
IBM

WebSphere

Commerce

Customizing

the

WebSphere

Commerce

Accelerator

and

other

Tools

User

Interface

Centers

reference

Version

5.5

���

IBM

WebSphere

Commerce

Customizing

the

WebSphere

Commerce

Accelerator

and

other

Tools

User

Interface

Centers

reference

Version

5.5

���

Note:

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

79.

First

Edition,

March

2004

This

edition

applies

to

IBM

WebSphere

Commerce

Business

Edition

Version

5.5,

IBM

WebSphere

Commerce

Professional

Edition

Version

5.5,

and

IBM

WebSphere

Commerce

-

Express

Version

5.5

(product

number

5724-A18),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

IBM

welcomes

your

comments.

You

can

send

your

comments

by

using

the

online

IBM

WebSphere

Commerce

documentation

feedback

form,

available

at

the

following

URL:

www.ibm.com/software/webservers/commerce/rcf.html

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2002,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/software/commerce/rcf.html

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. v

Document

description

.

.

.

.

.

.

.

.

.

.

. v

Updates

to

this

book

.

.

.

.

.

.

.

.

.

.

. v

Conventions

used

in

this

book

.

.

.

.

.

.

.

. v

Path

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Knowledge

requirements

.

.

.

.

.

.

.

.

.

. vi

Part

1.

Customizing

the

WebSphere

Commerce

Accelerator

and

other

Tools

User

Interface

Centers

reference

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Wizards

.

.

.

.

.

.

.

.

.

. 3

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Navigation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Customizations

.

.

.

.

.

.

.

.

.

.

.

.

. 11

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 12

Chapter

2.

Notebooks

.

.

.

.

.

.

.

. 13

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Navigation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Customizations

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Error

code

handling

.

.

.

.

.

.

.

.

.

. 21

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

3.

Dialogs

.

.

.

.

.

.

.

.

.

. 23

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Navigation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Customizations

.

.

.

.

.

.

.

.

.

.

.

.

. 30

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 30

Chapter

4.

Dynamic

lists

.

.

.

.

.

.

. 31

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Multiple

Framesets

.

.

.

.

.

.

.

.

.

.

.

. 39

Filter

enhancement

.

.

.

.

.

.

.

.

.

.

.

. 39

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 39

Chapter

5.

Calendars

.

.

.

.

.

.

.

. 41

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 41

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 42

Chapter

6.

Slosh

buckets

.

.

.

.

.

.

. 45

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Customizations

.

.

.

.

.

.

.

.

.

.

.

.

. 46

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 46

Chapter

7.

Tools

User

Interface

Center

49

Integrating

tools

into

a

Tools

User

Interface

Center

49

Adding

context-sensitive

help

.

.

.

.

.

.

.

. 50

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 51

Chapter

8.

Dynamic

tree

.

.

.

.

.

.

. 55

Workflow

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Additional

features

.

.

.

.

.

.

.

.

.

.

.

. 61

JavaScript

functions

.

.

.

.

.

.

.

.

.

.

. 62

Chapter

9.

Search

dialogs

.

.

.

.

.

. 63

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Detailed

steps

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Navigation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Customizations

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Part

2.

Element

chaining

and

wizard

branching

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Chapter

10.

Element

chaining

.

.

.

.

. 75

Creating

an

element

chain

.

.

.

.

.

.

.

.

. 75

Chapter

11.

Wizard

branching

.

.

.

.

. 77

Wizard

branching

example

.

.

.

.

.

.

.

.

. 77

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

©

Copyright

IBM

Corp.

2002,

2004

iii

iv

About

this

book

Document

description

This

document

serves

as

an

overview

of

the

concepts

involved

with

customizing

the

WebSphere®

Commerce

Accelerator.

It

addresses

the

high

level

architecture

of

how

the

user

interface

interacts

with

the

business

users,

and

the

WebSphere

Commerce

Server.

Supplementary

documents,

released

as

they

become

available,

build

upon

the

knowledge

developed

in

this

document,

and

provide

the

detailed

information

required

to

customize

the

particular

components

of

the

WebSphere

Commerce

Accelerator.

They

also

act

as

a

resource,

listing

the

components

and

assets

upon

which

the

various

components

depend.

Updates

to

this

book

The

latest

version

of

this

book,

is

available

as

a

PDF

file

from

the

IBM®

WebSphere

Commerce

technical

library

Web

site:

www.ibm.com/software/commerce/library/

Conventions

used

in

this

book

This

book

uses

the

following

highlighting

conventions:

Boldface

type

Indicates

commands

or

graphical

user

interface

(GUI)

controls

such

as

names

of

fields,

icons,

or

menu

choices.

Monospace

type

Indicates

examples

of

text

you

enter

exactly

as

shown,

file

names,

and

directory

paths

and

names.

Italic

type

Used

to

emphasize

words.

Italics

also

indicate

names

for

which

you

must

substitute

the

appropriate

values

for

your

system.

This

icon

marks

a

Tip

-

additional

information

that

can

help

you

complete

a

task.

Important

These

sections

highlight

especially

important

information.

Attention

These

sections

highlight

information

intended

to

protect

your

data.

Path

variables

This

guide

uses

the

following

variables

to

represent

directory

paths:

WC_installdir

This

is

the

installation

directory

for

WebSphere

Commerce.

The

following

are

the

default

installation

directories

for

WebSphere

Commerce

on

various

operating

systems:

©

Copyright

IBM

Corp.

2002,

2004

v

AIX /usr/WebSphere/CommerceServer55

400

/QIBM/ProdData/CommerceServer55

Linux

/opt/WebSphere/CommerceServer55

Solaris

/opt/WebSphere/CommerceServer55

Windows

C:\Program

Files\WebSphere\CommerceServer55

WAS_installdir

This

is

the

installation

directory

for

WebSphere

Application

Server.

The

following

are

the

default

installation

directories

for

WebSphere

Application

Server

on

various

operating

systems:

AIX

/usr/WebSphere/AppServer

400

/QIBM/ProdData/WebAS5

Linux

/opt/WebSphere/AppServer

Solaris

/opt/WebSphere/AppServer

Windows

C:\Program

Files\WebSphere\AppServer

WCDE_installdir

This

is

the

installation

directory

for

either

the

WebSphere

Commerce

Studio,

or

the

WebSphere

Commerce

-

Express

development

environment.

The

default

installation

directory

for

WebSphere

Commerce

Studio

is

C:\WebSphere\CommerceStudio55.

The

default

installation

directory

for

the

WebSphere

Commerce

-

Express

development

environment

is

C:\WebSphere\CommerceDev55.

hostname

In

a

non-federated,

non-clustered

environment,

hostname

is

used

as

the

node

name

in

WebSphere

Application

Server.

For

example,

WAS_installdir/installedApps/hostname/Enterprise_app_name.ear.

If

you

run

in

a

federated

or

clustered

environment,

replace

hostname

with

the

node

name

on

your

system.

Knowledge

requirements

To

customize

the

WebSphere

Commerce

Accelerator,

you

require

knowledge

of

the

following:

v

HTML,

JavaScript™,

and

XML

v

Structured

Query

Language

(SQL)

v

Java™

Programming

v

JavaServer

Pages

technology

vi

v

WebSphere

Commerce

Studio

or

WebSphere

Commerce

-

Express

Developer

Edition

Please

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorialsfor

more

information

on

customizing

WebSphere

Commerce.

This

book

is

available

from

the

following

Web

site:

www.ibm.com/software/commerce/library

About

this

book

vii

viii

Part

1.

Customizing

the

WebSphere

Commerce

Accelerator

and

other

Tools

User

Interface

Centers

reference

This

document

discusses

how

to

customize

Tools

User

Interface

Center

components,

such

as

the

WebSphere

Commerce

Accelerator.

For

simplicity,

the

customization

steps

documented

use

WebSphere

Commerce

Accelerator

as

an

example,

but

the

steps

can

be

applied

to

any

of

the

WebSphere

Commerce

user

interface

tools,

such

as

the

WebSphere

Commerce

Administration

Console,

and

custom

user

interfaces.

This

document

should

only

be

read

after

you

have

completed

reading

the

primary

WebSphere

Commerce

Accelerator

Customization

Guide,

as

it

builds

upon

information

and

concepts

contained

in

that

document.

Attention

To

protect

your

customized

data

from

being

overwritten

during

migration

to

a

future

version,

or

during

installation

of

a

future

fix

pack,

or

some

similar

event,

it

must

be

created

in

a

safe

place,

separate

from

the

WebSphere

Commerce

assets.

See

the

Customization

Guidelines

section

of

the

WebSphere

Commerce

Accelerator

Customization

Guide

for

more

information.

©

Copyright

IBM

Corp.

2002,

2004

1

2

Chapter

1.

Wizards

A

wizard

consists

of

panels

in

which

users

can

enter

and

manipulate

data.

The

panels

are

presented

in

a

specific

sequence

defined

when

you

create

the

wizard.

This

sequence

displays

in

a

table

of

contents

frame.

The

user

navigates

using

only

the

Previous

and

Next

buttons

and

cannot

select

elements

in

the

table

of

contents

to

move

to

a

specific

panel.

Wizards

are

useful

when

you

want

the

user

to

view

and

enter

data

into

every

panel.

You

can

specify

default

data

for

the

panels

so

that

default

values

are

pre-populated

for

the

user.

For

example,

you

can

pre-populate

the

year

field

with

the

current

year.

A

Finish

button

may

be

placed

on

a

panel

before

the

last

panel

in

the

sequence.

Once

a

user

completes

a

wizard,

if

it

is

no

longer

necessary

to

follow

the

panels

in

the

specific

sequence,

information

entered

through

that

wizard

can

be

modified

using

notebooks

or

dialogs.

Overview

The

following

is

an

overview

of

how

to

create

a

wizard.

Detailed

steps

follow

this

section.

1.

Create

a

wizard

definition

XML

file

that

describes

the

flow

among

panels

and

data

bean

usage.

2.

Register

the

wizard

definition

XML

file

in

the

component’s

specific

resources.xml

file.

3.

Write

panels

using

JSP

and

JavaScript

files.

4.

Write

custom

commands

to

update

the

database

and

perform

custom

functionality.

5.

Register

custom

commands

and

JSP

files

in

the

database.

6.

Create

a

resource

bundle.

7.

(Optional)

Write

context

sensitive

help

files

for

your

container

element

and

panels,

and

update

the

Tools

User

Interface

Center

help

map

XML

file

to

include

your

help

files.

8.

Add

your

new

wizard

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator).

9.

Launch

and

test

your

wizard.

The

following

files

are

created:

v

a

wizard

definition

XML

file

that

describes

the

panel

flow,

for

example,

newWizard.xml

v

resource

bundle

files,

for

example,

MySampleResource_locale.properties

v

HTML

help

files

v

custom

Java

command

files,

for

example,

MyCommand.java

v

JSP

and

JavaScript

files

to

fill

panel

contents,

for

example,

myPanel.jsp

and

myPanel.js

The

following

files

are

modified:

v

resources.xml

v

Tools

User

Interface

Center

menu

XML

file

to

display

your

new

wizard

v

Tools

User

Interface

Center

Help

Map

XML

file

to

include

your

help

files

©

Copyright

IBM

Corp.

2002,

2004

3

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

wizard.

1.

Create

a

wizard

definition

XML

file

to

describe

panel

flow

and

data

bean

usage,

called

newWizard.xml,

for

example.

Create

this

file

in

the

directory

/WC_installdir/xml/tools/component,

where

component

is

the

name

of

the

component

to

which

the

wizard

belongs.

The

following

tags

are

available

for

use

in

the

wizard

XML

file:

XML

Tag

Description

<wizard>

</wizard>

The

primary

element

defining

a

wizard.

The

following

attributes

are

supported:

resourceBundle

A

required

attribute

that

specifies

which

resource

bundle

is

used.

For

example,

resourceBundle="common.userNLS"

windowTitle

An

optional

attribute

that

defines

the

window

title,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

windowTitle="WizardTitle"

finishConfirmation

An

optional

attribute

that

names

the

finish

confirmation,

this

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

is

used.

For

example,

finishConfirmation

="finishConfirmation"

cancelConfirmation

An

optional

attribute

that

names

the

cancel

confirmation,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

cancelConfirmation="cancelConfirmation"

finishButtonName

An

optional

attribute

that

names

the

finish

button

text

label.

This

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

is

used.

For

example,

finishButtonName

="myFinishButtonText"

finishURL

An

optional

attribute

that

specifies

which

command

executes

to

finish

the

wizard.

If

finishURL

is

not

present,

nothing

happens

when

the

user

clicks

the

OK

or

Finish

buttons.

You

can

use

other

JavaScript

functions

to

exit

the

wizard,

such

as

TOP.goBack()

or

set

this

value

at

runtime

if

it

is

not

known

which

controller

command

should

be

called.

For

example,

finishURL="WizardTestCmd"

tocBackgroundImage

An

optional

attribute

that

specifies

the

URL

for

the

background

image

of

the

table

of

contents

frame.

For

example,

tocBackgroundImage="/wcs/images/tools/uiproperties/back.jpg"

4

XML

Tag

Description

<panel

/>

Defines

a

panel

to

appear

in

the

wizard’s

content

frame.

The

following

attributes

are

supported:

name

A

required

attribute

that

specifies

a

name

for

the

panel.

This

attribute

is

also

a

key

in

the

resource

bundle

file,

its

value

is

used

as

the

panel

display

name

in

the

table

of

contents

frame.

For

example,

name="Profile3"

url

A

required

attribute

that

sets

the

contents

of

the

panel

to

this

URL.

This

can

link

to

a

viewCommand

or

be

a

direct

link.

For

example,

url="/webapp/wcs/tools/servlet/myPanelView"

helpKey

An

optional

attribute

that

defines

the

corresponding

help

key

in

the

Tools

User

Interface

Center

Help

Map

file.

For

example,

helpKey="MC.auction.auctionWizardPricePanel.Help"

parameters

An

optional

attribute

that

specifies

parameters

to

be

passed

into

the

contents

panel

from

the

parent

frame

(also

known

as

outer

frame,

or

WizardView),

delimited

by

commas.

For

example,

parameters="param1,param2"

passAllParameters

An

optional

attribute

that,

when

true,

indicates

that

all

of

the

parameters

should

be

passed

to

the

parent

frame

(also

known

as

outer

frame,

or

WizardView).

If

the

parameters

attribute

is

specified,

then

this

attribute

is

ignored.

For

example,

passAllParameters="true"

hasFinish

An

optional

attribute

that

specifies

whether

the

panel

provides

a

finish

button.

This

value

can

be

either

YES

or

NO.

The

default

is

NO.

For

example,

hasFinish="YES"

hasCancel

An

optional

attribute

that

specifies

whether

the

panel

provides

a

cancel

button.

This

value

can

be

either

YES

or

NO.

The

default

is

YES.

For

example,

hasCancel="NO"

hasNext

An

optional

attribute

that

specifies

whether

the

panel

provides

a

next

button.

This

value

can

be

either

YES

or

NO.

The

default

is

YES.

For

example,

hasNext="NO"

hasTab

An

optional

attribute

that

specifies

whether

the

panel’s

name

displays

in

the

table

of

contents

frame.

This

value

can

be

either

YES

or

NO.

The

default

is

YES.

For

example,

hasTab="NO"

hasBranch

An

optional

attribute

that

specifies

whether

the

panel

has

branches.

This

value

can

be

either

YES

or

NO.

The

default

is

NO.

For

example,

hasBranch="YES"

Chapter

1.

Wizards

5

XML

Tag

Description

<databean

/>

An

optional

element

that

specifies

a

data

bean

to

hold

user

data

and

populate

the

fields

with

existing

data.

If

defined,

this

bean

is

instantiated.

If

the

bean

is

a

smartDataBean,

it

is

also

activated

when

the

wizard

loads.

Its

properties

are

converted

into

a

JavaScript

object

with

the

name

defined

here.

The

following

attributes

are

supported:

name

An

required

attribute

that

defines

a

name

for

the

JavaScript

object

which

is

populated

from

the

data

bean.

For

example,

name="campaign"

class

A

required

attribute

that

specifies

the

class

of

the

data

bean.

For

example,

class="com.ibm.commerce.tools.campaigns.CampaignDataBean"

stoplevel

An

optional

attribute

that

specifies

how

many

levels

up

the

class

hierachy

tree

should

the

bean

properties

be

populated.

By

default,

its

value

is

1.

For

example,

stoplevel="2"

<jsFile/>

Specifies

a

JavaScript

file

to

be

included

in

the

wizard.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

prefixed

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.The

following

attribute

is

supported:

src

A

required

attribute

that

specifies

the

location

of

the

JavaScript

file.

For

example,

src="/wcs/javascript/tools/common/DateUtil.js"

<button>

</button>

This

element

defines

buttons

on

the

navigation

bar.

The

following

attributes

are

supported:

name

A

required

attribute

that

names

the

button.

The

value

specified

here

does

not

appear

on

the

button,

but

is

a

key

to

the

resource

bundle.

The

corresponding

value

in

the

resource

bundle

displays

on

the

button.

For

example

name="sampleButtonName1"

component

An

optional

attribute

that

sets

the

component,

which

is

defined

in

the

instancename.xml

file..

For

example,

component="sampleComponent1"

action

A

required

attribute

that

specifies

the

JavaScript

that

runs

when

this

button

is

clicked.

For

example,

action="sampleButtonAction1()"

In

this

<button>

example,

a

button

is

added

with

the

name

specified

in

a

resource

bundle

which

is

also

the

key

sampleButtonName1.

When

clicked,

it

calls

the

sampleButtonAction1()

JavaScript

function

which

is

located

in

the

included

JavaScript

file

(The

jsFile

attribute

in

the

notebook

definition

XML

file).

The

component

attribute

determines

whether

the

button

will

be

displayed

or

not.

The

following

is

a

sample

wizard

definition

XML

file:

<!DOCTYPE

wizard

SYSTEM

"WizardPanels.dtd">

<?xml

version="1.0"

encoding="UTF-8"?>

<wizard

resourceBundle="common.userNLS"

windowTitle="WizardTitle"

finishConfirmation="finishConfirmation"

cancelConfirmation="cancelConfirmation"

finishURL="WizardTestCmd"

6

tocBackgroundImage="/wcs/images/tools/uiproperties/wiz_back.jpg">

<panel

name="Profile1"

url="/webapp/wcs/tools/servlet/WizardTestPanel1"

helpKey=""

/>

<panel

name="Profile2"

url="/webapp/wcs/tools/servlet/WizardTestPanel2"

helpKey=""

/>

<panel

name="Profile3"

url="/webapp/wcs/tools/servlet/WizardTestPanel3"

helpKey=""

/>

<panel

name="Address"

url="/webapp/wcs/tools/servlet/WizardTestPanel4"

hasFinish="YES"

helpKey=""

/>

<jsFile

src="/wcs/javascript/tools/sample/wizardTest.js"

/>

<databean

name="ItemDataBean"

class="com.ibm.commerce.tools.test.PropertyDataBean"

/>

<button

name="sampleButtonName1"

action="sampleButtonAction1()"

/>

<button

name="sampleButtonName2"

action="sampleButtonAction2()"

/>

<button

name="sampleButtonName3"

component="sampleComponent3"

action="sampleButtonAction3()"

/>

</wizard>

2.

Register

the

wizard

definition

XML

file

created

in

step

1

in

the

appropriate

resources.xml

file.

Multiple

versions

of

this

file

exist

for

each

component,

in

the

following

directory:

/WC_installdir/xml/tools/component/resources.xml.

The

resources.xml

files

are

referenced

in

the

instancename.xml

file,

and

you

must

register

any

new

resources.xml

files

in

instancename.xml

.

Make

an

entry

similar

to

the

following

in

resources.xml

<XML

name="sampleWizard"

file="component/newWizard.xml"/>

The

name

attribute

becomes

a

key

which

will

be

used

in

a

later

step.

The

following

is

a

sample

resources.xml

file:

<?xml

version="1.0"

encoding="UTF-8"?>

<resourceConfig>

<resource

nameSpace="sample">

<!--

resource

bundle

file

mappings

-->

<resourceBundle

name="reportingString"

bundle="com.ibm.commerce.tools.reporting.properties.ReportingString"

/>

<resourceBundle

name="resource"

bundle="com.ibm.commerce.tools.reporting.properties.Reporting"

/>

<!--

XML

file

mappings

-->

<resourceXML

name="sampleWizard"

file="reporting/newWizard.xml"

/>

<resourceXML

name="OfflineReportWizard"

file="reporting/OfflineReportWizard.xml"

/>

<resourceXML

name="ReportContentWizard"

file="reporting/ReportContentWizard.xml"

/>

<resourceXML

name="ReportStoreOverViewWizard"

file="reporting/ReportStoreOverViewWizard.xml"

/>

</resource>

</resourceConfig>

This

sample

file

belongs

in

the

/WC_installdir/xml/tools/reporting

directory

under

WebSphere

Commerce,

and

assumes

that

newWizard.xml

is

in

the

same

directory.

Chapter

1.

Wizards

7

3.

Write

JSP

files

for

each

panel,

and

JavaScript

files.

These

JSP

files

define

the

panels

that

display

in

the

content

frame

into

which

users

enters

data.

Any

panels

you

create

must

include

the

following

JavaScript

functions:

Function

Name

Description

savePanelData()

Stores

data

from

the

HTML

form

into

the

object

model

in

the

parent

frame.

validatePanelData()

Validates

data

entered

by

user.

4.

Write

custom

commands.

These

commands

update

the

database

with

the

information

entered,

or

perform

some

function

when

the

user

clicks

on

the

Finish

button.

Also,

if

you

chose

your

panel

URL

(in

your

wizard

XML

file)

to

be

a

viewCommand,

you

must

write

a

custom

viewCommand.

The

following

is

a

sample

controller

command

for

a

wizard:

package

com.ibm.commerce.tools.test;

import

java.util.*;

import

com.ibm.commerce.ras.*;

import

com.ibm.commerce.server.*;

import

com.ibm.commerce.command.*;

import

com.ibm.commerce.exception.*;

import

com.ibm.commerce.datatype.*;

import

com.ibm.commerce.tools.common.*;

import

com.ibm.commerce.tools.command.*;

import

com.ibm.commerce.tools.common.ui.*;

import

com.ibm.commerce.exception.*;

import

com.ibm.commerce.tools.resourcebundle.*;

import

com.ibm.commerce.tools.util.*;

public

class

TestCmdImpl

extends

ToolsControllerCommandImpl

implements

TestCmd

{

protected

ResourceBundleProperties

resourceBundle

=

null;

protected

String

viewname

=

null;

protected

String

successMsg

=

"Success";

protected

String

errorMsg

=

"Error";

//

sample

input

data

protected

String

name

=

null;

protected

int

age;

protected

float

salary;

protected

String

department

=

null;

public

void

performExecute()

{

/*

*

your

business

logic

here

*/

//

exit

successfully

-

forwarding

to

returning

view

command

responseProperties

=

new

TypedProperty();

responseProperties.put(ECConstants.EC_VIEWTASKNAME,

viewname);

responseProperties.put(UIProperties.SUBMIT_FINISH_MESSAGE,

successMsg);

}

public

void

validateParameters()

throws

ECException

{

String

methodName

=

"validateParameters";

/*

optionally,

load

your

resource

bundle

file

and

NL

messages

Locale

locale

=

commandContext.getLocale();

resourceBundle

=

(ResourceBundleProperties)

ResourceDirectory.lookup("samples.samplesNLS",

locale);

successMsg

=

(String)

resourceBundle.get("successMsg");

errorMsg

=

(String)

resourceBundle.get("errorMsg");

*/

//

retrieve

the

data

which

was

set

on

the

client

using

parent.put

name

=

(String)

requestProperties.getString("name",

null);

age

=

requestProperties.getIntValue("age",

0);

salary

=

requestProperties.getFloatValue("salary",

0);

department

=

(String)

requestProperties.getString("department",

null);

8

//

set

returning

URL

view

name

viewname

=

requestProperties.getString(ECConstants.EC_REDIRECTURL);

/*

error

use

case

-

returning

error

code

and

message

to

view

command

via

ECException

if

(salary

<

10000.00

||

salary

>

99999.99)

{

responseProperties

=

new

TypedProperty();

responseProperties.put(UIProperties.SUBMIT_ERROR_STATUS,

"101");

responseProperties.put(UIProperties.SUBMIT_ERROR_MESSAGE,

errorMsg);

throw

new

ECApplicationException(

ECToolsMessage.TOOLS_TEST_USER_ERROR,

this.getClass().getName(),

methodName,

null,

viewname,

responseProperties);

}

*/

}

}

For

further

information

on

writing

Commands,

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

5.

Register

your

custom

commands

and

JSP

files.

Once

any

required

commands

are

created,

register

them

in

the

database.

Refer

to

the

″Design

Patterns″

section

of

the

WebSphere

Commerce

Programming

Guide

and

Tutorials

for

details

on

how

to

register

the

command.

Note:

Ensure

that

the

URL

field

in

the

database

matches

the

value

of

the

finishURL

attribute

in

your

XML

file.

6.

Create

a

resource

bundle

for

the

wizard.

The

text

in

the

resource

bundle

appears

in

the

wizard,

for

example,

in

the

table

of

contents

frame,

and

displays

in

as

the

title

of

each

panel.

Resource

bundles

are

in

the

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties/com/ibm/commerce/tools/component_name/properties

directory.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

/WCDE_installdir/properties/com/ibm/commerce/tools/

component_name/properties

directory.

The

following

is

a

sample

resource

bundle

based

on

the

data

from

the

wizard

XML

file

in

step

1.

#

Panels

name

for

TOC

panel

Profile1=General

Profile2=Description

Profile3=Attributes

Address=Address

#

Button

Labels

sampleButtonName1=Test

Button

1

sampleButtonName2=Test

Button

2

sampleButtonName3=Test

Button

3

If

national

languages

are

supported,

create

the

national

language

resource

bundles

with

the

appropriate

language

text.

The

national

language

file

names

must

end

with

the

locale

supported.

For

example,

for

a

French-language

resource

bundle,

the

file

name

should

be

filename_fr_FR.properties.

7.

Write

context

sensitive

help

files

and

update

the

Tools

User

Interface

Center

Help

Map

XML

file.

See

the

topic

″Adding

context

sensitive

help

in

chapter

7

for

more

information.

Chapter

1.

Wizards

9

8.

Add

your

new

wizard

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator.)

See

the

topic

″Integrating

tools

into

the

Tools

User

Interface

Center″

in

chapter

7

for

more

information.

9.

Stop

and

start

your

WebSphere

Commerce

server,

then

test

the

wizard

by

launched

the

menu

registered

in

previous

step.

Although

not

preferred,

if

it

is

necessary

to

launch

the

wizard

outside

of

the

tools

user

interface

center,

the

URL

is

:

https://hostname:8000/webapp/wcs/tools/servlet/WizardView?XMLFile=sample.sampleWizard

,

where

sample

is

a

namespace

defined

in

resources.xml

in

step

2.

For

more

information

on

namespaces,

see

the

WebSphere

Commerce

Accelerator

Customization

Guide.

Navigation

Wizards

present

users

with

multiple

navigation

options.

Each

panel

in

a

wizard

can

have

buttons

for

next,

previous,

finish,

or

cancel.

The

names

here

are

the

default

values

but

represent

generic

functions.

These

options

are

presented

as

buttons

in

the

navigation

frame

at

the

bottom

of

the

content

window.

If

included,

they

behave

according

to

the

following

guidelines:

Next

A

user

clicks

Next

in

the

navigation

panel:

1.

If

a

panel

is

still

loading,

do

nothing

while

it

finishes

loading.

Otherwise,

continue

to

the

next

step.

2.

The

savePanelData()

function

runs

on

the

current

panel

to

save

its

data

into

the

object

model.

The

data

is

saved

so

that

if

the

page

re-displays,

for

example,

if

some

data

on

the

page

is

not

valid,

the

original

data

can

be

pre-populated

onto

the

page.

This

allows

the

user

to

re-enter

only

the

corrected

data

instead

of

all

of

it.

3.

The

validatePanelData()

function

runs

on

the

current

panel

to

ensure

that

the

user

has

entered

valid

data.

If

there

is

a

problem

with

this

validation,

this

function

returns

false

and

remains

on

the

current

panel.

You

should

help

the

user

enter

correct

data

with

a

meaningful

error

message.

4.

Display

the

new

panel.

When

the

panel

finishes

loading,

it

must

indicate

this

by

calling

the

parent.setContentFrameLoaded(true);

function.

This

stops

the

progress

indicator

icon

in

the

tools

UI

center,

and

enables

the

Finish

or

Next

buttons,

thus

allowing

other

panels

to

be

selected.

Previous

A

user

clicks

Previous

in

the

navigation

panel:

1.

If

a

panel

is

still

loading,

do

nothing

while

it

finishes

loading.

Otherwise,

continue

to

the

next

step.

2.

The

savePanelData()

function

runs

on

the

current

panel

to

save

its

data

into

the

object

model.

The

data

is

saved

so

that

if,

for

example,

if

some

data

on

the

panel

is

not

valid,

the

original

data

can

be

re-populated

onto

the

panel.

This

allows

the

user

to

re-enter

only

the

corrected

data

instead

of

all

of

it.

3.

Display

the

new

panel.

When

the

panel

finishes

loading,

it

must

indicate

this

by

calling

the

parent.setContentFrameLoaded(true);

function.

This

stops

the

progress

indicator

icon

in

the

Tools

User

Interface

Center,

and

enables

the

Finish

or

Next

buttons,

thus

allowing

other

panels

to

be

selected.

10

Finish

A

user

clicks

Finish

to

finalize

the

interaction

with

the

wizard:

1.

If

a

panel

is

still

loading,

do

nothing

while

it

finishes

loading.

Otherwise,

continue

to

the

next

step.

2.

Check

to

see

if

Finish

has

already

been

clicked.

If

so,

return

and

do

nothing.

If

not,

set

a

flag

to

indicate

that

Finish

has

been

clicked.

3.

The

savePanelData()

function

runs

on

the

current

panel

to

save

its

data

into

the

object

model.

The

data

is

saved

so

that

if

the

page

re-displays,

for

example,

if

some

data

on

the

page

is

not

valid,

the

original

data

can

be

pre-populated

onto

the

page.

This

allows

the

user

to

re-enter

only

the

corrected

data

instead

of

all

of

it.

4.

The

validatePanelData()

function

runs

on

the

current

panel

to

ensure

that

the

user

has

entered

valid

data.

If

there

is

a

problem

with

this

validation,

this

function

returns

false

and

remains

on

the

current

panel.

You

should

help

the

user

enter

correct

data

with

a

meaningful

error

message.

5.

The

preSubmitHandler()

runs

to

invoke

any

optional

JavaScript

functions

that

must

run

before

the

finish

URL.

6.

If

a

finish

command

is

specified,

convert

the

object

model

to

XML

and

send

it

as

a

parameter

to

the

finish

command.

7.

Set

a

flag

to

indicate

that

the

finish

command

has

completed.

8.

If

an

error

occurs

in

the

finish

server

command

(performing

an

update

or

otherwise),

the

command

redirects

back

to

the

navigation

frame

passing

back

the

following

two

parameters:

SubmitErrorMessage

The

error

message

to

display

to

the

user.

If

national

language-enabled,

the

translated

message

displays.

SubmitErrorStatus

The

corresponding

error

status

or

error

code.
If

the

SubmitErrorStatus

variable

is

passed

in,

then

submitErrorHandler()

function

is

called

with

the

above

two

variables

as

parameters.

You

are

responsible

for

implementing

this

function

in

the

JavaScript

file

so

that

it

displays

the

error

message

to

the

user,

and

redirects

to

the

problematic

input

field

based

on

the

error

code.

If

this

function

is

not

defined,

a

default

alert

window

displays

the

error

message.

If

the

SubmitErrorStatus

is

not

passed

in,

then

it

is

assumed

that

the

finish

command

succeeded.

9.

Call

the

submitFinishHandler()

function

with

the

submitFinishMessage

as

a

parameter,

which

was

set

in

the

controller

command.

Cancel

Calls

the

submitCancelHandler()

function

and

then

the

parent

frame’s

cancel

method.

Customizations

To

use

the

following

JavaScript

functions,

first

write

code

for

the

functions

that

implements

your

business

logic.

Once

the

code

is

written

you

can

use

these

JavaScript

functions

in

your

wizard.

Your

JavaScript

file

is

specified

in

the

wizard

definition

XML

file.

Chapter

1.

Wizards

11

Function

Name

Description

submitErrorHandler(errMessage,

errorStatus)

Called

when

an

error

is

received

from

the

controller

command.

submitFinishHandler(finishMessage)

Called

upon

successful

completion

by

the

controller

command.

submitCancelHandler()

Called

when

the

user

clicks

Cancel,

then

OK

to

confirm

the

cancel

action.

preSubmitHandler()

Optionally,

called

after

the

validateAllPanels()

function,

but

before

the

finish

controller

command.

JavaScript

functions

You

can

use

the

following

JavaScript

functions

in

your

wizard,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

get(key,

defaultValue)

Returns

the

value

of

the

specified

key

from

the

object

model.

These

keys

are

the

parameters

entered

into

the

parent

frame.

The

panel

frame

uses

this

function

to

get

the

value

of

these

parameters

from

the

parent

frame.

remove(key)

Removes

the

specified

key

from

the

object

model.

put(key,

value)

Stores

the

value

for

the

specified

key

in

the

object

model.

These

keys

are

the

parameters

entered

into

the

panel

frame.

The

panel

frame

uses

this

function

to

put

the

value

of

these

parameters

into

the

parent

frame.

All

JavaScript

objects

that

are

stored

in

the

object

model

using

this

function,

are

submitted

automatically

to

the

finish

controller

command

and

can

be

retrieved

their

values

from

the

requestProperties

object.

setContentFrameLoaded(value)

Sets

the

contentFrameLoaded

variable

to

either

true

or

false.

If

true,

then

the

user

is

allowed

to

switch

to

a

different

content

panel.

If

false,

the

user

must

wait

until

the

panel

has

been

loaded

which

sets

the

value

to

true.

Note:

You

must

call

setContentFrameLoaded(true)

at

the

end

of

the

panel

body’s

onLoad()

function.

If

this

is

not

called

,

users

will

remain

on

the

current

content

panel.

getRequestProperties()

Gets

the

Request

Properties.

All

parameters

sent

back

to

the

navigation

frame

(provided

they

are

strings)

are

put

into

a

request

property

JavaScript

hashtable.

These

parameters

can

be

accessed

by

calling

this

JavaScript

function.

addURLParameter(pname,

value)

Adds

an

additional

URL

parameter

to

finish

command.

removeURLParameter(pname)

Removes

the

URL

parameter,

previously

added

using

the

addURLParameter()

function.

12

Chapter

2.

Notebooks

The

notebook

element

enables

you

to

easily

organize

and

develop

groups

of

panels

for

updating

and

creating

information

in

the

database.

Notebooks

are

similar

to

wizards

because

there

are

many

panels

of

information,

organized

in

a

table

of

contents.

Notebooks

differ

from

wizards

because

the

panels

do

not

display

in

a

pre-defined

sequence.

The

user

can

select

and

view

any

panel

from

the

table

of

contents

at

any

time.

Notebooks

are

used

for

sets

of

information

that

are

not

necessarily

sequential.

The

notebook

is

also

used

to

update

information

created

in

a

wizard,

since

users

may

want

to

skip

directly

to

the

panel

containing

the

information

they

wish

to

change.

This

element

is

not

appropriate

for

situations

that

require

branching

in

the

task

flow

because

of

it’s

parallel,

non-sequential

nature.

For

example,

a

notebook

is

not

appropriate

for

a

task

that

requires

changing

subsequent

forms

based

on

earlier

choices.

Overview

The

following

is

an

overview

of

how

to

create

a

notebook.

Detailed

steps

follow

this

section.

1.

Create

a

notebook

definition

XML

file

that

describes

the

default

flow

among

panels

and

data

bean

usage.

2.

Register

the

notebook

definition

XML

file

in

the

component’s

specific

resources.xml

file.

3.

Write

the

panels

using

JSP

files

and

JavaScript.

4.

Write

custom

commands

to

update

the

database

and

perform

custom

functionality.

5.

Register

custom

commands

and

JSP

files

in

the

database.

(See

the

″Design

Patterns″

section

of

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.)

6.

Create

a

resource

bundle.

7.

(Optional)

Write

context

sensitive

help

files

for

your

container

element

and

panels

and

update

the

Tools

User

Interface

Center

Help

Map

XML

file

to

include

your

help

files.

8.

Add

your

new

notebook

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator).

9.

Launch

and

test

your

notebook.

The

following

files

are

created:

v

a

notebook

definition

XML

file,

newNotebook.xml,

to

describe

the

notebook

flow

v

resource

bundle

files,

for

example,

mySampleResource_locale.properties

v

HTML

help

files

for

your

users

v

custom

Java

command

files,

for

example,

MyCommand.java

v

JSP

and

JavaScript

files

to

fill

panel

contents,

for

example,

MyPanel.jsp

and

myPanel.js

The

following

files

are

modified:

v

resources.xml

v

Tools

User

Interface

Center

menu

XML

file

to

display

your

new

notebook

v

Tools

User

Interface

Center

Help

Map.xml

to

include

your

help

files

©

Copyright

IBM

Corp.

2002,

2004

13

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

notebook.

1.

Create

a

notebook

definition

XML

file

to

describe

the

default

panel

flow

and

data

bean

usage

called

newNotebook.xml,

for

example.

Create

this

file

in

/WC_installdir/xml/tools/component,

where

component

is

the

name

of

the

component

to

which

the

notebook

belongs.

The

following

tags

are

available

for

use

in

the

notebook

definition

XML

file:

XML

Tag

Description

<notebook>

</notebook>

The

primary

element

defining

a

notebook.

The

following

attributes

are

supported:

resourceBundle

A

required

attribute

which

specifies

the

resource

bundle

to

use.

For

example,

resourceBundle="common.userNLS"

windowTitle

An

optional

attribute

that

defines

the

window

title,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

windowTitle="NotebookTitle"

finishConfirmation

An

optional

attribute

that

names

the

finish

confirmation,

this

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

will

be

used.

For

example,

finishConfirmation="finishConfirmation"

cancelConfirmation

An

optional

attribute

that

names

the

cancel

confirmation

button,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

cancelConfirmation="cancelConfirmation"

finishButtonName

An

optional

attribute

that

defines

the

finish

button

text

label,

this

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

will

be

used.

For

example,

finishButtonName="myFinishButtonText"

finishURL

An

optional

attribute

that

specifies

which

command

is

to

be

executed

to

finish

the

notebook.

If

it

is

not

present

then

nothing

will

happen

when

the

user

clicks

OK

or

Finish.

You

can

use

other

JavaScript

functions

to

exit

the

notebook,

such

as

TOP.goBack()

or

set

this

value

at

runtime

if

it

is

not

known

which

controller

command

should

be

called.

For

example,

finishURL="NotebookFinishCmd"

14

XML

Tag

Description

<panel

/>

Defines

a

panel

to

appear

in

the

content

frame.

The

following

attributes

are

supported:

name

A

required

attribute

that

specifies

a

name

for

the

panel.

For

example,

name="Profile3"

url

A

required

attribute

that

sets

the

contents

of

the

panel

to

this

URL.

This

can

link

to

a

viewCommand

or

be

a

direct

link.

For

example,

url="/webapp/wcs/tools/servlet/myPanelView"

helpKey

An

optional

attribute

that

defines

the

corresponding

help

key

in

the

Tools

User

Interface

Center

Help

Map

file.

For

example,

helpKey="MC.auction.InitiativeGeneral.Help"

parameters

An

optional

parameter

that

specifies

parameters

to

be

passed

into

the

content

panel

from

the

parent

frame

(also

called

the

outer

frame

or

NotebookView),

delimited

by

commas.

For

example,

parameters="param1,param2"

passAllParameters

An

optional

attribute

that,

when

true,

indicates

that

all

of

the

parameters

should

be

passed

to

this

panel

from

the

parent

frame

(also

called

the

outer

frame

or

NotebookView).

If

the

parameters

attribute

is

specified,

then

this

attribute

is

ignored.

passAllParameters="true"

hasTab

An

optional

attribute

that

specifies

whether

the

panel’s

name

displays

in

the

table

of

contents

frame.

This

value

can

be

either

YES

or

NO.

The

default

is

YES.

For

example,

hasTab="NO"

group

An

optional

attribute

which

specifies

a

group

for

this

panel.

Groups

act

to

organize

the

table

of

contents

frame.

All

panels

assigned

to

the

same

group

display

under

a

subheading

with

the

group’s

name.

This

is

useful

if

the

number

of

total

panels

is

large

and

they

do

not

fit

in

the

table

of

contents

frame

without

scrolling.

For

example,

group="group1"

Chapter

2.

Notebooks

15

XML

Tag

Description

<databean

/>

An

optional

element

that

specifies

a

data

bean

to

hold

user

data

and

populate

the

fields

with

existing

data.

If

defined,

this

bean

is

instantiated.

If

the

bean

is

a

smartDataBean,

it

is

also

activated

when

the

notebook

loads.

It’s

properties

are

converted

into

a

JavaScript

object

with

the

name

defined

here.

The

following

attributes

are

supported:

name

A

required

attribute

that

defines

a

name

for

the

JavaScript

object

which

is

populated

from

the

data

bean.

For

example,

name="campaign"

class

A

required

attribute

that

specifies

the

class

of

the

data

bean.

For

example,

class="com.ibm.commerce.tools.campaigns.CampaignDataBean"

stoplevel

An

optional

attribute

that

specifies

how

many

levels

up

the

class

hierachy

tree

should

the

bean

properties

be

populated.

By

default,

its

value

is

1.

For

example,

stoplevel="2"

<jsFile

/>

Specifies

a

JavaScript

file

to

be

included

in

the

notebook.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

prefixed

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.The

following

attribute

is

supported:

src

A

required

attribute

that

specifies

the

location

of

the

JavaScript

file.

For

example,

src="/wcs/javascript/tools/common/DateUtil.js"

<button>

</button>

This

element

defines

custom

buttons

for

the

navigation

bar.

The

following

attributes

are

supported:

name

A

required

attribute

that

names

the

button.

For

example,

name="sampleButtonName1"

component

An

optional

attribute

which

sets

the

component,

which

is

defined

in

the

instanceName.xml

file.

For

example,

component="sampleComponent1"

action

A

required

attribute

which

specifies

the

action

to

be

taken

when

this

button

is

clicked.

For

example,

action="sampleButtonAction1()"

In

this

<button>

example,

a

button

is

added

with

the

name

specified

in

a

resource

bundle

by

key

sampleButtonName1,

and

when

clicked,

it

calls

the

sampleButtonAction1()

JavaScript

function

which

is

located

in

the

included

JavaScript

file

(the

jsFile

attribute

in

the

notebook

XML).

The

component

attribute

determines

whether

the

button

is

displayed

or

not.

The

following

is

a

sample

notebook

definition

XML

file:

<?xml

version="1.0"

encoding="UTF-8"

?>

<notebook

resourceBundle="campaigns.campaignsRB"

windowTitle="initiativeNotebookTitle"

16

finishConfirmation=""

cancelConfirmation="initiativeNotebookCancelConfirmation"

finishURL="CampaignInitiativeSave"

>

<panel

name="initiativeGeneralPanel"

url="CampaignInitiativeGeneralPanelView"

helpKey="MC.campaigns.InitiativeGeneral.Help"

/>

<panel

name="initiativeLocationPanel"

url="CampaignInitiativeLocationPanelView"

helpKey="MC.campaigns.InitiativeLocation.Help"

/>

<panel

name="initiativeConditionsPanel"

url="CampaignInitiativeConditionsPanelView?ActionXMLFile=campaigns.ConditionList

&cmd=CampaignInitiativeConditionListView&selected=SELECTED&listsize=20

&startindex=0&refnum=0"

helpKey="MC.campaigns.InitiativeConditions.Help"

/>

<databean

name="initiative"

class="com.ibm.commerce.tools.campaigns.CampaignInitiativeDetailsDataBean"

/>

<jsFile

src="/wcs/javascript/tools/common/Util.js"

/>

<jsFile

src="/wcs/javascript/tools/common/DateUtil.js"

/>

<jsFile

src="/wcs/javascript/tools/campaigns/Initiative.js"

/>

</notebook>

2.

Register

the

XML

file

created

in

step

1

in

the

resources.xml

file

for

the

component

that

you

are

modifying.

Multiple

versions

of

this

file

exist,

one

for

each

component,

in

the

following

directory:

/WC_installdir/xml/tools/component/resources.xml.

You

need

to

make

an

entry

similar

to

the

following

in

resources.xml

<XML

name="initiativeNotebook"

file="component/newNotebook.xml"

/>

The

name

attribute

becomes

a

key

which

will

be

used

in

a

later

step.

The

resources.xml

files

are

referenced

in

the

instancename.xml

file,

and

you

must

register

any

new

resources.xml

files

in

instancename.xml.

3.

Write

panel

JSP

files

for

each

panel,

and

JavaScript

files.

These

JSP

files

define

the

panels

that

display

in

the

content

frame

into

which

users

enters

data.

The

following

table

describes

the

JavaScript

functions

for

these

panels:

Function

Name

Description

savePanelData()

(Required)

Stores

HTML

form

data

into

model

(parent

frame).

This

function

savePanelData()

must

be

supplied

in

each

content

frame

to

save

the

current

panel’s

data

in

the

model.

validateNotebookPanel()

(Optional)

Validates

data

entered

by

user.

This

method

should

return

true

or

false.

At

the

end

of

the

onLoad

event,

parent.setContentFrameLoaded(true)

must

be

called.

This

ensures

that

the

entire

content

panel

loads

before

the

user

can

move

to

another

panel.

4.

Write

custom

commands.

These

commands

update

the

database

with

the

information

entered,

or

perform

some

function

when

the

user

clicks

OK.

Also,

if

you

chose

your

panel

URL,

in

your

notebook

XML

file,

to

be

a

viewCommand,

you

must

write

a

custom

viewCommand.

The

following

is

a

sample

controller

command

for

a

Notebook:

package

com.ibm.commerce.tools.test;

import

java.util.*;

import

com.ibm.commerce.ras.*;

import

com.ibm.commerce.server.*;

import

com.ibm.commerce.command.*;

import

com.ibm.commerce.exception.*;

import

com.ibm.commerce.datatype.*;

import

com.ibm.commerce.tools.common.*;

import

com.ibm.commerce.tools.command.*;

import

com.ibm.commerce.tools.common.ui.*;

import

com.ibm.commerce.exception.*;

Chapter

2.

Notebooks

17

import

com.ibm.commerce.tools.resourcebundle.*;

import

com.ibm.commerce.tools.util.*;

public

class

TestCmdImpl

extends

ToolsControllerCommandImpl

implements

TestCmd

{

protected

ResourceBundleProperties

resourceBundle

=

null;

protected

String

viewname

=

null;

protected

String

successMsg

=

"Success";

protected

String

errorMsg

=

"Error";

//

sample

input

data

protected

String

name

=

null;

protected

int

age;

protected

float

salary;

protected

String

department

=

null;

public

void

performExecute()

{

/*

*

your

business

logic

here

*/

//

exit

successfully

-

forwarding

to

returning

view

command

responseProperties

=

new

TypedProperty();

responseProperties.put(ECConstants.EC_VIEWTASKNAME,

viewname);

responseProperties.put(UIProperties.SUBMIT_FINISH_MESSAGE,

successMsg);

}

public

void

validateParameters()

throws

ECException

{

String

methodName

=

"validateParameters";

/*

optionally,

load

your

resource

bundle

file

and

NL

messages

Locale

locale

=

commandContext.getLocale();

resourceBundle

=

(ResourceBundleProperties)

ResourceDirectory.lookup

("samples.samplesNLS",

locale);

successMsg

=

(String)

resourceBundle.get("successMsg");

errorMsg

=

(String)

resourceBundle.get("errorMsg");

*/

//

retrieve

the

data

which

was

set

on

the

client

using

parent.put

name

=

(String)

requestProperties.getString("name",

null);

age

=

requestProperties.getIntValue("age",

0);

salary

=

requestProperties.getFloatValue("salary",

0);

department

=

(String)

requestProperties.getString("department",

null);

//

set

returning

URL

view

name

viewname

=

requestProperties.getString(ECConstants.EC_REDIRECTURL);

/*

error

use

case

-

returning

error

code

and

message

to

view

command

via

ECException

if

(salary

<

10000.00

||

salary

>

99999.99)

{

responseProperties

=

new

TypedProperty();

responseProperties.put(UIProperties.SUBMIT_ERROR_STATUS,

"101");

responseProperties.put(UIProperties.SUBMIT_ERROR_MESSAGE,

errorMsg);

throw

new

ECApplicationException(

ECToolsMessage.TOOLS_TEST_USER_ERROR,

this.getClass().getName(),

methodName,

null,

viewname,

responseProperties);

}

*/

}

}

18

5.

Register

custom

commands

and

JSP

pages.

Once

the

command

is

created,

register

it

in

the

database.

See

the

″Design

Patterns″

section

of

the

WebSphere

Commerce

Programming

Guide

and

Tutorials

for

details

on

how

to

register

the

command.

Note:

Ensure

that

the

URL

field

in

the

database

matches

the

value

of

the

finishURL

attribute

in

your

XML

file.

6.

Create

a

resource

bundle

with

text

for

the

notebook.

This

text

appears,

for

example,

on

the

notebook

map

in

the

table

of

contents

frame.

Resource

bundles

are

in

the

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties/com/ibm/commerce/tools/
component_name/properties

directory.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

/WCDE_installdir/properties/com/ibm/commerce/tools/
component_name/properties

directory.

In

this

case,

keys

are

based

on

the

panel

names

given

in

your

notebook

definition

XML

file

created

in

step

1.

The

following

is

a

sample

resource

bundle

for

the

XML

file

defined

in

step

1.

#

Panel

names

for

TOC

panel

initiativeGeneralPanel=General

initiativeLocationPanel=Location

initiativeConditionsPanel=Conditions

If

national

languages

are

supported,

create

the

national

language

resource

bundles

with

the

appropriate

language

text.

The

national

language

file

names

must

end

with

the

locale

supported.

For

example,

for

a

French-language

resource

bundle,

the

file

name

should

be

filename_fr_FR.properties.

7.

Add

your

new

notebook

to

a

Tools

User

Interface

Center

menu

system.

See

the

topic

″Integrating

tools

into

the

Tools

User

Interface

Center″

in

chapter

7

for

more

information.

8.

Write

context

sensitive

help

files

and

update

the

Tools

User

Interface

Center

Help

Map

XML

file.

See

the

topic

″Adding

context

sensitive

help″

in

chapter

7

for

more

information.

9.

Stop

and

start

your

WebSphere

Commerce

server.

To

test

your

new

notebook,

use

this

URL:

https://hostname:8000/webapp/commerce/tools/servlet/

NotebookView?XMLFile=namespace.myTestNotebook

,

where

namespace

is

a

namespace

defined

in

resources.xml

Navigation

Notebooks

present

users

with

one

or

more

navigation

options:

finish

and

cancel,

which

are

presented

as

buttons

in

the

navigation

frame

at

the

bottom

of

the

content

window.

Notebooks

also

provide

panel

navigation

using

the

table

of

contents

frame.

When

included,

the

navigation

controls

behave

according

to

the

following

guidelines:

Panel

Change

A

user

clicks

on

a

panel

in

the

table

of

contents

frame

other

than

the

current

one:

1.

If

a

panel

is

still

loading,

do

nothing

while

it

finishes

loading.

Otherwise,

continue

to

the

next

step.

2.

The

savePanelData()

function

runs

on

the

current

panel

to

save

its

data

into

the

object

model.

The

data

is

saved

so

that

if,

for

example,

if

some

Chapter

2.

Notebooks

19

data

on

the

page

is

not

valid,

the

original

data

can

be

pre-populated

onto

the

page.

This

allows

the

user

to

re-enter

only

the

corrected

data

instead

of

all

of

it.

3.

The

validateNotebookPanel()

function

runs

if

it

is

defined.

This

ensures

the

that

user

has

entered

valid

data.

IIf

there

is

a

problem

with

this

validation,

this

function

returns

false

and

remains

on

the

current

panel.

You

should

help

the

user

enter

correct

data

with

a

meaningful

error

message.

4.

Display

the

new

panel.

When

the

panel

finishes

loading,

it

must

indicate

this

by

calling

the

parent.setContentFrameLoaded(true);

function.

This

stops

the

progress

indicator

in

the

Tools

User

Interface

Center,

and

enables

the

Finish,

OK,

or

Next

buttons,

thus

allowing

other

panels

to

be

selected.

Finish

A

user

clicks

Finish

or

OK

to

finalize

the

interaction

with

the

notebook:

1.

Check

to

see

if

the

table

of

contents

frame

has

finished

loading.

If

not,

return

immediately

and

do

nothing.

Otherwise,

continue

to

the

next

step.

2.

Check

to

see

if

Finish

has

already

been

clicked.

If

so,

return

and

do

nothing.

If

not,

set

a

flag

to

indicate

that

Finish

has

been

clicked.

3.

Call

the

savePanelData()

function

on

the

current

panel

to

save

its

data

into

the

object

model.

The

data

is

saved

so

that

if

the

page

re-displays,

for

example,

if

some

data

on

the

page

is

not

valid,

the

original

data

can

be

pre-populated

onto

the

page.

This

allows

the

user

to

re-enter

only

the

corrected

data

instead

of

all

of

it.

4.

Call

the

validateAllPanels()

function

to

perform

validation

on

each

panel,

assuring

that

mandatory

fields

are

completed,

dates

are

in

the

correct

form,

and

so

on.

If

there

are

validation

errors,

you

can

set

the

content

frame

to

the

page

containing

errors.

This

function

should

be

defined

in

the

included

JavaScript

file,

and

because

it

doesn’t

belong

to

any

individual

panel,

it

is

in

the

outer

frame

scope.″

5.

Call

the

preSubmitHandler().

This

function

allows

you

to

call

any

Java

that

must

run

before

the

finish

URL

runs.

6.

If

a

finish

command

is

specified,

convert

the

model

to

XML

and

send

it

as

a

parameter

to

the

finish

command.

7.

Set

a

flag

to

indicate

that

the

finish

command

is

finished

executing.

8.

If

an

error

occurs

in

the

finish

server

command

(performing

an

update

or

otherwise),

the

command

redirects

back

to

the

navigation

frame

passing

back

the

following

two

parameters:

SubmitErrorMessage

The

translated

error

message

to

display

to

the

user.

SubmitErrorStatus

The

corresponding

error

status

or

error

code.
If

the

SubmitErrorStatus

variable

is

passed

in,

then

submitErrorHandler()

function

is

called

with

the

above

two

variables

as

parameters.

You

are

responsible

for

implementing

this

function

in

the

JavaScript

file

so

that

it

displays

the

error

message

to

the

user,

and

redirects

to

the

problematic

input

field

based

on

the

error

code.

If

this

function

is

not

defined,

a

default

alert

window

displays

the

error

message.

If

the

SubmitErrorStatus

is

not

passed

in,

then

it

is

assumed

that

the

finish

command

succeeded.

20

9.

Call

the

submitFinishHandler()

function

with

the

submitFinishMessage

as

a

parameter,

which

was

set

in

the

controller

command.

Cancel

Displays

a

cancel

confirmation

dialog.

If

the

user

clicks

OK,

submitCancelHandler()

then

the

parent

frame’s

cancel

method

run.

Customizations

To

use

the

following

JavaScript

functions,

first

write

code

for

the

functions

that

implements

your

business

logic.

Once

the

code

is

written

you

can

use

these

JavaScript

functions

in

your

notebook.

Your

JavaScript

file

is

specified

in

the

notebook’s

XML

file.

Function

Name

Description

submitErrorHandler(errMessage,

errorStatus)

Called

when

an

error

is

received

from

the

controller

command.

submitFinishHandler(finishMessage)

Called

upon

successful

completion

by

the

controller

command.

submitCancelHandler()

Called

when

Cancel

is

clicked

and

user

clicks

OK

in

cancel

confirmation

dialog.

preSubmitHandler()

Optionally

called

after

the

validateAllPanels()

function,

but

before

the

finish

controller

command.

validateAllPanels()

Called

when

the

user

clicksOK.

Parses

the

entire

model,

validating

the

information

inside

of

it.

If

data

is

found

to

be

invalid,

the

gotoPanel()

function

must

be

used

to

bring

the

user

to

the

panel

which

contains

the

error.

An

error

code

is

passed

to

this

function

identifying

the

error

message

to

display.

From

the

panel,

the

getErrorParams()

function

should

be

used

to

determine

which

error

code

was

passed

in.

More

information

on

gotoPanel()

and

getErrorParams()

follows

in

the

Error

code

handling

section.

Error

code

handling

When

validating

for

the

notebook,

you

can

display

an

error

message

from

a

resource

bundle.

The

gotoPanel()

function

has

an

optional

parameter:

errorCode.

The

error

code

specified

indicates

what

error

has

occurred.

This

error

code

is

passed

to

your

panel

as

an

argument.

Upon

loading

each

notebook

panel,

check

to

see

if

any

error

codes

have

been

passed

in,

using

the

parent.getErrorParams()

function.

If

an

error

code

has

been

passed

in,

display

the

appropriate

error

message

for

the

error

code.

Note:

This

means

that

each

panel

needs

to

be

a

JSP

file

so

it

can

access

the

resource

bundle.

Chapter

2.

Notebooks

21

JavaScript

functions

You

can

use

the

following

JavaScript

functions

in

your

notebook,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

get(key,

defaultValue)

Returns

the

value

of

the

specified

key

from

the

object

model.

remove(key)

Removes

the

specified

key

from

the

object

model.

put(key,

value)

Stores

the

value

for

the

specified

key

in

the

object

model.

setContentFrameLoaded(value)

Sets

the

contentFrameLoaded

variable

to

either

true

or

false.

If

true,

then

the

user

is

allowed

to

switch

to

a

different

content

panel.

If

false,

the

user

must

wait

until

the

panel

has

been

loaded

which

sets

the

value

to

true.

Note:

You

must

call

setContentFrameLoaded(true)

at

the

end

of

the

panel’s

onLoad()

function.

If

this

is

not

called,

users

will

remain

on

the

current

content

panel.

getRequestProperties()

Gets

the

Request

Properties.

All

parameters

sent

back

to

the

navigation

frame

(provided

they

are

strings)

are

put

into

a

request

property

JavaScript

hashtable.

They

can

be

accessed

from

the

developer’s

code

by

calling

the

JavaScript

function.

addURLParameter(pname,

value)

Adds

an

additional

URL

parameter

to

the

finish

command.

removeURLParameter(pname)

Removes

the

URL

parameter,

previously

added

using

the

addURLParameter()

function.

gotoPanel(name)

Saves

the

current

panel

information,

then

displays

the

selected

panel.

22

Chapter

3.

Dialogs

Dialogs

consist

of

a

content

frame

and

an

action

frame.

Dialogs

are

useful

for

displaying

summary

information,

confirmation

information,

or

asking

for

simple

input

information.

The

content

frame

makes

up

the

majority

of

the

panel,

with

an

action

frame

that

contains

an

OK

button

and

optionally

a

Cancel

button.

The

name

of

the

OK

button

can

be

changed

to

be

more

descriptive,

for

example

to

the

word

Find.

Overview

The

following

is

an

overview

for

to

creating

a

dialog.

Detailed

steps

follow

this

section.

1.

Create

a

dialog

definition

XML

file

that

describes

the

panel,

and

data

bean

usage.

2.

Register

the

XML

file

in

resources.xml.

3.

Write

the

panels

using

JSP

files

and

JavaScript

files.

4.

Write

custom

commands

to

update

the

database

and

perform

custom

functionality.

5.

Register

custom

commands

and

JSP

files

in

the

database.

(See

the

″Design

Patterns″

section

of

the

WebSphere

Commerce

Programming

Guide

and

Tutorials).

6.

Create

a

resource

bundle.

7.

(Optional)

Write

context

sensitive

help

files

for

your

dialog

and

panels

and

update

the

Tools

User

Interface

Center

help

map

XML

file

to

include

your

help

files.

8.

Add

your

new

dialog

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator).

9.

Launch

and

test

your

dialog.

The

following

files

are

created:

v

a

dialog

definition

XML

file,

newDialog.xml

to

describe

the

dialog

panels

v

resource

bundle

files,

for

example,

mySampleResource_locale.properties

v

HTML

help

files

for

your

users

v

custom

Java

command

files,

for

example,

MyCommand.java

v

JSP

and

JavaScript

files

to

fill

panel

contents,

for

example,

myPanel.jsp

and

myPanel.js

The

following

files

are

modified:

v

resources.xml

v

Tools

User

Interface

Center

menu

XML

file

to

display

your

new

dialog

v

Tools

User

Interface

Center

Help

Map

XML

file

to

include

your

help

files

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

dialog:

1.

Create

a

dialog

definition

XML

file

to

describe

panel

flow

and

data

bean

usage

called

newDialog.xml,

for

example.

Create

this

file

in

/WC_installdir/xml/tools/component/,

where

component

is

the

name

of

the

©

Copyright

IBM

Corp.

2002,

2004

23

component

to

which

the

dialog

belongs.

The

following

tags

are

available

for

use

in

the

dialog

definition

XML

file:

XML

Tag

Description

<dialog>

</dialog>

The

primary

element

defining

a

dialog.

The

following

attributes

are

supported:

resourceBundle

A

required

attribute

that

specifies

which

resource

bundle

is

used.

For

example,

resourceBundle="common.userNLS"

windowTitle

An

optional

attribute

that

defines

the

window

title,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

windowTitle="DialogTitle"

finishConfirmation

An

optional

attribute

that

names

the

finish

confirmation,

this

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

is

used.

For

example,

finishConfirmation

="finishConfirmation"

cancelConfirmation

An

optional

attribute

that

names

the

cancel

confirmation,

this

name

is

a

key

in

the

resource

bundle

file.

For

example,

cancelConfirmation="cancelConfirmation"

finishButtonName

An

optional

attribute

that

names

the

finish

button

text

label,

this

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

is

used.

For

example,

finishButtonName

="myFinishButtonText"

finishURL

An

optional

attribute

that

specifies

which

command

is

to

be

executed

to

finish

the

dialog.

If

it

is

not

present

then

nothing

happens

when

the

user

clicks

the

OK

or

Finish

buttons.

You

can

use

other

JavaScript

functions

to

exit

the

dialog,

such

as

TOP.goBack()

or

set

this

value

at

runtime

if

it

is

not

known

which

controller

command

should

be

called.

For

example,

finishURL="DialogTestCmd"

24

<panel

/>

Defines

a

panel

to

appear

in

the

content

frame.

The

following

attributes

are

supported:

name

A

required

attribute

that

specifies

a

name

for

the

panel.

For

example,

name="Profile"

url

A

required

attribute

that

sets

the

contents

of

the

panel

to

this

URL.

This

can

link

to

a

viewCommand

or

be

a

direct

link.

For

example,

url="/wcs/tools/sample/WizardTestPanel1.html"

helpKey

An

optional

attribute

that

defines

the

corresponding

help

key

in

the

Tools

User

Interface

Center

Help

Map

file.

For

example,

helpKey="MC.auction.auctionDialogPricePanel.Help"

parameters

An

optional

attribute

that

specifies

parameters

to

be

passed

into

the

contents

panel

from

the

outer

frame

(DialogView),

delimited

by

commas.

For

example,

parameters="param1,param2"

passAllParameters

An

optional

attribute

that,

when

true,

indicates

that

all

of

the

parameters

should

be

passed

to

this

panel

from

the

outer

frame

(DialogView).

If

the

parameters

attribute

is

specified,

then

this

attribute

is

ignored.

For

example,

passAllParameters="true"

hasFinish

An

optional

attribute

that

specifies

whether

the

panel

provides

a

finish

button.

This

value

can

be

either

YES

or

NO.

The

default

is

NO.

For

example,

hasFinish="YES"

hasCancel

An

optional

attribute

that

specifies

whether

the

panel

provides

a

cancel

button.

This

value

can

be

either

YES

or

NO.

The

default

is

YES.

For

example,

hasCancel="NO"

Chapter

3.

Dialogs

25

<databean>

</databean>

An

optional

element

that

specifies

a

data

bean

to

hold

user

data

and

populate

the

fields

with

existing

data.

If

defined,

this

bean

is

instantiated.

If

the

bean

is

a

smartDataBean,

it

is

also

activated

when

the

dialog

loads.

Its

properties

are

converted

into

a

JavaScript

object

with

the

name

defined

here.

The

following

attributes

are

supported:

name

A

required

attribute

that

defines

a

name

for

the

JavaScript

object

which

is

populated

from

the

data

bean.

For

example,

name="campaign"

class

A

required

attribute

that

specifies

the

class

of

the

data

bean.

For

example,

class="com.ibm.commerce.tools.campaigns.CampaignDataBean"

stoplevel

An

optional

attribute

that

specifies

how

many

levels

up

the

class

hierachy

tree

should

the

bean

properties

be

populated.

By

default,

its

value

is

1.

For

example,

stoplevel="2"

<jsFile/>

Specifies

a

JavaScript

file

to

be

included

in

the

dialog.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

prefixed

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.The

following

attribute

is

supported:

src

A

required

attribute

that

specifies

the

location

of

the

JavaScript

file.

For

example,

src="/wcs/javascript/tools/common/DateUtil.js"

<button>

</button>

This

element

defines

custom

buttons

on

the

navigation

bar.

The

following

attributes

are

supported:

name

A

required

attribute

that

names

the

button.

The

value

specified

here

does

not

appear

on

the

button,

but

is

a

key

to

the

resource

bundle.

The

corresponding

value

in

the

resource

bundle

displays

on

the

button.

For

example,

name="sampleButtonName1"

component

An

optional

attribute

that

sets

the

component,

which

is

defined

in

the

instancename.xml

file.

For

example,

component="sampleComponent1"

action

A

required

attribute

that

specifies

the

action

to

be

taken

when

this

button

is

clicked.

For

example,

action="sampleButtonAction1()"

In

this

example,

a

button

is

added

with

the

name

as

specified

in

a

resource

bundle

for

the

key

sampleButtonName1,

and

when

clicked,

it

calls

the

sampleButtonAction1()

JavaScript

function

which

is

located

in

the

included

JavaScript

file

(The

jsFile

attribute

in

the

panel’s

XML

file).

The

component

attribute

determines

whether

the

button

will

be

displayed

or

not.

The

following

is

a

sample

dialog

XML

file:

<?xml

version="1.0"?>

<dialog

resourceBundle="catalog.ItemNLS"

windowTitle="itemFindCriteria_Title"

26

finishConfirmation=""

cancelConfirmation="itemFindCriteria_cancelConfirmation"

finishURL=""

>

<panel

name="itemFindCriteria"

url="ItemFindCriteria"

helpKey="MC.catalogTool.productSearch.Help"

passAllParameters="true"

hasFinish="NO"

hasCancel="NO"

/>

<jsFile

src="/wcs/javascript/tools/catalog/itemFindCriteria.js"

/>

<button

name="itemFindCriteria_button_find"

action="button_Find();"

/>

<button

name="itemFindCriteria_button_cancel"

action="button_Cancel();"

/>

</dialog>

2.

Register

the

dialog

definition

XML

file

created

in

step

1

in

the

resources.xml

file

for

the

component

that

you

are

modifying.

Multiple

versions

of

this

file

exist,

one

for

each

component,

in

the

following

directory:

WC_installdir/xml/tools/component/resources.xml.

Make

an

entry

similar

to

the

following

in

resources.xml

<XML

name="sampleDialog"

file="component/newDialog.xml"/>

The

name

attribute

becomes

a

key

which

will

be

used

in

a

later

step.The

resources.xml

files

are

referenced

in

the

instancename.xml

file,

and

you

must

register

any

new

resources.xml

files

in

instancename.xml.

3.

Write

JSP

files

for

each

panel,

and

JavaScript

files.

These

JSP

files

define

the

panels

that

display

in

the

content

frame

into

which

users

enters

data.

Any

panels

you

create

must

include

the

following

JavaScript

functions:

Function

Name

Description

savePanelData()

Stores

data

from

the

HTML

form

into

the

object

model

in

the

parent

frame.

validatePanelData()

Validates

data

entered

by

user.

4.

Write

custom

commands.

These

commands

update

the

database

with

the

information

entered,

or

perform

some

function

when

a

user

clicks

OK.

If

the

dialog

is

called

using

a

viewCommand,

you

must

write

a

custom

viewCommand.

The

following

is

a

sample

controller

command

for

a

dialog:

package

com.ibm.commerce.tools.test;

import

java.util.*;

import

com.ibm.commerce.ras.*;

import

com.ibm.commerce.server.*;

import

com.ibm.commerce.command.*;

import

com.ibm.commerce.exception.*;

import

com.ibm.commerce.datatype.*;

import

com.ibm.commerce.tools.common.*;

import

com.ibm.commerce.tools.command.*;

import

com.ibm.commerce.tools.common.ui.*;

import

com.ibm.commerce.exception.*;

import

com.ibm.commerce.tools.resourcebundle.*;

import

com.ibm.commerce.tools.util.*;

public

class

TestCmdImpl

extends

ToolsControllerCommandImpl

implements

TestCmd

{

protected

ResourceBundleProperties

resourceBundle

=

null;

protected

String

viewname

=

null;

protected

String

successMsg

=

"Success";

protected

String

errorMsg

=

"Error";

//

sample

input

data

protected

String

name

=

null;

protected

int

age;

protected

float

salary;

protected

String

department

=

null;

Chapter

3.

Dialogs

27

public

void

performExecute()

{

/*

*

your

business

logic

here

*/

//

exit

successfully

-

forwarding

to

returning

view

command

responseProperties

=

new

TypedProperty();

responseProperties.put(ECConstants.EC_VIEWTASKNAME,

viewname);

responseProperties.put(UIProperties.SUBMIT_FINISH_MESSAGE,

successMsg);

}

public

void

validateParameters()

throws

ECException

{

String

methodName

=

"validateParameters";

/*

optionally,

load

your

resource

bundle

file

and

NL

messages

Locale

locale

=

commandContext.getLocale();

resourceBundle

=

(ResourceBundleProperties)

ResourceDirectory.lookup("samples.samplesNLS",

locale);

successMsg

=

(String)

resourceBundle.get("successMsg");

errorMsg

=

(String)

resourceBundle.get("errorMsg");

*/

//

retrieve

the

data

which

was

set

on

the

client

using

parent.put

name

=

(String)

requestProperties.getString("name",

null);

age

=

requestProperties.getIntValue("age",

0);

salary

=

requestProperties.getFloatValue("salary",

0);

department

=

(String)

requestProperties.getString("department",

null);

//

set

returning

URL

view

name

viewname

=

requestProperties.getString(ECConstants.EC_REDIRECTURL);

/*

error

use

case

-

returning

error

code

and

message

to

view

command

via

ECException

if

(salary

<

10000.00

||

salary

>

99999.99)

{

responseProperties

=

new

TypedProperty();

responseProperties.put(UIProperties.SUBMIT_ERROR_STATUS,

"101");

responseProperties.put(UIProperties.SUBMIT_ERROR_MESSAGE,

errorMsg);

throw

new

ECApplicationException(

ECToolsMessage.TOOLS_TEST_USER_ERROR,

this.getClass().getName(),

methodName,

null,

viewname,

responseProperties);

}

*/

}

}

5.

Register

your

custom

commands

and

JSP

files.

Once

any

required

commands

are

created,

register

them

in

the

database.

Refer

to

the

″Design

Patterns″

section

of

the

WebSphere

Commerce

Programming

Guide

and

Tutorials

for

details

on

how

to

register

the

command.

Note:

Ensure

that

the

URL

field

in

the

database

matches

the

value

of

the

finishURL

attribute

in

your

XML

file.

6.

Create

a

resource

bundle

with

text

that

names

each

panel.

This

text

appears

as

the

title

of

each

panel.

Resource

bundles

are

in

the

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties
com/ibm/commerce/
tools/component_name/properties

directory.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

/WCDE_installdir/properties/com/ibm/commerce/tools/
component_name/properties

directory.

In

this

case,

keys

are

based

on

the

panel

names

given

in

your

dialog

XML

file

created

in

step

1.

28

The

following

is

a

sample

resource

bundle

for

the

XML

file

defined

in

step

1.

#

Panels

name

for

TOC

panel

initiativeGeneralPanel=General

initiativeLocationPanel=Location

initiativeConditionsPanel=Conditions

If

national

languages

are

supported,

create

the

national

language

resource

bundles

with

the

appropriate

language

text.

The

national

language

file

names

must

end

with

the

locale

supported.

For

example,

for

a

French-language

resource

bundle,

the

file

name

should

be

filename_fr_FR.properties.

7.

Write

context

sensitive

help

files

and

update

the

Tools

User

Interface

Center

Help

Map

XML

file

for

context

sensitive

help.

see

″Adding

context

sensitive

help″

in

chapter

7

for

more

information.

8.

Add

your

new

dialog

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator.)

See

″Integrating

Tools

into

the

Tools

User

Interface

Center″

in

chapter

7

for

more

information.

9.

Stop

and

start

your

WebSphere

Commerce

server,

then

test

your

new

dialog.

This

is

the

URL

of

the

newly

created

dialog:

https://hostname:8000/webapp/wcs/tools/servlet/DialogView?XMLFile=namespace.myTestDialog

,

where

namespace

is

a

namespace

defined

in

resources.xml.

See

the

WebSphere

Commerce

Accelerator

Customization

Guide

for

more

information

on

XML

files.

Navigation

Dialogs

present

users

with

one

or

two

navigation

options,

either

finish

or

cancel.

These

two

options

are

presented

as

buttons

in

the

navigation

frame

at

the

bottom

of

the

content

window.

If

included,

they

behave

according

to

the

following

guidelines:

Finish

A

user

clicks

on

the

Finish

or

OK

button

to

finish

the

dialog,

and

the

following

takes

place:

1.

Check

to

see

if

the

contents

panel

has

finished

loading.

If

not,

return

immediately

and

do

nothing.

2.

Save

the

panel

data.

3.

Validate

the

current

panel

data.

4.

Call

the

preSubmitHandler().

5.

If

a

finish

command

is

specified,

(by

the

finishURL

attribute

in

the

wizard

XML

file),

convert

the

model

to

XML

and

send

it

as

a

parameter

to

the

finish

command.

6.

Set

a

flag

to

indicate

that

the

finish

command

button

is

finished

executing.

7.

If

an

error

occurs

in

the

finish

server

command

(performing

an

update

or

otherwise),

the

command

redirects

back

to

the

navigation

frame

passing

back

the

following

two

parameters:

SubmitErrorMessage

The

translated

error

message

to

display

to

the

user.

SubmitErrorStatus

Error

status

or

error

code.
If

the

SubmitErrorStatus

variable

is

passed

in,

then

submitErrorHandler()

is

called

with

the

above

two

variables

as

parameters.

You

are

responsible

for

implementing

this

function

in

the

JavaScript

file

to

display

the

error

message

and

redirect

user

to

the

Chapter

3.

Dialogs

29

problematic

input

field

based

on

the

error

code.

If

this

function

is

not

defined,

a

default

alert

window

is

displayed

with

the

error

message.

If

the

SubmitErrorStatus

is

not

passed

in,

then

it

is

assumed

that

the

finish

command

succeeded.

At

this

point,

the

submitFinishHandler()

function

is

called

with

the

submitFinishMessage

as

parameter,

which

was

set

in

the

controller

command.

Cancel

Displays

a

cancel

confirmation

dialog.

If

the

user

clicks

OK,

submitCancelHandler()

then

the

parent

frame’s

cancel

method

run.

Customizations

To

use

the

following

JavaScript

functions,

first

write

code

for

the

functions

that

implements

your

business

logic.

Once

the

code

is

written

you

can

use

these

JavaScript

functions

in

your

dialog.

Your

JavaScript

file

is

specified

in

the

dialog’s

XML

file.

Function

Name

Description

submitErrorHandler(errMessage,

errorStatus)

Called

when

an

error

is

received

from

the

controller

command.

submitFinishHandler(finishMessage)

Called

upon

successful

completion

by

the

controller

command.

submitCancelHandler()

Called

when

Cancel

is

clicked

and

the

user

clicks

OK

in

the

cancel

confirmation

dialog.

preSubmitHandler()

Optionally,

called

after

the

validateAllPanels()

function,

but

before

the

finish

controller

command.

JavaScript

functions

You

can

use

these

JavaScript

functions

in

your

JSP

pages.

These

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

get(key,

defaultValue)

Returns

the

value

of

the

specified

key

from

the

object

model.

remove(key)

Removes

the

specified

key

from

the

object

model.

put(key,

value)

Stores

the

value

for

the

specified

key

in

the

object

model.

addURLParameter(pname,

value)

Adds

an

additional

URL

parameter

to

finish

command.

removeURLParameter(pname)

Removes

the

URL

parameter,

previously

added

using

the

addURLParameter()

function.

setContentFrameLoaded(value)

Sets

the

contentFrameLoaded

variable

to

either

true

or

false.

If

true,

then

the

user

is

allowed

to

switch

to

a

different

content

panel.

If

false,

the

user

must

wait

until

the

panel

has

been

loaded

which

sets

the

value

to

true.

Note:

You

must

call

setContentFrameLoaded(true)

at

the

end

of

the

panel’s

onLoad

action.

If

this

is

not

called

,

users

will

remain

on

the

current

panel.

30

Chapter

4.

Dynamic

lists

Dynamic

lists

display

data

from

the

database,

or

some

other

data

source

whose

data

and

elements

are

variables.

Information

describing

the

format

in

which

to

display

this

data,

and

actions

users

can

perform

on

this

data,

are

stored

in

an

XML

file.

Dynamic

lists

can

be

used

to

display

objects

such

as

orders

and

products.

Each

chosen

attribute

of

the

object,

for

example,

an

order,

displays

in

a

separate

column.

A

dynamic

list

is

rendered

as

an

HTML

form.

Typically,

dynamic

lists

have

three

frames:

a

scroll

control

frame,

a

base

content

frame,

and

a

button

frame.

All

of

these

frames

can

be

customized

using

an

XML

file.

The

scroll

control

frame

is

optional,

but

if

present,

it

displays

a

national

language

enabled

title

for

the

page,

and

controls

to

navigate

the

list.

This

control

panel

is

also

optional,

but

if

present,

it

provides

Next

and

Previous

buttons

so

that

users

can

navigate

through

pages

of

entries

in

the

list.

The

control

panel

also

provides

text

fields

in

which

users

can

input

the

number

of

a

page

they

want

to

browse.

The

base

content

frame

displays

the

primary

content.

A

dynamic

list

is

a

table

that

contains

user

data

from

different

data

sources.

The

button

frame,

which

is

also

optional,

defines

buttons

which

perform

particular

actions

when

clicked.

Overview

The

following

is

an

overview

of

how

to

create

a

dynamic

list.

Detailed

steps

follow

this

section.

1.

Create

a

dynamic

list

definition

XML

file

that

describes

the

frameset.

2.

Register

the

dynamic

list

definition

XML

file

in

the

component’s

specific

resources.xml

file.

3.

Write

the

JSP

file

and

JavaScript

file,

if

necessary,

that

define

your

dynamic

list

page.

4.

Create

a

resource

bundle.

5.

(Optional)

Write

context

sensitive

help

files

for

your

dynamic

list

and

panels

and

update

the

Tools

User

Interface

Center

help

map

XML

file

(for

example,

AcceleratorHelpMap.xml

for

the

WebSphere

Commerce

Accelerator)

to

include

your

help

files.

6.

Optionally,

add

your

new

dynamic

list

to

a

Tools

User

Interface

Center

menu

system

(for

example,

WebSphere

Commerce

Accelerator).

7.

Launch

and

test

your

dynamic

list.

The

following

files

are

created:

v

A

dynamic

list

definition

XML

file

to

describe

the

frameset

myDynamicList.xml,

v

resource

bundle

files,

for

example,

MyDynamicListResource_locale.properties

v

HTML

help

files

v

JSP

files

to

fill

panel

contents,

for

example,

myDynamicList.jsp

to

The

following

files

are

modified:

v

resources.xml

©

Copyright

IBM

Corp.

2002,

2004

31

v

Tools

User

Interface

Center

Help

Map

XML

file

to

include

your

help

files

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

dynamic

list:

1.

Create

a

dynamic

list

definition

XML

file

that

describes

the

frameset,

called

newDynamicList.xml

for

example.

Create

this

file

in

/WC_installdir/xml/tools/component,

where

component

is

the

name

of

the

component

to

which

the

dynamic

list

belongs.

The

following

tags

are

available

for

use

in

the

dynamic

list:

<action>

</action>

The

primary

element

defining

a

dynamic

list.

The

following

attributes

are

supported:

resourceBundle

A

required

attribute

that

specifies

which

resource

bundle

is

used.

For

example,

resourceBundle="catalog.ItemNLS"

FormName

A

required

attribute

that

specifies

the

form

name.

A

dynamic

list

is

rendered

as

an

HTML

form.

For

example,

FormName="ItemFindResultsFORM"

beanClass

An

optional

attribute

that

specifies

a

custom

bean

for

a

simple

dynamic

list.

For

example,

beanClass="com.ibm.commerce.tools.catalog.beans.simpleCataListBean"

helpKey

An

optional

attribute

that

defines

the

corresponding

help

key

in

the

Tools

User

Interface

Center

Help

Map

file.

For

example,

helpKey="MC.auction.auctionWizardPricePanel.Help"

32

<parameter>

</parameter>

This

element

defines

parameters

passed

to

the

dynamic

list.

The

following

attributes

are

supported:

listsize

A

required

attribute

that

sets

the

maximum

number

of

list

items

that

display

on

each

page.

For

example,

listsize="15"

startindex

A

required

attribute

that

sets

index

value

of

first

list

item.

For

example,

if

the

first

item

on

this

list

has

an

index

of

0,

type:

startindex="0"

resultssize

A

required

attribute

that

defines

the

length

of

entire

list.

This

value

is

not

known

until

run

time,

and

is

dynamically

calculated.

However,

this

property

must

be

defined

as

a

placeholder.

It

does

not

matter

what

the

initial

value

is,

as

it

is

recalculated.

For

example,

resultsize="0"

orderby

An

optional

attribute

that

identifies

the

column

by

which

the

table

is

sorted.

For

example,

orderby="name"

itemName

An

optional

attribute

available

as

a

user

defined

parameter.

<scrollcontrol>

</scrollcontrol>

This

element

defines

the

scroll

control

frame.

The

following

attributes

are

supported:

title

An

optional

attribute

that

defines

the

page

title.

For

example,

title="Products"

display

A

required

element

that

determines

whether

the

scroll

control

frame

is

displayed.

For

example,

display="true"

<controlpanel>

</controlpanel>

This

element

defines

the

control

panel.

The

following

attributes

are

supported:

display

A

required

element

that

determines

whether

the

control

panel

is

displayed.

For

example,

display="true"

<button>

</button>

This

element

defines

the

button

frame.

The

button

element

contains

<menu>

elements.

Chapter

4.

Dynamic

lists

33

<menu>

</menu>

This

element

defines

a

button.

The

following

attributes

are

supported:

name

A

required

attribute

that

specifies

a

name

for

the

button.

For

example,

name="New"

action

A

required

attribute

that

defines

the

action

performed

when

the

button

is

clicked.

For

example,

action="Action()"

users

A

required

attribute

that

defines

the

access

control

for

the

button.

The

value

must

be

a

space

delimited

list

of

the

roles

that

are

permitted

to

perform

the

action

associated

with

the

button.

For

WebSphere

Commerce

Accelerator,

the

names

are

defined

in

xml/tools/common/roles.xml

and

match

the

ID

column

in

the

MBRGRP

table.

For

example,

users="makMgr

merMgr

merchant

siteAdmin"

selection

An

optional

attribute

that

defines

how

selected

items

in

the

dynamic

list

affect

the

button.

Permitted

values

include

″single″,

″multiple″,

or

″none″.

These

values

specify

that

the

button

is

enabled

when

only

one

item

is

selected,

when

one

or

more

items

are

selected,

or

when

no

items

are

selected,

respectively.

In

the

case

of

″single″

and

″multiple″,

the

action

associated

with

the

button

is

performed

on

the

selected

items.

For

example,

selection="multiple"

component

An

optional

attribute

that

sets

the

component

of

this

button.

For

example,

component="CSRComponent"

<view>

</view>

This

element

defines

an

optional

view

filter

contained

in

a

drop

down

list

in

the

control

panel.

The

following

attributes

are

supported:

name

A

required

attribute

that

specifies

a

name

for

the

list

item.

For

example,

name="newList"

action

An

optional

attribute

that

specifies

the

action

performed

when

this

view

filter

is

selected.

For

example,

action="Action()"

34

<jsFile>

</jsFile>

Specifies

a

JavaScript

file

to

be

included

in

the

dynamic

list.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

appended

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.

The

following

attribute

is

supported:

src

A

required

attribute

that

specifies

the

location

of

the

JavaScript

file.

For

example,

src="/wcs/javascript/tools/common/DateUtil.js"

The

following

is

a

sample

dynamic

list

definition

XML

file.

It

has

buttons,

view

filters

available

for

selection

in

the

scroll

control

frame,

a

resource

bundle

for

the

national

language

text,

a

title

displayed

in

the

title

area

(the

title

is

a

key

which

maps

to

the

resource

bundle),

and

a

help

key

for

the

base,

buttons,

and

scroll

control

frames.

Each

view

tag

added

is

put

into

the

view

filter

drop

down

list

for

filtering

different

types

of

contents.

<?xml

version="1.0"

encoding="UTF-8"

?>

<action

resourceBundle="campaigns.campaignsRB"

formName="initiativeForm"

helpKey="MC.campaigns.InitiativeList.Help">

<parameter

listsize="22"

startindex="0"

endindex="0"

orderby="name"

state="AllList"

/>

<scrollcontrol

title="initiativeListTitle"

display="true"

/>

<controlpanel

display="true"

/>

<button>

<menu

name="new"

action="basefrm.newInitiative()"

/>

<menu

name="copy"

action="basefrm.copyInitiative()"

selection="single"

/>

<menu

name="delete"

action="basefrm.deleteInitiative()"

selection="multiple"

/>

<menu

name="properties"

action="basefrm.initiativeProperties()"

selection="single"

/>

<menu

name="resume"

action="basefrm.resumeInitiative()"

selection="multiple"

/>

<menu

name="suspend"

action="basefrm.suspendInitiative()"

selection="multiple"

/>

<menu

name="statistics"

action="basefrm.initiativeStatistics()"

selection="single"

/>

<menu

name="reports"

component="CommerceAnalyzer"

action="basefrm.initiativeReports()"

/>

</button>

<view

name="AllList"

action="top.setContent(basefrm.getListTitle(),

’/webapp/commerce/tools/servlet/NewDynamicListView?state=AllList&
ActionXMLFile=campaigns.InitiativeList

&cmd=CampaignInitiativeListView’,

false)"

/>

<view

name="ActiveList"

action="top.setContent(basefrm.getListTitle(),

’/webapp/commerce/tools/servlet/NewDynamicListView?state=ActiveList&
ActionXMLFile=campaigns.InitiativeList

&cmd=CampaignInitiativeListView’,

false)"

/>

<view

name="SuspendList"

action="top.setContent(basefrm.getListTitle(),

’/webapp/commerce/tools/servlet/NewDynamicListView?state=SuspendList&
ActionXMLFile=campaigns.InitiativeList&

&cmd=CampaignInitiativeListView’,

false)"

/>

</action>

2.

Register

the

dynamic

list

definition

XML

file

created

in

step

1

in

the

appropriate

resources.xml

file.

Multiple

versions

of

this

file

exist,

one

for

each

component,

in

the

following

directory:

/WC_installdir/xml/tools/component/resources.xml.

Make

an

entry

similar

to

the

following

in

the

resources.xml

file:

<XML

name="sampleList"

file="component/sampleList.xml"/>

wherecomponent

is

the

name

of

the

component

to

which

the

dynamic

list

belongs.The

name

attribute

becomes

a

key

which

will

be

used

in

a

later

step.

The

resources.xml

files

are

referenced

in

the

instancename.xml

file,

and

you

must

register

any

new

resources.xml

files

in

instancename.xml.

Chapter

4.

Dynamic

lists

35

3.

Write

the

JSP

and

JavaScript

files.

Use

the

following

Java

methods

(from

the

class

com.ibm.commerce.tools.common.ui.taglibs.comm)

to

create

your

dynamic

list

table:

Note:

″/wcs/javascript/tools/common/dynamiclist.js″

and

″/wcs/javascript/tools/common/Util.js″

must

be

included

in

your

JSP

page

to

make

these

Java

methods

function

properly.

Java

Method

Description

public

static

void

addControlPanel(String

xmlfile,

int

totalpage,

int

totalitem,

Locale

loc)

Deprecated

Note:

This

method

is

deprecated

and

is

listed

here

for

reference

only.

See

the

following

equivalent

JavaScript

function:

parent.set_t_page_item(totalitem,listsize);

Adds

the

control

panel

to

the

scroll

control

frame.

The

following

parameters

are

supported:

xmlfile

A

required

string

parameter

which

is

an

XML

file

that

defines

the

page.

totalpage

A

required

integer

parameter

corresponding

to

the

total

number

of

pages

for

the

list.

totalitem

A

required

integer

parameter

corresponding

to

the

total

number

of

entries

in

the

list.

loc

A

required

locale

parameter

corresponding

to

the

national

language

in

which

the

page

is

displayed.
Throws:

ECSystemException

public

static

void

startDlistTable(String

tableid)

This

method

begins

the

table

definition.

It

is

equivalent

to

the

following

HTML

code:

<table

style=’...’

id=’tableid’>

The

following

parameter

is

supported:

tableid

A

required

string

parameter

specifying

the

ID

for

the

table.
Throws:

ECSystemException

public

static

void

endDlistTable()

This

method

ends

the

table

definition.

It

is

equivalent

to

the

following

HTML

code:

</table>

public

static

void

startDlistRowHeading()

This

method

begins

a

heading

row

definition.

It

is

equivalent

to

the

following

HTML

code:

<tr

style=’...

’>

public

static

void

endDlistRowHeading()

This

method

ends

a

heading

row

definition.

It

is

equivalent

to

the

following

HTML

code:

</tr>

36

Java

Method

Description

public

static

void

addDlistColumnHeading(String

hvalue,

String

svalue,

boolean

role,

String

width,

Boolean

wrap)

This

method

inserts

a

column

into

a

row.

The

following

parameters

are

supported:

hvalue

A

required

string

parameter

which

specifies

a

heading

name

for

this

column.

The

value

should

be

a

key

in

a

resource

bundle

file.

svalue

A

required

string

parameter

that

specifies

the

value

sent

back

to

your

data

bean

for

sorting

purposes.

If

you

do

not

intend

to

make

the

column

sortable,

set

this

to

null.

role

A

required

Boolean

parameter

that

determines

if

this

column

requires

sorting.

If

no

sorting

is

required,

set

this

value

to

false.

width

An

optional

string

parameter

which

specifies

the

width

of

this

column,

represented

by

a

percentage.

If

this

is

not

required,

set

this

value

to

null.

wrap

(opt)

An

optional

Boolean

parameter

which

determines

whether

the

text

in

this

column

should

wrap.
Throws:

ECSystemException

public

static

void

addDlistCheckHeading(Boolean

check,

String

checkfnc)

This

method

adds

a

Select

All

or

Deselect

All

check

box.

The

following

parameters

are

supported:

check

A

required

Boolean

parameter

which

determines

whether

the

Select

All

checkbox

is

included.

checkfnc

An

optional

string

parameter

which

sets

a

user

defined

function.

The

default

value

is

null.

public

static

void

endDlistRow()

End

row

definition,

equivalent

to

HTML

code:

</TR>

public

static

void

startDlistRow(int

row)

This

method

begins

a

row

definition.

The

following

parameters

are

supported:

row

A

required

integer

parameter

which

determines

the

row

style.

This

parameter

accepts

the

following

values,

1

(color

1)

or

2

(color

2).

These

should

be

alternated

to

improve

table

readability.

These

colors

are

specified

in

a

cascading

style

sheet

specified

in

the

panel’s

JSP

page.

Chapter

4.

Dynamic

lists

37

Java

Method

Description

public

static

void

addDlistCheck(String

name,

String

fnc,

String

value)

This

method

adds

a

check

box

column

so

that

list

entries

are

selectable.

The

following

parameters

are

supported:

name

A

required

string

parameter,

which

specifies

a

name

for

the

check

box.

This

name

should

be

unique.

fnc

A

required

string

parameter

that

specifies

a

user

defined

function

for

this

check

box.

If

no

function

is

defined,

set

this

to

none.

value

An

optional

string

parameter

that

specifies

a

value

for

the

check

box.

The

default

value

is

null.
Throws:

ECSystemException

public

static

void

addDlistColumn(String

name,

String

link)

This

method

adds

a

column

cell.

The

following

parameters

are

supported:

name

A

required

string

parameter

which

specifies

content

for

this

column

cell.

link

(opt)

An

optional

string

parameter

which

specifies

a

URL

link

for

this

column

cell.

If

no

link

is

applicable,

set

this

to

none.
Throws:

ECSystemException

4.

Create

a

resource

bundle

with

text

that

displays

for

your

dynamic

list.

Resource

bundles

are

in

the

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties/com/ibm/commerce/tools/component_name/properties

directory.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

/WCDE_installdir/properties/com/
ibm/commerce/tools/component_name/properties

directory.

If

national

languages

are

supported,

create

the

national

language

resource

bundles

with

the

appropriate

language

text.

The

national

language

file

names

must

end

with

the

locale

supported.

For

example,

for

a

French-language

resource

bundle,

the

file

name

should

be

filename_fr_FR.properties.

5.

(Optional)

Write

context

sensitive

help

files

and

update

the

Tools

User

Interface

Center

Help

Map

XML

file

for

context

sensitive

help.

Add

an

entry

similar

to

the

following:

<help

key

=

"MC.component.panelname.Help"

file

=

"filename.htm"/>

For

more

information

see

the

Chapter

7:

Tools

User

Interface

Center.

6.

Add

your

new

dynamic

list

to

a

Tools

User

Interface

Center

menu

system,

for

example,

WebSphere

Commerce

Accelerator.

This

step

is

optional,

depending

on

whether

you

want

to

add

an

item

to

an

existing

menu.

This

is

referred

to

as

a

node

in

this

XML

file.

Add

the

following

line:

<node

name="myList"

url="/wcs/commerce/tools/servlet/
NewDynamicListView?ActionXMLFile=common.sampleList&cmd=myDynamicList"

/>

For

more

information

see

Chapter

7:

Tools

User

Interface

Center.

7.

Stop

and

start

your

WebSphere

Commerce

server.

Launch

and

test

your

new

dynamic

list:

https://hostname:8000/webapp/wcs/tools/servlet/NewDynamicListView?
ActionXMLFile=sample.sampleList=SampleListView

38

Multiple

Framesets

A

set

of

JavaBeans™

are

provided

to

handle

the

rendering

of

different

framesets

described

below:

v

A

regular

frameset

which

includes

two

frames;

a

list

in

the

base

content

frame,

and

the

button

frame.

To

create

this

frameset,

use

the

getFrameset()

method.

This

frameset

is

available

to

create

wizards,

dialogs,

and

notebooks.

v

A

scroll

control

frameset

which

has

three

frames;

the

scroll

control

frame,

the

button

frame,

and

the

base

frame.

To

create

this

frameset,

use

the

getScrollControlFrameset()

method.

This

frameset

should

only

be

used

outside

of

a

wizard,

dialog,

or

notebook.

v

A

second

scroll

control

frameset

which

does

not

have

a

button

frame.

To

create

this

frameset,

use

the

getScrollControlButtonlessFrameset()

method.

When

creating

a

dynamic

list

in

a

notebook,

dialog,

or

wizard,

certain

JavaScript

functions

must

be

added

to

the

parent

frame

of

the

list

(for

example,

the

savePanelData()

function).

In

this

case

the

developer

must:

1.

Create

a

parent

frame

JSP

file

which

contains

the

frameset

and

includes

the

required

JavaScript

functions.

2.

Make

a

copy

of

NewDynamicList.jsp,

in

your

component’s

location

in

the

file

system.

3.

Rename

the

NewDynamicList.jsp

file

as

required.

4.

If

necessary,

create

a

view

command

for

the

JSP

file.

Filter

enhancement

Instead

of

specifying

a

views

parameter

in

the

URL

of

the

scroll

control

command,

you

can

specify

each

view

in

the

action

XML

file.

To

specify

a

view

filter,

place

a

node

in

the

action

XML

file

as

follows:

<action

...>

...

...

<view

name="sampleList1"

actionFile="common.sampleListSC"/>

</action>

where

the

name

attribute

is

the

key

to

the

resource

bundle

for

the

name

of

the

view,

and

the

actionFile

attribute

identifies

the

XML

file

which

defines

the

view.

JavaScript

functions

You

must

implement

the

following

JavaScript

functions

in

your

JavaScript

file

and

use

them

in

your

dynamic

list.

You

must

call

the

following

JavaScript

functions

in

your

base

frame

JSP

page.

JavaScript

Functions

Description

parent.loadFrames()

Called

when

the

page

is

initialized,

this

loads

the

other

frames

while

the

base

frame

is

loading.

parent.afterLoads()

Called

when

the

page

loading

completes,

this

finishes

loading

the

page.

parent.setResultssize(size)

Called

after

the

page

is

loaded,

this

specifies

the

list

size.

getUserNLSTitle()

If

you

implement

this

function,

the

title

in

the

scroll

control

frame

is

replaced

by

the

translated

version

returned

by

this

function.

Chapter

4.

Dynamic

lists

39

You

can

use

the

following

JavaScript

functions

in

your

dynamic

list,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

following

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

JavaScript

Functions

Description

parent.setTotalPage(num)

Sets

the

total

number

of

pages

for

the

control

panel

navigation.

parent.setNumPage(num)

Sets

the

current

number

of

the

page

being

displayed

in

the

control

panel

navigation.

parent.setTotalItem(num)

Sets

the

total

number

of

items

in

the

control

panel

navigation.

parent.displayButton(name)

Dynamically

displays

the

button

name.

parent.hideButton(name)

Dynamically

hides

the

button

name.

parent.showControlPanel()

Dynamically

shows

the

control

panel.

parent.hideControlPanel()

Dynamically

hides

the

control

panel.

parent.removeEntry(name)

Explicitly

removes

the

selected

element

by

its

name

(same

as

check

box

name).

parent.setInstruction(text)

Sets

the

instruction

text

in

the

scroll

control

frame.

parent.setButtonPos(x,y)

Dynamically

sets

the

button

position.

For

example,

setButtonPos(’0px’,’15px’)

moves

all

of

the

buttons

down

by

15

pixels.

Other

valid

units

are

centimeters

(cm),

millimeters

(mm),

inches

(in),

points

(pt),

and

picas

(pc).

parent.removeEntry()

Dynamic

lists

keep

track

of

what

was

checked

in

previous

visits

to

the

page.

If

these

items

no

longer

meet

the

criteria

for

inclusion

in

the

list,

you

may

use

the

parent.removeEntry

method

to

remove

all

of

the

checked

items.

40

Chapter

5.

Calendars

This

element

displays

a

calendar,

allowing

the

user

to

specify

a

date,

either

graphically

or

manually.

The

specified

date

is

then

returned

to

the

parent

window,

and

placed

in

the

correct

field.

The

calendar

displays

embedded

in

the

HTML

page,

not

in

it’s

own

window.

Overview

The

following

is

an

overview

of

how

to

create

a

calendar.

Detailed

steps

follow

this

section.

1.

Include

DateUtil.js

file

in

the

JSP

file

defining

the

panel

on

which

you

require

a

calendar.

2.

Define

the

year,

month,

and

day

fields.

3.

Initialize

the

year,

month,

and

day

fields.

4.

Define

the

calendar

window.

5.

Define

the

calendar

icon.

6.

Define

the

setupDate()

function

to

set

parameters

for

calendar

window.

The

following

files

are

modified:

The

JSP

page,

to

which

you

added

the

calendar

Detailed

steps

1.

Include

the

JavaScript

file

DateUtil.js

in

your

JSP

file.

Include

the

file

by

adding

a

line

similar

to

the

following:

<SCRIPT

SRC="/wcs/javascript/tools/common/DateUtil.js"></SCRIPT>

2.

Define

a

form

that

holds

the

Year,

Month,

and

Day

fields.

These

fields

are

where

the

user

enters

the

date:

<FORM

NAME=form1

METHOD=POST>

<INPUT

TYPE=TEXT

VALUE=""

NAME=YEAR1

SIZE=4>

<INPUT

TYPE=TEXT

VALUE=""

NAME=MONTH1

SIZE=2>

<INPUT

TYPE=TEXT

VALUE=""

NAME=DAY1

SIZE=2>

</FORM>

Note:

You

can

choose

any

names

for

the

form

and

input

fields,

as

long

as

they

match

the

names

used

in

the

following

steps.

3.

Initialize

the

Year,

Month,

and

Day

fields

with

current

date

when

page

loads,

using

the

following

code:

function

init()

{

document.form1.YEAR1.value

=

getCurrentYear();

document.form1.MONTH1.value

=

getCurrentMonth();

document.form1.DAY1.value

=

getCurrentDay();

}

...

<BODY

ONLOAD="init()">

4.

Copy

and

paste

the

following

lines

after

the

<BODY>

tag:

<SCRIPT

FOR=document

EVENT="onclick()">

document.all.CalFrame.style.display="none";

</SCRIPT>

<IFRAME

name="calendar"

title="Calendar"

STYLE="display:none;position:absolute;

©

Copyright

IBM

Corp.

2002,

2004

41

width:198;height:230;z-index=100"

ID="CalFrame"

MARGINHEIGHT=0

MARGINWIDTH=0

NORESIZE

FRAMEBORDER=0

SCROLLING=NO

SRC="/webapp/wcs/tools/servlet/Calendar">

</IFRAME>

This

loads

the

calendar

window

into

your

JSP

page,

though

it

is

initially

invisible.

5.

Add

the

Calendar

icon

to

your

page

using

the

following

code.

This

displays

the

calendar

window

when

clicked.

<IMG

SRC="/wcs/images/tools/calendar/calendar.gif"

BORDER=0

id=calImg1>

6.

Define

the

setupDate()

function

used

in

step

5,

using

the

following

code:

function

setupDate()

{

window.yearField

=

document.form1.YEAR1;

window.monthField

=

document.form1.MONTH1;

window.dayField

=

document.form1.DAY1;

}

This

function

sets

the

targets

for

data

set

by

your

user

in

the

calendar

window.

JavaScript

functions

You

can

use

the

following

JavaScript

functions

in

your

calendar,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

validDate(String

inYear,

String

inMonth,

String

inDay)

This

function

validates

a

selected

date.

It

returns

true

if

the

date

is

valid,

otherwise,

it

returns

false.

isLeapYear(int

Year)

This

function

determines

if

a

particular

year

is

a

leap

year.

It

returns

true

if

it

is

a

leap

year,

otherwise,

it

returns

false.

getCurrentYear()

This

function

returns

the

current

year.

getCurrentMonth()

This

function

returns

the

current

month.

getCurrentDay()

This

function

returns

the

current

day.

42

Function

Name

Description

validateStartEndDateTime(String

inStartYear,

String

inStartMonth,

String

inStartDay,

String

inEndYear,

String

inEndMonth,

String

inEndDay,

String

startTime,

String

endTime)

This

function

checks

that

the

end

date

and

time

is

after

the

start

date

and

time.

This

is

useful

for

validating

two

dates

to

make

sure

that

one

is

greater

or

equal

to

the

other.

Validate

the

dates

before

calling

this

function

to

ensure

that

they

are

in

this

format.

This

function

expects

the

startTime

and

endTime

arguments

to

be

in

HH:MM

format.

Validate

the

times

first

to

make

sure

they

are

in

this

format.

Input:

startDate,

endDate,

startTime,

endTime.

Enter

null

for

the

date

arguments

if

you

only

require

a

time

comparison..

Enter

null

for

time

arguments

if

you

only

require

a

date

comparison.

Enter

all

arguments

if

you

require

both

date

and

time

comparisons.

This

function

returns

one

of

the

following

values:
Return

code

=

true,

endDate+endTime

>

startDate+startTime

Return

code

=

false,

endDate+endTime

<

startDate+startTime

Return

code

=

-1,

endDate+endTime

==

startDate+startTime

showCalendar(Object

calImg)

This

function

shows

the

calendar

window,

positioned

according

to

the

referenced

object

Chapter

5.

Calendars

43

44

Chapter

6.

Slosh

buckets

The

slosh

bucket

is

a

common

visual

metaphor

containing

two

single

column

lists,

side

by

side.

Four

buttons

are

place

between

the

controls:

Add,

Add

All,

Remove,

Remove

All.

This

control

is

generally

used

to

pick

a

subset

of

unique

entries

from

a

larger

set

of

data.

Overview

The

following

is

an

overview

of

how

to

create

a

slosh

bucket.

Detailed

steps

follow

this

section.

1.

Write

your

page

content

using

JSP

and

JavaScript

files.

2.

Create

a

resource

bundle.

The

following

files

are

modified:

v

The

JSP

page,

to

which

you

added

the

slosh

bucket

v

Modified

resource

bundle

files

MyPageResource_locale.properties

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

slosh

bucket.

1.

Write

your

page

content

using

JSP

files,

JavaScript

files.

Your

custom

JSP

file,

myUpdatedPage.jsp,

must

include

the

following

JavaScript

file:

<SCRIPT

SRC="/wcs/javascript/tools/common/SwapList.js"></SCRIPT>

The

following

is

sample

HTML

which

includes

a

slosh

bucket

on

the

page.

The

values

for

the

buttonName,

buttonName2,

and

the

customJavaScriptFunction

variables

that

should

be

replaced

by

your

values.

<TR>

<TD

VALIGN="BOTTOM"

CLASS="selectWidth">

<SELECT

NAME="collateralSelected"

CLASS=’selectWidth’

SIZE=’5’

MULTIPLE

onChange="customJavaScriptFunction"></SELECT>

</TD>

<TD

WIDTH=150px

ALIGN=CENTER>

<INPUT

TYPE="button"

NAME="addToSloshBucketButton"

VALUE="buttonName"

style="width:

120px"

ONCLICK="addToSelectedCollateral();"

>

<INPUT

TYPE="button"

NAME="removeFromSloshBucketButton"

VALUE="buttonName2"

style="width:

120px"

ONCLICK="removeFromSelectedCollateral();"

>

</TD>

<TD

VALIGN="BOTTOM"

CLASS="selectWidth">

<SELECT

NAME="collateralAvailable"

CLASS=’selectWidth’

SIZE=’5’

MULTIPLE

onChange="customJavaScriptFunction"></SELECT>

</TD>

</TR>

2.

Create

a

resource

bundle

with

text

for

the

slosh

bucket.

Resource

bundles

are

in

the

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties/com/ibm/commerce/tools/component_name/properties

directory.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

/WCDE_installdir/properties/com/ibm/commerce/tools/
componentname/properties

directory.

If

national

languages

are

supported,

create

the

national

language

resource

bundles

with

the

appropriate

language

text.

The

national

language

file

names

©

Copyright

IBM

Corp.

2002,

2004

45

must

end

with

the

locale

supported.

For

example,

for

a

French-language

resource

bundle,

the

file

name

should

be

filename_fr_FR.properties.

Customizations

To

increase

the

width

of

a

slosh

bucket

list,

in

your

output

JSP

file,

set

the

following

variable

as

follows:

<style

type=’text/css’>

.selectWidth

{width:

235px;}

</style>

Use

code

similar

to

the

following

in

your

JSP

file

when

defining

your

list:

<SELECT

NAME=’definedShopperGroup’

CLASS=’selectWidth’

MULTIPLE

SIZE=’<%=numOfVisibleItemsInList%>’

onChange="updateSloshBuckets(this,

document.f1.removeButton,

document.f1.allShopperGroup,

document.f1.addButton);">

</SELECT>

JavaScript

functions

You

can

use

the

following

JavaScript

functions

in

your

slosh

bucket,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

move(fromList,

toList)

Moves

one

or

more

items

from

one

list

box

to

the

other.

allItemsSelected(aComponent)

Determines

whether

the

user

has

selected

all

of

the

items

in

a

list

box.

Returns

true

if

all

of

the

items

have

been

selected,

otherwise

returns

false.

setItemsUnselected(aComponent)

Sets

all

items

in

a

particular

list

box

as

unselected.

setItemsSelected(aComponent)

Sets

all

items

in

a

particular

list

box

as

selected.

setAnItemSelected(aComponent,

value)

Sets

a

single

item

in

a

particular

list

box

as

selected.

isItemSelected(aComponent,

value)

Determines

whether

a

single

item

in

a

particular

list

box

has

been

selected.

Returns

either

true

or

false.

hasItem(aComponent,

item)

Determines

whether

a

single

item

is

listed

in

a

particular

list

box.

Returns

true

if

the

item

is

in

the

list,

otherwise

returns

false.

isListBoxEmpty(aComponent)

Determines

whether

a

particular

list

box

is

empty.

Returns

true

if

the

list

box

is

empty,

otherwise

returns

false.

countSelected(aComponent)

Determines

the

number

of

items

the

user

has

selected.

It

returns

0

if

no

items

are

selected,

or

an

integer

matching

the

number

of

selected

items.

setButtonContext(aComponent,

aButton)

Enables

or

disables

a

button

associated

with

a

slosh

bucket

list

box.

Input

arguments

include

a

list

box

and

a

button.

If

any

items

are

selected

in

the

list

box,

the

button

is

enabled,

otherwise,

it

is

disabled.

This

behavior

disables

the

remove

button,

for

example,

when

no

items

are

in

the

list,

and

therefore

cannot

be

removed.

Use

this

function

in

the

onChange

block

of

the

SELECT

HTML

form.

46

Function

Name

Description

updateSloshBuckets(aComponent1,

aButton1,

aComponent2,

aButton2)

This

function

updates

which

buttons

are

enabled

and

disabled

depending

on

where

the

user

last

clicked.

For

example,

if

the

slosh

bucket

consists

of

two

side

by

side

lists

and

the

user

clicks

on

an

item

in

the

left

list,

this

function

enables

the

button

to

move

the

item

to

the

right

list

and

disables

the

button

to

move

items

from

the

right

to

the

left

list.

initializeSloshBuckets

(aComponent1,

aButton1,

aComponent2,

aButton2)

This

function

is

similar

to

″updateSloshBuckets()″

except

that

it

is

designed

to

be

called

when

the

page

is

first

loaded,

as

part

of

the

″onLoad″

event.

whichItemIsSelected(aComponent)

Determines

which

item

the

user

has

selected

in

an

option

box.

It

returns

the

value

of

the

first

selected

item

found.

If

no

items

are

selected,

it

returns

an

empty

string.

Chapter

6.

Slosh

buckets

47

48

Chapter

7.

Tools

User

Interface

Center

The

Tools

User

Interface

Center

provides

the

structural

framework

in

which

tools

are

presented

to

the

user.

The

Tools

User

Interface

Center

consists

of

a

banner

frame,

which

contains

a

progress

indicator

and

a

page

history,

a

menu

frame,

and

a

content

frame.

The

WebSphere

Commerce

Accelerator

is

an

instance

of

the

Tools

User

Interface

Center.

The

Organization

Administration

Console

is

an

example

of

another

instance

of

the

Tools

User

Interface

Center.

Integrating

tools

into

a

Tools

User

Interface

Center

The

steps

below

describe

how

to

integrate

a

tool

into

the

WebSphere

Commerce

Accelerator.

For

other

Tools

User

Interface

Centers,

follow

similar

steps

using

that

tool’s

XML

and

resource

bundle

files.

1.

Open

the

Tools

User

Interface

Center

instance’s

definition

XML

file.

For

WebSphere

Commerce

Accelerator,

open

/WC_installdir/xml/tools/common/CommerceAccelerator.xml.

Add

menu

items,

nodes,

or

both

to

the

above

definition

XML

file

as

shown

below:

<menuitem

name="customerService"

enabled="true"

component="CommerceAnalyzer"

users="cusRep

merchant

siteAdmin">

<node

name="customers"

component="CampaignManagement"

url="/webapp/wcs/tools/servlet/Calendar"

users="merchant"

/>

.

.

.

</menuitem>

Both

the

<menuitem>

and

the

<node>

elements

support

the

following

attributes,

as

used

in

the

above

code

sample:

Attribute

Description

name

An

required

attribute

that

names

the

menu.

This

name

is

a

key

in

the

resource

bundle

file.

If

null,

a

default

message

is

used.

For

example,

menuName

="myMenuText"

enabled

A

required

attribute

for

the

<menuitem>

element,

which

determines

whether

the

menu

is

available

for

selection.

The

value

can

be

either

true

or

false.

component

An

optional

element

which

specifies

the

component

with

which

the

menu

item

is

associated.

Components

can

be

turned

on

or

off

using

Configuration

Manager.

A

menu

item

associated

with

a

component

which

is

disabled

does

not

display.

url

A

required

element

which

specifies

the

target

URL

for

the

menuitem.

When

this

URL

is

called,

the

tool

displays

in

the

content

frame.

©

Copyright

IBM

Corp.

2002,

2004

49

Attribute

Description

users

A

required

attribute

that

defines

the

access

control

for

the

menu.

Unauthorized

users

will

not

see

the

menu

or

node

when

they

log

on.

The

value

must

be

a

space

delimited

list

of

the

roles

that

are

permitted

to

perform

the

action

associated

with

the

menuitem.

These

names

are

defined

in

the

file

roles.xml,

and

match

the

ID

column

in

the

MBRGRP

table.

For

example,

users="makMgr

merMgr

merchant

siteAdmin"

The

roles

are

predefined

in

ROLE

table

and

roles.xml

file.

display

-

optional

An

optional

attribute

that

specifies

whether

this

menuitem

is

visible

or

not.

The

default

value

is

″true″.

type

An

optional

attribute

that

specifies

the

type

of

the

menuitem,

help

is

the

only

value

supported.

Resource

bundles

are

in

the

file

/WAS_installdir/installedApps/hostname/Enterprise_App_name.ear/
properties/com/ibm/commerce/tools/
properties/mccNLS_locale.properties.

2000Developer

For

WebSphere

Commerce

Developer,

the

resource

bundles

are

in

the

file/WCDE_installdir/properties/com/ibm/
commerce/tools/properties/mccNLS_locale.properties.

.

Update

this

file

with

any

text

that

displays

in

the

menu

item

for

your

new

element.

The

name

of

the

text

is

defined

in

the

file

resources.xml.

For

example,

for

a

dynamic

list,

add

a

line

similar

to

sampleList

=Sample

List,

where

sampleList

is

the

node

name

specified

in

resources.xml,

and

Sample

List

is

the

text

that

displays

in

the

menu.

Note

that

this

file

is

for

WebSphere

Commerce

Accelerator.

If

you

are

customizing

a

differentTools

User

Interface

Center,

find

the

reference

to

the

resource

bundle

file

name

at

the

top

of

the

XML

file,

in

a

line

similar

to

the

following:

<menu

resourceBundle="common.mccNLS">

Adding

context-sensitive

help

No

matter

how

intuitive

you

might

think

that

your

custom

interface

is,

it

is

still

possible

that

your

users

will

have

questions,

about

either

usage

or

input.

When

a

user

clicks

Help,

the

current

page

in

the

content

frame

is

polled

to

obtain

the

help

key

for

the

page.

This

key

is

then

included

as

an

argument

in

a

call

to

the

getHelp()

function,

which

launches

a

separate

browser

containing

the

HTML

file

associated

with

the

specified

key.

To

provide

context-sensitive

help

for

your

custom

interface

elements,

you

need

to

create

or

modify

a

HTML

help

file,

you

need

to

specify

a

key

in

your

element’s

defining

XML

file,

and

you

must

update

the

help

mapping

file

for

the

Tools

User

Interface

Center.

Create

or

modify

an

existing

HTML

file

Writing

the

online

help

file

for

your

custom

page

is

beyond

the

scope

of

this

document,

but

if

your

aim

is

to

have

the

file

launched

in

the

product’s

help

window,

with

a

similar

look

and

feel,

you

should

base

your

help

file

on

any

of

the

files

located

in

the

/WC_installdir/web/doc/locale/f1

directory.

Taking

one

of

these

files,

and

updating

it

to

reflect

your

interface,

and

then

saving

it

with

a

50

unique

file

name

should

be

sufficient,

so

long

as

you

also

make

a

copy

of

the

corresponding

file

in

the

/WC_installdir/web/doc/locale/f1_fs

directory,

and

match

the

file

name

to

the

file

you

saved.

The

f1_fs

directory

contains

files

which

define

the

frameset

in

which

the

help

files

display.

Define

a

help

key

by

adding

an

entry

to

the

help

map

XML

file

For

example,

for

WebSphere

Commerce

Accelerator,

the

help

map

file

is

/WC_installdir/xml/tools/common/AcceleratorHelpMap.xml.

Add

a

line

similar

to

the

following:

<help

key="MC.notebook.panel1.Help"

file

="sample_help1.html"/>

where

MC.notebook.panel1.Help

is

the

help

key,

and

sample_help1.html

is

the

help

file

name.

If

you

are

working

on

a

different

center,

you

need

to

find

out

the

file

name

by

looking

at

the

top

of

the

tools

center

XML

file

in

a

line

similar

to

the

following:

<menu

helpMap="common.MerchantCenterHelpMap">

Reference

the

help

key

in

your

element’s

defining

XML

file.

In

the

XML

file

that

defines

the

User

Interface

element,

you

must

define

a

help

key.

The

method

by

which

you

define

the

key

depends

on

the

user

interface

element

you

are

creating.

v

If

you

are

writing

a

panel

inside

of

a

notebook,

a

wizard,

or

a

dialog,

the

help

key

is

defined

in

the

XML

file

as

shown

below:

<panel

name="Profile"

url="/tools/sample/notebookPanel1.html"

helpKey="MC.notebook.panel1.Help"

/>

v

If

you

are

writing

a

dynamic

list

page,

the

help

key

is

defined

in

the

XML

file

as

shown

below:

<action

l

...

HelpKey="MC.order.orderList.Help"

...

/>

v

If

your

page

is

neither

of

the

above

types,

you

must

define

the

following

JavaScript

function

in

your

page:

function

getHelp()

{

return

"MC.myPage.Help";

//

change

this

return

value

according

to

your

actual

helpKey

}

JavaScript

functions

The

following

JavaScript

functions

are

available

to

your

JSP

page

if

it

is

inside

of

a

Tools

User

Interface

Center,from

the

top

frame,

accessible

by

top.functionName().

JavaScript

Function

Description

put(String

key,

String

value)

Stores

the

given

value

in

the

top

level

JavaScript

object.

get(String

key,

String

defaultValue)

Returns

the

value

of

the

given

key

from

top

level

JavaScript

object.

remove(String

key)

Removes

the

given

key

from

the

top

level

JavaScript

object.

openHelp()

Opens

a

context

sensitive

help

window.

This

is

functionally

equivalent

to

when

the

user

clicks

Help.

Chapter

7.

Tools

User

Interface

Center

51

JavaScript

Function

Description

setContent(String

text,

String

link,

Boolean

newtrail,

Object

parameters)

Sets

the

content

frame

URL

and

updates

the

bread

crumb

trail.

Supported

arguments

are:

text

This

value

specifies

that

text

that

displays

in

the

breadcrumb

trail.

link

This

value

defines

the

URL

to

load

in

the

content

frame.

newtrail

This

value

specifies

whether

a

new

item

should

be

added

to

the

breadcrumb

trail.

If

true,

an

additional

item

is

added

to

the

end

of

the

breadcrumb

trail;

if

false,

this

item

replaces

the

last

item

in

the

breadcrumb

trail.

parameters

(optional)

Use

this

only

if

your

link

contains

locale

dependent

characters

(which

may

get

corrupted

using

direct

URL

location

replacement).

If

this

parameter

is

used,

the

Tools

Framework

dynamically

generates

a

form

based

on

this

parameter

object

and

submits

the

URL

parameters

as

name-value

pairs.

showContent(String

link,

Object

parameters)

Sets

content

frame

URL

without

updating

the

breadcrumb

trail.

Supported

arguments

are:

link

This

value

defines

the

URL

to

load

in

the

content

frame.

parameters

(optional)

Use

this

only

if

your

link

contains

locale

dependent

characters

(which

may

get

corrupted

using

direct

URL

location

replacement).

If

this

parameter

is

used,

the

Tools

Framework

dynamically

generates

a

form

based

on

this

parameter

object

and

submits

the

URL

parameters

as

name-value

pairs.

setHome()

Sets

the

content

frame

to

the

default

homepage,

and

resets

the

breadcrumb

trail

to

the

initial

state.

For

example,

sets

the

breadcrumb

trail

to

″logout

-

home″.

goBack()

Goes

back

one

item

in

the

breadcrumb

trail

and

removes

the

last

item

from

the

breadcrumb

trail.

resetBCT()

Resets

the

breadcrumb

trail

to

the

initial

state.

For

example,

sets

the

breadcrumb

trail

to

″logout

-

home″.

refreshBCT()

Refreshes

the

breadcrumb

trail

to

reflect

the

current

state.

showProgressIndicator(Boolean

flag)

Manually

turns

on

or

off

the

progress

indicator.

SaveData(Object

model,

String

slotName)

Saves

data

so

that

it

can

be

retrieved

later,

either

in

the

same

page

or

in

another

page

or

element.

Supported

arguments

are:

model

Specifies

a

data

object,

which

requires

saving.

slotName

A

handle

to

be

used

later

to

retrieve

the

data.

52

JavaScript

Function

Description

getData(String

slotName,

int

stepsBack)

Gets

data

saved

before

using

the

SaveData

function.

Supported

arguments

are:

slotName

A

handle

pointing

at

the

location

where

the

data

was

previously

saved.

stepsBack

An

optional

value,

which

specifies

how

many

items

back,

with

respect

to

the

breadcrumb

trail,

this

data

object

was

saved.

The

default

value

is

’0’.

sendBackData(Object

data,

String

slotName)

Sends

a

data

object

back

to

the

calling

wizard.

This

is

used

in

a

Wizard

Chaining.

Supported

arguments

are::

Data

The

data

object

you

want

to

send

back

to

the

previous

item

in

the

breadcrumb

trail.

SlotName

A

handle

to

be

used

later

to

retrieve

the

data.

saveModel(Object

model)

A

function

provided

for

convenience

which

saves

the

″model″

object,

which

is

used

often

within

notebooks,

wizards,

and

dialogs.

Supported

arguments

are:

model

Specifies

the

model

object.

getModel(stepsBack)

A

convenience

function

to

get

back

the

″model″

object

previously

saved.

Supported

arguments

are:

stepsBack

An

optional

value

that

specifies

how

many

items

back,

with

respect

to

the

breadcrumb

trail,

this

model

object

was

saved.

The

default

value

is

’0’.

setReturningPanel(String

panelName)

Sets

the

returning

panel

name.

Usually

used

in

a

Wizard

Chaining

scenario.

Supported

arguments

are:

panelName

Specifies

the

name

of

the

panel

in

a

notebook

or

wizard.

setRemoteHelp(String

key)

Sets

the

remote

helpkey.

Use

this

function

only

if

your

next

content

page

is

served

from

a

remote

site.

Due

to

a

browser

restriction,

the

tools

user

interface

top

frame

cannot

call

remote

content

frame’s

getHelp()

function.

Instead,

a

help

key

must

be

set

before

the

remote

page

is

loaded.

getRemoteHelp()

Gets

the

remote

helpkey

set

by

the

setRemoteHelp()

function.

getCSSFile()

Gets

the

locale

dependent

cascading

stylesheet

file

name.

For

example,

centre_zh_TW.css.

menuVisible(int

index,

boolean

flag)

Sets

menu

visible

or

hidden

dynamically.

Supported

arguments

are:

index

Specifies

the

number

of

the

menu.

flag

A

boolean,

which

determines

whether

the

menu

is

visible.

If

true,

the

menu

is

visible.

Chapter

7.

Tools

User

Interface

Center

53

54

Chapter

8.

Dynamic

tree

A

dynamic

tree

organizes

information

in

a

tree

layout,

allowing

the

user

to

navigate

the

tree,

expand

and

collapse

tree

branches.

The

tree

can

be

pre-cached

to

any

number

of

levels,

while

leaves

under

uncached

nodes

are

retrieved

dynamically

as

they

are

expanded.

When

a

user

right

clicks

on

a

selected

item,

a

context

sensitive

menu

appears,

allowing

the

user

to

open

the

object,

or

to

perform

other

specified

actions.

The

dynamic

tree

can

contain

any

number

of

items,

and

can

contain

any

number

levels.

A

custom

data

bean

provides

the

context

menu

items

and

actions

as

well

as

the

tree

structure,

one

node

at

a

time.

The

dynamic

tree

also

allows

nodes

of

different

types

to

be

identified

using

custom

icons

and

menu

groups.

Developers

can

also

programmatically

open

a

specific

node,

to

which

the

tree

automatically

expands

and

highlights

the

specified

node.

Workflow

A

description

of

the

flow

of

data

in

the

dynamic

tree

follows:

1.

A

tree

frame

is

called

by

a

client

browser.

2.

The

tree

frame

initiates

a

hidden

Data

Frame

URL.

3.

The

data

frame

calls

the

tools

framework’s

DynamicTreeBean.

4.

The

DynamicTreeBean

calls

a

custom

DynamicTreeUserDataBean,

which

is

specified

in

an

XML

file.

5.

The

custom

DataBean

returns

the

first

level

(or

multiple

levels

if

pre-caching

is

used)

tree

nodes.

6.

The

DynamicTreeBean

returns

the

tree

nodes

(formatted

into

a

JavaScript

array)

to

the

data

frame.

7.

The

data

frame

calls

tree

frame’s

setNode()

function

which

notifies

it

that

the

data

fetch

is

complete,

and

passes

the

tree

array.

The

tree

frame

expands

and

displays

tree.

8.

When

a

user

clicks

to

expand

a

node

that

is

not

cached,

the

tree

frame

resets

the

location

of

the

data

frame

to

a

new

URL

to

populate

the

children

of

selected

node.

Steps

3-7

repeat

for

each

node

expansion.

Overview

The

following

are

the

quick

steps

to

create

a

dynamic

tree,

to

be

used

by

developers

who

are

familiar

with

the

details

involved

in

each

step.

Detailed

steps

follow

this

section.

1.

Create

a

dynamic

tree

definition

XML

file

that

defines

the

dynamic

tree,

based

on

DynamicTree.dtd.

2.

Create

a

frameset

definition

file.

3.

Write

a

data

bean

implementing

DynamicTreeUserDataBean.

4.

Write

any

required

JavaScript

or

JSP

files

to

perform

actions

on

the

dynamic

tree.

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

dynamic

tree.

©

Copyright

IBM

Corp.

2002,

2004

55

1.

Write

a

dynamic

tree

definition

XML

file

specifying

your

data

bean

and

required

parameters.

This

dynamic

tree

definition

XML

file

is

used

by

a

Tools

Framework

JSP

which

converts

your

data

bean

data

into

JavaScript.

Thus,

it

must

specify

your

data

bean.

Other

features

and

configurations

are

listed

below.

Note:

Parameters

with

default

values

(specified

in

DynamicTree.dtd)

do

not

need

to

be

specified

unless

you

want

to

change

the

default.

XML

Tag

Description

<tree>

</tree>

The

primary

element

defining

a

dynamic

tree.

The

following

attributes

are

supported:

dataBean

A

required

attribute

that

specifies

the

fully

qualified

name

of

the

data

bean

that

populates

the

tree.

initDataURLParam

An

optional

attribute

used

to

pass

any

arguments

you

want

to

pass

to

the

data

bean

(such

as

preLoad).

By

default,

this

string

is

empty.

For

example,

initDataURLParam="preLoad=3&myParam=something"

targetFrame

An

optional

attribute

that

specifies

the

name

of

the

content

frame,

as

specified

in

your

frameset

definition

page.

The

default

value

is

″content″.

For

example,

targetFrame="content"

expandInContextMenu

An

optional

boolean

value

that

specifies

whether

the

Expand

or

Collapse

menu

items

appear

in

the

context

sensitive

menu

for

all

tree

nodes

with

children.

The

default

value

is

″true″.

folderIcon

An

optional

boolean

value

that

specifies

whether

the

folder

icon

appears

in

the

tree.

The

default

value

is

″true″.

contextMenu

An

optional

boolean

value

that

specifies

whether

the

contextMenu

is

enabled.

This

determines

whether

users

can

right-click

on

entries

in

the

tree,

and

see

the

context

menu.

The

default

value

is

″true″.

expandLevel

An

optional

numerical

value

specifying

how

far

to

expand

the

tree

when

it

first

opens.

Note:

The

tree

can

only

open

to

levels

which

have

been

pre-loaded.The

default

value

is

″0″.

treeSearchFailedResourceBundle

An

optional

attribute

that

specifies

the

resource

bundle

that

contains

the

error

message

to

be

displayed

when

the

tree

cannot

find

a

specified

node

when

performing

a

search.

The

default

value

is

″common.uiNLS″.

treeTitle

An

optional

attribute

that

specifies

that

a

title

should

be

inserted

above

the

tree

using

the

<h1>

HTML

tag.

The

default

value

is

an

empty

string.

56

XML

Tag

Description

<jsFile/>

An

optional

element

that

must

be

inside

the

<tree>

element

if

specified.

This

attribute

specifies,

a

JavaScript

file

to

be

included

in

the

tree

JSP

file.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

prefixed

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.The

following

attribute

is

supported:

src

A

required

attribute

that

specifies

the

location

of

the

JavaScript

file.

For

example,

src="/wcs/javascript/tools/common/TreeUtil.js"

The

following

is

a

sample

dynamic

tree

definition

XML

file:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

DynamicTree

SYSTEM

"dynamicTree.dtd">

<tree

databean="com.ibm.commerce.tools.test.DynamicTreeTestBean2"

initDataURLParam="preLoad=2&uid=Item

1"

targetFrame="content"

expandInContextMenu="true"

folderIcon="true"

contextMenu="true"

expandLevel="0"

treeSearchFailedResourceBundle="common.uiNLS">

</tree>

2.

Create

a

frameset

definition

file,

if

necessary.

If

your

frameset

definition

file

does

not

already

exist,

you

must

create

one.

Typically,

a

dynamic

tree

is

displayed

in

a

frameset

where

the

dynamic

tree

is

on

the

left

and

the

content

frame

is

on

the

right.

This

is

a

typical

use,

and

variations

require

a

custom

implementation.

The

following

is

a

sample

frameset

definition

file:

<html>

<frameset

framespacing="0"

border="0"

frameborder="0"

cols="60%,*">

<frame

src="/webapp/wcs/tools/servlet/DynamicTreeView?XMLFile=samples.testTree"

name="tree">

<frame

src="/webapp/wcs/tools/samples/dtreebuttons.html"

name="content">

</frameset>

</html>

3.

Write

a

data

bean

Java

class,

implementing

the

following

interface:

public

interface

DynamicTreeUserDataBean

extends

com.ibm.commerce.beans.SmartDataBean

{

public

Vector

getNodeInfo()

throws

ECSystemException;

public

Vector

getIconInfo()

throws

ECSystemException;

public

Vector

getMenuInfo()

throws

ECSystemException;

}

Notice

that

DynamicTreeUserDataBean

inherits

from

SmartDataBean,

which

means

you

need

to

implement

all

the

regular

SmartDataBean

methods,

plus

the

getNodeInfo(),

getIconInfo(),

and

getMenuInfo()

methods.

Refer

to

the

″Creating

a

new

Entity

Bean″

section

of

WebSphere

Commerce

Programming

Guide

and

Tutorials

for

information

on

how

to

write

and

use

a

SmartDataBean.

The

getNodeInfo()

method

returns

a

vector

of

com.ibm.commerce.tools.common.ui.DynamicTreeNode

objects,

which

describe

each

node

on

the

tree

individually.

This

vector

is

populated

in

the

populate()

method

of

your

data

bean.

Below

is

a

sample

implementation

of

a

getNodeInfo()

method:

public

java.util.Vector

getNodeInfo()

throws

com.ibm.commerce.exception.ECSystemException

{

return

nodeInfo;

//

populate

nodeInfo

before

this

method

is

called

}

Chapter

8.

Dynamic

tree

57

The

getIconInfo()

method

returns

a

vector

of

DynamicTreeIconType

objects,

which

define

a

number

of

icons

belonging

to

specific

node

types.

This

vector

can

be

populated

in

the

populate()

method

of

your

data

bean.

If

you

are

not

using

icon

types,

this

method

may

return

″null″.

Following

is

a

sample

implementation

of

a

getIconInfo()

method:

public

java.util.Vector

getIconInfo()

throws

com.ibm.commerce.exception.ECSystemException

{

return

iconInfo;

}

The

getMenuInfo()

method

returns

a

Vector

of

DynamicTreeMenuType

objects,

which

define

a

number

of

menus

belonging

to

specific

node

types.

This

Vector

is

populated

in

the

populate()

method

of

your

data

bean.

If

you

are

not

using

menu

grouping,

this

method

may

return

″null″.

Following

is

a

sample

implementation

of

a

getMenuInfo()

method:

public

java.util.Vector

getMenuInfo()

throws

com.ibm.commerce.exception.ECSystemException

{

return

menuInfo;

}

Use

the

setRequestProperties()

method,

which

is

required

by

the

SmartDataBean

interface,

to

set

and

retrieve

request

properties.

Ensure

that

you

capture

the

gotoNode

parameter.

If

gotoNode

is

specified

(which

is

a

path

separated

by

’/’),

your

data

bean

should

return

a

Vector

of

DynamicTreeNodes,

with

children

ending

at

that

node.

The

following

is

an

example

of

how

to

capture

the

gotoNode

parameter

from

the

setRequestProperties()

method:

public

void

setRequestProperties(com.ibm.commerce.datatype.TypedProperty

param)

throws

Exception

{

//

get

URL

parameters

from

here...

below

is

just

an

example

requestProperties

=

param;

try

{

gotoNode

=

requestProperties.getString("gotoNode");

}

catch

(ParameterNotFoundException

e)

{

}

}

Use

the

populate()

method

to

populate

the

nodeInfo,

menuInfo,

and

iconInfo

vectors

that

your

bean

must

supply

to

the

Dynamic

Tree

web

page.

This

method

is

called

when

your

SmartDataBean,

(implementation

of

DynamicTreeUserDataBean),

is

activated,

after

the

setRequestProperties()

and

setCommandContext()

methods

are

called.

In

the

populate()

method,

you

create

the

children

nodes

or

leaves

under

the

node

that

the

user

clicks

on,

or

the

root

nodes,

or

the

leaves

if

the

tree

is

loading

for

the

first

time.

In

our

samples,

we

use

a

vector

called

nodeInfo

to

hold

DynamicTreeNode

objects.

See

the

following

section

for

details

about

the

DynamicTreeNode

class.

You

can

also

choose

to

preload

grandchildren,

or

any

other

deeper

level.

The

DynamicTreeNode

class

has

a

property

called

children

that

is

a

vector.

This

children

vector

can

contain

children

of

the

current

node.

This

nesting

feature

is

useful

when

you

want

to

preload

the

nodes

for

several

levels

at

startup

time.

You

can

define

the

initial

URL

parameters

in

the

XML

file.

Ensure

that

your

data

bean

recognizes

a

special

(your

choice)

URL

parameter

indicating

when

to

preload.

The

tools

framework

suggests

you

use

the

initDataURLParam

parameter

from

your

XML

file

to

include

a

preLoad

name-value

pair,

to

indicate

the

depth

of

tree

nodes

that

need

to

be

preloaded.

The

following

is

an

example

of

a

populate()

method.

Note

the

technique

for

preloading

children

in

the

looper()

method,

which

loads

all

of

the

children

in

a

specified

search

path

(for

example,

Item

1.1/Item

1.1.5/Item

1.1.5.3).

public

void

populate()

throws

Exception

{

//

if

searching

for

a

specific

node

from

URL

param

gotoNode,

method

looper()

will

take

//

care

of

it

for

us.

Otherwise,

just

populate

the

tree

with

the

node

clicked

on.

if

(!gotoNode.equals(""))

{

StringTokenizer

st

=

new

StringTokenizer(gotoNode,

"/");

58

if

(st.hasMoreTokens())

{

for

(Enumeration

e

=

looper(st,

"Item

1").elements();

e.hasMoreElements();)

{

nodeInfo.addElement(e.nextElement());

}

}

}

else

{

//

create

5

nodes

in

this

sample

for

(int

i

=

1;

i

<=

5;

i++)

{

//

construct

the

children

URL

parameters,

//

the

following

is

just

an

example

(every

other

node

has

children)

String

param

=

"";

if

(i

%

2

==

1)

param

=

"uid="

+

uid

+

"."

+

String.valueOf(i)

+

"&para2=somevalue";

//

set

sample

value

of

all

node

to

13

String

testValue

=

new

String("13");

//

create

a

new

node.

"Catalog"

is

the

menu

type.

DynamicTreeNode

node

=

new

DynamicTreeNode(uid

+

"."

+

String.valueOf(i),

testValue,

param,

"",

"Catalog");

//

make

every

other

node

different

if

(i

%

2

==

0

)

{

node.setIconType(new

String[]

{"Arrow"});

node.setMenuType("Speed");

}

//

nodeInfo

is

a

class

field

of

type

Vector

nodeInfo.addElement(node);

}

}

//

create

some

menu

groups

String[][]

groupMenu

=

{{"Test","http://www.ibm.com"},

{"",""},

{"Erase","http://www.ibm.com"},

{"Shutdown","http://www.ibm.com"}};

DynamicTreeMenuType

mnu

=

new

DynamicTreeMenuType(groupMenu,

"Catalog");

menuInfo.addElement(mnu);

String[][]

groupMenu2

=

{{"Fast","http://www.ibm.com"},

{"Slow","http://www.ibm.com"},

{"Stop","http://www.ibm.com"}};

DynamicTreeMenuType

mnu2

=

new

DynamicTreeMenuType(groupMenu2,

"Speed");

//

menuInfo

is

a

class

field

of

type

Vector

menuInfo.addElement(mnu2);

//

create

some

icon

types

DynamicTreeIconType

iconType

=

new

DynamicTreeIconType("Calendar",

"calendar/calendar.gif");

//

iconInfo

is

a

class

field

of

type

Vector

iconInfo.addElement(iconType);

DynamicTreeIconType

iconType2

=

new

DynamicTreeIconType("Arrow",

"list/arrow.gif");

iconInfo.addElement(iconType2);

}

//

looper

method

used

when

trying

to

locate

a

specific

node

//

this

method

rerecursively

calls

itself

until

the

search

path

is

exhausted

public

java.util.Vector

looper(StringTokenizer

st,

String

sName)

{

//

create

a

default

menu

String[][]

menu

=

{{"Open","http://www.ibm.com"},

{"",""},

{"Copy","http://www.ibm.com"},

{"Delete","http://www.ibm.com"},

{"Modify","http://www.ibm.com"}};

Vector

newVec

=

new

Vector();

//

get

the

first

part

of

the

search

path

String

match

=

(String)st.nextElement();

//

create

5

nodes

on

each

level

for

(int

i

=

1;

i

<=

5;

i++)

{

String

param

=

"";

String

testValue

=

new

String("13");

String

cMenuParam

=

new

String("myValue=Test&otherValue=3");

String

objType

=

new

String("Speed");

Chapter

8.

Dynamic

tree

59

String

name

=

sName

+

"."

+

String.valueOf(i);

DynamicTreeNode

node;

//

every

other

node

will

be

a

leaf

by

setting

the

childrenURLParam=""

(param)

if

(i

%

2

==

1)

{

param

=

"uid="

+

name

+

"para2=somevalue";

node

=

new

DynamicTreeNode(name,

testValue,

param,

menu);

}

else

{

node

=

new

DynamicTreeNode(name,

testValue,

param,

cMenuParam,

objType);

node.setIconType(new

String[]

{"Calendar",

"Arrow"});

}

//

if

the

newly

created

node/leaf

matches

the

search

string

and

there

are

still

//

more

parts

of

the

search

path,

call

looper()

again

setting

this

nodes

children

//

to

contain

the

next

level

of

the

search

path

if

(match.equals(name)

&&

i

%

2

==

1)

{

if

(st.hasMoreElements())

{

node.setChildren(looper(st,

name));

}

}

//

finally

add

the

DynamicTreeNode

to

the

newVec

newVec.addElement(node);

}

return

newVec;

}

Each

DynamicTreeNode

object,

stored

in

the

nodeInfo

vector,

holds

the

properties

of

a

tree

node

or

leaf.

The

following

are

the

possible

properties

of

a

DynamicTreeNode

object:

Property

Description

protected

String

name

A

required

value

that

specifies

a

text

label

for

the

node.

The

locale

specific

label

is

obtained

by

your

data

bean.

protected

String

childrenUrlParam

A

required

value

that

specifies

the

URL

parameters

used

to

construct

the

full

URL

for

expanding

the

node.

For

example,

if

the

childrenUrlParam

is

p1=a&p2=99,

a

full

URL

will

be

constructed

by

JavaScript

to

something

like:

DynamicTreeData?XMLFile=common.testTree&p1=a&p2=99

This

full

URL

serves

as

the

node-expanding-URL,

which

your

data

bean

must

understand

when

it

is

called.

If

this

value

is

null

or

empty,

and

no

children

are

preloaded,

the

node

becomes

a

leaf

and

cannot

be

expanded

from

the

tree

interface.

protected

String[][]

contextMenu

A

required

array

of

string

arrays

which

holds

the

name-value

pairs

for

the

context

menu.

The

first

item

in

the

array

is

the

locale

dependent

menu

title.

The

second

item

in

the

array

is

the

URL

that

launches

the

node’s

action.

For

example:

contextMenu[0][0]

=

"Open";

contextMenu[0][1]

=

"/webapp/wcs/tools/servlet/DialogView?XMLFile=csr.shopperSearch";

contextMenu[0][0]

=

"";

contextMenu[0][1]

=

"";

Note:

A

blank

name-value

pair

yields

a

divider

line

in

the

context

menu.

protected

Vector

children

An

optional

vector

of

the

same

DynamicTreeNode

class

to

hold

this

node’s

children

info.

It

only

needs

to

be

populated

if

you

want

to

preload

more

than

one

level’s

nodes.

If

not,

leave

it

as

null.

If

children

are

included

in

a

node,

the

childrenURLParam

is

ignored.

protected

String

value

An

optional

value

of

this

node

or

leaf.

(Product

ID,

for

example):

13323

protected

String

contextMenuParams

An

optional

value

that

specifies

the

parameters

that

are

passed

in

all

instances

in

the

tree

when

an

action

is

launched

from

the

context

menu.

60

Property

Description

protected

String[]

iconType

An

optional

value

that

specifies

the

icon

type

applied

to

this

node

or

leaf.

If

this

is

specified,

you

must

also

have

a

matching

DynamicTreeIconType

object

which

specifies

the

actual

icon

graphic

files

included.

A

node

or

leaf

may

be

of

more

than

one

icon

type.

protected

String

menuType

An

optional

value

that

specifies

the

menu

type

for

the

current

node

or

leaf.

If

this

is

specified,

a

matching

DynamicTreeMenuType

object

must

be

created.

There

are

many

constructors

for

the

DynamicTreeNode

class,

but

if

the

one

you

need

is

not

there,

use

the

setter

methods

to

set

individual

properties.

IconType

objects

have

the

following

values:

Property

Description

protected

String

iconType

This

value

specifies

the

name

of

this

icon

type.

protected

String[]

icons

This

value

specifies

the

icon

graphic

files

included

for

this

icon

type.

The

image

path

is

relative

from

\wcs\web\images\tools\.

For

example:

{"Arrow",

"list/arrow.gif"}

MenuType

objects

have

the

following

properties:

Property

Description

protected

String

menuType

This

value

specifies

the

name

of

this

menu

type.

protected

String[][]

menu

This

value

is

an

array

of

string

arrays

which

hold

the

name-value

pairs

for

the

context

menu.

The

first

item

in

the

array

is

the

locale

sensitive

menu

title.

The

second

item

in

the

array

is

the

URL

which

launches

the

node’s

action.

For

example:

{{"Open",

"/webapp/wcs/tools/servlet/

DialogView?XMLFile=csr.shopperSearch"},

{"",""}}

Note:

A

blank

name-value

pair

yields

a

divider

line

in

the

context

menu.

4.

Write

any

required

JavaScript

and

JSP

files

to

perform

actions

on

the

tree.

These

files

may

add

additional

processing

on

selected

tree

nodes.

Additional

features

Searches

in

the

dynamic

tree

are

performed

using

a

search

path.

A

search

path

is

the

entire

path,

starting

at

the

tree

root,

separated

by

forward

slashes.

For

example,

your

JavaScript

may

call

the

dynamic

tree

function

gotoAndHighlight("Item

1.1/Item

1.1.3/Item

1.1.3.5/Item

1.1.3.5.4")

to

search

for

Item

1.1.3.5.4.

Your

databean

must

accept

the

gotoNode

parameter,

and

return

a

vector

which

contains

all

of

the

nodes

from

the

root

through

to

the

level

that

contains

the

specified

node

or

leaf.

See

the

looper()

method

above

for

an

example.

The

developer

may

pass

any

additional

URL

parameters

to

the

dynamic

tree

frame

and

these

parameters

can

be

picked

up

in

the

custom

data

bean

to

provide

further

control

and

processing

logic.

This

should

be

done

in

a

manner

similar

to

<frame

src="/webapp/wcs/tools/servlet/DynamicTreeView?XMLFile=

samples.testTree&myParam=myValue"

name="tree">

Chapter

8.

Dynamic

tree

61

where

MyParam

is

the

parameter

you

wish

to

pass

and

MyValue

is

the

value

of

said

parameter.

Any

additional

parameters

should

be

picked

up

by

the

setRequestProperties()

method

in

your

data

bean.

Developers

may

open

the

tree

to

a

specific

node

when

the

tree

first

starts

by

specifying

the

URL

parameter

gotoNode=xxxx

(where

xxxx

is

the

search

path)

in

the

original

call

to

the

Dynamic

Tree

frame.

This

should

be

a

the

form

similar

to

<frame

src="/webapp/wcs/tools/servlet/

DTree?XMLFile=samples.testTree&gotoNode=Item

1.1/Item

1.1.4"

name="tree">

Note:

Your

databean

must

return

the

specified

node

or

leaf

or

must

display

″search

failed″

as

soon

as

the

tree

is

loaded.

See

the

looper()

method

above

for

a

sample

of

returning

a

specified

node.

Font

sizes

and

style

are

configurable

in

the

centre.css

files

found

in

/WC_installdir/web/tools/common

directory.

The

getHighlightedNode()

function

returns

the

currently

selected

node.

For

example:

var

node

=

parent.tree.getHighlightedNode();

Once

the

node

is

retrieved,

the

developer

has

public

access

to

all

of

the

node

data,

which

is

the

same

as

the

DynamicTreeNode

fields.

Thus,

the

developer

can

programmatically

modify

this

data.

However,

changes

are

not

reflected

outside

of

the

tree

unless

the

changes

are

also

programmatically

made

by

the

developer.

For

example,

the

following

JavaScript

code

shows

the

name

and

value

of

the

currently

selected

node

or

leaf:

alert("Node

name:

"

+

node.name

+

"\nNode

value:

"

+

node.value);

The

implementer

may

obtain

the

namePath

or

valuePath

of

any

node

by

using

getNamePath(node)

and

getValuePath(node)

respectively.

JavaScript

functions

You

can

use

the

following

JavaScript

functions

in

your

dynamic

tree,

they

are

implemented

by

WebSphere

Commerce

by

default.

These

following

functions

are

defined

in

the

parent

frame,

and

are

called

using

parent.functionName():

Function

Name

Description

gotoAndHighlight
(namePath)

Searches

the

tree

for

the

specified

namePath.

The

namePath

is

the

text

displayed

in

the

user

interface.

If

found

the

tree

expands

to

the

specified

path

and

the

node

or

leaf

is

highlighted.

If

not

found

an

error

message

is

displayed.

gotoAndHighlight
(valuePath)

Searches

the

tree

for

the

specified

valuePath.

The

valuePath

is

the

value

of

the

node

in

the

tree.

If

found

the

tree

expands

to

the

specified

path

and

the

node

is

highlighted.

If

not

found

an

error

message

is

displayed.

getNamePath(node)

This

function

returns

the

path

for

the

specified

node,

from

the

tree

root.

The

path

is

specified

by

name,

that

is

the

names

that

display

in

the

user

interface.

getValuePath(node)

This

function

returns

the

path

for

the

specified

node,

from

the

tree

root.

The

path

is

specified

by

value,

that

is

the

value

of

the

nodes

that

display

in

the

user

interface.

getHighlightedNode()

This

function

returns

the

highlighted

or

selected

node.

62

Chapter

9.

Search

dialogs

Search

Dialog

is

an

user

interface

fragment

that

provides

a

common

infrastructure

for

developing

search

application.

With

a

simple

configuration

file

and

a

criteria

data

bean,

it

generates

a

common

look-and-feel

search

criteria

page

for

the

user.

It

also

allows

the

user

to

navigate

between

the

search

criteria

page

and

the

result

page

within

the

dialog,

hence

able

to

persist

user’s

inputs

automatically.

When

implementing

a

search

dialog,

you

need

to

validate

the

criteria

inputs,

and

create

a

result

page

to

display

the

search

results.

A

Dynamic

List

is

frequently

used

to

display

the

search

results.

Overview

The

following

is

an

overview

of

how

to

create

a

Search

Dialog.

Detailed

steps

follow

this

section.

1.

Create

a

search

dialog

definition

XML

file

to

configure

the

contents

of

the

search

criteria

panel

and

an

URL

of

the

result

panel.

2.

Register

the

search

dialog

definition

XML

file(s)

in

the

component’s

specific

resources.xm

filel.

3.

Create

or

update

resource

bundle

for

national

language

support.

4.

Write

a

criteria

data

bean

implementing

SearchDialogCriteriaBean,

if

attribute

″beanMethod″

is

defined

in

the

XML

file.

5.

Write

JavaScript

functions

to

validate

user

inputs,

and

save

additional

data

that

may

be

required.

6.

Write

context

sensitive

help

files.

7.

Write

a

result

page

to

process

user

inputs

and

display

the

result

list.

(Example:

Dynamic

List)

8.

Add

a

node

to

Tools

User

Interface

menu.(Optional)

Detailed

steps

The

following

steps

are

detailed

instructions

for

implementing

a

Search

Dialog.

1.

Create

a

search

dialog

definition

XML

file

based

on

/WC_installdirxml/tools/common/SearchDialog.dtd,

to

configure

the

contents

of

the

criteria

panel,

and

to

specify

an

URL

to

display

the

result

panel.

This

file

must

be

in

the

/WC_installdirxml/tools/componentname\

directory,

where

componentname

is

the

name

of

the

component

to

which

the

search

dialog

belongs.

The

following

tags

are

used

to

configure

a

Search

Dialog.

XML

Tag

Description

<searchDialog>

</searchDialog>

The

primary

element

defining

a

search

dialog.

The

following

attributes

are

supported:

resourceBundle

(Required)

Resource

bundle

to

be

used

throughout

the

entire

Search

Dialog.

For

example,

samples.samplesNLS

©

Copyright

IBM

Corp.

2002,

2004

63

XML

Tag

Description

<criteriaPanel>

</crteriaPanel>

Panel

to

define

the

criteria

fields

and

its

dictionary.

databean

(Optional)

A

fully

qualified

name

of

user

criteria

data

bean

to

provide

data

definitions

on

the

criteria

panel.

For

example,

com.ibm.commerce.tools.test.SampleSearchCriteriaDataBean

title

(Required)

Title

to

be

displayed

on

criteria

panel.

For

example,

searchTitle

description

(Optional)

Description

to

explain

this

Search

Dialog’s

function.

For

example,

searchDesc

<jsFile/>

External

JavaScript

file

to

be

included

in

the

Search

Dialog.

Files

defined

here

are

included

in

the

parent

frame.

Thus,

access

to

these

functions

require

parent.

prefixed

to

function

calls

to

scope

them

to

the

parent

frame.

Multiple

JavaScript

files

are

allowed.

src

(Required)

Location

of

the

JavaScript

file.

For

example,

/wcs/javascript/tools/samples/sampleSearchDialog.js

<jsMessage/>

NL

enabled

message

to

be

used

in

JavaScript.

name

(Required)

JavaScript

variable

name

to

hold

the

message.

For

example,

missingFieldMsg

resourceKey

(Required)

The

resource

key

name

used

to

retrieve

the

message

from

the

resource

bundle.

For

example,

missingFieldMsg

64

XML

Tag

Description

<field></field>

Criteria

field

to

be

displayed

on

the

criteria

panel.

type

(Required)

The

criteria

field

type.

Supported

values

are

hidden,

text,

select-one,

select-multiple,

checkbox,

radio,

and

calendar.

name

(Optional)

The

HTML

form

input

name

to

represent

this

criteria

field.

For

example,

productNumber

value

(Optional)

The

HTML

form

input

value

for

this

criteria

field.

For

example,

sports0001

size

The

HTML

form

input

size

for

this

criteria

field.This

field

is

valid

only

when

the

type

specified

is

text.

For

example,

50.

maxlength

(Optional)

The

HTML

form

input

maxlength

for

this

criteria

field.

This

field

is

valid

only

when

the

type

specified

is

text.

For

example,

50

resourceKey

(Optional)

The

resource

key

name

used

to

display

the

field

name

that

describes

the

criteria

field.

For

example,

productNumber

beanMethod

(Optional)

A

Java

method

name

in

the

databean

defined

in

a

<criteriaPanel>

element.

Teh

Tools

Framework

invokes

this

method,

and

expects

it

to

return

a

String

for

hidden

field

type,

and

Hashtable

for

field

types

select-one,

select-multi

and

radio.

For

example,

getMessage

<operatorBox></operatorBox>

A

drop-down

selection

box

to

represent

matching

operator.

This

applies

only

to

a

<field>

element.

name

(Required)

The

HTML

form

selection

box

name

to

represent

this

operator.

For

example,

productNumberOp

Chapter

9.

Search

dialogs

65

XML

Tag

Description

<operator/>

An

operator

entry

in

the

operator

drop-down

selection

box.

This

applies

only

to

an

<operatorBox>

element.

value

(Required)

The

HTML

form

select

option

value

for

this

operator.

For

example,

EQ

resourceKey

(Required)

The

resource

key

name

used

to

display

the

text

for

this

operator.

For

example,

exactMatch

<checkbox/>

A

checkbox

entry

field.

Only

applies

to

a<field>

element

if

its

field

type

is

checkbox

name

(Required)

The

HTML

form

checkbox

name

for

this

field.

For

example,

displayNum

value

(Required)

The

HTML

form

checkbox

value

for

this

field.

For

example,

20

resourceKey

(Required)

The

resource

key

name

used

to

display

the

text

for

this

checkbox.

For

example,

numToDisplay

<yearField/>

4-digit

year

entry

field.

Only

applies

to

<field>

element

if

its

field

type

is

calendar

name

(Required)

The

HTML

form

input

name

for

this

year

field.

For

example,

startDateYear

<monthField/>

2-digit

month

entry

field.

Only

applies

to

<field>

element

if

its

field

type

is

calendar

name

(Required)

The

HTML

form

input

name

for

this

month

field.

For

example,

startDateMonth

66

XML

Tag

Description

<dayField/>

2-digit

day

entry

field.

Only

applies

to

<field>

element

if

its

field

type

is

calendar

name

(Required)

The

HTML

form

input

name

for

this

day

field.

For

example,

startDateDay

<resultPanel/>

Panel

to

define

the

search

result

page.

url

(Required)

The

URL

to

display

the

search

result

page.

For

example,

/webapp/wcs/tools/servlet/
NewDynamicListView?ActionXMLFile=samples.
sampleSearchResult&cmd=ResultList

target

(Optional)

The

target

frame

that

the

URL

should

be

displayed

on.

By

default,

it

is

the

dialog’s

CONTENTS

frame.

For

example,

mcccontent

navigationPanelXML

(Optional)

A

customized

XML

file

for

Search

Dialog’s

navigation

panel.

You

may

customize

buttons

and

actions

according

to

a

dialog’s

XML

file.

This

attribute

will

only

be

effective

if

the

default

target

frame

is

not

changed.

For

example,

samples.sampleSearchDialogRefine

.

The

following

is

a

sample

Search

Dialog

search

dialog

definition

XML

file:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

searchDialog

SYSTEM

"../common/SearchDialog.dtd">

<searchDialog

resourceBundle="samples.samplesNLS">

<criteriaPanel

databean="com.ibm.commerce.tools.test.SampleSearchCriteriaDataBean"

title="searchTitle"

description="searchDesc">

<jsFile

src="/wcs/javascript/tools/samples/sampleSearchDialog.js"/>

<jsMessage

name="invalidCharMsg"

resourceKey="invalidCharMsg"/>

<jsMessage

name="missingFieldMsg"

resourceKey="missingFieldMsg"/>

<field

type="hidden"

name="secret"

value="password"/>

<field

type="hidden"

name="messageFromServer"

beanMethod="getMessage"/>

<field

type="text"

name="productNumber"

resourceKey="productNumber"

size="50"

maxlength="50">

<operatorBox

name="productNumberFilter">

<operator

resourceKey="equals"

value="EQ"/>

<operator

resourceKey="greater"

value="GT"/>

<operator

resourceKey="less"

value="LT"/>

</operatorBox>

</field>

<field

type="select-multiple"

name="manufacturer"

resourceKey="manufacturer"

beanMethod="getManufacturer"/>

<field

type="text"

name="shortDesc"

resourceKey="shortDesc"

size="50">

<operatorBox

name="shortDescOperator">

<operator

resourceKey="exactMatch"

value="EQ"/>

<operator

resourceKey="containsPhrase"

value="LIKE"/>

</operatorBox>

</field>

Chapter

9.

Search

dialogs

67

<field

type="select-one"

name="store"

resourceKey="store"

beanMethod="getStore"/>

<field

type="radio"

name="displayNum"

resourceKey="displayNum"

beanMethod="getDisplayNum"/>

<field

type="checkbox">

<checkbox

name="includeBundle"

value="true"

resourceKey="includeBundle"/>

<checkbox

name="includePackage"

value="true"

resourceKey="includePackage"/>

</field>

<field

type="calendar"

resourceKey="startDate">

<yearField

name="startDateYear"/>

<monthField

name="startDateMonth"/>

<dayField

name="startDateDay"/>

</field>

<field

type="calendar"

resourceKey="endDate">

<yearField

name="endDateYear"/>

<monthField

name="endDateMonth"/>

<dayField

name="endDateDay"/>

</field>

</criteriaPanel>

<resultPanel

url="/webapp/wcs/tools/servlet/tools/samples/DumpRequest.jsp"

target="mcccontent"

navigationPanelXMLFile="samples.sampleSearchDialogRefine"/>

</searchDialog>

2.

Register

the

search

dialog

definition

XML

file

in

/WC_installdir/xml/tools/componentname/resources.xml,

where

componentname

is

the

component

to

which

the

search

dialog

belongs.

This

XML

file

created

in

step

1

must

be

registered

here

in

order

to

function.

Create

an

entry

similar

as

below:

<XML

name="sampleSearchDialog"

file="<subdirectory>/sampleSearchDialog.xml"

/>

The

file

resources.xml

is

referenced

in

instancename.xml,

so

you

must

also

update

instancename.xml

for

new

resource.xml

files..

3.

Create

or

update

any

resource

bundle

(properties)

files

that

might

have

defined

in

the

XML

file,

and

place

this

resource

bundle

file

in

/WC_installdir/properties/com/ibm/commerce
/tools/componentname/properties,

where

componentname

is

the

component

to

which

the

search

dialog

belongs.

Register

this

resource

bundle

file

in

/WC_installdir/xml/tools/
componentname/resources.xml,

if

it

is

not

already

registered.

Create

an

entry

similar

as

below:

<resourceBundle

name="samplesNLS"

bundle="com.ibm.commerce.tools.samples.properties.samplesNLS"/>

4.

If

attribute

″beanMethod″

is

defined

in

the

XML

file,

then

write

a

criteria

data

bean

implementing

com.ibm.commerce.tools.common.ui.SearchDialogCriteriaBean.

This

data

bean

is

used

to

populate

the

displaying

text

for

the

criteria

panel.

For

<jsMessage>,

String

type

is

expected

to

be

returned

from

the

beanMethod.

For

field

type

of

″select-one″,

″select-multi″

and

″radio″,

Hashtable

type

is

expected

to

be

returned.

Note:

SearchDialogCriteriaBean

is

extended

from

SmartDataBean,

that

means

at

least

getCommandContext(),

setCommandContext(),

getRequestProperties(),

setRequestProperties(),

and

populate()

methods

need

to

be

implemented.
Below

shows

an

example

of

an

implementation

of

SearchDialogCriteriaBean:

package

com.ibm.commerce.tools.test;

import

java.util.Hashtable;

import

com.ibm.commerce.command.CommandContext;

68

import

com.ibm.commerce.datatype.TypedProperty;

import

com.ibm.commerce.tools.common.ui.SearchDialogCriteriaBean;

public

class

SampleSearchCriteriaDataBean

implements

SearchDialogCriteriaBean

{

protected

CommandContext

commandContext

=

null;

protected

TypedProperty

requestProperties

=

null;

public

CommandContext

getCommandContext()

{

return

commandContext;

}

public

void

setCommandContext(CommandContext

cc)

{

commandContext

=

cc;

}

public

TypedProperty

getRequestProperties()

{

return

requestProperties;

}

public

void

setRequestProperties(TypedProperty

reqProp)

{

requestProperties

=

reqProp;

}

public

void

populate()

{

}

public

Hashtable

getManufacturer()

{

Hashtable

hash

=

new

Hashtable();

hash.put("IBM",

"IBM");

return

hash;

}

public

Hashtable

getDisplayNum()

{

Hashtable

hash

=

new

Hashtable();

hash.put("10",

"10");

hash.put("20",

"20");

hash.put("30",

"30");

return

hash;

}

public

Hashtable

getStore()

{

Hashtable

hash

=

new

Hashtable();

hash.put("demoStore",

"Demo

Store");

hash.put("protomartB2B",

"protomart

B2B");

hash.put("protomartB2C",

"protomart

B2C");

return

hash;

}

public

String

getMessage()

{

return

"message

from

the

server";

}

}

5.

Write

a

JavaScript

file

for

the

criteria

panel.

In

this

JavaScript

file

(as

specified

in

the

XML

file

from

step

1),

the

following

functions

should

be

implemented:

Function

Name

Return

Type

Description

userSavePanelData()

N/A

All

the

criteria

input

fields

will

be

saved

automatically.

If

additional

data

are

required.

programmers

may

save

their

data

in

this

function.

Note

that

this

function

is

not

mandatory

to

implement.

userValidatePanelData()

boolean

Programmers

may

validate

all

the

required

criteria

fields

in

this

function.

If

it

is

valid,

return

a

true

value,

otherwise

return

a

false

value.

6.

Write

context

sensitive

help

files.

For

more

information

see

″Adding

context-sensitive

help″

in

chapter

7.

Chapter

9.

Search

dialogs

69

7.

Write

a

JSP

(normally,

it

would

be

a

Dynamic

List)

and

necessary

data

beans

to

handle

the

criteria

fields

passed

by

Tools

Framework.

There

are

two

ways

the

programmers

can

retrieve

the

criteria

fields.

One

is

from

the

request

parameters,

and

the

other

way

is

through

the

request

properties

object.

8.

Optionally

add

a

node

to

Tools

User

Interface

Center

menu

XML

file

(for

example,

/WC_installdir/xml/tools/common/CommerceAccelerator.xml)

for

the

newly

created

search

dialog.

Below

is

an

example

of

how

to

configure

to

launch

a

search

dialog

from

tools

user

interface

menu:

<node

name="sampleSearchDialog"

url="/webapp/wcs/tools/servlet/SearchDialogView?ActionXMLFile=

samples.sampleSearchDialog"/>

Navigation

Search

dialogs

present

users

with

one

or

more

navigation

options,

next,

previous,

finish,

or

cancel.

These

options

are

presented

as

buttons

in

the

navigation

frame

at

the

bottom

of

the

content

window.

If

included,

they

behave

according

to

the

following

guidelines:

Search

User

clicks

on

Search

button

to

perform

a

search

request.

1.

Check

if

function

userSavePanelData()

exists,

and

execute

it

if

it

does

exist.

2.

Execute

function

userValidatePanelData()

if

it

exists.

If

invalid

input

is

determined,

programmers

may

pop

up

an

alert

message

to

notify

the

user

in

this

function,

and

return

a

false

value.

Otherwise,

simply

return

a

true

value

at

the

end

of

the

function.

3.

If

false

value

is

returned,

criteria

panel

will

still

be

displayed

with

all

the

entered

input

fields

pre-populated.

If

true

value

is

returned,

user

will

be

redirected

to

the

result

panel.

Refine

User

clicks

on

Refine

button

to

go

back

to

the

criteria

panel.

When

the

user

is

brought

to

the

result

panel,

by

default,

the

user

has

an

option

to

click

on

the

Refine

button

to

go

back

to

the

criteria

panel

with

all

the

entered

criteria

fields

pre-populated.

Cancel

Displays

a

cancel

confirmation

dialog.

If

the

user

clicks

OK,

submitCancelHandler()

then

the

parent

frame’s

cancel

method

run.

Customizations

Result

Navigation

Buttons

By

default,

there

are

two

buttons,

Refine

and

Cancel,

on

the

result

navigation

panel.

These

buttons

and

their

actions

can

be

customized

by

creating

an

partial

dialog

XML

file.

Below

shows

an

example

of

a

customized

XML

file

for

the

result

navigation

panel:

<?xml

version="1.0"?>

<dialog

resourceBundle="samples.samplesNLS"

windowTitle=""

finishConfirmation=""

cancelConfirmation="cancelConfirmation"

finishURL="DialogNavigation">

<button

name="custom"

action="customAction()"/>

<button

name="refine"

action="refineAction()"/>

</dialog>

70

Result

Navigation

Panel

By

default,

there

is

a

navigation

panel

at

the

bottom

of

the

result

panel.

If

this

navigation

is

not

required,

it

can

be

turned

off

by

simply

assigning

value

″mcccontent″

to

attribute

target

of

<resultPanel>

in

the

XML

file

as

below:

<resultPanel

url="/webapp/wcs/tools/servlet/tools/samples/DumpRequest.jsp"

target="mcccontent"

navigationPanelXMLFile="samples.sampleSearchDialogRefine"/>

Chapter

9.

Search

dialogs

71

72

Part

2.

Element

chaining

and

wizard

branching

This

section

describes

element

chaining

and

wizard

branching,

two

methods

you

can

use

to

further

customize

your

Tools

User

Interface

elements.

©

Copyright

IBM

Corp.

2002,

2004

73

74

Chapter

10.

Element

chaining

Element

chaining

refers

to

how

wizard,

notebook,

and

dialog

container

elements

can

be

linked

together

to

accomplish

one

task.

Information

about

element

chaining

follows:

v

There

is

no

limit

on

the

number

of

container

elements

that

can

be

chained

together.

v

Users

can

go

back

to

any

previous

container

element

by

clicking

on

that

item

in

the

page

history.

v

To

return

to

the

previous

container

element,

call

the

top.goBack()

function

from

the

WebSphere

Commerce

Accelerator’s

top

frame.

This

normally

happens

when

a

user

clicks

the

OK

or

Finish

button

in

the

chained

container

element.

v

After

returning

from

the

chained

container

element,

the

originating

container

element

displays

the

same

panel

from

which

it

launched

the

chained

container

element.

For

example,

if

a

user

is

in

the

second

panel

of

a

wizard

and

chained

container

element

launches,

the

second

panel

of

the

originating

wizard

displays

after

the

user

completes

the

chained

container

element.

v

Optionally,

a

container

element

can

save

its

current

state,

without

going

back

to

the

server,

before

it

calls

another

one.

For

example,

a

user

entering

information

in

the

second

panel

of

an

unfinished

wizard

can

go

to

another

wizard,

come

back,

and

find

all

of

their

information

still

there.

v

Optionally,

the

chained

container

element

can

return

a

variable

to

the

originating

container

element.

This

is

frequently

the

hashtable

value,

model.

This

name

is

used

across

all

Tools

User

Interface

elements.

Creating

an

element

chain

This

example

uses

wizards,

however,

it

is

possible

to

chain

any

of

wizards,

dialogs,

and

notebooks

together.

To

chain

two

wizards

together,

there

are

three

stages

for

which

you

must

add

code:

1.

In

the

originating

wizard,

immediately

before

launching

the

chained

wizard

2.

In

the

chained

wizard,

immediately

before

returning

to

the

originating

wizard

3.

Immediately

after

returning

to

the

originating

wizard

In

the

originating

wizard,

immediately

before

launching

the

chained

wizard

1.

If

necessary,

save

data

from

the

first

wizard:

a.

If

the

first

container

element

needs

to

save

its

current

state

information,

call

the

following

JavaScript

function:

top.saveModel(parent.model);

b.

To

save

the

current

panel

name,

call

the

following

JavaScript

function:

top.setReturningPanel(String

panelName);

If

no

panel

is

specified,

the

first

panel

is

used

as

the

default.

This

function

sets

a

URL

parameter

called

startingPage,

used

to

load

the

wizard

starting

from

a

user

specified

panel.

This

parameter

is

used

to

construct

a

link,

which

when

clicked

from

the

page

history,

leads

to

the

correct

panel

in

a

wizard.

c.

If

you

have

other

data

to

save,

use

the

following

JavaScript

function:

top.saveData(Object

data,

String

slotName);

Where

data

is

the

JavaScript

variable

you

want

to

save,

slotName

is

a

unique

name

needed

later

as

a

key

to

retrieve

the

data.

slotName

works

as

a

hash

©

Copyright

IBM

Corp.

2002,

2004

75

key

and

it’s

value

is

overwritten

without

warning.

Caution:

The

slot

name

model

is

a

reserved

keyword

and

should

not

be

used.

If

it

is

used,

the

information

saved

using

top.saveModel()

is

overwritten.
2.

Launch

the

second

wizard:

To

launch

the

second

wizard,

call

the

following

JavaScript

function:

top.setContent(String

text,

String

link,

Boolean

value,

Object

parameter);

where

text

is

the

text

displayed

in

the

page

history,

for

example,

the

title

of

the

second

wizard.

The

value

of

link

is

the

second

wizard’s

launching

URL.

If

value

is

true,

this

adds

a

new

item

to

the

page

history.

parameter

is

used

only

if

your

link

contains

national-language

characters,

which

may

become

corrupt

using

direct

URL

location

replacement.

If

this

parameter

is

used,

the

tools

framework

dynamically

generates

a

form

based

on

this

parameter

object

and

submits

the

URL

parameters

in

name-value-pair

format.

In

the

chained

wizard,

immediately

before

returning

to

the

originating

wizard

1.

Optionally,

call

the

following

JavaScript

function

to

return

a

JavaScript

value

(normally

the

model

of

the

wizard)

to

the

first

wizard.

This

data

is

passed

under

the

first

wizard’s

model

object.

top.sendBackData(Object

data,

String

slotName);

where

slotName

is

a

unique

name

used

to

retrieve

the

data

from

the

first

wizard.

To

retrieve

data

from

previous

wizards

in

the

chain,

use

the

following

functions:

top.getModel(int

stepsBack);

top.getData(String

slotName,

int

stepsBack);

Where

stepsBack

is

the

number

of

wizards

previous

to

the

current

one

which

contain

the

data

being

requested

(0

for

the

current

wizard,

1

for

the

previous

wizard.)

This

parameter

is

optional,

and

the

default

value

is

0.

2.

To

return

to

the

first

wizard,

call

the

following

JavaScript

function:

top.goBack(int

stepsBack);

The

stepsBack

parameter

is

optional,

and

the

default

value

is

1.

This

function

is

equivalent

to

clicking

the

previous

item

on

the

page

history.

Immediately

after

returning

to

the

originating

wizard

The

tools

framework

automatically

refreshes

the

model

variable

to

your

saved

state,

set

in

stage

1,

part

a

and

go

to

the

returning

panel,

set

in

step

1

part

b.

Optionally,

you

can

call

the

following

JavaScript

function

to

get

the

″model″

data

sent

back

from

the

2nd

wizard,

set

in

stage

2,

part

a.

top.getData(String

slotName);

where

slotName

is

the

unique

name

where

you

send

back

the

data

in

stage

2,

part

a.

76

Chapter

11.

Wizard

branching

Wizard

branching

refers

to

how

wizard

panel

flow

can

be

altered

depending

on

data

entered

in

previous

panels.

Branching

is

controlled

through

the

wizard’s

XML

file

and

JavaScript

in

the

panel

JSP

pages.

Each

<panel>

tag

in

the

XML

file

has

two

attributes:

hasBranch

and

hasNext.

To

indicate

that

a

panel

is

a

branching

point,

set

hasBranch=YES.

Within

that

panel’s

JSP

page,

indicate

which

branch

to

follow

by

using

the

command

parent.setNextBranch(String

branch_panel_name),

where

branch_panel_name

is

the

name

of

the

next

panel

to

display.

To

indicate

that

a

panel

is

the

end

of

a

branch,

set

hasNext=NO.

Wizard

branching

example

The

following

example

describes

the

creation

of

branching

wizards.

The

diagram

describes

the

panel

flow.

Depending

on

data

from

the

user,

panel

P1

may

be

followed

by

P2,

P3,

or

P4.

Similarly,

panel

P4

may

be

followed

by

P5

or

P6.

The

table

of

contents

displays

the

panels

as

the

user

traverses

the

branches.

In

the

above

example,

only

P0

and

P1

display

initially.

After

the

P4

branch

is

selected

P0,

P1,

and

P4

appear.

Later,

if

no

setNextBranch()

is

called

in

P4,

P5

is

selected

as

the

default

next

branch

path.

Notice

that

P5

does

not

have

the

″hasNext=NO″

tag,

so

the

wizard

does

not

stop

there,

it

goes

on

and

stops

at

P6,

the

last

panel.

P0 P1 P2

P3

P4 P5

P6

The

following

code

sample

would

appear

in

the

wizard

XML

file:

<panel

name="P0"

url="BranchDiscountWelcomeView"

helpKey="MC.discount.type.Help">

<panel

name="P1"

url="BranchDiscountWizTypeView"

helpKey="MC.discount.type.Help"hasBranch="YES">

//this

is

a

branching

panel

<panel

name="P2"

url="BranchDiscountWizOrderView"helpKey="MC.discount.order.Help"

hasTab="NO"

hasNext="NO">

©

Copyright

IBM

Corp.

2002,

2004

77

<panel

name="P3"url="BranchDiscountWizPrdView"

helpKey="MC.discount.product.Help"

hasTab="NO"hasNext="NO">

<panel

name="P4"

url="BranchDiscountWizCusTypeView"

helpKey="MC.discount.customtype.Help"hasTab="NO"

hasBranch="YES">

//another

branching

panel

<panel

name="P5"url="BranchDiscountWizCusView"

helpKey="MC.discount.custom.Help"

hasTab="NO">

<panel

name="P6"

url="BranchDiscountWizRangesView"

helpKey="MC.discount.range.Help"hasTab="NO"

hasFinish="YES">

78

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

©

Copyright

IBM

Corp.

2002,

2004

79

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Canada

Ltd.

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Trademarks

The

IBM

logo

and

the

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

400

AIX

IBM

iSeries

OS/400

WebSphere

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft

and

Windows

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Other

company,

product

and

service

names

may

be

trademarks

or

service

marks

of

others.

80

����

Printed

in

USA

	Contents
	About this book
	Document description
	Updates to this book
	Conventions used in this book
	Path variables
	Knowledge requirements

	Part 1. Customizing the WebSphere Commerce Accelerator and other Tools User Interface Centers reference
	Chapter 1. Wizards
	Overview
	Detailed steps
	Navigation
	Customizations
	JavaScript functions

	Chapter 2. Notebooks
	Overview
	Detailed steps
	Navigation
	Customizations
	Error code handling

	JavaScript functions

	Chapter 3. Dialogs
	Overview
	Detailed steps
	Navigation
	Customizations
	JavaScript functions

	Chapter 4. Dynamic lists
	Overview
	Detailed steps
	Multiple Framesets
	Filter enhancement
	JavaScript functions

	Chapter 5. Calendars
	Overview
	Detailed steps
	JavaScript functions

	Chapter 6. Slosh buckets
	Overview
	Detailed steps
	Customizations
	JavaScript functions

	Chapter 7. Tools User Interface Center
	Integrating tools into a Tools User Interface Center
	Adding context-sensitive help
	JavaScript functions

	Chapter 8. Dynamic tree
	Workflow
	Overview
	Detailed steps
	Additional features
	JavaScript functions

	Chapter 9. Search dialogs
	Overview
	Detailed steps
	Navigation
	Customizations

	Part 2. Element chaining and wizard branching
	Chapter 10. Element chaining
	Creating an element chain

	Chapter 11. Wizard branching
	Wizard branching example

	Notices
	Trademarks

