
IBM WebSphere Business Integration Adapters

Adapter for JD Edwards OneWorld User

Guide

Version 2.0.x

���

IBM WebSphere Business Integration Adapters

Adapter for JD Edwards OneWorld User

Guide

Version 2.0.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 101.

22December2006

This edition of this document applies to IBM WebSphere Business Integration Adapter for JD Edwards OneWorld,

version 2.0.4.

To send us your comments about IBM WebSphere Business Integration documentation, e-mail

doc-comments@us.ibm.com. We look forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

Audience . v

Prerequisites for this document . v

Related documents . v

Typographic conventions . vi

New in this release . vii

New in release 2.0.4 . vii

New in release 2.0.x . viii

New in release 1.0.0 . viii

Chapter 1. Overview . 1

Terminology . 1

Connector overview . 2

Connector architecture . 2

How the connector works . 8

Chapter 2. Installing the adapter . 11

Compatibility . 11

Assumptions and third-party dependencies . 11

Installing the adapter for JD Edwards OneWorld and related files 12

Connector file structure . 13

Post-installation tasks . 14

Chapter 3. Configuring the connector . 17

Standard connector properties . 17

Connector-specific properties . 17

Starting the connector . 19

Stopping the connector . 19

Installing and configuring IBM event store . 19

Population of an event into the event table . 21

Using log and trace files . 21

Chapter 4. Creating and modifying business objects 23

Overview of the ODA for OneWorld . 23

Generating business object definitions . 23

Uploading business object files . 35

Chapter 5. Understanding business objects . 37

Defining metadata . 37

Connector business object structure . 37

Sample business object . 44

Generating business objects . 46

Chapter 6. Error handling and event codes . 49

Error handling . 49

Logging . 51

Tracing . 51

Event status codes . 52

Appendix A. Standard configuration properties for connectors 55

New properties . 55

Standard connector properties overview . 55

© Copyright IBM Corp. 2003, 2006 iii

Standard properties quick-reference . 57

Standard properties . 63

Appendix B. Connector Configurator . 79

Overview of Connector Configurator . 79

Starting Connector Configurator . 80

Running Configurator from System Manager . 81

Creating a connector-specific property template . 81

Creating a new configuration file . 84

Using an existing file . 85

Completing a configuration file . 86

Setting the configuration file properties . 87

Saving your configuration file . 94

Changing a configuration file . 95

Completing the configuration . 95

Using Connector Configurator in a globalized environment 95

Startup scripts for Adapter Framework 2.6 . 97

Overview of Adapter Framework 2.6 changes . 97

start_OneWorld.bat for Adapter Framework 2.6 . 97

start_OneWorld.sh for Adapter Framework 2.6 . 98

start_OneWorldODA.bat for Adapter Framework 2.6 . 99

oda.dd.xml for Adapter Framework 2.6 . 100

Notices . 101

Programming interface information . 103

Trademarks and service marks . 103

Index . 105

iv Adapter for JD Edwards OneWorld User Guide

About this document

IBMR WebSphereRBusiness Integration Adapter portfolio supplies integration

connectivity for leading e-business technologies, enterprise applications, legacy,

and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business process integration.

This document describes the installation, configuration, business object

development, and troubleshooting for the IBM WebSphere Business Integration

Adapter for JD Edwards OneWorld.

Audience

This document is for consultants, developers, and system administrators who

support and manage the WebSphere business integration system at customer sites.

Prerequisites for this document

Users of this document should be familiar with the WebSphere business integration

system, with business object and collaboration development, and with the JD

Edwards OneWorld technology.

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapter

installations, and includes reference material on specific components.

You can download, install, and view the documentation at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

The documentation set consists of Portable Document Format (PDF) files and files

in HTML format. To read it, you need an HTML browser such as Netscape

Navigator (version 4.7 or higher) or Internet Explorer (version 5.5 or higher) and

Adobe Acrobat Reader (Version 4.0.5 or higher). For the latest version of Adobe

Acrobat Reader for your platform, go to the Adobe Web site (http://
www.adobe.com).

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site, http://www.ibm.com/software/integration/websphere/support/

Select the component area of interest and browse the Technotes and Flashes

sections.

© Copyright IBM Corp. 2003, 2006 v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.adobe.com
http://www.adobe.com
http://www.ibm.com/software/integration/websphere/support/

Typographic conventions

This document uses the following conventions:

 Typographic convention Description

courier font Indicates a literal value, such as a command name,

filename, information that you type, or information that the

system prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the

convention for directory paths. For UNIX installations,

substitute slashes (/) for backslashes. All product

pathnames are relative to the directory where the product is

installed on your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows text system variable or user variable. The

equivalent notation in a UNIX environment is $text,

indicating the value of the text UNIX environment variable.

ProductDir Represents the directory where the product is installed.

vi Adapter for JD Edwards OneWorld User Guide

New in this release

New in release 2.0.4

This release incorporates fix pack and product changes occuring since the last

release of this document. Unless otherwise noted, the features described are new as

of release 2.0.4.

With fix pack 2.0.1 of the Adapter for JD Edwards OneWorld, the following issues

are resolved:

v The adapter supports JD Edwards OneWorld Application verion 8.93 (PeopleSoft

Enterprise One).

v The object discovery agent (ODA) works with Enterprise One version 8.9 and

OneWorld version 9.0. The ODA successfully generates business object

definitions, which are displayed when you select the the business function jar

file. The spaces in table names are replaced with underscores (_).

With version 2.0.4, the adapter supports PeopleSoft EnterpriseOne Tools version

8.95.

This document provides URLs that show how to create, package, and deploy

custom business functions for event notification. For more information, see

“Creating, packaging, and deploying custom business functions” on page 41.

For XML business object functions, attributes clause_type and clause_seq are

defined. For more information, see “Attribute-level ASI” on page 42.

You can download and install a JD Edwards OneWorld version 8.93 event store.

For more information, see “Installing and configuring IBM event store” on page 19.

For event notification, the adapter supports business functions only, not XML List

operations. For request processing, you can implement both business function and

XML List objects to work with the adapter. For more information and an overview,

see “Connector overview” on page 2.

This document now lists and explains event status codes. For more more

information, see “Event status codes” on page 52.

The connector-specific property, UseDefaults, is not used by any version of the

adapter.

If you are running the adapter with WebSphere BusinessIntegration Adapter

Framework 2.6, you must modify startup scripts for the connector and for the

object discovery agent. Otherwise, the adapter may not work with the new

framework. For more information, see “Modify startup script for Adapter

Framework 2.6” on page 15.

This document now describes the event business object structure. This information

helps you populate an event to the event table. For more information, see

“Population of an event into the event table” on page 21.

© Copyright IBM Corp. 2003, 2006 vii

For Windows 2000 platforms, you must modify the startup script to avoid

invocation errors. For more information and suggested modifications, see “Modify

startup script for Windows 2000” on page 15.

The business object table type, TABLE_CONVERSION, is not supported.

New in release 2.0.x

Version 2.0.x of the Adapter for JD Edwards OneWorld supports XML List APIs.

New in release 1.0.0

Version 1.0.0 is the first release of the Adapter for JD Edwards OneWorld.

viii Adapter for JD Edwards OneWorld User Guide

Chapter 1. Overview

This chapter provides an overview of the connector component of the WebSphere

Business Integration Adapter for JD Edwards OneWorld and contains the following

sections:

v “Terminology”

v “Connector overview” on page 2

v “Connector architecture” on page 2

v “How the connector works” on page 8

Terminology

The following terms are used in this guide:

v ASI (Application-Specific Information) Metadata tailored to a particular

application or technology. ASI exists at both the attribute, verb, and business

object level of a business object. See also Verb ASI.

v BF (Business Function) A collection of C functions and their associated data

structures, logically grouped to perform a specific task. Regular business

functions perform simple tasks, such as tax calculation or account number

validation. Master business functions perform tasks that are more complex and

can call several regular business functions.

v BO (Business Object) A set of attributes that represent a business entity (such as

Employee) and an action on the data (such as a create or update operation).

Components of the WebSphere business integration system use business objects

to exchange information and trigger actions.

v BO (Business Object) handler A connector component that contains methods

that interact with an application and that transforms request business objects

into application operations.

v Connector agent A component of the connector that processes service call

requests from the Integration broker as well as event notifications from

OneWorld.

v Connection object A connection is a reference to an application that can contain

state information. For every instance of a connection on the adapter side, there is

a corresponding object on the JD Edwards OneWorld side. The business object

handler creates connections when required, up to the maximum size of the value

of the pool size property. The new connections are maintained in the pool and

are re-used by multiple business object executions.

v Connection pool A repository used to store and retrieve connection objects.

v GenJava A utility provided by JD Edwards OneWorld to generate Java wrappers

for the business functions running as part of the OneWorld server. GenJava

creates Java Class files for the interface classes and associated data structures,

compiles the generated Java files, generates Java docs, and packages them into

two jar files: one for Java classes and the other for Java doc.

v Interoperability framework Allows seamless sharing of function and

information between disparate software applications. Includes business function

wrappers that provide a single point of access to major and minor business

functions. Also includes master business function wrappers.

© Copyright IBM Corp. 2003, 2006 1

v Java objects Wrappers, implemented in Java, around OneWorld business

functions and data structures. Java objects provide a one-to-one correspondence

with OneWorld business functions.

v ODA (object discovery agent) A tool that automatically generates a business

object definition by examining specified entities within the application and

“discovering” the elements of these entities that correspond to business object

attributes. When you install the adapter, the ODA is automatically installed.

v Verb ASI (application-specific information) For a given verb, the verb ASI

specifies how the connector should process the business object when that verb is

active. It can contain the name of the method to call to process the current

request business object.

v XML List A retrieval interface to OneWorld, with which you can fetch data from

a table or from a predefined table conversion process.

Connector overview

The connector for JD Edwards OneWorld is a runtime component of the

WebSphere Business Integration Adapter for JD Edwards OneWorld.

WebSphere Business Integration Adapter for JD Edwards OneWorld V2.0 enables

bidirectional, real-time integration between JD Edwards OneWorld Xe 8.x as well

as other E-commerce, CRM, supply chain, and ERP applications. This adapter is

synchronous and entirely Java-based. The JD Edwards adapter interacts with

OneWorld through OneWorld Java APIs and includes an event notification

mechanism through OneWorld triggers.

The JD Edwards OneWorld Adapter includes a connector, message files,

configuration tools, and an Object Discovery Agent (ODA). The connector allows

the WebSphere integration broker to exchange data between business objects and

their corresponding OneWorld objects running on a OneWorld server.

The primary role of the generic OneWorld adapter is to act as an agent to facilitate

communication and data exchange between a OneWorld server and the integration

broker. The adapter is developed in Java and uses the OneWorld component jar

files generated by the GenJava interface tool, provided by OneWorld.

OneWorld objects are business functions that run as part of the OneWorld server.

The WebSphere Business Integration Adapter for OneWorld uses the OneWorld

Java connector to invoke business functions.

The XML List API is another way of retrieving a list of records from

EnterpriseOne. For request processing, you can implement both business function

and XML List objects to work with the adapter. However, for event notification, the

adapter supports business functions only, not XML List operations.

Connector architecture

Connectors consist of two components: the connector framework and the

application-specific component. The connector framework, whose code is common

to all connectors, acts as an intermediary between the integration broker and the

application-specific component. The application-specific component contains code

tailored to a particular technology (in this case, JD Edwards OneWorld) or

application. The connector framework provides the following services between the

integration broker and the application-specific component:

v Receives and sends business objects

2 Adapter for JD Edwards OneWorld User Guide

v Manages the exchange of startup and administrative messages

This document contains information about both the connector framework and the

application-specific component. It refers to both of these components as the

connector.

All WebSphere business integration adapters operate with an integration broker.

The connector for JD Edwards OneWorld operates with WebSphere InterChange

Server, WebSphere MQ Integrator Broker, or WebSphere Application Server. For

more information, see the installation and implementation documentation of your

broker.

OneWorld applications WBIA OneWorld adapter

OneWorld Java connector/
XML List APIs

communication API JDENET

OneWorld kernel

application APIs

master business functionsdatabase API JDEBase

database API JDEBase

active data dictionary and database

Business functions

OneWorld business functions perform specific tasks, such as journal entry

transactions, calculating deprecation, and sales order transactions. There are two

types of business functions. Regular business functions perform simple tasks, such

as tax calculation or account number validation. Master business functions perform

tasks that are more complex, and can call several regular business functions to

perform those tasks.

The interoperability framework includes business function wrappers that provide a

single point of access to major and minor business functions. It also includes

master business function wrappers.

Figure 1. Connector architecture

Chapter 1. Overview 3

When there are no business functions available to call a particular business object,

you can use XML List. The following diagram illustrates the flow of an XML call.

JDENET

Adapter for OneWorld

Java ThinNet

OneWorld call object

XML call object

 I

When an XML call occurs, the following steps happen:

1. An interoperability client sends an XML document to OneWorld.

2. The client uses APIs defined in C++ or Java ThinNet to send the XML

document to JDENET.

3. The ThinNet uses multi-threaded architecture to perform load balancing and to

manage multiple XML documents simultaneously.

4. If the interoperability client sends a call object (only used for synchronous

requests like handling service calls), the adapter will not use the XML

transaction APIs. An XML document, received from the adapter for OneWorld,

processes the request using JDENET. The following steps describe the process:

a. The XML document creates a socket connection.

b. Generates a JDENET message.

c. Sends the JDENET message.

d. Receives a JDENET message.

e. Unpacks the response data.

f. Closes the socket connection.

g. Passes out the response data to an XML response file.

h. Returns the generated response file to the adapter for OneWorld.
5. If the interoperability client does not send a call object, then it sends an XML

transaction API (usually used for asynchronous requests).

The following diagram illustrates the process flow for ThinNet used in

XMLCallObject.

Figure 2. XML List call flow

4 Adapter for JD Edwards OneWorld User Guide

XML
Document

XML
Response

WBIA
OneWorld
Adapter

Create a socket connection

Generates JDENET Message

Send JDENET Message

Receive JDENET Message

Unpack response data

Close socket connection

Pass out response data

One World Server

J
D
E
N
E
T

The following diagram illustrates the adapter architecture.

OneWorld client tools Integration broker

WebSphere Business Integration
Adapters API

OneWorld
adapter agent

Event
notification

OneWorld
server

BO
handler

WebSphere Business Integration
event store

JDENET
J
D
E
N
E
T

OneWorld
Java

connector

XML List
APIs

OneWorld supports several APIs for communication with third-party applications

such as Java, COM, Oracle Database Applications, XML, and Table Conversion.

Figure 3. Process flow

Figure 4. Architectural diagram

Chapter 1. Overview 5

The adapter uses the Java APIs for invoking business functions in OneWorld. The

business objects map to business function classes or objects.

A summary of the implementation is as follows:

1. Prepare an iJDEScript file for running the GenJava process. Refer to “Sample

GenJava script file” on page 44.

2. Run the GenJava utility to generate the jar files for OneWorld objects.

3. Run the ODA tool to generate business objects for the business functions and

XML List. Refer to “Running Business Object Designer” on page 24.

4. Set the key fields and the foreign key fields if you need to map data between

two business objects.

5. Add the business objects to the adapter configuration file. Refer to “Startup

scripts for Adapter Framework 2.6” on page 97.

6. Start the adapter. Refer to “Starting the connector” on page 19.

Request processing

When the connector framework receives a request from the broker, it calls the

doVerbFor() method of the business-object-handler class associated with the

business object definition of the request business object. The role of the

doVerbFor() method is to determine the verb processing to perform, based on the

active verb of the request business object. It obtains information from the request

business object to build and send requests for operations to the application.

When the connector framework passes the request business object to doVerbFor(),

if the business object maps to an interface object, the business object handler reads

the verb ASI and translates it into a series of callable functions. You can give these

functions specific semantic meaning through the Object Discovery Agent (ODA)

running in Business Object Designer. For details about using the ODA to assign a

method call sequence to a verb, see Chapter 4, “Creating and modifying business

objects,” on page 23. The order in which the calls are made is critical to the

successful processing of the object.

In the case of an interface business object with a blank verb ASI, the business

object handler searches for a business function attribute with populated parameters

and calls that business function. Only one method can be populated; otherwise, if

multiple methods are populated but the verb ASI is blank, the connector logs an

error and returns a FAIL code. For details about error processing, see “Error

handling” on page 49.

If the business object maps to a business function object, the business object

handler invokes the specific business function with the data specified in the

business object.

If retrieval business functions are not available for specific business objects, you

can use the XML List API for retrieval functionality.

The connector does not support any specific verbs for the interface business

objects, but using the ODA, the user can configure verbs for a business object. The

standard verbs used by WebSphere Business Integration are Create, Retrieve,

Update, and Delete.

For business function business objects, the ODA generates a default verb, Execute.

The verb ASI is not required for these business objects.

6 Adapter for JD Edwards OneWorld User Guide

To support special access permissions for a business object, a meta business object

is defined with the name ACCESS_LEVEL. The ACCESS_LEVEL business object has two

attributes, Username and Password, both of type String. A OneWorld business object

that has special access rules and cannot be accessed through the Username specified

in the connector configuration file, would have this business object (ACCESS_LEVEL)

as a child business object with single cardinality. You must add this child business

object only to the top-level business object in a doVerbFor call. All the child

business objects for this top-level business object must be accessible through the

Username specified in the ACCESS_LEVEL child business object.

The business object handler checks to see if the top-level business object has a

child business object of type ACCESS_LEVEL. If yes, and the value for the Username

attribute in that business object is different from what is being used by the adapter,

then it opens a new connection for processing this business object using the value

for attributes Username and Password of the child business object. The connection

closes after the processing of the business object is complete.

If the top-level business object does not have a child business object of type

ACCESS_LEVEL, or the value of the Username attribute is the same as the Username

specified in the adapter properties, the business object handler fetches a connection

object from the pool.

If there is no available connection object and the maximum limit of the pool size is

not reached, the business object handler creates a new connection object in the

pool. If there is no available connection object and the maximum limit of the pool

size is reached, then it waits for a connection object become available.

The adapter supports top-level business objects as the ones that map to OneWorld

interface classes or XML List business objects. It also supports business objects that

map to business functions as top-level business objects. The adapter handles the

business object based upon the type and structure of the business object. Instead of

relying completely on the business objects generated by the ODA, you can create

your own hierarchy using the business objects that map to business functions to

give a logical representation. For example, the business functions for creating an

Order and creating an Order Item can be modeled as a hierarchy. The business

objects that map to business functions that create OrderItems would become child

business objects of the business object that maps to create the Order business

object.

The adapter executes top-level business objects that map to business functions. If

the business object does not have any child business objects, the adapter executes

the business function that corresponds to the business object. If the hierarchy of

such business objects is an input to the business object handler, then, the adapter

executes all the business functions in one transaction. In this case, the verb ASI is

blank and the flow of the business functions are determined by the order of

attributes in the top-level business object. For example, if the top-level business

object maps to B110031 and has children B110032 and B110033, then the order of

the execution is B110031, B110032, B110033.

If the type attribute of the business object is XMLList, then the business object

handler prepares an XML document with values and format defined by the

business object. The adapter sends the XML document to OneWorld, using the

XMLRequest object. The adapter receives the response as an XML response

document and the handler uses the response data from the XML response

document to populate the business object.

Chapter 1. Overview 7

In some cases, a single simple attribute or an object may need to be used multiple

times in a call sequence. You can use attribute ASI to link two attributes. If an

attribute is marked as a foreign key, it must have an attribute ASI,

use_attribute_value= tag, the value of which must correspond to

BusinessObject.AttributeName. Use this link only if the source business object is of

single cardinality. If it is configured with a source business object with multiple

cardinality, then the adapter picks up the first business object from the list and

maps the value from that business object.

Application event processing

Event notification requires the installation of the event package, BIA_EVENT, shipped

with the adapter and the creation of event and archive tables in the JDE database.

For information about how to install and configure the BIA_EVENT event package,

refer to “Installing and configuring IBM event store” on page 19.

The creation, update, or deletion of any record in the JD Edwards OneWorld

application can be treated as an event. You can use table triggers, supported by

OneWorld, to populate the event table. You can also use any other JD Edwards

recommended method to generate events into the event table. During a call to

pollForEvents, these records are obtained and processed. The event table stores

information about the event, as described in Table 6 on page 41.

Note: The Event ID must be unique in the Event table.

Note: The connector uses the information in Table 6 during event subscription to

build corresponding business objects and to send those objects to the

connector framework for further processing.

Retrieving business objects for event processing

Retrieval of objects for event processing is based on both key and non-key

attributes. It is mandatory that the business object support the Execute verb if the

business object represents a JD Edwards business function and that is supports the

Retrieve verb if the business objects represents an interface.

Event management

The connector polls the IBM Event table (F5501005) at a regular interval, retrieves

the events, and processes the events first by priority and then sequentially. When

the connector has processed an event, the event’s status is updated appropriately.

The setting of the ArchiveProcessed property determines whether the connector

archives an event into the IBM Archive table (F5501006) after updating its status.

For more information on the ArchiveProcessed property, see “Connector-specific

properties” on page 17. Table 3 on page 17 illustrates the archiving behavior

depending on the setting of the ArchiveProcessed property.

How the connector works

This section describes how the different parts of the connector process a business

object:

1. Upon startup of the connector, the connector’s Agent class performs the

following initialization (Init) processes:

v Retrieves configuration properties.

v Fetches the Username and Password, and Environment from the connector

configuration file.

8 Adapter for JD Edwards OneWorld User Guide

v Creates a OneWorld connector object.

v Logs in to the OneWorld server using the Login method and parameters

using the Username and Password as fetched above. This method returns a

SessionID.

v Creates an instance of the OneWorld interface object.

v Adds the connector, OneWorldInterface, and SessionID to the connection

pool.
2. The OneWorld business object handler reads the verb ASI and translates it into

a sequence of callable functions or child objects.

v If the business object has a child business object of type ACCESS_LEVEL and

the Username attribute within this child business object is populated and has

a value that is different from what is used by the adapter, then the business

object handler opens a new connection using the values of the Username and

Password attributes specified for the ACCESS_LEVEL business object. All such

business objects must have both Username and Password attributes populated.

v If the connection creation fails because the application is down, the business

object handler returns APPRESPONSETIMEOUT.

v If the connection creation fails because the Username/Password is wrong, then

the business object handler logs an error and returns a FAIL status.

v If the business object does not have a child business object of type

ACCESS_LEVEL, or the value for the Username attribute in this business object is

null or has the same value as specified for the adapter Username, then it

fetches a connection form the available connection pool. The following steps

represent what would happen in the connection pool when the business

object handler requests an available connection:

a. The business object handler checks to see if there are available

connections in the pool.

b. If yes, it checks for the validity of the connection. If it is not valid it

attempts to recreate the connection.

c. If the connection creation fails, it returns APPRESPONSETIMEOUT status.

d. The business object handler removes the connection from the available

list and adds it to the busy list.

e. If the connection is not available and the maximum number of

connections is less than the pool size, then it opens a new connection and

adds it to the connection pool’s busy list. If opening a new connection

returns a failure, the adapter returns APPRESPONSETIMEOUT.

f. If no connections are available and the maximum limit of the pool size

has been reached, then the doVerbFor thread waits until a connection

becomes available.
v If the business object is of type BFN, then the adapter performs the following

actions:

a. The adapter starts a transaction using the BeginTransaction method of

the OneWorld class OneWorldInterface.

b. If the business object maps to an interface class and if the verb ASI is

blank, the adapter finds the first method attribute or the first child object

that is populated in the business object and executes. it.

c. If the verb ASI is populated, the adapter calls InvokeMethods, which loops

through all the methods specified in the verb ASI.

d. If the business object maps to a business function, the invoker executes

the business function that maps to the business object. If there are child

business objects that are not of type ACCESS_LEVEL, the business object

Chapter 1. Overview 9

handler loops through them and executes the business functions

corresponding to them in the order in which they are defined in the

top-level business object.

e. The invoker constructs the arguments based on the attributes defined in

the business object and then invokes the method on OneWorld Java

objects using reflection APIs.

f. If the execution of the complete business object succeeds, the business

object handler commits the transaction using the Commit method on object

OneWOrldInterface and returns a VALCHANGED status.
v If the business object is of type XMLList, then the adapter performs the

following actions:

a. The adapter creates an XML document with the values and format as

specified in the business object.

b. The adapter sends the document to OneWorld using XML List APIs.

c. In the event of a failure, the adapter logs an error code and reason in the

response document. It also logs errors in the log file with the return

status of FAIL if there is a problem with the request document.

d. When the adapter sends the XML document to OneWorld successfully,

the values from the response document are updated in the business

object.

e. If the business object has child business objects that are not of type

ACCESS_LEVEL, the handler repeats the above steps for each child business

object.

f. If the adapter processes the entire business object successfully, the status is

set to VALCHANGED.
v Releases the connection to the connection pool.

v Returns VALCHANGED upon successful execution of the business functions.

v Returns FAIL if the business object is of type BFN and maps to the Interface

class and the verb ASI is blank and no attributes are populated.

v Returns FAIL if processing fails.
3. The ConnectionEventStore class performs the following for subscription

delivery:

v When the connector encounters an event, it

– creates a business object of the type specified by the event,

– sets the key and non-key values for the business object (using the object

key specified in the event table),

– sets the verb as Execute if the business object is of type business function,

– sets the verb as Retrieve if the business object is of type interface.
v After it retrieves the business object, the connector sends it to the integration

broker with the verb specified in the event.
4. Terminates (Terminate) by closing all the connections from the connection pool.

10 Adapter for JD Edwards OneWorld User Guide

Chapter 2. Installing the adapter

v “Compatibility”

v “Assumptions and third-party dependencies”

v “Installing the adapter for JD Edwards OneWorld and related files” on page 12

v “Connector file structure” on page 13

v “Post-installation tasks” on page 14

Compatibility

The adapter framework that an adapter uses must be compatible with the version

of the integration broker (or brokers) with which the adapter is communicating.

The 2.0.4 version of the adapter for OneWorld is supported on the following

adapter framework and integration brokers:

v Adapter framework:

– WebSphere Business Integration Adapter Framework versions 2.1, 2.2, 2.3.x,

2.4, and 2.6
v Integration brokers:

– WebSphere InterChange Server, version 4.1x, 4.2.x

– WebSphere MQ Integrator, version 2.1.0

– WebSphere MQ Integrator Broker, version 2.1.0

– WebSphere Business Integration Message Broker, version 5.0

– WebSphere Application Server Enterprise, version 5.0.2, with WebSphere

Studio Application Developer Integration Edition, version 5.0.1

See Release Notes for any exceptions.

Note: For instructions on installing the integration broker and its prerequisites, see

the following guides.

For WebSphere InterChange Server (ICS), see the System Installation Guide for UNIX

or for Windows.

For message brokers (WebSphere MQ Integrator Broker, WebSphere MQ Integrator,

and WebSphere Business Integration Message Broker), see Implementing Adapters

with WebSphere Message Brokers, and the installation documentation for the message

broker. Some of this can be found at the following Web site:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

For WebSphere Application Server, see Implementing Adapters with WebSphere

Application Server and the documentation at

http://www.ibm.com/software/webservers/appserv/library.html

Assumptions and third-party dependencies

Before you install the connector for JD Edwards OneWorld, review the platform

requirements in this section and see the EnterpriseOne documentation for any

additional software dependencies, including those specific to your version of

EnterpriseOne.

© Copyright IBM Corp. 2003, 2006 11

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/webservers/appserv/library.html

Platform requirements

The connector runs on the following platforms:

v Windows XP

v Windows 2000

v Solaris 8.0

v HP/UX 11i

v AIX 5.2

Installing the adapter for JD Edwards OneWorld and related files

For information on installing WebSphere Business Integration adapter products,

refer to the Installation Guide for WebSphere Business Integration Adapters, located in

the WebSphere Integration Adapters Information Center at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

WebSphere Business Integration Adapter directories and files

After the installation is complete, you can view the file system and its contents.

The folders and files created vary depending on the choices made during the

installation and on the operating system.

The Installer copies the standard files associated with the connector into your

system. It installs the connector agent into the ProductDir\connectors\OneWorld

directory, and adds a shortcut for the connector agent to the Start menu. Note that

ProductDir represents the directory where the IBM WebSphere Business Integration

Adapters product is installed. The environment variable contains the ProductDir

directory path, which is IBMWebSphereAdapters by default.

Environment variables

If you chose WebSphere MQ Integrator Broker or WebSphere Application Server as

your broker, Installer takes the actions described in Table 1 to create and update

environment variables on the computer. These actions are not taken if you chose

WebSphere InterChange Server as your integration broker, because the

environment variables required for that broker are created during installation of

the broker.

 Table 1. Actions taken by Installer for environment variables

Environment variable name Installer action

CROSSWORLDS Creates this environment variable to reference

the WebSphere Business Integration Adapter

product directory, as specified when using

Installer.

MQ_LIB Creates this environment variable to contain the

path to the Java\lib directory within the

WebSphere MQ installation, as specified when

using Installer.

CLASSPATH Adds the following entries:

ProductDir\lib\rt.jar;

ProductDir\DataHandlers\CwDataHandler.jar;

12 Adapter for JD Edwards OneWorld User Guide

Table 1. Actions taken by Installer for environment variables (continued)

Environment variable name Installer action

PATH Adds the following entries:

ProductDir\bin\hotspot;

ProductDir\bin\classic;

ProductDir\bin;

Connector file structure

The Installer copies the standard files associated with the connector into your

system.

The utility installs the connector into the ProductDir\connectors\OneWorld

directory, and adds a shortcut for the connector to the Start menu. Note that

ProductDir represents the directory where the product is installed.

Table 2 describes the file structure used by the connector, and shows the files that

are automatically installed when you choose to install the connector through the

Installer.

 Table 2. File structure for the connector

Subdirectory of ProductDir Description

\connectors\OneWorld\BIA_OneWorld.jar Contains classes used by the OneWorld connector only

\connectors\OneWorld\start_OneWorld.bat The startup script for the generic connector (NT/2000) If you are running the adapter

with WebSphere Business Integration Adapter Framework 2.6, you must modify this

file. See “Modify startup script for Adapter Framework 2.6” on page 15

\connectors\OneWorld\start_OneWorld.sh The startup script for the generic connector (Unix). If you are running the adapter

with WebSphere Business Integration Adapter Framework 2.6, you must modify this

file. See “Modify startup script for Adapter Framework 2.6” on page 15

\connectors\OneWorld\dependencies\BIA_IBMEvents.cmd Contains the IBM eventstore business function script file. This file can be used when

executing the GenJava process to create the Java wrappers of Event Store business

functions.

\connectors\OneWorld\dependencies\BIA_EVENT.exe Executable that installs the eventstore package

\connectors\messages\BIA_OneWorldAdapter.txt Message file for the connector

\ODA\OneWorld\BIA_OneWorldODA.jar The OneWorld ODA

\ODA\OneWorld\start_OneWorldODA.bat The ODA startup file. If you are running the adapter with WebSphere Business

Integration Adapter Framework 2.6, you must modify this file. See “Modify startup

script for Adapter Framework 2.6” on page 15

\ODA\OneWorld\BIA_OneWorldODA.sh (Unix users only) The ODA start up file

\ODA\messages\BIA_OneWorldODAAgent_de_DE.txt Message file for the ODA (German text strings)

\ODA\messages\BIA_OneWorldODAAgent_en_US.txt Message file for the ODA (US English text strings)

\ODA\messages\BIA_OneWorldODAAgent_es_ES.txt Message file for the ODA (Spanish text strings)

\ODA\messages\BIA_OneWorldODAAgent_fr_FR.txt Message file for the ODA (French text strings)

\ODA\messages\BIA_OneWorldODAAgent_it_IT.txt Message file for the ODA (Italian text strings)

\ODA\messages\BIA_OneWorldODAAgent_ja_JP.txt Message file for the ODA (Japanese text strings)

\ODA\messages\BIA_OneWorldODAAgent_ko_KR.txt Message file for the ODA (Korean text strings)

\ODA\messages\BIA_OneWorldODAAgent_pt_BR.txt Message file for the ODA (Portuguese - Brazil text strings)

\ODA\messages\BIA_OneWorldODAAgent_zh_CN.txt Message file for the ODA (Simplified Chinese text strings)

\ODA\messages\BIA_OneWorldODAAgent_zh_TW.txt Message file for the ODA (Traditional Chinese text strings)

repository\OneWorld\BIA_CN_OneWorld.txt Repository definition for the connector. The default name is BIA_OneWorld.txt.

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Chapter 2. Installing the adapter 13

Post-installation tasks

After you have successfully installed the Adapter for JD Edwards OneWorld,

complete the following post-installation tasks:

v “Configure the adapter”

v “Copy files”

v “Create an ODBC connection” on page 15

Configure the adapter

After you install the adapter and before you start it for the first time, you must

configure the adapter. For details, see Chapter 3, “Configuring the connector,” on

page 17.

Copy files

During installation, GenJava generates .jar files containing business function classes

that are used by the adapter. Copy these .jar files into the ProductDir\connectors\
OneWorld\repository folder. The adapter and ODA dynamically upload these files.

To prepare the Java wrapper for business functions used by the event notification

component, run GenJava using the BIA_IBMEvents.cmd file that comes with the

adapter. Copy the generated .jar file to the ProductDir\connectors\OneWorld\
dependencies folder.

Note: Since the dependency files may be version specific, see the OneWorld

orEnterpriseOne documentation before preforming this task.

OneWorld 8.0

Copy the following files, present in the B7334\System\classes folder to the

ProductDir\connectors\OneWorld\dependencies folder:

v Kernal.jar

v Connector.jar

Copy the jdeinterop.ini file from the B7334\Interoperability\Examples\Java folder

to the ProductDir\connectors\OneWorld\dependencies. For more information on

editing the jdeinterop.ini file, refer to the Interoperability Guide.

EnterpriseOne 8.9.x

Copy the following files, present in the B9\System\classes folder to the

ProductDir\connectors\OneWorld\dependencies folder:

v Kernal.jar

v Connector.jar

v Logic.jar

v Jdeutil.jar

v Database.jar

Note: As JD Edwards updates its releases, these dependencies may change. Refer

to JD Edward’s PeopleSoft EnterpriseOne Tools 8.9.x PeopleBook:

Connectors-> Understanding the Java Connector->Installing a Java

connector.

Copy the sample jdelog.properties and jdeinterop.ini.templ file from the

B9\System\classes\Samples folder as jdeinterop.ini file in the ProductDir\
connectors\OneWorld\dependencies folder.

14 Adapter for JD Edwards OneWorld User Guide

Edit the jdelog.properties and jdeinterop.ini files. For information on editing

sections of the filter, refer to the OneWorld Interoperability Guide.

Create an ODBC connection

The OneWorld adapter requires an ODBC data source for each DB2 UDB database

in order to start and pull the connector. For information about how to create an

ODBC connection, refer to the JD Edwards Installation Guide.

Modify startup script for Windows 2000

If you are running the adapter on Windows 2000 and using InterChange Server as

a broker, modify the startup script to avoid an invocation error. The error occurs

when you start the adapter. The invocation fails because the startup command is

too long. Modify the startup script by replacing each instance of ″%CONNDIR%″ with

″..″, the relative path symbol.

For example, modify %CONNDIR%\repository to ..\repository

For more on the script changes, see ftp://ftp.software.ibm.com/software/ts/cw/
adapters/AdapterForOneWorld/WIN/OneWorld_Adapter_Script_Ch

Modify startup script for Adapter Framework 2.6

If you are running the Adapter for JD Edwards OneWorld with WebSphere

Business Integration Adapter Framework 2.6, you must modify startup scripts after

installing, but before starting, the connector. Otherwise, the Adapter for JDE

OneWorld may not work with the new framework. For more information and

sample startup scripts, see “Startup scripts for Adapter Framework 2.6” on page

97.

Chapter 2. Installing the adapter 15

ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/OneWorld_Adapter_Script_Ch
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/OneWorld_Adapter_Script_Ch

16 Adapter for JD Edwards OneWorld User Guide

Chapter 3. Configuring the connector

After installation and before startup, you must configure components as described

in this section.

v “Starting the connector” on page 19

v “Stopping the connector” on page 19

v “Using log and trace files” on page 21

Connectors have two types of configuration properties: standard and

adapter-specific. You must set the values of these properties using Connector

Configurator before running the adapter. For further information, see “Startup

scripts for Adapter Framework 2.6” on page 97.

A connector obtains its configuration values at startup. During a runtime session,

you might want to change the values of one or more connector properties.

Changes to some connector configuration properties take effect immediately.

Changes to other connector properties require connector component restart or

system restart after a change. To determine whether a property is dynamic (taking

effect immediately) or static (requiring either connector component restart or

system restart), refer to the Update Method column in the Connector Properties

window of the System Manager.

Standard connector properties

Standard connector configuration properties provide information that all adapters

use. See Appendix A, “Standard configuration properties for connectors,” on page

55 for documentation of these properties.

Connector-specific properties

Connector-specific configuration properties provide information needed by the

connector at runtime. These properties also provide a way for you to change static

information or logic within the connector without having to recode and rebuild it.

To configure connector-specific properties, use Connector Configurator. Click the

Application Config Properties tab to add or modify configuration properties. For

more information, see “Startup scripts for Adapter Framework 2.6” on page 97.

Table 3 lists the connector-specific configuration properties for the connector, along

with their descriptions and possible values. See the sections that follow for details

about the properties.

 Table 3. Connector-specific configuration properties

Name Possible values Default value

Username JDE None

Password JDE None

PoolSize 5 5

Environment DV7334 None

ServerName JDEDEV1 None

PortNo 6010 None

© Copyright IBM Corp. 2003, 2006 17

Table 3. Connector-specific configuration properties (continued)

Name Possible values Default value

PollQuantity Any number. 1

EventStoreFactory com.ibm.adapters.oneworld.

OneWorldEventStoreFactory

Instance

com.ibm.adapters.

oneworld.

OneWorldEventStore

FactoryInstance

InDoubtEvents Reprocess, Fail on startup, Log

error, Ignore

Ignore

ArchiveProcessed True, False True

UseDefaults True True

Username

The Username for connecting with the OneWorld application. This is a required

property.

Password

The Password for connecting with the OneWorld application. This is a required

property.

PoolSize

The maximum number of connections in the Connection Pool. This should not be

more than the maximum allowed connections specified in the JDEInterop.ini file.

This is a required property.

Environment

Name of the environment in which the connection has to be done within

OneWorld. This is a required property.

ServerName

Name of the machine on which the OneWorld server is running. This is a required

property when using XML List business objects.

PortNo

The port number on which the OneWorld server is listening. This is a required

property when using XML List business objects.

PollQuantity

The number of events to be fetched from the application for each poll cycle.

EventStoreFactory

This property is the name of the event store factory instance class. The value is

com.ibm.adapters.omeworld.OneWorldEventStoreFactoryInstance.

InDoubtEvents

Decides whether or not to reprocess incomplete events. Default value is Ignore

18 Adapter for JD Edwards OneWorld User Guide

ArchiveProcessed

Checks if the default value is set or not. If ArchiveProcessed is set to true, the

archival business function archives the event into the archive table. If the property

is set to false or is not set, the archival business function is not called. The default

value is true.

UseDefaults

Checks if the default values are set. The default value is true. This property is not

used by the adapter.

Starting the connector

To start the connector, run the start_OneWorld.bat or start_OneWorld.sh script.

Note: If you are running the adapter with WebSphere Business Integration

Framework 2.6, you must modify the start script. For more information, see

“Modify startup script for Adapter Framework 2.6” on page 15.

If the connector is running with WebSphere MQ Integrator Broker, you must also

set the -c option.

The start command for the connector has this format:

<script name> <connector name> {<ics name> | -c <MQI configuration file>}

So, for WebSphere InterChange Server:

start_OneWorld OneWorld WebSphereICS

Or, for WebSphere MQ Integrator Broker:

start_OneWorld OneWorld -c C:\WebSphereAdapters\connectors\OneWorldAgentConfig.cfg

In Windows, select Start>Programs>IBM WebSphere Business Integration

Adapters>Connectors>OneWorld to start the connector for OneWorld.

Stopping the connector

To stop the connector, you can use Adapter Monitor. The toolbar lets you activate,

de-activate, pause, shutdown and delete the connector.

Installing and configuring IBM event store

The adapter package includes an executable BIA_EVENT.exe file. This executable file

installs the IBM event store components. JD Edwards refers to this as a software

update. Follow the JD Edwards instructions for applying a software update. Event

store (software update) components comprise an event and archive table and

business functions used for retrieving, deleting, updating, and archiving events in

the event and archive table.

Note: For JD Edwards OneWorld version 8.93, access updated event store

component files WBIAEVTPK.exe and WBIAEVTPK.cab at the following

locations:

ftp://ftp.software.ibm.com/software/ts/cw/adapters

/AdapterForOneWorld/WIN/WBIAEVTPK.exe

Chapter 3. Configuring the connector 19

ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/WBIAEVTPK.exe
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/WBIAEVTPK.exe

ftp://ftp.software.ibm.com/software/ts/cw/adapters

/AdapterForOneWorld/WIN/WBIAEVTPK.cab

Then use these files to install the event store. Both files include the full

software master and its directories. If you cannot download the .exe file

due to size restrictions, download the smaller.cab file and decompress it

before installing.

Business functions for event handling, table definition files, and data items are part

of the event package BIA_EVENT.exe. You must prepare the deployment server or

workstation before executing a software update, then follow the software update

procedure. The JD Edwards Software Update Installation Guide describes the

preparation and update procedures in detail.

The BIA_EVENT.exe file creates the required business functions and table definition

scripts, however you must create the event and archive tables using the JD

Edwards client. Once you have successfully installed the software update on the

deployment server or workstation you must deploy the components to the

enterprise server so the adapter can find the event store.

The contents of the BIA_EVENT package are as follows:

v B551005 — Retrieve_WBIAEvents

v B551006 — Update_WBIAEvent

v B551007 — Archive_WBIAEvent

v B551008 — Delete_WBIAEvent

v B551009 — Recover_WBIAEvent

The following are the Tables Definitions files:

v F5501005.h — Event table structure

v F5501006.h — Archive table structure

The following data items are included:

v EVENT_ID

v EVT_DESC

v EVT_PRTY

v EVT_STATUS

v EVT_TIME

v ADAPTER_ID

v ARCHIVE_T

v OBJ_KEY

v OBJ_NAME

v OBJ_VERB

Note: Other data items exist in the package but are not used by the tables and will

be removed from the package in the next release.

20 Adapter for JD Edwards OneWorld User Guide

ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/WBIAEVTPK.cab
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/WIN/WBIAEVTPK.cab

Population of an event into the event table

To populate an event to the event table, you can either use OneWorld table triggers

or any other JD Edwards recommended method. The event business object

structure is as follows:

v Object Key:

– A required field

– The unique identifier for the business object row for which the event was

created

– The format of the value should corresponded to the business object definition

generated by the ODA in ways such as ChildBOName.keyAttribute=123

(where ChildBOName is of type Business Function)

– Values provided in this field are case sensitive and should match the business

object definition

– The maximum key value (when multiple attributes constitute a key) is 250

characters
v Object Name:

– A required field

– The name of the OneWorld business object for which the event is detected
v Object Verb:

– A required field

– The verb for the event

– Any verb that is supported at the business object level

– When InterChange Server is the broker, the verb at the child business object

level must be the same as the top-level business object. For example, if the

top-level business object supports the verbs Create and Retrieve, all child

business objects should support the same Create and Retrieve verbs.
v Priority:

– Event priority is defined as an integer value in the range 0 - n, with 0 having

the highest priority

– The adapter polls and processes events in order of priority

– Status:

- The event status is initially set to 0, which implies a status

READY_FOR_POLL
v Description: Any comment associated with the event

v Event ID: A unique ID associated with the event row

v ConnectorId: Identifies the connector in a multiple connector configuration

v Event Ts: Event creation time stamp.

Using log and trace files

The adapter components provide several levels of message logging and tracing.

The connector uses the adapter framework to log error, informational, and trace

messages. Error and informational messages are recorded in the log file, and trace

messages and their corresponding trace levels (0 to 5) are recorded in a trace file.

For details about logging and trace levels, see Chapter 6, “Error handling and

event codes,” on page 49.

Chapter 3. Configuring the connector 21

You configure both the log and trace file names, as well as the trace level, in

Connector Configurator. For details about this tool, see “Startup scripts for Adapter

Framework 2.6” on page 97.

Error messages for ODA are logged into the trace file name specified for the ODA.

If an incorrect trace file name is specified, then the messages are sent to the screen

prompt where the ODA is running. Trace files and the trace level are configured in

Business Object Designer. The process is described in “Configuring the agent” on

page 24. The ODA trace levels are the same as the connector trace levels, defined

in “Tracing” on page 51.

22 Adapter for JD Edwards OneWorld User Guide

Chapter 4. Creating and modifying business objects

This chapter describes the Object Discovery Agent (ODA) for JD Edwards

OneWorld, and how to use it to generate business object definitions for the IBM

WebSphere Business Integration Adapter for JD Edwards OneWorld.

This chapter contains the following sections:

v “Overview of the ODA for OneWorld”

v “Generating business object definitions”

v “Uploading business object files” on page 35

Overview of the ODA for OneWorld

An ODA (Object Discovery Agent) enables you to generate business object

definitions. A business object definition is a template for a business object. The

ODA examines specified application objects, “discovers” the elements of those

objects that correspond to business object attributes, and generates business object

definitions to represent the information. Business Object Designer provides a

graphical interface to access the Object Discovery Agent and to work with it

interactively.

The Object Discovery Agent (ODA) for JD Edwards OneWorld generates business

object definitions from the .jar files generated by GenJava. The Business Object

Wizard automates the process of creating these definitions. You use the ODA to

create business objects and Connector Configurator to configure the connector to

support them. For information about Connector Configurator, see “Startup scripts

for Adapter Framework 2.6” on page 97.

Generating business object definitions

This section describes how to use the JD Edwards OneWorld ODA in Business

Object Designer to generate business object definitions. For information on

launching and using Business Object Designer, see IBM WebSphere Business

Integration Adapters Business Object Development Guide.

Starting the ODA

The ODA can be run from any machine that can mount the file system on which

the metadata repository (that is, the IDL files) resides, using the

start_OneWorldODA.bat (NT/Windows 2000) or start_OneWorldODA.sh (Unix) start

file. This file contains start parameters, including the paths to certain required

OneWorld and connector .jar files.

Note: If you are running the adapter with WebSphere Business Integration

Adapter Framework 2.6, you may need to modify the ODA start script. For

more information, see “Modify startup script for Adapter Framework 2.6”

on page 15.

The ODA for OneWorld has a default name of OneWorldODA. The name can be

changed by changing the value of the AGENTNAME variable in the start script

(start_OneWorldODA.bat).

© Copyright IBM Corp. 2003, 2006 23

To start the ODA, run this command:

start_OneWorldODA

Running Business Object Designer

Business Object Designer provides a wizard that guides you through the steps to

generate a business object definition using the ODA. The steps are as follows:

v “Selecting the agent”

v “Configuring the agent”

v “Selecting a business object” on page 26

v “Confirming object selection” on page 27

Selecting the agent

1. Start Business Object Designer.

2. Click File > New Using ODA. The Business Object Wizard - Step 1 of 6 - Select

Agent screen appears.

3. Select the ODA/AGENTNAME (from the start_OneWorldODA script) in the Located

agents list and click Next. (You may have to click Find Agents if the desired

agent is not listed.)

OneWorldODA [localhost:57037]

localhost

Configuring the agent

After you click Next, the Business Object Wizard - Step 2 of 6 - Configure Agent

screen appears. Figure 6 on page 25 illustrates this screen with sample values.

Figure 5. Select Agent screen

24 Adapter for JD Edwards OneWorld User Guide

The properties you set on this screen are described in Table 4. You can save all the

values you enter on this screen to a profile. Instead of retyping the property data

next time you run the ODA, you simply select a profile from the drop-down menu

and re-use the saved values. You can save multiple profiles, each with a different

set of specified values.

 Table 4. Configure Agent properties

Property name Default value Type Description

BOPrefix None String The prefix that the ODA prepends to the

names of the business objects it generates.

Environment None String The environment that is used to connect to

OneWorld.

JarFileDirectory None String (Required) The directory where the .jar

files are located. All the .jar files having

business functions that must be invoked

using the adapter must be placed in this

directory.

NameOfTables None String The names of the tables in OneWorld for

which business objects have to be

generated delimited by ;, for example,

F4211;f4210.

Password None String The password that is used to connect to

OneWorld.

PortNo None String The port number on which the JDE server

is running.

Server None String The machine name on which JDE is

running.

TraceFileName None String The name of the trace message file; for

example, OneWorldODAtrace.txt.

Figure 6. Configure Agent screen

Chapter 4. Creating and modifying business objects 25

Table 4. Configure Agent properties (continued)

Property name Default value Type Description

TraceLevel 5 Integer (Required) The tracing level (from 0 to 5)

for the Agent. For details about tracing

levels, see “Tracing” on page 51.

MessageFile None String (required) The name of the message file

that contains all the messages displayed by

the ODA. For OneWorld, the name of this

file is BIA_OneWorldODAAgent.txt. If you do

not correctly specify the name of the

message file, the ODA will generate an

error.

UserName None String The username that is used to connect to

OneWorld.

1. Use the New and Save buttons in the Profiles group box any time you want

the ODA to create a new profile. When you use the ODA again, you can select

an existing profile.

2. Type the value of each property, as defined in Table 4 on page 25.

Note: If you use a profile, the property values are filled in for you, though you

can modify the values as needed. You can also save new values.

Selecting a business object

The Business Object Wizard - Step 3 of 6 - Select Source screen appears, as illustrated

in Figure 7 on page 27.

The following lists the rules associated with selecting objects for generation:

v Selecting a parent object automatically selects the children objects for generation.

If you select the parent object as well as the children, then only the children

object that you select are generated.

v Selecting a child object without selecting its parent causes the child object, but

not the parent, to be generated.

v All child business objects are generated with single cardinality containment

relationships.

v If a business object requires multiple cardinality behavior, then you must

manually change the cardinality using Business Object Designer.

v The ODA does not mark the key fields of the business objects so you must

manually mark the key fields in the business object before saving.

v You can select a .jar file for generation. This generates the definition of all the

interface and business function business objects contained in the .jar file.

To determine which OneWorld objects listed on this screen are child objects of a

high-level object, refer to the original GenJava file. You can also simply select all

the OneWorld objects listed on this screen and generate their corresponding

business objects. The resulting business objects will reflect the parent-child

relationships.

26 Adapter for JD Edwards OneWorld User Guide

The ODA displays two options as tree nodes, Business Functions and XML BOs.

Clicking Business Functions displays the tree containing the OneWorld objects in

the .jar files found under the directory specified against the JarFileDirectory

configuration property. For information specific to Business Functions, see “Source

node selection” on page 28

Clicking XML BOs displays the child tree nodes. These child tree nodes correspond

to the names of the tables that were entered in the ODA properties window. From

the tables listed, you can select which tables are generated. For information specific

to XML BOs, see “XML list business objects” on page 31

You can choose objects from multiple .jar files for business object generation. To

select the objects, use the Use This Object Instead button. The standard filter

feature allows you to select a subset of child nodes of a tree.

1. If necessary, expand a OneWorld module to see a list of sub-objects.

2. Select the OneWorld objects that you want to use.

3. Click Next.

Confirming object selection

The Business Object Wizard - Step 4 of 6 - Confirm source nodes for business object

definitions screen appears. It shows the objects that you selected.

For business objects generated by using the ODA, key fields must be manually

marked in Business Object Designer before saving the business objects. The ODA

does not mark any attributes as key fields. If you plan to map values from one

business object to another business object, you must mark the foreign keys. When

Figure 7. Select Source screen

Chapter 4. Creating and modifying business objects 27

the business object attribute needs a value from some other business object that has

already been processed, the ASI tag, use_attribute_value, must be manually

added to the attribute ASI.

Click Back to make changes or Next to confirm that the list is correct.

The Business Object Wizard - Step 5 of 6 - Generating business objects... screen appears

with a message stating that the wizard is generating the business objects.

Source node selection

You can generate both business function business objects or XML List business

objects in one run of the ODA. Parallel generation of both kinds of business objects

is supported.

Business functions: If the business function business objects are being generated,

the ODA will generate business objects for the OneWorld objects that you select by

loading and introspecting all the selected classes. ODA uses the BOProperties

window to get the user’s configuration information for each OneWorld object.

There are two types of business object properties windows for business objects that

map to interface classes. The first window, Capturing supports verbs to capture the

supported verbs for all selected OneWorld objects. The second window, Capturing

Method sequence for Verb ASI, captures the method sequence for each verb of

each business object. For data structure business objects, one default verb is

created, Execute, and this verb has no ASI.

OneWorld objects can have attributes and methods. The names of the business

object definitions are derived from the OneWorld object names and appended with

Figure 8. Confirm source node screen

28 Adapter for JD Edwards OneWorld User Guide

the business object prefix. If there are two business functions that use the same

data structure class, the ODA generates multiple definitions with the same

structure with the exception of a business function name in the business object ASI.

The names of the business objects are incremental, starting with _1, _2... and so on.

For example, if D0100033 is used by two functions, the business objects generated

are D0100033, D0100033_1.

Get/Set Methods

For the OneWorld data structure object, the get/set methods have corresponding

business object attributes. The type of the attribute is stored in the ASI as

type=<type> and the actual name of the attribute is stored in ASI as name=<name>.

For a combination of get/set, only one attribute is generated. For example, if an

attribute name is ID, the methods are getID() and setID(). In this case, the

business object has one attribute with the name ID and ASI as

getter=getID();setter=setID(), where type=int, and name=ID.

Business function attributes

An attribute is created for each business function defined in the OneWorld

interface java class. For proper representation of business function call, the type of

this attribute will be a child business object containing attributes representing input

parameters of the business function call. The name of the attribute would be the

name of the business function and the type would be the name of the data

structure business object. The attribute has an ASI that holds the name of the

business function using the tag bfn_name=.

Business function parameters

The input parameters of a business function are represented as attributes. If the

data type of a particular parameter is something that is unsupported by the

WebSphere Business Integration format, they are represented as ’String’. Basically,

the parameters are the variables defined in the data structure class. The ASI of a

parameter stores the original data type value and name. For a list of supported

parameters, see “Business object attribute types” on page 39.

Object types in OneWorld

There are two types of java classes present in OneWorld jars generated using

GenJava:

v Interface class file

The interface class files map to the library and an interface combination is

defined in the iJDEScript file. The file has the signature for all the business

functions as well as create<businessfunction>ParameterSet methods for the

business functions that are imported in a specified interface.

If the file is as shown below:

login

library JDEAddressBook

 interface AddressBook

 import B0100031

 import B0100019

 import B0100032

 import B0100002

 import B0100033

build

logout

Chapter 4. Creating and modifying business objects 29

The class file for AddressBook.class would have method for B0100031 as well as

Create<B0100031>ParameterSet. Where <B0100031> is the English text name of

the business function.

v Data structure class file

The data structure class files maintain the get and set methods for all the

parameters that are required as input for a specific business function.

Business objects that map to interface classes: You can specify business object

information for business objects that map to interface classes. After you create a

business object, you can specify the verbs that are valid for the object, the method

sequence of a given verb on the object, the business object-level ASI, and the

attribute-level ASI. This section describes how to specify this information, using the

ODA with Business Object Designer. For a detailed description of these categories

of information and what they mean for business object structure in the JD Edwards

OneWorld connector, see Chapter 5, “Understanding business objects,” on page 37.

Selecting verbs

In Business Object Designer, if a selected business object maps to an interface

object in OneWorld, the first screen that appears when you finish creating a

business object and open it in a separate window is the BO Properties - Select Verbs

for component screen. Figure 9 illustrates this screen for the AddressBook business

object. For business objects that map the business functions of XML List, a single

verb execute is created.

 On this screen, you can specify the verbs that the business objects supports. You

can specify the verbs that you need for a specific business object by typing the

verb names and delimiting them with a ;. The verb names must follow the naming

convention as specified in the Business Object Development Guide.

Figure 9. Select verb for component screen

30 Adapter for JD Edwards OneWorld User Guide

The standard verbs used in WebSphere Business Integration are Create, Retrieve,

Delete, and Update. For details about business object verb ASI for the OneWorld

connector, see “Verb ASI” on page 42.

Specifying the verb ASI

For each verb selected, a separate window appears where you specify the business

function sequence that must be executed for the verb.

Figure 10 illustrates this screen for the Retrieve verb of the AddressBook business

object under Business Functions, created in Figure 7 on page 27 and Figure 8 on

page 28.

From the Value list for the MethodSequence property, you can select the method

that you want the business object to execute first for the verb. In Figure 10, the

method sequence is as follows:

v The first method that will be executed in the sequence of methods for the

Retrieve verb is GetEffectiveAddress.

v The second method in the sequence is GetPhone.

v The third method in the sequence is GetMailingName.

By specifying a business function sequence for the verb, you are creating the verb

ASI that is associated with that verb. If necessary, this verb ASI can be modified

later.

XML list business objects: For each table that you select on the Confirm source

node screen, seen Figure 8 on page 28, subsequent properties windows are

displayed to capture additional information.

Figure 10. Setting the verb method sequence

Chapter 4. Creating and modifying business objects 31

There are three types of business object properties windows displayed for XML

business objects:

v Table type: Captures the table type for all selected OneWorld tables.

v Data selection: Allows you to select the where clause properties for each table.

v Data sequencing: Allows you to select the data sequencing for the query

Table types

The business object properties window displays the property names and property

values. You can select the table type for each table. The drop-down menu allows

single cardinality selection.

You can select from the following property values:

v OWTABLE

v OWVIEW

v FOREIGN_TABLE

 Once the table type is selected, the ODA invokes the GetTemplate API for each

table. The ODA prepares the XML document for the GetTemplate call and passes it

to OneWorld. The response XML document gives the list of columns that are

present in the table. The business objects generated have all these columns

displayed as attributes in the business object.

Data selection

This business objects properties window, seen in Figure 12 on page 33, captures the

where clause properties for the columns of each table. This window is displayed

for each table. The property names are the names of columns in the table. The

Figure 11. Select the table type for selected tables screen

32 Adapter for JD Edwards OneWorld User Guide

property values represent the where clause parameters that have to be used for a

column. This is populated only for columns that are part of the where clause. The

format of the value must be:

clause_type=<ClauseType>;

clause_seq=<Clause Sequence>;

operator_type=<Operator Type>;

The <Clause Type> is either WHERE, AND or OR. The <Clause Seq> is a number

representing the order in which the columns are added in the where clause. The

<Operator Type> can be one of the following values:

v EQ (equal to)

v NE (Not equal to)

v LT (Less than)

v GT (greater than)

v LE (less than or equal to)

v GE (greater than or equal to)

 Data sequencing

The data sequencing screen, seen in Figure 13 on page 34, lists property names and

allows you to select either ascending (ASCD) or descending (DSCD) sequencing

order for a specific column from a drop-down menu.

Besides the type of sequencing, the adapter uses an ASI tag, sort_order, to order

the attributes when the ordering clause is prepared. This property is not added by

ODA; you must manually add this property to the attribute ASI at the time you

select the sorting property.

Figure 12. Prepare the where clause for table screen

Chapter 4. Creating and modifying business objects 33

Opening the business objects in a separate window

The Business Object Wizard - Step 6 of 6 - Save business objects screen appears with

options to save a copy of the business objects to another file, to open the new

business objects in another window, and to shut down the OneWorld ODA. If you

choose to open the new business objects in another window, the Business Object

Designer displays a window where you can modify the attributes for those

business objects.

Figure 13. Prepare data sequencing screen

34 Adapter for JD Edwards OneWorld User Guide

To open the business objects in separate window:

1. Select Open the new BOs in separate windows. A dialog box appears.

2. Click Finish. Each business object appears in a separate window where you can

view and set the ASI information for the business objects and business object

verbs you just created. For details, see “Business objects that map to interface

classes” on page 30.

To save the business objects to a file (only after you a have specified a key for the

parent-level business object):

1. Select Save a copy of the business objects to a separate file. A dialog box

appears.

2. Enter the location in which you want the copy of the new business object

definitions to be saved.

Business Object Designer saves the files to the specified location.

If you have finished working with the ODA, you can shut it down by selecting the

check-box, Shutdown ODA JD Edwards OneWorld ODA before clicking Finish.

Uploading business object files

The newly created business object definition files must be uploaded to the

integration broker once they have been created. The process depends on whether

you are running WebSphere InterChange Server, WebSphere MQ Integrator Broker,

or WebSphere Application Server.

Figure 14. Save business objects screen

Chapter 4. Creating and modifying business objects 35

v WebSphere InterChange Server: If you have saved your business object

definition files to a local machine and need to upload them to the repository on

the server, refer to the Implementation Guide for WebSphere InterChange Server.

v WebSphere MQ Integrator Broker: You must export the business object

definitions out of Business Object Designer and into the integration broker. For

details, refer to Implementing Adapters with WebSphere MQ Integrator Broker

v WebSphere Application Server: For details, see Implementing Adapters with

WebSphere Application Server

36 Adapter for JD Edwards OneWorld User Guide

Chapter 5. Understanding business objects

This chapter describes the structure of business objects, how the adapter processes

the business objects, and the assumptions the adapter makes about them.

The chapter contains the following sections:

v “Defining metadata”

v “Connector business object structure”

v “Sample business object” on page 44

v “Generating business objects” on page 46

Defining metadata

The connector for JD Edwards OneWorld is metadata-driven. In the WebSphere

business integration system, metadata is defined as application-specific information

that describes a OneWorld application object’s data structures. The metadata is

used to construct business object definitions that the connector uses at runtime to

build business objects.

After installing the connector, but before you can run it, you must create the

business objects definitions. The business objects that the connector processes can

have any name allowed by the integration broker. For information about naming

conventions, see the Naming Components Guide.

A metadata-driven connector handles each business object that it supports

according to the metadata encoded in the business object definition. This enables

the connector to handle new or modified business object definitions without

requiring modifications to the code. New objects are created in Business Object

Designer, with or without the assistance of the ODA. To modify an existing object,

use Business Object Designer directly (the ODA cannot be used to modify an

existing business object).

Application-specific metadata includes the structure of the business object and the

settings of its attribute properties. Actual data values for each business object are

conveyed in message objects at run time.

The connector makes assumptions about the structure of its supported business

objects, the relationships between parent and child business objects, and the format

of the data. Therefore, it is important that the structure of the business object

exactly mirror the structure defined for the corresponding JD Edwards OneWorld

object or the adapter will not be able to process business objects correctly.

If you need to make changes to the business object structure, make them to the

corresponding object in OneWorld and then run GenJava to create .jar files that can

be used as an input into the ODA.

For more information on modifying business object definitions, see WebSphere

Business Integration Adapters Business Object Development Guide.

Connector business object structure

Each OneWorld object has a corresponding business object.

© Copyright IBM Corp. 2003, 2006 37

The business objects for the JD Edwards OneWorld adapter can be of two types to

support the Java APIs as well as the XMLList APIs from OneWorld.

Business function business objects

The business objects that are processed using Java APIs have a type=BFN tag in the

business object ASI that distinguishes them from XML List business objects. Within

the business objects that are used for Java APIs, there are two types of business

objects: one type that maps to the Interface class and another type that maps to a

business function class. The business objects that map to the Interface class have

ASI as follows:

type=BFN;class_name=com.JD Edwards.interop.AddressBook.JDEAddressBook

Interface business objects

All the business functions present in the class JDEAddressBook and present in the

.jar file generated by GenJava are represented as child business objects to the main

business object. All the child business objects for a top-level business object must

map to business functions that can be access through one username and password.

If a specific business function has a different username and password access, then

that must be part of a separate business object hierarchy that has access to that

username and password. Refer to “Business functions” for further details on how

to define special access permissions for a business object.

Each data structure class present in the .jar file, generated from GenJava, maps to

the corresponding business object. For example, in the JDEAddressBook example,

the data structure names are:

D0100031

D0100019

D0100032

D0100002

D0100033

And, they map to business functions and child business objects created for

B0100031, B0100019, etc.

Interface business object attributes

First Paragraph

 The ASI for the interface business objects has a tag for name= where the value is the

name of the data structure. It also has a tag, bfn_name=, for the name of the

business function that corresponds to these business objects.

The attribute name of business function interface business objects maps to the

name of the method that is represented by the business object. For example, if the

data structure is D0100033, the name of the attribute in the AddressBook business

object would be GetEffectiveAddress. The ASI at this attribute level would give

the name of the method using the ASI tag bfn_name=.

Business functions

The OneWorld connector invokes all of the business functions in one doVerbFor()

call in one transaction. If one of them fails, all of them will be rolled back. All the

business functions within one business object execution must have access

permissions from a single user. The user can be one that is created for the adapter

and is maintained as a connection pool or it can be a specific user. You can specify

a user for a business object by using a child business object of single cardinality

with the type ACCESS_LEVEL.

38 Adapter for JD Edwards OneWorld User Guide

For proper representation of business function calls, the business function is

modeled as a child business object containing attributes that represent data

structure variables.

The adapter supports the business objects that map to business functions to be

executed independently. For all such business objects, the ASI contains the

information required to execute the business function, for example, business

function name, and the name for the data structure. The ASI for a business

function business object, as above, can be represented as follows:

bfn_name=getEffectiveAddress

type=BFN

name=com.JD Edwards.interop.D0100031

Business function attributes

For each attribute present in the Data Structure class, a corresponding business

object attribute is generated in the business function business object. The ASI for

the attribute holds information about its type and name in OneWorld. For example,

if the attribute type is JDEDate, then the ASI holds

name=EffectiveDate;type=JDEDate. Besides some simple types of attributes,

OneWorld supports two proprietary data types, JDEDate and JDEMathNumeric.

JDEDate: The following methods are available in this OneWorld Java class:

v JDEDate() — constructor

v GetDay() — returns the day of the date

v GetMonth() — returns the month of the date.

v GetYear() — returns the year of the date.

v SetDay(short) — set the day of the date

v SetMonth(short) — set the month of the date

v SetYear(short) — set the year of the date

The values for attributes that map to OneWorld date fields are specified in the

format MM/DD/YYYY. The adapter parses this string value and calls OneWorld APIs

on the JDEDate object to set values for the day, month, and year. If the data from

OneWorld has to be set in the business object, it uses the get methods to set value

in the attribute.

JDEMathNumeric: The following methods are present in the JDEMathNumeric

class:

v GetValue() — returns the value as a String, for example, 12345.6789

v SetValue() — sets the value from a String, for example 12345.6789"

Business object attribute types: The following table lists the data types supported

by OneWorld and the corresponding type in a WebSphere Business Integration

business object.

 Table 5. Business object attribute types

OneWorld type

Business object

attribute type ASI

JDEDate Date type=JDEDate

JDEMathNumeric Integer type=JDEMathNumeric

int Integer type=int

boolean Boolean type=boolean

Chapter 5. Understanding business objects 39

Table 5. Business object attribute types (continued)

OneWorld type

Business object

attribute type ASI

char String type=char

String String type=String

short Integer type_short

float Float type=float

double Double type=double

byte String type=byte

long Integer type=long

XML list business objects

The XML business objects map to the OneWorld table. The business object

attributes map to the columns of the table.

If the components have columns with the same name, the ODA generates unique

attribute names by appending them with ″_″ followed by a number. For example,

if the field, AddressNumber, appears multiple times, the attributes generated will

have names AddressNumber, AddressNumber_1, AddressNumber_2 and so on.

The maximum length of the attribute is set, based on what is returned from the

getTemplate() API call.

Custom business functions

The following custom business functions are included and required for

implementation of event notification in the adapter:

v Retrieve_WBIAEvents — The name of the business function that retrieves the

records from the IBM events table.

v Update_WBIAEvents — The name of the business function that updates the

records from the IBM events table.

v Delete_WBIAEvents — The name of the business function that deletes the records

from the IBM events table.

v Archive_WBIAEvents — The name of the business function that archives the

records from the IBM events table to the archive table.

v Recover_WBIAEvents — The name of the business function that retrieves the

IN_PROGRESS events and changes the status to READY_FOR_POLL.

Events business object structure

The following table details the event notification features supported by the

connector.

40 Adapter for JD Edwards OneWorld User Guide

Table 6. Event table structure

Columns Description

OBJ_KEY The unique identifier that identifies the business object row for

which the event was created. If there are multiple attributes in a

business object that make a key then the values are name value

pairs delimited by “;”

If the business object is of type business function, then the object

key should be as follows: DS0013keyattr1=123;

DS0013keyattr2=124. If the verb ASI for the retrieve verb

specifies multiple business functions, you might need to set

multiple key fields. That is supported since the adapter is using

the data structure name along with the attribute name, for

example, D0013.attr1=123;D0012.attr1=345.

OBJ_NAME OneWorld business object for which the event was detected.

OBJ_VERB Verb for the event.

EVT_PRIORITY Event priority.

EVT_STATUS Event status. Initially set to READY_FOR_POLL.

EVT_DESC Any comment associated with the event.

EVENT_ID Unique ID of the event row.

ADAPTER_ID Identifies the connection in a multiple connector configuration.

EVT_TIME Event creation timestamp.

ROW_ID Archive record ID, generated by OneWorld.

PROC_TIME Event processing timestamp.

Creating, packaging, and deploying custom business functions

For step-by-step instructions on creating custom business functions for event

notification, go to: ftp://ftp.software.ibm.com/software/ts/cw/adapters

/AdapterForOneWorld/IBM_Event_Package.doc

For step-by-step instructions on packaging and deploying custom business

functions for event notification, go to: ftp://ftp.software.ibm.com/software/ts/cw/
adapters

/AdapterForOneWorld/Packging_and_Deployment.doc

Application-specific information for business functions

Application-specific information for business functions provides the connector with

application-dependent instructions on how to process business objects. If you

extend or modify a business object definition, you must make sure that the

application-specific information in the definition matches the syntax that the

connector expects.

Application-specific information can be specified for the overall business object as

well as for each business object attribute.

Business object-level ASI

Object-level ASI provides fundamental information about the nature of a business

object and the objects it contains. Business object ASI is in name-value pairs.

Business objects that represent interface objects recognize the following ASI names:

v type=BFN if the adapter invokes a business function.

Chapter 5. Understanding business objects 41

ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/IBM_Event_Package.doc
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/IBM_Event_Package.doc
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/Packging_and_Deployment.doc
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/Packging_and_Deployment.doc
ftp://ftp.software.ibm.com/software/ts/cw/adapters/AdapterForOneWorld/Packging_and_Deployment.doc

v class_name=com.JD Edwards.interop.AddressBook, which is the name of the

interface class.

Business objects map to business functions that are executed individually. For

business objects that represent business functions, the adapter recognizes the

following names:

v type=BFN if the adapter invokes a business function

v bfn_name=getEffectiveAddress

v name=com.JD Edwards.interop.D0100031, which is the name of the structure

class.

Verb ASI

For business objects that map to the Interface class, the Verb ASI contains a

sequence of attribute names that map to business functions for the OneWorld BO

Handler to call. The adapter invokes business functions in the sequence specified

by the Verb ASI.

For business objects that map to business functions, the Verb ASI is blank.

Attribute-level ASI

The business objects that map to business functions have attributes that map to the

get<Attr>/set<Attr> method combinations of the data structure class. The

connector takes this data structure object as an input parameter when the function

is invoked. For all such attributes, ASI stores the type of the attribute as

type=<type> and the actual name of the attribute as name=<name>. The adapter

generates only one attribute for a combination of get/set. For example, if an

attribute name is ID, the methods would be getID() and setID(). The business

object would have one attribute with name ID and ASI as

getter=getID();setter=setID(), type=int, name=ID.

Table 7 describes the ASI for non-method attributes.

 Table 7. Attribute-level ASI for non-method attributes

Attribute Description

Name Specifies the business object field name

Type Specifies the business object field type

MaxLength 255 characters, by default

IsKey Set to false.

IsForeignKey Set to false.

IsRequired Set to false. Set to true if the field is mandatory.

AppSpecificInfo This attribute is formatted as follows:

name=; type=; use_attribute_value=busobj.attrname(optional);

getter=; setter=;

DefaultValue None

Table 8 describes the ASI for non-method attributes.

 Table 8. Attribute-level ASI for method attributes

Attribute Description

Name Specifies the business object field name

Type Specifies the business object field type

42 Adapter for JD Edwards OneWorld User Guide

Table 8. Attribute-level ASI for method attributes (continued)

Attribute Description

Relationship If the child is a container attribute, this is set to Container.

IsKey Set to false.

IsForeignKey Set to false.

IsRequired Set to false.

AppSpecificInfo None

Cardinality 1

Application-specific information for XML list business object

functions

Application-specific information for XML list business object functions provides the

connector with application-dependent instructions on how to process XML list

business object functions. If you extend or modify an XML business object

definition, you must make sure that the application-specific information in the

definition matches the syntax that the connector expects.

Application-specific information can be specified for the overall business object as

well as for each business object attribute.

Business object-level ASI

The business object ASI is type=XMLList. If the table type is not TABLE_CONVERSION,

the following ASI must be present:

v TN=<table name>: The name of the table from which data has to be fetched.

v TABLE_TYPE=<table type>: The type of the table.

The table type can be one of the following:

– OWTABLE

– OWVIEW

– FOREIGN_TABLE

Verb ASI

This property is not used for XML business objects.

Attribute-level ASI

The attributes of the business objects map to specific columns of a table.

The following ASI are set for the following attributes:

v alias=<column name>: The alias of the column that is being fetched.

v Name=<column name>: The name of the column in the component.

v type=<type>: The data type, this property would be used in preparing the

where clause.

v operator_type=<Type of operand>. For example, GT, LT. This value is used in

comparing the values when the where clause is executed.

v table=<table name>: The name of the table to which the column belongs. This

ASI is used only when data is fetched from a table conversion process.

v clause_type: The kind of clause, either WHERE, AND or OR.

v clause_seq: A number representing the order in which the columns are added in

the where clause

Chapter 5. Understanding business objects 43

v sorting=<ASCD, DESD>: If the value is ASCD the data sequencing uses

ascending for this column, if the value is DESD it uses descending for this

column.

Business object handler

The generic OneWorld business object handler handles processes that might call a

set of business functions on components that are exposed through OneWorld

components. It can also fetch data from OneWorld tables using the XML List

feature of OneWorld. When a new business object enters the business object

handler, it reads the business object ASI to determine if the adapter should invoke

a business function or if it should create an XML document for XML List. The ASI

tag type specifies the type of call. If type=BFN, then the adapter passes the call to

the business function invoker that instantiates OneWorld Java objects and invokes

business functions. If the ASI has type=XMLList, then the adapter generates the

XML document for the CreateList API.

Sample business object

This section provides an example of a WebSphere business integration business

object. The corresponding OneWorld class and Java class are also provided to

illustrate the mapping across the three constructs. Note that business objects inherit

their names from the matching OneWorld application objects.

The samples provided in this section are as follows:

v “Sample GenJava script file”

v “Business object structure for the above example” on page 45

Sample GenJava script file

OneWorld provides a utility, GenJava, that generates Java wrappers for the

business functions running as part of the OneWorld server. GenJava requires a

script file, written using iJDEScript. The following example uses the script file,

AddressBook.cmd. AddressBook.cmd specifies the library and the interface to which

the set of business functions is modularized.

Once GenJava is executed, it creates Java class files for all the interface classes and

associated data structures. GenJava compiles the generated Java files, generates

Java docs, and packages them into two .jar files, one for Java classes and one for

Java doc. The below sample renders AddressBookInterop.jar and

AddressBookInteropDoc.jar files.

To execute the following sample, type the following from the command line:

GenJava /UserID JDE /Password JDE /Environment JDETest /cmd AddressBook.cmd

There are options available for running GenJava. GenJava is present in the

<INSTALL>\system\bin32 folder.

Please refer to the section on Running GenJava in the Interoperability Guide,

provided by OneWorld. The sample GenJava script file is shown below:

This example creates a library whose name is derived from an input parameter

(library) if one is specified. A default value is used otherwise.

define library JDEAddressBook

login

44 Adapter for JD Edwards OneWorld User Guide

library JDEAddressBook

 interface AddressBook

 import B0100031

 import B0100019

 import B0100032

 import B0100002

 import B0100033

build

logout

While preparing this script, consider the mapping of the Interface class to a

business object in WebSphere Business Integration Adapter and relate the business

functions as method sequences that are required for performing the intended

actions for a verb. For example, if a business object is a SalesOrder business object,

then the interface SalesOrder in the script file must include all the business

functions that it needs to perform actions on the SalesOrder object through

WebSphere Business Integration Adapter. The sequence of method execution for

each verb is accomplished by populating the verb ASI for the business object. You

must be able to do this in the business object generation process using the ODA.

You can also edit the verb ASI using Business Object Designer after the business

objects have been generated.

Business object structure for the above example

The following figure shows the business object structure for the above example in

Business Object Designer.

This section explains the business object structure for the AddressBook example, in

the following sections:

Figure 15. Business object structure for the AddressBook example

Chapter 5. Understanding business objects 45

AddressBook

Name AddressBook

ASI (type=BFN; class_name=com.JD Edwards.interop.AddressBook)

Attributes

The AddressBook business object includes the following objects:

v GetMailingName (Object)

v GetABEffectiveDate (Object)

v GetPhone (Object)

v GetParentAddress (Object)

v GetEffectiveAddress (Object)

Verb ASI

The Verb ASI uses the following Retrieve and RetrieveDetails objects:

v Retrieve — GetEffectiveAddress

v RetrieveDetails — GetPhone; GetMailingName

D0100033

Name D0100033

ASI (type=BFN;

class_name=com.JD Edwards.interop.jdeaddressbook.D0100033;

bfn_name=GetEffectiveAddress)

Attributes

The D0100033 business object includes the following objects:

v mnAddressNumber (Integer)

(ASI) type = JDEMathNumeric; name = m_mnAddressNumber;

use_attribute_value=;getter=getmnAddressNumber;setter=;

v jdDateBeginningEffective (Date)

(ASI) type = JDEDate; name = m_mnAddressNumber;

use_attribute_value=;getter=getjdDateBeginningEffective;

setter=setjdDateBeginningEffective;

Verb ASI

None.

Generating business objects

Each time an event occurs during run time, a OneWorld application sends a

message object containing object-level data and information about the type of

transaction. The connector maps this data to the corresponding business object

definition, to create an application-specific business object. The connector sends

these business objects on to the integration broker for processing. It also receives

business objects back from the integration broker, which it passes back to the

OneWorld application.

Note: If the object model in the OneWorld application is changed, use the ODA to

create a new definition. If the business object definitions in the integration

broker repository do not exactly match the data that the OneWorld

application sends, the connector is not able to create a business object and

the transaction fails.

46 Adapter for JD Edwards OneWorld User Guide

Business Object Designer provides a graphical interface that enables you to create

and modify business object definitions for use at run time. For details, see

Chapter 4, “Creating and modifying business objects,” on page 23.

Chapter 5. Understanding business objects 47

48 Adapter for JD Edwards OneWorld User Guide

Chapter 6. Error handling and event codes

This chapter describes how the adapter for JD Edwards OneWorld handles errors

and event codes. The adapter generates logging and tracing messages. This chapter

describes these messages. The chapter contains the following sections:

v “Error handling”

v “Logging” on page 51

v “Tracing” on page 51

v “Event status codes” on page 52

Error handling

This section describes error handling for the OneWorld adapter and the OneWorld

ODA.

Adapter

The adapter throws the following three types of exceptions when it executes a

business function in OneWorld:

v Fatal

v Recoverable

v Reject

Fatal

FatalException class conditions require manual intervention. The adapter catches

fatal exception conditions and writes the text of the exception in the

ReturnStatusDescriptor string. The returned status is FAIL.

Recoverable

In the case of a recoverable error, the adapter tries to perform the execution of the

business function again. If the Recoverable exception is thrown again, the adapter

writes the text of the exception in the ReturnStatusDescriptor string. The returned

status is FAIL. If the second try is successful, the returned status is VALCHANGED.

Reject

In the case of a Reject exception, the return value determines if it is an error or a

warning. The possible values are as follows:

v Successful=0—This status would not be returned if an exception is raised.

v Warning=1—The adapter populates the ReturnStatusDescriptor with the

exception message and returns a status of VALCHANGED.

v Error=2—The adapter populates the ReturnStatusDescriptor with the exception

message and the returns a status of FAIL.

For XMLList business object processing, the response XML document contains the

error codes and error strings in case of errors. The adapter writes the error codes

and error strings in the ReturnStatusDescriptor and returns a status of FAIL.

ODA

The OneWorld ODA throws an exception in the following scenarios:

v If the path specified for the .jar file does not exist or cannot be accessed

© Copyright IBM Corp. 2003, 2006 49

v If the .jar file is corrupt or cannot be accessed

v If the .jar file is empty

ODK properties define the trace file name and trace level. The ODK wizard

manages these two properties. The trace file can be found in the OneWorld folder

of the Crossworlds/ODA folder. The default name of the file

is OneWorldODAtrace.txt. The message file containing the error and trace messages

has the following naming convention:

BIA_<ODAAgentName>Agent.txt

ODAAgentName is the value from the variable of the same name found in the start

file for the ODA. If you change the value of the ODAAgentName variable, then you

must also change the message file name. The error and trace message file is in the

ODA messages folder.

See Tracing Exceptions and Messages in the Business Object Development Guide for

more information on the trace file and the message file.

Corrupt records in database

If the various software layers in EnterpriseOne are not properly synchronized after

you install new custom JD Edwards business functions (an IBM WebSphere

EnterpriseOne Adapter prerequisite), improper data field mapping can occur when

manipulating records in the database. This usually happens when a table is

defined using all the correct steps, but then later altered to reflect a change in the

table. If a mistake is made in the original adapter installation steps, but not

detected until after the supporting adapter tables are generated, the JD Edwards

administrator must resynchronize the EnterpriseOne software layers.

Improper mapping usually presents the following symptoms:

v Records that contain some fields with proper information and others with bad

data

v Records with fields that appear to be swapped

v Records with fields that are missing or truncated.

To resynchronize the EnterpriseOne software layers (for version 8.9.5 and

application version 8.11), perform the following steps.

Note: It is important to follow the step sequence as shown. Refer to JD Edwards

documentation for different versions of JD Edwards products.

1. Completely regenerate the database table using the EnterpriseOne OMW

tooling

Note: This delete and add operation removes all existing records in the table.

2. Regenerate the header file that defines the “typedef” data structure to contain

records from the table. There is a distinct function to perform this task. (Header

file regeneration is implicitly performed when the table is first defined and

saved, but not when the table is simply modified.)

3. Recompile all business functions that reference this table. This task provides the

business functions with the latest header file definitions.

4. Completely close all EnterpriseOne products (to clear any old cached data

structures).

50 Adapter for JD Edwards OneWorld User Guide

5. Delete all EnterpriseOne 8.95 TAM spec files (glbltbl.xdb, glbltbl.ddb,

dddict.xdb, dddict.ddb, ddtext.xdb, ddtext.ddb).

6. Re-deploy and re-test the new business functions.

Undefined class errors

The jar files that support EnterpriseOne interoperability occasionally change in

new releases of EnterpriseOne. Unfortunately the list of required jar files is

incomplete or inaccurate in some older versions of EnterpriseOne (8.94 and 8.95).

For example the list of jar files required for 8.9.5 is as follows:

v ApplicationAPIs_JAR.jar

v ApplicationLogic_JAR.jar

v Base_JAR.jar

v BizLogicContainerClient_JAR.jar

v BizLogicContainer_JAR.jar

v castor.jar

v Connector.jar

v EventProcessor_EJB.jar

v EventProcessor_JAR.jar

v JdbjBase_JAR.jar

v JdbjInterfaces_JAR.jar

v JdeNet_JAR.jar

v log4j.jar

v PMApi_JAR.jar

v Spec_JAR.jar

v System_JAR.jar

v xerces.jar

This list was obtained through JD Edwards support but did not appear in JD

Edwards version 8.9.5 documentation. Contact IBM support for further information

or help.

Logging

All messages are read from the message files BIA_<ODAAgentName>Agent.txt for the

ODA and BIA_OneWorldAdapter.txt for the adapter.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. For more

on configuring trace messages, see the connector configuration properties in

“Using log and trace files” on page 21. For more information on tracing, including

how to enable and set it, see the Connector Development Guide.

Table 9 on page 52 lists the recommended content for connector tracing message

levels.

Chapter 6. Error handling and event codes 51

Table 9. Tracing messages content

Level Description

Level 0 This level is used for trace messages that identify the connector version. No

other tracing is performed at this level.

Level 1 Use this level for trace messages that:

v Provide status information.

v Provide key information on each business object processed.

v Record each time a polling thread detects a new message in an input

queue.

Level 2 Use this level for trace messages that:

v Identify the business object handler used for each object that the

connector processes.

v Log each time a business object is posted to the integration broker.

v Indicate each time a request business object is received.

Level 3 Use this level for trace messages that:

v Identify the sub-objects being processed, if applicable. These messages

appear when the connector has encountered a foreign key in a business

object or when the connector sets a foreign key in a business object.

v Relate to business object processing. Examples of this include finding a

match between business objects, or finding a business object in an array

of child business objects.

Level 4 Use this level for trace messages that:

v Identify application-specific information. Examples of this include the

values returned by the methods that process the application-specific

information fields in business objects.

v Identify when the connector enters or exits a function. These messages

help trace the process flow of the connector.

v Record any thread-specific processing. For example, if the connector

spawns multiple threads, a message logs the creation of each new thread.

Level 5 Use this level for trace messages that:

v Indicate connector initialization. This type of message can include, for

example, the value of each connector configurator property that has been

retrieved from the broker.

v Detail the status of each thread that the connector spawns while it is

running.

v Represent statements executed in the application. The connector log file

contains all statements executed in the target application and the value of

any variables that are substituted, where applicable.

v Record business object dumps. The connector should output a text

representation of a business object before it begins processing (showing

the object that the connector receives from the collaboration) as well as

after it finishes processing the object (showing the object that the

connector returns to the collaboration).

Event status codes

The adapter issues event status codes that are described in the following list.

v READY_FOR_POLL=0 The event is ready to be picked up by the next poll call. The

events are created with this status in the OneWorld application. The connector

looks for events with READY_FOR_POLL status while fetching the events from

the application during pollForEvents processing.

52 Adapter for JD Edwards OneWorld User Guide

v IN_PROGRESS=1 The event has been picked up and is sent to the connector

framework. The connector changes the status of the event to IN_PROGRESS after it

picks the event for processing.

v UNSUBSCRIBED=2 The event has not been subscribed to. The connector sets the

status to UNSUBSCRIBED if the isSubscribed call returns a false value.

v SUCCESS=3 The event was successfully processed by the connector framework.

The connector sets the status to SUCCESS if the event is processed successfully by

the connector framework.

v ERROR_PROCESSING_EVENT=-1 There was an error processing the event.

v ERROR_POSTING_EVENT=-2 There was an error posting the event to the connector

framework. This status is set if the call to gotApplEvent fails during

pollForEvents processing.

v ERROR_OBJECT_NOT_FOUND=-3 The object for which the event was created could

not be found. This status is set if the doVerbFor call could not find the object

during pollForEvents processing.

v INTERNAL ADAPTER CODE=5 The status of 5 indicates a configuration problem. One

possible reason is an incorrect data structure defined for the event table. A

possible solution is to correct the data structure by manually modifying the

business functions for the event table (B551005,B551006,B551007, B551008,

B551009). The modification is needed only for the .h file. Once the modification

is made, the package must be rebuilt and deployed. For more information about

how to do this, see “Installing and configuring IBM event store” on page 19.

Chapter 6. Error handling and event codes 53

54 Adapter for JD Edwards OneWorld User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 10 on page 57.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

This standard property was added in this release:

v BOTrace

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

© Copyright IBM Corp. 2003, 2006 55

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 10 on page 57.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

56 Adapter for JD Edwards OneWorld User Guide

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 10 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 10, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 10. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

Appendix A. Standard configuration properties for connectors 57

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is not WAS.

BOTrace none or keys or full none Agent

restart

This property is valid

only if the value of

AgentTraceLevel is

lower than 5.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

58 Adapter for JD Edwards OneWorld User Guide

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

Appendix A. Standard configuration properties for connectors 59

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

60 Adapter for JD Edwards OneWorld User Guide

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 7 Dynamic

if ICS;

otherwise

Component

restart

Appendix A. Standard configuration properties for connectors 61

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

62 Adapter for JD Edwards OneWorld User Guide

Table 10. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

XMLNameSpaceFormat short or long or no short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

Appendix A. Standard configuration properties for connectors 63

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional script format for data sent from

the adapter to the integration broker in the form of any supported business object.

It defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

the section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Transformation

The BiDi.Transformation property defines whether or not the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

64 Adapter for JD Edwards OneWorld User Guide

The default value is false.

BOTrace

The BOTrace property specifies whether or not business object trace messages are

enabled at run time.

Note: It applies only when the AgentTraceLevel property is set to less than 5.

When the trace level is set to less than 5, you can use these command line

parameters to reset the value of BOTrace.

v Enter -xBOTrace=Full to dump all the business object’s attributes.

v Enter -xBOTrace=Keys to dump only the business object’s keys.

v Enter -xBOTrace=None to disable business object attribute dumping.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

Appendix A. Standard configuration properties for connectors 65

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

66 Adapter for JD Edwards OneWorld User Guide

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

Appendix A. Standard configuration properties for connectors 67

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

If the value of the DeliveryTransport property is MQ, you can set the command-line

parameter WhenServerAbsent in the adapter start script to indicate whether the

adapter should pause or shut down when the InterChange Server is shut down.

v Enter WhenServerAbsent=pause to pause the adapter when ICS is not available.

v Enter WhenServerAbsent=shutdown to shut down the adapter when ICS is not

available.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

68 Adapter for JD Edwards OneWorld User Guide

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

Appendix A. Standard configuration properties for connectors 69

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

70 Adapter for JD Edwards OneWorld User Guide

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

Appendix A. Standard configuration properties for connectors 71

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

72 Adapter for JD Edwards OneWorld User Guide

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

Appendix A. Standard configuration properties for connectors 73

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

74 Adapter for JD Edwards OneWorld User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix A. Standard configuration properties for connectors 75

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 7.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

76 Adapter for JD Edwards OneWorld User Guide

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 66.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

Appendix A. Standard configuration properties for connectors 77

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

78 Adapter for JD Edwards OneWorld User Guide

Appendix B. Connector Configurator

This appendix describes how to use Connector Configurator to set configuration

property values for your adapter.

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector

v Create a configuration file

v Set properties in a configuration file

The topics covered in this appendix are:

v “Overview of Connector Configurator” on page 79

v “Starting Connector Configurator” on page 80

v “Creating a connector-specific property template” on page 81

v “Creating a new configuration file” on page 84

v “Setting the configuration file properties” on page 87

v “Using Connector Configurator in a globalized environment” on page 95

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 80).

© Copyright IBM Corp. 2003, 2006 79

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 81 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 86.)

80 Adapter for JD Edwards OneWorld User Guide

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 81.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your \WebSphereAdapters\bin\
Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

Appendix B. Connector Configurator 81

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

82 Adapter for JD Edwards OneWorld User Guide

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example, C:\WebSphereAdapters\bin\Data\
Std\StdConnProps.xml

In UNIX the first character should be /.

Appendix B. Connector Configurator 83

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

84 Adapter for JD Edwards OneWorld User Guide

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Appendix B. Connector Configurator 85

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 89..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

86 Adapter for JD Edwards OneWorld User Guide

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

Appendix B. Connector Configurator 87

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in <ProductDir>\bin\Data\Std\
Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

88 Adapter for JD Edwards OneWorld User Guide

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 88.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in <ProductDir>\bin\Data\App\Help\<AdapterHelpName>\
<RegionalSetting>\. See the AdapterHelpName property described in the Standard

Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under “Configuration property values overview” on page 56.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

Appendix B. Connector Configurator 89

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

90 Adapter for JD Edwards OneWorld User Guide

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

Appendix B. Connector Configurator 91

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

92 Adapter for JD Edwards OneWorld User Guide

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Appendix B. Connector Configurator 93

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

94 Adapter for JD Edwards OneWorld User Guide

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

Appendix B. Connector Configurator 95

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

96 Adapter for JD Edwards OneWorld User Guide

Startup scripts for Adapter Framework 2.6

This appendix describes changes that occurred with the release of Adapter

Framework 2.6 and includes sample startup scripts for the adapter and the ODA.

The topics covered in this appendix are the following:

v Startup scripts for Adapter Framework 2.6

v “start_OneWorld.bat for Adapter Framework 2.6”

v “start_OneWorld.bat for Adapter Framework 2.6”

v “start_OneWorld.sh for Adapter Framework 2.6” on page 98

v “start_OneWorldODA.bat for Adapter Framework 2.6” on page 99

v “oda.dd.xml for Adapter Framework 2.6” on page 100

Overview of Adapter Framework 2.6 changes

If you are running the Adapter for JD Edwards OneWorld with WebSphere

Business Integration Adapter Framework 2.6, you must modify startup scripts after

installing, but before starting, the connector. Otherwise, the Adapter for JDE

OneWorld may not work with the new framework.

The changes to startup scripts for both the adapter and the ODA are required

because .jar files and environment variables were renamed in Adapter Framework

2.6. Refer to the document Installing WebSphere Business Integration Adapters, Version

2.6 for details on how to install Adapter Framework 2.6. Then install the Adapter

for JDE OneWorld as documented in Chapter 2, “Installing the adapter,” on page

11. Before replacing startup scripts and environment variables, see the document

Migrating Adapters to Adapter Framework, Version 2.6, section ″Adapter Start Scripts,

Object Discovery Agent Start Scripts″ for an overview of changes in the start

scripts.

Samples of the modified startup scripts are shown in subsequent sections. To

obtain copies of these files, see the Technote Adapter for JDE OneWorld startup

scripts must be modified to run with WebSphere Business Integration Adapter Framework

2.6

start_OneWorld.bat for Adapter Framework 2.6

Here is a sample of the startup script modification for Windows:

REM @echo off

setlocal

REM Start - Adapter Specific Variables

REM set the name to be the application connector that is starting

 set CONNAME=%1

 set CONNPACKAGENAME=com.ibm.adapters.oneworld.OneWorldAdapterAgent

REM set the server name to be the interchange that is being targeted

 set SERVER=%2

REM End - Adapter Specific Variables

REM Branch between WBIA_RUNTIME and CROSSWORLDS

REM IF WBIA_RUNTIME is set use start_adapter launcher to run adapter

 If "%WBIA_RUNTIME%"=="" goto CROSSWORLDS

REM call CWConnEnv

 call "%WBIA_RUNTIME%"\bin\CwConnEnv.bat

REM set the directory where the specific connector resides

 set CONNDIR="%WBIA_RUNTIME%"\connectors\%1

REM set the AGENT - the name of the adapter jar

© Copyright IBM Corp. 2003, 2006 97

set AGENT=%CONNDIR%\BIA_%CONNAME%.jar

REM Go to the adapter specific drive and directory

 cd /d %CONNDIR%

REM Set JVMArgs variable

 set JVMArgs=-Dconfig_file="%CONNDIR%"\dependencies\jdeinterop.ini

REM Set JCLASSES - to be set in CLASSPATH

 set JCLASSES=.;%AGENT%;%JCLASSES%

Rem Set ExtDirs - to have the dependencies folder

 set ExtDirs=%CONNDIR%\dependencies;%CONNDIR%\repository;%ExtDirs%

call "%WBIA_RUNTIME%\bin\start_adapter" -n%CONNAME% -s%SERVER%

-l%CONNPACKAGENAME% %3 %4 %5

goto END

:CROSSWORLDS

REM All the old functionality goes here

REM call CWConnEnv

 call "%CROSSWORLDS%"\bin\CWConnEnv

REM set the directory where the specific adapter resides

 set CONNDIR="%CROSSWORLDS%"\connectors\%1

REM set the AGENT - the name of the adapter jar

 set AGENT=%CONNDIR%\BIA_%CONNAME%.jar

REM Go to the adapter specific drive & directory

 cd /d %CONNDIR%

REM Set JCLASSES - to be set in CLASSPATH

 set JCLASSES=.;%JCLASSES%;%AGENT%;

REM config file location defaults to HOME\InterchangeSystem.cfg on the local machine

REM start the connector dll under the Java Application End

%CWJAVA% -mx128m -Dconfig_file="%CONNDIR%"\dependencies\jdeinterop.ini

-Djava.ext.dirs="%MQ_LIB%";%JRE_EXT_DIRS%;%CONNDIR%\

repository;%CONNDIR%\dependencies -Djava.library.path="%CROSSWORLDS%"\

bin;%CONNDIR%;"%MQ_LIB%";%JRE_EXT_DIRS%;%CONNDIR%\repository;%CONNDIR%

\dependencies %ORB_PROPERTY% -Duser.home="%CROSSWORLDS%" -cp %JCLASSES%;

 AppEndWrapper -l%CONNPACKAGENAME% -n%CONNAME%Connector -s%SERVER% %3 %4 %5

endlocal

pause

start_OneWorld.sh for Adapter Framework 2.6

Here is a sample of the startup script modification for UNIX:

#!/bin/sh -x # This script should be called from connector_manager.sh, and

accepts the following parameters: # start_myconnector.sh <CONNECTORNAME>

<SERVERNAME> <OPTIONAL ADDITIONAL PARAMETERS> # # Any line that has the

<-- Check on it should be reviewed for your connector #

General connector

variable initialization section # No changes should be necessary # set

CONNECTOR_TYPE -- This is needed to differentate Java from C++ conncetors

set CONDIR the directory where the specific connector resides, then

change to this directory # set CONNAME the name to be the application

connector that is starting # set SERVER the server name to be the

interchange that is being targeted # set CONJAR to the fullpath of the

connector .jar file. CONNAME=$1 SERVER=$2 . ${CROSSWORLDS}/bin/CWConnEnv.sh

CONDIR=${CROSSWORLDS}/connectors/${CONNAME} CONJAR=${CONDIR}/
BIA_${CONNAME}.jar ## #

Connector specific variable initialization section # Set your Connector

agent here #Comment one of the next two sections in: #For C++ connectors

comment in the next two lines #CONNECTOR_TYPE="-d"

#CONNECTOR_AGENT=${CONNAME} #For Java connectors comment in the next two

lines CONNECTOR_TYPE="-l"

CONNECTOR_AGENT=com.ibm.adapters.oneworld.OneWorldAdapterAgent # Set any

connector specific Variables here, add the module jar files generated using

GenJava #CON_SPEC_JAR_ONE=${CONDIR}/dependencies/Connector.jar:${CONDIR}/

98 Adapter for JD Edwards OneWorld User Guide

dependencies/Kernel.jar:${CROSSWORLDS}/lib/xerces.jar:${CONDIR}/
dependencies/IBMEventsInterop.jar: # Set Conn specific classpath here #Any

specific variables defined above need to be added to the

CON_SPECIFIC_CLASSPATH below.

CON_SPECIFIC_CLASSPATH=${CON_SPEC_JAR_ONE} # <-- Check

Set any Connector specific start options here # CON_START_OPTIONS="

-tMAIN_SINGLE_THREADED " # We are using the JVM_FLAGS that are aet in the

CWSharedenv.sh file, if you need to use different flags, # Change

$JVM_FLAGS to be what you need to use. # No changes should be necessary

below this line. if [-f ${CROSSWORLDS}/wbiart/wbiart.jar] then

JCLASSES=${CONJAR}:${CON_SPECIFIC_CLASSPATH}:${CWCLASSES}:${CONDIR}:${JCLASSES}

export JCLASSES JVMArgs=-Dconfig_file=${CONDIR}/dependencies/jdeinterop.ini

export JVMArgs ExtDirs=${CONDIR}/dependencies:${CONDIR}/
repository:${ExtDirs} export ExtDirs exec start_adapter.sh

${CONNECTOR_TYPE}${CONNECTOR_AGENT} -n${CONNAME}Connector -s${SERVER}

${CON_START_OPTIONS} $3 $4 $5 $6 $7 $8 $9 else CWCLASSES=${CWCLASSES}

CLASSPATH=${CONJAR}:${CON_SPECIFIC_CLASSPATH}:${CWCLASSES}:${CONDIR} echo

$CLASSPATH ${CROSSWORLDS}/bin/check_path.sh "$CLASSPATH" exec ${CWJAVA}

${JVM_FLAGS} -Dconfig_file=${CONDIR}/dependencies/jdeinterop.ini

-Djava.library.path=${LD_LIBRARY_PATH}:${CONDIR}/dependencies:${CONDIR}/
repository -Djava.ext.dirs=${JRE_EXT_DIRS}:${CONDIR}/
dependencies:${CONDIR}/repository -classpath ${CLASSPATH} AppEndWrapper

${CONNECTOR_TYPE}${CONNECTOR_AGENT} -n${CONNAME}Connector -s${SERVER} $3 $4

$5 $6 $7 $8 $9 fi

start_OneWorldODA.bat for Adapter Framework 2.6

Here is a sample of the startup script modification for the object discovery agent

runing on Windows:

REM set AGENTNAME=OneWorldODA

REM set AGENT="%CROSSWORLDS%"\ODA\OneWorld\BIA_OneWorldODA.jar

REM set AGENTCLASS=com.ibm.oda.oneworldoda.OneWorldOda

setlocal

REM IF WBIA_RUNTIME is set use ODK Runtime scripts

if "%WBIA_RUNTIME%"=="" goto CROSSWORLDS

REM Invoke the CWODAENV.bat

call "%WBIA_RUNTIME%"\bin\CWODAEnv

goto LAUNCH

:CROSSWORLDS

REM Invoke the CWODAENV.bat

call "%CROSSWORLDS%"\bin\CWODAEnv

:LAUNCH

REM Define local batch PATH to insure we execute our jre

set PATH="%CROSSWORLDS%";"%CROSSWORLDS%"\bin;%PATH%

set AGENTNAME=OneWorldODA

set AGENT="%CROSSWORLDS%"\ODA\OneWorld\BIA_OneWorldODA.jar

set AGENTCLASS=com.ibm.oda.oneworldoda.OneWorldOda

set CONDIR="%CROSSWORLDS%"\connectors\oneworld

set JCLASSES=%JCLASSES%;%AGENT%

REM Start the Object Discovery Agent

%CWJAVA% -Duser.home="%CROSSWORLDS%" -

Djava.library.path=%JLIBRARIES%;%CONDIR%\dependencies;%CONDIR%\repository -

Djava.ext.dirs="%JRE_EXT_DIRS%";%CONDIR%\dependencies;%CONDIR%\repository -mx128m

%ORB_DEP% -classpath %JCLASSES% com.crossworlds.ODKInfrastructure.%CONNECTION% -

l%AGENTNAME% -c%AGENTCLASS%

endlocal

pause

Startup scripts for Adapter Framework 2.6 99

oda.dd.xml for Adapter Framework 2.6

In addition to modifying the startup script for the ODA, you must add the

following file (oda.dd.xml) under %WBIA_RUNTIME%\ODA\OneWorld for the ODA to

work:

<?xml version="1.0" encoding="utf-8" ?> - <oda> - <startup>

<messagefile prefix="BIA_" /> </startup> </oda>

100 Adapter for JD Edwards OneWorld User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2006 101

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

102 Adapter for JD Edwards OneWorld User Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: &copr; (your company name) (year). Portions

of this code are derived from IBM Corp. Sample Programs. &corp; Copyright IBM

Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

IBM and related trademarks:

http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

Notices 103

104 Adapter for JD Edwards OneWorld User Guide

Index

A
ASI (application specific information) 1

© Copyright IBM Corp. 2003, 2006 105

106 Adapter for JD Edwards OneWorld User Guide

����

Printed in USA

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 2.0.4
	New in release 2.0.x
	New in release 1.0.0

	Chapter 1. Overview
	Terminology
	Connector overview
	Connector architecture
	Business functions
	Request processing
	Application event processing

	How the connector works

	Chapter 2. Installing the adapter
	Compatibility
	Assumptions and third-party dependencies
	Platform requirements

	Installing the adapter for JD Edwards OneWorld and related files
	WebSphere Business Integration Adapter directories and files

	Connector file structure
	Post-installation tasks
	Configure the adapter
	Copy files
	Create an ODBC connection
	Modify startup script for Windows 2000
	Modify startup script for Adapter Framework 2.6

	Chapter 3. Configuring the connector
	Standard connector properties
	Connector-specific properties
	Username
	Password
	PoolSize
	Environment
	ServerName
	PortNo
	PollQuantity
	EventStoreFactory
	InDoubtEvents
	ArchiveProcessed
	UseDefaults

	Starting the connector
	Stopping the connector
	Installing and configuring IBM event store
	Population of an event into the event table
	Using log and trace files

	Chapter 4. Creating and modifying business objects
	Overview of the ODA for OneWorld
	Generating business object definitions
	Starting the ODA
	Running Business Object Designer

	Uploading business object files

	Chapter 5. Understanding business objects
	Defining metadata
	Connector business object structure
	Business function business objects
	XML list business objects
	Custom business functions
	Application-specific information for business functions
	Application-specific information for XML list business object functions
	Business object handler

	Sample business object
	Sample GenJava script file
	Business object structure for the above example
	AddressBook
	D0100033

	Generating business objects

	Chapter 6. Error handling and event codes
	Error handling
	Adapter
	ODA
	Corrupt records in database
	Undefined class errors

	Logging
	Tracing
	Event status codes

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Startup scripts for Adapter Framework 2.6
	Overview of Adapter Framework 2.6 changes
	start_OneWorld.bat for Adapter Framework 2.6
	start_OneWorld.sh for Adapter Framework 2.6
	start_OneWorldODA.bat for Adapter Framework 2.6
	oda.dd.xml for Adapter Framework 2.6

	Notices
	Programming interface information
	Trademarks and service marks

	Index

