
IBM WebSphere Business Integration Adapters

Adapter for HTTP User Guide

Version 1.3.0

���

IBM WebSphere Business Integration Adapters

Adapter for HTTP User Guide

Version 1.3.0

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 143.

13September2005

This edition of this document applies to IBM WebSphere Business Integration Adapter for HTTP (5724-H49), version

1.3.0.

To send us your comments about IBM CrossWorlds documentation, email doc-comments@us.ibm.com. We look

forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Document v

What this document includes v

What this document does not include v

Audience v

Prerequisites for This Document v

Related Documents v

Typographic Conventions vi

New in this release vii

New in release 1.3 vii

New in release 1.1 vii

Chapter 1. Overview of the Adapter . . . 1

Adapter for HTTP environment 1

Terminology 2

Components of connector for HTTP 3

Architecture of connector for HTTP 7

Install, configure, and design checklist 8

Chapter 2. Installation and startup . . . 11

Overview of Installation Tasks 11

Installing the connector and related files 11

Installed file structure 11

Overview of configuration tasks 12

Running multiple instances of the adapter 13

Starting the connector 14

Stopping the connector 16

Chapter 3. Business object

requirements 17

Business object meta-data 17

Connector business object structure 17

Developing business objects 39

Chapter 4. HTTP connector 41

Connector processing 41

Custom data handler invocation 43

HTTP(S) services 43

Event processing 44

Request processing 51

SSL 56

Configuring the connector 58

Connector at startup 69

Logging 70

Tracing 70

Chapter 5. Troubleshooting 73

Start-up problems 73

Run-time errors 74

Appendix A. Standard configuration

properties for connectors 77

New properties 77

Standard connector properties overview 77

Standard properties quick-reference 79

Standard properties 85

Appendix B. Connector Configurator 101

Overview of Connector Configurator 101

Starting Connector Configurator 102

Running Configurator from System Manager . . . 103

Creating a connector-specific property template 103

Creating a new configuration file 106

Using an existing file 107

Completing a configuration file 108

Setting the configuration file properties 109

Saving your configuration file 116

Changing a configuration file 117

Completing the configuration 117

Using Connector Configurator in a globalized

environment 117

Appendix C. Adapter for HTTP tutorial 119

About the tutorial 119

Before you start 120

Installing and configuring 120

Running the asynchronous scenario 124

Running the synchronous scenario 126

Appendix D. Configuring HTTPS/SSL 129

Keystore setup 129

TrustStore setup 130

Generating a certificate signing request (CSR) for

public key certificates 130

Appendix E. Common Event

Infrastructure 133

Required software 133

Enabling Common Event Infrastructure 133

Obtaining Common Event Infrastructure adapter

events 133

For more information 134

Common Event Infrastructure event catalog

definitions 134

XML format for “start adapter” metadata 134

XML format for ″stop adapter″ metadata 136

XML format for “timeout adapter” metadata . . . 136

XML format for ″request″ or ″delivery″ metadata 137

Appendix F. Application Response

Measurement 139

Application Response Measurement

instrumentation support 139

Index 141

© Copyright IBM Corp. 2003, 2005 iii

Notices 143

Programming interface information 145

Trademarks and service marks 145

iv Adapter for HTTP User Guide

About This Document

The IBMR WebSphereR Business Integration Adapter portfolio supplies integration

connectivity for leading e-business technologies, enterprise applications, and legacy

and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business integration.

What this document includes

This document describes installation, connector property configuration, business

object development, and troubleshooting for this IBM WebSphere Business

Integration adapter.

What this document does not include

This document does not describe deployment metrics and capacity planning issues

such as server load balancing, number of adapter processing threads, maximum

and minimum throughputs, and tolerance thresholds.

Such issues are unique to every customer deployment and must be measured

within or close to the exact environment where the adapter is to be deployed. You

should contact your IBM services representative to discuss the configuration of

your deployment site, and for details on planning and evaluating these kinds of

metrics, given your specific configuration.

Audience

This document is for IBM WebSphere customers, consultants, developers, and

anyone who is implementing the WebSphere Business Integration Adapter for

HTTP.

Prerequisites for This Document

A variety of prerequisites are cited throughout this book. Many of these consist of

references to web sites that contain information about, or resources for, http

protocol. You should also be familiar with implementing the WebSphere business

integration system. A good place to start is the Technical Introduction to IBM

WebSphere InterChange Server, which contains cross-references to more detailed

documentation.

Related Documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

You can install related documentation from the following sites:

v For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,

WebSphere Business Integration Message Broker); and for using adapters with

WebSphere Application Server, see the IBM WebSphere Business Integration

© Copyright IBM Corp. 2003, 2005 v

Adapters InfoCenter:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v For using adapters with WebSphere InterChange Server, see the IBM WebSphere

InterChange Server InfoCenters:

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v For more information about WebSphere message brokers:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Typographic Conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For UNIX installations, substitute slashes

(/) for backslashes. All IBM product pathnames are relative

to the directory where the product is installed on your

system.

ProductDir Represents the directory where the product is installed.

-> Indicates a choice from a menu such as: Choose File

->Update -> SGML References

vi Adapter for HTTP User Guide

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

New in this release

New in release 1.3

This release includes the following enhancements:

v Extended HTTP method support, including GET and POST, and enhanced host

request header processing.

v Support for pingability on listeners has been added. Refer to “Pingability” on

page 44.

v Support for empty request and empty response processing has been added.

Refer to Chapter 4, “HTTP connector,” on page 41.

v Additional meta object attributes. For more information, refer to “HTTP Protocol

Config MO for event processing” on page 22 and “HTTP Protocol Config MO

for request processing” on page 32.

v Support for IBM WebSphere Business Integration Adapter Framework V2.6.0 has

been added. For more information, refer to the Migrating Adapters to Adapter

Framework, Version 2.6 guide.

v Support for the following platforms has been added:

– AIX 5.3

– Red Hat 3.0

– Solaris 9

– SUSE 8.1

– Windows 2003
v Support for JRE/JDK 1.4.2 has been added.

v Added support for the management of the HTTP adapter by the IBM Tivoli

License Manager (ITLM).

New in release 1.1

This release includes the following enhancements:

v If you have not specified a value for java.protocol.handler.pkgs, the connector

uses the default value during initialization. For further information, see “JSSE”

on page 56.

v The HTTP protocol listener supports requests with any Accept header values; if

necessary, the validation of the header can be delegated to the collaboration.

v The minimum value has changed for the connector-specific property

WorkerThreadCount. For further information, see “WorkerThreadCount” on

page 61.

v In the case of synchronous event processing by HTTP(S) listeners, when a

response is not populated by a collaboration, the ContentType portion of the

Content-Type HTTP header of the response will be set to the ContentType of the

request.

As of version 1.1.x, the adapter is not supported on Solaris 7, so references to that

platform version have been deleted from this guide.

© Copyright IBM Corp. 2003, 2005 vii

viii Adapter for HTTP User Guide

Chapter 1. Overview of the Adapter

v “Adapter for HTTP environment”

v “Terminology” on page 2

v “Components of connector for HTTP” on page 3

v “Architecture of connector for HTTP” on page 7

v “Install, configure, and design checklist” on page 8

The connector is a runtime component of the WebSphere Business Integration

Adapter for HTTP. The connector allows businesses to aggregate, publish, and

consume HTTP(S) messages for use either within their organization or by trading

partners. The connector and other components described in this document provide

the functionality needed to exchange business object information in the body of a

message that can be conveyed via the HTTP and HTTPS protocols.

This chapter describes the scope, components, design tools, and architecture used

to implement the WebSphere Business Integration Adapter for HTTP. It also

provides an overview of tasks you must complete to install and configure the

HTTP components described in this document. For information about installing

and configuring the components, see “Install, configure, and design checklist” on

page 8.

Note: The adapter for HTTP implements the standard Adapter Framework API.

For this reason, the adapter can operate with any integration broker that the

Framework supports. However, the functionality provided by the adapter

has been designed specifically to support the IBM WebSphere InterChange

Server (ICS) integration broker.

Adapter for HTTP environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements:

v “Hardware and software requirements”

v “Standards and APIs”

v “Locale-dependent data” on page 2

Hardware and software requirements

For hardware and software requirements for this adapter, see IBM WebSphere

Adapters and IBM WebSphere Business Integration Adapters: Hardware and

Software Requirements. Select your adapter from the list of WebSphere adapters.

Standards and APIs

A variety of standards and technologies give access to their functionality over a

network.

The standards used by the adapter are as follows:

v HTTP 1.0

The APIs used by the adapter are as follows:

v IBM JSSE 1.0.3

© Copyright IBM Corp. 2003, 2005 1

http://www.ibm.com/support/docview.wss?uid=swg27006249
http://www.ibm.com/support/docview.wss?uid=swg27006249
http://www.ibm.com/support/docview.wss?uid=swg27006249

Depending on your configuration, you may need to install additional software. The

sections below discuss these contingencies.

SSL

If you plan to use SSL, you must use third-party software for managing your

keystores, truststores, certificates, and key generation. No tooling is provided to set

up keystores, certificates, or for key generation. You may choose to use keytool

(shipped with IBM JRE) to create self-signed certificates and to manage keystores.

For further information, see “SSL” on page 56.

Locale-dependent data

The connector has been globalized so that it can support double-byte character

sets. When the connector transfers data from a location that uses one character

code to a location that uses a different code set, it performs character conversion to

preserve the meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encodings for characters

in most known character code sets (both single-byte and multibyte). Most

components in the WebSphere business integration system are written in Java.

Therefore, when data is transferred between most integration components, there is

no need for character conversion.

Note: The connector has not been internationalized. This means that the trace and

log messages are not translated.

HTTP connector

This section discusses globalization and the connector.

Event notification: The connector uses pluggable protocol listeners for event

notification. The protocol listeners extract the message from the transport and

invoke the data handler specified in the message meta-data. For further

information on listener processing, see “HTTP and HTTPS protocol listener

processing” on page 45.

Request processing: The connector uses a pluggable HTTP-HTTPS protocol

handler framework for request processing. The protocol handlers invoke the data

handler. For further information, see “HTTP-HTTPS protocol handler processing”

on page 52.

Data handler

You can configure the HTTP adapter to use any data handler. For an overview of

data handler configuration, see “Configuring the data handler” on page 9.

Terminology

The following terms are used in this Guide:

v ASI (Application-Specific Information) is code tailored to a particular

application or technology. ASI exists at both the attribute level and business

object level of a business object definition.

v BO (Business Object) A set of attributes that represent a business entity (such as

Customer) and an action on the data (such as a create or update operation).

Components of the IBM WebSphere system use business objects to exchange

information and trigger actions.

2 Adapter for HTTP User Guide

v Content-Type The HTTP protocol header that includes the type/subtype and

optional parameters. For example, in the Content-Type

value text/xml;charset=ISO-8859-1, text/xml is the type/subtype and

charset=ISO-8859-1 is the optional Charset parameter.

v ContentType refers to the type/subtype portion of the Content-Type header value

only. For example, in the Content-Type valuetext/xml;charset=ISO-8859-1,

text/xml is referred to in this document as the ContentType.

v MO_DataHandler_Default Data handler meta-object used by the connector

agent to determine which data handler to instantiate. This is specified in the

DataHandlerMetaObjectName configuration property of the connector.

v Protocol Config MO During request processing, the HTTP-HTTPS protocol

handlers use a Protocol Config MO to determine the destination. If during event

processing you are exposing collaborations, the connector uses the Protocol

Config MO to convey message header information from the HTTP or HTTPS

protocol listener to the collaboration.

v Top-Level Business Object A top-level business object contains a Request, a

Response (optional) and one or more Fault (optional) business objects. A TLO is

used by the connector for both event processing and request processing.

Components of connector for HTTP

Figure 1 illustrates the connector for HTTP, including its protocol handler and

listener frameworks.

Note: The Adapter for HTTP comes with a limited use license of the XML data

handler. The adapter, however, does not require the XML data handler to

function.

 The following components interact to enable data exchanges across the Internet:

v HTTP connector, including the configured data handler and protocol listeners

and handlers

v HTTP-enabled collaborations

Protocol listener
framework

Protocol handler
framework

HTTP
protocol
listener

HTTP-HTTPS
protocol
handler

HTTPS
protocol
listener

Configured
data

handler

Connector for HTTP

Figure 1. The connector for HTTP

Chapter 1. Overview of the Adapter 3

v Business objects and HTTP(S) messages

v WebSphere Business Integration InterChange Server

Connector for HTTP

During request processing, the connector responds to collaboration service calls by

converting business objects to request messages and conveying them to specified

destinations. Optionally (for synchronous request processing) the connector

converts response messages to response business objects and returns these to the

collaboration.

During event processing, the connector processes request messages from clients by

converting them into request business objects and passing them on to

collaborations for processing. The connector optionally receives response business

objects from the collaboration, which are converted to response messages and then

returned to clients.

For further information, see Chapter 4, “HTTP connector,” on page 41

Note: In this document, any mention of a connector is a reference to the HTTP

connector, unless specified otherwise.

Protocol listeners and handlers

The connector includes the following protocol listeners and handler:

v HTTP protocol listener

v HTTPS protocol listener

v HTTP-HTTPS protocol handler

Protocol listeners detect events from internal or external clients in HTTP, or

HTTPS formats. They notify the connector of events that require processing by a

collaboration. Protocol listeners then read the business-object-level and

attribute-level ASI, connector properties, and transformation rules embedded in

protocol configuration objects to determine the collaboration, data handler,

processing mode (synchronous/asynchronous) and transport-specific aspects of the

transaction. For a detailed account of protocol listener processing, see “Protocol

listeners” on page 44.

Protocol handlers invoke HTTP services in HTTP or HTTPS formats on behalf of a

collaboration. The HTTP(S) protocol handler reads TLO ASI and transformation

rules embedded in protocol configuration objects to determine how to process the

request (synchronously or asynchronously), which data handler to use to convert

messages to business objects and vice versa, and to determine the destination

(from the Destination attribute of the request business object Protocol Config MO).

For synchronous transactions, the protocol handler processes response messages,

converting them into response business objects and passing them back to the

collaboration.

For further information on protocol handlers, see “Protocol handling” on page 51.

Data handler

You can configure the HTTP adapter to use any data handler. For purposes of

illustration, this document often makes references to a text/xml mime type and an

XML data handler.

4 Adapter for HTTP User Guide

The configured data handler converts business objects to messages and vice versa.

For further information see the documentation for the data handler you are using

with the HTTP adapter.

Object discovery agents

If you are using a data handler for which there is an object discovery agent (ODA),

you can use that ODA to generate business objects. For example, if your

requirements include XML encoding and if you configure the adapter with the

XML data handler, you can use the XML ODA to create and modify business

objects.

Deploying the connector

There are two ways to deploy the HTTP connector:

v Behind the firewall as an intranet-based solution (see Figure 2) within an

enterprise whose business processes communicate in HTTP or HTTPS formats.

Chapter 1. Overview of the Adapter 5

v Behind the firewall with a front-end or gateway server to process, filter, and

otherwise manage communications that are external to the enterprise.

Note: The HTTP connector does not include a gateway or front-end for managing

incoming or outgoing messages from or to external clients. You must

configure and deploy your own gateway. The connector must be deployed

within the enterprise only, not in the DMZ or outside of the firewall.

ICS HTTP
client

HTTP
service

HTTP
client

Firewall

Connector for HTTP

HTTP
service

Figure 2. HTTP adapter as an intranet solution

6 Adapter for HTTP User Guide

Architecture of connector for HTTP

To illustrate the architecture of the components at a high level, this section

describes two data flows. Figure 3 illustrates the two scenarios. These two

scenarios are described below.

Request processing illustrates the sequence of events that occurs when a

collaboration makes a service call request to the connector. In this scenario, the

collaboration plays the role of a client, sending a request to a server.

Internet

ICS

Connector for HTTP

HTTP
client
HC2

HTTP
service
HS1

HTTP
client
(C1)

HTTP
service
(HS2)

2

C

B

D

E
5

34 A

F

1

6

Enterprise web server HC2HS1

Figure 3. Flow of an HTTP message

Chapter 1. Overview of the Adapter 7

A The collaboration sends a service call request to the connector, which calls

a data handler to convert the business object to a request message.

B The connector invokes the URL of the enterprise web server by sending the

request message.

C The enterprise web server invokes the URL of the HTTP server (HS2).

D The HTTP server HS2 processes the request and returns the response. The

response is returned as part of the same connection.

E The enterprise web server returns the response message to the adapter.

F The connector receives the response (or fault) message, calls the data

handler to convert the message to a business object, and returns it to the

collaboration.

Event processing illustrates the sequence of events that occurs when a

collaboration is invoked by an HTTP client. In this scenario, the collaboration plays

the role of the server, accepting a request from a client, external or internal, and

responding as required.

1 The HTTP client (C1) sends a request message to the destination—the

collaboration.

2 If the HTTP client is external, the gateway receives and routes the message

to the connector.

3 The connector sends the message to the data handler for conversion to a

business object. The connector invokes the collaboration.

4 The collaboration returns a response (or fault) business object.

5 The connector calls the data handler to convert the response (or fault)

business object to a response message. The connector returns the response

to the gateway.

6 If the client is external, the gateway routes the response message to the

HTTP client (C1).

Install, configure, and design checklist

This section summarizes the tasks you must perform to install, configure, and

design your HTTP solution. Each section briefly describes the tasks and then

provides links to sections in this document (and cross references to related

documents) that describe how to perform the task or provide background

information.

Installing the adapter

See Chapter 2, “Installation and startup,” on page 11 for a description of what and

where you must install.

Configuring connector properties

Connectors have two types of configuration properties: standard configuration

properties and connector-specific configuration properties. Some of these properties

have default values that you do not need to change. You may need to set the

values of some of these properties before running the connector. For more

information, see Chapter 4, “HTTP connector,” on page 41.

8 Adapter for HTTP User Guide

Configuring protocol handlers and listeners

You configure protocol handlers and listeners when you assign values to connector

configuration properties that govern the behavior of these components. For more

information, see Chapter 4, “HTTP connector,” on page 41.

Creating or modifying business objects

Depending on the data handler(s) you are using with the HTTP connector, there

may be an ODA available. ODA’s automate the process of creating and modifying

business objects. Otherwise, you can manually create or modify business objects

using Business Object Designer. For further information, see the documentation for

the data handler you are using and the Business Object Development Guide.

Configuring the data handler

You configure the data handler meta-object(s) after you install the product files, but

before startup. You start by specifying a connector-specific configuration property,

the DataHandlerMetaObjectName. You specify the name of the top-level

meta-object (MO_DataHandler_Default) that the data handler uses to retrieve

configuration properties. Then follow any additional configuration steps required

by the data handler you are using. You can optionally specify a data handler using

the MimeType TLO attribute. For further information, see Table 5 on page 19.

For further information on configuring the data handler, see “Connector-specific

configuration properties” on page 59

Chapter 1. Overview of the Adapter 9

10 Adapter for HTTP User Guide

Chapter 2. Installation and startup

v “Overview of Installation Tasks”

v “Installing the connector and related files”

v “Overview of configuration tasks” on page 12

v “Running multiple instances of the adapter” on page 13

v “Starting the connector” on page 14

v “Stopping the connector” on page 16

This chapter describes how to install components for implementing the connector

for HTTP. For information regarding installation of an ICS system generally, see the

System Installation Guide appropriate for your platform.

Overview of Installation Tasks

For information on broker compatibility, adapter framework, software

prerequisites, dependencies, and standards and APIs, see “Adapter for HTTP

environment” on page 1.

To install the connector for HTTP, you must perform the following tasks:

Install ICS

This task, which includes installing the system and starting ICS, is described in the

System Installation Guide. You must install ICS, version 4.2.2 or later.

To load files into the repository, consult the Implementation Guide for WebSphere

InterChange Server.

Installing the connector and related files

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Installed file structure

The tables in this section show the installed file structure.

Windows connector file structure

The Installer copies the standard files associated with the connector into your

system.

The utility installs the connector and adds a shortcut for the connector agent to the

Start menu.

Table 1 describes the Windows file structure used by the connector, and shows the

files that are automatically installed when you choose to install the connector

through Installer.

© Copyright IBM Corp. 2003, 2005 11

Table 1. Installed Windows file structure for the adapter

Subdirectory of ProductDir Description

connectors\HTTP\BIA_HTTP.jar WebSphere Business Integration Adapter jar file

connectors\HTTP\start_HTTP.bat The startup file for the connector

bin\Data\App\HTTPConnectorTemplate HTTP connector template

connectors\HTTP\dependencies\mail.jar JavaMail API from IBM

connectors\HTTP\dependencies\IBMReadme.txt License

connectors\HTTP\samples\WebSphereICS\HTTPSample.jar Repository file for samples

connectors\HTTP\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object for test

connector

connectors\HTTP\samples\WebSphereICS\CLIENT_ASYNCH_TLO_Order.bo Sample (asynchronous) business object for test

connector

connectors\HTTP\samples\WebSphereICS\SERVICE_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object

connectors\messages\HTTPConnector.txt Connector message file

Note: All product pathnames are relative to the directory where the product is

installed on your system.

UNIX connector file structure

The Installer copies the standard files associated with the connector into your

system.

Table 2 describes the UNIX file structure used by the connector, and shows the files

that are automatically installed when you choose to install the connector through

Installer.

 Table 2. Installed UNIX file structure for the adapter

Subdirectory of ProductDir Description

connectors/HTTP/BIA_HTTP.jar WebSphere Business Integration Adapter jar file

connectors/HTTP/start_HTTP.sh The startup file for the connector

bin/Data/App/HTTPConnectorTemplate HTTP connector template

connectors/HTTP/dependencies/mail.jar JavaMail API from IBM

connectors/HTTP/dependencies/IBMReadme.txt License

connectors/HTTP/samples/WebSphereICS/HTTPSample.jar Repository file for samples

connectors/HTTP/samples/WebSphereICS/CLIENT_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object for test

connector

connectors/HTTP/samples/WebSphereICS/CLIENT_ASYNCH_TLO_Order.bo Sample (asynchronous) business object for test

connector

connectors/HTTP/samples/WebSphereICS/SERVICE_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object

connectors/messages/HTTPConnector.txt Connector message file

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Overview of configuration tasks

After installation and before startup, you must configure components as follows:

Configure the connector

This task includes setting up and configuring the connector. See “Configuring the

connector” on page 58.

Configure business objects

The steps for configuring business objects depend on how you elect to implement

the product suite:

v Request Processing You must create the business objects that correspond to:

12 Adapter for HTTP User Guide

– Outgoing request messages

– Each possible response, including faults

For further information, review Chapter 3, “Business object requirements,” on

page 17.

v Event Processing You use TLO business objects. For further information, review

Chapter 3, “Business object requirements,” on page 17.

You can create business objects manually using Business Object Designer or,

depending on your data handler, an ODA, which automates the process of making

business objects. For further information, see your data handler documentation.

Configure the data handler

You configure the data handler by specifying a connector-specific configuration

property, the DataHandlerMetaObjectName. You specify the name of the top-level

meta-object (MO_DataHandler_Default) that the data handler uses to retrieve

configuration properties. Then follow any additional configuration steps required

by the data handler you are using.

You can optionally specify a data handler using the MimeType TLO attribute. For

further information, see Table 5 on page 19.

For further information on configuring the data handler, see “Connector-specific

configuration properties” on page 59

Configure collaborations

To enable collaborations for request or event processing, see the following

documentation:

v IBM WebSphere InterChange Server Collaboration Development Guide

v IBM WebSphere InterChange Server Map Development Guide

Running multiple instances of the adapter

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector

directory should be named:

ProductDir\connectors\connectorInstance

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file, create

this directory and store the file here:

ProductDir\repository\connectorInstance

Chapter 2. Installation and startup 13

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer to

import them. You can copy any of the files for the initial connector. Just rename

them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

You create a configuration file (connector definition) for the connector instance in

Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create a new

directory” on page 13.

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial

connector (in the command line) to match the name of the new connector

instance.

You can now run both instances of the connector on your integration server at the

same time.

For more information on creating custom connectors, refer to the Connector

Development Guide for C++ or for Java.

Starting the connector

Important: As noted earlier in this chapter, the connector, business objects, the

data handler meta-objects, and collaborations must be configured after

installation and before starting the connector to assure proper

operation. For a summary of these tasks, see “Overview of

configuration tasks” on page 12. In addition, connector polling should

not be disabled (connector polling is enabled by default).

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

14 Adapter for HTTP User Guide

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the UNIX ProductDir/bin

directory.

The name of the startup script depends on the operating-system platform, as

Table 3 shows.

 Table 3. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor, which is launched when you start System Manager

running with the WebSphere Application Server or InterChange Server broker:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

Chapter 2. Installation and startup 15

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

v For WebSphere InterChange Server, refer to the System Administration Guide.

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– When using InterChange Server on UNIX-based systems, connectors run in

the background so they have no separate window. Instead, run the following

command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

16 Adapter for HTTP User Guide

Chapter 3. Business object requirements

v “Business object meta-data”

v “Connector business object structure”

v “Synchronous event processing TLOs”

v “Asynchronous event processing TLOs” on page 25

v “Synchronous request processing TLOs” on page 27

v “Asynchronous request processing TLOs” on page 36

v “Developing business objects” on page 39

This chapter describes the structure, requirements, and attributes of connector

business objects.

Business object meta-data

The connector for HTTP is a meta-data-driven connector. In business objects,

meta-data is data about the application, which is stored in a business object

definition and which helps the connector interact with an application. A

meta-data-driven connector handles each business object that it supports based on

meta-data encoded in the business object definition rather than on instructions

hard-coded in the connector.

Business object meta-data includes the structure of a business object, the settings of

its attribute properties, and the content of its application-specific information.

Because the connector is meta-data-driven, it can handle new or modified business

objects without requiring modifications to the connector code. However, the

connector’s configured data handler makes assumptions about the structure of its

business objects, object cardinality, the format of the application-specific text, and

the database representation of the business object. Therefore, when you create or

modify a business object for http, your modifications must conform to the rules the

connector is designed to follow, or the connector cannot process new or modified

business objects correctly.

Connector business object structure

The connector processes top-level business objects (TLOs), which are used for

request processing and event processing. TLOs contain a request business object

and, optionally, response and fault business objects. These child objects contain

content data and, optionally, Protocol Config MOs. They are also data-handler

specific objects; for example, if you are using the XML data handler, the request

child would be a business object that is comprehensible to the XML data handler.

The TLO, request, response, and fault objects as well as application-specific

information, attributes, and requirements with regard to request versus event

processing are described and illustrated in the sections below.

Synchronous event processing TLOs

For event processing the connector allows two kinds of TLOs—synchronous and

asynchronous. This section discusses synchronous event processing TLOs.

Figure 4 on page 18 shows the business object hierarchy for synchronous event

processing. Request and response objects are required, fault objects are optional.

© Copyright IBM Corp. 2003, 2005 17

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for synchronous event processing TLOs

Object-level ASI provides fundamental information about the nature of a TLO and

the objects it contains. Figure 5 shows the object-level ASI for

SERVICE_SYNCH_OrderStatus, a sample TLO for synchronous event processing.

Table 4 below describes the object-level ASI for a synchronous event processing

TLO.

Figure 4. Business object hierarchy for synchronous event processing

Figure 5. Top-level business object for synchronous event processing

18 Adapter for HTTP User Guide

Table 4. Synchronous event processing TLO object ASI

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO enabled for event

processing.

ws_collab=collabname This ASI tells the connector which collaboration to

invoke. Its value is the name of the collaboration. In

the sample shown inFigure 5, the collaboration

name is SERVICE_SYNCH_OrderStatus_Collab)

ws_verb=verb Before delivering the TLO to the collaboration, the

connector uses this ASI to set the verb on the TLO.

In the sample shown inFigure 5, the verb is

Retrieve.

ws_mode=synch During event notification, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For synchronous

processing, this ASI must be set to synch.

The default is asynch.

Attribute-level ASI for synchronous event processing TLOs

Each synchronous event processing TLO has attributes and attribute-level ASI.

Figure 6 shows the attributes of SERVICE_SYNCH_OrderStatus, a sample TLO. It

also shows the attribute-level ASI in the App Spec Info column.

Table 5 summarizes the attribute-level ASI for the request, response, fault,

MimeType, and Charset attributes of an synchronous event processing TLO.

 Table 5. Synchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

MimeType Optional attribute; if

specified, its value is used as

the mime type of the data

handler to invoke for the

synchronous response.

Figure 6. TLO attributes for synchronous event processing

Chapter 3. Business object requirements 19

Table 5. Synchronous event processing TLO attribute ASI (continued)

TLO attribute Attribute-level ASI Description

Charset This optional parameter of

type String specifies the

charset to be set on the data

handler when transforming

an outgoing business object

to the message. NOTE: the

charset value specified in this

attribute will not be

propagated in the

Content-Type protocol

header of the response

message.

Request ws_botype=request This attribute corresponds to

an HTTP service request. The

connector uses its ASI to

determine whether this TLO

attribute is of type request

BO. This ASI, not the

attribute name, determines

the attribute type. If there is

more than one request

attribute, the connector uses

the ASI of the first one.

This attribute is required for

synchronous event

processing TLOs.

Response ws_botype=response This attribute corresponds to

the response returned by an

HTTP service. The connector

uses this ASI to determine

whether this TLO attribute is

of type response BO. This

ASI, not the attribute name,

determines the attribute type.

If there is more than one

response attribute, the

connector uses the ASI of the

first one.

This attribute is required for

synchronous event

processing TLOs.

Fault ws_botype=fault

ws_botype=defaultfault

This attribute, optional for

synchronous event

processing, corresponds to a

fault message returned by a

collaboration when it cannot

successfully populate a

response. The connector uses

this ASI, not the attribute

name, to determine if the

attribute is of type Fault BO.

20 Adapter for HTTP User Guide

Request business object for synchronous event processing

A request business object is a child of a TLO and is required for synchronous event

processing. A request business object has object-level ASI. The object-level ASI for a

request business object for synchronous event processing is described in Table 6.

You can specify a default verb for the request business object. You do so by

specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the

request business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the business object is returned

without a verb.

 Table 6. Synchronous event processing: object-level ASI for request business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The ASI designates the HTTP or HTTPS

protocol listener. Both the ASI and the Protocol

Config MO are optional. For further information,

see “Protocol Config MO” on page 22. Note: The

data handler that you configure for business

object transformations should be capable of

reading any ASI that begins with cw_mo as

metadata and not as part of the busisenss data to

be converted. The XML data handler has the

capability to detect cw_mo metadata, ignoring the

attributes that such values point to.

ws_tloname=tloname This ASI specifies the name of the TLO that this

object belongs to. During event processing, the

connector uses this ASI to determine whether the

request business object delivered by the data

handler is a child of the TLO. If so, the connector

creates the specified TLO, sets the request

business object as its child, and uses the TLOs

object-level ASI to deliver it to the subscribing

collaboration.

Response business object for synchronous event processing

A response business object is a child of a TLO and is required for synchronous

event processing. The object-level ASI for a response business object for

synchronous event processing is described in Table 7.

Chapter 3. Business object requirements 21

Table 7. Synchronous event processing: object-level ASI for response business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The ASI designates the HTTP or HTTPS

protocol listener. Both the ASI and the Protocol

Config MO are optional. For further information,

see “Protocol Config MO.” Note: The data

handler that you configure for business object

transformations should be capable of reading any

ASI that begins with cw_mo as metadata and not

as part of the busisenss data to be converted. The

XML data handler has the capability to detect

cw_mo metadata, ignoring the attributes that such

values point to.

Note: You can optionally include a Protocol Config MO object-level ASI for the

response BO.

Fault business object for synchronous event processing

A fault business object is a child of a TLO and is optional for synchronous event

processing. The object-level ASI for a fault business object for synchronous event

processing is described in Table 8.

 Table 8. Synchronous event processing: object-level ASI for fault business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The ASI designates the HTTP or HTTPS

protocol listener. Both the ASI and the Protocol

Config MO are optional. For further information,

see “Protocol Config MO.” Note: The data

handler that you configure for business object

transformations should be capable of reading any

ASI that begins with cw_mo as metadata and not

as part of the busisenss data to be converted. The

XML data handler has the capability to detect

cw_mo metadata, ignoring the attributes that such

values point to.

Note: You can optionally include a Protocol Config MO object-level ASI for the

fault BO.

Protocol Config MO

The Protocol Config MO is optionally included as a child of the request, response,

or fault business objects for event processing. Typically you specify it when you

need to read (from request messages) or propagate (to response or fault messages)

the protocol headers and custom properties. As noted above, the request business

object optionally declares the name of the Protocol Config MO as

business-object-level ASI:

cw_mo_http=HTTPProtocolListenerConfigMOAttribute

HTTP Protocol Config MO for event processing

During event processing, the connector uses protocol listeners (HTTP or HTTPS) to

retrieve events from the transport. These events are messages from internal or

22 Adapter for HTTP User Guide

external clients requesting service from collaborations. Each transport has its own

header requirements. The connector uses the Protocol Config MO to convey the

protocol-specific header information from the protocol listener to the collaboration.

The Protocol Config MO attributes correspond to headers in the inbound message.

The connector sets the value of these attributes in the business object using

inbound message content.

For HTTP(S) protocol, the Protocol Config MO attributes are as follows:

 Table 9. HTTP/HTTPS Protocol Config MO Attributes for event processing

Attribute Required Type Description

Destination No String Used in event notification to

propagate Request-URI from

the request line.

Content-Type No String The value of this attribute

defines the Content-Type

header of the outgoing message

(which includes message

ContentType and 0 or more

parameters --the charset-- for

the outgoing message). The

syntax is the same as that for

the Content-Type header in the

HTTP Protocol, for example:

text/xml; charset=ISO-8859-4.

If there is no Content-Type

attribute defined, the connector

uses the ContentType of the

request as the ContentType of

the response/fault message.

Method No String Will be populated with event

request HTTP method in event

notification.

UserDefinedProperties No Business object This attribute holds the

user-defined protocol properties

business object.

One or more HTTP

headers

No String This attribute allows the

handler to pass or retrieve the

value for the specified HTTP

header.

Authorization_UserId No String This attribute corresponds to

the userID of the HTTP basic

authentication.

Authorization_Password No String This attribute corresponds to

the password of the HTTP basic

authentication

These attributes are described in:

v “User-defined properties for event processing” on page 24

v “HTTP credential propagation for event processing” on page 24

For further information on protocol listeners, see “Protocol listeners” on page 44.

For information describing the Protocol Config MO for request processing, see

“Synchronous request processing TLOs” on page 27.

Chapter 3. Business object requirements 23

User-defined properties for event processing: You can optionally specify custom

properties in the HTTP(S) Protocol Config MO. You do so by including the

UserDefinedProperties attribute. This attribute corresponds to a business object that

has one or more child attributes with property values. Every attribute in this

business object must define a single property to be read (or, for synchronous

responses, written) in the variable portion of the message header as follows:

v The type of the attribute should always be String regardless of the protocol

property type. The application-specific information of the attribute can contain

two name-value pairs defining the name and format of the protocol message

property to which the attribute maps.

Table 10 summarizes the application-specific information for these attributes.

 Table 10. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name Value Description

ws_prop_name

(case-insensitive; if not

specified the attribute name

will be used as the property

name

Any valid protocol property

name

This is the name of the

protocol property. Some

vendors reserve certain

properties to provide

extended functionality.

If the given custom property ASI (the ws_prop_name) is invalid and there is no

logical way to process this header, the connector logs a warning and ignores this

property. If the value of the custom property can neither be set nor retrieved after

the necessary check against ws_prop_name has been performed, the connector logs

the error and fails the event.

If the UserDefinedProperties attribute is specified, the connector will create an

instance of a UserDefinedProperties business object. The connector then attempts

to extract property values from the message and store them in the business object.

If at least one property value is successfully retrieved, the connector will set a

modified UserDefinedProperties attribute in the Protocol Config MO.

For synchronous event processing, if a UserDefinedProperties attribute is specified

and its business object is instantiated, the connector will process each attribute of

this child business object and set the message property value accordingly.

HTTP credential propagation for event processing: For the purpose of credential

propagation, the connector supports the Authorization_UserId and

Authorization_Password attributes in the HTTP Protocol Config MO. The support

is limited to the propagation of these credentials as part of the HTTP Basic

authentication scheme.

If an HTTP or HTTPS protocol listener processes an HTTP service request that

includes an authorization header, the listener will parse the header to determine

whether it conforms to HTTP Basic authentication. If so, the listener extracts and

decodes (using Base64) the username and password. This decoded string consists

of a username and password separated by a colon. If the protocol listener finds the

Authorization_UserId and Authorization_Password attributes in the Protocol

Config MO, the listener sets these values with those extracted from the event

authorization header.

24 Adapter for HTTP User Guide

Asynchronous event processing TLOs

Figure 7 shows the business object hierarchy for asynchronous event processing. A

request object only is required.

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for asynchronous event processing TLOs

Object-level ASI provides fundamental information about the nature of a TLO and

the objects it contains. Figure 8 shows the object-level ASI for

SERVICE_ASYNCH_TLO_Order, a sample TLO for asynchronous event processing.

Table 4 below describes the object-level ASI for an asynchronous event processing

TLO.

 Table 11. Asynchronous event processing TLO object ASI

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO for event processing.

HTTP TLO

Request BO required

Protocol Config MO optional

Figure 7. Business object hierarchy for asynchronous event processing

Figure 8. Top-level business object for asynchronous event processing

Chapter 3. Business object requirements 25

Table 11. Asynchronous event processing TLO object ASI (continued)

Object-level ASI Description

ws_verb=verb Before delivering the TLO to the collaboration, the

connector uses this ASI to set the verb on the TLO.

In the sample shown inFigure 8, the verb is Create.

ws_mode=asynch During event notification, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For asynchronous

processing, this ASI must be set to asynch.

The default is asynch.

Note: Unlike synchronous event processing, no collaboration name ASI is required

at the TLO level for asynchronous event processing. Instead the integration

broker assures that application events reach all collaborations subscribing to

such BO-verb combinations.

Attribute-level ASI for asynchronous event processing TLOs

Each asynchronous event processing TLO has a single attribute that corresponds to

a request business object. Figure 9 shows the request attribute of

SERVICE_ASYNCH_TLO_Order, a sample TLO, and the attribute’s ASI.

Table 12 summarizes the attribute-level ASI for the request attribute of an

asynchronous event processing TLO.

 Table 12. Asynchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

Request ws_botype=request This attribute corresponds to

a request. The connector uses

its ASI to determine whether

this TLO attribute is of type

request BO. This ASI, not the

attribute name, determines

the attribute type. If there is

more than one request

attribute, the connector uses

the ASI of the first one.

This attribute is required for

synchronous event

processing TLOs.

Figure 9. TLO attribute for asynchronous event processing

26 Adapter for HTTP User Guide

Request business object for asynchronous event processing

A request business object is a child of a TLO and is required for asynchronous

event processing. You can specify a default verb for the request business object.

You do so by specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the

Request business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the business object is returned

without a verb. The object-level ASI for a Request business object for asynchronous

event processing is described in Table 13.

 Table 13. Asynchronous event processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The ASI designates the HTTP or HTTPS

protocol listener. Both the ASI and the Protocol

Config MO are optional. For further information,

see “Protocol Config MO” on page 22. Note: The

data handler that you configure for business

object transformations should be capable of

reading any ASI that begins with cw_mo as

metadata and not as part of the busisenss data to

be converted. The XML data handler has the

capability to detect cw_mo metadata, ignoring the

attributes that such values point to.

ws_tloname=tloname This ASI specifies the name of the TLO that this

object belongs to. During event processing, the

connector uses this ASI to determine whether the

request business object delivered by the data

handler is a child of the TLO. If so, the connector

creates the specified TLO, sets the request

business object as its child, and uses the TLOs

object-level ASI to deliver it to the subscribing

collaboration.

Synchronous request processing TLOs

For request processing the connector allows two kinds of TLOs—synchronous and

asynchronous. This section discusses synchronous request processing TLOs.

Figure 10 shows the TLO business object hierarchy for synchronous request

processing. Request, response, and handler objects are required, fault objects are

optional. Unlike event processing, a Protocol Config MO is required for the request

objects, and optional for the response and fault objects.

Chapter 3. Business object requirements 27

Object-level ASI for synchronous request processing TLOs

Object-level ASI provides important information about the nature of a TLO and the

objects it contains. Figure 11 shows CLIENT_SYNCH_TLO_OrderStatus, a sample

TLO for synchronous request processing.

 Table 14 describes the object-level ASI for a synchronous request processing TLO.

Unlike the ASI for synchronous event processing TLOs, no ws_collab, ws_verb or

ws_eventtlo ASI is required at this level for request processing.

HTTP TLO

Request BORequest BO required

Response BO required

Fault BO optional

MimeType optional

HTTP Protocol Config MO

Charset optional

BOPrefix optional

HTTP Protocol Config MO

HTTP Protocol Config MO

Handler required

Figure 10. Business object hierarchy for synchronous request processing

Figure 11. Top-level business object for synchronous request processing

28 Adapter for HTTP User Guide

Table 14. Synchronous request processing TLO object ASI

Object-level ASI Description

ws_mode=synch During request processing, the connector uses this

ASI property to determine whether to invoke the

HTTP service synchronously (synch) or

asynchronously (asynch). If synch is indicated, then

the connector expects a response, and the TLO must

include request and response business objects and,

optionally, one or more fault objects.

The default is asynch.

Attribute-level ASI for synchronous request processing TLOs

Table 15 describes the attributes and ASI for synchronous request processing TLOs.

 Table 15. Request processing TLO attributes

TLO attribute Attribute-level ASI Description

MimeType None This attribute specifies the mime

type of the data handler that the

connector invokes for transforming

a Request business object into a

request message. This value may be

used for transforming synchronous

response/fault messages into

business objects, depending on the

Message Transformation Rules

configuration.

BOPrefix None This attribute of type String is

passed to the data handler.

Handler None This attribute specifies the protocol

handler to use to process the request

and is for request processing only. It

takes the valuehttp, which

designates the HTTP- HTTPS

protocol handler. The default is http

Charset This optional parameter of type

String specifies the charset to be set

on the data handler when

transforming the Request business

object to a message. NOTE: the

charset value specified in this

attribute will not be propagated in

the Content-Type protocol header of

the request message.

Request ws_botype=request This attribute corresponds to a

request business object. The

connector uses this attribute ASI to

determine whether this TLO

attribute is of type request BO. This

ASI, not the attribute name,

determines the attribute type. If

there is more than one request

attribute, the connector uses the ASI

of the first populated attribute.

Chapter 3. Business object requirements 29

Table 15. Request processing TLO attributes (continued)

TLO attribute Attribute-level ASI Description

Response ws_botype=response This attribute corresponds to the

response returned to a collaboration

and is required for synchronous

request processing. The connector

uses this attribute ASI to determine

whether this TLO attribute is of type

response BO. This ASI, not the

attribute name, determines the

attribute type.

Fault ws_botype=fault

or

ws_botype=defaultfault

This attribute, optional for

synchronous request processing,

corresponds to a fault message

returned by an HTTP service when

it cannot successfully populate a

response.

The connector uses this ASI to

determine if the attribute of TLO is

of type fault BO. This ASI, not the

attribute name, determines the

attribute type. A defaultfault

business object is returned if the

fault message is a detail element.

defaultfault is used in default

business object resolution.

Request business object for synchronous request processing

A request business object is a child of a TLO and is required for synchronous

request processing. A request business object has object-level ASI.

Table 16 describes the object-level ASI for a request business object for synchronous

request processing.

 Table 16. Synchronous request processing: object-level ASI for request business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this optional ASI must match the

name of the attribute that corresponds to the

Protocol Config MO. This Protocol Config MO

specifies the destination for the HTTP-HTTPS

protocol handler. This ASI is used by the

HTTP-HTTPS Protocol Handler. Note that the

TLO request attribute must have an HTTP

Protocol Config MO for request processing. For

further information, see “HTTP Protocol Config

MO for request processing” on page 32. Note: The

data handler that you configure for business

object transformations should be capable of

reading any ASI that begins with cw_mo as

metadata and not as part of the busisenss data to

be converted.The XML data handler has the

capability to detect cw_mo metadata, ignoring the

attributes that such values point to.

30 Adapter for HTTP User Guide

Response business object for synchronous request processing

A response business object is a child of a TLO and is required for synchronous

request processing. The object-level ASI for a response business object for

synchronous request processing is described in Table 17.

 Table 17. Synchronous request processing: object-level ASI for response business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This Protocol Config MO, optional for a

response business object, specifies the headers in

the response message for the HTTP(s) protocol

handler. For further information, see “HTTP

Protocol Config MO for request processing” on

page 32. Note: The data handler that you

configure for business object transformations

should be capable of reading any ASI that begins

with cw_mo as metadata and not as part of the

busisenss data to be converted. The XML data

handler has the capability to detect cw_mo

metadata, ignoring the attributes that such values

point to.

You can specify a default verb for the response business object. You do so by

specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the

Response business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the response business object is

returned without a verb.

Fault business object for synchronous request processing

A fault business object is a child of a TLO and is optional for synchronous request

processing. The object-level ASI for a fault business object for synchronous request

processing is described in Table 18.

 Table 18. Synchronous request processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This Protocol Config MO, optional for a fault

business object, specifies the headers in the

response message for the HTTP-HTTPS protocol

handler. For further information, see “Protocol

Config MO” on page 22. Note: The data handler

that you configure for business object

transformations should be capable of reading any

ASI that begins with cw_mo as metadata and not

as part of the busisenss data to be converted. The

XML data handler has the capability to detect

cw_mo metadata, ignoring the attributes that such

values point to.

Chapter 3. Business object requirements 31

HTTP Protocol Config MO for request processing

During request processing, the HTTP-HTTPS protocol handlers use the HTTP

Protocol Config MO to determine the destination of the target HTTP service. This

Protocol Config MO is required for a request business object. The HTTP-HTTPS

protocol handlers support HTTP 1.0 POST and GET requests. As shown in Table 19

the sole required attribute (Destination) is the full URL of the target HTTP service.

The optional authorization attributes are described in the sections below.

 Table 19. HTTP Protocol Config MO Attributes for Request Processing

Attribute Required Type Description

Destination Required for

request

processing in

the Request

business object.

String The destination URL of the target HTTP service.

The HTTP-HTTPS protocol handler uses this

attribute to determine the destination of the

HTTP service.

Content-Type Required for

request

processing in

the Request

business object

when request

payload needs

to be

generated.
Also, value for

this attribute is

required in the

case of the

protocol

listener

synchronous

response when

request has

empty payload

and response

payload is not

empty.

String The value of this attribute defines the

Content-Type header of the outgoing message

(which includes message ContentType and

optionally charset for the outgoing message).

The syntax is the same as that for the

Content-Type header in the HTTP Protocol, for

example: text/xml; charset=ISO-8859-4.

Method No String Used in request processing to determine the

HTTP method. Possible values are POST and

GET. Default value is POST.

Authorization_UserId No String This attribute corresponds to the userID of the

HTTP basic authentication. For further

information, see “HTTP credential propagation

for request processing” on page 36

Authorization_Password No String This attribute corresponds to the password of

the HTTP basic authentication. For further

information, see “HTTP credential propagation

for request processing” on page 36

One or more HTTP headers No String This attribute allows the handler to pass or

retrieve the value for the specified HTTP

header.

UserDefinedProperties No Business object This attribute holds the user-defined protocol

properties business object. For further

information, see “User-defined properties for

request processing” on page 33.

32 Adapter for HTTP User Guide

Table 19. HTTP Protocol Config MO Attributes for Request Processing (continued)

Attribute Required Type Description

MessageTransformationMap Optional for

request

processing -

synchronous

response only.

Not used in

event

processing.

Single cardinality

business object

This is the attribute that points to business

object holding 0 or more message

transformation rules. The rules hold

information regarding the mime type and

charset to apply to the incoming message that

is specified in the rule. For further information,

see “Message transformation maps” on page 34.

The HTTP Protocol Config MO attributes are described in:

v “User-defined properties for request processing”

v “Message transformation maps” on page 34

v “HTTP credential propagation for request processing” on page 36

User-defined properties for request processing: You can optionally specify

custom properties in the HTTP Protocol Config MO. You do so by including the

UserDefinedProperties attribute. This attribute corresponds to a business object that

has one or more child attributes with property values. Every attribute in this

business object must define a single property to be read (or, for synchronous

responses, written) in the variable portion of the message header as follows:

v The type of the attribute should always be String. The application-specific

information of the attribute can contain the name-value pair defining the name

of the protocol message property to which the attribute maps.

Table 20 summarizes the application-specific information for these attributes.

 Table 20. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name Value Description

ws_prop_name

(case-insensitive; if not

specified the attribute name

will be used as the property

name

Any valid protocol property

name

This is the name of the

protocol property. Some

vendors reserve certain

properties to provide

extended functionality.

If the given custom property ASI (the ws_prop_name) is invalid and there is no

logical way to process this header, the connector logs a warning and ignores this

property. If the value of the custom property can neither be set nor retrieved after

the necessary check against ws_prop_name has been performed, the connector logs

the error and fails the event.

If the UserDefinedProperties attribute is specified and its business object is

instantiated, the connector processes each attribute of this child business object and

sets the message properties values accordingly.

For synchronous request processing, upon receipt of a response message, if the

UserDefinedProperties attribute is specified, the connector creates an instance of a

UserDefinedProperties business object and attempts to extract property values from

the message and then stores them in the new business object. If at least one

property value was successfully retrieved, the connector will set modified

UserDefinedProperties business object in the Protocol Config MO.

Chapter 3. Business object requirements 33

Message transformation maps: The Message Transformation Map (MTM) feature

is supported for request processing HTTP(S) protocol handlers only.

MessageTransformationMap is an optional attribute in the Protocol Config MO that

points to a business object. The business object contains rules for transforming

messages with mime types and charsets that are specified in the rules. If it finds

the (case-sensitive) attribute name MessageTransformationMap and this attribute is

of the business object type, the connector uses the rules in that object to transform

a message.

The MessageTransformationMap attribute has two child business object attributes

named TransformationRule and EmptyResponseRule. When trying to find the

TransformationRule for a NON-EMPTY message, the HTTP-HTTPS Protocol

Handler first attempts to match the message exactly by the ContentType specified

in all TransFormationRules. If unsuccessful, the connector attempts to find the rule

that applies to multiple types of messages. When the response contains HTTP

headers only, the protocol handler uses the EmptyResponseRule business object

attribute of MessageTransformationMap. For further information on protocol

handler processing, see “HTTP-HTTPS protocol handler processing” on page 52.

TransformationRule business object attributes are listed in Table 21.

EmptyResponseRule business object attributes are listed in Table 22 on page 35.

 Table 21. TransformationRule attributes for MessageTransformationMaps in HTTP Protocol Config MO

Attribute name Required Type Default value Description

TransformationRule Optional for

request

processing.

Not used in

event

notification.

Business object,

cardinality N

This is the attribute that holds 1

rule for message transformation.

There can be 0 or more instances

of this attribute under the

MessageTranformationMap

attribute.

+ContentType Yes String */* The value of this property specifies

the HTTP ContentType of the

message for which this

transformation rule applies. The

default value */* for this attribute

enables the connector to apply this

rule to any ContentType. For

further information on protocol

handler processing, see

“HTTP-HTTPS protocol handler

processing” on page 52. Note that

if the Protocol Handler finds more

than one rule that has the same

ContentType as the other rule,

Protocol Handler will log the

warning and ignore all duplicate

rules, but will use unique rules

+MimeType No String The mime type to use when calling

a data handler while processing

messages of the ContentType

specified in this business object.

+Charset No String The charset to use when

transforming a request of the

ContentType specified in this

business object.

34 Adapter for HTTP User Guide

Table 21. TransformationRule attributes for MessageTransformationMaps in HTTP Protocol Config MO (continued)

Attribute name Required Type Default value Description

+BOPrefix No String The value of this attribute

overrides the BOPrefix of the TLO

for the synchronous response of

the payload to business object

transformation.

+BOName No String The value of this attribute is

passed to the datahandler in the

headers hashtable with name of

the element set to BOName. If

there is a protocol header with the

same name, the protocol header

value takes precedence over this

attribute value.

+BOVerb No String The value of this attribute is

passed to the datahandler in the

headers hashtable with name of

the element set to BOVerb. If there

is a protocol header with the same

name, the protocol header value

takes precedence over this attribute

value.

 Table 22. EmptyResponseRule attributes for MessageTransformationMaps in HTTP Protocol Config MO

Attribute name Required Type Default value Description

EmptyResponseRule No Single cardinality

business object

Wrapper for the data handler

invocation rule on the empty

response.

+Action No String Ignore Passes one of the following case

insensitive values: Ignore - logs a

trace message that an empty

response was received, do not

attempt to generate the response

business object. Warning - logs a

warning message that an empty

response was received, do not

attempt to generate the response

business object. Error - logs an

error message that an empty

response was received, do not

attempt to generate the response

business object. Fail - logs an error

message that an empty response

was received, do not attempt to

generate the response business

object, fail the request. Process -

invokes the data handler passing

http headers as Hashtable in place

of config object parameter.

+MimeType No String The mime type of the datahandler

to invoke if the Action attribute’s

value is Process.

+Charset No String The charset to pass to the

datahanlder. If not specified, no

charset will be passed.

Chapter 3. Business object requirements 35

Table 22. EmptyResponseRule attributes for MessageTransformationMaps in HTTP Protocol Config MO (continued)

Attribute name Required Type Default value Description

+BOPrefix No String The value of this attribute

overrides the BOPrefix of the TLO

for the synchronous response of

the payload to business object

transformation.

+BOName No String The value of this attribute is

passed to the datahandler in the

headers hashtable with name of

the element set to BOName. If

there is a protocol header with the

same name, the protocol header

value takes precedence over this

attribute value.

+BOVerb No String The value of this attribute is

passed to the datahandler in the

headers hashtable with name of

the element set to BOVerb. If there

is a protocol header with the same

name, the protocol header value

takes precedence over this attribute

value.

HTTP credential propagation for request processing: For the purpose of

credential propagation, the connector supports the Authorization_UserId and

Authorization_Password attributes in the HTTP Protocol Config MO. The support

is limited to the propagation of these credentials as part of the HTTP Basic

authentication scheme.

The collaboration sets the values of the Authorization_UserId and

Authorization_Password attributes in the Protocol Config MO. If these attributes

are neither null nor empty, the connector creates an authorization header on the

request its sends to the to the target HTTP service. The HTTP/HTTPS protocol

handler follows HTTP Authentication: Basic and Digest Access Authentication (RFC

2617) when creating the authorization header.

Note: The digest authentication scheme is not supported, nor is the optional

challenge-response mechanism for HTTP authentication defined in Rfc2617.

If the HTTP(s) protocol handler is invoking a server that requires a

credential, the connector does not wait for the challenge response from the

server. Instead, it sends the credentials continuously.

Asynchronous request processing TLOs

Figure 12 shows the business object hierarchy for asynchronous request processing.

A request and handler object are required. The request object contains a Protocol

Config MO for the HTTP-HTTPS protocol handler. These are described in the

sections below.

36 Adapter for HTTP User Guide

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for asynchronous event processing TLOs

Figure 13 shows CLIENT_ASYNCH_Order_TLO, a sample TLO for asynchronous

request processing.

Table 23 below describes the object-level ASI for an asynchronous request

processing TLO.

 Table 23. Asynchronous request processing TLO object ASI

Object-level ASI Description

ws_mode=asynch During request processing, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For asynchronous request

processing, this ASI must be set to asynch.

The default is asynch.

HTTP TLO

Request BO required

HTTP Protocol Config MO

MimeType optional

Charset optional

BOPrefix optional

Handler required

Figure 12. Business object hierarchy for asynchronous request processing

Figure 13. Top-level business object for asynchronous request processing

Chapter 3. Business object requirements 37

Attribute-level ASI for asynchronous request processing TLOs

Table 24 summarizes the attribute-level ASI for the request attribute of an

asynchronous request processing TLO.

 Table 24. Asynchronous request processing TLO attributes

TLO attribute Attribute-level ASI Description

MimeType None This attribute specifies the mime

type of the data handler that the

connector invokes. Note that this

attribute is used only for request

processing only.

BOPrefix None The value of this attribute is passed

to the data handler.

Handler None This attribute specifies the protocol

handler to use to process the request

and is for request processing only. It

takes the value http, which

designates the HTTP-HTTPS

protocol handler to process the

request. The default is http

Charset This optional parameter of type

String specifies the charset to be set

on the data handler when

transforming the Request business

object to a message. NOTE: the

charset value specified in this

attribute will not be propagated in

the Content-Type protocol header of

the request message.

Request ws_botype=request This attribute corresponds to an

HTTP service request business

object. The connector uses this

attribute ASI to determine whether

this TLO attribute is of type request

BO. This ASI, not the attribute

name, determines the attribute type.

If there is more than one request

attribute, the connector uses the ASI

of the first one.

Request business object for asynchronous request processing

A request business object is a child of a TLO and is required for asynchronous

request processing. The object-level ASI for a request business object for

asynchronous request processing is described inTable 25.

38 Adapter for HTTP User Guide

Table 25. Asynchronous request processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_http=HTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This Protocol Config MO specifies the

destination for the HTTP-HTTPS protocol handler.

This ASI is used by the HTTP-HTTPS Protocol

Handler. Note that the TLO request attribute must

have an HTTP Protocol Config MO for request

processing. For further information, see “HTTP

Protocol Config MO for request processing” on

page 32. Note: The data handler that you

configure for business object transformations

should be capable of reading any ASI that begins

with cw_mo as metadata and not as part of the

busisenss data to be converted. The XML data

handler has the capability to detect cw_mo

metadata, ignoring the attributes that such values

point to.

Protocol Config MO for asynchronous request processing

During request processing, the HTTP-HTTPS protocol handler uses the HTTP

Protocol Config MO to determine the destination of the target HTTP service. This

Protocol Config MO is required for a request business object. For further

information, see “HTTP Protocol Config MO for request processing” on page 32.

Developing business objects

You use Business Object Designer to create business objects and Connector

Configurator to configure the connector to support them. For more information on

the Business Object Designer tool, see the Business Object Development Guide and

Appendix B, “Connector Configurator,” on page 101.

Chapter 3. Business object requirements 39

40 Adapter for HTTP User Guide

Chapter 4. HTTP connector

v “Connector processing”

v “Custom data handler invocation” on page 43

v “HTTP(S) services” on page 43

v “Event processing” on page 44

v “Request processing” on page 51

v “SSL” on page 56

v “Configuring the connector” on page 58

v “Connector at startup” on page 69

v “Logging” on page 70

v “Tracing” on page 70

This chapter describes the HTTP connector and how to configure it.

All WebSphere business integration connectors operate with an integration broker.

The HTTP connector operates with the IBM WebSphere InterChange Server

integration broker, which is described in the Technical Introduction to IBM WebSphere

InterChange Server.

A connector is a runtime component of an adapter. Connectors consist of an

application-specific component and the connector framework. The

application-specific component contains code tailored to a particular application.

The connector framework, whose code is common to all connectors, acts as an

intermediary between the integration broker and the application-specific

component. The connector framework provides the following services between the

integration broker and the application-specific component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and

connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the

connector, see the System Administration Guide.

Connector processing

The connector includes a protocol listener framework for event processing and a

protocol handler framework for request processing. This bi-directional functionality

enables the connector framework to:

v Process calls from HTTP clients (event processing)

v Process a request by a collaboration that invokes an HTTP service (request

processing)

Event processing overview

Connector event processing (or event notification) is used to handle requests from

HTTP clients. This event processing capability encompasses a protocol listener

framework, including the following components, which are discussed in greater

detail later in this chapter:

© Copyright IBM Corp. 2003, 2005 41

v HTTP protocol listener

v HTTPS protocol listener

The connector uses these components to listen on the transport for calls from

clients to collaborations.

When requests from clients arrive, the listener converts the request message into a

business object and invokes the collaboration. If it is a synchronous request, the

connector receives a response business object of the same type as the request

business object. The listener converts the response business object into a response

message. The listener then transports the response message to the client. Note that

event sequencing is not a requirement for this connector; the connector may deliver

the events in any order.

The HTTP connector utilizes the configured data handler to convert incoming

request messages into business objects. To aid the data handler in determining

which business object to resolve for the incoming request message, the connector

provides meta information regarding its supported business objects to the data

handler. From its supported business objects, the connector first makes a list of all

business objects that are potential candidates for the conversion. This list is

comprised of supported TLOs only. Supported TLO business objects are those that

have object-level ASI ws_eventtlo=true.

The protocol listener reads the object-level ASI of the TLO as follows:

v ws_collab= This determines which collaboration to invoke

v ws_mode= This determines how to invoke the collaboration, synchronously

(synch) or asynchronously (asynch)

The connector inspects the request business object returned by the data handler. It

uses ws_tloname ASI of this business object to extract the name of the parent TLO.

This TLO will be instantiated and the request business object will be set in the

TLO. Finally, this constructed TLO will be used to invoke the collaboration.

For synchronous collaboration execution, the connector utilizes the data handler to

create a response or fault message to send back to the client. In this case, the

connector simply passes a business object (child of TLO) to the data handler. The

data handler returns a message based on the business object that it is passed to it.

Request processing overview

On behalf of a collaboration, the connector can invoke HTTP services over

HTTP(S). This request processing functionality is supported by a protocol handler

framework. The protocol handler framework is a configurable run-time module

that consists of the HTTP-HTTPS protocol handler, which is discussed in detail

later in this chapter.

Upon receipt of a collaboration request business object, which is always set in a

TLO, the protocol handler framework loads the protocol handler. The protocol

handler manages transport-level details required for invoking the HTTP service

and (optionally) securing a response, performing three main tasks: converting a

collaboration request business object into a request message, invoking the HTTP

service with the request message, and, if in request/response (synchronous) mode,

converting the response message into a business object and returning that object to

the collaboration.

42 Adapter for HTTP User Guide

The HTTP connector is always called from a collaboration using TLOs. The

connector determines the request business object from the TLO, and invokes the

data handler with this business object. The data handler returns a request message

which is sent on by the connector to the HTTP service.

For synchronous execution, the connector utilizes the data handler to convert

response and fault messages into response and fault business objects. To aid the

data handler in determining which business object to resolve for these

response/faults to business object conversions, the connector provides the data

handler with specific meta information. Specifically, the connector makes a list of

all response and fault business objects that are children of the invoking TLO. There

should be only one response business object and, optionally, many fault business

objects. There may also be one and only one defaultfault business object. For the

defaultfault business object, the connector simply notifies the data handler of the

name of the defaultfault business object. The defaultfault business object should be

resolved by the data handler as a last resort if no other fault business objects are

resolved for this transformation.

Custom data handler invocation

When an HTTP message is converted into a business object as part of the Data

Handler invocation, the HTTP Adapter constructs a hash map of incoming

headers, in addition to special name-value pairs such as BOName, BOVerb, and

Destination (event request processing specific). The custom data handler receives

this hash map in place of the Object config parameter and uses it to gain access

to the message and the adapter defined headers.

HTTP(S) services

HTTP services support the HTTP transport protocol. HTTP embodies a

client-server model in which an HTTP client opens a connection and sends a

request message to an HTTP server. The client request message is to invoke an

HTTP service. The HTTP server dispatches the message containing the invocation

and closes the connection.

The connector’s HTTP and HTTPS protocol listeners make use of the HTTP

client-server and the Request/Response models when handling client requests to a

collaboration. However, the HTTP listener is not intended to function as an HTTP

server— proxy, intermediary, or otherwise. Rather the HTTP listener functions as

an endpoint for use within an enterprise and behind a firewall. Accordingly, a

separate web server or gateway must be deployed in the firewall to route client

requests to the listener. For further information, see Chapter 1, “Overview of the

Adapter,” on page 1.

Synchronous HTTP(S) service

From the perspective of connector processing, a synchronous HTTP service is one

that follows a Request/Response path. If the HTTP or HTTPS protocol listener

successfully processes an HTTP request message, the body will contain the

response and an HTTP status code of 200 OK. If a fault is returned, then the body

contains the fault message and a status code of 500.

Asynchronous HTTP(S) service

From the perspective of connector processing, an asynchronous HTTP service is

one that follows a request-only path. If the HTTP or HTTPS protocol listener

successfully receives and processes a request-only operation, an HTTP status code

Chapter 4. HTTP connector 43

of 202 Accepted is generated. You can also configure the connector to generate an

HTTP status code of 200 OK —for further information see the

HTTPAsyncResponseCode property in Table 35. If a fault occurs, an HTTP status

code of 500 is generated. There is no response, although a fault body may be

returned.

Event processing

During event processing, the connector uses protocol listeners and the configured

data handler(s) to convert request messages from HTTP service clients to business

objects that can be manipulated by collaborations. Protocol listeners play a crucial

role in event processing.

Protocol listeners

HTTP requests may come over HTTP or HTTPS transports. The listener monitors

the arrival of such requests on its transport channel. There are two protocol

listeners and corresponding channels:

v HTTP protocol listener

v HTTPS protocol listener

Each of these consists of a thread that listens on its transport. When it receives a

request message from a client, the listener registers the event with the protocol

listener framework.

The protocol listener framework manages the protocol listeners, scheduling

requests as resources are available. You configure the listeners and aspects of the

protocol listener framework when you set values to connector-specific properties.

Among the protocol listener framework properties you can configure are the

following:

v WorkerThreadCount Total number of threads available to the protocol listener

framework, which is the number of requests that it can process in parallel.

v RequestPoolSize Maximum number of requests that can be registered with the

protocol listener framework. If it receives more than this maximum requests, it

will no longer register new requests.

These two connector-specific properties control memory allocation in a way that

prevents protocol listeners from clogging the connector with infinite events. The

allocation algorithm is as follows: At any time, the connector can receive a total

number of events equal to WorkerThreadCount + RequestPoolSize. It can process

WorkerThreadCount number of requests in parallel.

You can plug additional protocol listeners into the protocol listener framework. For

further information, see “Creating multiple protocol listeners” on page 69

and“Connector-specific configuration properties” on page 59.

Pingability

The listeners can be configured to respond to ping requests with user-specified

response codes. Usually, ping requests come before complete requests and are used

to validate that the listener URL is alive. The Pingability hierarchical property is

used to capture the configuration parameters. If this service is enabled in the

listener, the listener checks to confirm that the method of the request equals the

method defined in any of the child properties of Pingability and responds with a

user defined status-code and reason.

44 Adapter for HTTP User Guide

Note: Defining any HTTP method as pingable will stop the listener from

generating requests containing that method. Therefore, POST or GET

methods should not be set as Pingable, unless no real request will arrive

using those HTTP methods.

HTTP and HTTPS protocol listener processing

The HTTP(S) protocol listener consists of a thread that continuously listens for

HTTP(S) requests from clients. The listener thread binds the host and port that are

specified in the Host and Port connector-specific configuration (listener) properties.

Another configuration property—RequestWaitTimeout—defines the interval during

which the listener waits for a request before checking whether the connector has

shut down.

Figure 14 illustrates HTTP protocol listener processing for a synchronous operation.

Figure 15 shows HTTP protocol listener processing for an asynchronous operation.

When a client initiates a HTTP or HTTPS request, it sends a request message to the

HTTP or HTTPS listener. The client should use the HTTP POST or GET method to

invoke the protocol listener URL.

When an HTTP(S) request arrives, the listener registers the request with the

protocol listener framework, which schedules the event for processing as resources

become available. The listener then extracts the protocol headers and the payload

from the request.

HTTP(s)
protocol
listener

Data
handler

Connector

Client

HTTP or HTTPS

Response

Request

200 OK

(single connection)

Figure 14. HTTP protocol listener: synchronous event processing

HTTP(S)
protocol
listener

Data
handler

Connector

Client

HTTP or HTTPS
Request

202 Accepted

(single connection)

Figure 15. HTTP protocol listener: asynchronous event processing

Chapter 4. HTTP connector 45

Table 26 summarizes the order of precedence of rules used by the listener to

determine the Charset, MimeType, ContentType and Content-Type header for

inbound messages when the payload is present.

Note: For inbound messages when the payload is not present, refer to Table 27,

which summarizes the order of precedence of rules used by the listener to

determine the Charset, MimeType, ContentType and Content-Type header.

 Table 26. Processing rules for inbound message when payload is present

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Incoming HTTP

message Content-Type

header

URLsConfiguration

property value for this

listener

Incoming HTTP

message Content-Type

header

Incoming HTTP

message Content-Type

header

2 URLsConfiguration

property value for this

listener

Default to

ContentType

3 If the type of the

request message

ContentType is text

with any subtype (for

example, text/xml,

text/plain, etc.),

default to ISO-8859-1.

Otherwise, charset

will not be used.

 Table 27. Processing rules for inbound message when payload is not present

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Read from

EmptyRequestRule

listener property

Read from

EmptyRequestRule

listener property

Listener

Invoked data handler

may return

ContentType as part

of Content-Type

header

Invoked data handler

may return

Content-Type header

2 Charset will not be

used.

Fail the request

3

As shown Table 26:

v The protocol listener determines the Charset of the inbound message according

to the following rules:

1. The listener attempts to extract the Charset from the charset parameter of

HTTP message Content-Type header value.

2. If no Charset value is obtained from the Content-Type header, then the

protocol listener attempts to read the URLsConfiguration property value for

this listener.

3. If a Charset value is not obtained using methods described in the previous

steps, and if type of the message ContentType is text with any subtype (for

example, text/xml, text/plain, etc.), the listener uses a default Charset value

of ISO-8859-1. Otherwise, Charset value is not used.
v The listener determines the MimeType for the request message according to

these rules:

46 Adapter for HTTP User Guide

1. If you have configured the TransformationRules for the URL used by the

incoming request message, and if the request ContentType matches the

ContentType of a TransformationRule, then the listener uses the

TransformationRule to extract the MimeType for conversion of the request

message into a request business object. The listener attempts to find the exact

TransformationRule match based on the ContentType value (for example,

text/xml) in the URLsConfiguration property for the requested URL.

2. If that fails, the listener attempts to find a TransformationRule that applies to

more than one ContentType under the request URL (for example */*).

3. If all previous steps fail to determine the MimeType, the value of

ContentType will be used as the MimeType to invoke the data handler and

convert the request message into a request business object.
v The listener determines the ContentType by extracting type/subtype from the

incoming HTTP message Content-Type header.

v The listener determines the Content-Type header from that of the incoming

HTTP message Content-Type header

If the collaboration is invoked asynchronously, the listener delivers the request

business object to the integration broker and responds to the client with the HTTP

status code 202 Accepted. This concludes listener processing.

If it is a synchronous invocation, the listener invokes the collaboration

synchronously. The collaboration responds with a response business object.

Table 28 summarizes the order of precedence for rules used by the listener when

determining the Charset, MimeType, ContentType, and Content-Type header for

response messages when the payload is present.

Note: For response messages when the payload is not present, refer to Table 29 on

page 48, which summarizes the order of precedence for rules used by the

listener when determining the Charset, MimeType, ContentType, and

Content-Type header.

 Table 28. Processing rules for outbound synchronous response message when payload is present

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Protocol ConfigMO

Content-Type Header

MimeType property in

the TLO

Protocol ConfigMO

Content-Type header

Protocol ConfigMO

Content-Type header

2 The Charset property

value in the TLO

The request message

MimeType, but only if

the request and

response ContentType

match.

Request message

ContentType

Construct

Content-Type Header

using ContentType

and Charset

3 The request message

Charset, but only if

the request and

response ContentType

match.

Default to

ContentType

4 If the ContentType is

text/*, default to

ISO-8859-1. Otherwise,

charset will not be

used.

Chapter 4. HTTP connector 47

Table 29. Processing rules for outbound synchronous response message when request payload is not present

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Protocol ConfigMO

Content-Type Header

MimeType property in

the TLO

Protocol ConfigMO

Content-Type header

Protocol ConfigMO

Content-Type header

2 The Charset property

value in the TLO

The request message

MimeType, but only if

the request and

response ContentType

match.

Request message

ContentType

Construct

Content-Type Header

using ContentType

and Charset

3 The request message

Charset, but only if

the request and

response ContentType

match.

Default to

ContentType

4 If the ContentType is

text/*, default to

ISO-8859-1. Otherwise,

charset will not be

used.

Fail the response

As shown in Table 28,

v The listener determines the Charset for the response message according to these

rules:

1. If Charset is specified in the response business object Protocol Config MO, its

value is used.

2. If there is no Charset value specified in the response business object Protocol

Config MO header, the listener checks if Charset is specified in the TLO.

3. If there is no Charset specified in the TLO, then if the response has the same

ContentType as the request, the Charset of the request will be used for the

response.

4. If the previous steps fail to determine the response Charset value, and if the

type portion of the message ContentType is text with a subtype of anything

(for example, text/xml, text/plain, etc.), the listener uses a default Charset

value of ISO-8859-1. Otherwise, the Charset value is not used.
v The listener determines the MimeType for the response message according to

these rules:

1. The TLO’s MimeType attribute

2. If the TLO MimeType attribute is missing, and if the request and response

ContentType match, the listener uses the request MimeType for the response

message.

3. Otherwise the listener uses the ContentType value as the MimeType.
v The listener determines the ContentType for the response message according to

these rules:

1. If the Content-Type header is specified in the response business object

Protocol Config MO, the type/subtype portion of the Content-Type header

will used as the ContentType.

2. If the Content-Type header is not specified in the response business object

Protocol Config MO, the listener constructs a Content-Type header using the

determined ContentType and Charset (if the Charset was determined for the

response message).

48 Adapter for HTTP User Guide

The listener processes the HTTP Protocol Config MO. It is the responsibility of

collaboration to ensure that the header values passed in the HTTP Protocol Config

MO are correct in the context of the request-response event. The listener populates

standard headers and custom properties according to the following rules:

1. The listener will investigate each item of the HTTP Protocol Config MO in

order to ignore special attributes (such as ObjectEventId).

2. Each non-empty header will be put on the outgoing message and additional

processing (for example, the Content-Type header) may take place.

3. Please note that with the above approach, the listener may set non-standard

headers on the message, but will not check that the message is logically or

semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO

UserDefinedProperties attribute, the listener will add them in the Entity

Headers Section (the last headers section). For more on custom properties, see

“User-defined properties for event processing” on page 24.

Note: Specifying any of the following headers in the HTTP Protocol Config MO is

very likely to result in an incorrect HTTP message: Connection, Trailer,

Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,

Content-Range.

The listener then invokes the data handler to convert the response business object

returned by the collaboration into a response message.

The listener delivers the response message to the client and includes a 200 OK

HTTP status code. If the collaboration returns a fault business object, it is

converted to a fault message. This fault message is delivered to the client with a

500 Internal Server Error HTTP code.

The listener then closes the connection and the thread that processed the event

becomes available.

Unsupported HTTP protocol listener processing features

The HTTP protocol listener does not support the following:

v Caching: The protocol listener does not perform any caching functions as

defined in HTTP specifications (RFC2616)

v Proxy: The protocol listener does not perform any proxy functions as defined in

HTTP specifications (RFC2616).

v Persistent Connection: The protocol listener does not support persistent

connections as defined in HTTP specifications (RFC2616). Instead, the protocol

listener assumes that the scope of each HTTP connection is a single client

request. and closes the connection when the service request is completed. The

protocol listener does not attempt to reuse the connection across the service

invocations.

v Redirections: The protocol listener does not support redirections.

v Large file transfer: The protocol listener cannot be used for large file transfers.

Alternatively, you may consider passing large files by reference instead.

v State management: The protocol listener does not support the HTTP state

management mechanism described by RFC2965.

v Cookies: The protocol listener does not support cookies.

Chapter 4. HTTP connector 49

HTTPS listener processing using secure sockets

HTTPS protocol listener processing is the same as that described in the HTTP

protocol listener processing section except that HTTPS uses secure sockets. For

further information, see “SSL” on page 56.

Event persistence and delivery

Event persistence is protocol contingent:

v HTTP protocol listener no persistence and therefore no guaranteed delivery

v HTTPS protocol listener no persistence and therefore no guaranteed delivery

Event sequencing

The connector may deliver events in any sequence.

Event triggering

The event triggering mechanism depends on how the protocol listener is

configured.

v HTTP protocol listener Listening occurs over a ServerSocket for HTTP

connection requests

v HTTPS protocol listener Listening occurs over a secure ServerSocket layer for

HTTPS connection requests

Note: The connector does not distinguish between Create or Update or Retrieve or

Delete. All such events follow the same approach.

Event detection

Event detection is performed by each protocol listener. The event detection

mechanism depends utterly on the transport and how you configure the

connector-specific properties for each listener. For more on these properties, see

“Connector-specific configuration properties” on page 59.

Event status

Event status is managed by the protocol listener and depends on the transport and

also on how you configure the listener.

v HTTP protocol listener HTTP is inherently non-persistent and synchronous in

nature. Accordingly, event status is not maintained.

v HTTPS protocol listener HTTP is inherently non-persistent and synchronous in

nature. Accordingly, event status is not maintained.

Event retrieval

Event retrieval is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

v HTTP protocol listener Events are retrieved by extracting HTTP requests from

the socket.

v HTTPS protocol listener Events are retrieved by extracting HTTP requests from

the socket.

Event archiving

Event archiving is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

50 Adapter for HTTP User Guide

v HTTP protocol listener Because of the non-persistent and synchronous nature of

the transport, archiving is not performed.

v HTTPS protocol listener Because of the non-persistent and synchronous nature

of the transport, archiving is not performed.

Event recovery

Event recovery is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

v HTTP protocol listener Because of the non-persistent nature of the transport,

event recovery is not performed.

v HTTPS protocol listener Because of the non-persistent nature of the transport,

event recovery is not performed.

Request processing

You use the request processing capability of the connector to enable a collaboration

to invoke an HTTP service. You must configure the connector and its request

processing components: the protocol handler framework and protocol handlers.

At run time, the connector receives requests from the collaboration in the form of

business objects. The business objects— request, and optionally response and fault

business objects— are contained by the TLO issued by a collaboration that is

configured to use HTTP services. The TLO and its child business objects contain

attributes and ASI that specify the processing mode (synchronous or

asynchronous), the data handler mime type, which protocol handler to use, as well

as the address of the target. The protocol handler uses this information to invoke

an instance of the data handler, convert the request business object to a request

message, and invoke the target HTTP service. If the mode is synchronous, the

protocol handler again invokes the data handler to convert the response message

into a response business object and returns this to the collaboration.

In response to a request message, the connector can receive any of the following

from the remote trading partner:

v A response message that contains data

v A response message that contains fault information

Protocol handlers play a key role in request processing.

Protocol handling

A collaboration can invoke an HTTP service over HTTP or HTTPS transports. The

connector has one protocol handler and corresponding channel: an HTTP-HTTPS

protocol handler for invoking HTTP and HTTPS services

The protocol handler framework manages the protocol handler, loading it at

startup time. When the connector receives a request business object, the request

thread (note that each collaboration request comes in a thread of its own) invokes

the protocol handler framework to process the request.

The protocol handler framework reads the TLOs Handler attribute ASI to

determine which protocol handler to use. Applying a series of rules (see

“HTTP-HTTPS protocol handler processing” on page 52), the protocol handler

invokes a data handler to convert the request business object into a request

message. The protocol handler packages the request message into the

transport—HTTP(S)— message.

Chapter 4. HTTP connector 51

The protocol handler then reads the Destination attribute of the request business

object Protocol Config MO to determine the target address. The HTTP Config MO

attribute Method will specify the HTTP method to use at runtime. The default

method will be POST. The protocol handler then invokes the target HTTP service

with the request message.

Reading the ws_mode TLO ASI, the protocol handler determines whether the

processing mode is synchronous or asynchronous. If this ASI is set to asynch, the

protocol handler processing is completed. Otherwise the protocol handler waits for

a response message. If a response message arrives, the protocol handler extracts

the protocol headers and the payload. It then invokes the data handler (indicated

by the MimeType TLO attribute) to convert the message into a response or fault

business object. Again using the Protocol Config MO, the protocol handler sets the

protocol headers in the business object. The protocol handler then returns the

response or fault business object to the collaboration.

Depending on connector configuration, there may be one or more protocol

handlers plugged into the connector. Connector-specific properties allow you to

configure protocol handlers.

HTTP-HTTPS protocol handler processing

The HTTP-HTTPS protocol handler performs as described in “Protocol handling”

on page 51 with exceptions noted in this section. Figure 16 shows the

HTTP-HTTPS protocol handler for a synchronous operation.

Figure 17 shows the HTTP-HTTPS protocol handler for an asynchronous request

process

HTTP(S)
protocol
handler

Data
handler

Connector

HTTP
Service

HTTP or HTTPS

Response

Request

200 OK

(single connection)

Figure 16. HTTP-HTTPS protocol handler: synchronous request processing

52 Adapter for HTTP User Guide

Note: This section describes HTTP protocol handling only.

The HTTP-HTTPS protocol handler uses the object-level ASI (cw_mo_http) of the

request business object to determine the Protocol Config MO. The HTTP-HTTPS

protocol handler determines the URL of the target HTTP service by reading the

Destination attribute in the HTTP Protocol Config MO. If the URL is missing or is

incomplete, the protocol handler fails the service call. For further information on

the HTTP Protocol Config MO and its attributes, see “HTTP Protocol Config MO

for request processing” on page 32.

The HTTP-HTTPS protocol handler invokes the HTTP service using the request

message returned by the data handler. If HTTP Proxy connector configuration

properties are specified, the HTTP-HTTPS protocol handler behaves accordingly. If

a response is returned, the HTTP-HTTPS protocol handler reads it.

Table 30 summarizes the order of precedence of rules used by the HTTP-HTTPS

protocol handler to determine the Charset, MimeType, ContentType, and

Content-Type header for outgoing request messages.

 Table 30. HTTP-HTTPS protocol handler processing rules for outbound messages

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Protocol Config MO’s

Content-Type Header

MimeType property in

TLO attribute

Protocol Config MO’s

Content-Type Header

Protocol Config MO’s

Content-Type Header

2 Charset property in

TLO attribute

Default to ContentType Construct Content-Type

Header using

ContentType and

Charset

3 If the ContentType is

text/*, default to

ISO-8859-1. Otherwise,

charset will not be

used.

As shown in Table 30:

v The HTTP-HTTPS protocol handler determines the Charset for the request

message according to these rules:

1. If specified in the request business object Protocol Config MO headers, the

Charset value is used.

HTTP(S)
protocol
handler

Data
handler

Connector

HTTP
ServiceHTTP or HTTPS

Request

202 Accepted

Figure 17. HTTP-HTTPS protocol handler: asynchronous request processing

Chapter 4. HTTP connector 53

2. If Charset is not determined by the previous step, the protocol handler

attempts to extract the Charset from the TLO attribute.

3. If the operation described in the previous step is unsuccessful, the

ContentType shown in Table 31 is used to determine the Charset:

 Table 31. Default request processing Charsets

ContentType Default Charset

text/* ISO-8859-1

For further information, see RFC2616

application/* No default

All others No default

4. If Charset was determined by the previous step, the Charset is set on the

data handler.

5. The data Handler is invoked with Stream or Byte array APIs, depending on

the data structure needed for writing out the request.
v The HTTP-HTTPS protocol handler determines the MimeType for the request

according to these rules:

1. The TLO MimeType attribute.

2. If the TLO MimeType attribute is missing, the protocol handler uses the

ContentType to determine the MimeType.
v The HTTP-HTTPS protocol handler determines the ContentType for the request

message according to these rules:

– If the Content-Type header is specified in the request business object Protocol

Config MO, the type/subtype of the header will be used as ContentType.

v The HTTP-HTTPS protocol handler determines the Content-Type header for the

request message according to these rules:

– If the Content-Type header is specified in the request business object Protocol

Config MO, its value is set on the outgoing message.

Table 32 summarizes the order of precedence for rules used by the handler when

determining the Charset, MimeType, ContentType, and Content-Type header for

response messages.

 Table 32. HTTP(s) protocol handler processing rules for inbound synchronous response message

Order of

Precedence

Charset MimeType ContentType Content-Type header

1 Incoming HTTP

message Content-Type

header

Message

TransformationMap or

EmptyResponseRule (if

response is empty)

child business object in

the Request business

object’s Protocol Config

MO

Incoming HTTP

message Content-Type

header

Incoming HTTP

message Content-Type

header

2 Message

TransformationMap or

EmptyResponseRule (if

response is empty)

child business object in

the Request business

object’s Protocol Config

MO

The request message

MimeType, but only if

the request and

response ContentType

match.

54 Adapter for HTTP User Guide

Table 32. HTTP(s) protocol handler processing rules for inbound synchronous response message (continued)

3 The request message

Charset, but only if the

request and response

ContentType match.

MimeType property in

TLO

4 Charset property in

TLO.

Default to ContentType

5 If the Content-Type is

text/*, default to

ISO-8859-1. Otherwise,

Charset is not used.

As shown in Table 32:

v The protocol handler determines the Charset of the synchronous response

message according to the following rules:

1. If the Charset parameter is set in the Content-Type header of the incoming

response message, the protocol handler uses the Charset value to set on the

data handler.

2. If there is no Charset value in the response message header, then the protocol

handler attempts to read the collaboration-defined Charset from the TLO

request Protocol Config MO MessageTranformationMap.

3. If there is no Charset value specified in the MessageTransformationMap for

the given request, then if the response has the same ContentType as the

request, the Charset of the request will be used for the response.

4. If the previous step fails to yield a Charset value, then the protocol handler

attempts to read the TLO Charset attribute.

5. If a Charset value is not obtained using methods described in the previous

steps, and if type of the message ContentType is text with any subtype (for

example, text/xml, text/plain, etc.),default ISO-8859-1. Otherwise, charset

value is not used.
v The protocol handler determines the MimeType of the synchronous response

message according to the following rules:

1. The protocol handler first attempts to extract the MimeType from the TLO

Request Protocol Config MO’s MessageTransformationMap. Specifically, the

protocol handler tries to find an exact ContentType match in the MTM to

extract MessageTransformationRule and then use the MimeType property

value from it. Otherwise, the protocol handler looks for a

MessageTransformationRule that applies to more than one ContentType

(ContentType is */*).

2. If the MimeType is not determined by using a MessageTransformationMap,

the protocol handler uses the request MimeType for that of the response if

and only if the request and response ContentTypes match.

3. If the MimeType cannot be extracted using the previous steps, the protocol

handler uses the MimeType attribute of the TLO.

4. If all previous steps fail, the protocol handler uses the ContentType to set the

MimeType.
v The handler determines the ContentType by extracting type/subtype from the

incoming HTTP message Content-Type header.

The handler processes the HTTP Protocol Config MO. It is the responsibility of the

collaboration to ensure that the header values passed in the HTTP Protocol Config

Chapter 4. HTTP connector 55

MO are correct in the context of the request-response event. The handler populates

standard headers and custom properties according to the following rules:

1. The handler will investigate each item of the HTTP Protocol Config MO in

order to ignore special attributes (such as ObjectEventId).

2. Each non-empty header will be put on the outgoing message and additional

processing (for example, the Content-Type header) may take place.

3. Please note that with the above approach, the handler may set non-standard

headers on the message, but will not guarantee that the message is logically or

semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO

UserDefinedProperties attribute, the handler will add them in the Entity

Headers Section (the last headers section). For more on custom properties, see

“User-defined properties for request processing” on page 33.

Note: Specifying any of the following headers in the HTTP Protocol Config MO is

very likely to result in incorrect HTTP messages: Connection, Trailer,

Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,

Content-Range.

SSL

This section discusses the how the connector implements an SSL capability. For

background information, see your SSL documentation. This section assumes a

familiarity with SSL technology.

JSSE

The connector uses JSSE to provide support for HTTPS and SSL. IBM JSSE is

shipped with the connector. To enable this capability, make sure you have the

following entry in the java.security file that is among the files installed with the

connector:

security.provider.5=com.ibm.jsse.IBMJSSEProvider

Note that java.security is located in the $ProductDir\lib\security directory of

your connector installation. The connector uses the value of the

JavaProtocolHandlerPackages connector property to set the system property

java.protocol.handler.pkgs. Note that for the IBM JSSE that is shipped with the

connector, the value of this property should be set to

com.ibm.net.ssl.internal.www.protocol.

The JavaProtocolHandlerPackages configuration property defaults to this value.

However, if your system has a java.protocol.handler.pkgs system property with a

non-empty value, the connector would overwrite it only if the

JavaProtocolHandlerPackages connector property is also set.

During initialization, the connector disables all anonymous cipher suites supported

by JSSE.

KeyStore and TrustStore

To use SSL with the connector, you must set up keystores and truststores. No tool

is provided to set up keystores, certificates, and key generation. You must use third

party software tools to complete these tasks.

56 Adapter for HTTP User Guide

SSL Properties

You can specify the following SSL connector-specific properties:

v SSLVersion

v SSLDebug

v KeyStore

v KeyStoreAlias

v KeyStorePassword

v TrustStore

v TrustStorePassword

Note that these properties apply to a connector instance. The same set of SSL

property values are used by all of the HTTPS protocol listeners plugged into the

connector and by the HTTP-HTTPS protocol handler for each connector instance.

For further information on HTTPS/SSL setup, see Appendix D, “Configuring

HTTPS/SSL,” on page 129.

SSL and the HTTPS protocol listener

To use the HTTPS protocol listener, you must specify SSL connector-specific

properties. The values you assign to these properties should reflect your SSL

requirements:

v SSLVersion Make sure that the SSLVersion you want to use is supported by

JSSE.

v KeyStore Because the HTTPS protocol listener acts as a server in SSL

communications, you must specify the keystore. The listener uses the keystore

specified in the SSL->KeyStore configuration property. The value of this property

must be the complete path to your keystore file. Make sure that the keystore has

key pair (private key and public key) for the connector. The alias of the private

key should be specified as the SSL->KeyStoreAlias property. You must specify

the password required to access the keystore as the SSL-> KeyStorePassword

property. Also make sure that the password required to access keystore and the

private key (in the keystore) are same. Finally, you must distribute the digital

certificate of the connector to your clients so that they can authenticate the

connector.

v TrustStore If you want the HTTPS protocol listener to authenticate clients, you

must activate client authentication. You do this by setting the SSL

->UseClientAuth property to true. You must also specify:

– the location of your truststore as the value of the SSL->TrustStore

configuration property

– the password required to access the truststore as the value of the SSL->

TrustStorePassword property

Make sure that your truststore contains the digital certificate of your clients.

Digital certificates used by your clients may be self-signed or issued by CA.

Note that if your truststore trusts the root certificate of the CA, JSSE will

authenticate all the digital certificates issued by that CA.

For further information on HTTPS/SSL setup, see Appendix D, “Configuring

HTTPS/SSL,” on page 129.

SSL and the HTTP-HTTPS protocol handler

If you are using SSL with the HTTP-HTTPS protocol handler, you must specify SSL

connector-specific properties. The values you assign to these properties should

reflect the HTTPS/SSL requirements of your HTTP provider:

Chapter 4. HTTP connector 57

v SSLVersion Make sure that the SSLVersion you want to use is supported by

your provider and by JSSE.

v TrustStore Because the HTTP-HTTPS protocol handler acts as a client in SSL

communications, you must set up a truststore. The handler uses the truststore

specified in the SSL -> Truststore configuration property. The value of this

property must be the complete path to your truststore file. You must specify the

password required to access the truststore in the SSL -> TrustStorePassword

property. Make sure that your truststore contains the digital certificate of your

provider. Digital certificates used by your provider may be self-signed or they

may be issued by CA. Note that if your truststore trusts the root certificate of

the CA, JSSE will authenticate all the digital certificates issued by that CA.

v KeyStore If your HTTP service provider requires client authentication, you must

set up a keystore. The HTTP-HTTPS protocol handler uses the keystore specified

in the SSL->KeyStore configuration property. This value must be the complete

path to your keystore file. Make sure that keystore has a key pair (private key

and public key) configured for the connector. The alias of the private key must

be specified in the SSL->KeyStoreAlias property. The password required to

access the keystore must be specified in the SSL-> KeyStorePassword property.

Finally, make sure that the password required to access the keystore and the

private key (in the keystore) are the same. You must distribute the connector’s

digital certificate to your HTTP service provider for authentication.

For further information on HTTPS/SSL setup, see Appendix D, “Configuring

HTTPS/SSL,” on page 129.

Configuring the connector

After using the Installer to install the connector files to your system, you must set

the standard and application-specific connector configuration properties.

Setting configuration properties

Connectors have two types of configuration properties: standard configuration

properties and connector-specific configuration properties. You must set the values

of these properties using System Manager (SM) before running the connector.

Standard configuration properties

Standard configuration properties provide information that all connectors use. See

Appendix A, “Standard configuration properties for connectors,” on page 77 for

documentation of these properties. The table below provides information specific

to this connector about configuration properties in the appendix.

 Property Description

CharacterEncoding This connector does not use this property.

Locale Because this connector has not been internationalized, you

cannot change the value of this property. See release notes

for the connector to determine currently supported locales.

Because this connector supports only InterChange Server (ICS) as the integration

broker, the only configuration properties relevant to it are for ICS.

You must set at least the following standard connector configuration properties:

v AgentTraceLevel

v ApplicationName

v ControllerTraceLevel

58 Adapter for HTTP User Guide

v DeliveryTransport

Connector-specific configuration properties

Connector-specific configuration properties provide information needed by the

connector agent at runtime. Connector-specific properties also provide a way of

changing static information or logic within the connector agent without having to

recode and rebuild the agent.

Table 33 lists the connector-specific configuration properties. See the sections that

follow for explanations of the properties. Note that some of the properties contain

other properties. The + character indicates the entry’s position in the property

hierarchy.

 Table 33. Connector-specific configuration properties

Name Possible values Default value Required

DataHandlerMetaObjectName Data handler meta-object name MO_DataHandler_ Default Yes

UseDefaults UseDefaults false No

JavaProtocolHandlerPackages Valid Java protocol handler packages com.ibm.net.ssl.

internal.www.protocol

No

ProtocolHandlerFramework This is a hierarchical property and has

no value

None No

+ProtocolHandlers This is a hierarchical property and has

no value

No

++Handler1 This is a hierarchical property. For

information on its sub-properties,

see “Handler1” on page 60.

Yes

+++Protocol http Yes

+++HandlerSpecific Each protocol handler can have

required properties.

ProtocolListenerFramework This is a hierarchical property and

has no value.

No

+WorkerThreadCount An integer of 1 or greater that

gives the number of available

listener threads.

10 No

+RequestPoolSize Integer greater than

WorkerThreadCount that gives the

resource pool size.

20 No

+ProtocolListeners This is a hierarchical property and

has no value

++Listener1 Uniquely named protocol listener Yes

+++Protocol http or https Yes

+++ListenerSpecific Properties unique to or required by

the listener See “ListenerSpecific”

on page 62.

ProxyServer This is a hierarchical property and

has no value

No

+HttpProxyHost Host name for the HTTP proxy

server

No

+HttpProxyPort Port number for the HTTP proxy

server

80 No

+HttpNonProxyHosts HTTP host(s) requiring direct

connection

No

+HttpsProxyHost Host name for the HTTPS proxy

server

No

+HttpsProxyPort Port number for the HTTPS proxy

server

443 No

Chapter 4. HTTP connector 59

Table 33. Connector-specific configuration properties (continued)

Name Possible values Default value Required

+HttpsNonProxyHosts HTTPS host(s) requiring direct

connection

No

+SocksProxyHost Socks proxy server name No

+SocksProxyPort Socks proxy server port No

+HttpProxyUsername Http proxy server username No

+HttpProxyPassword Http proxy server password No

+HttpsProxyUsername Https proxy server username No

+HttpsProxyPassword Https proxy server password No

SSL This is a hierarchical property and

has no value

No

+SSLVersion SSL, SSLv2, SSLv3, TLS, TLSv1 SSL No

+SSLDebug true, false false No

+KeyStoreType Any valid keystore type JKS No

+KeyStore Path to KeyStore file. No

+KeyStorePassword Password for private key in

KeyStore

No

+KeyStoreAlias Alias for key pair in KeyStore No

+TrustStore Path to TrustStore file No

+TrustStorePassword Password for TrustStore No

+UseClientAuth true false false No

DataHandlerMetaObjectName: This is the name of the meta-object that the data

handler uses to set configuration properties.

Default = MO_DataHandler_Default.

UseDefaults: On a Request Processing operation, if UseDefaults is set to true, the

connector checks whether a valid value or a default value is provided for each

isRequired business object attribute. If a value is provided, the Request Processing

operation succeeds. If the parameter is set to false, the connector checks only for a

valid value and causes the operation to fail if it is not provided.

Default = false.

JavaProtocolHandlerPackages: The value of this property gives the Java Protocol

Handler packages. The connector uses the value of this property to set the system

property java.protocol.handler.pkgs.

Default = com.ibm.net.ssl.internal.www.protocol.

ProtocolHandlerFramework: The Protocol Handler Framework uses this property

to load and configure its protocol handlers. This is a hierarchical property and has

no value.

Default = none.

ProtocolHandlers: This hierarchical property has no value. Its first-level children

represent discrete protocol handlers.

Default = none.

Handler1: The name of an HTTP-HTTPS protocol handler. Note that this is a

hierarchical property. Unlike listeners, protocol handlers may not be duplicated,

60 Adapter for HTTP User Guide

and there can be only one handler for each protocol. Table 34 below shows the

sub-properties for the HTTP-HTTPS protocol handler. The + character indicates the

entry’s position in the property hierarchy.

 Table 34. HTTP-HTTPS protocol handler configuration properties

Name Possible values

Default

value Required

++HTTPHTTPSHandler This is a hierarchical property and has no value. Yes

+++Protocol The kind of protocol the handler is implementing.

For HTTP and HTTPS, the value is http.

Note: If you do not specify a value for this

property, the connector will not initialize this

protocol handler.

http Yes

+++HTTPReadTimeout An HTTP-specific property that specifies the

timeout interval (in milliseconds) while reading

from the remote host. If this property is not

specified or if set to 0, the HTTP-HTTPS protocol

handler blocks indefinitely while reading from the

remote host.

0 No

Protocol: The value of this property provides the protocol that the handler must

implement.

HandlerSpecific: This property specifies any required protocol handler properties.

ProtocolListenerFramework: The protocol listener framework uses this property

to load protocol listeners. This is a hierarchical property and has no value.

WorkerThreadCount: This property, which must be an integer of 1 or greater,

establishes the number of protocol listener worker threads available to the protocol

listener framework. For further information, see “Protocol listeners” on page

44.Default = 10.

RequestPoolSize: This property, which must be an integer greater than

WorkerThreadCount, sets the resource pool size of the protocol listener framework.

The framework can process a maximum of WorkerThreadCount + RequestPoolSize

requests concurrently.

Default = 20.

ProtocolListeners: This is a hierarchical property and has no value. Each

first-level child of this property represents a discrete protocol listener.

Listener1: The name of a protocol listener. There may be multiple protocol

listeners. Note that this is a hierarchical property. You can create multiple instances

of this property and create additional, uniquely named listeners. When doing so,

you can change the listener-specific properties but not the protocol property. The

names of multiple listeners must be unique. Possible names (not values):

HTTPListener1, HTTPSListener1.

Protocol: This property specifies the protocol this listener is implementing.

Possible values: http, https.

Note: If you do not specify a value for this property, the connector will not

initialize this protocol listener.

Chapter 4. HTTP connector 61

ListenerSpecific: Listener specific properties are unique to, or required by, the

specified protocol listener. For example, the HTTP listener has a listener-specific

property Port, which represents the Port number on which Listener monitors

requests. Table 35 summarizes the HTTP-HTTPS listener specific properties. The +

character indicates the entry’s position in the property hierarchy.

 Table 35. HTTP and HTTPS protocol listener-specific configuration properties

Name Possible values Default value Required

+++HTTPListener1 Unique name of an HTTP protocol listener. This is

a child of the ProtocolListenerFramework ->

ProtocolListeners hierarchical property. There can

be multiple listeners: you may plug-in additional

HTTP listeners by creating another instance of this

property and its hierarchy.

Yes

++++Protocol http if HTTP protocol listener

https if HTTPS protocol listener

Note: If you do not specify a value for this

property, the connector will not initialize this

protocol listener.

Yes

++++HostInfoValidation FailRequest - if host/port info of the request does

not match the host/port info of the listener, the

error message will be logged and request will be

failed with 400 (Bad Request) status.
LogError - if host/port info of the request does

not match the host/port info of the listener, the

error message will be logged and request

execution will continue.
Ignore - there will be no validation performed on

the host/port info of the request.
Note: If the property does not exist, HTTP(S)

listeners will DEFAULT property value to

FailRequest. If the property does not have a valid

value, the HTTP(S) listener will fail the

initialization.

FailRequest N

++++BOPrefix The value of this property is passed to the data

handler.

No

++++Host The listener will listen at the IP address specified

by value of this property. If Host is not specified,

it defaults to localhost. Note that you may either

specify a host name (DNS name) or an IP address

for the machine on which the listener is running.

A machine may have multiple IP addresses or

multiple names.

localhost No

++++Port The port on which the listener listens for requests.

If unspecified, the port defaults to 80 for HTTP

and 443 for HTTPS.

If you clone the listener within a connector, then

the combination of Host and Port properties is

unique or the listener may be unable to bind to

the port to accept requests.

80 for HTTP

listener

443 for HTTPS

listener

No

++++SocketQueueLength Length of the queue (socket queue) for incoming

connection requests. Specifies how many incoming

connections can be stored at one time before the

host refuses connections. The maximum queue

length is operating system dependent.

5 No

62 Adapter for HTTP User Guide

Table 35. HTTP and HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value Required

++++RequestWaitTimeout The time interval in milli-seconds that the listener

thread will block on the host and port while

waiting for requests to arrive. If it receives a

request before this interval, the listener will

process it. Otherwise the listener thread checks

whether the connector shutdown flag is set. If it is

set, the connector will terminate. Otherwise it will

continue to block for RequestWaitTimeout interval.

If this property is set to 0, it will block for ever. If

unspecified, it defaults to 60000ms.

60000 (ms) No

++++HTTPReadTimeout The time interval in milli-seconds that the listener

will be blocked while reading a request from a

client. If this parameter is set to 0, the listener

indefinitely blocks until it receives the entire

request message.

0 No

++++HttpAsyncResponseCode The HTTP response code for asynchronous

requests to the listener:

200 (OK)

202 (ACCEPTED)

202

(ACCEPTED)

No

++++Pingability This property holds 0 or more specifications for

ping services for this listener. This property has no

value.

No

+++++PingService1 This property holds 1 specification for ping

service.
This property has no value and name can be any

valid property name.

Note: there could be multiple structurally same

instances of this property with different values.
If there are any errors during validation of this

property, an error will be logged and the protocol

listener will fail to initialize.

No

++++++Method HTTP method of the request, case insensitive. Yes

++++++StatusCode Response Status-Code to reply with to request. Yes

++++++ReasonPhrase Reason-Phrase to reply with to request. Yes

++++URLsConfiguration This is a hierarchical property and has no value. It

contains 1 or more configurations for URLs

supported by this listener and, optionally, mime

type and charset values. Note that this is child

property of ProtocolListenerFramework-
>ProtocolListeners->HTTPListener1 hierarchical

property. If this property is not specified, the

listener assumes default values.
If this property is not specified, the listener will

have the following URLsConfiguration defined:

>ContextPath: ″/″

>Enabled: true

>DataHandler MimeType: equal to the

ContentType of the request

>Charset: according to the rules in the

Globalization section.

ContextPath: /

Enabled: true

Data handler

MimeType:

equal to the

ContentType of

the request

Charset:

NONE. For

further

information,

see “HTTP and

HTTPS

protocol

listener

processing” on

page 45.

No

+++++URL1 This is a hierarchical property and has no value.

Its children provide the name of the URL

supported by this listener. There can be multiple

supported URLs. Note that you can plug in

additional URLs by cloning this property and its

hierarchy.

No

Chapter 4. HTTP connector 63

Table 35. HTTP and HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value Required

++++++ContextPath The URI for the HTTP requests received by the

listener. This value must be unique among

ContextPath values under the URLsConfiguration

property. Otherwise the connector will log an error

and fail to start. ContextPath is case sensitive.

However it may contain protocol, host name and

port which are case-insensitive. If protocol is

specified in ContextPath, it should be http. If host

is specified, it should be equal to the value of the

Host listener property. If port is specified, it

should be equal to the value of Port listener

property.

No

++++++Enabled The value of this property determines if the parent

URL hierarchical property is enabled for the

connector.

True No

++++++TransformationRules This is a hierarchical property and has no value. It

holds one or more transformation rules.

No

+++++++EmptyRequestRule This is a hierarchical property and has no value.

This property holds the transformation rule when

an empty request payload is encountered.

++++++++MimeType DataHandler mime type which should be used

when calling data handler while processing

requests with empty payload. (Note that

datahandler will receive Hashtable of request

headers in place of config object)

Yes

++++++++Charset Charset which should be used when transforming

request with empty payload.

No

++++++++BOPrefix If defined, the value of this property will override

BOPrefix of this protocol listener to be passed to

the datahandler.

No

++++++++BOName If defined, value of this property will be passed to

the datahandler in the headers hashtable with

name of the element being BOName.

If there is a protocol header with the same name,

protocol header value will take precedence over

this property value.

No

++++++++BOVerb If defined, value of this property will be passed to

the datahandler in the headers hashtable with

name of the element being BOVerb.

If there is a protocol header with the same name,

protocol header value will take precedence over

this property value.

No

+++++++TransformationRule1 This is a hierarchical property and has no value. It

holds the transformation rule.

No

++++++++ContentType The value of this property specifies the

ContentType of the incoming request for which

special handling (data handler mime type or

charset) should be applied. If ContentType is not

specified by the TransformationRuleN hierarchical

property, the connector logs a warning message

and ignores the TransformationRuleN property.
Specifying the special value */* for this property

enables the protocol listeners to apply this rule to

any ContentType. Note that if a listener finds more

than one rule for the same context path that shares

a ContentType, the listener logs an error and fails

to initialize.

No

64 Adapter for HTTP User Guide

Table 35. HTTP and HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value Required

++++++++MimeType The mime type to use when calling a data handler

to process requests of the specified ContentType.

No

++++++++Charset Charset to use when transforming the request of

the specified ContentType into a business object.

No

++++++++BOPrefix If defined, the value of this property will override

BOPrefix of this protocol listener to be passed to

the datahandler.

No

++++++++BOName If defined, value of this property will be passed to

the datahandler in the headers hashtable with

name of the element being BOName.

If there is a protocol header with the same name,

protocol header value will take precedence over

this property value.

No

++++++++BOVerb If defined, value of this property will be passed to

the datahandler in the headers hashtable with

name of the element being BOVerb.

If there is a protocol header with the same name,

protocol header value will take precedence over

this property value.

No

Figure 18 shows the properties as displayed in Connector Configurator.

ProxyServer: Configure the values under this property when the network uses a

proxy server. This is a hierarchical property and has no value. The values specified

under this property are used by the HTTP-HTTPS protocol handlers.

Figure 19 shows the ProxyServer properties as displayed in Connector

Configurator.

Figure 18. HTTP(S) protocol listener properties

Chapter 4. HTTP connector 65

HttpProxyHost: The host name for the HTTP proxy server. Specify this property if

the network uses a proxy server for HTTP protocol.

Default = none

HttpProxyPort: The port number that the connector uses to connect to the HTTP

proxy server.

Default = 80

HttpNonProxyHosts: The value of this property gives one or more hosts (for

HTTP) that must be connected not through the proxy server but directly. The value

can be a list of hosts, each separated by a ″|″.

Default = none

HttpsProxyHost: The host name for the HTTPS proxy server.

Default = none

HttpsProxyPort: The port number that the connector uses to connect to the

HTTPS proxy server.

Default = 443

HttpsNonProxyHosts: The value of this property gives one or more hosts (for

HTTPS) that must be connected not through the proxy server but directly. The

value can be a list of hosts, each separated by a ″|″.

Default = none

SocksProxyHost: The host name for the Socks Proxy server. Specify this property

when the network uses a socks proxy.

Figure 19. ProxyServer properties

66 Adapter for HTTP User Guide

Note: The underlying JDK must support socks.

Default = none

SocksProxyPort: The port number to connect to the Socks Proxy server. Specify

this property when the network uses a socks proxy.

Default = none

HttpProxyUsername: The username for the HTTP proxy server. If the destination

for the request is an HTTP URL and you specify ProxyServer

->HttpProxyUsername, the HTTP-HTTPS protocol handler creates a

Proxy-Authorization header when authenticating with the proxy. The handler uses

the CONNECT method for authentication.

The proxy-authentication header is base64 encoded and has the following

structure:
Proxy-Authorization: Basic

Base64EncodedString

The handler concatenates the username and the password property values,

separated by a colon (:), to create the base64 encoded string.

Default = none

HttpProxyPassword: The password for the HTTP proxy server. For more on how

this value is used, see “HttpProxyUsername.”

Default = none

HttpsProxyUsername: The username for the HTTPS proxy server. If the

destination for the request is an HTTPS URL and you specify ProxyServer

->HttpsProxyUsername, the HTTP-HTTPS protocol handler creates a

Proxy-Authorization header for authentication with the proxy. The handler

concatenates the HttpsProxyUsername and HttpsProxyPassword configuration

property values, separated by colon (:), to create the base64 encoded string.

Default = none

HttpsProxyPassword: The password for the HTTPS proxy server. For more on

how this value is used, see “HttpsProxyUsername.”

Default = none

SSL: Specify values under this property to configure SSL for the connector. This is

a hierarchical property and has no value.

Figure 20 shows the SSL properties as displayed in Connector Configurator.

Chapter 4. HTTP connector 67

SSLVersion: The SSL version to be used by the connector. For further information,

see IBM JSSE documentation for the supported SSL versions.

Default = SSL

SSLDebug: If value of this property is set to true, the connector sets the value of

thejavax.net.debug system property to true. IBM JSSE uses this property to turn

on the trace facility. For further information, refer to IBM JSSE documentation.

Default = false

KeyStoreType: The value of this property gives the type of the KeyStore and

TrustStore. For further information, see IBM JSSE documentation for valid keystore

types.

Default = JKS

KeyStore: This property gives the complete path to keystore file. If KeyStore

and/or KeyStoreAlias properties are not specified, KeyStorePassword,

KeyStoreAlias, TrustStore, TrustStorePassword properties are ignored. The

connector will fail to startup if it cannot load the keystore using the path specified

in this property. The path must be the complete path to the keystore file.

Default = None

KeyStorePassword: This property gives the password for the private key in the

Keystore.

Default = None

KeyStoreAlias: This property gives the alias for the key pair in the KeyStore.

HTTPS listeners use this private key from the KeyStore. Also, the HTTP-HTTPS

protocol handler uses this alias from the KeyStore when invoking HTTPS services

that require client authentication. The property must be set to a valid JSSE alias.

Default = None

Figure 20. SSL properties

68 Adapter for HTTP User Guide

TrustStore: This property gives the complete path to the TrustStore. TrustStore is

used for storing the certificates that are trusted by the connector. TrustStore must

be of the same type as KeyStore. You must specify the complete path to the

TrustStore file.

Default = None

TrustStorePassword: This property gives the password for the Truststore.

Default = None

UseClientAuth: This property specifies whether SSL client authentication is used.

When it is set to true, HTTPS listeners use client authentication.

Default = false

Creating multiple protocol listeners

You can create multiple instances of protocol listeners. Protocol listeners are

configured as child properties of the ProtocolListenerFramework ->

ProtocolListeners connector property. Each child (of ProtocolListenerFramework ->

ProtocolListeners) identifies a distinct protocol listener for the connector.

Accordingly, you can create additional protocol listeners by configuring new child

properties under the ProtocolListeners property. Make sure that you specify all of

the child properties of the newly created listener property. Each listener must be

uniquely named. However, you do not change the listener Protocol property (http

or https), which remains the same for multiple instances of a listener.

Note: The Protocol property is very important because it serves as a switch. If you

do not want to use a listener or a handler, leave this property empty.

If you are creating multiple instances of a HTTP or HTTPS listener, be sure to

specify different Port and Host properties for each instance.

You cannot create multiple instances of a handler. There can be only one handler

for each protocol.

Connector at startup

When you start the connector, the init() method reads the configuration

properties that were set using System Manager’s Connector Configurator. For

proper functioning, be sure not to disable connector polling (connector polling is

enabled by default). The sections below describe what occurs.

Proxy setup

If you specify the ProxyServer connector-specific property, the connector sets up

the proxy system properties. A proxy server is used with the HTTP-HTTPS

protocol handler for request processing only. The connector also traces each of the

system properties it sets up. For more on the ProxyServer property, see

“Connector-specific configuration properties” on page 59.

Protocol listener framework initialization

During startup the connector instantiates the protocol listener framework and

initializes it. This framework reads the connector-specific property

ProtocolListenerFramework, The connector then reads the value of WorkerThreads

Chapter 4. HTTP connector 69

and RequestPoolSize connector properties. If the ProtocolListenerFramework

property is unspecified or missing, the connector cannot receive requests from

clients and logs a warning.

The connector next reads the ProtocolListenerFramework -> ProtocolListeners

property. All the first-level properties of the ProtocolListeners property represent

protocol listeners. The protocol listener framework attempts to load and initialize

each of the listeners and traces them. If persistent event capable, the listener

attempts an event recovery.

Protocol handler framework initialization

The connector reads the connector-specific property ProtocolHandlerFramework

and instantiates and initializes the protocol handler framework. If this property is

missing or not set properly, the connector cannot perform request processing and

logs a warning. Next the connector reads all the ProtocolHandlerFramework ->

ProtocolHandlers properties, which correspond to protocol handlers, and attempts

to load, initialize, and trace them. Note that the protocol handlers are loaded

during connector initialization and are not instantiated when a collaboration makes

a service request. The protocol handlers are multi-thread safe.

Logging

The connector logs a warning when:

v the ProtocolListenerFramework property is not specified. The connector warns

that it cannot perform event notification.

v the ProtocolHandlerFramework property is not specified. The connector warns

that it cannot perform (collaboration) request processing.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. See the

connector configuration properties for more on configuring trace messages. For

more information on tracing, including how to enable and set it, see the Connector

Development Guide for Java.

Connector trace levels are as follows:

Level 0 This level is used for trace messages that identify the connector

version.

Level 1 Trace each time the pollForEvents method is called. Trace the TLO

name created by listeners for delivery to ICS. Trace the Request

business object name and the corresponding attribute name in the

TLO.

Level 2 Use this level for trace messages that log each time a business

object is posted to InterChange Server, either from gotApplEvent()

or executeCollaboration(). Also, trace which protocol handler is

processing the request.

Level 3 Trace the ASI of the business object being processed. Trace

attributes of the business object being processed. Trace the TLO of

the request business object during event notification. Trace the

business object returned by the data handler.

Level 4 Trace the transport headers associated with:

70 Adapter for HTTP User Guide

v a request message retrieved by the protocol listener from the

transport

v a response message sent to the client by the protocol listener.

Trace the spawning of threads, all ASI that is processed, and all

entries and exits of important functions.

Level 5 Trace the following:

v the entries and exits for each important method

v all of the configuration-specific properties

v the loading of each of the protocol listeners

v the request message retrieved by the protocol listener from the

transport

v the response message sent on the transport to the client by the

protocol listener

v the loading of each protocol handler

v the messages returned by the data handler

v business object dumps of the TLO sent to the collaboration

v dumps of the business objects returned by the data handler.

Chapter 4. HTTP connector 71

72 Adapter for HTTP User Guide

Chapter 5. Troubleshooting

The chapter describes problems that you may encounter when starting up or

running the connector.

Start-up problems

 Problem Potential solution / explanation

Algorithm Not Supported/Algorithm ’SSL’ not available This error occurs when the SSL version specified in the

connector configurator is not supported by your JSSE

provider. Solution: check JSSE provider’s documentation

for the supported SSL versions. For IBM JSSE make sure

your java.security file in the ProductDir/lib/security

directory has the following entry

security.provider.<number>=com.ibm.jsse.

IBMJSSEProvider

where <number> is the preference order for loading the

security provider.

Error loading keystore:Keystore file path:″<path>″

incorrectly specified:KeyStore not found

This error occurs if you specify an incorrect path for the

keystore and/or truststore files. Solution: check the

keystore file path specified in the SSL->KeyStore property

in the Connector configurator. Also, if you are using

truststore, check the truststore file path specified in

SSL->TrustStore property in the Connector configurator.

KeyManagementError: KeyStore is tampered with,

KeyManagement error

This error occurs if your keystore and/or truststore have

been tampered with or otherwise corrupted. This error

may also occur if you have specified an incorrect value

for the password. Solution: ensure that the keystore has

not been tampered. Try recreating the keystore. Also

make sure you have entered a correct password in the

SSL->KeyStorePassword and SSL->TrustStorePassword

connector properties.

Error loading certificates from keystore This error occurs if your certificates and/or keystore,

truststore have been tampered with. This error may also

occur if you have specified an incorrect value for the

password. Solution: check to see if the certificate, keystore

or truststore have been tampered with. Also, ensure that

you have specified a correct password in the

SSL->KeyStorePassword and SSL->TruststorePassword

connector properties.

Error creating the server socket, terminating: error This error occurs if the HTTP or HTTPS protocol listener

cannot bind to the port specified in connector properties.

Solution: check the ports specified for all of the HTTP

and HTTPS protocol listeners. If the same port is

specified for more than one listener, only one of the

listeners can start up. Additionally, check if you have any

other service running on that port. If so, then you may

want to choose a different port for the protocol listeners.

KeyManagementError:UnrecoverableKeyException, Keys

could not be recovered

This error occurs if the keystore or truststore cannot be

used. Solution: create a new keystore.

© Copyright IBM Corp. 2003, 2005 73

Problem Potential solution / explanation

SSL Handshake Exception: Unknown CA This occurs if you do not have a CA certificate in your

truststore. Solution: check whether the CA’s certificate, as

well as its self-signed certificates, reside in the truststore.

Also, ensure that the DN of the certificate has the host

name (preferably the IP address).

You notice excessive JSSE logging in your log file. If you do not want to see all of the underlying JSSE

details on your console, set the value of SSL->SSLDebug

property in the connector configurator to false.

You have specified a protocol listener but the listener is

not getting initialized; you see the following warning

message in the connector:

Skipping Protocol Listener Property Set

 "SOME_LISTENER_NAME" with protocol property "":

 unable to determine the protocol listener

class.]

The connector was unable to extract a valid value for the

Protocol property of the protocol listener. Valid values are

http or https. Solution: this is not an error condition.

However, if you want the connector to use this listener,

specify a valid Protocol property value.

You have specified a protocol handler, but it is not

getting initialized; you see following warning

message in the connector.

Unable to determine the type of the

handler; skipping initializing of current

handler. Handler property details:

Name: <Handler Name>;

Value:

 Name: Protocol; Value:

 Name: ResponseWaitTimeout; Value:

 Name: ReplyToQueue; Value: .]

The connector was unable to extract a valid value for the

Protocol property of the handler. Valid values are http

and https. Solution: This is not an error condition.

However, if you want connector to use this handler,

specify a valid Protocol property value.

Run-time errors

 Problem Potential solution / explanation

Error parsing HTTP response:Reached end of stream

while reading HTTP response header

This error occurs when the connector invokes an HTTP

service. It occurs because your target HTTP service sent

an incorrect HTTP response. Solution: make sure your

target HTTP service address is correct.

Error in the url mentioned , unable to extract host

and port details ,destination is wrong <destination

URL>

This error occurs when the connector invokes an HTTP

service. It occurs because you have specified an incorrect

end point address for the HTTP service. Solution: make

sure you have specified the correct address for the HTTP

service.

Failure in sending event business object <BO Name> with

verb <Verb> to the broker. Received execution status ″-1″

and error message:

MapException: Unable to find the map to map

business objects <BO Name> for the connector

controller HTTPConnector

This error occurs when the integration broker fails to

process the event because the collaboration to which the

connector is sending the event synchronously either does

not exist or does not accept the business object verb.

Solution: if you are using a TLO for event notification,

examine the ws_collab object-level ASI of the TLO. (The

name of the TLO is given in the error message.) Check

the value of the ws_collab ASI. Make sure this

collaboration exists and is running. If ws_mode BO level

ASI is set to synch, ws_collab ASI is required. Check the

value of ws_verb object-level ASI. Make sure the

collaboration specified by the ws_collab ASI can be

triggered by the verb specified in the ws_verb ASI. Make

sure this collaboration exists and is running.

74 Adapter for HTTP User Guide

Problem Potential solution / explanation

Failed to transform a request into a request business

object. Fault:

Failure in generating request object -

no verb could be set on the request bo

This error occurs during event notification when the

connector is unable to determine the verb of the business

object that the connector is attempting to send to the

integration broker. Solution: make sure you have specified

ws_verb object-level ASI for this TLO. Specify the verb as

the value of this ASI.

Chapter 5. Troubleshooting 75

76 Adapter for HTTP User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 36 on page 79.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

This standard property was added in this release:

v BOTrace

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

© Copyright IBM Corp. 2003, 2005 77

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 36 on page 79.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

78 Adapter for HTTP User Guide

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 36 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 36, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 36. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

Appendix A. Standard configuration properties for connectors 79

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is not WAS.

BOTrace none or keys or full none Agent

restart

This property is valid

only if the value of

AgentTraceLevel is

lower than 5.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

80 Adapter for HTTP User Guide

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

Appendix A. Standard configuration properties for connectors 81

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

82 Adapter for HTTP User Guide

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 7 Dynamic

if ICS;

otherwise

Component

restart

Appendix A. Standard configuration properties for connectors 83

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

84 Adapter for HTTP User Guide

Table 36. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

XMLNameSpaceFormat short or long or no short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

Appendix A. Standard configuration properties for connectors 85

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional script format for data sent from

the adapter to the integration broker in the form of any supported business object.

It defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

the section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Transformation

The BiDi.Transformation property defines whether or not the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

86 Adapter for HTTP User Guide

The default value is false.

BOTrace

The BOTrace property specifies whether or not business object trace messages are

enabled at run time.

Note: It applies only when the AgentTraceLevel property is set to less than 5.

When the trace level is set to less than 5, you can use these command line

parameters to reset the value of BOTrace.

v Enter -xBOTrace=Full to dump all the business object’s attributes.

v Enter -xBOTrace=Keys to dump only the business object’s keys.

v Enter -xBOTrace=None to disable business object attribute dumping.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

Appendix A. Standard configuration properties for connectors 87

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

88 Adapter for HTTP User Guide

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

Appendix A. Standard configuration properties for connectors 89

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

If the value of the DeliveryTransport property is MQ, you can set the command-line

parameter WhenServerAbsent in the adapter start script to indicate whether the

adapter should pause or shut down when the InterChange Server is shut down.

v Enter WhenServerAbsent=pause to pause the adapter when ICS is not available.

v Enter WhenServerAbsent=shutdown to shut down the adapter when ICS is not

available.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

90 Adapter for HTTP User Guide

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

Appendix A. Standard configuration properties for connectors 91

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

92 Adapter for HTTP User Guide

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

Appendix A. Standard configuration properties for connectors 93

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

94 Adapter for HTTP User Guide

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

Appendix A. Standard configuration properties for connectors 95

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

96 Adapter for HTTP User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix A. Standard configuration properties for connectors 97

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 7.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

98 Adapter for HTTP User Guide

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 88.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

Appendix A. Standard configuration properties for connectors 99

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

100 Adapter for HTTP User Guide

Appendix B. Connector Configurator

This appendix describes how to use Connector Configurator to set configuration

property values for your adapter.

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector

v Create a configuration file

v Set properties in a configuration file

The topics covered in this appendix are:

v “Overview of Connector Configurator” on page 101

v “Starting Connector Configurator” on page 102

v “Creating a connector-specific property template” on page 103

v “Creating a new configuration file” on page 106

v “Setting the configuration file properties” on page 109

v “Using Connector Configurator in a globalized environment” on page 117

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 102).

© Copyright IBM Corp. 2003, 2005 101

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 103 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 108.)

102 Adapter for HTTP User Guide

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 103.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

Appendix B. Connector Configurator 103

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

104 Adapter for HTTP User Guide

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In UNIX the first character should be /.

Appendix B. Connector Configurator 105

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

106 Adapter for HTTP User Guide

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Appendix B. Connector Configurator 107

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 111..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

108 Adapter for HTTP User Guide

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

Appendix B. Connector Configurator 109

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

110 Adapter for HTTP User Guide

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 110.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under “Configuration property values overview” on page 78.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

Appendix B. Connector Configurator 111

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

112 Adapter for HTTP User Guide

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

Appendix B. Connector Configurator 113

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

114 Adapter for HTTP User Guide

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Appendix B. Connector Configurator 115

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

116 Adapter for HTTP User Guide

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

Appendix B. Connector Configurator 117

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

118 Adapter for HTTP User Guide

Appendix C. Adapter for HTTP tutorial

v “About the tutorial”

v “Before you start” on page 120

v “Installing and configuring” on page 120

v “Running the asynchronous scenario” on page 124

v “Running the synchronous scenario” on page 126

This appendix contains step-by-step procedures that:

v demonstrate asynchronous and synchronous event transmission for both request

and event processing

v illustrate how to configure the HTTP adapter for an HTTP sample

v illustrate how to configure the HTTP adapter for an HTTPS sample

About the tutorial

This tutorial is intended to demonstrate the asynchronous and synchronous event

transmission for both the request and event processing facets of the Adapter for

HTTP with both of the supported protocols: HTTP and HTTPS. In each scenario,

the adapters act as:

v an HTTP client that invokes an external URL

v a proxy that listens for HTTP requests on a URL and routes them to a

WebSphere ICS collaboration.

The tutorial is designed to show the basic functionality of the adapter in sample

scenarios:

v An asynchronous scenario that illustrates an asynchronous (request-only) HTTP

POST. There are two samples in this scenario—for configuration simplicity, the

same HTTP adapter is used to used to listen for HTTP requests and invoke a

URL as an HTTP client.

– A proxy that listens for HTTP requests on a URL In this sample, the

incoming request is routed to the collaboration SERVICE_ASYNCH_Order_Collab

within WebSphere ICS. The collaboration is referred to as Asynch Order. If the

adapter is properly configured, this collaboration can be invoked using either

one of the protocols: HTTP or HTTPS. SERVICE_ASYNCH_Order_Collab is a

simple pass-through collaboration that takes SERVICE_ASYNCH_TLO_Order. The

triggering port (From) of this collaboration is bound to HTTPConnector. The

service port (To) is bound to SampleSiebelConnector.

– An HTTP client that invokes an external URL In this sample, the HTTP

client is another collaboration CLIENT_ASYNCH_Order_Collab within WebSphere

ICS that will invoke an external URL asynchronously using the HTTP adapter.

If the adapter is configured properly, this HTTP client can invoke the external

URL over either one of the protocols: HTTP or HTTPS.

CLIENT_ASYNCH_Order_Collab is a simple pass-through collaboration which

takes CLIENT_ASYNCH_TLO_Order. The triggering port (From) of this

collaboration is bound to SampleSAPConnector. The service port (To) is

bound to HTTPConnector.

Both samples in the asynchronous scenario involve two applications:

– SampleSiebel: Creates an order for its clients.

– SampleSAP: Creates an order

© Copyright IBM Corp. 2003, 2005 119

v A synchronous scenario that illustrates a synchronous (request-response) HTTP

Post. There are two samples in this scenario—for configuration simplicity, the

same HTTP adapter is used to listen for HTTP requests and invoke a URL as an

HTTP client.

– A proxy that listens for HTTP requests on a URL In this sample, the

incoming request is routed to the collaboration

SERVICE_SYNCH_OrderStatus_Collab within WebSphere ICS. The collaboration

is referred to as Synch OrderStatus. If the adapter is properly configured, this

collaboration can be invoked using either one of the protocols: HTTP or

HTTPS. SERVICE_SYNCH_OrderStatus_Collab is a simple pass-through

collaboration which takes SERVICE_SYNCH_TLO_OrderStatus. The triggering

port (From) of this collaboration is bound to HTTPConnector. The service port

(To) is bound to SampleSiebelConnector.

– An HTTP client that invokes an external URL In this sample, the HTTP

client is another collaboration CLIENT_SYNCH_OrderStatus_Collab within

WebSphere ICS that will invoke an external URL using the HTTP adapter. If

the adapter is properly configured, this HTTP client can invoke the external

URL over either one of the protocols: HTTP or HTTPS.

CLIENT_SYNCH_OrderStatus_Collab is a simple pass-through collaboration

which takes CLIENT_SYNCH_TLO_OrderStatus. The triggering port (From) of this

collaboration is bound to SampleSAPConnector. The service port (To) is

bound to HTTPConnector.

Both samples in the synchronous scenario involve two applications:

– SampleSiebel: Retrieves the status of orders for its clients.

– SampleSAP: Requests the status of the order

Both scenarios involve simulating the SampleSiebelConnector and

SampleSAPConnector using two Test Connectors.

Before you start

Before you start the tutorial, be sure that:

v You have installed, and are experienced with, WebSphere ICS 4.2.2 or later.

v You have installed the WebSphere Business Integration Adapter for HTTP in the

WebSphere ICS home directory.

v You are experienced with HTTP technology.

v You are experienced with XML technology.

Installing and configuring

In the sections that follow, WBI_folder refers to the folder containing your current

WebSphere ICS installation. All environment variables and file separators are

specified in the Windows 2000 or 2003 format. Please make the appropriate

changes if running on AIX or Solaris. (for example, WBI_folder\connectors would

be WBI_folder/connectors).

Start server and tool

1. Start WebSphere InterChange Server (ICS) from the shortcut.

2. Start the WebSphere Business Integration System Manager and open the

Component Navigator Perspective.

3. Register and connect your server as a Server Instance in the Interchange Server

view.

120 Adapter for HTTP User Guide

Load the sample content

From the Component Navigator Perspective:

1. Create a new Integration Component Library.

2. Import the repos file named HTTPSample.jar located in:

WBI_folder\connectors\HTTP\samples\WebSphereICS\

Compile the collaboration templates

Using WebSphere Business Integration System Manager:

v Compile All of the Collaboration Templates that were imported from the

HTTPSample.jar repos file.

Configure the connector

1. If you have not done so already, configure the connector as described in this

guide and according to your system.

2. Using WebSphere Business Integration System Manager, open HTTPConnector

in Connector Configurator.

3. You must also configure HTTPConnector for the protocol you want to use with

the sample:

v If you want to use HTTP, see “Configuring for the HTTP protocol scenario”

to configure the connector for HTTP.

v If you want to use HTTPS, see “Configuring for the HTTPS protocol

scenario” on page 122 to configure the connector for HTTPS.

Configuring for the HTTP protocol scenario

This section shows you how to configure the connector for the HTTP sample

scenario. As described in the body of this document, the connector includes an

HTTP protocol listener and HTTP-HTTPS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration

properties are represented with the -> symbol. For example, A-> B implies A is a

hierarchical property, and B is child property of A.

To configure the HTTP protocol listener for this sample:

1. In Connector Configurator, click on Connector-Specific Properties for the

HTTPConnector.

2. Expand the ProtocolListenerFramework property to display the

ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the HTTPListener1

child property.

4. Check the value of HTTPListener1->Host and HTTPListener1->Port properties.

Make sure there is no other process running on your host and listening on this

TCP/IP port. Optionally, you may want to set the value of

HTTPListener1->Host to the machine name on which you will run the

connector.

You do not need to configure the HTTP-HTTPS protocol handler for the sample;

however, to enable SSL functionality (samples are pre-bundled with SSL dependent

components), refer to “Configuring for the HTTPS protocol scenario” on page 122.

Appendix C. Adapter for HTTP tutorial 121

Configuring for the HTTPS protocol scenario

This section shows you how to configure the connector for the HTTPS sample

scenario. The connector includes an HTTPS protocol listener and HTTP-HTTPS

protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration

properties are represented with the -> symbol. For example, A-> B implies A is a

hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above in“Before you start” on page

120, you should also have created and tested your keystore and truststore

using your Key and Certificate management software.

Configure SSL connector-specific properties: For HTTPS, the connector requires

that you configure the SSL connector-specific hierarchical property.

1. In Connector Configurator, click on the Connector-Specific Properties tab for

the HTTPConnector.

2. Expand the SSL hierarchical property to view all of its children properties.

Additionally, check or change the following child properties of the hierarchical

SSL connector-specific property.

v SSL-> KeyStore Set to the complete path to your keystore file, which you

must create using your Key and Certificate management software.

v SSL->KeyStorePassword Set to the password required to access your

KeyStore.

v SSL->KeyStoreAlias Set to the alias of the private key in your KeyStore.

v SSL->TrustStore Set to the complete path of your truststore file which you

have created using your Key and Certificate management software.

v SSL->TrustStorePassword Set to the password required to access your

TrustStore.

Note: Do not forget to save the changes in Connector Configurator.

Configure the HTTPS protocol listener:

1. In Connector Configurator, click on Connector-Specific Properties for the

HTTPConnector.

2. Expand the ProtocolListenerFramework property to display the

ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the HTTPSListener1

child property. Check the value of the HTTPSListener1->Host and

HTTPSListener1->Port properties. Make sure no other processes are running

on your host and listening on this TCP/IP port. Optionally, you may want to

set the value of HTTPSListener1->Host to the machine name on which you are

running the connector.

You need not configure the HTTP-HTTPS protocol handler for the sample.

Setting up KeyStore and TrustStore: You can quickly set up KeyStore and

TrustStore to use with the sample scenario. For production systems, you must use

third-party software for to set up and manage keystores as well as certificate and

key generation. No tool is provided as part of the Adapter for HTTP to set up and

manage these resources.

This section assumes that Java Virtual Machine is installed on your system and

that you are familiar with the keytool shipped with your JVM (Java Virtual

122 Adapter for HTTP User Guide

Machine). For more information or for troubleshooting problems with the keytool,

please see the documentation that accompanies your JVM.

To set up KeyStore:

1. You create KeyStore using keytool. You must create a key pair in the KeyStore.

To do so, enter the following at the command line:

keytool -genkey -alias httpadapter -keystore c:\security\keystore

2. keytool immediately prompts for a password. Specify the password that you

entered for the value of SSL->KeyStorePassword connector property.
Note that in the above example if you specified -keystore

c:\security\keystore in the command line, you would enter

c:\security\keystore as the value of the SSL->KeyStore property. Also, if you

specified -alias httpadapter in the command line, you would enter

httpadapter as the value of the SSL->KeyStoreAlias connector property. keytool

would then prompt you for the details of the certificate. The following

illustrates what you may enter at each of the prompts, but is an example only:

always refer, and defer, to keytool documentation.

What is your first and last name?

 [Unknown]: HostName

What is the name of your organizational unit?

 [Unknown]: myunit

What is the name of your organization?

 [Unknown]: myorganization

What is the name of your City or Locality?

 [Unknown]: mycity

What is the name of your State or Province?

 [Unknown]: mystate

What is the two-letter country code for this unit?

 [Unknown]: mycountryIs <CN=HostName, OU=myunit, O=myorganization,

 L=mycity, ST=mystate, C=mycountry> correct?

 [no]: yes

3. Note that for What is your first and last name?, you should enter the name

of the machine on which you are running the connector. keytool then prompts

you:

Enter key password for <httpadapter> (RETURN if same as keystore password):

4. Press Return to use the same password. If you want to use a self-signed

certificate, you may want to export the certificate created above. To do so, enter

following on the command line:

C:\security>keytool -export -alias httpadapter -keystore c:\security\keystore

-file c:\security\httpadapter.cer

5. keytool now prompts for the keystore password. Enter the password that you

entered above

To set up TrustStore:

1. To import the trusted certificates into the TrustStore, enter the following

command:

keytool -import -alias trusted1 -keystore c:\security\truststore

-file c:\security\httpadapter.cer

2. keytool now prompts for the keystore password. If you entered -keystore

c:\security\truststore, make sure that SSL->TrustStore property is set to

c:\security\truststore. Also, set the value of the SSL->TrustStorePassword

property to the password you entered above.

Appendix C. Adapter for HTTP tutorial 123

Create user project

v Using WebSphere Business Integration System Manager, create a new User

Project. Select all of the components from the Integration Component Library

that was created in “Load the sample content” on page 121.

Add and deploy the project

1. From the Server Instance view, add the User Project created in “Create user

project”to WebSphere ICS

2. Deploy all of the components from this User Project to the ICS.

Reboot ICS

1. Reboot ICS to ensure that all changes take effect.

2. Use the System Monitor tool to ensure that all of the collaboration objects,

connector controllers, and maps are in a green state.

Running the asynchronous scenario

This scenario invokes the Asynch Order Service HTTP service. Before running the

scenario, review this step-by-step synopsis of its data flow.

1. A CLIENT_ASYNCH_TLO_Order.Create event originates in the application

SampleSAP running in one instance of the Test Connector.

2. The event is sent from SampleSAP to the collaboration

CLIENT_ASYNCH_Order_Collab.

3. The event is then sent from the collaboration to HTTPConnector.

4. HTTPconnector then finds the XML_Order object that is a child of the

CLIENT_ASYNCH_TLO_Order object.

5. The Request business object is converted into an XML message using the XML

data handler. HTTPconnector sends the XML message to the URL provided by

the Destination attribute of the Protocol Config Meta-Object (MO). The Protocol

Config MO used by the connector depends on the value of the Handler

attribute of CLIENT_ASYNCH_TLO_Order. This value should be set to http or

https.

6. The XML request is POSTed to the URL. As mentioned earlier, the same

HTTPConnector is listening for the XML request on the same URL. The

connector’s protocol listener receives the XML message.

7. The connector converts the XML message into XML_Order and then creates a

SERVICE_ASYNCH_TLO_Order object. The XML_Order object is set as a child of the

SERVICE__ASYNCH_TLO_Order object.

8. HTTPConnector now asynchronously posts the SERVICE_TLO_Order object to

ICS. This completes the asynchronous URL invocation.

Because this is an asynchronous invocation (request-only), no response is sent back

to the HTTP client. When SERVICE_ASYNCH_Order_Collab receives this object, the

collaboration then sends the business object to the application namedSampleSiebel,

which is running as the second instance of Test Connector. The object is displayed

in the Test Connector. When Reply Success is selected from theSampleSiebel

application, the event will be sent back to SERVICE_ASYNCH_Order_Collab.

To run the asynchronous scenario:

 1. Start your ICS integration broker, if it is not already running.

 2. Start the HTTP connector.

124 Adapter for HTTP User Guide

3. Start two instances of the Test Connector.

 4. Using the Test Connector, define a profile for the SampleSAPConnector and the

SampleSiebelConnector.

 5. You must save the connector definition to a file to emulate a connector using

Test Connector. Do the following to save a connector definition to a file:

a. Open the connector definition in Connector Configurator.

b. Select File > Save As > To File from the menu bar.

c. Navigate to the directory in which you want the file saved, type a name in

the File name field, ensure that the value Configuration (*.cfg) is

displayed in the Save as type drop-down menu, and click Save.
 6. Select FILE->CONNECT AGENT from each Test Connector menu to begin

simulating agents.

 7. While simulating the SampleSAPConnector using the Test Connector, select

EDIT->LOAD BO from the menu. Load the following file:

WBI_folder\connectors\HTTP\samples\WebSphereICS\CLIENT_ASYNCH_TLO_Order.bo

The Test Connector should show that the CLIENT_ASYNCH_TLO_Order is loaded.

 8. Verify the HTTP URL address:

v To run the HTTP sample:

a. In your Test Connector, make sure that the value of the Handler

attribute for the CLIENT_ASYNCH_TLO_Order business object is set to http.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute

is of type CLIENT_ASYNCH_Order business object.

c. Expand the HTTPCfgMO attribute of XML_Order. This attribute is of type

XML_Order_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

XML_Order_HTTP_CfgMO is set to

http://localhost:8080/wbia/http/samples.
v To run the HTTPS sample

a. Make sure that the value of the Handler attribute for the

CLIENT_ASYNCH_TLO_Order business object is set to http even though this

is an HTTPS invocation.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute

is of type XML_Order business object.

c. Expand the HTTPCfgMO attribute of XML_Order. This attribute is of type

XML_Order_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

XML_Order_HTTP_CfgMO is set to

https://localhost:443/wbia/http/samples.
 9. While simulating the SampleSAPConnector with the Test Connector, click on the

loaded Test BO. Select REQUEST->SEND from the menu. See the

step-by-step synopsis earlier in this section for more details regarding the flow

of the event.

10. While simulating the SampleSiebelConnector with the Test Connector, select

REQUEST->ACCEPT REQUEST. An Event Labeled

SERVICE_ASYNCH_TLO_Order.Create is displayed in the right panel of the Test

Connector.

11. Double-click the business object. The business object opens up in a window.

12. Expand the Request attribute of the business object. The Request attribute is of

type SERVICE_ASYNCH_Order. Inspect the OrderId, CustomerId and other

Appendix C. Adapter for HTTP tutorial 125

attributes of SERVICE_ASYNCH_Order to verify the Order received. This

completes the execution of asynchronous scenario.

13. Once you have inspected the business object, close the window. Select

REQUEST ->REPLY-> SUCCESS.

Running the synchronous scenario

This scenario invokes the Synch OrderStatus Service HTTP service. Before running

the scenario, review this step-by-step synopsis of its data flow.

 1. A CLIENT_SYNCH_TLO_OrderStatus.Retrieve event originates in the application

SampleSAP running in one instance of the Test Connector.

 2. The event is sent from SampleSAP to the collaboration named

CLIENT_SYNCH_OrderStatus_Collab.

 3. The event is then sent from the collaboration to the HTTP connector.

 4. The HTTP connector finds the XML_OrderStatus object, which is a request

child of the CLIENT_SYNCH_TLO_OrderStatus object.

 5. The HTTP connector invokes the XML data handler to convert the

XML_OrderStatus business object into an XML message.

 6. The XML Request is POSTed to the URL. As mentioned earlier, the same

HTTPConnector is listening for the XML request on the same URL. The

connector’s protocol listener receives the XML message.

 7. The connector’s protocol listener converts the XML message into

XML_OrderStatus and then creates a SERVICE_SYNCH_TLO_Order object.

The XML_OrderStatus object is set as a child of the

SERVICE_SYNCH_TLO_Order object.

 8. The HTTP connector now synchronously posts the

SERVICE_SYNCH_TLO_OrderStatus object to the

SERVICE_SYNCH_OrderStatus_Collab collaboration running in WebSphere ICS.

Since this is a synchronous execution, the HTTP connector remains blocked

until the collaboration executes and returns the response.

 9. The HTTP connector now synchronously posts the SERVICE_TLO_OrderStatus

object to the SERVICE_SYNCH_OrderStatus_Collab collaboration running in

WebSphere ICS. Since this is a synchronous execution, the HTTP connector

remains blocked until the collaboration executes and returns the response.

10. After editing the values, and selecting Reply Success from the SampleSiebel

application, the event is sent back to the SERVICE_SYNCH_OrderStatus_Collab

collaboration.

11. SERVICE_SYNCH_OrderStatus_Collab receives the

SERVICE_SYNCH_TLO_OrderStatus object. The collaboration then sends the

business object to HTTPConnector.

12. HTTPConnector finds the XML_OrderStatus business object that is a child of

the SERVICE_SYNCH_OrderStatus_TLO. This business object is converted into an

XML response message by the XML data handler.

13. The XML response is sent back to the HTTP Client.

14. The HTTP client, which in this case is the HTTP connector’s protocol handler,

receives the response. The connector invokes the XML data handler with the

response message. The XML data handler converts the response message into

an XML_OrderStatus business object. HTTPConnector sets this object as the

child of CLIENT_SYNCH_OrderStatus_TLO.

15. CLIENT_SYNCH_OrderStatus_TLO is returned to the

CLIENT_SYNCH_OrderStatus_Collab collaboration.

126 Adapter for HTTP User Guide

16. CLIENT_SYNCH_OrderStatus_Collab then sends CLIENT_SYNCH_OrderStatus_TLO

to the SampleSAP application, which is running as the first instance of the

Test Connector. The Test Connector displays this object.

To run the synchronous scenario:

 1. Start your ICS integration broker, if it is not already running.

 2. Start the HTTP connector.

 3. Start two instances of the Test Connector.

 4. Using the Test Connector, define a profile for the SampleSAPConnector and the

SampleSiebelConnector.

 5. You must save the connector definition to a file to emulate a connector using

Test Connector. Do the following to save a connector definition to a file:

a. Open the connector definition in Connector Configurator.

b. Select File > Save As > To File from the menu bar.

c. Navigate to the directory in which you want the file saved, type a name in

the File name field, ensure that the value Configuration (*.cfg) is

displayed in the Save as type drop-down menu, and click Save.
 6. Select FILE->CONNECT AGENT from each Test Connector menu to begin

simulating agents.

 7. While simulating the SampleSAPConnector using the Test Connector, select

EDIT->LOAD BO from the menu. Load the following file:

WBI_folder\connectors\HTTP\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo

The Test Connector should show that the CLIENT_SYNCH_TLO_OrderStatus is

loaded.

 8. Verify the HTTP URL address:

v To run the HTTP sample:

a. In your Test connector, make sure that the value of the Handler attribute

for the CLIENT_SYNCH_TLO_OrderStatus business object is set to http.

b. Expand the request attribute of CLIENT_SYNCH_TLO_OrderStatus. This

attribute is of type XML_OrderStatus business object.

c. Expand the HTTPCfgMO attribute of XML_OrderStatus. This attribute is

of type XML_Order_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

XML_Order_HTTP_CfgMO is set to

http://localhost:8080/wbia/http/samples.
v To run the HTTPS sample:

a. In your Test Connector, make sure that the value of the Handler

attribute for the CLIENT_SYNCH_TLO_OrderStatus business object is set to

http even though this is an https invocation.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This

attribute is of type XML_OrderStatus business object

c. Expand the HTTPCfgMO attribute of XML_OrderStatus. This attribute is

of type XML_Order_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

XML_Order_HTTP_CfgMO is set to

https://localhost:443/wbia/http/samples.

Appendix C. Adapter for HTTP tutorial 127

9. While simulating the SampleSAPConnector with the Test Connector, click on the

loaded Test BO. Select REQUEST->SEND from the menu. See the

step-by-step synopsis earlier in this section for more details regarding the data

flow.

10. An event labeled SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in

the right panel of the Test Connector instance that is simulating

SampleSiebelConnector. Double-click the business object to display it in a

window.

11. Expand the Request attribute of the business object. Inspect the values of the

request to ensure that the values sent across from the SampleSAPConnector

are intact.

12. In the same window opened in step 10 above, populate the response attribute

of this business object by selecting LOAD BO. Load the following file:

v WBI_folder\connectors\HTTP\samples\WebSphereICS\

SERVICE_SYNCH_TLO_OrderStatus.bo

The Test Connector should show that the SERVICE_SYNCH_TLO_OrderStatus

is loaded.

13. Select REQUEST->REPLY->SUCCESS.

14. An event labeled CLIENT_SYNCH_TLO_OrderStatus.Retrieve is displayed in the

right panel of the Test Connector that is simulating SampleSAPConnector.

15. Double-click the CLIENT_SYNCH_TLO_OrderStatus.Retrieve business object,

which is then displayed in a window. If your SampleSiebelConnector returned

an order status, you should see the Response attribute of the business object

populated. Expand the Response attribute to verify the order status.

16. Once you have inspected the business object, close the window. Select

REQUEST->REPLY->SUCCESS.

This completes the execution of synchronous scenario.

128 Adapter for HTTP User Guide

Appendix D. Configuring HTTPS/SSL

v “Keystore setup”

v “TrustStore setup” on page 130

v “Generating a certificate signing request (CSR) for public key certificates” on

page 130

If you are planning to use SSL, you must use third-party software to manage your

keystores, certificates, and key generation. The HTTP connector does not come

with tooling for these tasks. However, you may choose to use keytool, which ships

with IBM JRE, to create self-signed certificates and to manage your keystores.

A key and certificate management utility, keytool enables you to administer your

own public/private key pairs and associated certificates. These are intended for

use in self-authentication (where you authenticate yourself to other users or

services) or data integrity and authentication services that use digital signatures.

The keytool utility also allows you to store the public keys (in the form of

certificates) of peers with whom you communicate.

This appendix describes how to set up keystores using keytool. Note that this

appendix is intended for illustration purposes only; it is not intended as a

substitute for documentation for keytool or related products. Always refer to

source documentation for the tools you use to set up keystores. For further

information on keytool, see:

v http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

Keystore setup

To create KeyStore using keytool, you first must create a key pair in the KeyStore.

For example, if you enter the following command line:

keytool -genkey -alias httpadapter -keystore c:\security\keystore

keytool immediately prompts you for a password. You may enter the password of

your choice (within keytool parameters), but you should specify the password

entered in keytool as the value of the SSL” KeyStorePassword connector property.

For further information, see “KeyStorePassword” on page 68.

The sample command creates the keystore named keystore in the

c:\security\keystore directory. Accordingly, you would enter

c:\security\keystore as the value of the SSL” KeyStore connector hierarchical

property. Also from the command line example above, you would enter -alias

httpadapter as the value of the SSL” KeyStoreAlias connector hierarchical

property. The keytool utility then prompts you for the details of the certificate. The

following illustrates what you may enter for each of the prompts. (Refer to keytool

documentation.)

What is your first and last name?

 [Unknown]: HostName

What is the name of your organizational unit?

 [Unknown]: wbi

What is the name of your organization?

 [Unknown]: IBM

What is the name of your City or Locality?

 [Unknown]: Burlingame

What is the name of your State or Province?

© Copyright IBM Corp. 2003, 2005 129

[Unknown]: CA

What is the two-letter country code for this unit?

 [Unknown]: US

Is <CN=HostName, OU=wbi, O=IBM, L=Burlingame,

ST=CA, C=US> correct?

 [no]: yes

keytool then prompts you for a password:

Enter key password for <httpadapter> (RETURN if same as keystore password):

Press Return to use the same password. If you want to use a self-signed certificate,

you may want to export the certificate created above. In that case, enter following

on the command line:

keytool -export -alias httpadapter -keystore c:\security\keystore -file

wsadapter.cer

keytool now prompts you for the keystore password. Enter the password that you

entered above.

TrustStore setup

You may want to set up TrustStore for the following:

If you want the HTTPS protocol listener to authenticate the client, set the SSL”

UseClientAuth connector configuration property to true. In this case, the HTTPS

protocol listener expect s TrustStore to contain certificates for all trusted clients.

Note that the connector uses the JSSE default mechanism to trust clients.

If you are invoking HTTPS services, the HTTP-HTTPS protocol handler requires

that TrustStore trust the service. This means that TrustStore must contain the

certificates of all trusted HTTP services. Note that the connector uses the JSSE

default mechanism to trust clients. To import the trusted certificates into the

TrustStore, enter a command such as the following:

keytool -import -alias trusted1 -keystore c:\security\truststore -file

 c:\security\trusted1.cer

keytool now prompts for the keystore password. If you enter -keystore

c:\security\truststore, make sure that the SSL -> TrustStore hierarchical property

is set to c:\security\truststore. Also you must set the value of the SSL ->

TrustStorePassword hierarchical property to the password you entered previously.

Generating a certificate signing request (CSR) for public key

certificates

If the SSL data exchange is among already trusted partners who trust your identity,

self-signed certificates may be adequate. However, a certificate is more likely to be

trusted by others when it is signed by a certifying authority (CA).

To get a certificate signed by the CA using the keytool utility, you first must

generate a Certificate Signing Request (CSR), then give the CSR to a CA. The CA

then signs the certificate and returns it to you.

You generate a CSR by entering the following command:

keytool -certreq -alias wsadapter -file httpadapter.csr

 -keystore c:\security\keystore

130 Adapter for HTTP User Guide

In the command, alias is the keystore alias that you created for the private key.

The keytool utility generates the CSR file, which you provide to your CA. Your CA

then provides you with the signed certificate. You will have to import this

certificate into your keystore. To do so, you would enter the following command:

keytool -import -alias wsadapter -keystore c:\security\keystore -trustcacerts

-file casignedcertificate.cer

Once you import, the self-signed certificate in keystore is replaced by the

CA-signed certificate.

Appendix D. Configuring HTTPS/SSL 131

132 Adapter for HTTP User Guide

Appendix E. Common Event Infrastructure

WebSphere Business Integration Server Foundation includes the Common Event

Infrastructure Server Application, which is required for Common Event

Infrastructure to operate. The WebSphere Application Server Foundation can be

installed on any system (it does not have to be the same machine on which the

adapter is installed.)

The WebSphere Application Server Application Client includes the libraries

required for interaction between the adapter and the Common Event Infrastructure

Server Application. You must install WebSphere Application Server Application

Client on the same system on which you install the adapter. The adapter connects

to the WebSphere Application Server (within the WebSphere Business Integration

Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker

supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for Common Event Infrastructure to operate:

v WebSphere Business Integration Server Foundation 5.1.1

v WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with

WebSphere Business Integration Server Foundation 5.1.1.)

Note: Common Event Infrastructure is not supported on any HP-UX or Linux

platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties

CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured

with Connector Configurator. By default, Common Event Infrastructure is not

enabled. The CommonEventInfrastructureContextURL property enables you to

configure the URL of the Common Event Infrastructure server.(Refer to the

“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event

Infrastructure events that map to the following adapter events:

v Starting the adapter

v Stopping the adapter

v An application response to a timeout from the adapter agent

v Any doVerbFor call issued from the adapter agent

v A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event

Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2003, 2005 133

Common Event Infrastructure event catalog to determine the definitions of

appropriate events and their properties. The events must be defined in the event

catalog for the consumer application to be able to consume the sending

application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this

document contains XML format metadata showing, for WebSphere Business

Information adapters, the event descriptors and properties the consumer

application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common

Event Infrastructure information in the WebSphere Business Integration Server

Foundation documentation, available at the following URL:

http://publib.boulder.ibm.com/infocenter/ws51help

For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer to“Common Event

Infrastructure event catalog definitions.”

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can

be queried by other applications. The following are event definition samples, using

XML metadata, for typical adapter events. If you are writing another application,

your application can use event catalog interfaces to query against the event

definition. For more information about event definitions and how to query them,

refer to the Common Event Infrastructure documentation that is available from the

online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that

need to be defined in the event catalog are the keys of the business object. Each

business object key requires an event definition. So for any given adapter, various

events such as start adapter, stop adapter, timeout adapter, and any doVerbFor

event (create, update, or delete, for example) must have a corresponding event

definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,

stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"

 parent="event">

 <property name =”creationTime" //Comment: example value would be

 "2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event

 required="false"

 defaultValue="1.0.1"/>

134 Adapter for HTTP User Guide

<property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

source application generating the event. Example is "SampleConnector#3.0.0"

 path="sourceComponentId/application" required="false"/>

 <property name="component" //Comment: This will be the name#version

 of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment"

 //Comment: Identifies the environment the application is running

 in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="location" //Comment: The value of this is the

 server name...example is "WQMI"

 path="sourceComponentId/location"

 required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction

of the logical component

 path="sourceComponentId/subComponent"

 required="true"

 defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>

 <property name="componentType" //Comment: well-defined name

used to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

 situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName=" //Comment: Specifies the type

of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StartSituation"/>

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

 of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <property name="situationQualifier" //Comment: Specifies the

 situation qualifiers for this event

Appendix E. Common Event Infrastructure 135

path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="START_INITIATED"

 permittedValue="RESTART_INITIATED"

 permittedValue="START_COMPLETED" />

</eventDefinition>

XML format for ″stop adapter″ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the

following exceptions:

v The default value for the categoryName property is StopSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StopSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “stop adapter”:

<property name="situationQualifier"

 //Comment: Specifies the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="STOP_INITIATED"

 permittedValue="ABORT_INITIATED"

 permittedValue="PAUSE_INITIATED"

 permittedValue="STOP_COMPLETED"

 />

XML format for “timeout adapter” metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and

“stop adapter” with the following exceptions:

v The default value for the categoryName property is ConnectSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="ConnectSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies

 the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="IN_USE"

 permittedValue="FREED"

 permittedValue="CLOSED"

 permittedValue="AVAILABLE"

 />

136 Adapter for HTTP User Guide

XML format for ″request″ or ″delivery″ metadata

At the end of this XML format are the extended data elements. The extended data

elements for adapter request and delivery events represent data from the business

object being processed. This data includes the name of the business object, the key

(foreign or local) for the business object, and business objects that are children of

parent business objects. The children business objects are then broken down into

the same data as the parent (name, key, and any children business objects). This

data is represented in an extended data element of the event definition. This data

will change depending on which business object, which keys, and which child

business objects are being processed. The extended data in this event definition is

just an example and represents a business object named Employee with a key

EmployeeId and a child business object EmployeeAddress with a key EmployeeId.

This pattern could continue for as much data as exists for the particular business

object.

<eventDefinition name="createEmployee" //Comment: This

 extension name is always the business object verb followed by the business

 object name

 parent="event">

 <property name ="creationTime" //Comment: example value would be

"2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="localInstanceId" //Comment: Value is business

 object verb+business object name+#+app name+ business object identifier

 required="false"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event...value is

 set to 1.0.1

 required="false"

 defaultValue="1.0.1"/>

 <property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

 source application generating the event...example is

 "SampleConnector#3.0.0"

 path="sourceComponentId/application"

 required="false"/>

 <property name="component" //Comment: This will be the name#version

of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

 and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment" //Comment: Identifies the

 environment#version the app is running in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="instanceId" //Comment: Value is business object

 verb+business object name+#+app name+ business object identifier

 path="sourceComponentId/instanceId"

 required="false"

 <property name="location" //Comment: The value of this is the

server name...example is "WQMI"

 path="sourceComponentId/location"

Appendix E. Common Event Infrastructure 137

required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction of the

 logical component-in this case the value is the name of the business

 object

 path="sourceComponentId/subComponent"

 required="true"/>

 <property name="componentType" //Comment: well-defined name used

 to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName" //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 permittedValue="CreateSituation"

 permittedValue="DestroySituation"

 permittedValue="OtherSituation" />

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <extendedDataElements name="Employee" //Comment: name of business

 object itself

 type="noValue"

 <children name="EmployeeId"

 type="string"/> //Comment: type is one of the

 permitted values within Common Event Infrastructure documentation

 <children name="EmployeeAddress"

 type="noValue"/>

 <children name="EmployeeId"

 type="string"/>

 -

 -

 -

 </extendedDataElements

</eventDefinition>

138 Adapter for HTTP User Guide

Appendix F. Application Response Measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for ARM to operate:

v WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for

Transaction Performance server). This does not have to be installed on the same

system as the adapter.

v IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must

be installed on the same system on which the adapter is installed and

configured to point to the system on which the IBM Tivoli Monitoring for

Transaction Performance server resides.

Application Response Measurement support is available using any integration

broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all

operating systems supported with this IBM WebSphere Business Integration

Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property

TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By

default ARM support is not enabled. (Refer to the ″Standard Properties″ appendix

of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and

event deliveries. The transaction is measured from the start of a service request or

event delivery to the end of the service request or event delivery. The name of the

transaction displayed on the Tivoli Monitoring for Transaction Performance console

will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the

name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).

The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2003, 2005 139

For example, the name of a transaction for an event delivery for creation of an

employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE

REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or

event delivery:

v Minimum transaction time

v Maximum transaction time

v Average transaction time

v Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select

which of these metrics to display, for which adapter events, by configuring

Discovery Policies and Listener Policies for particular transactions from within the

Tivoli Monitoring for Transaction Performance console. (Refer to “For more

information.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for

more information. In particular, refer to the IBM Tivoli Monitoring for Transaction

Performance User’s Guide for information about monitoring and managing the

metrics generated by the adapter.

140 Adapter for HTTP User Guide

Index

A
Application Response Measurement 139

Application Response Measurement instrumentation, support

for 139

Asynchronous event processing TLOs 25

Asynchronous HTTP(S) service 43

Asynchronous request processing TLOs 36

Attribute-level ASI 19, 38

Attribute-level ASI for asynchronous 26

B
Business object meta-data 17

Business object structure 17

C
Common Event Infrastructure 133

event catalog 134

metadata 134

Components 3

Configure business objects 12

Configure collaborations 13

Configure the connector 12

Configure the data handler 13

Configuring connector properties 8

Configuring HTTPS/SSL 129

Configuring the connector 58

Configuring the data handler 9

Connector architecture 7

Connector Configurator 101

Connector processing 41

Connector-specific configuration properties 59

Creating business objects 9

Credential propagation 36

D
Data handler 4

DataHandlerConfigMO 60

Deploying the connector 5

Developing business objects 39

E
Event archiving 50

event catalog, for Common Event Infrastructure 134

Event detection 50

Event persistence and delivery 50

Event processing 44

Event processing overview 41

Event recovery 51

Event retrieval 50

Event sequencing 50

Event status 50

Event triggering 50

F
Fault business object 22, 31

G
Generating a certificate signing request 130

H
Hardware and software requirements 1

HTTP Protocol Config MO 32

HTTP(S) services 43

I
IBM Tivoli Monitoring for Transaction Performance 139

Install ICS 11

Installed file structure 11

Installing the adapter 8

J
JSSE 56

K
KeyStore 56

Keystore setup 129

L
Locale-dependent data 2

Logging 70

M
Modifying business objects 9

monitoring, of transactions 139

Multiple instances of the adapter 13

Multiple protocol listeners 69

O
Object discovery agents 5

Object-level ASI 18, 28, 37

P
Pingability 44

Protocol Config MO 22

Protocol handler framework initialization 70

Protocol handler processing 52

Protocol handlers 4

Protocol handling 51

Protocol listener framework initialization 69

Protocol listener processing 45

© Copyright IBM Corp. 2003, 2005 141

Protocol listeners 4, 44

Proxy setup 69

R
Request business object 21, 30

Request business object for asynchronous 27

Request processing 51

Request processing overview 42

Response business object 21, 31

S
Secure sockets 50

SSL 2, 56

SSL Properties 56

Standard configuration properties 58, 77

Standards and APIs 1

Start-up problems 73

Starting the connector 14

Startup 69

Stopping the connector 16

Synchronous event processing TLOs 17

Synchronous HTTP(S) service 43

Synchronous request processing TLOs 27

T
Terminology 2

Tivoli Monitoring for Transaction Performance 139

Tracing 70

transaction monitoring 139

Troubleshooting 73

TrustStore 56

TrustStore setup 130

Tutorial 119

U
Unsupported 49

142 Adapter for HTTP User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2005 143

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

144 Adapter for HTTP User Guide

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

WebSphere

z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 145

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Business Integration Adapter Framework, version 2.6.0.3

146 Adapter for HTTP User Guide

����

Printed in USA

	Contents
	About This Document
	What this document includes
	What this document does not include
	Audience
	Prerequisites for This Document
	Related Documents
	Typographic Conventions

	New in this release
	New in release 1.3
	New in release 1.1

	Chapter 1. Overview of the Adapter
	Adapter for HTTP environment
	Hardware and software requirements
	Standards and APIs
	Locale-dependent data

	Terminology
	Components of connector for HTTP
	Connector for HTTP
	Data handler
	Object discovery agents
	Deploying the connector

	Architecture of connector for HTTP
	Install, configure, and design checklist
	Installing the adapter
	Configuring connector properties
	Creating or modifying business objects
	Configuring the data handler

	Chapter 2. Installation and startup
	Overview of Installation Tasks
	Install ICS

	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	UNIX connector file structure

	Overview of configuration tasks
	Configure the connector
	Configure business objects
	Configure the data handler
	Configure collaborations

	Running multiple instances of the adapter
	Create a new directory

	Starting the connector
	Stopping the connector

	Chapter 3. Business object requirements
	Business object meta-data
	Connector business object structure
	Synchronous event processing TLOs
	Asynchronous event processing TLOs
	Synchronous request processing TLOs
	Asynchronous request processing TLOs

	Developing business objects

	Chapter 4. HTTP connector
	Connector processing
	Event processing overview
	Request processing overview

	Custom data handler invocation
	HTTP(S) services
	Synchronous HTTP(S) service
	Asynchronous HTTP(S) service

	Event processing
	Protocol listeners
	Pingability
	HTTP and HTTPS protocol listener processing
	Unsupported HTTP protocol listener processing features
	HTTPS listener processing using secure sockets
	Event persistence and delivery
	Event sequencing
	Event triggering
	Event detection
	Event status
	Event retrieval
	Event archiving
	Event recovery

	Request processing
	Protocol handling

	SSL
	JSSE
	KeyStore and TrustStore
	SSL Properties
	SSL and the HTTPS protocol listener
	SSL and the HTTP-HTTPS protocol handler

	Configuring the connector
	Setting configuration properties
	Creating multiple protocol listeners

	Connector at startup
	Proxy setup
	Protocol listener framework initialization
	Protocol handler framework initialization

	Logging
	Tracing

	Chapter 5. Troubleshooting
	Start-up problems
	Run-time errors

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Adapter for HTTP tutorial
	About the tutorial
	Before you start
	Installing and configuring
	Start server and tool
	Load the sample content
	Compile the collaboration templates
	Configure the connector
	Create user project
	Add and deploy the project
	Reboot ICS

	Running the asynchronous scenario
	Running the synchronous scenario

	Appendix D. Configuring HTTPS/SSL
	Keystore setup
	TrustStore setup
	Generating a certificate signing request (CSR) for public key certificates

	Appendix E. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix F. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information

	Index
	Notices
	Programming interface information
	Trademarks and service marks

