
IBM

WebSphere

Commerce

WebSphere

Commerce

Accelerator

Reporting

Framework

Customization

Guide

Version

5.5

���

IBM

WebSphere

Commerce

WebSphere

Commerce

Accelerator

Reporting

Framework

Customization

Guide

Version

5.5

���

Note:

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

19.

First

Edition,

October

2003

This

edition

applies

to

IBM

WebSphere

Commerce

Business

Edition

Version

5.5,

IBM

WebSphere

Commerce

Professional

Edition

Version

5.5,

and

IBM

WebSphere

Commerce

-

Express

Version

5.5

(product

number

5724-A18),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

IBM

welcomes

your

comments.

You

can

send

your

comments

by

using

the

online

IBM

WebSphere

Commerce

documentation

feedback

form,

available

at

the

following

URL:

www.ibm.com/software/webservers/commerce/rcf.html

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

www.ibm.com/software/commerce/rcf.html

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. v

Document

description

.

.

.

.

.

.

.

.

.

.

. v

Updates

to

this

book

.

.

.

.

.

.

.

.

.

.

. v

Conventions

used

in

this

book

.

.

.

.

.

.

.

. v

Path

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Knowledge

requirements

.

.

.

.

.

.

.

.

.

. vi

Part

1.

Customizing

the

WebSphere

Commerce

Accelerator

Reporting

Framework

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Overview

of

the

Reporting

framework

.

. 3

Customizing

the

reporting

framework

.

.

.

.

.

. 3

Defining

the

report

in

an

XML

file

.

.

.

.

.

. 3

Create

the

JSP

file

from

which

the

report

is

requested

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Reporting

framework

commands

.

.

.

.

.

. 8

Reporting

framework

object

model

.

.

.

.

.

. 8

Reusable

components

for

Reporting

JSP

files

.

.

. 9

Using

helpers

for

report

input

and

output

pages

13

Write

a

report

utilizing

reusable

JSP

page

components

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Part

2.

Appendixes

.

.

.

.

.

.

.

.

. 17

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

©

Copyright

IBM

Corp.

2003

iii

iv

About

this

book

Document

description

This

document

serves

as

an

overview

of

the

concepts

involved

with

customizing

the

WebSphere®

Commerce

Accelerator.

It

addresses

the

high

level

architecture

of

how

the

user

interface

interacts

with

the

business

users,

and

the

WebSphere

Commerce

Server.

Supplementary

documents,

released

as

they

become

available,

build

upon

the

knowledge

developed

in

this

document,

and

provide

the

detailed

information

required

to

customize

the

particular

components

of

the

WebSphere

Commerce

Accelerator.

They

also

act

as

a

resource,

listing

the

components

and

assets

upon

which

the

various

components

depend.

Updates

to

this

book

The

latest

version

of

this

book,

is

available

as

a

PDF

file

from

the

IBM®

WebSphere

Commerce

technical

library

Web

site:

www.ibm.com/software/commerce/library/

Conventions

used

in

this

book

This

book

uses

the

following

highlighting

conventions:

Boldface

type

Indicates

commands

or

graphical

user

interface

(GUI)

controls

such

as

names

of

fields,

icons,

or

menu

choices.

Monospace

type

Indicates

examples

of

text

you

enter

exactly

as

shown,

file

names,

and

directory

paths

and

names.

Italic

type

Used

to

emphasize

words.

Italics

also

indicate

names

for

which

you

must

substitute

the

appropriate

values

for

your

system.

This

icon

marks

a

Tip

-

additional

information

that

can

help

you

complete

a

task.

Important

These

sections

highlight

especially

important

information.

Attention

These

sections

highlight

information

intended

to

protect

your

data.

Path

variables

This

guide

uses

the

following

variables

to

represent

directory

paths:

WC_installdir

This

is

the

installation

directory

for

WebSphere

Commerce.

The

following

are

the

default

installation

directories

for

WebSphere

Commerce

on

various

operating

systems:

©

Copyright

IBM

Corp.

2003

v

AIX /usr/WebSphere/CommerceServer55

400

/QIBM/ProdData/CommerceServer55

Linux

/opt/WebSphere/CommerceServer55

Solaris

/opt/WebSphere/CommerceServer55

Windows

C:\Program

Files\WebSphere\CommerceServer55

WAS_installdir

This

is

the

installation

directory

for

WebSphere

Application

Server.

The

following

are

the

default

installation

directories

for

WebSphere

Application

Server

on

various

operating

systems:

AIX

/usr/WebSphere/AppServer

400

/QIBM/ProdData/WebAS5

Linux

/opt/WebSphere/AppServer

Solaris

/opt/WebSphere/AppServer

Windows

C:\Program

Files\WebSphere\AppServer

WCDE_installdir

This

is

the

installation

directory

for

the

WebSphere

Commerce

-

Express

development

environment.

The

default

installation

directory

for

the

WebSphere

Commerce

-

Express

development

environment

is

C:\WebSphere\CommerceDev55.

Knowledge

requirements

To

customize

the

WebSphere

Commerce

Accelerator,

you

require

knowledge

of

the

following:

v

Blaze

Advisor

rule

technology

v

HTML,

JavaScript™,

and

XML

v

Structured

Query

Language

(SQL)

v

Java™

Programming

v

JavaServer

Pages

technology

v

WebSphere

Commerce

Studio

or

WebSphere

Commerce

-

Express

Developer

Edition

Please

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorialsfor

more

information

on

customizing

WebSphere

Commerce.

This

book

is

available

from

the

following

Web

site:

www.ibm.com/software/commerce/library

vi

Part

1.

Customizing

the

WebSphere

Commerce

Accelerator

Reporting

Framework

This

document

describes

how

to

customize

the

WebSphere

Commerce

Accelerator

reporting

framework.

By

providing

background

knowledge

about

the

design

decisions

for

the

reporting

framework,

this

book

teaches

you

how

to

approach

the

customization,

and

details

the

steps

required

for

customization.

©

Copyright

IBM

Corp.

2003

1

2

Overview

of

the

Reporting

framework

The

reporting

framework

provides

generic,

customizable

reporting

functionality

for

almost

any

aspect

of

your

site.

The

reports

are

accessible

by

any

of

the

roles

that

use

the

WebSphere

Commerce

Accelerator.

Access

for

a

particular

report

can

be

defined

and

limited

within

the

report.

WebSphere

Commerce

Accelerator

users

can

request

the

reports

at

any

time.

The

framework

generates

reports

using

data

contained

in

the

production

database,

and

displays

the

reports

in

real

time.

The

framework

consists

of

a

generic

controller

command,

a

data

bean,

and

a

generic

view

which

displays

the

result.

You

can

customize

the

framework

by

adding

valid

SQL

queries,

and

defining

JSP

files

used

to

request

and

display

the

generated

reports.

Customizing

the

reporting

framework

Reports

are

accessible

from

the

WebSphere

Commerce

Accelerator.

Consequently,

each

report

requires

a

number

of

associated

assets.

While

the

report

itself

consists

of

data

represented

in

a

tabular

format,

the

underlying

assets

consist

of

the

report

identifier,

an

SQL

query,

access

control

elements,

and

so

on.

The

report

request

launches

a

controller

command

on

the

server.

The

controller

command

calls

tasks

to

set

the

generic

view,

unless

the

report

specifies

a

particular

view.

The

command

also

sets

a

number

of

required

variables,

and

returns

this

data

to

populate

the

ReportDataBean

in

the

target

JSP

file.

Access

control

for

the

reports

is

set

on

the

views

which

request

(input)

and

display

(output)

the

report.

The

results

returned

from

the

database

are

stored

in

the

data

bean

as

a

vector

of

hashtable.

Finally,

the

JSP

file

displays

the

report.

If

the

report

is

empty,

the

JSP

file

displays

a

generic

text

string

instead.

Adding

a

new

report

requires

the

following

steps:

1.

Define

the

report

in

an

XML

file.

2.

Create

the

JSP

file

from

which

the

report

is

requested,

if

necessary.

3.

Create

the

JSP

file

to

display

the

report,

unless

the

generic

JSP

is

used.

Defining

the

report

in

an

XML

file

Individual

reports

are

defined

using

XML

files.

Each

report

has

a

corresponding

reportName.xml

file.

This

file

contains

all

of

the

information

necessary

to

generate

a

report.

The

reportname.xml

file

looks

similar

to

the

following

example

for

the

MyStoreOverviewReport:

<?xml

version="1.0"

standalone="yes"

?>

<Reporting>

<!--

owner="ownerName"

location="path_to_this_XML_file

"

-->

<!--

A

Collection

consists

of

SQLs

for

WCS

reporting

-->

<Report

reportName="MyStoreOverviewReport"

online="true">

<comment>store_overview,

yesterday,

all

measurements</comment>

<SQLvalue>

</SQLvalue>

<mergeOperation>1000000,1000001</mergeOperation>

<display>

<standardInfo>

<resource>reporting.ReportingString</resource>

<title></title>

<message>messageMyReport</message>

<columnTitles>CRITERIA,KEY,VALUE,CURRENCY,DATESTMP</columnTitles>

</standardInfo>

<userDefinedParameters>

</userDefinedParameters>

©

Copyright

IBM

Corp.

2003

3

</display>

</Report>

<Report

reportName="1000000"

online="true">

<comment>store_overview,

yesterday,

revenue</comment>

<SQLvalue>

select

{revenue}

as

criteria,

storeent_id

as

key,

sum(totalproduct+totalshipping+totaltax+totaltaxshipping)

as

value,

currency

as

currency,

0

as

datestmp

from

orders

where

$DB_DATE_GREATER_EQUAL_FUNC(lastupdate,{beginDate})$

and

$DB_DATE_LESS_EQUAL_FUNC(lastupdate,{endDate})$

and

status

in

(’C’,’M’,’S’)

and

storeent_id={storeent_id}

group

by

storeent_id,

currency

</SQLvalue>

<display>

<standardInfo>

<resource>reporting.ReportingString</resource>

<title></title>

<message>message1000000</message>

<columnTitles>CRITERIA,KEY,VALUE,CURRENCY,DATESTMP</columnTitles>

</standardInfo>

<userDefinedParameters>

</userDefinedParameters>

</display>

</Report>

<Report

reportName="1000001"

online="true">

<comment>store_overview,

yesterday,

number

of

orders</comment>

<SQLvalue>

select

{orders}

as

criteria,

storeent_id

as

key,

count(*)

as

value,

’-’

as

currency,

0

as

datestmp

from

orders

where

$DB_DATE_GREATER_EQUAL_FUNC(lastupdate,{beginDate})$

and

$DB_DATE_LESS_EQUAL_FUNC(lastupdate,{endDate})$

and

status

in

(’C’,’M’,’S’)

and

storeent_id={storeent_id}

group

by

storeent_id

</SQLvalue>

<display>

<standardInfo>

<resource>reporting.ReportingString</resource>

<title></title>

<message>message1000000</message>

<columnTitles>CRITERIA,KEY,VALUE,CURRENCY,DATESTMP</columnTitles>

</standardInfo>

<userDefinedParameters>

</userDefinedParameters>

</display>

</Report>

</Reporting>

To

create

a

new

report,

you

must

create

an

XML

file

similar

to

the

example

above.

For

a

detailed

explanation

of

each

XML

element,

refer

to

the

section

below

entitled

“Valid

XML

elements.”

Valid

XML

elements

Define

reports

by

using

the

following

XML

elements:

<Reporting></Reporting>

This

is

the

root

element.

<Report></Report>

This

required

element

defines

a

particular

report.

You

can

define

multiple

reports

in

a

single

XML

file

by

including

more

than

one

<Report>

element.

This

element

has

two

required

attributes:

ReportName

A

string

defining

the

unique

name

for

the

report.

online

A

boolean

value

which

specifies

whether

the

report

is

available

in

real

time.

Currently,

true

is

the

only

supported

value.

<comment></comment>

An

optional

element

in

which

you

can

describe

the

report.

This

string

does

not

require

translation.

This

element

can

only

be

defined

within

an

existing

<Report>

element.

4

<SQLvalue></SQLvalue>

A

required

element

which

defines

the

SQL

query

used

to

generate

the

report.

Although

it

is

required,

this

element

can

be

empty.

This

element

can

only

be

defined

within

an

existing

<Report>

element.

<mergeOperation></mergeOperation>

An

optional

element

which

allows

you

to

combine

multiple

SQL

queries

into

one

report.

It

contains

a

list

of

comma-delineated

reportNames

pointing

to

the

reportName

attributes

of

other

<Report>

elements.

All

of

the

SQL

queries

in

the

referenced

reports

must

return

the

same

number

of

columns,

and

use

the

same

column

names

which

identify

the

keys

of

the

hashtable.

Each

SQL

query

is

independent

of

the

other

queries.

Each

SQL

query

produces

its

own

vector

of

hashtable,

and

before

presentation,

these

vectors

are

appended

to

each

other

to

form

a

single

report.

The

Store

Overview

report

example

in

the

above

section

shows

the

use

of

the

<mergeOperation>

element.

The

first

row

of

the

final

report

comes

from

one

SQL

query,

and

the

second

row

comes

from

a

subsequent

query.

This

element

can

only

be

defined

within

an

existing

<Report>

element.

<extended_object_class></extended_object_class>

An

optional

element

which

contains

a

Java

class

name

used

to

create

an

SQL

statement

by

using

an

extended

Java

class.

The

class

generates

a

report,

and

then

sends

the

data

back

to

the

reporting

control

center.

Use

this

element

to

create

a

recursive

report.

This

element

can

only

be

defined

within

an

existing

<Report>

element.

<display></display>

An

optional

element

used

to

define

the

parameters

used

in

the

display

of

the

result.

This

element

can

only

be

defined

within

an

existing

<Report>

element.

<standardInfo></standardInfo>

A

required

element

used

to

group

elements

together

which

are

accessible

through

getters

in

the

ReportDataBean.

These

elements

are

basic

elements

to

most

reports.

This

element

can

only

be

defined

within

an

existing

<display>

element.

<resourceBundle></resourceBundle>

A

required

element

used

to

specify

the

properties

file

to

be

used

in

for

the

report.

The

value

must

also

be

referenced

in

the

reports/resources.xml

file.

This

element

can

only

be

defined

within

an

existing

<standardInfo>

element.

<title></title>

A

required

element

used

to

specify

the

title

of

the

report.

The

value

must

be

a

key

in

the

properties

file.

This

element

can

only

be

defined

within

an

existing

<standardInfo>

element.

<message></message>

A

required

element

used

to

display

a

message

related

to

the

report.

For

instance,

this

can

be

used

to

provide

a

description

for

the

report.

The

value

must

be

a

key

in

the

properties

file.

This

element

can

only

be

defined

within

an

existing

<standardInfo>

element.

<columnTitles></columnTitles>

A

required

element

used

to

define

the

column

titles.

It

contains

a

list

of

comma-delineated

names.

The

names

must

be

keys

defined

in

the

properties

file.

If

the

key

cannot

be

found

in

the

properties

file

then

the

Overview

of

the

Reporting

framework

5

|
|
|
|
|
|

key

provided

in

the

element

is

used

as

the

column

title.

This

element

can

only

be

defined

within

an

existing

<standardInfo>

element.

<userDefinedParameters></userDefinedParameters>

An

optional

element

used

to

define

custom

elements

in

the

reporting

framework.

The

reporting

framework

expects

to

see

elements

of

the

form:

<element1>value1</element1>

<element2>value2</element2>

The

ReportDataBean

provides

a

getter

method

which

returns

a

hashtable

of

the

above

elements

to

be

used

in

the

customized

display

JSP.

This

element

can

only

be

defined

within

an

existing

<display>

element.

Note:

While

elements

contained

within

the

<display>

element

are

listed

as

required,

this

is

only

true

if

the

optional

display

element

is

defined.

Variables

in

SQL

queries

When

defining

variables

in

the

reportName.xml

file,

the

variable

must

be

contained

within

curly

braces

({variableName}).

This

indicates

to

the

reporting

framework

that

the

value

is

a

client

variable,

and

must

be

obtained

from

the

client

hashtable.

In

the

sample

XML

file

presented

above,

{revenue},

{beginDate},

{endDate},

{storeent_id},

and

{orders}

are

all

client

variables.

Create

the

JSP

file

from

which

the

report

is

requested

Depending

on

the

amount

of

information

required

to

generate

the

report,

you

must

decide

whether

to

use

either

a

dialog

or

a

Wizard

to

gather

the

required

data.

Whichever

element

is

appropriate,

the

JSP

must

include

the

savePanelData

JavaScript

function:

function

savePanelData()

{

var

reportInputData

=

new

Object();

reportInputData.SQLid

=

"the

requested

report

name"

;

reportInputData.reportXML

=

"some

file";

reportInputData.variable1

=

"some

value

1";

reportInputData.variable2

=

"some

value

2"

;

.

.

.

reportInputData.variableN

=

"some

value

N";

reportInputData.varProperties

=

"a

list

of

variable

separated

by

a

comma";

parent.put("reportInputData",

reportInputData);

//

The

section

below

can

be

used

to

indicate

a

different

View

to

be

used

//

var

reportResultPage

=

new

Object();

//

reportResultPage.cmd

=

"ASpecificDisplayReportView";

//

parent.put("reportResultPage",reportResultPage);

return

true;

}

The

references

to

reportInputData

and

reportResultPage

are

required

to

pass

the

parameters

to

the

controller

command.

The

SQLid

and

reportXML

variables

are

also

required.

The

variable1

through

variableN,

and

varProperties

are

optional.

In

the

example

variable1

through

variableN

represent

the

variables

used

in

the

SQL

query.

For

example,

variable1

and

variable2

could

be

replaced

by

beginDate

and

endDate.

Thus

the

following

code

would

be

present

inside

the

savePanelData()

function:

reportInputData.begindate

=

"

some

value";

reportInputData.enddate

=

"

some

value";

6

The

varProperties

variable

lists

variables

which

obtain

their

values

from

a

properties

file.

For

example,

it

might

look

similar

to

the

following:

reportInputData.varProperties

=

"revenue,orders,pages,customers,visits";

If

the

object

reportResultPage

is

not

referenced

in

the

JSP,

then

the

controller

command

sets

it

to

use

the

generic

view

provided

by

the

reporting

framework

to

display

the

report.

By

setting

reportResultPage.cmd,

you

have

the

ability

to

specify

which

view

to

use.

The

code

sample

below

shows

an

example

of

a

JSP

file

used

to

gather

input

data

for

a

report:

<!--

==

Licensed

Materials

-

Property

of

IBM

5724-A18

(c)

Copyright

IBM

Corp.

2001

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

OrderSummaryReportInputView.jsp

===-->

<!DOCTYPE

HTML

PUBLIC

"-//W3C//DTD

HTML

4.0//EN">

<%@page

import="java.util.*"

%>

<%@page

import="com.ibm.commerce.tools.util.*"

%>

<%@page

import="com.ibm.commerce.tools.xml.*"

%>

<%@include

file="common.jsp"

%>

<%@include

file="ReportStartDateEndDateHelper.jsp"

%>

<%@include

file="ReportFrameworkHelper.jsp"

%>

<HTML>

<HEAD>

<%=fHeader%>

<TITLE><%=reportsRB.get("OrderSummaryReportInputViewTitle")%></TITLE>

<SCRIPT

SRC="/wcs/javaScript/tools/common/Util.js"></SCRIPT>

<SCRIPT

SRC="/wcs/javaScript/tools/common/DateUtil.js"></SCRIPT>

<SCRIPT

SRC="/wcs/javaScript/tools/common/SwapList.js"></SCRIPT>

<SCRIPT

SRC="/wcs/javascript/tools/reporting/ReportHelpers.js"></SCRIPT>

<SCRIPT>

//

//

Call

the

initialize

routines

for

the

various

elements

of

the

page

//

function

initializeValues()

{

onLoadStartDateEndDate("enquiryPeriod");

if

(parent.setContentFrameLoaded)

parent.setContentFrameLoaded(true);

}

//

//

Call

the

save

routines

for

the

various

elements

of

the

page

//

function

savePanelData()

{

saveStartDateEndDate("enquiryPeriod");

///

//

Specify

the

report

framework

particulars

///

setReportFrameworkOutputView("DialogView");

setReportFrameworkParameter("XMLFile","reporting.OrderSummaryReportOutputDialog");

setReportFrameworkReportXML("reporting.OrderSummaryReport");

setReportFrameworkReportName("OrderSummaryReport");

///

//

Specify

the

report

specific

parameters

and

save

///

setReportFrameworkParameter("StartDate",

returnStartDateAsJavaTimestamp("enquiryPeriod"));

setReportFrameworkParameter("EndDate",

returnEndDateAsJavaTimestamp("enquiryPeriod"));

saveReportFramework();

return

true;

}

//

//

Call

the

validate

routines

for

the

various

elements

of

the

page

//

Overview

of

the

Reporting

framework

7

function

validatePanelData()

{

if

(validateStartDateEndDate("enquiryPeriod")

==

false)

return

false;

return

true;

}

</SCRIPT>

</HEAD>

<BODY

ONLOAD="initializeValues()"

CLASS=content>

<H1><%=reportsRB.get("OrderSummaryReportInputViewTitle")

%></H1>

<i><%=reportsRB.get("OrderSummaryReportDescription")%></i>

<p>

<DIV

ID=pageBody

STYLE="display:

block;

margin-left:

20">

<%=generateStartDateEndDate("enquiryPeriod",

reportsRB,

null)%>

</DIV>

</BODY>

</HTML>

Reporting

framework

commands

The

reporting

framework

uses

the

following

commands

shipped

with

WebSphere

Commerce:

View

Commands

Table

1.

View

commands

used

by

the

reporting

framework

View

Name

JSP

file

ReportRedirectView

\tools\reporting\ReportRedirect.jsp

ReportGenericView

\tools\reporting\ReportGenericView.jsp

Controller

Commands

Table

2.

Controller

commands

used

by

the

reporting

framework

URL

Interface

GenericReportController

com.ibm.commerce.tools.reporting.command.

GenericReportControllerCmd

For

more

information,

refer

to

the

JavaDoc

help

shipped

with

WebSphere

Commerce

for

the

following

packages:

v

com.ibm.commerce.tools.reporting.commands

v

com.ibm.commerce.tools.reporting.framework

v

com.ibm.commerce.tools.reporting.reports

v

com.ibm.commerce.tools.reporting.util

Reporting

framework

object

model

You

must

use

the

ReportDataBean

when

creating

your

results

JSP

file.

The

populate()

method

contains

logic

to

support

real-time

reports.

The

following

methods

are

available

in

the

data

bean.

Table

3.

Methods

available

in

the

ReportDataBean

Method

name

Return

type

Description

populate()

void

runs

the

SQL

query

to

generate

the

report

getErrorCode()

int

getter

method

for

the

error

code

getNumberOfColumns()

int

getter

method

for

the

number

of

columns

in

the

report

8

Table

3.

Methods

available

in

the

ReportDataBean

(continued)

Method

name

Return

type

Description

getNumberOfRows()

int

getter

method

for

the

number

of

rows

in

the

report

getColumnTitlesName(int)

string

getter

method

for

the

(i+1)

column

name

getRow(i)

hashtable

getter

method

for

the

(i+1)

row

getValue(i.j)

string

getter

for

the

(i+1,j+1)

value

in

the

report

getValue(i,keyname)

string

getter

method

for

the

(i+1)

row

in

the

column

associated

with

the

keyname

getUserDefinedParameters()

hashtable

getter

method

for

the

hashtable

created

from

user

defined

parameters

in

reportName.xml

getEnv()

hashtable

getter

method

for

the

hashtable

containing

the

input

parameters

defined

in

the

input

JSP

file

For

more

information,

refer

to

the

API

reference

information

shipped

with

WebSphere

Commerce.

Reusable

components

for

Reporting

JSP

files

Report

JSP

files,

which

coordinate

with

the

Reporting

Framework,

provide

input

and

output

views

for

reports.

Each

report

has

an

input

view

and

an

output

view.

The

task

or

purpose

of

all

input

JSP

files

is

the

same.

They

share

the

same

look

and

feel;

they

request

different

input

criteria

yet

from

a

shared

input

widget

pool.

On

the

other

hand,

output

views

have

common

structure

and

formats.

Based

on

the

nature

of

reports,

all

reusable

parts

of

report

JSP

files

are

built

as

sharable

components.

Those

components

are

built

based

on

the

following

file

structure

and

naming

convention.

All

input,

and

output

report

JSP

files

utilize

Reports.properties

to

resolve

multilingual

issues.

Thus,

properties

files

map

all

titles

and

keys

used

in

the

XML

and

JSP

files.

Here

is

a

list

of

components

initially

build

for

WebSphere

Commerce

Accelerator

operational

reports:

ReportDaysWaitedHelper.jsp

Days

waited

text

entry

box

component

ReportFulfillmentHelper.jsp

Fulfillment

selection

component

ReportInventoryAdjustmentCodeHelper.jsp

Inventory

adjustment

code

selection

ReportProductHelper.jsp

Select

product

component

ReportStartDateEndDateHelper.jsp

A

pair

of

date

input

component

ReportVendorHelper.jsp

Vendor

selection

component

ReportFrameworkHelper.jsp

Common

functions

for

input

JSP

files

Overview

of

the

Reporting

framework

9

ReportOutputHelper.jsp

Output

page

formatter

component

ReportProductFindDialogView.jsp

Search

criteria

input

page

ProductSearch.jsp

Search

result

selection

page

ReportProductFindView

and

ReportProductSearchView

are

standalone

pages

used

by

ReportProductHelper.

Common.jsp

is

shared

by

both

report

input

and

output

pages.

ReportFrameworkHelper

is

shared

by

all

report

input

JSP

files,

and

ReportOutputHelper,

applies

to

all

report

output

pages.

All

other

JSP

files

are

input

components

and

can

be

dragged

onto

a

report

input

page

that

requires

the

input.

Each

report

requires

three

XML

files.

ReportNameReportDefinition.xml

defines

SQL

statements

that

are

used

for

the

report,

and

the

format

of

each

column

in

the

report.

For

how

to

write

ReportNameReportDefinition.xml,

refer

to

Report

Framework

Design

documentation.

ReportNameReportInputDialog.xml

is

a

dialog

definition.

It

has

the

following

syntax:

<?xml

version="1.0"?>

<dialog

resourceBundle="reporting.reportStrings"

windowTitle="ReportNameReportWindowTitle"

finishURL="GenericReportController"

>

<panel

name="report"

url="ReportNameReportInputView"

hasFinish="YES"

helpKey="CM.reports.ReportNameReportInputView.Help"

/>

</dialog>

Where

ReportName

should

be

replaced

with

report

name.

The

window

title

should

be

mapped

in

the

Reports.properties

file.

Thus,

reporting.reportStrings

is

defined

in

the

xml/tools/reporting/resources.xml

file,

and

it

points

to

properties/com/ibm/commerce/tools/reporting/properties/Reports.properties.

The

help

key

is

mapped

in

CMHelpMap.xml.

Finally,

the

URL

is

the

view

command

name

of

the

report

input

view

JSP.

ReportNameReportOutputDialog.xml

is

another

dialog

definition

that

specifies

the

report

output

properties.

It

takes

the

following

format:

<?xml

version="1.0"?>

<dialog

resourceBundle="reporting.reportStrings"

windowTitle="ReportNameReportOutputViewTitle"

finishURL=""

>

<panel

name="report"

url="ReportNameReportOutputView"

passAllParameters="true"

hasFinish="NO"

hasCancel="NO"

helpKey="CM.reporting.ReportNameReportOutputView.Help"

/>

<button

name="ReportOutputViewPrintTitle"

action="CONTENTS.printButton()"

/>

10

<button

name="ReportOutputViewOkTitle"

action="CONTENTS.okButton()"

/>

</dialog>

The

sample

output

view

above

has

two

customized

buttons,

Print,

and

OK.

Their

processing

functions

are

defined

in

the

output

view

JSP.

Again,

the

window’s

title

is

mapped

in

the

properties

file

while

the

help

key

is

mapped

in

the

XML

file.

The

design

is

based

on

the

reusable

component

concept.

An

input

view

JSP

file

is

composed

from

a

set

of

criteria

items,

depending

on

report

specification.

Since

criteria

items

may

appear

on

input

pages

of

different

reports,

each

criteria

item

is

built

as

a

reusable

component.

Applying

this

strategy

to

input

view

JSP

page

design

acheives

the

following:

1.

Easy

to

create

a

new

report

input

view.

2.

All

report

input

views

have

a

consistent

look

and

feel.

3.

Simplified

validation,

load,

and

save

functions

required

by

the

Tools

Framework,

because

these

functions

are

built

in

to

each

components.

The

output

view

JSP

file

is

also

built

on

reusable

helpers.

Helpers

provide

all

necessary

formatting

and

converting

based

on

data

type

and

language

preference.

Data

types

for

each

column

are

specified

in

a

user-defined

section

of

a

report

definition

XML.

The

coordination

of

helpers

and

XML

definition

makes

output

view

creation

simple

while

supporting

sophisticated

output

formats.

The

next

section

explains

how

to

use

reusable

components

to

create

report

input

view

and

output

view

JSP

files.

To

create

a

report

input

view

JSP

file

you

must

import

required

components

you

need

your

JSP

file.

The

following

components

are

available:

1.

DaysWaited

–

specifies

number

of

days

waited

until

today.

2.

FulfillmentCenter

–

facilitates

fulfillment

center

selection.

3.

InventoryAdjustment

–

facilitates

inventory

adjustment

code

selection.

4.

StartDateEndDate

–

specifies

a

period

of

time.

5.

Vendor

–

facilitates

vendor

selection.

You

may

create

other

components

as

long

as

they

meet

the

design

strategy.

We

will

discuss

creating

helpers

later.

All

these

components

provided

common

interface

for

JSP

page

developers:

1.

JSP

function:

String

generateInputComponent(String

containerName,

Hashtable

reportsRB,

String

label1

[,

String

label2])

This

function

creates

a

component

on

the

input

view.

The

InputComponent

is

the

name

of

a

component.

Each

component

has

a

containerName,

which

is

a

unique

name

that

identifies

the

JavaScript

object

for

this

component.

All

JavaScript

functions

will

refer

to

containerName.

All

components

require

a

reports

resource

bundle,

reportsRB

which

reflects

current

language

preferences.

Each

component

has

at

least

one

title

mapped

from

labels.

2.

JavaScript

functions:

function

onLoadInputComponent(containerName)

This

function

will

be

called

when

the

page

loads.

If

this

is

the

first

time

Overview

of

the

Reporting

framework

11

the

page

is

being

loaded

within

the

transaction

then

initialize

the

InputComponent

(from

the

data

bean).

If

this

page

is

being

reloaded

within

the

transaction

then

retrieve

the

saved

data.

function

validateInputComponent(containerName)

This

function

should

be

called

before

you

submit

a

request.

It

validates

this

component’s

input

data.

If

the

data

is

not

valid,

it

displays

a

dialog

window

with

appropriate

message

to

remind

the

user.

It

returns

″true″

if

the

data

is

valid,

or

″false″

if

any

part

of

the

data

is

not

valid.

function

saveInputComponent(containerName)

This

function

should

be

called

whenever

you

navigate

to

another

page

different

from

the

current

page.

It

will

save

the

current

input

data

of

the

component

for

later

retrieval

when

the

user

navigates

back

to

the

current

page.

function

visibleList(state)

Call

back

function.

It

is

called

when

the

framework

wants

to

display

selection

boxes

or

hide

selection

boxes

on

the

page.

This

function

should

call:

setSelectComponentVisible(container,

state)

Defined

in

each

input

component

in

which

selection

box

is

used.

All

input

components

have

the

same

implementation

with

different

names:

function

setSelect<Component>Visible(container,

state)

{

document.forms[container].ProductHelperSelectBox.style.visibility

=

state;

}

A

report

input

JSP

page

should

be

named

as

ReportNameReportInputView.jsp,

and

they

should

be

located

in

the

following

directory:

/WAS_installdir/installedApps/hostname/WCinstance_name.ear/CommerceAccelerator.war/tools/reporting

It

is

a

dialog

panel.

To

implement

a

dialog

panel,

refer

to

the

Tools

Framework

User’s

Guide.

A

dialog

panel

contains

two

sections;

an

HTML

contents-generating

section,

and

a

JavaScript

function

section.

In

the

HTML

section,

you

may

call

generateInputComponent

for

each

component

you

want

show

on

the

input

screen.

In

the

JavaScript

section,

initializeValue,

savePanelData,

and

validatePanelData

should

call

the

corresponding

JavaScript

functions

defined

in

each

input

component.

The

initializedValue

is

called

when

the

page

is

being

loaded.

The

Tools

Framework

calls

the

savePanelData

and

validatePanelData

functions.

SavePanelData

should

call

the

following

report

framework

required

JavaScript

functions:

1.

setReportFrameworkOutputView("DialogView");

2.

setReportFrameworkParameter("XMLFile","reporting.OutputPanelName")

3.

setReportFrameworkReportXML("reporting.ReportDefinitionXML");

4.

setReportFrameworkReportName("SQLName");,

which

is

specified

in

ReportXML

You

may

also

call

setReportFrameworkParameter("name",

value)

to

set

parameters

that

are

required

by

the

report

output

JSP

file.

It

is

a

name

and

value

pair.

All

labels

passed

into

generator

and

value

in

setReportFrameworkParameter

function

calls

are

keys

that

will

be

mapped

into

correct

string

based

on

locale

and

language

preference.

The

map

is

defined

in

the

properties

file

Reports_en_US.properties

in

the

following

directory:

/WAS_installdir/installedApps/ear_directory/properties/com/ibm/commerce/tools
/reporting/properties

12

Using

helpers

for

report

input

and

output

pages

A

report

input

page,

which

is

a

dialog

panel,

must

have

a

set

of

components

for

input

criteria

and

implement

the

following

four

java

script

functions:

initializeValues()

Called

every

time

the

page

is

loaded.

savePanelData()

Called

every

time

a

user

exits

from

this

page.

validatePanelData()

Called

before

sending

criteria

to

the

reporting

framework.

visibleList()

Called

when

the

reporting

framework

requires

a

change

in

the

visibility

settings

of

components

on

this

page.

To

add

a

component

onto

a

report

input

page,

import

the

component

JSP

and

add

one

JSP

expression

in

the

input

page.

It

is

named,

by

convention,

generateInputComponent

with

a

container

name

(unique

to

this

page),

a

resource

bundle,

and

one

or

two

titles

as

parameters.

As

an

example,

in

your

input

page,

you

will

have

something

similar

to

the

following:

<%page

"ReportStartDateEndDateHelper.jsp"

%>

.

.

.

<body>

.

.

.

<%=generateStartDateEndDate("RequestPeriod",

reportRB,

"RequestPeriodTitleKey")

%>

.

.

.

</body>

The

expression

returns

a

string

that

will

generate

the

visible

component

on

the

page.

To

coordinate

with

above

three

functions,

callback

functions

are

defined

with

the

naming

convention:

onLoadInputComponent,

saveInputComponent

and

validateInputComponent.

They

should

be

called

within

initializeValue,

savePanelData,

and

validatePanelDate

respectively.

The

SavePanelData

function

also

saves

information

required

by

the

reporting

framework.

Each

input

component

provides

return

functions

that

give

back

inputted

IDs,

names,

or

other

fields

in

that

component.

For

details

on

these

return

functions,

refer

to

any

input

component

JSP.

The

output

pages

are

responsible

for

handling

formatting.

All

formatting

methods

are

contained

in

the

ReportOutputHelper,

coordinating

with

the

report

definition

XML

file.

Only

the

report

name

needs

to

be

specified

in

a

report

output

JSP

file.

You

can

copy

any

report

output

JSP

file

and

modify

the

reportPrefix

value

to

reflect

your

report

name.

The

report

definition

XML

file,

however,

specifies

all

columns

and

their

formatting

based

on

column

type.

The

following

is

a

list

of

column

types:

Overview

of

the

Reporting

framework

13

Table

4.

Column

Type

Is

default

Customizable

Properties

Default

Alignment

string

Yes

maxEntryLength

Right

integer

No

setMinimumIntegerDigits

setMaximumIntegerDigits

Left

decimal

No

setMinimumIntegerDigits
setMaximumIntegerDigits
setMinimumFractionDigits
setMaximumFractionDigits

Left

currency

No

currencySymbolColumn

Left

enumeration

No

Right

date

No

Left

time

No

Left

month

No

Left

The

default

column

type

is

string

with

HTML

column

options

"align=left

height=20

nowrap".

All

column

types

can

override

the

default

column

options

by

specifying

a

<columnOptions>

tag

in

the

column.

Optionally,

all

columns

can

also

have

their

displayInReport

value

set

to

either

true

or

false.

The

default

is

true,

meaning

that

the

column

is

displayed

in

the

report.

If

the

value

is

set

to

false,

the

column

is

hidden.

This

feature

can

be

used

to

customize

the

report

output

view

without

changing

the

SQL

query.

It

is

also

useful

when

formatting

currency

requires

a

reference

column

to

tell

the

formatter

what

currency

it

is.

Integer,

decimal,

date,

and

time

columns

are

formatted

based

on

the

language

and

currency

values

specified

in

the

command

context.

Integer

and

decimal

columns

can

also

specify

minimum

and

maximum

number

of

digits

for

both

the

integer

and

fractional

values.

Currency

columns,

by

default,

are

formatted

based

on

the

language

and

currency

values

specified

in

the

command

context.

If

a

currencySymbolColumn

is

specified

in

a

currecy

column,

the

three-character

currency

symbol

is

retrieved

from

database,

and

is

used

to

format

the

currency.

The

referred

currency

symbol

column

can

be

set

to

invisible

if

the

report

creator

does

not

want

show

the

currency

symbol

string.

Enumeration

is

a

special

column

type

that

maps

a

value

retrieved

from

database

to

a

string

specified

by

a

key.

For

example,

Y,

or

N

may

be

retrieved

from

a

table.

These

values

may

be

mapped

to

more

meaningful

strings,

such

as

either

Yes

or

No,

or

Approved

or

Denied

in

different

reports,

or

in

different

languages.

To

make

this

possible,

the

column

can

be

defined

as

follows:

<columns>

<columnKey>C2</columnKey>

<columnName>yyyColumnTitle</columnName>

<columnType>enumeration</columnType>

<Y>Yes</Y>

<N>No</N>

</columns>

or

14

<columns>

<columnKey>C2</columnKey>

<columnName>yyyColumnTitle</columnName>

<columnType>enumeration</columnType>

<Y>Approved</Y>

<N>Denied</N>

</columns>

where

the

strings

for

Yes,

No,

Approved,

and

Denied

are

defined

in

the

appropriate

properties

file

to

allow

for

multiple

languages.

If

the

query

returns

values

such

as

0,1,2,

and

so

on,

(digits)

to

which

you

want

to

map

specific

values,

then

you

need

to

use

<X_n></X_n>

as

an

element.

For

example:

<columnType>enumeration</columnType>

<X_0>ValueFor0</X_0>

<X_1>ValueFor1</X_1>

Write

a

report

utilizing

reusable

JSP

page

components

To

write

a

report

by

utilizing

reusable

JSP

page

components,

you

must

create

the

following:

v

JSP

files:
XXXReportInputView.jsp
XXXReportOutputView.jsp

v

XML

files:
XXXReportInputDialog.xml
XXXReportDefinition.xml
XXXReportOutputDialog.xml

v

Updated

properties

files:
Reports_en_US.properties,

in

which

you

must

add

a

section

for

all

necessary

mappings.

v

Add

view

commands

into

database
The

XXXReportInputView

and

XXXReportOutputView

commands

must

be

added

into

the

database.

v

Set

access

control

on

the

two

views

(XXXReportInputView

and

XXXReportOutputView)

added

in

the

previous

step.

Overview

of

the

Reporting

framework

15

16

Part

2.

Appendixes

©

Copyright

IBM

Corp.

2003

17

18

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

©

Copyright

IBM

Corp.

2003

19

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Canada

Ltd.

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Trademarks

The

IBM

logo

and

the

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

400

AIX

IBM

iSeries

OS/400

WebSphere

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft

and

Windows

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Other

company,

product

and

service

names

may

be

trademarks

or

service

marks

of

others.

20

����

Printed

in

USA

	Contents
	About this book
	Document description
	Updates to this book
	Conventions used in this book
	Path variables
	Knowledge requirements

	Part 1. Customizing the WebSphere Commerce Accelerator Reporting Framework
	Overview of the Reporting framework
	Customizing the reporting framework
	Defining the report in an XML file
	Valid XML elements
	Variables in SQL queries

	Create the JSP file from which the report is requested
	Reporting framework commands
	Reporting framework object model
	Reusable components for Reporting JSP files
	Using helpers for report input and output pages
	Write a report utilizing reusable JSP page components

	Part 2. Appendixes
	Notices
	Trademarks

