
WebSphere  Business Integration Adapters

Adapter for  JMS  User Guide  

Adapter  Version 2.7.x 

   

���





WebSphere  Business Integration Adapters

Adapter for  JMS  User Guide  

Adapter  Version 2.7.x 

   

���



Note! 

Before  using this information  and the product it supports, read the information  in “Notices”  on page 105.

30September2004  

This  edition  of this  document  applies  to IBM  WebSphere  Business  Integration  Adapter  for JMS  (5724-G94),  version  

2.7.x.  

To send  us your  comments  about  IBM  WebSphere  Business  Integration  documentation,  e-mail  doc-
comments@us.ibm.com.  We look  forward  to hearing  from  you.  

When  you  send  information  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  the  information  in any 

way  it believes  appropriate  without  incurring  any  obligation  to you.  

© Copyright  International  Business  Machines  Corporation  2000,  2004.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

About this document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v  

Audience   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Prerequisites  for this  document   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Related  documents   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v  

Typographic  conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

New in this release  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

New  in  release  2.7   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

New  in  release  2.6   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

New  in  release  2.5   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

New  in  release  2.4.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

New  in  release  2.3.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

New  in  release  2.2.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

New  in  release  2.1.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

New  in  release  1.3.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

New  in  release  1.2.x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix  

New  in  release  1.1.x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix  

Chapter 1. Adapter for JMS overview  . . . . . . . . . . . . . . . . . . . . . . . 1 

Adapter  for JMS  environment   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

Adapter  for JMS  terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Connector  for JMS  architecture   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Message  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Chapter 2. Installing and configuring the adapter  . . . . . . . . . . . . . . . . . 17 

Installation  tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  

Installing  the  adapter  and  related  files   . . . . . . . . . . . . . . . . . . . . . . . . . . 17  

Installed  file  structure   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  

Connector  configuration   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  

Configuring  connector  properties   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Configuring  meta-objects   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Configuring  startup  scripts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Creating  multiple  connector  instances   . . . . . . . . . . . . . . . . . . . . . . . . . . 37  

Starting  the  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  

Stopping  the  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Chapter 3. Creating or modifying business objects . . . . . . . . . . . . . . . . . 41 

Connector  business  object  structure   . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  

Chapter 4. Troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Error  handling   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Tracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  

Fixing  start-up  problems   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Appendix A. Standard configuration properties for connectors  . . . . . . . . . . . 45 

New  properties   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Standard  connector  properties  overview  . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Standard  properties  quick-reference   . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

Standard  properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Appendix B. Connector Configurator . . . . . . . . . . . . . . . . . . . . . . . 69 

Overview  of Connector  Configurator   . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  

Starting  Connector  Configurator   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Running  Configurator  from  System  Manager   . . . . . . . . . . . . . . . . . . . . . . . . 71  

 

© Copyright  IBM Corp. 2000, 2004 iii



Creating  a connector-specific  property  template   . . . . . . . . . . . . . . . . . . . . . . . 71 

Creating  a new  configuration  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  

Using  an existing  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  

Completing  a configuration  file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

Setting  the  configuration  file properties   . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Saving  your  configuration  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Changing  a configuration  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Completing  the  configuration   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Using  Connector  Configurator  in a globalized  environment   . . . . . . . . . . . . . . . . . . . 85 

Appendix C. Tutorial  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

Tutorial overview   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

Setting  up your  environment   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

Running  the  scenarios   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  

Appendix D. Configuring for topic- and queue-based messaging . . . . . . . . . . . 93 

Configuring  for  queue-based  messaging  . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

Configuring  for  topic-based  messaging   . . . . . . . . . . . . . . . . . . . . . . . . . . 94  

Appendix E. Common Event Infrastructure  . . . . . . . . . . . . . . . . . . . . 95 

Required  software   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  

Enabling  Common  Event  Infrastructure   . . . . . . . . . . . . . . . . . . . . . . . . . . 95  

Obtaining  Common  Event  Infrastructure  adapter  events   . . . . . . . . . . . . . . . . . . . . 95 

For  more  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

Common  Event  Infrastructure  event  catalog  definitions  . . . . . . . . . . . . . . . . . . . . . 96 

XML  format  for “start  adapter”  metadata   . . . . . . . . . . . . . . . . . . . . . . . . . 96  

XML  format  for ″stop  adapter″ metadata   . . . . . . . . . . . . . . . . . . . . . . . . . 98 

XML  format  for “timeout  adapter”  metadata   . . . . . . . . . . . . . . . . . . . . . . . . 98 

XML  format  for ″request″ or ″delivery″ metadata  . . . . . . . . . . . . . . . . . . . . . . . 99 

Appendix F. Application Response Measurement  . . . . . . . . . . . . . . . . . 101 

Application  Response  Measurement  instrumentation  support   . . . . . . . . . . . . . . . . . . 101  

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

Programming  interface  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  

Trademarks  and  service  marks   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 

iv Adapter  for JMS User  Guide



About  this  document  

The  IBM(R) WebSphere(R) Business  Integration  Adapter  portfolio  supplies  

integration  connectivity  for  leading  e-business  technologies,  enterprise  applications,  

and  legacy  and  mainframe  systems.  The  product  set  includes  tools  and  templates  

for  customizing,  creating,  and  managing  components  for  business  integration.  

This  document  describes  installation,  connector  property  configuration,  business  

object  development,  and  troubleshooting  for  the  IBM  WebSphere  Business  

Integration  Adapter  for  JMS.  

This  document  does  not  describe  deployment  metrics  and  capacity  planning  issues,  

such  as server  load  balancing,  number  of adapter  processing  threads,  maximum  

and  minimum  throughputs,  and  tolerance  thresholds.  

Such  issues  are  unique  to  every  customer  deployment  and  must  be  measured  

within  or  close  to  the  exact  environment  where  the  adapter  is to  be  deployed.  You 

should  contact  your  IBM  services  representative  to discuss  the  configuration  of  

your  deployment  site,  and  for  details  on  planning  and  evaluating  these  kinds  of 

metrics,  given  your  specific  configuration.  

Audience 

This  document  is  for  consultants,  developers,  and  system  administrators  who  

support  and  manage  the  WebSphere  business  integration  system  at  customer  sites.  

Prerequisites for this document 

Users  of  this  document  should  be  familiar  with  the  WebSphere  business  integration  

system,  with  business  object  and  collaboration  development,  and  with  the  JMS  

application.  For  links,  see  “Related  documents.”  

Related documents 

The  complete  set  of  documentation  available  with  this  product  describes  the  

features  and  components  common  to all  WebSphere  adapter  installations,  and  

includes  reference  material  on  specific  components.  

You can  install  related  documentation  from  the  following  sites:  

v    For  general  adapter  information;  for  using  adapters  with  WebSphere  message  

brokers  (WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  

WebSphere  Business  Integration  Message  Broker);  and  for  using  adapters  with  

WebSphere  Application  Server:  

–   http://www.ibm.com/websphere/integration/wbiadapters/infocenter
v    For  using  adapters  with  InterChange  Server:  

–    http://www.ibm.com/websphere/integration/wicserver/infocenter  

–   http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

These  sites  contain  simple  directions  for  downloading,  installing,  and  viewing  the  

documentation.  

 

© Copyright  IBM Corp. 2000, 2004 v



Note:   Important  information  about  this  product  may  be  available  in  Technical  

Support  Technotes  and  Flashes  issued  after  this  document  was  published.  

These  can  be  found  on  the  WebSphere  Business  Integration  Support  Web 

site,  http://www.ibm.com/software/integration/websphere/support/.  

Select  the  component  area  of interest  and  browse  the  Technotes  and  Flashes  

sections.  Additional  information  might  also  be  available  in  IBM  Redbooks  at  

http://www.redbooks.ibm.com/.  

Typographic  conventions 

This  document  uses  the  following  conventions:  

 courier  font  Indicates  a literal  value,  such  as a command  name,  filename,  

information  that  you  type,  or information  that  the  system  

prints  on the  screen.  

bold  Indicates  a new  term  the  first  time  that  it appears.  

italic,  italic  Indicates  a variable  name  or a cross-reference.  

blue  outline  A blue  outline,  which  is visible  only  when  you  view  the 

manual  online,  indicates  a cross-reference  hyperlink.  Click  

inside  the  outline  to jump  to the  object  of the  reference.  

{ } In a syntax  line,  curly  braces  surround  a set  of options  from  

which  you  must  choose  one  and  only  one.  

[ ] In a syntax  line,  square  brackets  surround  an optional  

parameter.  

...  In a syntax  line,  ellipses  indicate  a repetition  of the  previous  

parameter.  For  example,  option[,...]  means  that  you  can 

enter  multiple,  comma-separated  options.  

< > In a naming  convention,  angle  brackets  surround  individual  

elements  of a name  to distinguish  them  from  each  other,  as 

in <server_name><connector_name>tmp.log. 

ProductDir  Represents  the  directory  where  the  product  is installed.  

/, \ In this  document,  backslashes  (\) are used  as the  convention  

for directory  paths.  For  UNIX  installations,  substitute  slashes  

(/) for backslashes.  All WebSphere  business  integration  

system  pathnames  are  relative  to the  directory  where  the 

WebSphere  business  integration  system  is installed  on your  

system.  

UNIX:/Windows:  Paragraphs  beginning  with  either  of these  indicate  notes  

listing  operating  system  differences.  

u This  symbol  indicates  the  end  of a UNIX/Windows  

paragraph;  it can  also  indicate  the  end  of a multi  paragraph  

note.  

%text% and  $text  Text within  percent  (%)  signs  indicates  the  value  of the 

Windows  text  system  variable  or user  variable.  The  

equivalent  notation  in a UNIX  environment  is $text, 

indicating  the  value  of the  text  UNIX  environment  variable.

 

vi Adapter  for JMS User  Guide



New  in this  release  

New in release 2.7 

Updated  in  September  2004.  The  release  of  this  document  for  adapter  version  2.7.x  

contains  the  following  new  or  corrected  information.  

This  release  adds  support  for  the  following  platforms:  

v   Solaris  9:  this  adapter  supports  32-bit  JVM  on  a 64-bit  platform  

v   For  already  supported  AIX  5.1  and  5.2:  this  adapter  supports  32-bit  JVM  on  a 

64-bit  platform  

v   Microsoft  Windows  2003  

v   Linux  RedHat  AS  3.0,  ES  3.0  and  WS  3.0  

v   SUSE  Linux  Standard  Server  8.1  and  Enterprise  Server  8.1  SP3  

v   IBM  JRE/JDK  1.4.2

This  release  supports  use  of  tracing  level  5 to  dump  the  printStackTrace()  on  

exceptions  caught  by  the  adapter.  

New in release 2.6 

Three  connector-specific  properties  have  been  added:  

EnableMessageProducerCache,  SessionPoolSizeForRequests,  and  

ArchivalConnectionFactoryName.  For  further  information,  see  “Configuring  

connector-specific  properties”  on  page  20.  

As  of  version  2.6.x,  the  adapter  is not  supported  on  Solaris  7,  so  references  to  that  

platform  version  have  been  deleted  from  this  guide.  

New in release 2.5 

The  adapter  can  now  use  WebSphere  Integration  Message  Broker  as an  integration  

broker.  For  further  information,  see  “Broker  compatibility”  on  page  1.  

Beginning  with  the  2.5.x  version,  the  adapter  for  JMS  is not  supported  on  

Microsoft  Windows  NT. 

Adapter  installation  information  has  been  moved  from  this  guide.  See  Chapter  2 

for  the  new  location  of  that  information.  

The  adapter  now  supports  the  publish-and-subscribe  (topic-based)  messaging  style  

defined  by  the  JMS  standard  as  well  as  the  point-to-point  (queue-based)  messaging  

interface.  A single  instance  of  the  adapter  supports  one  messaging  style  only;  

topics  and  queues  cannot  both  be  specified  in  the  same  configuration.  However,  

both  messaging  styles  can  be  supported  by  running  multiple  instances  of the  

adapter,  with  one  or  more  instances  implementing  topic-based  messaging  and  one  

or  more  instances  a queue-based  style.  

 

© Copyright  IBM Corp. 2000, 2004 vii



New in release 2.4.x 

The  adapter  can  now  use  WebSphere  Application  Server  as  an  integration  broker.  

For  further  information,  see  “Broker  compatibility”  on  page  1.  

The  connector  now  runs on  the  following  platforms:  

v   Microsoft  Windows  NT  4.0  Service  Pack  6A  or  Windows  2000  

v   Solaris  7, 8 or  AIX  5.1,  5.2  or  HP  UX  11.i

New in release 2.3.x 

Updated  in  March,  2003.  The  ″CrossWorlds″ name  is no  longer  used  to describe  an  

entire  system  or  to  modify  the  names  of components  or  tools,  which  are  otherwise  

mostly  the  same  as  before.  For  example  ″CrossWorlds  System  Manager″  is now  

″System  Manager,″ and  ″CrossWorlds  InterChange  Server″ is  now  ″WebSphere  

InterChange  Server.″ 

You can  now  associate  a data  handler  with  an  input  queue.  For  further  

information,  see  “Mapping  data  handlers  to input  destinations”  on  page  32.  

The  guaranteed  event  delivery  feature  has  been  enhanced.  For  further  information,  

see  the  Connector  Development  Guide  for  Java. 

New in release 2.2.x 

The  InProgress  queue  is no  longer  required  and  may  be  disabled.  For  more  

information,  see  “InProgressDestination”  on  page  24..  

The  ReplyToQueue  can  now  be  dictated  via  the  dynamic  child  meta-object  rather  

than  by  the  ReplyToQueue  connector  property.  For  more  information  see  “JMS  

headers  and  dynamic  child  meta-object  attributes”  on  page  35..  

You can  use  a message  selector  to  identify,  filter  and  otherwise  control  how  the  

adapter  identifies  the  response  message  for  a given  request.  This  JMS  capability  

applies  to  synchronous  request  processing  only.  For  more  information,  see  

“Synchronous  processing”  on  page  13.  

New in release 2.1.x 

The  connector  has  been  internationalized.  For  more  information,  see  

“Locale-dependent  data”  on  page  3 and  Appendix  A,  “Standard  configuration  

properties  for  connectors,”  on  page  45.  

This  guide  provides  information  about  using  this  adapter  with  ICS.  

Note:   To use  the  guaranteed  event  delivery  feature,  you  must  install  release  4.1.1.2  

of  ICS.  

New in release 1.3.x 

The  IBM  WebSphere  Business  Integration  Adapter  for  JMS  includes  the  connector  

for  JMS.  This  adapter  operates  with  InterChange  Server  (ICS)  integration  broker.  

An  integration  broker,  which  is an  application  that  performs  integration  of 

heterogeneous  sets  of  applications,  provides  services  that  include  data  routing.  The  

adapter  includes:  

 

viii Adapter  for JMS User  Guide



v   An  application  component  specific  to  JMS  

v   Sample  business  objects  

v   IBM  WebSphere  Adapter  Framework,  which  consists  of:  

–   Connector  Framework  

–   Development  tools  (including  Business  object  Designer  and  IBM  CrossWorlds  

System  Manager)  

–   APIs  (including  CDK)

This  manual  provides  information  about  using  this  adapter  with  ICS.  

Important:   Because  the  connector  has  not  been  internationalized,  do  not  run it 

against  ICS  version  4.1.1  if you  cannot  guarantee  that  only  ISO  Latin-1  

data  will  be  processed.  

The  connector  is  now  enabled  for  AIX  4.3.3  Patch  Level  7. 

New in release 1.2.x 

In  previous  versions  of the  connector  for  JMS,  the  data  handler  that  was  used  to 

convert  data  between  JMS  messages  and  IBM  CrossWorlds  business  objects  was  

determined  by  the  DataHandlerConfigMO  and  DataHandlerMimeType  connector  

properties.  This  had  the  limiting  effect  of  requiring  multiple  instances  of  the  

connector  to  process  different  data  formats.  In  release  1.2.x,  the  connector  now  

allows  you  to  optionally  specify  these  properties  in  the  connector’s  static  

meta-object  or  in  a request  business  object’s  dynamic  child  meta-object.  For  details,  

see  “Configuring  meta-objects”  on  page  27.  

New in release 1.1.x 

This  release  of  the  document  contains  information  for  the  following  new  features  

and  product  enhancements:  

v   The  connector  recognizes  and  reads  conversion  properties  from  a dynamic  

meta-object  that  is  added  as  a child  to  the  business  object  passed  to  the  

connector.  The  attribute  values  of this  dynamic  child  meta-object  duplicate  the  

conversion  properties  previously  specifiable  via  the  static  meta-object  used  to  

configure  the  connector.  The  connector  property  specifying  the  static  meta-object  

is no  longer  required,  but  can  still  be  used.  You can  use  a dynamic  child  

meta-object  independent  of the  static  meta-object  and  vice-versa.  

v   The  connector  accepts  multiple  queue  names  for  the  connector  property  

InputQueue. The  connector  polls  the  queues  in  a round-robin  manner  and  

retrieves  up  to  pollQuantity  number  of messages  from  each  queue.  Multiple  

queue  names  are  delimited  by  semi-colons.

 

New in this release ix



x Adapter  for JMS User  Guide



Chapter  1.  Adapter  for  JMS  overview  

v   “Adapter  for  JMS  environment”  

v   “Adapter  for  JMS  terminology”  on  page  4 

v   “Connector  for  JMS  architecture”  on  page  4 

v   “Message  processing”  on  page  4

The  connector  for  JMS  is a runtime  component  of  the  IBM  WebSphere  Business  

Integration  Adapter  for  JMS.  The  connector  allows  IBM  WebSphere  integration  

brokers  to  exchange  business  objects  with  applications  that  send  or  receive  data  in 

the  form  of  JMS  messages.  

The  JMS  is  an  open-standard  API  for  accessing  enterprise-messaging  systems.  It is 

designed  to  allow  business  applications  to  send  and  receive  business  data  and  

events.  

Connectors  consist  of  an  application-specific  component  and  the  connector  

framework.  The  application-specific  component  contains  code  tailored  to a 

particular  application.  The  connector  framework,  whose  code  is common  to all 

connectors,  acts  as  an  intermediary  between  the  integration  broker  and  the  

application-specific  component.  The  connector  framework  provides  the  following  

services  between  the  integration  broker  and  the  application-specific  component:  

v   Receives  and  sends  business  objects  

v   Manages  the  exchange  of  startup  and  administrative  messages

This  document  contains  information  about  the  application-specific  component  and  

connector  framework.  It refers  to  both  of  these  components  as  the  connector.  

Note:   All  WebSphere  business  integration  adapters  operate  with  an  integration  

broker.  The  connector  for  JMS  operates  with:  

v   the  InterChange  Server  integration  broker,  which  is described  in  the  

Technical  Introduction  to  IBM  WebSphere  InterChange  Server  

v   the  WebSphere  MQ  message  brokers,  which  are  described  in  Implementing  

Adapters  with  WebSphere  Message  Brokers  

v   the  WebSphere  Application  Server  (WAS)  integration  broker,  which  is 

described  in  Implementing  Adapters  with  WebSphere  Application  Server

Adapter for JMS environment 

Before  installing,  configuring,  and  using  the  adapter,  you  must  understand  its  

environmental  requirements:  

v   “Broker  compatibility”  

v   “Adapter  standards”  on  page  2 

v   “Adapter  platforms”  on  page  2 

v   “Adapter  dependencies”  on  page  3 

v   “Locale-dependent  data”  on  page  3

Broker compatibility 

The  adapter  framework  that  an  adapter  uses  must  be  compatible  with  the  version  

of  the  integration  broker  (or  brokers)  with  which  the  adapter  is communicating.  

 

© Copyright  IBM Corp. 2000, 2004 1



This  adapter  runs with  the  WebSphere  Business  Integration  Adapter  Framework  

version  2.6  and  requires  one  of  the  following:  

v   WebSphere  InterChange  Server  V  4.2.2  or  V 4.3  

v   WebSphere  MQ  Integrator  V 2.1  

v   WebSphere  MQ  Integrator  Broker  V  2.1  

v   WebSphere  Business  Integration  Message  Broker  V  5.0.1  

v   WebSphere  Application  Server  Enterprise  V 5.0.2,  in  conjunction  with  WebSphere  

Studio  Application  Developer  Integration  Edition  V  5.0.1  

v   WebSphere  Business  Integration  Server  Foundation  V 5.1.1  

v   DB2  Information  Integrator  V  8.2.3-  supported  by  WebSphere  Business  

Integration  Adapters  for  mySAP.com,  Peoplesoft,  and  Siebel  only.

See  the  Release  Notes  for  any  exceptions.  

Adapter standards 

The  adapter  is written  to  the  JMS  1.0.2  standard.  Support  for  other  versions  of  the  

standard  has  not  been  verified  although  there  are  currently  no  known  issues  that  

would  preclude  this.  

The  adapter  supports  both  the  point-to-point  (PTP)  messaging  and  

publish-and-subscribe  (Pub/Sub)  messaging  interfaces  defined  by  the  JMS  

standard;  these  styles  are  also  commonly  referred  to  as  queue-based  and  

topic-based  messaging,  respectively.  A single  instance  of  the  adapter  supports  only  

one  messaging  style  at  a time  (i.e.  topics  and  queues  cannot  be  mixed  in  the  

configuration);  however,  both  messaging  styles  can  be  supported  by  running  

multiple  instances  of  the  adapter  in  parallel  with  instances  configured  for  either  

PTP  or  Pub/Sub.  

Adapter platforms 

In  addition  to  a broker,  this  adapter  requires  one  of  the  following  operating  

systems:  

Note:   All  operating  system  environments  require  the  Java  compiler  (IBM  JDK  1.4.2  

for  Windows  2000)  for  compiling  custom  adapters.  

v   Microsoft  Windows  2000  (Professional,  Server,  or  Advanced  Server)  with  Service  

Pack  4 

v   Windows  XP  with  Service  Pack  1A,  for  WebSphere  Business  Integration  Adapter  

Framework  (administrative  tools  only)  

v   Windows  2003  (Standard  Edition  or  Enterprise  Edition)  

v   Solaris  8 (2.8)  with  Solaris  Patch  Cluster  dated  February  11, 2004  or  later. 

v   Solaris  9 (2.9)  with  Solaris  Patch  Cluster  dated  February  11, 2004.  This  adapter  

supports  32-bit  JVM  on  a 64-bit  platform.  

v   AIX  5.1  with  Maintenance  Level  4 

v   AIX  5.2  with  Maintenance  Level  1. This  adapter  supports  32-bit  JVM  on  a 64-bit  

platform.  

v   HP-UX  11i (11.11)  with  June  2003  GOLDBASE11i  and  June  2003  GOLDAPPS11i  

bundles  

v   RedHat  Enterprise  Linux  AS  3.0  with  Update  1 

v   Red  Hat  Enterprise  Linux  ES  3.0  with  Update  1 

v   Red  Hat  Enterprise  Linux  WS  3.0  with  Update  1 

v   SUSE  Linux  Enterprise  Server  x86  8.1  with  SP3  

 

2 Adapter  for JMS User  Guide



v   SUSE  Linux  Standard  Server  x86  8.1  with  SP3and  Enterprise  Server  8.1  SP3  

Note:   The  TMTP  (Tivoli  Monitoring  for  Transaction  Performance)  component  of  

the  WebSphere  Business  Integration  Adapter  Framework  V 2.6  is not  

supported  on  Linux  Red  Hat.  

v   IBM  JRE/JDK  1.4.2

Adapter dependencies 

The  adapter  does  not  use  or  depend  upon  any  database.  All  client  libraries  

required  by  the  JMS  provider  and  the  JNDI  provider  must  be  included  in  the  

adapter  classpath.  These  libraries  differ  by  provider.  

Common Event Infrastructure 

This  adapter  is  compatible  with  IBM’s  Common  Event  Infrastructure,  a standard  

for  event  management  that  permits  interoperability  with  other  IBM  WebSphere  

event-producing  applications.  If  Common  Event  Infrastructure  support  is enabled,  

events  produced  by  the  adapter  can  be  received  (or  used)  by  another  Common  

Event  Infrastructure-compatible  application.  

For  more  information,  refer  to  the  Common  Event  Infrastructure  appendix  in  this  

guide.  

Application Response Measurement 

This  adapter  is  compatible  with  the  Application  Response  Measurement  

application  programming  interface  (API),  and  API  that  allows  applications  to  be  

managed  for  availability,  service  level  agreements,  and  capacity  planning.  An  

ARM-instrumented  application  can  participate  in  IBM  Tivoli  Monitoring  for  

Transaction  Performance,  allowing  collection  and  review  of  data  concerning  

transaction  metrics.  

For  more  information,  refer  to  the  Application  Response  Measurement  appendix  in  

this  guide.  

Locale-dependent data 

The  connector  has  been  internationalized  so  that  it can  support  double-byte  

character  sets,  and  deliver  message  text  in the  specified  language.  When  the  

connector  transfers  data  from  a location  that  uses  one  character  code  to  a location  

that  uses  a different  code  set,  it  performs  character  conversion  to preserves  the  

meaning  of  the  data.  

This  adapter  supports  the  processing  of bidirectional  (bi-di)  script  data  for  the  

Arabic  and  Hebrew  languages  when  the  adapter  is run in  a Windows  environment.  

Bidirectional  processing  is not  supported  in  non-Windows  environments.  To use  

the  bidirectional  capacity,  you  must  configure  the  bidirectional  standard  properties.  

For  more  information  refer  to  the  standard  configuration  properties  for  connectors  

in  Appendix  A,  “Standard  configuration  properties  for  connectors,”  on  page  45.  

The  Java  runtime  environment  within  the  Java  Virtual  Machine  (JVM)  represents  

data  in  the  Unicode  character  code  set.  Unicode  contains  encoding  for  characters  in  

most  known  character  code  sets  (both  single-byte  and  multibyte).  Most  

components  in  the  WebSphere  business  integration  system  are  written  in  Java.  

Therefore,  when  data  is transferred  between  most  integration  components,  there  is 

no  need  for  character  conversion.  

 

Chapter  1. Adapter for JMS overview  3



To log  error  and  informational  messages  in the  appropriate  language  and  for  the  

appropriate  country  or  territory,  configure  the  Locale  standard  configuration  

property  for  your  environment.  For  more  information  on  configuration  properties,  

see  Appendix  A,  “Standard  configuration  properties  for  connectors,”  on  page  45.  

Adapter for JMS terminology 

v   JMS  provider  a messaging  system  that  implements  JMS  

v   Messages  requests  and  events  containing  business  data  that  are  consumed  by  

enterprise  applications.  

v   PTP  point-to-point  style  or  queue-based  messaging  

v   Pub/Sub  publish-and-subscribe  style  or  topic-based  messaging  

v   JMS  Destination  represents  the  source  of,  or  target  for, a message.  In  PTP  

messaging,  a destination  is a queue.  In  Pub/Sub,  a destination  is  a topic.  This  

term  is used  widely  in  the  specification  in  both  descriptions  and  actual  property  

names  when  either  a queue  or  a topic  could  apply  in a given  situation.  

v   ASI  Application-specific  information—metadata  that  appears  as  

semicolon-delimited  name=value  pairs  in  business  and  meta-objects.

Connector for JMS architecture 

Messages,  in  the  context  of this  adapter,  are  requests  and  events  containing  

business  data  that  are  consumed  by  enterprise  applications.  Message  Oriented  

Middleware  products  (MOM)  enable  enterprise  applications  to send  messages  to  

and  receive  messages  from  one  another  in an  asynchronous  fashion.  The  Java  

Message  Service  (JMS)  API  was  established  to  standardize  the  way  that  Java  

programs  communicate  with  these  messaging  systems.  In  the  past,  a messaging  

client  was  often  written  to  work  with  a single  specific  MOM  system.  JMS  clients,  

such  as  the  adapter,  can  generally  take  advantage  of  any  messaging  system  that  

provides  JMS  support.  The  WBI  adapter  for  JMS  allows  you  to integrate  with  the  

growing  number  of  enterprise  messaging  systems  that  support  the  JMS  standard.  

Message processing 

The  adapter  supports  two  primary  operations:  

1.   The  retrieval  of  messages  from  a JMS  destination  

2.   The  delivery  of  a message  to a JMS  destination

The  adapter  performs  both  operations  by  establishing  a connection  to a JMS  

provider  (such  as  WebSphere  MQ)  and  then  using  the  JMS  API  to:  

v   Poll  and  retrieve  existing  messages  from  a JMS  destination  

v   Generate  and  deliver  new  messages  requested  by  the  broker

These  two  operations  are  described  in  detail  in  “Event  message  processing”  and  

“Request  message  processing”  on  page  10.  

Event message processing 

The  connector  periodically  checks  for  new  messages  delivered  to one  or more  JMS  

destinations.  During  each  poll  cycle,  the  connector:  

1.   Uses  the  JMS  API  to  retrieve  any  waiting  messages.  

2.   Calls  a configured  data  handler  to  convert  the  message  content  to a business  

object.  

 

4 Adapter  for JMS User  Guide



3.   Delivers  or  publishes  the  event  business  object  to the  configured  integration  

broker  for  processing  by  any  subscribing  business  processes.

These  steps  are  illustrated  in  Figure  1and  described  in depth  in:  

v   “Event  detection”  

v   “Event  status  and  recovery”  on  page  6 

v   “Event  retrieval”  on  page  8

   

Event detection 

During  each  event  polling  cycle,  the  connector  performs  a non-blocking  read  of  

messages  at  the  destination  specified  by  connector  property  InputDestination  (for  

further  information  on  connector  properties,  see  “Configuring  connector  

properties”  on  page  19).  The  connector  retrieves  messages  and  then  publishes  them  

to  the  broker.  

The  connector  uses  the  pollForEvents()  method  to  poll  at regular  intervals  for  

messages.  For  each  poll  cycle,  message  retrieval  is limited  to  the  maximum  number  

specified  by  connector  property  PollQuantity.  If it  retrieves  all  available  messages  

before  reaching  the  specified  maximum,  the  connector  does  not  wait  for  more  

messages  but  instead  returns  immediately  from  the  poll  cycle.  

If  multiple  destinations  are  specified  in  connector  property  InputDestination,  the  

connector  polls  each  destination  specified  in  a round-robin  manner.  It retrieves  and  

publishes  to  the  broker  a maximum  of  PollQuanity  number  of  messages  from  each  

destination.  If  it empties  all  destinations  before  reaching  the  maximum  specified  by  

the  PollQuantity,  the  connector  returns  immediately  from  the  poll  cycle.  

For  example,  in  a scenario  where  

v   the  connector  is configured  with  a PollQuanity  value  of  2 and  input  queues  A,  

B, and  C 

Event
message

Event BO

Adapter for
JMS

Data
handler

Integration
broker

pollForEvents()
gotApplEvents()

Input queue/topic via
JMS service
provider

  

Figure  1. Event  message  flow

 

Chapter  1. Adapter for JMS overview  5



v   queue  A contains  2 messages,  queue  B contains  1 message,  and  queue  C contains  

5 messages

the  adapter  would  retrieve  messages  in  the  following  order  in a single  poll  cycle:  

1.   Next  message  from  queue  A (leaving  1 message  remaining)  

2.   Next  message  from  queue  B (now  empty)  

3.   Next  message  from  queue  C (leaving  4 messages  remaining)  

4.   Next  message  from  queue  A (now  empty)  

5.   Connector  checks  queue  B but  it’s  still  empty.  

6.   Next  message  from  queue  C (leaving  3 messages  remaining)

The  adapter  then  returns  from  the  polling  cycle  because  it has  now  polled  a 

maximum  (as  set  by  the  PollQuanity)  of  2 messages  from  each  queue.  

Event status and recovery 

Event  message  retrieval  is  part  of a transaction.  If  the  connector  terminates  

unexpectedly  before  committing  the  transaction,  the  transaction  is rolled  back  and  

the  original  message  restored.  Because  the  connector  framework  does  not  currently  

support  distributed  transactions,  the  connector  may  publish  an  event  to  the  broker  

but  either  terminates  unexpectedly  or  loses  communication  before  an  

acknowledgement  from  the  broker  is received.  In  such  cases,  whether  or  not  the  

event  was  received  by  the  broker  cannot  be  determined  by  any  information  

available  to  the  connector.  To avoid  loss  of event  messages,  the  connector  does  not  

commit  the  transaction  until  after  the  connector  has  received  a response  from  the  

broker  confirming  receipt  of  the  event.  If there  is a failure  between  the  time  the  

connector  publishes  an  event  and  when  it receives  an  acknowledgement,  the  

transaction  is  rolled  back  automatically  and  the  original  message  is restored.  

Because  it’s  unknown  whether  or  not  the  message  was  processed  by  the  broker,  

such  events  are  referred  to as  in-doubt  events  

Upon  restart,  the  connector  will  start  processing  messages  from  the  input  

destination  and  resubmit  the  in-doubt  event.  Although  this  strategy  eliminates  any  

risk  that  an  event  could  be  lost,  it cannot  prevent  the  same  event  from  being  

published  twice.  

There  are  two  means  of reducing  or  eliminating  the  risk  of  duplicate  event  

delivery:  use  of  an  in-progress  destination  (see  “Recovery  with  an  in-progress  

destination”)  or  via  guaranteed  event  delivery  (see  “Recovery  with  guaranteed  

event  delivery”  on  page  7).  

Recovery  with  an  in-progress  destination:    To control  how  in-doubt  events  are  

handled,  you  can  create  a separate,  temporary  destination  by  specifying  the  

connector  property  InProgressDestination.  

Note:   Recovery  with  an  in-progress  destination  is not  supported  with  Pub/Sub  

style  messaging.  

Before  publishing  an  event  to  the  broker,  the  connector  moves  the  event  message  

from  the  input  destination  to  the  in-progress  destination.  Once  it receives  

acknowledgement  from  the  broker,  the  connector  will  remove  the  message  from  

the  in-progress  destination.  This  isolates  in-doubt  messages  that  have  not  been  

processed.  Upon  startup,  if the  connector  finds  messages  in  the  in-progress  

destination,  the  connector  can  safely  assume  that  these  were  left  from  a previous  

instance  of  the  connector  that  terminated  unexpectedly.  You can  specify  different  

actions  for  the  connector  to  take  on  such  messages  (if  duplicate  event  notification  

is unacceptable).  You do  this  by  specifying  one  of four  options  for  the  connector  

configuration  property  InDoubtEvents  as  follows:  

 

6 Adapter  for JMS User  Guide



v   Fail  on  startup  If it finds  messages  in  the  in-progress  destination  during  

initialization,  the  connector  logs  an  error  and  immediately  shuts  down.  You or  a 

system  administrator  then  examine  the  message  and  take  appropriate  action:  

either  deleting  these  messages  entirely  or  moving  them  to a different  location.  

v   Reprocess  If  it  finds  any  messages  in  the  in-progress  destination  during  

initialization,  the  connector  processes  these  messages  first  during  subsequent  

polls.  When  all  messages  in  the  in-progress  destination  have  been  processed,  the  

connector  begins  processing  messages  from  the  input  destination.  

v   Ignore  If  it finds  any  messages  in  the  in-progress  destination  during  

initialization,  the  connector  ignores  them  but  does  not  shut  down.  

v   Log  error  With  the  log  error  option,  if the  connector  finds  any  messages  in  the  

in-progress  destination  during  initialization,  it logs  an  error  but  does  not  shut  

down.

For  further  information,  see  “InDoubtEvents”  on  page  23.  

Recovery  with  guaranteed  event  delivery:    The  guaranteed-event-delivery  feature  

enables  the  connector  framework  to  ensure  that  events  are  never  lost  and  never  

sent  twice.  The  connector  framework  supports  guaranteed  event  delivery  through  

two  mechanisms:  container  managed  events  (CME)  and  duplicate  event  

elimination  (DEE).  

Container  managed  events  (CME):    You can  use  CME  when  the  connector  is 

configured  for  PTP-style  messaging.  To use  CME,  WebSphere  MQ  must  be  your  

JMS  provider  and  the  source  and  desination  queues  must  be  on  one  queue  

manager.  

Note:   When  configured  for  Pub/Sub-style  messaging,  the  connector  does  not  

support  CME.  For  more  on  how  this  method  of  guaranteed-event-delivery  

works,  see  the  Connector  Development  Guide  for  Java. For  further  information  

on  the  ContainerManagedEvents  connector  property,  see  

“ContainerManagedEvents”  on  page  56.  

Duplicate  event  elimination  (DEE):    DEE  is the  recommended  approach  to  implement  

guaranteed  event  delivery  for  the  JMS  adapter.  DEE  also  is the  only  approach  

supported  for  Pub/Sub-style  messaging.  

With  DEE,  a connector  includes  a unique  ID  with  each  event  it  publishes  to  the  

broker.  The  framework  checks  that  the  connector  does  not  submit  the  same  event  

ID  consecutively.  If this  does  occur,  the  framework  assumes  that  the  connector  is  

publishing  the  same  event  twice  and  discards  the  second  submission.  For  PTP-style  

messaging,  DEE  reduces  the  substantial  overhead  involved  in  copying  messages  to  

and  from  an  in-progress  destination  

This  connector  includes  the  message  ID  of  all  events  when  publishing  business  

objects  to  the  broker.  If  the  connector  fails  to  successfully  post  an  event  to the  

broker  due  to  communication  failure  or  unexpected  termination,  the  original  

message  is rolled  back  to  the  input  queue  as  described  previously.  Upon  restart,  

the  connector  begins  resubmitting  events  from  the  queue  including  any  in-doubt  

messages.  If  DEE  is  enabled,  any  in-doubt  message  that  successfully  reached  the  

broker  in  the  past  will  be  discarded.  This  assures  that  each  message  is  posted  once  

and  only  once  to  the  broker.  

When  using  DEE,  you  should  avoid  manipulating  the  order  of  messages  in  

destinations  while  the  connector  is off-line.  DEE  records  only  the  last  message  ID  

retrieved  by  the  adapter.  DEE  will  fail  in  situations  where,  for  example,  new  

 

Chapter  1. Adapter for JMS overview  7



messages  with  higher  priorities  have  pushed  the  last  in-doubt  message  down  in 

the  queue  before  the  adapter  could  restart.  

For  information  on  DEE  and  enabling  it,  see  the  Connector  Development  Guide  for  

Java. For  further  information  on  the  DuplicateEventElimination  connector  property,  

see  “DuplicateEventElimination”  on  page  59.  

Event retrieval 

Event  retrieval  encompasses  the  typical  processing  of events  by  the  connector.  It 

begins  when  an  incoming  event  is detected  and  ends  when  it has  been  converted  

into  a format  suitable  for  the  target  application  and  successfully  delivered  to  the  

designated  integration  broker.  The  connector  delivers  all  events  asynchronously  

(“fire  and  forget”)  to  the  broker.  

The  following  sections  discuss  event  retrieval:  

v   “Metadata  and  meta-objects”  

v   “Business  object  mapping”  on  page  9 

v   “Understanding  message  header  mapping”  on  page  9 

v   “Archiving”  on  page  10  

v   “Error  recovery”  on  page  10

Metadata  and  meta-objects:    In order  for  the  connector  to successfully  convert  

messages  to  business  objects  and  vice-versa,  it  needs  additional  information  known  

as  metadata.  Metadata  describes  how  data  in an  object  or  message  or  application  is 

represented  or  should  be  processed.  Meta-data  includes  such  details  as  which  

business  object  to  create  if the  connector  retrieves  a message  from  destination  XYZ,  

or  which  data-handler  should  be  used  to  serialize  a request  business  object  of type  

Customer  with  verb  Create. 

Attributes,  properties,  verbs,  and  application-specific  information  constitute  the  

metadata  for  a business  object  definition.  In  addition,  you  can  specify  one  or  more  

meta-objects  that  contain  metadata  about  destinations,  data  formats,  data  handlers,  

and  more.  

There  are  two  types  of  meta-objects:  static  and  dynamic.  You create  a static  

meta-object  during  implementation.  It  contains  attributes  that  provide  meta-data  

for  each  business  object  type  the  connector  must  support.  The  static  meta-object  is 

specified  in  connector-specific  properties  and  is read  by  the  connector  during  

initialization.  For  an  overview  of  meta-object  properties  and  how  they  affect  

message  transformation,  see  “Business  object  mapping”  on  page  9 and  

“Understanding  message  header  mapping”  on  page  9.  

The  second  type  of meta-object  is dynamic.  This  meta-object  allows  you  to  change  

the  metadata  used  by  the  adapter  to process  a business  object  on  a per-request  

basis  during  request  processing.  During  event  processing,  the  dynamic  meta-object  

acts  as  a container  to  hold  transport-specific  information  about  the  event  (for  

example,  message  ID,  priority,  etc.)  so  that  downstream  business  processes  can  use  

the  information  in  their  business  logic.  The  dynamic  meta-object  is  represented  as  a 

specially  marked  child  object  defined  in  the  event  (or  request)  top-level  object.  

You may  opt  to  use  one  or  both  types  of meta-objects  in  the  same  implementation.  

Values  provided  in  a dynamic  meta-object  generally  take  precedence  over  any  

values  provided  in  the  static  meta-object.  For  further  information  on  metadata,  see  

the  Connector  Development  Guide  for  Java. For  information  on  configuring  static  and  

dynamic  meta-objects,  see  “Configuring  meta-objects”  on  page  27.  

 

8 Adapter  for JMS User  Guide



Business  object  mapping:    Upon  retrieval  of  a message,  the  connector  attempts  to  

identify  which  business  object  the  message  should  be  mapped  to.  

By  default,  the  connector  allows  the  data  handler  configured  in  the  connector  

properties  to  determine  the  business  object  type.  It will  pass  the  message  body  to 

the  data  handler  and  publish  the  business  object  returned  by  the  data  handler  to 

the  broker.  If the  data  handler  cannot  determine  the  appropriate  business  object,  

the  connector  will  fail  the  event.  

If  a static  meta-object  is specified  for  connector  configuration  property  

ConfigurationMetaObject,  the  connector  searches  this  object  to  find  a rule that  

matches  the  message  in terms  of  input  format  or  input  destination.  If the  rule 

specified  in  the  meta-object  specifies  both  an  input  format  and  input  destination,  

the  connector  observes  this  rule only  if the  message  matches  both  those  properties.  

If  one  of  these  properties  is missing,  the  connector  uses  the  specified  property  only.  

For  example,  a message  with  input  format  Cust_In  from  input  destination  

MyInputDest  would  match  the  following  static  meta-object  rules: 

1.   InputFormat=Cust_In;InputDestination=MyInputDest  

2.   InputFormat=Cust_In  

3.   InputDestination=MyInputDest

If it can  match  the  event  message  to  a single  rule, the  connector  will  dictate  the  

business  object  by  creating  a new  instance  of  this  business  object  and  passing  it 

along  with  the  message  body  to  the  data  handler  specified  in the  rule. If no  data  

handler  is specified  in  the  rule, the  connector  will  use  the  default  data  handler  

specified  in  the  connector  configuration  properties.  

If  the  adapter  can  match  the  event  message  to  multiple  rules or  to  none  at  all,  the  

connector  allows  the  data  handler  to  determine  the  business  object  type  by  passing  

only  the  message  body  to  the  data-handler  specified  in  the  connector  configuration  

properties.  

Understanding  message  header  mapping:    To transform  an  event  message  into  a 

business  object,  the  connector  compares  metadata  about  the  business  object  to  

metadata  about  the  message,  mapping  one  to  the  other.  As  described  in  “Metadata  

and  meta-objects”  on  page  8, metadata  about  business  objects  resides  in business  

object  definitions  (the  application-specific  information  as  well  as  child  dynamic  

meta-objects),  connector  properties,  and  in  static  meta-objects.  Message  meta-data  

is  contained  in  message  headers.  

To gain  access  to  transport-specific  message  header  information,  and  to  get  more  

information  about,  and  more  control  over, the  message  transport,  you  can  add  

attributes  to  a dynamic  meta-object  that  is  a child  of  a business  object  definition.  

Adding  such  attributes  allows  you  to  read  from  and  optionally  write  to  message  

headers,  thereby  modifying  message  metadata.  Such  modifications  may  include  

changing  JMS  properties,  controlling  the  destination  on  a per-request  basis  (rather  

than  using  the  default  destination  specified  in  the  adapter  properties),  re-targeting  

a message  CorrelationID,  and  more.  When  you  specify  such  properties  in  a 

dynamic  meta-object  that  is a child  of a business  object  definition,  the  connector  

will  check  for  their  counterparts  in  message  headers  and  then  populate  a dynamic  

meta-object  based  on  the  contents  of  the  message  header.  You can  define  one  or  all 

of  the  supported  dynamic  meta-object  attributes;  the  connector  will  populate  the  

meta-object  accordingly.  For  further  information,  including  a list  of  the  message  

 

Chapter  1. Adapter for JMS overview  9



header  properties  that  you  can  read  or  write  to,  see  “Population  of  the  dynamic  

child  meta-object  during  polling”  on  page  35.  

Archiving:    If you  specify  the  connector-specific  property  ArchiveDestination,  the  

connector  places  a copy  of all  successfully  processed  messages  in this  destination.  

If ArchiveDestination  is undefined,  successfully  processed  messages  are  discarded.  

For  further  information  see  “Configuring  connector-specific  properties”  on  page  20.  

Error  recovery:    If  it encounters  errors  reading  from  the  input  destination(s),  the  

connector  will  immediately  return  a constant  value  APPRESPONSETIMEOUT  to  

the  broker  resulting  in the  termination  and  possible  restart  of  the  connector.  Such  

unrecoverable  errors  are  generally  caused  by  either  loss  of  connection  to  the  JMS  

provider  or  internal  errors  reported  by  the  JMS  provider  that  the  connector  either  

does  not  recognize,  or  recognizes  but  deems  unrecoverable  (for  example,  

transaction  failure).  

If it encounters  errors  converting  the  inbound  message  to an  event  business  object  

(for  example,  the  data  handler  reports  invalid  message  format),  the  connector  will  

fail  the  event  and  log  an  appropriate  error  message  explaining  the  reason.  If  

connector  property  ErrorDestination  is defined  and  valid,  the  connector  will  place  

a copy  of the  failed  message  in  this  error  destination;  otherwise,  the  message  is 

discarded.  

If the  broker  reports  an  error  after  the  connector  publishes  the  event  business  

object,  the  connector  will  fail  the  event  and  log  the  error  message  reported  by  the  

broker.  If connector  property  ErrorDestination  is defined  and  valid,  the  connector  

will  put  copy  of  the  failed  message  in  this  destination;  otherwise,  the  message  is 

discarded.  

If it is  unable  to  determine  a business  object  for  a message,  or  if it  publishes  a 

message  to  a broker  and  the  broker  reports  that  the  message  is not  supported,  the  

connector  will  consider  it unsubscribed.  If  connector  property  

UnsubscribedDestination  is defined  and  valid,  the  connector  will  put  a copy  of  the  

unsubscribed  message  in  this  destination;  otherwise,  the  message  is discarded.  

Request message processing 

When  a business  object  request  is sent  to  the  connector,  it  creates  a new  message  in 

the  target  destination.  The  message  header  is populated  with  a combination  of  

user-defined  values  specified  in  the  request  meta-object(s)  and  default  parameters  

specified  by  connector  properties.  The  body  of the  message  is  populated  with  the  

resulting  content  generated  by  passing  the  request  business  object  through  the  

configured  data  handler.  

Figure  2 illustrates  a message  request  communication.  When  the  doVerbFor()  

method  receives  a business  object  from  a broker,  the  connector  passes  the  business  

object  to  the  data  handler.  The  data  handler  converts  the  business  object  into  a 

suitable  message,  and  the  connector  issues  it as  a message  to  a destination.  

 

 

10 Adapter  for JMS User  Guide



There  are  two  types  of actions  the  connector  can  take  during  request  processing.  In  

the  first,  described  below  as  asynchronous  processing,  the  connector  will  put  a 

message  in  the  target  destination  and  return  successfully.  This  is commonly  

referred  to  as  ’fire-and-forget’.  In  the  second,  described  below  as  synchronous  

processing,  the  connector  will  again  put  a message  in  the  target  destination  but  

will  also  wait  for  a response  to  be  returned  by  the  target  application.  

The  mode  of  processing  is determined  by  the  numeric  property  ResponseTimeout,  

which  is specified  in  either  the  dynamic  or  static  meta-object  for  the  business  object  

request.  If  this  property  is not  defined  or  is equal  to  -1,  the  connector  delivers  the  

request  asynchronously.  If this  property  is 0 or  greater,  the  adapter  processes  the  

request  synchronously,  waiting  at least  that  many  milliseconds  for  a response  

message  to  be  returned  by  the  target  application.  The  request  processing  illustrated  

in  Figure  2 is  described  in detail  in:  

v   “Verb  support”  

v   “Asynchronous  processing”  

v   “Synchronous  processing”  on  page  13

Verb support 

The  connector  places  no  semantic  value  on  the  verb  specified  in  the  request  

business  object.  It performs  the  same  action,  namely  putting  a message  in  a JMS  

destination,  regardless  of the  verb  specified.  

Asynchronous processing 

In  asynchronous  processing,  the  connector  converts  the  request  business  object  to  a 

message,  places  that  message  in  the  target  destination,  and  then  returns  

immediately  to  the  broker.  The  success  or  failure  of  the  request  is based  entirely  on  

the  ability  of the  connector  to put  the  message  to the  JMS  destination.  Note  that  

the  success  of  this  delivery  does  not  imply  that  the  target  application  has  or  even  

will  receive  the  message.  Because  of  the  asynchronous  nature  of  messaging  

systems,  a message  may  remain  with  the  JMS  provider  indefinitely  until  the  target  

application  is able  to process  it or  expires  (if  so  configured).  

Request
message Request BO

Adapter for
JMS

Data
handler

Integration
brokerOutput queue/topic

via JMS service
provider

doForVerb()

  

Figure  2. Request  flow

 

Chapter  1. Adapter for JMS overview 11



The  connector  first  serializes  the  request  business  object  to text  using  the  

configured  data  handler.  The  connector  uses  the  data  handler  that  is specified,  in  

order  of  preference,  by:  

1.   the  dynamic  meta-object  

2.   the  static  meta-object  

3.   the  connector  configuration  properties

The  connector  creates  a new  message  containing  the  serialized  business  object  data  

as  the  body  of the  message.  It  populates  the  message  headers  as  described  in  the  

following  table.  In  all  cases  where  a property  can  be  specified  in either  the  

dynamic  or  static  meta-object,  the  value  specified  in  the  dynamic  meta-object  takes  

precedence  over  any  value  specified  in  the  static  meta-object.  For  descriptions  and  

a list  of  which  properties  you  can  specify  in  meta-objects,  see  “Configuring  

meta-objects”  on  page  27.  

 Table 1. JMS  message  header  population  during  asynchronous  request  processing  

Meta-object  property  Default  action  if property  is 

undefined  

Action  taken  if property  is defined  

OutputFormat  Connector  does  not  specify  a 

message  format  

Connector  specifies  this  value  for  message  

format.  

CorrelationID  Connector  leaves  this  value  blank  in 

message  header.  

Connector  specifies  this  value  for  correlation  ID 

in request  message  header.  

ReplyToDestination  Connector  leaves  this  value  blank  in 

message  header.  

Connector  specifies  this  value  for  reply  

destination  in request  message  header.  

Priority  Connector  allows  JMS  provider  to 

use  default  priority.  

Connector  sets  numeric  message  priority  using  

this  value.  

JMSProperties  None  Connector  maps  JMS  properties  specified  to JMS  

properties  in message  header.
  

The  following  attributes  in  the  meta-object  determine  how  the  message  is 

delivered:  

 Table 2. Asynchronous  delivery  to destination  

Meta-object  property  Default  action  if property  is 

undefined  

Action  taken  if property  is defined  

OutputDestination  A value  is required.  Target destination  for  message.  

DeliveryMode  Connector  allows  JMS  provider  to 

dictate  message  persistence.  

Connector  writes  message  persistently/non-
persistently  as indicated  by user.

  

Depending  on  the  connector’s  ability  to  successfully  deliver  the  request  message  to  

the  output  (target)  destination,  one  of the  following  codes  is returned  to the  broker:  

 Table 3. Asynchronous  return  codes  

Connector  action  Return  code  to broker  

Successfully  delivers  message  to  target  destination.  SUCCEED  

Fails  to deliver  due  to recoverable  errors  such  as 

improper  or incomplete  meta-data,  failure  of data  

handler,  or general  processing  problems.  

FAIL 

Fails  to deliver  due  to unrecoverable  errors  reported  by 

the  JMS  provider  such  as connection  failure  

APPRESPONSETIMEOUT

 

 

12 Adapter  for JMS User  Guide



Synchronous processing 

In  synchronous  processing,  the  connector  delivers  the  request  to  the  target  

destination  and  then  waits  on  a second  destination  for  a response  message.  

Creation  of  the  request  message  is identical  to  that  described  in  asynchronous  

processing.  However,  the  connector  also  checks  the  following  additional  attributes  

in  the  meta-object:  

 Table 4. Synchronous  meta-object  properties  

Meta-object  property  Default  action  if property  is 

undefined  

Action  taken  if property  is defined  

ResponseTimeout  A value  is required.  Minimum  amount  of time  (in  milliseconds)  that 

the  adapter  should  wait  for  a response  message  

to be returned.  

TimeoutFatal  If it does  not  receive  response  by 

time  specified  by ResponseTimeout, 

connector  returns  

APPRESPONSETIMEOUT  to the  

broker,  which  typically  results  in 

connector  termination.  

If it does  not  receive  response,  connector  fails  

request  (return  FAIL to broker)  but  does  not  

terminate.

  

The  delivery  of  the  message  to  the  target  destination  is the  same  as  that  described  

for  asynchronous  processing  except  for  the  following:  

 Table 5. Synchronous  delivery  to destination  

Meta-object  property  Default  action  if property  is 

undefined  

Action  taken  if property  is defined  

ReplyToDestination  Same  as that  for asynchronous.  Connector  populates  this  field  in request  message  

with  value  of connector-specific  property  

ReplyToDestination.
  

The  connector  waits  for  a response  message  from  the  target  application  specified  

by  ReplyToDestination  for  at  least  as  much  time  as specified  by  the  meta-object  

attribute  ResponseTimeout.  If  a response  is  not  returned  in  that  time,  the  connector  

will  timeout  and  report  an  error. 

Response  criteria:    The  connector  does  not  assume  that  the  first  message  in  the  

reply  destination  is the  correct  response  message.  Instead,  it follows  JMS  

request-response  conventions  and  looks  for  the  first  message  that  has  a correlation  

ID  that  matches  the  message  ID  of  the  request.  In  other  words,  the  application  that  

receives  the  request  message  must  create  a response  message  whose  correlation  ID  

equals  the  request  message  ID  and  it must  put  that  message  in  the  reply  

destination  specified  by  the  request  message.  

Not  all  applications  follow  the  convention  of using  the  correlation  ID  to map  

request  and  response  messages.  In  such  cases,  the  connector  accepts  custom  criteria  

for  identifying  a response  message.  

Upon  receipt  of  a business  object  for  synchronous  request  processing,  the  connector  

checks  for  the  presence  of  the  name-value  pair  response_selector=  in  the  

application-specific  information  of  the  verb.  If  no  such  name-value  pair  exists,  the  

connector  identifies  the  response  message  using  the  message  correlation  ID  as  

described  above.  

 

Chapter 1. Adapter  for JMS overview  13



If a response  selector  name-value  pair  is  defined,  the  connector  considers  the  value  

to  represent  a JMS  message  selector  string  that  can  identify  the  response  message.  

The  following  are  a few  examples  of  usage;  for  further  information  on  JMS  

message  selector  syntax,  see  the  JMS  API  specification.  Note  that  the  JMS  message  

selector  syntax  is not  parsed  by  the  connector.  Rather,  the  syntax  is understood  by  

the  JMS  provider.  The  connector  makes  available  the  selector  to the  JMS  provider  

as  a means  of  filtering  messages  (akin  to  a database  query).  

For  example,  verb  application-specific  information  containing  the  name-value  pair  

response_selector=JMSType  = ’xmlResponse’  

informs  the  connector  that  the  response  message  must  match  selector  string  

JMSType  = ’xmlResponse’. The  connector  provides  this  selector  to  the  JMS  provider,  

which  then  returns  the  first  message  delivered  to  the  reply  destination  where  the  

JMS  type  field  of  the  message  equals  xmlResponse. 

In  all  cases,  the  message  selector  string  must  be  capable  of  uniquely  identifying  

one  and  only  one  response.  If  multiple  messages  were  to  be  delivered  to the  reply  

destination  that  met  the  criteria  of the  response  selector,  the  adapter  would  retrieve  

only  the  first.  Any  other  potential  response  message  matching  the  criteria  would  be  

ignored.  

To allow  for  unique  message  selectors  at  run-time,  the  connector  supports  dynamic  

substitutions  of  attribute  values  into  the  message  selector  itself.  To do  so,  you  must  

specify  a placeholder  in  the  form  of  an  integer  surrounded  by  curly  braces  (″{1}″)  

in  the  response  selector.  This  must  be  followed  by  a colon  and  a list  of 

comma-separated  attributes  to  use  for  the  substitution.  The  integer  in  the  

placeholder  acts  as  an  index  to the  attribute  to  use  for  the  substitution.  

For  example,  the  following  message  selector  

response_selector=JMSCorrelationID  LIKE  ’{1}’:MyDynamicMO.CorrelationID  

informs  the  connector  to replace  the  token  {1}  with  the  value  of attribute  

CorrelationID  in  child-object  MyDynamicMO. If  attribute  CorrelationID  had  a value  

of  123ABC, the  connector  would  generate  and  use  message  selector  

JMSCorrelation  LIKE  ’123ABC’  

You can  also  specify  multiple  substitutions  as  shown  below:  

response_selector=Name  LIKE  ’{1}’AND  Zip  LIKE  ’{2}’:PrimaryID,Address[4].AddressID  

In  this  example,  the  connector  would  substitute  ’{1}’  with  the  value  of attribute  

PrimaryID  from  the  top-level  business  object  and  ’{2}’  with  the  value  of AddressID  

from  the  fifth  position  (base  0)  of child  container  object  Address.  With  this  

approach,  you  can  reference  any  attribute  in the  business  object  and  meta-object  in  

the  response  message  selector.  

To specify  the  literal  value  ″{″  in  the  message  selector,  use  ″{{″  instead.  For  

example,  the  following  selector  

response_selector=PrimaryID  LIKE  {{1}  

would  be  recognized  by  the  adapter  as  the  literal  value  

PrimaryID  LIKE  {1}  

The  connector  would  not  perform  any  substitution  on  the  value  ’{1}’  in  this  case.  

 

14 Adapter  for JMS User  Guide



When  the  connector  encounters  special  characters  such  as  ’{’,  ’}’,  ’:’  or  ’;’ in  

attribute  values,  they  are  inserted  directly  into  the  query  string.  This  allows  you  to  

include  special  characters  in  a query  string  that  also  serve  as  application-specific  

information  delimiters.  For  example,  the  following  selector  

Response_selector=PrimaryID  = ’{1}’:Foo  

when  attribute  Foo  has  a value  of  {A:B};{C:D}  would  be  converted  into  a literal  

message  selector  like  

PrimaryID  = ’{A:B};{C:D}’  

Response  processing:    To determine  what  action  to  take  upon  receipt  of the  

response  message,  the  connector  checks  the  JMS  result  property  specified  by  

connector  property  MessageResponseResultProperty.  Depending  on  the  value  of  

this  JMS  property,  the  connector  expects  the  response  message  to  contain  either  a 

business  object  or  an  error  message  in  the  message  body  (see  table  below).  In  all 

cases,  the  connector  returns  the  corresponding  return  code  to the  broker;  for  

example,  if the  JMS  result  property  equals  VALCHANGE  in  the  message,  the  connector  

takes  the  action  described  below  for  VALCHANGE  and  returns  the  numeric  value  

corresponding  to  broker  constant  VALCHANGE  to  the  broker.  

 Table 6. Response  message  processing  

Value  of JMS  result  property  Connector  action  

SUCCESS  Makes  no changes  to request  business  object  and  simply  

returns  successfully  to broker.  

VALCHANGE  

MULTIPLE_HITS  

undefined  value  

Repopulates  request  business  object  with  content  of 

response  message  body.  If response  message  body  is 

empty,  request  business  object  is left unchanged.  

Repopulates  the  dynamic  meta-object  of the  request  

business  object  with  the  JMS  header  fields  of the  response  

message.  

FAIL FAIL_RETRIEVE_BY_CONTENT  

BO_DOES_NOT_EXIST  UNABLE_TO_LOGIN  

VALDUPES  

If response  is populated,  connector  assumes  it is an error  

message  and  returns  it to the  broker.  If response  message  

body  is empty,  connector  returns  generic  error  message  to  

broker.  

APPRESPONSETIMEOUT  Same  as above  except  that  return  of 

APPRESPONSETIMEOUT  to broker  normally  results  in 

the  termination  of the  adapter  agent.  

unrecognized  value  Connector  fails  the  request.
  

Error  handling:    If it encounters  errors  when  reading  or  writing  the  request  

message  to  the  target  destination  or  checking  for  the  response  message  (as  

applicable),  the  connector  immediately  returns  APPRESPONSETIMEOUT  to  the  

broker.  This  results  in  the  termination  or  possible  restart  of the  adapter.  Such  

unrecoverable  errors  are  generally  caused  by  either  loss  of  connection  to  the  JMS  

provider  or  internal  errors  reported  by  the  JMS  provider  that  the  connector  does  

not  recognize  or  recognizes  but  deems  unrecoverable  (for  example,  transaction  

failure).  

If  it encounters  errors  converting  a business  object  to a message  or  vice-versa  (for  

example,  the  data  handler  reports  an  invalid  message  format),  the  connector  fails  

the  request  and  logs  an  appropriate  error  message  explaining  the  reason.  

For  further  information  including  event  failure  scenarios,  see  “Error  handling”  on  

page  43.  

 

Chapter 1. Adapter  for JMS overview  15



16 Adapter  for JMS User  Guide



Chapter  2.  Installing  and  configuring  the  adapter  

v   “Installation  tasks”  

v   “Installing  the  adapter  and  related  files”  

v   “Installed  file  structure”  

v   “Configuring  connector  properties”  on  page  19  

v   “Configuring  message  style”  on  page  26  

v   “Configuring  JNDI”  on  page  26  

v   “Configuring  meta-objects”  on  page  27  

v   “Configuring  startup  scripts”  on  page  37 

v   “Creating  multiple  connector  instances”  on  page  37  

v   “Starting  the  connector”  on  page  38  

v   “Stopping  the  connector”  on  page  39

This  chapter  describes  how  to  install  and  configure  the  connector  and  how  to  

configure  the  message  flows  to work  with  the  connector.  

Installation tasks 

To install  the  adapter  for  JMS,  you  must  perform  the  following  tasks:  

v   Install  the  integration  broker  This  task,  which  includes  installing  the  

WebSphere  business  integration  system  and  starting  the  integration  broker,  is  

described  in  the  installation  documentation  for  your  broker  and  operating  

system.  

v   Install  the  adapter  and  related  files  This  task  includes  installing  the  files  for  the  

adapter  from  the  software  package  onto  your  system.  See  “Installing  the  adapter  

and  related  files.”

Installing the adapter and related files 

For  information  on  installing  WebSphere  Business  Integration  adapter  products,  

refer  to  the  Installing  WebSphere  Business  Integration  Adapters  guide  located  in  the  

WebSphere  Business  Integration  Adapters  Infocenter  at  the  following  site:  

http://www.ibm.com/websphere/integration/wbiadapters/infocenter  

Installed file structure 

The  sections  below  describe  the  paths  and  filenames  of  the  product  after  

installation.  

Windows connector file structure 

The  Installer  copies  the  standard  files  associated  with  the  connector  into  your  

system.  

The  utility  installs  the  connector  agent  into  the  ProductDir\connectors\JMS  

directory,  and  adds  a shortcut  for  the  connector  agent  to  the  Start  menu.  Note  that  

ProductDir  represents  the  directory  where  the  IBM  WebSphere  Business  Integration  

Adapters  product  is installed.  The  environment  variable  contains  the  ProductDir  

directory  path,  which  is IBM\WebSphereAdapters  by  default.  

 

© Copyright  IBM Corp. 2000, 2004 17



Table  7 describes  the  Windows  file  structure  used  by  the  connector,  and  shows  the  

files  that  are  automatically  installed  when  you  choose  to install  the  connector  

through  Installer.  

 Table 7. Installed  Windows  file  structure  for the  connector  

Subdirectory  of ProductDir  Description  

connectors\JMS\CWJMS.jar  Contains  classes  used  by the  JMS  

connector  

connectors\JMS\start_JMS.bat  The  startup  script  for the connector  

(NT/2000)  

connectors\messages\JMSConnector.txt  Message  file  for  the connector  

bin\Data\App\JMSConnectorTemplate  Template  file  for  the connector  

definition  

connectors\JMS\Samples\JMSConnector.cfg  Sample  connector  configuration  file  

connectors\JMS\Samples\PortConnector.cfg  Sample  port  connector  configuration  

file 

connectors\JMS\Samples\Sample_JMS_Contact.xsd  Sample  business  object  repository  

file 

connectors\JMS\Samples\Sample_JMS_MO_Config.xsd  Sample  meta-object  

connectors\JMS\Samples\Sample_JMS_MO_DataHandler.xsd  Sample  data  handler  meta-object  

connectors\JMS\Samples\Sample_JMS_MO_DataHandler_DelimitedConfig.xsd  Sample  delimited  data  handler  

meta-object  

connectors\JMS\Samples\Sample_JMS_DynMO.xsd  Sample  dynamic  meta-object  

connectors\JMS\Samples\JMSPropertyPairs.xsd  Sample  JMS  properties  child  

business  object  for dynamic  

meta-object
  

Note:   All  product  pathnames  are  relative  to  the  directory  where  the  product  is  

installed  on  your  system.  

UNIX connector file structure 

The  Installer  copies  the  standard  files  associated  with  the  connector  into  your  

system.  

The  utility  installs  the  connector  agent  into  the  ProductDir/connectors/JMS  

directory.  

Table  8 describes  the  UNIX  file  structure  used  by  the  connector,  and  shows  the  files  

that  are  automatically  installed  when  you  choose  to install  the  connector  through  

Installer.  

 Table 8. Installed  UNIX  file  structure  for the  connector  

Subdirectory  of ProductDir  Description  

connectors/JMS/CWJMS.jar  Contains  classes  used  by the  JMS  

connector  

connectors/JMS/start_JMS.sh  System  startup  script  for  the  

connector.  This  script  is called  from  

the  generic  connector  manager  

script.  When  you  click  the Connector  

configuration  screen  of System  

Manager,  the  installer  creates  a 

customized  wrapper  for  this  

connector  manager  script.  Use this  

customized  wrapper  to start  and  

stop  the  connector.  

 

18 Adapter  for JMS User  Guide



Table 8. Installed  UNIX  file structure  for  the  connector  (continued)  

Subdirectory  of ProductDir  Description  

connectors/messages/JMSConnector.txt  Message  file  for the  connector  

binData/App/JMSConnectorTemplate  Template  file  for the  connector  

definition  

connectors/JMS/Samples/JMSConnector.cfg  Sample  connector  configuration  file  

connectors/JMS/Samples/PortConnector.cfg  Sample  port  connector  configuration  

file  

connectors/JMS/Samples/Sample_JMS_Contact.xsd  Sample  business  object  repository  

file  

connectors/JMS/Samples/Sample_JMS_MO_Config.xsd  Sample  meta-object  

connectors/JMS/Samples/Sample_JMS_MO_DataHandler.xsd  Sample  data  handler  meta-object  

connectors/JMS/Samples/Sample_JMS_MO_DataHandler_DelimitedConfig.xsd  Sample  delimited  data  handler  

meta-object  

connectors/JMS/Samples/Sample_JMS_DynMO.xsd  Sample  dynamic  meta-object  

connectors/JMS/Samples/JMSPropertyPairs.xsd  Sample  JMS  properties  child  

business  object  for  dynamic  

meta-object
  

Note:   All  product  pathnames  are  relative  to  the  directory  where  the  product  is  

installed  on  your  system.  

Connector configuration 

After  installing  the  adapter,  you  must  configure  the  connector.  To do  so,  you  must  

perform  the  tasks  described  in  the  following  sections:  

v   “Configuring  connector  properties”  

v   “Configuring  message  style”  on  page  26  

v   “Configuring  JNDI”  on  page  26  

v   “Configuring  meta-objects”  on  page  27  

v   “Configuring  startup  scripts”  on  page  37

Configuring connector properties 

Connectors  have  two  types  of  configuration  properties  that  are  described  in  the  

following  sections:  

v   “Configuring  standard  connector  properties”  on  page  20  

v   “Configuring  connector-specific  properties”  on  page  20

You  must  set  the  values  of  these  properties  before  running  the  adapter.  

You use  Connector  Configurator  to configure  connector  properties:  

v   For  a description  of  Connector  Configurator  and  step-by-step  procedures,  see  

Appendix  B, “Connector  Configurator,”  on  page  69.  

v   For  a description  of  standard  connector  properties,  see  “Configuring  standard  

connector  properties”  on  page  20  and  then  Appendix  A,  “Standard  configuration  

properties  for  connectors,”  on  page  45.  

v   For  a description  of  connector-specific  properties,  see  “Configuring  

connector-specific  properties”  on  page  20.

 

Chapter  2. Installing  and configuring  the adapter  19



Configuring standard connector properties 

Standard  configuration  properties  provide  information  that  all  connectors  use.  See  

Appendix  A,  “Standard  configuration  properties  for  connectors,”  on  page  45 for  

documentation  of  these  properties.  Then,  for  a step-by-step  procedure  describing  

how  to  set  these  properties  see  Appendix  B,  “Connector  Configurator,”  on  page  69.  

Note:   When  you  set  configuration  properties  in  Connector  Configurator,  you  

specify  your  broker  using  the  BrokerType  property.  Once  this  is set,  the  

properties  relevant  to  your  broker  will  appear  in  the  Connector  Configurator  

window.  

Configuring connector-specific properties 

Connector-specific  configuration  properties  provide  information  needed  by  the  

connector  agent  at  runtime.  Connector-specific  properties  also  provide  a way  of  

changing  static  information  or  logic  within  the  connector  agent  without  having  to  

re-code  and  rebuild  the  agent.  

Table  9 lists  the  connector-specific  configuration  properties  for  the  connector.  See  

the  sections  that  follow  for  explanations  of  the  properties.  

 

20 Adapter  for JMS User  Guide



Table 9. Connector-specific  configuration  properties  

Name  Possible  values  Default  value  Required  

ArchivalConnectionFactoryName  Name  of object  in JNDI  store  to 

retrieve  and  use  for archiving  events;  

supports  both  publishing  styles—  

PTP  (queue-based)  and  Pub/Sub  

(topic-based).  

No 

ArchiveDestination  Destination  to which  copies  of 

successfully  processed  messages  are  sent  

No 

ConfigurationMetaObject  Configuration  meta-object  See  property  

description  

ConnectionFactoryName  JMS  queue  or topic  connection  factory  

defined  in JNDI  store.  

Yes 

CTX_InitialContextFactory  Name  of factory  class  to be used  to 

establish  an initial  JNDI  context.  

Yes 

CTX_ProviderURL  URL  identifying  the  JNDI  context  where  

the connection  factory  is located.  

Yes 

DataHandlerClassName  Name  of data  handler  class  to 

instantiate.  

See  property  

description  

DataHandlerConfigMO  Name  of data  handler  meta-object  

containing  configuration  information  for  

DataHandlerMimeType  

MO_DataHandler_  

Default  

See  property  

description  

DataHandlerMimeType  Mime  type  to use  when  selecting  default  

data  handler  

text/delimited  See  property  

description  

DefaultVerb  Specifies  the  verb  to be set  within  an 

incoming  business  object  

Create  No 

EnableMessageProducerCache  true  or  false  true  No 

ErrorDestination  Destination  for unprocessed  messages  No 

InDoubtEvents  FailOnStartup  

Reprocess  

Ignore  

LogError  

Reprocess  No 

InProgressDestination  Temporary  storage  destination  No 

InputDestination  Name  of poll  destination(s)  No 

LookupDestinationsUsingJNDI  true  or  false  false  No 

MessageFormatProperty  Property  name  specifying  message  format  JMSType  No 

MessageResponseResultProperty  Property  in response  message  that 

indicates  the result  of the  request  

operation  

WBI_Result  Yes, for 

synchronous  

processing.  

PollQuantity  Number  of messages  to retrieve  from  

each  destination  specified  in the 

InputDestination  property  

1 No 

ReplyToDestination  Destination  to which  response  messages  

are  delivered  when  the  connector  issues  

requests  

Yes, for 

synchronous  

processing.  

SessionPoolSizeForRequests  Maximum  pool  size  for caching  the 

sessions  used  during  request  processing.  

10 No 

UnsubscribedDestination  Destination  to which  copies  of inbound  

messages  are  put  if the message  is 

unrecognized  or if the business  object  to 

which  it maps  is not  supported.  

No 

UnsubscribeOnTerminate  Specify  removed  topics  from  

InputDestination.  

No 

UseDefaults  true  

or 

false  

false  No 

UseDurableSubscriptions  true  

or 

false  

false  No

 

Chapter  2. Installing  and configuring  the adapter  21



ArchivalConnectionFactoryName 

This  property  enables  the  connector  to support  event  archival  in either  

point-to-point  or  topic-based  styles.  The  property  names  the  JMS  queue  or  topic  

connection  factory  object,  defined  in  the  JNDI  store,  that  the  connector  should  

retrieve  and  use  for  establishing  a connection  to  the  JMS  provider.  This  connection  

object  is  then  used  to  create  publisher  references  to  the  archive  destinations.  The  

connector  properties  that  define  archival  destinations  are:  

v   InProgressDestination  

v   ErrorDestination  

v   UnsubscribedDestination  

v   ArchiveDestination

If this  property  is undefined,  the  connector  uses  the  factory  specified  in  the  

ConnectionFactoryName  property  to  create  references  to  archival  destinations.  

Default  = none.  

ArchiveDestination 

Destination  to  which  copies  of  successfully  processed  messages  are  sent.  

The  default  value  is  CWLD_ARCHIVE. 

ConfigurationMetaObject 

Name  of  static  meta-object  containing  configuration  information  for  the  connector.  

There  is  no  default  value.  

ConnectionFactoryName 

Name  of  JMS  queue  or  topic  connection  factory  object  defined  in  JNDI  store  that  

the  connector  should  retrieve  and  use  for  establishing  a connection  to the  JMS  

provider.  When  looking  up  this  name,  the  connector  uses  the  initial  JNDI  context  

established  by  the  CTX_InitialContextFactory  and  CTX_ProviderURL  properties.  

Default  = none.  

CTX_InitialContextFactory 

The  name  of  the  factory  class  that  is used  to  establish  an  initial  JNDI  context.  

Default  = none.  

CTX_ProviderURL 

Fully-qualified  URL  identifying  JNDI  context  where  the  connection  factor  is 

located.  This  value  is passed  to  the  context  factor.  

Default  = none.  

DataHandlerClassName 

Data  handler  class  to  use  when  converting  messages  to and  from  business  objects.  

Specify  either  both  DataHandlerConfigMO  and  DataHandlerMimeType  or  

DataHandlerClassName  only.  Do  not  specify  all  three  properties.  

Note:   A  DataHandlerClassName  value  in  a static  or  dynamic  meta-object  takes  

precedence  over  a one  specified  in this  connector  configuration  property.  If 

 

22 Adapter  for JMS User  Guide



you  do  not  provide  a DataHandlerClassName  value  in  a meta-object,  then  

the  connector  obtains  the  value  from  this  connector-configuration  property.  

Default  =  none.  

DataHandlerConfigMO 

Name  of  meta-object  that  contains  configuration  information  for  the  mimetype  

specified  in  the  DataHandlerMimeType  property.  Provides  configuration  

information  for  the  data  handler.  Specify  either  DataHandlerConfigMO  and  

DataHandlerMimeType  or  DataHandlerClassName  only.  Do  not  specify  all  three  

properties.  

Note:   A DataHandlerConfigMO  value  in  a static  or  dynamic  meta-object  takes  

precedence  over  a one  specified  in  this  connector  configuration  property.  If 

you  do  not  provide  a DataHandlerConfigMO  value  in  a meta-object,  then  

the  connector  obtains  the  value  from  this  connector-configuration  property.  

The  default  value  is MO_DataHandler_Default. 

DataHandlerMimeType 

Allows  you  to  request  a data  handler  based  on  a particular  MIME  type.  Specify  

either  DataHandlerConfigMO  and  DataHandlerMimeType  or  

DataHandlerClassName  only.  Do  not  specify  all  three  properties.  

Note:   A DataHandlerMimeType  value  in  a static  or  dynamic  meta-object  takes  

precedence  over  a one  specified  in  this  connector  configuration  property.  If 

you  do  not  provide  a DataHandlerMimeType  value  in  a meta-object,  then  

the  connector  obtains  the  value  from  this  connector-configuration  property.  

Default  =  text/delimited. 

DefaultVerb 

Specifies  the  verb  to  be  set  within  an  incoming  business  object,  if it has  not  been  

set  by  the  data  handler  during  polling.  

Default=  Create  

EnableMessageProducerCache 

Boolean  property  to  specify  that  the  adapter  should  enable  a message  producer  

cache  for  sending  request  messages.  

Default=  true  

ErrorDestination 

Destination  to  which  copies  of inbound  messages  are  sent  when  the  connector  

encounters  errors  while  processing.  

The  default  value  is CWLD_ERROR. 

InDoubtEvents 

Specifies  how  to  handle  in-progress  events  that  are  not  fully  processed  due  to  

unexpected  connector  shutdown.  Choose  one  of  four  actions  to take  if events  are  

found  in  the  in-progress  queue  during  initialization:  

v   FailOnStartup  – Log  an  error  and  immediately  shut  down.  

v   Reprocess  – Process  the  remaining  events  first,  then  process  messages  in  the  

input  queue.  

 

Chapter  2. Installing  and configuring  the adapter  23



v   Ignore  – Disregard  any  messages  in  the  in-progress  queue.  

v   LogError  – Log  an  error  but  do  not  shut  down

The  default  value  is  Reprocess. 

Note:   You must  specify  a value  for  this  property  if you  configure  the  

InProgressDestination  property.  

InProgressDestination 

Temporary  destination  where  messages  are  held  during  processing.  

Default  = none.  

InputDestination 

Destination(s)  that  will  be  polled  by  the  connector  for  new  messages.  The  

connector  accepts  multiple  semi-colon  delimited  names.  For  example,  to  poll  the  

following  three  queues  in  a queue-based  configuration:  MyQueueA, MyQueueB, and  

MyQueueC, the  value  for  connector  configuration  property  InputQueue  would  equal:  

MyQueueA;MyQueueB;MyQueueC. 

If the  InputDestination  property  is not  supplied,  the  connector  will  not  poll.  

Default  = none.  

LookupDestinationsUsingJNDI 

If this  property  is true, the  connector  will  look  up  all  JMS  destination  names  in the  

JNDI  store.  This  requires  that  any  specified  destination  is defined  in the  JNDI  

store.  

By  default,  the  connector  skips  this  step  and  allows  the  JMS  provider  to  resolve  the  

name  to  the  appropriate  destination  at run-time.  

Default  = false. 

MessageFormatProperty 

The  field  in  a JMS  message  that  contains  the  input  or  output  format  for  the  

message.  By  default,  the  connector  checks  the  JMSType  field  of  inbound  messages  

for  the  message  format  and  writes  the  message  format  to  the  JMSType  field  of  

outbound  messages.  

Default  =JMSType.  

MessageResponseResultProperty 

Required  for  synchronous  request  processing,  this  property  specifies  the  field  in  a 

response  JMS  message  that  the  connector  should  check  to  determine  the  result  of 

the  request.  This  property  is not  used  for  asynchronous  processing.  

If the  JMS  header  property  specified  by  the  MessageResponseResultProperty  does  

not  exist,  the  connector  interprets  the  return  code  as  VALCHANGE,  passes  

whatever  is  in  the  response  message  to the  data  handler,  and  then  updates  the  

business  object.  

The  default  value  is  WBI_Result. 

 

24 Adapter  for JMS User  Guide



PollQuantity 

Maximum  umber  of  messages  to  retrieve  from  each  destination  specified  in  the  

InputDestination  property  during  a pollForEvents  cycle.  

The  default  value  is 1. 

ReplyToDestination 

Destination  to  which  response  messages  are  delivered  when  the  connector  issues  

requests.  This  is,  by  default,  the  destination  that  the  connector  uses  to  coordinate  

the  exchange  of  request  messages  with  the  target  application.  Specify  this  property  

for  synchronous  processing  only.  

Default  =  none.  

SessionPoolSizeForRequests 

Maximum  pool  size  for  caching  the  sessions  used  during  request  processing.  

Default  =  10  

UnsubscribedDestination 

Destination  to  which  copies  of inbound  messages  are  put  if the  message  is 

unrecognized  or  if the  business  object  to  which  it maps  is not  supported.  If this  

property  is  defined  and  valid,  the  connector  will  put  a copy  of  unsubscribed  

messages  in  this  destination;  otherwise,  the  message  is  discarded.  

Default  =  none.  

UnsubscribeOnTerminate 

Applicable  only  when  UserDurableSubscriptions  is set  to  true. The  use  of durable  

subscriptions  creates  a problem  if you  remove  topics  from  the  connector  

configuration.  The  JMS  provider  will  continue  to  store  messages  for  the  durable  

subscriptions  even  though  the  connector  will  never  again  check  those  

subscriptions.  

Whenever  you  remove  topics  from  the  list  specified  in  InputDestination,  specify  

those  removed  topics  (delimited  by  semicolons)  for  this  property  value.  To destroy  

the  existing  durable  subscriptions,  follow  these  steps:  

1.   Move  those  topic  names  to  which  you  no  longer  want  to  subscribe  from  

InputDestination  to  UnsubscribeOnTerminate.  

2.   Start  and  stop  the  connector  (This  destroys  durable  subscription).  

3.   Clear  any  topics  specified  for  UnsubscribeOnTerminate.

This  action  does  not  change  any  of  the  InputDestination  values.  

Failing  to  perform  the  above  steps  will  not  impact  the  connector  but  will  cause  the  

JMS  provider  to  store  unnecessary  messages.  

Default  =  none.  

UseDefaults 

On  a Create  operation,  if UseDefaults  is  set  to  true, the  connector  checks  whether  

a valid  value  or  a default  value  is provided  for  each  isRequired  business  object  

attribute.  If  a value  is provided,  the  Create  operation  succeeds.  If the  parameter  is 

set  to  false,  the  connector  checks  only  for  a valid  value  and  causes  the  Create  

operation  to  fail  if it is not  provided.  

 

Chapter  2. Installing  and configuring  the adapter  25



Default  = false. 

UseDurableSubscriptions 

Use  this  with  Pub/Sub  topic-style  messaging  only.  If this  property  is set  to  true, 

the  connector  will  act  as  a durable  subscriber  for  applicable  destinations.  At  the  

cost  of  higher  overhead,  the  connector  will  instruct  the  JMS  provider  to  store  all  

messages  for  those  topics  to  which  it subscribes  even  while  the  connector  is 

off-line.  When  brought  back  on-line,  the  connector  will  reprocess  any  published  

messages  it missed.  

Default  = false. 

Configuring message style 

The  adapter  supports  both  the  point-to-point  (PTP)  messaging  and  

publish-and-subscribe  (Pub/Sub)  messaging  interfaces  defined  by  the  JMS  

standard.  The  messaging  style  used  by  the  adapter  is determined  by  the  type  of  

administered  object  specified  by  the  user  in  connector-specific  property  

ConnectionFactoryName.  See  “ConnectionFactoryName”  on  page  22  before  

proceeding  with  these  procedures:  

v   “Configuring  PTP  message  style”  

v   “Configuring  Pub/Sub  style”

Configuring PTP message style 

To configure  an  instance  of the  adapter  in PTP  message  style:  

1.   Open  Connector  Configurator.  

2.   Click  the  Connector-Specific  Properties  tab.  

3.   Specify  a name  for  ConnectionFactoryName  that  maps  to  an  instance  of  a JMS  

QueueConnectionFactory  in  your  JNDI  store.  The  adapter  will  work  in  PTP  style  

and  assume  that  all  connector  and  meta-object  properties  identifying  

destinations  (for  example,  the  OutputDestination  property)  represent  queues.

Configuring Pub/Sub style 

To configure  an  instance  of the  adapter  in Pub/Sub  message  style:  

1.   Open  Connector  Configurator.  

2.   Click  the  Connector-Specific  Properties  tab.  

3.   Specify  a name  for  ConnectionFactoryName  that  maps  to  an  instance  of  a JMS  

TopicConnectionFactory  in  your  JNDI  store.  The  adapter  will  work  in  

publish/subscribe  style  and  assume  that  all  connector  and  meta-object  

properties  identifying  destinations  (for  example,  the  OutputDestination  

property)  represent  topics.

Configuring JNDI 

To establish  a connection  to  the  JMS  provider,  the  connector  needs  access  to a JMS  

connection  factory.  JMS  defines  the  interface  for  the  factory.  But  each  individual  

JMS  provider  must  supply  its  own  implementation.  Once  the  connector  has  a 

reference  to  this  factory  implementation,  the  connector  can  establish  a connection  

to,  and  communicate  with,  the  JMS  provider  without  any  knowledge  of  

proprietary  protocols  or  even  the  identify  of the  provider.  

To be  portable,  the  connector  requires  that  the  connection  factory  be  located  in  a 

JNDI  store.  During  implementation,  the  user  or  system  administrator  must  create  

and  configure  a connection  factory  and  place  it in  the  JNDI  store  under  a 

 

26 Adapter  for JMS User  Guide



user-defined  name.  At  run-time,  the  connector  will  establish  a connection  to the  

JNDI  store,  lookup  the  connection  factory  and  use  it to  establish  a connection  to  

the  JMS  provider.  

Some  JMS  providers  provide  their  own  JNDI  implementations  containing  any  

connection  factories  or  other  administered  JMS  objects  that  you  create;  this  

approach  makes  it fairly  straight-forward  for  you  to configure  the  JMS  adapter.  For  

other  JMS  providers,  users  may  need  to  install  and  configure  an  external  JNDI  

provider,  create  the  connection  factory  and  make  it available  to  the  adapter.  See  

your  JNDI  provider  documentation  for  further  information.  

For  more  information  on  JNDI  environment  variables  and  configuration,  see  

www.javasoft.com. For  information  on  configuring  JNDI  with  the  MA88  Patch,  see  

“Configuring  JNDI  with  WebSphere  MQ  Java  client  libraries.”  

Configuring JNDI with WebSphere MQ Java client libraries 

For  a tutorial  that  shows  how  to configure  JNDI  with  WebSphere  MQ  Java  client  

libraries,  see  “Configuring  for  queue-based  messaging”  on  page  93and  

“Configuring  for  topic-based  messaging”  on  page  94.  

Configuring meta-objects 

The  connector  for  JMS  can  recognize  and  read  two  kinds  of meta-objects:  

v   a static  connector  meta-object  

v   a dynamic  child  meta-object

The  attribute  values  of the  dynamic  child  meta-object  duplicate  and  override  those  

of  the  static  meta-object.  For  an  overview  of  metadata  and  static  versus  dynamic  

meta-objects,  see  “Metadata  and  meta-objects”  on  page  8.  

When  deciding  upon  which  meta-object  will  work  best  for  your  implementation,  

consider  the  following:  

v   Static  meta-object  

–   Useful  if all  meta-data  for  different  messages  is fixed  and  can  be  specified  at  

configuration  time.  

–   Limits  you  to  specifying  values  by  business-object  type.  For  example,  all  

Customer-type objects  must  be  sent  to the  same  destination.
v    Dynamic  meta-object  

–   Provides  business  processes  access  to  information  in  message  headers  

–   Allows  business  processes  to  change  processing  of  messages  at run-time,  

regardless  of  business  type.  For  example,  a dynamic  meta-object  would  allow  

you  to  specify  a different  destination  for  every  Customer-type object  sent  to  

the  adapter.  

–   Requires  changes  to the  structure  of  supported  business  objects—such  

changes  may  require  changes  to  maps  and  business  processes.  

–   Requires  changes  to custom  data  handlers.

Meta-object properties 

Table  10  provides  a complete  list  of properties  supported  in  meta-objects.  Refer  to  

these  properties  when  implementing  meta-objects.  

Not  all  properties  are  available  in  both  objects.  Nor  are  all  properties  are  readable  

from  or  writable  to  the  message  header.  See  the  appropriate  sections  on  event  and  

 

Chapter  2. Installing  and configuring  the adapter  27



request  processing  in  Chapter  1, “Adapter  for  JMS  overview,”  on  page  1, to  

determine  how  a specific  property  is interpreted  and  used  by  the  connector.  

 Table 10.  JMS  meta-object  properties  

Property  name  

Definable  in 

static  meta-object  

Definable  in 

dynamic  

meta-object  Description  

DataHandlerConfigMO  Yes Yes Meta-object  passed  to data  handler  to provide  

configuration  information.  If specified  in the  static  

meta-object,  this  will  override  the  value  specified  in 

the  DataHandlerConfigMO  connector  property.  Use  this  

static  meta-object  property  when  different  data  

handlers  are  required  for processing  different  

business  object  types.  Use  the  dynamic  child  

meta-object  for  request  processing  when  the  data  

format  may  be dependent  on the actual  business  

data.  The  specified  business  object  must  be supported  

by the connector  agent.  See the  description  in 

“Configuring  connector-specific  properties”  on page  

20. 

DataHandlerMimeType  Yes Yes Allows  you  to request  a data  handler  based  on a 

particular  MIME  type.  If specified  in the  static  

meta-object,  this  will  override  the  value  specified  in 

the  DataHandlerMimeType  connector  property.  Use  this  

static  meta-object  property  when  different  data  

handlers  are  required  for processing  different  

business  object  types.  Use  the  dynamic  child  

meta-object  for  request  processing  when  the  data  

format  might  be dependent  on the  actual  business  

data.  The  business  object  specified  in 

DataHandlerConfigMO  should  have  an attribute  that  

corresponds  to the  value  of this  property.  See  the 

description  in “Configuring  connector-specific  

properties”  on page  20. 

DataHandlerClassName  Yes Yes See  the description  in “Configuring  connector-specific  

properties”  on page  20. 

InputFormat  Yes Yes Format  or type  of inbound  (event)  messages.  This  

value  assists  in  identifying  the  content  of the  message  

and  would  be specified  by  the application  that  

generated  the  message.  The  field  that  the  connector  

considers  as defining  the  format  in the message  can  

be user-defined  via the  connector-specific  property  

MessageFormatProperty.  

OutputFormat  Yes Yes Format  to be populated  in outbound  messages.  If the  

OutputFormat  is not  specified,  the  input  format  is 

used,  if available.  

 

28 Adapter  for JMS User  Guide



Table 10.  JMS  meta-object  properties  (continued)  

Property  name  

Definable  in 

static  meta-object  

Definable  in 

dynamic  

meta-object  Description  

InputDestination  Yes Yes This  property  is used  to match  incoming  messages  to 

business  objects  only.  By contrast,  the  

InputDestination  connector-specific  property  defines  

which  destinations  the  adapter  polls  and  is the  only  

property  that  the  adapter  uses  to determine  which  

destinations  to poll.  In the  MO,  the  InputDestination  

property  and  the  InputFormat  property  can  serve  as  

criteria  for the  adapter  to map  a given  message  to a 

specific  business  object.  To implement  this  feature,  

you  would  use  connector-specific  properties  to 

configure  multiple  input  destinations  and  optionally  

map  different  data  handlers  to each  one  based  on the 

input  formats  of incoming  messages.
Do  not  set this  property  using  default  conversion  

properties;  its value  is used  

OutputDestination  Yes Yes Destination  to which  the  outbound  message  is 

written.  

ResponseTimeout  Yes Yes Indicates  the  length  of time  in milliseconds  to wait  

before  timing  out  when  waiting  for  a response  in 

synchronous  request  processing.  The  connector  

returns  SUCCESS  immediately  without  waiting  for  a 

response  if this  is left undefined  or with  a value  less  

than  zero.  

DataEncoding  Yes Yes DataEncoding  is the  encoding  to be used  to read  and  

write  messages.  If this  property  is not  specified  in the  

static  meta-object,  the  connector  tries  to read  the 

messages  without  using  any  specific  encoding.  

DataEncoding  defined  in a dynamic  child  meta-object  

overrides  the  value  defined  in the  static  meta-object.  

The  default  value  is Text. The  format  for the  value  of 

this  attribute  is messageType[:enc]. I.e.,  

Text:ISO8859_1, Text:UnicodeLittle, Text, or 

Binary.This property  is related  internally  to the  

InputFormat  property:  specify  one  and  only  one 

DataEncoding  per  InputFormat. 

Below  are  fields  mapping  specifically  to the  JMS  message  header.  For  specific  explanations,  interpretation  of values,  and  more,  see  

the  JMS  API  specification.  JMS  providers  may  interpret  some  fields  differently  so also  check  your  JMS  provider  documentation  

for  any  deviations. 

ReplyToDestination  Yes Destination  to which  a response  message  for  a 

request  is to be sent.  

Type Yes Type of message.  Generally  user-definable,  

depending  on JMS  provider.  

MessageID  Yes Unique  ID  for message  (JMS  provider  specific).  

CorrelationID  Yes Yes Used  in response  messages  to indicate  the  ID of the  

request  message  that  initiated  this  response.  

Delivery  Mode  Yes Yes Specifies  whether  the  message  is persisted  or not in 

the  MOM  system.  Acceptable  values:  

1=non-persistent  

2=persistent  

Other  values,  depending  on the  JMS  provider,  may  

be available.  

Priority  Yes Numeric  priority  of message.  Acceptable  values:  0 

through  9 inclusive  (low  to high  priority).  

Destination  Yes Current  or last  (if removed)  location  of message  in 

MOM  system.  

 

Chapter  2. Installing  and configuring  the adapter  29



Table 10.  JMS  meta-object  properties  (continued)  

Property  name  

Definable  in 

static  meta-object  

Definable  in 

dynamic  

meta-object  Description  

Expiration  Yes Time-to-live  of message.  

Redelivered  Yes Indicates  that  the JMS  provider  most  likely  attempted  

to deliver  the  message  to the  client  earlier  but  receipt  

was  not  acknowledged.  

Timestamp  Yes Time message  was  handed  off  to JMS  provider.  

UserID  Yes Identity  of the  user  sending  the  message.  

AppID  Yes Identity  of the  application  sending  the message.  

DeliveryCount  Yes Number  of delivery  attempts.  

GroupID  Yes Identity  of the  message  group.  

GroupSeq  Yes Sequence  of this  message  in the  message  group  

specified  in GroupID.  

JMSProperties  Yes See  “JMS  properties”  on page  35.
  

Configuring a static meta-object 

The  JMS  configuration  static  meta-object  contains  a list  of  conversion  properties  

defined  for  different  business  objects.  To view  a sample  static  meta-object,  launch  

Business  Object  Designer  and  open  the  following  sample  that  is shipped  with  the  

adapter:  connectors\JMS\Samples\Sample_JMS_MO_Config.xsd. 

The  connector  supports  at most  one  static  meta-object  at any  given  time.  You 

implement  a static  meta-object  by  specifying  its  name  for  connector  property  

ConfigurationMetaObject  

The  structure  of  the  static  meta-object  is such  that  each  attribute  represents  a single  

business  object  and  verb  combination  and  all  the  meta-data  associated  with  

processing  that  object.  The  name  of  each  attribute  should  be  the  name  of  the  

business  object  type  and  verb  separated  by  an  underscore,  such  as  

Customer_Create. The  attribute  application-specific  information  should  consist  of  

one  or  more  semicolon-delimited  name-value  pairs  representing  the  meta-data  

properties  you  want  to specify  for  this  unique  object-verb  combination.  

 Table 11. Static  meta-object  structure  

Attribute  name  Application-specific  text 

<business  object  type>_<verb>      property=value;property=value;...  

<business  object  type>_<verb>      property=value;property=value;...  

  

For  example,  consider  the  following  meta-object:  

 Table 12.  Sample  static  meta-object  structure  

Attribute  name  Application-specific  information  

Customer_Create      OutputFormat=CUST;OutputDestination=QueueA  

Customer_Update  OutputFormat=CUST;OutputDestination=QueueB  

Order_Create  OutputFormat=ORDER;OutputDestination=QueueC  

  

The  meta-object  in  this  sample  informs  the  connector  that  when  it receives  a 

request  business  object  of  type  Customer  with  verb  Create, to convert  it to a 

message  with  format  CUST  and  then  to  place  it in  destination  QueueA. If  the  

customer  object  instead  had  verb  Update, the  message  would  be  placed  in  QueueB. 

 

30 Adapter  for JMS User  Guide



If  the  object  type  was  Order  and  had  verb  Create, the  connector  would  convert  and  

deliver  it  with  format  ORDER  to QueueC. Any  other  business  object  passed  to  the  

connector  would  be  treated  as  unsubscribed.  

Optionally,  you  may  name  one  attribute  Default  and  assign  to it one  or  more  

properties  in  the  ASI.  For  all  attributes  contained  in  the  meta-object,  the  properties  

of  the  default  attribute  are  combined  with  those  of  the  specific  object-verb  

attributes.  This  is  useful  when  you  have  one  or  more  properties  to  apply  

universally  (regardless  of object-verb  combination).  In  the  following  example,  the  

connector  would  consider  object-verb  combinations  of  Customer_Create  and  

Order_Create  as  having  OutputDestination=QueueA  in  addition  to  their  individual  

meta-data  properties:  

 Table 13. Sample  static  meta-object  structure  

Attribute  name  Application-specific  information  

Default      OutputDestination=QueueA  

Customer_Update  OutputFormat=CUST  

Order_Create  OutputFormat=ORDER  

  

See  Table  10  on  page  28  in  “Meta-object  properties”  on  page  27describes  the  

properties  that  you  can  specify  as  application-specific  information  in  the  static  

meta-object.  

To implement  a static  meta-object:  

1.   Launch  Business  Object  Designer.  For  further  information,  see  the  Business  

Object  Development  Guide. 

2.   Open  the  sample  meta-object  

connectors\JMS\Samples\Sample_JMS_MO_Config.xsd. Figure  3 shows  a sample  

static  meta-object  in  Business  Object  Designer.  

 

3.   Edit  the  attributes  and  ASI  to  reflect  your  requirements,  referring  to Table 10 on  

page  28  and  then  save  the  meta-object  file.  

4.   Specify  the  name  of  this  meta-object  file  as  the  value  of  the  connector  property  

ConfigurationMetaObject.

  

Figure  3. A sample  static  meta-object

 

Chapter  2. Installing  and configuring  the adapter  31



Mapping data handlers to input destinations 

You can  use  the  InputDestination  property  in  the  application-specific  information  

of  the  static  meta-object  to associate  a data  handler  with  an  input  destination.  This  

feature  is  useful  when  dealing  with  multiple  trading  partners  who  have  different  

formats  and  conversion  requirements.  

To map  a data  handler  to  an  input  destination:  

1.   Launch  Connector  Configurator.  For  further  information,  see  Appendix  B, 

“Connector  Configurator,”  on  page  69.  

2.   Use  connector-specific  properties  (see  “InputDestination”  on  page  24)  to 

configure  one  or  more  input  destination.  Multiple  destination  names  must  be  

delimited  by  a semicolon.  

3.   For  each  input  destination,  specify  the  destination  (queue  manager  if you  are  

implementing  PTP  messaging  style)  and  input  destination  name  as  well  as  data  

handler  class  name  and  mime  type  in  the  application-specific  information.

For  example,  the  following  attribute  in a static  meta-object  associates  a data  

handler  with  an  InputDestination  named  CompReceipts:  

[Attribute]  

Name  = Customer_Create  

Type  = String  

Cardinality  = 1 

MaxLength  = 1 

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

InputDestination=//queue.manager/CompReceipts;DataHandlerClassName=com.crossworlds.  

DataHandlers.MQ.disposition_notification;DataHandlerMimeType=message/  

disposition_notification  

IsRequiredServerBound  = false  

[End]  

Configuring a dynamic child meta-object 

If it is  difficult  or  unfeasible  to  specify  the  necessary  metadata  through  a static  

meta-object,  the  connector  can  optionally  accept  meta-data  delivered  at  run-time  

for  each  business  object  instance.  

Dynamic  meta-objects  allow  you  to  change  the  meta-data  used  by  the  connector  to  

process  a business  object  on  a per-request  basis  during  request  processing,  and  to  

retrieve  information  about  an  event  message  during  event  processing.  

The  structure  of  the  dynamic  meta-object  is such  that  each  attribute  represents  a 

single  metadata  property  and  value:meta-object  property  name  =meta-object  

property  value  

To implement  a dynamic  meta-object,  you  add  it as  a child  to  your  top-level  object  

and  include  the  name-value  pair  cw_mo_conn=<MO  attribute> in  your  top-level  

object  ASI  where  <MO  attribute> is the  name  of  the  attribute  in  your  top-level  

object  representing  the  dynamic  meta-object.  For  example:  

Customer  (ASI  = cw_mo_conn=MetaData)  

  |--  Id  

  |--  FirstName  

  |--  LastName  

  |--  ContactInfo  

  |--  MetaData  

        |--  OutputFormat  = CUST  

        |--  OutputDestination  = QueueA  

 

32 Adapter  for JMS User  Guide



Upon  receipt  of  a request  populated  as  shown  above,  the  connector  would  convert  

the  Customer  object  to a message  with  format  CUST  and  then  put  the  message  in 

queue  QueueA. 

Business  objects  can  use  the  same  or  different  dynamic  meta-object  or  none  at all.  

Note:   All  standard  IBM  WebSphere  data  handlers  are  designed  to  ignore  this  

dynamic  meta-object  attribute  by  recognizing  the  cw_mo_  tag.  You must  do  

the  same  when  developing  custom  data  handlers  for  use  with  the  adapter.  

The  connector  recognizes  and  reads  conversion  properties  from  a dynamic  

meta-object  that  is added  as  a child  to the  top-level  business  object  passed  to  the  

connector.  The  attribute  values  of  the  dynamic  child  meta-object  duplicate  the  

conversion  properties  that  you  can  specify  via  the  static  meta-object  that  is used  to 

configure  the  connector.  

Since  dynamic  child  meta  object  properties  override  those  found  in  static  

meta-objects,  if you  specify  a dynamic  child  meta-object,  you  need  not  include  a 

connector  property  that  specifies  the  static  meta-object.  Accordingly,  you  can  use  a 

dynamic  child  meta-object  independently  of  the  static  meta-object  and  vice-versa.  

See  Table  10  on  page  28  in  “Meta-object  properties”  on  page  27describes  the  

properties  that  you  can  specify  as  application-specific  information  in  the  dynamic  

meta-object.  

The  following  attributes,  which  reflect  JMS  header  properties,  are  recognized  in  the  

dynamic  meta-object.  

 Table 14.  Dynamic  meta-object  header  attributes  

Header  attribute  name  Mode  Corresponding  JMS  header  

CorrelationID  

Read/Write  JMSCorrelationID  

ReplyToQueue  Read/Write  JMSReplyTo  

DeliveryMode  Read/Write  JMSDeliveryMode  

Priority  Read/Write  JMSPriority  

Destination  Read  JMSDestination  

Expiration  Read  JMSExpiration  

MessageID  Read  JMSMessageID  

Redelivered  Read  JMSRedelivered  

TimeStamp  Read  JMSTimeStamp  

Type  Read  JMSType  

UserID  Read  JMSXUserID  

AppID  Read  JMSXAppID  

DeliveryCount  Read  JMSXDeliveryCount  

GroupID  Read  JMSXGroupID  

GroupSeq  Read  JMSXGroupSeq  

JMSProperties  Read/Write  

  

Read-only  attributes  are  read  from  a message  header  during  event  notification  and  

written  to  the  dynamic  meta-object.  These  properties  also  populate  the  dynamic  

MO  when  a response  message  is issued  during  request  processing.Read/write  

 

Chapter  2. Installing  and configuring  the adapter  33



attributes  are  set  on  message  headers  created  during  request  processing.  During  

event  notification,  read/write  attributes  are  read  from  message  headers  to  populate  

the  dynamic  meta-object.  

To implement  a dynamic  meta-object:  

1.   Launch  Business  Object  Designer.  For  further  information,  see  the  Business  

Object  Development  Guide. 

2.    Open  the  sample  meta-object  connectors\JMS\Samples\Sample_JMS_DynMO.xsd. 

Figure  4 shows  a sample  dynamic  meta-object  in  Business  Object  Designer.  

 

3.   Edit  the  attributes  and  properties  to reflect  your  requirements  for  this  business  

object  and  save  it.  

4.   Add  the  dynamic  meta-object  as a child  to your  top-level  object  and  include  the  

name-value  pair  cw_mo_conn=<MO  attribute> in  your  top-level  object  ASI  where  

<MO  attribute> is the  name  of the  attribute  in  your  top-level  object  

representing  the  dynamic  meta-object.

  

Figure  4. A sample  dynamic  meta-object

 

34 Adapter  for JMS User  Guide



Population of the dynamic child meta-object during polling 

In  order  to  provide  collaborations  with  more  information  regarding  messages  

retrieved  during  polling,  the  connector  populates  specific  attributes  of  the  dynamic  

meta-object,  if already  defined  for  the  business  object  created.  

Table  15  shows  how  a dynamic  child  meta-object  might  be  structured  for  polling.  

 Table 15. JMS  dynamic  child  meta-object  structure  for polling  

Attribute  name  Sample  value  

InputFormat  CUST_IN  

InputQueue  MYInputQueue  

OutputFormat  CxIgnore  

OutputQueue  CxIgnore  

ResponseTimeout  CxIgnore  

TimeoutFatal  CxIgnore  

  

As  shown  in  Table 15,  you  can  define  additional  attributes,  Input_Format  and  

Inputdestination, in  a dynamic  child  meta-object.  The  Input_Format  is populated  

with  the  format  of  the  message  retrieved,  while  the  InputDestination  attribute  

contains  the  name  of  the  destination  from  which  a given  message  has  been  

retrieved.  If these  properties  are  not  defined  in  the  child  meta-object,  they  will  not  

be  populated.  

Example  scenario:  

v   The  connector  retrieves  a message  with  the  format  CUST_IN  from  the  queue  

MyInputQueue. 

v   The  connector  converts  this  message  to a Customer  business  object  and  checks  

the  application-specific  text  to  determine  if a meta-object  is defined.  

v   If  so,  the  connector  creates  an  instance  of this  meta-object  and  populates  the  

InputDestination  and  InputFormat  attributes  accordingly,  then  publishes  the  

business  object  to  available  collaborations.

JMS headers and dynamic child meta-object attributes 

You can  add  attributes  to  a dynamic  meta-object  to  gain  more  information  about,  

and  more  control  over, the  message  transport.  This  section  describes  these  

attributes  and  how  they  affect  event  notification  and  request  processing.  

JMS  properties:    Unlike  other  attributes  in  the  dynamic  meta-object,  

JMSProperties  must  define  a single-cardinality  child  object.  Every  attribute  in this  

child  object  must  define  a single  property  to  be  read/written  in  the  variable  

portion  of  the  JMS  message  header  as follows:  

1.    The  name  of  the  attribute  has  no  semantic  value.  

2.   The  type  of  the  attribute  should  always  be  String  regardless  of  the  JMS  

property  type.  

3.   The  application-specific  information  of the  attribute  must  contain  two  

name-value  pairs  defining  the  name  and  format  of the  JMS  message  property  to  

which  the  attribute  maps.  The  name  is user-definable.  The  value  type  must  be  

one  of  the  following:  

v   Boolean  

v   String  

v   Int  

v   Float  

 

Chapter  2. Installing  and configuring  the adapter  35



v   Double  

v   Long  

v   Short  

v   Byte

The  table  below  shows  application-specific  information  properties  that  you  must  

define  for  attributes  in  the  JMSProperties  object.  

 Table 16.  Application-specific  information  for JMS  property  attributes  

Attribute  Possible  values  ASI  Comments  

Name  Any  valid  JMS  

property  name  

(valid  = 

compatible  with  

type  defined  in 

ASI)  

name=<JMS property  

name>;type=<JMS property  type> 

Some  vendors  reserve  

certain  properties  to 

provide  extended  

functionality.  In 

general,  users  should  

not  define  custom  

properties  that  begin  

with  JMS  unless  they  

are  seeking  access  to 

these  vendor-specific  

features.  

Type String  type=<see comments> This  is the  type  of the 

JMS  property.  The  

JMS  API  provides  a 

number  of methods  

for  setting  values  in 

the  JMS  Message:  

setIntProperty, 

setLongProperty, 

setStringProperty, 

etc.  The  type  of the  

JMS  property  

specified  here  dictates  

which  of these  

methods  is used  for  

setting  the  property  

value  in the  message.
  

In  the  example  below,  a JMSProperties  child  object  is defined  for  the  Customer  

object  to  allow  access  to  the  user-defined  fields  of  the  message  header:  

Customer  (ASI  = cw_mo_conn=MetaData)  

  |--  Id  

  |--  FirstName  

  |--  LastName  

  |--  ContactInfo  

  |--  MetaData  

        |--  OutputFormat  = CUST  

        |--  OutputDestination  = QueueA  

        |--  JMSProperties  

             |--  RoutingCode  = 123  (ASI=  name=RoutingCode;type=Int)  

             |--  Dept  = FD (ASI=  name=RoutingDept;type=String)  

To illustrate  another  example,  Figure  5 shows  attribute  JMSProperties  in  the  

dynamic  meta-object  and  definitions  for  four  properties  in  the  JMS  message  

header:  ID,  GID,  RESPONSE  and  RESPONSE_PERSIST.  The  application-specific  

 

36 Adapter  for JMS User  Guide



information  of  the  attributes  defines  the  name  and  type  of  each.  For  example,  

attribute  ID  maps  to  JMS  property  ID  of  type  String). 

   

Configuring startup scripts 

The  connector  comes  with  startup  scripts—JMS.bat  or JMS.sh, depending  on  your  

operating  system.  For  information  on  starting  a connector,  stopping  a connector,  

and  the  connector’s  temporary  startup  log  file,  see  the  see  the  startup  chapter  in  

the  System  Installation  Guide  for  your  platform.  

Creating multiple connector instances 

Creating  multiple  instances  of  a connector  is in  many  ways  the  same  as creating  a 

custom  connector.  You can  set  your  system  up  to  create  and  run multiple  instances  

of  a connector  by  following  the  steps  below.  You must:  

v   Create  a new  directory  for  the  connector  instance  

v   Make  sure  you  have  the  requisite  business  object  definitions  

v   Create  a new  connector  definition  file  

v   Create  a new  start-up  script

Create a new directory 

You must  create  a connector  directory  for  each  connector  instance.  This  connector  

directory  should  be  named:  

ProductDir\connectors\connectorInstance  

where  connectorInstance  uniquely  identifies  the  connector  instance.  

If  the  connector  has  any  connector-specific  meta-objects,  you  must  create  a 

meta-object  for  the  connector  instance.  If  you  save  the  meta-object  as  a file,  create  

this  directory  and  store  the  file  here:  

ProductDir\repository\connectorInstance  

Create business object definitions 

If  the  business  object  definitions  for  each  connector  instance  do  not  already  exist  

within  the  project,  you  must  create  them.  

1.   If you  need  to  modify  business  object  definitions  that  are  associated  with  the  

initial  connector,  copy  the  appropriate  files  and  use  Business  Object  Designer  to 

import  them.  You can  copy  any  of  the  files  for  the  initial  connector.  Just  rename  

them  if you  make  changes  to  them.  

2.   Files  for  the  initial  connector  should  reside  in  the  following  directory:  

ProductDir\repository\initialConnectorInstance  

  

Figure  5. JMS  properties  attribute  in a dynamic  meta-object

 

Chapter  2. Installing  and configuring  the adapter  37



Any  additional  files  you  create  should  be  in  the  appropriate  connectorInstance  

subdirectory  of  ProductDir\repository.

Create a connector definition 

You create  a configuration  file  (connector  definition)  for  the  connector  instance  in  

Connector  Configurator.  To do  so:  

1.   Copy  the  initial  connector’s  configuration  file  (connector  definition)  and  rename  

it.  

2.   Make  sure  each  connector  instance  correctly  lists  its  supported  business  objects  

(and  any  associated  meta-objects).  

3.   Customize  any  connector  properties  as  appropriate.

Create a start-up script 

To create  a startup  script:  

1.   Copy  the  initial  connector’s  startup  script  and  name  it to include  the  name  of  

the  connector  directory:  

dirname  

2.   Put  this  startup  script  in  the  connector  directory  you  created  in “Create  a new  

directory”  on  page  37.  

3.   Create  a startup  script  shortcut  (Windows  only).  

4.   Copy  the  initial  connector’s  shortcut  text  and  change  the  name  of the  initial  

connector  (in  the  command  line)  to match  the  name  of the  new  connector  

instance.

You can  now  run both  instances  of  the  connector  on  your  integration  server  at  the  

same  time.  

For  more  information  on  creating  custom  connectors,  refer  to  the  Connector  

Development  Guide  for  C++  or  for  Java. 

Starting the connector 

A connector  must  be  explicitly  started  using  its  connector  start-up  script. On  

Windows  systems  the  startup  script  should  reside  in  the  connector’s  runtime  

directory:  

ProductDir\connectors\connName  

where  connName  identifies  the  connector.  

On  UNIX  systems  the  startup  script  should  reside  in  the  ProductDir/bin  directory.  

The  name  of  the  startup  script  depends  on  the  operating-system  platform,  as  

Table  17  shows.  

 Table 17.  Startup  scripts  for a connector  

Operating  system  Startup  script  

UNIX-based  systems  connector_manager  

Windows  start_connName.bat
  

When  the  startup  script  runs, it expects  by  default  to find  the  configuration  file  in 

the  Productdir  (see  the  commands  below).  This  is  where  you  place  your  

configuration  file.  

 

38 Adapter  for JMS User  Guide



Note:   You need  a local  configuration  file  if the  adapter  is  using  JMS  transport.  

You can  invoke  the  connector  startup  script  in  any  of  the  following  ways:  

v   On  Windows  systems,  from  the  Start  menu  

Select  Programs>IBM  WebSphere  Business  Integration  

Adapters>Adapters>Connectors. By  default,  the  program  name  is “IBM  

WebSphere  Business  Integration  Adapters”.  However,  it  can  be  customized.  

Alternatively,  you  can  create  a desktop  shortcut  to  your  connector.  

v   From  the  command  line  

–   On  Windows  systems:  

start_connName  connName  brokerName  [-cconfigFile  ] 

–   On  UNIX-based  systems:  

connector_manager  -start  connName  brokerName  [-cconfigFile  ] 

where  connName  is the  name  of  the  connector  and  brokerName  identifies  your  

integration  broker,  as  follows:  

–   For  WebSphere  InterChange  Server,  specify  for  brokerName  the  name  of the  

ICS  instance.  

–   For  WebSphere  message  brokers  (WebSphere  MQ  Integrator,  WebSphere  MQ  

Integrator  Broker,  or  WebSphere  Business  Integration  Message  Broker)  or 

WebSphere  Application  Server,  specify  for  brokerName  a string  that  identifies  

the  broker.

Note:   For  a WebSphere  message  broker  or  WebSphere  Application  Server  on  a 

Windows  system,  you  must  include  the  -c  option  followed  by  the  name  of  

the  connector  configuration  file.  For  ICS,  the  -c  is optional.  

v   From  Adapter  Monitor  (available  only  when  the  broker  is WebSphere  

Application  Server  or  InterChange  Server),  which  is launched  when  you  start  

System  Manager  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   From  System  Manager  (available  for  all  brokers)  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   On  Windows  systems,  you  can  configure  the  connector  to  start  as  a Windows  

service.  In  this  case,  the  connector  starts  when  the  Windows  system  boots  (for  an  

Auto  service)  or  when  you  start  the  service  through  the  Windows  Services  

window  (for  a Manual  service).

For  more  information  on  how  to start  a connector,  including  the  command-line  

startup  options,  refer  to  one  of  the  following  documents:  

v   For  WebSphere  InterChange  Server,  refer  to  the  System  Administration  Guide. 

v   For  WebSphere  message  brokers,  refer  to  Implementing  Adapters  with  WebSphere  

Message  Brokers. 

v   For  WebSphere  Application  Server,  refer  to  Implementing  Adapters  with  WebSphere  

Application  Server.

Stopping the connector 

The  way  to  stop  a connector  depends  on  the  way  that  the  connector  was  started,  

as  follows:  

 

Chapter  2. Installing  and configuring  the adapter  39



v   If  you  started  the  connector  from  the  command  line,  with  its  connector  startup  

script:  

–   On  Windows  systems,  invoking  the  startup  script  creates  a separate  “console”  

window  for  the  connector.  In  this  window,  type  “Q”  and  press  Enter  to  stop  

the  connector.  

–   On  UNIX-based  systems,  connectors  run in  the  background  so  they  have  no  

separate  window.  Instead,  run the  following  command  to  stop  the  connector:  

connector_manager_connName -stop  

where  connName  is the  name  of  the  connector.
v    From  Adapter  Monitor  (WebSphere  Business  Integration  Adapters  product  only),  

which  is launched  when  you  start  System  Manager  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   From  System  Monitor  (WebSphere  InterChange  Server  product  only)  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   On  Windows  systems,  you  can  configure  the  connector  to  start  as  a Windows  

service.  In  this  case,  the  connector  stops  when  the  Windows  system  shuts  down.

 

40 Adapter  for JMS User  Guide



Chapter  3.  Creating  or modifying  business  objects  

v   “Connector  business  object  structure”

The  connector  comes  with  sample  business  objects  only.  The  systems  integrator,  

consultant,  or  customer  must  build  business  objects.  

This  chapter  describes  connector  requirements  for  business  objects.  You can  use  

this  information  as  a guide  to  implementing  new  business  objects.  

Connector business object structure 

After  installing  the  connector,  you  must  create  business  objects.  There  are  no  

requirements  regarding  the  structure  of the  business  objects  other  than  those  

imposed  by  the  configured  data  handler.  The  business  objects  that  the  connector  

processes  can  have  any  name  allowed  by  the  integration  broker.  For  more  on  

naming  conventions  see  the  naming  conventions  for  your  integration  broker.  

The  connector  retrieves  messages  from  a destination  and  attempts  to populate  a 

business  object  (defined  by  the  meta-object)  with  the  message  contents.  Strictly  

speaking,  the  connector  neither  controls  nor  influences  business  object  structure.  

Those  are  functions  of  meta-object  definitions  as  well  as  the  connector’s  data  

handler  requirements.  In  fact,  there  is no  business-object  level  application  text.  

Rather,  the  connector’s  main  role  when  retrieving  and  passing  business  objects  is 

to  monitor  the  message-to-business-object  (and  vice  versa)  process  for  errors.  

Creating business objects 

1.   Identify  and  configure  the  application  that  the  integration  broker  will  send  

business  objects  to  when  the  broker  is configured  with  an  instance  of  the  JMS  

adapter.  

2.   Configure  the  connector  with  a data  handler  that  can  transform  messages  from  

JMS  destinations  into  business  objects  suitable  for  processing  by  the  target  

application.  You do  this  by  specifying  the  DataHandlerConfigMO  and  

DataHandlerMimeType  connector  properties,  or  by  specifying  the  

DataHandlerClassName  property.  For  further  information,  see  “Configuring  

connector  properties”  on  page  19.  You can  optionally  specify  special  data  

handler  processing  rules in  static  and  dynamic  meta-objects.  For  further  

information,  see  “Meta-object  properties”  on  page  27.  

3.   Use  Business  Object  Designer  to  create  the  application-specific  business  objects.  

For  further  information  see  the  Business  Object  Designerguide.  

4.   Add  the  business  objects  you  create  to  the  Supported  Business  Objects  Using  

Connector  Configurator,  click  the  Supported  Business  Objects  tab  for  the  JMS  

adapter,  add  the  business  objects  you  have  created,  and  set  the  Message  Set  ID  

to  a unique  value  for  each  supported  business  object.  For  further  information  

on  using  Connector  Configurator  to add  supported  business  objects,  see  

“Specifying  supported  business  object  definitions”  on  page  79.

 

© Copyright  IBM Corp. 2000, 2004 41



42 Adapter  for JMS User  Guide



Chapter  4.  Troubleshooting  

v   “Error  handling”  

v   “Tracing”  on  page  44 

v   “Fixing  start-up  problems”  on  page  44

The  chapter  describes  how  the  connector  handles  errors  and  tracing,  as  well  as  

problems  that  you  may  encounter  when  starting  up  or  running  the  connector  

Error handling 

All  error  messages  generated  by  the  connector  are  stored  in  a message  file  named  

JMSConnector.txt. (The  name  of the  file  is determined  by  the  LogFileName  standard  

connector  configuration  property.)  Each  error  has  an  error  number  followed  by  the  

error  message:  

Message  number  

Message  text  

The  connector  handles  specific  errors  as  described  in  the  following  sections.  

Application timeout 

The  error  message  APP_RESPONSETIMEOUT  is returned  when:  

v   The  connector  cannot  establish  a connection  to the  JMS  service  provider  during  

message  retrieval.  

v   The  connector  successfully  converts  a business  object  to  a message  but  cannot  

deliver  it the  outgoing  queue  due  to  connection  loss.  

v   The  connector  issues  a message  but  times  out  waiting  for  a response  for  a 

business  object  with  conversion  property  TimeoutFatal  equal  to  True. 

v   The  connector  receives  a response  message  with  a return  code  equal  to  

APP_RESPONSE_TIMEOUT  or  UNABLE_TO_LOGIN.

Unsubscribed business object 

If  the  connector  retrieves  a message  that  is associated  with  an  unsubscribed  

business  object,  or  if a NO_SUBSCRIPTION_FOUND  code  is returned  by  the  

gotApplEvent()  method,  the  connector  delivers  a message  to  the  queue  specified  

by  the  UnsubscribedDestination  property.  

Note:   If the  UnsubscribedDestination  is not  defined,  unsubscribed  messages  will  

be  discarded.  

Connector not active 

When  the  gotApplEvent()  method  returns  a CONNECTOR_NOT_ACTIVE  code,  

the  pollForEvents()  method  returns  an  APP_RESPONSE_TIMEOUT  code  and  the  

event  remains  in  the  InProgress  Destination,  if specified.  

Data handler conversion 

If  the  data  handler  fails  to  convert  a message  to  a business  object,  or  if a 

processing  error  occurs  that  is specific  to the  business  object  (as  opposed  to the  

 

© Copyright  IBM Corp. 2000, 2004 43



JMS  provider),  the  message  is delivered  to  the  queue  specified  by  

ErrorDestination. If the  ErrorDestination  is not  defined,  messages  that  cannot  be  

processed  due  to  errors  are  discarded.  

If the  data  handler  fails  to  convert  a business  object  to a message,  FAIL is  returned.  

Tracing 

Trace  messages  are  hard-coded  in  the  adapter.  Tracing  is an  optional  debugging  

feature  you  can  turn  on  to  closely  follow  connector  behavior.  Trace messages,  by  

default,  are  written  to  STDOUT.  See  the  connector  configuration  properties  in for  

more  on  configuring  trace  messages.  For  more  information  on  tracing,  including  

how  to  enable  and  set  it,  see  the  Connector  Development  Guide  for  Java. 

What  follows  is recommended  content  for  connector  trace  messages.  

Level  0 This  level  is used  for  trace  messages  that  identify  the  connector  

version.  

Level  1 Use  this  level  for  trace  messages  that  provide  key  information  on  

each  business  object  processed  or  record  each  time  a polling  thread  

detects  a new  message  in  an  input  queue.  

Level  2 Use  this  level  for  trace  messages  that  log  each  time  a business  

object  is posted  to a broker,  either  from  gotApplEvent()  or  

executeCollaboration(). 

Level  3 Use  this  level  for  trace  messages  that  provide  information  

regarding  message-to-business-object  and  business-object-to-
message  conversions  or  provide  information  about  the  delivery  of 

the  message  to  the  output  queue.  

Level  4 Use  this  level  for  trace  messages  that  identify  when  the  connector  

enters  or  exits  a function.  

Level  5 Use  this  level  for  trace  messages  that  indicate  connector  

initialization,  represent  statements  executed  in  the  application,  

indicate  whenever  a message  is taken  off  of or  put  onto  a queue,  

or  record  business  object  dumps.  

 Use  this  level  to  dump  the  printStackTrace()  on  exceptions  caught  

by  the  adapter.

Fixing start-up problems 

 Problem  Potential  solution  / explanation  

The  connector  shuts  down  unexpectedly  during  

initialization  and  the  following  message  is reported:  

Exception  in thread  "main"  

java.lang.NoClassDefFoundError:  

javax/jms/JMSException... 

Connector  cannot  find  file  jms.jar. 

The  connector  shuts  down  unexpectedly  during  

initialization  and  the  following  message  is reported:  

Exception  in thread  "main"  

java.lang.NoClassDefFoundError:  

javax/naming/Referenceable...  

Connector  cannot  find  file  jndi.jar. 

 

44 Adapter  for JMS User  Guide



Appendix  A.  Standard  configuration  properties  for  connectors  

This  appendix  describes  the  standard  configuration  properties  for  the  connector  

component  of WebSphere  Business  Integration  adapters.  The  information  covers  

connectors  running  with  the  following  integration  brokers:  

v   WebSphere  InterChange  Server  (ICS)  

v   WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  and  WebSphere  

Business  Integration  Message  Broker,  collectively  referred  to  as  the  WebSphere  

Message  Brokers  (and  shown  as  WMQI  in  the  Connector  Configurator).  

v   Information  Integrator  (II)  

v   WebSphere  Application  Server  (WAS)

If  your  adapter  supports  DB2  Information  Integrator,  use  the  WMQI  options  and  

the  DB2  II  standard  properties  (see  the  Notes  column  in  Table  18  on  page  47.)  

The  properties  you  set  for  the  adapter  depend  on  which  integration  broker  you  

use.  You choose  the  integration  broker  using  Connector  Configurator.  After  you  

choose  the  broker,  Connector  Configurator  lists  the  standard  properties  you  must  

configure  for  the  adapter.  

For  information  about  properties  specific  to  this  connector,  see  the  relevant  section  

in  this  guide.  

New properties 

These  standard  properties  have  been  added  in  this  release:  

v   AdapterHelpName  

v   BiDi.Application  

v   BiDi.Broker  

v   BiDi.Metadata  

v   BiDi.Transformation  

v   CommonEventInfrastructure  

v   CommonEventInfrastructureContextURL  

v   ControllerEventSequencing  

v   jms.ListenerConcurrency  

v   jms.TransportOptimized  

v   ResultsSetEnabled  

v   ResultsSetSize  

v   TivoliTransactionMonitorPerformance

Standard connector properties overview 

Connectors  have  two  types  of  configuration  properties:  

v   Standard  configuration  properties,  which  are  used  by  the  framework  

v   Application,  or  connector-specific,  configuration  properties,  which  are  used  by  

the  agent

 

© Copyright  IBM Corp. 2000, 2004 45



These  properties  determine  the  adapter  framework  and  the  agent  run-time  

behavior.  

This  section  describes  how  to start  Connector  Configurator  and  describes  

characteristics  common  to all  properties.  For  information  on  configuration  

properties  specific  to  a connector,  see  its  adapter  user  guide.  

Starting Connector Configurator 

You configure  connector  properties  from  Connector  Configurator,  which  you  access  

from  System  Manager.  For  more  information  on  using  Connector  Configurator,  

refer  to  the  sections  on  Connector  Configurator  in  this  guide.  

Connector  Configurator  and  System  Manager  run only  on  the  Windows  system.  If 

you  are  running  the  connector  on  a UNIX  system,  you  must  have  a Windows  

machine  with  these  tools  installed.  

To set  connector  properties  for  a connector  that  runs on  UNIX,  you  must  start  up  

System  Manager  on  the  Windows  machine,  connect  to the  UNIX  integration  broker,  

and  bring  up  Connector  Configurator  for  the  connector.  

Configuration property values overview 

The  connector  uses  the  following  order  to determine  a property’s  value:  

1.   Default  

2.   Repository  (valid  only  if WebSphere  InterChange  Server  (ICS)  is the  integration  

broker)  

3.   Local  configuration  file  

4.   Command  line

The  default  length  of  a property  field  is 255  characters.  There  is no  limit  on  the  

length  of  a STRING  property  type.  The  length  of  an  INTEGER  type  is determined  

by  the  server  on  which  the  adapter  is running.  

A connector  obtains  its  configuration  values  at startup.  If  you  change  the  value  of  

one  or  more  connector  properties  during  a run-time  session,  the  property’s  update  

method  determines  how  the  change  takes  effect.  

The  update  characteristics  of  a property,  that  is,  how  and  when  a change  to the  

connector  properties  takes  effect,  depend  on  the  nature  of  the  property.  

There  are  four  update  methods  for  standard  connector  properties:  

v   Dynamic  

The  new  value  takes  effect  immediately  after  the  change  is saved  in System  

Manager.  However,  if the  connector  is in  stand-alone  mode  (independently  of 

System  Manager),  for  example,  if it is running  with  one  of  the  WebSphere  

message  brokers,  you  can  change  properties  only  through  the  configuration  file.  

In  this  case,  a dynamic  update  is not  possible.  

v   Agent  restart  (ICS  only)  

The  new  value  takes  effect  only  after  you  stop  and  restart  the  connector  agent.  

v   Component  restart  

The  new  value  takes  effect  only  after  the  connector  is stopped  and  then  restarted  

in  System  Manager.  You do  not  need  to  stop  and  restart  the  agent  or  the  server  

process.  

 

46 Adapter  for JMS User  Guide



v   System  restart  

The  new  value  takes  effect  only  after  you  stop  and  restart  the  connector  agent  

and  the  server.

To determine  how  a specific  property  is updated,  refer  to  the  Update  Method  

column  in  the  Connector  Configurator  window,  or  see  the  Update  Method  column  

in  Table 18  on  page  47.  

There  are  three  locations  in  which  a standard  property  can  reside.  Some  properties  

can  reside  in  more  than  one  location.  

v   ReposController  

The  property  resides  in the  connector  controller  and  is effective  only  there.  If 

you  change  the  value  on  the  agent  side,  it does  not  affect  the  controller.  

v   ReposAgent  

The  property  resides  in the  agent  and  is effective  only  there.  A local  

configuration  can  override  this  value,  depending  on  the  property.  

v   LocalConfig  

The  property  resides  in the  configuration  file  for  the  connector  and  can  act  only  

through  the  configuration  file.  The  controller  cannot  change  the  value  of the  

property,  and  is not  aware  of  changes  made  to  the  configuration  file  unless  the  

system  is redeployed  to  update  the  controller  explicitly.

Standard properties quick-reference 

Table  18  provides  a quick-reference  to  the  standard  connector  configuration  

properties.  Not  all  connectors  require  all  of  these  properties,  and  property  settings  

may  differ  from  integration  broker  to  integration  broker.  

See  the  section  following  the  table  for  a description  of  each  property.  

Note:   In  the  Notes  column  in  Table 18,  the  phrase  “RepositoryDirectory  is set  to 

<REMOTE>”  indicates  that  the  broker  is InterChange  Server.  When  the  

broker  is WMQI  or  WAS, the  repository  directory  is set  to  

<ProductDir>\repository  

 Table 18.  Summary  of standard  configuration  properties  

Property  name Possible values Default value 

Update 

method  Notes  

AdapterHelpName  One of the valid 

subdirectories in 

<ProductDir>\bin\Data  

\App\Help\  that 

 contains  a valid  

<RegionalSetting>  

directory 

Template  name, if valid, 

or blank field 

Component  

restart 

Supported  regional 

settings.  

Include  chs_chn, 

cht_twn,  deu_deu, 

esn_esp,  fra_fra, 

ita_ita,  jpn_jpn, 

kor_kor,  ptb_bra, 

and enu_usa  (default).  

AdminInQueue  Valid  JMS queue  name <CONNECTORNAME>  

/ADMININQUEUE  

Component  

restart 

This property is valid 

 only when the value 

of DeliveryTransport 

is JMS 

AdminOutQueue  Valid  JMS queue  name <CONNECTORNAME>  

/ADMINOUTQUEUE  

Component  

restart 

This property is valid 

only  when the value 

of DeliveryTransport 

is JMS 

 

Appendix  A. Standard configuration  properties for connectors  47



Table 18. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

AgentConnections  1 through 4 1 Component  

restart 

This property is valid 

only when the value 

of DeliveryTransport  

is MQ or IDL, the value 

of Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

AgentTraceLevel  0 through 5 0 Dynamic  

if broker is 

ICS; 

otherwise  

Component  

restart 

ApplicationName  Application  name The value specified for 

the connector  

application  name 

Component  

restart 

BiDi.Application  Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value 

of BiDi.Transforma tion 

is true 

BiDi.Broker Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value of 

BiDi.Transformation  

is true. If the value of 

BrokerType is 

ICS, the property 

is read-only. 

BiDi.Metadata  Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value of 

BiDi.Transformation  

is true. 

BiDi.Transformation  true or false false Component  

restart 

This property is valid 

only if the value of 

BrokerType is 

not WAS 

. 

BrokerType  ICS, WMQI, WAS  ICS Component  

restart 

CharacterEncoding  Any supported  code. 

The list shows  this subset: 

ascii7,  ascii8,  SJIS, 

Cp949,  GBK, Big5, 

Cp297,  Cp273,  Cp280, 

Cp284,  Cp037,  Cp437 

. 

ascii7 Component  

restart 

This property is valid 

only for C++ connectors.  

 

48 Adapter  for JMS User  Guide



Table 18.  Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

CommonEventInfrastruc  

ture  

true or false false Component  

restart 

CommonEventInfrastruc  

tureURL  

A URL string, for 

example,  

corbaloc:iiop:  

host:2809. 

No default  value. Component  

restart 

This property is valid 

only  if the value of 

CommonEvent  

Infrastructure is true. 

ConcurrentEventTrig  

geredFlows 

1 through 32,767  1 Component  

restart 

This property is valid 

only  if the value of 

RepositoryDirectory  

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

ContainerManagedEvents  Blank or JMS Blank Component  

restart 

This property is valid 

only  when the value 

of Delivery Transport 

is JMS. 

ControllerEventSequenc  

ing 

true or false true Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

ControllerStoreAndFor  

wardMode  

true or false true Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

ControllerTraceLevel  0 through 5 0 Dynamic  This property is valid 

only  if the value of 

RepositoryDirectory  

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

DeliveryQueue  Any valid JMS 

queue  name 

<CONNECTORNAME>  

/DELIVERYQUEUE  

Component  

restart 

This property is valid 

only  when the value 

of Delivery Transport 

is JMS. 

DeliveryTransport  MQ, IDL, or JMS IDL when the value of 

RepositoryDirectory is 

<REMOTE>,  otherwise  

JMS 

Component  

restart 

If the value of 

RepositoryDirectory  is 

not <REMOTE>,  

the only valid value for 

this property is JMS. 

DuplicateEventElimina  

tion 

true or false false Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  is JMS.  

EnableOidForFlowMoni  

toring  

true or false false Component  

restart 

This property is valid 

only  if the value of 

BrokerType  is ICS. 

FaultQueue  Any valid queue  name. <CONNECTORNAME>  

/FAULTQUEUE  

Component  

restart 

This property is 

valid only if the value 

of DeliveryTransport 

is JMS. 

jms.FactoryClassName  CxCommon.Messaging.jms  

.IBMMQSeriesFactory,  

CxCommon.Messaging  

.jms.SonicMQFactory, 

or any Java class name 

CxCommon.Messaging.  

jms.IBMMQSeriesFactory  

Component  

restart 

This property is 

valid only if the value 

of DeliveryTransport 

is JMS. 

 

Appendix  A. Standard configuration  properties for connectors  49



Table 18. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

jms.ListenerConcurrency  1 through 32767 1 Component  

restart 

This property is 

valid only if the value of 

jms.TransportOptimized  

is true. 

jms.MessageBrokerName  If the value of 

jms.FactoryClassName  

is IBM, use 

crossworlds.queue.  

manager. 

crossworlds.queue.  

manager 

Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS 

. 

jms.NumConcurrent  

Requests  

Positive  integer  10 Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS 

. 

jms.Password  Any valid  password Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS 

. 

jms.TransportOptimized  true or false false Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS and the value of 

BrokerType is ICS. 

jms.UserName  Any valid  name Component  

restart 

This property is valid 

only if the value of 

Delivery  Transport is JMS. 

JvmMaxHeapSize  Heap  size in megabytes  128m Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

JvmMaxNativeStackSize  Size of stack in kilobytes  128k Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

JvmMinHeapSize  Heap  size in megabytes  1m Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

ListenerConcurrency  1 through 100 1 Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  is MQ. 

Locale This is a subset  of the 

supported  locales:  

en_US, ja_JP,  ko_KR,  

 zh_CN, zh_TW, fr_FR,  

de_DE, it_IT,  

es_ES, pt_BR 

en_US Component  

restart 

 

50 Adapter  for JMS User  Guide



Table 18.  Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

LogAtInterchangeEnd  true or false false Component  

restart 

This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

MaxEventCapacity  1 through 2147483647  2147483647  Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

MessageFileName  Valid  file name InterchangeSystem.txt  Component  

restart 

MonitorQueue  Any valid queue  name <CONNECTORNAME>  

/MONITORQUEUE  

Component  

restart 

This property is valid 

only  if the value of 

DuplicateEventElimination  

is true and 

ContainerManagedEvents  

has no value. 

OADAutoRestartAgent  true or false false Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

OADMaxNumRetry  A positive  integer  1000 Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

OADRetryTimeInterval  A positive  integer 

in minutes   

10 Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

PollEndTime  HH = 0 through  23 

MM = 0 through 59 

HH:MM Component  

restart 

PollFrequency  A positive  integer 

(in milliseconds)  

10000 Dynamic  

if broker is 

ICS; 

otherwise  

Component  

restart 

PollQuantity  1 through 500 1 Agent restart This property is valid 

only  if the value of 

ContainerManagedEvents  

is JMS. 

PollStartTime  HH = 0 through  23 

MM = 0 through 59 

HH:MM Component  

restart 

RepositoryDirectory  <REMOTE>  if the broker  

is ICS; otherwise  any 

valid local directory. 

For ICS, the value is set 

to <REMOTE>  

 For WMQI  and WAS,  

the value is 

<ProductDir  

\repository  

Agent restart 

 

Appendix  A. Standard configuration  properties for connectors  51



Table 18. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

RequestQueue  Valid  JMS queue name <CONNECTORNAME>  

/REQUESTQUEUE  

Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS 

ResponseQueue  Valid  JMS queue name <CONNECTORNAME>  

/RESPONSEQUEUE  

Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  is JMS. 

RestartRetryCount  0 through 99 3 Dynamic  

if ICS; 

otherwise  

Component  

restart 

RestartRetryInterval  A value in minutes  

from  1 through 

2147483647  

1 Dynamic  

if ICS; 

otherwise  

Component  

restart 

ResultsSetEnabled  true or false false Component  

restart 

Used only  by connectors  

that support  DB2II. 

 This property is valid 

only if the value of 

DeliveryTransport  

is JMS, and the value of 

BrokerType is WMQI. 

ResultsSetSize  Positive  integer  0 (means  the results  

set size is unlimited)  

Component  

restart 

Used only by connectors 

that support  DB2II. 

 This property is valid 

only if the value of 

ResultsSetEnabled  

is true. 

RHF2MessageDomain  mrm or xml mrm Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS and the value of 

WireFormat  is CwXML. 

SourceQueue Any valid  WebSphere  

MQ queue name 

<CONNECTORNAME>  

/SOURCEQUEUE  

Agent restart This property is valid 

only if the value of 

ContainerManagedEvents  

is JMS. 

SynchronousRequest  

Queue 

Any valid  queue  name. <CONNECTORNAME>  

/SYNCHRONOUSREQUEST  

QUEUE 

Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

SynchronousRequest  

Timeout  

0 to any number  

(milliseconds)  

0 Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

SynchronousResponse  

Queue 

Any valid  queue  name <CONNECTORNAME>  

/SYNCHRONOUSRESPONSE  

QUEUE 

Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

TivoliMonitorTransaction  

Performance  

true or false false Component  

restart 

 

52 Adapter  for JMS User  Guide



Table 18.  Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

WireFormat  CwXML or CwBO CwXML Agent restart The value of this 

property must be CwXML 

if the value 

of RepositoryDirectory 

is not set to <REMOTE>.  

The value must 

be CwBO if the value of 

RepositoryDirectory  is set 

to <REMOTE>.  

WsifSynchronousRequest  

Timeout  

0 to any number  

(milliseconds)  

0 Component  

restart 

This property is valid 

only  if the value of 

BrokerType  is WAS. 

XMLNameSpaceFormat  short or long short Agent restart This property is valid 

only  if the value of 

BrokerType  is 

WMQI  or WAS  

  

Standard properties 

This  section  describes  the  standard  connector  configuration  properties.  

AdapterHelpName 

The  AdapterHelpName  property  is the  name  of  a directory  in  which  

connector-specific  extended  help  files  are  located.  The  directory  must  be  located  in  

<ProductDir>\bin\Data\App\Help  and  must  contain  at  least  the  language  

directory  enu_usa.  It may  contain  other  directories  according  to  locale.  

The  default  value  is the  template  name  if it is  valid,  or  it  is blank.  

AdminInQueue 

The  AdminInQueue  property  specifies  the  queue  that  is  used  by  the  integration  

broker  to  send  administrative  messages  to  the  connector.  

The  default  value  is <CONNECTORNAME>/ADMININQUEUE  

AdminOutQueue 

The  AdminOutQueue  property  specifies  the  queue  that  is used  by  the  connector  to  

send  administrative  messages  to  the  integration  broker.  

The  default  value  is <CONNECTORNAME>/ADMINOUTQUEUE  

AgentConnections 

The  AgentConnections  property  controls  the  number  of  ORB  (Object  Request  

Broker)  connections  opened  when  the  ORB  initializes.  

It  is  valid  only  if the  value  of  the  RepositoryDirectory  is set  to <REMOTE>  and  the  

value  of  the  DeliveryTransport  property  is MQ  or  IDL.  

The  default  value  of this  property  is 1.  

 

Appendix  A. Standard configuration  properties for connectors  53



AgentTraceLevel  

The  AgentTraceLevel  property  sets  the  level  of  trace  messages  for  the  

application-specific  component.  The  connector  delivers  all  trace  messages  

applicable  at  the  tracing  level  set  and  lower.  

The  default  value  is  0.  

ApplicationName 

The  ApplicationName  property  uniquely  identifies  the  name  of the  connector  

application.  This  name  is used  by  the  system  administrator  to  monitor  the  

integration  environment.  This  property  must  have  a value  before  you  can  run the  

connector.  

The  default  is  the  name  of the  connector.  

BiDi.Application 

The  BiDi.Application  property  specifies  the  bidirectional  format  for  data  coming  

from  an  external  application  into  the  adapter  in  the  form  of  any  business  object  

supported  by  this  adapter.  The  property  defines  the  bidirectional  attributes  of  the  

application  data.  These  attributes  are:  

v   Type  of  text:  implicit  or  visual  (I  or  V) 

v   Text direction:  left-to-right  or  right-to-left  (L or  R) 

v   Symmetric  swapping:  on  or  off  (Y  or  N) 

v   Shaping  (Arabic):  on  or  off  (S  or  N) 

v   Numerical  shaping  (Arabic):  Hindi,  contextual,  or  nominal  (H,  C, or  N)

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

BiDi.Broker 

The  BiDi.Broker  property  specifies  the  bidirectional  format  for  data  sent  from  the  

adapter  to  the  integration  broker  in  the  form  of  any  supported  business  object.  It 

defines  the  bidirectional  attributes  of the  data,  which  are  as  listed  under  

BiDi.Application  above.  

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

If the  BrokerType  property  is  ICS,  the  property  value  is read-only.  

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

BiDi.Metadata 

The  BiDi.Metadata  property  defines  the  bidirectional  format  or  attributes  for  the  

metadata,  which  is  used  by  the  connector  to  establish  and  maintain  a link  to  the  

external  application.  The  attribute  settings  are  specific  to  each  adapter  using  the  

bidirectional  capabilities.  If your  adapter  supports  bidirectional  processing,  refer  to  

section  on  adapter-specific  properties  for  more  information.  

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

 

54 Adapter  for JMS User  Guide



BiDi.Transformation 

The  BiDi.Transformation  property  defines  whether  the  system  performs  a 

bidirectional  transformation  at run time.  

If  the  property  value  is set  to true, the  BiDi.Application,  BiDi.Broker,  and  

BiDi.Metadata  properties  are  available.  If the  property  value  is set  to  false, they  

are  hidden.  

The  default  value  is false. 

BrokerType  

The  BrokerType  property  identifies  the  integration  broker  type  that  you  are  using.  

The  possible  values  are  ICS, WMQI  (for  WMQI,  WMQIB  or  WBIMB), or  WAS. 

CharacterEncoding 

The  CharacterEncoding  property  specifies  the  character  code  set  used  to  map  from  

a character  (such  as  a letter  of the  alphabet,  a numeric  representation,  or  a 

punctuation  mark)  to  a numeric  value.  

Note:   Java-based  connectors  do  not  use  this  property.  C++  connectors  use  the  

value  ascii7  for  this  property.  

By  default,  only  a subset  of supported  character  encodings  is displayed.  To add  

other  supported  values  to the  list,  you  must  manually  modify  the  

\Data\Std\stdConnProps.xml  file  in  the  product  directory  (<ProductDir>).  For  

more  information,  see  the  Connector  Configurator  appendix  in  this  guide.  

CommonEventInfrastructure 

The  Common  Event  Infrastructure  (CEI)  is a simple  event  management  function  

handling  generated  events.  The  CommonEventInfrastructure  property  specifies  

whether  the  CEI  should  be  invoked  at  run time.  

The  default  value  is false. 

CommonEventInfrastructureContextURL  

The  CommonEventInfrastructureContextURL  is used  to  gain  access  to the  WAS 

server  that  executes  the  Common  Event  Infrastructure  (CEI)  server  application.  

This  property  specifies  the  URL  to  be  used.  

This  property  is  valid  only  if the  value  of  CommonEventInfrastructure  is set  to  

true.  

The  default  value  is a blank  field.  

ConcurrentEventTriggeredFlows  

The  ConcurrentEventTriggeredFlows  property  determines  how  many  business  

objects  can  be  concurrently  processed  by  the  connector  for  event  delivery.  You set  

the  value  of  this  attribute  to the  number  of  business  objects  that  are  mapped  and  

delivered  concurrently.  For  example,  if you  set  the  value  of this  property  to 5, five  

business  objects  are  processed  concurrently.  

Setting  this  property  to  a value  greater  than  1 allows  a connector  for  a source  

application  to  map  multiple  event  business  objects  at the  same  time  and  deliver  

 

Appendix  A. Standard configuration  properties for connectors  55



them  to  multiple  collaboration  instances  simultaneously.  This  speeds  delivery  of 

business  objects  to  the  integration  broker,  particularly  if the  business  objects  use  

complex  maps.  Increasing  the  arrival  rate  of  business  objects  to collaborations  can  

improve  overall  performance  in  the  system.  

To implement  concurrent  processing  for  an  entire  flow  (from  a source  application  

to  a destination  application),  the  following  properties  must  configured:  

v   The  collaboration  must  be  configured  to use  multiple  threads  by  setting  its  

Maximum  number  of  concurrent  events  property  high  enough  to  use  multiple  

threads.  

v   The  destination  application’s  application-specific  component  must  be  configured  

to  process  requests  concurrently.  That  is,  it must  be  multithreaded,  or  it must  be  

able  to  use  connector  agent  parallelism  and  be  configured  for  multiple  processes.  

The  Parallel  Process  Degree  configuration  property  must  be  set  to a value  larger  

than  1.

The  ConcurrentEventTriggeredFlows  property  has  no  effect  on  connector  polling,  

which  is  single-threaded  and  is performed  serially.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  <REMOTE>.  

The  default  value  is  1.  

ContainerManagedEvents  

The  ContainerManagedEvents  property  allows  a JMS-enabled  connector  with  a 

JMS  event  store  to  provide  guaranteed  event  delivery,  in  which  an  event  is 

removed  from  the  source  queue  and  placed  on  the  destination  queue  as  one  JMS  

transaction.  

When  this  property  is  set  to  JMS, the  following  properties  must  also  be  set  to  

enable  guaranteed  event  delivery:  

v   PollQuantity  =  1 to  500  

v   SourceQueue  = /SOURCEQUEUE

You  must  also  configure  a data  handler  with  the  MimeType  and  DHClass  (data  

handler  class)  properties.  You can  also  add  DataHandlerConfigMOName  (the  

meta-object  name,  which  is optional).  To set  those  values,  use  the  Data  Handler  

tab  in  Connector  Configurator.  

Although  these  properties  are  adapter-specific,  here  are  some  example  values:  

v   MimeType  =  text\xml  

v   DHClass  = com.crossworlds.DataHandlers.text.xml  

v   DataHandlerConfigMOName  = MO_DataHandler_Default

The  fields  for  these  values  in  the  Data  Handler  tab  are  displayed  only  if you  have  

set  the  ContainerManagedEvents  property  to  the  value  JMS. 

Note:   When  ContainerManagedEvents  is set  to  JMS, the  connector  does  not  call  its  

pollForEvents()  method,  thereby  disabling  that  method’s  functionality.  

The  ContainerManagedEvents  property  is valid  only  if the  value  of  the  

DeliveryTransport  property  is set  to JMS. 

 

56 Adapter  for JMS User  Guide



There  is  no  default  value.  

ControllerEventSequencing 

The  ControllerEventSequencing  property  enables  event  sequencing  in  the  connector  

controller.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  set  to  <REMOTE>  (BrokerType  is ICS). 

The  default  value  is true. 

ControllerStoreAndForwardMode 

The  ControllerStoreAndForwardMode  property  sets  the  behavior  of  the  connector  

controller  after  it detects  that  the  destination  application-specific  component  is 

unavailable.  

If  this  property  is  set  to true  and  the  destination  application-specific  component  is  

unavailable  when  an  event  reaches  ICS,  the  connector  controller  blocks  the  request  

to  the  application-specific  component.  When  the  application-specific  component  

becomes  operational,  the  controller  forwards  the  request  to  it.  

However,  if the  destination  application’s  application-specific  component  becomes  

unavailable  after  the  connector  controller  forwards  a service  call  request  to  it, the  

connector  controller  fails  the  request.  

If  this  property  is  set  to false, the  connector  controller  begins  failing  all  service  

call  requests  as  soon  as  it detects  that  the  destination  application-specific  

component  is unavailable.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of the  BrokerType  property  is  ICS).  

The  default  value  is true. 

ControllerTraceLevel  

The  ControllerTraceLevel  property  sets  the  level  of  trace  messages  for  the  

connector  controller.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  set  to  <REMOTE>.  

The  default  value  is 0. 

DeliveryQueue 

The  DeliveryQueue  property  defines  the  queue  that  is used  by  the  connector  to  

send  business  objects  to the  integration  broker.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is  set  to  

JMS. 

The  default  value  is <CONNECTORNAME>/DELIVERYQUEUE. 

 

Appendix  A. Standard configuration  properties for connectors  57



DeliveryTransport  

The  DeliveryTransport  property  specifies  the  transport  mechanism  for  the  delivery  

of  events.  Possible  values  are  MQ  for  WebSphere  MQ,  IDL  for  CORBA  IIOP,  or  JMS  

for  Java  Messaging  Service.  

v   If  the  value  of  the  RepositoryDirectory  property  is set  to <REMOTE>,  the  value  

of  the  DeliveryTransport  property  can  be  MQ,  IDL, or  JMS, and  the  default  is IDL. 

v   If  the  value  of  the  RepositoryDirectory  property  is a local  directory,  the  value  

can  be  only  JMS.

The  connector  sends  service-call  requests  and  administrative  messages  over  

CORBA  IIOP  if the  value  of the  RepositoryDirectory  property  is  MQ  or  IDL. 

The  default  value  is  JMS.  

WebSphere MQ and IDL 

Use  WebSphere  MQ  rather  than  IDL  for  event  delivery  transport,  unless  you  must  

have  only  one  product.  WebSphere  MQ  offers  the  following  advantages  over  IDL:  

v   Asynchronous  communication:  

WebSphere  MQ  allows  the  application-specific  component  to  poll  and  

persistently  store  events  even  when  the  server  is not  available.  

v   Server  side  performance:  

WebSphere  MQ  provides  faster  performance  on  the  server  side.  In  optimized  

mode,  WebSphere  MQ  stores  only  the  pointer  to  an  event  in  the  repository  

database,  while  the  actual  event  remains  in  the  WebSphere  MQ  queue.  This  

prevents  writing  potentially  large  events  to  the  repository  database.  

v   Agent  side  performance:  

WebSphere  MQ  provides  faster  performance  on  the  application-specific  

component  side.  Using  WebSphere  MQ,  the  connector  polling  thread  picks  up  an  

event,  places  it in  the  connector  queue,  then  picks  up  the  next  event.  This  is 

faster  than  IDL,  which  requires  the  connector  polling  thread  to pick  up  an  event,  

go  across  the  network  into  the  server  process,  store  the  event  persistently  in  the  

repository  database,  then  pick  up  the  next  event.

JMS 

The  JMS  transport  mechanism  enables  communication  between  the  connector  and  

client  connector  framework  using  Java  Messaging  Service  (JMS).  

If you  select  JMS  as  the  delivery  transport,  additional  JMS  properties  such  as  

jms.MessageBrokerName,  jms.FactoryClassName, jms.Password, and  jms.UserName  

are  listed  in  Connector  Configurator.  The  properties  jms.MessageBrokerName  and  

jms.FactoryClassName  are  required  for  this  transport.  

There  may  be  a memory  limitation  if you  use  the  JMS  transport  mechanism  for  a 

connector  in  the  following  environment:  

v   AIX  5.0  

v   WebSphere  MQ  5.3.0.1  

v   ICS  is  the  integration  broker

In  this  environment,  you  may  experience  difficulty  starting  both  the  connector  

controller  (on  the  server  side)  and  the  connector  (on  the  client  side)  due  to  memory  

use  within  the  WebSphere  MQ  client.  If your  installation  uses  less  than  768MB  of 

process  heap  size,  set  the  following  variable  and  property:  

v   Set  the  LDR_CNTRL  environment  variable  in  the  CWSharedEnv.sh  script.  

 

58 Adapter  for JMS User  Guide



This  script  is  located  in  the  \bin  directory  below  the  product  directory  

(<ProductDir>).  Using  a text  editor,  add  the  following  line  as  the  first  line  in the  

CWSharedEnv.sh  script:  

export  LDR_CNTRL=MAXDATA=0x30000000  

This  line  restricts  heap  memory  usage  to  a maximum  of  768  MB  (3 segments  * 

256  MB).  If  the  process  memory  grows  larger  than  this  limit,  page  swapping  can  

occur,  which  can  adversely  affect  the  performance  of your  system.  

v   Set  the  value  of  the  IPCCBaseAddress  property  to  11  or  12.  For  more  

information  on  this  property,  see  the  System  Installation  Guide  for  UNIX.

DuplicateEventElimination 

When  the  value  of  this  property  is true, a JMS-enabled  connector  can  ensure  that  

duplicate  events  are  not  delivered  to the  delivery  queue.  To use  this  feature,  during  

connector  development,  the  connector  must  have  a unique  event  identifier  set  as 

the  business  object  ObjectEventId  attribute  in the  application-specific  code.  

Note:   When  the  value  of  this  property  is true, the  MonitorQueue  property  must  

be  enabled  to  provide  guaranteed  event  delivery.  

The  default  value  is false. 

EnableOidForFlowMonitoring 

When  the  value  of  this  property  is true, the  adapter  runtime  will  mark  the  

incoming  ObjectEventID  as a foreign  key  for  flow  monitoring.  

This  property  is  only  valid  if the  BrokerType  property  is set  to ICS.  

The  default  value  is false. 

FaultQueue 

If  the  connector  experiences  an  error  while  processing  a message,  it  moves  the  

message  (and  a status  indicator  and  description  of the  problem)  to  the  queue  

specified  in  the  FaultQueue  property.  

The  default  value  is <CONNECTORNAME>/FAULTQUEUE.  

jms.FactoryClassName 

The  jms.FactoryClassName  property  specifies  the  class  name  to  instantiate  for  a 

JMS  provider.  This  property  must  be  set  if the  value  of the  DeliveryTransport  

property  is  JMS. 

The  default  is  CxCommon.Messaging.jms.IBMMQSeriesFactory. 

jms.ListenerConcurrency 

The  jms.ListenerConcurrency  property  specifies  the  number  of  concurrent  listeners  

for  the  JMS  controller.  It specifies  the  number  of  threads  that  fetch  and  process  

messages  concurrently  within  a controller.  

This  property  is  valid  only  if the  value  of  the  jms.OptimizedTransport  property  is 

true. 

The  default  value  is 1. 

 

Appendix  A. Standard configuration  properties for connectors  59



jms.MessageBrokerName 

The  jms.MessageBrokerName  specifies  the  broker  name  to  use  for  the  JMS  

provider.  You must  set  this  connector  property  if you  specify  JMS  as the  delivery  

transport  mechanism  (in  the  DeliveryTransport  property).  

When  you  connect  to  a remote  message  broker,  this  property  requires  the  following  

values:
QueueMgrName:Channel:HostName:PortNumber  

where:  

QueueMgrName  is the  name  of  the  queue  manager.  

Channel  is the  channel  used  by  the  client.  

HostName  is the  name  of the  machine  where  the  queue  manager  is to  reside.  

PortNumberis the  port  number  used  by  the  queue  manager  for  listening  

For  example:  

jms.MessageBrokerName  = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456  

The  default  value  is  crossworlds.queue.manager. Use  the  default  when  connecting  

to  a local  message  broker.  

jms.NumConcurrentRequests  

The  jms.NumConcurrentRequests  property  specifies  the  maximum  number  of  

concurrent  service  call  requests  that  can  be  sent  to  a connector  at the  same  time.  

Once  that  maximum  is reached,  new  service  calls  are  blocked  and  must  wait  for  

another  request  to  complete  before  proceeding.  

The  default  value  is  10.  

jms.Password 

The  jms.Password  property  specifies  the  password  for  the  JMS  provider.  A  value  

for  this  property  is optional.  

There  is  no  default  value.  

jms.TransportOptimized  

The  jms.TransportOptimized  property  determines  if the  WIP  (work  in  progress)  is 

optimized.  You must  have  a WebSphere  MQ  provider  to optimize  the  WIP.  For  

optimized  WIP  to  operate,  the  messaging  provider  must  be  able  to:  

1.   Read  a message  without  taking  it  off  the  queue  

2.   Delete  a message  with  a specific  ID  without  transferring  the  entire  message  to 

the  receiver’s  memory  space  

3.   Read  a message  by  using  a specific  ID  (needed  for  recovery  purposes)  

4.   Track  the  point  at  which  events  that  have  not  been  read  appear.

The  JMS  APIs  cannot  be  used  for  optimized  WIP  because  they  do  not  meet  

conditions  2 and  4 above,  but  the  MQ  Java  APIs  meet  all  four  conditions,  and  

hence  are  required  for  optimized  WIP.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS  and  the  value  of  

BrokerType  is ICS. 

The  default  value  is  false. 

 

60 Adapter  for JMS User  Guide



jms.UserName 

the  jms.UserName  property  specifies  the  user  name  for  the  JMS  provider.  A value  

for  this  property  is  optional.  

There  is  no  default  value.  

JvmMaxHeapSize 

The  JvmMaxHeapSize  property  specifies  the  maximum  heap  size  for  the  agent  (in  

megabytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 128m.  

JvmMaxNativeStackSize 

The  JvmMaxNativeStackSize  property  specifies  the  maximum  native  stack  size  for  

the  agent  (in  kilobytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 128k.  

JvmMinHeapSize 

The  JvmMinHeapSize  property  specifies  the  minimum  heap  size  for  the  agent  (in  

megabytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 1m.  

ListenerConcurrency 

The  ListenerConcurrency  property  supports  multithreading  in WebSphere  MQ  

Listener  when  ICS  is the  integration  broker.  It  enables  batch  writing  of multiple  

events  to  the  database,  thereby  improving  system  performance.  

This  property  valid  only  with  connectors  that  use  MQ  transport.  The  value  of  the  

DeliveryTransport  property  must  be  MQ.  

The  default  value  is 1. 

Locale 

The  Locale  property  specifies  the  language  code,  country  or  territory,  and,  

optionally,  the  associated  character  code  set.  The  value  of  this  property  determines  

cultural  conventions  such  as  collation  and  sort  order  of  data,  date  and  time  

formats,  and  the  symbols  used  in  monetary  specifications.  

A  locale  name  has  the  following  format:  

ll_TT.codeset  

 

Appendix  A. Standard configuration  properties for connectors  61



where:  

ll is  a two-character  language  code  (in  lowercase  letters)  

TT  is  a two-letter  country  or  territory  code  (in  uppercase  letters)  

codeset  is  the  name  of the  associated  character  code  set  (may  be  optional).  

By  default,  only  a subset  of supported  locales  are  listed.  To add  other  supported  

values  to  the  list,  you  modify  the  \Data\Std\stdConnProps.xml  file  in  the  

<ProductDir>\bin  directory.  For  more  information,  refer  to  the  Connector  

Configurator  appendix  in this  guide.  

If the  connector  has  not  been  internationalized,  the  only  valid  value  for  this  

property  is  en_US. To determine  whether  a specific  connector  has  been  globalized,  

refer  to  the  user  guide  for  that  adapter.  

The  default  value  is  en_US. 

LogAtInterchangeEnd 

The  LogAtInterchangeEnd  property  specifies  whether  to  log  errors  to the  log  

destination  of the  integration  broker.  

Logging  to  the  log  destination  also  turns  on  e-mail  notification,  which  generates  

e-mail  messages  for  the  recipient  specified  as  the  value  of  MESSAGE_RECIPIENT  

in  the  InterchangeSystem.cfg  file  when  errors  or  fatal  errors  occur.  For  example,  

when  a connector  loses  its  connection  to the  application,  if the  value  of  

LogAtInterChangeEnd  is true, an  e-mail  message  is sent  to the  specified  message  

recipient.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of  BrokerType  is ICS).  

The  default  value  is  false. 

MaxEventCapacity 

The  MaxEventCapacity  property  specifies  maximum  number  of events  in  the  

controller  buffer.  This  property  is used  by  the  flow  control  feature.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of  BrokerType  is ICS).  

The  value  can  be  a positive  integer  between  1 and  2147483647.  

The  default  value  is  2147483647.  

MessageFileName 

The  MessageFileName  property  specifies  the  name  of  the  connector  message  file.  

The  standard  location  for  the  message  file  is \connectors\messages  in  the  product  

directory.  Specify  the  message  file  name  in  an  absolute  path  if the  message  file  is 

not  located  in the  standard  location.  

If a connector  message  file  does  not  exist,  the  connector  uses  

InterchangeSystem.txt  as  the  message  file.  This  file  is located  in  the  product  

directory.  

 

62 Adapter  for JMS User  Guide



Note:   To determine  whether  a connector  has  its  own  message  file,  see  the  

individual  adapter  user  guide.  

The  default  value  is InterchangeSystem.txt. 

MonitorQueue 

The  MonitorQueue  property  specifies  the  logical  queue  that  the  connector  uses  to  

monitor  duplicate  events.  

It  is  valid  only  if the  value  of  the  DeliveryTransport  property  is JMS  and  the  value  

of  the  DuplicateEventElimination  is  true. 

The  default  value  is <CONNECTORNAME>/MONITORQUEUE  

OADAutoRestartAgent 

the  OADAutoRestartAgent  property  specifies  whether  the  connector  uses  the  

automatic  and  remote  restart  feature.  This  feature  uses  the  WebSphere  

MQ-triggered  Object  Activation  Daemon  (OAD)  to  restart  the  connector  after  an  

abnormal  shutdown,  or  to  start  a remote  connector  from  System  Monitor.  

This  property  must  be  set  to  true  to enable  the  automatic  and  remote  restart  

feature.  For  information  on  how  to  configure  the  WebSphere  MQ-triggered  OAD  

feature.  see  the  Installation  Guide  for  Windows  or  for  UNIX. 

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

The  default  value  is false. 

OADMaxNumRetry 

The  OADMaxNumRetry  property  specifies  the  maximum  number  of  times  that  the  

WebSphere  MQ-triggered  Object  Activation  Daemon  (OAD)  automatically  attempts  

to  restart  the  connector  after  an  abnormal  shutdown.  The  OADAutoRestartAgent  

property  must  be  set  to  true  for  this  property  to take  effect.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

The  default  value  is 1000. 

OADRetryTimeInterval  

The  OADRetryTimeInterval  property  specifies  the  number  of  minutes  in  the  

retry-time  interval  for  the  WebSphere  MQ-triggered  Object  Activation  Daemon  

(OAD).  If the  connector  agent  does  not  restart  within  this  retry-time  interval,  the  

connector  controller  asks  the  OAD  to  restart  the  connector  agent  again.  The  OAD  

repeats  this  retry  process  as many  times  as specified  by  the  OADMaxNumRetry  

property.  The  OADAutoRestartAgent  property  must  be  set  to true  for  this  

property  to  take  effect.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

The  default  value  is 10.  

 

Appendix  A. Standard configuration  properties for connectors  63



PollEndTime  

The  PollEndTime  property  specifies  the  time  to stop  polling  the  event  queue.  The  

format  is  HH:MM, where  HH  is 0 through  23  hours,  and  MM  represents  0 through  59 

minutes.  

You must  provide  a valid  value  for  this  property.  The  default  value  is HH:MM  

without  a value,  and  it must  be  changed.  

If the  adapter  runtime  detects:  

v   PollStartTime  set  and  PollEndTime  not  set,  or  

v   PollEndTime  set  and  PollStartTime  not  set

it  will  poll  using  the  value  configured  for  the  PollFrequency  property.  

PollFrequency 

The  PollFrequency  property  specifies  the  amount  of time  (in  milliseconds)  between  

the  end  of  one  polling  action  and  the  start  of the  next  polling  action.  This  is not  

the  interval  between  polling  actions.  Rather,  the  logic  is  as follows:  

v   Poll  to  obtain  the  number  of objects  specified  by  the  value  of  the  PollQuantity  

property.  

v   Process  these  objects.  For  some  connectors,  this  may  be  partly  done  on  separate  

threads,  which  execute  asynchronously  to the  next  polling  action.  

v   Delay  for  the  interval  specified  by  the  PollFrequency  property.  

v   Repeat  the  cycle.

The  following  values  are  valid  for  this  property:  

v   The  number  of  milliseconds  between  polling  actions  (a  positive  integer).  

v   The  word  no,  which  causes  the  connector  not  to poll.  Enter  the  word  in  

lowercase.  

v   The  word  key, which  causes  the  connector  to  poll  only  when  you  type  the  letter  

p in  the  connector  Command  Prompt  window.  Enter  the  word  in lowercase.

The  default  is  10000. 

Important:   Some  connectors  have  restrictions  on  the  use  of  this  property.  Where  

they  exist,  these  restrictions  are  documented  in  the  chapter  on  

installing  and  configuring  the  adapter.  

PollQuantity 

The  PollQuantity  property  designates  the  number  of  items  from  the  application  

that  the  connector  polls  for. If the  adapter  has  a connector-specific  property  for  

setting  the  poll  quantity,  the  value  set  in  the  connector-specific  property  overrides  

the  standard  property  value.  

This  property  is  valid  only  if the  value  of the  DeliveryTransport  property  is JMS, 

and  the  ContainerManagedEvents  property  has  a value.  

An  e-mail  message  is also  considered  an  event.  The  connector  actions  are  as  

follows  when  it is  polled  for  e-mail.  

v   When  it is polled  once,  the  connector  detects  the  body  of  the  message,  which  it 

reads  as an  attachment.  Since  no  data  handler  was  specified  for  this  mime  type,  

it  will  then  ignore  the  message.  

 

64 Adapter  for JMS User  Guide



v   The  connector  processes  the  first  BO  attachment.  The  data  handler  is available  

for  this  MIME  type,  so  it sends  the  business  object  to  Visual  Test Connector.  

v   When  it is  polled  for  the  second  time,  the  connector  processes  the  second  BO  

attachment.  The  data  handler  is available  for  this  MIME  type,  so  it sends  the  

business  object  to  Visual  Test Connector.  

v   Once  it is accepted,  the  third  BO  attachment  should  be  transmitted.

PollStartTime  

The  PollStartTime  property  specifies  the  time  to start  polling  the  event  queue.  The  

format  is HH:MM, where  HH  is 0 through  23 hours,  and  MM  represents  0 through  59  

minutes.  

You must  provide  a valid  value  for  this  property.  The  default  value  is HH:MM  

without  a value,  and  it  must  be  changed.  

If  the  adapter  runtime  detects:  

v   PollStartTime  set  and  PollEndTime  not  set,  or  

v   PollEndTime  set  and  PollStartTime  not  set

it  will  poll  using  the  value  configured  for  the  PollFrequency  property.  

RepositoryDirectory 

The  RepositoryDirectory  property  is the  location  of  the  repository  from  which  the  

connector  reads  the  XML  schema  documents  that  store  the  metadata  for  business  

object  definitions.  

If  the  integration  broker  is ICS,  this  value  must  be  set  to  set  to <REMOTE>  

because  the  connector  obtains  this  information  from  the  InterChange  Server  

repository.  

When  the  integration  broker  is a WebSphere  message  broker  or  WAS, this  value  is 

set  to  <ProductDir>\repository  by  default.  However,  it may  be  set  to  any  valid  

directory  name.  

RequestQueue 

The  RequestQueue  property  specifies  the  queue  that  is used  by  the  integration  

broker  to  send  business  objects  to the  connector.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is  JMS. 

The  default  value  is <CONNECTORNAME>/REQUESTQUEUE. 

ResponseQueue 

The  ResponseQueue  property  specifies  the  JMS  response  queue,  which  delivers  a 

response  message  from  the  connector  framework  to  the  integration  broker.  When  

the  integration  broker  is ICS,  the  server  sends  the  request  and  waits  for  a response  

message  in  the  JMS  response  queue.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is  JMS. 

The  default  value  is <CONNECTORNAME>/RESPONSEQUEUE. 

 

Appendix  A. Standard configuration  properties for connectors  65



RestartRetryCount 

The  RestartRetryCount  property  specifies  the  number  of  times  the  connector  

attempts  to  restart  itself.  When  this  property  is used  for  a connector  that  is 

connected  in parallel,  it specifies  the  number  of times  the  master  connector  

application-specific  component  attempts  to  restart  the  client  connector  

application-specific  component.  

The  default  value  is  3.  

RestartRetryInterval 

The  RestartRetryInterval  property  specifies  the  interval  in  minutes  at  which  the  

connector  attempts  to  restart  itself.  When  this  property  is used  for  a connector  that  

is linked  in  parallel,  it specifies  the  interval  at which  the  master  connector  

application-specific  component  attempts  to  restart  the  client  connector  

application-specific  component.  

Possible  values  for  the  property  range  from  1 through  2147483647.  

The  default  value  is  1.  

ResultsSetEnabled 

The  ResultsSetEnabled  property  enables  or  disables  results  set  support  when  

Information  Integrator  is active.  This  property  can  be  used  only  if the  adapter  

supports  DB2  Information  Integrator.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is JMS, 

and  the  value  of BrokerType  is WMQI. 

The  default  value  is  false. 

ResultsSetSize 

The  ResultsSetSize  property  defines  the  maximum  number  of business  objects  that  

can  be  returned  to  Information  Integrator.  This  property  can  be  used  only  if the  

adapter  supports  DB2  Information  Integrator.  

This  property  is  valid  only  if the  value  of  the  ResultsSetEnabled  property  is true. 

The  default  value  is  0.  This  means  that  the  size  of the  results  set  is unlimited.  

RHF2MessageDomain 

The  RHF2MessageDomain  property  allows  you  to  configure  the  value  of the  field  

domain  name  in  the  JMS  header.  When  data  is sent  to a WebSphere  message  

broker  over  JMS  transport,  the  adapter  framework  writes  JMS  header  information,  

with  a domain  name  and  a fixed  value  of  mrm. A  configurable  domain  name  lets  

you  track  how  the  WebSphere  message  broker  processes  the  message  data.  

This  is an  example  header:  

<mcd><Msd>mrm</Msd><Set>3</Set><Type>  

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>  

This  property  is  valid  only  if the  value  of  BrokerType  is WMQI  or  WAS. Also,  it is 

valid  only  if the  value  of  the  DeliveryTransport  property  is JMS, and  the  value  of 

the  WireFormat  property  is CwXML. 

 

66 Adapter  for JMS User  Guide



Possible  values  are  mrm  and  xml. The  default  value  is mrm. 

SourceQueue 

The  SourceQueue  property  designates  the  JMS  source  queue  for  the  connector  

framework  in  support  of guaranteed  event  delivery  for  JMS-enabled  connectors  

that  use  a JMS  event  store.  For  further  information,  see  “ContainerManagedEvents”  

on  page  56.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS, and  a value  for  

ContainerManagedEvents  is specified.  

The  default  value  is <CONNECTORNAME>/SOURCEQUEUE. 

SynchronousRequestQueue 

The  SynchronousRequestQueue  property  delivers  request  messages  that  require  a 

synchronous  response  from  the  connector  framework  to  the  broker.  This  queue  is  

necessary  only  if the  connector  uses  synchronous  execution.  With  synchronous  

execution,  the  connector  framework  sends  a message  to  the  synchronous  request  

queue  and  waits  for  a response  from  the  broker  on  the  synchronous  response  

queue.  The  response  message  sent  to the  connector  has  a correlation  ID  that  

matches  the  ID  of  the  original  message.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  value  is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE  

SynchronousRequestTimeout  

The  SynchronousRequestTimeout  property  specifies  the  time  in  milliseconds  that  

the  connector  waits  for  a response  to a synchronous  request.  If the  response  is not  

received  within  the  specified  time,  the  connector  moves  the  original  synchronous  

request  message  (and  error  message)  to the  fault  queue.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  value  is 0.  

SynchronousResponseQueue  

The  SynchronousResponseQueue  property  delivers  response  messages  in  reply  to  a 

synchronous  request  from  the  broker  to the  connector  framework.  This  queue  is 

necessary  only  if the  connector  uses  synchronous  execution.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  is  <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE  

TivoliMonitorTransactionPerformance  

The  TivoliMonitorTransactionPerformance  property  specifies  whether  IBM  Tivoli  

Monitoring  for  Transaction  Performance  (ITMTP)  is invoked  at run time.  

The  default  value  is false. 

WireFormat 

The  WireFormat  property  specifies  the  message  format  on  the  transport:  

 

Appendix  A. Standard configuration  properties for connectors  67



v   If  the  value  of  the  RepositoryDirectory  property  is a local  directory,  the  value  is 

CwXML.  

v   If  the  value  of  the  RepositoryDirectory  property  is a remote  directory,  the  value  

is CwBO.

WsifSynchronousRequestTimeout  

The  WsifSynchronousRequestTimeout  property  specifies  the  time  in milliseconds  

that  the  connector  waits  for  a response  to a synchronous  request.  If the  response  is 

not  received  within  the  specified  time,  the  connector  moves  the  original  

synchronous  request  message  (and  an  error  message)  to the  fault  queue.  

This  property  is  valid  only  if the  value  of  BrokerType  is WAS. 

The  default  value  is  0.  

XMLNameSpaceFormat 

The  XMLNameSpaceFormat  property  specifies  short  or  long  namespaces  in  the  

XML  format  of  business  object  definitions.  

This  property  is  valid  only  if the  value  of  BrokerType  is set  to  WMQI  or  WAS. 

The  default  value  is  short. 

 

68 Adapter  for JMS User  Guide



Appendix  B.  Connector  Configurator  

This  appendix  describes  how  to  use  Connector  Configurator  to  set  configuration  

property  values  for  your  adapter.  

You use  Connector  Configurator  to:  

v   Create  a connector-specific  property  template  for  configuring  your  connector  

v   Create  a configuration  file  

v   Set  properties  in  a configuration  file

The  topics  covered  in  this  appendix  are:  

v   “Overview  of  Connector  Configurator”  on  page  69  

v   “Starting  Connector  Configurator”  on  page  70  

v   “Creating  a connector-specific  property  template”  on  page  71  

v   “Creating  a new  configuration  file”  on  page  74  

v   “Setting  the  configuration  file  properties”  on  page  77  

v   “Using  Connector  Configurator  in  a globalized  environment”  on  page  85

Overview of Connector Configurator 

Connector  Configurator  allows  you  to  configure  the  connector  component  of  your  

adapter  for  use  with  these  integration  brokers:  

v   WebSphere  InterChange  Server  (ICS)  

v   WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  and  WebSphere  

Business  Integration  Message  Broker,  collectively  referred  to  as  the  WebSphere  

Message  Brokers  (WMQI)  

v   WebSphere  Application  Server  (WAS)

If  your  adapter  supports  DB2  Information  Integrator,  use  the  WMQI  options  and  

the  DB2  II  standard  properties  (see  the  Notes  column  in  the  Standard  Properties  

appendix.)  

You use  Connector  Configurator  to:  

v   Create  a connector-specific  property  template  for  configuring  your  connector.  

v   Create  a connector  configuration  file; you  must  create  one  configuration  file for  

each  connector  you  install.  

v   Set  properties  in  a configuration  file.  

You may  need  to modify  the  default  values  that  are  set  for  properties  in the  

connector  templates.  You must  also  designate  supported  business  object  

definitions  and,  with  ICS,  maps  for  use  with  collaborations  as  well  as  specify  

messaging,  logging  and  tracing,  and  data  handler  parameters,  as  required.

The  mode  in  which  you  run Connector  Configurator,  and  the  configuration  file  

type  you  use,  may  differ  according  to  which  integration  broker  you  are  running.  

For  example,  if WMQI  is your  broker,  you  run Connector  Configurator  directly,  

and  not  from  within  System  Manager  (see  “Running  Configurator  in  stand-alone  

mode”  on  page  70).  

 

© Copyright  IBM Corp. 2000, 2004 69



Connector  configuration  properties  include  both  standard  configuration  properties  

(the  properties  that  all  connectors  have)  and  connector-specific  properties  

(properties  that  are  needed  by  the  connector  for  a specific  application  or  

technology).  

Because  standard  properties  are  used  by  all  connectors,  you  do  not  need  to define  

those  properties  from  scratch;  Connector  Configurator  incorporates  them  into  your  

configuration  file  as  soon  as  you  create  the  file.  However,  you  do  need  to set  the  

value  of each  standard  property  in  Connector  Configurator.  

The  range  of  standard  properties  may  not  be  the  same  for  all  brokers  and  all  

configurations.  Some  properties  are  available  only  if other  properties  are  given  a 

specific  value.  The  Standard  Properties  window  in  Connector  Configurator  will  

show  the  properties  available  for  your  particular  configuration.  

For  connector-specific  properties, however,  you  need  first  to  define  the  properties  

and  then  set  their  values.  You do  this  by  creating  a connector-specific  property  

template  for  your  particular  adapter.  There  may  already  be  a template  set  up  in  

your  system,  in  which  case,  you  simply  use  that.  If not,  follow  the  steps  in  

“Creating  a new  template”  on  page  71 to  set  up  a new  one.  

Running connectors on UNIX 

Connector  Configurator  runs only  in  a Windows  environment.  If  you  are  running  

the  connector  in a UNIX  environment,  use  Connector  Configurator  in  Windows  to  

modify  the  configuration  file  and  then  copy  the  file  to  your  UNIX  environment.  

Some  properties  in  the  Connector  Configurator  use  directory  paths,  which  default  

to  the  Windows  convention  for  directory  paths.  If you  use  the  configuration  file  in  

a UNIX  environment,  revise  the  directory  paths  to match  the  UNIX  convention  for  

these  paths.  Select  the  target  operating  system  in  the  toolbar  drop-list  so  that  the  

correct  operating  system  rules are  used  for  extended  validation.  

Starting Connector Configurator 

You can  start  and  run Connector  Configurator  in  either  of  two  modes:  

v   Independently,  in  stand-alone  mode  

v   From  System  Manager

Running Configurator in stand-alone mode 

You can  run Connector  Configurator  without  running  System  Manager  and  work  

with  connector  configuration  files,  irrespective  of  your  broker.  

To do  so:  

v   From  Start>Programs, click  IBM  WebSphere  Business  Integration  

Adapters>IBM  WebSphere  Business  Integration  Toolset>Connector  

Configurator. 

v   Select  File>New>Connector  Configuration. 

v   When  you  click  the  pull-down  menu  next  to System  Connectivity  Integration  

Broker, you  can  select  ICS,  WebSphere  Message  Brokers  or  WAS, depending  on  

your  broker.

You  may  choose  to  run Connector  Configurator  independently  to  generate  the  file,  

and  then  connect  to  System  Manager  to  save  it in  a System  Manager  project  (see  

“Completing  a configuration  file”  on  page  76.)  

 

70 Adapter  for JMS User  Guide



Running Configurator from System Manager 

You can  run Connector  Configurator  from  System  Manager.  

To run Connector  Configurator:  

1.   Open  the  System  Manager.  

2.   In  the  System  Manager  window,  expand  the  Integration  Component  Libraries  

icon  and  highlight  Connectors. 

3.   From  the  System  Manager  menu  bar, click  Tools>Connector  Configurator. The  

Connector  Configurator  window  opens  and  displays  a New  Connector  dialog  

box.  

4.   When  you  click  the  pull-down  menu  next  to  System  Connectivity  Integration  

Broker, you  can  select  ICS,  WebSphere  Message  Brokers  or  WAS, depending  on  

your  broker.

To  edit  an  existing  configuration  file:  

v   In  the  System  Manager  window,  select  any  of the  configuration  files  listed  in  the  

Connector  folder  and  right-click  on  it. Connector  Configurator  opens  and  

displays  the  configuration  file  with  the  integration  broker  type  and  file  name  at  

the  top.  

v   From  Connector  Configurator,  select  File>Open. Select  the  name  of the  

connector  configuration  file  from  a project  or  from  the  directory  in  which  it is 

stored.  

v    Click  the  Standard  Properties  tab  to  see  which  properties  are  included  in this  

configuration  file.

Creating a connector-specific property template 

To create  a configuration  file  for  your  connector,  you  need  a connector-specific  

property  template  as  well  as the  system-supplied  standard  properties.  

You can  create  a brand-new  template  for  the  connector-specific  properties  of your  

connector,  or  you  can  use  an  existing  connector  definition  as  the  template.  

v   To create  a new  template,  see  “Creating  a new  template”  on  page  71.  

v   To use  an  existing  file,  simply  modify  an  existing  template  and  save  it under  the  

new  name.  You can  find  existing  templates  in  your  

\WebSphereAdapters\bin\Data\App  directory.

Creating a new template 

This  section  describes  how  you  create  properties  in  the  template,  define  general  

characteristics  and  values  for  those  properties,  and  specify  any  dependencies  

between  the  properties.  Then  you  save  the  template  and  use  it as  the  base  for  

creating  a new  connector  configuration  file.  

To create  a template  in  Connector  Configurator:  

1.   Click  File>New>Connector-Specific  Property  Template. 

2.   The  Connector-Specific  Property  Template  dialog  box  appears.  

v   Enter  a name  for  the  new  template  in the  Name  field  below  Input  a New  

Template  Name.  You will  see  this  name  again  when  you  open  the  dialog  box  

for  creating  a new  configuration  file  from  a template.  

 

Appendix  B. Connector  Configurator  71



v   To see  the  connector-specific  property  definitions  in  any  template,  select  that  

template’s  name  in  the  Template  Name  display.  A  list  of  the  property  

definitions  contained  in  that  template  appears  in  the  Template  Preview  

display.
3.   You can  use  an  existing  template  whose  property  definitions  are  similar  to  

those  required  by  your  connector  as  a starting  point  for  your  template.  If  you  

do  not  see  any  template  that  displays  the  connector-specific  properties  used  by  

your  connector,  you  will  need  to create  one.  

v   If  you  are  planning  to modify  an  existing  template,  select  the  name  of the  

template  from  the  list  in the  Template  Name  table  below  Select  the  Existing  

Template  to  Modify:  Find  Template.  

v   This  table  displays  the  names  of  all  currently  available  templates.  You can  

also  search  for  a template.

Specifying general characteristics 

When  you  click  Next  to select  a template,  the  Properties  - Connector-Specific  

Property  Template  dialog  box  appears.  The  dialog  box  has  tabs  for  General  

characteristics  of  the  defined  properties  and  for  Value restrictions.  The  General  

display  has  the  following  fields:  

v   General:  

Property  Type 

Property  Subtype  

Updated  Method  

Description  

v   Flags  

Standard  flags  

v   Custom  Flag  

Flag

The  Property  Subtype  can  be  selected  when  Property  Type is a String.  It is an  

optional  value  which  provides  syntax  checking  when  you  save  the  configuration  

file.  The  default  is a blank  space,  and  means  that  the  property  has  not  been  

subtyped.  

After  you  have  made  selections  for  the  general  characteristics  of  the  property,  click  

the  Value  tab.  

Specifying values 

The  Value  tab  enables  you  to  set  the  maximum  length,  the  maximum  multiple  

values,  a default  value,  or  a value  range  for  the  property.  It also  allows  editable  

values.  To do  so:  

1.   Click  the  Value  tab.  The  display  panel  for  Value  replaces  the  display  panel  for  

General.  

2.    Select  the  name  of the  property  in the  Edit  properties  display.  

3.   In  the  fields  for  Max  Length  and  Max  Multiple  Values, enter  your  values.  

To create  a new  property  value:  

1.   Right-click  on  the  square  to  the  left  of the  Value  column  heading.  

2.   From  the  pop-up  menu,  select  Add  to  display  the  Property  Value  dialog  box.  

Depending  on  the  property  type,  the  dialog  box  allows  you  to  enter  either  a 

value,  or  both  a value  and  a range.  

3.    Enter  the  new  property  value  and  click  OK.  The  value  appears  in  the  Value  

panel  on  the  right.

 

72 Adapter  for JMS User  Guide



The  Value  panel  displays  a table  with  three  columns:  

The  Value  column  shows  the  value  that  you  entered  in  the  Property  Value  dialog  

box,  and  any  previous  values  that  you  created.  

The  Default  Value  column  allows  you  to  designate  any  of the  values  as  the  

default.  

The  Value  Range  shows  the  range  that  you  entered  in  the  Property  Value  dialog  

box.  

After  a value  has  been  created  and  appears  in  the  grid,  it can  be  edited  from  

within  the  table  display.  

To make  a change  in  an  existing  value  in  the  table,  select  an  entire  row  by  clicking  

on  the  row  number.  Then  right-click  in  the  Value  field  and  click  Edit  Value. 

Setting dependencies 

When  you  have  made  your  changes  to  the  General  and  Value  tabs,  click  Next. The  

Dependencies  - Connector-Specific  Property  Template  dialog  box  appears.  

A  dependent  property  is  a property  that  is included  in the  template  and  used  in 

the  configuration  file  only  if the  value  of another  property  meets  a specific  

condition.  For  example,  PollQuantity  appears  in  the  template  only  if JMS  is the  

transport  mechanism  and  DuplicateEventElimination  is set  to  True. 

To designate  a property  as  dependent  and  to  set  the  condition  upon  which  it 

depends,  do  this:  

1.   In  the  Available  Properties  display,  select  the  property  that  will  be  made  

dependent.  

2.   In  the  Select  Property  field,  use  the  drop-down  menu  to select  the  property  

that  will  hold  the  conditional  value.  

3.   In  the  Condition  Operator  field,  select  one  of  the  following:  

==  (equal  to)  

!=  (not  equal  to)  

> (greater  than)  

< (less  than)  

>=  (greater  than  or  equal  to)  

<=(less  than  or  equal  to)  

4.   In  the  Conditional  Value  field,  enter  the  value  that  is required  in order  for  the  

dependent  property  to  be  included  in  the  template.  

5.   With  the  dependent  property  highlighted  in  the  Available  Properties  display,  

click  an  arrow  to  move  it to  the  Dependent  Property  display.  

6.   Click  Finish. Connector  Configurator  stores  the  information  you  have  entered  

as an  XML  document,  under  \data\app  in  the  \bin  directory  where  you  have  

installed  Connector  Configurator.

Setting pathnames 

Some  general  rules for  setting  pathnames  are:  

v   The  maximum  length  of a filename  in  Windows  and  UNIX  is 255  characters.  

v   In  Windows,  the  absolute  pathname  must  follow  the  format  

[Drive:][Directory]\filename:  for  example,  

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml  

In  UNIX  the  first  character  should  be  /. 

 

Appendix  B. Connector  Configurator  73



v   Queue  names  may  not  have  leading  or  embedded  spaces.

Creating a new configuration file 

When  you  create  a new  configuration  file,  you  must  name  it and  select  an  

integration  broker.  

You also  select  an  operating  system  for  extended  validation  on  the  file.  The  toolbar  

has  a droplist  called  Target  System  that  allows  you  to select  the  target  operating  

system  for  extended  validation  of  the  properties.  The  available  options  are:  

Windows,  UNIX,  Other  (if  not  Windows  or  UNIX),  and  None-no  extended  

validation  (switches  off  extended  validation).  The  default  on  startup  is Windows.  

To start  Connector  Configurator:  

v   In  the  System  Manager  window,  select  Connector  Configurator  from  the  Tools  

menu.  Connector  Configurator  opens.  

v   In  stand-alone  mode,  launch  Connector  Configurator.

To  set  the  operating  system  for  extended  validation  of  the  configuration  file:  

v   Pull  down  the  Target  System:  droplist  on  the  menu  bar.  

v   Select  the  operating  system  you  are  running  on.

Then  select  File>New>Connector  Configuration.  In the  New  Connector  window,  

enter  the  name  of  the  new  connector.  

You also  need  to  select  an  integration  broker.  The  broker  you  select  determines  the  

properties  that  will  appear  in the  configuration  file.  To select  a broker:  

v   In  the  Integration  Broker  field,  select  ICS,  WebSphere  Message  Brokers  or  WAS 

connectivity.  

v   Complete  the  remaining  fields  in  the  New  Connector  window,  as described  later  

in  this  chapter.

Creating a configuration file from a connector-specific 

template 

Once  a connector-specific  template  has  been  created,  you  can  use  it  to  create  a 

configuration  file:  

1.   Set  the  operating  system  for  extended  validation  of the  configuration  file  using  

the  Target  System:  droplist  on  the  menu  bar  (see  “Creating  a new  configuration  

file”  above).  

2.   Click  File>New>Connector  Configuration.  

3.   The  New  Connector  dialog  box  appears,  with  the  following  fields:  

v   Name  

Enter  the  name  of  the  connector.  Names  are  case-sensitive.  The  name  you  

enter  must  be  unique,  and  must  be  consistent  with  the  file  name  for  a 

connector  that  is installed  on  the  system.  

Important:   Connector  Configurator  does  not  check  the  spelling  of the  name  

that  you  enter.  You must  ensure  that  the  name  is correct.  

v   System  Connectivity  

Click  ICS  or  WebSphere  Message  Brokers  or  WAS. 

v   Select  Connector-Specific  Property  Template  

 

74 Adapter  for JMS User  Guide



Type the  name  of  the  template  that  has  been  designed  for  your  connector.  

The  available  templates  are  shown  in  the  Template  Name  display.  When  you  

select  a name  in  the  Template  Name  display,  the  Property  Template  Preview  

display  shows  the  connector-specific  properties  that  have  been  defined  in 

that  template.  

Select  the  template  you  want  to  use  and  click  OK.
4.   A  configuration  screen  appears  for  the  connector  that  you  are  configuring.  The  

title  bar  shows  the  integration  broker  and  connector  name.  You can  fill  in  all  

the  field  values  to complete  the  definition  now, or  you  can  save  the  file  and  

complete  the  fields  later. 

5.   To save  the  file,  click  File>Save>To  File  or  File>Save>To  Project. To save  to a 

project,  System  Manager  must  be  running.  

If you  save  as  a file,  the  Save  File  Connector  dialog  box  appears.  Choose  *.cfg  

as the  file  type,  verify  in the  File  Name  field  that  the  name  is spelled  correctly  

and  has  the  correct  case,  navigate  to  the  directory  where  you  want  to  locate  the  

file,  and  click  Save. The  status  display  in  the  message  panel  of Connector  

Configurator  indicates  that  the  configuration  file  was  successfully  created.  

Important:   The  directory  path  and  name  that  you  establish  here  must  match  

the  connector  configuration  file  path  and  name  that  you  supply  in  

the  startup  file  for  the  connector.  

6.   To complete  the  connector  definition,  enter  values  in  the  fields  for  each  of the  

tabs  of  the  Connector  Configurator  window,  as described  later  in  this  chapter.

Using an existing file 

You may  have  an  existing  file  available  in  one  or  more  of the  following  formats:  

v   A  connector  definition  file.  

This  is a text  file  that  lists  properties  and  applicable  default  values  for  a specific  

connector.  Some  connectors  include  such  a file  in  a \repository  directory  in 

their  delivery  package  (the  file  typically  has  the  extension  .txt; for  example,  

CN_XML.txt  for  the  XML  connector).  

v   An  ICS  repository  file.  

Definitions  used  in  a previous  ICS  implementation  of the  connector  may  be  

available  to  you  in  a repository  file  that  was  used  in the  configuration  of  that  

connector.  Such  a file  typically  has  the  extension  .in  or  .out. 

v   A  previous  configuration  file  for  the  connector.  

Such  a file  typically  has  the  extension  *.cfg.

Although  any  of  these  file  sources  may  contain  most  or  all  of  the  connector-specific  

properties  for  your  connector,  the  connector  configuration  file  will  not  be  complete  

until  you  have  opened  the  file  and  set  properties,  as  described  later  in  this  chapter.  

To use  an  existing  file  to  configure  a connector,  you  must  open  the  file  in  

Connector  Configurator,  revise  the  configuration,  and  then  resave  the  file.  

Follow  these  steps  to open  a *.txt,  *.cfg,  or  *.in  file  from  a directory:  

1.   In  Connector  Configurator,  click  File>Open>From  File. 

2.   In  the  Open  File  Connector  dialog  box,  select  one  of  the  following  file  types  to  

see  the  available  files:  

v   Configuration  (*.cfg) 

v   ICS  Repository  (*.in, *.out) 

 

Appendix  B. Connector  Configurator  75



Choose  this  option  if a repository  file  was  used  to  configure  the  connector  in 

an  ICS  environment.  A repository  file  may  include  multiple  connector  

definitions,  all  of  which  will  appear  when  you  open  the  file.  

v   All  files  (*.*)  

Choose  this  option  if a *.txt  file  was  delivered  in  the  adapter  package  for  

the  connector,  or  if a definition  file  is available  under  another  extension.
3.   In  the  directory  display,  navigate  to the  appropriate  connector  definition  file,  

select  it,  and  click  Open.

Follow  these  steps  to  open  a connector  configuration  from  a System  Manager  

project:  

1.   Start  System  Manager.  A  configuration  can  be  opened  from  or  saved  to  System  

Manager  only  if System  Manager  has  been  started.  

2.   Start  Connector  Configurator.  

3.   Click  File>Open>From  Project.

Completing a configuration file 

When  you  open  a configuration  file  or  a connector  from  a project,  the  Connector  

Configurator  window  displays  the  configuration  screen,  with  the  current  attributes  

and  values.  

The  title  of  the  configuration  screen  displays  the  integration  broker  and  connector  

name  as  specified  in  the  file.  Make  sure  you  have  the  correct  broker.  If not,  change  

the  broker  value  before  you  configure  the  connector.  To do  so:  

1.   Under  the  Standard  Properties  tab,  select  the  value  field  for  the  BrokerType  

property.  In  the  drop-down  menu,  select  the  value  ICS, WMQI, or WAS. 

2.   The  Standard  Properties  tab  will  display  the  connector  properties  associated  

with  the  selected  broker.  The  table  shows  Property  name, Value, Type, Subtype  

(if  the  Type  is  a string),  Description, and  Update  Method.  

3.   You can  save  the  file  now  or  complete  the  remaining  configuration  fields,  as 

described  in  “Specifying  supported  business  object  definitions”  on  page  79..  

4.   When  you  have  finished  your  configuration,  click  File>Save>To  Project  or 

File>Save>To  File. 

If  you  are  saving  to  file,  select  *.cfg  as  the  extension,  select  the  correct  location  

for  the  file  and  click  Save. 

If  multiple  connector  configurations  are  open,  click  Save  All  to  File  to  save  all 

of  the  configurations  to file,  or  click  Save  All  to  Project  to save  all  connector  

configurations  to  a System  Manager  project.  

Before  you  created  the  configuration  file,  you  used  the  Target  System  droplist  

that  allows  you  to  select  the  target  operating  system  for  extended  validation  of 

the  properties.  

Before  it  saves  the  file,  Connector  Configurator  checks  that  values  have  been  

set  for  all  required  standard  properties.  If a required  standard  property  is 

missing  a value,  Connector  Configurator  displays  a message  that  the  validation  

failed.  You must  supply  a value  for  the  property  in order  to save  the  

configuration  file.  

If  you  have  elected  to use  the  extended  validation  feature  by  selecting  a value  

of  Windows,  UNIX  or  Other  from  the  Target  System  droplist,  the  system  will  

validate  the  property  subtype  s well  as  the  type,  and  it displays  a warning  

message  if the  validation  fails.

 

76 Adapter  for JMS User  Guide



Setting the configuration file properties 

When  you  create  and  name  a new  connector  configuration  file,  or  when  you  open  

an  existing  connector  configuration  file,  Connector  Configurator  displays  a 

configuration  screen  with  tabs  for  the  categories  of  required  configuration  values.  

Connector  Configurator  requires  values  for  properties  in  these  categories  for  

connectors  running  on  all  brokers:  

v   Standard  Properties  

v   Connector-specific  Properties  

v   Supported  Business  Objects  

v   Trace/Log  File  values  

v   Data  Handler  (applicable  for  connectors  that  use  JMS  messaging  with  

guaranteed  event  delivery)

Note:   For  connectors  that  use  JMS  messaging,  an  additional  category  may  display,  

for  configuration  of data  handlers  that  convert  the  data  to  business  objects.  

For  connectors  running  on  ICS, values  for  these  properties  are  also  required:  

v   Associated  Maps  

v   Resources  

v   Messaging  (where  applicable)  

v   Security

Important:   Connector  Configurator  accepts  property  values  in  either  English  or  

non-English  character  sets.  However,  the  names  of  both  standard  and  

connector-specific  properties,  and  the  names  of supported  business  

objects,  must  use  the  English  character  set  only.  

Standard  properties  differ  from  connector-specific  properties  as  follows:  

v   Standard  properties  of  a connector  are  shared  by  both  the  application-specific  

component  of  a connector  and  its  broker  component.  All  connectors  have  the  

same  set  of  standard  properties.  These  properties  are  described  in Appendix  A  of 

each  adapter  guide.  You can  change  some  but  not  all  of these  values.  

v   Application-specific  properties  apply  only  to  the  application-specific  component  

of a connector,  that  is,  the  component  that  interacts  directly  with  the  application.  

Each  connector  has  application-specific  properties  that  are  unique  to its  

application.  Some  of  these  properties  provide  default  values  and  some  do  not;  

you  can  modify  some  of  the  default  values.  The  installation  and  configuration  

chapters  of  each  adapter  guide  describe  the  application-specific  properties  and  

the  recommended  values.

The  fields  for  Standard  Properties  and  Connector-Specific  Properties  are  

color-coded  to  show  which  are  configurable:  

v   A  field  with  a grey  background  indicates  a standard  property.  You can  change  

the  value  but  cannot  change  the  name  or  remove  the  property.  

v   A  field  with  a white  background  indicates  an  application-specific  property.  These  

properties  vary  according  to the  specific  needs  of  the  application  or  connector.  

You can  change  the  value  and  delete  these  properties.  

v   Value  fields  are  configurable.  

 

Appendix  B. Connector  Configurator  77



v   The  Update  Method  field  is displayed  for  each  property.  It indicates  whether  a 

component  or  agent  restart  is necessary  to  activate  changed  values.  You cannot  

configure  this  setting.

Setting standard connector properties 

To change  the  value  of a standard  property:  

1.   Click  in the  field  whose  value  you  want  to  set.  

2.   Either  enter  a value,  or  select  one  from  the  drop-down  menu  if it appears.  

Note:   If  the  property  has  a Type  of String,  it may  have  a subtype  value  in the  

Subtype  column.  This  subtype  is used  for  extended  validation  of  the  

property.  

3.   After  entering  all  the  values  for  the  standard  properties,  you  can  do  one  of  the  

following:  

v   To discard  the  changes,  preserve  the  original  values,  and  exit  Connector  

Configurator,  click  File>Exit  (or  close  the  window),  and  click  No  when  

prompted  to  save  changes.  

v   To enter  values  for  other  categories  in  Connector  Configurator,  select  the  tab  

for  the  category.  The  values  you  enter  for  Standard  Properties  (or  any  other  

category)  are  retained  when  you  move  to  the  next  category.  When  you  close  

the  window,  you  are  prompted  to  either  save  or  discard  the  values  that  you  

entered  in all  the  categories  as a whole.  

v   To save  the  revised  values,  click  File>Exit  (or  close  the  window)  and  click  

Yes when  prompted  to  save  changes.  Alternatively,  click  Save>To  File  from  

either  the  File  menu  or  the  toolbar.

To  get  more  information  on  a particular  standard  property,  left-click  the  entry  in  

the  Description  column  for  that  property  in  the  Standard  Properties  tabbed  sheet.  

If you  have  Extended  Help  installed,  an  arrow  button  will  appear  on  the  right.  

When  you  click  on  the  button,  a Help  window  will  open  and  display  details  of the  

standard  property.  

Note:   If  the  hot  button  does  not  appear,  no  Extended  Help  was  found  for  that  

property.  

If installed,  the  Extended  Help  files  are  located  in  

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\. 

Setting connector-specific configuration properties 

For  connector-specific  configuration  properties,  you  can  add  or  change  property  

names,  configure  values,  delete  a property,  and  encrypt  a property.  The  default  

property  length  is  255  characters.  

1.   Right-click  in  the  top  left  portion  of the  grid.  A pop-up  menu  bar  will  appear.  

Click  Add  to  add  a property.  To add  a child  property,  right-click  on  the  parent  

row  number  and  click  Add  child. 

2.   Enter  a value  for  the  property  or  child  property.  

Note:   If  the  property  has  a Type  of String,  you  can  select  a subtype  from  the  

Subtype  droplist.  This  subtype  is used  for  extended  validation  of the  

property.  

3.   To encrypt  a property,  select  the  Encrypt  box.  

 

78 Adapter  for JMS User  Guide



4.   To get  more  information  on  a particular  property,  left-click  the  entry  in  the  

Description  column  for  that  property.  If  you  have  Extended  Help  installed,  a 

hot  button  will  appear.  When  you  click  on  the  hot  button,  a Help  window  will  

open  and  display  details  of  the  standard  property.  

Note:   If  the  hot  button  does  not  appear,  no  Extended  Help  was  found  for  that  

property.  

5.   Choose  to  save  or  discard  changes,  as described  for  “Setting  standard  connector  

properties”  on  page  78.

If  the  Extended  Help  files  are  installed  and  the  AdapterHelpName  property  is 

blank,  Connector  Configurator  will  point  to  the  adapter-specific  Extended  Help  

files  located  in  <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,  

Connector  Configurator  will  point  to  the  adapter-specific  Extended  Help  files  

located  in  

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See  

the  AdapterHelpName  property  described  in  the  Standard  Properties  appendix.  

The  Update  Method  displayed  for  each  property  indicates  whether  a component  or 

agent  restart  is  necessary  to activate  changed  values.  

Important:   Changing  a preset  application-specific  connector  property  name  may  

cause  a connector  to fail.  Certain  property  names  may  be  needed  by  

the  connector  to  connect  to an  application  or  to  run properly.  

Encryption for connector properties 

Application-specific  properties  can  be  encrypted  by  selecting  the  Encrypt  check  

box  in the  Connector-specific  Properties  window.  To decrypt  a value,  click  to clear  

the  Encrypt  check  box,  enter  the  correct  value  in the  Verification  dialog  box,  and  

click  OK. If  the  entered  value  is correct,  the  value  is decrypted  and  displays.  

The  adapter  user  guide  for  each  connector  contains  a list  and  description  of  each  

property  and  its  default  value.  

If  a property  has  multiple  values,  the  Encrypt  check  box  will  appear  for  the  first  

value  of  the  property.  When  you  select  Encrypt, all  values  of the  property  will  be  

encrypted.  To decrypt  multiple  values  of  a property,  click  to  clear  the  Encrypt  

check  box  for  the  first  value  of  the  property,  and  then  enter  the  new  value  in  the  

Verification  dialog  box.  If  the  input  value  is a match,  all  multiple  values  will  

decrypt.  

Update method 

Refer  to  the  descriptions  of  update  methods  found  in  the  Standard  Properties  

appendix,  under  “Configuration  property  values  overview”  on  page  46.  

Specifying supported business object definitions 

Use  the  Supported  Business  Objects  tab  in  Connector  Configurator  to  specify  the  

business  objects  that  the  connector  will  use.  You must  specify  both  generic  business  

objects  and  application-specific  business  objects,  and  you  must  specify  associations  

for  the  maps  between  the  business  objects.  

Note:   Some  connectors  require  that  certain  business  objects  be  specified  as 

supported  in  order  to  perform  event  notification  or  additional  configuration  

 

Appendix  B. Connector  Configurator  79



(using  meta-objects)  with  their  applications.  For  more  information,  see  the  

Connector  Development  Guide  for  C++  or  the  Connector  Development  Guide  for  

Java. 

If ICS is your broker 

To specify  that  a business  object  definition  is  supported  by  the  connector,  or  to  

change  the  support  settings  for  an  existing  business  object  definition,  click  the  

Supported  Business  Objects  tab  and  use  the  following  fields.  

Business  object  name:    To designate  that  a business  object  definition  is supported  

by  the  connector,  with  System  Manager  running:  

1.   Click  an  empty  field  in  the  Business  Object  Name  list.  A  drop  list  displays,  

showing  all  the  business  object  definitions  that  exist  in  the  System  Manager  

project.  

2.   Click  on  a business  object  to add  it. 

3.   Set  the  Agent  Support  (described  below)  for  the  business  object.  

4.   In  the  File  menu  of  the  Connector  Configurator  window,  click  Save  to  Project. 

The  revised  connector  definition,  including  designated  support  for  the  added  

business  object  definition,  is saved  to  an  ICL  (Integration  Component  Library)  

project  in  System  Manager.

To  delete  a business  object  from  the  supported  list:  

1.   To select  a business  object  field,  click  the  number  to  the  left  of  the  business  

object.  

2.   From  the  Edit  menu  of  the  Connector  Configurator  window,  click  Delete  Row. 

The  business  object  is removed  from  the  list  display.  

3.   From  the  File  menu,  click  Save  to  Project.

Deleting  a business  object  from  the  supported  list  changes  the  connector  definition  

and  makes  the  deleted  business  object  unavailable  for  use  in  this  implementation  

of  this  connector.  It does  not  affect  the  connector  code,  nor  does  it  remove  the  

business  object  definition  itself  from  System  Manager.  

Agent  support:    If a business  object  has  Agent  Support,  the  system  will  attempt  to  

use  that  business  object  for  delivering  data  to  an  application  via  the  connector  

agent.  

Typically,  application-specific  business  objects  for  a connector  are  supported  by 

that  connector’s  agent,  but  generic  business  objects  are  not.  

To indicate  that  the  business  object  is supported  by  the  connector  agent,  check  the  

Agent  Support  box.  The  Connector  Configurator  window  does  not  validate  your  

Agent  Support  selections.  

Maximum  transaction  level:    The  maximum  transaction  level  for  a connector  is 

the  highest  transaction  level  that  the  connector  supports.  

For  most  connectors,  Best  Effort  is the  only  possible  choice.  

You must  restart  the  server  for  changes  in  transaction  level  to take  effect.  

If a WebSphere Message Broker is your broker 

If you  are  working  in stand-alone  mode  (not  connected  to  System  Manager),  you  

must  enter  the  business  object  name  manually.  

 

80 Adapter  for JMS User  Guide



If  you  have  System  Manager  running,  you  can  select  the  empty  box  under  the  

Business  Object  Name  column  in  the  Supported  Business  Objects  tab.  A  combo  

box  appears  with  a list  of  the  business  object  available  from  the  Integration  

Component  Library  project  to  which  the  connector  belongs.  Select  the  business  

object  you  want  from  the  list.  

The  Message  Set  ID  is an  optional  field  for  WebSphere  Business  Integration  

Message  Broker  5.0,  and  need  not  be  unique  if supplied.  However,  for  WebSphere  

MQ  Integrator  and  Integrator  Broker  2.1,  you  must  supply  a unique  ID.  

If WAS is your broker 

When  WebSphere  Application  Server  is selected  as your  broker  type,  Connector  

Configurator  does  not  require  message  set  IDs.  The  Supported  Business  Objects  

tab  shows  a Business  Object  Name  column  only  for  supported  business  objects.  

If  you  are  working  in  stand-alone  mode  (not  connected  to  System  Manager),  you  

must  enter  the  business  object  name  manually.  

If  you  have  System  Manager  running,  you  can  select  the  empty  box  under  the  

Business  Object  Name  column  in the  Supported  Business  Objects  tab.  A  combo  box  

appears  with  a list  of  the  business  objects  available  from  the  Integration  

Component  Library  project  to  which  the  connector  belongs.  Select  the  business  

object  you  want  from  this  list.  

Associated maps (ICS) 

Each  connector  supports  a list  of  business  object  definitions  and  their  associated  

maps  that  are  currently  active  in  WebSphere  InterChange  Server.  This  list  appears  

when  you  select  the  Associated  Maps  tab.  

The  list  of  business  objects  contains  the  application-specific  business  object  which  

the  agent  supports  and  the  corresponding  generic  object  that  the  controller  sends  

to  the  subscribing  collaboration.  The  association  of a map  determines  which  map  

will  be  used  to  transform  the  application-specific  business  object  to  the  generic  

business  object  or  the  generic  business  object  to  the  application-specific  business  

object.  

If  you  are  using  maps  that  are  uniquely  defined  for  specific  source  and  destination  

business  objects,  the  maps  will  already  be  associated  with  their  appropriate  

business  objects  when  you  open  the  display,  and  you  will  not  need  (or  be  able)  to  

change  them.  

If  more  than  one  map  is available  for  use  by  a supported  business  object,  you  will  

need  to  explicitly  bind  the  business  object  with  the  map  that  it should  use.  

The  Associated  Maps  tab  displays  the  following  fields:  

v   Business  Object  Name  

These  are  the  business  objects  supported  by  this  connector,  as  designated  in the  

Supported  Business  Objects  tab.  If you  designate  additional  business  objects  

under  the  Supported  Business  Objects  tab,  they  will  be  reflected  in this  list  after  

you  save  the  changes  by  choosing  Save  to  Project  from  the  File  menu  of the  

Connector  Configurator  window.  

v   Associated  Maps  

 

Appendix  B. Connector  Configurator  81



The  display  shows  all  the  maps  that  have  been  installed  to the  system  for  use  

with  the  supported  business  objects  of  the  connector.  The  source  business  object  

for  each  map  is  shown  to  the  left  of  the  map  name,  in  the  Business  Object  

Name  display.  

v   Explicit  Binding  

In  some  cases,  you  may  need  to  explicitly  bind  an  associated  map.  

Explicit  binding  is required  only  when  more  than  one  map  exists  for  a particular  

supported  business  object.  When  ICS  boots,  it tries  to automatically  bind  a map  

to  each  supported  business  object  for  each  connector.  If  more  than  one  map  

takes  as  its  input  the  same  business  object,  the  server  attempts  to  locate  and  

bind  one  map  that  is the  superset  of the  others.  

If  there  is no  map  that  is the  superset  of  the  others,  the  server  will  not  be  able  to  

bind  the  business  object  to  a single  map,  and  you  will  need  to  set  the  binding  

explicitly.  

To explicitly  bind  a map:  

1.   In  the  Explicit  column,  place  a check  in  the  check  box  for  the  map  you  want  

to  bind.  

2.   Select  the  map  that  you  intend  to  associate  with  the  business  object.  

3.   In  the  File  menu  of the  Connector  Configurator  window,  click  Save  to  

Project. 

4.   Deploy  the  project  to  ICS.  

5.   Reboot  the  server  for  the  changes  to  take  effect.

Resources (ICS) 

The  Resource  tab  allows  you  to set  a value  that  determines  whether  and  to what  

extent  the  connector  agent  will  handle  multiple  processes  concurrently,  using  

connector  agent  parallelism.  

Not  all  connectors  support  this  feature.  If you  are  running  a connector  agent  that  

was  designed  in  Java  to  be  multi-threaded,  you  are  advised  not  to use  this  feature,  

since  it is  usually  more  efficient  to  use  multiple  threads  than  multiple  processes.  

Messaging (ICS) 

The  Messaging  tab  enables  you  to configure  messaging  properties.  The  messaging  

properties  are  available  only  if you  have  set  MQ  as  the  value  of the  

DeliveryTransport  standard  property  and  ICS  as  the  broker  type.  These  properties  

affect  how  your  connector  will  use  queues.  

Validating messaging queues 

Before  you  can  validate  a messaging  queue,  you  must:  

v   Make  sure  that  WebSphere  MQ  Series  is installed.  

v   Create  a messaging  queue  with  channel  and  port  on  the  host  machine.  

v   Set  up  a connection  to the  host  machine.

To  validate  the  queue,  use  the  Validate  button  to  the  right  of the  Messaging  Type 

and  Host  Name  fields  on  the  Messaging  tab.  

Security (ICS) 

You can  use  the  Security  tab  in  Connector  Configurator  to  set  various  privacy  

levels  for  a message.  You can  only  use  this  feature  when  the  DeliveryTransport  

property  is  set  to  JMS.  

 

82 Adapter  for JMS User  Guide



By  default,  Privacy  is turned  off.  Check  the  Privacy  box  to  enable  it. 

The  Keystore  Target  System  Absolute  Pathname  is:  

v   For  Windows:  

<ProductDir>\connectors\security\<connectorname>.jks  

v   For  UNIX:  

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This  path  and  file  should  be  on  the  system  where  you  plan  to  start  the  connector,  

that  is,  the  target  system.  

You can  use  the  Browse  button  at the  right  only  if the  target  system  is the  one  

currently  running.  It is greyed  out  unless  Privacy  is enabled  and  the  Target  System  

in  the  menu  bar  is set  to Windows.  

The  Message  Privacy  Level  may  be  set  as follows  for  the  three  messages  categories  

(All  Messages,  All  Administrative  Messages,  and  All  Business  Object  Messages):  

v    “”  is  the  default;  used  when  no  privacy  levels  for  a message  category  have  been  

set.  

v   none  

Not  the  same  as  the  default:  use  this  to  deliberately  set  a privacy  level  of  none  

for  a message  category.  

v   integrity  

v   privacy  

v   integrity_plus_privacy

The  Key  Maintenance  feature  lets  you  generate,  import  and  export  public  keys  for  

the  server  and  adapter.  

v   When  you  select  Generate  Keys, the  Generate  Keys  dialog  box  appears  with  the  

defaults  for  the  keytool  that  will  generate  the  keys.  

v   The  keystore  value  defaults  to  the  value  you  entered  in  Keystore  Target  System  

Absolute  Pathname  on  the  Security  tab.  

v   When  you  select  OK,  the  entries  are  validated,  the  key  certificate  is generated  

and  the  output  is sent  to  the  Connector  Configurator  log  window.

Before  you  can  import  a certificate  into  the  adapter  keystore,  you  must  export  it 

from  the  server  keystore.  When  you  select  Export  Adapter  Public  Key, the  Export  

Adapter  Public  Key  dialog  box  appears.  

v    The  export  certificate  defaults  to  the  same  value  as  the  keystore,  except  that  the  

file  extension  is  <filename>.cer.

When  you  select  Import  Server  Public  Key, the  Import  Server  Public  Key  dialog  

box  appears.  

v    The  import  certificate  defaults  to  <ProductDir>\bin\ics.cer  (if  the  file  exists  on  

the  system).  

v   The  import  Certificate  Association  should  be  the  server  name.  If a server  is 

registered,  you  can  select  it from  the  droplist.

The  Adapter  Access  Control  feature  is enabled  only  when  the  value  of 

DeliveryTransport  is IDL.  By  default,  the  adapter  logs  in  with  the  guest  identity.  If 

the  Use  guest  identity  box  is not  checked,  the  Adapter  Identity  and  Adapter  

Password  fields  are  enabled.  

 

Appendix  B. Connector  Configurator  83



Setting trace/log file values 

When  you  open  a connector  configuration  file  or  a connector  definition  file,  

Connector  Configurator  uses  the  logging  and  tracing  values  of  that  file  as  default  

values.  You can  change  those  values  in  Connector  Configurator.  

To change  the  logging  and  tracing  values:  

1.   Click  the  Trace/Log  Files  tab.  

2.   For  either  logging  or  tracing,  you  can  choose  to write  messages  to  one  or  both  

of  the  following:  

v   To console  (STDOUT):  

Writes  logging  or  tracing  messages  to  the  STDOUT  display.  

Note:   You can  only  use  the  STDOUT  option  from  the  Trace/Log  Files  tab  for  

connectors  running  on  the  Windows  platform.  

v   To File:  

Writes  logging  or  tracing  messages  to  a file  that  you  specify.  To specify  the  

file,  click  the  directory  button  (ellipsis),  navigate  to  the  preferred  location,  

provide  a file  name,  and  click  Save. Logging  or  tracing  message  are  written  

to  the  file  and  location  that  you  specify.  

Note:   Both  logging  and  tracing  files  are  simple  text  files.  You can  use  the  file  

extension  that  you  prefer  when  you  set  their  file  names.  For  tracing  

files,  however,  it is advisable  to  use  the  extension  .trace  rather  than  

.trc, to  avoid  confusion  with  other  files  that  might  reside  on  the  

system.  For  logging  files,  .log  and  .txt  are  typical  file  extensions.

Data handlers 

The  data  handlers  section  is available  for  configuration  only  if you  have  designated  

a value  of JMS  for  DeliveryTransport  and  a value  of  JMS  for  

ContainerManagedEvents.  Not  all  adapters  make  use  of  data  handlers.  

See  the  descriptions  under  ContainerManagedEvents  in Appendix  A,  Standard  

Properties,  for  values  to use  for  these  properties.  For  additional  details,  see  the  

Connector  Development  Guide  for  C++  or  the  Connector  Development  Guide  for  Java.  

Saving your configuration file 

When  you  have  finished  configuring  your  connector,  save  the  connector  

configuration  file.  Connector  Configurator  saves  the  file  in  the  broker  mode  that  

you  selected  during  configuration.  The  title  bar  of  Connector  Configurator  always  

displays  the  broker  mode  (ICS,  WMQI  or  WAS)  that  it  is currently  using.  

The  file  is saved  as  an  XML  document.  You can  save  the  XML  document  in  three  

ways:  

v   From  System  Manager,  as  a file  with  a *.con  extension  in an  Integration  

Component  Library,  or  

v   In  a directory  that  you  specify.  

v   In  stand-alone  mode,  as a file  with  a *.cfg  extension  in a directory  folder.  By  

default,  the  file  is  saved  to \WebSphereAdapters\bin\Data\App. 

v   You can  also  save  it to  a WebSphere  Application  Server  project  if you  have  set  

one  up.

 

84 Adapter  for JMS User  Guide



For  details  about  using  projects  in  System  Manager,  and  for  further  information  

about  deployment,  see  the  following  implementation  guides:  

v   For  ICS:  Implementation  Guide  for  WebSphere  InterChange  Server  

v   For  WebSphere  Message  Brokers:  Implementing  Adapters  with  WebSphere  Message  

Brokers  

v   For  WAS:  Implementing  Adapters  with  WebSphere  Application  Server

Changing a configuration file 

You can  change  the  integration  broker  setting  for  an  existing  configuration  file.  

This  enables  you  to  use  the  file  as  a template  for  creating  a new  configuration  file,  

which  can  be  used  with  a different  broker.  

Note:   You will  need  to  change  other  configuration  properties  as  well  as  the  broker  

mode  property  if you  switch  integration  brokers.  

To change  your  broker  selection  within  an  existing  configuration  file  (optional):  

v   Open  the  existing  configuration  file  in  Connector  Configurator.  

v   Select  the  Standard  Properties  tab.  

v   In  the  BrokerType  field  of the  Standard  Properties  tab,  select  the  value  that  is 

appropriate  for  your  broker.  

When  you  change  the  current  value,  the  available  tabs  and  field  selections  in  the  

properties  window  will  immediately  change,  to show  only  those  tabs  and  fields  

that  pertain  to  the  new  broker  you  have  selected.

Completing the configuration 

After  you  have  created  a configuration  file  for  a connector  and  modified  it, make  

sure  that  the  connector  can  locate  the  configuration  file  when  the  connector  starts  

up.  

To do  so,  open  the  startup  file  used  for  the  connector,  and  verify  that  the  location  

and  file  name  used  for  the  connector  configuration  file  match  exactly  the  name  you  

have  given  the  file  and  the  directory  or  path  where  you  have  placed  it.  

Using Connector Configurator in a globalized environment 

Connector  Configurator  is globalized  and  can  handle  character  conversion  between  

the  configuration  file  and  the  integration  broker.  Connector  Configurator  uses  

native  encoding.  When  it writes  to  the  configuration  file,  it uses  UTF-8  encoding.  

Connector  Configurator  supports  non-English  characters  in:  

v   All  value  fields  

v   Log  file  and  trace  file  path  (specified  in  the  Trace/Log  files  tab)

The  drop  list  for  the  CharacterEncoding  and  Locale  standard  configuration  

properties  displays  only  a subset  of supported  values.  To add  other  values  to the  

drop  list,  you  must  manually  modify  the  \Data\Std\stdConnProps.xml  file  in  the  

product  directory.  

For  example,  to  add  the  locale  en_GB  to the  list  of  values  for  the  Locale  property,  

open  the  stdConnProps.xml  file  and  add  the  line  in  boldface  type  below:  

 

Appendix  B. Connector  Configurator  85



<Property  name="Locale"  

isRequired="true"  

updateMethod="component  restart">  

                <ValidType>String</ValidType>  

            <ValidValues>  

                                <Value>ja_JP</Value>  

                                <Value>ko_KR</Value>  

                                <Value>zh_CN</Value>  

                                <Value>zh_TW</Value>  

                                <Value>fr_FR</Value>  

                                <Value>de_DE</Value>  

                                <Value>it_IT</Value>  

                                <Value>es_ES</Value>  

                                <Value>pt_BR</Value>  

                                <Value>en_US</Value>  

                                <Value>en_GB</Value>  

                    <DefaultValue>en_US</DefaultValue>  

            </ValidValues>  

    </Property>  

 

86 Adapter  for JMS User  Guide



Appendix  C.  Tutorial  

v   “Tutorial  overview”  

v   “Setting  up  your  environment”  

v   “Running  the  scenarios”  on  page  89  

v   “Running  the  static  meta-object  scenario”  on  page  89  

v   “Running  the  dynamic  meta-object  scenario”  on  page  90

This  appendix  shows  you  how  to  use  the  adapter  to  send  and  receive  business  

objects  to  and  from  an  application  communicating  via  JMS  message  queues.  The  

scenarios  in  the  tutorial  are  designed  to show  the  basic  points  of the  adapter’s  

functionality.  

See  the  Preface  of  this  document  for  a guide  to notational  conventions.  

Tutorial  overview 

The  tutorial  consists  of two  scenarios,  one  using  a static  meta-object  and  the  other  

using  a dynamic  meta-object.  Both  scenarios  involve  ApplicationX,  which  can  

exchange  corporate  contact  information  as  it is created,  updated,  or  deleted.  

Business  object  Sample_JMS_Contact, which  you  create,  matches  the  fields  defined  

in  messages  from  ApplicationX.  ApplicationX  sends  and  receives  messages  in a 

format  that  is  compatible  with  the  Delimited  data  handler  that  is available  in IBM  

WebSphere  Business  Integration  development  kits.  

The  tutorial  also  makes  use  of  the  Port  connector  repository,  which  is included  

with  the  installation  of  WebSphere  Adapters.  The  Port  connector  consists  of a 

connector  definition  with  no  underlying  code,  and  as  such  is well-suited  for  

simulation  scenarios.  

Once  started,  the  JMS  adapter  retrieves  contact  messages  posted  by  ApplicationX  

to  its  input  queue.  Using  the  Delimited  data  handler,  the  adapter  converts  these  

messages  to  Sample_JMS_Contact  business  objects  and  delivers  them  to  the  

integration  broker.  Using  the  Test connector  (also  included  in  the  WBI  installation),  

you  simulate  the  Port  connector,  retrieve  the  business  object  posted  by  the  JMS  

adapter,  and  examine  the  attributes.  After  changing  the  data,  you  re-deliver  the  

message  to  the  integration  broker  where  it is sent  to  the  JMS  adapter,  converted  to 

a message,  and  delivered  to the  output  queue  of  the  adapter  (input  queue  of 

ApplicationX).  In  the  tutorial,  the  adapter  is configured  for  the  WebSphere  MQ  

Integrator  Broker,  but  you  need  not  actually  install  this  broker  to run the  tutorial.  

Before  proceeding  with  this  tutorial,  make  sure  that:  

v   You installed  and  are  experienced  with  the  IBM  WebSphere  product.  

v   You installed  a JMS  service  provider.  

v   You installed  the  WBI  Adapter  for  JMS.  

v   You have  installed  and  are  experienced  with  WebSphere  MQ  5.3.

Setting up your environment 

This  section  describes  how  to prepare  your  environment  to  work  with  the  tutorial.  

In  what  follows,  sample_folder  refers  to  the  folder  in  which  the  samples  reside.  

 

© Copyright  IBM Corp. 2000, 2004 87



1.   Create  the  queues  The  tutorial  requires  that  six  queues  be  defined  with  your  

JMS  service  provider.  Check  your  JMS  provider  documentation  before  defining  

these  queues.  Define  the  following  queues  (or  make  them  available  via  JNDI  

lookup):  

v   CWLD_Input  

v   CWLD_InProgress  

v   CWLD_Error  

v   CWLD_Archive  

v   CWLD_Unsubscribed  

v   CWLD_Output

2.   Create  and  start  a WebSphere  MQ  queue  manager  with  a running  channel  

initiator  and  listener.  

3.   Define  the  queues  required  by  the  WebSphere  MQ  adapter  and  Port  Connector  

for  the  WMQI  broker  configuration  as follows:  

v   DEFINE  QL(’JMSConnector/ADMININQUEUE’)  

v   DEFINE  QL(’JMSConnector/ADMINOUTQUEUE’)  

v   DEFINE  QL(’JMSConnector/DELIVERYQUEUE’)  

v   DEFINE  QL(’JMSConnector/FAULTQUEUE’)  

v   DEFINE  QL(’JMSConnector/REQUESTQUEUE’)  

v   DEFINE  QL(’JMSConnector/RESPONSEQUEUE’)  

v   DEFINE  QL(’JMSConnector/SYNCHRONOUSREQUESTQUEUE’)  

v   DEFINE  QL(’JMSConnector/SYNCHRONOUSRESPONSEQUEUE’)  

v   DEFINE  QL(’PortConnector/ADMININQUEUE’)  

v   DEFINE  QL(’PortConnector/ADMINOUTQUEUE’)  

v   DEFINE  QL(’PortConnector/DELIVERYQUEUE’)  

v   DEFINE  QL(’PortConnector/FAULTQUEUE’)  

v   DEFINE  QL(’PortConnector/REQUESTQUEUE’)  

v   DEFINE  QL(’PortConnector/RESPONSEQUEUE’)  

v   DEFINE  QL(’PortConnector/SYNCHRONOUSREQUESTQUEUE’)  

v   DEFINE  QL(’PortConnector/SYNCHRONOUSRESPONSEQUEUE’)

4.   Configure  the  adapter  Using  Connector  Configurator,  open  

sample_folder\JMSConnector.cfg. For  further  information  on  using  Connector  

Configurator,  see  Appendix  B,  “Connector  Configurator,”  on  page  69;  for  more  

on  connector-specific  properties,  see  “Configuring  connector-specific  properties”  

on  page  20.  

Set  the  following  standard  properties:  

v   Broker  Type  Set  this  property  to WMQI. 

v   Repository  Directory  Set  this  property  to  the  sample_folder  directory.

Set  the  following  connector-specific  properties:  

v    

v   DuplicateEventElimination  Set  this  property  to  true. 

v   MonitorQueue  Set  this  property  to JMSConnector/MONITORQUEUE  

v   ConfigurationMetaObject  Set  this  property  to  Sample_JMS_MO_Config. 

v   DataHandlerConfigMO  Set  this  property  to  Sample_JMS_MO_DataHandler. 

v   DataHandlerMimeType  Set  this  property  to  text/delimited. 

v   ErrorQueue  Set  this  property  to  CWLD_Error. 

v   InputQueue  Set  this  property  to  CWLD_Input. 

 

88 Adapter  for JMS User  Guide



v   UnsubscribedQueue  Set  this  property  to  CWLD_Unsubscribed.
5.   Configure  the  Port  Connector  Using  Connector  Configurator,  set  the  following  

standard  properties:  

v   Broker  Type  Set  this  property  to  WMQI. 

v   Repository  Directory  Set  this  property  to  the  sample_folder  directory.  

v   RequestQueue  Set  this  property  to  JMSConnector/DELIVERYQUEUE  (the  

DeliveryQueue  property  value  for  the  JMS  adapter).  

v   DeliveryQueue  Set  this  property  to  JMSConnector/REQUESTQUEUE  (the  

RequestQueue  property  value  for  the  JMS  adapter).
6.   Support  business  objects  In  order  to  use  business  objects,  adapters  must  first  

support  them.  Using  Connector  Configurator,  click  the  Supported  Business  

Objects  tab  for  the  JMS  adapter,  add  the  business  objects  shown  in  Table 19 

and  set  the  Message  Set  ID  to a unique  value  for  each  supported  business  

object.  

 Table 19.  Supported  sample  business  objects  for JMS  adapter  

Business  Object  Name  Message  Set  ID  

Sample_JMS_MO_Config  1 

Sample_JMS_MO_DataHandler  2 

Sample_JMS_Contact  3
  

Using  Connector  Configurator,  open  the  Port  connector  definition  

PortConnector.cfg  provided  in  the  sample_folder, and  add  the  supported  

business  object  and  Message  Set  ID  shown  in Table  20.  

 Table 20.  Supported  sample  business  objects  for Port  connector  

Business  Object  Name  Message  Set  ID  

Sample_JMS_Contact  1
  

7.   Create  or  update  connector  start  scripts
Windows:  

a.   Open  the  properties  of the  shortcut  for  the  adapter  for  JMS.  

b.   As  the  last  argument  in  the  target,  add  -c  followed  by  the  <full  path  and  

filename  for  the  JMSConnector.cfg  file>  For  example:  

-cProduct_Dir\connectors\JMS\samples\JMSConnector.cfg  

UNIX:  

a.   Open  the  file:  Product_Dir/bin/connector_manager_JMS. 

b.   Set  the  value  of the  AGENTCONFIG_FILE  property  to  -c followed  by  the  

<full  path  and  filename  for  the  JMSConnector.cfg  file>  For  example:  

AGENTCONFIG_FILE=-cProduct_Dir/connectors/JMS/samples/JMSConnector.cfg  

Running the scenarios 

Before  you  run the  scenarios:  

1.   Start  the  adapter  for  JMS  if it is not  already  running.  

2.   Start  the  Visual  Test  connector  if it  is not  already  running.

Running the static meta-object scenario 

This  part  of  the  tutorial  describes  a scenario  using  a static  meta-object.  For  further  

information  on  static  meta-objects,  see  “Configuring  a static  meta-object”  on  page  

30.  

 

Appendix  C. Tutorial 89



1.   Simulate  the  Port  connector  Using  the  Visual  Test connector,  define  a profile  

for  PortConnector:  

a.   Select  File->Create/Select  Profile  from  the  Visual  Test connector  menu,  then  

select  File->  New  Profile  from  the  Connector  Profile  menu.  

b.   Select  the  Port  Connector  Configuration  File  PortConnector.cfg  in  the  

Samples  directory,  then  configure  the  Connector  Name  and  Broker  Type  and  

click  OK. 

c.   Select  the  profile  you  created  and  click  OK. 

d.   From  the  Visual  Test connector  menu,  select  File->Connect  to  begin  

simulating.
2.   Test  request  processing  

a.   Using  the  Test Connector,  create  a new  instance  of business  object  

Sample_JMS_Contact  by  selecting  the  business  object  in  the  BoType  

drop-down  box  and  then  selecting  Create  for  the  BOInstance.  

b.   Change  the  default  values  if desired,  set  the  verb  to  Create  and  send  the  

message  by  clicking  Send  BO.
3.   Check  message  delivery  Open  queue  CWLD_Output  to  see  if a new  contact  

message  with  format  CON_CR  has  arrived  from  the  JMS  adapter.  

4.   Test  event  processing  Send  a message  to  the  JMS  adapter’s  input  queue.  Note:  

this  step  requires  that  you  have  a utility  capable  of sending  messages  to  a 

queue.  Otherwise,  to  implement  an  easier  approach,  you  can  set  the  JMS  

adapter’s  InputQueue  property  to  CWLD_Output  so  that  the  adapter  will  poll  its  

own  messages.  Once  you  have  a message  in the  input  queue,  the  JMS  adapter  

will  poll  it and  attempt  to  convert  it into  a Sample_JMS_Contact  business  object.  

The  key  to  having  the  adapter  poll  the  message  is to  ensure  that  the  message  

format  equals  the  value  associated  with  the  Sample_JMS_Contact  business  object  

in  meta-object  Sample_JMS_MO_Config. In  this  scenario,  that  format  is  CON_CR. If 

the  adapter  identifies  the  incoming  message  format  as  CON_CR, it will  use  the  

data  handler  to  convert  the  message  to business  object  Sample_JMS_Contact  

with  the  verb  create.  The  newly  created  business  object  is subsequently  

delivered  to  the  to  the  Test Connector.  

5.   Confirm  message  delivery  If  you’ve  performed  all  the  above  steps  successfully,  

you  should  have  a working  scenario  that  enables  the  JMS  adapter  to  retrieve  

messages  and  convert  them  to  Sample_JMS_Contact  business  objects,  and  to  

convert  Sample_JMS_Contact  business  objects  to contact  messages.

Running the dynamic meta-object scenario 

This  scenario  demonstrates  how  to use  a dynamic  meta-object  to re-route  a 

business  object  to  various  queues  defined  in  your  JMS  service  provider.  For  further  

information  on  dynamic  meta-objects,  see  “Configuring  a dynamic  child  

meta-object”  on  page  32.  The  steps  below  take  you  through  creating  an  attribute  

for  a child  meta-object  for  Sample_JMS_Contact. Specifically,  you  will  be  modifying  

the  output  queue  values  in  this  child  meta  object  to  redirect  the  

Sample_JMS_Contact  business  object  to various  queues.  

The  child  meta-object  repository,  Sample_JMS_DynMO.xsd, resides  in  the  sample_folder. 

 1.    Identify  the  dynamic  meta-object  attribute  First  you  must  add  

application-specific  information  to identify  the  attribute  containing  the  

dynamic  meta-object:  in  Sample_JMS_Contact, add  cw_mo_conn=DynMO  to the  

application-specific  information.  This  identifies  the  attribute.  

 2.   Add  the  attribute  Using  Business  Object  Designer:  

 

90 Adapter  for JMS User  Guide



a.   Open  Sample_JMS_DynMO.xsd  and  Sample_JMS_Contact.xsd  from  the  

sample_folder. 

b.   In  the  Sample_JMS_Contact  Object  window,  add  an  attribute  named  DynMO  

of  type  Sample_JMS_DynMO. 

c.   Double-click  the  Sample_JMS_Contact  Object. 

d.   Select  the  attributes  folder  and  add  an  attribute  named  DynMO  of type  

Sample_JMS_DynMO.
 3.   Define  a new  target  queue  Define  a temporary  queue  REROUTE.IN  with  the  

JMS  service  provider.  This  is where  the  dynamic  meta-object  will  re-route  the  

Sample_JMS_Contact  business  object.  

 4.   Start  the  adapter  for  JMS  if it is not  already  running.  

 5.   Start  the  Visual  Test  connector  if it  is not  already  running.  

 6.   Simulate  the  Port  connector  Using  the  Visual  Test connector,  define  a profile  

for  PortConnector:  

a.   Select  File->Create/Select  Profile  from  the  Visual  Test connector  menu,  

then  select  File->  New  Profile  from  the  Connector  Profile  menu.  

b.   Select  the  Port  Connector  Configuration  File  PortConnector.cfg  in the  

Samples  directory,  then  configure  the  Connector  Name  and  Broker  Type 

and  click  OK. 

c.   Select  the  profile  you  created  and  click  OK. 

d.   From  the  Visual  Test connector  menu,  select  File->Connect  to  begin  

simulating.
 7.   Create  instances  of  parent  business  object  and  child  meta  object  Using  the  

Visual  Test Connector:  

a.   Create  a new  instance  of  business  object  Sample_JMS_Contact, changing  the  

default  values  if desired.  

b.    Right-click  on  the  DynMO  attribute  and  create  an  instance  of  it,  

Sample_JMS_DynMO.
 8.   Set  the  new  target  queue  

a.   Expand  the  DynMO  attribute  by  clicking  on  the  + sign  beside  it. 

b.   In  the  attribute  named  outputQueue, enter  the  name  of  the  target  queue:  

REROUTE.IN

 9.   Send  the  business  object  Click  Send  BO. 

10.   Confirm  message  delivery  Open  queue  REROUTE.IN  to see  if a new  contact  

message  has  arrived  from  the  JMS  adapter.  If  a new  message  has  arrived  from  

the  JMS  adapter  to  the  queue  named  REROUTE.IN, then  the  re-routing  has  

worked.

 

Appendix  C. Tutorial 91



92 Adapter  for JMS User  Guide



Appendix  D.  Configuring  for  topic-  and  queue-based  

messaging  

v   “Configuring  for  queue-based  messaging”  

v   “Configuring  for  topic-based  messaging”  on  page  94

This  appendix  shows  you  how  to  configure  the  adapter  for  JMS  with  WebSphere  

MQ  as  a common  JMS  provider.  For  further  information,  see  the  WebSphere  MQ  

Using  Java  guide.  

Note:   If you  are  using  WebSphere  MQ  as  your  JMS  provider,  it is  strongly  

suggested  that  you  use  the  WebSphere  Business  Integration  Adapter  for  

WebSphere  MQ  for  integration.  The  steps  below  are  provided  for  reference  

only  to  show  how  to  configure  the  JMS  adapter  using  a common  JMS  

provider.  

See  the  Preface  of  this  document  for  a guide  to notational  conventions.  

Configuring for queue-based messaging 

1.    Install  WebSphere  MQ  and  WebSphere  MQ  client  libraries  (including  JMS  

support).  

2.    Ensure  that  all  MQ  client  libraries,  including  fscontext.jar  and  

providerutil.jar, are  in  your  system’s  classpath.  Alternatively,  you  can  modify  

the  jmsAdmin.bat  file  and  add  -Djava.ext.dirs="<your  MQ  home  

directory>/Java/lib  to the  java  command-line  script  to  ensure  that  all  client  

library  files  are  available  to the  tool.  Note  that  any  

ClassDefNotFoundExceptions  reported  by  the  tool  are  the  result  of missing  

libraries—recheck  your  classpaths.  

3.   Open  <your  MQ  home  directory>Java/bin/jmsAdmin.config  and  set  the  

following  properties:  

v   INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory  

v   PROVIDER_URL=file://c:/temp  

v   SECURITY_AUTHENTICATION=none

4.   Create  a file  named  MyJNDI.txt  containing  the  following:DEFINE  QCF(MyQCF)  

HOST(<your  host  name>)   +PORT(<your  MQ  listener  port  name  e.g.  1414>)   + 

CHANNEL(<your MQ  server  connection  channel  name,  for  example,  CHANNEL1>)  

+ 

QMGR(<your  MQ  queue  manager  name>) + 

TRAN(client)  

END  

5.    Bind  objects  to  JNDI  names  by  running  <your  MQ  home  

directory>/java/bin/jmsAdmin.bat  < MyJNDI.txt  

6.    Configure  the  following  JMS  connector-specific  properties  as  shown:  

CTX_InitialContextFactory  = com.sun.jndi.fscontext.RefFSContextFactory  

CTX_ProviderURL  = file://c:/temp  

ConnectionFactoryName  = MyQCF  

 

© Copyright  IBM Corp. 2000, 2004 93



Configuring for topic-based messaging 

1.    Install  WebSphere  MQ  and  WebSphere  MQ  client  libraries  (including  JMS  

support).  

2.    Ensure  that  all  MQ  client  libraries,  including  fscontext.jar  and  

providerutil.jar, are  in  your  system’s  classpath.  Alternatively,  you  can  modify  

the  jmsAdmin.bat  file  and  add  -Djava.ext.dirs="<your  MQ  home  

directory>/Java/lib  to the  java  command-line  script  to  ensure  that  all  client  

library  files  are  available  to the  tool.  Note  that  any  

ClassDefNotFoundExceptions  reported  by  the  tool  are  the  result  of  missing  

libraries—recheck  your  classpaths.  

3.   Download  and  install  the  appropriate  WebSphere  MQ  MA0C  SupportPac  from  

IBM  to  enable  topic-based  (publish/subscribe)  messaging  support  in  MQ.  For  

example,  a search  for  ma0c_ntmq52  will  locate  the  topic-based  messaging  patch  

for  MQ  5.2  on  Windows.  

4.   Change  directories  to  <your  MQ  home  directory>/Java/bin  and  execute  runmqsc  

< MQJMS_PSQ.mqsc. 

5.   Execute  IVTSetup.bat  The  process  should  display  Done!  without  reporting  any  

errors.  

6.   Open  <your  MQ  home  directory>Java/bin/jmsAdmin.config  and  set  the  

following  properties:  

v   INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory  

v   PROVIDER_URL=file://c:/temp  

v   SECURITY_AUTHENTICATION=none

7.   Create  a file  named  MyJNDI.txt  containing  the  following:
DEFINE  QCF(MyQCF)  HOST(<your  host  name>)   +PORT(<your  MQ  listener  port  

name  e.g.  1414>)   + 

CHANNEL(<your MQ  server  connection  channel  name,  for  example,  CHANNEL1>)  

+ 

QMGR(<your  MQ  queue  manager  name>) + 

TRAN(client)  

END  

8.    Bind  objects  to  JNDI  names  by  running  <your  MQ  home  

directory>/java/bin/jmsAdmin.bat  < MyJNDI.txt  

9.    Configure  the  following  JMS  connector-specific  properties  as  shown:  

CTX_InitialContextFactory  = com.sun.jndi.fscontext.RefFSContextFactory  

CTX_ProviderURL  = file://c:/temp  

ConnectionFactoryName  = MyQCF  

 

94 Adapter  for JMS User  Guide



Appendix  E.  Common  Event  Infrastructure  

WebSphere  Business  Integration  Server  Foundation  includes  the  Common  Event  

Infrastructure  Server  Application,  which  is required  for  Common  Event  

Infrastructure  to  operate.  The  WebSphere  Application  Server  Foundation  can  be  

installed  on  any  system  (it  does  not  have  to be  the  same  machine  on  which  the  

adapter  is installed.)  

The  WebSphere  Application  Server  Application  Client  includes  the  libraries  

required  for  interaction  between  the  adapter  and  the  Common  Event  Infrastructure  

Server  Application.  You must  install  WebSphere  Application  Server  Application  

Client  on  the  same  system  on  which  you  install  the  adapter.  The  adapter  connects  

to  the  WebSphere  Application  Server  (within  the  WebSphere  Business  Integration  

Server  Foundation)  by  means  of a configurable  URL.  

Common  Event  Infrastructure  support  is available  using  any  integration  broker  

supported  with  this  release.  

Required software 

In  addition  to  the  software  prerequisites  required  for  the  adapter,  you  must  have  

the  following  installed  for  Common  Event  Infrastructure  to  operate:  

v   WebSphere  Business  Integration  Server  Foundation  5.1.1  

v   WebSphere  Application  Server  Application  Client  5.0.2,  5.1,  or  5.1.1.  

(WebSphere  Application  Server  Application  Client  5.1.1  is provided  with  

WebSphere  Business  Integration  Server  Foundation  5.1.1.  )

Note:   Common  Event  Infrastructure  is not  supported  on  any  HP-UX  or  Linux  

platform.  

Enabling Common Event Infrastructure 

Common  Event  Infrastructure  functionality  is enabled  with  the  standard  properties  

CommonEventInfrastructure  and  CommonEventInfrastructureContextURL, configured  

with  Connector  Configurator.  By  default,  Common  Event  Infrastructure  is not  

enabled.  The  CommonEventInfrastructureContextURL  property  enables  you  to 

configure  the  URL  of  the  Common  Event  Infrastructure  server.(Refer  to the  

“Standard  Properties”  appendix  of  this  document  for  more  information.)  

Obtaining Common Event Infrastructure adapter events 

If  Common  Event  Infrastructure  is enabled,  the  adapter  generates  Common  Event  

Infrastructure  events  that  map  to  the  following  adapter  events:  

v   Starting  the  adapter  

v   Stopping  the  adapter  

v   An  application  response  to a timeout  from  the  adapter  agent  

v   Any  doVerbFor  call  issued  from  the  adapter  agent  

v   A  gotApplEvent  call  from  the  adapter  agent

For  another  application  (the  “consumer  application”)  to  receive  the  Common  Event  

Infrastructure  events  generated  by  the  adapter,  the  application  must  use  the  

 

© Copyright  IBM Corp. 2000, 2004 95



Common  Event  Infrastructure  event  catalog  to  determine  the  definitions  of 

appropriate  events  and  their  properties.  The  events  must  be  defined  in  the  event  

catalog  for  the  consumer  application  to be  able  to  consume  the  sending  

application’s  events.  

The  “Common  Event  Infrastructure  event  catalog  definitions”  appendix  of  this  

document  contains  XML  format  metadata  showing,  for  WebSphere  Business  

Information  adapters,  the  event  descriptors  and  properties  the  consumer  

application  should  search  for. 

For more information 

For  more  information  about  Common  Event  Infrastructure,  refer  to the  Common  

Event  Infrastructure  information  in the  WebSphere  Business  Integration  Server  

Foundation  documentation,  available  at the  following  URL:  

http://publib.boulder.ibm.com/infocenter/ws51help  

For  sample  XML  metadata  showing  the  adapter-generated  event  descriptors  and  

properties  a consumer  application  should  search  for, refer  to“Common  Event  

Infrastructure  event  catalog  definitions.”  

Common Event Infrastructure event catalog definitions 

The  Common  Event  Infrastructure  event  catalog  contains  event  definitions  that  can  

be  queried  by  other  applications.  The  following  are  event  definition  samples,  using  

XML  metadata,  for  typical  adapter  events.  If you  are  writing  another  application,  

your  application  can  use  event  catalog  interfaces  to  query  against  the  event  

definition.  For  more  information  about  event  definitions  and  how  to  query  them,  

refer  to  the  Common  Event  Infrastructure  documentation  that  is available  from  the  

online  IBM  WebSphere  Server  Foundation  Information  Center.  

For  WebSphere  Business  Integration  adapters,  the  extended  data  elements  that  

need  to  be  defined  in  the  event  catalog  are  the  keys  of  the  business  object.  Each  

business  object  key  requires  an  event  definition.  So  for  any  given  adapter,  various  

events  such  as  start  adapter,  stop  adapter,  timeout  adapter,  and  any  doVerbFor  

event  (create,  update,  or  delete,  for  example)  must  have  a corresponding  event  

definition  in  the  event  catalog.  

The  following  sections  contain  examples  of the  XML  metadata  for  start  adapter,  

stop  adapter,  and  event  request  or  delivery.  

XML format for “start adapter” metadata 

<eventDefinition  name="startADAPTER"  

      parent="event">  

    <property  name  =”creationTime"  //Comment:  example  value  would  be 

 "2004-05-13T17:00:16.319Z"  

         required="true"  /> 

    <property  name="globalInstanceId"  //Comment:  Automatically  generated  

 by Common  Event  Infrastructure  

         required="true"/>  

    <property  name="sequenceNumber"     //Comment:  Source  defined  number  

for  messages  to be sent/sorted  logically  

         required="false"/>  

    <property  name="version"     //Comment:  Version  of  the event  

         required="false"  

         defaultValue="1.0.1"/>

 

96 Adapter  for JMS User  Guide



<property  name="sourceComponentId"  

         path="sourceComponentId"  

         required="true"/>  

    <property  name="application"    //Comment:  The name#version  of the  

source  application  generating  the event.  Example  is "SampleConnector#3.0.0"  

         path="sourceComponentId/application"          required="false"/>  

    <property  name="component"    //Comment:  This  will  be the  name#version  

 of  the  source  component.  

         path="sourceComponentId/component"  

         required="true"  

         defaultValue="ConnectorFrameWorkVersion#4.2.2"/>  

    <property  name="componentIdType"     //Comment:  specifies  the  format  

and  meaning  of the  component  

          path="sourceComponentId/componentIdType"  

          required="true"  

          defaultValue="Application"/>  

    <property  name="executionEnvironment"  

 //Comment:  Identifies  the  environment  the  application  is running  

 in...example  is "Windows  2000#5.0"  

          path="sourceComponentId/executionEnvironment"  

          required="false"  /> 

     <property  name="location"     //Comment:  The  value  of this  is the 

 server  name...example  is "WQMI"  

          path="sourceComponentId/location"  

          required="true"/>  

    <property  name="locationType"    //Comment  specifies  the  format  and  

     meaning  of the  location  

          path="sourceComponentId/locationType"  

          required="true"  

          defaultValue="Hostname"/>  

     <property  name="subComponent"      //Comment:further  distinction  

of  the  logical  component  

          path="sourceComponentId/subComponent"  

          required="true"  

          defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>  

     <property  name="componentType"       //Comment:  well-defined  name  

used  to  characterize  all  instances  of this  component  

          path="sourceComponentId/componentType"  

          required="true"  

          defaultValue="ADAPTER"/>  

     <property  name="situation"    //Comment:  Defines  the  type  of 

 situation  that  caused  the  event  to be reported  

          path="situation"  

          required="true"/>  

     <property  name="categoryName="     //Comment:  Specifies  the  type  

of  situation  for  the  event  

         path="situation/categoryName"  

         required="true"  

         defaultValue="StartSituation"/>  

    <property  name="situationType"     //Comment:  Specifies  the  type  

of  situation  and  disposition  of the  event  

         path="situation/situationType"  

         required="true"  

    <property  name="reasoningScope"  //Comment:  Specifies  the scope  

 of  the  impact  of the  event  

         path="situation/situationType/reasoningScope"  

         required="true"  

         permittedValue="INTERNAL"  

         permittedValue="EXTERNAL"/>  

    <property  name="successDisposition"  //Comment:  Specifies  the  

 success  of event  

         path="situation/situationType/successDisposition"  

         required="true"  

         permittedValue="SUCCESSFUL"  

         permittedValue="UNSUCCESSFUL"  /> 

    <property  name="situationQualifier"   //Comment:  Specifies  the 

 situation  qualifiers  for this  event

 

Appendix  E. Common  Event Infrastructure 97



path="situation/situationType/situationQualifier"  

         required="true"  

         permittedValue="START_INITIATED"  

         permittedValue="RESTART_INITIATED"  

         permittedValue="START_COMPLETED"  /> 

</eventDefinition>  

XML format for ″stop adapter″ metadata 

The  metadata  for  “stop  adapter”  is the  same  as  that  for  “start  adapter”  with  the  

following  exceptions:  

v   The  default  value  for  the  categoryName  property  is StopSituation: 

<property  name="categoryName="  

 //Comment:  Specifies  the type  

 of situation  for  the  event  

              path="situation/categoryName"  

              required="true"  

              defaultValue="StopSituation"/>  

v   The  permitted  values  for  the  situationQualifier  property  differ  and  are  as  

follows  for  “stop  adapter”:  

<property  name="situationQualifier"  

 //Comment:  Specifies  the situation  qualifiers  for this  event  

           path="situation/situationType/situationQualifier"  

           required="true"  

           permittedValue="STOP_INITIATED"  

           permittedValue="ABORT_INITIATED"  

           permittedValue="PAUSE_INITIATED"  

           permittedValue="STOP_COMPLETED"  

 /> 

XML format for “timeout adapter” metadata 

The  metadata  for  “timeout  adapter”  is the  same  as  that  for  “start  adapter”  and  

“stop  adapter”  with  the  following  exceptions:  

v   The  default  value  for  the  categoryName  property  is ConnectSituation: 

<property  name="categoryName="  

 //Comment:  Specifies  the type  

 of situation  for  the  event  

              path="situation/categoryName"  

              required="true"  

              defaultValue="ConnectSituation"/>  

v   The  permitted  values  for  the  situationQualifier  property  differ  and  are  as  

follows  for  “timeout  adapter”:  

<property  name="situationQualifier"   //Comment:  Specifies  

 the  situation  qualifiers  for  this  event  

           path="situation/situationType/situationQualifier"  

           required="true"  

           permittedValue="IN_USE"  

           permittedValue="FREED"  

           permittedValue="CLOSED"  

           permittedValue="AVAILABLE"  

 /> 

 

98 Adapter  for JMS User  Guide



XML format for ″request″ or ″delivery″ metadata 

At  the  end  of  this  XML  format  are  the  extended  data  elements.  The  extended  data  

elements  for  adapter  request  and  delivery  events  represent  data  from  the  business  

object  being  processed.  This  data  includes  the  name  of the  business  object,  the  key  

(foreign  or  local)  for  the  business  object,  and  business  objects  that  are  children  of 

parent  business  objects.  The  children  business  objects  are  then  broken  down  into  

the  same  data  as  the  parent  (name,  key,  and  any  children  business  objects).  This  

data  is represented  in  an  extended  data  element  of the  event  definition.  This  data  

will  change  depending  on  which  business  object,  which  keys,  and  which  child  

business  objects  are  being  processed.  The  extended  data  in  this  event  definition  is 

just  an  example  and  represents  a business  object  named  Employee  with  a key  

EmployeeId  and  a child  business  object  EmployeeAddress  with  a key  EmployeeId. 

This  pattern  could  continue  for  as  much  data  as  exists  for  the  particular  business  

object.  

<eventDefinition  name="createEmployee"      //Comment:  This  

 extension  name  is  always  the  business  object  verb  followed  by  the  business  

 object  name  

          parent="event">  

    <property  name  ="creationTime"   //Comment:  example  value  would  be 

"2004-05-13T17:00:16.319Z"  

         required="true"  /> 

    <property  name="globalInstanceId"  //Comment:  Automatically  generated  

 by  Common  Event  Infrastructure  

         required="true"/>  

    <property  name="localInstanceId"     //Comment:  Value  is business  

 object  verb+business  object  name+#+app  name+  business  object  identifier  

         required="false"/>  

    <property  name="sequenceNumber"     //Comment:  Source  defined  number  

for  messages  to be  sent/sorted  logically  

         required="false"/>  

    <property  name="version"   //Comment:  Version  of the event...value  is 

 set  to 1.0.1  

         required="false"  

         defaultValue="1.0.1"/>  

    <property  name="sourceComponentId"  

         path="sourceComponentId"  

         required="true"/>  

    <property  name="application"     //Comment:  The  name#version  of the 

 source  application  generating  the  event...example  is 

 "SampleConnector#3.0.0"  

         path="sourceComponentId/application"  

         required="false"/>  

    <property  name="component"    //Comment:  This  will  be the  name#version  

of  the  source  component.  

         path="sourceComponentId/component"  

         required="true"  

         defaultValue="ConnectorFrameWorkVersion#4.2.2"/>  

    <property  name="componentIdType"      //Comment:  specifies  the format  

 and  meaning  of the  component  

         path="sourceComponentId/componentIdType"  

         required="true"  

         defaultValue="Application"/>  

    <property  name="executionEnvironment"  //Comment:  Identifies  the  

 environment#version  the  app  is running  in...example  is "Windows  2000#5.0"  

         path="sourceComponentId/executionEnvironment"  

         required="false"  /> 

    <property  name="instanceId"  //Comment:  Value  is  business  object  

  verb+business  object  name+#+app  name+  business  object  identifier  

          path="sourceComponentId/instanceId"  

          required="false"  

    <property  name="location"    //Comment:  The  value  of this  is the  

server  name...example  is "WQMI"  

          path="sourceComponentId/location"

 

Appendix  E. Common  Event Infrastructure 99



required="true"/>  

     <property  name="locationType"  //Comment  specifies  the format  and  

 meaning  of the  location  

          path="sourceComponentId/locationType"  

          required="true"  

          defaultValue="Hostname"/>  

     <property  name="subComponent"   //Comment:further  distinction  of the  

 logical  component-in  this  case  the value  is the  name  of the  business  

 object  

          path="sourceComponentId/subComponent"  

          required="true"/>  

     <property  name="componentType"       //Comment:  well-defined  name  used  

 to characterize  all  instances  of this  component  

          path="sourceComponentId/componentType"  

          required="true"  

          defaultValue="ADAPTER"/>  

     <property  name="situation"  //Comment:  Defines  the  type  of  

situation  that  caused  the event  to be reported  

          path="situation"  

          required="true"/>  

    <property  name="categoryName"     //Comment:  Specifies  the  type  

 of situation  for  the  event  

         path="situation/categoryName"  

         required="true"  

         permittedValue="CreateSituation"  

         permittedValue="DestroySituation"  

         permittedValue="OtherSituation"  /> 

    <property  name="situationType"     //Comment:  Specifies  the type  

of situation  and  disposition  of the event  

         path="situation/situationType"  

         required="true"  

    <property  name="reasoningScope"  //Comment:  Specifies  the scope  

of the  impact  of the  event  

         path="situation/situationType/reasoningScope"  

         required="true"  

         permittedValue="INTERNAL"  

         permittedValue="EXTERNAL"/>  

    <property  name="successDisposition"  //Comment:  Specifies  the 

 success  of event  

         path="situation/situationType/successDisposition"  

         required="true"  

         permittedValue="SUCCESSFUL"  

         permittedValue="UNSUCCESSFUL"  /> 

    <extendedDataElements  name="Employee"  //Comment:  name  of business  

 object  itself  

             type="noValue"  

             <children  name="EmployeeId"  

                  type="string"/>   //Comment:  type  is one  of the 

 permitted  values  within  Common  Event  Infrastructure  documentation  

             <children  name="EmployeeAddress"  

                  type="noValue"/>  

                     <children  name="EmployeeId"  

                         type="string"/>  

                      - 

                      - 

                      - 

    </extendedDataElements  

</eventDefinition>  

 

100 Adapter  for JMS User Guide



Appendix  F.  Application  Response  Measurement  

This  adapter  is  compatible  with  the  Application  Response  Measurement  

application  programming  interface  (API),  an  API  that  allows  applications  to  be  

managed  for  availability,  service  level  agreements,  and  capacity  planning.  An  

ARM-instrumented  application  can  participate  in  IBM  Tivoli  Monitoring  for  

Transaction  Performance,  allowing  collection  and  review  of  data  concerning  

transaction  metrics.  

Application Response Measurement instrumentation support 

This  adapter  is  compatible  with  the  Application  Response  Measurement  

application  programming  interface  (API),  an  API  that  allows  applications  to  be  

managed  for  availability,  service  level  agreements,  and  capacity  planning.  An  

ARM-instrumented  application  can  participate  in  IBM  Tivoli  Monitoring  for  

Transaction  Performance,  allowing  collection  and  review  of  data  concerning  

transaction  metrics.  

Required software 

In  addition  to  the  software  prerequisites  required  for  the  adapter,  you  must  have  

the  following  installed  for  ARM  to operate:  

v   WebSphere  Application  Server  5.0.1  (contains  the  IBM  Tivoli  Monitoring  for  

Transaction  Performance  server).  This  does  not  have  to  be  installed  on  the  same  

system  as  the  adapter.  

v   IBM  Tivoli  Monitoring  for  Transaction  Performance  v.  5.2  Fixpack  1. This  must  

be  installed  on  the  same  system  on  which  the  adapter  is installed  and  

configured  to  point  to  the  system  on  which  the  IBM  Tivoli  Monitoring  for  

Transaction  Performance  server  resides.

Application  Response  Measurement  support  is available  using  any  integration  

broker  supported  with  this  release.  

Note:   Application  Response  Measurement  instrumentation  is supported  on  all 

operating  systems  supported  with  this  IBM  WebSphere  Business  Integration  

Adapters  release  except  HP-UX  (any  version)  and  Red  Hat  Linux  3.0.  

Enabling Application Response Measurement 

ARM  instrumentation  is  enabled  via  by  setting  the  standard  property  

TivoliMonitorTransactionPerformance  in Connector  Configurator  to “True.” By  

default  ARM  support  is not  enabled.  (Refer  to the  ″Standard  Properties″ appendix  

of  this  document  for  more  information.)  

Transaction monitoring 

When  ARM  is  enabled,  the  transactions  that  are  monitored  are  service  events  and  

event  deliveries.  The  transaction  is measured  from  the  start  of  a service  request  or  

event  delivery  to  the  end  of the  service  request  or  event  delivery.  The  name  of the  

transaction  displayed  on  the  Tivoli  Monitoring  for  Transaction  Performance  console  

will  start  with  either  SERVICE  REQUEST  or  EVENT  DELIVERY. The  next  part  of  the  

name  will  be  the  business  object  verb  (such  as  CREATE, RETRIEVE, UPDATE  or  DELETE). 

The  final  part  of  the  name  will  be  the  business  object  name  such  as  “EMPLOYEE.” 

 

© Copyright  IBM Corp. 2000, 2004 101



For  example,  the  name  of  a transaction  for  an  event  delivery  for  creation  of an 

employee  might  be  EVENT  DELIVERY  CREATE  EMPLOYEE. Another  might  be  SERVICE  

REQUEST  UPDATE  ORDER. 

The  following  metrics  are  collected  by  default  for  each  type  of service  request  or  

event  delivery:  

v   Minimum  transaction  time  

v   Maximum  transaction  time  

v   Average  transaction  time  

v   Total transaction  runs

You (or  the  system  administrator  of  the  WebSphere  Application  Server)  can  select  

which  of  these  metrics  to  display,  for  which  adapter  events,  by  configuring  

Discovery  Policies  and  Listener  Policies  for  particular  transactions  from  within  the  

Tivoli  Monitoring  for  Transaction  Performance  console.  (Refer  to  “For  more  

information.”)  

For more information 

Refer  to  the  IBM  Tivoli  Monitoring  for  Transaction  Performance  documentation  for  

more  information.  In  particular,  refer  to  the  IBM  Tivoli  Monitoring  for  Transaction  

Performance  User’s  Guide  for  information  about  monitoring  and  managing  the  

metrics  generated  by  the  adapter.  

 

102 Adapter  for JMS User Guide



Index  

A
adapter

architecture  4 

messaging  styles 2 

starting 38 

stopping  39 

adapter  dependencies  3 

adapter  environment  1 

adapter  platforms  2 

adapter  standards  2 

Application  Response  Measurement  

instrumentation,  support for 101 

APPRESPONSETIMEOUT  10 

ArchivalConnectionFactoryName  22 

ArchiveDestination  22 

archiving  10 

ArchiveDestination  22 

ErrorDestination  22 

InProgressDestination  22 

UnsubscribedDestination  22 

ASI 4 

asynchronous  processing 11  

asynchronous  request processing
JMS  message  header  population  12 

overview  11 

asynchronous  return codes 12 

B
broker compatibility  1 

business  object
mapping  9 

business  objects
creating 41 

structure 41 

C
Common  Event Infrastructure

event  catalog  96 

metadata  96 

ConfigurationMetaObject  22 

configuring
a sample environment  87 

a static meta-object  30 

connector-specific properties 20 

JNDI 26 

standard  connector  properties 20 

startup  scripts  37 

the connector  19 

Configuring
message  style 26 

configuring  a dynamic  child  

meta-object  32 

configuring  JNDI with WebSphere  MQ 

Java client  libraries  27 

configuring  meta-objects  27 

ConnectionFactoryName  22 

connector
configuration  19 

connector  (continued)
creating multiple instances  37 

distinct  from  adapter 1 

connector  framework  1 

connector-specific properties 20 

Container  managed  events 7 

creating  multiple  connector  instances  37 

CTX_InitialContextFactory  22 

CTX_ProviderURL 22 

D
data handler

configuration  rules 11 

DataHandlerClassName  22 

DataHandlerConfigMO  23 

DataHandlerMimeType  23 

mapping  to input destinations  32 

DataHandlerClassName  22 

DataHandlerConfigMO  23 

DataHandlerMimeType  23 

DefaultVerb  23 

doVerbFor()  method  10 

Duplicate  event elimination  7 

dynamic  meta-object  8 

when to use 27 

dynamic  meta-object  header 

attributes  33 

E
EnableMessageProducerCache  23 

error handling  15 

error recovery 10 

ErrorDestination 22, 23 

event
status and recovery 6 

event catalog,  for Common  Event 

Infrastructure  96 

event detection  5 

event processing
overview  4 

event retrieval 8 

F
Fail on startup 7 

I
IBM Tivoli  Monitoring  for Transaction 

Performance  101 

Ignore  7 

InDoubtEvents  23 

InProgressDestination  22, 24 

InputDestination  24 

installed  file structure 17 

installing  the adapter and related 

files 17 

J
Java Virtual  Machine  3 

JMS 1 

1.0.2 standard  2 

JMS API 4 

JMS Destination  4 

JMS headers
and  dynamic  meta-object  

attributes  35 

JMS provider 4 

JNDI
configuring  26 

JNDI context 22 

JNDI store 24 

L
locale-dependent  data

double-byte  character  support  3 

localized  data 3 

Log error 7 

LookupDestinationsUsingJNDI  24 

M
mapping  data handlers  to input 

destinations  32 

message
request processing 10 

retrieval 5 

message  flow
asynchronous 11 

overview  4 

synchronous 11 

message  header  mapping  9 

Message  Oriented  Middleware 4 

message  processing
events  4 

message  request  processing
error  handling  15 

response processing 15 

message  style
configuring  26 

MessageFormatProperty  24 

Messages  4 

messaging  styles
Pub/Sub  or topic-based  2 

meta-object  properties
synchronous 13 

meta-objects  8 

ConfigurationMetaObject  22 

configuring  27 

configuring  a dynamic  32 

configuring  a static 30 

dynamic  (when to use) 27 

dynamic  attributes  and JMS 

headers 35 

dynamic  meta-object  header 

attributes  33 

dynamic  versus static 8 

 

© Copyright  IBM Corp. 2000, 2004 103



meta-objects  (continued)
population  of dynamic  during  

polling  35 

properties for dynamic,  static 27 

read  versus  write properties 33 

static (when  to use) 27 

metadata  8 

monitoring,  of transactions  101 

P
point-to-point  messaging  2 

pollForEvents()  method 5 

polling  cylce  5 

PollQuantity  25 

PTP 4, 26 

PTP (point-to-point)  messaging  styles
point-to-point  or queue-based  2 

Pub/Sub  4, 26 

Pub/Sub  messaging  2 

publish-and-subscribe  messaging  2 

Q
queue-based  messaging  2 

R
Recovery  with guaranteed  event 

delivery  7 

ReplyToDestination  25 

Reprocess  7 

request  message  processing
asynchronous  11  

request  processing
overview 10 

response_selector  13 

S
SessionPoolSizeForRequests  25 

setting up your environment  87 

standard  connector  properties 20 

starting the connector  38 

startup  scripts
configuring  37 

static meta-object  8 

and business  object  mapping  9 

when to use 27 

stopping  the connector  39 

synchronous  meta-object  properties 13 

synchronous  processing 11  

T
Tivoli  Monitoring  for Transaction 

Performance  101 

topic-based  messaging  2 

transaction  monitoring  101 

U
Unicode  character  code set 3 

UNIX connector  file structure  18 

UnsubscribedDestination  22, 25 

UnsubscribeOnTerminate  25 

UseDefaults  25 

V
verb support 11 

W
Windows  connector  file structure 17

 

104 Adapter  for JMS User Guide



Notices  

This  information  was  developed  for  products  and  services  offered  in the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to an  IBM  

product,  program,  or  service  is  not  intended  to state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  IBM  may  have  patents  or  

pending  patent  applications  covering  subject  matter  described  in  this  document.  

The  furnishing  of  this  document  does  not  grant  you  any  license  to  these  patents.  

You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World Trade  Asia  Corporation  Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan  

The  following  paragraph  does  not  apply  to the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  INTERNATIONAL  

BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  PUBLICATION  ″AS  IS″  

WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESS  OR  IMPLIED,  

INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  

NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  FOR  A PARTICULAR  

PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  implied  warranties  in 

certain  transactions,  therefore,  this  statement  may  not  apply  to  you.  This  

information  could  include  technical  inaccuracies  or  typographical  errors.  Changes  

are  periodically  made  to  the  information  herein;  these  changes  will  be  incorporated  

in  new  editions  of  the  publication.  IBM  may  make  improvements  and/or  changes  

in  the  product(s)  and/or  the  program(s)  described  in  this  publication  at  any  time  

without  notice.  Any  references  in  this  information  to  non-IBM  Web sites  are  

provided  for  convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  

of  those  Web sites.  The  materials  at  those  Web sites  are  not  part  of the  materials  for  

this  IBM  product  and  use  of  those  Web sites  is at  your  own  risk.  IBM  may  use  or  

distribute  any  of  the  information  you  supply  in  any  way  it  believes  appropriate  

without  incurring  any  obligation  to  you.  Licensees  of this  program  who  wish  to  

have  information  about  it  for  the  purpose  of enabling:  (i)  the  exchange  of  

information  between  independently  created  programs  and  other  programs  

(including  this  one)  and  (ii)  the  mutual  use  of  the  information  which  has  been  

exchanged,  should  contact:  

 

© Copyright  IBM Corp. 2000, 2004 105



IBM  Corporation  

577  Airport  Blvd.,  Suite  800  

Burlingame,  CA  94010  

U.S.A  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  The  licensed  program  described  in  this  

document  and  all  licensed  material  available  for  it  are  provided  by  IBM  under  

terms  of  the  IBM  Customer  Agreement,  IBM  International  Program  License  

Agreement  or  any  equivalent  agreement  between  us.  Any  performance  data  

contained  herein  was  determined  in  a controlled  environment.  Therefore,  the  

results  obtained  in other  operating  environments  may  vary  significantly.  Some  

measurements  may  have  been  made  on  development-level  systems  and  there  is no  

guarantee  that  these  measurements  will  be  the  same  on  generally  available  

systems.  Furthermore,  some  measurements  may  have  been  estimated  through  

extrapolation.  Actual  results  may  vary.  Users  of  this  document  should  verify  the  

applicable  data  for  their  specific  environment.  Information  concerning  non-IBM  

products  was  obtained  from  the  suppliers  of  those  products,  their  published  

announcements  or  other  publicly  available  sources.  IBM  has  not  tested  those  

products  and  cannot  confirm  the  accuracy  of  performance,  compatibility  or  any  

other  claims  related  to  non-IBM  products.  Questions  on  the  capabilities  of  non-IBM  

products  should  be  addressed  to  the  suppliers  of those  products.  All  statements  

regarding  IBM’s  future  direction  or  intent  are  subject  to  change  or  withdrawal  

without  notice,  and  represent  goals  and  objectives  only.  This  information  contains  

examples  of  data  and  reports  used  in  daily  business  operations.  To illustrate  them  

as  completely  as  possible,  the  examples  include  the  names  of  individuals,  

companies,  brands,  and  products.  All  of  these  names  are  fictitious  and  any  

similarity  to  the  names  and  addresses  used  by  an  actual  business  enterprise  is 

entirely  coincidental.  COPYRIGHT  LICENSE:  This  information  contains  sample  

application  programs  in  source  language,  which  illustrate  programming  techniques  

on  various  operating  platforms.  You may  copy,  modify,  and  distribute  these  sample  

programs  in  any  form  without  payment  to IBM,  for  the  purposes  of  developing,  

using,  marketing  or  distributing  application  programs  conforming  to the  

application  programming  interface  for  the  operating  platform  for  which  the  sample  

programs  are  written.  These  examples  have  not  been  thoroughly  tested  under  all 

conditions.  IBM,  therefore,  cannot  guarantee  or  imply  reliability,  serviceability,  or  

function  of  these  programs.  If you  are  viewing  this  information  softcopy,  the  

photographs  and  color  illustrations  may  not  appear.  

Programming interface information 

Programming  interface  information,  if provided,  is intended  to help  you  create  

application  software  using  this  program.  General-use  programming  interfaces  

allow  you  to  write  application  software  that  obtain  the  services  of  this  program’s  

tools.  However,  this  information  may  also  contain  diagnosis,  modification,  and  

tuning  information.  Diagnosis,  modification  and  tuning  information  is provided  to  

help  you  debug  your  application  software.  

Warning:   Do  not  use  this  diagnosis,  modification,  and  tuning  information  as  a 

programming  interface  because  it is subject  to  change.

 

106 Adapter  for JMS User Guide



Trademarks  and service marks 

The  following  terms  are  trademarks  or  registered  trademarks  of  International  

Business  Machines  Corporation  in the  United  States  or  other  countries,  or  both:  

i5/OS  

IBM  

the  IBM  logo  

AIX  

CICS  

CrossWorlds  

DB2  

DB2  Universal  Database  

Domino  

IMS  

Informix  

iSeries  

Lotus  

Lotus  Notes  

MQIntegrator  

MQSeries  

MVS  

OS/400  

Passport  Advantage  

SupportPac  

WebSphere  

z/OS  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of 

Microsoft  Corporation  in the  United  States,  other  countries,  or  both.  MMX,  

Pentium,  and  ProShare  are  trademarks  or  registered  trademarks  of  Intel  

Corporation  in the  United  States,  other  countries,  or  both.  Java  and  all  Java-based  

trademarks  are  trademarks  of Sun  Microsystems,  Inc.  in the  United  States,  other  

countries,  or  both.  Linux  is a trademark  of  Linus  Torvalds  in  the  United  States,  

other  countries,  or  both.  Other  company,  product  or  service  names  may  be  

trademarks  or  service  marks  of  others.  

WebSphere  Business  Integration  Adapter  Framework  V2.6.0  

 

 

 

Notices  107



108 Adapter  for JMS User Guide





����

  

Printed in USA 

 

 

 

 


	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 2.7
	New in release 2.6
	New in release 2.5
	New in release 2.4.x
	New in release 2.3.x
	New in release 2.2.x
	New in release 2.1.x
	New in release 1.3.x
	New in release 1.2.x
	New in release 1.1.x

	Chapter 1. Adapter for JMS overview
	Adapter for JMS environment
	Broker compatibility
	Adapter standards
	Adapter platforms
	Adapter dependencies
	Common Event Infrastructure
	Application Response Measurement
	Locale-dependent data

	Adapter for JMS terminology
	Connector for JMS architecture
	Message processing
	Event message processing
	Request message processing


	Chapter 2. Installing and configuring the adapter
	Installation tasks
	Installing the adapter and related files
	Installed file structure
	Windows connector file structure
	UNIX connector file structure

	Connector configuration
	Configuring connector properties
	Configuring standard connector properties
	Configuring connector-specific properties
	Configuring message style
	Configuring JNDI

	Configuring meta-objects
	Meta-object properties
	Configuring a static meta-object
	Configuring a dynamic child meta-object

	Configuring startup scripts
	Creating multiple connector instances
	Create a new directory

	Starting the connector
	Stopping the connector

	Chapter 3. Creating or modifying business objects
	Connector business object structure
	Creating business objects


	Chapter 4. Troubleshooting
	Error handling
	Application timeout
	Unsubscribed business object
	Connector not active
	Data handler conversion

	Tracing
	Fixing start-up problems

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat


	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Tutorial
	Tutorial overview
	Setting up your environment
	Running the scenarios
	Running the static meta-object scenario
	Running the dynamic meta-object scenario


	Appendix D. Configuring for topic- and queue-based messaging
	Configuring for queue-based messaging
	Configuring for topic-based messaging

	Appendix E. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix F. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information


	Index
	Notices
	Programming interface information
	Trademarks and service marks


