WebSphere

 

Business

 

Integration

 

Adapter.

 

An

 

adapter

 

includes

 

run-time

 

components

 

to

 

support

 

communication

 

between

 

an

 

integration

 

broker

 

and

 

applications

 

or

 

technologies.

 

One

 

of

 

these

 

run-time

 

components

 

is

 

the

 

ODA,

 

which

 

creates

 

the

 

business

 

object

 

definitions

 

for

 

the

 

connector

 

to

 

use

 

at

 

run

 

time.

 

The

 

connector

 

is

 

the

 

run-time

 

component

 

that

 

handles

 

communication

 

between

 

an

 

application

 

(or

 

technology)

 

and

 

an

 

integration

 

broker.

 

The

 

adapter

 

also

 

includes

 

an

 

adapter

 

framework,

 

which

 

includes

 

components

 

for

 

the

 

configuration,

 

run

 

time,

 

and

 

development

 

of

 

custom

 

adapters

 

in

 

cases

 

where

 

a

 

prebuilt

 

adapter

 

for

 

a

 

particular

 

legacy

 

or

 

specialized

 

application

 

is

 

not

 

currently

 

available

 

as

 

part

 

of

 

the

 

WebSphere

 

Business

 

Integration

 

Adapter

 

product.

 

For

 

development

 

of

 

an

 

ODA,

 

the

 

adapter

 

framework

 

includes

 

the

 

development

 

support

 

listed

 

in

 

Table

 

20.

  

Table

 

20.

 

Adapter

 

framework

 

support

 

for

 

the

 

development

 

of

 

an

 

ODA

 

Adapter

 

component

 

Configuration

 

tool

 

API

 

Business

 

object

 

definition

 

Business

 

Object

 

Designer

 

Not

 

applicable

 

Object

 

Discovery

 

Agent

 

(ODA)

 

Business

 

Object

 

Designer

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

95



Note:

  

The

 

adapter

 

framework

 

also

 

provides

 

support

 

for

 

the

 

development

 

of

 

connectors.

 

For

 

more

 

information,

 

see

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

or

 

Connector

 

Development

 

Guide

 

for

 

Java.

 

In

 

addition

 

to

 

the

 

WebSphere

 

Business

 

Integration

 

Adapter

 

Framework,

 

the

 

Adapter

 

Development

 

Kit

 

(ADK)

 

is

 

a

 

toolkit

 

that

 

provides

 

code

 

samples

 

of

 

ODAs

 

and

 

connectors.

 

For

 

more

 

information,

 

see

 

“Adapter

 

Development

 

Kit.”

 

Adapter

 

Development

 

Kit

 

The

 

Adapter

 

Development

 

Kit

 

(ADK)

 

provides

 

files

 

and

 

samples

 

to

 

assist

 

in

 

the

 

development

 

of

 

an

 

adapter.

 

It

 

provides

 

samples

 

for

 

many

 

of

 

the

 

adapter

 

components,

 

including

 

an

 

Object

 

Discovery

 

Agent

 

(ODA),

 

a

 

connector,

 

and

 

a

 

data

 

handler.

 

The

 

ADK

 

provides

 

these

 

samples

 

in

 

the

 

DevelopmentKits

 

subdirectory

 

of

 

the

 

product

 

directory.

 

Note:

  

The

 

ADK

 

is

 

part

 

of

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

product

 

and

 

requires

 

a

 

separate

 

installation.

 

Therefore,

 

to

 

have

 

access

 

to

 

the

 

development

 

samples

 

in

 

the

 

ADK,

 

you

 

must

 

have

 

access

 

to

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

product

 

and

 

install

 

the

 

ADK.

 

Please

 

note

 

that

 

the

 

ADK

 

is

 

available

 

only

 

for

 

Windows

 

systems.

 

Table

 

21

 

lists

 

the

 

samples

 

that

 

the

 

ADK

 

provides

 

for

 

the

 

development

 

of

 

an

 

ODA

 

as

 

well

 

as

 

the

 

subdirectory

 

of

 

the

 

DevelopmentKits

 

directory

 

in

 

which

 

they

 

reside.

  

Table

 

21.

 

ADK

 

Samples

 

for

 

ODA

 

Development

 

Adapter

 

Development

 

Kit

 

component

 

Description

 

DevelopmentKits

 

subdirectory

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

Provides

 

ODA

 

samples

 

Odk

 

Twineball

 

adapter

 

sample

 

Provides

 

a

 

sample

 

adapter,

 

which

 

includes

 

an

 

ODA

 

Twineball_sample

   

As

 

Table

 

21

 

shows,

 

the

 

Adapter

 

Development

 

Kit

 

includes

 

samples

 

of

 

Object

 

Discovery

 

Agents

 

(ODAs).

 

These

 

samples

 

reside

 

in

 

the

 

following

 

directory:

 

DevelopmentKits\Odk

 

For

 

more

 

information,

 

see

 

“Development

 

support

 

for

 

ODAs”

 

on

 

page

 

97.

 

Note:

  

As

 

Table

 

21

 

shows,

 

the

 

ADK

 

also

 

provides

 

support

 

for

 

the

 

development

 

of

 

connectors,

 

another

 

adapter

 

component.

 

For

 

more

 

information,

 

see

 

the

 

Connector

 

Development

 

Guide

 

for

 

C++

 

or

 

Connector

 

Development

 

Guide

 

for

 

Java.

 

Development

 

support

 

for

 

business

 

object

 

definitions

 

Table

 

22

 

shows

 

the

 

tools

 

that

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

and

 

WebSphere

 

InterChange

 

Server

 

products

 

provide

 

to

 

assist

 

in

 

the

 

development

 

of

 

business

 

object

 

definitions.

  

Table

 

22.

 

Tools

 

for

 

development

 

of

 

business

 

object

 

definitions

 

Development

 

tool

 

Description

 

Business

 

Object

 

Designer

 

Graphical

 

tool

 

that

 

assists

 

in

 

the

 

creation

 

of

 

business

 

object

 

definitions,

 

either

 

manually

 

or

 

through

 

an

 

ODA.

   

For

 

a

 

brief

 

introduction

 

to

 

business

 

object

 

definitions,

 

see

 

“Business

 

object

 

definitions”

 

on

 

page

 

4.

   

96

 

Business

 

Object

 

Development

 

Guide



Development

 

support

 

for

 

ODAs

 

Table

 

23

 

shows

 

the

 

tools

 

that

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

and

 

WebSphere

 

InterChange

 

Server

 

products

 

provide

 

to

 

assist

 

in

 

the

 

development

 

of

 

an

 

ODA.

  

Table

 

23.

 

Tools

 

for

 

development

 

of

 

ODAs

 

Development

 

tool

 

Description

 

Business

 

Object

 

Designer

 

Graphical

 

tool

 

that

 

assists

 

in

 

the

 

creation

 

of

 

business

 

object

 

definitions,

 

either

 

manually

 

or

 

through

 

an

 

ODA.

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

Contains:

 

v

   

ODK

 

API:

 

a

 

set

 

of

 

Java

 

classes

 

with

 

which

 

you

 

can

 

create

 

a

 

custom

 

ODA.

 

For

 

an

 

overview

 

of

 

these

 

classes,

 

see

 

Chapter

 

7,

 

“Overview

 

of

 

the

 

ODK

 

API,”

 

on

 

page

 

165.

 

v

   

ODA

 

runtime:

 

a

 

set

 

of

 

Java

 

classes

 

that

 

the

 

ODA

 

runtime

 

uses

 

to

 

handle

 

communication

 

between

 

the

 

ODA

 

and

 

Business

 

Object

 

Designer

 

v

   

ODA

 

samples:

 

installed

 

as

 

part

 

of

 

the

 

Adapter

 

Development

 

Kit

 

(ADK).

 

For

 

more

 

information,

 

see

 

“Adapter

 

Development

 

Kit”

 

on

 

page

 

96.

   

As

 

Table

 

23

 

shows,

 

the

 

ODK

 

provides

 

for

 

the

 

ODA

 

developer

 

both

 

the

 

ODK

 

API

 

(which

 

is

 

the

 

library

 

of

 

methods

 

to

 

use

 

in

 

the

 

ODA)

 

and

 

sample

 

ODAs,

 

which

 

reside

 

in

 

the

 

following

 

product

 

subdirectory:

 

DevelopmentKits\Odk\Samples

 

The

 

ODK

 

includes

 

the

 

following

 

sample

 

ODAs

  

Table

 

24.

 

Sample

 

ODAs

 

ODA

 

sample

 

Description

 

Subdirectory

 

of

 

DevelopmentKits\Odk

 

Roman

 

Army

 

ODA

 

Converts

 

the

 

names

 

of

 

Roman

 

generals

 

and

 

soldiers

 

from

 

an

 

XML

 

file

 

to

 

business

 

object

 

definitions

 

and

 

provides

 

some

 

binary

 

files

 

that

 

describe

 

the

 

conversion.

 

This

 

ODA

 

uses

 

the

 

ODK

 

API,

 

as

 

described

 

in

 

this

 

chapter.

 

For

 

startup

 

scripts:

 

Samples

 

For

 

external

 

files

 

and

 

.jar

 

file:

 

RomanArmy

 

For

 

Java

 

source:

 

com\ibm\btools\ODK2\RomanArmy

 

JDBC

 

ODA

 

Converts

 

JDBC

 

data

 

(tables

 

and

 

schemas)

 

to

 

business

 

object

 

definitions.

 

For

 

this

 

sample

 

ODA

 

to

 

run,

 

it

 

must

 

have

 

access

 

to

 

a

 

JDBC

 

database.

 

This

 

sample

 

is

 

based

 

on

 

a

 

previous

 

version

 

of

 

the

 

ODK

 

API,

 

which

 

handles

 

generation

 

of

 

business

 

object

 

definitions

 

only,

 

not

 

generation

 

of

 

file

 

content.

 

Note:

 

If

 

you

 

are

 

developing

 

a

 

new

 

ODA,

 

use

 

this

 

sample

 

only

 

as

 

an

 

example

 

of

 

more

 

complex

 

business-object-definition

 

creation.

 

Use

 

the

 

Roman

 

Army

 

ODA

 

sample

 

as

 

an

 

example

 

of

 

how

 

your

 

new

 

ODA

 

should

 

be

 

structured.

 

For

 

startup

 

scripts:

 

Samples

 

For

 

Java

 

source:

 

com\crossworlds\JDBC

   

For

 

a

 

brief

 

introduction

 

to

 

ODAs,

 

see

 

“Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition”

 

on

 

page

 

64.

 

For

 

instructions

 

on

 

how

 

to

 

run

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

see

 

“Using

 

the

 

sample

 

ODA”

 

on

 

page

 

66.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

97



ODA

 

development

 

process

 

This

 

section

 

provides

 

an

 

overview

 

of

 

the

 

ODA

 

development

 

process,

 

which

 

includes

 

the

 

following

 

high-level

 

steps:

 

1.

   

Install

 

and

 

set

 

up

 

the

 

WebSphere

 

business

 

integration

 

system

 

software

 

and

 

install

 

the

 

Java

 

Development

 

Kit

 

(JDK).

 

2.

   

Design

 

and

 

implement

 

the

 

ODA.

Setting

 

up

 

the

 

development

 

environment

 

Before

 

you

 

start

 

the

 

development

 

process,

 

the

 

following

 

must

 

be

 

true:

 

v

   

The

 

WebSphere

 

business

 

integration

 

system

 

software

 

is

 

installed

 

on

 

a

 

machine

 

that

 

you

 

can

 

access.

 

For

 

an

 

ODA

 

to

 

run,

 

it

 

must

 

be

 

able

 

to

 

access

 

the

 

ODA

 

library,

 

CwODA.jar.

 

Therefore,

 

this

 

ODA

 

library

 

must

 

be

 

installed.

 

For

 

more

 

information,

 

see

 

your

 

product

 

installation

 

information.

   

WebSphere

 

InterChange

 

Server

 

If

 

your

 

business

 

integration

 

system

 

uses

 

InterChange

 

Server

 

(ICS),

 

the

 

CwODA.jar

 

file

 

is

 

installed

 

as

 

part

 

of

 

the

 

ICS

 

software.

 

Refer

 

to

 

the

 

System

 

Installation

 

Guide

 

for

 

UNIX

 

or

 

for

 

Windows

 

for

 

product

 

installation

 

information,

 

which

 

includes

 

how

 

to

 

install

 

and

 

start

 

up

 

the

 

ICS

 

system.

  

Other

 

integration

 

brokers

 

If

 

your

 

business

 

integration

 

system

 

uses

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

or

 

WebSphere

 

Application

 

Server,

 

you

 

must

 

install

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

product

 

to

 

install

 

the

 

CwODA.jar

 

file.

 

For

 

product

 

installation

 

information

 

for

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

product,

 

refer

 

to

 

the

 

installation

 

chapter

 

of

 

the

 

Implementation

 

Guide

 

for

 

your

 

integration

 

broker

 

(Implementation

 

Guide

 

for

 

WebSphere

 

MQ

 

Integrator

 

Broker

 

or

 

Implementation

 

Guide

 

for

 

WebSphere

 

Application

 

Server).

v

   

The

 

Java

 

Development

 

Kit

 

(JDK)

 

or

 

a

 

JDK-compliant

 

development

 

product

 

is

 

installed

 

on

 

the

 

development

 

machine.

 

For

 

the

 

required

 

version

 

of

 

the

 

JDK

 

and

 

how

 

to

 

install

 

it,

 

refer

 

to

 

your

 

product

 

installation

 

information.

 

Make

 

sure

 

to

 

update

 

the

 

PATH

 

environment

 

variable

 

to

 

include

 

the

 

installed

 

Java

 

directory.

 

If

 

WebSphere

 

InterChange

 

Server

 

is

 

your

 

integration

 

broker,

 

restart

 

ICS

 

after

 

you

 

have

 

updated

 

the

 

path.

 

v

   

The

 

development

 

environment

 

must

 

be

 

able

 

to

 

access

 

the

 

directory

 

that

 

contains

 

the

 

ODA

 

library

 

file,

 

CwODA.jar:

 

ProductDir\lib

 

To

 

compile

 

the

 

ODA,

 

the

 

compiler

 

must

 

be

 

able

 

to

 

access

 

this

 

directory

 

ODA.

 

For

 

information

 

on

 

how

 

to

 

compile

 

an

 

ODA,

 

see

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159.

Note:

  

To

 

create

 

an

 

ODA

 

and

 

test

 

its

 

generated

 

content,

 

you

 

do

 

not

 

need

 

to

 

have

 

an

 

integration

 

broker

 

or

 

a

 

connector

 

running.

 

However,

 

at

 

some

 

point,

 

the

 

connector

 

must

 

be

 

running

 

to

 

test

 

that

 

the

 

ODA’s

 

generated

 

content

 

correctly

 

describes

 

the

 

connector’s

 

business

 

objects.

 

To

 

test

 

the

 

entire

 

WebSphere

 

business

 

integration

 

system,

 

the

 

integration

 

broker

 

and

 

the

 

connector

 

must

 

be

 

able

 

to

 

communicate.

  

98

 

Business

 

Object

 

Development

 

Guide



Stages

 

of

 

ODA

 

development

 

To

 

develop

 

an

 

ODA,

 

you

 

must

 

take

 

the

 

steps

 

listed

 

in

 

Table

 

25.

  

Table

 

25.

 

Steps

 

in

 

the

 

development

 

of

 

an

 

ODA

 

ODA

 

development

 

step

 

For

 

more

 

information

 

1.

 

Extend

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

to

 

create

 

your

 

ODA

 

class.

 

“Extending

 

the

 

ODA

 

base

 

class”

 

2.

 

Implement

 

the

 

methods

 

of

 

the

 

ODA

 

class,

 

which

 

provide

 

the

 

means

 

of

 

starting

 

the

 

ODA.

 

“Starting

 

the

 

ODA”

 

on

 

page

 

101

 

3.

 

Design

 

and

 

implement

 

the

 

ODA

 

content:

 

v

   

Which

 

content

 

types

 

the

 

ODA

 

supports:

 

–

   

Business

 

object

 

definitions:

 

implement

 

the

 

IGeneratesBoDefs

 

interface

 

(required)

 

–

   

Binary

 

files:

 

implement

 

the

 

IGeneratesBinFiles

 

interface

 

(optional)

v

   

Which

 

content

 

protocols

 

the

 

ODA

 

uses:

 

–

   

on

 

request

 

(required

 

for

 

business

 

object

 

definitions)

 

–

   

callback

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107

 

4.

 

Implement

 

error

 

and

 

message

 

handling

 

for

 

all

 

ODA

 

methods.

 

Implement

 

trace

 

messages

 

at

 

the

 

appropriate

 

trace

 

levels.

 

“Handling

 

exceptions”

 

on

 

page

 

157

 

and

 

“Handling

 

trace

 

and

 

error

 

messages”

 

on

 

page

 

150

 

5.

 

Create

 

any

 

classes

 

needed

 

to

 

handle

 

data-source

 

interactions,

 

such

 

as:

 

v

   

Connection

 

management

 

v

   

Content

 

analysis

 

and

 

definition

 

IBM

 

recommends

 

that

 

you

 

modularize

 

the

 

Object

 

Discovery

 

Agent

 

into

 

component

 

classes

 

that

 

handle

 

its

 

separate

 

significant

 

processes.

 

Details

 

depend

 

on

 

your

 

data

 

source.

 

6.

 

Build

 

the

 

ODA.

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159

 

7.

 

Create

 

a

 

startup

 

script

 

for

 

the

 

new

 

ODA.

 

“Starting

 

up

 

a

 

new

 

ODA”

 

on

 

page

 

160

 

8.

 

Test

 

and

 

debug

 

the

 

ODA,

 

recoding

 

as

 

necessary.

   

Writing

 

ODA

 

code

 

is

 

only

 

one

 

part

 

of

 

the

 

overall

 

task

 

for

 

developing

 

business

 

objects.

 

Before

 

beginning

 

to

 

write

 

the

 

Object

 

Discovery

 

Agent

 

code,

 

you

 

should

 

clearly

 

understand

 

business

 

object

 

design

 

issues,

 

the

 

application

 

whose

 

entities

 

the

 

business

 

objects

 

will

 

represent,

 

and

 

the

 

connector

 

and

 

data

 

handler

 

that

 

will

 

process

 

the

 

business

 

objects.

 

You

 

should

 

also

 

be

 

familiar

 

with

 

the

 

steps

 

users

 

follow

 

in

 

Business

 

Object

 

Designer

 

to

 

create

 

a

 

business

 

object

 

definition

 

using

 

an

 

Object

 

Discovery

 

Agent.

 

Note:

  

For

 

information

 

on

 

business

 

object

 

design,

 

refer

 

to

 

Chapter

 

2,

 

“Business

 

object

 

design,”

 

on

 

page

 

17.

 

For

 

information

 

on

 

using

 

an

 

Object

 

Discovery

 

Agent

 

in

 

Business

 

Object

 

Designer,

 

see

 

“Using

 

an

 

Object

 

Discovery

 

Agent

 

to

 

create

 

a

 

business

 

object

 

definition”

 

on

 

page

 

64.

 

Extending

 

the

 

ODA

 

base

 

class

 

To

 

create

 

an

 

ODA,

 

you

 

extend

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

to

 

create

 

your

 

own

 

ODA

 

class.

 

The

 

ODKAgentBase2

 

class

 

includes

 

methods

 

for

 

initialization,

 

setup,

 

and

 

termination

 

of

 

the

 

ODA.

 

To

 

implement

 

your

 

own

 

ODA,

 

you

 

must

 

extend

 

this

 

ODA

 

base

 

class

 

to

 

create

 

your

 

ODA

 

class.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

99



To

 

derive

 

an

 

ODA

 

class,

 

follow

 

these

 

steps:

 

1.

   

Create

 

an

 

ODA

 

class

 

that

 

extends

 

the

 

ODKAgentBase2

 

class.

 

A

 

suggested

 

name

 

for

 

this

 

ODA

 

class

 

is:

     

ODAname.java

 

where

 

ODAname

 

uniquely

 

identifies

 

the

 

ODA

 

and

 

has

 

the

 

format

 

of

 

the

 

ODA’s

 

source

 

data

 

with

 

the

 

ODA

 

extension

 

(srcDataNameODA).

 

For

 

information

 

about

 

source-data

 

names,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

For

 

example,

 

to

 

create

 

an

 

ODA

 

for

 

HTML

 

objects,

 

you

 

create

 

an

 

ODA-class

 

file

 

called

 

HTMLODA.java.

 

2.

   

In

 

the

 

ODA-class

 

file,

 

define

 

a

 

package

 

name

 

to

 

contain

 

your

 

ODA.

 

By

 

convention,

 

an

 

ODA

 

package

 

name

 

has

 

the

 

following

 

format:

 

com.ibm.oda.srcDataName.ODAname

 

In

 

the

 

format

 

above,

 

ODAname

 

is

 

the

 

same

 

as

 

defined

 

in

 

step

 

1

 

and

 

srcDataName

 

is

 

the

 

same

 

as

 

in

 

step

 

1

 

except

 

that

 

it

 

is

 

in

 

lowercase

 

letters.

 

For

 

example,

 

the

 

package

 

name

 

of

 

an

 

ODA

 

for

 

HTML

 

objects

 

could

 

be

 

defined

 

in

 

the

 

ODA

 

class

 

as

 

follows:

 

package

 

com.ibm.oda.html.HTMLODA;

 

3.

   

Ensure

 

that

 

the

 

ODA-class

 

file

 

imports

 

the

 

classes

 

of

 

the

 

com.crossworlds.ODK

 

package:

     

import

 

com.crossworlds.ODK.*;

 

To

 

access

 

the

 

methods

 

of

 

the

 

ODK

 

API,

 

the

 

ODA

 

class

 

must

 

import

 

the

 

ODK

 

package,

 

which

 

is

 

contained

 

in

 

the

 

CwODK.jar

 

file

 

in

 

the

 

lib

 

subdirectory

 

of

 

the

 

product

 

directory.

 

If

 

you

 

create

 

several

 

files

 

to

 

hold

 

the

 

ODA-class

 

code,

 

you

 

must

 

import

 

the

 

classes

 

of

 

the

 

ODK

 

package

 

into

 

every

 

source

 

file.

 

4.

   

Define

 

the

 

ODA

 

class

 

and

 

include

 

in

 

the

 

definition

 

any

 

content-generation

 

interfaces

 

that

 

the

 

ODA

 

uses.

 

An

 

ODA

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

content-generation

 

interface

 

to

 

generate

 

business-object-definition

 

content.

 

Optionally,

 

it

 

can

 

also

 

implement

 

the

 

IGeneratesBinFiles

 

content-generation

 

interface

 

to

 

generate

 

binary-file

 

content.

 

For

 

example,

 

suppose

 

that

 

the

 

ODA

 

for

 

HTML

 

implements

 

only

 

the

 

required

 

the

 

IGeneratesBoDefs

 

interface.

 

Its

 

definition

 

would

 

be

 

as

 

follows:

 

public

 

class

 

HTMLODA

 

extends

 

ODKAgentBase2

 

implements

 

IGeneratesBoDefs

 

{

 

For

 

more

 

information

 

about

 

content-generation

 

interfaces,

 

see

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107.

 

5.

   

Implement

 

the

 

abstract

 

methods

 

of

 

the

 

ODKAgentBase2

 

class

 

for

 

your

 

ODA

 

class.

 

Table

 

26

 

provides

 

an

 

overview

 

of

 

these

 

methods,

 

listing

 

them

 

in

 

the

 

order

 

in

 

which

 

Business

 

Object

 

Wizard

 

calls

 

them.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

these

 

abstract

 

methods,

 

see

 

Table

 

26.

  

Table

 

26.

 

Extending

 

abstract

 

methods

 

of

 

the

 

ODKAgentBase2

 

class

 

Abstract

 

ODKAgentBase2

 

method

 

Description

 

For

 

more

 

information

 

getAgentProperties()

 

This

 

method

 

performs

 

the

 

following

 

tasks:

 

v

   

Define

 

the

 

configuration

 

properties

 

needed

 

to

 

initialize

 

the

 

ODA,

 

including

 

information

 

the

 

ODA

 

needs

 

to

 

connect

 

to

 

the

 

data

 

source.

 

v

   

Send

 

the

 

configuration

 

properties

 

in

 

an

 

array

 

to

 

Business

 

Object

 

Wizard.

 

“Obtaining

 

configuration

 

properties”

 

on

 

page

 

101

 

getMetaData()

 

Instantiate

 

the

 

AgentMetaData

 

object

 

that

 

contains

 

the

 

ODA’s

 

metadata,

 

including

 

its

 

ability

 

to

 

generate

 

content.

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103

   

100

 

Business

 

Object

 

Development

 

Guide



Table

 

26.

 

Extending

 

abstract

 

methods

 

of

 

the

 

ODKAgentBase2

 

class

 

(continued)

 

Abstract

 

ODKAgentBase2

 

method

 

Description

 

For

 

more

 

information

 

init()

 

Initialize

 

the

 

ODA,

 

including

 

allocation

 

of

 

resources

 

and

 

connection

 

to

 

the

 

data

 

source.

 

“Initializing

 

the

 

ODA

 

start”

 

on

 

page

 

105

 

terminate()

 

Perform

 

cleanup,

 

including

 

disconnecting

 

from

 

the

 

data

 

source

 

and

 

releasing

 

any

 

resources

 

that

 

the

 

ODA

 

uses.

 

“Shutting

 

down

 

the

 

ODA”

 

on

 

page

 

150

   

6.

   

Implement

 

the

 

methods

 

of

 

the

 

appropriate

 

content-generation

 

interface

 

(or

 

interfaces)

 

in

 

your

 

ODA

 

class.

 

Table

 

26

 

lists

 

the

 

methods

 

of

 

the

 

content-generation

 

interfaces

 

and

 

indicates

 

where

 

to

 

find

 

more

 

information

 

on

 

how

 

to

 

create

 

these

 

methods.

  

Table

 

27.

 

Defining

 

methods

 

of

 

the

 

content-generation

 

interface

 

Content-generation

 

interface

 

Description

 

For

 

more

 

information

 

IGeneratesBoDefs

 

getContentProtocol()

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107

 

getTreeNodes()

 

generateBoDefs()

 

getBoDefs()

 

“Generating

 

business

 

object

 

definitions

 

as

 

content”

 

on

 

page

 

110

 

IGeneratesBinFiles

 

getContentProtocol()

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107

 

generateBinFiles()

 

getBinFile()

 

“Generating

 

binary

 

files

 

as

 

content”

 

on

 

page

 

133

   

Starting

 

the

 

ODA

 

When

 

the

 

ODA

 

is

 

started,

 

the

 

ODA

 

runtime

 

instantiates

 

the

 

associated

 

ODA

 

class

 

(an

 

extension

 

of

 

ODKAgentBase2)

 

and

 

then

 

calls

 

the

 

class

 

methods

 

in

 

Table

 

28.

  

Table

 

28.

 

Starting

 

the

 

ODA

 

Initialization

 

task

 

ODKAgentBase2

 

method

 

For

 

more

 

information

 

1.

 

Obtain

 

the

 

configuration

 

properties,

 

including

 

those

 

that

 

describe

 

the

 

data

 

source

 

to

 

open.

 

getAgentProperties()

 

“Obtaining

 

configuration

 

properties”

 

2.

 

Initialize

 

the

 

ODA

 

metadata

 

so

 

that

 

Business

 

Object

 

Wizard

 

can

 

obtain

 

information

 

about

 

the

 

ODA

 

(especially

 

its

 

supported

 

content).

 

getMetaData()

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103

 

3.

 

Initialize

 

the

 

ODA

 

to

 

perform

 

any

 

necessary

 

startup

 

steps,

 

such

 

as

 

opening

 

a

 

connection

 

to

 

the

 

data

 

source.

 

init()

 

“Initializing

 

the

 

ODA

 

start”

 

on

 

page

 

105

   

The

 

following

 

sections

 

describe

 

each

 

of

 

the

 

steps

 

in

 

Table

 

28.

 

Obtaining

 

configuration

 

properties

 

To

 

begin

 

ODA

 

initialization,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getAgentProperties()

 

method

 

of

 

the

 

ODA

 

class.

 

The

 

getAgentProperties()

 

method

 

is

 

part

 

of

 

the

 

low-level

 

ODA

 

base

 

class,

 

ODKAgentBase.

 

It

 

is

 

inherited

 

by

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

then

 

inherited

 

in

 

turn

 

by

 

your

 

ODA

 

class.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

101



Important:

  

As

 

part

 

of

 

the

 

implementation

 

of

 

your

 

ODA

 

class,

 

you

 

must

 

implement

 

an

 

getAgentProperties()

 

method.

 

The

 

getAgentProperties()

 

method

 

performs

 

the

 

following

 

tasks:

 

v

   

“Obtaining

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object”

 

v

   

“Initializing

 

the

 

configuration-property

 

array”

Obtaining

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object

 

Because

 

getAgentProperties()

 

is

 

the

 

first

 

ODA

 

method

 

that

 

Business

 

Object

 

Wizard

 

calls,

 

it

 

is

 

a

 

good

 

place

 

to

 

instantiate

 

the

 

ODKUtility

 

object,

 

which

 

provides

 

the

 

ODA

 

code

 

with

 

access

 

to

 

the

 

following:

 

v

   

Objects

 

in

 

the

 

memory

 

of

 

the

 

ODA

 

runtime,

 

such

 

as

 

configuration

 

properties

 

and

 

business-object

 

properties

 

v

   

Utility

 

methods

 

that

 

provide

 

tracing

 

and

 

display

 

user-response

 

dialog

 

boxes

To

 

obtain

 

access

 

to

 

an

 

ODKUtility

 

object,

 

use

 

the

 

getODKUtility()

 

method.

 

This

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

returns

 

a

 

handle

 

to

 

the

 

ODKUtility

 

object.

 

odkUtil

 

=

 

ODKUtility.getODKUtility()

 

If

 

you

 

declare

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object

 

as

 

global

 

to

 

the

 

entire

 

ODA

 

class,

 

all

 

methods

 

within

 

this

 

class

 

can

 

access

 

the

 

utility

 

methods.

 

Note:

  

Instead

 

of

 

instantiating

 

the

 

ODKUtility

 

object

 

in

 

its

 

getAgentProperties()

 

method,

 

the

 

sample

 

Roman

 

Army

 

ODA

 

provides

 

a

 

member

 

variable

 

named

 

m_utility

 

in

 

its

 

ODA

 

class

 

and

 

initializes

 

it

 

as

 

follows:

 

final

 

ODKUtility

 

m_utility

 

=

 

ODKUtility.getODKUtility();

 

Initializing

 

the

 

configuration-property

 

array

 

As

 

“Obtaining

 

ODA

 

configuration

 

properties”

 

on

 

page

 

89

 

describes,

 

Business

 

Object

 

Wizard

 

uses

 

the

 

configuration-property

 

array

 

that

 

getAgentProperties()

 

returns

 

to

 

initialize

 

the

 

Configure

 

Agent

 

dialog

 

box

 

(Step

 

2).

 

This

 

dialog

 

box

 

displays

 

all

 

ODA

 

configuration

 

properties

 

and

 

allows

 

users

 

to

 

enter

 

or

 

change

 

their

 

values.

 

The

 

configuration-property

 

array

 

is

 

an

 

array

 

of

 

AgentProperty

 

objects.

 

The

 

AgentProperty

 

class

 

provides

 

support

 

for

 

the

 

configuration

 

property

 

to

 

have

 

the

 

following

 

features:

 

v

   

A

 

default

 

value

 

v

   

Hold

 

only

 

one

 

value

 

or

 

more

 

than

 

one

 

value

 

v

   

A

 

list

 

of

 

valid

 

values

 

for

 

the

 

user

 

to

 

choose

 

from

 

v

   

Conditions

 

that

 

restrict

 

the

 

value

 

the

 

user

 

can

 

enter

Note:

  

For

 

more

 

information,

 

see

 

“Working

 

with

 

agent

 

properties”

 

on

 

page

 

140.

 

The

 

purpose

 

of

 

getAgentProperties()

 

is

 

to

 

send

 

to

 

Business

 

Object

 

Wizard

 

an

 

array

 

of

 

AgentProperty

 

objects

 

that

 

describe

 

the

 

ODA

 

configuration

 

properties.

 

To

 

initialize

 

the

 

configuration-property

 

array

 

in

 

getAgentProperties(),

 

take

 

the

 

following

 

steps:

 

1.

   

Instantiate

 

an

 

AgentProperty

 

object

 

for

 

a

 

configuration

 

property,

 

initializing

 

it

 

with

 

the

 

appropriate

 

property

 

information.

 

The

 

implementation

 

of

 

the

 

getAgentProperties()

 

method

 

must

 

instantiate

 

agent-property

 

objects

 

for

 

each

 

configuration

 

property

 

that

 

the

 

Business

 

Object

 

Wizard

 

is

 

to

 

display

 

to

 

users.

 

When

 

you

 

instantiate

 

the

 

agent-property

 

object,

 

you

 

initialize

 

some

 

or

 

all

 

of

 

its

 

member

 

variables

 

(shown

 

in

 

Table

 

49

 

on

 

page

 

141).

   

102

 

Business

 

Object

 

Development

 

Guide



2.

   

Store

 

the

 

initialized

 

AgentProperty

 

object

 

in

 

the

 

configuration-property

 

array.

 

3.

   

Return

 

the

 

initialized

 

configuration-property

 

array

 

from

 

the

 

getAgentProperties()

 

method.

Figure

 

55

 

shows

 

the

 

implementation

 

of

 

the

 

getAgentProperties()

 

method

 

(defined

 

in

 

the

 

ArmyAgent2

 

class

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA).

   

Figure

 

55

 

initializes

 

the

 

five

 

ODA

 

configuration

 

properties

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA.

 

The

 

actual

 

properties

 

you

 

define

 

depend

 

on

 

the

 

specific

 

data

 

source

 

your

 

ODA

 

is

 

accessing.

 

After

 

values

 

are

 

specified

 

for

 

the

 

configuration

 

properties,

 

Business

 

Object

 

Wizard

 

saves

 

these

 

properties

 

in

 

the

 

memory

 

of

 

the

 

ODA

 

runtime.

 

The

 

ODA

 

can

 

access

 

these

 

properties

 

through

 

methods

 

such

 

as

 

the

 

getAgentProperty()

 

method

 

in

 

the

 

ODKUtility

 

class.

 

For

 

more

 

information,

 

see

 

“Retrieving

 

ODA

 

configuration

 

properties”

 

on

 

page

 

105.

 

Initializing

 

ODA

 

metadata

 

After

 

Business

 

Object

 

Wizard

 

calls

 

the

 

ODA’s

 

getAgentProperties()

 

method,

 

it

 

calls

 

the

 

getMetaData()

 

method

 

to

 

initialize

 

the

 

ODA

 

metadata.

 

The

 

getMetaData()

 

method

 

is

 

defined

 

in

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

then

 

inherited

 

by

 

your

 

ODA

 

class.

 

It

 

returns

 

an

 

AgentMetaData

 

object,

 

which

 

contains

 

the

 

ODA’s

 

metadata,

 

including

 

the

 

generated

 

content

 

it

 

supports.

 

Important:

  

The

 

getMetaData()

 

method

 

is

 

an

 

abstract

 

method.

 

As

 

part

 

of

 

the

 

implementation

 

of

 

your

 

ODA

 

class,

 

you

 

must

 

implement

 

a

 

getMetaData()

 

method.

public

 

AgentProperties[]

 

getAgentProperties()

    

throws

 

com.crossworlds.ODK.ODKException

 

{

    

AgentProperty

 

general

 

=

 

new

 

AgentProperty("Army

 

general",

       

AgentProperty.TYPE_STRING,

 

true,

 

false,

 

false,

       

"A

 

general

 

is

 

a

 

soldier

 

at

 

least

 

45

 

years

 

old",

 

true,

       

ODKConstant.SINGLE_CARD,

 

m_generals.toArray(),

 

null);

    

AgentProperty

 

recAdop

 

=

 

new

 

AgentProperty("Allow

 

adoption",

       

AgentProperty.TYPE_BOOLEAN,

 

true,

 

false,

 

false,

       

"Select

 

\"yes\"

 

if

 

adopted

 

children

 

can

 

be

 

business

 

objects",

 

true,

       

ODKConstant.SINGLE_CARD,

 

new

 

Object[]{"true",

 

"false"},

 

null);

    

AgentProperty

 

minAge

 

=

 

new

 

AgentProperty("Minimum

 

age

 

for

 

drafting",

       

AgentProperty.TYPE_INTEGER,

 

true,

 

false,

 

false,

       

"Drafted

 

soldiers

 

will

 

be

 

generable

 

nodes",

 

false,

       

ODKConstant.SINGLE_CARD,

 

null,

 

new

 

Object[]

 

{"15"});

    

AgentProperty

 

maxAge

 

=

 

new

 

AgentProperty("Maximum

 

age

 

for

 

drafting",

       

AgentProperty.TYPE_INTEGER,

 

true,

 

false,

 

false,

       

"Drafted

 

soldiers

 

will

 

be

 

generable

 

nodes",

 

false,

       

ODKConstant.SINGLE_CARD,

 

null,

 

new

 

Object[]

 

{"55"});

    

AgentProperty

 

minAdo

 

=

 

new

 

AgentProperty("Minimum

 

age

 

for

 

adopting",

       

AgentProperty.TYPE_INTEGER,

 

true,

 

false,

 

true,

       

"Drafted

 

soldiers

 

will

 

be

 

generable

 

nodes",

 

false,

       

ODKConstant.SINGLE_CARD,

 

null,

 

new

 

Object[]

 

{""

 

+

 

m_minAdoptionAge});

    

AgentProperty[]

 

props

 

=

 

new

 

AgentProperty[]

       

{general,

 

minAge,

 

maxAge,

 

recAdop,

 

minAdo});

    

return

 

props;

 

}

 

Figure

 

55.

 

Initializing

 

the

 

configuration-property

 

array

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

103



The

 

AgentMetaData

 

object

 

provides

 

the

 

information

 

in

 

Table

 

29

 

to

 

the

 

ODA

 

runtime

 

when

 

it

 

needs

 

to

 

obtain

 

metadata

 

for

 

the

 

ODA.

  

Table

 

29.

 

Contents

 

of

 

an

 

AgentMetaData

 

object

 

Member

 

variable

 

Description

 

agentVersion

 

The

 

version

 

of

 

the

 

ODA

 

searchableNodes,

 

searchPatternDesc

 

Information

 

to

 

specify

 

the

 

ODA

 

search

 

pattern,

 

which

 

the

 

user

 

can

 

specify

 

to

 

reduce

 

the

 

number

 

of

 

tree

 

nodes

 

from

 

the

 

data

 

source

 

that

 

are

 

displayed

 

supportedContent

 

A

 

description

 

of

 

the

 

generated

 

content

 

that

 

the

 

ODA

 

can

 

support

   

To

 

initialize

 

the

 

ODA

 

metadata,

 

you

 

implement

 

the

 

getMetaData()

 

method,

 

which

 

involves

 

the

 

following

 

steps:

 

v

   

Create

 

an

 

instance

 

of

 

the

 

AgentMetaData

 

class,

 

passing

 

in

 

a

 

reference

 

to

 

the

 

ODA

 

itself

 

and

 

an

 

optional

 

ODA

 

version.

 

Use

 

either

 

of

 

the

 

forms

 

of

 

the

 

AgentMetaData()

 

constructor.

 

Both

 

forms

 

require

 

that

 

you

 

pass

 

in

 

a

 

this

 

reference

 

to

 

the

 

ODA

 

object

 

(an

 

instance

 

of

 

your

 

ODA

 

class).

 

The

 

constructor

 

queries

 

the

 

ODA

 

object

 

to

 

obtain

 

information

 

about

 

the

 

content-generation

 

interface

 

(or

 

interfaces)

 

that

 

the

 

ODA

 

implements.

 

It

 

then

 

uses

 

this

 

information

 

to

 

initialize

 

the

 

supportedContent

 

member

 

variable

 

with

 

the

 

content

 

protocols

 

that

 

the

 

ODA

 

supports

 

for

 

each

 

of

 

its

 

supported

 

content

 

types.

 

For

 

more

 

information

 

on

 

the

 

ODA’s

 

supported

 

content,

 

see

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107.

 

Optionally,

 

you

 

can

 

also

 

provide

 

the

 

ODA

 

version

 

as

 

an

 

argument

 

to

 

the

 

constructor

 

to

 

initialize

 

the

 

agentVersion

 

member

 

variable.

 

v

   

Initialize

 

other

 

member

 

variables

 

as

 

appropriate

 

for

 

your

 

ODA.

 

For

 

your

 

ODA

 

to

 

support

 

the

 

search-pattern

 

feature,

 

you

 

must

 

explicitly

 

initialize

 

the

 

searchableNodes

 

and

 

searchPatternDesc

 

member

 

variables

 

after

 

the

 

AgentMetaData

 

object

 

is

 

instantiated.

 

For

 

more

 

information,

 

see

 

“Implementing

 

the

 

search-pattern

 

feature”

 

on

 

page

 

113.

 

v

   

Return

 

the

 

initialized

 

AgentMetaData

 

object

 

from

 

the

 

getMetaData()

 

method.

Figure

 

56

 

shows

 

the

 

implementation

 

of

 

the

 

getMetaData()

 

method

 

(defined

 

in

 

the

 

ArmyAgent2

 

class

 

from

 

the

 

sample

 

Roman

 

Army

 

ODA).

   

Because

 

the

 

getMetaData()

 

method

 

in

 

Figure

 

56

 

is

 

inherited

 

by

 

the

 

ArmyAgent3

 

class

 

(which

 

implements

 

the

 

IGeneratesBoDefs

 

interface),

 

the

 

call

 

to

 

the

 

AgentMetaData()

 

constructor

 

in

 

this

 

code

 

fragment

 

initializes

 

the

 

content

 

type

 

and

 

its

 

associated

 

content

 

protocol

 

for

 

the

 

ODA.

 

After

 

getMetaData()

 

starts

 

in

 

public

 

AgentMetaData

 

getMetaData(){

    

odkUtil.trace(TRACELEVEL1,

 

XRD_TRACE,

 

"Entering

 

getMetaData()...");

    

AgentMetaData

 

amdObj

 

=

 

new

 

AgentMetaData(this,

 

"Sample

 

ODA

 

v1.0.0");

    

//Initialize

 

search-pattern

 

feature

 

for

 

tree

 

nodes

    

amd.searchableNodes

 

=

 

true;

    

amd.searchPatternDesc

 

=

 

"Enter

 

the

 

first

 

letter

 

to

 

search

 

by.

 

For

 

example,

 

"

 

+

       

"\"A\",

 

\"k\",

 

"\Z\".

 

Only

 

names

 

that

 

start

 

with

 

this

 

letter

 

will

 

be

 

"

 

+

       

"returned."

    

return

 

amd;

 

}

 

Figure

 

56.

 

Initializing

 

ODA

 

metadata

  

104

 

Business

 

Object

 

Development

 

Guide



ArmyAgent3,

 

the

 

ODA’s

 

content

 

type

 

is

 

initialized

 

to

 

ContentType.BusinessObject

 

and

 

its

 

content

 

protocol

 

to

 

“on

 

request”.

 

For

 

more

 

information,

 

see

 

“Determining

 

the

 

ODA

 

generated

 

content”

 

on

 

page

 

107.

 

This

 

getMetaData()

 

method

 

also

 

provides

 

support

 

for

 

the

 

search-pattern

 

feature

 

by

 

initializing

 

the

 

searchableNodes

 

and

 

searchPatternDesc

 

member

 

variables.

 

The

 

searchPatternDesc

 

variable

 

contains

 

the

 

text

 

that

 

displays

 

in

 

the

 

Enter

 

the

 

Search

 

Pattern

 

dialog

 

box

 

(see

 

Figure

 

46

 

on

 

page

 

80).

 

Initializing

 

the

 

ODA

 

start

 

After

 

Business

 

Object

 

Wizard

 

calls

 

the

 

ODA’s

 

getMetaData()

 

method,

 

it

 

calls

 

the

 

init()

 

method

 

to

 

begin

 

initialization

 

of

 

the

 

ODAstart.

 

The

 

init()

 

method

 

is

 

part

 

of

 

the

 

low-level

 

ODA

 

base

 

class,

 

ODKAgentBase.

 

It

 

is

 

inherited

 

by

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

then

 

inherited

 

in

 

turn

 

by

 

your

 

ODA

 

class.

 

This

 

method

 

performs

 

initialization

 

steps

 

for

 

the

 

ODA.

 

Important:

  

The

 

init()

 

method

 

is

 

an

 

abstract

 

method.

 

As

 

part

 

of

 

the

 

implementation

 

of

 

your

 

ODA

 

class,

 

you

 

must

 

implement

 

an

 

init()

 

method.

 

The

 

main

 

tasks

 

of

 

the

 

init()

 

method

 

include:

 

v

   

“Retrieving

 

ODA

 

configuration

 

properties”

 

v

   

“Establishing

 

a

 

connection”

 

on

 

page

 

106

 

v

   

“Checking

 

the

 

ODA

 

version”

 

on

 

page

 

107

Retrieving

 

ODA

 

configuration

 

properties

 

The

 

init()

 

method

 

can

 

retrieve

 

any

 

of

 

the

 

user-initialized

 

configuration

 

properties

 

it

 

needs

 

to

 

complete

 

the

 

initialization

 

of

 

the

 

ODA.

 

The

 

ODA

 

initializes

 

its

 

configuration

 

properties

 

in

 

its

 

getAgentProperties()

 

method.

 

Users

 

can

 

update

 

these

 

properties

 

as

 

needed

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

After

 

configuration

 

properties

 

are

 

updated,

 

Business

 

Object

 

Wizard

 

writes

 

them

 

to

 

the

 

memory

 

of

 

the

 

ODA

 

runtime.

 

The

 

ODK

 

API

 

provides

 

the

 

methods

 

in

 

Table

 

30

 

for

 

retrieving

 

the

 

value

 

of

 

an

 

ODA

 

configuration

 

property

 

from

 

the

 

ODA

 

runtime

 

memory.

  

Table

 

30.

 

Methods

 

to

 

retrieve

 

the

 

value

 

of

 

an

 

ODA

 

configuration

 

property

 

ODK

 

library

 

method

 

Description

 

getAgentProperty()

 

Retrieves

 

the

 

value

 

of

 

a

 

specified

 

ODA

 

configuration

 

property

 

getAllAgentProperties()

 

Retrieves

 

the

 

values

 

of

 

all

 

ODA

 

configuration

 

properties

 

as

 

a

 

Java

 

Hashtable

 

object

   

All

 

methods

 

in

 

Table

 

30

 

are

 

defined

 

in

 

the

 

ODKUtility

 

class.

 

Therefore,

 

you

 

must

 

obtain

 

a

 

handle

 

to

 

the

 

singleton

 

object

 

of

 

this

 

class

 

before

 

you

 

can

 

access

 

any

 

configuration

 

properties.

 

For

 

more

 

information,

 

see

 

“Obtaining

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object”

 

on

 

page

 

102.

 

Figure

 

57

 

shows

 

the

 

implementation

 

of

 

the

 

init()

 

method

 

(defined

 

in

 

the

 

ArmyAgent3

 

class

 

from

 

the

 

sample

 

Roman

 

Army

 

ODA).

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

105



In

 

Figure

 

57,

 

the

 

init()

 

method

 

uses

 

the

 

following

 

to

 

obtain

 

configuration-
property

 

values:

 

v

   

The

 

getAllAgentProperties()

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

to

 

retrieve

 

all

 

configuration

 

properties

 

into

 

a

 

Java

 

Hashtable

 

object.

 

v

   

The

 

get()

 

method,

 

defined

 

in

 

the

 

Java

 

Hashtable

 

class,

 

to

 

retrieve

 

an

 

element

 

from

 

the

 

hashtable

 

by

 

its

 

name.

 

v

   

The

 

allValues

 

member

 

variable,

 

defined

 

in

 

the

 

AgentProperty

 

class,

 

to

 

get

 

the

 

value

 

that

 

the

 

user

 

has

 

specified

 

for

 

each

 

configuration

 

property.

The

 

configuration

 

properties

 

that

 

this

 

init()

 

method

 

obtains

 

are

 

all

 

single-cardinality

 

properties.

 

Therefore,

 

the

 

allValues

 

member

 

variable

 

contains

 

only

 

one

 

value.

 

For

 

an

 

example

 

of

 

using

 

multiple-cardinality

 

properties,

 

see

 

“Creating

 

the

 

business-property

 

array”

 

on

 

page

 

120.

 

This

 

init()

 

method

 

also

 

initializes

 

the

 

ODA’s

 

generated-content

 

structure,

 

a

 

vector

 

called

 

m_generatedBOs.

 

This

 

vector

 

will

 

hold

 

the

 

generated

 

business

 

object

 

definitions.

 

Establishing

 

a

 

connection

 

The

 

main

 

task

 

of

 

the

 

init()

 

initialization

 

method

 

is

 

usually

 

to

 

establish

 

a

 

connection

 

to

 

the

 

data

 

source.

 

The

 

ODA

 

searches

 

the

 

data

 

source

 

to

 

“discover”

 

objects

 

for

 

potential

 

conversion

 

to

 

business

 

object

 

definitions.

 

To

 

establish

 

the

 

connection,

 

the

 

init()

 

method

 

can

 

perform

 

the

 

following

 

tasks:

 

v

   

Obtain

 

any

 

ODA

 

configuration

 

properties

 

that

 

provide

 

connection

 

information

 

and

 

use

 

them

 

to

 

connect

 

to

 

the

 

data

 

source.

 

If

 

a

 

required

 

configuration

 

property

 

is

 

empty,

 

your

 

init()

 

method

 

can

 

provide

 

a

 

default

 

value

 

or

 

it

 

can

 

throw

 

the

 

ODKInvalidPropException

 

exception.

 

You

 

can

 

use

 

the

 

getAgentProperty()

 

method

 

to

 

obtain

 

the

 

value

 

of

 

an

 

ODA

 

configuration

 

property.

 

For

 

more

 

information,

 

see

 

“Retrieving

 

ODA

 

configuration

 

properties”

 

on

 

page

 

105.

 

v

   

Obtain

 

any

 

required

 

connections

 

or

 

files.

 

For

 

example,

 

the

 

init()

 

method

 

usually

 

establishes

 

a

 

connection

 

with

 

the

 

data

 

source.

 

If

 

the

 

ODA

 

cannot

 

open

 

a

 

connection,

 

the

 

init()

 

method

 

must

 

throw

 

an

 

ODKException

 

exception

 

(or

 

one

 

of

 

its

 

subclasses)

 

to

 

indicate

 

the

 

cause

 

of

 

the

 

failure.

The

 

init()

 

method

 

runs

 

successfully

 

if

 

the

 

ODA

 

succeeds

 

in

 

opening

 

a

 

connection

 

and

 

the

 

ODA

 

is

 

ready

 

to

 

begin

 

processing

 

data

 

in

 

the

 

data

 

source.

 

If

 

the

 

ODA

 

public

 

void

 

init()

 

throws

 

com.crossworlds.ODK.ODKException

 

{

    

Hashtable

 

h

 

=

 

m_utility.getAllAgentProperties();

 

//

 

Obtain

 

values

 

of

 

ODA

 

configuration

 

properties

    

AgentProperty

 

property

 

=

 

(AgentProperty)

 

h.get("Army

 

general");

    

m_general

 

=

 

property.allValues[0].toString();

    

property

 

=

 

(AgentProperty)

 

h.get("Minimum

 

age

 

for

 

drafting");

    

m_minAge

 

=

 

Integer.parseInt(property.allValues[0].toString());

    

property

 

=

 

(AgentProperty)

 

h.get("Maximum

 

age

 

for

 

drafting");

    

m_maxAge

 

=

 

Integer.parseInt(property.allValues[0].toString());

    

property

 

=

 

(AgentProperty)

 

h.get("Allow

 

adoption");

    

m_allowAdoption

 

=

 

new

 

Boolean(

       

property.allValues[0].toString()).booleanValue();

 

//

 

Clear

 

the

 

generated-content

 

structure

    

m_generatedBOs.clear();

 

}

 

Figure

 

57.

 

Initializing

 

the

 

ODA

  

106

 

Business

 

Object

 

Development

 

Guide



cannot

 

open

 

a

 

connection,

 

the

 

init()

 

method

 

should

 

throw

 

an

 

ODKException

 

exception

 

to

 

indicate

 

the

 

cause

 

of

 

the

 

failure.

 

Checking

 

the

 

ODA

 

version

 

The

 

getVersion()

 

method

 

returns

 

the

 

version

 

of

 

the

 

ODA

 

runtime.

 

This

 

method

 

is

 

part

 

of

 

the

 

low-level

 

ODA

 

base

 

class,

 

ODKAgentBase.

 

It

 

is

 

inherited

 

by

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

then

 

inherited

 

by

 

your

 

ODA

 

class.

 

It

 

is

 

called

 

in

 

both

 

of

 

the

 

following

 

contexts:

 

v

   

The

 

init()

 

method

 

should

 

call

 

getVersion()

 

to

 

check

 

the

 

ODA

 

runtime

 

version.

 

v

   

The

 

ODA

 

runtime

 

calls

 

the

 

getVersion()

 

method

 

when

 

it

 

needs

 

to

 

get

 

its

 

version.

Note:

  

The

 

getVersion()

 

method

 

returns

 

the

 

version

 

of

 

the

 

ODA

 

runtime,

 

not

 

the

 

version

 

of

 

the

 

ODA

 

(which

 

is

 

stored

 

as

 

part

 

of

 

the

 

ODA’s

 

metadata).

 

Determining

 

the

 

ODA

 

generated

 

content

 

This

 

section

 

provides

 

the

 

following

 

information

 

on

 

the

 

issues

 

you

 

need

 

to

 

consider

 

when

 

determining

 

the

 

content

 

that

 

your

 

ODA

 

can

 

generate:

 

v

   

“Choosing

 

the

 

ODA

 

content

 

type”

 

v

   

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108

Choosing

 

the

 

ODA

 

content

 

type

 

The

 

ODK

 

API

 

identifies

 

the

 

valid

 

content

 

types

 

that

 

an

 

ODA

 

can

 

support

 

with

 

the

 

ContentType

 

class.

 

This

 

class

 

contains

 

static

 

member

 

variables

 

for

 

each

 

of

 

the

 

supported

 

content

 

types,

 

as

 

Table

 

31

 

shows.

  

Table

 

31.

 

How

 

content

 

types

 

are

 

represented

 

Content

 

type

 

ContentType

 

member

 

variable

 

Business

 

object

 

definitions

 

BusinessObject

 

Binary

 

files

 

BinaryFile

   

The

 

ContentType

 

class

 

simulates

 

an

 

enumerated

 

list

 

of

 

the

 

supported

 

ODA

 

content

 

types.

 

For

 

example,

 

a

 

content-type

 

object

 

that

 

represents

 

business

 

object

 

definitions

 

would

 

use

 

only

 

the

 

BusinessObject

 

member

 

variable,

 

as

 

follows:

 

ContentType.BusinessObject

 

To

 

provide

 

support

 

for

 

generation

 

of

 

a

 

particular

 

content

 

type,

 

an

 

ODA

 

must

 

implement

 

the

 

appropriate

 

content-generation

 

interface,

 

as

 

listed

 

in

 

Table

 

17

 

on

 

page

 

92.

 

Every

 

ODA

 

must

 

support

 

generation

 

of

 

business

 

object

 

definitions.

 

It

 

can

 

optionally

 

also

 

support

 

generation

 

of

 

binary

 

files

 

as

 

its

 

content.

 

The

 

content-generation

 

interfaces

 

contain

 

the

 

kinds

 

of

 

methods

 

listed

 

in

 

Table

 

32.

 

As

 

part

 

of

 

the

 

implementation

 

of

 

the

 

content-generation

 

interface,

 

you

 

must

 

implement

 

these

 

methods.

  

Table

 

32.

 

Methods

 

in

 

a

 

content-generation

 

interface

 

Method

 

Method

 

purpose

 

IGeneratesBoDefs

 

IGeneratesBinFiles

 

Source-node-generation

 

method

 

Business

 

Object

 

Wizard

 

calls

 

this

 

method

 

to

 

obtain

 

the

 

source-node

 

hierarchy

 

that

 

it

 

displays

 

to

 

the

 

user

 

(Step

 

3:

 

Select

 

Source).

 

getTreeNodes()

 

None

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

107



Table

 

32.

 

Methods

 

in

 

a

 

content-generation

 

interface

 

(continued)

 

Method

 

Method

 

purpose

 

IGeneratesBoDefs

 

IGeneratesBinFiles

 

Content-generation

 

method

 

Business

 

Object

 

Wizard

 

calls

 

this

 

method

 

to

 

initiate

 

generation

 

of

 

the

 

specified

 

content

 

for

 

the

 

source

 

data

 

(Step

 

5:

 

Generating

 

Business

 

Objects).

 

generateBoDefs()

 

generateBinFiles()

 

Content-retrieval

 

method

 

Business

 

Object

 

Wizard

 

calls

 

this

 

method

 

to

 

retrieve

 

the

 

generated

 

content

 

from

 

ODA

 

memory

 

(Step

 

5:

 

Generating

 

Business

 

Objects).

 

getBoDefs()

 

getBinFile()

   

To

 

determine

 

which

 

content-generation

 

interface’s

 

method

 

to

 

call,

 

Business

 

Object

 

Wizard

 

checks

 

the

 

ODA’s

 

metadata.

 

One

 

of

 

the

 

components

 

of

 

this

 

metadata

 

is

 

the

 

supportedContent

 

member

 

variable,

 

which

 

is

 

initialized

 

by

 

the

 

AgentMetaData()

 

constructor,

 

called

 

within

 

the

 

ODA’s

 

getMetaData()

 

method.

 

For

 

more

 

information,

 

see

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103.

 

Table

 

33

 

shows

 

the

 

information

 

that

 

this

 

chapter

 

provides

 

on

 

how

 

to

 

implement

 

methods

 

in

 

a

 

content-generation

 

interface.

  

Table

 

33.

 

How

 

to

 

develop

 

a

 

content-generation

 

interface

 

Content-generation

 

interface

 

For

 

more

 

information

 

IGeneratesBoDefs

 

“Generating

 

business

 

object

 

definitions

 

as

 

content”

 

on

 

page

 

110

 

IGeneratesBinFiles

 

“Generating

 

binary

 

files

 

as

 

content”

 

on

 

page

 

133

   

Choosing

 

the

 

ODA

 

content

 

protocol

 

An

 

ODA

 

can

 

generate

 

a

 

particular

 

content

 

type

 

using

 

either

 

of

 

the

 

content

 

protocols

 

listed

 

in

 

Table

 

34.

 

The

 

content

 

protocol

 

determines

 

how

 

the

 

ODA

 

interacts

 

with

 

Business

 

Object

 

Wizard

 

to

 

generate

 

the

 

supported

 

content;

 

that

 

is,

 

it

 

determines

 

whether

 

Business

 

Object

 

Wizard

 

can

 

explicitly

 

initiate

 

content

 

generation

 

from

 

the

 

ODA.

  

Table

 

34.

 

Content

 

protocols

 

for

 

an

 

ODA

 

Content

 

protocol

 

Description

 

Content-protocol

 

constant

 

On

 

request

 

Business

 

Object

 

Wizard

 

explicitly

 

requests

 

the

 

ODA

 

to

 

generate

 

content

 

by

 

calling

 

the

 

content-generation

 

method.

 

Once

 

this

 

method

 

completes,

 

on-request

 

content

 

is

 

ready.

 

Business

 

Object

 

Wizard

 

can

 

retrieve

 

this

 

content

 

at

 

its

 

convenience

 

with

 

a

 

call

 

to

 

the

 

content-retrieval

 

method.

 

CONTENT_PROTOCOL_ONREQUEST

 

Callback

 

The

 

ODA

 

generates

 

the

 

content

 

in

 

some

 

fashion

 

and

 

notifies

 

Business

 

Object

 

Wizard

 

when

 

its

 

content

 

is

 

ready.

 

Once

 

notified,

 

Business

 

Object

 

Wizard

 

retrieves

 

this

 

content

 

with

 

a

 

call

 

to

 

the

 

content-retrieval

 

method.

 

CONTENT_PROTOCOL_CALLBACK

    

108

 

Business

 

Object

 

Development

 

Guide



Note:

  

An

 

ODA

 

must

 

support

 

the

 

generation

 

of

 

business-object-definition

 

content

 

with

 

the

 

on-request

 

content

 

protocol.

 

Additionally,

 

the

 

ODA

 

can

 

support

 

the

 

generation

 

of

 

file

 

content

 

in

 

either

 

content

 

protocol.

 

To

 

support

 

content

 

protocols,

 

your

 

ODA

 

must

 

take

 

the

 

following

 

steps:

 

v

   

“Indicating

 

the

 

implemented

 

content

 

protocols”

 

v

   

“Implementing

 

the

 

content-generation

 

method”

Indicating

 

the

 

implemented

 

content

 

protocols

 

Both

 

the

 

IGeneratesBoDefs

 

and

 

IGeneratesBinFiles

 

interfaces

 

are

 

extensions

 

of

 

the

 

IGeneratesContent

 

interface.

 

Therefore,

 

they

 

both

 

inherit

 

the

 

single

 

method

 

that

 

IGeneratesContent

 

defines,

 

getContentProtocol().

 

As

 

part

 

of

 

the

 

implementation

 

of

 

the

 

ODA’s

 

content-generation

 

interface,

 

you

 

must

 

implement

 

the

 

getContentProtocol()

 

method

 

to

 

indicate

 

which

 

of

 

the

 

content

 

protocols

 

your

 

ODA

 

will

 

use

 

for

 

its

 

supported

 

content

 

types.

 

Note:

  

An

 

ODA

 

can

 

support

 

one

 

content

 

protocol

 

for

 

a

 

given

 

content

 

type.

 

The

 

getContentProtocol()

 

method

 

accepts

 

as

 

an

 

argument

 

a

 

ContentType

 

object,

 

which

 

identifies

 

a

 

content

 

type

 

that

 

the

 

ODA

 

supports.

 

The

 

getContentProtocol()

 

method

 

returns

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

this

 

specified

 

content

 

type.

 

It

 

returns

 

the

 

supported

 

content

 

protocol

 

as

 

one

 

of

 

the

 

content-protocol

 

constants

 

(shown

 

in

 

Table

 

34).

 

These

 

constants

 

are

 

defined

 

in

 

the

 

ODKConstant

 

interface.

 

Note:

  

In

 

this

 

release,

 

an

 

ODA

 

must

 

generate

 

business

 

object

 

definitions

 

on

 

request.

 

Therefore,

 

it

 

must

 

implement

 

the

 

getContentProtocol()

 

method

 

to

 

return

 

the

 

CONTENT_PROTOCOL_ONREQUEST

 

constant

 

for

 

a

 

content

 

type

 

of

 

ContentType.BusinessObject.

 

Additionally,

 

the

 

ODA

 

can

 

support

 

the

 

generation

 

of

 

files

 

in

 

either

 

protocol

 

and

 

return

 

the

 

appropriate

 

content-protocol

 

constant

 

for

 

a

 

content

 

type

 

of

 

ContentType.BinaryFile.

 

Figure

 

58

 

shows

 

an

 

implementation

 

of

 

getContentProtocol()

 

that

 

indicates

 

the

 

ODA

 

supports

 

the

 

callback

 

protocol

 

for

 

the

 

generation

 

of

 

files

 

and

 

the

 

on-request

 

protocol

 

for

 

the

 

generation

 

of

 

business

 

object

 

definitions.

    

Implementing

 

the

 

content-generation

 

method

 

The

 

implementation

 

of

 

the

 

content-generation

 

method

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

content

 

type

 

supports,

 

as

 

Table

 

35

 

shows.

 

public

 

long

 

getContentProtocol(ContentType

 

contentType)

 

{

     

if

 

(contentType

 

==

 

ContentType.BinaryFile)

       

return

 

ODKConstant.CONTENT_PROTOCOL_CALLBACK;

     

else

       

return

 

ODKConstant.CONTENT_PROTOCOL_ONREQUEST;

 

}

 

Figure

 

58.

 

Indicating

 

supported

 

content

 

protocols

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

109



Table

 

35.

 

Content

 

protocols

 

and

 

the

 

content-generation

 

method

 

Content

 

protocol

 

How

 

to

 

call

 

the

 

content-generation

 

method

 

Implementation

 

of

 

content-generation

 

method

 

On

 

request

 

Business

 

Object

 

Wizard

 

explicitly

 

calls

 

the

 

content-generation

 

method

 

to

 

initiate

 

content

 

generation

 

(business

 

object

 

definitions

 

or

 

files).

 

Method

 

must

 

generate

 

content

 

for

 

the

 

source

 

nodes

 

passed

 

in

 

its

 

argument

 

and

 

return

 

the

 

appropriate

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

Callback

 

Business

 

Object

 

Wizard

 

never

 

explicitly

 

calls

 

the

 

content-generation

 

method

 

because

 

content

 

generation

 

(files

 

only)

 

is

 

initiated

 

by

 

the

 

ODA

 

for

 

this

 

content

 

protocol.

 

Method

 

should

 

throw

 

an

 

exception

 

because

 

it

 

should

 

never

 

be

 

called

 

directly.

 

Actual

 

generation

 

of

 

content

 

is

 

performed

 

external

 

to

 

the

 

content-generation

 

method,

 

in

 

a

 

different

 

method,

 

class,

 

or

 

even

 

process.

   

Table

 

36

 

shows

 

the

 

information

 

that

 

this

 

chapter

 

provides

 

on

 

how

 

to

 

implement

 

the

 

content-generation

 

methods.

  

Table

 

36.

 

How

 

to

 

develop

 

a

 

content-generation

 

method

 

Content-generation

 

method

 

For

 

more

 

information

 

IGeneratesBoDefs.generateBODefs()

 

“Defining

 

the

 

generateBoDefs()

 

method”

 

on

 

page

 

119

 

IGeneratesBinFiles.generateBinFiles()

 

“Defining

 

the

 

generateBinFiles()

 

method”

 

on

 

page

 

136

   

Generating

 

business

 

object

 

definitions

 

as

 

content

 

As

 

discussed

 

in

 

“Business

 

object

 

definitions”

 

on

 

page

 

4,

 

a

 

business

 

object

 

definition

 

represents

 

a

 

template

 

for

 

data

 

that

 

can

 

be

 

treated

 

as

 

a

 

collective

 

unit.

 

The

 

purpose

 

of

 

an

 

ODA

 

is

 

to

 

generate

 

business

 

object

 

definitions

 

for

 

objects

 

in

 

a

 

data

 

source.

 

For

 

an

 

ODA

 

to

 

generate

 

business-object-definition

 

content,

 

its

 

ODA

 

class

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

interface.

 

Note:

  

Because

 

an

 

ODA

 

must

 

support

 

generation

 

of

 

business

 

object

 

definitions,

 

its

 

ODA

 

class

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

interface.

 

Table

 

37

 

lists

 

the

 

methods

 

that

 

the

 

ODA

 

class

 

must

 

define

 

to

 

implement

 

the

 

IGeneratesBoDefs

 

interface.

  

Table

 

37.

 

Methods

 

in

 

the

 

IGeneratesBoDefs

 

interface

 

Method

 

IGeneratesBoDefs

 

method

 

Description

 

Source-node-
generation

 

method

 

getTreeNodes()

 

Iteratively

 

performs

 

the

 

following:

 

v

   

Discover

 

source

 

nodes

 

for

 

objects

 

within

 

the

 

data

 

source.

 

v

   

Construct

 

an

 

array

 

of

 

tree

 

nodes

 

that

 

represents

 

the

 

source-node

 

hierarchy.

 

v

   

Return

 

an

 

array

 

of

 

tree

 

nodes

 

to

 

Business

 

Object

 

Wizard,

 

which

 

displays

 

them

 

to

 

users

 

in

 

the

 

Select

 

Source

 

dialog

 

box.

   

110

 

Business

 

Object

 

Development

 

Guide



Table

 

37.

 

Methods

 

in

 

the

 

IGeneratesBoDefs

 

interface

 

(continued)

 

Method

 

IGeneratesBoDefs

 

method

 

Description

 

Content-generation

 

method

 

generateBoDefs()

 

Generates

 

the

 

business

 

object

 

definitions

 

for

 

the

 

user-selected

 

source

 

data,

 

writing

 

them

 

to

 

ODA

 

memory

 

Content-retrieval

 

method

 

getBoDefs()

 

Retrieves

 

either

 

a

 

specified

 

business

 

object

 

definition

 

or

 

all

 

business

 

object

 

definitions

 

from

 

ODA

 

memory

   

Note:

  

In

 

addition

 

to

 

the

 

methods

 

in

 

Table

 

37,

 

IGeneratesBoDefs

 

also

 

includes

 

the

 

getContentProtocol()

 

method

 

to

 

specify

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

business-object-definition

 

generation.

 

For

 

more

 

information,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

With

 

the

 

IGeneratesBoDefs

 

interface

 

implemented,

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

methods

 

shown

 

in

 

Table

 

38

 

to

 

obtain

 

source

 

nodes,

 

as

 

well

 

as

 

generate

 

and

 

retrieve

 

content.

  

Table

 

38.

 

Business

 

Object

 

Wizard

 

and

 

IGeneratesBoDefs

 

methods

 

Step

 

in

 

Business

 

Object

 

Wizard

 

IGeneratesBoDefs

 

method

 

For

 

more

 

information

 

Step

 

3:

 

Select

 

Source

 

getTreeNodes()

 

“Generating

 

source

 

nodes”

 

Step

 

5:

 

Generating

 

Business

 

Objects

 

generateBoDefs()

 

“Generating

 

business

 

object

 

definitions”

 

on

 

page

 

118

 

Step

 

5:

 

Generating

 

Business

 

Objects

 

getBoDefs()

 

“Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

131

   

The

 

following

 

sections

 

discuss

 

the

 

implementation

 

of

 

each

 

of

 

the

 

methods

 

in

 

Table

 

38.

 

Generating

 

source

 

nodes

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getTreeNodes()

 

method

 

to

 

discover

 

the

 

source

 

nodes

 

in

 

the

 

ODA’s

 

data

 

source

 

and

 

create

 

the

 

source-node

 

hierarchy,

 

which

 

Business

 

Object

 

Wizard

 

displays

 

in

 

its

 

Select

 

Source

 

dialog

 

box

 

(Step

 

3).

 

The

 

getTreeNodes()

 

method

 

is

 

part

 

of

 

the

 

IGeneratesBoDefs

 

interface,

 

which

 

the

 

ODA

 

class

 

must

 

implement

 

to

 

support

 

generation

 

of

 

business

 

object

 

definitions.

 

Important:

  

As

 

part

 

of

 

the

 

implementation

 

of

 

the

 

IGeneratesBoDefs

 

interface,

 

you

 

must

 

implement

 

a

 

getTreeNodes()

 

method

 

for

 

your

 

ODA.

 

As

 

“Selecting

 

and

 

confirming

 

source

 

data”

 

on

 

page

 

91

 

describes,

 

Business

 

Object

 

Wizard

 

uses

 

the

 

tree-node

 

array

 

that

 

getTreeNodes()

 

returns

 

to

 

initialize

 

the

 

Select

 

Source

 

dialog

 

box.

 

This

 

dialog

 

box

 

displays

 

the

 

source-node

 

hierarchy,

 

which

 

allows

 

users

 

to

 

move

 

through

 

the

 

source

 

nodes

 

obtained

 

from

 

the

 

data

 

source

 

and

 

to

 

select

 

those

 

for

 

which

 

the

 

ODA

 

generates

 

business

 

object

 

definitions.

 

Each

 

time

 

a

 

source

 

node

 

is

 

expanded,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getTreeNodes()

 

method,

 

which

 

returns

 

a

 

tree-node

 

array

 

with

 

the

 

contents

 

of

 

the

 

expanded

 

source

 

node.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

111



For

 

example,

 

the

 

getTreeNodes()

 

method

 

in

 

the

 

sample

 

Roman

 

Army

 

ODA

 

initializes

 

the

 

Select

 

Source

 

dialog

 

box

 

with

 

the

 

top-level

 

army

 

general,

 

which

 

it

 

has

 

obtained

 

from

 

the

 

sample’s

 

data

 

source,

 

the

 

RomanArmy.xml

 

file.

 

When

 

a

 

particular

 

node

 

is

 

expanded,

 

getTreeNodes()

 

obtains

 

the

 

sons

 

of

 

that

 

node’s

 

army

 

general

 

from

 

the

 

XML

 

file

 

and

 

puts

 

them

 

into

 

a

 

tree-node

 

array.

 

Business

 

Object

 

Wizard

 

uses

 

this

 

tree-node

 

array

 

to

 

display

 

the

 

expanded

 

source

 

node.

 

Therefore,

 

the

 

purpose

 

of

 

getTreeNodes()

 

is

 

to

 

discover

 

source

 

nodes

 

in

 

the

 

data

 

source,

 

then

 

construct

 

and

 

return

 

an

 

array

 

of

 

tree

 

nodes.

 

To

 

do

 

this,

 

getTreeNodes()

 

performs

 

the

 

following

 

tasks:

 

v

   

“Determining

 

the

 

parent-node

 

path”

 

v

   

“Implementing

 

the

 

search-pattern

 

feature”

 

on

 

page

 

113

 

v

   

“Querying

 

the

 

data

 

source”

 

on

 

page

 

114

 

v

   

“Constructing

 

the

 

tree

 

nodes”

 

on

 

page

 

115

Determining

 

the

 

parent-node

 

path

 

When

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getTreeNodes()

 

method,

 

it

 

passes

 

to

 

this

 

method

 

the

 

value

 

of

 

the

 

parent-node

 

path.

 

This

 

path

 

identifies

 

the

 

user-selected

 

node

 

that

 

getTreeNodes()

 

will

 

expand.

 

It

 

is

 

a

 

String

 

that

 

contains

 

the

 

fully

 

qualified

 

path

 

of

 

the

 

node,

 

from

 

the

 

top-level

 

parent

 

down

 

to

 

the

 

user-selected

 

node.

 

Node

 

names

 

within

 

this

 

path

 

are

 

separated

 

with

 

a

 

colon

 

(:).

 

For

 

example,

 

Figure

 

59

 

shows

 

a

 

Select

 

Source

 

dialog

 

box

 

that

 

displays

 

a

 

view

 

of

 

the

 

source-node

 

hierarchy

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA.

   

In

 

Figure

 

59,

 

the

 

parent-node

 

path

 

for

 

the

 

Uulius

 

source

 

node

 

is:

 

Apollo:Tellus:Uulius

 

Users

 

can

 

specify

 

a

 

parent

 

node

 

to

 

expand

 

by

 

one

 

of

 

the

 

following

 

ways:

 

v

   

Clicking

 

the

 

+

 

symbol

 

to

 

the

 

left

 

of

 

parent

 

node’s

 

name.

   

Figure

 

59.

 

Sample

 

source-node

 

hierarchy

  

112

 

Business

 

Object

 

Development

 

Guide



Business

 

Object

 

Wizard

 

constructs

 

the

 

parent-node

 

path

 

for

 

the

 

selected

 

source

 

node

 

and

 

passes

 

this

 

path

 

to

 

getTreeNodes().

 

v

   

Selecting

 

Use

 

this

 

object

 

instead

 

at

 

the

 

top

 

of

 

the

 

Select

 

Source

 

dialog

 

box

 

and

 

specifying

 

an

 

explicit

 

parent-node

 

path

 

in

 

the

 

Object

 

Path

 

dialog

 

box.

 

You

 

must

 

specify

 

the

 

parent-node

 

path

 

with

 

the

 

same

 

syntax

 

that

 

getTreeNodes()

 

expects

 

for

 

its

 

parent-node

 

path.

 

For

 

more

 

information,

 

see

 

“Specifying

 

an

 

object

 

path”

 

on

 

page

 

80.

The

 

getTreeNode()

 

method

 

uses

 

the

 

parent-node

 

path

 

to

 

determine

 

the

 

level

 

of

 

the

 

source-node

 

hierarchy

 

to

 

return

 

in

 

its

 

tree-node

 

array.

 

This

 

tree-node

 

array

 

will

 

contain

 

all

 

child

 

nodes

 

of

 

the

 

node

 

that

 

the

 

parent-node

 

path

 

identifies.

 

To

 

tell

 

getTreeNodes()

 

to

 

return

 

the

 

top-level

 

of

 

the

 

source-node

 

hierarchy,

 

Business

 

Object

 

Wizard

 

passes

 

in

 

an

 

“empty”

 

parent

 

node

 

path.

 

Therefore,

 

the

 

getTreeNodes()

 

method

 

should

 

check

 

for

 

an

 

empty

 

node

 

path

 

as

 

its

 

first

 

step,

 

as

 

the

 

following

 

code

 

fragment

 

shows:

 

if

 

(parentNodePath

 

=

 

null

 

||

 

parentNodePath.length()

 

==

 

0)

     

//return

 

the

 

top-level

 

of

 

the

 

source-node

 

hierarchy

 

If

 

the

 

parent-node

 

path

 

is

 

not

 

empty,

 

getTreeNodes()

 

should

 

build

 

the

 

tree

 

nodes

 

for

 

the

 

children

 

of

 

the

 

specified

 

parent-node

 

path,

 

returning

 

the

 

appropriate

 

array

 

of

 

TreeNode

 

objects

 

to

 

Business

 

Object

 

Wizard.

 

Figure

 

60

 

shows

 

the

 

implementation

 

of

 

the

 

getTreeNodes()

 

method

 

(defined

 

in

 

the

 

ArmyAgent3

 

class

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA).

   

Figure

 

60

 

shows

 

an

 

important

 

concept

 

in

 

the

 

implementation

 

of

 

the

 

getTreeNodes()

 

method.

 

This

 

method

 

is

 

often

 

modularized,

 

putting

 

the

 

actual

 

search

 

of

 

the

 

data

 

source

 

into

 

a

 

separate

 

method

 

or

 

even

 

into

 

a

 

separate

 

class.

 

This

 

getTreeNodes()

 

method

 

calls

 

the

 

getNodes()

 

method

 

to

 

actually

 

generate

 

the

 

tree-node

 

array

 

for

 

the

 

selected

 

data-source

 

data.

 

If

 

the

 

parent-node

 

path

 

is

 

empty,

 

getTreeNodes()

 

sends

 

to

 

getNodes()

 

the

 

entire

 

contents

 

of

 

the

 

XML

 

file

 

(in

 

the

 

m_army

 

variable).

 

Otherwise,

 

getTreeNodes()

 

sends

 

to

 

getNodes()

 

the

 

results

 

of

 

the

 

findSon()

 

method,

 

which

 

performs

 

the

 

actual

 

query

 

of

 

the

 

data

 

source.

 

Implementing

 

the

 

search-pattern

 

feature

 

A

 

search

 

pattern

 

allows

 

you

 

to

 

specify

 

criteria

 

that

 

child

 

nodes

 

must

 

meet

 

to

 

be

 

displayed

 

when

 

the

 

parent

 

node

 

is

 

expanded.

 

You

 

initiate

 

the

 

search-pattern

 

feature

 

by

 

right-clicking

 

and

 

then

 

clicking

 

Search

 

for

 

items.

 

The

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box

 

opens,

 

where

 

you

 

can

 

specify

 

the

 

search

 

criteria.

 

Note:

  

For

 

more

 

information

 

on

 

how

 

to

 

use

 

the

 

search-pattern

 

feature,

 

see

 

“Specifying

 

a

 

search

 

pattern”

 

on

 

page

 

79.

 

When

 

Business

 

Object

 

Wizard

 

receives

 

a

 

search

 

pattern,

 

it

 

calls

 

getTreeNode()

 

again

 

to

 

retrieve

 

a

 

new

 

tree-node

 

array

 

from

 

the

 

data

 

source.

 

Business

 

Object

 

Wizard

 

passes

 

the

 

search

 

pattern

 

as

 

an

 

argument

 

to

 

getTreeNodes().

 

The

 

search

 

public

 

TreeNode[]

 

getTreeNodes(String

 

parentNodePath,

 

String

 

searchPattern)

    

throws

 

ODKException

 

{

    

if

 

(parentNodePath

 

==

 

null

 

||

 

parentNodePath.length()

 

==

 

0)

       

return

 

getNodes(m_army,

 

searchPattern);

    

return

 

getNodes(findSon(parentNodePath,

 

searchPattern));

 

}

 

Figure

 

60.

 

Generating

 

the

 

tree-node

 

array

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

113



pattern

 

contains

 

wildcards

 

and

 

other

 

symbols

 

that

 

the

 

underlying

 

data

 

source

 

recognizes.

 

For

 

example,

 

if

 

the

 

data

 

source

 

is

 

a

 

database,

 

valid

 

search

 

criteria

 

could

 

include

 

SQL

 

search

 

symbols

 

such

 

as

 

a

 

percent

 

(%)

 

or

 

question

 

mark

 

(?).

 

The

 

getTreeNodes()

 

method

 

searches

 

the

 

data

 

source

 

for

 

child

 

nodes

 

that

 

match

 

the

 

search

 

pattern

 

and

 

puts

 

the

 

resulting

 

child

 

nodes

 

in

 

the

 

tree-node

 

array

 

that

 

it

 

returns

 

to

 

Business

 

Object

 

Wizard.

 

In

 

this

 

way,

 

you

 

can

 

dynamically

 

specify

 

new

 

conditions

 

for

 

source

 

nodes

 

to

 

meet.

 

Note:

  

Unlike

 

a

 

filter,

 

a

 

search

 

pattern

 

causes

 

Business

 

Object

 

Wizard

 

to

 

call

 

the

 

getTreeNodes()

 

method

 

again.

 

A

 

filter

 

just

 

causes

 

Business

 

Object

 

Wizard

 

to

 

search

 

the

 

child

 

nodes

 

of

 

the

 

parent

 

node

 

that

 

is

 

currently

 

displaying;

 

that

 

is,

 

Business

 

Object

 

Wizard

 

looks

 

for

 

child

 

nodes

 

already

 

in

 

the

 

current

 

source-node

 

hierarchy.

 

It

 

does

 

not

 

call

 

getTreeNodes()

 

to

 

search

 

the

 

data

 

source

 

for

 

new

 

matching

 

child

 

nodes.

 

To

 

implement

 

the

 

search-pattern

 

feature

 

for

 

your

 

ODA,

 

take

 

the

 

following

 

steps:

 

v

   

Enable

 

the

 

search-pattern

 

feature

 

in

 

the

 

ODA’s

 

metadata

 

(AgentMetaData)

 

by

 

setting

 

the

 

searchableNodes

 

member

 

variable

 

to

 

true.

 

You

 

should

 

also

 

initialize

 

the

 

searchPatternDesc

 

member

 

variable

 

to

 

a

 

string

 

that

 

describes

 

to

 

the

 

user

 

the

 

valid

 

search

 

criteria.

 

Business

 

Object

 

Wizard

 

displays

 

this

 

string

 

as

 

the

 

text

 

for

 

the

 

Enter

 

the

 

Search

 

Pattern

 

dialog

 

box.

 

You

 

initialize

 

the

 

ODA’s

 

metadata

 

in

 

the

 

getMetaData()

 

method.

 

For

 

more

 

information,

 

see

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103.

 

v

   

Implement

 

your

 

getTreeNodes()

 

method

 

to

 

use

 

the

 

value

 

of

 

the

 

searchPattern

 

argument

 

in

 

the

 

queries

 

it

 

makes

 

of

 

the

 

data

 

source.

 

For

 

example,

 

if

 

the

 

data

 

source

 

is

 

a

 

database,

 

you

 

can

 

include

 

the

 

search

 

pattern

 

in

 

SQL

 

statements

 

that

 

query

 

the

 

database

 

tables.

In

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

search

 

pattern

 

allows

 

the

 

user

 

to

 

enter

 

one

 

letter

 

as

 

search

 

criteria.

 

The

 

getTreeNodes()

 

method

 

calls

 

the

 

getNodes()

 

method

 

to

 

handle

 

the

 

actual

 

generation

 

of

 

tree

 

nodes.

 

The

 

following

 

code

 

fragment

 

from

 

this

 

getNodes()

 

method

 

(defined

 

in

 

ArmyAgent3)

 

shows

 

how

 

the

 

method

 

uses

 

the

 

search

 

pattern

 

in

 

its

 

search

 

of

 

the

 

data

 

source:

 

TreeNode[]

 

getNodes(Son

 

parent,

 

String

 

searchPattern)

 

{

    

Vector

 

nodes

 

=

 

new

 

Vector();

    

if

 

(searchPattern

 

==

 

null

 

||

 

searchPattern.length()

 

==

 

0)

       

searchPattern

 

=

 

"";

    

else

       

searchPattern

 

=

 

new

 

String(new

 

char[]

 

{searchPattern.charAt(0)});

 

When

 

the

 

getNodes()

 

method

 

later

 

compares

 

the

 

name

 

of

 

the

 

object

 

in

 

the

 

XML

 

file

 

(the

 

data

 

source)

 

with

 

the

 

current

 

name

 

in

 

the

 

parent-node

 

path,

 

it

 

checks

 

if

 

the

 

object

 

name

 

begins

 

with

 

the

 

specified

 

search

 

pattern,

 

as

 

follows:

 

if

 

(currSon.name.getValue().startsWith(searchPattern))

 

For

 

the

 

context

 

of

 

this

 

use

 

of

 

the

 

search

 

pattern,

 

see

 

Figure

 

61

 

on

 

page

 

117.

 

Querying

 

the

 

data

 

source

 

The

 

main

 

purpose

 

of

 

the

 

getTreeNodes()

 

method

 

is

 

to

 

query

 

the

 

data

 

source

 

to

 

discover

 

source

 

nodes,

 

which

 

are

 

objects

 

for

 

which

 

the

 

ODA

 

can

 

generate

 

content.

 

The

 

mechanism

 

to

 

query

 

the

 

data

 

source

 

depends

 

on

 

the

 

kind

 

of

 

data

 

source

 

with

 

which

 

the

 

ODA

 

works.

 

For

 

example,

 

the

 

XML

 

ODA

 

(a

 

prebuilt

 

ODA

 

that

 

is

 

part

 

of

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

product)

 

queries

 

XML

 

files

 

to

 

present

 

the

 

names

 

of

 

objects

 

within

 

these

 

files

 

for

 

possible

 

content

 

generation.

 

As

 

another

   

114

 

Business

 

Object

 

Development

 

Guide



example,

 

the

 

JDBC

 

ODA

 

(another

 

prebuilt

 

ODA

 

part

 

of

 

WebSphere

 

Business

 

Integration

 

Adapters)

 

queries

 

a

 

JDBC

 

database

 

to

 

present

 

the

 

names

 

of

 

tables

 

within

 

the

 

database

 

for

 

possible

 

content

 

generation.

 

As

 

suggested

 

in

 

Table

 

25

 

on

 

page

 

99,

 

if

 

the

 

logic

 

necessary

 

to

 

query

 

your

 

data

 

source

 

is

 

reasonably

 

complex,

 

you

 

should

 

develop

 

special

 

Java

 

classes

 

to

 

handle

 

this

 

interaction.

 

The

 

getTreeNodes()

 

method

 

can

 

then

 

instantiate

 

and

 

access

 

these

 

classes

 

as

 

needed.

 

Make

 

sure

 

you

 

include

 

these

 

classes

 

in

 

the

 

ODA

 

library

 

file.

 

For

 

more

 

information,

 

see

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159.

 

For

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

findSon()

 

method

 

(defined

 

in

 

the

 

ArmyAgent3

 

class)

 

performs

 

the

 

task

 

of

 

querying

 

the

 

data

 

source.

 

It

 

finds

 

a

 

particular

 

soldier

 

(identified

 

by

 

its

 

parent-node

 

path)

 

in

 

the

 

Roman-Army

 

XML

 

file.

 

It

 

returns

 

the

 

information

 

for

 

the

 

specified

 

name

 

as

 

a

 

Son

 

object.

 

The

 

sample

 

defines

 

the

 

Son

 

class

 

to

 

read

 

an

 

object

 

in

 

the

 

XML

 

file.

 

Constructing

 

the

 

tree

 

nodes

 

As

 

the

 

ODA

 

queries

 

the

 

data

 

source

 

for

 

source

 

nodes,

 

it

 

must

 

generate

 

the

 

associated

 

tree

 

node

 

to

 

represent

 

each

 

source

 

node

 

it

 

discovers.

 

The

 

ODK

 

API

 

represents

 

a

 

tree

 

node

 

as

 

an

 

object

 

of

 

the

 

TreeNode

 

class,

 

which

 

contains

 

the

 

information

 

shown

 

in

 

Table

 

39.

  

Table

 

39.

 

Contents

 

of

 

a

 

tree

 

node

 

Member

 

variable

 

Description

 

metadata

 

name

 

The

 

name

 

of

 

this

 

tree

 

node,

 

which

 

displays

 

in

 

the

 

Name

 

column

 

of

 

the

 

Select

 

Source

 

dialog

 

box

 

description

 

A

 

description

 

of

 

this

 

tree

 

node,

 

which

 

displays

 

in

 

the

 

Description

 

column

 

of

 

the

 

Select

 

Source

 

dialog

 

box

 

polymorphicNature

 

Whether

 

the

 

tree

 

node’s

 

nature

 

is

 

“normal”

 

(it

 

is

 

either

 

expandable

 

or

 

a

 

leaf

 

node)

 

or

 

“file”

 

(it

 

can

 

be

 

associated

 

with

 

a

 

file)

 

isExpandable

 

Whether

 

this

 

tree

 

node

 

is

 

expandable;

 

that

 

is,

 

whether

 

the

 

tree

 

node

 

contains

 

child

 

nodes

 

or

 

is

 

a

 

leaf

 

(terminating)

 

node

 

isGeneratable

 

Whether

 

content

 

can

 

be

 

generated

 

for

 

this

 

tree

 

node

 

Data

 

nodes

 

An

 

array

 

of

 

child

 

nodes,

 

if

 

this

 

tree

 

node

 

is

 

expandable

   

To

 

create

 

a

 

tree

 

node,

 

use

 

one

 

of

 

the

 

forms

 

of

 

the

 

TreeNode()

 

constructor.

 

For

 

a

 

list

 

of

 

these

 

forms,

 

see

 

“TreeNode()”

 

on

 

page

 

270.

 

Normal-nature

 

nodes:

   

When

 

a

 

node

 

has

 

a

 

“normal”

 

nature,

 

it

 

can

 

have

 

one

 

of

 

the

 

following

 

structures:

 

v

   

An

 

expandable

 

node

 

Business

 

Object

 

Wizard

 

displays

 

an

 

expandable

 

node

 

with

 

a

 

plus

 

(+)

 

sign

 

to

 

the

 

left

 

of

 

the

 

node

 

name

 

(to

 

indicate

 

that

 

the

 

user

 

can

 

expand

 

the

 

node)

 

or

 

a

 

minus

 

(-)

 

sign

 

(to

 

indicate

 

that

 

the

 

user

 

can

 

contract

 

the

 

node).

 

The

 

following

 

table

 

shows

 

the

 

initialization

 

that

 

the

 

TreeNode

 

object

 

requires

 

for

 

it

 

to

 

display

 

as

 

an

 

expandable

 

node:

  

TreeNode

 

member

 

variable

 

Value

 

isExpandable

 

true

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

115



TreeNode

 

member

 

variable

 

Value

 

nodes

 

An

 

array

 

of

 

the

 

child

 

nodes

 

isGeneratable

 

false

 

(usually)

   

For

 

information

 

about

 

how

 

to

 

move

 

through

 

the

 

source-node

 

hierarchy,

 

see

 

“Moving

 

through

 

the

 

source-node

 

hierarchy”

 

on

 

page

 

78

 

v

   

A

 

leaf

 

node

 

Business

 

Object

 

Wizard

 

displays

 

a

 

leaf

 

(terminating)

 

node

 

as

 

just

 

the

 

node

 

name.

 

The

 

following

 

table

 

shows

 

the

 

initialization

 

that

 

the

 

TreeNode

 

object

 

requires

 

for

 

it

 

to

 

display

 

as

 

a

 

leaf

 

node:

  

Tree-node

 

member

 

variable

 

Value

 

isExpandable

 

false

 

nodes

 

null

 

isGeneratable

 

true

 

(usually)

   

Both

 

the

 

leaf

 

and

 

expandable

 

node

 

are

 

normal-nature

 

nodes.

 

Therefore,

 

they

 

both

 

have

 

the

 

polymorphicNature

 

member

 

variable

 

set

 

to

 

the

 

NODE_NATURE_NORMAL

 

node-nature

 

constant.

 

This

 

constant

 

is

 

defined

 

in

 

the

 

ODKConstant

 

interface

 

(which

 

the

 

TreeNode

 

class

 

implements).

 

The

 

first

 

two

 

forms

 

of

 

the

 

TreeNode()

 

constructor

 

do

 

not

 

specify

 

the

 

polymorphicNature

 

member

 

variable.

 

Therefore,

 

this

 

member

 

variable

 

defaults

 

to

 

NODE_NATURE_NORMAL.

 

Suppose

 

the

 

ODA

 

generates

 

the

 

source-node

 

hierarchy

 

shown

 

in

 

Figure

 

59

 

on

 

page

 

112.

 

If

 

the

 

user

 

expands

 

the

 

Uulius

 

node,

 

the

 

getTreeNodes()

 

method

 

must

 

generate

 

a

 

tree-node

 

array

 

that

 

contains

 

the

 

child

 

nodes

 

for

 

Uulius.

 

Because

 

the

 

parent-node

 

path

 

is

 

not

 

empty

 

(it

 

is

 

Apollo:Tellus:Uulius),

 

the

 

getTreeNodes()

 

method

 

makes

 

the

 

following

 

call

 

to

 

the

 

getNodes()

 

method

 

(see

 

Figure

 

60

 

on

 

page

 

113):

 

getNodes(findSon(parentNodePath),

 

searchPattern))

 

This

 

call

 

to

 

getNodes()

 

uses

 

the

 

findSon()

 

method

 

to

 

query

 

the

 

data

 

source

 

for

 

the

 

Uulius

 

node

 

and

 

return

 

a

 

Son

 

object

 

that

 

contains

 

the

 

information

 

from

 

the

 

XML

 

file.

 

One

 

of

 

the

 

member

 

variables

 

in

 

this

 

Son

 

object

 

is

 

a

 

vector

 

of

 

XML

 

objects

 

(XmlObjectVector)

 

with

 

the

 

information

 

on

 

the

 

children

 

of

 

Uulius.

 

Figure

 

61

 

shows

 

a

 

code

 

fragment

 

from

 

the

 

getNodes()

 

method

 

that

 

loops

 

through

 

this

 

XML-object

 

vector

 

and

 

creates

 

a

 

TreeNode

 

object

 

for

 

each

 

of

 

the

 

children:

    

116

 

Business

 

Object

 

Development

 

Guide



The

 

code

 

fragment

 

in

 

Figure

 

61

 

initializes

 

a

 

new

 

TreeNode

 

object

 

for

 

each

 

child

 

soldier

 

node

 

with

 

the

 

soldier’s

 

name,

 

whether

 

this

 

node

 

is

 

generatable

 

(based

 

on

 

whether

 

the

 

soldier

 

is

 

of

 

recruitable

 

age),

 

and

 

whether

 

this

 

node

 

is

 

expandable

 

(based

 

on

 

the

 

number

 

of

 

children

 

the

 

soldier

 

has).

 

This

 

call

 

to

 

the

 

TreeNode()

 

constructor

 

does

 

not

 

initialize

 

the

 

tree

 

node

 

with

 

a

 

description

 

(““),

 

nor

 

does

 

it

 

provide

 

any

 

child

 

nodes.

 

Once

 

each

 

new

 

TreeNode

 

object

 

is

 

instantiated,

 

the

 

code

 

adds

 

it

 

to

 

a

 

Java

 

Vector

 

(nodes).

 

When

 

getNodes()

 

has

 

generated

 

TreeNode

 

objects

 

for

 

all

 

child

 

nodes,

 

it

 

copies

 

the

 

contents

 

of

 

this

 

vector

 

into

 

a

 

tree-node

 

array

 

with

 

the

 

following

 

code:

 

TreeNode[]

 

tn

 

=

 

new

 

TreeNode[nodes.size()];

 

System.arraycopy(nodes.toArray(),

 

0,

 

tn,

 

0,

 

nodes.size());

 

The

 

getNodes()

 

method

 

returns

 

this

 

tree-node

 

array

 

to

 

getTreeNodes(),

 

which

 

in

 

turn

 

returns

 

this

 

array

 

to

 

its

 

calling

 

program,

 

Business

 

Object

 

Wizard.

 

Business

 

Object

 

Wizard

 

uses

 

this

 

new

 

tree-node

 

array

 

to

 

display

 

the

 

expanded

 

contents

 

of

 

the

 

Uulius

 

node,

 

as

 

Figure

 

62

 

shows.

  

for

 

(int

 

i=0;

 

i<sons.size();

 

i++)

    

{

    

Son

 

currSon

 

=

 

(Son)

 

sons.getAt(i);

    

if

 

(currSon.name.getValues().startsWith(searchPattern))

       

{

       

int

 

age

 

=

 

currSon.age.getIntValue();

       

int

 

children

 

=

 

currSon.Son

 

==

 

null

 

?

 

0

 

:

 

currSon.Son.size();

       

int

 

nature

 

=

 

TreeNode.NODE_NATURE_NORMAL;

       

TreeNode

 

tn

 

=

 

new

 

TreeNode(currSon.name.getValue(),

 

"

 

",

          

canRecruit(currSon),

 

children

 

>

 

0,

 

null,

 

nature);

       

nodes.add(tn);

       

}

    

}

 

Figure

 

61.

 

Constructing

 

tree

 

nodes

  

Figure

 

62.

 

Expanding

 

the

 

Uulius

 

source

 

node

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

117



File-nature

 

nodes:

   

When

 

a

 

node

 

has

 

a

 

“file”

 

nature,

 

the

 

user

 

can

 

associate

 

an

 

operating

 

system

 

file

 

with

 

the

 

node.

 

Business

 

Object

 

Wizard

 

indicates

 

that

 

a

 

node

 

has

 

a

 

file

 

nature

 

by

 

activating

 

the

 

Associate

 

files

 

menu

 

item

 

when

 

the

 

user

 

right-clicks

 

the

 

node

 

name.

 

For

 

information

 

about

 

how

 

to

 

use

 

this

 

menu

 

item,

 

see

 

“Associating

 

an

 

operating-system

 

file”

 

on

 

page

 

81.

 

A

 

file-nature

 

node

 

has

 

its

 

polymorphicNature

 

member

 

variable

 

set

 

to

 

the

 

NODE_NATURE_FILE

 

node-nature

 

constant.

 

This

 

constant

 

is

 

defined

 

in

 

the

 

ODKConstant

 

interface

 

(which

 

the

 

TreeNode

 

class

 

implements).

 

The

 

following

 

table

 

shows

 

the

 

initialization

 

that

 

the

 

TreeNode

 

object

 

requires

 

for

 

it

 

to

 

function

 

as

 

a

 

file-nature

 

node:

  

TreeNode

 

member

 

variable

 

Value

 

polymorphicNature

 

NODE_NATURE_FILE

 

isExpandable

 

false

 

nodes

 

null

 

isGeneratable

 

false

 

(usually)

   

In

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

ArmyAgent4

 

class

 

implements

 

a

 

getNode()

 

method

 

that

 

supports

 

file-nature

 

nodes.

 

This

 

sample

 

allows

 

the

 

user

 

to

 

associate

 

a

 

file

 

with

 

a

 

source

 

node

 

for

 

any

 

node

 

that

 

represents

 

a

 

soldier

 

that

 

is

 

at

 

least

 

28

 

years

 

old

 

(the

 

default

 

minimum

 

age)

 

and

 

has

 

no

 

children

 

of

 

his

 

own.

 

The

 

code

 

for

 

this

 

version

 

of

 

getNode()

 

is

 

almost

 

identical

 

to

 

the

 

code

 

in

 

Figure

 

61

 

on

 

page

 

117.

 

The

 

only

 

difference

 

is

 

in

 

the

 

assignment

 

of

 

the

 

value

 

to

 

the

 

polymorphicNature

 

member

 

variable.

 

Instead

 

of

 

assigning

 

the

 

NODE_NATURE_NORMAL

 

constant

 

to

 

all

 

nodes,

 

the

 

ArmyAgent4

 

version

 

of

 

getNode()

 

uses

 

the

 

following

 

code

 

line

 

to

 

set

 

the

 

node

 

nature

 

to

 

NODE_NATURE_FILE

 

if

 

the

 

node

 

represents

 

a

 

soldiers

 

at

 

least

 

28

 

years

 

old

 

and

 

having

 

no

 

children:

 

int

 

nature

 

=

 

m_allowAdoption

 

&&

 

canAdopt(currSon)

 

?

    

TreeNode.NODE_NATURE_FILE

 

:

 

TreeNode.NODE_NATURE_NORMAL;

 

Generating

 

business

 

object

 

definitions

 

After

 

users

 

have

 

selected

 

the

 

source

 

nodes

 

in

 

the

 

Select

 

Nodes

 

dialog

 

box

 

(Step

 

3),

 

the

 

ODA

 

is

 

ready

 

to

 

begin

 

content

 

generation.

 

Business

 

Object

 

Wizard

 

calls

 

the

 

generateBoDefs()

 

content-generation

 

method

 

to

 

generate

 

business

 

object

 

definitions

 

for

 

the

 

user-selected

 

source

 

nodes.

 

To

 

the

 

ODA,

 

Business

 

Object

 

Wizard

 

sends

 

the

 

list

 

of

 

source

 

nodes

 

(selected

 

in

 

Step

 

3).

 

The

 

goal

 

of

 

the

 

business-object-definition

 

generation

 

process

 

is

 

to

 

create

 

a

 

business

 

object

 

definition

 

for

 

each

 

selected

 

source

 

node.

 

While

 

the

 

generateBoDefs()

 

method

 

runs,

 

Business

 

Object

 

Wizard

 

displays

 

its

 

Generating

 

Business

 

Objects

 

screen

 

(Step

 

5).

 

Note:

  

Because

 

the

 

ODA

 

generates

 

business

 

object

 

definitions

 

“on

 

request”,

 

Business

 

Object

 

Wizard

 

explicitly

 

calls

 

the

 

generateBoDefs()

 

method

 

to

 

initiate

 

generation

 

of

 

the

 

business

 

object

 

definitions.

 

Therefore,

 

you

 

must

 

implement

 

generateBoDefs()

 

so

 

that

 

it

 

handles

 

generating

 

the

 

business

 

object

 

definitions

 

(BusObjDef

 

objects),

 

storing

 

them

 

in

 

the

 

generated-content

 

structure,

 

and

 

returning

 

of

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

This

 

section

 

describes

 

the

 

following

 

steps

 

that

 

the

 

generateBoDefs()

 

method

 

should

 

take

 

to

 

generate

 

business

 

object

 

definitions:

 

1.

   

“Defining

 

the

 

generateBoDefs()

 

method”

 

on

 

page

 

119

 

2.

   

“Requesting

 

business-object

 

properties”

 

on

 

page

 

119

 

3.

   

“Creating

 

the

 

business

 

object

 

definitions”

 

on

 

page

 

123

   

118

 

Business

 

Object

 

Development

 

Guide



4.

   

“Providing

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

130

Defining

 

the

 

generateBoDefs()

 

method

 

To

 

provide

 

generation

 

of

 

business

 

object

 

definitions,

 

your

 

ODA

 

class

 

(derived

 

from

 

ODKAgentBase2)

 

must

 

implement

 

the

 

generateBoDefs()

 

method,

 

is

 

defined

 

in

 

the

 

IGeneratesBoDefs

 

interface.

 

The

 

generateBoDefs()

 

method

 

receives

 

these

 

user-selected

 

source

 

nodes

 

as

 

an

 

argument,

 

an

 

array

 

of

 

source-node

 

paths

 

(String

 

objects).

 

The

 

method

 

must

 

generate

 

a

 

business

 

object

 

definition

 

for

 

each

 

source

 

node

 

in

 

this

 

array.

 

It

 

can

 

use

 

its

 

path

 

to

 

locate

 

the

 

source

 

node

 

in

 

the

 

data

 

source.

 

As

 

its

 

last

 

step,

 

generateBoDefs()

 

returns

 

a

 

content-metadata

 

(ContentMetaData)

 

object

 

to

 

describe

 

the

 

business

 

object

 

definitions

 

it

 

has

 

generated.

 

The

 

sample

 

Roman

 

Army

 

ODA

 

supports

 

the

 

on-request

 

content

 

protocol

 

for

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

(see

 

Figure

 

58

 

on

 

page

 

109).

 

The

 

implementation

 

of

 

this

 

method

 

generateBoDefs()

 

in

 

the

 

ArmyAgent3

 

class

 

includes

 

the

 

code

 

fragment

 

in

 

Figure

 

63,

 

which

 

declares

 

the

 

variable

 

for

 

the

 

generated-content

 

structure

 

(m_generatedBOs)

 

and

 

defines

 

the

 

generateBoDefs()

 

method

 

itself.

    

Requesting

 

business-object

 

properties

 

If,

 

during

 

the

 

content-generation

 

process,

 

the

 

ODA

 

requires

 

additional

 

information,

 

it

 

can

 

display

 

the

 

BO

 

Properties

 

dialog

 

box

 

and

 

request

 

values

 

for

 

business-object

 

properties.

 

For

 

an

 

introduction

 

to

 

business-object

 

properties,

 

see

 

“Obtaining

 

business-object

 

properties”

 

on

 

page

 

93.

 

Figure

 

64

 

illustrates

 

a

 

sample

 

BO

 

Properties

 

dialog

 

box

 

that

 

displays

 

two

 

business-object

 

properties:

 

v

   

The

 

Verbs

 

business-object

 

property

 

allows

 

users

 

to

 

specify

 

which

 

verbs

 

the

 

business

 

object

 

definitions

 

support.

 

This

 

property

 

provides

 

a

 

drop-down

 

list

 

of

 

valid

 

verbs,

 

from

 

which

 

users

 

can

 

choose

 

one

 

or

 

more

 

values.

 

v

   

The

 

Prefix

 

business-object

 

property

 

allows

 

users

 

to

 

enter

 

the

 

prefix

 

(such

 

as

 

JDBC,

 

SAP,

 

LegacyApp)

 

to

 

add

 

to

 

the

 

names

 

of

 

all

 

generated

 

business

 

object

 

definitions.

 

This

 

property

 

just

 

provides

 

an

 

empty

 

field

 

in

 

which

 

users

 

specify

 

the

 

string

 

prefix.

 

final

 

Vector

 

m_generatedBOs

 

=

 

new

 

Vector();

 

public

 

ContentMetaData

 

generateBoDefs(String[]

 

nodes)

     

throws

 

ODKException

 

{

 

Figure

 

63.

 

Defining

 

the

 

generateBoDefs()

 

method

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

119



To

 

provide

 

the

 

user

 

with

 

the

 

properties

 

illustrated

 

in

 

Figure

 

64,

 

the

 

generateBoDefs()

 

method

 

takes

 

the

 

following

 

steps:

 

1.

   

Creates

 

the

 

business-property

 

array

 

for

 

the

 

Verbs

 

and

 

Prefix

 

properties.

 

2.

   

Calls

 

the

 

getBOSpecificProps()

 

method

 

to

 

display

 

the

 

business-object

 

properties.

 

3.

   

Obtains

 

user-initialized

 

values

 

for

 

the

 

business-object

 

properties.

Creating

 

the

 

business-property

 

array:

   

The

 

getBOSpecificProps()

 

method

 

requires

 

an

 

array

 

of

 

agent-property

 

objects

 

as

 

an

 

argument.

 

This

 

argument

 

is

 

the

 

business-object-property

 

array

 

and

 

contains

 

one

 

agent-property

 

object

 

for

 

each

 

business-object

 

property

 

to

 

display

 

in

 

the

 

BO

 

Properties

 

dialog

 

box.

 

Before

 

generateBoDefs()

 

calls

 

getBOSpecificProps(),

 

it

 

must

 

take

 

the

 

necessary

 

steps

 

to

 

create

 

the

 

array

 

that

 

defines

 

the

 

business-object

 

properties,

 

initialize

 

the

 

business-object

 

properties,

 

and

 

save

 

these

 

properties

 

into

 

the

 

array.

 

The

 

first

 

step

 

is

 

to

 

define

 

a

 

business-object-property

 

array

 

to

 

hold

 

the

 

Verbs

 

and

 

Prefix

 

properties.

 

The

 

next

 

step

 

is

 

to

 

initialize

 

the

 

business-object

 

properties,

 

using

 

the

 

AgentProperty()

 

constructor.

 

With

 

this

 

constructor,

 

you

 

specify

 

values

 

for

 

the

 

various

 

metadata

 

that

 

the

 

AgentProperty

 

class

 

supports.

 

The

 

AgentProperty

 

class

 

provides

 

support

 

for

 

the

 

business-object

 

property

 

to

 

have

 

the

 

following

 

features:

 

v

   

A

 

default

 

value

 

v

   

The

 

ability

 

to

 

restrict

 

values

 

to

 

only

 

one

 

value

 

or

 

to

 

more

 

than

 

one

 

value

 

v

   

A

 

list

 

of

 

valid

 

values

 

for

 

the

 

user

 

to

 

choose

 

from

 

v

   

Conditions

 

that

 

restrict

 

the

 

value

 

the

 

user

 

can

 

enter

Note:

  

For

 

more

 

information,

 

see

 

“Working

 

with

 

agent

 

properties”

 

on

 

page

 

140.

 

To

 

initialize

 

the

 

Verbs

 

and

 

Prefix

 

properties,

 

you

 

provide

 

the

 

AgentProperty()

 

constructor

 

with

 

the

 

following

 

information:

   

Figure

 

64.

 

Additional

 

property

 

information

 

needed.

  

120

 

Business

 

Object

 

Development

 

Guide



v

   

The

 

Verbs

 

property

 

is

 

a

 

multiple-cardinality

 

property

 

that

 

provides

 

multiple

 

values

 

for

 

the

 

user

 

to

 

choose

 

from.

 

It

 

also

 

has

 

default

 

values.

 

Therefore,

 

this

 

property

 

requires

 

the

 

following

 

metadata

 

in

 

the

 

AgentProperty()

 

constructor:

  

metadata

 

AgentProperty

 

member

 

variable

 

Value

 

Multiple

 

cardinality

 

cardinality

 

ODKConstant.MULTIPLE_CARD

 

Allows

 

user

 

to

 

choose

 

from

 

multiple

 

values

 

isMultiple

 

true

 

allValidValues

 

validValues

 

array

 

(which

 

contains

 

the

 

valid

 

values

 

to

 

display)

 

Provides

 

default

 

values

 

allDefaultValues

 

defaultValues

 

array

 

(which

 

contains

 

the

 

default

 

values

 

to

 

display)

 

User

 

is

 

not

 

required

 

to

 

enter

 

a

 

value

 

isRequired

 

false

   

Before

 

the

 

call

 

to

 

the

 

AgentProperty()

 

constructor,

 

the

 

code

 

in

 

Figure

 

65

 

on

 

page

 

122

 

first

 

creates

 

and

 

initializes

 

the

 

validValues

 

and

 

defaultValues

 

arrays

 

so

 

they

 

are

 

available

 

for

 

the

 

constructor.

 

v

   

The

 

Prefix

 

property

 

is

 

a

 

single-cardinality

 

property

 

that

 

does

 

not

 

display

 

multiple

 

values

 

for

 

the

 

user

 

to

 

choose

 

from.

 

It

 

does

 

not

 

have

 

a

 

default

 

value.

 

Therefore,

 

this

 

property

 

requires

 

the

 

following

 

metadata

 

in

 

the

 

AgentProperty()

 

constructor:

  

metadata

 

AgentProperty

 

member

 

variable

 

Value

 

Single

 

cardinality

 

cardinality

 

ODKConstant.SINGLE_CARD

 

Does

 

not

 

allow

 

user

 

to

 

choose

 

from

 

multiple

 

values

 

isMultiple

 

false

 

allValidValues

 

null

 

Does

 

not

 

provide

 

default

 

values

 

allDefaultValues

 

null

 

User

 

is

 

not

 

required

 

to

 

enter

 

a

 

value

 

isRequired

 

false

   

The

 

code

 

fragment

 

in

 

Figure

 

65

 

creates

 

and

 

initializes

 

the

 

business-object-properties

 

array:

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

121



For

 

more

 

information

 

on

 

the

 

metadata

 

of

 

business-object

 

properties,

 

see

 

“Working

 

with

 

agent

 

properties”

 

on

 

page

 

140.

 

Displaying

 

the

 

BO

 

Properties

 

dialog

 

box:

   

Once

 

the

 

business-object-property

 

array

 

is

 

initialized,

 

the

 

ODA

 

can

 

call

 

the

 

getBOSpecificProps()

 

method

 

to

 

pass

 

this

 

array

 

to

 

Business

 

Object

 

Wizard

 

for

 

display

 

to

 

the

 

user

 

in

 

the

 

BO

 

Properties

 

dialog

 

box.

 

This

 

method

 

is

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

and

 

therefore

 

must

 

access

 

an

 

ODKUtility

 

object.

 

Usually,

 

you

 

instantiate

 

this

 

object

 

as

 

part

 

of

 

the

 

ODA

 

initialization.

 

For

 

more

 

information,

 

see

 

“Obtaining

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object”

 

on

 

page

 

102.

 

Note:

  

If

 

any

 

property

 

values

 

are

 

invalid,

 

getBOSpecificProps()

 

throws

 

the

 

ODKInvalidPropException

 

exception.

 

The

 

call

 

to

 

getBOSpecificProps()

 

in

 

Figure

 

66

 

sends

 

the

 

AgtProps

 

array

 

(initialized

 

in

 

Figure

 

65)

 

to

 

Business

 

Object

 

Wizard

 

for

 

display

 

in

 

the

 

BO

 

Properties

 

dialog

 

box.

  

Retrieving

 

the

 

user-specified

 

values:

   

Once

 

users

 

have

 

specified

 

values

 

for

 

the

 

business-object

 

properties

 

in

 

the

 

BO

 

Properties

 

dialog

 

box

 

and

 

clicked

 

Next,

 

Business

 

Object

 

Wizard

 

sends

 

the

 

user-specified

 

values

 

back

 

to

 

the

 

ODA.

 

The

 

ODA

 

can

 

retrieve

 

these

 

values

 

in

 

either

 

of

 

the

 

following

 

ways:

 

v

   

Business

 

Object

 

Wizard

 

saves

 

the

 

user-specified

 

values

 

in

 

a

 

Java

 

Hashtable

 

object

 

and

 

sends

 

this

 

object

 

as

 

the

 

return

 

value

 

for

 

getBOSpecificProps().

 

Each

 

property

 

is

 

keyed

 

on

 

its

 

name

 

in

 

this

 

Hashtable

 

object.

 

The

 

ODA

 

can

 

access

 

these

 

properties

 

with

 

the

 

Hashtable

 

methods.

 

The

 

user-specified

 

values

 

for

 

the

 

property

 

are

 

in

 

the

 

allValues

 

member

 

variable

 

of

 

its

 

agent-property

 

(AgentProperty)

 

object.

 

//

 

Create

 

the

 

business-object-property

 

array

    

AgentProperty

 

AgtProps[]

 

=

 

new

 

AgentProperty[2];

   

//

 

Provide

 

list

 

of

 

valid

 

values

 

for

 

Verbs

 

property

    

Object[]

 

validValues

 

=

 

new

 

Object[4];

    

validValues[0]

 

=

 

new

 

String("Create");

    

validValues[1]

 

=

 

new

 

String("Retrieve");

    

validValues[2]

 

=

 

new

 

String("Delete");

    

validValues[3]

 

=

 

new

 

String("Update");

  

//

 

Provide

 

list

 

of

 

default

 

values

 

for

 

Verbs

 

property

    

Object[]

 

defaultValues

 

=

 

new

 

Object[4];

    

defaultValues[0]

 

=

 

new

 

String("Create");

    

defaultValues[1]

 

=

 

new

 

String("Retrieve");

    

defaultValues[2]

 

=

 

new

 

String("Delete");

    

defaultValues[3]

 

=

 

new

 

String("Update");

 

//

 

Instantiate

 

the

 

Verbs

 

property

    

AgtProps[0]

 

=

 

new

 

AgentProperty("Verbs",

 

AgentProperty.TYPE_STRING,

          

"Verbs

 

that

 

are

 

applicable

 

to

 

all

 

the

 

selected

 

objects",

          

false,

 

true,

 

ODKConstant.MULTIPLE_CARD,

 

validValues,

          

defaultValues);

 

//

 

Instantiate

 

the

 

Prefix

 

property

    

AgtProps[1]

 

=

 

new

 

AgentProperty("Prefix",

 

AgentProperty.TYPE_STRING,

          

"Prefix

 

that

 

should

 

be

 

applied

 

to

 

each

 

business

 

object

 

name",

          

false,

 

false,

 

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Figure

 

65.

 

Creating

 

the

 

business-object

 

array

//

 

Display

 

BO

 

Properties

 

dialog

 

box,

 

initializing

 

it

 

with

 

AgtProps

    

Util.getBOSpecificProps(AgtProps,

 

"For

 

all

 

the

 

Tables

 

selected");

 

Figure

 

66.

 

Displaying

 

the

 

BO

 

Properties

 

dialog

 

box

  

122

 

Business

 

Object

 

Development

 

Guide



v

   

Business

 

Object

 

Wizard

 

writes

 

the

 

user-specified

 

values

 

into

 

the

 

ODA

 

runtime

 

memory.

 

The

 

ODA

 

can

 

access

 

these

 

values

 

with

 

the

 

getBOSpecificProperty()

 

or

 

getAllBOSpecificProperties()

 

methods

 

in

 

the

 

ODKUtility

 

class.

The

 

getBOSpecificProps()

 

call

 

in

 

Figure

 

66

 

did

 

not

 

save

 

the

 

Hashtable

 

object

 

that

 

Business

 

Object

 

Wizard

 

creates.

 

Therefore,

 

this

 

code

 

fragment

 

uses

 

the

 

getBOSpecificProperty()

 

method

 

to

 

get

 

the

 

value

 

of

 

the

 

properties

 

specified

 

for

 

the

 

verbs

 

and

 

each

 

business

 

object

 

prefix:

 

//

 

Get

 

the

 

value

 

of

 

the

 

Verbs

 

and

 

the

 

Prefix

 

properties

 

AgentProperty

 

propVerb

 

=

       

Util.getBOSpecificProperty("Verbs");

 

AgentProperty

 

propPrefix

 

=

       

Util.getBOSpecificProperty("Prefix");

 

Creating

 

the

 

business

 

object

 

definitions

 

The

 

generateBoDefs()

 

method

 

must

 

generate

 

a

 

business

 

object

 

definition

 

for

 

each

 

source

 

node

 

in

 

the

 

array

 

it

 

receives

 

as

 

an

 

argument

 

from

 

Business

 

Object

 

Wizard.

 

To

 

generate

 

a

 

business

 

object

 

definition,

 

generateBoDefs()

 

takes

 

the

 

following

 

steps:

 

1.

   

Use

 

the

 

source

 

node’s

 

path,

 

from

 

the

 

array

 

that

 

generateBoDefs()

 

receives

 

from

 

Business

 

Object

 

Wizard,

 

to

 

locate

 

the

 

associated

 

object

 

in

 

the

 

data

 

source.

 

2.

   

Obtain

 

any

 

information

 

needed

 

to

 

populate

 

the

 

business

 

object

 

definition

 

from

 

the

 

associated

 

object

 

in

 

the

 

data

 

source.

 

3.

   

Create

 

a

 

business-object-definition

 

object

 

to

 

represent

 

the

 

source

 

node.

 

4.

   

Populate

 

this

 

business-object-definition

 

object

 

with

 

the

 

information

 

obtained

 

from

 

the

 

associated

 

object

 

in

 

the

 

data

 

source

 

(step

 

2).

The

 

ODK

 

API

 

represents

 

a

 

business

 

object

 

definition

 

as

 

a

 

business-object-definition

 

(BusObjDef)

 

object.

 

You

 

can

 

use

 

the

 

BusObjDef()

 

constructor

 

to

 

instantiate

 

the

 

new

 

business

 

object

 

definition

 

and

 

provide

 

it

 

with

 

a

 

name.

 

You

 

can

 

then

 

provide

 

the

 

business

 

object

 

definition

 

with

 

the

 

information

 

shown

 

in

 

Table

 

40.

  

Table

 

40.

 

Contents

 

of

 

a

 

business

 

object

 

definition

 

Business-object-definition

 

information

 

Description

 

Accessor

 

method

 

metadata

 

Name

 

The

 

name

 

of

 

the

 

business

 

object

 

definition

 

getName()

 

Application-specific

 

information

 

The

 

business-object-level

 

application-specific

 

information,

 

which

 

contains

 

information

 

applicable

 

to

 

the

 

entire

 

business

 

object

 

definition

 

getAppInfo(),

 

setAppInfo()

 

Data

 

Attribute

 

list

 

A

 

list

 

of

 

the

 

attributes

 

in

 

the

 

business

 

object

 

definition;

 

each

 

attribute

 

is

 

a

 

BusObjAttr

 

object.

 

getAttributeList(),

 

setAttributeList(),

 

insertAttribute(),

 

removeAttribute()

 

Verb

 

list

 

A

 

list

 

of

 

supported

 

verbs

 

in

 

the

 

business

 

object

 

definition;

 

each

 

verb

 

is

 

a

 

BusObjVerb

 

object.

 

getVerbList(),

 

setVerbList(),

 

insertVerb(),

 

removeVerb()

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

123



As

 

Table

 

40

 

shows,

 

a

 

business

 

object

 

definition

 

contains

 

both

 

metadata

 

and

 

data.

 

The

 

following

 

sections

 

describe

 

how

 

to

 

access

 

these

 

parts

 

of

 

the

 

business

 

object

 

definition:

 

v

   

“Defining

 

the

 

metadata

 

for

 

the

 

business

 

object

 

definition”

 

v

   

“Generating

 

attributes”

 

on

 

page

 

125

 

v

   

“Supplying

 

supported

 

verbs”

 

on

 

page

 

129

Defining

 

the

 

metadata

 

for

 

the

 

business

 

object

 

definition:

   

As

 

Table

 

40

 

shows,

 

the

 

metadata

 

of

 

a

 

business

 

object

 

definition

 

consists

 

of

 

the

 

following

 

information:

 

v

   

Name

 

of

 

the

 

business

 

object

 

definition

 

v

   

Application-specific

 

information

 

(at

 

the

 

business-object-definition

 

level)

Naming

 

the

 

business

 

object

 

definition:

   

The

 

generateBoDefs()

 

method

 

receives

 

the

 

list

 

of

 

user-selected

 

source

 

nodes

 

as

 

an

 

argument.

 

This

 

list

 

is

 

an

 

array

 

of

 

String

 

objects

 

that

 

contains

 

the

 

node

 

paths

 

for

 

the

 

user-selected

 

source

 

nodes.

 

(For

 

information

 

on

 

node

 

paths,

 

see

 

“Determining

 

the

 

parent-node

 

path”

 

on

 

page

 

112.)

 

With

 

this

 

array,

 

the

 

ODA

 

must

 

create

 

the

 

appropriate

 

name

 

for

 

the

 

business

 

object

 

definition

 

associated

 

with

 

each

 

source

 

node.

 

Usually,

 

the

 

assumption

 

that

 

the

 

ODA

 

makes

 

is

 

that

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

matches

 

(or

 

is

 

based

 

on)

 

the

 

name

 

of

 

the

 

data-source

 

object

 

that

 

the

 

source

 

node

 

represents.

 

The

 

ODA

 

must

 

parse

 

the

 

source-node

 

path

 

to

 

obtain

 

the

 

name

 

of

 

the

 

source

 

node,

 

use

 

this

 

source-node

 

name

 

to

 

locate

 

the

 

associated

 

data-source

 

object,

 

then

 

obtain

 

the

 

name

 

from

 

the

 

data-source

 

object.

 

For

 

example,

 

in

 

the

 

Roman

 

Army

 

sample,

 

the

 

names

 

of

 

the

 

data-source

 

objects

 

and

 

business

 

object

 

definitions

 

match.

 

Therefore,

 

the

 

sample

 

code

 

calls

 

the

 

findSon()

 

method

 

(defined

 

in

 

the

 

ArmyAgent3

 

and

 

ArmyAgent4

 

classes)

 

to

 

obtain

 

the

 

data-source

 

object

 

that

 

the

 

source

 

node

 

represents

 

using

 

the

 

source

 

node’s

 

node

 

path

 

from

 

the

 

input

 

array

 

of

 

source

 

nodes

 

(nodes),

 

as

 

follows:

 

for

 

(int

 

i=0;

 

i<nodes.length;

 

i++)

    

{

    

Son

 

sonNode

 

=

 

findSon(nodes[i]);

    

BusObjDef

 

sonBo

 

=

 

new

 

BusObjDef(sonNode.name.getValue());

    

...

 

Note:

  

All

 

forms

 

of

 

the

 

BusObjDef()

 

constructor

 

specify

 

the

 

name

 

of

 

the

 

business

 

object

 

definition.

 

The

 

findSon()

 

method

 

parses

 

the

 

source-node

 

path

 

to

 

obtain

 

the

 

name

 

of

 

the

 

last

 

node

 

in

 

the

 

path.

 

As

 

another

 

example,

 

suppose

 

the

 

data

 

source

 

is

 

a

 

database

 

and

 

its

 

source

 

nodes

 

represent

 

tables.

 

If

 

the

 

source-node

 

paths

 

include

 

the

 

schema

 

names

 

(schema:table),

 

your

 

ODA

 

needs

 

to

 

parse

 

the

 

source-node

 

paths

 

to

 

assign

 

just

 

a

 

table

 

name

 

to

 

the

 

corresponding

 

business

 

object

 

definitions.

 

If

 

your

 

ODA

 

supports

 

a

 

user-specified

 

prefix

 

for

 

business

 

object

 

definitions

 

(with

 

a

 

configuration

 

variable),

 

the

 

ODA

 

must

 

prepend

 

this

 

prefix

 

before

 

it

 

calls

 

BusObjDef()

 

constructor

 

to

 

create

 

the

 

business-object-definition

 

object,

 

as

 

the

 

following

 

code

 

fragment

 

shows:

 

AgentProperty

 

propPrefix

 

=

 

getBOSpecificProperty("Prefix");

 

for

 

(int

 

i=0;

 

i<names.length;

 

i++)

    

{

    

strToken

 

=

 

new

 

StringTokenizer(names[i],

 

":");

    

schemaName

 

=

 

strToken.nextToken();

    

tableName

 

=

 

strToken.nextToken()

   

124

 

Business

 

Object

 

Development

 

Guide



if

 

(propPrefix.allValues

 

!=

 

null

 

&&

 

propPrefix.allValues[0]

 

!=

 

null)

       

boDef

 

=

 

new

 

BusObjDef(propPrefix.allValues[0]

 

+

 

tableName);

    

else

       

boDef

 

=

 

new

 

BusObjDef(tableName);

    

...

 

If

 

your

 

data-source

 

objects

 

do

 

not

 

have

 

the

 

exact

 

names

 

you

 

want

 

to

 

assign

 

to

 

your

 

business

 

object

 

definitions,

 

the

 

ODA

 

must

 

parse

 

or

 

in

 

some

 

way

 

format

 

these

 

names

 

as

 

needed.

 

Generating

 

business-object

 

application-specific

 

information:

   

As

 

“Business

 

object

 

application-specific

 

information”

 

on

 

page

 

7

 

describes,

 

application-specific

 

information

 

is

 

a

 

powerful

 

way

 

to

 

put

 

application-specific

 

processing

 

information

 

within

 

the

 

business

 

object

 

definition.

 

By

 

moving

 

this

 

information

 

from

 

the

 

processing

 

program

 

(such

 

as

 

a

 

connector),

 

the

 

processing

 

program

 

can

 

be

 

metadata-driven;

 

that

 

is,

 

it

 

can

 

be

 

written

 

in

 

a

 

more

 

generic

 

fashion

 

and

 

obtain

 

its

 

application-specific

 

processing

 

instructions

 

from

 

the

 

business

 

object

 

definition.

 

Therefore,

 

if

 

your

 

business

 

object

 

definitions

 

are

 

to

 

be

 

used

 

with

 

metadata-driven

 

processing

 

programs,

 

it

 

is

 

important

 

that

 

they

 

include

 

the

 

correctly

 

formatted

 

application-specific

 

information

 

at

 

the

 

business-object,

 

attribute,

 

and

 

verb

 

levels.

 

Note:

  

For

 

information

 

on

 

attribute

 

application-specific

 

information,

 

see

 

“Generating

 

attributes.”

 

For

 

information

 

on

 

verb

 

application-specific

 

information,

 

see

 

“Supplying

 

supported

 

verbs”

 

on

 

page

 

129.

 

The

 

business

 

object

 

definitions

 

that

 

the

 

Roman

 

Army

 

sample

 

generates

 

do

 

not

 

provide

 

application-specific

 

information.

 

However,

 

suppose

 

the

 

data

 

source

 

was

 

a

 

database

 

with

 

tables

 

as

 

its

 

source

 

nodes.

 

The

 

ODA

 

would

 

generate

 

business

 

object

 

definitions

 

for

 

each

 

user-selected

 

table.

 

In

 

this

 

business

 

object

 

definitions,

 

you

 

might

 

include

 

the

 

name

 

of

 

the

 

table

 

as

 

business-object-level

 

application-specific

 

information.

 

The

 

following

 

code

 

fragment

 

uses

 

the

 

setAppInfo()

 

method,

 

defined

 

in

 

the

 

BusObjDef

 

class,

 

to

 

create

 

the

 

appropriate

 

name-value

 

pairs

 

for

 

this

 

business-object-level

 

application-specific

 

information:

 

boDef.setAppInfo("TN="

 

+

 

tableName

 

+

 

";SCN="

 

+

 

schemaName

 

+";");

 

This

 

code

 

creates

 

the

 

TN

 

and

 

SCH

 

name-value

 

pairs

 

to

 

represent

 

the

 

table

 

and

 

schema

 

names,

 

respectively.

 

It

 

concatenates

 

the

 

table

 

name

 

and

 

schema

 

name

 

with

 

the

 

tag

 

used

 

to

 

name

 

the

 

element.

 

It

 

then

 

uses

 

the

 

setAppInfo()

 

method

 

to

 

assign

 

this

 

entire

 

string

 

as

 

the

 

business-object-level

 

application-specific

 

information.

 

Generating

 

attributes:

   

A

 

business

 

object

 

definition

 

contains

 

attributes,

 

which

 

describe

 

the

 

object

 

that

 

the

 

business

 

object

 

definition

 

represents.

 

The

 

business

 

object

 

definition

 

holds

 

the

 

attributes

 

in

 

its

 

attribute

 

list.

 

The

 

ODK

 

API

 

represents

 

an

 

attribute

 

as

 

an

 

attribute

 

(BusObjAttr)

 

object.

 

To

 

instantiate

 

an

 

attribute

 

object,

 

use

 

the

 

BusObjAttr()

 

constructor.

 

Table

 

41

 

summarizes

 

the

 

properties

 

in

 

an

 

attribute

 

object.

 

These

 

properties

 

correspond

 

to

 

the

 

attribute

 

metadata.

  

Table

 

41.

 

Properties

 

of

 

an

 

attribute

 

Attribute

 

property

 

Description

 

Accessor

 

method

 

Name

 

The

 

name

 

of

 

the

 

attribute

 

getName(),

 

setName()

 

Application-specific

 

information

 

The

 

attribute-level

 

application-specific

 

information,

 

which

 

contains

 

information

 

applicable

 

to

 

the

 

attribute

 

getAppText(),

 

setAppText()

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

125



Table

 

41.

 

Properties

 

of

 

an

 

attribute

 

(continued)

 

Attribute

 

property

 

Description

 

Accessor

 

method

 

Type

 

The

 

data

 

type

 

of

 

the

 

attribute’s

 

value

 

getAttrType(),

 

getAttrTypeName(),

 

setAttrType()

 

Cardinality

 

The

 

cardinality

 

of

 

the

 

attribute,

 

which

 

identifies

 

the

 

number

 

of

 

values

 

the

 

attribute

 

holds

 

getCardinality(),

 

setCardinality()

 

Default

 

value

 

The

 

value

 

to

 

assign

 

to

 

the

 

attribute

 

before

 

the

 

user

 

enters

 

a

 

value

 

getDefault(),

 

setDefault()

 

Maxlength

 

The

 

maximum

 

length

 

of

 

the

 

attribute’s

 

value

 

getMaxLength(),

 

setMaxLength()

 

Comments

 

Optional

 

comments

 

to

 

describe

 

the

 

purpose

 

of

 

the

 

attribute

 

getComments(),

 

setComments()

 

Relationship

 

type

 

A

 

string

 

to

 

identify

 

the

 

type

 

of

 

relationship

 

in

 

which

 

the

 

attribute

 

participates

 

getRelationType(),

 

setRelationType()

 

Primary

 

key

 

Whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

primary

 

key

 

isKey(),

 

setIsKey()

 

Foreign

 

key

 

Whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

foreign

 

key

 

isForeignKey(),

 

setIsForeignKey()

 

Required

 

key

 

Whether

 

the

 

attribute

 

is

 

required

 

isRequiredKey(),

 

setIsRequiredKey()

     

Important

 

The

 

business-object-definition

 

generation

 

process

 

automatically

 

creates

 

the

 

ObjectEventId

 

attribute.

 

If

 

Business

 

Object

 

Wizard

 

saves

 

the

 

business

 

object

 

definition

 

to

 

a

 

file,

 

it

 

automatically

 

adds

 

the

 

repository

 

version

 

to

 

the

 

top

 

of

 

this

 

file.

 

The

 

repository

 

version

 

is

 

necessary

 

if

 

the

 

integration

 

broker

 

is

 

InterChange

 

Server.

 

In

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

each

 

business

 

object

 

definition

 

represents

 

a

 

Roman

 

soldier.

 

The

 

generatesBoDefs()

 

method

 

creates

 

the

 

following

 

attributes

 

for

 

business

 

object

 

definition:

 

v

   

The

 

Age

 

attribute

 

holds

 

the

 

roman

 

soldier’s

 

age.

 

v

   

The

 

ChildNo

 

attribute

 

holds

 

the

 

number

 

of

 

children

 

the

 

soldier

 

has

 

(adopted

 

or

 

not).

Figure

 

67

 

contains

 

a

 

code

 

fragment

 

that

 

creates

 

these

 

attribute

 

objects

 

for

 

the

 

business

 

object

 

definition.

    

126

 

Business

 

Object

 

Development

 

Guide



To

 

create

 

the

 

Age

 

attribute,

 

the

 

code

 

fragment

 

in

 

Figure

 

67

 

takes

 

the

 

following

 

steps:

 

1.

   

Use

 

the

 

BusObjAttr()

 

constructor

 

to

 

create

 

the

 

Age

 

attribute

 

object

 

(attr).

 

It

 

uses

 

the

 

form

 

of

 

this

 

constructor

 

that

 

initializes

 

the

 

attribute

 

object

 

with

 

its

 

name,

 

type,

 

and

 

type

 

name.

 

To

 

initialize

 

the

 

type,

 

the

 

code

 

specifies

 

the

 

attribute-type

 

constant

 

for

 

Integer

 

(BusObjAttrType.INTEGER).

 

To

 

initialize

 

the

 

type

 

name,

 

it

 

uses

 

the

 

AttrTypes

 

member

 

variable

 

in

 

the

 

BusObjAttrType

 

interface.

 

This

 

static

 

member

 

variable

 

provides

 

the

 

type

 

names

 

for

 

all

 

supported

 

attribute

 

types

 

and

 

can

 

be

 

indexed

 

by

 

the

 

attribute-type

 

constants.

 

In

 

this

 

way,

 

you

 

can

 

assign

 

the

 

type

 

name

 

without

 

hardcoding

 

the

 

type-name

 

string.

 

2.

   

Use

 

the

 

setIsKey()

 

method

 

to

 

explicitly

 

set

 

the

 

primary-key

 

property

 

to

 

true.

 

Because

 

this

 

form

 

of

 

the

 

BusObjAttr()

 

constructor

 

specifies

 

only

 

three

 

attribute

 

properties,

 

all

 

other

 

attribute

 

properties

 

default

 

to

 

“undefined”.

 

Therefore,

 

after

 

the

 

BusObjAttr()

 

call,

 

the

 

primary-key

 

attribute

 

property

 

is

 

false.

 

To

 

indicate

 

that

 

the

 

Age

 

attribute

 

is

 

the

 

key

 

attribute,

 

the

 

code

 

sample

 

calls

 

setIsKey().

 

3.

   

Use

 

the

 

insertAttribute(),

 

defined

 

in

 

the

 

BusObjDef

 

class,

 

to

 

add

 

the

 

Age

 

attribute

 

to

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

The

 

code

 

fragment

 

in

 

Figure

 

67

 

repeats

 

these

 

basic

 

steps

 

to

 

generate

 

the

 

ChildNo

 

attribute.

 

The

 

main

 

difference

 

is

 

that

 

because

 

ChildNo

 

is

 

not

 

the

 

key

 

attribute,

 

no

 

call

 

to

 

setIsKey()

 

is

 

needed.

 

However,

 

the

 

code

 

fragment

 

does

 

provide

 

a

 

default

 

value

 

for

 

this

 

attribute

 

by

 

calling

 

the

 

setDefault()

 

method.

 

The

 

business

 

object

 

definitions

 

that

 

the

 

Roman

 

Army

 

sample

 

generates

 

are

 

very

 

simple.

 

Only

 

two

 

attributes

 

exist

 

in

 

the

 

business

 

object

 

definition

 

and

 

their

 

names

 

are

 

known

 

at

 

compile

 

time.

 

In

 

addition,

 

only

 

a

 

few

 

attribute

 

properties

 

must

 

be

 

set.

 

For

 

a

 

more

 

complex

 

example,

 

suppose

 

the

 

data

 

source

 

was

 

a

 

database,

 

with

 

tables

 

as

 

its

 

source

 

nodes

 

and

 

as

 

the

 

names

 

of

 

its

 

business

 

object

 

definitions.

 

In

 

this

 

case,

 

the

 

database

 

columns

 

would

 

correspond

 

to

 

the

 

attributes

 

of

 

the

 

business

 

object

 

definition.

 

Many

 

more

 

of

 

the

 

attribute

 

properties

 

would

 

need

 

to

 

be

 

set

 

for

 

these

 

attributes.

 

The

 

following

 

code

 

fragment

 

creates

 

attributes

 

for

 

the

 

columns

 

in

 

a

 

database

 

table:

 

Vector

 

Attributes;

 

//

 

1.

 

Retrieve

 

columns

 

from

 

database

 

table

 

into

 

’rst’

 

result

 

set

 

try{

    

ResultSet

 

rst

 

=

 

null;

 

//

 

1.

 

Create

 

an

 

attribute

 

object

 

for

 

Age

 

attribute

    

BusObjAttr

 

attr

 

=

 

new

 

BusObjAttr("Age",

 

BusObjAttrType.INTEGER,

       

BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]);

 

//

    

Set

 

the

 

Age

 

attribute

 

as

 

the

 

business

 

object

 

definition’s

 

key

    

attr.setIsKey(true);

 

//

    

Add

 

the

 

attribute

 

to

 

the

 

business

 

object

 

definition’s

 

attribute

 

list

    

sonBo.insertAttribute(attr);

 

//

 

2.

 

Create

 

an

 

attribute

 

object

 

for

 

ChildNo

 

attribute

    

attr

 

=

 

new

 

BusObjAttr("ChildNo",

 

BusObjAttrType.INTEGER,

       

BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]);

 

//

    

Set

 

the

 

default

 

value

 

to

 

number

 

of

 

children

    

attr.setDefault(sonNode.Son

 

==

 

null

 

?

 

"0"

 

:

 

""

 

+

 

sonNode.Son.size());

 

//

    

Add

 

the

 

attribute

 

to

 

the

 

business

 

object

 

definition’s

 

attribute

 

list

    

boDef.insertAttribute(attr);

 

Figure

 

67.

 

Generating

 

attributes

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

127



//

 

Retrieve

 

columns

 

from

 

database

    

rst

 

=

 

db.dbmd.getColumns(null,

 

schemaName,

 

tableName,

 

"%");

      

String

 

colName

 

=

 

null;

    

String

 

colType

 

=

 

null;

    

int

 

cType

 

=

 

0;

    

int

 

colSize

 

=

 

0;

    

//

 

Obtain

 

next

 

column

 

from

 

result

 

set

    

rst.next();

    

do{

       

//

 

Get

 

column

 

name

 

&

 

type

       

colName

 

=

 

rst.getString(4);

       

colType

 

=

 

rst.getString("DATA_TYPE");

         

//

 

Convert

 

database

 

types

 

to

 

supported

 

types.

       

//

 

Load

 

converted

 

types

 

into

 

the

 

cType

 

variable

       

//

 

(steps

 

not

 

shown)

 

//

 

2.

 

Create

 

an

 

attribute

 

object

 

for

 

each

 

column

 

in

 

the

 

result

 

set.

       

Attributes

 

=

 

new

 

Vector(1,

 

10);

       

try

         

{

          

//

 

Create

 

attribute

 

object

 

for

 

column

          

BusObjAttr

 

attrib

 

=

 

new

 

BusObjAttr(colName,

 

cType);

          

//

 

Set

 

the

 

cardinality

 

and

 

maxLength

 

attribute

 

properties

          

attrib.setCardinality(BusObjAttr.CARD_SINGLE);

          

colSize

 

=

 

rst.getInt("COLUMN_SIZE");

          

attrib.setMaxLength(colSize);

          

//

 

Determine

 

whether

 

it

 

is

 

a

 

primary

 

key

 

in

 

the

 

table:

 

compare

          

//

 

column

 

name

 

against

 

earlier

 

retrieve

 

of

 

table’s

 

primary

 

keys

          

//

 

(stored

 

in

 

pKeys

 

--

 

code

 

not

 

included

 

here)

          

if

 

(pKeys.contains(colName))==

 

true

 

{

             

attrib.setIsKey(true);

          

}else

             

attrib.setIsKey(false);

          

//

 

Determine

 

whether

 

it

 

is

 

a

 

foreign

 

key

 

in

 

the

 

table:

 

compare

          

//

 

column

 

name

 

against

 

earlier

 

retrieve

 

of

 

table’s

 

primary

 

keys

          

//

 

(stored

 

in

 

fKeys

 

--

 

code

 

not

 

included

 

here)

          

if

 

(fKeys.contains(colName))==

 

true

 

{

             

attrib.setIsForeignKey(true);

          

}else

             

attrib.setIsForeignKey(false);

          

//

 

Set

 

the

 

isRequired

 

property

          

if

 

((rst.getString("IS_NULLABLE").equals("NO"))

 

&&

                

(attrib.isKey()

 

!=

 

true)){

             

attrib.setIsRequiredKey(true);

          

}

         

//

 

Create

 

attribute

 

application-specific

 

information:

         

//

 

CN

 

tag

 

provides

 

column

 

name

          

String

 

asi

 

=

 

"CN="+colName;

          

attrib.setAppText(asi);

          

attrib.setDefault("");

         

//

 

Add

 

attribute

 

object

 

to

 

Attributes

 

vector

          

Attributes.add(attrib);

          

...

 

//

 

3.

 

Save

 

the

 

attribute

 

vector

 

as

 

the

 

business

 

object

 

definition’s

 

attribute

 

list

         

boDef.setAttributeList(Attributes);

 

The

 

steps

 

in

 

this

 

process

 

are

 

as

 

follows:

 

1.

   

Use

 

the

 

BusObjAttr()

 

constructor

 

to

 

create

 

a

 

simple

 

business

 

object

 

attribute

 

from

 

the

 

column

 

information.

 

This

 

form

 

of

 

the

 

constructor

 

specifies

 

only

 

the

 

attribute

 

name

 

and

 

type.

   

128

 

Business

 

Object

 

Development

 

Guide



2.

   

Set

 

the

 

cardinality

 

and

 

maxLength

 

attribute

 

properties,

 

based

 

on

 

these

 

values

 

from

 

the

 

column

 

in

 

the

 

database.

 

Note:

  

To

 

create

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects,

 

specify

 

the

 

name

 

of

 

the

 

child

 

business

 

object

 

as

 

the

 

type,

 

and

 

set

 

the

 

cardinality

 

to

 

1

 

or

 

n,

 

as

 

appropriate.

 

For

 

example,

 

to

 

create

 

an

 

attribute

 

named

 

LineItems

 

that

 

represents

 

an

 

array

 

of

 

OrderLineItems

 

business

 

objects,

 

use

 

the

 

following

 

code:

 

BusObjAttr

 

attrib

 

=

 

new

 

BusObjAttr(LineItems,

 

OrderLineItems);

 

attrib.setCardinality(BusObjAttr.CARD_MULTIPLE);

 

3.

   

Get

 

primary-key

 

and

 

foreign-key

 

information

 

to

 

set

 

any

 

attributes

 

that

 

represent

 

primary

 

or

 

foreign

 

keys.

 

The

 

code

 

fragment

 

compares

 

the

 

current

 

column

 

name

 

with

 

names

 

in

 

existing

 

arrays

 

that

 

contain

 

primary-key

 

columns

 

(pKey)

 

and

 

foreign-key

 

columns

 

(fKey)

 

selected

 

from

 

the

 

database.

 

Code

 

that

 

selects

 

the

 

primary-

 

and

 

foreign-key

 

columns

 

is

 

not

 

shown

 

here.

 

4.

   

Set

 

the

 

“is

 

required

 

key”

 

attribute

 

property,

 

based

 

on

 

whether

 

the

 

attribute

 

is

 

the

 

primary

 

key.

 

5.

   

Set

 

the

 

attribute-level

 

application-specific

 

information.

 

For

 

business

 

object

 

definitions

 

generated

 

for

 

database

 

tables,

 

you

 

might

 

include

 

the

 

name

 

of

 

the

 

column

 

as

 

attribute-level

 

application-specific

 

information

 

for

 

each

 

attribute

 

in

 

the

 

business

 

object

 

definition.

 

This

 

code

 

fragment

 

uses

 

the

 

setAppText()

 

method,

 

defined

 

in

 

the

 

BusObjAttr

 

class,

 

to

 

create

 

the

 

CN

 

name-value

 

pair

 

for

 

the

 

attribute-level

 

application-specific

 

information.

 

The

 

code

 

concatenates

 

the

 

column

 

name

 

with

 

the

 

CN

 

tag.

 

It

 

then

 

uses

 

the

 

setAppText()

 

method

 

to

 

assign

 

this

 

entire

 

string

 

as

 

the

 

attribute’s

 

application-specific

 

information.

 

6.

   

Use

 

the

 

setAttributeList()

 

method,

 

defined

 

in

 

the

 

BusObjDef

 

class,

 

to

 

assign

 

the

 

generated

 

attributes

 

vector

 

(Attributes)

 

as

 

the

 

attribute

 

list

 

of

 

the

 

business

 

object

 

definition.

Supplying

 

supported

 

verbs:

   

A

 

business

 

object

 

definition

 

contains

 

supported

 

verbs,

 

which

 

describe

 

the

 

operations

 

that

 

can

 

be

 

performed

 

on

 

business

 

objects

 

of

 

that

 

business

 

object

 

definition.

 

The

 

business

 

object

 

definition

 

holds

 

its

 

supported

 

verbs

 

in

 

its

 

verb

 

list.

 

The

 

ODK

 

API

 

represents

 

a

 

verb

 

as

 

a

 

business-object-verb

 

(BusObjVerb)

 

object.

 

To

 

instantiate

 

a

 

verb

 

object,

 

use

 

the

 

BusObjVerb()

 

constructor.

 

Table

 

42

 

summarizes

 

the

 

metadata

 

in

 

a

 

verb

 

object.

  

Table

 

42.

 

metadata

 

for

 

a

 

verb

 

Verb

 

metadata

 

Description

 

Accessor

 

method

 

Name

 

The

 

name

 

of

 

the

 

supported

 

verb

 

(such

 

as

 

Create,

 

Retrieve,

 

Update,

 

or

 

Delete)

 

getName(),

 

setName()

 

Application-specific

 

information

 

The

 

verb-level

 

application-specific

 

information,

 

which

 

contains

 

information

 

applicable

 

only

 

to

 

the

 

verb

 

getAppInfo(),

 

setAppInfo()

   

In

 

the

 

Roman

 

Army

 

sample,

 

the

 

generatesBoDefs()

 

method

 

assigns

 

to

 

each

 

business

 

object

 

definition

 

one

 

supported

 

verb

 

of

 

Create.

 

The

 

following

 

code

 

fragment

 

uses

 

the

 

insertVerb()

 

method,

 

defined

 

in

 

the

 

BusObjDef

 

class,

 

to

 

add

 

the

 

Create

 

verb

 

to

 

the

 

business

 

object

 

definition’s

 

verb

 

list:

 

sonBo.insertVerb("Create",

 

null);

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

129



The

 

business

 

object

 

definitions

 

that

 

the

 

Roman

 

Army

 

sample

 

generates

 

do

 

not

 

provide

 

application-specific

 

information.

 

Therefore,

 

the

 

second

 

argument

 

to

 

this

 

insertVerb()

 

call,

 

which

 

provides

 

verb

 

application-specific

 

information,

 

is

 

null.

 

The

 

ODA

 

can

 

use

 

the

 

BO

 

Properties

 

dialog

 

box

 

to

 

obtain

 

verb

 

support

 

for

 

the

 

generated

 

business

 

object

 

definitions.

 

By

 

defining

 

a

 

business-object

 

property

 

called

 

Verbs

 

and

 

allowing

 

users

 

to

 

select

 

the

 

supported

 

verbs,

 

the

 

ODA

 

can

 

obtain

 

more

 

customized

 

verb

 

support.

 

For

 

more

 

information

 

on

 

the

 

use

 

of

 

the

 

BO

 

Properties

 

dialog

 

box,

 

see

 

“Requesting

 

business-object

 

properties”

 

on

 

page

 

119.

 

The

 

following

 

code

 

fragment

 

assumes

 

that

 

the

 

ODA

 

has

 

obtained

 

user-specified

 

values

 

for

 

a

 

business-object

 

property

 

called

 

Verbs

 

and

 

uses

 

this

 

property

 

to

 

obtain

 

the

 

verbs

 

to

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Vector

 

Verbs;

 

AgentProperty

 

propVerbs

 

=

 

getBOSpecificProperty("Verbs");

   

if

 

(propVerbs.allValues[0]

 

!=

 

null)

    

{

    

int

 

len

 

=

 

propVerbs.allValues.length;

    

BusObjVerb

 

verb;

      

for(int

 

i=0;

 

i<len;

 

i++)

       

{

       

if(propVerbs.allValues[i]

 

!=

 

null)

          

{

          

try

 

{

             

verb

 

=

 

new

 

BusObjVerb(propVerbs.allValues[i].toString(),

 

"");

             

Verbs.add(verb);

          

}

       

}

    

}

 

...

 

boDef.setVerbList(Verbs);

 

This

 

code

 

fragment

 

uses

 

the

 

BusObjVerb()

 

constructor

 

to

 

copy

 

a

 

verb

 

into

 

the

 

verb

 

variable

 

of

 

type

 

BusObjVerb.

 

It

 

then

 

loads

 

a

 

String

 

version

 

of

 

that

 

verb

 

object

 

into

 

the

 

Verbs

 

vector.

 

The

 

code

 

does

 

not

 

specify

 

verb

 

application-specific

 

information.

 

Finally,

 

the

 

code

 

fragment

 

uses

 

the

 

setVerbList()

 

method,

 

defined

 

in

 

the

 

BusObjDef

 

class,

 

to

 

assign

 

the

 

generated

 

verbs

 

vector

 

(Verbs)

 

as

 

the

 

verb

 

list

 

of

 

the

 

business

 

object

 

definition.

 

Providing

 

generated

 

business

 

object

 

definitions

 

As

 

discussed

 

in

 

“Providing

 

generated

 

content”

 

on

 

page

 

94,

 

the

 

ODA

 

must

 

return

 

the

 

generated

 

content

 

to

 

Business

 

Object

 

Wizard

 

in

 

two

 

parts.

 

Therefore,

 

if

 

the

 

ODA

 

generates

 

business

 

object

 

definitions

 

as

 

content,

 

it

 

must

 

return

 

the

 

following:

 

v

   

A

 

generated-content

 

structure,

 

which

 

contains

 

the

 

generated

 

business

 

object

 

definitions

 

v

   

A

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure

Because

 

the

 

ODA

 

must

 

generate

 

business

 

object

 

definitions

 

“on

 

request”,

 

the

 

generateBoDefs()

 

method

 

provides

 

this

 

content

 

information,

 

as

 

follows:

 

v

   

It

 

populates

 

the

 

generated-content

 

structure.

 

This

 

structure

 

must

 

in

 

some

 

way

 

be

 

to

 

global

 

to

 

the

 

ODA

 

class

 

so

 

that

 

both

 

generateBoDefs()

 

and

 

getBoDefs()

 

can

 

access

 

it.

 

v

   

It

 

returns

 

a

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

generated

 

business

 

objects

 

to

 

its

 

caller,

 

Business

 

Object

 

Wizard.

   

130

 

Business

 

Object

 

Development

 

Guide



Once

 

Business

 

Object

 

Wizard

 

receives

 

this

 

content-metadata

 

object,

 

it

 

can

 

access

 

the

 

generated

 

business

 

object

 

definitions

 

(within

 

the

 

generated-content

 

structure)

 

as

 

needed

 

with

 

the

 

getBoDefs()

 

method.

Note:

  

For

 

more

 

information

 

on

 

getBoDefs(),

 

see

 

“Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions.”

 

The

 

code

 

sample

 

in

 

Figure

 

68

 

shows

 

the

 

last

 

part

 

of

 

the

 

generateBoDefs()

 

method

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA.

   

Figure

 

68

 

handles

 

the

 

generated

 

content

 

as

 

follows:

 

v

   

The

 

generatedBoDefs()

 

method

 

saves

 

the

 

generated

 

business

 

object

 

definition

 

in

 

its

 

generated-content

 

structure,

 

m_generatedBOs.

 

As

 

shown

 

in

 

Figure

 

63

 

on

 

page

 

119,

 

the

 

Roman

 

Army

 

sample

 

uses

 

a

 

Java

 

vector

 

called

 

m_generatedBOs

 

as

 

its

 

generated-content

 

structure.

 

This

 

structure

 

is

 

global

 

to

 

the

 

methods

 

of

 

the

 

Roman

 

Army

 

ODA

 

class.

 

To

 

save

 

the

 

business

 

object

 

definition

 

it

 

has

 

generated,

 

generateBoDefs()

 

saves

 

it

 

in

 

the

 

m_generatedBOs

 

vector.

 

This

 

step

 

is

 

within

 

a

 

loop

 

that

 

terminates

 

when

 

the

 

ODA

 

has

 

generated

 

business

 

object

 

definitions

 

for

 

all

 

source

 

nodes

 

that

 

users

 

selected.

 

When

 

Business

 

Object

 

Wizard

 

needs

 

to

 

access

 

the

 

generated-content

 

structure,

 

it

 

calls

 

the

 

content-retrieval

 

method,

 

getBoDefs().

 

v

   

As

 

its

 

last

 

step,

 

generateBoDefs()

 

returns

 

the

 

content-metadata

 

object

 

that

 

describes

 

the

 

generated

 

content.

 

The

 

generateBoDefs()

 

method

 

instantiates

 

a

 

ContentMetaData

 

object

 

and

 

into

 

this

 

constructor

 

passes

 

the

 

information

 

shown

 

in

 

Table

 

43.

  

Table

 

43.

 

Initializing

 

the

 

content

 

metadata

 

for

 

business-object-definition

 

generation

 

ContentMetaData

 

information

 

Code

 

Description

 

Content

 

type

 

ContentType.BusinessObject

 

Indicates

 

that

 

the

 

content

 

type

 

is

 

business

 

object

 

definitions

 

Size

 

of

 

the

 

generated

 

content

 

-1

 

Indicates

 

that

 

total

 

size

 

is

 

not

 

required.

 

The

 

length

 

value

 

is

 

not

 

needed

 

in

 

the

 

current

 

implementation

 

of

 

a

 

ContentMetaData

 

object.

 

Count

 

of

 

the

 

generated

 

content

 

m_generatedBOs.size()

 

The

 

size()

 

method

 

returns

 

the

 

number

 

of

 

elements

 

currently

 

in

 

the

 

vector.

   

Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions

 

The

 

generateBoDefs()

 

method

 

does

 

not

 

return

 

the

 

actual

 

generated

 

business

 

object

 

definitions.

 

For

 

Business

 

Object

 

Wizard

 

to

 

be

 

able

 

to

 

access

 

the

 

generated

 

content,

 

the

 

ODA

 

class

 

must

 

implement

 

the

 

content-retrieval

 

method

 

for

 

business

 

object

 

definitions.

 

Business

 

Object

 

Wizard

 

uses

 

the

 

information

 

in

 

the

 

content-metadata

            

m_generatedBOs.add(sonBo);

       

}

 

//

 

this

 

for

 

loop

 

terminates

 

when

 

all

 

bus

 

obj

 

defs

 

are

 

generated

       

return

 

new

 

ContentMetaData(ContentType.BusinessObject,

 

-1,

          

m_generatedBOs.size());

 

}

 

//

 

end

 

of

 

generateBoDefs()

 

Figure

 

68.

 

Providing

 

generated

 

business

 

object

 

definitions

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

131



object

 

(which

 

generateBoDefs()

 

does

 

return)

 

to

 

determine

 

whether

 

to

 

call

 

the

 

appropriate

 

content-retrieval

 

method.

 

If

 

generateBoDefs()

 

has

 

successfully

 

generated

 

business

 

objects,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getBoDefs()

 

method

 

to

 

retrieve

 

the

 

generated

 

business

 

object

 

definitions.

 

Note:

  

In

 

this

 

release,

 

Business

 

Object

 

Wizard

 

always

 

calls

 

the

 

generateBoDefs()

 

method

 

to

 

initiate

 

generation

 

of

 

business

 

object

 

definitions

 

because

 

the

 

ODA

 

must

 

support

 

the

 

on-request

 

content

 

protocol.

 

The

 

ODA

 

should

 

not

 

support

 

the

 

callback

 

content

 

protocol

 

for

 

generation

 

of

 

business

 

object

 

definitions.

 

For

 

more

 

information

 

on

 

content

 

protocols,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

To

 

provide

 

access

 

to

 

generated

 

business

 

object

 

definitions,

 

the

 

ODA

 

class

 

must

 

implement

 

the

 

getBoDefs()

 

method.

 

This

 

method

 

is

 

defined

 

as

 

part

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

The

 

method

 

accepts

 

as

 

an

 

argument

 

an

 

index,

 

which

 

identifies

 

the

 

number

 

of

 

business

 

object

 

definitions

 

to

 

return.

 

It

 

access

 

these

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure

 

and

 

returns

 

an

 

array

 

of

 

the

 

retrieved

 

business-object-definition

 

(BusObjDef)

 

objects.

 

The

 

number

 

of

 

business

 

object

 

definitions

 

in

 

this

 

array

 

depends

 

on

 

the

 

value

 

of

 

the

 

index

 

argument,

 

as

 

Table

 

44

 

shows.

  

Table

 

44.

 

Retrieving

 

business

 

object

 

definitions

 

Value

 

of

 

index

 

Description

 

Number

 

of

 

elements

 

in

 

array

 

that

 

getBoDefs()

 

returns

 

In

 

the

 

range

 

0

 

to

 

count

 

-

 

1,

 

where

 

count

 

is

 

the

 

total

 

number

 

of

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure

 

Specifies

 

the

 

index

 

position

 

into

 

the

 

generated-content

 

structure

 

of

 

the

 

business

 

object

 

definition

 

to

 

retrieve

 

One

 

business

 

object

 

definition

 

ODKConstant.GET_ALL_OBJECTS

 

Special

 

constant

 

to

 

indicate

 

the

 

return

 

of

 

all

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure

 

All

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure

 

(count)

   

For

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

generateBoDefs()

 

method

 

(defined

 

in

 

the

 

ArmyAgent3

 

class)

 

populates

 

the

 

m_generatedBOs

 

vector

 

with

 

its

 

generated

 

business

 

object

 

definitions.

 

Therefore,

 

the

 

getBoDefs()

 

method

 

(also

 

defined

 

in

 

ArmyAgent3)

 

retrieves

 

the

 

specified

 

number

 

of

 

business

 

object

 

definitions

 

from

 

this

 

vector

 

and

 

copies

 

them

 

into

 

its

 

return

 

array.

 

The

 

following

 

code

 

shows

 

the

 

getBoDefs()

 

method

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA:

 

public

 

BusObjDef[]

 

getBoDefs(long

 

index)

 

throws

 

ODKException

 

{

    

BusObjDef[]

 

bos

 

=

 

null;

    

if

 

(index

 

==

 

ODKConstant.GET_ALL_OBJECTS)

       

{

       

bos

 

=

 

new

 

BusObjDef[m_generatedBOs.size()]

       

System.arraycopy(m_generatedBOs.toArray(),

 

0,

 

bos,

 

0,

          

m_generatedBOs.size());

       

}

    

else

       

bos

 

=

 

new

 

BusObjDef[]

 

{(BusObjDef)m_generatedBOs.get((int)index)};

    

return

 

bos;

 

}

   

132

 

Business

 

Object

 

Development

 

Guide



Generating

 

binary

 

files

 

as

 

content

 

A

 

binary

 

file

 

is

 

an

 

operating-system

 

file,

 

which

 

is

 

represented

 

as

 

a

 

Java

 

File

 

object.

 

For

 

an

 

ODA

 

to

 

generate

 

binary-file

 

content,

 

its

 

ODA

 

class

 

must

 

implement

 

the

 

IGeneratesBinFiles

 

interface.

 

Table

 

45

 

lists

 

the

 

methods

 

that

 

the

 

ODA

 

class

 

must

 

define

 

to

 

implement

 

the

 

IGeneratesBinFiles

 

interface.

  

Table

 

45.

 

Methods

 

in

 

the

 

IGeneratesBinFiles

 

interface

 

Method

 

IGeneratesBinFiles

 

method

 

Description

 

Source-node-
generation

 

method

 

None

 

Generation

 

of

 

source

 

nodes

 

must

 

be

 

performed

 

by

 

the

 

getTreeNodes()

 

method

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

For

 

more

 

information,

 

see

 

“Using

 

files.”

 

Content-generation

 

method

 

generateBinFiles()

 

Generates

 

the

 

binary

 

files,

 

writing

 

them

 

to

 

ODA

 

memory

 

Content-retrieval

 

method

 

getBinFile()

 

Retrieves

 

either

 

a

 

specified

 

binary

 

file

 

or

 

all

 

binary

 

files

 

from

 

ODA

 

memory

   

Note:

  

In

 

addition

 

to

 

the

 

methods

 

in

 

Table

 

45,

 

IGeneratesBinFiles

 

also

 

includes

 

the

 

getContentProtocol()

 

method

 

to

 

specify

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

file

 

generation.

 

For

 

more

 

information,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

Business

 

Object

 

Wizard

 

generates

 

and

 

retrieves

 

content

 

while

 

it

 

displays

 

the

 

Generating

 

Business

 

Objects

 

(Step

 

5)

 

dialog

 

box.

 

With

 

the

 

IGeneratesBinFiles

 

interface

 

implemented,

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

methods

 

shown

 

in

 

Table

 

46

 

to

 

generate

 

and

 

retrieve

 

content.

  

Table

 

46.

 

Business

 

Object

 

Wizard

 

and

 

IGeneratesBinFiles

 

methods

 

Use

 

of

 

method

 

IGeneratesBinFiles

 

method

 

For

 

more

 

information

 

Generate

 

files

 

as

 

content

 

generateBinFiles()

 

“Generating

 

files”

 

on

 

page

 

135

 

Retrieve

 

the

 

generated

 

files

 

getBinFile()

 

“Providing

 

access

 

to

 

generated

 

files”

 

on

 

page

 

139

   

The

 

following

 

sections

 

discuss

 

the

 

implementation

 

of

 

each

 

of

 

the

 

methods

 

in

 

Table

 

46.

 

Using

 

files

 

When

 

an

 

ODA

 

that

 

implements

 

the

 

IGeneratesBinFiles

 

interface,

 

it

 

can

 

support

 

the

 

use

 

of

 

operating-system

 

files

 

in

 

the

 

following

 

contexts:

 

v

   

The

 

ODA

 

can

 

create

 

new

 

files

 

to

 

support

 

generation

 

of

 

file

 

content.

 

v

   

The

 

ODA

 

can

 

read

 

existing

 

files

 

to

 

support

 

the

 

association

 

of

 

files

 

with

 

source

 

nodes.

Creating

 

files

 

for

 

file

 

content

 

When

 

an

 

ODA

 

implements

 

the

 

IGeneratesBinFiles

 

interface,

 

it

 

supports

 

creation

 

of

 

files

 

as

 

content.

 

The

 

files

 

that

 

the

 

ODA

 

creates

 

hold

 

the

 

information

 

that

 

the

 

ODA

 

collects

 

from

 

the

 

business-object-definition

 

generation

 

process

 

and

 

elsewhere.

 

If

 

the

 

file-generation

 

process

 

needs

 

the

 

array

 

of

 

user-selected

 

source

 

nodes

 

(which

 

Business

 

Object

 

Wizard

 

creates

 

as

 

a

 

result

 

of

 

Step

 

3,

 

Select

 

Source),

 

the

 

ODA

 

can

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

133



receive

 

this

 

array

 

from

 

Business

 

Object

 

Wizard.

 

For

 

information

 

on

 

how

 

to

 

implement

 

the

 

method

 

that

 

generates

 

the

 

files,

 

see

 

“Generating

 

files”

 

on

 

page

 

135.

 

However,

 

the

 

IGeneratesBinFiles

 

interface

 

does

 

not

 

define

 

a

 

source-node-
generation

 

method,

 

which

 

discovers

 

source

 

nodes

 

and

 

generates

 

the

 

array

 

of

 

tree

 

nodes

 

for

 

Business

 

Object

 

Wizard

 

to

 

display

 

in

 

the

 

Select

 

Source

 

dialog

 

box.

 

Instead,

 

if

 

the

 

ODA

 

supports

 

generation

 

of

 

file

 

content

 

and

 

this

 

file

 

generation

 

requires

 

an

 

array

 

of

 

user-selected

 

source

 

nodes,

 

the

 

ODA

 

must

 

use

 

the

 

source-node-generation

 

method

 

in

 

the

 

IGeneratesBoDefs

 

interface,

 

getTreeNodes().

 

This

 

method

 

queries

 

the

 

data

 

source

 

for

 

the

 

child

 

nodes

 

of

 

the

 

specified

 

parent

 

node

 

and

 

constructs

 

the

 

associated

 

tree

 

nodes,

 

as

 

described

 

in

 

“Generating

 

source

 

nodes”

 

on

 

page

 

111.

 

Note:

  

In

 

this

 

release,

 

every

 

ODA

 

is

 

required

 

to

 

support

 

generation

 

of

 

business

 

object

 

definitions.

 

Therefore,

 

it

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

interface

 

and

 

all

 

its

 

methods

 

(including

 

the

 

getTreeNodes()

 

method).

 

If

 

an

 

ODA

 

supports

 

only

 

creation

 

of

 

new

 

files

 

(file

 

generation),

 

it

 

can

 

use

 

the

 

getTreeNodes()

 

method

 

as

 

defined

 

in

 

IGeneratesBoDefs.

 

This

 

method

 

queries

 

the

 

data

 

source

 

for

 

the

 

child

 

nodes

 

of

 

the

 

specified

 

parent

 

node

 

and

 

constructs

 

the

 

associated

 

tree

 

nodes,

 

as

 

described

 

in

 

“Generating

 

source

 

nodes”

 

on

 

page

 

111.

 

Reading

 

files

 

for

 

source

 

data

 

When

 

an

 

ODA

 

implements

 

the

 

IGeneratesBinFiles

 

interface,

 

it

 

can

 

support

 

reading

 

operating

 

system

 

files

 

that

 

you

 

associate

 

with

 

source

 

nodes

 

(For

 

information

 

on

 

how

 

to

 

associate

 

a

 

file

 

with

 

a

 

node,

 

see

 

“Associating

 

an

 

operating-system

 

file”

 

on

 

page

 

81.).

 

The

 

files

 

that

 

the

 

ODA

 

reads

 

hold

 

source

 

data,

 

which

 

the

 

ODA

 

must

 

search

 

for

 

objects

 

that

 

are

 

represented

 

as

 

source

 

nodes.

 

To

 

support

 

the

 

association

 

of

 

files

 

with

 

nodes,

 

an

 

ODA

 

must

 

take

 

the

 

following

 

steps:

 

v

   

Set

 

the

 

node

 

nature

 

of

 

any

 

tree

 

node

 

that

 

can

 

have

 

a

 

file

 

associated

 

with

 

it

 

to

 

“file”

 

(its

 

polymorphicNature

 

member

 

variable

 

set

 

to

 

ODKConstant.NODE_NATURE_FILE).

 

For

 

more

 

information,

 

see

 

“File-nature

 

nodes”

 

on

 

page

 

118.

 

v

   

Implement

 

any

 

methods

 

that

 

need

 

to

 

access

 

objects

 

represented

 

by

 

source

 

nodes

 

so

 

that

 

they

 

query

 

not

 

just

 

the

 

ODA’s

 

data

 

source,

 

but

 

any

 

file

 

associated

 

with

 

a

 

source

 

node.

 

To

 

retrieve

 

the

 

contents

 

of

 

an

 

operating-system

 

file

 

specified

 

by

 

its

 

source-node

 

path,

 

use

 

the

 

getClientFile()

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class.

  

Important

 

An

 

ODA

 

must

 

implement

 

the

 

IGeneratesBinFiles

 

interface

 

for

 

the

 

getClientFile()

 

method

 

to

 

successfully

 

retrieve

 

a

 

specified

 

operating-system

 

file.

 

If

 

the

 

ODA

 

implements

 

only

 

the

 

IGeneratesBoDefs

 

interface,

 

getClientFile()

 

throws

 

the

 

UnsupportedContentException

 

exception.

 

The

 

getClientFile()

 

method

 

expects

 

as

 

an

 

argument

 

the

 

source-node

 

path

 

of

 

the

 

file

 

to

 

retrieve.

 

This

 

source-node

 

path

 

has

 

the

 

following

 

format:

 

fileNodePath:filePath

 

where

 

fileNodePath

 

is

 

the

 

node

 

path

 

(node

 

names

 

separated

 

by

 

colon

 

(:))

 

of

 

the

 

node

 

that

 

has

 

an

 

associated

 

file

 

and

 

filePath

 

is

 

the

 

operating-system

 

path

 

of

 

the

 

associated

 

file.

 

When

 

users

 

expand

 

or

 

select

 

a

 

node

 

that

 

is

 

an

 

associated

 

file,

 

Business

 

Object

 

Wizard

 

creates

 

this

 

path

 

for

 

the

 

node.

   

134

 

Business

 

Object

 

Development

 

Guide



For

 

example,

 

the

 

ArmyAgent5

 

class

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA

 

supports

 

both

 

the

 

IGeneratesBinFiles

 

interface

 

and

 

the

 

association

 

of

 

files

 

with

 

nodes.

 

Suppose

 

you

 

associate

 

the

 

Flavius.xml

 

file

 

(in

 

the

 

directory

 

C:\IBM\XMLFiles)

 

to

 

the

 

Vulso

 

source

 

node,

 

as

 

shown

 

in

 

Figure

 

49

 

on

 

page

 

81..

 

If

 

you

 

select

 

the

 

Flavius.xml

 

node

 

(see

 

Figure

 

50

 

on

 

page

 

82)

 

from

 

the

 

source-node

 

hierarchy,

 

Business

 

Object

 

Wizard

 

puts

 

the

 

following

 

node

 

path

 

into

 

the

 

array

 

of

 

source

 

nodes:

 

Apollo:Vulso:Flavius.xml:C:\IBM\XMLFiles\Flavius.xml

 

This

 

ODA

 

provides

 

the

 

findSon()

 

method

 

to

 

parse

 

a

 

source-node

 

path

 

and

 

locate

 

the

 

associated

 

object

 

that

 

the

 

source

 

node

 

represents.

 

The

 

version

 

of

 

findSon()

 

in

 

the

 

ArmyAgent3

 

class

 

queries

 

only

 

the

 

ODA’s

 

data

 

source

 

(an

 

XML

 

file

 

called

 

RomanArmy.xml)

 

for

 

the

 

object

 

associated

 

with

 

the

 

specified

 

source

 

node.

 

A

 

revised

 

version

 

in

 

the

 

ArmyAgent4

 

class

 

adds

 

the

 

ability

 

to

 

query

 

an

 

associated

 

file

 

by

 

providing

 

the

 

remoteSon()

 

method,

 

which

 

uses

 

getClientFile()

 

to

 

obtain

 

the

 

contents

 

of

 

the

 

specified

 

file

 

and

 

return

 

this

 

content

 

as

 

a

 

Son

 

object.

 

Note:

  

The

 

ArmyAgent4

 

class,

 

which

 

implements

 

the

 

remoteSon()

 

method,

 

does

 

not

 

support

 

the

 

IGeneratesBinFiles

 

interface.

 

Therefore,

 

the

 

remoteSon()

 

method

 

catches

 

the

 

UnsupportedContentException

 

exception

 

that

 

getClientFile()

 

throws

 

and

 

creates

 

a

 

“dummy”

 

Son

 

object

 

(see

 

Figure

 

76

 

on

 

page

 

158).

 

The

 

ArmyAgent5

 

class,

 

which

 

extends

 

ArmyAgent4,

 

does

 

implement

 

IGeneratesBinFiles.

 

Therefore,

 

this

 

version

 

of

 

the

 

ODA

 

can

 

fully

 

support

 

access

 

to

 

files

 

associated

 

with

 

source

 

nodes

 

with

 

getClientFile().

 

If

 

a

 

source

 

node

 

can

 

have

 

a

 

file

 

associated

 

with

 

it,

 

then

 

the

 

ability

 

to

 

interpret

 

the

 

file’s

 

source-node

 

path

 

and

 

to

 

read

 

the

 

contents

 

of

 

this

 

file

 

is

 

needed

 

during

 

content

 

generation,

 

the

 

method

 

that

 

generates

 

content

 

must

 

be

 

able

 

to

 

access

 

information

 

in

 

nodes

 

that

 

are

 

in

 

a

 

file.

 

Implement

 

the

 

method

 

that

 

generates

 

content

 

so

 

that

 

it

 

uses

 

getClientFile()

 

to

 

retrieve

 

an

 

operating-system

 

file

 

that

 

is

 

associated

 

with

 

a

 

node.

 

The

 

method

 

that

 

provides

 

this

 

support

 

is

 

as

 

follows:

 

v

   

The

 

generateBoDefs()

 

method

 

generates

 

business

 

object

 

definitions.

 

The

 

getClientFile()

 

method

 

provides

 

the

 

contents

 

of

 

the

 

specified

 

file

 

so

 

that

 

generateBoDefs()

 

can

 

obtain

 

the

 

information

 

it

 

needs

 

to

 

create

 

a

 

business

 

object

 

definition.

 

If

 

the

 

generateBoDefs()

 

method

 

has

 

already

 

been

 

implemented

 

to

 

obtain

 

source-node

 

information

 

from

 

the

 

ODA’s

 

data

 

source,

 

it

 

must

 

be

 

enhanced

 

so

 

that

 

it

 

can

 

obtain

 

information

 

from

 

an

 

associated

 

file

 

as

 

well.

 

Note:

  

The

 

getClientFile()

 

method

 

cannot

 

retrieve

 

a

 

specified

 

file’s

 

contents

 

when

 

called

 

from

 

within

 

generateBoDefs()

 

unless

 

the

 

ODA

 

also

 

implements

 

the

 

IGeneratesBinFiles

 

interface.

 

v

   

The

 

method

 

that

 

generates

 

files

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports.

 

For

 

on-request

 

generation,

 

the

 

generateBinFiles()

 

method

 

generates

 

the

 

files.

 

For

 

callback

 

generation,

 

a

 

user-defined

 

method

 

generates

 

the

 

files.

 

In

 

either

 

case,

 

the

 

getClientFile()

 

method

 

provides

 

the

 

contents

 

of

 

the

 

specified

 

file

 

so

 

that

 

the

 

method

 

can

 

obtain

 

the

 

information

 

it

 

needs

 

to

 

create

 

a

 

file.

For

 

more

 

information

 

on

 

how

 

to

 

generate

 

file

 

content,

 

see

 

“Generating

 

files.”

 

Generating

 

files

 

After

 

users

 

have

 

selected

 

the

 

source

 

nodes

 

in

 

the

 

Select

 

Nodes

 

dialog

 

box,

 

the

 

ODA

 

is

 

ready

 

to

 

begin

 

content

 

generation.

 

The

 

goal

 

of

 

the

 

file

 

generation

 

process

 

is

 

to

 

create

 

a

 

file

 

(or

 

files)

 

that

 

the

 

ODA

 

or

 

other

 

process

 

requires.

 

The

 

step

 

that

 

initiates

 

the

 

generation

 

of

 

files

 

depends

 

on

 

the

 

content

 

protocol

 

associated

 

with

 

the

 

file

 

content

 

type

 

(ContentType.BinaryFile),

 

as

 

follows:

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

135



v

   

If

 

files

 

are

 

to

 

be

 

generated

 

on

 

request,

 

Business

 

Object

 

Wizard

 

initiates

 

content

 

generation

 

by

 

calling

 

the

 

content-generation

 

method,

 

generateBinFiles().

 

This

 

method

 

is

 

part

 

of

 

the

 

IGeneratesBinFiles

 

interface.

 

v

   

If

 

files

 

are

 

to

 

be

 

generated

 

through

 

callbacks,

 

the

 

ODA

 

initiates

 

content

 

generation

 

in

 

a

 

user-defined

 

way.

 

Business

 

Object

 

Wizard

 

does

 

not

 

call

 

generateBinFiles()

 

but

 

waits

 

for

 

a

 

“content

 

generation

 

is

 

complete”

 

signal

 

from

 

the

 

ODA

 

before

 

it

 

accesses

 

the

 

generated

 

content.

This

 

section

 

describes

 

the

 

following

 

steps

 

that

 

the

 

generateBinFiles()

 

method

 

should

 

take

 

to

 

generate

 

files:

 

1.

   

“Defining

 

the

 

generateBinFiles()

 

method”

 

2.

   

“Requesting

 

properties

 

for

 

file

 

information”

 

on

 

page

 

137

 

3.

   

“Creating

 

the

 

files”

 

on

 

page

 

137

 

4.

   

“Providing

 

generated

 

files”

 

on

 

page

 

138

Defining

 

the

 

generateBinFiles()

 

method

 

The

 

generateBinFiles()

 

method

 

is

 

defined

 

in

 

the

 

IGeneratesBinFiles

 

interface.

 

Therefore,

 

your

 

ODA

 

class

 

(derived

 

from

 

ODKAgentBase2)

 

must

 

implement

 

this

 

method

 

when

 

it

 

implements

 

the

 

IGeneratesBinFiles

 

interface.

 

The

 

purpose

 

of

 

the

 

generateBinFiles()

 

method

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

uses

 

for

 

generation

 

of

 

file

 

(ContentType.BinaryFile)

 

content,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

“on

 

request”,

 

Business

 

Object

 

Wizard

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method

 

to

 

generate

 

the

 

files.

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

Business

 

Object

 

Wizard

 

never

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method.

 

Instead,

 

the

 

ODA

 

uses

 

some

 

other

 

way

 

to

 

generate

 

the

 

files,

 

which

 

Business

 

Object

 

Wizard

 

can

 

then

 

access.

Generating

 

files

 

on

 

request:

   

If

 

the

 

ODA

 

generates

 

files

 

“on

 

request”,

 

Business

 

Object

 

Wizard

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method

 

to

 

initiate

 

generation

 

of

 

the

 

files.

 

Therefore,

 

you

 

must

 

implement

 

generateBinFiles()

 

so

 

that

 

it

 

handles

 

generating

 

the

 

file

 

objects,

 

storing

 

them

 

in

 

the

 

generated-content

 

structure,

 

and

 

returning

 

of

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

While

 

the

 

generateBinFiles()

 

method

 

runs,

 

Business

 

Object

 

Wizard

 

displays

 

its

 

Generating

 

Business

 

Objects

 

screen

 

(Step

 

5).

 

As

 

its

 

last

 

step,

 

generateBinFiles()

 

returns

 

a

 

content-metadata

 

(ContentMetaData)

 

object,

 

which

 

describes

 

the

 

generated

 

files

 

it

 

has

 

generated

 

(though

 

it

 

does

 

not

 

contain

 

the

 

actual

 

generated

 

files).

 

Generating

 

files

 

through

 

callbacks:

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

Business

 

Object

 

Wizard

 

never

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method.

 

Instead,

 

the

 

ODA

 

uses

 

some

 

other

 

way

 

to

 

“spontaneously”

 

generate

 

the

 

files.

 

You

 

must

 

develop

 

a

 

method

 

to

 

handle

 

generating

 

the

 

files,

 

storing

 

them

 

in

 

the

 

generated-content

 

structure,

 

and

 

notifying

 

Business

 

Object

 

Wizard

 

that

 

content

 

generation

 

is

 

complete.

 

However,

 

the

 

IGeneratesBinFiles

 

interface

 

requires

 

that

 

you

 

define

 

the

 

generateBinFiles()

 

method.

 

Therefore,

 

you

 

must

 

implement

 

generateBinFiles()

 

so

 

that

 

it

 

warns

 

the

 

caller

 

that

 

it

 

should

 

never

 

be

 

called.

 

The

 

sample

 

Roman

 

Army

 

ODA

 

supports

 

the

 

callback

 

content

 

protocol

 

for

 

the

 

generation

 

of

 

files

 

(see

 

Figure

 

58

 

on

 

page

 

109).

 

It

 

defines

 

the

 

generateBinDefs()

 

method

 

in

 

the

 

ArmyAgent5

 

class.

 

This

 

implementation

 

of

 

the

 

method

 

includes

 

the

 

code

 

in

 

Figure

 

69,

 

which

 

defines

 

the

 

generateBinFiles()

 

method

 

so

 

that

 

it

 

throws

 

an

 

exception

 

if

 

it

 

is

 

ever

 

called.

    

136

 

Business

 

Object

 

Development

 

Guide



As

 

an

 

alternative

 

to

 

throwing

 

an

 

exception,

 

the

 

generateBinFiles()

 

method

 

can

 

use

 

the

 

contentUnavailable()

 

method

 

(defined

 

in

 

ContentMetaData)

 

to

 

return

 

its

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard,

 

as

 

follows:

 

return

 

(ContentMetaData.contentUnavailable(ContentType.BinaryFile));

 

Requesting

 

properties

 

for

 

file

 

information

 

If,

 

during

 

the

 

process

 

of

 

generating

 

the

 

files,

 

the

 

ODA

 

requires

 

additional

 

information,

 

it

 

opens

 

the

 

BO

 

Properties

 

dialog

 

box

 

where

 

users

 

can

 

provide

 

values

 

for

 

business-object

 

properties.

 

Even

 

though

 

these

 

properties

 

are

 

called

 

business-object

 

properties,

 

you

 

can

 

use

 

the

 

getBOSpecificProps()

 

method

 

to

 

display

 

information

 

that

 

the

 

file-generation

 

process

 

might

 

require.

 

For

 

more

 

information

 

on

 

how

 

to

 

use

 

the

 

BO

 

Properties

 

dialog

 

box,

 

see

 

“Requesting

 

business-object

 

properties”

 

on

 

page

 

119.

 

Creating

 

the

 

files

 

The

 

ODK

 

API

 

does

 

not

 

provide

 

a

 

special

 

class

 

to

 

represent

 

a

 

binary

 

file

 

because

 

Java

 

already

 

provides

 

the

 

File

 

class

 

in

 

its

 

java.io

 

package.

 

This

 

package

 

contains

 

many

 

input/output

 

classes

 

that

 

can

 

be

 

useful

 

in

 

the

 

generation

 

and

 

access

 

of

 

files.

 

For

 

each

 

file

 

that

 

the

 

ODA

 

generates,

 

it

 

must

 

take

 

the

 

following

 

steps:

 

v

   

Create

 

a

 

new

 

File

 

object

 

with

 

the

 

appropriate

 

file

 

name.

 

v

   

Write

 

the

 

contents

 

to

 

this

 

file,

 

closing

 

the

 

file

 

when

 

writing

 

is

 

complete.

The

 

actual

 

file

 

generation

 

that

 

your

 

ODA

 

performs

 

depends

 

on

 

the

 

design

 

of

 

the

 

ODA.

 

Implement

 

the

 

file

 

generation

 

as

 

best

 

fits

 

the

 

requirements

 

of

 

your

 

ODA

 

and

 

any

 

components

 

that

 

require

 

the

 

files.

 

The

 

ArmyAgent5

 

class

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA

 

defines

 

a

 

separate

 

class,

 

FileCreator,

 

to

 

handle

 

the

 

actual

 

generation

 

of

 

the

 

files.

 

To

 

simulate

 

“spontaneous”

 

file

 

generation,

 

the

 

sample

 

calls

 

the

 

FileCreator()

 

constructor

 

from

 

the

 

generateBoDefs()

 

method,

 

as

 

the

 

following

 

code

 

fragment

 

shows:

 

public

 

ContentMetaData

 

generateBoDefs(String[]

 

nodes)

 

throws

 

ODKException

 

{

    

ContentMetaData

 

cmd

 

=

 

super.generateBoDefs(nodes);

    

new

 

FileCreator(this,

 

nodes).start();

    

return

 

cmd;

 

}

 

The

 

FileCreator()

 

constructor

 

spawns

 

a

 

thread

 

to

 

generate

 

the

 

files.

 

It

 

receives

 

as

 

an

 

argument

 

a

 

reference

 

to

 

the

 

current

 

ODA

 

object

 

(this)

 

and

 

the

 

array

 

with

 

the

 

node

 

paths

 

of

 

the

 

selected

 

source

 

nodes.

 

It

 

then

 

creates

 

the

 

following

 

files:

 

v

   

The

 

stats.zip

 

file,

 

which

 

contains

 

the

 

number

 

of

 

business

 

object

 

definitions

 

that

 

the

 

ODA

 

has

 

generated

 

v

   

The

 

adopted.txt

 

file,

 

if

 

any

 

user-selected

 

source

 

nodes

 

are

 

adopted

 

children

public

 

ContentMetaData

 

generateBinFiles(String[]

 

nodes)

     

throws

 

ODKException

 

{

    

throw

 

new

 

ODKException(

       

"Files

 

are

 

produced

 

as

 

callbacks.

 

Do

 

not

 

call

 

for

 

file

 

generation.");

 

}

 

Figure

 

69.

 

Defining

 

the

 

generateBinFiles()

 

method

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

137



Providing

 

generated

 

files

 

As

 

discussed

 

in

 

“Providing

 

generated

 

content”

 

on

 

page

 

94,

 

the

 

ODA

 

must

 

return

 

the

 

generated

 

content

 

to

 

Business

 

Object

 

Wizard

 

in

 

two

 

parts.

 

Therefore,

 

if

 

the

 

ODA

 

generates

 

files

 

as

 

content,

 

it

 

must

 

return

 

the

 

following:

 

v

   

A

 

generated-content

 

structure,

 

which

 

contains

 

the

 

generated

 

files.

 

v

   

A

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

files

 

in

 

the

 

generated-content

 

structure.

The

 

method

 

that

 

provides

 

this

 

information

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

uses

 

to

 

generate

 

files,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

“on

 

request”,

 

the

 

generateBinFiles()

 

method

 

provides

 

this

 

content

 

information.

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

a

 

user-defined

 

method

 

must

 

provide

 

this

 

content

 

information.

Providing

 

content

 

for

 

on-request

 

files:

   

If

 

the

 

ODA

 

generates

 

files

 

“on

 

request”,

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

generateBinFiles()

 

method

 

to

 

handle

 

file

 

generation.

 

Therefore,

 

generateBinFiles()

 

provides

 

the

 

generated

 

content

 

as

 

follows:

 

v

   

It

 

populates

 

the

 

generated-content

 

structure.

 

This

 

structure

 

must

 

in

 

some

 

way

 

be

 

visible

 

to

 

both

 

generateBinFiles()

 

and

 

getBinFile(),

 

so

 

that

 

both

 

can

 

access

 

it.

 

v

   

It

 

returns

 

a

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

generated

 

files

 

to

 

its

 

caller,

 

Business

 

Object

 

Wizard.

 

Once

 

Business

 

Object

 

Wizard

 

receives

 

this

 

content-metadata

 

object,

 

it

 

can

 

access

 

the

 

generated

 

files

 

(within

 

the

 

generated-content

 

structure)

 

as

 

needed

 

with

 

the

 

getBinFile()

 

method.

For

 

more

 

information

 

on

 

getBinFile()

 

,

 

see

 

“Providing

 

access

 

to

 

generated

 

files”

 

on

 

page

 

139.

 

Providing

 

content

 

for

 

callback-generated

 

files:

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

Business

 

Object

 

Wizard

 

does

 

not

 

invoke

 

the

 

generateBinFiles()

 

method

 

to

 

handle

 

file

 

generation.

 

Instead,

 

the

 

ODA

 

uses

 

some

 

user-defined

 

method

 

to

 

“spontaneously”

 

generate

 

files.

 

This

 

method

 

could

 

be

 

part

 

of

 

the

 

ODA

 

class

 

or

 

in

 

a

 

class

 

within

 

the

 

ODA’s

 

package.

 

However,

 

it

 

must

 

provide

 

the

 

generated

 

content

 

as

 

follows:

 

v

   

It

 

populates

 

the

 

generated-content

 

structure.

 

This

 

structure

 

must

 

in

 

some

 

way

 

be

 

visible

 

to

 

the

 

user-defined

 

method

 

that

 

generates

 

the

 

files

 

and

 

to

 

getBinFile()

 

(which

 

the

 

ODA

 

class

 

implements),

 

so

 

that

 

both

 

methods

 

can

 

access

 

it.

 

v

   

It

 

sends

 

a

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

generated

 

files

 

to

 

Business

 

Object

 

Wizard.

 

The

 

user-defined

 

method

 

that

 

generates

 

files

 

cannot

 

return

 

the

 

content

 

metadata

 

directly

 

to

 

Business

 

Object

 

Wizard

 

because

 

Business

 

Object

 

Wizard

 

has

 

not

 

invoked

 

this

 

method.

 

Instead,

 

the

 

method

 

must

 

send

 

a

 

“content

 

generation

 

is

 

complete”

 

signal

 

to

 

Business

 

Object

 

Wizard

 

by

 

calling

 

the

 

contentComplete()

 

method

 

(defined

 

in

 

the

 

ODKUtility

 

class).

 

This

 

method

 

accepts

 

a

 

content-metadata

 

object

 

as

 

an

 

argument.

 

See

 

Table

 

47

 

on

 

page

 

139

 

for

 

the

 

information

 

that

 

this

 

content-metadata

 

object

 

should

 

contain.

 

It

 

sends

 

this

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

Once

 

Business

 

Object

 

Wizard

 

receives

 

the

 

content-metadata

 

object,

 

it

 

can

 

use

 

the

 

getBinFile()

 

method

 

to

 

access

 

the

 

generated

 

files

 

(within

 

the

 

generated-content

 

structure).

  

138

 

Business

 

Object

 

Development

 

Guide



Note:

  

For

 

more

 

information

 

on

 

getBinFiles(),

 

see

 

“Providing

 

access

 

to

 

generated

 

files.”

 

In

 

the

 

ArmyAgent5

 

class

 

of

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

generated-content

 

structure

 

is

 

defined

 

an

 

array

 

of

 

File

 

objects

 

called

 

m_files,

 

as

 

follows:

 

File[]

 

m_files

 

=

 

null;

 

The

 

code

 

fragment

 

in

 

Figure

 

70

 

shows

 

the

 

last

 

part

 

of

 

the

 

FileCreator.run()

 

method

 

(defined

 

in

 

the

 

ArmyAgent5.java

 

file):

   

Figure

 

70

 

handles

 

the

 

generated

 

content

 

as

 

follows:

 

v

   

The

 

FileCreator.run()

 

method

 

saves

 

the

 

generated

 

files

 

in

 

the

 

generated-content

 

structure,

 

m_files.

 

The

 

Roman

 

Army

 

sample

 

ODA

 

uses

 

the

 

m_files

 

array

 

as

 

its

 

generated-content

 

structure.

 

To

 

save

 

the

 

files

 

it

 

has

 

generated,

 

run()

 

saves

 

them

 

in

 

this

 

m_files

 

array.

 

This

 

step

 

occurs

 

after

 

run()

 

has

 

generated

 

all

 

files.

 

Business

 

Object

 

Wizard

 

can

 

access

 

the

 

m_files

 

array

 

through

 

a

 

call

 

to

 

the

 

content-retrieval

 

method,

 

getBinFile().

 

v

   

As

 

its

 

last

 

step,

 

FileCreator.run()

 

sends

 

the

 

content-metadata

 

object

 

that

 

describes

 

the

 

generated

 

content

 

to

 

Business

 

Object

 

Wizard.

 

The

 

run()

 

method

 

calls

 

the

 

contentComplete()

 

method,

 

passing

 

it

 

a

 

new

 

ContentMetaData

 

object.

 

Into

 

this

 

ContentMetaData()

 

constructor,

 

run()

 

passes

 

the

 

information

 

shown

 

in

 

Table

 

47.

  

Table

 

47.

 

Initializing

 

the

 

content

 

metadata

 

for

 

file

 

generation

 

ContentMetaData

 

information

 

Code

 

Description

 

Content

 

type

 

ContentType.BinaryFile

 

Indicates

 

that

 

the

 

content

 

type

 

is

 

files

 

Size

 

of

 

the

 

generated

 

content

 

0

 

Indicates

 

that

 

total

 

size

 

is

 

not

 

required.

 

The

 

length

 

value

 

is

 

not

 

needed

 

in

 

the

 

current

 

implementation

 

of

 

a

 

ContentMetaData

 

object.

 

Count

 

of

 

the

 

generated

 

content

 

m_files.length

 

The

 

length

 

member

 

variable

 

contains

 

the

 

number

 

of

 

elements

 

currently

 

in

 

the

 

array.

   

Providing

 

access

 

to

 

generated

 

files

 

The

 

generateBinFiles()

 

method

 

does

 

not

 

return

 

the

 

actual

 

generated

 

business

 

object

 

definitions.

 

For

 

Business

 

Object

 

Wizard

 

to

 

be

 

able

 

to

 

access

 

the

 

generated

 

content,

 

the

 

ODA

 

class

 

must

 

implement

 

the

 

content-retrieval

 

method

 

for

 

files.

 

Business

 

Object

 

Wizard

 

uses

 

the

 

information

 

in

 

the

 

content-metadata

 

object

 

(which

 

generateBinFiles()

 

does

 

return)

 

to

 

determine

 

which

 

content-retrieval

 

method

 

to

            

for

 

(int

 

i=0;

 

i<fileV.size();

 

i++)

               

m_agent.m_files[i]

 

=

 

(File)

 

fileV.get(i);

       

}

       

ODKUtility.getODKUtility.contentComplete(

          

new

 

ContentMetaData(ContentType.BinaryFile,

 

0,

          

m_agent.m_files.length);

 

}

 

//

 

end

 

of

 

run()

 

in

 

FileCreator

 

class

 

Figure

 

70.

 

Providing

 

file

 

content

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

139



call.

 

For

 

file

 

content,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getBinFile()

 

method

 

to

 

retrieve

 

the

 

generated

 

business

 

object

 

definitions.

 

Note:

  

Business

 

Object

 

Wizard

 

calls

 

the

 

generateBinFile()

 

method

 

for

 

generation

 

of

 

files

 

if

 

the

 

ODA

 

supports

 

the

 

on-request

 

content

 

protocol.

 

If

 

the

 

ODA

 

supports

 

the

 

callback

 

content

 

protocol

 

for

 

generation

 

of

 

files,

 

a

 

user-defined

 

method

 

actually

 

generates

 

the

 

files.

 

However,

 

this

 

method

 

does

 

not

 

return

 

the

 

actual

 

generated

 

content

 

either.

 

Therefore,

 

Business

 

Object

 

Wizard

 

still

 

requires

 

the

 

getBinFile()

 

method

 

to

 

access

 

the

 

generated

 

files.

 

Regardless

 

of

 

the

 

content

 

protocol

 

your

 

ODA

 

supports

 

for

 

generation

 

of

 

files,

 

the

 

ODA

 

class

 

must

 

implement

 

the

 

getBinFile()

 

method.

 

This

 

method

 

is

 

defined

 

as

 

part

 

of

 

the

 

IGeneratesBinFiles

 

interface.

 

The

 

method

 

accepts

 

as

 

an

 

argument

 

an

 

index,

 

which

 

identifies

 

the

 

number

 

of

 

files

 

to

 

return.

 

It

 

accesses

 

these

 

files

 

in

 

the

 

generated-content

 

structure

 

and

 

returns

 

an

 

array

 

of

 

the

 

retrieved

 

file

 

(File)

 

objects.

 

The

 

number

 

of

 

files

 

in

 

this

 

array

 

depends

 

on

 

the

 

value

 

of

 

the

 

index

 

argument,

 

as

 

Table

 

48

 

shows.

  

Table

 

48.

 

Retrieving

 

files

 

Value

 

of

 

index

 

Description

 

Number

 

of

 

elements

 

in

 

array

 

that

 

getBinFile()

 

returns

 

In

 

the

 

range

 

0

 

to

 

count

 

-

 

1,

 

where

 

count

 

is

 

the

 

total

 

number

 

of

 

files

 

in

 

the

 

generated-content

 

structure

 

Specifies

 

the

 

index

 

position

 

into

 

the

 

generated-content

 

structure

 

of

 

the

 

file

 

to

 

retrieve

 

One

 

file

 

object

 

ODKConstant.GET_ALL_OBJECTS

 

Special

 

constant

 

to

 

indicate

 

the

 

return

 

of

 

all

 

files

 

in

 

the

 

generated-content

 

structure

 

All

 

file

 

objects

 

in

 

the

 

generated-content

 

structure

 

(count)

   

For

 

the

 

sample

 

Roman

 

Army

 

ODA,

 

the

 

FileCreator.run()

 

method

 

(defined

 

in

 

the

 

ArmyAgent5

 

class)

 

populates

 

the

 

m_files

 

array

 

with

 

the

 

generated

 

files.

 

Therefore,

 

the

 

getBinFile()

 

method

 

(also

 

defined

 

in

 

ArmyAgent5)

 

retrieves

 

the

 

specified

 

number

 

of

 

files

 

from

 

this

 

array.

 

The

 

following

 

code

 

shows

 

the

 

getBinFile()

 

method

 

for

 

the

 

sample

 

Roman

 

Army

 

ODA:

 

public

 

File[]

 

getBinFile(long

 

index)

 

throws

 

ODKException

 

{

    

if

 

(index

 

==

 

ODKConstant.GET_ALL_OBJECTS)

       

return

 

m_files;

    

else

       

return

 

new

 

File[]

 

{m_files[(int)index]};

 

}

 

Working

 

with

 

agent

 

properties

 

There

 

are

 

two

 

situations

 

in

 

which

 

an

 

ODA

 

provides

 

agent

 

properties

 

to

 

Business

 

Object

 

Wizard:

 

v

   

To

 

provide

 

initialized

 

ODA

 

configuration

 

properties

 

(in

 

the

 

Configure

 

Agent

 

dialog

 

box)

 

v

   

To

 

provide

 

initialized

 

business-object

 

properties

 

(in

 

the

 

BO

 

Properties

 

dialog

 

box)

To

 

represent

 

an

 

agent

 

property,

 

the

 

ODK

 

API

 

defines

 

an

 

agent-property

 

object,

 

which

 

is

 

an

 

instantiation

 

of

 

the

 

AgentProperty

 

class.

 

When

 

you

 

instantiate

 

the

 

agent-property

 

object,

 

you

 

initialize

 

some

 

or

 

all

 

of

 

its

 

member

 

variables,

 

shown

 

in

   

140

 

Business

 

Object

 

Development

 

Guide



Table

 

49.

  

Table

 

49.

 

Contents

 

of

 

an

 

agent-property

 

object

 

Member

 

variable

 

Description

 

propName

 

The

 

name

 

of

 

the

 

agent

 

property

 

description

 

A

 

text

 

string

 

that

 

describes

 

the

 

purpose

 

of

 

the

 

agent

 

property

 

type

 

The

 

data

 

type

 

of

 

the

 

agent

 

property,

 

as

 

represented

 

by

 

a

 

property-type

 

constant

 

cardinality

 

The

 

cardinality

 

of

 

the

 

agent

 

property;

 

that

 

is,

 

whether

 

the

 

property

 

can

 

have

 

one

 

or

 

multiple

 

values

 

isHidden

 

Determines

 

whether

 

Business

 

Object

 

Wizard

 

displays

 

the

 

property

 

value

 

as

 

normal

 

text

 

or

 

in

 

an

 

encrypted

 

format.

 

isMultiple

 

Determines

 

whether

 

Business

 

Object

 

Wizard

 

displays

 

a

 

drop-down

 

list

 

of

 

valid

 

values

 

for

 

the

 

agent

 

property,

 

for

 

users

 

to

 

choose

 

from

 

isReadOnly

 

Determines

 

whether

 

the

 

agent

 

property’s

 

value

 

is

 

read-only;

 

that

 

is,

 

whether

 

users

 

can

 

change

 

the

 

displayed

 

value

 

isRequired

 

Determines

 

whether

 

the

 

agent

 

property’s

 

value

 

is

 

required;

 

that

 

is

 

whether

 

users

 

are

 

required

 

to

 

specify

 

a

 

value

 

allDefaultValues

 

An

 

array

 

of

 

default

 

values

 

for

 

the

 

agent

 

property

 

allDependencies

 

An

 

array

 

of

 

conditions

 

for

 

the

 

agent

 

property

 

allValidValues

 

An

 

array

 

of

 

valid

 

values

 

for

 

the

 

agent

 

property

 

allValues

 

An

 

array

 

of

 

user-initialized

 

values

 

for

 

the

 

agent

 

property

   

To

 

instantiate

 

an

 

agent-property

 

object,

 

use

 

one

 

of

 

the

 

forms

 

of

 

the

 

AgentProperty()

 

constructor:

 

v

   

The

 

first

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

only

 

a

 

property

 

name.

 

v

   

The

 

second

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

all

 

member

 

variables.

 

v

   

The

 

third

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

all

 

member

 

variables

 

except

 

isHidden

 

and

 

isReadOnly.

Defining

 

the

 

agent

 

property

 

Table

 

50

 

shows

 

the

 

basic

 

information

 

about

 

an

 

agent

 

property

 

that

 

the

 

agent-property

 

object

 

contains.

  

Table

 

50.

 

Basic

 

information

 

for

 

an

 

agent

 

property

 

Basic

 

property

 

information

 

AgentProperty

 

member

 

variable

 

Description

 

Name

 

propName

 

Identifies

 

the

 

agent

 

property.

 

Business

 

Object

 

Wizard

 

displays

 

this

 

value

 

in

 

the

 

Property

 

column

 

of

 

the

 

Configure

 

Agent

 

(configuration

 

property)

 

or

 

BO

 

Properties

 

(business-object

 

property)

 

dialog

 

box.

 

You

 

can

 

initialize

 

the

 

agent

 

property’s

 

name

 

with

 

any

 

of

 

the

 

forms

 

of

 

the

 

AgentProperty()

 

constructor.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

141



Table

 

50.

 

Basic

 

information

 

for

 

an

 

agent

 

property

 

(continued)

 

Basic

 

property

 

information

 

AgentProperty

 

member

 

variable

 

Description

 

Description

 

(optional)

 

description

 

Provides

 

additional

 

information

 

to

 

describe

 

the

 

purpose

 

of

 

the

 

agent

 

property.

 

Business

 

Object

 

Wizard

 

displays

 

this

 

value

 

in

 

the

 

Description

 

column

 

of

 

the

 

Configure

 

Agent

 

(configuration

 

property)

 

or

 

BO

 

Properties

 

(business-object

 

property)

 

dialog

 

box.

 

You

 

must

 

use

 

either

 

the

 

second

 

or

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

to

 

initialize

 

the

 

agent

 

property’s

 

description.

 

Data

 

type

 

type

 

Defines

 

the

 

data

 

type

 

of

 

the

 

values

 

that

 

the

 

agent

 

property

 

holds.

 

Business

 

Object

 

Wizard

 

displays

 

this

 

value

 

in

 

the

 

Type

 

column

 

of

 

the

 

Configure

 

Agent

 

(configuration

 

property)

 

or

 

BO

 

Properties

 

(business-object

 

property)

 

dialog

 

box.

 

If

 

you

 

use

 

the

 

first

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

to

 

initialize

 

the

 

agent

 

property

 

(which

 

specifies

 

only

 

the

 

property

 

name),

 

the

 

agent

 

property’s

 

type

 

defaults

 

to

 

String.

 

To

 

specify

 

a

 

type,

 

use

 

the

 

second

 

or

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

to

 

initialize

 

the

 

agent

 

property.

 

Represent

 

the

 

agent

 

property’s

 

type

 

with

 

one

 

of

 

the

 

property-type

 

constants

 

shown

 

in

 

Table

 

67

 

on

 

page

 

173.

   

Defining

 

the

 

property

 

value

 

Business

 

Object

 

Wizard

 

displays

 

the

 

agent-property

 

value

 

in

 

the

 

Value

 

column

 

of

 

the

 

Configure

 

Agent

 

(configuration

 

property)

 

or

 

BO

 

Properties

 

dialog

 

box.

 

As

 

part

 

of

 

the

 

process

 

of

 

initializing

 

an

 

agent

 

property,

 

you

 

must

 

address

 

the

 

following

 

tasks:

 

v

   

“Choosing

 

the

 

type

 

of

 

display

 

control”

 

v

   

“Specifying

 

default

 

values”

 

on

 

page

 

144

 

v

   

“Initializing

 

a

 

single-cardinality

 

property”

 

on

 

page

 

145

 

v

   

“Initializing

 

a

 

multiple-cardinality

 

property”

 

on

 

page

 

145

Choosing

 

the

 

type

 

of

 

display

 

control

 

Business

 

Object

 

Wizard

 

uses

 

the

 

following

 

AgentProperty

 

metadata

 

to

 

determine

 

the

 

type

 

of

 

control

 

for

 

displaying

 

the

 

property

 

value:

 

v

   

The

 

isMultiple

 

parameter

 

determines

 

whether

 

the

 

control

 

for

 

the

 

property’s

 

value

 

displays

 

multiple

 

values

 

in

 

a

 

drop-down

 

list.

 

To

 

initialize

 

the

 

drop-down

 

list

 

with

 

values,

 

you

 

can

 

specify

 

the

 

values

 

in

 

the

 

allValidValues

 

array.

 

v

   

The

 

cardinality

 

parameter

 

determines

 

whether

 

the

 

control

 

allows

 

users

 

to

 

specify

 

one

 

or

 

multiple

 

values

 

for

 

the

 

property:

   

142

 

Business

 

Object

 

Development

 

Guide



Cardinality

 

Description

 

Cardinality

 

constant

 

Single

 

The

 

property

 

can

 

hold

 

only

 

one

 

value.

 

Therefore,

 

users

 

can

 

specify

 

only

 

one

 

value

 

for

 

the

 

property.

 

ODKConstant.SINGLE_CARD

 

Multiple

 

(n)

 

The

 

property

 

can

 

hold

 

one

 

or

 

more

 

values.

 

Therefore,

 

users

 

can

 

specify

 

multiple

 

values

 

for

 

the

 

property.

 

ODKConstant.MULTIPLE_CARD

   

Table

 

51

 

illustrates

 

the

 

possible

 

combinations

 

for

 

displaying

 

the

 

property-value

 

control.

  

Table

 

51.

 

Possible

 

property-value

 

control

 

types.

 

Cardinality

 

Displays

 

multiple

 

values

 

(isMultiple)

 

Are

 

valid

 

values

 

(all

 

ValidValues)

 

provided?

 

Explanation

 

1

 

false

 

No

 

The

 

property

 

value

 

displays

 

as

 

a

 

plain

 

edit

 

control;

 

that

 

is,

 

a

 

simple

 

box

 

in

 

which

 

users

 

can

 

enter

 

and

 

edit

 

one

 

value.

 

1

 

true

 

Yes

 

The

 

property

 

value

 

displays

 

as

 

a

 

drop-down

 

list

 

that

 

displays

 

the

 

specified

 

valid

 

values

 

(see

 

Figure

 

71

 

on

 

page

 

144).

 

From

 

this

 

list,

 

users

 

can

 

choose

 

only

 

one

 

value.

 

n

 

true

 

Yes

 

The

 

property

 

value

 

displays

 

as

 

a

 

drop-down

 

list

 

that

 

contains

 

the

 

specified

 

valid

 

values.

 

Each

 

value

 

in

 

this

 

list

 

displays

 

with

 

a

 

check

 

box

 

that,

 

if

 

selected,

 

allows

 

the

 

value

 

to

 

be

 

included

 

in

 

the

 

property’s

 

value

 

set

 

(see

 

Figure

 

71

 

on

 

page

 

144).

 

n

 

true

 

No

 

The

 

property

 

value

 

displays

 

as

 

a

 

grid

 

control

 

that

 

contains

 

no

 

displaying

 

values.

 

Initially,

 

this

 

grid

 

displays

 

a

 

sub-grid

 

with

 

one

 

empty

 

row.

 

If

 

users

 

enter

 

text

 

in

 

that

 

row,

 

Business

 

Object

 

Wizard

 

inserts

 

another

 

empty

 

row.

 

This

 

process

 

continues

 

until

 

users

 

finish

 

entering

 

new

 

rows.

 

To

 

delete

 

a

 

value,

 

users

 

delete

 

the

 

value’s

 

text.

 

Business

 

Object

 

Wizard

 

includes

 

only

 

non-empty

 

rows

 

in

 

the

 

property’s

 

value

 

set.

   

When

 

Business

 

Object

 

Wizard

 

displays

 

a

 

single-cardinality

 

property

 

that

 

does

 

not

 

have

 

valid

 

values,

 

it

 

just

 

leaves

 

the

 

property’s

 

Value

 

field

 

empty.

 

You

 

can,

 

however,

 

define

 

a

 

default

 

value

 

for

 

the

 

property.

 

In

 

this

 

case,

 

Business

 

Object

 

Wizard

 

displays

 

the

 

default

 

value

 

in

 

the

 

Value

 

field.

 

For

 

more

 

information,

 

see

 

“Specifying

 

default

 

values”

 

on

 

page

 

144.

 

Figure

 

71

 

illustrates

 

two

 

controls

 

that

 

display

 

multiple

 

values

 

(isMultiple

 

=

 

true)

 

in

 

Business

 

Object

 

Wizard.

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

143



Figure

 

71

 

shows

 

single-

 

and

 

multiple-cardinality

 

controls,

 

both

 

of

 

which

 

display

 

multiple

 

values

 

in

 

a

 

drop-down

 

list:

 

v

   

The

 

single-cardinality

 

control

 

(on

 

the

 

left

 

in

 

Figure

 

71)

 

displays

 

multiple

 

trace

 

levels

 

in

 

a

 

drop-down

 

list,

 

but

 

allows

 

users

 

to

 

select

 

only

 

one

 

value

 

(cardinality

 

=

 

ODKConstant.SINGLE_CARD)

 

from

 

this

 

list.

 

v

   

The

 

multiple-cardinality

 

control

 

(on

 

the

 

right

 

in

 

Figure

 

71)

 

displays

 

multiple

 

verbs

 

in

 

a

 

drop-down

 

list

 

and

 

allows

 

users

 

to

 

select

 

any

 

number

 

of

 

them

 

(cardinality

 

=

 

ODKConstant.MULTIPLE_CARD)

 

from

 

this

 

list.

Specifying

 

default

 

values

 

To

 

specify

 

a

 

default

 

value

 

for

 

an

 

agent

 

property,

 

you

 

provide

 

its

 

default

 

value

 

(or

 

values)

 

in

 

the

 

its

 

allDefaultValues

 

member

 

variable.

 

This

 

member

 

variable

 

is

 

an

 

array

 

of

 

Object

 

values.

 

The

 

number

 

of

 

elements

 

in

 

this

 

array

 

must

 

correspond

 

to

 

the

 

cardinality

 

of

 

the

 

property,

 

as

 

follows:

 

v

   

For

 

a

 

single-cardinality

 

property,

 

the

 

allDefaultValues

 

array

 

must

 

contain

 

only

 

one

 

element.

 

v

   

For

 

a

 

multiple-cardinality

 

property,

 

the

 

allDefaultValues

 

array

 

can

 

contain

 

one

 

or

 

more

 

elements.

Business

 

Object

 

Wizard

 

assigns

 

the

 

default

 

value

 

to

 

the

 

property

 

before

 

it

 

displays

 

the

 

property.

 

If

 

users

 

do

 

not

 

override

 

this

 

default

 

by

 

specifying

 

a

 

property

 

value,

 

this

 

default

 

value

 

remains

 

as

 

the

 

property

 

value.

 

Note:

  

Any

 

valid

 

values

 

specified

 

for

 

the

 

property

 

are

 

not

 

automatically

 

its

 

default

 

values.

 

You

 

must

 

explicitly

 

specify

 

default

 

values.

Multiple-cardinality controlSingle-cardinality control

  

Figure

 

71.

 

Single-

 

and

 

multiple-cardinality

 

controls

 

for

 

properties

 

with

 

multiple

 

values.

  

144

 

Business

 

Object

 

Development

 

Guide



Table

 

52

 

summarizes

 

the

 

behavior

 

of

 

default

 

values.

  

Table

 

52.

 

Default

 

values

 

for

 

agent

 

properties

 

Cardinality

 

Contents

 

of

 

allDefaultValues

 

Display

 

Single

 

One

 

element

 

With

 

valid

 

values

 

(isMultiple=true):

 

default

 

value

 

displays

 

as

 

a

 

“checked”

 

item

 

in

 

the

 

drop-down

 

list

 

of

 

valid

 

values.

 

With

 

no

 

valid

 

values

 

(isMultiple=false):

 

default

 

value

 

displays

 

in

 

the

 

property’s

 

Value

 

field.

 

Multiple

 

One

 

or

 

more

 

elements

 

Default

 

values

 

display

 

as

 

“checked”

 

items

 

in

 

the

 

drop-down

 

list

 

of

 

valid

 

values.

   

Initializing

 

a

 

single-cardinality

 

property

 

To

 

initialize

 

a

 

single-cardinality

 

agent

 

property,

 

take

 

the

 

following

 

steps:

 

v

   

Restrict

 

the

 

number

 

of

 

values

 

that

 

users

 

can

 

specify

 

to

 

one.

 

Set

 

the

 

property’s

 

cardinality

 

member

 

variable

 

to

 

ODKConstant.SINGLE_CARD.

 

v

   

Determine

 

whether

 

to

 

provide

 

a

 

list

 

of

 

valid

 

values

 

from

 

which

 

users

 

can

 

choose

 

the

 

property’s

 

single

 

value.

 

If

 

you

 

provide

 

a

 

list

 

of

 

valid

 

values:

 

–

   

Set

 

the

 

isMultiple

 

variable

 

to

 

true.

 

–

   

Initialize

 

the

 

valid-values

 

(allValidValues)

 

array

 

with

 

the

 

list

 

of

 

valid

 

values.

 

If

 

you

 

do

 

not

 

provide

 

a

 

list

 

of

 

valid

 

values,

 

set

 

the

 

isMultiple

 

variable

 

as

 

false

 

and

 

do

 

not

 

pass

 

in

 

a

 

valid-value

 

array.

 

v

   

Optionally,

 

initialize

 

the

 

allDefaultValues

 

array

 

to

 

contain

 

an

 

Object

 

with

 

the

 

single

 

default

 

value.

The

 

following

 

code

 

fragment

 

initializes

 

a

 

single-cardinality

 

agent

 

property

 

that

 

does

 

not

 

provide

 

a

 

list

 

of

 

values

 

to

 

choose

 

from,

 

and

 

has

 

a

 

default

 

value

 

of

 

256:

 

defaultVal[0]

 

=

 

256;

 

AgentProperty("Property1",

 

AgentProperty.TYPE_INTEGER,

 

"Description

 

of

 

property",

    

false,

 

false,

 

ODKConstant.SINGLE_CARD,

 

null,

 

defaultVal);

 

Initializing

 

a

 

multiple-cardinality

 

property

 

To

 

initialize

 

a

 

multiple-cardinality

 

agent

 

property,

 

take

 

the

 

following

 

steps:

 

v

   

Indicate

 

that

 

users

 

can

 

specify

 

a

 

number

 

of

 

values

 

for

 

the

 

property.

 

Set

 

the

 

property’s

 

cardinality

 

member

 

variable

 

to

 

ODKConstant.MULTIPLE_CARD.

 

v

   

Indicate

 

that

 

Business

 

Object

 

Wizard

 

needs

 

to

 

handle

 

entry

 

of

 

multiple

 

values

 

for

 

the

 

property.

 

Set

 

the

 

property’s

 

isMultiple

 

member

 

variable

 

to

 

true.

 

v

   

Determine

 

whether

 

to

 

provide

 

a

 

list

 

of

 

valid

 

values

 

from

 

which

 

users

 

can

 

choose.

 

If

 

you

 

provide

 

a

 

list

 

of

 

values,

 

initialize

 

the

 

list

 

of

 

valid

 

values

 

in

 

the

 

allValidValues

 

array.

 

These

 

values

 

initialize

 

the

 

property’s

 

drop-down

 

list.

 

If

 

you

 

do

 

not

 

provide

 

a

 

list

 

of

 

valid

 

values,

 

Business

 

Object

 

Wizard

 

provides

 

a

 

sub-grid

 

for

 

users

 

to

 

specify

 

each

 

property

 

value.

 

v

   

Optionally,

 

initialize

 

the

 

allDefaultValues

 

array

 

to

 

contain

 

an

 

Object

 

for

 

each

 

default

 

value.

The

 

code

 

fragment

 

in

 

Figure

 

65

 

on

 

page

 

122

 

initializes

 

a

 

multiple-cardinality

 

agent

 

property

 

named

 

Verbs,

 

which

 

has

 

a

 

list

 

of

 

valid

 

values

 

and

 

default

 

values.

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

145



Setting

 

conditions

 

on

 

the

 

property

 

value

 

The

 

AgentProperty

 

class

 

provides

 

the

 

ability

 

to

 

define

 

conditions

 

on

 

an

 

agent

 

property.

 

A

 

condition

 

can

 

restrict

 

the

 

values

 

of

 

one

 

agent

 

property,

 

called

 

a

 

dependent

 

property,

 

based

 

on

 

the

 

value

 

of

 

another

 

agent

 

property.

 

A

 

condition

 

has

 

two

 

parts,

 

each

 

part

 

a

 

particular

 

kind

 

of

 

subcondition,

 

as

 

Table

 

53

 

shows.

  

Table

 

53.

 

Parts

 

of

 

an

 

agent-property

 

condition

 

Subcondition

 

Description

 

ODK

 

API

 

class

 

Input

 

condition

 

Defines

 

a

 

condition

 

on

 

the

 

current

 

agent

 

property’s

 

value

 

InputCondition

 

Dependent

 

condition

 

Defines

 

a

 

condition

 

that

 

must

 

be

 

met

 

on

 

the

 

dependent

 

property

 

when

 

the

 

associated

 

input

 

condition

 

evaluates

 

to

 

true

 

DependentCondition

   

Defining

 

the

 

complete

 

condition

 

To

 

represent

 

a

 

condition,

 

the

 

ODK

 

API

 

defines

 

a

 

complete-condition

 

object,

 

which

 

is

 

an

 

instantiation

 

of

 

the

 

CompleteCondition

 

class.

 

Table

 

54

 

shows

 

the

 

member

 

variables

 

that

 

a

 

complete-condition

 

object

 

contains.

  

Table

 

54.

 

Contents

 

of

 

a

 

complete-condition

 

object

 

Member

 

variable

 

Description

 

allInputConditions

 

An

 

array

 

of

 

input-condition

 

(InputCondition)

 

objects,

 

each

 

object

 

defining

 

one

 

condition

 

on

 

the

 

value

 

of

 

the

 

agent

 

property

 

allDependentConditions

 

An

 

array

 

of

 

dependent-condition

 

(DependentCondition)

 

objects,

 

each

 

object

 

defining

 

one

 

restriction

 

on

 

the

 

value

 

of

 

a

 

dependent

 

property.

 

This

 

restriction

 

applies

 

to

 

the

 

dependent

 

property’s

 

value

 

when

 

the

 

associated

 

input

 

conditions

 

(in

 

the

 

allInputConditions

 

array)

 

evaluate

 

to

 

true.

   

A

 

complete-condition

 

object

 

contains

 

the

 

information

 

that

 

describes

 

a

 

single

 

condition

 

on

 

an

 

agent

 

property.

 

An

 

agent

 

property

 

can

 

have

 

many

 

conditions

 

defined

 

on

 

it.

 

Each

 

condition’s

 

complete-condition

 

object

 

is

 

stored

 

in

 

the

 

allDependencies

 

member

 

variable

 

of

 

the

 

agent

 

property’s

 

AgentProperty

 

object.

 

To

 

create

 

one

 

condition

 

on

 

an

 

agent

 

property,

 

take

 

the

 

following

 

steps:

 

1.

   

Instantiate

 

a

 

CompleteCondition

 

object

 

to

 

hold

 

the

 

condition

 

information.

 

2.

   

Instantiate

 

the

 

appropriate

 

InputCondition

 

objects

 

to

 

describe

 

input

 

conditions

 

for

 

the

 

agent

 

property.

 

Save

 

each

 

InputCondition

 

object

 

in

 

the

 

input-conditions

 

array

 

(allInputConditions

 

member

 

variable)

 

of

 

the

 

complete-condition

 

object.

 

For

 

more

 

information

 

about

 

input

 

conditions,

 

see

 

“Defining

 

input

 

conditions”

 

on

 

page

 

147.

 

3.

   

Instantiate

 

the

 

appropriate

 

DependentCondition

 

objects

 

to

 

describe

 

dependent

 

conditions

 

for

 

the

 

agent

 

property.

 

Save

 

each

 

DependentCondition

 

object

 

in

 

the

 

dependent-conditions

 

array

 

(allDependentConditions

 

member

 

variable)

 

of

 

the

 

complete-condition

 

object.

 

For

 

more

 

information,

 

see

 

“Defining

 

dependent

 

conditions”

 

on

 

page

 

147.

 

4.

   

Save

 

the

 

complete-condition

 

object

 

in

 

the

 

agent

 

property’s

 

condition

 

array.

 

The

 

allDependencies

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

contains

 

this

 

condition

 

array.

  

146

 

Business

 

Object

 

Development

 

Guide



Defining

 

input

 

conditions

 

The

 

InputCondition

 

class

 

represents

 

an

 

input

 

condition,

 

which

 

describes

 

a

 

condition

 

on

 

the

 

current

 

agent

 

property’s

 

value.

 

When

 

an

 

input

 

condition

 

evaluates

 

to

 

true,

 

the

 

associated

 

dependent

 

conditions

 

are

 

applied

 

to

 

the

 

dependent

 

agent

 

property.

 

Table

 

55

 

shows

 

the

 

information

 

needed

 

to

 

define

 

an

 

input

 

condition.

  

Table

 

55.

 

Information

 

for

 

an

 

input

 

condition

 

Input-condition

 

information

 

Description

 

InputCondition

 

member

 

variable

 

Operator

 

The

 

kind

 

of

 

comparison

 

to

 

make

 

on

 

the

 

agent-property

 

value.

 

A

 

comparison

 

is

 

indicated

 

as

 

a

 

relational

 

operator

 

and

 

is

 

specified

 

as

 

one

 

of

 

the

 

operator

 

constants

 

in

 

the

 

CompleteCondition

 

class.

 

operatorType

 

Specific

 

value

 

The

 

value

 

with

 

which

 

to

 

compare

 

the

 

agent

 

property’s

 

value.

 

This

 

value

 

can

 

be

 

a

 

constant

 

or

 

the

 

name

 

of

 

another

 

agent

 

property.

 

specificValue,

 

typeOfSpecificValue

 

Whether

 

the

 

comparison

 

of

 

the

 

agent

 

property’s

 

value

 

is

 

performed

 

dynamically

 

A

 

boolean

 

value

 

to

 

indicate

 

whether

 

to

 

compare

 

the

 

current

 

agent

 

property’s

 

value

 

with

 

another

 

property’s

 

value

 

dynamically.

 

Comparisons

 

that

 

involve

 

constants

 

do

 

not

 

require

 

dynamic

 

comparisons.

 

isDynamic

   

To

 

create

 

an

 

input

 

condition,

 

use

 

one

 

of

 

the

 

forms

 

of

 

the

 

InputCondition()

 

constructor.

 

The

 

code

 

fragment

 

in

 

Figure

 

74

 

on

 

page

 

149

 

creates

 

input

 

conditions

 

that

 

compare

 

the

 

agent-property

 

value

 

with

 

two

 

constant

 

string

 

values,

 

“optionA”

 

and

 

“optionB”.

 

You

 

can

 

also

 

compare

 

the

 

agent-property

 

value

 

with

 

some

 

other

 

property’s

 

value.

 

The

 

code

 

fragment

 

in

 

Figure

 

72

 

creates

 

an

 

input

 

condition

 

to

 

compare

 

an

 

agent

 

property’s

 

value

 

with

 

the

 

value

 

currently

 

in

 

the

 

Property2

 

agent

 

property.

   

In

 

Figure

 

72,

 

the

 

isDynamic

 

member

 

variable

 

is

 

set

 

to

 

true

 

so

 

that

 

Business

 

Object

 

Wizard

 

knows

 

to

 

first

 

obtain

 

the

 

current

 

value

 

of

 

the

 

Property2

 

property

 

before

 

comparing

 

the

 

user-specified

 

value

 

with

 

this

 

value.

 

In

 

addition,

 

the

 

specificValue

 

is

 

set

 

to

 

“Property2“,

 

the

 

name

 

of

 

the

 

property

 

against

 

which

 

the

 

comparison

 

is

 

made.

 

As

 

a

 

result

 

of

 

this

 

input

 

condition,

 

the

 

dependent

 

conditions

 

for

 

the

 

property

 

apply

 

only

 

if

 

this

 

property’s

 

value

 

is

 

not

 

the

 

same

 

as

 

Property2’s

 

value.

 

Defining

 

dependent

 

conditions

 

The

 

DependentCondition

 

class

 

represents

 

a

 

dependent

 

condition,

 

which

 

describes

 

a

 

restriction

 

on

 

the

 

value

 

a

 

particular

 

dependent

 

property.

 

A

 

dependent

 

property

 

is

 

a

 

property

 

whose

 

value

 

in

 

some

 

way

 

depends

 

on

 

the

 

current

 

property’s

 

value.

 

When

 

the

 

associated

 

input

 

condition

 

(or

 

conditions)

 

evaluates

 

to

 

true,

 

the

 

dependent

 

property’s

 

value

 

must

 

meet

 

the

 

restriction

 

that

 

the

 

dependent

 

condition

 

specifies.

 

//

 

Instantiate

 

a

 

complete-condition

 

object

 

condition1

 

=

 

new

 

CompleteCondition();

 

//

 

Input

 

condition

 

to

 

compare

 

property

 

value

 

with

 

Property2’s

 

value

 

condition1.allInputConditions[0]

 

=

 

new

 

InputCondition(

    

CompleteCondition.OP_NOT_EQUAL,

 

true,

 

AgentProperty.TYPE_INTEGER,

 

"Property2");

 

Figure

 

72.

 

Input

 

condition

 

to

 

compare

 

a

 

property

 

value

 

with

 

another

 

property’s

 

value

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

147



Table

 

56

 

shows

 

the

 

information

 

needed

 

to

 

define

 

a

 

dependent

 

condition.

  

Table

 

56.

 

Information

 

for

 

a

 

dependent

 

condition

 

Dependent-condition

 

information

 

Description

 

DependentCondition

 

member

 

variable

 

Name

 

The

 

name

 

of

 

the

 

dependent

 

property

 

to

 

which

 

the

 

dependent

 

condition

 

applies

 

if

 

the

 

associated

 

input

 

condition

 

(or

 

conditions)

 

evaluates

 

to

 

true.

 

propertyName

 

Operator

 

The

 

kind

 

of

 

comparison

 

to

 

make

 

on

 

the

 

dependent-property

 

value.

 

A

 

comparison

 

is

 

indicated

 

as

 

a

 

relational

 

operator

 

and

 

is

 

specified

 

as

 

one

 

of

 

the

 

operator

 

constants

 

in

 

the

 

CompleteCondition

 

class.

 

operatorType

 

Specific

 

value

 

The

 

value

 

with

 

which

 

to

 

compare

 

the

 

dependent-property

 

value.

 

This

 

value

 

can

 

be

 

a

 

constant

 

or

 

the

 

name

 

of

 

another

 

agent

 

property.

 

specificValue,

 

typeOfSpecificValue

 

Whether

 

the

 

comparison

 

of

 

the

 

user-specified

 

value

 

is

 

performed

 

dynamically

 

A

 

boolean

 

value

 

to

 

indicate

 

whether

 

to

 

compare

 

the

 

dependent

 

property’s

 

value

 

with

 

another

 

property’s

 

value

 

dynamically.

 

Comparisons

 

that

 

involve

 

constants

 

do

 

not

 

require

 

dynamic

 

comparisons.

 

isDynamic

   

To

 

create

 

a

 

dependent

 

condition,

 

use

 

one

 

of

 

the

 

forms

 

of

 

the

 

DependentCondition()

 

constructor.

 

The

 

code

 

fragment

 

in

 

Figure

 

74

 

on

 

page

 

149

 

creates

 

the

 

following

 

dependent

 

conditions:

 

v

   

Four

 

dependent

 

conditions

 

for

 

the

 

“optionA“

 

input

 

condition

 

specify

 

four

 

possible

 

values

 

for

 

the

 

DepProperty1

 

dependent

 

property

 

when

 

the

 

current

 

property

 

has

 

a

 

value

 

of

 

“optionA“.

 

v

   

Two

 

dependent

 

conditions

 

for

 

the

 

“optionB“

 

input

 

condition

 

specify

 

a

 

range

 

of

 

possible

 

values

 

for

 

the

 

DepProperty2

 

dependent

 

property

 

when

 

the

 

current

 

property

 

has

 

a

 

value

 

of

 

“optionB“.

You

 

can

 

also

 

compare

 

the

 

dependent-property

 

value

 

with

 

some

 

other

 

property’s

 

value.

 

The

 

code

 

fragment

 

in

 

Figure

 

73

 

creates

 

a

 

dependent

 

condition

 

to

 

compare

 

a

 

dependent

 

property’s

 

value

 

with

 

the

 

value

 

currently

 

in

 

the

 

Property2

 

agent

 

property.

   

In

 

Figure

 

73,

 

the

 

isDynamic

 

member

 

variable

 

is

 

set

 

to

 

true

 

so

 

that

 

Business

 

Object

 

Wizard

 

knows

 

to

 

first

 

obtain

 

the

 

current

 

value

 

of

 

the

 

Property2

 

property

 

before

 

comparing

 

the

 

dependent

 

property’s

 

value

 

with

 

this

 

value.

 

In

 

addition,

 

the

 

specificValue

 

is

 

set

 

to

 

“Property2“,

 

the

 

name

 

of

 

the

 

property

 

against

 

which

 

the

 

comparison

 

is

 

made.

 

//

 

Dependent

 

condition

 

to

 

compare

 

property

 

value

 

with

 

Property2’s

 

value

 

condition1.allDependentConditions[0]

 

=

 

new

 

DependentCondition(

    

CompleteCondition.OP_EQUAL,

 

true,

 

AgentProperty.TYPE_INTEGER,

 

"Property2");

 

Figure

 

73.

 

Dependent

 

condition

 

to

 

compare

 

a

 

property

 

value

 

with

 

another

 

property’s

 

value

  

148

 

Business

 

Object

 

Development

 

Guide



Defining

 

a

 

sample

 

condition

 

Suppose

 

that

 

you

 

want

 

to

 

define

 

conditions

 

on

 

an

 

agent

 

property

 

(Property1)

 

that

 

specifies

 

restrictions

 

on

 

two

 

dependent

 

properties,

 

based

 

on

 

values

 

of

 

Property1,

 

as

 

follows:

 

v

   

The

 

first

 

condition

 

restricts

 

the

 

value

 

of

 

the

 

DepProperty1

 

dependent

 

property

 

to

 

one

 

of

 

four

 

integer

 

values

 

(0,

 

1,

 

256,

 

or

 

512)

 

if

 

Property1

 

has

 

the

 

value

 

of

 

“optionA“.

 

v

   

The

 

second

 

condition

 

restricts

 

the

 

value

 

of

 

the

 

DepProperty2

 

dependent

 

property

 

to

 

be

 

in

 

the

 

range

 

from

 

1

 

to

 

5

 

(inclusive)

 

if

 

Property1

 

has

 

the

 

value

 

of

 

“optionB“.

Figure

 

74

 

shows

 

the

 

code

 

that

 

implements

 

these

 

two

 

conditions.

  

//

 

1.

 

Instantiate

 

the

 

complete-condition

 

object

 

condition1

 

=

 

new

 

CompleteCondition();

 

//

 

2.

 

Create

 

the

 

condition

 

on

 

the

 

"optionA"

 

value

 

//

   

a)

 

Instantiate

 

the

 

input

 

condition

 

on

 

"optionA"

    

condition1.allInputConditions[0]

 

=

 

new

 

InputCondition(

       

CompleteCondition.OP_EQUAL,

 

false,

 

AgentProperty.TYPE_STRING,

       

"optionA");

 

//

   

b)

 

Instantiate

 

the

 

dependent

 

conditions

 

for

 

DepProperty1

    

condition1.allDependentConditions[0]

 

=

 

new

 

DependentCondition(

       

"DepProperty1",

 

CompleteCondition.OP_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"0");

    

condition1.allDependentConditions[1]

 

=

 

new

 

DependentCondition(

       

"DepProperty1",

 

CompleteCondition.OP_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"1");

    

condition1.allDependentConditions[2]

 

=

 

new

 

DependentCondition(

       

"DepProperty1",

 

CompleteCondition.OP_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"256");

    

condition1.allDependentConditions[3]

 

=

 

new

 

DependentCondition(

       

"DepProperty1",

 

CompleteCondition.OP_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"512");

 

//

 

3.

 

Instantiate

 

the

 

next

 

complete-condition

 

object

 

condition2

 

=

 

new

 

CompleteCondition();

 

//

 

4.

 

Create

 

the

 

condition

 

on

 

the

 

"optionB"

 

value

 

//

   

a)

 

Instantiate

 

the

 

input

 

condition

 

on

 

"optionB"

    

condition2.allInputConditions[0]

 

=

 

new

 

InputCondition(

       

CompleteCondition.OP_EQUAL,

 

false,

 

AgentProperty.TYPE_STRING,

       

"optionB");

 

//

   

b)

 

Instantiate

 

the

 

dependent

 

conditions

 

for

 

DepProperty2

    

condition2.allDependentConditions[0]

 

=

 

new

 

DependentCondition(

       

"DepProperty2",

 

CompleteCondition.OP_GREATER_THAN_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"1");

    

condition2.allDependentConditions[1]

 

=

 

new

 

DependentCondition(

       

"DepProperty2",

 

CompleteCondition.OP_LESS_THAN_EQUAL,

 

false,

       

AgentProperty.TYPE_INTEGER,

 

"5");

 

//

 

Save

 

conditions

 

in

 

the

 

agent-property

 

object

 

agentProp.allDependencies[0]

 

=

 

condition1;

 

agentProp.allDependencies[1]

 

=

 

condition2;

 

Figure

 

74.

 

Defining

 

two

 

agent-property

 

conditions

  

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

149



Shutting

 

down

 

the

 

ODA

 

After

 

the

 

ODA

 

generates

 

the

 

appropriate

 

content,

 

Business

 

Object

 

Wizard

 

displays

 

Step

 

6,

 

Save

 

Business

 

Objects

 

dialog

 

box

 

(Step

 

6).

 

This

 

dialog

 

box

 

allows

 

users

 

to

 

specify

 

how

 

to

 

save

 

the

 

generated

 

content.

 

As

 

part

 

of

 

this

 

step,

 

Business

 

Object

 

Wizard

 

terminates

 

the

 

ODA.

 

The

 

ODA

 

runtime

 

calls

 

the

 

terminate()

 

method

 

to

 

perform

 

clean-up

 

tasks

 

and

 

to

 

release

 

resources

 

for

 

the

 

ODA.

 

For

 

example,

 

if

 

your

 

ODA

 

has

 

connected

 

to

 

a

 

data

 

source

 

in

 

its

 

init()

 

method,

 

it

 

should

 

disconnect

 

from

 

this

 

source

 

in

 

its

 

terminate()

 

method.

 

In

 

the

 

ODK

 

API,

 

the

 

terminate()

 

method

 

for

 

an

 

ODA

 

is

 

part

 

of

 

the

 

low-level

 

ODA

 

base

 

class,

 

ODKAgentBase.

 

It

 

is

 

inherited

 

by

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2,

 

and

 

in

 

turn

 

by

 

your

 

ODA

 

class.

 

Figure

 

75

 

shows

 

a

 

sample

 

terminate()

 

method

 

for

 

an

 

ODA

 

that

 

closes

 

a

 

database

 

connection

 

and

 

performs

 

clean-up

 

on

 

objects

 

that

 

accessed

 

the

 

database.

    

Handling

 

trace

 

and

 

error

 

messages

 

A

 

message

 

is

 

a

 

string

 

of

 

information

 

that

 

the

 

ODA

 

can

 

send

 

to

 

an

 

external

 

ODA

 

log,

 

where

 

it

 

can

 

be

 

reviewed

 

by

 

the

 

system

 

administrator

 

or

 

the

 

developer

 

to

 

provide

 

information

 

about

 

the

 

run-time

 

state

 

of

 

the

 

ODA.

 

There

 

are

 

two

 

different

 

categories

 

of

 

messages

 

that

 

an

 

ODA

 

can

 

send

 

to

 

the

 

ODA

 

log:

 

v

   

Error

 

or

 

informational

 

messages

 

v

   

Trace

 

messages

Messages

 

can

 

be

 

generated

 

within

 

the

 

ODA

 

code

 

or

 

obtained

 

from

 

a

 

message

 

file.

 

The

 

ODK

 

API

 

provides

 

the

 

trace()

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

to

 

log

 

trace

 

and

 

error

 

messages.

 

This

 

section

 

provides

 

the

 

following

 

information:

 

v

   

“Indicating

 

a

 

log

 

destination”

 

v

   

“Sending

 

a

 

message

 

to

 

the

 

trace

 

file”

 

on

 

page

 

151

 

v

   

“Message

 

files”

 

on

 

page

 

153

Indicating

 

a

 

log

 

destination

 

An

 

ODA

 

sends

 

its

 

messages

 

into

 

its

 

log

 

destination.

 

The

 

log

 

is

 

an

 

external

 

destination

 

that

 

is

 

available

 

for

 

viewing

 

by

 

those

 

needing

 

to

 

review

 

the

 

start

 

state

 

of

 

the

 

ODA.

 

The

 

log

 

destination

 

is

 

defined

 

at

 

ODA

 

configuration

 

time

 

by

 

the

 

configuration

 

property

 

TraceFileName

 

as

 

the

 

absolute

 

path

 

name

 

of

 

an

 

external

 

file,

 

which

 

must

 

reside

 

on

 

the

 

same

 

machine

 

as

 

the

 

ODA’s

 

process.

 

Note:

  

Because

 

the

 

ODK

 

API

 

provides

 

one

 

method

 

to

 

log

 

both

 

trace

 

and

 

error

 

messages,

 

an

 

ODA

 

has

 

only

 

one

 

file

 

to

 

hold

 

both

 

these

 

kinds

 

of

 

messages.

 

Therefore,

 

although

 

this

 

file

 

is

 

called

 

a

 

trace

 

file,

 

it

 

also

 

contains

 

any

 

error

 

messages

 

that

 

the

 

ODA

 

generates.

public

 

void

 

terminate()

 

{

    

specList

 

=

 

null;

    

//close

 

connection

    

if(db

 

!=

 

null)

       

db.disconnect();

    

if(dbAnalizer

 

!=

 

null)

       

dbAnalizer.cleanup();

  

}

 

Figure

 

75.

 

A

 

sample

 

ODA

 

terminate()

 

method

  

150

 

Business

 

Object

 

Development

 

Guide



For

 

information

 

on

 

the

 

format

 

of

 

the

 

trace-file

 

name,

 

see

 

“Specifying

 

a

 

trace

 

file”

 

on

 

page

 

76.

 

Sending

 

a

 

message

 

to

 

the

 

trace

 

file

 

The

 

ODK

 

API

 

provides

 

the

 

trace()

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

to

 

log

 

trace

 

and

 

error

 

messages.

 

The

 

type

 

of

 

message

 

that

 

the

 

ODA

 

tracing

 

mechanism

 

sends

 

depends

 

on

 

the

 

message’s

 

trace

 

level,

 

as

 

follows:

  

Table

 

57.

 

Trace

 

level

 

and

 

message

 

type

 

Message

 

trace

 

level

 

Description

 

zero

 

(0)

 

The

 

ODA

 

tracing

 

mechanism

 

allows

 

you

 

to

 

log

 

error

 

messages

 

to

 

the

 

trace

 

file.

 

Any

 

level

 

between

 

1

 

and

 

5

 

The

 

ODA

 

tracing

 

mechanism

 

allows

 

you

 

to

 

log

 

trace

 

messages

 

to

 

the

 

trace

 

file.

 

Trace

 

messages

 

are

 

for

 

information

 

such

 

as

 

status

 

messages,

 

property

 

values,

 

and

 

business

 

object

 

names.

   

Note:

  

The

 

ODA

 

runtime

 

handles

 

the

 

ODA

 

tracing

 

mechanism

 

implicitly.

 

This

 

mechanism

 

does

 

not

 

take

 

effect

 

until

 

the

 

trace

 

file

 

is

 

set

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

For

 

more

 

information,

 

see

 

“Starting

 

the

 

ODA”

 

on

 

page

 

101.

 

In

 

the

 

call

 

to

 

trace(),

 

you

 

specify

 

the

 

trace

 

level

 

as

 

an

 

argument.

 

The

 

ODK

 

API

 

provides

 

the

 

trace-level

 

constants

 

for

 

this

 

purpose.

 

For

 

more

 

information

 

on

 

how

 

to

 

generate

 

a

 

message,

 

see

 

“Generating

 

a

 

message

 

string”

 

on

 

page

 

155.

 

For

 

information

 

on

 

setting

 

the

 

trace

 

level,

 

see

 

“Specifying

 

the

 

trace

 

file

 

and

 

trace

 

level”

 

on

 

page

 

76.

 

The

 

ODA

 

tracing

 

mechanism

 

generates

 

files

 

in

 

the

 

same

 

format

 

as

 

those

 

in

 

the

 

Connector

 

Development

 

Kit

 

and

 

InterChange

 

Server.

 

Error

 

and

 

informational

 

messages

 

When

 

the

 

trace

 

level

 

is

 

zero

 

(0),

 

an

 

ODA

 

can

 

send

 

information

 

about

 

its

 

state

 

to

 

a

 

log

 

destination.

 

Creating

 

a

 

record

 

of

 

errors

 

and

 

status

 

is

 

often

 

called

 

logging.

 

The

 

following

 

types

 

of

 

information

 

are

 

recommended

 

for

 

logging:

 

v

   

Errors

 

and

 

fatal

 

errors

 

from

 

your

 

code

 

to

 

a

 

log

 

file.

 

v

   

Warnings

 

require

 

a

 

system

 

administrator’s

 

attention,

 

from

 

your

 

code

 

to

 

a

 

log

 

file.

 

v

   

Informational

 

messages

 

such

 

as:

 

–

   

ODA

 

startup

 

and

 

termination

 

messages

 

–

   

Important

 

messages

 

from

 

the

 

application

Although

 

an

 

ODA

 

can

 

send

 

informational

 

or

 

error

 

messages,

 

this

 

logging

 

process

 

is

 

referred

 

to

 

as

 

error

 

logging.

 

Important:

  

It

 

is

 

recommended

 

that

 

for

 

every

 

exception,

 

you

 

both

 

throw

 

the

 

exception

 

so

 

that

 

it

 

displays

 

in

 

Business

 

Object

 

Wizard,

 

and

 

write

 

an

 

error

 

message

 

that

 

describes

 

the

 

exception

 

to

 

the

 

trace

 

file.

 

By

 

logging

 

all

 

exceptions

 

to

 

the

 

trace

 

file,

 

you

 

can

 

still

 

locate

 

them

 

should

 

the

 

ODA

 

or

 

Business

 

Object

 

Designer

 

fail.

 

Error

 

logging

 

is

 

turned

 

on

 

when

 

the

 

trace

 

level

 

is

 

zero

 

(0).

 

By

 

default,

 

logging

 

on

 

an

 

ODA

 

is

 

turned

 

off

 

because

 

the

 

default

 

trace

 

level

 

is

 

5.

 

You

 

set

 

the

 

trace

 

level

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

151



with

 

the

 

TraceLevel

 

ODA

 

configuration

 

property.

 

You

 

can

 

set

 

TraceLevel

 

to

 

a

 

value

 

of

 

0

 

to

 

indicate

 

that

 

a

 

message

 

is

 

an

 

error

 

message.

 

To

 

send

 

an

 

error

 

message

 

to

 

the

 

log,

 

use

 

the

 

trace()

 

method.

 

Table

 

58

 

summarizes

 

the

 

trace

 

information

 

for

 

trace()

 

to

 

send

 

an

 

error

 

message.

  

Table

 

58.

 

Trace

 

information

 

for

 

error

 

messages

 

Trace

 

information

 

Description

 

ODKConstant

 

constant

 

Trace

 

level

 

0

 

TRACELEVEL0

 

Message

 

type

 

Errors

 

XRD_FATAL,

 

XRD_ERROR

 

Warnings

 

XRD_URGENTWARNING,

 

XRD_WARNING

 

Informational

 

XRD_INFO

   

In

 

addition

 

to

 

the

 

information

 

in

 

Table

 

58,

 

the

 

trace()

 

method

 

also

 

requires

 

the

 

content

 

of

 

the

 

error

 

message.

 

You

 

can

 

obtain

 

the

 

message

 

content

 

as

 

message

 

text

 

in

 

one

 

of

 

the

 

following

 

ways:

 

v

   

A

 

message

 

string

 

(a

 

String

 

value)

 

Util.trace(ODKConstant.TRACELEVEL0,

 

ODKConstant.XRD_ERROR,

       

"Invalid

 

property

 

value");

 

You

 

can

 

also

 

retrieve

 

the

 

message

 

string

 

from

 

an

 

exception

 

with

 

the

 

getMsg()

 

method

 

of

 

the

 

ODKException

 

class,

 

as

 

follows:

 

try

    

{

    

boDef.setAttributeList(Attributes);

    

boDef.setVerbList(Verbs);

    

defList[i]

 

=

 

boDef;

    

}

 

catch(BusObjInvalidAttrException

 

e)

    

{

    

Util.trace(ODKConstant.TRACELEVEL0,

       

ODKConstant.XRD_ERROR,

 

e.getMsg());

    

}

 

v

   

A

 

message

 

that

 

is

 

retrieved

 

from

 

a

 

message

 

file

 

Util.trace(ODKConstant.TRACELEVEL0,

 

ODKConstant.XRD_WARNING,

 

1009);

 

For

 

more

 

information

 

on

 

the

 

use

 

of

 

message

 

files,

 

see

 

“Message

 

files”

 

on

 

page

 

153.

Trace

 

messages

 

Tracing

 

is

 

an

 

optional

 

troubleshooting

 

and

 

debugging

 

feature

 

that

 

can

 

be

 

turned

 

on

 

for

 

ODAs.

 

When

 

tracing

 

is

 

turned

 

on,

 

system

 

administrators

 

can

 

follow

 

generation

 

of

 

content

 

as

 

the

 

ODA

 

performs

 

its

 

tasks.

 

Tracing

 

allows

 

you

 

and

 

other

 

users

 

of

 

your

 

ODA

 

code

 

to

 

monitor

 

the

 

behavior

 

of

 

the

 

ODA.

 

Tracing

 

can

 

also

 

track

 

when

 

specific

 

ODA

 

methods

 

are

 

called.

 

Tracing

 

is

 

turned

 

on

 

when

 

the

 

trace

 

level

 

is

 

between

 

1

 

and

 

5.

 

By

 

default,

 

tracing

 

on

 

an

 

ODA

 

is

 

turned

 

on

 

because

 

the

 

default

 

trace

 

level

 

is

 

5.

 

You

 

set

 

the

 

trace

 

level

 

with

 

the

 

TraceLevel

 

ODA

 

configuration

 

property.

 

You

 

can

 

set

 

TraceLevel

 

to

 

a

 

value

 

from

 

1

 

to

 

5

 

to

 

obtain

 

the

 

appropriate

 

level

 

of

 

detail.

 

Level

 

5

 

tracing

 

logs

 

the

 

trace

 

messages

 

of

 

all

 

lower

 

trace

 

levels.

 

You

 

are

 

responsible

 

for

 

defining

 

what

 

kind

 

of

 

information

 

your

 

ODA

 

returns

 

at

 

each

 

trace

 

level.

 

Table

 

15

 

on

 

page

 

77

 

shows

 

the

 

recommended

 

content

 

for

 

ODA

 

trace

 

messages.

 

For

 

more

 

information,

 

see

 

“Setting

 

the

 

trace

 

level”

 

on

 

page

 

76.

   

152

 

Business

 

Object

 

Development

 

Guide



To

 

send

 

a

 

trace

 

message

 

to

 

the

 

trace

 

file,

 

use

 

the

 

trace()

 

method.

 

Table

 

58

 

summarizes

 

the

 

trace

 

information

 

for

 

to

 

the

 

trace()

 

to

 

send

 

a

 

trace

 

message.

  

Table

 

59.

 

Trace

 

information

 

for

 

trace

 

messages

 

Trace

 

information

 

Description

 

ODKConstant

 

constant

 

Trace

 

level

 

1

 

TRACELEVEL1

 

2

 

TRACELEVEL2

 

3

 

TRACELEVEL3

 

4

 

TRACELEVEL4

 

5

 

TRACELEVEL5

 

Message

 

type

 

Trace

 

XRD_TRACE

   

In

 

addition

 

to

 

the

 

information

 

in

 

Table

 

59,

 

the

 

trace()

 

method

 

also

 

requires

 

the

 

content

 

of

 

the

 

trace

 

message.

 

You

 

can

 

obtain

 

the

 

message

 

content

 

in

 

one

 

of

 

the

 

following

 

ways:

 

v

   

As

 

message

 

text:

 

–

   

A

 

message

 

string

 

(a

 

String

 

value)

 

Util.trace(ODKConstant.TRACELEVEL1,

 

ODKConstant.XRD_TRACE,

       

"Entering

 

method

 

getProperties");

 

–

   

A

 

message

 

that

 

is

 

retrieved

 

from

 

a

 

message

 

file

 

Util.trace(ODKConstant.TRACELEVEL1,

 

ODKConstant.XRD_TRACE,

 

1009);

 

For

 

more

 

information

 

on

 

the

 

use

 

of

 

message

 

files,

 

see

 

“Message

 

files.”
v

   

As

 

a

 

business

 

object

 

definition

 

(a

 

BusObjDef

 

object)

 

In

 

this

 

case,

 

trace()

 

formats

 

the

 

contents

 

of

 

the

 

specified

 

business

 

object

 

definition.

 

BusObjDef

 

boDef

 

=

 

new

 

BusObjDef();

 

//

 

code

 

that

 

populates

 

business

 

object

 

definition

 

...

 

//

 

write

 

out

 

the

 

business

 

object

 

definition

 

ODKUtility.getODKUtility().trace(ODKConstant.TRACELEVEL5,

    

ODKConstant.XRD_TRACE,

 

boDef);

 

v

   

As

 

an

 

array

 

of

 

agent

 

properties

 

(AgentProperty

 

objects)

 

In

 

this

 

case,

 

trace()

 

formats

 

the

 

list

 

of

 

agent

 

properties,

 

preceding

 

it

 

with

 

a

 

string

 

that

 

you

 

can

 

specify.

 

AgentProperties[]

 

propArray;

 

//

 

code

 

that

 

populates

 

agent-property

 

array

 

...

 

//

 

write

 

out

 

the

 

agent-property

 

array

 

ODKUtility.getODKUtility().trace(ODKConstant.TRACELEVEL2,

    

ODKConstant.XRD_TRACE,

 

propArray,

 

"List

 

of

 

configuration

 

properties:");

 

Message

 

files

 

In

 

both

 

an

 

error

 

or

 

trace,

 

message,

 

you

 

can

 

provide

 

the

 

message

 

content

 

as

 

a

 

hardcoded

 

string

 

or

 

as

 

a

 

string

 

retrieved

 

from

 

a

 

message

 

file.

 

A

 

message

 

file

 

is

 

a

 

text

 

file

 

that

 

contains

 

message

 

numbers

 

and

 

associated

 

message

 

text.

 

The

 

message

 

text

 

can

 

contain

 

positional

 

parameters

 

for

 

passing

 

run-time

 

data

 

out

 

of

 

your

 

ODA.

 

You

 

can

 

provide

 

a

 

message

 

file

 

by

 

creating

 

a

 

file

 

and

 

defining

 

the

 

messages

 

you

 

need.

 

This

 

section

 

provides

 

the

 

following

 

information

 

about

 

message

 

files:

 

v

   

“Message

 

format”

 

on

 

page

 

154

 

v

   

“Name

 

and

 

location

 

of

 

a

 

message

 

file”

 

on

 

page

 

154

 

v

   

“Generating

 

a

 

message

 

string”

 

on

 

page

 

155

   

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

153



v

   

“Maintaining

 

the

 

message

 

file”

 

on

 

page

 

156

Message

 

format

 

Within

 

a

 

message

 

file,

 

messages

 

have

 

the

 

following

 

format:

 

MessageNum

 

Message

 

[EXPL]

 

Explanation

 

The

 

MessageNum

 

is

 

an

 

integer

 

that

 

uniquely

 

identifies

 

the

 

message.

 

This

 

message

 

number

 

must

 

appear

 

on

 

one

 

line.

 

The

 

Message

 

text

 

can

 

span

 

multiple

 

lines,

 

which

 

a

 

carriage

 

return

 

terminating

 

each

 

line.

 

The

 

Explanation

 

text

 

is

 

a

 

more

 

detailed

 

explanation

 

of

 

the

 

condition

 

that

 

causes

 

the

 

message

 

to

 

occur.

 

Do

 

not

 

insert

 

a

 

blank

 

line

 

after

 

the

 

last

 

line

 

of

 

the

 

explanation

 

text.

 

The

 

number

 

of

 

the

 

next

 

message

 

should

 

appear

 

on

 

the

 

line

 

immediately

 

after

 

the

 

explanation.

 

Edit

 

the

 

message

 

file

 

with

 

any

 

text

 

editor,

 

such

 

as

 

Notepad.

 

For

 

example,

 

message

 

number

 

1005

 

might

 

look

 

like

 

the

 

following:

 

1005

 

ODA

 

content

 

generation

 

is

 

complete.

 

[EXPL]

 

This

 

is

 

a

 

log

 

message

 

that

 

indicates

 

successful

 

completion

 

of

 

the

 

ODA.

 

Messages

 

can

 

contain

 

parameters

 

whose

 

values

 

are

 

replaced

 

at

 

run

 

time

 

by

 

values

 

from

 

the

 

program.

 

These

 

parameters

 

are

 

positional

 

and

 

are

 

indicated

 

in

 

the

 

message

 

by

 

a

 

number

 

in

 

braces.

 

For

 

example

 

the

 

following

 

message

 

has

 

three

 

parameters

 

to

 

specify

 

agent-property

 

names:

 

1003

 

The

 

agent

 

configuration

 

properties

 

are

 

{1},

 

{2},

 

{3}.

 

[EXPL]

 

This

 

is

 

a

 

trace

 

message

 

that

 

provides

 

startup

 

properties.

 

For

 

more

 

information

 

on

 

how

 

to

 

provide

 

message

 

parameters,

 

see

 

“Using

 

parameter

 

values”

 

on

 

page

 

156.

 

Name

 

and

 

location

 

of

 

a

 

message

 

file

 

An

 

ODA

 

can

 

obtain

 

its

 

messages

 

from

 

one

 

of

 

two

 

message

 

files:

 

v

   

An

 

ODA

 

message

 

file

 

is

 

named

 

ODAnameAgent.txt

 

where

 

ODAname

 

is

 

the

 

name

 

that

 

uniquely

 

identifies

 

the

 

ODA.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

Put

 

messages

 

that

 

are

 

specific

 

to

 

your

 

ODA

 

in

 

this

 

message

 

file.

 

For

 

example,

 

if

 

you

 

create

 

an

 

ODA

 

named

 

LegacyApp,

 

name

 

its

 

message

 

file

 

LegacyAppAgent.txt.

 

Note:

  

Business

 

Object

 

Wizard

 

automatically

 

includes

 

MessageFile

 

in

 

the

 

list

 

of

 

configuration

 

properties

 

with

 

the

 

message-file

 

name

 

in

 

the

 

form

 

ODAnameAgent.txt.

 

When

 

configuring

 

the

 

ODA,

 

you

 

can

 

change

 

this

 

message-file

 

name

 

to

 

point

 

to

 

an

 

existing

 

file.

 

The

 

specified

 

message

 

file

 

must

 

exist

 

for

 

the

 

ODA

 

to

 

continue

 

running.

 

For

 

information

 

on

 

how

 

to

 

specify

 

the

 

message

 

file,

 

see

 

“Specifying

 

the

 

ODA

 

message

 

file”

 

on

 

page

 

77.

 

v

   

The

 

global

 

ODA

 

message

 

file

 

is

 

named

 

useragentmessages.txt.

 

If

 

you

 

create

 

messages

 

that

 

are

 

global

 

to

 

all

 

Object

 

Discovery

 

Agents,

 

add

 

those

 

messages

 

to

 

the

 

global

 

message

 

file.

  

154

 

Business

 

Object

 

Development

 

Guide



Both

 

these

 

message

 

files

 

must

 

be

 

located

 

in

 

the

 

following

 

subdirectory

 

of

 

the

 

product

 

directory:

 

ProductDir\ODA\messages

 

Generating

 

a

 

message

 

string

 

The

 

methods

 

in

 

retrieve

 

a

 

predefined

 

message

 

from

 

a

 

message

 

file.

  

Table

 

60.

 

Methods

 

that

 

generate

 

a

 

message

 

string

 

Message

 

method

 

Description

 

getMsg()

 

Generates

 

a

 

message

 

of

 

the

 

specified

 

severity

 

from

 

a

 

message

 

file.

 

trace()

 

Generates

 

a

 

message

 

of

 

the

 

specified

 

severity

 

from

 

a

 

message

 

file

 

and

 

sends

 

it

 

to

 

the

 

trace

 

file.

   

The

 

message-generation

 

methods

 

in

 

Table

 

60

 

are

 

defined

 

in

 

the

 

ODKUtility

 

class.

 

These

 

methods

 

require

 

the

 

following

 

information:

 

v

   

“Specifying

 

a

 

message

 

number”

 

v

   

“Specifying

 

a

 

message

 

type”

 

v

   

“Using

 

parameter

 

values”

 

on

 

page

 

156

Specifying

 

a

 

message

 

number:

   

The

 

message-generation

 

methods

 

in

 

Table

 

60

 

require

 

a

 

message

 

number

 

as

 

an

 

argument.

 

This

 

argument

 

specifies

 

the

 

number

 

of

 

the

 

message

 

to

 

obtain

 

from

 

the

 

message

 

file.

 

As

 

described

 

in

 

“Message

 

format”

 

on

 

page

 

154,

 

each

 

message

 

in

 

a

 

message

 

file

 

must

 

have

 

a

 

unique

 

integer

 

message

 

number

 

associated

 

with

 

it.

 

These

 

message-generation

 

methods

 

search

 

the

 

message

 

file

 

for

 

the

 

specified

 

message

 

number

 

and

 

extract

 

the

 

associated

 

message

 

text.

 

These

 

methods

 

search

 

the

 

ODA

 

message

 

files

 

for

 

the

 

message

 

number

 

in

 

the

 

following

 

order:

 

1.

   

The

 

ODA-specific

 

message

 

file,

 

whose

 

default

 

name

 

is

 

ODAnameAgent.txt

 

2.

   

The

 

global

 

ODK

 

message

 

file,

 

useragentmessages.txt

Specifying

 

a

 

message

 

type:

   

The

 

message-generation

 

methods

 

in

 

Table

 

60

 

also

 

require

 

a

 

message

 

type

 

as

 

an

 

argument.

 

This

 

argument

 

indicates

 

the

 

severity

 

of

 

a

 

message.

 

Table

 

61

 

lists

 

the

 

valid

 

message

 

types

 

and

 

their

 

associated

 

message-type

 

constants.

  

Table

 

61.

 

Message

 

types

 

Message-type

 

constant

 

Severity

 

level

 

Description

 

XRD_FATAL

 

Fatal

 

error

 

Indicates

 

an

 

error

 

that

 

stops

 

program

 

running

 

XRD_ERROR

 

Error

 

Indicates

 

an

 

error

 

that

 

should

 

be

 

investigated

 

XRD_URGENTWARNING

 

Urgent

 

warning

 

Indicates

 

a

 

condition

 

that

 

probably

 

represents

 

a

 

problem

 

and

 

should

 

probably

 

not

 

be

 

ignored

 

XRD_WARNING

 

Warning

 

Indicates

 

a

 

condition

 

that

 

might

 

represent

 

a

 

problem

 

but

 

that

 

can

 

be

 

ignored

 

XRD_INFO

 

Informational

 

Information

 

message

 

only;

 

no

 

action

 

required

 

XRD_TRACE

 

----

 

Use

 

for

 

trace

 

messages

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

155



To

 

specify

 

a

 

message

 

type

 

to

 

associate

 

with

 

a

 

message,

 

use

 

one

 

of

 

the

 

message-type

 

constants

 

in

 

Table

 

61,

 

as

 

follows:

 

v

   

For

 

an

 

error

 

message,

 

use

 

a

 

message-type

 

constant

 

that

 

indicates

 

the

 

message

 

severity

 

(in

 

decreasing

 

order

 

of

 

severity):

 

XRD_FATAL,

 

XRD_ERROR,

 

XRD_URGENTWARNING,

 

XRD_WARNING,

 

or

 

XRD_INFO.

 

v

   

For

 

a

 

trace

 

message,

 

use

 

the

 

XRD_TRACE

 

constant.

Message-type

 

constants

 

are

 

defined

 

in

 

the

 

ODKConstant

 

class.

 

Using

 

parameter

 

values:

   

It

 

is

 

not

 

necessary

 

to

 

write

 

separate

 

messages

 

for

 

each

 

possible

 

situation.

 

Instead,

 

use

 

parameters

 

to

 

represent

 

values

 

that

 

change

 

at

 

run

 

time.

 

The

 

use

 

of

 

parameters

 

allows

 

each

 

message

 

to

 

serve

 

multiple

 

situations

 

and

 

helps

 

to

 

keep

 

the

 

message

 

file

 

small.

 

A

 

parameter

 

always

 

appears

 

as

 

a

 

number

 

surrounded

 

by

 

curly

 

braces:

 

{number}.

 

For

 

each

 

parameter

 

you

 

want

 

to

 

add

 

to

 

the

 

message,

 

insert

 

the

 

number

 

within

 

curly

 

braces

 

into

 

the

 

text

 

of

 

the

 

message,

 

as

 

follows:

 

message

 

text

 

{number}

 

more

 

message

 

text.

 

With

 

the

 

message-generation

 

methods

 

in

 

Table

 

60

 

on

 

page

 

155,

 

you

 

can

 

specify

 

an

 

optional

 

number

 

of

 

values

 

for

 

message

 

parameters.

 

The

 

number

 

of

 

parameter

 

values

 

in

 

the

 

method

 

call

 

must

 

match

 

the

 

number

 

of

 

parameters

 

defined

 

in

 

the

 

message

 

text.

 

The

 

message-generation

 

method

 

must

 

supply

 

a

 

value

 

for

 

each

 

parameter.

 

For

 

example,

 

consider

 

message

 

1003

 

again:

 

1003

 

The

 

agent

 

configuration

 

properties

 

are

 

{1},

 

{2},

 

{3}.

 

[EXPL]

 

This

 

is

 

a

 

trace

 

message

 

that

 

provides

 

startup

 

properties.

 

In

 

the

 

code

 

that

 

sends

 

this

 

message,

 

the

 

following

 

lines

 

might

 

appear:

 

Vector

 

params

 

=

 

new

 

Vector(3);

 

for(int

 

i=0;

 

i<3;

 

i++)

    

params.add(agtProperties[i].propName);

 

Util.trace(ODKConstant.TRACELEVEL2,

 

1003,

 

ODKConstant.XRD_TRACE,

    

params);

 

The

 

trace()

 

method

 

combines

 

these

 

parameter

 

values

 

with

 

the

 

message

 

text

 

in

 

the

 

message

 

file

 

and

 

forms

 

the

 

message.

 

Before

 

writing

 

the

 

message

 

to

 

the

 

trace

 

file,

 

trace()

 

replaces

 

the

 

message

 

parameters

 

with

 

the

 

values

 

of

 

the

 

params

 

variable.

 

Message

 

1003

 

might

 

appear

 

in

 

the

 

trace

 

file

 

as

 

follows:

 

The

 

agent

 

configuration

 

properties

 

are

 

Username,

 

Password,

 

Url.

 

Because

 

the

 

message

 

text

 

uses

 

parameters

 

to

 

specify

 

the

 

specific

 

property

 

types,

 

rather

 

than

 

including

 

them

 

as

 

hard-coded

 

strings,

 

you

 

can

 

use

 

the

 

same

 

message

 

for

 

any

 

set

 

of

 

missing

 

properties.

 

Maintaining

 

the

 

message

 

file

 

At

 

a

 

user

 

site,

 

an

 

administrator

 

might

 

set

 

up

 

a

 

procedure

 

for

 

filtering

 

ODA

 

messages

 

and

 

using

 

e-mail

 

or

 

e-mail

 

pager

 

to

 

notify

 

someone

 

who

 

can

 

resolve

 

problems.

 

Because

 

of

 

this,

 

it

 

is

 

important

 

that

 

the

 

error

 

numbers

 

and

 

the

 

meanings

 

associated

 

with

 

the

 

numbers

 

remain

 

the

 

same

 

after

 

the

 

first

 

release

 

of

 

an

 

Object

 

Discovery

 

Agent.

 

You

 

can

 

change

 

the

 

text

 

associated

 

with

 

an

 

error

 

number,

 

but

 

you

 

should

 

not

 

change

 

the

 

meaning

 

of

 

the

 

text

 

or

 

reassign

 

error

 

numbers.

   

156

 

Business

 

Object

 

Development

 

Guide



However,

 

if

 

you

 

do

 

change

 

the

 

meanings

 

associated

 

with

 

error

 

numbers,

 

make

 

sure

 

you

 

document

 

the

 

change

 

and

 

notify

 

users

 

of

 

the

 

Object

 

Discovery

 

Agent.

 

You

 

can

 

change

 

an

 

Object

 

Discovery

 

Agent’s

 

message

 

file

 

while

 

the

 

Object

 

Discovery

 

Agent

 

is

 

running.

 

However,

 

the

 

changes

 

do

 

not

 

take

 

effect

 

until

 

the

 

next

 

time

 

the

 

Object

 

Discovery

 

Agent’s

 

is

 

started

 

and

 

the

 

message

 

file

 

is

 

read

 

into

 

memory.

 

If

 

InterChange

 

Server

 

fails

 

while

 

an

 

Object

 

Discovery

 

Agent

 

is

 

running,

 

the

 

server

 

automatically

 

reads

 

into

 

memory

 

the

 

message

 

files

 

for

 

all

 

Object

 

Discovery

 

Agents

 

that

 

were

 

previously

 

running.

 

Handling

 

exceptions

 

The

 

methods

 

of

 

the

 

ODK

 

API

 

can

 

throw

 

exceptions

 

to

 

indicate

 

certain

 

predefined

 

conditions.

 

This

 

section

 

provides

 

the

 

following

 

information

 

about

 

how

 

to

 

handle

 

exceptions

 

in

 

a

 

Java

 

connector:

 

v

   

“What

 

is

 

an

 

ODK

 

exception?”

 

v

   

“Exceptions

 

from

 

the

 

ODK

 

API

 

library”

Note:

  

You

 

can

 

also

 

use

 

error

 

logging

 

and

 

message

 

logging

 

to

 

handle

 

error

 

conditions

 

and

 

messages

 

in

 

your

 

connector.

 

For

 

more

 

information,

 

see

 

“Handling

 

trace

 

and

 

error

 

messages”

 

on

 

page

 

150.

 

What

 

is

 

an

 

ODK

 

exception?

 

When

 

a

 

method

 

of

 

the

 

ODK

 

API

 

throws

 

an

 

exception,

 

this

 

exception

 

object

 

is

 

of

 

the

 

ODKException

 

class

 

or

 

one

 

of

 

its

 

subclasses,

 

which

 

is

 

an

 

extension

 

of

 

the

 

Java

 

Exception

 

class.

 

To

 

create

 

an

 

ODK

 

exception,

 

use

 

the

 

ODKException()

 

constructor.

 

Table

 

62

 

shows

 

the

 

accessor

 

methods

 

that

 

the

 

ODKException

 

class

 

provides

 

to

 

obtain

 

information

 

in

 

the

 

exception

 

object.

  

Table

 

62.

 

Information

 

in

 

the

 

exception

 

object

 

Member

 

Accessor

 

method

 

Message

 

text

 

getMsg()

   

Note:

  

For

 

more

 

information

 

on

 

the

 

methods

 

in

 

the

 

ODKException

 

class,

 

see

 

Chapter

 

23,

 

“ODKException

 

class,”

 

on

 

page

 

253.

 

The

 

ODKException

 

class

 

provides

 

some

 

subclasses

 

to

 

indicate

 

specific

 

error

 

conditions,

 

as

 

Table

 

103

 

on

 

page

 

254

 

shows.

 

Exceptions

 

from

 

the

 

ODK

 

API

 

library

 

When

 

you

 

write

 

code

 

for

 

an

 

ODA,

 

you

 

can

 

include

 

Java

 

try

 

and

 

catch

 

statements

 

to

 

handle

 

specific

 

exceptions

 

thrown

 

by

 

the

 

methods

 

of

 

the

 

ODK

 

API.

 

The

 

reference

 

description

 

for

 

most

 

ODK

 

API

 

methods

 

has

 

a

 

section

 

entitled

 

Exceptions,

 

which

 

lists

 

the

 

exceptions

 

thrown

 

by

 

that

 

method.

 

Figure

 

76

 

shows

 

a

 

code

 

fragment

 

from

 

sample

 

Roman

 

Army

 

ODA

 

(in

 

the

 

ArmyAgent4

 

class)

 

that

 

catches

 

the

 

exceptions

 

that

 

the

 

getClientFile()

 

method

 

throws.

    

Chapter

 

5.

 

Developing

 

an

 

Object

 

Discovery

 

Agent

 

157



When

 

an

 

ODK

 

API

 

method

 

throws

 

an

 

exception,

 

it

 

does

 

not

 

usually

 

provide

 

message

 

and

 

status

 

information

 

in

 

the

 

exception

 

object.

 

However,

 

you

 

can

 

choose

 

to

 

fill

 

the

 

exception

 

object

 

with

 

a

 

message

 

as

 

needed.

 

try

    

{

    

remotefile

 

=

 

ODKUtility.getODKUtility().getClientFile(filePath,

 

this);

    

}

 

catch

 

(IOException

 

ex)

            

//file

 

was

 

not

 

found

    

{

     

return

 

null;

    

}

 

//agent

 

doesn’t

 

implement

 

IGeneratesBinFiles,

 

so

 

"getClientFile"

 

failed.

 

catch

 

(UnsupportedContentException

 

ex)

    

{

                              

//We’ll

 

return

 

a

 

random

 

Son

 

instance

 

for

 

now.

     

return

 

new

 

Son("X"

 

+

 

(""

 

+

 

new

 

Date().hashCode()).substring(1),

        

new

 

Date().hashCode()

 

%

 

10

  

+

 

2);

    

}

 

Figure

 

76.

 

Catching

 

exceptions

 

from

 

getClientFile()

  

158

 

Business

 

Object

 

Development

 

Guide



Chapter

 

6.

 

Adding

 

an

 

Object

 

Discovery

 

Agent

 

to

 

the

 

business

 

integration

 

system

 

For

 

the

 

WebSphere

 

business

 

integration

 

system

 

to

 

be

 

able

 

to

 

access

 

an

 

Object

 

Discovery

 

Agent

 

(ODA)

 

that

 

you

 

have

 

developed,

 

you

 

must

 

take

 

the

 

following

 

steps:

 

1.

   

Establish

 

the

 

ODA

 

name

 

and

 

its

 

naming

 

conventions.

 

2.

   

Compile

 

the

 

ODA

 

class

 

into

 

a

 

jar

 

file.

 

3.

   

Create

 

the

 

ODA’s

 

startup

 

script.

Naming

 

the

 

ODA

 

This

 

chapter

 

provides

 

suggested

 

naming

 

conventions

 

for

 

the

 

files

 

and

 

directories

 

used

 

in

 

ODA

 

development.

 

Naming

 

conventions

 

provide

 

a

 

way

 

to

 

make

 

your

 

ODA’s

 

code

 

more

 

easy

 

to

 

locate

 

and

 

identify.

 

Table

 

63

 

summarizes

 

the

 

suggested

 

naming

 

conventions

 

for

 

an

 

ODA.

  

Table

 

63.

 

Suggested

 

naming

 

conventions

 

for

 

an

 

ODA

 

ODA

 

name

 

ODA

 

package

 

and

 

class

 

name

 

ODA

 

startup

 

script

 

ODA

 

library

 

file

 

ODA

 

runtime

 

directory

 

srcDataNameODA

 

com.ibm.oda.

 

srcDataName.
ODAname

 

start_ODAname

 

ODAname.jar

 

ODA\srcDataName

   

Each

 

ODA

 

should

 

have

 

a

 

name

 

that

 

uniquely

 

identifies

 

it

 

within

 

the

 

WebSphere

 

business

 

integration

 

system.

 

By

 

convention,

 

an

 

ODA

 

name

 

(ODAname)

 

takes

 

the

 

following

 

form:

 

srcDataNameODA

 

where

 

srcDataName

 

is

 

a

 

unique

 

string

 

that

 

identifies

 

the

 

source

 

data

 

that

 

the

 

ODA

 

converts.

 

For

 

example,

 

if

 

an

 

ODA

 

converts

 

HTML

 

objects

 

to

 

business

 

object

 

definitions,

 

its

 

source

 

data

 

is

 

in

 

the

 

HTML

 

format.

 

Therefore,

 

its

 

ODA

 

name

 

is

 

HTMLODA.

 

Alternatively,

 

this

 

ODA

 

name

 

can

 

identify

 

the

 

adapter

 

with

 

which

 

the

 

ODA

 

is

 

associated.

 

For

 

example,

 

the

 

ODA

 

that

 

generates

 

business

 

object

 

definitions

 

for

 

the

 

WebSphere

 

Business

 

Integration

 

Adapter

 

for

 

PeopleSoft

 

has

 

an

 

ODA

 

name

 

of

 

PeopleSoftODA.

 

Compiling

 

the

 

ODA

 

To

 

compile

 

an

 

ODA,

 

take

 

the

 

following

 

steps:

 

v

   

Use

 

a

 

JDK

 

development

 

environment.

 

For

 

information

 

on

 

how

 

to

 

install

 

the

 

JDK,

 

see

 

“Setting

 

up

 

the

 

development

 

environment”

 

on

 

page

 

98.

 

v

   

Ensure

 

that

 

the

 

library

 

files

 

for

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

are

 

in

 

the

 

lib

 

subdirectory

 

of

 

the

 

product

 

directory.

 

The

 

main

 

ODK

 

API

 

library

 

file

 

is

 

named:

 

CwODK.jar

 

Additional

 

ODK

 

library

 

files

 

are:

 

xrmi.jar,

 

xerces.jar

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

159



v

   

Compile

 

the

 

ODA

 

source

 

(.java)

 

files

 

into

 

class

 

(.class)

 

files

 

with

 

the

 

Java

 

compiler.

 

These

 

files

 

include

 

the

 

source

 

for

 

your

 

ODA

 

class

 

(which

 

is

 

an

 

extension

 

of

 

the

 

ODAAgentBase2

 

class)

 

as

 

well

 

as

 

any

 

other

 

classes

 

your

 

ODA

 

uses.

 

For

 

information

 

on

 

naming

 

the

 

ODK

 

class

 

file,

 

see

 

“Extending

 

the

 

ODA

 

base

 

class”

 

on

 

page

 

99.

 

v

   

Create

 

the

 

ODA’s

 

library

 

file,

 

which

 

is

 

a

 

Java

 

archive

 

(jar)

 

file

 

that

 

contains

 

the

 

compiled

 

Java

 

code.

 

By

 

convention,

 

the

 

jar

 

file’s

 

name

 

takes

 

the

 

following

 

form:

 

srcDataNameODA.jar

 

where

 

srcDataName

 

uniquely

 

identifies

 

the

 

source

 

data

 

(or

 

adapter)

 

for

 

the

 

ODA.

 

For

 

more

 

information

 

about

 

the

 

ODA

 

name,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

For

 

example,

 

for

 

an

 

ODA

 

that

 

works

 

with

 

HTML,

 

its

 

ODA

 

name

 

could

 

be

 

HTMLODA.

 

Therefore,

 

you

 

could

 

name

 

its

 

jar

 

file

 

as:

 

HTMLODA.jar

 

Starting

 

up

 

a

 

new

 

ODA

 

To

 

start

 

the

 

ODA,

 

you

 

run

 

an

 

ODA

 

startup

 

script.

 

This

 

startup

 

script

 

starts

 

the

 

ODA

 

runtime.

 

This

 

startup

 

script

 

is

 

a

 

batch

 

file

 

that

 

starts

 

the

 

ODA

 

runtime.

 

By

 

convention,

 

a

 

startup

 

script’s

 

name

 

takes

 

the

 

following

 

form:

 

start_ODAName.bat

 

where

 

ODAname

 

is

 

the

 

unique

 

name

 

of

 

the

 

ODA

 

(its

 

source-data

 

name)

 

with

 

the

 

string

 

“ODA“

 

appended.

 

For

 

example,

 

if

 

an

 

ODA

 

has

 

its

 

source

 

data

 

in

 

HTML

 

format,

 

its

 

ODA

 

name

 

could

 

be

 

HTMLODA.

 

Therefore,

 

you

 

could

 

name

 

its

 

startup

 

script

 

as

 

follows:

 

start_HTMLODA.bat

 

Before

 

you

 

can

 

start

 

up

 

an

 

ODA

 

that

 

you

 

have

 

developed,

 

you

 

need

 

to

 

ensure

 

that

 

a

 

startup

 

script

 

exists

 

to

 

support

 

your

 

new

 

ODA.

 

To

 

enable

 

a

 

startup

 

script

 

to

 

start

 

your

 

own

 

ODA,

 

you

 

must

 

take

 

the

 

following

 

steps:

 

1.

   

Prepare

 

an

 

ODA

 

runtime

 

directory

 

for

 

your

 

ODA.

 

2.

   

Create

 

the

 

startup

 

script

 

for

 

your

 

ODA.

 

For

 

Windows

 

systems,

 

also

 

create

 

a

 

shortcut

 

for

 

your

 

ODA

 

startup.

 

3.

   

Set

 

up

 

the

 

startup

 

script

 

as

 

a

 

Windows

 

service

 

(optional).

The

 

following

 

sections

 

describe

 

each

 

of

 

these

 

steps.

 

Preparing

 

the

 

ODA

 

runtime

 

directory

 

The

 

ODA

 

runtime

 

directory

 

contains

 

the

 

runtime

 

files

 

for

 

your

 

ODA.

 

To

 

prepare

 

the

 

ODA

 

runtime

 

directory,

 

take

 

the

 

following

 

steps:

 

1.

   

Create

 

an

 

ODA

 

runtime

 

directory

 

for

 

your

 

new

 

ODA

 

under

 

the

 

ODA

 

subdirectory

 

of

 

the

 

product

 

directory:

 

ProductDir\ODA\srcDataName

 

By

 

convention,

 

the

 

directory

 

name

 

matches

 

the

 

ODA’s

 

source-data

 

name

 

(srcDataName).

 

The

 

source-data

 

name

 

is

 

a

 

string

 

that

 

uniquely

 

identifies

 

the

 

source

 

data

 

(or

 

adapter)

 

with

 

which

 

the

 

ODA

 

works.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

2.

   

Move

 

your

 

ODA’s

 

library

 

file

 

to

 

this

 

ODA

 

runtime

 

directory.

   

160

 

Business

 

Object

 

Development

 

Guide



The

 

ODA’s

 

library

 

file

 

is

 

a

 

Java

 

archive

 

(jar)

 

file.

 

You

 

created

 

this

 

jar

 

file

 

when

 

you

 

compiled

 

the

 

ODA.

 

For

 

more

 

information,

 

see

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159.

Creating

 

startup

 

scripts

 

As

 

“System

 

startup

 

files”

 

on

 

page

 

65

 

describes,

 

an

 

ODA

 

requires

 

an

 

ODA

 

startup

 

script

 

for

 

it

 

to

 

be

 

able

 

to

 

start.

 

An

 

ODA

 

requires

 

a

 

startup

 

script

 

for

 

the

 

system

 

administrator

 

to

 

start

 

the

 

ODA-runtime

 

process.

 

When

 

the

 

WebSphere

 

Business

 

Integration

 

Adapters

 

Installer

 

installs

 

adapters

 

on

 

a

 

Windows

 

system,

 

it

 

takes

 

the

 

following

 

steps

 

for

 

ODAs:

 

v

   

Install

 

the

 

start_ODAname.bat

 

startup

 

script

 

in

 

the

 

ODA\srcDataName

 

subdirectory

 

of

 

the

 

product

 

directory.

 

v

   

Create

 

menu

 

options

 

for

 

each

 

ODA

 

under

 

the

 

Programs

 

>

 

IBM

 

WebSphere

 

Business

 

Integration

 

Adapters

 

>

 

Adapters

 

>

 

Object

 

Discovery

 

Agents

 

menu.

 

Each

 

menu

 

item

 

is

 

a

 

shortcut

 

that

 

invokes

 

the

 

Windows

 

startup

 

script,

 

start_ODAname.bat,

 

for

 

each

 

ODA.

To

 

provide

 

the

 

ability

 

to

 

start

 

up

 

your

 

own

 

ODA,

 

you

 

must

 

generate

 

its

 

startup

 

script

 

and

 

provide

 

the

 

shortcuts

 

that

 

invoke

 

this

 

startup

 

script.

 

Creating

 

the

 

startup

 

script

 

In

 

this

 

start_ODAname.bat

 

file,

 

make

 

sure

 

you

 

take

 

the

 

following

 

steps:

 

v

   

Set

 

the

 

following

 

variables

 

within

 

the

 

startup

 

script:

  

Variable

 

name

 

Value

 

PATH

 

Add

 

the

 

path

 

of

 

the

 

ODA’s

 

runtime

 

directory

 

to

 

the

 

front

 

of

 

the

 

PATH

 

variable

 

(so

 

that

 

runtime

 

can

 

locate

 

the

 

ODA’s

 

JRE):

 

PATH="%CROSSWORLDS%"\ODA\ODAruntimeDir;%PATH%

 

where

 

ODAruntimeDir

 

is

 

the

 

ODA’s

 

runtime

 

directory,

 

which

 

has

 

the

 

form

 

srcDataName.

 

For

 

more

 

information,

 

see

 

“Preparing

 

the

 

ODA

 

runtime

 

directory”

 

on

 

page

 

160.

 

AGENTNAME

 

Specify

 

the

 

ODA

 

name

 

for

 

your

 

ODA

 

(ODAname),

 

which

 

has

 

the

 

following

 

form:

 

srcDataNameODA

 

where

 

srcDataName

 

is

 

the

 

name

 

of

 

the

 

source

 

data.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

AGENT

 

Specify

 

the

 

full

 

path

 

name

 

for

 

your

 

ODA’s

 

library

 

file,

 

the

 

jar

 

file

 

that

 

contains

 

the

 

ODA

 

class.

 

This

 

path

 

name

 

has

 

the

 

following

 

form:

 

"%CROSSWORLDS%"\ODA\ODAruntimeDir\ODAlibrary.jar

 

where:

 

v

   

ODAruntimeDir

 

is

 

the

 

ODA’s

 

runtime

 

directory,

 

which

 

has

 

the

 

form

 

srcDataName.

 

For

 

more

 

information,

 

see

 

“Preparing

 

the

 

ODA

 

runtime

 

directory”

 

on

 

page

 

160.

 

v

   

ODAlibrary

 

is

 

the

 

ODA’s

 

library

 

file,

 

which

 

has

 

the

 

form

 

ODAname.jar.

 

For

 

more

 

information,

 

see

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159.

   

Chapter

 

6.

 

Adding

 

an

 

Object

 

Discovery

 

Agent

 

to

 

the

 

business

 

integration

 

system

 

161



Variable

 

name

 

Value

 

AGENTCLASS

 

Specify

 

the

 

name

 

for

 

your

 

ODA

 

package

 

and

 

class,

 

which

 

has

 

the

 

following

 

form:

 

com.ibm.oda.srcDataName.ODAname

 

where:

 

v

   

srcDataName

 

is

 

the

 

name

 

of

 

the

 

ODA’s

 

source

 

data,

 

in

 

all

 

lowercase.

 

For

 

more

 

information,

 

see

 

“Naming

 

the

 

ODA”

 

on

 

page

 

159.

 

v

   

ODAname

 

is

 

the

 

name

 

of

 

the

 

ODA’s

 

class

 

(its

 

extension

 

of

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2)

 

JCLASSES

 

Add

 

any

 

ODA-specific

 

jar

 

files

 

to

 

this

 

variable.

 

Jar

 

files

 

are

 

separated

 

with

 

a

 

semicolon

 

(;).

 

At

 

a

 

minimum,

 

this

 

variable

 

should

 

be

 

set

 

to

 

include

 

the

 

following

 

classes:

 

v

   

The

 

ODK

 

library

 

files:

 

CwODK.jar,

 

xrmi.jar,

 

xerces.jar

 

v

   

The

 

ODA

 

library

 

file,

 

which

 

is

 

stored

 

in

 

the

 

AGENT

 

variable

 

(see

 

above)

   

v

   

Define

 

and

 

set

 

any

 

additional

 

ODA-specific

 

variables

 

that

 

your

 

startup

 

script

 

needs.

 

Define

 

variables

 

for

 

information

 

that

 

can

 

change

 

from

 

release

 

to

 

release.

 

You

 

can

 

then

 

set

 

the

 

variable

 

to

 

a

 

value

 

appropriate

 

for

 

this

 

release

 

and

 

then

 

include

 

the

 

variable

 

in

 

the

 

appropriate

 

command

 

line

 

of

 

the

 

startup

 

script.

 

If

 

the

 

information

 

changes

 

in

 

the

 

future,

 

you

 

only

 

have

 

to

 

change

 

the

 

variable’s

 

value.

 

You

 

do

 

not

 

have

 

to

 

locate

 

all

 

command

 

lines

 

that

 

use

 

this

 

information.

 

v

   

Include

 

the

 

appropriate

 

startup

 

parameters

 

on

 

the

 

line

 

that

 

invokes

 

the

 

ODA

 

runtime

 

(the

 

last

 

line

 

of

 

the

 

startup

 

script),

 

including:

 

–

   

All

 

required

 

startup

 

parameters:

 

-l

 

and

 

-c

 

–

   

Any

 

optional

 

startup

 

parameters

 

that

 

apply

 

to

 

all

 

invocations

 

of

 

your

 

ODA:

 

-v:

 

follow

 

this

 

parameter

 

with

 

the

 

version

 

of

 

the

 

ODA
v

   

The

 

line

 

that

 

invokes

 

the

 

ODA

 

runtime

 

should

 

have

 

the

 

following

 

format:

 

"%CROSSWORLDS%\bin\java"

 

-Duser.home="%CROSSWORLDS%"

 

-mx128m

 

-classpath

 

%JCLASSES%

 

com.crossworlds.ODKInfrastructure.XRmiAgent

 

-l%AGENTNAME%

 

-c%AGENTCLASS%

 

Note:

  

Make

 

sure

 

that

 

the

 

line

 

to

 

invoke

 

the

 

ODA

 

runtime

 

is

 

all

 

on

 

one

 

line

 

in

 

your

 

startup

 

script;

 

that

 

is,

 

no

 

carriage

 

returns

 

should

 

exist

 

at

 

the

 

line

 

breaks

 

shown

 

in

 

the

 

sample

 

startup

 

line.

Creating

 

the

 

shortcut

 

A

 

shortcut

 

enables

 

an

 

ODA

 

to

 

be

 

started

 

from

 

a

 

menu

 

item

 

within

 

Programs

 

>

 

IBM

 

WebSphere

 

Business

 

Integration

 

Adapters

 

>

 

Adapters

 

>

 

Object

 

Discovery

 

Agents.

 

An

 

easy

 

way

 

to

 

create

 

a

 

shortcut

 

to

 

start

 

an

 

ODA

 

running

 

on

 

Windows

 

is

 

to

 

copy

 

an

 

existing

 

ODA’s

 

shortcut

 

and

 

edit

 

the

 

shortcut

 

properties

 

to

 

change

 

the

 

connector

 

name

 

or

 

add

 

any

 

other

 

startup

 

parameters.

   

162

 

Business

 

Object

 

Development

 

Guide



Part

 

3.

 

ODK

 

class

 

reference

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

163



164

 

Business

 

Object

 

Development

 

Guide



Chapter

 

7.

 

Overview

 

of

 

the

 

ODK

 

API

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

Application

 

Programming

 

Interface

 

(API)

 

includes

 

class

 

libraries

 

that

 

you

 

need

 

to

 

use

 

when

 

developing

 

an

 

Object

 

Discovery

 

Agent

 

(ODA).

 

This

 

ODK

 

API

 

contains

 

predefined

 

classes

 

for

 

ODAs.

 

You

 

use

 

these

 

class

 

libraries

 

to

 

derive

 

ODA

 

classes

 

and

 

methods.

 

The

 

ODK

 

API

 

also

 

provides

 

utilities,

 

such

 

as

 

methods

 

to

 

implement

 

tracing

 

and

 

logging

 

services.

 

IBM

 

provides

 

a

 

Java

 

jar

 

file

 

(Java

 

archive

 

file),

 

CwODK.jar,

 

that

 

contains

 

the

 

predefined

 

classes

 

and

 

interfaces

 

of

 

the

 

ODK

 

API.

 

This

 

jar

 

file

 

resides

 

in

 

the

 

lib

 

subdirectory

 

of

 

the

 

product

 

directory.

 

Note:

  

For

 

instructions

 

on

 

building

 

an

 

ODA

 

to

 

run

 

on

 

Windows

 

2000,

 

see

 

“Compiling

 

the

 

ODA”

 

on

 

page

 

159.

 

Classes

 

and

 

interfaces

 

The

 

classes

 

and

 

interfaces

 

of

 

the

 

ODK

 

API

 

belong

 

to

 

the

 

following

 

package:

 

com.crossworlds.ODK

 

Table

 

64

 

lists

 

the

 

classes

 

and

 

interfaces

 

in

 

the

 

ODK

 

API.

  

Table

 

64.

 

Classes

 

and

 

interfaces

 

in

 

the

 

ODK

 

API

 

Class

 

or

 

interface

 

Description

 

Page

 

AgentMetaData

 

Represents

 

an

 

agent-property

 

object,

 

which

 

can

 

represent

 

either

 

a

 

startup

 

property

 

or

 

a

 

business-object

 

property

 

167

 

AgentProperty

 

Defines

 

the

 

attribute-type

 

constants

 

173

 

BusObjAttr

 

Represents

 

an

 

attribute

 

within

 

the

 

business

 

object

 

definition

 

183

 

BusObjAttrType

 

Interface

 

that

 

defines

 

the

 

attribute-type

 

constants

 

BusObjDef

 

Represents

 

a

 

business

 

object

 

definition,

 

which

 

describes

 

the

 

business

 

object

 

199

 

BusObjVerb

 

Represents

 

a

 

business

 

object

 

verb,

 

which

 

describes

 

an

 

action

 

or

 

operation

 

that

 

is

 

valid

 

on

 

the

 

business

 

object

 

211

 

CompleteCondition

 

215

 

ContentMetaData

 

Represents

 

the

 

content

 

metadata

 

of

 

the

 

ODA,

 

which

 

describes

 

the

 

content

 

that

 

the

 

ODA

 

has

 

generated

 

219

 

ContentType

 

Represents

 

the

 

content

 

type

 

that

 

the

 

ODA

 

supports

 

223

 

DependentCondition

 

227

 

IGeneratesBinFiles

 

Interface

 

to

 

implement

 

by

 

the

 

ODA

 

to

 

provide

 

support

 

for

 

the

 

generation

 

of

 

binary

 

files

 

from

 

the

 

source

 

data

 

231

 

IGeneratesBoDefs

 

Interface

 

to

 

implement

 

by

 

the

 

ODA

 

to

 

provide

 

support

 

for

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

from

 

the

 

source

 

data

 

235

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

165



Table

 

64.

 

Classes

 

and

 

interfaces

 

in

 

the

 

ODK

 

API

 

(continued)

 

Class

 

or

 

interface

 

Description

 

Page

 

IGeneratesContent

 

Is

 

the

 

base

 

class

 

for

 

the

 

two

 

content-generation

 

interfaces,

 

IGeneratesBinFiles

 

and

 

IGeneratesBoDefs.

 

It

 

defines

 

the

 

getContentProtocol()

 

method.

 

Note:

 

This

 

manual

 

does

 

not

 

provide

 

a

 

separate

 

chapter

 

for

 

this

 

interface.

 

For

 

information

 

on

 

getContentProtocol(),

 

see

 

the

 

description

 

of

 

the

 

IGeneratesBinFiles

 

or

 

IGeneratesBoDefs

 

interface

 

None

 

InputCondition

 

241

 

ODKAgentBase

 

Is

 

the

 

base

 

class

 

for

 

the

 

ODA

 

base

 

class,

 

ODKAgentBase2.

 

It

 

defines

 

several

 

methods

 

that

 

ODKAgentBase2

 

inherits.

 

Note:

 

This

 

manual

 

does

 

not

 

provide

 

a

 

separate

 

chapter

 

for

 

this

 

class.

 

For

 

information,

 

see

 

the

 

description

 

of

 

the

 

ODKAgentBase2

 

class.

 

None

 

ODKAgentBase2

 

Represents

 

the

 

base

 

class

 

for

 

an

 

ODA.

 

You

 

extend

 

this

 

class

 

to

 

define

 

your

 

ODA

 

class

 

and

 

implement

 

the

 

required

 

methods

 

245

 

ODKConstant

 

Interface

 

that

 

defines

 

constants

 

for

 

use

 

with

 

the

 

ODK

 

API:

 

v

   

outcome-status

 

constants

 

v

   

verb

 

constants

 

249

 

ODKException

 

Represents

 

an

 

exception

 

object

 

for

 

the

 

ODK

 

API

 

253

 

ODKUtility

 

Provides

 

miscellaneous

 

utility

 

methods

 

for

 

use

 

in

 

an

 

ODA;

 

These

 

utility

 

methods

 

fall

 

into

 

the

 

following

 

general

 

categories:

 

v

   

Static

 

methods

 

for

 

generating

 

and

 

logging

 

messages

 

v

   

Static

 

methods

 

for

 

creating

 

business

 

objects

 

v

   

Static

 

methods

 

for

 

obtaining

 

connector

 

configuration

 

properties

 

v

   

Methods

 

for

 

obtaining

 

locale

 

information

 

255

 

TreeNode

 

267

    

166

 

Business

 

Object

 

Development

 

Guide



Chapter

 

8.

 

AgentMetaData

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

AgentMetaData

 

class

 

to

 

contain

 

the

 

metadata

 

for

 

the

 

Object

 

Discovery

 

Agent

 

(ODA).

 

Member

 

variables

 

of

 

this

 

class

 

represent

 

the

 

ODA

 

metadata.

 

Business

 

Object

 

Wizard

 

can

 

access

 

the

 

ODA’s

 

metadata

 

by

 

calling

 

the

 

getMetaData()

 

method

 

in

 

the

 

ODA’s

 

class.

 

The

 

AgentMetaData

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

169

The

 

AgentMetaData

 

class

 

implements

 

the

 

ODKConstant

 

interface.

 

Therefore,

 

all

 

constants

 

defined

 

in

 

ODKConstant

 

are

 

available

 

to

 

an

 

AgentMetaData

 

object.

 

For

 

a

 

list

 

of

 

constants

 

the

 

ODKConstant

 

interface

 

defines,

 

see

 

Chapter

 

22,

 

“ODKConstant

 

interface,”

 

on

 

page

 

249.

 

Member

 

variables

 

Table

 

65

 

summarizes

 

the

 

member

 

variables

 

of

 

the

 

AgentMetaData

 

class.

  

Table

 

65.

 

Member

 

variables

 

of

 

the

 

AgentMetaData

 

class.

 

Member

 

variable

 

Description

 

Page

 

agentVersion

 

Specifies

 

the

 

version

 

for

 

the

 

ODA.

 

174

 

searchableNodes

 

Determines

 

whether

 

the

 

children

 

of

 

the

 

expandable

 

nodes

 

(in

 

the

 

tree

 

node)

 

can

 

be

 

searched

 

by

 

a

 

user-specified

 

pattern.

 

174

 

searchPatternDesc

 

Specifies

 

the

 

description

 

to

 

display

 

to

 

users

 

to

 

explain

 

valid

 

search

 

pattern

 

criteria.

 

174

 

supportedContent

 

Stores

 

a

 

description

 

of

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

each

 

of

 

its

 

supported

 

content

 

types.

 

175

   

agentVersion

 

Specifies

 

the

 

version

 

for

 

the

 

ODA.

 

Type

 

public

 

String

 

agentVersion

 

Notes

 

The

 

second

 

form

 

of

 

the

 

AgentMetaData()

 

constructor

 

can

 

initialize

 

the

 

agentVersion

 

member

 

variable.

 

If

 

you

 

do

 

not

 

initialize

 

agentVersion,

 

it

 

defaults

 

to

 

an

 

empty

 

string.

 

An

 

ODA

 

should

 

initialize

 

its

 

ODA

 

version

 

as

 

part

 

of

 

the

 

getMetaData()

 

method,

 

which

 

initializes

 

the

 

ODA’s

 

metadata.

 

searchableNodes

 

Indicates

 

whether

 

the

 

children

 

of

 

the

 

expandable

 

nodes

 

(in

 

a

 

tree

 

node)

 

can

 

be

 

searched

 

by

 

a

 

user-specified

 

search

 

pattern.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

167



Type

 

public

 

boolean

 

searchableNodes

 

Notes

 

The

 

searchableNodes

 

member

 

variable

 

contains

 

a

 

boolean

 

value

 

that

 

determines

 

whether

 

the

 

user

 

is

 

allowed

 

to

 

search

 

the

 

children

 

of

 

an

 

expandable

 

node

 

in

 

the

 

tree

 

node

 

(in

 

the

 

Select

 

Source

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard):

 

v

   

If

 

this

 

variable

 

is

 

true,

 

Business

 

Object

 

Wizard

 

enables

 

the

 

Search

 

for

 

items

 

menu

 

item

 

when

 

the

 

user

 

right-clicks

 

on

 

the

 

name

 

of

 

an

 

expandable

 

node.

 

The

 

user

 

can

 

click

 

this

 

menu

 

item

 

to

 

display

 

the

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box.

 

In

 

it,

 

the

 

user

 

can

 

specify

 

a

 

search

 

pattern.

 

Business

 

Object

 

Wizard

 

calls

 

the

 

getTreeNodes()

 

method

 

to

 

search

 

the

 

parent

 

node,

 

passing

 

in

 

the

 

user-specified

 

search

 

pattern.

 

The

 

getTreeNodes()

 

method

 

searches

 

the

 

data

 

source

 

for

 

children

 

whose

 

names

 

match

 

this

 

search

 

pattern,

 

returning

 

only

 

those

 

that

 

do

 

match.

 

Business

 

Object

 

Wizard

 

displays

 

these

 

children

 

to

 

the

 

user

 

when

 

it

 

displays

 

the

 

expanded

 

parent

 

node.

 

v

   

If

 

this

 

variable

 

is

 

false,

 

the

 

Search

 

for

 

items

 

menu

 

item

 

is

 

not

 

available

 

when

 

the

 

user

 

right-clicks

 

on

 

the

 

name

 

of

 

an

 

expandable

 

node.

 

In

 

this

 

case,

 

the

 

getTreeNodes()

 

method

 

does

 

not

 

need

 

to

 

handle

 

a

 

user-specified

 

search

 

pattern.

The

 

AgentMetaData()

 

constructor

 

does

 

not

 

initialize

 

the

 

searchableNodes

 

member

 

variable.

 

If

 

you

 

do

 

not

 

initialize

 

searchableNodes,

 

it

 

defaults

 

to

 

a

 

value

 

of

 

false.

 

If

 

the

 

ODA

 

supports

 

the

 

search-pattern

 

feature,

 

it

 

should

 

initialize

 

the

 

searchableNodes

 

member

 

variable

 

as

 

part

 

of

 

the

 

getMetaData()

 

method

 

in

 

the

 

ODA

 

class.

 

For

 

more

 

information,

 

see

 

“Implementing

 

the

 

search-pattern

 

feature”

 

on

 

page

 

113.

 

searchPatternDesc

 

Specifies

 

the

 

description

 

to

 

display

 

to

 

users

 

that

 

explains

 

the

 

valid

 

search

 

pattern

 

criteria.

 

Type

 

public

 

String

 

searchPatternDesc

 

Notes

 

The

 

searchPatternDesc

 

member

 

variable

 

stores

 

the

 

search-pattern

 

description,

 

which

 

displays

 

on

 

the

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box.

 

Business

 

Object

 

Wizard

 

displays

 

this

 

dialog

 

box

 

when

 

the

 

user

 

right-clicks

 

a

 

source

 

node

 

and

 

clicks

 

Search

 

for

 

items.

 

This

 

description

 

provides

 

information

 

about

 

semantics

 

that

 

the

 

user

 

should

 

use

 

to

 

specify

 

search

 

criteria;

 

that

 

is,

 

it

 

describes

 

what

 

search

 

criteria

 

the

 

ODA

 

implements.

 

This

 

member

 

variable

 

contains

 

a

 

valid

 

value

 

only

 

when

 

the

 

searchableNodes

 

member

 

variable

 

is

 

true.

 

If

 

the

 

ODA

 

supports

 

the

 

search-pattern

 

feature,

 

it

 

should

 

initialize

 

the

 

searchPatternDesc

 

member

 

variable

 

as

 

part

 

of

 

the

 

getMetaData()

 

method

 

in

 

the

 

ODA

 

class.

 

For

 

more

 

information,

 

see

 

“Implementing

 

the

 

search-pattern

 

feature”

 

on

 

page

 

113.

 

supportedContent

 

Contains

 

a

 

vector

 

that

 

describes

 

which

 

content

 

protocol

 

the

 

ODA

 

supports

 

for

 

each

 

of

 

its

 

supported

 

content

 

types.

 

Type

 

public

 

Vector

 

supportedContent

   

168

 

Business

 

Object

 

Development

 

Guide



Notes

 

The

 

supportedContent

 

member

 

variable

 

stores

 

a

 

Java

 

java.util.Vector

 

of

 

ContentProtocol

 

objects

 

that

 

describe

 

what

 

generated

 

content

 

the

 

ODA

 

supports.

 

Each

 

ContentProtocol

 

object

 

contains

 

the

 

following

 

information:

  

Content-generation

 

information

 

Description

 

Content

 

type

 

A

 

ContentType

 

object,

 

which

 

lists

 

one

 

of

 

the

 

supported

 

content

 

types:

 

v

   

BusinessObject

 

v

   

BinaryFile

 

Content

 

protocol

 

A

 

mask

 

of

 

the

 

content-protocol

 

constants

 

to

 

indicate

 

the

 

content

 

protocols

 

supported

 

for

 

the

 

specified

 

content

 

type:

 

v

   

CONTENT_PROTOCOL_ONREQUEST

 

v

   

CONTENT_PROTOCOL_CALLBACK

Content-protocol

 

constants

 

are

 

defined

 

in

 

the

 

ODKConstant

 

interface.

   

Note:

  

The

 

ContentProtocol

 

class

 

is

 

part

 

of

 

the

 

ODAInfrastructure

 

package,

 

which

 

contains

 

the

 

classes

 

that

 

the

 

ODA

 

runtime

 

and

 

Business

 

Object

 

Wizard

 

use.

 

This

 

package

 

is

 

not

 

surfaced

 

to

 

ODA

 

developers.

 

All

 

access

 

to

 

ContentProtocol

 

objects

 

is

 

handled

 

by

 

the

 

ODA

 

runtime

 

or

 

Business

 

Object

 

Wizard.

 

An

 

ODA

 

does

 

not

 

access

 

objects

 

of

 

this

 

class

 

directly.

 

The

 

AgentMetaData()

 

constructor

 

initializes

 

the

 

supportedContent

 

member

 

variable

 

by

 

querying

 

the

 

ODA

 

object

 

that

 

it

 

receives

 

as

 

an

 

argument.

 

You

 

do

 

not

 

have

 

to

 

explicitly

 

initialize

 

this

 

member

 

variable.

 

Methods

 

Table

 

66

 

summarizes

 

the

 

methods

 

of

 

the

 

AgentMetaData

 

class.

  

Table

 

66.

 

Member

 

methods

 

of

 

the

 

AgentMetaData

 

class

 

Member

 

method

 

Description

 

Page

 

AgentMetaData()

 

Creates

 

an

 

agent-metadata

 

object.

 

170

 

toXml()

 

Copies

 

the

 

specified

 

property

 

into

 

the

 

current

 

AgentProperty

 

object.

 

171

   

Chapter

 

8.

 

AgentMetaData

 

class

 

169



AgentMetaData()

 

Creates

 

an

 

agent-metadata

 

object.

 

Syntax

 

public

 

AgentMetaData(ODKAgentBase2

 

ODAobject);

 

public

 

AgentProperty(ODKAgentBase2

 

ODAobject,

 

String

 

version);

 

Parameters

 

ODAobject

 

Is

 

a

 

reference

 

to

 

the

 

ODA

 

object

 

that

 

represents

 

the

 

ODA.

 

The

 

constructor

 

queries

 

this

 

object

 

to

 

initialize

 

the

 

supportedContent

 

member

 

variable

 

of

 

the

 

AgentMetaData

 

object

 

(“supportedContent”

 

on

 

page

 

168).

 

version

 

Specifies

 

the

 

version

 

of

 

the

 

ODA;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

agentVersion

 

member

 

variable

 

of

 

the

 

AgentMetaData

 

object

 

(“agentVersion”

 

on

 

page

 

167).

Return

 

values

 

A

 

newly

 

instantiated

 

AgentMetaData

 

object.

 

Notes

 

The

 

AgentMetaData()

 

method

 

queries

 

the

 

ODAobject

 

ODA

 

for

 

its

 

supported

 

content.

 

This

 

constructor

 

provides

 

the

 

following

 

forms

 

for

 

instantiating

 

a

 

new

 

AgentMetaData

 

object:

 

v

   

The

 

first

 

form

 

defines

 

a

 

new

 

AgentMetaData

 

object

 

and

 

only

 

initializes

 

its

 

supported

 

content.

 

This

 

form

 

assumes

 

that

 

the

 

ODA

 

does

 

not

 

have

 

a

 

version.

 

v

   

The

 

second

 

form

 

defines

 

a

 

new

 

AgentMetaData

 

object

 

and

 

initializes

 

it

 

with

 

both

 

its

 

supported

 

content

 

and

 

version.

Both

 

of

 

these

 

forms

 

of

 

the

 

constructor

 

use

 

the

 

ODAobject

 

reference

 

to

 

query

 

the

 

ODA

 

for

 

its

 

supported

 

content.

 

Using

 

this

 

information,

 

the

 

constructor

 

initialize

 

the

 

supportedContent

 

member

 

variable.

 

Note:

  

The

 

AgentMetaData()

 

constructor

 

does

 

not

 

initialize

 

the

 

member

 

variables

 

that

 

support

 

the

 

search-pattern

 

feature.

 

For

 

your

 

ODA

 

to

 

support

 

search

 

patterns,

 

you

 

must

 

explicitly

 

initialize

 

the

 

searchableNodes

 

and

 

searchPatternDesc

 

member

 

variables

 

after

 

the

 

AgentMetaData

 

object

 

is

 

instantiated.

 

If

 

you

 

do

 

not

 

initialize

 

searchableNodes,

 

it

 

defaults

 

to

 

a

 

value

 

of

 

false.

   

170

 

Business

 

Object

 

Development

 

Guide



toXml()

 

Converts

 

the

 

ODA

 

metadata

 

into

 

an

 

XML

 

format.

 

Syntax

 

public

 

String

 

toXml();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

XML

 

format

 

for

 

the

 

current

 

AgentMetaData

 

object.

   

Chapter

 

8.

 

AgentMetaData

 

class

 

171



172

 

Business

 

Object

 

Development

 

Guide



Chapter

 

9.

 

AgentProperty

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

AgentProperty

 

class

 

to

 

represent

 

an

 

agent-property

 

object.

 

Each

 

agent-property

 

object

 

contains

 

information

 

about

 

the

 

properties

 

required

 

for

 

the

 

Object

 

Discovery

 

Agent

 

(ODA),

 

such

 

as:

 

v

   

Configuration

 

properties,

 

which

 

provide

 

values

 

that

 

the

 

ODA

 

needs

 

for

 

initialization.

 

v

   

Business-object

 

properties,

 

which

 

provide

 

additional

 

information

 

that

 

the

 

ODA

 

needs

 

for

 

generation

 

of

 

business

 

object

 

definitions.

The

 

AgentProperty

 

class

 

defines

 

the

 

following:

 

v

   

“Property-type

 

constants”

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

179

Property-type

 

constants

 

The

 

AgentProperty

 

class

 

defines

 

static

 

member

 

variables

 

to

 

represent

 

property-type

 

constants.

 

Table

 

67

 

summarizes

 

these

 

property-type

 

constants,

 

which

 

represent

 

valid

 

values

 

for

 

an

 

agent

 

property’s

 

data

 

type.

 

All

 

property-type

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

67.

 

Property-type

 

constants

 

of

 

the

 

AgentProperty

 

Class

 

Property-type

 

constant

 

Description

 

TYPE_BOOLEAN

 

Indicates

 

that

 

the

 

type

 

of

 

the

 

property

 

is

 

Boolean.

 

TYPE_DOUBLE

 

Indicates

 

that

 

the

 

type

 

of

 

the

 

property

 

is

 

Double.

 

TYPE_FLOAT

 

Indicates

 

that

 

the

 

type

 

of

 

the

 

property

 

is

 

Float.

 

TYPE_INTEGER

 

Indicates

 

that

 

the

 

type

 

of

 

the

 

property

 

is

 

Integer.

 

TYPE_STRING

 

Indicates

 

that

 

the

 

type

 

of

 

the

 

property

 

is

 

String.

   

Member

 

variables

 

Table

 

68

 

summarizes

 

the

 

member

 

variables

 

of

 

the

 

AgentProperty

 

class.

  

Table

 

68.

 

Member

 

variables

 

of

 

the

 

AgentProperty

 

class.

 

Member

 

variable

 

Description

 

Page

 

allDefaultValues

 

Specifies

 

the

 

default

 

values

 

to

 

display

 

for

 

the

 

agent

 

property.

 

174

 

allDependencies

 

Specifies

 

the

 

conditions

 

that

 

describe

 

the

 

dependencies

 

between

 

this

 

agent

 

property

 

and

 

other

 

dependent

 

properties.

 

174

 

allValidValues

 

Specifies

 

the

 

value

 

values

 

to

 

display

 

for

 

the

 

agent

 

property.

 

174

 

allValues

 

Stores

 

the

 

values

 

that

 

the

 

user

 

selects

 

for

 

the

 

agent

 

property.

 

175

 

cardinality

 

Specifies

 

whether

 

the

 

agent

 

property

 

can

 

hold

 

one

 

or

 

multiple

 

values.

 

175

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

173



Table

 

68.

 

Member

 

variables

 

of

 

the

 

AgentProperty

 

class.

 

(continued)

 

Member

 

variable

 

Description

 

Page

 

description

 

Provides

 

a

 

textual

 

explanation

 

of

 

the

 

agent

 

property

 

and

 

can

 

hold

 

other

 

relevant

 

information.

 

176

 

isHidden

 

Determines

 

whether

 

the

 

value

 

of

 

the

 

agent

 

property

 

must

 

display

 

as

 

encrypted.

 

176

 

isMultiple

 

Determines

 

whether

 

Business

 

Object

 

Wizard

 

provides

 

a

 

mechanism

 

for

 

user

 

entry

 

of

 

multiple

 

values

 

for

 

the

 

agent-property

 

value.

 

177

 

isReadOnly

 

Determines

 

whether

 

a

 

user

 

can

 

specify

 

a

 

value

 

for

 

the

 

agent

 

property

 

or

 

can

 

only

 

view

 

the

 

property

 

value.

 

177

 

isRequired

 

Determines

 

whether

 

a

 

value

 

must

 

always

 

be

 

specified

 

for

 

the

 

agent

 

property.

 

178

 

propName

 

Specifies

 

the

 

name

 

of

 

the

 

agent

 

property.

 

178

 

type

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

agent

 

property.

 

179

   

allDefaultValues

 

Specifies

 

the

 

default

 

values

 

to

 

display

 

for

 

the

 

agent

 

property.

 

Type

 

public

 

java.lang.Object[]

 

allDefaultValues

 

Notes

 

The

 

allDefaultValues

 

member

 

variable

 

contains

 

an

 

array

 

of

 

default

 

values

 

for

 

the

 

agent

 

property.

 

The

 

number

 

of

 

Object

 

elements

 

in

 

this

 

array

 

must

 

correspond

 

to

 

the

 

cardinality

 

of

 

the

 

property,

 

as

 

follows:

 

v

   

For

 

a

 

single-cardinality

 

property

 

(ODKConstant.SINGLE_CARD),

 

the

 

allDefaultValues

 

array

 

must

 

contain

 

only

 

one

 

element.

 

v

   

For

 

a

 

multiple-cardinality

 

property

 

(ODKConstant.MULTI_CARD),

 

the

 

allDefaultValues

 

array

 

can

 

contain

 

one

 

or

 

more

 

elements.

For

 

more

 

information,

 

see

 

“Specifying

 

default

 

values”

 

on

 

page

 

144.

 

allDependencies

 

Specifies

 

a

 

list

 

of

 

conditions

 

that

 

describe

 

the

 

dependencies

 

between

 

this

 

agent

 

property

 

and

 

other

 

dependent

 

properties.

 

Type

 

public

 

CompleteCondition[]

 

allDependencies

 

Notes

 

The

 

allDependencies

 

member

 

variable

 

contains

 

a

 

list

 

of

 

conditions

 

in

 

the

 

condition

 

array,

 

which

 

is

 

an

 

array

 

of

 

CompleteCondition

 

objects.

 

Each

 

CompleteCondition

 

object

 

contains

 

one

 

condition

 

on

 

the

 

agent

 

property’s

 

value.

 

A

 

condition

 

contains

 

input

 

and

 

dependency

 

conditions.

 

For

 

more

 

information,

 

see

 

“Setting

 

conditions

 

on

 

the

 

property

 

value”

 

on

 

page

 

146.

 

allValidValues

 

Specifies

 

the

 

valid

 

values

 

to

 

display

 

for

 

the

 

agent

 

property.

   

174

 

Business

 

Object

 

Development

 

Guide



Type

 

public

 

java.lang.Object[]

 

allValidValues

 

Notes

 

The

 

allValidValues

 

member

 

variable

 

contains

 

a

 

list

 

of

 

values

 

with

 

which

 

to

 

initialize

 

the

 

drop-down

 

list

 

of

 

an

 

agent

 

property.

 

From

 

this

 

drop-down

 

list,

 

the

 

user

 

can

 

choose

 

one

 

(single

 

cardinality)

 

or

 

more

 

(multiple

 

cardinality)

 

values

 

for

 

the

 

property.

 

If

 

allValidValues

 

specifies

 

a

 

list

 

of

 

values,

 

Business

 

Object

 

Wizard

 

displays

 

these

 

values

 

in

 

the

 

drop-down

 

list

 

for

 

any

 

agent

 

property

 

whose

 

isMultiple

 

member

 

variable

 

is

 

true.

 

If

 

isHidden

 

is

 

true

 

and

 

allValidValues

 

is

 

null,

 

Business

 

Object

 

Wizard

 

displays

 

a

 

sub-grid

 

for

 

users

 

to

 

specify

 

values.

 

Note:

  

If

 

the

 

isMultiple

 

member

 

variable

 

is

 

false,

 

the

 

allValidValues

 

member

 

variable

 

should

 

be

 

null.

 

For

 

more

 

information,

 

see

 

“Choosing

 

the

 

type

 

of

 

display

 

control”

 

on

 

page

 

142.

 

allValues

 

Stores

 

the

 

values

 

that

 

the

 

user

 

provides

 

for

 

the

 

agent

 

property.

 

Type

 

public

 

java.lang.Object[]

 

allValues

 

Notes

 

The

 

allValues

 

member

 

variable

 

is

 

an

 

output

 

variable;

 

that

 

is,

 

it

 

is

 

populated

 

by

 

Business

 

Object

 

Wizard

 

after

 

user

 

entry

 

is

 

complete.

 

It

 

contains

 

the

 

values

 

that

 

the

 

user

 

selects

 

from

 

the

 

Value

 

column

 

in

 

the

 

Configure

 

Agent

 

step

 

of

 

Business

 

Object

 

Wizard.

 

This

 

variable

 

is

 

the

 

only

 

member

 

variable

 

that

 

does

 

not

 

require

 

initialization

 

before

 

the

 

agent

 

property

 

displays

 

to

 

the

 

user.

 

The

 

number

 

of

 

values

 

in

 

the

 

allValues

 

array

 

is

 

determined

 

by

 

the

 

agent

 

property’s

 

cardinality:

 

v

   

If

 

the

 

agent

 

property

 

has

 

single

 

cardinality

 

(its

 

cardinality

 

variable

 

is

 

ODKConstant.SINGLE_CARD),

 

the

 

allValues

 

array

 

contains

 

one

 

value.

 

v

   

If

 

the

 

agent

 

property

 

has

 

multiple

 

cardinality

 

(its

 

cardinality

 

variable

 

is

 

ODKConstant.MULTI_CARD),

 

the

 

allValues

 

array

 

contains

 

multiple

 

values,

 

one

 

for

 

each

 

value

 

the

 

user

 

has

 

specified.

cardinality

 

Specifies

 

whether

 

the

 

agent

 

property

 

can

 

hold

 

one

 

or

 

multiple

 

values.

 

Type

 

public

 

java.lang.String

 

cardinality

 

Notes

 

The

 

cardinality

 

member

 

variable

 

determines

 

whether

 

an

 

agent

 

property’s

 

value

 

consists

 

of

 

one

 

value

 

or

 

multiple

 

values.

 

Therefore,

 

it

 

determines

 

how

 

many

 

values

 

the

 

user

 

can

 

specify

 

for

 

the

 

property.

   

Chapter

 

9.

 

AgentProperty

 

class

 

175



Cardinality

 

Number

 

of

 

agent-property

 

values

 

the

 

user

 

can

 

specify

 

Value

 

of

 

cardinality

 

member

 

variable

 

Single

 

One

 

ODKConstant.SINGLE_CARD

 

Multiple

 

Many

 

ODKConstant.MULTIPLE_CARD

   

The

 

property’s

 

cardinality

 

has

 

an

 

effect

 

on

 

the

 

type

 

of

 

control

 

that

 

Business

 

Object

 

Wizard

 

displays

 

for

 

the

 

property.

 

For

 

more

 

information,

 

see

 

“Choosing

 

the

 

type

 

of

 

display

 

control”

 

on

 

page

 

142.

 

To

 

initialize

 

an

 

agent

 

property’s

 

cardinality,

 

the

 

following

 

call

 

to

 

the

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

specifies

 

a

 

string

 

description

 

value

 

as

 

the

 

sixth

 

argument:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

false,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Note:

  

You

 

can

 

also

 

specify

 

a

 

value

 

for

 

the

 

agent

 

property’s

 

cardinality

 

with

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor,

 

using

 

its

 

eighth

 

argument.

 

description

 

Provides

 

a

 

textual

 

explanation

 

of

 

the

 

agent

 

property

 

and

 

may

 

hold

 

other

 

relevant

 

information.

 

Type

 

public

 

java.lang.String

 

description;

 

Notes

 

The

 

description

 

member

 

variable

 

displays

 

in

 

the

 

Description

 

column

 

in

 

the

 

Configure

 

Agent

 

step

 

of

 

Business

 

Object

 

Wizard.

 

To

 

initialize

 

an

 

agent

 

property’s

 

description,

 

the

 

following

 

call

 

to

 

the

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

specifies

 

a

 

string

 

description

 

value

 

as

 

the

 

third

 

argument:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

false,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Note:

  

You

 

can

 

also

 

specify

 

a

 

value

 

for

 

the

 

agent

 

property’s

 

description

 

with

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor,

 

using

 

its

 

sixth

 

argument.

 

isHidden

 

Determines

 

whether

 

the

 

value

 

of

 

the

 

agent

 

property

 

should

 

display

 

as

 

encrypted.

 

Type

 

public

 

boolean

 

isHidden;

 

Notes

 

The

 

isHidden

 

member

 

variable

 

is

 

a

 

boolean

 

value

 

that

 

determines

 

whether

 

an

 

agent

 

property’s

 

value

 

displays

 

in

 

Business

 

Object

 

Wizard.

 

If

 

isHidden

 

is

 

true,

 

the

 

agent

 

property’s

 

value

 

is

 

encrypted

 

when

 

it

 

displays;

 

that

 

is,

 

the

 

value

 

appears

 

as

 

a

   

176

 

Business

 

Object

 

Development

 

Guide



string

 

of

 

asterisk

 

(*)

 

characters.

 

To

 

indicate

 

whether

 

an

 

agent

 

property’s

 

value

 

is

 

encrypted,

 

specify

 

a

 

boolean

 

value

 

as

 

the

 

fourth

 

argument

 

in

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

 

true,

 

false,

 

true,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

isMultiple

 

Determines

 

whether

 

Business

 

Object

 

Wizard

 

provides

 

a

 

means

 

to

 

enter

 

multiple

 

values

 

for

 

an

 

agent

 

property.

 

Type

 

public

 

boolean

 

isMultiple;

 

Notes

 

The

 

isMultiple

 

member

 

variable

 

is

 

a

 

boolean

 

value

 

that

 

determines

 

whether

 

Business

 

Object

 

Wizard

 

should

 

provide

 

a

 

mechanism

 

for

 

allowing

 

user

 

entry

 

of

 

multiple

 

values

 

for

 

an

 

agent

 

property:

 

v

   

If

 

isMultiple

 

is

 

true,

 

Business

 

Object

 

Wizard

 

displays

 

a

 

drop-down

 

list

 

with

 

the

 

list

 

of

 

values

 

that

 

the

 

allValidValues

 

member

 

variable

 

contains.

 

From

 

this

 

list,

 

the

 

user

 

clicks

 

on

 

the

 

value

 

to

 

assign

 

to

 

the

 

agent

 

property.

 

The

 

value

 

of

 

the

 

cardinality

 

member

 

variable

 

determines

 

how

 

many

 

of

 

these

 

values

 

the

 

user

 

can

 

choose

 

from

 

the

 

drop-down

 

list.

 

If

 

no

 

allValidValues

 

array

 

is

 

provided,

 

Business

 

Object

 

Wizard

 

provides

 

a

 

sub-grid

 

of

 

rows

 

for

 

the

 

user

 

to

 

enter

 

each

 

value.

 

v

   

If

 

isMultiple

 

is

 

false,

 

Business

 

Object

 

Wizard

 

does

 

not

 

allow

 

user

 

entry

 

of

 

multiple

 

values.

 

Instead,

 

it

 

displays

 

an

 

empty

 

field

 

or

 

the

 

default

 

value

 

(if

 

one

 

is

 

specified).

 

In

 

this

 

field,

 

the

 

user

 

enters

 

the

 

agent-property

 

value.

 

The

 

value

 

of

 

the

 

cardinality

 

member

 

variable

 

should

 

be

 

ODKConstant.SINGLE_CARD.

Note:

  

For

 

more

 

information,

 

see

 

“Choosing

 

the

 

type

 

of

 

display

 

control”

 

on

 

page

 

142.

 

To

 

initialize

 

an

 

agent

 

property

 

with

 

a

 

list

 

of

 

multiple

 

values

 

for

 

the

 

user

 

to

 

choose

 

from,

 

the

 

following

 

call

 

to

 

the

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

specifies

 

a

 

boolean

 

value

 

of

 

true

 

as

 

the

 

fourth

 

argument

 

(the

 

value

 

of

 

the

 

isMultiple

 

variable):

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

true,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Note:

  

You

 

can

 

also

 

specify

 

a

 

value

 

for

 

isMultiple

 

with

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor,

 

using

 

its

 

seventh

 

argument.

 

isReadOnly

 

Determines

 

whether

 

the

 

user

 

can

 

specify

 

a

 

value

 

in

 

the

 

agent

 

property

 

or

 

can

 

only

 

view

 

the

 

value.

 

Type

 

public

 

boolean

 

isReadOnly;

   

Chapter

 

9.

 

AgentProperty

 

class

 

177



Notes

 

The

 

isReadOnly

 

member

 

variable

 

is

 

a

 

boolean

 

value

 

that

 

determines

 

whether

 

an

 

agent

 

property’s

 

value

 

can

 

be

 

modified

 

by

 

the

 

user

 

when

 

the

 

property

 

displays

 

in

 

Business

 

Object

 

Wizard.

 

To

 

indicate

 

whether

 

an

 

agent

 

property’s

 

value

 

is

 

required,

 

specify

 

a

 

boolean

 

value

 

as

 

the

 

fifth

 

argument

 

in

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

 

true,

 

false,

 

true,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

isRequired

 

Determines

 

whether

 

a

 

value

 

is

 

required

 

for

 

the

 

agent

 

property.

 

Type

 

public

 

boolean

 

isRequired;

 

Notes

 

The

 

isRequired

 

member

 

variable

 

is

 

a

 

boolean

 

value

 

that

 

determines

 

whether

 

a

 

value

 

must

 

always

 

be

 

specified

 

for

 

the

 

agent

 

property

 

or

 

whether

 

the

 

user

 

can

 

leave

 

the

 

property’s

 

value

 

empty.

 

If

 

isRequired

 

is

 

true,

 

the

 

user

 

must

 

provide

 

a

 

value

 

for

 

this

 

property.

 

To

 

indicate

 

that

 

an

 

agent

 

property’s

 

value

 

is

 

required,

 

the

 

following

 

call

 

to

 

the

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

specifies

 

a

 

boolean

 

value

 

of

 

true

 

as

 

the

 

fourth

 

argument:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

false,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Note:

  

You

 

can

 

also

 

specify

 

a

 

value

 

for

 

isRequired

 

with

 

the

 

second

 

form

 

of

 

the

 

AgentProperty()

 

constructor,

 

using

 

its

 

third

 

argument.

 

propName

 

Specifies

 

the

 

name

 

of

 

the

 

agent

 

property.

 

Type

 

public

 

java.lang.String

 

propName;

 

Notes

 

The

 

propName

 

member

 

variable

 

contains

 

a

 

string

 

with

 

the

 

name

 

of

 

the

 

agent

 

property—for

 

example:

 

Username,

 

Password,

 

DatabaseUrl.

 

The

 

value

 

of

 

the

 

propName

 

member

 

variable

 

displays

 

in

 

the

 

Property

 

column

 

in

 

the

 

Configure

 

Agent

 

step

 

of

 

Business

 

Object

 

Wizard.

 

To

 

initialize

 

an

 

agent

 

property’s

 

name,

 

the

 

following

 

call

 

to

 

the

 

third

 

form

 

of

 

the

 

AgentProperty()

 

constructor

 

specifies

 

a

 

name

 

as

 

the

 

first

 

argument:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

false,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Note:

  

All

 

forms

 

of

 

the

 

AgentProperty()

 

constructor

 

require

 

that

 

you

 

specify

 

a

 

property

 

name

 

to

 

initialize

 

the

 

propName

 

member

 

variable.

  

178

 

Business

 

Object

 

Development

 

Guide



type

 

Specifies

 

the

 

type

 

of

 

the

 

agent

 

property.

 

Type

 

public

 

int

 

type;

 

Notes

 

The

 

type

 

member

 

variable

 

contains

 

an

 

integer

 

value

 

that

 

represents

 

the

 

data

 

type

 

of

 

the

 

agent

 

property.

 

Table

 

67

 

on

 

page

 

173

 

lists

 

the

 

property-type

 

constants

 

to

 

use

 

to

 

represent

 

valid

 

property

 

types.

 

A

 

string

 

representation

 

of

 

the

 

type

 

member

 

variable’s

 

value

 

displays

 

in

 

the

 

Type

 

column

 

in

 

the

 

Configure

 

Agent

 

step

 

of

 

Business

 

Object

 

Wizard.

 

To

 

initialize

 

an

 

agent

 

property’s

 

data

 

type,

 

specify

 

a

 

property-type

 

constant

 

as

 

the

 

second

 

argument

 

in

 

the

 

AgentProperty()

 

constructor:

 

AgentProperty

 

agt

 

=

 

new

 

AgentProperty("Username",

          

AgentProperty.TYPE_STRING,

          

"User

 

Id

 

for

 

logging

 

into

 

the

 

database",

 

true,

 

false,

          

ODKConstant.SINGLE_CARD,

 

null,

 

null);

 

Methods

 

Table

 

69

 

summarizes

 

the

 

methods

 

of

 

the

 

AgentProperty

 

class.

  

Table

 

69.

 

Member

 

methods

 

of

 

the

 

AgentProperty

 

class

 

Member

 

method

 

Description

 

Page

 

AgentProperty()

 

Creates

 

an

 

agent-property

 

object.

 

179

 

copy()

 

Copies

 

the

 

specified

 

property

 

into

 

the

 

current

 

AgentProperty

 

object.

 

180

   

AgentProperty()

 

Creates

 

an

 

agent-property

 

object.

 

Syntax

 

public

 

AgentProperty(String

 

name);

 

public

 

AgentProperty(String

 

name,

 

int

 

type,

 

boolean

 

isReqd,

 

boolean

 

isHid,

    

boolean

 

isRdOnly,

 

String

 

desc,

 

boolean

 

isMult,

 

String

 

cardinality,

    

Object[]

 

validValues,

 

Object[]

 

defaultValues);

 

public

 

AgentProperty(String

 

name,

 

int

 

type,

 

String

 

desc,

 

boolean

 

isReqd,

    

boolean

 

isMult,

 

String

 

cardinality,

 

Object[]

 

validValues,

    

Object[]

 

defaultValues);

 

Parameters

 

cardinality

 

Specifies

 

whether

 

the

 

property

 

can

 

hold

 

multiple

 

values;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

cardinality

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“cardinality”

 

on

 

page

 

175).

 

defaultValues

 

Specifies

 

default

 

values

 

for

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

allDefaultValues

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“allDefaultValues”

 

on

 

page

 

174).

 

desc

 

Provides

 

a

 

description

 

of

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

description

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“description”

 

on

 

page

 

176).

 

isHid

 

Specifies

 

whether

 

the

 

value

 

of

 

the

 

property

 

must

 

be

 

encrypted;

 

the

   

Chapter

 

9.

 

AgentProperty

 

class

 

179



value

 

of

 

this

 

parameter

 

initializes

 

the

 

isHidden

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“isHidden”

 

on

 

page

 

176).

 

isMult

 

Specifies

 

whether

 

the

 

property

 

can

 

provide

 

multiple

 

values

 

from

 

which

 

the

 

user

 

can

 

choose;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isMultiple

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“isMultiple”

 

on

 

page

 

177).

 

isRdOnly

 

Specifies

 

whether

 

a

 

user

 

can

 

enter

 

or

 

can

 

only

 

view

 

the

 

value

 

for

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isReadOnly

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“isReadOnly”

 

on

 

page

 

177).

 

isReqd

 

Specifies

 

whether

 

a

 

value

 

is

 

required

 

for

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isRequired

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“isRequired”

 

on

 

page

 

178).

 

name

 

Specifies

 

the

 

name

 

of

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

propName

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“propName”

 

on

 

page

 

178).

 

type

 

Specifies

 

the

 

type

 

of

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

type

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“type”

 

on

 

page

 

179).

 

validValues

 

Specifies

 

the

 

valid

 

values

 

for

 

the

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

allValidValues

 

member

 

variable

 

of

 

the

 

agent-property

 

object

 

(“allValidValues”

 

on

 

page

 

174).

Return

 

values

 

A

 

newly

 

instantiated

 

AgentProperty

 

object.

 

Exceptions

 

IllegalArgumentException

 

Thrown

 

if

 

the

 

value

 

of

 

the

 

name

 

parameter

 

is

 

null

 

or

 

if

 

the

 

type

 

parameter

 

is

 

not

 

a

 

valid

 

property-type

 

constant

 

(see

 

Table

 

67

 

on

 

page

 

173).

Notes

 

The

 

AgentProperty()

 

method

 

provides

 

the

 

following

 

forms

 

for

 

instantiating

 

a

 

new

 

agent-property

 

object:

 

v

   

The

 

first

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

only

 

a

 

property

 

name.

 

The

 

type

 

of

 

this

 

agent

 

property

 

defaults

 

to

 

String.

 

The

 

property

 

is

 

a

 

single-cardinality

 

property

 

that

 

does

 

not

 

display

 

multiple

 

values

 

to

 

the

 

user.

 

v

   

The

 

second

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

all

 

member

 

variables.

 

You

 

can

 

customize

 

the

 

property’s

 

metadata

 

by

 

specifying

 

the

 

appropriate

 

values

 

for

 

its

 

member

 

variables.

 

v

   

The

 

third

 

form

 

defines

 

a

 

new

 

agent-property

 

object

 

and

 

initializes

 

it

 

with

 

all

 

member

 

variables

 

except

 

isHidden

 

and

 

isReadOnly.

 

In

 

this

 

case,

 

the

 

isHidden

 

and

 

isReadOnly

 

variables

 

default

 

to

 

false.

copy()

 

Copies

 

the

 

specified

 

property

 

into

 

the

 

current

 

AgentProperty

 

object.

 

Syntax

 

public

 

void

 

copy(AgentProperty

 

prop);

   

180

 

Business

 

Object

 

Development

 

Guide



Parameters

 

prop

 

Specifies

 

the

 

name

 

of

 

the

 

property

 

to

 

be

 

copied.

  

Chapter

 

9.

 

AgentProperty

 

class

 

181



182

 

Business

 

Object

 

Development

 

Guide



Chapter

 

10.

 

BusObjAttr

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

BusObjAttr

 

class

 

to

 

represent

 

the

 

attributes

 

in

 

a

 

business

 

object

 

definition.

 

A

 

BusObjAttr

 

instance

 

represents

 

an

 

attribute

 

object.

 

This

 

class

 

defines

 

the

 

following:

 

v

   

“Attribute

 

constants”

 

v

   

“Methods”

Note:

  

A

 

business

 

object

 

definition

 

(BusObjDef

 

object)

 

automatically

 

defines

 

an

 

attribute

 

object

 

for

 

the

 

ObjectEventId

 

attribute.

 

This

 

attribute

 

is

 

automatically

 

marked

 

with

 

the

 

BusObjAttr.OBJECT_EVENT_ID

 

constant

 

to

 

indicate

 

its

 

special

 

purpose.

 

Attribute

 

constants

 

The

 

BusObjAttr

 

class

 

defines

 

static

 

member

 

variables

 

to

 

represent

 

attribute

 

constants.Table

 

70

 

summarizes

 

the

 

attribute

 

constants.

 

All

 

attribute

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

70.

 

Attribute

 

constants

 

of

 

the

 

BusObjAttr

 

class.

 

Attribute

 

constant

 

Description

 

Cardinality

 

constants

 

CARD_MULTIPLE

 

Indicates

 

that

 

the

 

attribute

 

represents

 

an

 

array

 

of

 

child

 

business

 

objects;

 

that

 

is,

 

the

 

attribute

 

has

 

multiple

 

cardinality.

 

CARD_SINGLE

 

Indicates

 

that

 

the

 

attribute

 

represents

 

one

 

value

 

or

 

one

 

child

 

business

 

object;

 

that

 

is,

 

the

 

attribute

 

has

 

single

 

cardinality.

 

ObjectEventId

 

constant

 

OBJECT_EVENT_ID

 

Indicates

 

that

 

the

 

attribute

 

is

 

the

 

ObjectEventId.

   

Methods

 

Table

 

71

 

summarizes

 

the

 

member

 

methods

 

of

 

the

 

BusObjAttr

 

class.

  

Table

 

71.

 

Member

 

methods

 

of

 

the

 

BusObjAttr

 

class

 

Member

 

method

 

Description

 

Page

 

BusObjAttr()

 

Creates

 

a

 

business-object-attribute

 

object.

 

185

 

getAppText()

 

Retrieves

 

the

 

application-specific

 

information

 

of

 

an

 

attribute.

 

185

 

getAttrType()

 

Retrieves

 

the

 

type

 

of

 

a

 

simple

 

attribute.

 

186

 

getAttrTypeName()

 

Retrieves

 

the

 

type

 

of

 

the

 

child

 

business

 

object

 

as

 

the

 

type

 

of

 

an

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

186

 

getBOVersion()

 

Retrieves

 

the

 

version

 

number

 

of

 

the

 

business

 

object

 

definition,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

187

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

183



Table

 

71.

 

Member

 

methods

 

of

 

the

 

BusObjAttr

 

class

 

(continued)

 

Member

 

method

 

Description

 

Page

 

getCardinality()

 

Retrieves

 

the

 

cardinality

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

187

 

getComments()

 

Retrieves

 

the

 

comments

 

associated

 

with

 

the

 

attribute.

 

188

 

getDefault()

 

Retrieves

 

the

 

default

 

value

 

for

 

an

 

attribute.

 

188

 

getMaxLength()

 

Retrieves

 

the

 

maximum

 

length

 

for

 

this

 

attribute.

 

188

 

getName()

 

Retrieves

 

the

 

name

 

of

 

an

 

attribute.

 

188

 

getRelationType()

 

Retrieves

 

the

 

attribute’s

 

relationship

 

type,

 

which

 

is

 

containment

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

189

 

isForeignKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

foreign

 

key.

 

189

 

isKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

key.

 

189

 

isRequiredKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

required

 

key.

 

190

 

isRequiredServerBound()

 

Determines

 

whether

 

an

 

attribute

 

is

 

required

 

when

 

the

 

business

 

object

 

represents

 

a

 

triggering

 

event.

 

190

 

isSimpleType()

 

Determines

 

whether

 

an

 

attribute

 

is

 

of

 

a

 

simple

 

type

 

(such

 

as

 

String,

 

Integer,

 

or

 

Float)

 

or

 

whether

 

it

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

190

 

setAppText()

 

Sets

 

the

 

application-specific

 

information

 

of

 

an

 

attribute.

 

191

 

setAttrType()

 

Sets

 

the

 

type

 

of

 

the

 

attribute.

 

191

 

setBOVersion()

 

Sets

 

the

 

version

 

of

 

the

 

child

 

business

 

object

 

or

 

objects

 

that

 

is

 

represented

 

by

 

an

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

192

 

setCardinality()

 

Sets

 

the

 

cardinality

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

192

 

setComments()

 

Sets

 

the

 

comments

 

associated

 

with

 

the

 

attribute.

 

193

 

setDefault()

 

Sets

 

the

 

default

 

value

 

for

 

an

 

attribute.

 

193

 

setIsForeignKey()

 

Sets

 

the

 

attribute

 

to

 

a

 

boolean

 

value

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

foreign

 

key.

 

193

 

setIsKey()

 

Sets

 

the

 

attribute

 

to

 

a

 

boolean

 

value

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

key.

 

193

 

setIsRequiredKey()

 

Sets

 

the

 

attribute

 

to

 

a

 

boolean

 

value

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

required

 

key.

 

194

 

setMaxLength()

 

Sets

 

the

 

maximum

 

length

 

for

 

an

 

attribute.

 

194

 

setName()

 

Sets

 

the

 

name

 

of

 

an

 

attribute.

 

194

 

setRelationType()

 

Sets

 

the

 

relationship

 

type

 

of

 

an

 

attribute

 

to

 

containment,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

195

    

184

 

Business

 

Object

 

Development

 

Guide



BusObjAttr()

 

Creates

 

a

 

new

 

business-object-attribute

 

object.

 

Syntax

 

public

 

BusObjAttr(String

 

name,

 

int

 

type);

 

public

 

BusObjAttr(String

 

name,

 

int

 

type,

 

String

 

typeName);

 

public

 

BusObjAttr(String

 

name,

 

int

 

type,

 

String

 

typeName,

 

boolean

 

isKey,

    

boolean

 

isForeignKey,

 

boolean

 

isReqd,

 

String

 

appSpecInfo,

 

int

 

maxLen

    

String

 

defaultValue,

 

String

 

BOversion,

 

String

 

cardinality,

 

String

 

relType,

    

boolean

 

isReqdServerBound,

 

String

 

comments);

 

Parameters

 

appSpecInfo

 

Specifies

 

the

 

application-specific

 

information

 

for

 

the

 

attribute.

 

BOversion

 

Specifies

 

the

 

version

 

of

 

the

 

child

 

business

 

object

 

or

 

objects,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

cardinality

 

Specifies

 

the

 

cardinality

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

comments

 

Specifies

 

the

 

optional

 

comments

 

to

 

associate

 

with

 

the

 

attribute.

 

defaultValue

 

Specifies

 

a

 

default

 

value

 

for

 

the

 

attribute.

 

isForeignKey

 

Specifies

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

foreign

 

key.

 

isKey

 

Specifies

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

key.

 

isReqd

 

Specifies

 

whether

 

a

 

value

 

is

 

required

 

for

 

the

 

attribute.

 

isReqdServerBound

 

Specifies

 

whether

 

a

 

value

 

is

 

required

 

for

 

the

 

attribute

 

when

 

the

 

business

 

object

 

represents

 

a

 

triggering

 

event.

 

maxLen

 

Specifies

 

the

 

maximum

 

length

 

of

 

the

 

attribute’s

 

value.

 

name

 

Specifies

 

the

 

name

 

of

 

the

 

attribute.

 

relType

 

Specifies

 

that

 

the

 

relationship

 

type

 

is

 

containment,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

type

 

Specifies

 

the

 

type

 

of

 

the

 

attribute.

 

typeName

 

Specifies

 

type

 

of

 

the

 

child

 

business

 

object

 

as

 

the

 

type

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

Return

 

values

 

The

 

newly

 

instantiated

 

BusObjAttr

 

object.

 

getAppText()

 

Retrieves

 

the

 

application-specific

 

information

 

of

 

an

 

attribute.

 

Syntax

 

public

 

String

 

getAppText();

   

Chapter

 

10.

 

BusObjAttr

 

class

 

185



Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

application-specific

 

information

 

of

 

an

 

attribute.

 

See

 

also

 

setAppText()

 

getAttrType()

 

Retrieves

 

the

 

type

 

of

 

an

 

attribute.

 

Syntax

 

public

 

int

 

getAttrType();

 

Parameters

 

None.

 

Return

 

values

 

An

 

integer

 

that

 

represents

 

the

 

type

 

of

 

the

 

attribute.

 

Compare

 

this

 

integer

 

value

 

with

 

the

 

one

 

of

 

the

 

attribute-type

 

constants:

 

BusObjAttrType.BOOLEAN

  

The

 

attribute

 

has

 

the

 

Boolean

 

data

 

type.

 

BusObjAttrType.CIPHERTEXT

  

The

 

attribute

 

has

 

the

 

Cipher

 

Text

 

data

 

type.

 

BusObjAttrType.DATE

  

The

 

attribute

 

has

 

the

 

Date

 

data

 

type.

 

BusObjAttrType.DOUBLE

  

The

 

attribute

 

has

 

the

 

Double

 

data

 

type.

 

BusObjAttrType.FLOAT

  

The

 

attribute

 

has

 

the

 

Float

 

data

 

type.

 

BusObjAttrType.INTEGER

  

The

 

attribute

 

has

 

the

 

Integer

 

data

 

type.

 

BusObjAttrType.INVALID_TYPE

  

The

 

attribute

 

has

 

an

 

invalid

 

data

 

type.

 

BusObjAttrType.LONGTEXT

  

The

 

attribute

 

has

 

the

 

Long

 

Text

 

data

 

type.

 

BusObjAttrType.OBJECT

  

The

 

attribute

 

has

 

the

 

Object

 

data

 

type

 

(it

 

contains

 

another

 

business

 

object).

 

BusObjAttrType.STRING

  

The

 

attribute

 

has

 

the

 

String

 

data

 

type.

See

 

also

 

getAttrTypeName(),

 

setAttrType()

 

getAttrTypeName()

 

Retrieves

 

the

 

name

 

of

 

the

 

attribute’s

 

data

 

type.

   

186

 

Business

 

Object

 

Development

 

Guide



Syntax

 

public

 

String

 

getAttrTypeName();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

that

 

is

 

the

 

type

 

of

 

the

 

child

 

business

 

object

 

(when

 

the

 

attribute

 

contains

 

a

 

child

 

business

 

object).

 

Notes

 

The

 

getAttrTypeName()

 

method

 

retrieves

 

the

 

name

 

of

 

the

 

attribute

 

type

 

for

 

a

 

child

 

business

 

object.

 

When

 

an

 

attribute

 

represents

 

a

 

child

 

business

 

object

 

(or

 

an

 

array

 

of

 

child

 

business

 

objects),

 

its

 

attribute

 

type

 

isBusObjAttrType.OBJECT

 

and

 

its

 

attribute

 

type

 

name

 

is

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

for

 

the

 

child

 

business

 

object.

 

See

 

also

 

getAttrType(),

 

setAttrType()

 

getBOVersion()

 

Retrieves

 

the

 

version

 

number

 

of

 

the

 

business

 

object

 

definition,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

String

 

getBOVersion();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

version

 

number

 

of

 

the

 

child

 

business

 

object

 

definition

 

represented

 

by

 

the

 

attribute.

 

See

 

also

 

setBOVersion()

 

getCardinality()

 

Retrieves

 

the

 

cardinality

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

String

 

getCardinality();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

cardinality

 

of

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

array

 

of

 

child

 

business

 

objects.

 

Compare

 

this

 

string

 

value

 

with

 

the

 

following

 

cardinality

 

constants:

 

BusObjAttr.CARD_SINGLE

 

The

 

attribute

 

has

 

single

 

cardinality.

   

Chapter

 

10.

 

BusObjAttr

 

class

 

187



BusObjAttr.CARD_MULTIPLE

 

The

 

attribute

 

has

 

multiple

 

cardinality.

See

 

also

 

setCardinality()

 

getComments()

 

Retrieves

 

the

 

comments

 

associated

 

with

 

the

 

attribute.

 

Syntax

 

public

 

String

 

getComments();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

comments

 

for

 

an

 

attribute.

 

getDefault()

 

Retrieves

 

the

 

default

 

value

 

for

 

an

 

attribute.

 

Syntax

 

public

 

String

 

getDefault();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

default

 

value

 

for

 

an

 

attribute.

 

See

 

also

 

setDefault()

 

getMaxLength()

 

Retrieves

 

the

 

maximum

 

length

 

for

 

this

 

attribute.

 

Syntax

 

public

 

int

 

getMaxLength();

 

Parameters

 

None.

 

Return

 

values

 

An

 

integer

 

that

 

represents

 

the

 

maximum

 

length

 

of

 

an

 

attribute’s

 

value.

 

See

 

also

 

setMaxLength()

 

getName()

 

Retrieves

 

the

 

name

 

of

 

an

 

attribute.

   

188

 

Business

 

Object

 

Development

 

Guide



Syntax

 

public

 

String

 

getName();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

name

 

of

 

an

 

attribute.

 

See

 

also

 

setName()

 

getRelationType()

 

Retrieves

 

the

 

attribute’s

 

relationship

 

type,

 

which

 

is

 

containment

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

String

 

getRelationType();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

relationship

 

type

 

(″containment″)

 

of

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

See

 

also

 

setRelationType()

 

isForeignKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

foreign

 

key.

 

Syntax

 

public

 

boolean

 

isForeignKey();

 

Parameters

 

None.

 

Return

 

values

 

Returns

 

true,

 

if

 

the

 

attribute

 

is

 

a

 

foreign

 

key

 

or

 

part

 

of

 

the

 

foreign

 

key;

 

otherwise,

 

returns

 

false.

 

See

 

also

 

setIsForeignKey()

 

isKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

primary

 

key.

 

Syntax

 

public

 

boolean

 

isKey();

 

Parameters

 

None.

   

Chapter

 

10.

 

BusObjAttr

 

class

 

189



Return

 

values

 

Returns

 

true,

 

if

 

the

 

attribute

 

is

 

a

 

key

 

or

 

part

 

of

 

the

 

key;

 

otherwise,

 

returns

 

false.

 

See

 

also

 

setIsKey()

 

isRequiredKey()

 

Determines

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

required

 

key.

 

Syntax

 

public

 

boolean

 

isRequiredKey();

 

Parameters

 

None.

 

Return

 

values

 

Returns

 

true,

 

if

 

the

 

attribute

 

is

 

a

 

required

 

key

 

or

 

part

 

of

 

a

 

required

 

key;

 

otherwise,

 

returns

 

false.

 

See

 

also

 

setIsRequiredKey()

 

isRequiredServerBound()

 

Determines

 

whether

 

an

 

attribute

 

is

 

required

 

when

 

the

 

business

 

object

 

represents

 

a

 

triggering

 

event.

 

Syntax

 

public

 

boolean

 

isRequiredServerBound();

 

Parameters

 

None.

 

Return

 

values

 

Returns

 

true,

 

if

 

the

 

attribute

 

is

 

required

 

when

 

the

 

business

 

object

 

represents

 

a

 

collaboration

 

object

 

request;

 

otherwise,

 

returns

 

false.

 

isSimpleType()

 

Determines

 

whether

 

an

 

attribute

 

is

 

of

 

a

 

simple

 

type

 

(such

 

as

 

String,

 

Integer,

 

or

 

Float)

 

or

 

whether

 

it

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

boolean

 

isSimpleType();

 

Parameters

 

None.

 

Return

 

values

 

Returns

 

true,

 

if

 

the

 

attribute

 

is

 

of

 

a

 

simple

 

type;

 

otherwise,

 

returns

 

false.

 

See

 

also

 

getAttrType(),

 

setAttrType()

   

190

 

Business

 

Object

 

Development

 

Guide



setAppText()

 

Sets

 

the

 

application-specific

 

information

 

of

 

an

 

attribute.

 

Syntax

 

public

 

void

 

setAppText(String

 

appInfo);

 

Parameters

 

appInfo

 

Is

 

the

 

application-specific

 

information

 

to

 

assign

 

to

 

the

 

attribute.

Return

 

values

 

None.

 

See

 

also

 

getAppText()

 

setAttrType()

 

Sets

 

the

 

type

 

of

 

the

 

attribute.

 

Syntax

 

public

 

void

 

setAttrType(int

 

type);

 

public

 

void

 

setAttrType(int

 

type,

 

String

 

typeName);

 

Parameters

 

type

 

Is

 

the

 

type

 

of

 

the

 

attribute,

 

represented

 

as

 

one

 

of

 

the

 

attribute-type

 

constants:

 

BusObjAttrType.BOOLEAN

 

BusObjAttrType.CIPHERTEXT

 

BusObjAttrType.DATE

 

BusObjAttrType.DOUBLE

 

BusObjAttrType.FLOAT

 

BusObjAttrType.INTEGER

 

BusObjAttrType.LONGTEXT

 

BusObjAttrType.OBJECT

 

BusObjAttrType.STRING

 

typeName

 

Is

 

the

 

name

 

of

 

the

 

business

 

object

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

array

 

of

 

child

 

business

 

objects;

 

in

 

this

 

case,

 

the

 

type

 

of

 

the

 

attribute

 

is

 

the

 

same

 

as

 

the

 

type

 

of

 

the

 

child

 

business

 

object

 

and

 

the

 

type

 

value

 

is

 

OBJECT.

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidAttrException

  

Thrown

 

if

 

the

 

type

 

is

 

invalid;

 

that

 

is,

 

it

 

is

 

not

 

one

 

of

 

the

 

values

 

represented

 

by

 

the

 

attribute-type

 

constants.

Notes

 

The

 

setAttrType()

 

method

 

provides

 

the

 

following

 

forms:

 

v

   

The

 

first

 

form

 

allows

 

you

 

to

 

set

 

the

 

attribute

 

type

 

for

 

a

 

simple

 

attribute,

 

specified

 

as

 

an

 

attribute-type

 

constant

 

that

 

is

 

defined

 

in

 

the

 

BusObjAttrType

 

class.

   

Chapter

 

10.

 

BusObjAttr

 

class

 

191



v

   

The

 

second

 

form

 

allows

 

you

 

to

 

set

 

the

 

attribute

 

type

 

for

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

This

 

form

 

allows

 

you

 

to

 

specify

 

the

 

attribute

 

type

 

(as

 

the

 

attribute-type

 

constant

 

BusObjAttrType.OBJECT)

 

and

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

for

 

the

 

child

 

business

 

object.

See

 

also

 

getAttrType(),

 

getAttrTypeName()

 

For

 

related

 

reference

 

information,

 

see

 

Chapter

 

11,

 

“BusObjAttrType

 

interface,”

 

on

 

page

 

197

 

and

 

Chapter

 

23,

 

“ODKException

 

class,”

 

on

 

page

 

253.

 

setBOVersion()

 

Sets

 

the

 

version

 

number

 

of

 

the

 

business

 

object

 

definition,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

void

 

setBOVersion(String

 

version);

 

Parameters

 

version

 

Is

 

the

 

version

 

of

 

the

 

business

 

object

 

definition

 

for

 

the

 

child

 

business

 

object

 

or

 

objects

 

that

 

this

 

attribute

 

represents.

Return

 

values

 

None.

 

See

 

also

 

getBOVersion()

 

setCardinality()

 

Sets

 

the

 

cardinality

 

of

 

the

 

attribute,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

void

 

setCardinality(String

 

cardinality);

 

Parameters

 

cardinality

 

Is

 

the

 

cardinality

 

to

 

assign

 

to

 

this

 

attribute.

 

Cardinality

 

is

 

represented

 

by

 

one

 

of

 

the

 

following

 

cardinality

 

constants:

 

BusObjAttr.CARD_SINGLE

 

BusObjAttr.CARD_MULTIPLE

 

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidAttrException

  

Thrown

 

if

 

the

 

cardinality

 

is

 

not

 

a

 

valid;

 

that

 

is,

 

it

 

does

 

not

 

contain

 

a

 

valid

 

cardinality

 

constant.

See

 

also

 

getCardinality()

   

192

 

Business

 

Object

 

Development

 

Guide



setComments()

 

Sets

 

the

 

comments

 

associated

 

with

 

an

 

attribute.

 

Syntax

 

public

 

void

 

setComments(String

 

comment);

 

Parameters

 

comment

 

Is

 

the

 

comment

 

string

 

to

 

provide

 

additional

 

information

 

for

 

the

 

attribute.

Return

 

values

 

None.

 

See

 

also

 

getComments()

 

setDefault()

 

Sets

 

the

 

default

 

value

 

for

 

an

 

attribute.

 

Syntax

 

public

 

void

 

setDefault(String

 

defaultValue);

 

Parameters

 

defaultValue

 

Is

 

the

 

default

 

value

 

to

 

assign

 

to

 

the

 

attribute.

Return

 

values

 

None.

 

See

 

also

 

getDefault()

 

setIsForeignKey()

 

Sets

 

the

 

attribute

 

property

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

foreign

 

key.

 

Syntax

 

public

 

void

 

setIsForeignKey(boolean

 

fKey);

 

Parameters

 

fKey

 

Indicates

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

a

 

foreign

 

key.

Return

 

values

 

None.

 

See

 

also

 

isForeignKey()

 

setIsKey()

 

Sets

 

an

 

attribute

 

property

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

a

 

primary

 

key.

   

Chapter

 

10.

 

BusObjAttr

 

class

 

193



Syntax

 

public

 

void

 

setIsKey(boolean

 

key);

 

Parameters

 

key

 

Indicates

 

whether

 

this

 

attribute

 

is

 

part

 

of

 

a

 

key.

Return

 

values

 

None.

 

See

 

also

 

isKey()

 

setIsRequiredKey()

 

Sets

 

the

 

attribute

 

to

 

a

 

boolean

 

value

 

that

 

indicates

 

whether

 

the

 

attribute

 

is

 

part

 

of

 

the

 

business

 

object’s

 

required

 

key.

 

Syntax

 

public

 

void

 

setIsRequiredKey(boolean

 

isReqd);

 

Parameters

 

isReqd

 

Indicates

 

whether

 

this

 

attribute

 

is

 

a

 

required

 

key.

Return

 

values

 

None.

 

See

 

also

 

isRequiredKey()

 

setMaxLength()

 

Sets

 

the

 

maximum

 

length

 

for

 

an

 

attribute.

 

Syntax

 

public

 

void

 

setMaxLength(int

 

maxLength);

 

Parameters

 

maxLength

 

Is

 

the

 

maximum

 

length

 

to

 

assign

 

to

 

the

 

attribute.

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidAttrException

  

Thrown

 

if

 

the

 

maximum

 

length

 

is

 

maxLength

 

<

 

0

 

or

 

maxLength

 

>

 

2^31-1

See

 

also

 

getMaxLength()

 

setName()

 

Sets

 

the

 

name

 

of

 

an

 

attribute.

   

194

 

Business

 

Object

 

Development

 

Guide



Syntax

 

public

 

void

 

setName(String

 

name);

 

Parameters

 

name

 

Is

 

the

 

name

 

to

 

assign

 

to

 

the

 

attribute.

Return

 

values

 

None.

 

See

 

also

 

getName()

 

setRelationType()

 

Sets

 

the

 

relationship

 

type

 

of

 

an

 

attribute

 

to

 

containment,

 

for

 

an

 

attribute

 

that

 

represents

 

a

 

child

 

business

 

object

 

or

 

an

 

array

 

of

 

child

 

business

 

objects.

 

Syntax

 

public

 

void

 

setRelationType(String

 

relType);

 

Parameters

 

relType

 

Is

 

the

 

relationship

 

type

 

to

 

assign

 

to

 

this

 

attribute.

Return

 

values

 

None.

 

See

 

also

 

getRelationType()

   

Chapter

 

10.

 

BusObjAttr

 

class

 

195



196

 

Business

 

Object

 

Development

 

Guide



Chapter

 

11.

 

BusObjAttrType

 

interface

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

BusObjAttrType

 

class

 

to

 

represent

 

the

 

valid

 

data

 

types

 

for

 

attributes

 

in

 

a

 

business

 

object

 

definition.

 

Any

 

class

 

that

 

implements

 

the

 

BusObjAttrType

 

interface

 

can

 

access

 

its

 

defined

 

constants

 

directly.

 

For

 

example,

 

if

 

the

 

ODKAgentBase2

 

class

 

implements

 

the

 

BusObjAttrType

 

interface,

 

its

 

methods

 

can

 

access

 

the

 

BOOLEAN

 

constant

 

as

 

follows:

 

int

 

bool_type

 

=

 

BOOLEAN;

 

The

 

BusObjAttrType

 

class

 

defines

 

the

 

following:

 

v

   

“Attribute-type

 

constants”

 

v

   

“Static

 

member

 

variable”

Attribute-type

 

constants

 

The

 

BusObjAttrType

 

class

 

defines

 

static

 

member

 

variables

 

to

 

represent

 

attribute-type

 

constants.

 

Table

 

72

 

summarizes

 

these

 

attribute-type

 

constants.

 

All

 

property-type

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

72.

 

Attribute-type

 

constants

 

of

 

the

 

BusObjAttrType

 

class.

 

Attribute-type

 

constant

 

Description

 

BOOLEAN

 

Represents

 

an

 

attribute

 

type

 

of

 

Boolean.

 

CIPHERTEXT

 

Represents

 

an

 

attribute

 

type

 

of

 

CipherText.

 

DATE

 

Represents

 

an

 

attribute

 

type

 

of

 

Date.

 

DOUBLE

 

Represents

 

an

 

attribute

 

type

 

of

 

Double.

 

FLOAT

 

Represents

 

an

 

attribute

 

type

 

of

 

Float.

 

INTEGER

 

Represents

 

an

 

attribute

 

type

 

of

 

Integer.

 

INVALID_TYPE

 

Represents

 

an

 

invalid

 

attribute

 

type.

 

LONGTEXT

 

Represents

 

an

 

attribute

 

type

 

of

 

Long

 

Text.

 

OBJECT

 

Represents

 

an

 

attribute

 

of

 

type

 

of

 

Object.

 

STRING

 

Represents

 

an

 

attribute

 

type

 

of

 

String.

   

Static

 

member

 

variable

 

In

 

addition

 

to

 

the

 

attribute-type

 

constants

 

(which

 

are

 

defined

 

as

 

static

 

member

 

variables),

 

the

 

BusObjAttrType

 

class

 

defines

 

the

 

static

 

member

 

variable

 

in

 

Table

 

73.

  

Table

 

73.

 

Static

 

member

 

variable

 

of

 

the

 

BusObjAttrType

 

class.

 

Static

 

member

 

variable

 

Description

 

AttrTypes

 

A

 

String

 

array

 

that

 

contains

 

the

 

names

 

for

 

the

 

different

 

attribute

 

types.

 

This

 

array

 

can

 

be

 

indexed

 

by

 

the

 

attribute

 

type;

 

for

 

example,

 

the

 

following

 

code

 

retrieves

 

the

 

type

 

name

 

for

 

the

 

Integer

 

attribute

 

type:

 

BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]

   

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

197



198

 

Business

 

Object

 

Development

 

Guide



Chapter

 

12.

 

BusObjDef

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

BusObjDefclass

 

to

 

represent

 

a

 

business

 

object

 

definition

 

that

 

the

 

Object

 

Discovery

 

Agent

 

(ODA)

 

generates.

 

Table

 

74

 

summarizes

 

the

 

methods

 

in

 

the

 

BusObjDef

 

class.

  

Table

 

74.

 

Member

 

methods

 

of

 

the

 

BusObjDef

 

class.

 

Member

 

method

 

Description

 

Page

 

BusObjDef()

 

Creates

 

a

 

business-object-definition

 

object.

 

199

 

addDefaultVerbs()

 

Adds

 

the

 

default

 

verbs

 

(Create,

 

Retrieve,

 

Update,

 

and

 

Delete)

 

to

 

the

 

list

 

of

 

supported

 

verbs.

 

200

 

getAppInfo()

 

Retrieves

 

the

 

application-specific

 

information

 

for

 

the

 

business

 

object

 

definition.

 

200

 

getAttrCount()

 

Retrieves

 

the

 

number

 

of

 

attributes,

 

including

 

ObjectEventId,

 

in

 

the

 

attribute

 

list

 

of

 

the

 

business

 

object

 

definition.

 

201

 

getAttribute()

 

Retrieves

 

the

 

attribute

 

by

 

its

 

name

 

or

 

by

 

its

 

specified

 

position

 

in

 

the

 

business

 

object

 

definition.

 

201

 

getAttributeIndex()

 

Retrieves

 

the

 

ordinal

 

position

 

of

 

the

 

attribute

 

in

 

the

 

business

 

object

 

definition,

 

given

 

its

 

attribute

 

name.

 

202

 

getAttributeList()

 

Retrieves

 

a

 

vector

 

that

 

contains

 

the

 

list

 

of

 

attributes

 

in

 

the

 

business

 

object

 

definition.

 

202

 

getName()

 

Retrieves

 

the

 

name

 

of

 

the

 

business

 

object

 

definition.

 

203

 

getVerb()

 

Retrieves

 

the

 

verb

 

object

 

for

 

the

 

specified

 

verb

 

name.

 

203

 

getVerbCount()

 

Retrieves

 

the

 

number

 

of

 

verbs

 

in

 

the

 

verb

 

list.

 

204

 

getVerbList()

 

Retrieves

 

a

 

vector

 

that

 

contains

 

the

 

list

 

of

 

verbs

 

in

 

the

 

business

 

object

 

definition.

 

204

 

getVersion()

 

Retrieves

 

the

 

version

 

of

 

the

 

business

 

object

 

definition.

 

204

 

insertAttribute()

 

Inserts

 

the

 

specified

 

attribute

 

in

 

the

 

business

 

object’s

 

attribute

 

list.

 

205

 

insertVerb()

 

Inserts

 

the

 

specified

 

verb

 

into

 

the

 

business

 

object’s

 

verb

 

list.

 

205

 

removeAttribute()

 

Removes

 

the

 

attribute

 

at

 

the

 

specified

 

position

 

in

 

the

 

attribute

 

list.

 

206

 

removeVerb()

 

Removes

 

the

 

verb

 

with

 

the

 

specified

 

name

 

in

 

the

 

verb

 

list.

 

207

 

setAppInfo()

 

Sets

 

the

 

application-specific

 

information

 

for

 

the

 

business

 

object

 

definition.

 

207

 

setAttributeList()

 

Sets

 

the

 

list

 

of

 

attributes

 

for

 

the

 

business

 

object

 

definition.

 

208

 

setVerbList()

 

Sets

 

the

 

list

 

of

 

verbs

 

for

 

the

 

business

 

object

 

definition.

 

208

   

BusObjDef()

 

Creates

 

a

 

business-object-definition

 

object.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

199



Syntax

 

public

 

BusObjDef(String

 

name);

 

public

 

BusObjDef(String

 

name,

 

Vector

 

attrList,

 

String[]

 

verbNames,

    

String

 

appSpecInfo);

 

public

 

BusObjDef(String

 

name,

 

Vector

 

attrList,

 

Vector

 

verbList,

    

String

 

appSpecInfo);

 

Parameters

 

appSpecInfo

 

Specifies

 

the

 

business-object-level

 

application-specific

 

information.

 

attrList

 

Specifies

 

a

 

Java

 

Vector

 

obtain

 

that

 

contains

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

name

 

Specifies

 

the

 

name

 

of

 

the

 

business

 

object

 

definition.

 

verbList

 

Specifies

 

a

 

vector

 

of

 

the

 

business

 

object’s

 

verbs.

 

verbNames

 

Specifies

 

a

 

String

 

array

 

of

 

the

 

business

 

object’s

 

verb

 

names.

Return

 

values

 

A

 

newly

 

instantiated

 

BusObjDef

 

object.

 

Exceptions

 

BusObjInvalidDefException

 

Definition

 

BusObjInvalidVerbException

 

Definition

addDefaultVerbs()

 

Adds

 

the

 

default

 

verbs

 

(Create,

 

Retrieve,

 

Update,

 

and

 

Delete)

 

to

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Syntax

 

public

 

void

 

addDefaultVerbs();

 

Parameters

 

None.

 

Return

 

values

 

None.

 

getAppInfo()

 

Retrieves

 

the

 

application-specific

 

information

 

for

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

String

 

getAppInfo();

 

Parameters

 

None.

   

200

 

Business

 

Object

 

Development

 

Guide



Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

business-object-level

 

application-specific

 

information.

 

See

 

also

 

setAppInfo()

 

getAttrCount()

 

Retrieves

 

the

 

number

 

of

 

attributes

 

in

 

the

 

attribute

 

list

 

of

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

int

 

getAttrCount();

 

Parameters

 

None.

 

Return

 

values

 

The

 

number

 

of

 

attributes

 

in

 

the

 

business

 

object

 

definition

 

(including

 

the

 

ObjectEventId

 

attribute).

 

getAttribute()

 

Retrieves

 

the

 

attribute

 

by

 

its

 

name

 

or

 

by

 

its

 

specified

 

position

 

in

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

Syntax

 

public

 

BusObjAttr

 

getAttribute(String

 

attrName);

 

public

 

BusObjAttr

 

getAttribute(int

 

pos);

 

Parameters

 

attrName

 

Is

 

the

 

name

 

of

 

the

 

attribute

 

to

 

retrieve

 

from

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

pos

 

Is

 

an

 

integer

 

that

 

specifies

 

the

 

ordinal

 

position

 

of

 

the

 

attribute

 

in

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

Return

 

values

 

The

 

attribute

 

(BusObjAttr)

 

object

 

for

 

the

 

specified

 

attribute

 

in

 

the

 

business

 

object

 

definition.

 

Exceptions

 

BusObjNoSuchAttrException

 

Thrown

 

if

 

the

 

specified

 

attribute

 

does

 

not

 

exist

 

or

 

the

 

position

 

within

 

the

 

attribute

 

list

 

is

 

not

 

valid.

  

Chapter

 

12.

 

BusObjDef

 

class

 

201



Notes

 

The

 

getAttribute()

 

method

 

retrieves

 

an

 

attribute

 

from

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

It

 

returns

 

this

 

attribute

 

as

 

an

 

attribute

 

object

 

(BusObjAttr).

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjAttr

 

class

 

to

 

obtain

 

information

 

about

 

the

 

attribute.

 

See

 

also

 

getAttributeIndex(),

 

getAttributeList()

 

getAttributeIndex()

 

Retrieves

 

the

 

ordinal

 

position

 

of

 

the

 

attribute

 

in

 

the

 

business

 

object

 

definition,

 

given

 

its

 

attribute

 

name.

 

Syntax

 

public

 

int

 

getAttributeIndex(String

 

attrName);

 

Parameters

 

attrName

 

Is

 

the

 

name

 

of

 

the

 

attribute

 

whose

 

ordinal

 

position

 

is

 

retrieved.

Return

 

values

 

The

 

integer

 

position

 

of

 

the

 

attribute

 

in

 

the

 

attribute

 

list

 

of

 

the

 

business

 

object

 

definition

 

Exceptions

 

BusObjNoSuchAttrException

 

Thrown

 

if

 

the

 

specified

 

attribute

 

does

 

not

 

exist

 

in

 

the

 

business

 

object

 

definition.

See

 

also

 

getAttribute()

 

getAttributeList()

 

Retrieves

 

the

 

list

 

of

 

attributes

 

in

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

Vector

 

getAttributeList();

 

Parameters

 

None.

 

Return

 

values

 

A

 

java.util.Vector

 

object

 

that

 

contains

 

one

 

attribute

 

(BusObjAttr)

 

object

 

for

 

each

 

attribute

 

in

 

the

 

business

 

object

 

definition.

   

202

 

Business

 

Object

 

Development

 

Guide



Notes

 

The

 

getAttributeList()

 

method

 

returns

 

the

 

business

 

object

 

definition’s

 

attribute

 

list

 

as

 

a

 

Java

 

Vector

 

of

 

attribute

 

objects.

 

You

 

can

 

use

 

methods

 

of

 

the

 

java.util.Vector

 

class

 

to

 

retrieve

 

attribute

 

objects

 

from

 

this

 

Vector

 

object.

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjAttr

 

class

 

to

 

obtain

 

information

 

from

 

the

 

attribute

 

object.

 

See

 

also

 

setAttributeList()

 

getName()

 

Retrieves

 

the

 

name

 

of

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

String

 

getName();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

name

 

of

 

the

 

business

 

object

 

definition

 

getVerb()

 

Retrieves

 

the

 

specified

 

verb

 

from

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Syntax

 

public

 

BusObjVerb

 

getVerb(String

 

verb);

 

Parameters

 

verb

 

Is

 

the

 

name

 

of

 

the

 

verb

 

to

 

retrieve

 

from

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

Return

 

values

 

The

 

verb

 

(BusObjVerb)

 

object

 

for

 

the

 

specified

 

verb

 

in

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Exceptions

 

BusObjNoSuchVerbException

 

Thrown

 

if

 

the

 

specified

 

verb

 

does

 

not

 

exist.

Notes

 

The

 

getVerb()

 

method

 

retrieves

 

a

 

verb

 

from

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

It

 

returns

 

this

 

verb

 

as

 

a

 

verb

 

object

 

(BusObjVerb).

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjVerb

 

class

 

to

 

obtain

 

information

 

about

 

the

 

verb.

 

See

 

also

 

getVerbCount(),

 

getVerbList()

   

Chapter

 

12.

 

BusObjDef

 

class

 

203



getVerbCount()

 

Retrieves

 

the

 

number

 

of

 

verbs

 

in

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Syntax

 

public

 

int

 

getVerbCount();

 

Parameters

 

None.

 

Return

 

values

 

The

 

integer

 

number

 

of

 

verbs

 

in

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

See

 

also

 

getVerb()

 

getVerbList()

 

Retrieves

 

the

 

list

 

of

 

verbs

 

in

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

Vector

 

getVerbList();

 

Parameters

 

None.

 

Return

 

values

 

A

 

java.util.Vector

 

object

 

that

 

contains

 

one

 

verb

 

(BusObjVerb)

 

object

 

for

 

each

 

supported

 

verb

 

in

 

the

 

business

 

object

 

definition.

 

Notes

 

The

 

getVerbList()

 

method

 

returns

 

the

 

business

 

object

 

definition’s

 

verb

 

list

 

as

 

a

 

Java

 

Vector

 

of

 

verb

 

objects.

 

You

 

can

 

use

 

methods

 

of

 

the

 

java.util.Vector

 

class

 

to

 

retrieve

 

verb

 

objects

 

from

 

this

 

Vector

 

object.

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjVerb

 

class

 

to

 

obtain

 

information

 

from

 

the

 

verb

 

object.

 

See

 

also

 

setVerbList()

 

getVersion()

 

Retrieves

 

the

 

version

 

of

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

String

 

getVersion();

 

Parameters

 

None.

   

204

 

Business

 

Object

 

Development

 

Guide



Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

version

 

of

 

the

 

business

 

object

 

definition.

 

insertAttribute()

 

Inserts

 

the

 

specified

 

attribute

 

in

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

Syntax

 

public

 

void

 

insertAttribute(BusObjAttr

 

attrObj);

 

public

 

void

 

insertAttribute(BusObjAttr

 

attrObj,

 

int

 

pos);

 

Parameters

 

attrObj

 

Is

 

the

 

attribute

 

object

 

be

 

added

 

to

 

the

 

attribute

 

list

 

of

 

the

 

business

 

object

 

definition.

 

pos

 

Is

 

the

 

ordinal

 

position

 

at

 

which

 

the

 

attribute

 

is

 

to

 

be

 

added

 

to

 

the

 

attribute

 

list.

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidAttrException

 

Thrown

 

if

 

the

 

attribute

 

that

 

an

 

attribute

 

object

 

describes

 

is

 

invalid.

Notes

 

The

 

insertAttribute()

 

method

 

provides

 

the

 

following

 

forms:

 

v

   

The

 

first

 

form

 

specifies

 

the

 

attribute

 

to

 

add

 

by

 

its

 

attribute

 

name.

 

When

 

you

 

use

 

this

 

form,

 

insertAttribute()

 

inserts

 

the

 

specified

 

attribute

 

at

 

the

 

position

 

immediately

 

above

 

the

 

ObjectEventId

 

attribute

 

in

 

the

 

business

 

object’s

 

attribute

 

list.

 

v

   

The

 

second

 

form

 

specifies

 

the

 

attribute

 

to

 

add

 

and

 

the

 

ordinal

 

position

 

within

 

the

 

attribute

 

list

 

at

 

which

 

to

 

add

 

this

 

attribute.

 

When

 

you

 

specify

 

an

 

ordinal

 

position,

 

insertAttribute()

 

inserts

 

the

 

specified

 

attribute

 

at

 

the

 

specified

 

pos

 

position

 

in

 

the

 

business

 

object

 

definition’s

 

attribute

 

list,

 

and

 

moves

 

down

 

by

 

one

 

position

 

every

 

attribute

 

that

 

follows

 

in

 

the

 

list.

Important:

  

If

 

you

 

specify

 

an

 

ordinal

 

position,

 

make

 

sure

 

that

 

the

 

specified

 

position

 

is

 

above

 

the

 

ObjectEventId

 

attribute.

 

See

 

also

 

removeAttribute()

 

insertVerb()

 

Inserts

 

the

 

specified

 

verb

 

into

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Syntax

 

public

 

void

 

insertVerb(BusObjVerb

 

verbObj);

 

public

 

void

 

insertVerb(String

 

verbStrng,

 

String

 

appSpecInfo);

   

Chapter

 

12.

 

BusObjDef

 

class

 

205



Parameters

 

appSpecInfo

 

Is

 

the

 

application-specific

 

information

 

for

 

the

 

verb

 

to

 

be

 

added

 

to

 

the

 

verb

 

list.

 

verbObj

 

Is

 

the

 

verb

 

object

 

to

 

be

 

added

 

to

 

the

 

verb

 

list.

 

verbStrng

 

Is

 

the

 

name

 

of

 

the

 

verb

 

to

 

be

 

added

 

to

 

the

 

verb

 

list.

Exceptions

 

BusObjInvalidVerbException

 

Thrown

 

if

 

the

 

verb

 

that

 

the

 

verb

 

object

 

describes

 

is

 

a

 

duplicate.

Notes

 

The

 

insertVerb()

 

method

 

provides

 

the

 

following

 

forms

 

to

 

insert

 

a

 

verb

 

object

 

into

 

the

 

verb

 

list

 

of

 

the

 

business

 

object

 

definition

 

in

 

either

 

of

 

the

 

following

 

ways:

 

v

   

The

 

first

 

form

 

specifies

 

the

 

verb

 

to

 

add

 

as

 

an

 

initialized

 

verb

 

object

 

(a

 

BusObjVerb

 

instance).

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjVerb

 

class

 

to

 

initialize

 

the

 

verb

 

object.

 

v

   

The

 

second

 

form

 

specifies

 

the

 

verb

 

information,

 

including

 

the

 

name

 

and

 

application-specific

 

information

 

for

 

the

 

verb.

See

 

also

 

removeVerb()

 

removeAttribute()

 

Removes

 

a

 

specified

 

attribute

 

from

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

Syntax

 

public

 

BusObjAttr

 

removeAttribute(int

 

pos);

 

public

 

BusObjAttr

 

removeAttribute(String

 

attrName);

 

Parameters

 

attrName

 

Is

 

the

 

name

 

of

 

attribute

 

to

 

remove

 

from

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

pos

 

Is

 

the

 

ordinal

 

position

 

at

 

which

 

to

 

remove

 

the

 

attribute.

Return

 

values

 

An

 

attribute

 

(BusObjAttr)

 

object

 

that

 

contains

 

the

 

removed

 

attribute.

 

Exceptions

 

BusObjNoSuchAttrException

 

Thrown

 

if

 

the

 

specified

 

attribute

 

does

 

not

 

exist.

 

BusObjInvalidAttrException

 

Thrown

 

if

 

the

 

attribute

 

to

 

be

 

removed

 

is

 

one

 

that

 

cannot

 

be

 

removed,

 

such

 

as

 

the

 

ObjectEventId

 

attribute.

Notes

 

The

 

removeAttribute()

 

method

 

provides

 

the

 

following

 

forms:

   

206

 

Business

 

Object

 

Development

 

Guide



v

   

The

 

first

 

form

 

specifies

 

the

 

attribute

 

to

 

remove

 

by

 

its

 

ordinal

 

position

 

within

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

 

v

   

The

 

second

 

form

 

specifies

 

the

 

attribute

 

to

 

remove

 

by

 

its

 

attribute

 

name

 

and

 

the

 

ordinal

 

position

 

within

 

the

 

attribute

 

list

 

at

 

which

 

to

 

add

 

this

 

attribute.

Important:

  

If

 

you

 

specify

 

an

 

ordinal

 

position,

 

make

 

sure

 

that

 

the

 

specified

 

position

 

is

 

not

 

the

 

ObjectEventId

 

attribute.

 

See

 

also

 

insertAttribute()

 

removeVerb()

 

Removes

 

the

 

specified

 

verb

 

from

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

 

Syntax

 

public

 

BusObjVerb

 

removeVerb(String

 

verb);

 

Parameters

 

verb

 

Is

 

the

 

name

 

of

 

the

 

verb

 

whose

 

verb

 

object

 

is

 

to

 

be

 

removed

 

from

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

Return

 

values

 

A

 

verb

 

(BusObjVerb)

 

object

 

that

 

contains

 

the

 

removed

 

verb.

 

Exceptions

 

BusObjNoSuchVerbException

 

Thrown

 

if

 

the

 

specified

 

verb

 

does

 

not

 

exist.

See

 

also

 

insertVerb()

 

setAppInfo()

 

Sets

 

the

 

application-specific

 

information

 

for

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

void

 

setAppInfo(String

 

appSpecInfo);

 

Parameters

 

appSpecInfo

 

Is

 

the

 

business-object-level

 

application-specific

 

information.

Return

 

values

 

None.

 

See

 

also

 

getAppInfo()

   

Chapter

 

12.

 

BusObjDef

 

class

 

207



setAttributeList()

 

Sets

 

the

 

list

 

of

 

attributes

 

for

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

void

 

setAttributeList(Vector

 

attrList);

 

Parameters

 

attrList

 

Is

 

a

 

java.util.Vector

 

object

 

that

 

contains

 

attribute

 

objects

 

to

 

store

 

in

 

the

 

business

 

object

 

definition’s

 

attribute

 

list.

Exceptions

 

BusObjInvalidAttrException

 

Thrown

 

if

 

an

 

attribute

 

object

 

in

 

attrList

 

contains

 

an

 

attribute

 

that

 

is

 

duplicate

 

or

 

is

 

null.

Notes

 

The

 

setAttributeList()

 

method

 

passes

 

the

 

attrList

 

attribute

 

list

 

as

 

a

 

Java

 

Vector

 

of

 

attribute

 

objects.

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjAttr

 

class

 

to

 

store

 

information

 

in

 

the

 

attribute

 

object.

 

You

 

can

 

use

 

methods

 

of

 

the

 

java.util.Vector

 

class

 

to

 

store

 

attribute

 

objects

 

in

 

this

 

Vector

 

object.

 

See

 

also

 

getAttributeList()

 

setVerbList()

 

Sets

 

the

 

list

 

of

 

verbs

 

for

 

the

 

business

 

object

 

definition.

 

Syntax

 

public

 

void

 

setVerbList(Vector

 

verbList);

 

Parameters

 

verbList

 

Is

 

a

 

java.util.Vector

 

object

 

that

 

contains

 

verb

 

objects

 

to

 

store

 

in

 

the

 

business

 

object

 

definition’s

 

verb

 

list.

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidVerbException

 

Thrown

 

if

 

a

 

verb

 

object

 

in

 

verbList

 

contains

 

a

 

verb

 

that

 

is

 

duplicate

 

or

 

is

 

null.

Notes

 

The

 

setVerbList()

 

method

 

passes

 

the

 

verbList

 

verb

 

list

 

as

 

a

 

Java

 

Vector

 

of

 

verb

 

objects.

 

You

 

can

 

use

 

methods

 

of

 

the

 

BusObjVerb

 

class

 

to

 

store

 

information

 

in

 

the

 

verb

 

object.

 

You

 

can

 

use

 

methods

 

of

 

the

 

java.util.Vector

 

class

 

to

 

store

 

verb

 

objects

 

in

 

this

 

Vector

 

object.

   

208

 

Business

 

Object

 

Development

 

Guide



See

 

also

 

getVerbList()

   

Chapter

 

12.

 

BusObjDef

 

class

 

209



210

 

Business

 

Object

 

Development

 

Guide



Chapter

 

13.

 

BusObjVerb

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

BusObjVerb

 

class

 

to

 

represent

 

the

 

verbs

 

in

 

a

 

business

 

object

 

definition.

 

A

 

BusObjVerb

 

instance

 

represents

 

a

 

verb

 

object.

 

Table

 

75

 

summarizes

 

the

 

methods

 

of

 

the

 

BusObjVerb

 

class.

  

Table

 

75.

 

Member

 

methods

 

of

 

the

 

BusObjVerb

 

class.

 

Member

 

method

 

Description

 

Page

 

BusObjVerb()

 

Creates

 

a

 

business-object-verb

 

object.

 

211

 

clone()

 

Clones

 

a

 

verb

 

object.

 

211

 

getAppInfo()

 

Retrieves

 

the

 

application-specific

 

information

 

of

 

the

 

verb.

 

212

 

getName()

 

Retrieves

 

the

 

name

 

of

 

the

 

verb.

 

212

 

setAppInfo()

 

Sets

 

the

 

application-specific

 

information

 

of

 

the

 

verb.

 

212

 

setName()

 

Sets

 

the

 

name

 

of

 

the

 

verb.

 

213

   

BusObjVerb()

 

Creates

 

a

 

business-object-verb

 

object.

 

Syntax

 

public

 

BusObjVerb(String

 

verb,

 

String

 

appSpecInfo);

 

Parameters

 

appSpecInfo

 

Specifies

 

the

 

application-specific

 

information

 

for

 

the

 

verb.

 

verb

 

Specifies

 

a

 

verb

 

that

 

is

 

supported

 

by

 

the

 

business

 

object

 

definition.

Return

 

values

 

The

 

newly

 

instantiated

 

BusObjVerb

 

object.

 

Exceptions

 

BusObjInvalidVerbException

 

Thrown

 

if

 

the

 

specified

 

verb

 

is

 

not

 

valid.

clone()

 

Clones

 

a

 

verb

 

object.

 

Syntax

 

public

 

Object

 

clone();

 

Parameters

 

None.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

211



Return

 

values

 

None.

 

Notes

 

This

 

clone()

 

method

 

overrides

 

the

 

clone()

 

method

 

in

 

the

 

java.lang.Object

 

class.

 

getAppInfo()

 

Retrieves

 

the

 

application-specific

 

information

 

of

 

the

 

verb.

 

Syntax

 

public

 

String

 

getAppInfo();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

application-specific

 

information

 

of

 

the

 

verb

 

See

 

also

 

setAppInfo()

 

getName()

 

Retrieves

 

the

 

name

 

of

 

the

 

verb.

 

Syntax

 

public

 

String

 

getName();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

name

 

of

 

the

 

verb.

 

See

 

also

 

setName()

 

setAppInfo()

 

Sets

 

the

 

application-specific

 

information

 

of

 

the

 

verb.

 

Syntax

 

public

 

void

 

setAppInfo(String

 

appSpecInfo);

 

Parameters

 

appSpecInfo

 

Is

 

the

 

verb-level

 

application-specific

 

information

 

to

 

store

 

in

 

the

 

verb

 

object.

  

212

 

Business

 

Object

 

Development

 

Guide



Return

 

values

 

None.

 

See

 

also

 

getAppInfo()

 

setName()

 

Sets

 

the

 

name

 

of

 

the

 

verb.

 

Syntax

 

public

 

void

 

setName(String

 

verb);

 

Parameters

 

verb

 

Is

 

the

 

name

 

of

 

the

 

verb

 

to

 

store

 

in

 

the

 

verb

 

object.

Return

 

values

 

None.

 

Exceptions

 

BusObjInvalidVerbException

 

Thrown

 

if

 

the

 

specified

 

verb

 

is

 

not

 

valid.

See

 

also

 

getName()

   

Chapter

 

13.

 

BusObjVerb

 

class

 

213



214

 

Business

 

Object

 

Development

 

Guide



Chapter

 

14.

 

CompleteCondition

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

CompleteCondition

 

class

 

to

 

represent

 

a

 

conditions

 

on

 

the

 

value

 

of

 

an

 

agent

 

property

 

(represented

 

by

 

an

 

AgentProperty

 

object).

 

A

 

condition

 

consists

 

of

 

two

 

kinds

 

of

 

subconditions,

 

input

 

conditions

 

and

 

dependent

 

conditions.

 

An

 

agent

 

property

 

stores

 

all

 

its

 

conditions

 

in

 

its

 

allDependencies

 

member

 

variable.

 

Note:

  

For

 

information

 

on

 

input

 

conditions,

 

see

 

Chapter

 

20,

 

“InputCondition

 

class,”

 

on

 

page

 

241.

 

For

 

information

 

on

 

dependent

 

conditions,

 

see

 

Chapter

 

17,

 

“DependentCondition

 

class,”

 

on

 

page

 

227.

 

The

 

CompleteCondition

 

class

 

defines

 

the

 

following:

 

v

   

“Operator

 

constants”

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

216

Operator

 

constants

 

The

 

CompleteCondition

 

class

 

defines

 

static

 

member

 

variables

 

to

 

represent

 

operator

 

constants.

 

Table

 

76

 

summarizes

 

these

 

operator

 

constants,

 

which

 

represent

 

valid

 

operators

 

to

 

use

 

in

 

conditions.

 

All

 

operator

 

constants

 

are

 

of

 

type

 

String.

  

Table

 

76.

 

Operator

 

constants

 

of

 

the

 

CompleteCondition

 

class.

 

Operator

 

constant

 

Description

 

OP_EQUAL

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Equals

 

(=)

 

operator.

 

OP_EXISTS

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Exists

 

operator.

 

OP_GREATER_THAN

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Greater

 

Than

 

(>)

 

operator.

 

OP_GREATER_THAN_EQUAL

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Greater

 

Than

 

or

 

Equal

 

To

 

(>=)

 

operator.

 

OP_LESS_THAN

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Less

 

Than

 

(<)

 

operator.

 

OP_LESS_THAN_EQUAL

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Less

 

Than

 

or

 

Equal

 

To

 

(<=)

 

operator.

 

OP_NOT_EQUAL

 

Contains

 

a

 

String

 

that

 

represents

 

the

 

Not

 

Equal

 

(!=)

 

operator.

   

Member

 

variables

 

Table

 

77

 

summarizes

 

the

 

member

 

variables

 

in

 

the

 

CompleteCondition

 

class.

  

Table

 

77.

 

Member

 

variables

 

of

 

the

 

CompleteCondition

 

class.

 

Member

 

variable

 

Description

 

Page

 

allDependentConditions

 

Specifies

 

all

 

dependent

 

conditions

 

for

 

the

 

property.

 

216

 

allInputConditions

 

Specifies

 

all

 

input

 

conditions

 

for

 

the

 

property.

 

216

   

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

215



allDependentConditions

 

Specifies

 

an

 

array

 

of

 

all

 

dependent

 

conditions

 

in

 

the

 

current

 

complete

 

condition.

 

Type

 

public

 

DependentCondition[]

 

allDependentConditions

 

Notes

 

The

 

allDependentConditions

 

member

 

variable

 

contains

 

a

 

list

 

of

 

dependent

 

conditions

 

in

 

the

 

dependent-condition

 

array,

 

which

 

is

 

an

 

array

 

of

 

DependentCondition

 

objects.

 

Each

 

DependentCondition

 

object

 

contains

 

one

 

dependent

 

condition,

 

which

 

restricts

 

the

 

value

 

of

 

the

 

dependent

 

property

 

when

 

the

 

associated

 

input

 

conditions

 

evaluate

 

to

 

true.

 

For

 

more

 

information,

 

see

 

“Setting

 

conditions

 

on

 

the

 

property

 

value”

 

on

 

page

 

146.

 

allInputConditions

 

Specifies

 

an

 

array

 

of

 

all

 

input

 

conditions

 

in

 

the

 

current

 

complete

 

condition.

 

Type

 

public

 

InputCondition[]

 

allInputConditions

 

Notes

 

The

 

allInputConditions

 

member

 

variable

 

contains

 

a

 

list

 

of

 

conditions

 

in

 

the

 

input-condition

 

array,

 

which

 

is

 

an

 

array

 

of

 

InputCondition

 

objects.

 

Each

 

InputCondition

 

object

 

contains

 

one

 

input

 

condition,

 

which

 

specifies

 

a

 

comparison

 

to

 

make

 

on

 

the

 

current

 

agent

 

property’s

 

value.

 

For

 

more

 

information,

 

see

 

“Setting

 

conditions

 

on

 

the

 

property

 

value”

 

on

 

page

 

146.

 

Methods

 

Table

 

78

 

summarizes

 

the

 

methods

 

in

 

the

 

CompleteCondition

 

class.

  

Table

 

78.

 

Member

 

methods

 

of

 

the

 

CompleteCondition

 

class.

 

Member

 

method

 

Description

 

Page

 

CompleteCondition()

 

Creates

 

a

 

complete-condition

 

object.

 

216

 

copy()

 

Copies

 

the

 

current

 

complete

 

condition

 

into

 

the

 

specified

 

complete-condition

 

object.

 

217

   

CompleteCondition()

 

Creates

 

a

 

complete-condition

 

object.

 

Syntax

 

public

 

CompleteCondition();

 

public

 

CompleteCondition(InputCondition[]

 

allInputConds,

    

DependentCondition[]

 

allDepConds);

 

Parameters

 

allDepConds

 

Specifies

 

an

 

array

 

of

 

dependent

 

conditions;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

allDependentConditions

 

member

 

variable

 

(“allDependentConditions”).

 

allInputConds

 

Specifies

 

an

 

array

 

of

 

input

 

conditions;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

allInputConditions

 

member

 

variable

 

(“allInputConditions”).

  

216

 

Business

 

Object

 

Development

 

Guide



Return

 

values

 

A

 

newly

 

instantiated

 

CompleteCondition

 

object.

 

copy()

 

Copies

 

the

 

current

 

complete

 

condition

 

into

 

a

 

specified

 

complete-condition

 

object.

 

Syntax

 

public

 

void

 

copy(CompleteCondition

 

completeCond);

 

Parameters

 

completeCond

 

Specifies

 

the

 

name

 

of

 

the

 

complete-condition

 

object

 

into

 

which

 

the

 

current

 

complete

 

condition

 

is

 

copied.

Return

 

values

 

None.

   

Chapter

 

14.

 

CompleteCondition

 

class

 

217



218

 

Business

 

Object

 

Development

 

Guide



Chapter

 

15.

 

ContentMetaData

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

ContentMetaData

 

class

 

to

 

contain

 

the

 

metadata

 

for

 

the

 

generated

 

content

 

of

 

the

 

Object

 

Discovery

 

Agent

 

(ODA).

 

Member

 

variables

 

of

 

this

 

class

 

represent

 

the

 

ODA’s

 

content

 

metadata.

 

When

 

the

 

ODA

 

generates

 

its

 

content,

 

it

 

must

 

return

 

a

 

content-metadata

 

object

 

to

 

describe

 

the

 

generated

 

content.

 

The

 

method

 

that

 

returns

 

the

 

content

 

metadata

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

supports

 

an

 

on-request

 

protocol

 

for

 

a

 

particular

 

content

 

type

 

(business

 

object

 

definitions

 

or

 

files),

 

the

 

appropriate

 

content-generation

 

method

 

returns

 

the

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

v

   

If

 

the

 

ODA

 

supports

 

a

 

callback

 

protocol

 

(for

 

file

 

content

 

only),

 

a

 

user-defined

 

method

 

returns

 

the

 

content

 

metadata

 

to

 

Business

 

Object

 

Wizard

 

through

 

the

 

ODKUtility.contentComplete()

 

method.

Note:

  

For

 

more

 

information,

 

see

 

“Providing

 

generated

 

content”

 

on

 

page

 

94.

 

Business

 

Object

 

Designer

 

uses

 

the

 

content-metadata

 

object

 

to

 

obtain

 

information

 

about

 

the

 

generated

 

content

 

for

 

each

 

of

 

the

 

content

 

types

 

that

 

the

 

ODA

 

supports.

 

To

 

determine

 

the

 

supported

 

generation

 

protocols,

 

Business

 

Object

 

Designer

 

calls

 

the

 

ODA’s

 

getContentProtocol()

 

method

 

(from

 

its

 

IGeneratesContent

 

class).

 

The

 

ContentMetaData

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

220

Member

 

variables

 

Table

 

79

 

summarizes

 

the

 

member

 

variables

 

of

 

the

 

ContentMetaData

 

class.

  

Table

 

79.

 

Member

 

variables

 

of

 

the

 

ContentMetaData

 

class.

 

Member

 

variable

 

Description

 

Page

 

contentType

 

Indicates

 

the

 

content

 

type

 

for

 

the

 

generated

 

content.

 

219

 

count

 

Specifies

 

the

 

total

 

number

 

of

 

content

 

elements

 

in

 

the

 

requested

 

content.

 

220

 

length

 

Specifies

 

the

 

total

 

length,

 

in

 

bytes,

 

of

 

the

 

requested

 

content.

 

220

   

contentType

 

Indicates

 

the

 

content

 

type

 

of

 

the

 

generated

 

content.

 

Type

 

public

 

ContentType

 

contentType

 

Notes

 

The

 

contentType

 

member

 

variable

 

is

 

a

 

ContentType

 

object

 

that

 

indicates

 

the

 

content

 

type

 

of

 

the

 

generated

 

content

 

that

 

this

 

content

 

metadata

 

describes.

 

It

 

must

 

be

 

set

 

to

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

219



the

 

content

 

type

 

appropriate

 

for

 

the

 

generated

 

content,

 

as

 

Table

 

80

 

shows.

  

Table

 

80.

 

Content-type

 

values

 

Content

 

type

 

Value

 

of

 

contentType

 

member

 

variable

 

Business

 

object

 

definitions

 

ContentType.BusinessObject

 

Binary

 

files

 

ContentType.BinaryFile

   

For

 

example,

 

when

 

an

 

ODA

 

completes

 

content

 

generation,

 

it

 

must

 

return

 

a

 

content-metadata

 

object

 

whose

 

contentType

 

member

 

variable

 

corresponds

 

to

 

the

 

type

 

of

 

content

 

generated.

 

count

 

Specifies

 

the

 

total

 

number

 

of

 

content

 

elements

 

in

 

the

 

requested

 

content.

 

This

 

count

 

value

 

must

 

be

 

greater

 

than

 

zero

 

(0).

 

Type

 

public

 

long

 

count

 

length

 

Specifies

 

the

 

total

 

size

 

of

 

the

 

requested

 

content,

 

in

 

bytes.

 

If

 

the

 

content’s

 

length

 

is

 

unknown,

 

assign

 

a

 

length

 

of

 

zero

 

(0).

   

Important

 

Business

 

Object

 

Wizard

 

does

 

not

 

currently

 

use

 

the

 

length

 

member

 

variable.

 

Therefore,

 

this

 

member

 

variable

 

should

 

be

 

initialized

 

to

 

a

 

“null”

 

value,

 

such

 

as

 

zero

 

(0)

 

or

 

-1.

Type

 

public

 

long

 

length

 

Methods

 

Table

 

81

 

summarizes

 

the

 

methods

 

of

 

the

 

ContentMetaData

 

class.

  

Table

 

81.

 

Member

 

methods

 

of

 

the

 

ContentMetaData

 

class

 

Member

 

method

 

Description

 

Page

 

ContentMetaData()

 

Creates

 

a

 

content-metadata

 

object.

 

221

 

badContent()

 

Returns

 

a

 

content-metadata

 

object

 

that

 

indicates

 

the

 

ODA

 

is

 

unable

 

to

 

generate

 

the

 

specified

 

content

 

type.

 

221

 

contentNotReady()

 

Returns

 

a

 

content-metadata

 

object

 

that

 

indicates

 

the

 

ODA

 

is

 

not

 

yet

 

finished

 

with

 

the

 

content

 

generation.

 

221

 

contentUnavailable()

 

Returns

 

a

 

content-metadata

 

object

 

that

 

indicates

 

the

 

ODA

 

is

 

not

 

generating

 

the

 

specified

 

content,

 

even

 

though

 

it

 

implements

 

the

 

corresponding

 

interface.

 

222

    

220

 

Business

 

Object

 

Development

 

Guide



ContentMetaData()

 

Creates

 

a

 

content-metadata

 

object.

 

Syntax

 

public

 

ContentMetaData(ContentType

 

contentType,

 

long

 

length,

 

long

 

count);

 

Parameters

 

contentType

 

Is

 

a

 

ContentType

 

object

 

that

 

indicates

 

the

 

content

 

type

 

of

 

the

 

generated

 

content

 

that

 

the

 

content-metadata

 

object

 

describes;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

contentType

 

member

 

variable

 

of

 

the

 

content-metadata

 

object

 

(“contentType”

 

on

 

page

 

219).

 

count

 

Specifies

 

number

 

of

 

content

 

elements

 

in

 

the

 

requested

 

content;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

count

 

member

 

variable

 

in

 

the

 

content-metadata

 

object

 

(“count”

 

on

 

page

 

220).

 

length

 

Specifies

 

the

 

total

 

size

 

of

 

the

 

requested

 

content,

 

in

 

bytes;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

length

 

member

 

variable

 

in

 

the

 

content-metadata

 

object

 

(“length”

 

on

 

page

 

220).

 

Business

 

Object

 

Wizard

 

does

 

not

 

currently

 

use

 

the

 

length

 

member

 

variable.

Return

 

values

 

A

 

newly

 

instantiated

 

ContentMetaData

 

object.

 

badContent()

 

Notifies

 

Business

 

Object

 

Wizard

 

that

 

the

 

content

 

that

 

the

 

ODA

 

has

 

generated

 

is

 

incomplete

 

or

 

in

 

some

 

other

 

way

 

has

 

an

 

error.

 

Syntax

 

public

 

static

 

ContentMetaData

 

badContent(ContentType

 

contentType);

 

Parameters

 

contentType

 

Is

 

the

 

ContentType

 

object

 

that

 

identifies

 

the

 

content

 

type

 

of

 

the

 

bad

 

generated

 

content.

Return

 

values

 

A

 

ContentMetaData

 

object

 

that

 

describes

 

the

 

unsuccessfully

 

generated

 

content.

 

contentNotReady()

 

Notifies

 

Business

 

Object

 

Wizard

 

that

 

the

 

ODA

 

is

 

not

 

yet

 

finished

 

generating

 

the

 

specified

 

content.

 

Syntax

 

public

 

static

 

ContentMetaData

 

contentNotReady(ContentType

 

contentType);

 

Parameters

 

contentType

 

Is

 

the

 

ContentType

 

object

 

that

 

identifies

 

the

 

content

 

type

 

of

 

the

 

incomplete

 

generated

 

content.

Return

 

values

 

A

 

ContentMetaData

 

object

 

that

 

describes

 

the

 

incompletely

 

generated

 

content.

   

Chapter

 

15.

 

ContentMetaData

 

class

 

221



contentUnavailable()

 

Notifies

 

Business

 

Object

 

Wizard

 

that

 

the

 

ODA

 

does

 

not

 

support

 

generation

 

of

 

the

 

specified

 

content,

 

even

 

though

 

it

 

implements

 

the

 

corresponding

 

interface.

 

Syntax

 

public

 

static

 

ContentMetaData

 

contentUnavailable(ContentType

 

contentType);

 

Parameters

 

contentType

 

Is

 

the

 

ContentType

 

object

 

that

 

identifies

 

the

 

content

 

type

 

of

 

the

 

unavailable

 

generated

 

content.

Return

 

values

 

A

 

ContentMetaData

 

object

 

that

 

describes

 

the

 

unavailable

 

generated

 

content.

 

Notes

 

The

 

contentUnavailable()

 

method

 

indicates

 

that

 

the

 

ODA

 

does

 

not

 

generate

 

content

 

of

 

the

 

contentType

 

content

 

type.

 

For

 

example,

 

if

 

an

 

ODA

 

supports

 

only

 

a

 

callback

 

content

 

protocol

 

for

 

a

 

particular

 

content

 

type,

 

Business

 

Object

 

Wizard

 

never

 

calls

 

its

 

content-generation

 

method

 

(generateBoDefs()

 

for

 

business-object-definition

 

content

 

or

 

generateBinFiles()

 

for

 

binary-file

 

content).

 

Therefore,

 

the

 

content-generation

 

method

 

can

 

call

 

contentUnavailable()

 

as

 

its

 

return

 

value

 

to

 

Business

 

Object

 

Wizard.

   

222

 

Business

 

Object

 

Development

 

Guide



Chapter

 

16.

 

ContentType

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

ContentType

 

class

 

to

 

represent

 

the

 

valid

 

content

 

types

 

that

 

an

 

Object

 

Discovery

 

Agent

 

(ODA)

 

can

 

generate.

 

The

 

ContentType

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

224

Member

 

variables

 

Table

 

82

 

summarizes

 

the

 

member

 

variables

 

of

 

the

 

ContentType

 

class.

  

Table

 

82.

 

Member

 

variables

 

of

 

the

 

ContentType

 

class.

 

Member

 

variable

 

Description

 

Page

 

BinaryFile

 

Indicates

 

that

 

the

 

ODA

 

generates

 

binary

 

files

 

as

 

its

 

content.

 

223

 

BusinessObject

 

Indicates

 

that

 

the

 

ODA

 

generates

 

business

 

object

 

definitions

 

as

 

its

 

content.

 

223

   

BinaryFile

 

Indicates

 

that

 

the

 

ODA

 

generates

 

binary

 

files

 

as

 

its

 

content.

 

Type

 

public

 

static

 

final

 

ContentType

 

BinaryFile

 

Notes

 

The

 

contentType

 

member

 

variable

 

indicates

 

that

 

the

 

ODA

 

supports

 

generation

 

of

 

binary

 

files

 

as

 

content.

 

Therefore,

 

the

 

ODA

 

implements

 

the

 

IGeneratesBinFiles

 

interface.

 

File

 

content

 

can

 

be

 

generated

 

using

 

either

 

of

 

the

 

content

 

protocols:

 

v

   

The

 

on-request

 

content

 

protocol

 

requires

 

that

 

the

 

ODA

 

implement

 

the

 

generateBinFiles()

 

method

 

to

 

handle

 

generation

 

of

 

the

 

files.

 

v

   

The

 

callback

 

content

 

protocol

 

requires

 

that

 

the

 

ODA

 

implement

 

some

 

user-defined

 

method

 

to

 

handle

 

generation

 

of

 

the

 

files.

For

 

more

 

information,

 

see

 

“Generating

 

binary

 

files

 

as

 

content”

 

on

 

page

 

133.

 

BusinessObject

 

Indicates

 

that

 

the

 

ODA

 

generates

 

business

 

object

 

definitions

 

as

 

its

 

content.

 

Type

 

public

 

static

 

final

 

ContentType

 

BusinessObject

 

Notes

 

The

 

contentType

 

member

 

variable

 

indicates

 

that

 

the

 

ODA

 

supports

 

generation

 

of

 

business

 

object

 

definitions

 

as

 

content.

 

Therefore,

 

the

 

ODA

 

implements

 

the

 

IGeneratesBoDefs

 

interface.

 

Business-object-definition

 

content

 

must

 

be

 

generated

 

using

 

the

 

on-request

 

content

 

protocol,

 

which

 

requires

 

that

 

the

 

ODA

 

implement

 

the

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

223



generateBoDefs()

 

method

 

to

 

handle

 

generation

 

of

 

the

 

business

 

object

 

definitions.

 

For

 

more

 

information,

 

see

 

“Generating

 

business

 

object

 

definitions

 

as

 

content”

 

on

 

page

 

110.

 

Methods

 

Table

 

83

 

summarizes

 

the

 

methods

 

of

 

the

 

ContentType

 

class.

  

Table

 

83.

 

Member

 

methods

 

of

 

the

 

ContentType

 

class

 

Member

 

method

 

Description

 

Page

 

ContentType()

 

Creates

 

a

 

content-type

 

object.

 

224

 

equals()

 

Compares

 

two

 

content-type

 

objects.

 

224

 

from_int()

 

Generates

 

a

 

content-type

 

object

 

for

 

a

 

specified

 

ordinal

 

value.

 

225

 

toString()

 

Returns

 

a

 

literal

 

representation

 

of

 

the

 

current

 

content-type

 

object.

 

225

 

value()

 

Returns

 

an

 

ordinal

 

value

 

for

 

the

 

current

 

content

 

type.

 

225

 

xmlObject()

 

Generates

 

an

 

XML

 

object

 

that

 

represents

 

the

 

current

 

content-type

 

object.

 

225

   

ContentType()

 

Creates

 

a

 

content-type

 

object.

 

Syntax

 

public

 

ContentType(int

 

contTypeOrdValue);

 

Parameters

 

contTypeOrdValue

 

Is

 

the

 

ordinal

 

value

 

that

 

represents

 

the

 

content

 

type.

Return

 

values

 

A

 

newly

 

instantiated

 

ContentType

 

object.

 

equals()

 

Compares

 

two

 

content-type

 

objects.

 

Syntax

 

public

 

boolean

 

equals(Object

 

contentTypeObj);

 

Parameters

 

contentTypeObj

 

Is

 

a

 

reference

 

to

 

the

 

ContentType

 

object

 

to

 

compare

 

with

 

the

 

current

 

ContentType

 

object.

Return

 

values

 

A

 

boolean

 

value

 

that

 

indicates

 

whether

 

the

 

two

 

content-type

 

objects

 

are

 

equal.

 

Notes

 

The

 

equals()

 

method

 

overrides

 

the

 

equals()

 

method

 

in

 

the

 

java.lang.Object

 

class.

   

224

 

Business

 

Object

 

Development

 

Guide



from_int()

 

Generates

 

a

 

content-type

 

object

 

for

 

the

 

specified

 

ordinal

 

value.

 

Syntax

 

public

 

static

 

ContentMetaData

 

from_int(int

 

contTypeOrdValue);

 

Parameters

 

contTypeOrdValue

 

Is

 

the

 

ordinal

 

value

 

that

 

represents

 

the

 

current

 

content

 

type.

Return

 

values

 

A

 

ContentMetaData

 

object

 

that

 

represents

 

the

 

content

 

type

 

of

 

the

 

specified

 

ordinal

 

value.

 

See

 

also

 

value()

 

toString()

 

Returns

 

a

 

literal

 

representation

 

of

 

the

 

current

 

content-type

 

object.

 

Syntax

 

public

 

String

 

toString();

 

Parameters

 

None.

 

Return

 

values

 

A

 

String

 

object

 

that

 

contains

 

the

 

literal

 

representation

 

of

 

the

 

current

 

content-type

 

object.

 

Notes

 

The

 

toString()

 

method

 

overrides

 

the

 

toString()

 

method

 

in

 

the

 

java.lang.Object

 

class.

 

value()

 

Returns

 

an

 

ordinal

 

value

 

for

 

the

 

current

 

content

 

type.

 

Syntax

 

public

 

int

 

value();

 

Parameters

 

None.

 

Return

 

values

 

An

 

integer

 

ordinal

 

value

 

that

 

represents

 

the

 

current

 

content

 

type.

 

See

 

also

 

from_int()

 

xmlObject()

 

Generates

 

an

 

XML

 

object

 

that

 

represents

 

the

 

current

 

content-type

 

object.

 

Syntax

 

public

 

XMLObject

 

xmlObject();

   

Chapter

 

16.

 

ContentType

 

class

 

225



Parameters

 

None.

 

Return

 

values

 

An

 

com.crossworlds.ODK.XMLObject

 

object

 

that

 

represents

 

the

 

current

 

content-type

 

object.

   

226

 

Business

 

Object

 

Development

 

Guide



Chapter

 

17.

 

DependentCondition

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

uses

 

the

 

DependentCondition

 

class

 

to

 

represent

 

dependent

 

conditions,

 

which

 

define

 

conditions

 

that

 

restrict

 

the

 

value

 

of

 

a

 

dependent

 

agent

 

property.

 

When

 

the

 

associated

 

input

 

condition

 

evaluates

 

to

 

true,

 

the

 

dependent

 

condition

 

is

 

applied

 

to

 

the

 

dependent

 

property.

 

Dependent

 

conditions

 

and

 

their

 

associated

 

input

 

condition

 

(or

 

conditions)

 

are

 

stored

 

in

 

a

 

complete-condition

 

(CompleteCondition)

 

object.

 

Note:

  

For

 

information

 

on

 

complete

 

conditions,

 

see

 

Chapter

 

14,

 

“CompleteCondition

 

class,”

 

on

 

page

 

215.

 

The

 

DependentCondition

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

229

Member

 

variables

 

Table

 

84

 

summarizes

 

the

 

member

 

variables

 

in

 

the

 

DependentCondition

 

class.

  

Table

 

84.

 

Member

 

variables

 

of

 

the

 

DependentCondition

 

class.

 

Member

 

variable

 

Description

 

Page

 

isDynamic

 

Specifies

 

whether

 

Business

 

Object

 

Wizard

 

should

 

check

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

before

 

it

 

makes

 

the

 

dependent

 

condition’s

 

comparison

 

227

 

operatorType

 

Specifies

 

the

 

operator

 

type

 

for

 

the

 

dependent

 

condition.

 

227

 

propertyName

 

Specifies

 

the

 

name

 

of

 

the

 

dependent

 

property

 

to

 

be

 

displayed.

 

228

 

specificValue

 

Specifies

 

the

 

value

 

to

 

compare

 

with

 

the

 

dependent

 

property’s

 

value.

 

228

 

typeOfSpecificValue

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

dependent

 

condition’s

 

specific

 

value.

 

228

   

isDynamic

 

Specifies

 

whether

 

Business

 

Object

 

Wizard

 

should

 

check

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

before

 

making

 

the

 

dependent

 

condition’s

 

comparison.

 

Type

 

public

 

boolean

 

isDynamic

 

Notes

 

When

 

the

 

isDynamic

 

member

 

variable

 

is

 

true,

 

Business

 

Object

 

Wizard

 

obtains

 

the

 

value

 

of

 

the

 

property

 

that

 

the

 

specificValue

 

member

 

variable

 

specifies

 

before

 

it

 

performs

 

the

 

comparison

 

with

 

the

 

dependent

 

property’s

 

value.

 

If

 

specificValue

 

contains

 

a

 

constant,

 

isDynamic

 

should

 

be

 

set

 

to

 

false.

 

operatorType

 

Specifies

 

the

 

operator

 

type

 

for

 

the

 

dependent

 

condition.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

227



Type

 

public

 

String

 

operatorType

 

Notes

 

The

 

operatorType

 

specifies

 

the

 

kind

 

of

 

comparison

 

that

 

Business

 

Object

 

Wizard

 

makes

 

between

 

the

 

value

 

of

 

the

 

dependent

 

property

 

(which

 

the

 

propertyName

 

member

 

variable

 

specifies)

 

and

 

the

 

specificValue.

 

Valid

 

values

 

for

 

the

 

operatorType

 

variable

 

are

 

the

 

operator

 

constants,

 

which

 

are

 

defined

 

in

 

the

 

CompleteCondition

 

class.

 

For

 

more

 

information,

 

see

 

Table

 

76

 

on

 

page

 

215.

 

propertyName

 

Specifies

 

the

 

name

 

of

 

the

 

dependent

 

property.

 

Type

 

public

 

String

 

propertyName

 

Notes

 

The

 

propertyName

 

member

 

variable

 

contains

 

the

 

name

 

of

 

the

 

dependent

 

property.

 

It

 

is

 

the

 

value

 

of

 

the

 

dependent

 

property

 

that

 

the

 

dependent

 

condition

 

restricts

 

(when

 

the

 

associated

 

input

 

conditions

 

evaluate

 

to

 

true).

 

specificValue

 

Specifies

 

the

 

value

 

to

 

compare

 

with

 

the

 

dependent

 

property’s

 

value.

 

Type

 

public

 

String

 

specificValue

 

Notes

 

The

 

specificValue

 

holds

 

the

 

dependent

 

condition’s

 

value,

 

which

 

Business

 

Object

 

Wizard

 

compares

 

with

 

the

 

value

 

of

 

the

 

dependent

 

property

 

(which

 

the

 

propertyName

 

member

 

variable

 

specifies).

 

The

 

kind

 

of

 

comparison

 

is

 

determined

 

by

 

the

 

operatorType

 

variable.

 

The

 

specific

 

value

 

can

 

be

 

either

 

of

 

the

 

following:

 

v

   

A

 

constant

 

(of

 

the

 

same

 

type

 

as

 

the

 

dependent

 

property)

 

For

 

example,

 

if

 

a

 

dependent

 

condition

 

specifies

 

the

 

Less

 

Than

 

operator

 

(CompleteCondition.OP_LESS_THAN)

 

as

 

its

 

operatorType

 

and

 

specifies

 

a

 

value

 

of

 

5

 

as

 

its

 

specificValue,

 

the

 

dependent

 

property’s

 

value

 

must

 

be

 

less

 

than

 

5

 

when

 

the

 

associated

 

input

 

conditions

 

evaluate

 

to

 

true.

 

v

   

The

 

name

 

of

 

another

 

agent

 

property

 

For

 

example,

 

if

 

a

 

dependent

 

condition

 

specifies

 

the

 

Greater

 

Than

 

operator

 

(CompleteCondition.OP_GREATER_THAN)

 

as

 

its

 

operatorType

 

and

 

specifies

 

the

 

name

 

of

 

the

 

“Property1“

 

property

 

as

 

its

 

specificValue,

 

the

 

dependent

 

property’s

 

value

 

must

 

be

 

greater

 

than

 

the

 

value

 

of

 

Property1

 

agent

 

property

 

when

 

the

 

associated

 

input

 

conditions

 

evaluate

 

to

 

true.

The

 

specificValue

 

variable

 

is

 

declared

 

of

 

type

 

String

 

so

 

that

 

it

 

can

 

hold

 

any

 

kind

 

of

 

value.

 

However,

 

to

 

make

 

comparisons

 

properly,

 

Business

 

Object

 

Wizard

 

needs

 

to

 

know

 

the

 

actual

 

data

 

type

 

of

 

the

 

specific

 

value,

 

which

 

the

 

typeOfSpecificValue

 

member

 

variable

 

contains.

 

typeOfSpecificValue

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

dependent

 

condition’s

 

specific

 

value.

 

Type

 

public

 

int

 

typeOfSpecificValue

   

228

 

Business

 

Object

 

Development

 

Guide



Notes

 

The

 

typeOfSpecificValue

 

holds

 

the

 

data

 

type

 

for

 

the

 

dependent

 

condition’s

 

specific

 

value.

 

The

 

specificValue

 

variable

 

is

 

declared

 

of

 

type

 

String

 

so

 

that

 

it

 

can

 

hold

 

any

 

kind

 

of

 

value.

 

However,

 

to

 

make

 

comparisons

 

properly,

 

Business

 

Object

 

Wizard

 

needs

 

to

 

know

 

the

 

actual

 

data

 

type

 

of

 

the

 

specific

 

value.

 

Valid

 

values

 

for

 

the

 

typeOfSpecificValue

 

variable

 

are

 

the

 

property-type

 

constants,

 

which

 

are

 

defined

 

in

 

the

 

AgentProperty

 

class.

 

For

 

more

 

information,

 

see

 

Table

 

67

 

on

 

page

 

173.

 

For

 

example,

 

if

 

the

 

dependent

 

condition’s

 

specific

 

value

 

is

 

an

 

integer

 

constant

 

of

 

5:

 

v

   

The

 

specificValue

 

variable

 

holds

 

the

 

string

 

“5”.

 

v

   

The

 

typeOfSpecificValue

 

variable

 

holds

 

the

 

AgentProperty.TYPE_INTEGER

 

property-type

 

constant.

Methods

 

Table

 

85

 

summarizes

 

the

 

methods

 

in

 

the

 

DependentCondition

 

class.

  

Table

 

85.

 

Member

 

methods

 

of

 

the

 

DependentCondition

 

class.

 

Member

 

Method

 

Description

 

Page

 

DependentCondition()

 

Creates

 

a

 

dependent-condition

 

object.

 

229

 

copy()

 

Copies

 

the

 

current

 

dependent

 

condition

 

into

 

the

 

specified

 

DependentCondition

 

object.

 

230

   

DependentCondition()

 

Creates

 

a

 

dependent-condition

 

object.

 

Syntax

 

public

 

DependentCondition();

 

public

 

DependentCondition(String

 

name,

 

String

 

op,

    

boolean

 

isDyn,

 

int

 

type,

 

String

 

specificVal);

 

Parameters

 

isDyn

 

Indicates

 

whether

 

to

 

obtain

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

dynamically;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isDynamic

 

member

 

variable

 

(“isDynamic”

 

on

 

page

 

227).

 

name

 

is

 

the

 

name

 

of

 

the

 

dependent

 

property;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

propertyName

 

member

 

variable

 

(“propertyName”

 

on

 

page

 

228)

 

op

 

Is

 

the

 

operator

 

that

 

specifies

 

the

 

kind

 

of

 

comparison

 

to

 

make;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

operatorType

 

member

 

variable

 

(“operatorType”

 

on

 

page

 

227).

 

specificVal

 

Specifies

 

the

 

specific

 

value

 

of

 

the

 

dependent

 

condition;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

specificValue

 

member

 

variable

 

(“specificValue”

 

on

 

page

 

228).

 

type

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

specific

 

value;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

typeOfSpecificValue

 

member

 

variable

 

(“typeOfSpecificValue”

 

on

 

page

 

228).

Return

 

values

 

A

 

newly

 

instantiated

 

DependentCondition

 

object.

   

Chapter

 

17.

 

DependentCondition

 

class

 

229



copy()

 

Copies

 

the

 

current

 

dependent

 

condition

 

into

 

a

 

specified

 

dependent-condition

 

object.

 

Syntax

 

public

 

void

 

copy(DependentCondition

 

depCond);

 

Parameters

 

depCond

 

Is

 

a

 

reference

 

to

 

the

 

dependent-condition

 

object

 

into

 

which

 

the

 

current

 

dependent

 

condition

 

is

 

copied.

Return

 

values

 

None.

   

230

 

Business

 

Object

 

Development

 

Guide



Chapter

 

18.

 

IGeneratesBinFiles

 

interface

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

uses

 

the

 

IGeneratesBinFiles

 

interface

 

to

 

define

 

the

 

functionality

 

required

 

by

 

the

 

Object

 

Discovery

 

Agent

 

(ODA)

 

for

 

the

 

generation

 

of

 

binary

 

files

 

as

 

its

 

content.

 

This

 

interface

 

defines

 

the

 

set

 

of

 

methods

 

that

 

the

 

ODA

 

developer

 

must

 

implement

 

to

 

enable

 

the

 

ODA

 

to

 

generate

 

binary

 

files.

 

Business

 

Object

 

Wizard

 

calls

 

the

 

methods

 

of

 

the

 

IGeneratesBinFiles

 

interface

 

to

 

generate

 

and

 

access

 

content

 

that

 

is

 

file

 

objects.

 

A

 

file

 

object

 

is

 

a

 

Java

 

File

 

object,

 

which

 

represents

 

a

 

binary

 

operating-system

 

file.

 

Note:

  

An

 

ODA

 

must

 

also

 

support

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

as

 

its

 

content.

 

To

 

enable

 

an

 

ODA

 

to

 

generate

 

business

 

object

 

definitions

 

from

 

source

 

data,

 

you

 

must

 

implement

 

the

 

IGeneratesBoDefs

 

interface.

 

For

 

more

 

information,

 

see

 

Chapter

 

19,

 

“IGeneratesBoDefs

 

interface,”

 

on

 

page

 

235.

 

To

 

provide

 

the

 

ODA

 

with

 

the

 

ability

 

to

 

generate

 

file

 

objects,

 

the

 

ODA

 

developer

 

must

 

take

 

the

 

following

 

steps:

 

v

   

In

 

the

 

definition

 

of

 

the

 

ODA

 

class

 

(which

 

is

 

an

 

extension

 

of

 

the

 

ODKAgentBase2

 

class),

 

include

 

IGeneratesBinFiles

 

as

 

an

 

interface

 

that

 

the

 

ODA

 

implements.

 

v

   

Within

 

the

 

ODA

 

class,

 

implement

 

the

 

methods

 

of

 

the

 

IGeneratesBinFiles

 

interface.

 

Because

 

IGeneratesBinFiles

 

is

 

an

 

interface,

 

ODA

 

developers

 

must

 

implement

 

all

 

methods

 

in

 

Table

 

86..

 

Table

 

86.

 

Member

 

methods

 

of

 

the

 

IGeneratesBinFiles

 

interface

 

Member

 

method

 

Description

 

Page

 

generateBinFiles()

 

Generates

 

file

 

objects

 

for

 

the

 

source

 

nodes

 

chosen

 

from

 

the

 

data

 

source.

 

231

 

getBinFile()

 

Retrieves

 

generated

 

file

 

objects.

 

232

 

getContentProtocol()

 

Indicates

 

the

 

content

 

protocol

 

supported

 

for

 

this

 

binary-file

 

content

 

type.

 

233

   

generateBinFiles()

 

Generates

 

files

 

objects.

 

Syntax

 

public

 

ContentMetaData

 

generateBinDefs(String[]

 

strNames);

 

Parameters

 

strNames

 

[

 

]

 

Is

 

an

 

array

 

of

 

String

 

objects.

 

This

 

argument

 

is

 

not

 

currently

 

used.

Return

 

values

 

A

 

ContentMetaData

 

object,

 

which

 

describes

 

the

 

generated

 

file

 

objects.

 

Exceptions

 

ODKException

 

Thrown

 

if

 

the

 

generation

 

of

 

the

 

binary

 

files

 

fails.

 

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

231



Notes

 

The

 

purpose

 

of

 

the

 

generateBinFiles()

 

method

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

uses

 

for

 

generation

 

of

 

file

 

(ContentType.BinaryFile)

 

content,

 

as

 

follows:

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

″on

 

request″,

 

Business

 

Object

 

Wizard

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method

 

to

 

generate

 

the

 

files.

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

Business

 

Object

 

Wizard

 

never

 

explicitly

 

calls

 

the

 

generateBinFiles()

 

method.

 

Instead,

 

the

 

ODA

 

uses

 

some

 

other

 

way

 

to

 

generate

 

the

 

files,

 

which

 

Business

 

Object

 

Wizard

 

can

 

then

 

access.

If

 

the

 

ODA

 

generates

 

files

 

″on

 

request″,

 

the

 

generateBinFiles()

 

method

 

is

 

the

 

content-generation

 

method

 

for

 

the

 

IGeneratesBinFiles

 

interface.

 

It

 

can

 

create

 

file

 

objects

 

that

 

contain

 

information

 

about

 

the

 

business-object-definition-generation

 

process.

 

Business

 

Object

 

Wizard

 

calls

 

the

 

generateBinFiles()

 

method

 

to

 

generate

 

content

 

(if

 

the

 

ODA

 

supports

 

generation

 

of

 

file

 

content).

 

It

 

calls

 

this

 

method

 

in

 

Step

 

5,

 

Generating

 

Business

 

Objects,

 

of

 

its

 

start.

 

For

 

the

 

on-request

 

protocol,

 

this

 

method

 

does

 

not

 

actually

 

return

 

the

 

generated

 

content.

 

Instead,

 

it

 

returns

 

a

 

content-metadata

 

(ContentMetaData)

 

object,

 

which

 

contains

 

information

 

that

 

describes

 

the

 

generated

 

content.

 

From

 

this

 

returned

 

content-metadata

 

object,

 

Business

 

Object

 

Wizard

 

can

 

determine

 

whether

 

the

 

content-generation

 

process

 

is

 

complete.

 

When

 

generation

 

is

 

complete,

 

Business

 

Object

 

Wizard

 

obtains

 

the

 

generated

 

file

 

objects

 

with

 

the

 

getBinFiles()

 

method.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

generateBinFiles(),

 

see

 

“Generating

 

files”

 

on

 

page

 

135..

 

See

 

also

 

generateBoDefs(),

 

getBinFile()

 

getBinFile()

 

Retrieves

 

the

 

generated

 

file

 

objects

 

from

 

the

 

generated-content

 

structure.

 

Syntax

 

public

 

File[]

 

getBinFile(long

 

index);

 

Parameters

 

index

 

Specifies

 

the

 

file

 

object

 

to

 

retrieve

 

from

 

the

 

generated-content

 

structure.

Exceptions

 

ODKException

 

Thrown

 

if

 

Business

 

Object

 

Wizard

 

encounters

 

a

 

problem

 

getting

 

the

 

generated

 

file

 

objects

 

from

 

the

 

generated-content

 

structure.

Notes

 

The

 

getBinFile()

 

method

 

is

 

the

 

content-retrieval

 

method

 

for

 

the

 

IGeneratesBinFiles

 

interface.

 

It

 

retrieves

 

generated

 

file

 

objects

 

from

 

the

 

ODA’s

 

generated-content

 

structure,

 

which

 

is

 

the

 

structure

 

that

 

the

 

ODA

 

populated

 

with

 

the

 

generated

 

file

 

objects.

 

The

 

method

 

that

 

populated

 

the

 

generated-content

 

structure

 

depends

 

on

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

file

 

generation,

 

as

 

follows:

   

232

 

Business

 

Object

 

Development

 

Guide



v

   

If

 

the

 

ODA

 

generates

 

files

 

″on

 

request″,

 

the

 

generateBinFiles()

 

method

 

has

 

populates

 

the

 

generated-content

 

structure.

 

v

   

If

 

the

 

ODA

 

generates

 

files

 

through

 

callbacks,

 

some

 

user-defined

 

method

 

populates

 

the

 

generated-content

 

structure.

The

 

value

 

of

 

the

 

index

 

argument

 

determines

 

whether

 

to

 

getBinFile()

 

returns

 

one

 

or

 

all

 

generated

 

file

 

objects,

 

as

 

Table

 

87

 

shows.

  

Table

 

87.

 

Specifying

 

the

 

file

 

objects

 

to

 

return

 

Value

 

of

 

index

 

argument

 

Action

 

of

 

getBinFile()

 

In

 

the

 

range

 

0

 

to

 

count

 

(where

 

count

 

is

 

the

 

member

 

variable

 

in

 

the

 

content-metadata

 

object

 

that

 

specifies

 

the

 

number

 

of

 

file

 

objects

 

in

 

the

 

generated-content

 

structure)

 

Return

 

an

 

array

 

that

 

contains

 

one

 

file

 

(Java

 

File)

 

object,

 

the

 

File

 

object

 

at

 

the

 

specified

 

index

 

position

 

in

 

the

 

generated-content

 

structure.

 

ODKConstant.GET_ALL_OBJECTS

 

Return

 

an

 

array

 

of

 

all

 

generated

 

file

 

objects

 

in

 

the

 

generated-content

 

structure.

   

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

getBinFile(),

 

see

 

“Providing

 

access

 

to

 

generated

 

files”

 

on

 

page

 

139.

 

See

 

also

 

generateBinFiles(),

 

getBoDefs()

 

getContentProtocol()

 

Indicates

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

a

 

specified

 

content

 

type.

 

Syntax

 

public

 

long

 

getContentProtocol(ContentType

 

contentType);

 

Parameters

 

contentType

 

Indicates

 

the

 

content

 

type

 

for

 

which

 

the

 

method

 

obtains

 

the

 

supported

 

content

 

protocol.

Return

 

values

 

A

 

long-integer

 

(long)

 

value

 

that

 

indicates

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

implements.

 

Compare

 

this

 

long

 

value

 

with

 

the

 

following

 

content-protocol

 

constants:

 

ODKConstant.CONTENT_PROTOCOL_CALLBACK

 

Indicates

 

that

 

the

 

ODA

 

supports

 

a

 

callback

 

protocol;

 

that

 

is

 

the

 

ODK

 

initiates

 

generation

 

of

 

the

 

specified

 

content

 

and

 

notifies

 

Business

 

Object

 

Wizard

 

when

 

generation

 

is

 

complete.

 

ODKConstant.CONTENT_PROTOCOL_ONREQUEST

 

Indicates

 

that

 

the

 

ODA

 

supports

 

an

 

on-demand

 

protocol;

 

that

 

is,

 

Business

 

Object

 

Wizard

 

initiates

 

generation

 

of

 

the

 

specified

 

content

 

type.

Notes

 

The

 

getContentProtocol()

 

method

 

is

 

the

 

single

 

method

 

defined

 

in

 

the

 

IGeneratesContent

 

interface,

 

which

 

the

 

IGeneratesBoDefs

 

interface

 

extends.

   

Chapter

 

18.

 

IGeneratesBinFiles

 

interface

 

233



Business

 

Object

 

Wizard

 

calls

 

getContentProtocol()

 

to

 

determine

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

fort

 

the

 

contentType

 

content

 

type.

 

For

 

more

 

information,

 

see

 

“Indicating

 

the

 

implemented

 

content

 

protocols”

 

on

 

page

 

109.

   

234

 

Business

 

Object

 

Development

 

Guide



Chapter

 

19.

 

IGeneratesBoDefs

 

interface

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

uses

 

the

 

IGeneratesBoDefs

 

interface

 

to

 

define

 

the

 

functionality

 

required

 

by

 

the

 

Object

 

Discovery

 

Agent

 

(ODA)

 

for

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

as

 

its

 

content.

 

This

 

interface

 

defines

 

the

 

set

 

of

 

methods

 

that

 

the

 

ODA

 

developer

 

must

 

implement

 

to

 

enable

 

the

 

ODA

 

to

 

generate

 

business

 

object

 

definitions

 

from

 

source

 

data.

 

Business

 

Object

 

Wizard

 

calls

 

the

 

methods

 

of

 

the

 

IGeneratesBoDefs

 

interface

 

to

 

obtain

 

source

 

nodes,

 

as

 

well

 

as

 

generate

 

and

 

access

 

content

 

that

 

is

 

business

 

object

 

definitions.

 

Note:

  

An

 

ODA

 

can

 

also

 

support

 

the

 

generation

 

of

 

file

 

objects

 

as

 

its

 

content.

 

To

 

enable

 

an

 

ODA

 

to

 

generate

 

binary

 

files

 

from

 

source

 

data,

 

you

 

must

 

implement

 

the

 

IGeneratesBinFiles

 

interface.

 

For

 

more

 

information,

 

see

 

Chapter

 

18,

 

“IGeneratesBinFiles

 

interface,”

 

on

 

page

 

231.

 

To

 

provide

 

the

 

ODA

 

with

 

the

 

ability

 

to

 

generate

 

business

 

object

 

definitions

 

objects

 

from

 

source

 

data,

 

the

 

ODA

 

developer

 

must

 

take

 

the

 

following

 

steps:

 

v

   

In

 

the

 

definition

 

of

 

the

 

ODA

 

class

 

(which

 

is

 

an

 

extension

 

of

 

the

 

ODKAgentBase2

 

class),

 

include

 

IGeneratesBoDefs

 

as

 

an

 

interface

 

that

 

the

 

ODA

 

implements.

 

v

   

Within

 

the

 

ODA

 

class,

 

implement

 

the

 

methods

 

of

 

the

 

IGeneratesBoDefs

 

interface.

 

Because

 

IGeneratesBoDefs

 

is

 

an

 

interface,

 

ODA

 

developers

 

must

 

implement

 

all

 

methods

 

in

 

Table

 

88..

 

Table

 

88.

 

Member

 

methods

 

of

 

the

 

IGeneratesBoDefs

 

interface

 

Member

 

method

 

Description

 

Page

 

generateBoDefs()

 

Generates

 

business

 

object

 

definitions

 

for

 

the

 

specified

 

source

 

nodes

 

from

 

the

 

data

 

source.

 

235

 

getBoDefs()

 

Retrieves

 

generated

 

business

 

object

 

definitions.

 

236

 

getContentProtocol()

 

Indicates

 

the

 

content

 

protocol

 

supported

 

for

 

this

 

business-object-definition

 

content

 

type.

 

237

 

getTreeNodes()

 

Constructs

 

an

 

array

 

of

 

tree

 

nodes

 

that

 

represent

 

the

 

hierarchy

 

of

 

source

 

nodes.

 

238

   

generateBoDefs()

 

Generates

 

business

 

object

 

definitions

 

for

 

the

 

specified

 

source

 

nodes.

 

Syntax

 

public

 

ContentMetaData

 

generateBoDefs(String[]

 

srcNodeNames);

 

Parameters

 

srcNodeNames

 

[

 

]

 

Is

 

an

 

array

 

that

 

contains

 

the

 

names

 

of

 

source

 

nodes

 

that

 

the

 

user

 

has

 

selected.

 

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

235



Return

 

values

 

A

 

ContentMetaData

 

object,

 

which

 

describes

 

the

 

generated

 

business

 

object

 

definitions

 

for

 

the

 

source

 

nodes

 

named

 

in

 

the

 

srcNodeNames

 

argument.

 

Exceptions

 

ODKException

 

Thrown

 

if

 

the

 

generation

 

of

 

business

 

object

 

definitions

 

fails.

Notes

 

The

 

generateBoDefs()

 

method

 

is

 

the

 

content-generation

 

method

 

for

 

the

 

IGeneratesBoDefs

 

interface.

 

It

 

creates

 

business

 

object

 

definitions

 

for

 

each

 

of

 

the

 

source

 

nodes

 

named

 

in

 

the

 

srcNodeNames

 

array.

 

The

 

user

 

has

 

selected

 

these

 

source

 

nodes

 

in

 

the

 

Select

 

Source

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

Once

 

the

 

user

 

has

 

finished

 

selecting

 

source

 

nodes,

 

Business

 

Object

 

Wizard

 

calls

 

the

 

generateBinFiles()

 

method

 

to

 

generate

 

content.

 

It

 

calls

 

this

 

method

 

in

 

Step

 

5,

 

Generating

 

Business

 

Objects,

 

of

 

its

 

start.

 

Note:

  

Business

 

Object

 

Wizard

 

always

 

calls

 

generateBoDefs()

 

because

 

the

 

ODA

 

must

 

support

 

an

 

on-request

 

content

 

protocol

 

for

 

generation

 

of

 

business

 

object

 

definitions.

 

For

 

more

 

information

 

on

 

content

 

protocols,

 

see

 

“Choosing

 

the

 

ODA

 

content

 

protocol”

 

on

 

page

 

108.

 

The

 

goal

 

of

 

the

 

generateBoDefs()

 

method

 

is

 

to

 

generate

 

a

 

business

 

object

 

definition

 

(BusObjDef

 

object)

 

for

 

each

 

user-selected

 

source

 

node,

 

store

 

it

 

in

 

the

 

generated-content

 

structure,

 

and

 

return

 

a

 

content-metadata

 

(ContentMetaData)

 

object

 

that

 

describes

 

the

 

generated

 

content.

 

This

 

method

 

does

 

not

 

actually

 

return

 

the

 

generated

 

content

 

to

 

Business

 

Object

 

Wizard.

 

From

 

this

 

returned

 

content-metadata

 

object,

 

Business

 

Object

 

Wizard

 

can

 

determine

 

whether

 

the

 

content-generation

 

process

 

is

 

complete.

 

When

 

generation

 

is

 

complete,

 

Business

 

Object

 

Wizard

 

obtains

 

the

 

generated

 

business

 

object

 

definitions

 

with

 

the

 

getBoDefs()

 

method.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

generateBoDefs(),

 

see

 

“Generating

 

business

 

object

 

definitions”

 

on

 

page

 

118.

 

See

 

also

 

generateBinFiles(),

 

getBoDefs()

 

getBoDefs()

 

Retrieves

 

the

 

generated

 

business

 

object

 

definitions.

 

Syntax

 

public

 

BusObjDef[]

 

getBoDefs(long

 

index);

 

Parameters

 

index

 

Specifies

 

the

 

business

 

object

 

definition

 

to

 

retrieve

 

from

 

the

 

generated-content

 

structure.

Exceptions

 

ODKException

 

Thrown

 

if

 

Business

 

Object

 

Wizard

 

encounters

 

a

 

problem

 

getting

 

the

 

generated

 

business

 

object

 

definitions

 

from

 

the

 

generated-content

 

structure.

  

236

 

Business

 

Object

 

Development

 

Guide



Notes

 

The

 

getBoDefs()

 

method

 

is

 

the

 

content-retrieval

 

method

 

for

 

the

 

IGeneratesBoDefs

 

interface.

 

It

 

retrieves

 

generated

 

business

 

object

 

definitions

 

from

 

the

 

ODA’s

 

generated-content

 

structure,

 

which

 

is

 

the

 

structure

 

that

 

the

 

generateBoDefs()

 

method

 

populated

 

with

 

the

 

generated

 

business

 

object

 

definitions.

 

The

 

value

 

of

 

the

 

index

 

argument

 

determines

 

whether

 

to

 

getBoDefs()

 

returns

 

one

 

or

 

all

 

generated

 

business

 

object

 

definitions,

 

as

 

Table

 

89

 

shows.

  

Table

 

89.

 

Specifying

 

the

 

business

 

object

 

definitions

 

to

 

return

 

Value

 

of

 

index

 

argument

 

Action

 

of

 

getBoDefs()

 

In

 

the

 

range:

 

0

 

to

 

count

 

(where

 

count

 

is

 

the

 

member

 

variable

 

in

 

the

 

content-metadata

 

object

 

that

 

specifies

 

the

 

number

 

of

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure)

 

Return

 

an

 

array

 

that

 

contains

 

one

 

business-object-definition

 

(BusObjDef)

 

object,

 

the

 

BusObjDef

 

object

 

at

 

the

 

specified

 

index

 

position

 

in

 

the

 

generated-content

 

structure.

 

ODKConstant.GET_ALL_OBJECTS

 

Return

 

an

 

array

 

of

 

all

 

generated

 

business

 

object

 

definitions

 

in

 

the

 

generated-content

 

structure.

   

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

getBoDefs(),

 

see

 

“Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

131.

 

See

 

also

 

generateBoDefs(),

 

getBinFile()

 

getContentProtocol()

 

Indicates

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

for

 

a

 

specified

 

content

 

type.

 

Syntax

 

public

 

long

 

getContentProtocol(ContentType

 

contentType);

 

Parameters

 

contentType

 

Indicates

 

the

 

content

 

type

 

for

 

which

 

the

 

method

 

determines

 

the

 

supported

 

content

 

protocol.

Return

 

values

 

A

 

long-integer

 

(long)

 

value

 

that

 

indicates

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

implements.

 

Compare

 

this

 

long

 

value

 

with

 

the

 

following

 

content-protocol

 

constants:

 

ODKConstant.CONTENT_PROTOCOL_CALLBACK

 

Indicates

 

that

 

the

 

ODA

 

supports

 

a

 

callback

 

protocol;

 

that

 

is

 

the

 

ODK

 

initiates

 

generation

 

of

 

the

 

specified

 

content

 

and

 

notifies

 

Business

 

Object

 

Wizard

 

when

 

generation

 

is

 

complete.

 

ODKConstant.CONTENT_PROTOCOL_ONREQUEST

 

Indicates

 

that

 

the

 

ODA

 

supports

 

an

 

on-demand

 

protocol;

 

that

 

is,

 

Business

 

Object

 

Wizard

 

initiates

 

generation

 

of

 

the

 

specified

 

content

 

type.

  

Chapter

 

19.

 

IGeneratesBoDefs

 

interface

 

237



Notes

 

The

 

getContentProtocol()

 

method

 

is

 

the

 

single

 

method

 

defined

 

in

 

the

 

IGeneratesContent

 

interface,

 

which

 

the

 

IGeneratesBoDefs

 

interface

 

extends.

 

Business

 

Object

 

Wizard

 

calls

 

getContentProtocol()

 

to

 

determine

 

the

 

content

 

protocol

 

that

 

the

 

ODA

 

supports

 

fort

 

the

 

contentType

 

content

 

type.

 

For

 

more

 

information,

 

see

 

“Indicating

 

the

 

implemented

 

content

 

protocols”

 

on

 

page

 

109.

 

getTreeNodes()

 

Constructs

 

an

 

array

 

of

 

tree

 

nodes

 

that

 

represents

 

one

 

level

 

in

 

the

 

hierarchy

 

of

 

source

 

nodes.

 

Syntax

 

public

 

TreeNode[]

 

getTreeNodes(String

 

parentNodePath,

 

String

 

searchPattern);

 

Parameters

 

parentNodePath

 

Is

 

a

 

fully

 

qualified

 

path

 

from

 

the

 

top-level

 

node

 

to

 

the

 

source

 

node

 

whose

 

children

 

are

 

to

 

be

 

returned

 

to

 

Business

 

Object

 

Wizard;

 

each

 

node

 

in

 

the

 

path

 

is

 

separated

 

by

 

a

 

colon

 

(:).

 

searchPattern

 

Is

 

the

 

user-specified

 

search

 

pattern

 

for

 

the

 

child

 

nodes

 

in

 

the

 

expandable

 

parentNodePath

 

node.

Return

 

values

 

An

 

array

 

of

 

TreeNode

 

objects,

 

which

 

tree-node

 

object

 

is

 

a

 

child

 

node

 

in

 

the

 

hierarchy

 

of

 

specified

 

objects.

 

Exceptions

 

ODKException

 

Thrown

 

if

 

the

 

Object

 

Discovery

 

Agent

 

encounters

 

a

 

problem

 

getting

 

the

 

tree

 

nodes.

Notes

 

The

 

getTreeNodes()

 

method

 

is

 

the

 

source-node-generation

 

method

 

for

 

the

 

IGeneratesBoDefs

 

interface.

 

Business

 

Object

 

Wizard

 

invokes

 

getTreeNodes()

 

to

 

obtain

 

the

 

array

 

of

 

tree

 

nodes

 

that

 

initializes

 

its

 

Select

 

Source

 

(Step

 

3)

 

dialog

 

box.

 

From

 

this

 

dialog

 

box,

 

the

 

user

 

selects

 

specific

 

source

 

nodes

 

for

 

business-object-definition

 

generation.

 

Within

 

the

 

getTreeNodes()

 

method,

 

you

 

must

 

construct

 

tree

 

nodes

 

to

 

represent

 

the

 

hierarchy

 

of

 

source

 

nodes

 

in

 

the

 

data

 

source.

 

The

 

getTreeNode()

 

method

 

returns

 

this

 

source-node

 

hierarchy

 

as

 

an

 

array

 

of

 

TreeNode

 

objects

 

to

 

its

 

caller,

 

Business

 

Object

 

Wizard.

 

The

 

tree-node

 

array

 

that

 

getTreeNodes()

 

returns

 

provides

 

the

 

source

 

nodes

 

at

 

one

 

particular

 

level

 

of

 

the

 

source-node

 

hierarchy.

 

At

 

any

 

given

 

level,

 

some

 

source

 

nodes

 

might

 

be

 

expandable

 

(have

 

child

 

nodes)

 

and

 

some

 

might

 

be

 

leaf

 

(terminating)

 

nodes.

 

The

 

user

 

can

 

traverse

 

the

 

hierarchy

 

by

 

expanding

 

any

 

source

 

node

 

that

 

displays

 

a

 

plus

 

(+)

 

sign

 

to

 

its

 

left.

 

When

 

the

 

user

 

expands

 

a

 

node,

 

Business

 

Object

 

Wizard

 

calls

 

getTreeNodes()

 

again,

 

providing

 

as

 

its

 

parentNodePath

 

argument

 

the

 

name

 

of

 

the

 

node

 

the

 

user

 

wants

 

to

 

expand.

 

This

 

node

 

name

 

consists

 

of

 

the

 

names

 

of

 

each

 

of

 

the

 

nodes

 

in

 

the

 

path,

 

separated

 

by

 

a

 

colon

 

(:).

   

238

 

Business

 

Object

 

Development

 

Guide



Note:

  

An

 

ODA

 

uses

 

the

 

colon

 

rather

 

than

 

a

 

slash

 

or

 

backslash

 

to

 

keep

 

the

 

path

 

operating-system-independent.

 

The

 

getTreeNodes()

 

method

 

performs

 

the

 

following

 

basic

 

tasks

 

to

 

generate

 

the

 

source

 

nodes:

 

1.

   

Parse

 

the

 

parentNodePath

 

to

 

identify

 

the

 

parent

 

object

 

to

 

search

 

for

 

in

 

the

 

data

 

source.

 

2.

   

Discover

 

the

 

child

 

objects

 

for

 

the

 

specified

 

data-source

 

parent

 

object.

 

If

 

Business

 

Object

 

Wizard

 

provides

 

a

 

searchPattern

 

argument

 

to

 

getTreeNodes(),

 

the

 

user

 

has

 

specified

 

search

 

criteria.

 

Therefore,

 

getTreeNodes()

 

must

 

return

 

only

 

those

 

child

 

nodes

 

of

 

the

 

parentNodePath

 

node

 

that

 

match

 

searchPattern

 

search

 

criteria.

 

The

 

ability

 

to

 

apply

 

a

 

search

 

pattern

 

to

 

source

 

nodes

 

requires

 

that

 

the

 

following

 

conditions

 

are

 

true:

 

v

   

The

 

user-specified

 

searchPattern

 

must

 

match

 

the

 

search

 

criteria

 

that

 

the

 

ODA

 

supports.

 

The

 

searchPatternDesc

 

member

 

variable

 

in

 

the

 

ODA’s

 

metadata

 

(AgentMetaData)

 

object

 

provides

 

a

 

description

 

to

 

the

 

user

 

of

 

the

 

supported

 

search

 

criteria.

 

However,

 

the

 

getTreeNodes()

 

method

 

must

 

parse

 

the

 

user-specified

 

searchPattern

 

to

 

ensure

 

that

 

it

 

matches

 

the

 

supported

 

search

 

criteria.

 

v

   

The

 

ODA

 

supports

 

search

 

patterns.

 

The

 

searchableNodes

 

member

 

variable

 

in

 

the

 

ODA’s

 

metadata

 

(AgentMetaData)

 

object

 

is

 

true.

 

If

 

searchableNodes

 

is

 

false,

 

the

 

Search

 

for

 

items

 

menu

 

item

 

(which

 

initiates

 

the

 

user’s

 

entry

 

of

 

search

 

criteria)

 

is

 

not

 

available.

 

Therefore,

 

the

 

user

 

cannot

 

enter

 

search

 

criteria.
3.

   

Construct

 

tree

 

nodes

 

for

 

the

 

child

 

objects

 

and

 

put

 

these

 

nodes

 

into

 

the

 

tree-node

 

array.

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

getTreeNodes(),

 

see

 

“Generating

 

source

 

nodes”

 

on

 

page

 

111.

 

See

 

also

 

For

 

related

 

reference

 

information,

 

see

 

Chapter

 

25,

 

“TreeNode

 

class,”

 

on

 

page

 

267.

   

Chapter

 

19.

 

IGeneratesBoDefs

 

interface

 

239



240

 

Business

 

Object

 

Development

 

Guide



Chapter

 

20.

 

InputCondition

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

InputCondition

 

class

 

to

 

represent

 

input

 

conditions,

 

which

 

specify

 

conditions

 

on

 

the

 

value

 

of

 

an

 

agent

 

property.

 

When

 

an

 

input

 

condition

 

evaluates

 

to

 

true,

 

the

 

associated

 

dependent

 

condition

 

is

 

applied

 

to

 

the

 

dependent

 

property.

 

An

 

input

 

condition

 

and

 

its

 

associated

 

dependent

 

condition

 

(or

 

conditions)

 

are

 

stored

 

in

 

a

 

complete-condition

 

(CompleteCondition)

 

object.

 

Note:

  

For

 

information

 

on

 

complete

 

conditions,

 

see

 

Chapter

 

14,

 

“CompleteCondition

 

class,”

 

on

 

page

 

215.

 

The

 

InputCondition

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Methods”

 

on

 

page

 

243

Member

 

variables

 

Table

 

90

 

summarizes

 

the

 

member

 

variables

 

in

 

the

 

InputCondition

 

class.

  

Table

 

90.

 

Member

 

variables

 

of

 

the

 

InputCondition

 

class.

 

Member

 

variable

 

Description

 

Page

 

isDynamic

 

Specifies

 

whether

 

Business

 

Object

 

Wizard

 

should

 

check

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

before

 

it

 

makes

 

the

 

input

 

condition’s

 

comparison.

 

241

 

operatorType

 

Specifies

 

the

 

operator

 

type

 

for

 

the

 

input

 

condition.

 

241

 

specificValue

 

Specifies

 

the

 

value

 

to

 

compare

 

with

 

the

 

agent

 

property’s

 

value.

 

242

 

typeOfSpecificValue

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

input

 

condition’s

 

specific

 

value.

 

242

   

isDynamic

 

Specifies

 

whether

 

Business

 

Object

 

Wizard

 

should

 

check

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

before

 

making

 

the

 

input

 

condition’s

 

comparison.

 

Type

 

public

 

boolean

 

isDynamic

 

Notes

 

When

 

the

 

isDynamic

 

member

 

variable

 

is

 

true,

 

Business

 

Object

 

Wizard

 

obtains

 

the

 

value

 

of

 

the

 

property

 

that

 

the

 

specificValue

 

member

 

variable

 

specifies

 

before

 

it

 

performs

 

the

 

comparison

 

with

 

the

 

agent

 

property’s

 

value.

 

If

 

specificValue

 

contains

 

a

 

constant,

 

isDynamic

 

should

 

be

 

set

 

to

 

false.

 

operatorType

 

Specifies

 

the

 

operator

 

type

 

for

 

the

 

input

 

condition.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

241



Type

 

public

 

String

 

operatorType

 

Notes

 

The

 

operatorType

 

specifies

 

the

 

kind

 

of

 

comparison

 

that

 

Business

 

Object

 

Wizard

 

makes

 

between

 

the

 

agent

 

property’s

 

value

 

and

 

the

 

specificValue.

 

Valid

 

values

 

for

 

the

 

operatorType

 

variable

 

are

 

the

 

operator

 

constants,

 

which

 

are

 

defined

 

in

 

the

 

CompleteCondition

 

class.

 

For

 

more

 

information,

 

see

 

Table

 

76

 

on

 

page

 

215.

 

specificValue

 

Specifies

 

the

 

value

 

to

 

compare

 

with

 

the

 

agent

 

property

 

value.

 

Type

 

public

 

String

 

specificValue

 

Notes

 

The

 

specificValue

 

holds

 

the

 

input

 

condition’s

 

value,

 

which

 

Business

 

Object

 

Wizard

 

compares

 

with

 

the

 

agent

 

property’s

 

value.

 

The

 

kind

 

of

 

comparison

 

is

 

determined

 

by

 

the

 

operatorType

 

variable.

 

The

 

specific

 

value

 

can

 

be

 

either

 

of

 

the

 

following:

 

v

   

A

 

constant

 

(of

 

the

 

same

 

type

 

as

 

the

 

agent

 

property)

 

For

 

example,

 

if

 

an

 

input

 

condition

 

specifies

 

the

 

Less

 

Than

 

operator

 

(CompleteCondition.OP_LESS_THAN)

 

as

 

its

 

operatorType

 

and

 

specifies

 

a

 

value

 

of

 

5

 

as

 

its

 

specificValue,

 

the

 

associated

 

dependent

 

conditions

 

apply

 

when

 

the

 

agent

 

property’s

 

value

 

is

 

less

 

than

 

5.

 

v

   

The

 

name

 

of

 

another

 

agent

 

property

 

For

 

example,

 

if

 

an

 

input

 

condition

 

specifies

 

the

 

Greater

 

Than

 

operator

 

(CompleteCondition.OP_GREATER_THAN)

 

as

 

its

 

operatorType

 

and

 

specifies

 

the

 

name

 

of

 

the

 

“Property1“

 

property

 

as

 

its

 

specificValue,

 

the

 

associated

 

dependent

 

conditions

 

apply

 

when

 

the

 

agent

 

property’s

 

value

 

is

 

greater

 

than

 

the

 

value

 

of

 

Property1

 

agent

 

property.

The

 

specificValue

 

variable

 

is

 

declared

 

of

 

type

 

String

 

so

 

that

 

it

 

can

 

hold

 

any

 

kind

 

of

 

value.

 

However,

 

to

 

make

 

comparisons

 

properly,

 

Business

 

Object

 

Wizard

 

needs

 

to

 

know

 

the

 

actual

 

data

 

type

 

of

 

the

 

specific

 

value,

 

which

 

the

 

typeOfSpecificValue

 

member

 

variable

 

contains.

 

typeOfSpecificValue

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

input

 

condition’s

 

specific

 

value.

 

Type

 

public

 

int

 

typeOfSpecificValue

 

Notes

 

The

 

typeOfSpecificValue

 

holds

 

the

 

data

 

type

 

for

 

the

 

input

 

condition’s

 

specific

 

value.

 

The

 

specificValue

 

variable

 

is

 

declared

 

of

 

type

 

String

 

so

 

that

 

it

 

can

 

hold

 

any

 

kind

 

of

 

value.

 

However,

 

to

 

make

 

comparisons

 

properly,

 

Business

 

Object

 

Wizard

 

needs

 

to

 

know

 

the

 

actual

 

data

 

type

 

of

 

the

 

specific

 

value.

 

Valid

 

values

 

for

 

the

 

typeOfSpecificValue

 

variable

 

are

 

the

 

property-type

 

constants,

 

which

 

are

 

defined

 

in

 

the

 

AgentProperty

 

class.

 

For

 

more

 

information,

 

see

 

Table

 

67

 

on

 

page

 

173.

 

For

 

example,

 

if

 

the

 

input

 

condition’s

 

specific

 

value

 

is

 

an

 

integer

 

constant

 

of

 

5:

 

v

   

The

 

specificValue

 

variable

 

holds

 

the

 

string

 

“5”.

   

242

 

Business

 

Object

 

Development

 

Guide



v

   

The

 

typeOfSpecificValue

 

variable

 

holds

 

the

 

AgentProperty.TYPE_INTEGER

 

property-type

 

constant.

Methods

 

Table

 

91

 

summarizes

 

the

 

methods

 

in

 

the

 

InputCondition

 

class.

  

Table

 

91.

 

Member

 

methods

 

of

 

the

 

InputCondition

 

class.

 

Member

 

method

 

Description

 

Page

 

InputCondition()

 

Creates

 

an

 

input-condition

 

object.

 

243

 

copy()

 

Copies

 

the

 

current

 

input

 

condition

 

into

 

the

 

specified

 

input-condition

 

object.

 

243

   

InputCondition()

 

Creates

 

an

 

input-condition

 

object.

 

Syntax

 

public

 

InputCondition();

 

public

 

InputCondition(String

 

operator,

 

boolean

 

isDyn,

 

int

 

type,

    

String

 

specificVal);

 

Parameters

 

isDyn

 

Indicates

 

whether

 

to

 

obtain

 

the

 

value

 

of

 

the

 

specific-value

 

property

 

dynamically;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isDynamic

 

member

 

variable

 

(“isDynamic”

 

on

 

page

 

241).

 

operator

 

Is

 

the

 

operator

 

that

 

specifies

 

the

 

kind

 

of

 

comparison

 

to

 

make;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

operatorType

 

member

 

variable

 

(“operatorType”

 

on

 

page

 

227).

 

specificVal

 

Is

 

the

 

specific

 

value

 

of

 

the

 

input

 

condition;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

specificValue

 

member

 

variable

 

(“specificValue”

 

on

 

page

 

242).

 

type

 

Specifies

 

the

 

data

 

type

 

of

 

the

 

specific

 

value;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

typeOfSpecificValue

 

member

 

variable

 

(“typeOfSpecificValue”

 

on

 

page

 

242).

Return

 

values

 

A

 

newly

 

instantiated

 

InputCondition

 

object.

 

copy()

 

Copies

 

the

 

current

 

input

 

condition

 

into

 

the

 

specified

 

input-condition

 

object.

 

Syntax

 

public

 

void

 

copy(InputCondition

 

inputCond);

 

Parameters

 

inputCond

 

is

 

a

 

reference

 

to

 

the

 

InputCondition

 

object

 

into

 

which

 

the

 

current

 

input

 

condition

 

is

 

copied.

Return

 

values

 

None.

   

Chapter

 

20.

 

InputCondition

 

class

 

243



244

 

Business

 

Object

 

Development

 

Guide



Chapter

 

21.

 

ODKAgentBase2

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

ODKAgentBase2

 

class

 

as

 

the

 

base

 

class

 

for

 

an

 

Object

 

Discovery

 

Agent

 

(ODA).

 

From

 

this

 

class,

 

an

 

ODA

 

developer

 

must

 

derive

 

an

 

ODA

 

class

 

and

 

implement

 

the

 

abstract

 

methods

 

for

 

the

 

ODA.

 

Note:

  

The

 

ODKAgentBase2

 

class

 

extends

 

the

 

ODKAgentBase

 

class

 

of

 

the

 

low-level

 

ODA

 

library.

 

It

 

inherits

 

the

 

getAgentProperties(),

 

getVersion(),

 

init(),

 

and

 

terminate()

 

methods

 

of

 

this

 

class.

 

It

 

also

 

“disables”

 

the

 

getTreeNodes()

 

and

 

generateDefs()

 

methods

 

of

 

this

 

class

 

because

 

they

 

are

 

now

 

replaced

 

with

 

functionality

 

defined

 

in

 

the

 

getTreeNodes()

 

and

 

generateBoDefs()

 

methods

 

of

 

the

 

IGeneratesBoDefs

 

interface.

   

Important

 

All

 

ODAs

 

must

 

extend

 

this

 

ODA

 

base

 

class

 

and

 

provide

 

implementations

 

for

 

all

 

its

 

methods

 

except

 

getVersion().

 

Table

 

92

 

summarizes

 

the

 

methods

 

of

 

the

 

ODKAgentBase2

 

class.

  

Table

 

92.

 

Member

 

methods

 

of

 

the

 

ODKAgentBase2

 

class

 

Member

 

method

 

Description

 

Page

 

getAgentProperties()

 

Sends

 

an

 

array

 

of

 

ODA

 

configuration

 

properties

 

to

 

Business

 

Object

 

Wizard.

 

245

 

getMetaData()

 

Sends

 

the

 

ODA

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

246

 

getVersion()

 

Retrieves

 

the

 

version

 

of

 

the

 

ODA.

 

247

 

init()

 

Initializes

 

the

 

ODA.

 

247

 

terminate()

 

Terminates

 

the

 

ODA,

 

performing

 

any

 

required

 

clean-up

 

tasks.

 

247

   

getAgentProperties()

 

Sends

 

an

 

array

 

of

 

ODA

 

configuration

 

properties

 

to

 

Business

 

Object

 

Wizard.

 

Syntax

 

public

 

abstract

 

AgentProperty[]

 

getAgentProperties();

 

Parameters

 

None.

 

Return

 

values

 

An

 

array

 

of

 

AgentProperty

 

objects,

 

one

 

object

 

for

 

each

 

ODA

 

configuration

 

property.

 

Exceptions

 

ODKException

 

Thrown

 

if

 

the

 

ODA

 

fails

 

to

 

get

 

the

 

configuration

 

properties.

 

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

245



Notes

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

getAgentProperties()

 

method

 

to

 

get

 

the

 

array

 

of

 

ODA

 

configuration

 

properties

 

that

 

initializes

 

its

 

Configure

 

Agent

 

(Step

 

2)

 

dialog

 

box.

 

From

 

this

 

dialog

 

box,

 

you

 

can

 

enter

 

or

 

change

 

these

 

property

 

values.

 

Important:

  

The

 

getAgentProperties()

 

method

 

is

 

an

 

abstract

 

method

 

that

 

has

 

no

 

default

 

implementation.Therefore,

 

the

 

ODA

 

class

 

must

 

implement

 

this

 

method.

 

Within

 

the

 

getAgentProperties()

 

method,

 

you

 

must

 

instantiate

 

and

 

initialize

 

agent-property

 

(AgentProperty)

 

objects

 

for

 

each

 

ODA

 

configuration

 

property

 

and

 

store

 

each

 

property

 

in

 

the

 

configuration-property

 

array.

 

The

 

getAgentProperties()

 

method

 

returns

 

this

 

configuration-property

 

array

 

to

 

its

 

caller,

 

Business

 

Object

 

Wizard.

 

Once

 

the

 

user

 

has

 

set

 

the

 

configuration

 

properties

 

from

 

the

 

Configure

 

Agent

 

dialog

 

box,

 

Business

 

Object

 

Wizard

 

reads

 

these

 

user-initialized

 

properties

 

in

 

the

 

ODA-runtime

 

memory.

 

You

 

can

 

obtain

 

the

 

user-initialized

 

property

 

with

 

either

 

the

 

getAgentProperty()

 

or

 

getAllAgentProperties()

 

method

 

in

 

the

 

ODKUtility

 

class.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

getAgentProperties(),

 

see

 

“Obtaining

 

configuration

 

properties”

 

on

 

page

 

101.

 

See

 

also

 

getAgentProperty(),

 

getAllAgentProperties()

 

getMetaData()

 

Sends

 

the

 

ODA

 

metadata

 

to

 

Business

 

Object

 

Wizard.

 

Syntax

 

public

 

abstract

 

AgentMetaData

 

getMetaData();

 

Parameters

 

None.

 

Return

 

values

 

An

 

AgentMetaData

 

object

 

that

 

contains

 

the

 

metadata

 

for

 

the

 

ODA.

 

Notes

 

Business

 

Object

 

Wizard

 

invokes

 

the

 

getMetaData()

 

method

 

to

 

get

 

the

 

ODA’s

 

metadata.

 

It

 

calls

 

getMetaData()

 

after

 

its

 

call

 

to

 

the

 

getAgentProperties()

 

method

 

completes.

 

The

 

getMetaData()

 

method

 

returns

 

the

 

AgentMetaData

 

object

 

for

 

the

 

ODA.

 

This

 

AgentMetaData

 

object

 

contains

 

metadata

 

for

 

the

 

ODA,

 

such

 

as

 

the

 

version

 

and

 

the

 

generated

 

content

 

it

 

supports.

 

Within

 

this

 

method,

 

call

 

the

 

AgentMetaData()

 

constructor

 

and

 

return

 

the

 

instantiated

 

metadata

 

object.

 

Important:

  

The

 

getMetaData()

 

method

 

is

 

an

 

abstract

 

method

 

that

 

has

 

no

 

default

 

implementation.Therefore,

 

the

 

ODA

 

class

 

must

 

implement

 

this

 

method.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

getMetaData(),

 

see

 

“Initializing

 

ODA

 

metadata”

 

on

 

page

 

103.

   

246

 

Business

 

Object

 

Development

 

Guide



getVersion()

 

Retrieves

 

the

 

version

 

of

 

the

 

ODA

 

runtime.

 

Syntax

 

public

 

String

 

getVersion();

 

Parameters

 

None.

 

Return

 

values

 

An

 

String

 

that

 

contains

 

the

 

version

 

of

 

the

 

ODA

 

runtime.

 

init()

 

Performs

 

the

 

ODA

 

initialization

 

tasks.

 

Syntax

 

public

 

abstract

 

void

 

init();

 

Parameters

 

None.

 

Return

 

values

 

None.

 

Exceptions

 

ODKException

 

Thrown

 

if

 

the

 

ODA

 

initialization

 

fails.

Notes

 

Business

 

Object

 

Designer

 

invokes

 

the

 

init()

 

method

 

to

 

initialize

 

the

 

Object

 

Discovery

 

Agent.

 

It

 

calls

 

init()

 

after

 

its

 

calls

 

to

 

the

 

getAgentProperties()

 

and

 

getMetaData()

 

methods

 

complete.

 

Typically,

 

ODA

 

initialization

 

includes

 

obtaining

 

values

 

for

 

the

 

ODA’s

 

configuration

 

properties,

 

establishing

 

a

 

connection

 

to

 

the

 

data

 

source,

 

(which

 

could

 

be

 

an

 

application,

 

database,

 

XML

 

file,

 

or

 

other

 

business

 

object

 

source),

 

and

 

allocating

 

any

 

resources

 

that

 

the

 

ODA

 

requires.

 

Important:

  

The

 

init()

 

method

 

is

 

an

 

abstract

 

method

 

that

 

has

 

no

 

default

 

implementation.Therefore,

 

the

 

ODA

 

class

 

must

 

implement

 

this

 

method.

 

For

 

more

 

information

 

on

 

how

 

to

 

implement

 

init(),

 

see

 

“Initializing

 

the

 

ODA

 

start”

 

on

 

page

 

105.

 

terminate()

 

Terminates

 

the

 

ODA,

 

performing

 

any

 

required

 

clean-up

 

tasks.

 

Syntax

 

public

 

abstract

 

void

 

terminate();

   

Chapter

 

21.

 

ODKAgentBase2

 

class

 

247



Parameters

 

None.

 

Return

 

values

 

None.

 

Notes

 

Business

 

Object

 

Designer

 

calls

 

the

 

terminate()

 

method

 

when

 

it

 

shuts

 

down

 

the

 

ODA.

 

In

 

your

 

implementation

 

of

 

this

 

method,

 

it

 

is

 

good

 

practice

 

to

 

free

 

all

 

the

 

memory

 

and

 

disconnect

 

from

 

the

 

data

 

source.

 

Important:

  

The

 

terminate()

 

method

 

is

 

an

 

abstract

 

method

 

that

 

has

 

no

 

default

 

implementation.

 

Therefore,

 

the

 

ODA

 

class

 

must

 

implement

 

this

 

method.

 

Deprecated

 

Methods

 

Some

 

methods

 

in

 

the

 

ODKAgentBase2

 

class

 

were

 

supported

 

in

 

earlier

 

versions

 

but

 

are

 

no

 

longer

 

supported.

 

These

 

deprecated

 

methods

 

will

 

not

 

generate

 

errors,

 

but

 

IBM

 

recommends

 

that

 

you

 

avoid

 

their

 

use

 

and

 

migrate

 

existing

 

code

 

to

 

the

 

new

 

methods.

 

The

 

deprecated

 

methods

 

might

 

be

 

removed

 

in

 

a

 

future

 

release.

 

lists

 

the

 

deprecated

 

methods

 

for

 

the

 

ODKAgentBase2

 

class.

 

If

 

you

 

are

 

writing

 

a

 

new

 

ODA

 

(not

 

modifying

 

an

 

existing

 

ODA),

 

you

 

can

 

ignore

 

this

 

section.

  

Table

 

93.

 

Deprecated

 

methods

 

of

 

the

 

ODKAgentBase2

 

class

 

Deprecated

 

method

 

Replacement

 

getTreeNodes()

 

(inherited

 

from

 

ODKAgentBase)

 

getTreeNodes()

 

in

 

the

 

IGeneratesBoDefs

 

interface

 

generateDefs()

 

(inherited

 

from

 

ODKAgentBase)

 

generateBoDefs()

 

in

 

the

 

IGeneratesBoDefs

 

interface

 

(to

 

generate

 

business

 

object

 

definitions)

 

Note:

 

You

 

can

 

also

 

generate

 

files

 

with

 

the

 

generateBinFiles()

 

method

 

in

 

the

 

IGeneratesBinFiles

 

interface.

    

248

 

Business

 

Object

 

Development

 

Guide



Chapter

 

22.

 

ODKConstant

 

interface

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

uses

 

the

 

ODKConstant

 

interface

 

to

 

provide

 

general

 

constants

 

to

 

the

 

Object

 

Discovery

 

Agent

 

(ODA).

 

Any

 

class

 

that

 

implements

 

the

 

ODKConstant

 

interface

 

can

 

access

 

its

 

defined

 

constants

 

directly.

 

For

 

example,

 

if

 

the

 

TreeNode

 

class

 

implements

 

the

 

ODKConstant

 

interface,

 

its

 

methods

 

can

 

access

 

the

 

MSG_QUESTION

 

constant

 

as

 

follows:

 

int

 

message_icon

 

=

 

MSG_QUESTION;

 

The

 

ODKConstant

 

interface

 

defines

 

static

 

member

 

variables

 

to

 

represent

 

the

 

following

 

kinds

 

of

 

constants:

 

v

   

“String-value

 

constants”

 

v

   

“User-response-dialog

 

constants”

 

v

   

“Cardinality

 

constants”

 

on

 

page

 

250

 

v

   

“Trace-level

 

constants”

 

on

 

page

 

251

 

v

   

“Message-type

 

constants”

 

on

 

page

 

251

 

v

   

“Node-nature

 

constants”

 

on

 

page

 

251

 

v

   

“Content-protocol

 

constants”

 

on

 

page

 

252

 

v

   

“Content-index

 

constant”

 

on

 

page

 

252

String-value

 

constants

 

Table

 

94

 

summarizes

 

the

 

string-value

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

represent

 

special

 

attribute

 

values

 

of

 

Blank

 

and

 

Ignore.

 

All

 

string-value

 

constants

 

are

 

of

 

type

 

String.

  

Table

 

94.

 

String-value

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

String-value

 

constant

 

Description

 

CW_EMPTY_STRING

 

Specifies

 

the

 

defined

 

constant

 

for

 

an

 

empty

 

String

 

("")

 

CW_NULL_STRING

 

Specifies

 

the

 

defined

 

constant

 

for

 

a

 

null

 

value

   

User-response-dialog

 

constants

 

The

 

sendMsg()

 

method,

 

defined

 

in

 

the

 

ODKUtility

 

class,

 

provides

 

the

 

ODA

 

developer

 

with

 

a

 

means

 

to

 

display

 

a

 

user-response

 

dialog

 

box.

 

To

 

provide

 

support

 

for

 

sendMsg(),

 

the

 

ODKConstant

 

interface

 

provides

 

the

 

user-response-dialog

 

constants

 

listed

 

in

 

Table

 

95.

 

All

 

user-response-dialog

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

95.

 

User-response-dialog

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

User-response-dialog

 

constant

 

Description

 

dialog-button

 

constants

 

MSG_OK

 

Specifies

 

the

 

display

 

of

 

the

 

OK

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

MSG_OKCANCEL

 

Specifies

 

the

 

display

 

of

 

the

 

OK

 

and

 

Cancel

 

buttons

 

on

 

the

 

user-response

 

dialog

 

box

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

249



Table

 

95.

 

User-response-dialog

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

(continued)

 

User-response-dialog

 

constant

 

Description

 

MSG_RETRYCANCEL

 

Specifies

 

the

 

display

 

of

 

the

 

Retry

 

and

 

Cancel

 

buttons

 

on

 

the

 

user-response

 

dialog

 

box

 

MSG_ABORTRETRYIGNORE

 

Specifies

 

the

 

display

 

of

 

the

 

Retry,

 

Ignore,

 

and

 

Abort

 

buttons

 

on

 

the

 

user-response

 

dialog

 

box

 

MSG_YESNO

 

Specifies

 

the

 

display

 

of

 

the

 

Yes

 

and

 

No

 

buttons

 

on

 

the

 

user-response

 

dialog

 

box

 

MSG_YESNOCANCEL

 

Specifies

 

the

 

display

 

of

 

the

 

Yes,

 

No,

 

and

 

Cancel

 

buttons

 

on

 

the

 

user-response

 

dialog

 

box

 

dialog-icon

 

constants

 

MSG_ERROR

 

Specifies

 

that

 

the

 

user-response

 

dialog

 

box

 

displays

 

the

 

error

 

icon

 

MSG_CRITIALERROR

 

Specifies

 

that

 

the

 

user-response

 

dialog

 

box

 

displays

 

the

 

critical-error

 

icon

 

MSG_WARNING

 

Specifies

 

that

 

the

 

user-response

 

dialog

 

box

 

displays

 

the

 

warning

 

icon

 

MSG_INFORMATION

 

Specifies

 

that

 

the

 

user-response

 

dialog

 

box

 

displays

 

the

 

information

 

icon

 

MSG_QUESTION

 

Specifies

 

that

 

the

 

user-response

 

dialog

 

box

 

displays

 

the

 

question-mark

 

icon

 

User-response

 

constants

 

ODK_OK

 

Specifies

 

the

 

OK

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_CANCEL

 

Specifies

 

the

 

Cancel

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_RETRY

 

Specifies

 

the

 

Retry

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_IGNORE

 

Specifies

 

the

 

Ignore

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_ABORT

 

Specifies

 

the

 

Abort

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_YES

 

Specifies

 

the

 

Yes

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_NO

 

Specifies

 

the

 

No

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_CLOSE

 

Specifies

 

the

 

Close

 

button

 

on

 

the

 

user-response

 

dialog

 

box

 

ODK_HELP

 

Specifies

 

the

 

Help

 

button

 

on

 

the

 

user-response

 

dialog

 

box

   

Cardinality

 

constants

 

Table

 

96

 

summarizes

 

the

 

cardinality

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

represent

 

valid

 

values

 

for

 

the

 

cardinality

 

of

 

an

 

agent

 

property.

 

All

 

cardinality

 

constants

 

are

 

of

 

type

 

String.

  

Table

 

96.

 

Cardinality

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

Cardinality

 

constant

 

Description

 

MULTIPLE_CARD

 

Specifies

 

that

 

an

 

agent

 

property

 

can

 

have

 

more

 

than

 

one

 

value;

 

that

 

is,

 

the

 

user

 

can

 

specify

 

more

 

than

 

one

 

value

 

for

 

the

 

property.

 

SINGLE_CARD

 

Specifies

 

that

 

an

 

agent

 

property

 

can

 

have

 

only

 

one

 

value;

 

that

 

is,

 

the

 

user

 

can

 

only

 

specify

 

one

 

value

 

for

 

the

 

property.

    

250

 

Business

 

Object

 

Development

 

Guide



Trace-level

 

constants

 

Table

 

97

 

summarizes

 

the

 

trace-level

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

represent

 

valid

 

trace

 

levels

 

for

 

the

 

tracing

 

method,

 

trace()

 

(defined

 

in

 

the

 

ODKUtility

 

class).

 

All

 

trace-level

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

97.

 

Trace-level

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

Trace-level

 

constant

 

Description

 

TRACELEVEL0

 

Represents

 

a

 

trace

 

level

 

0

 

(error

 

logging

 

on;

 

tracing

 

off)

 

TRACELEVEL1

 

Represents

 

a

 

trace

 

level

 

1

 

TRACELEVEL2

 

Represents

 

a

 

trace

 

level

 

2

 

TRACELEVEL3

 

Represents

 

a

 

trace

 

level

 

3

 

TRACELEVEL4

 

Represents

 

a

 

trace

 

level

 

4

 

TRACELEVEL5

 

Represents

 

a

 

trace

 

level

 

5

   

For

 

a

 

description

 

of

 

the

 

expected

 

content

 

at

 

each

 

trace

 

level,

 

see

 

Table

 

15

 

on

 

page

 

77.

 

Message-type

 

constants

 

Table

 

98

 

summarizes

 

the

 

message-type

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

indicate

 

the

 

severity

 

level

 

for

 

a

 

message

 

that

 

the

 

trace()

 

method

 

(defined

 

in

 

the

 

ODKUtility

 

class)

 

outputs.

 

All

 

message-type

 

constants

 

are

 

of

 

type

 

integer

 

(int).

  

Table

 

98.

 

Message-type

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

Message-type

 

constant

 

Description

 

XRD_FATAL

 

Represents

 

a

 

fatal

 

error

 

XRD_ERROR

 

Represents

 

an

 

error

 

XRD_URGENTWARNING

 

Represents

 

an

 

urgent

 

warning

 

XRD_WARNING

 

Represents

 

an

 

warning

 

XRD_INFO

 

Represents

 

an

 

informational

 

message

 

XRD_TRACE

 

Represents

 

a

 

trace

 

message

   

Important:

  

The

 

ODKConstant

 

interface

 

also

 

provides

 

message-type

 

constants

 

of

 

the

 

form

 

XRD_INT_messageType.

 

In

 

addition,

 

it

 

defines

 

the

 

XRD_UNKNOWN

 

constant

 

to

 

represent

 

an

 

undefined

 

message

 

type.

 

These

 

message-type

 

constants

 

are

 

for

 

internal

 

use

 

only.

 

Do

 

not

 

use

 

these

 

message-type

 

constants

 

in

 

your

 

ODA.

 

Node-nature

 

constants

 

Table

 

99

 

summarizes

 

the

 

node-nature

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

indicate

 

the

 

actions

 

that

 

the

 

user

 

can

 

take

 

on

 

a

 

tree

 

node

 

when

 

it

 

displays

 

within

 

the

 

Select

 

Source

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

All

 

node-nature

 

constants

 

are

 

of

 

type

 

integer

 

(int).

   

Chapter

 

22.

 

ODKConstant

 

interface

 

251



Table

 

99.

 

Node-nature

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

Node-nature

 

constant

 

Description

 

NODE_NATURE_NORMAL

 

Specifies

 

that

 

the

 

tree

 

node

 

is

 

“normal”;

 

that

 

is,

 

the

 

user

 

can

 

either

 

expand

 

the

 

node

 

or

 

select

 

the

 

node

 

(if

 

it

 

is

 

a

 

leaf

 

node).

 

NODE_NATURE_FILE

 

Specifies

 

that

 

the

 

tree

 

node

 

can

 

be

 

associated

 

with

 

a

 

file;

 

that

 

is,

 

Business

 

Object

 

Wizard

 

enables

 

the

 

Associate

 

File

 

menu

 

item

 

on

 

the

 

context-menu

 

of

 

the

 

node

 

name

 

to

 

allow

 

the

 

user

 

to

 

locate

 

the

 

file

 

to

 

associate

 

with

 

the

 

node.

   

Content-protocol

 

constants

 

Table

 

100

 

summarizes

 

the

 

content-protocol

 

constants

 

in

 

the

 

ODKConstant

 

interface.

 

These

 

constants

 

represent

 

the

 

content

 

protocol

 

for

 

the

 

ODA.

 

All

 

content-protocol

 

constants

 

are

 

of

 

type

 

byte.

  

Table

 

100.

 

Content-protocol

 

constants

 

of

 

the

 

ODKConstant

 

interface.

 

Content-protocol

 

constant

 

Description

 

CONTENT_PROTOCOL_ONREQUEST

 

Specifies

 

that

 

the

 

ODA

 

generates

 

its

 

content

 

“on

 

request”;

 

that

 

is,

 

Business

 

Object

 

Wizard

 

explicitly

 

request

 

content

 

generation

 

by

 

the

 

ODA.

 

When

 

such

 

content

 

is

 

ready,

 

the

 

ODA

 

runtime

 

notifies

 

Business

 

Object

 

Wizard,

 

which

 

can

 

then

 

retrieve

 

the

 

content

 

at

 

its

 

convenience.

 

CONTENT_PROTOCOL_CALLBACK

 

Specifies

 

that

 

the

 

ODA

 

generates

 

its

 

content

 

“spontaneously”;

 

that

 

is,

 

it

 

cannot

 

predict

 

or

 

guarantee

 

when

 

its

 

content

 

will

 

be

 

generated.

 

When

 

such

 

content

 

is

 

ready,

 

the

 

ODA

 

must

 

notify

 

Business

 

Object

 

Wizard,

 

which

 

can

 

then

 

retrieve

 

the

 

content

 

at

 

its

 

convenience.

   

Content-index

 

constant

 

Table

 

101

 

summarizes

 

the

 

content-index

 

constant

 

in

 

the

 

ODKConstant

 

interface.

 

This

 

constant

 

represents

 

a

 

special

 

value

 

to

 

the

 

content-retrieval

 

methods

 

that

 

indicates

 

to

 

return

 

all

 

generated

 

content.

 

The

 

content-index

 

constant

 

is

 

of

 

type

 

long.

  

Table

 

101.

 

Content-index

 

constant

 

of

 

the

 

ODKConstant

 

interface.

 

Content-index

 

constant

 

Description

 

GET_ALL_OBJECTS

 

Passed

 

as

 

an

 

argument

 

to

 

the

 

content-retrieval

 

method

 

of

 

the

 

ODA.

 

It

 

specifies

 

that

 

the

 

content-retrieval

 

method

 

should

 

return

 

all

 

generated

 

content.

   

For

 

more

 

information,

 

see

 

“Providing

 

access

 

to

 

generated

 

business

 

object

 

definitions”

 

on

 

page

 

131

 

and

 

“Providing

 

access

 

to

 

generated

 

files”

 

on

 

page

 

139.

   

252

 

Business

 

Object

 

Development

 

Guide



Chapter

 

23.

 

ODKException

 

class

 

The

 

ODKException

 

class

 

is

 

the

 

base

 

class

 

for

 

exceptions

 

in

 

the

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API.

 

The

 

ODK

 

API

 

extends

 

the

 

Java

 

Exception

 

class

 

to

 

create

 

its

 

own

 

exception

 

class

 

called:

 

com.crossworlds.ODK.ODKException

 

This

 

class

 

represents

 

an

 

exception

 

object,

 

which

 

methods

 

of

 

the

 

ODK

 

API

 

can

 

throw.

 

Note:

  

The

 

reference

 

description

 

for

 

each

 

ODK

 

API

 

method

 

lists

 

the

 

exceptions

 

thrown

 

by

 

that

 

method.

 

The

 

ODKException

 

class

 

defines

 

the

 

following:

 

v

   

“Methods”

 

v

   

“Exception

 

subclasses”

 

on

 

page

 

254

Methods

 

Table

 

102

 

summarizes

 

the

 

methods

 

in

 

the

 

ODKException

 

class.

  

Table

 

102.

 

Member

 

methods

 

of

 

the

 

ODKException

 

class.

 

Member

 

method

 

Description

 

Page

 

ODKException()

 

Creates

 

an

 

ODK

 

exception

 

object.

 

253

 

getMsg()

 

Retrieves

 

the

 

exception

 

message

 

from

 

the

 

exception

 

object.

 

253

   

ODKException()

 

Creates

 

an

 

exception

 

object.

 

Syntax

 

public

 

ODKException(String

 

msg);

 

Parameters

 

msg

 

is

 

the

 

exception

 

message

 

for

 

the

 

exception

 

object.

Return

 

values

 

A

 

newly

 

instantiated

 

ODKException

 

exception

 

object.

 

getMsg()

 

Retrieves

 

the

 

exception

 

message

 

from

 

the

 

exception

 

object.

 

Syntax

 

public

 

String

 

getMsg();

 

Parameters

 

None.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

253



Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

exception

 

message.

 

Exception

 

subclasses

 

Within

 

this

 

ODKException

 

class

 

are

 

subclasses

 

that

 

identify

 

particular

 

exceptions

 

possible

 

in

 

the

 

methods

 

of

 

the

 

ODK

 

API.

 

Table

 

103

 

lists

 

the

 

subclassed

 

exceptions.

  

Table

 

103.

 

ODKException

 

subclasses.

 

Exception

 

subclass

 

Definition

 

BusObjInvalidAttrException

 

Thrown

 

when

 

an

 

attribute

 

is

 

invalid.

 

BusObjInvalidDefException

 

Thrown

 

when

 

a

 

business

 

object

 

definition

 

is

 

invalid.

 

BusObjInvalidVerbException

 

Thrown

 

when

 

a

 

verb

 

is

 

invalid.

 

BusObjNoSuchAttrException

 

Thrown

 

when

 

the

 

attribute

 

does

 

not

 

exist

 

in

 

the

 

business

 

object

 

definition.

 

BusObjNoSuchVerbException

 

Thrown

 

when

 

the

 

verb

 

is

 

not

 

supported

 

by

 

the

 

business

 

object

 

definition.

 

ODKInvalidNodeException

 

Thrown

 

to

 

indicate

 

a

 

tree-node

 

exception.

 

ODKInvalidPropException

 

Thrown

 

to

 

indicate

 

exceptions

 

caused

 

by

 

an

 

invalid

 

property.

 

UnsupportedContentException

 

Thrown

 

if

 

the

 

ODA

 

cannot

 

supported

 

the

 

requested

 

generated

 

content.

    

254

 

Business

 

Object

 

Development

 

Guide



Chapter

 

24.

 

ODKUtility

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

ODKUtility

 

class

 

to

 

provide

 

an

 

Object

 

Discovery

 

Agent

 

(ODA)

 

with

 

various

 

utility

 

methods.

 

By

 

obtaining

 

a

 

handle

 

to

 

the

 

singleton

 

ODKUtility

 

object,

 

the

 

ODA

 

can

 

access

 

the

 

following

 

functionality:

 

v

   

Information

 

in

 

the

 

memory

 

of

 

the

 

ODA

 

runtime:

 

–

   

User-specified

 

values

 

for

 

the

 

ODA

 

configuration

 

properties

 

–

   

User-specified

 

values

 

for

 

the

 

business-object

 

properties
v

   

Utility

 

methods

 

that

 

provide

 

the

 

following

 

features:

 

–

   

Ability

 

to

 

send

 

messages

 

that

 

require

 

user

 

input

 

–

   

Ability

 

to

 

send

 

non-blocking

 

status

 

messages

 

–

   

Ability

 

to

 

perform

 

tracing

Note:

  

Use

 

the

 

getODKUtility()

 

method

 

in

 

this

 

class

 

to

 

obtain

 

a

 

handle

 

to

 

the

 

ODKUtility

 

object.

 

Table

 

104

 

summarizes

 

the

 

methods

 

in

 

the

 

ODKUtility

 

class.

  

Table

 

104.

 

Member

 

methods

 

of

 

the

 

ODKUtility

 

class.

 

Member

 

method

 

Description

 

Page

 

contentComplete()

 

Notifies

 

Business

 

Object

 

Wizard

 

that

 

the

 

ODA

 

has

 

completed

 

content

 

generation

 

when

 

using

 

the

 

callback

 

protocol.

 

255

 

getAgentProperty()

 

Retrieves

 

the

 

specified

 

ODA

 

configuration

 

property.

 

256

 

getAllAgentProperties()

 

Retrieves

 

all

 

ODA

 

configuration

 

properties.

 

257

 

getAllBOSpecificProperties()

 

Retrieves

 

all

 

business-object

 

properties.

 

257

 

getBOSpecificProperty()

 

Retrieves

 

the

 

specified

 

business-object

 

property.

 

258

 

getBOSpecificProps()

 

Sends

 

the

 

specified

 

business-object

 

properties

 

to

 

the

 

BO

 

Properties

 

dialog

 

box

 

for

 

user

 

input.

 

258

 

getClientFile()

 

Requests

 

that

 

Business

 

Object

 

Wizard

 

retrieve

 

a

 

specified

 

file.

 

259

 

getMsg()

 

Returns

 

a

 

message

 

from

 

the

 

ODA

 

message

 

file.

 

260

 

getODKUtility()

 

Returns

 

a

 

handle

 

to

 

an

 

ODKUtility

 

object.

 

261

 

sendMsg()

 

Displays

 

a

 

user-response

 

dialog

 

box,

 

which

 

includes

 

a

 

message

 

and

 

button,

 

and

 

requires

 

a

 

response

 

from

 

the

 

user.

 

262

 

sendStatusMsg()

 

Displays

 

a

 

message

 

to

 

the

 

user.

 

264

 

trace()

 

Writes

 

a

 

message

 

to

 

the

 

trace

 

file.

 

264

   

contentComplete()

 

Notifies

 

Business

 

Object

 

Wizard

 

that

 

the

 

ODA

 

has

 

completed

 

its

 

generation

 

of

 

content

 

for

 

the

 

callback

 

content

 

protocol.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

255



Syntax

 

public

 

void

 

contentComplete(ContentMetaData

 

contentMetaData);

 

Parameters

 

contentMetaData

 

Is

 

a

 

content-metadata

 

object

 

that

 

describes

 

the

 

current

 

state

 

of

 

the

 

generated

 

content.

Return

 

values

 

None.

 

Notes

 

The

 

contentComplete()

 

method

 

indicates

 

that

 

the

 

ODA

 

has

 

completed

 

generation

 

of

 

its

 

content.

 

In

 

the

 

callback

 

protocol,

 

Business

 

Object

 

Wizard

 

does

 

not

 

initiate

 

content

 

generation

 

by

 

calling

 

the

 

appropriate

 

content-generation

 

method.

 

Instead,

 

the

 

ODA

 

initiates

 

content

 

generation

 

and

 

Business

 

Object

 

Wizard

 

waits

 

for

 

the

 

ODA

 

to

 

notify

 

it

 

when

 

this

 

content

 

generation

 

is

 

complete.

 

The

 

ODA

 

performs

 

this

 

notification

 

by

 

calling

 

contentComplete().

 

Once

 

Business

 

Object

 

Wizard

 

is

 

notified,

 

it

 

calls

 

the

 

appropriate

 

content-retrieval

 

method

 

to

 

obtain

 

the

 

generated

 

content.

   

Important

 

If

 

the

 

ODA

 

uses

 

the

 

callback

 

protocol

 

for

 

a

 

particular

 

content

 

generation,

 

it

 

must

 

call

 

the

 

contentComplete()

 

method

 

to

 

notify

 

Business

 

Object

 

Wizard

 

that

 

the

 

content

 

is

 

available.

 

Otherwise,

 

Business

 

Object

 

Wizard

 

does

 

not

 

know

 

that

 

the

 

generated

 

content

 

is

 

available

 

for

 

retrieval.

 

The

 

contentMetaData

 

object

 

must

 

indicate

 

the

 

type

 

of

 

generated

 

content

 

as

 

well

 

as

 

the

 

number

 

of

 

items

 

in

 

the

 

generated

 

content.

 

getAgentProperty()

 

Retrieves

 

the

 

specified

 

ODA

 

configuration

 

property.

 

Syntax

 

public

 

AgentProperty

 

getAgentProperty(String

 

propName);

 

Parameters

 

propName

 

Is

 

the

 

name

 

of

 

the

 

configuration

 

property

 

to

 

retrieve.

Return

 

values

 

An

 

AgentProperty

 

object

 

that

 

contains

 

the

 

specified

 

configuration

 

property,

 

or

 

null

 

if

 

no

 

configuration

 

property

 

exists

 

of

 

that

 

name

 

exists.

 

Notes

 

The

 

getAgentProperty()

 

method

 

retrieves

 

the

 

propName

 

configuration

 

property

 

from

 

the

 

ODA-runtime

 

memory.

 

Business

 

Object

 

Wizard

 

reads

 

configuration

 

properties

 

into

 

the

 

ODA-runtime

 

memory

 

after

 

the

 

user

 

specifies

 

configuration-property

 

values

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box.

 

This

 

method

   

256

 

Business

 

Object

 

Development

 

Guide



returns

 

the

 

specified

 

configuration

 

property

 

as

 

an

 

AgentProperty

 

object.

 

You

 

can

 

obtain

 

information

 

about

 

the

 

property

 

by

 

accessing

 

the

 

object’s

 

member

 

variables.

 

See

 

also

 

getAgentProperties(),

 

getAllAgentProperties()

 

getAllAgentProperties()

 

Retrieves

 

all

 

ODA

 

configuration

 

properties.

 

Syntax

 

public

 

Hashtable

 

getAllAgentProperties();

 

Parameters

 

None.

 

Return

 

values

 

A

 

reference

 

to

 

the

 

java.util.Hashtable

 

object

 

that

 

contains

 

the

 

ODA

 

configuration

 

properties

 

(represented

 

as

 

AgentProperty

 

objects),

 

keyed

 

on

 

the

 

property

 

name.

 

Notes

 

The

 

getAllAgentProperties()

 

method

 

retrieves

 

all

 

ODA

 

configuration

 

properties

 

from

 

the

 

ODA-runtime

 

memory.

 

Business

 

Object

 

Wizard

 

reads

 

configuration

 

properties

 

into

 

ODA-runtime

 

memory

 

after

 

the

 

user

 

specifies

 

configuration-
property

 

values

 

in

 

the

 

Configure

 

Agent

 

dialog

 

box.

 

This

 

method

 

retrieves

 

the

 

configuration

 

properties

 

as

 

a

 

Hashtable

 

object,

 

which

 

maps

 

keys

 

to

 

values.

 

The

 

keys

 

are

 

the

 

names

 

of

 

the

 

properties

 

and

 

values

 

are

 

the

 

associated

 

property

 

values.

 

Use

 

methods

 

of

 

the

 

Hashtable

 

class

 

(such

 

as

 

keys()

 

and

 

elements())

 

to

 

obtain

 

the

 

information

 

from

 

this

 

structure.

 

See

 

also

 

getAgentProperties(),

 

getAgentProperty()

 

getAllBOSpecificProperties()

 

Retrieves

 

all

 

business-object

 

properties

 

from

 

the

 

BO

 

Properties

 

dialog

 

box.

 

Syntax

 

public

 

Hashtable

 

getAllBOSpecificProperties();

 

Parameters

 

None.

 

Return

 

values

 

A

 

reference

 

to

 

a

 

java.util.Hashtable

 

object

 

that

 

contains

 

the

 

business-object

 

properties

 

(represented

 

as

 

AgentProperty

 

objects),

 

keyed

 

on

 

the

 

property

 

name.

 

Notes

 

The

 

getAllBOSpecificProperties()

 

method

 

retrieves

 

all

 

business-object

 

properties

 

from

 

the

 

ODA-runtime

 

memory.

 

Business

 

Object

 

Wizard

 

saves

 

these

 

properties

 

into

   

Chapter

 

24.

 

ODKUtility

 

class

 

257



memory

 

after

 

the

 

user

 

specifies

 

their

 

values

 

in

 

the

 

BO

 

Properties

 

dialog

 

box

 

(part

 

of

 

Step

 

5).

 

This

 

method

 

returns

 

the

 

business-object

 

properties

 

as

 

a

 

Hashtable

 

object,

 

which

 

maps

 

keys

 

to

 

values.

 

The

 

keys

 

are

 

the

 

names

 

of

 

the

 

business-object

 

properties

 

and

 

values

 

are

 

the

 

associated

 

property

 

values.

 

Use

 

methods

 

of

 

the

 

Hashtable

 

class

 

(such

 

as

 

keys()

 

and

 

elements())

 

to

 

obtain

 

the

 

information

 

from

 

this

 

structure.

 

See

 

also

 

getBOSpecificProperty(),

 

getBOSpecificProps()

 

getBOSpecificProperty()

 

Retrieves

 

the

 

specified

 

business-object

 

property.

 

Syntax

 

public

 

AgentProperty

 

getBOSpecificProperty(String

 

propName);

 

Parameters

 

propName

 

Is

 

the

 

name

 

of

 

the

 

business-object

 

property

 

to

 

retrieve.

Return

 

values

 

An

 

AgentProperty

 

object

 

that

 

contains

 

the

 

specified

 

business-object

 

property,

 

or

 

null

 

if

 

no

 

business-object

 

property

 

of

 

that

 

name

 

exists.

 

Notes

 

The

 

getBOSpecificProperty()

 

method

 

retrieves

 

the

 

propName

 

business-object

 

property

 

from

 

the

 

ODA-runtime

 

memory.

 

Business

 

Object

 

Wizard

 

saves

 

these

 

properties

 

into

 

memory

 

after

 

the

 

user

 

specifies

 

their

 

values

 

in

 

the

 

BO

 

Properties

 

dialog

 

box

 

(part

 

of

 

Step

 

5).

 

This

 

method

 

returns

 

the

 

specified

 

business-object

 

property

 

as

 

an

 

AgentProperty

 

object.

 

You

 

can

 

obtain

 

information

 

about

 

the

 

property

 

by

 

accessing

 

the

 

object’s

 

member

 

variables.

 

See

 

also

 

getAllBOSpecificProperties(),

 

getBOSpecificProps()

 

getBOSpecificProps()

 

Sends

 

the

 

specified

 

business-object

 

properties

 

to

 

the

 

BO

 

Properties

 

dialog

 

box

 

for

 

user

 

input.

 

Syntax

 

public

 

Hashtable

 

getBOSpecificProps(AgentProperty[]

 

properties,

    

String

 

titleBarText);

 

public

 

Hashtable

 

getBOSpecificProps(AgentProperty[]

 

properties,

    

String

 

titleBarText,

 

String

 

propGridText);

 

Parameters

 

properties

 

Is

 

an

 

array

 

of

 

business-object

 

properties,

 

each

 

property

 

in

 

an

 

AgentProperty

 

object.

 

titleBarText

 

Is

 

text

 

to

 

display

 

in

 

the

 

title

 

bar

 

of

 

the

 

BO

 

Properties

 

dialog

 

box.

   

258

 

Business

 

Object

 

Development

 

Guide



propGridText

 

Is

 

text

 

to

 

display

 

in

 

a

 

text

 

area

 

above

 

the

 

property

 

grid

 

of

 

the

 

BO

 

Properties

 

dialog

 

box.

Return

 

values

 

A

 

Java

 

Hashtable

 

object

 

of

 

business-object

 

properties

 

(as

 

AgentProperty

 

objects)

 

keyed

 

on

 

the

 

property

 

name.

 

Exceptions

 

ODKInvalidPropException

 

Thrown

 

if

 

the

 

property

 

is

 

invalid—for

 

example,

 

if

 

it

 

does

 

not

 

have

 

a

 

name.

 

XMLException

 

Thrown

 

if

 

the

 

XML

 

conversion

 

of

 

the

 

properties

 

failed.

Notes

 

The

 

getBOSpecificProps()

 

method

 

sends

 

the

 

properties

 

array

 

of

 

business-object

 

properties

 

to

 

Business

 

Object

 

Wizard,

 

who

 

displays

 

them

 

in

 

the

 

BO

 

Properties

 

dialog

 

box.

 

From

 

this

 

dialog

 

box,

 

the

 

user

 

can

 

enter

 

or

 

change

 

these

 

property

 

values.

 

Before

 

calling

 

the

 

getBOSpecificProps()

 

method,

 

you

 

must

 

instantiate

 

and

 

initialize

 

agent-property

 

(AgentProperty)

 

objects

 

for

 

each

 

business-object

 

property

 

and

 

store

 

each

 

property

 

in

 

the

 

properties

 

business-object-property

 

array.

 

The

 

getBOSpecificProps()

 

method

 

passes

 

this

 

business-object-property

 

array

 

to

 

its

 

caller,

 

Business

 

Object

 

Wizard.

 

Once

 

the

 

user

 

has

 

set

 

the

 

business-object

 

properties

 

from

 

the

 

BO

 

Properties

 

dialog

 

box,

 

Business

 

Object

 

Wizard

 

saves

 

these

 

user-specified

 

properties

 

in

 

a

 

java.util.Hashtable

 

object

 

and

 

the

 

ODA-runtime

 

memory.

 

Within

 

the

 

ODA,

 

you

 

can

 

obtain

 

the

 

user-initialized

 

properties

 

in

 

either

 

of

 

the

 

following

 

ways:

 

v

   

From

 

ODA-runtime

 

memory

 

Use

 

the

 

getBOSpecificProperty()

 

or

 

getAllBOSpecificProperties()

 

method

 

in

 

the

 

ODKUtility

 

class.

 

The

 

user-initialized

 

values

 

for

 

the

 

property

 

are

 

in

 

the

 

allValues

 

member

 

variable

 

of

 

its

 

agent-property

 

(AgentProperty)

 

object.

 

v

   

From

 

the

 

Hashtable

 

object

 

that

 

getBOSpecificProps()

 

returns

 

Use

 

the

 

methods

 

of

 

the

 

Hashtable

 

object

 

to

 

obtain

 

the

 

agent

 

properties.

For

 

more

 

information

 

on

 

how

 

to

 

use

 

getBOSpecificProps(),

 

see

 

“Requesting

 

business-object

 

properties”

 

on

 

page

 

119.

 

See

 

also

 

getAllBOSpecificProperties(),

 

getBOSpecificProperty()

 

getClientFile()

 

Requests

 

that

 

Business

 

Object

 

Wizard

 

retrieve

 

a

 

specified

 

file.

 

Syntax

 

public

 

byte[]

 

getClientFile(String

 

srcNodePath,

 

ODKAgentBase2

 

ODAobj);

 

Parameters

 

srcNodePath

 

Is

 

the

 

source-node

 

path

 

of

 

the

 

file

 

to

 

request

 

from

 

Business

 

Object

 

Wizard.

   

Chapter

 

24.

 

ODKUtility

 

class

 

259



ODAobj

 

Is

 

the

 

ODA

 

(ODKAgentBase2)

 

object,

 

which

 

is

 

used

 

to

 

verify

 

that

 

the

 

ODA

 

is

 

authorized

 

to

 

perform

 

the

 

operation;

 

that

 

is,

 

that

 

the

 

ODA

 

generates

 

file

 

content.

Return

 

values

 

The

 

contents

 

of

 

the

 

specified

 

operating-system

 

file,

 

as

 

a

 

byte

 

array.

 

Exceptions

 

UnsupportedContentException

 

Thrown

 

if

 

the

 

ODA

 

does

 

not

 

support

 

generation

 

of

 

file

 

content;

 

that

 

is,

 

it

 

does

 

not

 

implement

 

the

 

IGeneratesBinFiles

 

interface.

 

Java.io.IOException

 

Thrown

 

if

 

an

 

error

 

occurs

 

during

 

file

 

retrieval,

 

for

 

example

 

the

 

file

 

was

 

not

 

found.

Notes

 

The

 

getClientFile()

 

method

 

requests

 

that

 

Business

 

Object

 

Wizard

 

return

 

the

 

contents

 

of

 

the

 

operating-system

 

file

 

that

 

srcNodePath

 

identifies.

 

This

 

srcNodePath

 

path

 

takes

 

the

 

following

 

form:

 

fileNodePath:fileLocation

 

where:

 

v

   

fileNodePath

 

is

 

the

 

colon

 

(:)

 

separated

 

list

 

of

 

source-node

 

names

 

for

 

the

 

node

 

that

 

is

 

associated

 

with

 

the

 

file.

 

For

 

example,

 

Apollo:Vulso:Flavius.xml

 

v

   

fileLocation

 

is

 

the

 

full

 

operating-system

 

path

 

to

 

the

 

file.

 

For

 

example,

 

C:\temp\XMLFiles\Flavius.xml

Use

 

the

 

getClientFile()

 

method

 

to

 

access

 

an

 

associated

 

file

 

for

 

objects

 

that

 

source

 

nodes

 

represent.

 

If

 

a

 

source

 

node

 

can

 

have

 

a

 

file

 

associated

 

with

 

it,

 

then

 

the

 

ability

 

to

 

interpret

 

the

 

file’s

 

source-node

 

path

 

and

 

to

 

read

 

the

 

contents

 

of

 

this

 

file

 

is

 

needed

 

at

 

both

 

of

 

the

 

following

 

points:

 

v

   

During

 

source-node

 

generation,

 

the

 

getTreeNodes()

 

method

 

must

 

be

 

able

 

to

 

“discover”

 

a

 

child

 

node

 

that

 

is

 

in

 

a

 

file.

 

v

   

During

 

content

 

generation,

 

the

 

method

 

that

 

generates

 

content

 

must

 

be

 

able

 

to

 

access

 

information

 

in

 

nodes

 

that

 

are

 

in

 

a

 

file.

For

 

more

 

information,

 

see

 

“Reading

 

files

 

for

 

source

 

data”

 

on

 

page

 

134.

 

getMsg()

 

Retrieves

 

a

 

message

 

from

 

the

 

ODA

 

message

 

file.

 

Syntax

 

public

 

String

 

getMsg(int

 

msgNum,

 

int

 

msgType);

 

public

 

String

 

getMsg(int

 

msgNum,

 

int

 

msgType,

 

msgParameters);

 

public

 

String

 

getMsg(int

 

msgNum,

 

int

 

msgType,

 

Vector

 

paramArray);

 

Parameters

 

msgNum

 

Specifies

 

the

 

message

 

number

 

from

 

the

 

message

 

file.

 

msgParameters

 

Is

 

an

 

optional

 

list

 

of

 

up

 

to

 

three

 

String

 

parameter

 

values,

 

each

 

corresponding

 

to

 

a

 

parameter

 

in

 

the

 

message

 

list.

   

260

 

Business

 

Object

 

Development

 

Guide



msgType

 

Is

 

the

 

type

 

of

 

message,

 

specified

 

as

 

one

 

of

 

the

 

following

 

message-type

 

constants:

 

ODKConstant.XRD_FATAL

 

ODKConstant.XRD_ERROR

 

ODKConstant.XRD_URGENTWARNING

 

ODKConstant.XRD_WARNING

 

ODKConstant.XRD_INFO

 

paramArray

 

Is

 

an

 

optional

 

list

 

of

 

parameters,

 

as

 

a

 

Java

 

Vector,

 

to

 

be

 

inserted

 

in

 

the

 

message’s

 

parameters.

Exceptions

 

IllegalArgumentException

 

Thrown

 

if

 

the

 

msgType

 

argument

 

is

 

not

 

valid.

Return

 

values

 

A

 

String

 

that

 

contains

 

the

 

text

 

associated

 

with

 

the

 

specified

 

message

 

number.

 

If

 

message

 

parameters

 

have

 

been

 

provided,

 

these

 

values

 

have

 

been

 

inserted

 

as

 

appropriate

 

into

 

the

 

message.

 

If

 

msgNum

 

is

 

not

 

valid,

 

the

 

method

 

returns

 

null.

 

Notes

 

The

 

getMsg()

 

method

 

retrieves

 

a

 

message

 

from

 

a

 

message

 

file.

 

It

 

identifies

 

the

 

name

 

of

 

this

 

file

 

from

 

the

 

MessageFile

 

startup

 

property,

 

which

 

the

 

ODK

 

automatically

 

includes

 

with

 

the

 

ODA

 

startup

 

properties.

 

The

 

getMsg()

 

method

 

provides

 

the

 

following

 

forms:

 

v

   

The

 

first

 

form

 

retrieves

 

a

 

message

 

with

 

the

 

specified

 

message

 

number

 

(msgNum)

 

from

 

the

 

ODA

 

message

 

file.

 

v

   

The

 

second

 

form

 

also

 

retrieves

 

the

 

message

 

with

 

the

 

specified

 

message

 

number

 

(msgNum)

 

from

 

the

 

ODA

 

message

 

file.

 

It

 

also

 

provides

 

the

 

ability

 

to

 

specify

 

up

 

to

 

three

 

String

 

message

 

parameters

 

(msgParameters)

 

to

 

be

 

inserted

 

in

 

the

 

message

 

before

 

retrieving

 

it.

 

v

   

The

 

third

 

form

 

also

 

sends

 

a

 

message

 

from

 

the

 

ODA

 

message

 

file

 

and

 

provides

 

message

 

parameters.

 

However,

 

with

 

this

 

form

 

you

 

can

 

send

 

the

 

message

 

parameters

 

as

 

elements

 

in

 

a

 

Java

 

Vector,

 

paramArray.

For

 

information

 

on

 

ODA

 

message

 

files,

 

see

 

“Message

 

files”

 

on

 

page

 

153.

 

For

 

information

 

on

 

message

 

parameters,

 

see

 

“Using

 

parameter

 

values”

 

on

 

page

 

156.

 

See

 

also

 

trace()

 

getODKUtility()

 

Returns

 

a

 

handle

 

to

 

the

 

singleton

 

ODKUtility

 

object.

 

Syntax

 

public

 

static

 

ODKUtility

 

getODKUtility();

 

Parameters

 

None.

   

Chapter

 

24.

 

ODKUtility

 

class

 

261



Return

 

values

 

A

 

handle

 

to

 

an

 

ODKUtility

 

object.

 

Notes

 

The

 

getODKUtility()

 

method

 

provides

 

access

 

within

 

the

 

ODA

 

code

 

to

 

the

 

utilities

 

in

 

the

 

ODKUtility

 

class.

 

You

 

must

 

use

 

getODKUtility()

 

to

 

obtain

 

a

 

handle

 

to

 

the

 

singleton

 

object

 

of

 

this

 

class

 

before

 

you

 

access

 

the

 

ODKUtility

 

methods.

 

Note:

  

The

 

call

 

to

 

getODKUtility()

 

is

 

often

 

performed

 

in

 

the

 

getAgentProperties()

 

method.

 

For

 

more

 

information,

 

see

 

“Obtaining

 

the

 

handle

 

to

 

the

 

ODKUtility

 

object”

 

on

 

page

 

102.

 

See

 

also

 

getAgentProperties()

 

sendMsg()

 

Displays

 

a

 

user-response

 

dialog

 

box,

 

which

 

includes

 

a

 

message

 

and

 

requires

 

a

 

response

 

from

 

the

 

user.

 

Syntax

 

public

 

int

 

sendMsg(String

 

msg,

 

int

 

dialogFlags);

 

Parameters

 

msg

 

Is

 

the

 

message

 

to

 

display

 

in

 

the

 

user-response

 

dialog

 

box.

 

dialogFlags

 

Is

 

a

 

set

 

of

 

flags

 

to

 

indicate

 

the

 

buttons

 

and

 

icons

 

to

 

display

 

as

 

part

 

of

 

the

 

user-response

 

dialog

 

box.

 

Indicate

 

these

 

buttons

 

and

 

icons

 

as

 

a

 

mask

 

of

 

the

 

user-response-dialog

 

constants

 

shown

 

in

 

Table

 

105.

Return

 

values

 

An

 

integer

 

that

 

indicates

 

the

 

button

 

that

 

the

 

user

 

has

 

clicked

 

to

 

terminate

 

the

 

user-response

 

dialog

 

box.

 

Compare

 

this

 

integer

 

value

 

with

 

the

 

following

 

user-response

 

constants:

 

ODKConstant.ODK_OK

  

The

 

user

 

selected

 

the

 

OK

 

button.

 

ODKConstant.ODK_CANCEL

  

The

 

user

 

selected

 

the

 

Cancel

 

button.

 

ODKConstant.ODK_RETRY

  

The

 

user

 

selected

 

the

 

Retry

 

button.

 

ODKConstant.ODK_IGNORE

  

The

 

user

 

selected

 

the

 

Ignore

 

button.

 

ODKConstant.ODK_ABORT

  

The

 

user

 

selected

 

the

 

Abort

 

button.

 

ODKConstant.ODK_YES

  

The

 

user

 

selected

 

the

 

Yes

 

button.

 

ODKConstant.ODK_NO

  

The

 

user

 

selected

 

the

 

No

 

button.

   

262

 

Business

 

Object

 

Development

 

Guide



ODKConstant.ODK_CLOSE

  

The

 

user

 

selected

 

the

 

Close

 

button.

 

ODKConstant.ODK_HELP

  

The

 

user

 

selected

 

the

 

Help

 

button.

Notes

 

The

 

sendMsg()

 

method

 

sends

 

a

 

request

 

to

 

Business

 

Object

 

Wizard

 

to

 

display

 

a

 

user-response

 

dialog

 

box

 

to

 

the

 

user.

 

You

 

specify

 

the

 

following

 

components

 

of

 

this

 

user-response

 

dialog

 

box:

 

v

   

The

 

msg

 

string

 

contains

 

text

 

to

 

indicate

 

the

 

condition,

 

question,

 

or

 

information

 

you

 

need

 

the

 

user

 

to

 

see.

 

v

   

A

 

dialogFlags

 

mask

 

contains

 

features

 

that

 

describe

 

the

 

appearance

 

of

 

the

 

user-response

 

dialog

 

box,

 

as

 

follows:

 

–

   

The

 

buttons

 

to

 

display

 

The

 

user

 

clicks

 

one

 

of

 

these

 

buttons

 

to

 

terminate

 

the

 

user-response

 

dialog

 

box.

 

You

 

specify

 

these

 

buttons

 

with

 

the

 

dialog-button

 

constants,

 

in

 

the

 

“Buttons

 

to

 

display”

 

section

 

of

 

Table

 

105.

 

–

   

The

 

icon

 

to

 

display

 

The

 

icon

 

determines

 

the

 

type

 

of

 

user-response

 

dialog

 

box

 

to

 

display.

 

You

 

specify

 

the

 

dialog

 

box

 

type

 

with

 

one

 

of

 

the

 

dialog-icon

 

constants,

 

in

 

the

 

“dialog

 

box

 

icon

 

to

 

display”

 

section

 

of

 

Table

 

105.

 

Table

 

105.

 

Display

 

appearance

 

of

 

the

 

user-response

 

dialog

 

box

 

Appearance

 

of

 

user-response

 

dialog

 

box

 

ODKConstant

 

user-response-dialog

 

constant

 

Buttons

 

to

 

display:

 

OK

 

MSG_OK

 

OK,

 

CANCEL

 

MSG_OKCANCEL

 

RETRY,

 

CANCEL

 

MSG_RETRYCANCEL

 

RETRY,

 

IGNORE,

 

ABORT

 

MSG_ABORTRETRYIGNORE

 

YES,

 

NO

 

MSG_YESNO

 

YES,

 

NO,

 

CANCEL

 

MSG_YESNOCANCEL

 

dialog

 

box

 

icon

 

to

 

display:

 

Error

 

icon

 

MSG_ERROR

 

Critical-error

 

icon

 

MSG_CRITICALERROR

 

Warning

 

icon

 

MSG_WARNING

 

Information

 

icon

 

MSG_INFORMATION

 

Question-mark

 

icon

 

MSG_QUESTION

   

Note:

  

All

 

user-response-dialog

 

constants

 

in

 

Table

 

105

 

are

 

defined

 

in

 

the

 

ODKConstant

 

interface.

 

To

 

specify

 

the

 

dialogFlags

 

argument,

 

create

 

a

 

mask

 

of

 

the

 

user-response-dialog

 

constants

 

that

 

describe

 

the

 

appearance

 

of

 

your

 

user-response

 

dialog

 

box.

 

For

 

example,

 

the

 

following

 

call

 

to

 

sendMsg()

 

creates

 

a

 

user-response

 

dialog

 

box

 

that

 

displays

 

an

 

error

 

icon

 

as

 

well

 

as

 

the

 

buttons

 

Retry

 

and

 

Cancel:

 

String

 

msg

 

=

 

new

 

String(bdkUtil.getMsg(1002,

 

ODKConstant.XRD_ERROR,

 

params));

 

bdkUtil.sendMsg(msg,

 

ODKConstant.MSG_RETRYCANCEL

 

|

 

ODKConstant.MSG_ERROR);

 

See

 

also

 

sendStatusMsg()

   

Chapter

 

24.

 

ODKUtility

 

class

 

263



sendStatusMsg()

 

Displays

 

a

 

message

 

to

 

the

 

user.

 

Syntax

 

public

 

void

 

sendStatusMsg(String

 

msg);

 

Parameters

 

msg

 

Is

 

the

 

message

 

to

 

send

 

to

 

the

 

user.

Return

 

values

 

None.

 

See

 

also

 

sendMsg()

 

trace()

 

Writes

 

a

 

message

 

to

 

the

 

trace

 

file.

 

Syntax

 

public

 

void

 

trace(int

 

level,

 

int

 

msgType,

 

String

 

message);

 

public

 

void

 

trace(int

 

level,

 

int

 

msgNum,

 

int

 

msgType);

 

public

 

void

 

trace(int

 

level,

 

int

 

msgNum,

 

int

 

msgType,

 

msgParameters);

 

public

 

void

 

trace(int

 

level,

 

int

 

msgNum,

 

int

 

msgType,

 

Vector

 

paramArray);

 

public

 

void

 

trace(int

 

level,

 

int

 

msgType,

 

BusObjDef

 

boDef);

 

public

 

void

 

trace(int

 

level,

 

int

 

msgType,

 

AgentProperty[]

 

properties,

    

String

 

foreword);

 

Parameters

 

boDef

 

Is

 

the

 

business

 

object

 

definition

 

to

 

be

 

written

 

to

 

the

 

trace

 

file.

 

foreword

 

Is

 

a

 

String

 

that

 

clarifies

 

the

 

message

 

before

 

the

 

properties

 

property

 

array—for

 

example,

 

“These

 

are

 

the

 

properties

 

for

 

the

 

Object

 

Discovery

 

Agent”.

 

level

 

Is

 

the

 

trace

 

level,

 

specified

 

as

 

one

 

of

 

the

 

following

 

trace-level

 

constants:

 

ODKConstant.TRACELEVEL0

 

ODKConstant.TRACELEVEL1

 

ODKConstant.TRACELEVEL2

 

ODKConstant.TRACELEVEL3

 

ODKConstant.TRACELEVEL4

 

ODKConstant.TRACELEVEL5

 

message

 

Is

 

the

 

String

 

message

 

to

 

be

 

written

 

to

 

the

 

trace

 

file.

 

msgNum

 

Specifies

 

the

 

message

 

number

 

in

 

the

 

message

 

file.

 

msgParameters

 

Is

 

an

 

optional

 

list

 

of

 

up

 

to

 

three

 

String

 

parameter

 

values,

 

each

 

corresponding

 

to

 

a

 

parameter

 

in

 

the

 

message

 

list.

 

msgType

 

Is

 

the

 

type

 

of

 

message,

 

specified

 

as

 

one

 

of

 

the

 

following

 

message-type

 

constants:

   

264

 

Business

 

Object

 

Development

 

Guide



ODKConstant.XRD_FATAL

 

ODKConstant.XRD_ERROR

 

ODKConstant.XRD_URGENTWARNING

 

ODKConstant.XRD_WARNING

 

ODKConstant.XRD_INFO

 

ODKConstant.XRD_TRACE

 

paramArray

 

A

 

vector

 

of

 

parameters

 

to

 

be

 

inserted

 

in

 

the

 

message.

 

properties

 

Is

 

an

 

array

 

of

 

agent-property

 

(AgentProperty)

 

objects

 

to

 

be

 

written

 

to

 

the

 

trace

 

file.

Return

 

values

 

None.

 

Exceptions

 

IllegalArgumentException

 

Thrown

 

if

 

the

 

properties

 

argument

 

is

 

null

 

or

 

the

 

msgType

 

argument

 

is

 

invalid.

Notes

 

The

 

trace()

 

method

 

sends

 

the

 

specified

 

information

 

to

 

the

 

trace

 

file

 

when

 

the

 

trace

 

level

 

is

 

less

 

than

 

or

 

equal

 

to

 

the

 

system

 

trace

 

level.

 

The

 

system

 

trace

 

level

 

is

 

set

 

through

 

the

 

TraceLevel

 

configuration

 

property,

 

which

 

Business

 

Object

 

Wizard

 

automatically

 

includes

 

in

 

the

 

ODA

 

configuration

 

properties.

 

A

 

trace

 

level

 

of

 

zero

 

(0)

 

activates

 

error

 

logging;

 

that

 

is,

 

trace()

 

sends

 

an

 

error

 

message

 

to

 

the

 

trace

 

file.

 

The

 

non-zero

 

trace

 

levels,

 

shown

 

in

 

Table

 

106,

 

activate

 

tracing;

 

that

 

is,

 

trace()

 

sends

 

a

 

trace

 

message

 

to

 

the

 

trace

 

file.

  

Table

 

106.

 

Trace

 

levels

 

for

 

an

 

ODA

 

Trace

 

level

 

Description

 

Trace-level

 

constant

 

0

 

Log

 

an

 

error

 

message.

 

TRACELEVEL0

 

1

 

Trace

 

whenever

 

a

 

method

 

is

 

entered.

 

Usually

 

provides

 

status

 

messages

 

and

 

key

 

information

 

for

 

each

 

business

 

object

 

definition.

 

TRACELEVEL1

 

2

 

Trace

 

the

 

agent

 

properties

 

and

 

the

 

values

 

received.

 

TRACELEVEL2

 

3

 

Trace

 

the

 

name

 

of

 

the

 

business

 

object

 

definition.

 

Usually

 

provides

 

the

 

business-object

 

properties

 

and

 

the

 

values

 

received.

 

TRACELEVEL3

 

4

 

Trace

 

a

 

message

 

whenever

 

a

 

method

 

is

 

entered

 

and

 

exited.

 

Record

 

the

 

spawning

 

of

 

all

 

threads.

 

TRACELEVEL4

 

5

 

Indicate

 

the

 

ODA

 

initialization.

 

Provide

 

the

 

values

 

for

 

all

 

agent

 

properties

 

retrieved,

 

a

 

detailed

 

status

 

of

 

each

 

thread

 

that

 

the

 

ODA

 

has

 

spawned,

 

and

 

a

 

dump

 

of

 

the

 

business

 

object

 

definition.

 

TRACELEVEL5

   

The

 

user

 

establishes

 

the

 

name

 

of

 

the

 

ODA’s

 

trace

 

destination

 

through

 

the

 

TraceFileName

 

configuration

 

property,

 

which

 

the

 

ODK

 

automatically

 

includes

 

in

 

the

 

ODA

 

startup

 

properties.

 

Therefore,

 

tracing

 

cannot

 

begin

 

until

 

after

 

the

 

init()

 

method

 

(which

 

receives

 

initialized

 

startup

 

properties)

 

starts.

 

The

 

trace()

 

method

 

provides

 

the

 

following

 

forms:

 

v

   

The

 

first

 

four

 

forms

 

send

 

a

 

text

 

message

 

to

 

the

 

trace

 

file:

   

Chapter

 

24.

 

ODKUtility

 

class

 

265



–

   

The

 

first

 

form

 

sends

 

the

 

specified

 

text

 

message

 

to

 

the

 

trace

 

file.

 

–

   

The

 

second

 

form

 

sends

 

the

 

message

 

with

 

the

 

specified

 

message

 

number

 

(msgNum)

 

from

 

the

 

ODA

 

message

 

file.

 

–

   

The

 

third

 

form

 

also

 

sends

 

the

 

message

 

with

 

the

 

specified

 

message

 

number

 

(msgNum)

 

from

 

the

 

ODA

 

message

 

file.

 

It

 

also

 

provides

 

the

 

ability

 

to

 

send

 

up

 

to

 

three

 

String

 

message

 

parameters

 

(msgParameters)

 

to

 

be

 

inserted

 

in

 

the

 

message

 

before

 

sending

 

the

 

message

 

to

 

the

 

trace

 

destination.

 

–

   

The

 

fourth

 

form

 

also

 

sends

 

a

 

message

 

from

 

the

 

ODA

 

message

 

file

 

and

 

provides

 

message

 

parameters.

 

However,

 

with

 

this

 

form

 

you

 

can

 

send

 

the

 

message

 

parameters

 

as

 

elements

 

in

 

a

 

Java

 

Vector,

 

paramArray.

 

For

 

information

 

on

 

ODA

 

message

 

files,

 

see

 

“Message

 

files”

 

on

 

page

 

153.

 

For

 

information

 

on

 

message

 

parameters,

 

see

 

“Using

 

parameter

 

values”

 

on

 

page

 

156.

 

v

   

The

 

fifth

 

form

 

sends

 

a

 

dump

 

of

 

a

 

business

 

object

 

definition

 

to

 

the

 

trace

 

file.

 

This

 

dump

 

is

 

formatted

 

in

 

the

 

format

 

of

 

the

 

repos_copy

 

utility

 

and

 

has

 

the

 

following

 

basic

 

format:

 

[BusinessObjectDefinition]

 

Name=busObjName

 

AppSpecificInfo=business-object-level

 

application-specific

 

information

 

[Attribute]

 

Name=attribute1

 

Type=attribute

 

type

 

Cardinality=n

 

or

 

1

 

AppSpecificInfo=attribute-level

 

application-specific

 

information

 

other

 

attribute

 

properties

 

[End]

 

...

 

v

   

The

 

sixth

 

form

 

sends

 

a

 

dump

 

of

 

the

 

specified

 

agent

 

properties

 

to

 

the

 

trace

 

file.

 

This

 

dump.

 

The

 

forward

 

argument

 

provides

 

introductory

 

text

 

that

 

clarifies

 

the

 

message.

See

 

also

 

getMsg()

 

Deprecated

 

Methods

 

Some

 

methods

 

in

 

the

 

ODKUtility

 

class

 

were

 

supported

 

in

 

earlier

 

versions

 

but

 

are

 

no

 

longer

 

supported.

 

These

 

deprecated

 

methods

 

will

 

not

 

generate

 

errors,

 

but

 

IBM

 

recommends

 

that

 

you

 

avoid

 

their

 

use

 

and

 

migrate

 

existing

 

code

 

to

 

the

 

new

 

methods.

 

The

 

deprecated

 

methods

 

might

 

be

 

removed

 

in

 

a

 

future

 

release.

 

Table

 

107

 

lists

 

the

 

deprecated

 

methods

 

for

 

the

 

ODKUtility

 

class.

 

If

 

you

 

are

 

writing

 

a

 

new

 

ODA

 

(not

 

modifying

 

an

 

existing

 

ODA),

 

you

 

can

 

ignore

 

this

 

section.

  

Table

 

107.

 

Deprecated

 

methods

 

of

 

the

 

ODKUtility

 

class

 

Deprecated

 

method

 

Replacement

 

All

 

methods

 

that

 

support

 

filtering:

 

v

   

filterData()

 

v

   

getFilter()

 

v

   

setFilter()

 

An

 

ODA

 

still

 

supports

 

filtering

 

at

 

the

 

user

 

level,

 

but

 

not

 

at

 

the

 

programmatic

 

level.

 

For

 

more

 

information,

 

see

 

“Using

 

a

 

filter”

 

on

 

page

 

78.

 

At

 

the

 

programmatic

 

level,

 

the

 

search-pattern

 

feature

 

provides

 

the

 

ability

 

to

 

reduce

 

the

 

number

 

of

 

child

 

nodes

 

for

 

a

 

particular

 

parent

 

node.

 

For

 

more

 

information,

 

see

 

“Implementing

 

the

 

search-pattern

 

feature”

 

on

 

page

 

113.

    

266

 

Business

 

Object

 

Development

 

Guide



Chapter

 

25.

 

TreeNode

 

class

 

The

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

provides

 

the

 

TreeNode

 

class

 

to

 

represent

 

tree

 

nodes.

 

The

 

Object

 

Discovery

 

Agent

 

(ODA)

 

generates

 

an

 

array

 

of

 

tree

 

nodes

 

so

 

that

 

Business

 

Object

 

Wizard

 

can

 

display

 

a

 

hierarchy

 

of

 

source

 

nodes

 

to

 

the

 

user.

 

The

 

user

 

navigates

 

the

 

nodes

 

of

 

this

 

source-node

 

hierarchy

 

to

 

select

 

the

 

objects

 

whose

 

business

 

object

 

definition

 

the

 

ODA

 

is

 

to

 

generate.

 

The

 

TreeNode

 

class

 

defines

 

the

 

following:

 

v

   

“Member

 

variables”

 

v

   

“Method”

 

on

 

page

 

269

The

 

TreeNode

 

class

 

implements

 

the

 

ODKConstant

 

interface.

 

Therefore,

 

all

 

constants

 

defined

 

in

 

ODKConstant

 

are

 

available

 

to

 

a

 

TreeNode

 

object.

 

For

 

a

 

list

 

of

 

constants

 

the

 

ODKConstant

 

interface

 

defines,

 

see

 

Chapter

 

22,

 

“ODKConstant

 

interface,”

 

on

 

page

 

249.

 

Member

 

variables

 

Table

 

108

 

summarizes

 

the

 

member

 

variables

 

of

 

the

 

TreeNode

 

class.

  

Table

 

108.

 

Member

 

variables

 

of

 

the

 

TreeNode

 

class.

 

Member

 

variable

 

Description

 

Page

 

description

 

Contains

 

a

 

description

 

of

 

the

 

tree

 

node.

 

267

 

isExpandable

 

Specifies

 

whether

 

the

 

tree

 

node

 

is

 

expandable;

 

that

 

is,

 

whether

 

there

 

are

 

elements

 

below

 

the

 

current

 

level.

 

268

 

isGeneratable

 

Specifies

 

whether

 

the

 

tree

 

node

 

is

 

generatable;

 

that

 

is,

 

whether

 

the

 

node

 

can

 

be

 

converted

 

to

 

a

 

business

 

object

 

definition.

 

268

 

name

 

Contains

 

the

 

name

 

of

 

the

 

tree

 

node.

 

268

 

nodes

 

Contains

 

the

 

expanded

 

hierarchy

 

of

 

tree

 

nodes.

 

268

 

polymorphicNature

 

Defines

 

the

 

node’s

 

nature;

 

that

 

is

 

whether

 

it

 

is

 

“normal”

 

(expandable

 

or

 

a

 

leaf)

 

or

 

“file”.

 

269

   

description

 

Contains

 

a

 

description

 

of

 

the

 

tree

 

node.

 

Type

 

public

 

String

 

description

 

Notes

 

The

 

description

 

member

 

variable

 

displays

 

in

 

the

 

Description

 

column

 

of

 

the

 

Select

 

Source

 

dialog

 

box.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

267



isExpandable

 

Specifies

 

whether

 

the

 

tree

 

node

 

is

 

expandable;

 

that

 

is,

 

whether

 

there

 

are

 

nodes

 

below

 

the

 

current

 

level.

 

Type

 

public

 

boolean

 

isExpandable

 

Notes

 

The

 

isExpandable

 

member

 

variable

 

indicates

 

whether

 

a

 

node

 

is

 

expandable,

 

as

 

Table

 

109

 

shows.

  

Table

 

109.

 

Types

 

of

 

nodes

 

Type

 

of

 

node

 

Description

 

Value

 

of

 

isExpandable

 

Expandable

 

Node

 

has

 

child

 

nodes

 

true

 

Leaf

 

(terminating)

 

Node

 

does

 

not

 

have

 

child

 

nodes

 

but

 

is

 

the

 

terminating

 

point

 

of

 

a

 

branch

 

of

 

the

 

source-node

 

hierarchy

 

false

   

Only

 

normal-nature

 

nodes

 

(nodes

 

with

 

their

 

polymorphicNature

 

member

 

variable

 

set

 

to

 

NODE_NATURE_NORMAL)

 

can

 

have

 

isExpandable

 

set

 

to

 

true.

 

isGeneratable

 

Specifies

 

whether

 

the

 

tree

 

node

 

is

 

generatable;

 

that

 

is,

 

whether

 

the

 

user

 

can

 

select

 

this

 

node

 

as

 

one

 

for

 

which

 

the

 

ODA

 

generates

 

content.

 

Type

 

public

 

boolean

 

isGeneratable

 

name

 

Contains

 

the

 

name

 

of

 

the

 

tree

 

node.

 

Type

 

public

 

String

 

name

 

Notes

 

The

 

name

 

member

 

variable

 

displays

 

in

 

the

 

Name

 

column

 

of

 

the

 

Select

 

Source

 

dialog

 

box.

 

nodes

 

Contains

 

the

 

expanded

 

hierarchy

 

of

 

child

 

tree

 

nodes.

 

Type

 

public

 

TreeNode[]

 

nodes

 

Notes

 

The

 

nodes

 

member

 

variable

 

contains

 

an

 

array

 

of

 

TreeNode

 

objects,

 

one

 

object

 

for

 

each

 

of

 

this

 

parent

 

node’s

 

children.

 

A

 

child

 

node

 

can,

 

in

 

turn,

 

contain

 

child

 

nodes

 

(grandchildren

 

of

 

this

 

parent

 

node).

 

This

 

member

 

variable

 

is

 

only

 

used

 

if

 

the

 

node

 

is

 

expandable

 

(not

 

a

 

leaf);

 

that

 

is,

 

if

 

the

 

isExpandable

 

member

 

variable

 

is

 

true.

   

268

 

Business

 

Object

 

Development

 

Guide



polymorphicNature

 

Indicates

 

the

 

valid

 

actions

 

the

 

user

 

can

 

take

 

on

 

the

 

tree

 

node.

 

Type

 

public

 

int

 

polymorphicNature

 

Notes

 

The

 

polymorphicNature

 

member

 

variable

 

determines

 

what

 

actions

 

the

 

user

 

can

 

take

 

on

 

the

 

node

 

when

 

it

 

displays

 

in

 

the

 

Select

 

Source

 

dialog

 

box

 

of

 

Business

 

Object

 

Wizard.

 

This

 

variable

 

contains

 

an

 

integer

 

node-nature

 

constant

 

to

 

indicate

 

the

 

nature

 

of

 

the

 

tree

 

node.

 

These

 

node-nature

 

constants

 

are

 

defined

 

in

 

the

 

ODKConstant

 

interface,

 

as

 

Table

 

110

 

shows.

  

Table

 

110.

 

Nature

 

of

 

tree

 

nodes

 

Nature

 

of

 

tree

 

node

 

Description

 

Node-nature

 

constant

 

Normal

 

The

 

user

 

can

 

take

 

either

 

of

 

the

 

following

 

actions:

 

v

   

The

 

user

 

can

 

select

 

the

 

node,

 

if

 

the

 

node

 

is

 

a

 

leaf

 

(terminating)

 

node.

 

Only

 

leaf

 

nodes

 

can

 

be

 

selected

 

for

 

generation

 

into

 

content.

 

v

   

The

 

user

 

can

 

expand

 

the

 

node

 

to

 

see

 

more

 

nodes.

 

Business

 

Object

 

Wizard

 

displays

 

a

 

plus

 

(+)

 

to

 

the

 

left

 

of

 

an

 

expandable

 

node

 

name.

 

NODE_NATURE_NORMAL

 

File

 

The

 

user

 

can

 

associate

 

a

 

file

 

from

 

the

 

local

 

file

 

system

 

with

 

the

 

node.

 

Business

 

Object

 

Wizard

 

activates

 

the

 

Associate

 

files

 

menu

 

item

 

in

 

the

 

pop-up

 

menu

 

that

 

displays

 

when

 

the

 

user

 

right-clicks

 

on

 

the

 

node

 

name.

 

This

 

menu

 

item

 

opens

 

a

 

window

 

for

 

browsing

 

system

 

files.

 

From

 

this

 

window,

 

the

 

user

 

can

 

select

 

which

 

file

 

to

 

associate

 

with

 

the

 

node.

 

For

 

a

 

tree

 

node

 

that

 

has

 

a

 

file

 

node

 

nature,

 

the

 

ODA

 

can

 

use

 

the

 

getClientFile()

 

method

 

(defined

 

in

 

the

 

ODKUtility

 

class)

 

to

 

obtain

 

the

 

user-selected

 

file’s

 

contents.

 

NODE_NATURE_FILE

   

Note:

  

Because

 

the

 

TreeNode

 

class

 

implements

 

the

 

ODKConstant

 

interface,

 

the

 

node-nature

 

constants

 

are

 

available

 

to

 

the

 

polymorphicNature

 

member

 

variable

 

without

 

being

 

qualified

 

with

 

the

 

ODKConstant

 

name.

 

For

 

more

 

information

 

on

 

node

 

natures,

 

see

 

“Constructing

 

the

 

tree

 

nodes”

 

on

 

page

 

115.

 

Method

 

Table

 

111

 

summarizes

 

the

 

method

 

of

 

the

 

TreeNode

 

class.

  

Table

 

111.

 

Member

 

method

 

of

 

the

 

TreeNode

 

class.

 

Member

 

method

 

Description

 

Page

 

TreeNode()

 

Creates

 

a

 

tree-node

 

object.

 

page

 

267

    

Chapter

 

25.

 

TreeNode

 

class

 

269



TreeNode()

 

Creates

 

a

 

tree-node

 

object.

 

Syntax

 

public

 

TreeNode(String

 

name,

 

String

 

desc,

 

boolean

 

isGen,

 

boolean

 

isExp);

 

public

 

TreeNode(String

 

name,

 

String

 

desc,

 

boolean

 

isGen,

 

boolean

 

isExp,

    

TreeNode[]

 

treeNodes);

 

public

 

TreeNode(String

 

name,

 

String

 

desc,

 

boolean

 

isGen,

 

boolean

 

isExp,

    

TreeNode[]

 

treeNodes,

 

int

 

nodeNature);

 

Parameters

 

desc

 

Specifies

 

the

 

description

 

of

 

the

 

node;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

description

 

member

 

variable

 

(“description”

 

on

 

page

 

267).

 

isGen

 

Specifies

 

whether

 

the

 

node

 

is

 

“generatable”

 

(that

 

is,

 

whether

 

the

 

node

 

can

 

be

 

converted

 

to

 

a

 

business

 

object

 

definition);

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isGeneratable

 

member

 

variable

 

(“isGeneratable”

 

on

 

page

 

268).

 

isExp

 

Specifies

 

whether

 

the

 

node

 

is

 

expandable

 

(that

 

is,

 

whether

 

the

 

node

 

is

 

or

 

is

 

not

 

a

 

leaf);

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

isExpandable

 

member

 

variable

 

(“isExpandable”

 

on

 

page

 

268).

 

name

 

Specifies

 

the

 

name

 

of

 

the

 

node;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

name

 

member

 

variable

 

(“name”

 

on

 

page

 

268).

 

nodeNature

 

Indicates

 

the

 

nature

 

of

 

the

 

node,

 

as

 

one

 

of

 

the

 

following

 

node-nature

 

constants:

 

ODKConstant.NODE_NATURE_FILE

 

ODKConstant.NODE_NATURE_NORMAL

 

treeNodes

 

Specifies

 

the

 

fully

 

expanded

 

hierarchy

 

of

 

nodes;

 

the

 

value

 

of

 

this

 

parameter

 

initializes

 

the

 

nodes

 

member

 

variable

 

(“nodes”

 

on

 

page

 

268).

Return

 

values

 

A

 

newly

 

instantiated

 

TreeNode

 

object.

 

Notes

 

The

 

TreeNode()

 

method

 

provides

 

the

 

following

 

forms

 

to

 

instantiate

 

a

 

tree

 

node:

 

v

   

The

 

first

 

form

 

of

 

the

 

constructor

 

allows

 

you

 

to

 

specify

 

the

 

name

 

and

 

description

 

of

 

the

 

tree

 

node,

 

as

 

well

 

as

 

whether

 

it

 

is

 

generatable

 

or

 

expandable.

 

In

 

this

 

form,

 

the

 

child-nodes

 

array

 

(the

 

nodes

 

member

 

variable)

 

is

 

initialized

 

to

 

null

 

and

 

the

 

node

 

nature

 

(the

 

polymorphicNature

 

member

 

variable)

 

is

 

initialized

 

to

 

“normal”.

 

Use

 

this

 

form

 

to

 

initialize

 

a

 

leaf

 

node.

 

v

   

The

 

second

 

form

 

of

 

the

 

constructor

 

allows

 

you

 

to

 

specify

 

the

 

child-nodes

 

array

 

(in

 

addition

 

to

 

the

 

values

 

that

 

the

 

first

 

form

 

specifies).

 

In

 

this

 

form,

 

the

 

node

 

nature

 

is

 

initialized

 

to

 

“normal”.

 

Use

 

this

 

form

 

to

 

initialize

 

an

 

expandable

 

node.

 

v

   

The

 

third

 

form

 

of

 

the

 

constructor

 

allows

 

you

 

to

 

specify

 

the

 

node

 

nature

 

(in

 

addition

 

to

 

the

 

values

 

that

 

the

 

first

 

and

 

second

 

forms

 

specify).

 

Use

 

this

 

form

 

to

 

initialize

 

a

 

file-nature

 

node.

For

 

more

 

information,

 

see

 

“Constructing

 

the

 

tree

 

nodes”

 

on

 

page

 

115.

   

270

 

Business

 

Object

 

Development

 

Guide



Part

 

4.

 

Appendixes

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

271



272

 

Business

 

Object

 

Development

 

Guide



Notices

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

all

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

that

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

IBM

 

intellectual

 

property

 

right

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

described

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

Director

 

of

 

Licensing

 

IBM

 

Corporation

 

North

 

Castle

 

Drive

 

Armonk,

 

NY

 

10504-1785

 

U.S.A.

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

PUBLICATION

 

“AS

 

IS”

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions,

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

publication.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

IBM

 

may

 

use

 

or

 

distribute

 

any

 

of

 

the

 

information

 

you

 

supply

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independently

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

which

 

has

 

been

 

exchanged,

 

should

 

contact:

 

IBM

 

Burlingame

 

Laboratory

 

Director

 

IBM

 

Burlingame

 

Laboratory

 

577

 

Airport

 

Blvd.,

 

Suite

 

800

 

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

273



Burlingame,

 

CA

 

94010

 

U.S.A

 

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases,

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

document

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

Customer

 

Agreement,

 

IBM

 

International

 

Program

 

License

 

Agreement,

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

Any

 

performance

 

data

 

contained

 

herein

 

was

 

determined

 

in

 

a

 

controlled

 

environment.

 

Therefore,

 

the

 

results

 

obtained

 

in

 

other

 

operating

 

environments

 

may

 

vary

 

significantly.

 

Some

 

measurements

 

may

 

have

 

been

 

made

 

on

 

development-level

 

systems

 

and

 

there

 

is

 

no

 

guarantee

 

that

 

these

 

measurements

 

will

 

be

 

the

 

same

 

on

 

generally

 

available

 

systems.

 

Furthermore,

 

some

 

measurement

 

may

 

have

 

been

 

estimated

 

through

 

extrapolation.

 

Actual

 

results

 

may

 

vary.

 

Users

 

of

 

this

 

document

 

should

 

verify

 

the

 

applicable

 

data

 

for

 

their

 

specific

 

environment.

 

Information

 

concerning

 

non-IBM

 

products

 

was

 

obtained

 

from

 

the

 

suppliers

 

of

 

those

 

products,

 

their

 

published

 

announcements

 

or

 

other

 

publicly

 

available

 

sources.

 

IBM

 

has

 

not

 

necessarily

 

tested

 

those

 

products

 

and

 

cannot

 

confirm

 

the

 

accuracy

 

of

 

performance,

 

compatibility

 

or

 

any

 

other

 

claims

 

related

 

to

 

non-IBM

 

products.

 

Questions

 

on

 

the

 

capabilities

 

of

 

non-IBM

 

products

 

should

 

be

 

addressed

 

to

 

the

 

suppliers

 

of

 

those

 

products.

 

This

 

information

 

may

 

contain

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

may

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

All

 

statements

 

regarding

 

IBM’s

 

future

 

direction

 

or

 

intent

 

are

 

subject

 

to

 

change

 

or

 

withdrawal

 

without

 

notice,

 

and

 

represent

 

goals

 

and

 

objectives

 

only.

 

Programming

 

interface

 

information

 

Programming

 

interface

 

information,

 

if

 

provided,

 

is

 

intended

 

to

 

help

 

you

 

create

 

application

 

software

 

using

 

this

 

program.

 

General-use

 

programming

 

interfaces

 

allow

 

you

 

to

 

write

 

application

 

software

 

that

 

obtain

 

the

 

services

 

of

 

this

 

program’s

 

tools.

 

However,

 

this

 

information

 

may

 

also

 

contain

 

diagnosis,

 

modification,

 

and

 

tuning

 

information.

 

Diagnosis,

 

modification

 

and

 

tuning

 

information

 

is

 

provided

 

to

 

help

 

you

 

debug

 

your

 

application

 

software.

 

Warning:

  

Do

 

not

 

use

 

this

 

diagnosis,

 

modification,

 

and

 

tuning

 

information

 

as

 

a

 

programming

 

interface

 

because

 

it

 

is

 

subject

 

to

 

change.

 

Trademarks

 

and

 

service

 

marks

 

The

 

following

 

terms

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

International

 

Business

 

Machines

 

Corporation

 

in

 

the

 

United

 

States

 

or

 

other

 

countries,

 

or

 

both:

   

274

 

Business

 

Object

 

Development

 

Guide



IBM

 

the

 

IBM

 

logo

 

AIX

 

CrossWorlds

 

DB2

 

DB2

 

Universal

 

Database

 

Domino

 

Lotus

 

Lotus

 

Notes

 

MQIntegrator

 

MQSeries

 

Tivoli

 

WebSphere

 

Microsoft,

 

Windows,

 

Windows

 

NT,

 

and

 

the

 

Windows

 

logo

 

are

 

trademarks

 

of

 

Microsoft

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

MMX,

 

Pentium,

 

and

 

ProShare

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

Intel

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

Java

 

and

 

all

 

Java-based

 

trademarks

 

are

 

trademarks

 

of

 

Sun

 

Microsystems,

 

Inc.

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

Other

 

company,

 

product

 

or

 

service

 

names

 

may

 

be

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

 

IBM

 

WebSphere

 

InterChange

 

Server

 

v4.2.2,

 

IBM

 

WebSphere

 

Business

 

Integration

 

Toolset

 

v4.2.2

 

WebSphere

 

Business

 

Integration

 

Adapter

 

Framework

 

v2.4.0

      

Notices

 

275



276

 

Business

 

Object

 

Development

 

Guide



Index

 

A
Adapter

 

3,

 

64

 

Adapter

 

Development

 

Kit

 

(ADK)

 

96

 

Adapter

 

framework

 

95

 

addDefaultVerbs()

 

method

 

200

 

Agent

 

property

 

140,

 

150

 

array

 

of

 

120

 

cardinality

 

141,

 

142,

 

175

 

class

 

for

 

173

 

conditions

 

174

 

conditions

 

on

 

141,

 

146,

 

215

 

contents

 

of

 

141

 

creating

 

141,

 

179

 

default

 

value

 

141,

 

144,

 

174

 

dependent

 

146,

 

227

 

dependent

 

condition

 

146,

 

147,

 

227

 

description

 

141,

 

142,

 

176

 

determining

 

if

 

value

 

is

 

required

 

141,

 

178

 

encrypted

 

141,

 

176

 

hidden

 

141,

 

176

 

input

 

condition

 

146,

 

147,

 

241

 

multiple

 

values

 

141,

 

175,

 

177

 

name

 

141,

 

178

 

read-only

 

141,

 

177

 

single

 

value

 

145

 

type

 

141,

 

142,

 

173,

 

179

 

AgentMetaData

 

class

 

103,

 

165,

 

167,

 

173

 

agentVersion

 

167

 

constructor

 

170

 

member

 

variables

 

167

 

method

 

summary

 

169

 

searchableNodes

 

167

 

searchPatternDesc

 

168

 

supportedContent

 

168

 

toXml()

 

171

 

AgentMetaData()

 

constructor

 

104,

 

246

 

AgentMetaData()

 

method

 

170

 

AgentProperty

 

class

 

140,

 

165,

 

173,

 

183

 

allDefaultValues

 

174

 

allDependencies

 

174

 

allValidValues

 

174

 

allValues

 

175

 

cardinality

 

175

 

constructor

 

120,

 

179

 

copy()

 

180

 

description

 

176

 

isHidden

 

176

 

isMultiple

 

177

 

isReadOnly

 

177

 

isRequired

 

178

 

member

 

variables

 

173

 

method

 

summary

 

179

 

property-type

 

constants

 

173

 

propName

 

178

 

type

 

179

 

TYPE_BOOLEAN

 

173

 

TYPE_DOUBLE

 

173

 

TYPE_FLOAT

 

173

 

TYPE_INTEGER

 

173

 

TYPE_STRING

 

173

 

AgentProperty()

 

method

 

120,

 

141,

 

179

 

agentVersion

 

member

 

variable

 

(AgentMetaData)

 

104,

 

167

 

allDefaultValues

 

member

 

variable

 

(AgentProperty)

 

121,

 

141,

 

174

 

allDependencies

 

member

 

variable

 

(AgentProperty)

 

141,

 

146,

 

174

 

allDependentConditions

 

member

 

variable

 

(CompleteCondition)

 

146,

 

216

 

allInputConditions

 

member

 

variable

 

(CompleteCondition)

 

146,

 

216

 

allValidValues

 

member

 

variable

 

(AgentProperty)

 

121,

 

141,

 

142,

 

174

 

allValues

 

member

 

variable

 

(AgentProperty)

 

106,

 

141,

 

175

 

Application-specific

 

business

 

object

 

3,

 

17,

 

36

 

application-specific

 

information

 

32

 

attributes

 

in

 

31

 

comparing

 

to

 

generic

 

business

 

objects

 

41

 

default

 

values

 

in

 

6

 

designing

 

29,

 

37,

 

41

 

foreign

 

key

 

6

 

generating

 

definitions

 

for

 

64

 

required

 

attribute

 

6

 

structure

 

30

 

Application-specific

 

information

 

7,

 

11,

 

32

 

example

 

of

 

processing

 

35

 

for

 

a

 

business

 

object

 

8,

 

30,

 

125,

 

200,

 

207

 

for

 

a

 

verb

 

10,

 

212

 

for

 

an

 

attribute

 

9,

 

125,

 

129

 

metadata

 

and

 

7,

 

32

 

storage

 

of

 

8

 

suggested

 

format

 

33

 

Attribute

 

4,

 

31

 

adding

 

57,

 

125,

 

205

 

application-specific

 

information

 

9,

 

125,

 

129,

 

185,

 

191

 

as

 

part

 

of

 

foreign

 

key

 

6,

 

126,

 

189,

 

193

 

as

 

part

 

of

 

primary

 

key

 

5,

 

126,

 

189,

 

190,

 

193,

 

194

 

cardinality

 

5,

 

126,

 

187,

 

192

 

changing

 

order

 

of

 

60

 

class

 

for

 

125,

 

183

 

comment

 

for

 

7,

 

126,

 

188,

 

193

 

creating

 

125,

 

185

 

default

 

value

 

6,

 

58,

 

126,

 

188,

 

193

 

defining

 

125

 

determining

 

number

 

of

 

201

 

maximum

 

length

 

6,

 

58,

 

126,

 

188,

 

194

 

name

 

of

 

5,

 

57,

 

125,

 

188,

 

194

 

ordinal

 

position

 

of

 

202

 

properties

 

4,

 

30

 

relationship

 

type

 

126,

 

189,

 

195

 

removing

 

from

 

attribute

 

list

 

206

 

required

 

6

 

required

 

in

 

triggering

 

event

 

190

 

retrieving

 

201,

 

202

 

type

 

5,

 

58,

 

126,

 

186,

 

190,

 

191,

 

197

 

AttrTypes

 

member

 

variable

 

(BusObjAttrTypes)

 

127,

 

197

 

B
badContent()

 

method

 

221

 

BinaryFile

 

member

 

variable

 

(ContentType)

 

107,

 

136,

 

220,

 

223,

 

232

 

BOOLEAN

 

attribute-type

 

constant

 

186,

 

191,

 

197

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

277



Business

 

object

 

3

 

child

 

12

 

designing

 

17,

 

42

 

flat

 

12,

 

18,

 

55

 

generic

 

3,

 

17,

 

37,

 

40

 

hierarchical

 

12,

 

13,

 

19,

 

62

 

introduction

 

to

 

3

 

mapping

 

41

 

parent

 

12

 

semantic

 

relationship

 

20

 

structural

 

relationship

 

19

 

structure

 

12,

 

17,

 

30

 

top-level

 

12

 

wrapper

 

13

 

Business

 

object

 

definition

 

4

 

adapter

 

framework

 

support

 

for

 

95

 

application-specific

 

information

 

8,

 

30,

 

123,

 

125,

 

200,

 

207

 

attribute

 

list

 

123,

 

202,

 

205,

 

206,

 

208

 

class

 

for

 

123,

 

199

 

content

 

type

 

of

 

107,

 

223

 

content-generation

 

interface

 

235

 

contents

 

of

 

4,

 

30,

 

123

 

creating

 

50,

 

55,

 

62,

 

64,

 

85,

 

123,

 

199

 

deleting

 

62

 

developing

 

55,

 

85

 

development

 

process

 

of

 

13

 

development

 

support

 

96

 

editing

 

50

 

generating

 

92,

 

118,

 

235

 

name

 

of

 

56,

 

123,

 

124,

 

203

 

number

 

of

 

attributes

 

in

 

201

 

opening

 

47,

 

50

 

retrieving

 

131,

 

236

 

saving

 

74,

 

95

 

verb

 

list

 

123,

 

200,

 

203,

 

204,

 

205,

 

207,

 

208

 

version

 

of

 

187,

 

192,

 

204

 

Business

 

Object

 

Designer
Attributes

 

window

 

50

 

business

 

object

 

definition

 

window

 

56

 

creating

 

business

 

object

 

definition

 

55

 

Edit

 

menu

 

53

 

File

 

menu

 

52

 

functionality

 

of

 

52

 

General

 

window

 

50

 

Import

 

dialog

 

box

 

48

 

Import

 

Results

 

dialog

 

box

 

49

 

New

 

Business

 

Object

 

dialog

 

box

 

56

 

Open

 

Business

 

Object

 

dialog

 

box

 

43

 

opening

 

business

 

object

 

definition

 

47

 

Preferences

 

dialog

 

box

 

54

 

Standard

 

toolbar

 

54

 

starting

 

46,

 

65

 

status

 

bar

 

54

 

toolbars

 

54

 

Tools

 

menu

 

54

 

View

 

menu

 

54

 

Window

 

menu

 

54

 

Business

 

Object

 

Wizard

 

66,

 

87

 

Apply

 

filter

 

to

 

node

 

dialog

 

box

 

78

 

BO

 

Properties

 

dialog

 

box

 

74,

 

82,

 

93,

 

137,

 

140,

 

258

 

Configure

 

Agent

 

dialog

 

box

 

69,

 

89,

 

102,

 

140,

 

246

 

Confirm

 

Source

 

Nodes

 

dialog

 

box

 

72,

 

91

 

Enter

 

a

 

Search

 

Pattern

 

box

 

113

 

Enter

 

a

 

Search

 

Pattern

 

dialog

 

box

 

79

 

Generating

 

Business

 

Objects

 

screen

 

73,

 

92,

 

236

 

Object

 

Path

 

dialog

 

box

 

80,

 

113

 

retrieving

 

file

 

for

 

ODA

 

134,

 

259

 

Business

 

Object

 

Wizard

 

(continued)
Save

 

Business

 

Objects

 

dialog

 

box

 

74,

 

95

 

Select

 

Agent

 

dialog

 

box

 

66,

 

67,

 

83,

 

89

 

Select

 

Source

 

dialog

 

box

 

70,

 

78,

 

91,

 

111,

 

238,

 

251,

 

269

 

sending

 

business-object

 

properties

 

to

 

93

 

sending

 

configuration

 

properties

 

to

 

90

 

starting

 

66,

 

67

 

Business-object

 

property

 

93,

 

119,

 

173

 

class

 

for

 

93

 

initializing

 

120,

 

259

 

retrieving

 

122,

 

257,

 

258

 

sending

 

to

 

Business

 

Object

 

Designer

 

93

 

BusinessObject

 

member

 

variable

 

(ContentType)

 

107,

 

220,

 

223

 

BusObjAttr

 

class

 

165,

 

183,

 

195

 

attribute

 

constants

 

183

 

CARD_MULTIPLE

 

183

 

CARD_SINGLE

 

183

 

constructor

 

127,

 

128,

 

185

 

getAppText()

 

185

 

getAttrType()

 

186

 

getAttrTypeName()

 

186

 

getBOVersion()

 

187

 

getCardinality()

 

187

 

getComments()

 

188

 

getDefault()

 

188

 

getMaxLength()

 

188

 

getName()

 

188

 

getRelationType()

 

189

 

isForeignKey()

 

189

 

isKey()

 

189

 

isRequiredKey()

 

190

 

isRequiredServerBound()

 

190

 

isSimpleType()

 

190

 

method

 

summary

 

183

 

OBJECT_EVENT_ID

 

183

 

setAppText()

 

191

 

setAttrType()

 

191

 

setBOVersion()

 

192

 

setCardinality()

 

192

 

setComments()

 

193

 

setDefault()

 

193

 

setIsForeignKey()

 

193

 

setIsKey()

 

193

 

setIsRequiredKey()

 

194

 

setMaxLength()

 

194

 

setName()

 

194

 

setRelationType()

 

195

 

BusObjAttr()

 

method

 

127,

 

128,

 

185

 

BusObjAttrType

 

interface

 

165,

 

197,

 

199

 

attribute-type

 

constants

 

197

 

AttrTypes

 

197

 

BOOLEAN

 

197

 

CIPHERTEXT

 

197

 

DATE

 

197

 

DOUBLE

 

197

 

FLOAT

 

197

 

INTEGER

 

197

 

INVALID_TYPE

 

197

 

LONGTEXT

 

197

 

OBJECT

 

197

 

static

 

member

 

variable

 

197

 

STRING

 

197

 

BusObjDef

 

class

 

165,

 

199,

 

209

 

addDefaultVerbs()

 

200

 

clone()

 

211

 

constructor

 

123,

 

124,

 

199

 

getAppInfo()

 

200

   

278

 

Business

 

Object

 

Development

 

Guide



BusObjDef

 

class

 

(continued)
getAttrCount()

 

201

 

getAttribute()

 

201

 

getAttributeIndex()

 

202

 

getAttributeList()

 

202

 

getName()

 

203

 

getVerb()

 

203

 

getVerbCount()

 

204

 

getVerbList()

 

204

 

getVersion()

 

204

 

insertAttribute()

 

205

 

insertVerb()

 

205

 

method

 

summary

 

199

 

removeAttribute()

 

206

 

removeVerb()

 

207

 

setAppInfo()

 

207

 

setAttributeList()

 

208

 

setVerbList()

 

208

 

BusObjDef()

 

method

 

123,

 

124,

 

199

 

BusObjInvalidAttrException

 

exception

 

254

 

BusObjInvalidDefException

 

exception

 

254

 

BusObjInvalidVerbException

 

exception

 

254

 

BusObjNoSuchAttrException

 

exception

 

254

 

BusObjNoSuchVerbException

 

exception

 

254

 

BusObjVerb

 

class

 

165,

 

211,

 

213

 

constructor

 

130,

 

211

 

getAppInfo()

 

212

 

getName()

 

212,

 

213

 

method

 

summary

 

211

 

setAppInfo()

 

212

 

BusObjVerb()

 

method

 

130,

 

211

 

C
Callback

 

content

 

protocol

 

92,

 

108

 

constant

 

for

 

108,

 

252

 

generating

 

files

 

110,

 

136

 

providing

 

access

 

to

 

content

 

132,

 

140

 

providing

 

content

 

94,

 

138

 

CARD_MULTIPLE

 

cardinality

 

constant

 

183,

 

188,

 

192

 

CARD_SINGLE

 

cardinality

 

constant

 

183,

 

187,

 

192

 

Cardinality
constants

 

183,

 

250

 

for

 

an

 

agent

 

property

 

141,

 

142

 

for

 

an

 

attribute

 

126

 

multiple

 

12,

 

27,

 

188

 

property

 

5

 

single

 

12,

 

27,

 

187

 

cardinality

 

member

 

variable

 

(AgentProperty)

 

121,

 

141,

 

142,

 

175

 

Child

 

business

 

object

 

12

 

cardinality

 

187,

 

192

 

name

 

of

 

business

 

object

 

definition

 

187

 

relationship

 

type

 

189,

 

195

 

version

 

of

 

business

 

object

 

definition

 

187,

 

192

 

CIPHERTEXT

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

clone()

 

method

 

211

 

CompleteCondition

 

class

 

146,

 

165,

 

215,

 

217

 

allDependentConditions

 

216

 

allInputConditions

 

216

 

constructor

 

216

 

copy()

 

217

 

member

 

variables

 

215

 

method

 

summary

 

216

 

OP_EQUAL

 

215

 

OP_EXISTS

 

215

 

OP_GREATER_THAN

 

215

 

CompleteCondition

 

class

 

(continued)
OP_GREATER_THAN_EQUAL

 

215

 

OP_LESS_THAN

 

215

 

OP_LESS_THAN_EQUAL

 

215

 

OP_NOT_EQUAL

 

215

 

operator

 

constants

 

215

 

CompleteCondition()

 

method

 

216

 

Complex

 

attribute

 

12

 

as

 

a

 

key

 

5

 

cardinality

 

5

 

type

 

5

 

Connector

 

95,

 

125

 

Connector

 

configuration

 

property
UseDefaults

 

6

 

Constant
attribute

 

183

 

attribute-type

 

197

 

cardinality

 

183,

 

250

 

content-index

 

252

 

content-protocol

 

252

 

dialog-button

 

249,

 

263

 

dialog-icon

 

250,

 

263

 

message-type

 

155,

 

251,

 

264

 

node-nature

 

251

 

operator

 

215

 

property-type

 

173,

 

249

 

string-value

 

249

 

trace-level

 

251,

 

264

 

user-response

 

250,

 

262

 

user-response-dialog

 

249

 

CONTENT_PROTOCOL_CALLBACK

 

content-protocol

 

constant

 

108,

 

233,

 

237,

 

252

 

CONTENT_PROTOCOL_ONREQUEST

 

content-protocol

 

constant

 

108,

 

233,

 

237,

 

252

 

contentComplete()

 

method

 

138,

 

255

 

ContentMetaData

 

class

 

94,

 

165,

 

219,

 

222

 

badContent()

 

221

 

constructor

 

221

 

contentNotReady()

 

221

 

contentType

 

219

 

contentUnavailable()

 

222

 

count

 

220

 

length

 

220

 

member

 

variables

 

219

 

method

 

summary

 

220

 

ContentMetaData()

 

method

 

221

 

contentNotReady()

 

method

 

221

 

ContentType

 

class

 

107,

 

165,

 

223,

 

226

 

BinaryFile

 

223

 

BusinessObject

 

223

 

constructor

 

224

 

equals()

 

224

 

from_int()

 

225

 

member

 

variables

 

223

 

method

 

summary

 

224

 

toString()

 

225

 

value()

 

225

 

xmlObject()

 

225

 

contentType

 

member

 

variable

 

(ContentMetaData)

 

219

 

ContentType()

 

method

 

224

 

contentUnavailable()

 

method

 

137,

 

222

 

copy()

 

method

 

(AgentProperty)

 

180

 

copy()

 

method

 

(CompleteCondition)

 

217

 

copy()

 

method

 

(DependentCondition)

 

230

 

copy()

 

method

 

(InputCondition)

 

243

 

count

 

member

 

variable

 

(ContentMetaData)

 

220

 

CW_EMPTY_STRING

 

string-value

 

constant

 

249

   

Index

 

279



CW_NULL_STRING

 

string-value

 

constant

 

249

 

CwODK.jar

 

file

 

98,

 

100,

 

159,

 

165

 

D
Data

 

source
connecting

 

to

 

106

 

disconnecting

 

from

 

150

 

querying

 

114

 

DATE

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

DependentCondition

 

class

 

146,

 

147,

 

165,

 

227,

 

230

 

constructor

 

229

 

copy()

 

230

 

isDynamic

 

227

 

member

 

variables

 

227

 

method

 

summary

 

229

 

operatorType

 

227

 

propertyName

 

228

 

specificValue

 

228

 

typeOfSpecificValue

 

228

 

DependentCondition()

 

method

 

229

 

Deprecated

 

methods
ODKAgentBase2

 

248

 

ODKUtility

 

266

 

description

 

member

 

variable

 

(AgentProperty)

 

141,

 

142,

 

176

 

description

 

member

 

variable

 

(TreeNode)

 

115,

 

267

 

Development

 

process
business

 

object

 

definition

 

13

 

DOUBLE

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

E
equals()

 

method

 

224

 

Error

 

handling

 

157

 

Error

 

logging

 

151

 

Error

 

message

 

151,

 

251

 

Event
description

 

141

 

Event

 

isolation

 

39

 

Exception

 

157,

 

158,

 

253,

 

255

 

class

 

for

 

253,

 

254

 

creating

 

157,

 

253

 

exception

 

object

 

253

 

Exception

 

object

 

157,

 

253

 

class

 

for

 

253

 

contents

 

of

 

157

 

message

 

157,

 

253

 

Exception

 

subclass
BusObjInvalidAttrException

 

254

 

BusObjInvalidDefException

 

254

 

BusObjInvalidVerbException

 

254

 

BusObjNoSuchAttrException

 

254

 

BusObjNoSuchVerbException

 

254

 

ODKInvalidNodeException

 

254

 

ODKInvalidPropException

 

254

 

UnsupportedContentException

 

254

 

F
File

 

133

 

associating

 

with

 

a

 

node

 

134

 

associating

 

with

 

tree

 

node

 

81,

 

118,

 

269

 

creating

 

133

 

reading

 

134

 

retrieving

 

259

 

File

 

(generated)
class

 

for

 

133,

 

137

 

content

 

type

 

of

 

107,

 

223

 

content-generation

 

interface

 

231

 

creating

 

137

 

generating

 

92,

 

133,

 

135,

 

231

 

retrieving

 

139,

 

232

 

FLOAT

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

Foreign

 

key

 

attribute

 

6,

 

20,

 

24,

 

129

 

from_int()

 

method

 

225

 

G
generateBinFiles()

 

method

 

92,

 

135,

 

136,

 

231

 

generateBoDefs()

 

method

 

92,

 

118,

 

119,

 

135,

 

235

 

GET_ALL_OBJECTS

 

content-index

 

constant

 

132,

 

140,

 

233,

 

237,

 

252

 

getAgentProperties()

 

method

 

90,

 

101,

 

245

 

getAgentProperty()

 

method

 

105,

 

256

 

getAllAgentProperties()

 

method

 

105,

 

257

 

getAllBOSpecificProperties()

 

method

 

94,

 

123,

 

257

 

getAppInfo()

 

method

 

(BusObjDef)

 

123,

 

200

 

getAppInfo()

 

method

 

(BusObjVerb)

 

129,

 

212

 

getAppText()

 

method

 

125,

 

185

 

getAttrCount()

 

method

 

201

 

getAttribute()

 

method

 

201

 

getAttributeIndex()

 

method

 

202

 

getAttributeList()

 

method

 

123,

 

202

 

getAttrType()

 

method

 

126,

 

186

 

getAttrTypeName()

 

method

 

126,

 

186

 

getBinFile()

 

method

 

95,

 

140,

 

232

 

getBoDefs()

 

method

 

95,

 

132,

 

236

 

getBOSpecificProperty()

 

method

 

94,

 

123,

 

258

 

getBOSpecificProps()

 

method

 

93,

 

122,

 

137,

 

258

 

getBOVersion()

 

method

 

187

 

getCardinality()

 

method

 

126,

 

187

 

getClientFile()

 

method

 

134,

 

259,

 

269

 

getComments()

 

method

 

126,

 

188

 

getContentProtocol()

 

method

 

109,

 

233,

 

237

 

getDefault()

 

method

 

126,

 

188

 

getMaxLength()

 

method

 

126,

 

188

 

getMetaData()

 

method

 

90,

 

103,

 

108,

 

246

 

getMsg()

 

method

 

(ODKException)

 

157,

 

253

 

getMsg()

 

method

 

(ODKUtility)

 

155,

 

260

 

getName()

 

method

 

(BusObjAttr)

 

125,

 

188

 

getName()

 

method

 

(BusObjDef)

 

123,

 

203

 

getName()

 

method

 

(BusObjVerb)

 

129,

 

212

 

getODKUtility()

 

method

 

102,

 

261

 

getRelationType()

 

method

 

126,

 

189

 

getTreeNodes()

 

method

 

91,

 

111,

 

134,

 

238

 

getVerb()

 

method

 

203

 

getVerbCount()

 

method

 

204

 

getVerbList()

 

method

 

123,

 

204

 

getVersion()

 

method

 

107,

 

204,

 

247

 

H
Hierarchical

 

business

 

object

 

12

 

I
IGeneratesBinFiles

 

interface

 

92,

 

107,

 

133,

 

165,

 

231,

 

234

 

generateBinFiles()

 

92,

 

136,

 

231

 

getBinFile()

 

95,

 

136,

 

140,

 

232

 

getContentProtocol()

 

109,

 

233

 

method

 

summary

 

107,

 

108,

 

231

   

280

 

Business

 

Object

 

Development

 

Guide



IGeneratesBoDefs

 

interface

 

92,

 

110,

 

165,

 

235,

 

239

 

generateBoDefs()

 

92,

 

119,

 

235

 

getBoDefs()

 

95,

 

132,

 

236

 

getContentProtocol()

 

109,

 

237

 

getTreeNodes()

 

91,

 

111

 

getTreeNotes()

 

238

 

method

 

summary

 

107,

 

108,

 

235

 

IGeneratesContent

 

interface

 

109,

 

166

 

Informational

 

message

 

151,

 

251

 

init()

 

method

 

90,

 

105,

 

247

 

InputCondition

 

class

 

146,

 

147,

 

166,

 

241,

 

243

 

constructor

 

243

 

copy()

 

243

 

isDynamic

 

241

 

member

 

variables

 

241

 

method

 

summary

 

243

 

operatorType

 

241

 

specificValue

 

242

 

typeOfSpecificValue

 

242

 

InputCondition()

 

method

 

243

 

insertAttribute()

 

method

 

123,

 

127,

 

205

 

insertVerb()

 

method

 

123,

 

129,

 

205

 

INTEGER

 

attribute-type

 

constant

 

127,

 

186,

 

191,

 

197

 

Integration

 

broker

 

3

 

INVALID_TYPE

 

attribute-type

 

constant

 

186,

 

197

 

isDynamic

 

member

 

variable

 

(DependentCondition)

 

148,

 

227

 

isDynamic

 

member

 

variable

 

(InputCondition)

 

147,

 

241

 

isExpandable

 

member

 

variable

 

(TreeNode)

 

115,

 

116,

 

268

 

isForeignKey()

 

method

 

126,

 

189

 

isGeneratable

 

member

 

variable

 

(TreeNode)

 

115,

 

116,

 

268

 

isHidden

 

member

 

variable

 

(AgentProperty)

 

141,

 

176

 

isKey()

 

method

 

126,

 

189

 

isMultiple

 

member

 

variable

 

(AgentProperty)

 

121,

 

141,

 

142,

 

177

 

isReadOnly

 

member

 

variable

 

(AgentProperty)

 

141,

 

177

 

isRequired

 

member

 

variable

 

(AgentProperty)

 

121,

 

141,

 

178

 

isRequiredKey()

 

method

 

126,

 

190

 

isRequiredServerBound()

 

method

 

190

 

isSimpleType()

 

method

 

190

 

J
Java

 

Development

 

Kit

 

(JDK)

 

98

 

K
Key

 

attribute

 

5,

 

59,

 

127,

 

129

 

L
length

 

member

 

variable

 

(ContentMetaData)

 

220

 

Log

 

destination

 

150

 

Logging

 

151

 

sending

 

a

 

message

 

151

 

LONGTEXT

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

M
Message

 

150

 

number

 

154,

 

155

 

parameters

 

in

 

156

 

type

 

155

 

Message

 

file

 

77,

 

153,

 

157

 

format

 

154

 

locales

 

78

 

Message

 

file

 

(continued)
location

 

154

 

maintaining

 

156

 

name

 

77,

 

154

 

retrieving

 

message

 

from

 

260

 

MessageFile

 

ODA

 

configuration

 

property

 

75,

 

77,

 

90,

 

154

 

Metadata

 

7,

 

32

 

MSG_ABORTRETRYIGNORE

 

dialog-button

 

constant

 

250,

 

263

 

MSG_CRITICALERROR

 

dialog-icon

 

constant

 

250,

 

263

 

MSG_ERROR

 

dialog-icon

 

constant

 

250,

 

263

 

MSG_INFORMATION

 

dialog-icon

 

constant

 

250,

 

263

 

MSG_OK

 

dialog-button

 

constant

 

249,

 

263

 

MSG_OKCANCEL

 

dialog-button

 

constant

 

249,

 

263

 

MSG_QUESTION

 

dialog-icon

 

constant

 

250,

 

263

 

MSG_RETRYCANCEL

 

dialog-button

 

constant

 

250,

 

263

 

MSG_WARNING

 

dialog-icon

 

constant

 

250,

 

263

 

MSG_YESNO

 

dialog-button

 

constant

 

250,

 

263

 

MSG_YESNOCANCEL

 

dialog-button

 

constant

 

250,

 

263

 

MULTIPLE_CARD

 

cardinality

 

constant

 

143,

 

176,

 

250

 

N
name

 

member

 

variable

 

(TreeNode)

 

115,

 

268

 

NODE_NATURE_FILE

 

node-nature

 

constant

 

252,

 

269

 

NODE_NATURE_NORMAL

 

node-nature

 

constant

 

252,

 

269

 

nodes

 

member

 

variable

 

(TreeNode)

 

115,

 

116,

 

268

 

O
OBJECT

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

Object

 

Discovery

 

Agent

 

(ODA)

 

55,

 

64,

 

87

 

adapter

 

framework

 

support

 

for

 

95

 

base

 

class

 

99,

 

162,

 

245

 

Business

 

Object

 

Designer

 

and

 

64

 

class

 

for

 

89,

 

99,

 

160,

 

245

 

compiling

 

159

 

configuration

 

properties

 

101

 

connecting

 

to

 

68,

 

89

 

content

 

metadata

 

94,

 

130,

 

138,

 

219

 

content

 

protocol

 

108,

 

233,

 

237,

 

252

 

content

 

type

 

91,

 

107,

 

219,

 

223

 

content-generation

 

interface

 

91,

 

107

 

creating

 

business

 

object

 

definition

 

64

 

developing

 

87,

 

158,

 

159,

 

162

 

development

 

environment

 

98

 

development

 

process

 

of

 

95

 

development

 

support

 

97

 

development

 

tools

 

for

 

95

 

generated-content

 

structure

 

94,

 

106,

 

130,

 

138

 

generating

 

business

 

object

 

definitions

 

110

 

generating

 

files

 

133

 

initializing

 

105,

 

247

 

library

 

file

 

160,

 

161

 

log

 

destination

 

150

 

metadata

 

90,

 

103,

 

167,

 

246

 

monitoring

 

152

 

name

 

of

 

159

 

package

 

name

 

100,

 

159

 

profile

 

70,

 

75

 

providing

 

content

 

94,

 

130,

 

138

 

running

 

88

 

running

 

multiple

 

83

 

runtime

 

directory

 

160,

 

161

 

sample

 

66,

 

97

 

search

 

pattern

 

79,

 

104,

 

113

 

selecting

 

68,

 

89

   

Index

 

281



Object

 

Discovery

 

Agent

 

(ODA)

 

(continued)
shutting

 

down

 

74,

 

150,

 

247

 

starting

 

65,

 

66,

 

101,

 

160

 

startup

 

script

 

65,

 

160

 

supported

 

content

 

91,

 

104,

 

107,

 

110,

 

168

 

terminating

 

74,

 

150,

 

247

 

trace

 

file

 

76

 

trace

 

level

 

76

 

version

 

104,

 

107,

 

162,

 

167,

 

170

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

64,

 

97

 

Object

 

Discovery

 

Agent

 

Development

 

Kit

 

(ODK)

 

API

 

87,

 

97

 

AgentMetaData

 

167

 

AgentProperty

 

173

 

BusObjAttr

 

183

 

BusObjAttrType

 

197

 

BusObjDef

 

199

 

BusObjVerb

 

211

 

CompleteCondition

 

215

 

ContentMetaData

 

219

 

ContentType

 

223

 

DependentCondition

 

227

 

exceptions

 

157,

 

253

 

IGeneratesBinFiles

 

231

 

IGeneratesBoDefs

 

235

 

IGeneratesContent

 

109

 

InputCondition

 

241

 

ODKAgentBase

 

245

 

ODKAgentBase2

 

245

 

ODKConstant

 

249

 

ODKException

 

253

 

ODKUtility

 

255

 

overview

 

165,

 

167

 

package

 

for

 

100,

 

165

 

TreeNode

 

267

 

OBJECT_EVENT_ID

 

constant

 

183

 

ObjectEventId

 

attribute

 

7,

 

57,

 

126,

 

183,

 

201

 

ODA

 

configuration

 

property

 

89,

 

173

 

class

 

for

 

89

 

initializing

 

102,

 

246

 

MessageFile

 

75,

 

77,

 

90,

 

154,

 

261

 

obtaining

 

89

 

retrieving

 

105,

 

256,

 

257

 

saving

 

in

 

profile

 

70

 

sending

 

to

 

Business

 

Object

 

Designer

 

102,

 

245

 

setting

 

70

 

standard

 

75,

 

90

 

TraceFileName

 

75,

 

76,

 

90,

 

150,

 

265

 

TraceLevel

 

75,

 

76,

 

90,

 

152,

 

265

 

ODA

 

runtime

 

87,

 

97,

 

107,

 

160,

 

247

 

ODK_ABORT

 

user-response

 

constant

 

250,

 

262

 

ODK_CANCEL

 

user-response

 

constant

 

250,

 

262

 

ODK_CLOSE

 

user-response

 

constant

 

250,

 

263

 

ODK_HELP

 

user-response

 

constant

 

250,

 

263

 

ODK_IGNORE

 

user-response

 

constant

 

250,

 

262

 

ODK_NO

 

user-response

 

constant

 

250,

 

262

 

ODK_OK

 

user-response

 

constant

 

250,

 

262

 

ODK_RETRY

 

user-response

 

constant

 

250,

 

262

 

ODK_YES

 

user-response

 

constant

 

250,

 

262

 

ODKAgentBase

 

class

 

166,

 

245

 

ODKAgentBase2

 

class

 

99,

 

166,

 

245,

 

249

 

deprecated

 

methods

 

248

 

extending

 

100,

 

162

 

generateDefs()

 

248

 

getAgentProperties()

 

90,

 

101,

 

245

 

getMetaData()

 

90,

 

103,

 

246

 

getTreeNodes()

 

248

 

getVersion()

 

107,

 

247

 

ODKAgentBase2

 

class

 

(continued)
init()

 

90,

 

105,

 

247

 

method

 

summary

 

245

 

terminate()

 

150,

 

247

 

ODKConstant

 

interface

 

166,

 

249,

 

252

 

cardinality

 

constants

 

250

 

content-index

 

constant

 

252

 

content-protocol

 

constants

 

252

 

CW_EMPTY_STRING

 

249

 

CW_NULL_STRING

 

249

 

GET_ALL_OBJECTS

 

252

 

message-type

 

constants

 

251

 

MSG_ABORTRETRYIGNORE

 

250

 

MSG_CRITICALERROR

 

250

 

MSG_ERROR

 

250

 

MSG_INFORMATION

 

250

 

MSG_OK

 

249

 

MSG_OKCANCEL

 

249

 

MSG_QUESTION

 

250

 

MSG_RETRYCANCEL

 

250

 

MSG_WARNING

 

250

 

MSG_YESNO

 

250

 

MSG_YESNOCANCEL

 

250

 

MULTIPLE_CARD

 

250

 

NODE_NATURE_FILE

 

252

 

NODE_NATURE_NORMAL

 

252

 

node-nature

 

constants

 

251

 

ODK_ABORT

 

250

 

ODK_CANCEL

 

250

 

ODK_CLOSE

 

250

 

ODK_HELP

 

250

 

ODK_IGNORE

 

250

 

ODK_NO

 

250

 

ODK_OK

 

250

 

ODK_RETRY

 

250

 

ODK_YES

 

250

 

SINGLE_CARD

 

250

 

string-value

 

constants

 

249

 

trace-level

 

constants

 

251

 

TRACELEVEL0

 

251

 

TRACELEVEL1

 

251

 

TRACELEVEL2

 

251

 

TRACELEVEL3

 

251

 

TRACELEVEL4

 

251

 

TRACELEVEL5

 

251

 

user-response-dialog

 

constants

 

249

 

XRD_ERROR

 

251

 

XRD_FATAL

 

251

 

XRD_INFO

 

251

 

XRD_TRACE

 

251

 

XRD_UNKNOWN

 

251

 

XRD_URGENTWARNING

 

251

 

XRD_WARNING

 

251

 

ODKException

 

class

 

157,

 

166,

 

253,

 

255

 

constructor

 

253

 

getMsg()

 

253

 

method

 

summary

 

253

 

subclasses

 

254

 

ODKException()

 

method

 

253

 

ODKInvalidNodeException

 

exception

 

254

 

ODKInvalidPropException

 

exception

 

254

 

ODKUtility

 

class

 

166,

 

255,

 

267

 

contentComplete()

 

138,

 

255

 

deprecated

 

methods

 

266

 

filterData()

 

266

 

getAgentProperty()

 

256

 

getAllAgentProperties()

 

257

   

282

 

Business

 

Object

 

Development

 

Guide



ODKUtility

 

class

 

(continued)
getAllBOSpecificProperties()

 

123,

 

257

 

getBOSpecificProperty()

 

123,

 

258

 

getBOSpecificProps()

 

93,

 

122,

 

258

 

getClientFile()

 

134,

 

259

 

getFilter()

 

266

 

getMsg()

 

260

 

getODKUtility()

 

102,

 

261

 

method

 

summary

 

255

 

obtaining

 

handle

 

to

 

102,

 

255,

 

261

 

sendMsg()

 

262

 

sendStatusMsg()

 

264

 

setFilter()

 

266

 

trace()

 

264

 

On-request

 

content

 

protocol

 

92,

 

108

 

constant

 

for

 

108,

 

252

 

generating

 

business

 

object

 

definitions

 

110,

 

118

 

generating

 

files

 

110,

 

136

 

providing

 

access

 

to

 

content

 

132,

 

140

 

providing

 

content

 

94,

 

130,

 

138

 

OP_EQUAL

 

operator

 

constant

 

215

 

OP_EXISTS

 

operator

 

constant

 

215

 

OP_GREATER_THAN

 

operator

 

constant

 

215

 

OP_GREATER_THAN_EQUAL

 

operator

 

constant

 

215

 

OP_LESS_THAN

 

operator

 

constant

 

215

 

OP_LESS_THAN_EQUAL

 

operator

 

constant

 

215

 

OP_NOT_EQUAL

 

operator

 

constant

 

215

 

operatorType

 

member

 

variable

 

(DependentCondition)

 

148,

 

227

 

operatorType

 

member

 

variable

 

(InputCondition)

 

147,

 

241

 

P
PATH

 

environment

 

variable

 

98

 

polymorphicName

 

member

 

variable

 

(TreeNode)

 

115

 

polymorphicNature

 

member

 

variable

 

(TreeNode)

 

116,

 

118,

 

134,

 

269

 

Primary

 

key

 

20

 

Project

 

43,

 

46,

 

47

 

local

 

43

 

propertyName

 

member

 

variable

 

(DependentCondition)

 

148,

 

228

 

propName

 

member

 

variable

 

(AgentProperty)

 

141,

 

178

 

R
removeAttribute()

 

method

 

123,

 

206

 

removeVerb()

 

method

 

123,

 

207

 

Repository

 

14,

 

126

 

Required

 

attribute

 

6

 

S
searchableNodes

 

member

 

variable

 

(AgentMetaData)

 

104,

 

114,

 

167

 

searchPatternDesc

 

member

 

variable

 

(AgentMetaData)

 

104,

 

114,

 

168

 

sendMsg()

 

method

 

249,

 

262

 

sendStatusMsg()

 

method

 

264

 

setAppInfo()

 

method

 

(BusObjDef)

 

123,

 

125,

 

207

 

setAppInfo()

 

method

 

(BusObjVerb)

 

129,

 

212

 

setAppText()

 

method

 

125,

 

129,

 

191

 

setAttributeList()

 

method

 

123,

 

129,

 

208

 

setAttrType()

 

method

 

126,

 

191

 

setBOVersion()

 

method

 

192

 

setCardinality()

 

method

 

126,

 

192

 

setComments()

 

method

 

126,

 

193

 

setDefault()

 

method

 

126,

 

127,

 

193

 

setIsForeignKey()

 

method

 

126,

 

193

 

setIsKey()

 

method

 

126,

 

127,

 

193

 

setIsRequiredKey()

 

method

 

126,

 

194

 

setMaxLength()

 

method

 

126,

 

194

 

setName()

 

method

 

(BusObjAttr)

 

125,

 

194

 

setName()

 

method

 

(BusObjVerb)

 

129,

 

213

 

setRelationType()

 

method

 

126,

 

195

 

setVerbList()

 

method

 

123,

 

130,

 

208

 

Simple

 

attribute

 

12

 

cardinality

 

5,

 

12

 

type

 

5

 

SINGLE_CARD

 

cardinality

 

constant

 

143,

 

176,

 

250

 

specificValue

 

member

 

variable

 

(DependentCondition)

 

148,

 

228

 

specificValue

 

member

 

variable

 

(InputCondition)

 

147,

 

242

 

STRING

 

attribute-type

 

constant

 

186,

 

191,

 

197

 

supportedContent

 

member

 

variable

 

(AgentMetaData)

 

104,

 

168

 

System

 

Manager

 

44,

 

64

 

T
terminate()

 

method

 

150,

 

247

 

toString()

 

method

 

225

 

toXml()

 

method

 

171

 

Trace

 

file

 

76,

 

150

 

Trace

 

message

 

152,

 

251

 

trace()

 

method

 

150,

 

151,

 

155,

 

251,

 

264

 

TraceFileName

 

ODA

 

configuration

 

property

 

75,

 

76,

 

90,

 

150

 

TraceLevel

 

ODA

 

configuration

 

property

 

75,

 

76,

 

90,

 

152

 

TRACELEVEL0

 

trace-level

 

constant

 

152,

 

251,

 

264,

 

265

 

TRACELEVEL1

 

trace-level

 

constant

 

153,

 

251,

 

264,

 

265

 

TRACELEVEL2

 

trace-level

 

constant

 

153,

 

251,

 

264,

 

265

 

TRACELEVEL3

 

trace-level

 

constant

 

153,

 

251,

 

264,

 

265

 

TRACELEVEL4

 

trace-level

 

constant

 

153,

 

251,

 

264,

 

265

 

TRACELEVEL5

 

trace-level

 

constant

 

153,

 

251,

 

264,

 

265

 

Tracing

 

76,

 

77,

 

150,

 

157,

 

251

 

trace

 

levels

 

75,

 

76,

 

77,

 

151,

 

152,

 

251,

 

265

 

Tree

 

node
associating

 

file

 

with

 

81,

 

118,

 

134,

 

269

 

class

 

for

 

115,

 

267

 

constructing

 

112,

 

115,

 

238

 

contents

 

of

 

115

 

creating

 

115,

 

270

 

description

 

115,

 

267

 

expandable

 

71,

 

112,

 

115,

 

268,

 

269

 

generatable

 

115,

 

268

 

hierarchy

 

of

 

268

 

leaf

 

116,

 

269

 

name

 

of

 

115,

 

268

 

node

 

nature

 

115,

 

251,

 

269

 

search

 

pattern

 

104,

 

167,

 

168

 

valid

 

user

 

actions

 

on

 

251,

 

269

 

TreeNode

 

class

 

115,

 

166,

 

267,

 

270

 

constructor

 

115,

 

270

 

description

 

267

 

isExpandable

 

268

 

isGeneratable

 

268

 

member

 

variables

 

267

 

method

 

summary

 

269

 

name

 

268

 

nodes

 

268

 

polymorphicNature

 

269

 

TreeNode()

 

method

 

115,

 

270

 

Triggering

 

event

 

60

   

Index

 

283



type

 

member

 

variable

 

(AgentProperty)

 

141,

 

142,

 

179

 

TYPE_BOOLEAN

 

property-type

 

constant

 

173

 

TYPE_DOUBLE

 

property-type

 

constant

 

173

 

TYPE_FLOAT

 

property-type

 

constant

 

173

 

TYPE_INTEGER

 

property-type

 

constant

 

173

 

TYPE_STRING

 

property-type

 

constant

 

173

 

typeOfSpecificValue

 

member

 

variable

 

(DependentCondition)

 

148,

 

228

 

typeOfSpecificValue

 

member

 

variable

 

(InputCondition)

 

147,

 

242

 

U
UnsupportedContentException

 

exception

 

254

 

UseDefaults

 

connector

 

configuration

 

property

 

6

 

V
value()

 

method

 

225

 

Verb

 

4,

 

7,

 

129

 

adding

 

60,

 

129,

 

205

 

application-specific

 

information

 

10,

 

129,

 

212

 

class

 

for

 

129,

 

211

 

creating

 

129,

 

211

 

default

 

61,

 

200

 

Verb

 

(continued)
deleting

 

61,

 

207

 

determining

 

number

 

of

 

204

 

name

 

of

 

61,

 

129,

 

212,

 

213

 

retrieving

 

203,

 

204

 

W
Warnings

 

151,

 

251

 

X
XML

 

format
converting

 

content

 

type

 

to

 

225

 

converting

 

ODA

 

metadata

 

to

 

171

 

xmlObject()

 

method

 

225

 

XRD_ERROR

 

message-type

 

constant

 

152,

 

155,

 

251,

 

261,

 

265

 

XRD_FATAL

 

message-type

 

constant

 

152,

 

155,

 

251,

 

261,

 

265

 

XRD_INFO

 

message-type

 

constant

 

152,

 

155,

 

251,

 

261,

 

265

 

XRD_TRACE

 

message-type

 

constant

 

153,

 

155,

 

251,

 

265

 

XRD_UNKNOWN

 

message-type

 

constant

 

251

 

XRD_URGENTWARNING

 

message-type

 

constant

 

152,

 

155,

 

251,

 

261,

 

265

 

XRD_WARNING

 

message-type

 

constant

 

152,

 

155,

 

251,

 

261,

 

265

  

284

 

Business

 

Object

 

Development

 

Guide


	Contents
	About this document
	Audience
	Related documents
	Typographic conventions

	New in this release
	New in Business Object Designer
	New in the 2.3.0 release of Adapter Framework and WebSphere InterChange Server version 4.2.1
	New in the 2.2.0 release of Adapter Framework and WebSphere InterChange Server version 4.2.0
	New in the 2.1.0 release of Adapter Framework
	New in the 2.0.1 release of Adapter Framework
	New in the 2.0 release of Adapter Framework
	New in the CrossWorlds 4.1.1 release
	New in the CrossWorlds 4.1.0 release
	New in the CrossWorlds 4.0.1 release
	New in the CrossWorlds 4.0.0 release

	Part 1. Designing and developing business objects
	Chapter 1. Business objects
	Business objects in the WebSphere business integration system
	Business object definitions
	Business object attributes and attribute properties
	Business object verbs
	Business object application-specific information

	Business object instances

	Business object structure
	Flat business objects
	Hierarchical business objects

	Overview of the development process
	Setting up the development environment
	Stages of business object development


	Chapter 2. Business object design
	Determining business object structure
	Representing one entity
	Representing multiple entities
	Structural relationships
	Semantic relationships
	Flat business object representing related entities

	Design considerations for multiple entities
	Data ownership in relationships
	Choosing between a semantic and a structural relationship


	Designing application-specific business objects
	Contents of application-specific business object definitions
	Structure of application-specific business objects
	Attributes in an application-specific business object
	Business object application-specific information

	Designing for an existing connector or data handler

	Designing generic business objects (InterChange Server only)
	Generic business object design standards
	Designing for event isolation
	Attributes in a generic business object
	Evaluating existing generic business objects

	Determining mapping requirements for business objects (InterChange Server only)

	Chapter 3. Using Business Object Designer
	Working with projects
	If Business Object Designer is running without System Manager
	How Business Object Designer works with a local project

	If Business Object Designer is running from System Manager
	How Business Object Designer works with an ICL-based project


	Starting Business Object Designer
	Opening a business object definition from Business Object Designer
	Opening a business object definition from a project
	Opening a definition from a file
	Preventing duplicate definition names

	Working with business object definitions
	Opening a business object definition and its contained child

	Business Object Designer functionality
	File menu
	Edit menu
	View menu
	Tools menu
	Window menu


	Chapter 4. Developing business object definitions
	Creating a business object definition
	Creating a flat business object definition manually
	Adding attributes
	Changing attribute order
	Specifying the supported verbs

	Creating a hierarchical business object definition manually

	Deleting a business object definition
	Deleting a definition using Business Object Designer
	Deleting a definition using System Manager

	Using an Object Discovery Agent to create a business object definition
	Before using an ODA
	System startup files
	Starting the ODA
	Starting Business Object Designer

	Using the sample ODA
	Starting the sample ODA
	Using the ODA to create business object definitions

	Entering values and saving a profile
	Setting up logging and tracing
	Specifying the trace file and trace level
	Specifying the ODA message file

	Moving through the source-node hierarchy
	Limiting display of child nodes
	Specifying an object path
	Associating an operating-system file

	Providing additional information
	Using multiple ODAs simultaneously


	Part 2. Developing an Object Discovery Agent
	Chapter 5. Developing an Object Discovery Agent
	Running an ODA
	Selecting the ODA
	Obtaining ODA configuration properties
	Selecting and confirming source data
	Generating content
	Obtaining business-object properties
	Providing generated content

	Saving content

	Overview of the ODA development process
	Tools for ODA development
	Adapter Development Kit
	Development support for business object definitions
	Development support for ODAs

	ODA development process
	Setting up the development environment
	Stages of ODA development


	Extending the ODA base class
	Starting the ODA
	Obtaining configuration properties
	Obtaining the handle to the ODKUtility object
	Initializing the configuration-property array

	Initializing ODA metadata
	Initializing the ODA start
	Retrieving ODA configuration properties
	Establishing a connection
	Checking the ODA version


	Determining the ODA generated content
	Choosing the ODA content type
	Choosing the ODA content protocol
	Indicating the implemented content protocols
	Implementing the content-generation method


	Generating business object definitions as content
	Generating source nodes
	Determining the parent-node path
	Implementing the search-pattern feature
	Querying the data source
	Constructing the tree nodes

	Generating business object definitions
	Defining the generateBoDefs() method
	Requesting business-object properties
	Creating the business object definitions
	Providing generated business object definitions

	Providing access to generated business object definitions

	Generating binary files as content
	Using files
	Creating files for file content
	Reading files for source data

	Generating files
	Defining the generateBinFiles() method
	Requesting properties for file information
	Creating the files
	Providing generated files

	Providing access to generated files

	Working with agent properties
	Defining the agent property
	Defining the property value
	Choosing the type of display control
	Specifying default values
	Initializing a single-cardinality property
	Initializing a multiple-cardinality property

	Setting conditions on the property value
	Defining the complete condition
	Defining input conditions
	Defining dependent conditions
	Defining a sample condition


	Shutting down the ODA
	Handling trace and error messages
	Indicating a log destination
	Sending a message to the trace file
	Error and informational messages
	Trace messages

	Message files
	Message format
	Name and location of a message file
	Generating a message string
	Maintaining the message file


	Handling exceptions
	What is an ODK exception?
	Exceptions from the ODK API library


	Chapter 6. Adding an Object Discovery Agent to the business integration system
	Naming the ODA
	Compiling the ODA
	Starting up a new ODA
	Preparing the ODA runtime directory
	Creating startup scripts
	Creating the startup script
	Creating the shortcut



	Part 3. ODK class reference
	Chapter 7. Overview of the ODK API
	Classes and interfaces

	Chapter 8. AgentMetaData class
	Member variables
	agentVersion
	searchableNodes
	searchPatternDesc
	supportedContent

	Methods
	AgentMetaData()
	toXml()


	Chapter 9. AgentProperty class
	Property-type constants
	Member variables
	allDefaultValues
	allDependencies
	allValidValues
	allValues
	cardinality
	description
	isHidden
	isMultiple
	isReadOnly
	isRequired
	propName
	type

	Methods
	AgentProperty()
	copy()


	Chapter 10. BusObjAttr class
	Attribute constants
	Methods
	BusObjAttr()
	getAppText()
	getAttrType()
	getAttrTypeName()
	getBOVersion()
	getCardinality()
	getComments()
	getDefault()
	getMaxLength()
	getName()
	getRelationType()
	isForeignKey()
	isKey()
	isRequiredKey()
	isRequiredServerBound()
	isSimpleType()
	setAppText()
	setAttrType()
	setBOVersion()
	setCardinality()
	setComments()
	setDefault()
	setIsForeignKey()
	setIsKey()
	setIsRequiredKey()
	setMaxLength()
	setName()
	setRelationType()


	Chapter 11. BusObjAttrType interface
	Attribute-type constants
	Static member variable

	Chapter 12. BusObjDef class
	BusObjDef()
	addDefaultVerbs()
	getAppInfo()
	getAttrCount()
	getAttribute()
	getAttributeIndex()
	getAttributeList()
	getName()
	getVerb()
	getVerbCount()
	getVerbList()
	getVersion()
	insertAttribute()
	insertVerb()
	removeAttribute()
	removeVerb()
	setAppInfo()
	setAttributeList()
	setVerbList()

	Chapter 13. BusObjVerb class
	BusObjVerb()
	clone()
	getAppInfo()
	getName()
	setAppInfo()
	setName()

	Chapter 14. CompleteCondition class
	Operator constants
	Member variables
	allDependentConditions
	allInputConditions

	Methods
	CompleteCondition()
	copy()


	Chapter 15. ContentMetaData class
	Member variables
	contentType
	count
	length

	Methods
	ContentMetaData()
	badContent()
	contentNotReady()
	contentUnavailable()


	Chapter 16. ContentType class
	Member variables
	BinaryFile
	BusinessObject

	Methods
	ContentType()
	equals()
	from_int()
	toString()
	value()
	xmlObject()


	Chapter 17. DependentCondition class
	Member variables
	isDynamic
	operatorType
	propertyName
	specificValue
	typeOfSpecificValue

	Methods
	DependentCondition()
	copy()


	Chapter 18. IGeneratesBinFiles interface
	generateBinFiles()
	getBinFile()
	getContentProtocol()

	Chapter 19. IGeneratesBoDefs interface
	generateBoDefs()
	getBoDefs()
	getContentProtocol()
	getTreeNodes()

	Chapter 20. InputCondition class
	Member variables
	isDynamic
	operatorType
	specificValue
	typeOfSpecificValue

	Methods
	InputCondition()
	copy()


	Chapter 21. ODKAgentBase2 class
	getAgentProperties()
	getMetaData()
	getVersion()
	init()
	terminate()
	Deprecated Methods

	Chapter 22. ODKConstant interface
	String-value constants
	User-response-dialog constants
	Cardinality constants
	Trace-level constants
	Message-type constants
	Node-nature constants
	Content-protocol constants
	Content-index constant

	Chapter 23. ODKException class
	Methods
	ODKException()
	getMsg()

	Exception subclasses

	Chapter 24. ODKUtility class
	contentComplete()
	getAgentProperty()
	getAllAgentProperties()
	getAllBOSpecificProperties()
	getBOSpecificProperty()
	getBOSpecificProps()
	getClientFile()
	getMsg()
	getODKUtility()
	sendMsg()
	sendStatusMsg()
	trace()
	Deprecated Methods

	Chapter 25. TreeNode class
	Member variables
	description
	isExpandable
	isGeneratable
	name
	nodes
	polymorphicNature

	Method
	TreeNode()


	Part 4. Appendixes
	Notices
	Programming interface information
	Trademarks and service marks

	Index

