

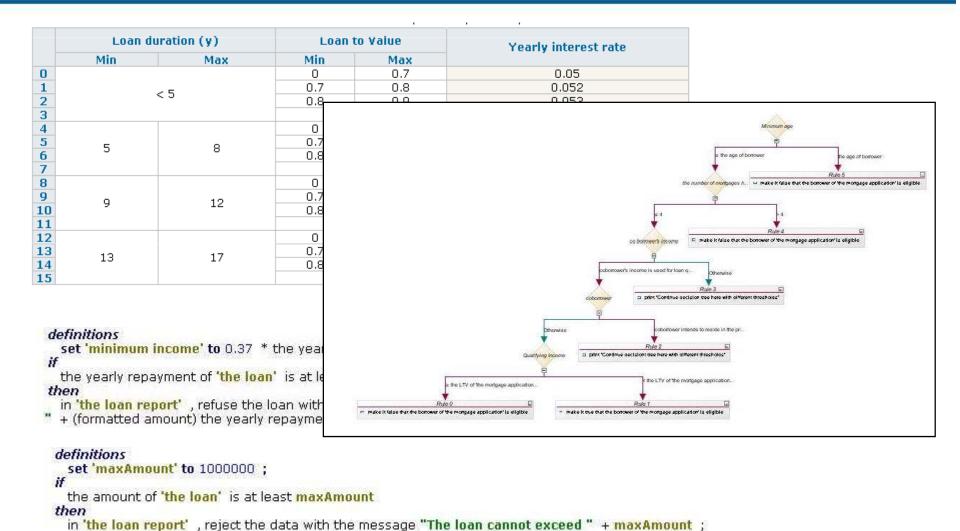
Welcome to today's BRMS 30-minute webinar. We will begin shortly.

Hot Tips for Rule Modeling

Part II: When to Use Decision Tables & Decision Trees

January 15, 2009

Julie Holm Business Policy Architect jholm@ilog.com


Rule Formats

- Most Rules are conceptualized as "if then" rules
 BUT,
- Decision Tables provide rules in an Excel table like format, with columns that correspond to conditions and actions
- Decision Trees provide a graphic, tree-like structure with nodes that correspond to conditions, and leaf nodes that correspond to results

Three kinds of Rule Artifacts

All three artifacts are really Business Rules

When do we use decision tables?

When the conditions and actions of the rules use the same objects and attributes repeatedly, for example:

IF
The yearly repayment of the loan is between 0 and 10000
And the score is at least 900

THEN set the grade of the loan to A

0

30000 And the score is between 600 and 900

The yearly repayment of the loan is between 10000 and

THEN set the grade of the loan to B

	Yearly r	epayment	Corporate score				
	Min	Max	Min	Max	Grade	Message	
0			≥ 900		Α	Very low risk loan	
1	0	10,000	600	900	Α	Very low risk loan	
2			300	600	В	Low risk loan	
3			≥ 900		Α	Very low risk loan	
4	10,000	30,000	600	900	В	Low risk loan	
5			300	600	С	Average risk loan	
6			≥ 900		В	Low risk loan	
7	30,000	60,000	600	900	С	Average risk loan	
8			300	600	D	Risky Ioan	
9	≥ 60,000		≥ 900		С	Average risk loan	
10			600	900	D	Risky Ioan	
11			300	600	E	Very risky loan	

4

Advantages of Decision Tables

- Many rules authored at one time provides authoring efficiency
- Easily understood by business people
 - Especially if the knowledge came from tables
- Rules may be loaded from Excel Spreadsheets

Be careful, though....

- Don't overuse Decision Tables!
- Signs that your data may not belong here include
 - Lots of empty cells in the decision tables the data is not as structured and redundant as needed
 - Data is needed by a database, or decision table is generated from a database table
 - This may mean your "decision table" is a lookup table!
 - Actions are heavily repeated this may be OK, or may be a clue that logic needs attention.

Identifying "lookup" tables

- Is the information in the decision table used by other parts of the system?
- Does the information need to respond to an SQL query?
- Are there few or only one condition column, and many action columns?
- Is it difficult to think of this information in terms of "if – then" statements?

You may use Decision Tables to codify lookups!

Remember that DT Rows are rules

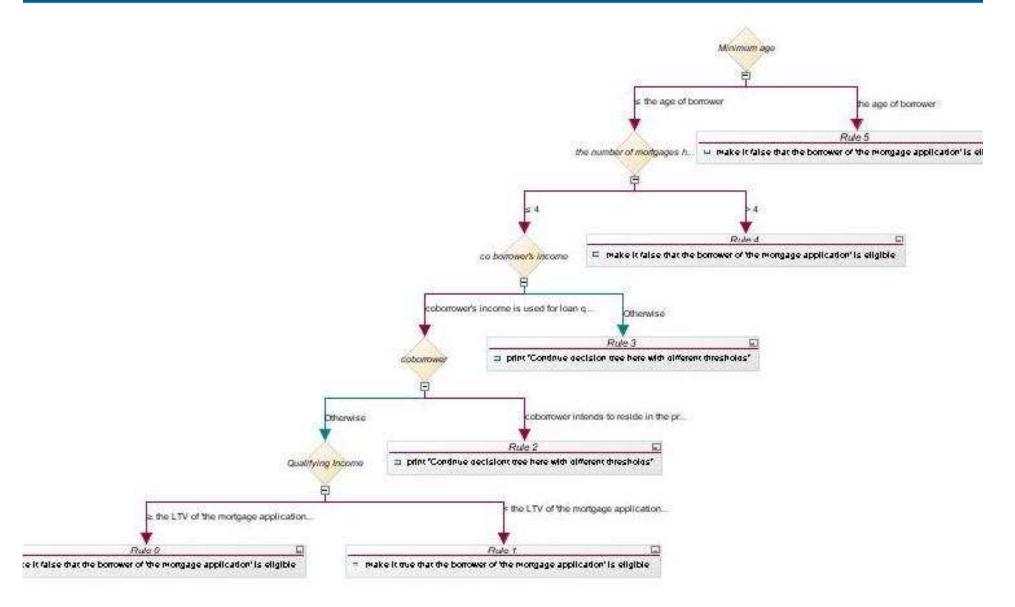

```
if
   all of the following conditions are true:
        - the duration (in years) of 'the loan' is between 5 and 8
        - the Loan to Value of 'the loan' is at least 0.7 and less than 0.8 ,
then
   set the yearly interest rate of 'the loan' to 0.057 ;
```

0 - 15 | 15 - 30 | 30 - 35 | All

	Loan duration (y)		Loan to Value		Yearly interest rate
	Min	Max	Min	Max	, , , , , , , , , , , , , , , , , , , ,
0			0	0.7	0.05
1		< 5	0.7	0.8	0.052
2		< 3	0.8	0.9	0.053
3			≥ 0.9		0.055
4	5	8	0	0.7	0.056
5			0.7	0.8	0.057
6			0.8	0.9	0.058
7			≥ 0.9		0.059
8	9	12	0	0.7	0.06
9			0.7	0.8	0.061
10			0.8	0.9	0.062
10 11			≥ 0.9		0.063
12	13	17	0	0.7	0.064
12 13 14 15			0.7	0.8	0.065
14			0.8	0.9	0.066
15			≥ 0.9		0.067

Decision Trees

- Less Common than decision tables
- Repeated logic, but asymmetric
- Can be harder for some business users to understand than tables OR rules
 - Use them when the expert knowledge is represented in tree form
- Classical uses include classification, diagnosis


Nodes and leaves

- Nodes contain conditions
 - At each node ONE piece of information is evaluated
- Leaves contain actions
 - Each leaf contains all actions (should be one atomic action)
- Each path from root to leaf, including all traversed nodes is a rule

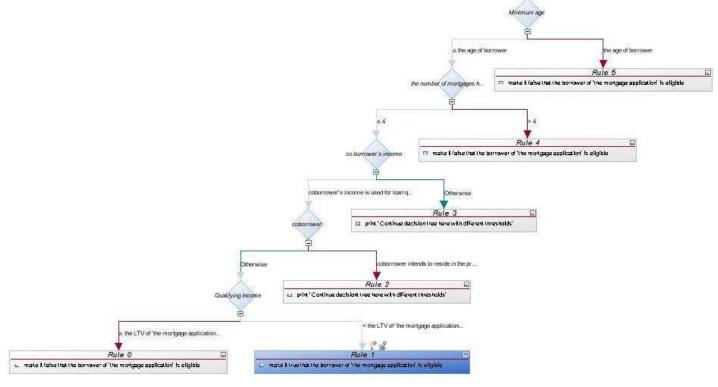
Decision Tree example

Also a collection of rules


```
definitions
set 'minimum age' to the minimum age for enforcing mortgages in the state of the property of 'the mortgage application';
set 'borover' to the borrower in the co borrowers of 'the mortgage application';

set 'coborrower' to a borrower in the co borrowers of 'the mortgage application';

set 'coborrower' to a borrower in the co borrower of 'the mortgage application';


and all of the following conditions are true:

- 'minimum age' is at most the age of borrower
- the number of mortgages held by the borrower of 'the mortgage application' is at most 4
- coborrower 's income is used for loan qualification
- it is not true that ((coborrower intends to reside in the property))
- the qualifying income of 'the mortgage application' is less than the LTV of 'the mortgage application' * 0.9 ,

then
make it true that the borrower of 'the mortgage application' is eligible;

Actions
make it true that the borrower of 'the mortgage application' is eligible

SUBMIT ()
```


Be careful of Decision Trees!

- Look for a lot of reuse of nodes
 - May mean you should use a table
- Is it hard to put together the tree, or to understand the logic
 - Then maybe BAL rules are better
- Generally, use a decision tree only if the knowledge is naturally represented in tree form

Three types of rule artifacts

- Provide flexibility, and a variety of natural ways to represent rules
 - Business Rules (If then) for most situations
 - Decision Tables repeated, symmetrical logic
 - Decision Trees repeated, asymmetrical logic, decisions at nodes

Questions & Answers

Thank You.

Any remaining questions will be answered on our Business Rule Analysis & Modeling Blog

http://blogs.ilog.com/brmsmodeling/

Join us at DIALOG09

For more event information, please visit:

http://www.ilog.com/dialog

February 3-5, 2009 Renaissance Resort at SeaWorld Orlando, FL