
IBM®

WebSphere

Commerce

Store

Development

Guide

Version

5.5

���

IBM®

WebSphere

Commerce

Store

Development

Guide

Version

5.5

���

First

Edition,

First

Revision

(September

2003)

This

edition

applies

to

IBM

WebSphere

Commerce

Business

Edition

Version

5.5,

IBM

WebSphere

Commerce

-

Express

Version

5.5,

and

IBM

WebSphere

Commerce

Professional

Edition

Version

5.5

(product

number

5724-A18),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

edition

also

applies

to

all

subsequent

releases

and

modifications

of

the

above

listed

products,

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

Publications

are

not

stocked

at

the

address

given

below.

IBM

welcomes

your

comments.

You

can

send

your

comments

by

using

the

online

IBM

WebSphere

Commerce

documentation

feedback

form,

available

at

the

following

URL:

http://www-3.ibm.com/software/genservers/commerce/rcf.html

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2000,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Note:

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

in

the

Notices

section.

Contents

Before

you

begin

.

.

.

.

.

.

.

.

.

. ix

Conventions

and

terminology

used

in

this

book

.

. ix

Variables

used

in

this

book

.

.

.

.

.

.

.

.

. x

Path

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Where

to

find

new

information

.

.

.

.

.

.

.

. xii

Part

1.

Overview

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Store

development

overview

3

Understanding

store

development

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

The

purpose

of

your

store

.

.

.

.

.

.

.

.

. 3

The

representative

business

model

for

your

store

3

The

number

of

stores

being

developed

.

.

.

.

. 4

The

foundation

for

your

store

.

.

.

.

.

.

. 5

The

degree

of

required

customization

.

.

.

.

. 7

Scenario:

Developing

and

deploying

a

production

store

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Part

2.

Business

models

supported

by

WebSphere

Commerce

.

.

.

.

. 13

Chapter

2.

Supported

business

models

in

WebSphere

Commerce

.

.

.

.

.

.

. 15

Understanding

supported

business

models

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

. 15

Direct

sales

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Hosting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Value

chain

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Sample

stores

in

WebSphere

Commerce

.

.

.

. 20

Part

3.

WebSphere

Commerce

architecture

.

.

.

.

.

.

.

.

.

.

.

. 23

Chapter

3.

WebSphere

Commerce

organization

structure

.

.

.

.

.

.

.

. 25

Understanding

the

WebSphere

Commerce

organization

structure

.

.

.

.

.

.

.

.

.

.

. 25

How

does

the

organization

structure

support

the

business

models?

.

.

.

.

.

.

.

.

.

.

.

. 26

Consumer

direct

.

.

.

.

.

.

.

.

.

.

.

. 26

B2B

direct

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Demand

chain

.

.

.

.

.

.

.

.

.

.

.

. 28

Supply

chain

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Hosting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Sample

organization

structures

.

.

.

.

.

.

.

. 34

Creating

organization

structures

.

.

.

.

.

.

. 34

Chapter

4.

Access

control

in

WebSphere

Commerce

.

.

.

.

.

.

.

. 35

Understanding

access

control

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Access

control

policies

.

.

.

.

.

.

.

.

.

. 35

Understanding

access

control

in

the

business

models

38

Basic

access

control

structure

.

.

.

.

.

.

. 38

Consumer

direct

.

.

.

.

.

.

.

.

.

.

.

. 40

B2B

direct

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Demand

chain

.

.

.

.

.

.

.

.

.

.

.

. 44

Supply

chain

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Hosting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Access

control

in

sample

businesses

.

.

.

.

.

. 57

Adding

access

control

to

your

stores

.

.

.

.

.

. 57

Chapter

5.

WebSphere

Commerce

business

policy

framework

.

.

.

.

.

. 59

Understanding

the

WebSphere

Commerce

business

policy

framework

.

.

.

.

.

.

.

.

.

.

.

. 59

Business

policies

.

.

.

.

.

.

.

.

.

.

.

. 59

Business

Accounts

.

.

.

.

.

.

.

.

.

.

. 59

Contracts

and

service

agreements

.

.

.

.

.

. 59

Terms

and

conditions

.

.

.

.

.

.

.

.

.

. 60

Business

policies

in

sample

businesses

.

.

.

.

. 60

Adding

business

policies

to

your

site

.

.

.

.

.

. 60

Chapter

6.

Instance

architecture

.

.

.

. 61

WebSphere

Commerce

Server

.

.

.

.

.

.

.

. 61

WebSphere

Commerce

Server

instance

.

.

.

.

. 61

Chapter

7.

Store

architecture

.

.

.

.

. 63

Understanding

the

WebSphere

Commerce

store

architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Store

assets

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Multiple

stores

in

a

single

instance

.

.

.

.

. 64

Relationships

between

stores

.

.

.

.

.

.

. 66

Understanding

how

the

store

architecture

supports

the

business

models

.

.

.

.

.

.

.

.

.

.

. 66

Customer

facing

stores

.

.

.

.

.

.

.

.

. 66

Proxy

stores

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Asset

stores

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Stores

in

the

supported

business

models

.

.

.

. 69

Part

4.

Developing

your

storefront

73

Chapter

8.

Developing

your

storefront

75

Storefront

architecture

.

.

.

.

.

.

.

.

.

.

. 75

Default

commands

and

views

.

.

.

.

.

.

. 75

Creating

your

store

pages

.

.

.

.

.

.

.

.

. 76

Developing

a

list

of

store

pages

.

.

.

.

.

.

. 76

Developing

a

list

of

command

and

view

URLs

. 79

Associating

JSP

filename

to

views

.

.

.

.

.

. 80

Chapter

9.

Caching

your

store

pages

83

Planning

your

caching

strategy

.

.

.

.

.

.

.

. 83

What

pages

should

be

cached

.

.

.

.

.

.

. 83

Should

pages

be

cached

as

whole

pages

or

page

fragments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

©

Copyright

IBM

Corp.

2000,

2003

iii

Developing

a

more

detailed

caching

strategy

.

.

. 84

How

the

page

or

fragment

is

requested

.

.

.

. 84

Whether

the

page

or

fragment

relies

on

a

store

relationship

.

.

.

.

.

.

.

.

.

.

.

.

. 84

How

the

cached

data

will

be

invalidated

.

.

. 84

Implementing

your

caching

strategy

.

.

.

.

.

. 85

Understanding

the

cachespec.xml

file

.

.

.

.

. 85

Invalidating

cached

data

in

the

cachespec.xml

file

88

Implementing

caching

for

store

pages

that

use

store

relationships

.

.

.

.

.

.

.

.

.

.

. 89

Replacing

the

cache

command

functions

with

dynamic

caching

.

.

.

.

.

.

.

.

.

.

.

. 93

Part

5.

Store

data

overview

.

.

.

.

. 95

Chapter

10.

Store

data

.

.

.

.

.

.

.

. 97

What

is

store

data?

.

.

.

.

.

.

.

.

.

.

.

. 97

The

store

data

information

model

.

.

.

.

.

. 97

Store

data

information

model

viewed

by

subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Store

data

information

model

viewed

by

data

type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Store

data

types

and

the

sample

businesses

.

. 103

Tools

for

creating

data

.

.

.

.

.

.

.

.

.

. 103

WebSphere

Commerce

Loader

package

.

.

.

. 103

Administration

Console

.

.

.

.

.

.

.

.

. 103

WebSphere

Commerce

Accelerator

.

.

.

.

. 104

Organizational

Administration

Console

.

.

.

. 104

Tool

and

store

data

summary

chart

.

.

.

.

. 104

Part

6.

Developing

your

store

data

107

Chapter

11.

Site

assets

.

.

.

.

.

.

. 109

Understanding

site

assets

in

WebSphere

Commerce

109

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Member

attributes

.

.

.

.

.

.

.

.

.

.

. 110

Attribute

types

.

.

.

.

.

.

.

.

.

.

.

. 110

Member

group

types

.

.

.

.

.

.

.

.

.

. 110

User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Organization

.

.

.

.

.

.

.

.

.

.

.

. 110

Role

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Quantity

unit

conversion

.

.

.

.

.

.

.

. 111

Quantity

units

.

.

.

.

.

.

.

.

.

.

.

. 111

Tax

types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Calculation

usage

.

.

.

.

.

.

.

.

.

.

. 111

Currency

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Number

usage

.

.

.

.

.

.

.

.

.

.

.

. 111

Item

types

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Device

formats

.

.

.

.

.

.

.

.

.

.

.

. 112

Store

relationship

types

.

.

.

.

.

.

.

.

. 112

Site

level

trading

agreement

data

.

.

.

.

.

. 112

Trading

agreement

type

.

.

.

.

.

.

.

.

. 112

Participant

role

.

.

.

.

.

.

.

.

.

.

.

. 113

Policy

type

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Terms

and

conditions

type

.

.

.

.

.

.

.

. 113

Personalization

attribute

.

.

.

.

.

.

.

.

. 113

Attribute

type

.

.

.

.

.

.

.

.

.

.

.

. 113

Operator

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Attachment

usage

.

.

.

.

.

.

.

.

.

.

. 113

Creating

site

assets

in

WebSphere

Commerce

.

.

. 114

Chapter

12.

Member

assets

.

.

.

.

. 115

Understanding

member

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Members

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Member

attributes

.

.

.

.

.

.

.

.

.

.

. 117

Roles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Understanding

customer

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Address

information

.

.

.

.

.

.

.

.

.

. 118

Interest

lists

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Understanding

Seller

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Stores

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Accounts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Contracts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Product

sets

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Price

lists

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Fulfillment

centers

.

.

.

.

.

.

.

.

.

.

. 121

Inventory

items

.

.

.

.

.

.

.

.

.

.

. 122

Understanding

administrator

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Creating

member

assets

in

WebSphere

Commerce

122

Chapter

13.

Store

assets

.

.

.

.

.

. 123

Understanding

store

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Store

entity

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Creating

store

assets

in

WebSphere

Commerce

.

. 124

Creating

store

data

assets

in

an

XML

file

.

.

. 124

Chapter

14.

Relationships

between

stores

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Understanding

relationships

between

stores

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

. 129

Store

relationships

.

.

.

.

.

.

.

.

.

.

. 129

Store

relationship

types

.

.

.

.

.

.

.

.

. 129

Store

relationship

type

description

.

.

.

.

. 131

Creating

store

relationships

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Chapter

15.

Command,

view,

and

URL

registry

data

.

.

.

.

.

.

.

.

.

.

.

. 135

Understanding

command,

view

and

URL

registries

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

. 135

URL

registry

.

.

.

.

.

.

.

.

.

.

.

. 135

Command

registry

.

.

.

.

.

.

.

.

.

. 136

View

registry

.

.

.

.

.

.

.

.

.

.

.

. 136

Creating

new

commands,

views,

and

URLs

.

. 136

Registering

commands,

views,

and

URLs

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

. 137

Creating

an

XML

file

to

register

commands,

views,

and

URLs

.

.

.

.

.

.

.

.

.

.

. 137

Chapter

16.

Catalog

assets

.

.

.

.

. 141

Understanding

catalogs

in

WebSphere

Commerce

141

Catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

iv

Store

Development

Guide

Catalog

groups

.

.

.

.

.

.

.

.

.

.

.

. 142

Catalog

entries

.

.

.

.

.

.

.

.

.

.

.

. 143

Product

sets

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Attribute

values

.

.

.

.

.

.

.

.

.

.

. 145

Package

attributes

.

.

.

.

.

.

.

.

.

.

. 145

Package

attribute

values

.

.

.

.

.

.

.

.

. 145

Creating

catalog

assets

in

WebSphere

Commerce

145

Creating

a

master

catalog

.

.

.

.

.

.

.

. 146

Displaying

store

catalog

assets

.

.

.

.

.

. 162

Creating

a

sales

catalog

.

.

.

.

.

.

.

.

.

. 164

Adding

a

product

to

a

second

category

.

.

.

. 165

Managing

catalog

assets

in

WebSphere

Commerce

167

Catalog

groups

.

.

.

.

.

.

.

.

.

.

.

. 167

Catalog

entries

.

.

.

.

.

.

.

.

.

.

.

. 168

Product

Management

tools

.

.

.

.

.

.

.

. 169

Loader

package

.

.

.

.

.

.

.

.

.

.

. 170

Chapter

17.

Pricing

assets

.

.

.

.

.

. 171

Understanding

pricing

in

WebSphere

Commerce

171

Offer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Offer

price

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Trading

position

container

.

.

.

.

.

.

.

. 172

Terms

and

conditions

.

.

.

.

.

.

.

.

.

. 172

Types

of

pricing

terms

and

conditions

.

.

.

. 172

Trading

agreement

.

.

.

.

.

.

.

.

.

. 173

Participant

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Participant

role

.

.

.

.

.

.

.

.

.

.

.

. 173

Contract

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Business

policy

.

.

.

.

.

.

.

.

.

.

.

. 174

Price

policy

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Catalog

entry

shipping

.

.

.

.

.

.

.

.

. 174

Other

pricing

assets

.

.

.

.

.

.

.

.

.

. 174

Creating

pricing

assets

in

WebSphere

Commerce

175

Creating

pricing

assets

in

an

XML

file

.

.

.

. 175

Chapter

18.

Contract

assets

.

.

.

.

. 179

Understanding

contracts

in

WebSphere

Commerce

180

Accounts

(business

accounts)

.

.

.

.

.

.

. 180

Contracts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Trading

agreements

.

.

.

.

.

.

.

.

.

. 181

Participants

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Terms

and

conditions

.

.

.

.

.

.

.

.

.

. 182

Business

policies

.

.

.

.

.

.

.

.

.

.

. 185

Attachment

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Order

item

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Creating

a

default

contract

asset

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Creating

business

policy

XML

files

.

.

.

.

. 188

Creating

a

default

contract

file

.

.

.

.

.

.

. 189

Chapter

19.

Fulfillment

assets

.

.

.

. 197

Understanding

fulfillment

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Fulfillment

center

.

.

.

.

.

.

.

.

.

.

. 198

Receipts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

RaDetail

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Inventory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Shipping

arrangements

.

.

.

.

.

.

.

.

. 199

Other

fulfillment

assets

.

.

.

.

.

.

.

.

. 199

Creating

fulfillment

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Creating

store

fulfillment

assets

(non-ATP)

.

. 201

Chapter

20.

Campaign

assets

.

.

.

. 203

Understanding

campaigns

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Creating

campaign

assets

in

WebSphere

Commerce

205

Chapter

21.

Payments

instruments

207

Create

payment

assets

using

an

XML

file

.

.

.

. 208

Customize

environment

for

a

payment

cassette

.

. 209

Modify

the

store

.jsp

file

.

.

.

.

.

.

.

.

. 209

Check

the

Cashier

profile

for

the

cassette

.

.

. 211

Check

the

cassette

.jsp

file

.

.

.

.

.

.

.

. 212

Configure

Merchant

Settings

in

WebSphere

Commerce

Payments

.

.

.

.

.

.

.

.

.

. 212

Chapter

22.

Language

assets

.

.

.

. 215

Understanding

language

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Default

language

.

.

.

.

.

.

.

.

.

.

. 215

Supported

language

.

.

.

.

.

.

.

.

.

. 216

Alternative

language

.

.

.

.

.

.

.

.

.

. 216

Creating

language

assets

in

WebSphere

Commerce

216

Chapter

23.

Currency

assets

.

.

.

.

. 217

Understanding

currency

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Currency

format

.

.

.

.

.

.

.

.

.

.

. 218

Number

usage

.

.

.

.

.

.

.

.

.

.

.

. 218

Currency

format

description

.

.

.

.

.

.

. 219

Supported

currency

.

.

.

.

.

.

.

.

.

. 219

Currency

conversion

rule

.

.

.

.

.

.

.

. 219

Counter

currency

.

.

.

.

.

.

.

.

.

.

. 219

Creating

currency

assets

in

WebSphere

Commerce

219

Creating

currency

assets

using

an

XML

file

.

. 220

Chapter

24.

Units

of

measure

assets

223

Understanding

units

of

measure

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Quantity

unit

and

quantity

unit

format

.

.

.

. 224

Creating

units

of

measure

in

WebSphere

Commerce

225

Chapter

25.

Jurisdiction

assets

.

.

.

. 227

Understanding

jurisdiction

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Creating

jurisdiction

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Chapter

26.

Shipping

assets

.

.

.

.

. 229

Understanding

shipping

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Shipping

modes

.

.

.

.

.

.

.

.

.

.

. 230

Calculation

codes

.

.

.

.

.

.

.

.

.

.

. 230

Jurisdictions

and

jurisdiction

groups

.

.

.

.

. 231

Creating

shipping

assets

in

WebSphere

Commerce

231

Creating

shipping

assets

using

an

XML

file

.

. 232

Creating

shipping

fulfillment

assets

.

.

.

.

. 240

Contents

v

Creating

store-catalog-shipping

assets

.

.

.

. 242

Creating

a

default

shipping

mode

.

.

.

.

. 243

Chapter

27.

Tax

assets

.

.

.

.

.

.

. 245

Understanding

tax

assets

in

WebSphere

Commerce

245

Tax

category

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Calculation

code

.

.

.

.

.

.

.

.

.

.

. 246

Jurisdictions

and

jurisdiction

groups

.

.

.

.

. 247

Creating

tax

assets

in

WebSphere

Commerce

.

.

. 248

Creating

tax

assets

using

an

XML

file

.

.

.

. 249

Creating

tax

fulfillment

assets

.

.

.

.

.

.

. 258

Creating

store-catalog-tax

assets

.

.

.

.

.

. 259

Chapter

28.

Discount

assets

.

.

.

.

. 261

Understanding

rule-based

discounts

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Store

default

currency

.

.

.

.

.

.

.

.

. 262

Calculation

code

.

.

.

.

.

.

.

.

.

.

. 262

RLPromotion

.

.

.

.

.

.

.

.

.

.

.

. 262

Blaze

rule

project

.

.

.

.

.

.

.

.

.

.

. 263

Blaze

rule

service

.

.

.

.

.

.

.

.

.

.

. 263

Discount

service

.

.

.

.

.

.

.

.

.

.

. 263

Blaze

rule

server

.

.

.

.

.

.

.

.

.

.

. 263

Understanding

schema-based

discounts

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

. 263

Calculation

code

.

.

.

.

.

.

.

.

.

.

. 263

Creating

discount

assets

in

WebSphere

Commerce

264

Chapter

29.

Inventory

assets

.

.

.

.

. 265

Understanding

inventory

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

ATP

inventory

.

.

.

.

.

.

.

.

.

.

.

. 266

Non-ATP

inventory

.

.

.

.

.

.

.

.

.

. 267

Creating

inventory

assets

in

WebSphere

Commerce

268

Managing

inventory

adjustment

codes

.

.

.

.

. 268

Adding

inventory

adjustment

codes

.

.

.

.

. 270

Changing

inventory

adjustment

codes

.

.

.

. 271

Deleting

inventory

adjustment

codes

.

.

.

. 271

Chapter

30.

Order

assets

.

.

.

.

.

. 273

Understanding

order

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Orders

and

order

items

.

.

.

.

.

.

.

.

. 273

Order

items

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Order

quotation

relationships

.

.

.

.

.

.

. 276

Creating

order

assets

in

WebSphere

Commerce

.

. 277

Chapter

31.

Vendor

assets

.

.

.

.

.

. 279

Understanding

vendor

assets

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Creating

vendor

assets

.

.

.

.

.

.

.

.

.

. 280

Chapter

32.

Customer

profiles

.

.

.

. 281

Understanding

customer

profiles

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Part

7.

Adding

access

control

to

your

store

.

.

.

.

.

.

.

.

.

.

.

. 283

Chapter

33.

Access

control

in

your

store

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Understanding

access

control

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Access

control

in

stores

.

.

.

.

.

.

.

.

. 285

Adding

access

control

to

your

store

.

.

.

.

.

. 289

Creating

or

editing

access

control

in

your

store

289

Part

8.

Globalizing

your

store

.

.

. 293

Chapter

34.

Globalization

.

.

.

.

.

. 295

Supporting

globalization

.

.

.

.

.

.

.

.

. 295

Sample

stores

.

.

.

.

.

.

.

.

.

.

.

. 296

Display

formats

.

.

.

.

.

.

.

.

.

.

.

. 299

Creating

a

new

display

format

.

.

.

.

.

. 300

Creating

a

globalized

store

.

.

.

.

.

.

.

.

. 303

Creating

a

store

.

.

.

.

.

.

.

.

.

.

. 303

Managing

your

template

for

a

globalized

site

303

One

template

for

all

stores

and

languages

programming

model

.

.

.

.

.

.

.

.

.

. 305

Adding

a

language

to

a

store

.

.

.

.

.

.

. 307

Creating

a

globalized

online

catalog

.

.

.

.

. 307

Manage

globalization

assets

.

.

.

.

.

.

. 308

Translate

property

files

.

.

.

.

.

.

.

.

. 308

Part

9.

Packaging

your

store

.

.

. 311

Chapter

35.

Packaging

a

store

.

.

.

. 313

Creating

a

store

archive

.

.

.

.

.

.

.

.

.

. 315

Creating

a

sample

store

archive

.

.

.

.

.

.

. 316

Part

10.

Publishing

your

store

.

.

. 319

Chapter

36.

Publishing

a

complete

store

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Understanding

publish

in

WebSphere

Commerce

321

Start

publish

.

.

.

.

.

.

.

.

.

.

.

.

. 322

Unpack

the

assets

from

the

store

archive

.

.

. 324

Updates

publish

parameters

.

.

.

.

.

.

. 325

Publish

data

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Publish

log

files

.

.

.

.

.

.

.

.

.

.

. 330

Making

the

store

archive

available

to

the

Administration

Console

.

.

.

.

.

.

.

.

.

. 332

Register

the

store

archive

in

the

SARRegistry.xml

file

.

.

.

.

.

.

.

.

.

. 332

Copy

the

store

archive

to

the

applicable

store

archive

directory

.

.

.

.

.

.

.

.

.

.

. 333

Chapter

37.

Overview

of

loading

store

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Understanding

data

loading

in

WebSphere

Commerce

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

Loader

package

commands

for

loading

store

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Loader

package

commands

for

transforming

and

extracting

data

.

.

.

.

.

.

.

.

.

. 359

Tools

related

to

the

Loader

package

commands

368

Loading

store

data

.

.

.

.

.

.

.

.

.

.

. 369

vi

Store

Development

Guide

Using

the

Loader

package

commands

and

scripts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

Examples

of

resolving

identifiers

.

.

.

.

.

. 371

Example

of

loading

data

.

.

.

.

.

.

.

.

. 378

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

.

. 383

Database

asset

groups

.

.

.

.

.

.

.

.

.

. 383

Database

asset

loading

sequence

.

.

.

.

.

. 383

Loading

a

store

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Loading

database

asset

groups

.

.

.

.

.

.

. 390

Chapter

39.

Publishing

business

accounts

and

contracts

.

.

.

.

.

.

. 395

Publishing

business

accounts

and

contracts

using

Administration

Console

or

the

command

line

.

. 395

Publishing

business

accounts

and

contracts

using

commands

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

Publishing

business

account

assets

.

.

.

.

. 396

Publishing

contract

assets

.

.

.

.

.

.

.

. 396

Chapter

40.

Publishing

storefront

assets

and

store

configuration

files

.

. 399

Publishing

storefront

assets

and

store

configuration

files

using

the

Administration

Console

or

the

command

line

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Publishing

storefront

assets

and

store

configuration

files

by

copying

to

the

WebSphere

Commerce

Server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Part

11.

Adding

WebSphere

Commerce

features

to

your

store

. 403

Chapter

41.

Adding

customer

care

to

your

store

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Understanding

customer

care

in

a

store

.

.

.

. 406

Using

the

frameset

.

.

.

.

.

.

.

.

.

. 407

Using

customer

care

without

a

frameset

.

.

. 408

Defining

Customer

Care

.

.

.

.

.

.

.

.

. 410

Monitoring

customers

using

customer

care

.

. 417

Sending

requests

directly

to

a

customer

care

queue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

Customizing

customer

care

.

.

.

.

.

.

.

. 422

Adding

customer

care

to

your

store

.

.

.

.

.

. 425

Part

1:

Installing

pre-requisites

.

.

.

.

.

. 425

Part

2:

Copying

the

customer

care

integration

files

from

the

sample

store

.

.

.

.

.

.

.

. 425

Part

3:

Adding

code

to

determine

which

page

the

customer

is

browsing

.

.

.

.

.

.

.

. 427

Part

4:

Adding

a

link

to

customer

care

.

.

.

. 427

Part

5:

Create

an

entry

page

that

will

redirect

to

the

customer

care

frameset

page

.

.

.

.

.

. 427

Chapter

42.

Adding

e-Marketing

Spots

to

your

store

.

.

.

.

.

.

.

.

.

.

.

. 429

e-Marketing

Spot

.

.

.

.

.

.

.

.

.

.

.

. 429

e-MarketingSpot

bean

.

.

.

.

.

.

.

.

. 433

Adding

an

e-Marketing

Spot

to

your

store

pages

433

Part

12.

Appendixes

.

.

.

.

.

.

. 435

Appendix

A.

UML

legend

.

.

.

.

.

. 437

Appendix

B.

Creating

your

data

.

.

. 439

Creating

data

for

sample

stores

.

.

.

.

.

.

. 439

Appendix

C.

Database

asset

groups

441

Database

asset

groups

dependencies

.

.

.

.

.

. 441

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Contents

vii

viii

Store

Development

Guide

Before

you

begin

The

IBM®

WebSphere®

Commerce

Store

Development

Guide

provides

information

about

the

WebSphere

Commerce

store

architecture

and

the

store

development

process.

In

particular,

it

provides

details

on

the

following

topics:

v

Store

development

process

v

Business

models

supported

by

WebSphere

Commerce

v

WebSphere

Commerce

architecture

v

Developing

your

storefront

v

Developing

your

store

data

v

Store

data

architecture

v

Store

data

information

model

v

Globalizing

your

store

v

Adding

access

control

to

your

store

v

Packaging

your

store

v

Publishing

your

store

v

Adding

WebSphere

Commerce

features

to

your

store

Conventions

and

terminology

used

in

this

book

This

book

uses

the

following

highlighting

conventions:

Boldface

type

Indicates

commands

or

graphical

user

interface

(GUI)

controls

such

as

names

of

fields,

icons,

or

menu

choices.

Monospace

type

Indicates

examples

of

text

you

enter

exactly

as

shown,

file

names,

and

directory

paths

and

names.

Italic

type

Used

to

emphasize

words.

Italics

also

indicate

names

for

which

you

must

substitute

the

appropriate

values

for

your

system.

This

icon

marks

a

Tip

-

additional

information

that

can

help

you

complete

a

task.

Important

These

sections

highlight

especially

important

information.

Note

These

sections

highlight

significant

information.

Business

Indicates

information

specific

to

WebSphere

Commerce

Business

Edition.

Professional

Indicates

information

specific

to

WebSphere

Commerce

Professional

Edition.

©

Copyright

IBM

Corp.

2000,

2003

ix

2000Express Indicates

information-specific

to

WebSphere

Commerce

-

Express.

2000Developer

Professional

Business

Indicates

information

specific

to

the

WebSphere

Commerce

development

environment.

The

development

environment

is

WebSphere

Commerce

Studio,

Version

5.5.

2000Express

Indicates

information

specific

to

the

WebSphere

Commerce

development

environment.

The

development

environment

is

WebSphere

Commerce

-

Express

Developer

Edition,

Version

5.5.

AIX

Indicates

information

specific

to

programs

running

on

AIX®.

400

Indicates

information

specific

to

programs

running

on

OS/400®.

Linux

Indicates

information

that

is

specific

to

WebSphere

Commerce

for

Linux

for

xSeries™,

information

that

is

specific

to

WebSphere

Commerce

for

Linux

for

Eserver

zSeries™

and

S/390®,

information

that

is

specific

to

WebSphere

Commercefor

Linux

for

Eserver

iSeries™,

and

information

that

is

specific

to

WebSphere

Commerce

for

Linux

for

Eserver

pSeries™.

Solaris

Indicates

information

specific

to

programs

running

on

Solaris

Operating

Environment.

2000

Indicates

information

specific

to

programs

running

on

Windows®

2000.

Indicates

information

specific

to

DB2

Universal

Database™.

Indicates

information

specific

to

Oracle9i

Database.

Variables

used

in

this

book

Some

of

the

key

variables

in

this

book

are

as

follow:

businessmodel

The

name

of

the

sample

business

model

with

which

you

are

working

(for

example,

consumer

direct

or

B2B

direct).

Professional

Business

cell_name

Cells

are

arbitrary,

logical

groupings

of

one

or

more

nodes

in

a

WebSphere

Application

Server

distributed

network

that

are

managed

together.

In

this

definition,

a

node

is

a

single

WebSphere

Application

Server.

One

or

more

cells

managed

by

a

single-occurrence

of

WebSphere

Application

Server

deployment

manager

are

called

a

WebSphere

Application

Server

deployment

manager

cell.

2000Express

cell_name

In

WebSphere

Commerce

-

Express,

cell_name

is

equal

to

host_name.

host_name

This

variable

represents

the

fully

qualified

host

name

of

your

WebSphere

Commerce

Server

(for

example,

server.mydomain.ibm.com

is

fully

qualified).

x

Store

Development

Guide

instance_name

This

variable

represents

the

name

of

the

WebSphere

Commerce

instance

with

which

you

are

working

(for

example,

mall1).

storedir

This

variable

represent

the

name

of

the

store

directory

in

which

your

store

is

located.

WAS_instance_name

This

variable

represents

the

name

of

the

WebSphere

Application

Server

with

which

your

WebSphere

Commerce

instance

is

associated.

Path

variables

This

guide

uses

the

following

variables

to

represent

directory

paths:

WC_installdir

This

is

the

installation

directory

for

WebSphere

Commerce.

The

following

are

the

default

installation

directories

for

WebSphere

Commerce

on

various

operating

systems:

AIX

/usr/WebSphere/CommerceServer55

400

/QIBM/ProdData/CommerceServer55

Linux

/opt/WebSphere/CommerceServer55

Solaris

/opt/WebSphere/CommerceServer55

Windows

C:\Program

Files\WebSphere\CommerceServer55

WCDE_installdir

The

installation

directory

for

the

WebSphere

Commerce

development

environment.

For

WebSphere

Commerce

Business

Edition

and

WebSphere

Commerce

Professional

Edition,

your

development

environment

is

WebSphere

Commerce

Studio,

Version

5.5.

The

following

is

the

default

installation

directory:
C:\WebSphere\CommerceStudio55.

For

WebSphere

Commerce

-

Express,

the

development

environment

is

WebSphere

Commerce

-

Express

Developer

Edition,

Version

5.5.

The

following

is

the

default

installation

directory:
C:\WebSphere\CommerceDev55

400

WC_userdir

This

is

the

directory

for

all

the

data

that

is

used

by

WebSphere

Commerce

which

can

be

modified

or

needs

to

be

configured

by

a

user.

An

example

of

such

data

is

WebSphere

Commerce

instance

information.

This

directory

is

unique

to

OS/400.

The

WC_userdir

variable

represents

the

following

directory:

/QIBM/UserData/CommerceServer55

WAS_installdir

This

is

the

installation

directory

for

WebSphere

Application

Server.

The

following

are

the

default

installation

directories

for

WebSphere

Application

Server

on

various

operating

systems:

Before

you

begin

xi

AIX /usr/WebSphere/AppServer

400

/QIBM/ProdData/WebAS5/Base

Linux

/opt/WebSphere/AppServer

Solaris

/opt/WebSphere/AppServer

Windows

C:\Program

Files\WebSphere\AppServer

400

WAS_userdir

This

is

the

directory

for

all

the

data

that

is

used

by

the

WebSphere

Application

Server

that

can

be

modified

or

needs

to

be

configured

by

a

user.

An

example

of

such

data

is

WebSphere

Application

Server

instance

information.

This

directory

is

unique

to

OS/400.

The

WAS_userdir

variable

represents

the

following

directory:

/QIBM/UserData/WebAS5/Base/WAS_instance_name

WC_userdir

The

WC_userdir

variable

represents

the

following

directory:

/QIBM/UserData/WebAS5/Base/WAS_instance_name

workspace_dir

Used

in

the

development

environment.

The

variable

represents

drive:\WebSphere\workspace_db2

Where

to

find

new

information

This

book

may

be

updated

in

the

future.

Check

the

following

WebSphere

Commerce

Web

site

for

updates:

http://www.ibm.com/software/commerce/library/

Updates

may

include

new

information.

xii

Store

Development

Guide

Part

1.

Overview

©

Copyright

IBM

Corp.

2000,

2003

1

2

Store

Development

Guide

Chapter

1.

Store

development

overview

This

chapter

provides

an

overview

of

the

site

or

store

development

process

in

WebSphere

Commerce,

and

introduces

many

of

the

concepts

discussed

in

this

guide.

Note:

This

guide

uses

the

phrase

store

development

to

refer

both

to

the

processes

involved

in

creating

a

single

store,

and

the

processes

involved

in

creating

a

multi-store

or

site

environment.

Understanding

store

development

in

WebSphere

Commerce

Before

starting

to

develop

your

site

or

store

with

WebSphere

Commerce

you

need

to

understand

how

the

following

factors

affect

the

store

development

process.

Each

of

these

factors

is

introduced

in

this

chapter,

but

in

most

cases

are

explained

in

more

detail

throughout

this

guide,

and

in

some

cases

in

other

documents

in

the

WebSphere

Commerce

library.

How

you

choose

to

develop

your

store

in

WebSphere

Commerce

depends

on

the

following

factors:

v

The

purpose

of

your

store

v

The

representative

business

model

for

your

store

v

The

number

of

stores

being

developed

and

their

types

v

The

foundation

for

your

store

v

The

degree

of

required

customization

The

purpose

of

your

store

Stores

are

usually

developed

for

one

of

the

following

purposes:

v

Production:

Production

stores

are

fully

functional

stores

in

a

production

environment,

ready

for

use

by

customers

or

partners.

v

Demo:

Demo

stores

demonstrate

certain

capabilities

for

sales

purposes.

Demo

stores

may

be

only

partially

functional.

v

Sample:

Sample

stores

are

fully

functional

stores

that

are

designed

to

be

used

as

a

base

on

which

you

create

your

online

store.

The

representative

business

model

for

your

store

Before

developing

your

store,

you

need

to

understand

which

of

the

business

models

supported

by

WebSphere

Commerce

best

represents

your

store.

WebSphere

Commerce

supports

sites

or

stores

that

are

an

instance

of

one

of

the

following

business

models:

Note:

These

business

models

are

discussed

in

more

detail

in

Chapter

2,

“Supported

business

models

in

WebSphere

Commerce,”

on

page

15,

but

a

brief

introduction

of

each

business

model

is

provided

here.

v

Direct

sales

business

model:

As

in

previous

releases,

WebSphere

Commerce

supports

the

direct

sales

business

model.

Using

WebSphere

Commerce

you

can

create

sites

or

stores

that

support

commerce

transactions

involving

products,

©

Copyright

IBM

Corp.

2000,

2003

3

services,

or

information

directly

between

businesses

and

consumers

or

between

two

businesses

or

parties.

WebSphere

Commerce

supports

the

following

types

of

direct

sales

business

models:

–

Consumer

direct

business

model:

Consumer

direct

supports

commerce

transactions

involving

products,

services,

or

information

between

businesses

and

consumers.

Consumers

typically

purchase

goods

or

services

directly

from

a

business

in

a

consumer

direct

scenario.

–

Business

B2B

direct

business

model:

B2B

direct

supports

commerce

transactions

involving

products,

services,

or

information

between

two

businesses

or

parties.

Typical

B2B

direct

transactions

occur

among

buyers,

suppliers,

manufacturers,

resellers,

distributors,

and

trading

partners.

v

Business

Hosting

business

model:

WebSphere

Commerce

also

supports

hosting

of

merchants

or

other

businesses

by

an

Internet

Service

Provider

or

other

hosting

provider.

v

Business

Value

chain

business

model:

Value

chains

support

transactions

involving

multiple

enterprises

or

parties.

Products,

goods,

services,

or

information

are

delivered

through

the

parties

of

the

value

chain

from

producers

to

end

users.

A

value

chain

also

has

relationship

and

administrative

aspects,

that

is,

you

can

manage

the

relationship

of

the

partners

or

enterprises

in

your

value

chain,

as

well

as

offer

some

administrative

services

to

those

parties.

WebSphere

Commerce

supports

the

transactions

and

relationship

management

of

the

following

two

types

of

value

chains:

–

Demand

chains:

Demand

chains

support

both

indirect

sales

channels

and

direct

sales

channels.

–

Supply

chains:

Supply

chains

support

procurement

and

sourcing

of

goods.

WebSphere

Commerce

supports

sourcing

of

goods

through

private

marketplaces.

A

private

marketplace

provides

a

forum

for

vendors

to

offer

their

goods

and

services

for

sale

to

buyers

with

whom

they

have

contractual

relationships.

Note:

These

business

models

are

discussed

in

more

detail

in

Chapter

2,

“Supported

business

models

in

WebSphere

Commerce,”

on

page

15.

The

number

of

stores

being

developed

Depending

on

your

business,

you

may

need

to

develop

more

than

one

store

or

more

than

one

type

of

store.

For

example,

if

your

business

sells

directly

to

customers,

you

may

only

need

one

store,

which

your

customers

access

and

purchase

goods

from.

However

if

you

are

supporting

your

demand

chain,

you

may

need

one

main

hub

store

for

your

business,

and

several

stores

that

allow

you

to

connect

to

or

administer

your

channels.

You

may

also

choose

to

host

stores

for

the

organizations

or

businesses

in

your

channels.

For

more

information

on

the

demand

chain,

see

Chapter

2,

“Supported

business

models

in

WebSphere

Commerce,”

on

page

15.

If

you

are

in

the

business

of

hosting

stores

for

merchants

or

other

businesses,

you

will

also

need

to

develop

a

hub

store

for

managing

merchants

and

handling

registration

requests,

and

a

method

to

develop

sites

for

those

you

are

hosting.

For

more

information

on

the

hosting

business

model,

see

Chapter

2,

“Supported

business

models

in

WebSphere

Commerce,”

on

page

15.

You

can

develop

numerous

types

of

stores

as

well

as

multiple

stores

per

site

with

WebSphere

Commerce.

For

more

details

on

stores

types,

see

Chapter

7,

“Store

architecture,”

on

page

63.

4

Store

Development

Guide

The

foundation

for

your

store

Before

creating

a

site

or

store

with

WebSphere

Commerce

you

must

decide

where

you

want

to

start

development.

WebSphere

Commerce

offers

several

samples

that

you

can

use

as

the

starting

point

for

development,

or

you

can

choose

to

start

from

scratch.

For

more

details

about

the

samples

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Starting

from

a

sample

The

samples

provided

with

WebSphere

Commerce

are

packaged

as

store

archives.

The

store

archive:

A

store

archive

file

(.sar)

is

a

ZIP

archive

file

that

contains

all

the

assets

necessary

to

create

a

site

or

store.

It

is

primarily

used

as

a

vehicle

for

packaging

and

delivering

stores.

A

store

archive

only

needs

to

be

published

to

the

WebSphere

Commerce

Server

to

create

a

functional

store

that

you

can

view,

browse,

and

shop.

Typically,

a

store

archive

is

composed

of

the

following

files:

v

Web

assets:

The

files

that

create

your

store

pages,

such

as

HTML

files,

JSP

files,

images,

graphics,

and

include

files.

v

Property

resource

bundles:

Contains

the

text

for

your

store

pages.

If

your

store

supports

more

than

one

language,

the

store

archive

will

contain

multiple

resource

bundles,

one

per

supported

language,

plus

a

default

resource

bundle

(which

does

not

include

a

locale).

For

example,

AddressText_en_US.properties

and

AddressText.properties.

v

Store

data

assets:

The

data

to

be

loaded

into

the

database.

Store

data

assets

include

data

such

as

campaigns,

catalog

entries,

currencies,

fulfillment

information,

pricing,

shipping,

store,

and

taxation

information.

For

a

more

detailed

list

of

store

data

assets,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

The

store

data

assets

in

the

sample

store

archives

provided

with

WebSphere

Commerce

are

well-formed

XML

files

valid

for

the

Loader

package.

The

store

archive

XML

files

are

intended

to

be

portable

and

should

not

contain

generated

primary

keys

that

are

specific

to

a

particular

instance

of

the

database.

Instead

they

use

internal

aliases,

which

are

resolved

by

the

ID

Resolver

when

the

store

is

published.

The

use

of

these

conventions

enables

the

portability

of

the

sample

store

archives.

For

more

information,

see

Part

9,

“Packaging

your

store,”

on

page

311.

For

more

information

on

the

Loader

package,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

Note:

Store

data

assets

also

include

the

information

to

create

a

contract.

The

contract

information

is

not

loaded

through

the

Loader

package;

it

provides

input

to

a

command

that

creates

contracts.

v

Payment

assets:

Configuration

information

for

WebSphere

Commerce

Payments.

The

payment

information

is

not

loaded

through

the

Loader

package;

it

provides

input

to

a

command

that

configures

WebSphere

Commerce

Payments.

v

Descriptors:

XML

files

that

describe

the

store

archive

and

information

on

how

it

should

be

published.

These

files

include

store-refs.xml,

ibm-wc-load.xml,

unpack.xml,

and

ForeignKeys.dtd.

For

more

information

on

the

store

archive,

see

Chapter

35,

“Packaging

a

store,”

on

page

313.

Chapter

1.

Store

development

overview

5

Publishing

a

store

archive:

You

can

publish

a

store

archive

using

either

the

publish

utility

in

the

Administration

Console,

or

through

the

command

line.

For

more

details

on

how

to

publish

a

store

archive,

see

the

WebSphere

Commerce

Production

online

help,

topic

″Publishing

a

store

archive″.

Types

of

samples:

The

samples

provided

with

WebSphere

Commerce

are

categorized

as

follows:

v

Composite

stores

archives

v

Business

Component

store

archives

v

Basic

store

archive

Composite

store

archives:

A

composite

store

archive

contains

all

the

necessary

assets

to

create

a

working

site.

The

sample

composite

store

archives

provided

with

WebSphere

Commerce

usually

contain

the

organization

structure,

predefined

user

roles,

and

necessary

access

control

policies

to

create

the

appropriate

environment

for

the

corresponding

business

models.

Composite

store

archives

also

contain

the

necessary

assets

to

create

the

stores

or

sites

needed.

For

example,

the

demand

chain

sample

composite

store

archive

contains

a

sample

channel

hub

site,

shared

catalog,

and

reseller

and

distributor

stores.

WebSphere

Commerce

includes

several

composite

store

archives

that

contain

fully

functional

online

sample

sites

that

you

can

use

as

the

basis

for

creating

your

own

store.

These

samples,

which

include

direct

sales

stores

(both

consumer

direct

and

Business

B2B

direct),

Business

a

demand

chain

business,

Business

a

supplier

business,

and

Business

a

hosting

site,

implement

many

of

the

most

commonly

used

features

in

today’s

top

electronic

commerce

sites,

and

provide

all

the

necessary

store

assets.

For

more

information

about

the

samples

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Why

start

with

a

sample

composite

store

archive?:

Starting

with

a

sample

composite

store

archive

loads

all

of

the

necessary

data

into

the

WebSphere

Commerce

Server

to

create

a

fully

functional

site.

WebSphere

Commerce

requires

that

certain

data

be

loaded

into

the

WebSphere

Commerce

Server

database

to

create

a

functional

site,

and

that

this

data

be

loaded

in

the

order

determined

by

the

schema.

Since

the

sample

component

store

archives

include

all

the

mandatory

data

in

the

order

and

structure

that

the

WebSphere

Commerce

Server

database

requires,

using

one

as

a

base

for

your

own

site

saves

you

a

substantial

amount

of

time

during

the

initial

creation

period.

After

publishing

a

sample

composite

store

archive,

you

can

edit

it

a

lot

or

a

little,

depending

on

your

store

needs.

For

example,

you

may

only

need

to

edit

the

data

using

the

tools

available

with

WebSphere

Commerce

and

change

the

look

and

feel

of

the

store

pages

using

the

development

environment.

Or,

you

may

need

to

edit

the

XML

files

or

the

database

directly

to

make

more

comprehensive

changes

to

the

data,

and

rewrite

the

store

pages

to

change

the

store

flow

and

features.

Or

using

a

combination

of

the

sample

store

and

developing

new

store

assets

may

be

the

method

of

store

development

that

works

best

for

you.

For

example,

if

some

of

the

database

assets

in

one

of

the

sample

stores

closely

match

your

store’s

needs,

but

the

flow

of

that

store’s

pages

does

not,

you

can

copy

the

database

assets

from

the

store

and

customize

them,

while

developing

entirely

new

Web

assets.

For

more

information

on

editing

store

data,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

6

Store

Development

Guide

Component

store

archives:

Business

Each

of

the

parts

that

make

up

the

composite

store

archive

are

also

available

as

separate

store

archives.

These

store

archives

are

known

as

component

store

archives.

A

component

store

archive

may

be

an

organization

structure

store

archive,

which

contains

the

organization

structure

and

predefined

user

roles,

or

it

may

be

a

functioning

store,

or

it

may

be

a

collection

of

file

or

data

assets

that

can

be

used

as

resources

by

other

types

of

stores.

For

more

information

about

the

samples

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Why

start

with

a

sample

component

store

archive?:

Starting

with

a

sample

component

store

archive,

or

a

combination

of

sample

component

store

archives

provides

you

with

more

flexibility

than

starting

with

a

sample

composite

store

archive,

as

publishing

a

composite

store

archive

creates

a

fully

functional

site.

Parts

of

this

site

may

be

appropriate

for

your

needs,

but

other

parts

may

not.

For

example,

if

the

flow

of

your

store

pages

is

significantly

different

than

that

of

any

of

the

provided

samples,

or

if

you

plan

to

significantly

customize

the

WebSphere

Commerce

Server

database

schema,

you

may

choose

to

publish

only

certain

parts

of

a

provided

sample,

rather

than

the

entire

sample.

For

example,

you

may

choose

to

publish

only

the

sample

organization

structure,

and

then

develop

all

of

the

assets

to

create

the

stores

in

your

site.

Or

you

may

choose

to

publish

a

sample

organization

structure,

and

one

or

more

of

the

sample

component

archives

that

create

either

a

store

in

the

organization

structure,

or

provide

resources

to

be

used

by

other

stores.

Note:

If

you

are

creating

an

instance

of

a

value

chain

business

model,

it

is

recommended

that

you

start

by

publishing

the

sample

organization

structure,

as

the

organization

structure

that

is

needed

for

sites

that

contain

multiple

entities

is

quite

complex.

For

more

information

on

how

organization

structures

work

in

WebSphere

Commerce,

see

“Understanding

the

WebSphere

Commerce

organization

structure”

on

page

25.

Basic

store

archive:

WebSphere

Commerce

also

provides

a

basic

sample

store

that

provides

the

minimal

set

of

assets

needed

to

create

a

store

in

the

WebSphere

Commerce

Server.

Why

start

with

the

sample

basic

store?:

Starting

with

the

sample

basic

store

allows

you

to

establish

a

store

entity

in

the

commerce

server,

in

that

the

JSP

files

can

be

invoked

using

the

store

ID.

If

you

are

creating

a

store

that

is

very

different

than

any

of

the

samples

stores

provided

with

WebSphere

Commerce,

you

may

want

to

start

with

the

sample

basic

store,

as

starting

with

the

basic

store

allows

a

developer

to

add

assets

as

necessary,

and

does

not

require

that

you

remove

or

change

assets

which

are

not

applicable

to

your

store.

For

more

information

about

the

basic

store

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Note:

You

can

use

the

sample

basic

store

in

conjunction

with

one

of

the

sample

organization

structures

provided.

Starting

from

scratch

It

is

also

possible

to

start

from

scratch,

that

is

not

use

any

of

the

samples

provided

with

WebSphere

Commerce.

The

degree

of

required

customization

Once

you

have

decided

on

the

foundation

for

your

store,

whether

it

be

a

sample

store,

a

sample

organization

structure

or

sample

basic

store,

or

from

scratch,

you

Chapter

1.

Store

development

overview

7

need

to

determine

what

types

of

changes

you

will

make

to

it.

In

general,

most

store

development

in

WebSphere

Commerce

falls

into

one

of

the

following

categories:

v

Adding

or

changing

store

functionality,

including

adding

new

features

or

changing

the

store

flow

v

Creating

or

changing

the

look

and

feel

of

a

store

v

Creating

or

changing

store

data

In

many

cases,

your

store

development

effort

will

include

a

combination

of

all

three.

Adding

or

changing

store

functionality

Adding

or

changing

store

functionality,

including

changing

the

flow

of

your

store,

or

adding

new

features

to

your

store,

usually

necessitates

changes

in

business

logic.

Tools

for

developing

the

business

logic,

including

creating

and

extending

commands,

creating

customized

code,

and

implementing

business

logic

are

discussed

in

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

Note:

Developers

who

are

creating

or

changing

the

business

logic

must

have

programming

skills

in

Java™,

Enterprise

JavaBeans™,

WebSphere

Studio

Application

Developer,

J2EE

programming,

and

be

familiar

with

the

WebSphere

Commerce

programming

model

and

object

model.
WebSphere

Commerce

Accelerator

provides

the

ability

to

change

some

of

the

features

and

store

flows

provided

with

the

consumer

direct

and

B2B

direct

sample

stores.

For

more

information

on

what

flows

and

functionality

you

can

change

and

how,

see

the

WebSphere

Commerce

Production

online

help.

Creating

or

changing

the

look

and

feel

of

a

store

Changing

the

look

and

feel

of

a

store

usually

involves

changing

the

storefront.

Storefront

assets

include

Web

assets

such

as

HTML

pages,

JSP

files,

style

sheets,

images,

graphics

and

other

multimedia

file

types.

Developing

your

storefront

assets

may

include

customizing

the

sample

store

pages,

replacing

them

with

existing

pages

of

your

own,

creating

new

pages,

or

doing

a

combination

of

all

three.

WebSphere

Commerce

provides

the

following

tools

to

create

or

edit

storefront

assets:

v

WebSphere

Studio

Application

Developer

WebSphere

Studio

Application

Developer

(packaged

with

WebSphere

Commerce

Studio)

includes

the

tools

required

to

create

and

edit

your

storefront

assets,

including

HTML,

graphics,

multimedia,

and

JavaServer

Pages

(JSP)

files.

Page

Designer,

included

in

WebSphere

Studio

Application

Developer,

allows

you

to

create

HTML

or

JSP

files,

as

well

as

animated

images.

You

can

also

configure

WebSphere

Studio

Application

Developer

to

use

another

Web

development

tool

of

your

choice.

Refer

to

the

WebSphere

Studio

online

help

for

more

information

on

registering

your

own

tools.

For

more

information

on

using

the

tools

in

WebSphere

Commerce

Studio

to

create

and

edit

your

storefront

assets,

see

the

WebSphere

Commerce

Studio

online

help.

For

more

information

on

creating

your

storefront

in

WebSphere

Commerce,

see

Chapter

8,

“Developing

your

storefront,”

on

page

75.

Note:

Developers

who

are

creating

or

changing

the

storefront

must

have

programming

skills

in

Java,

JavaScript™,

HTML,

JSP

technology,

and

be

familiar

with

the

WebSphere

Commerce

store

architecture.

v

WebSphere

Commerce

Accelerator

8

Store

Development

Guide

WebSphere

Commerce

Accelerator

includes

the

following

tools

to

change

the

look

and

feel

of

your

store:

–

Change

Pages

notebook

–

Upload

Logo

notebook

–

Change

Style

wizard

–

Manage

Files

notebook

–

Store

Profile

notebook

For

more

information

these

tools,

see

the

WebSphere

Commerce

Production

online

help.

Note:

The

tools

listed

above

only

work

with

stores

based

on

the

consumer

direct

sample

store,

and

Business

hosted

stores

(in

the

hosting

model

and

demand

chain

model)

created

with

the

Store

Creation

wizard.

Creating

or

changing

store

data

You

have

several

options

for

developing

and

editing

the

database

assets

in

the

store.

v

WebSphere

Commerce

Loader

package

The

WebSphere

Commerce

Loader

package

consists

primarily

of

utilities

for

preparing

and

loading

data

into

a

WebSphere

Commerce

database.

Use

the

Loader

package

to

load

large

amounts

of

data

and

to

update

data

in

your

WebSphere

Commerce

database.

The

Loader

utility

in

this

package

uses

valid

and

well-formed

XML

as

input

to

load

data

into

the

database.

Elements

of

the

XML

document

map

to

table

names

in

the

database,

and

element

attributes

map

to

columns.

For

information

on

using

the

Loader

package

to

develop

and

load

data

assets,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

When

to

use

WebSphere

Commerce

Loader

package:

Use

the

WebSphere

Commerce

Loader

package

to

initially

load

database

assets

into

the

WebSphere

Commerce

database

and

to

update

them.

The

Loader

package

can

also

be

used

to

automate

a

regular

data

feed

from

a

back

end

system.

v

WebSphere

Commerce

Accelerator

WebSphere

Commerce

Accelerator

is

a

workbench

of

online

tools

primarily

used

to

maintain

online

stores

through

various

store

operations.

However,

since

the

WebSphere

Commerce

Accelerator

allows

you

to

create

or

edit

data,

you

can

use

also

use

it

as

a

store

development

tool,

particularly

when

you

are

changing

small

amounts

of

data.

For

a

list

of

the

database

assets

you

can

edit

with

the

WebSphere

Commerce

Accelerator,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

When

to

use

WebSphere

Commerce

Accelerator:

Use

the

WebSphere

Commerce

Accelerator

when

you

are

to

create

or

update

data.

v

Editing

the

database

directly

You

always

have

the

option

of

editing

the

database

directly

using

SQL

inserts,

updates

or

deletes.

Note:

SQL

is

database

specific.

Oracle

may

require

a

different

SQL

syntax.

Note

that

SQL

statements

will

necessarily

have

database

specific

values

and

the

SQL

statements

may

not

be

reusable

in

another

WebSphere

Commerce

Server

instance.

Developers

who

are

creating

or

changing

the

store

data

must

be

familiar

with

the

WebSphere

Commerce

store

architecture,

store

data

and

store

Chapter

1.

Store

development

overview

9

archives.

To

modify

and

extend

the

WebSphere

Commerce

database

schema

for

the

purpose

of

implementing

customized

store

functions,

or

integrating

with

existing

database

information,

the

developer

should

have

database

administrator

skills

for

DB2®

or

Oracle.

Scenario:

Developing

and

deploying

a

production

store

This

section

outlines

the

recommended

scenario

for

developing

a

production

store

with

WebSphere

Commerce.

Table

1.

Scenario:

Developing

and

deploying

a

production

store

Task

Subtasks

Reference

Determine

which

supported

business

model

reflects

your

business

Chapter

2,

“Supported

business

models

in

WebSphere

Commerce,”

on

page

15

Determine

the

store

flow

Part

4,

“Developing

your

storefront,”

on

page

73

Create

use

cases

Part

4,

“Developing

your

storefront,”

on

page

73

Analyze

sample

stores

provided

with

WebSphere

Commerce

WebSphere

Commerce

Sample

Store

Guide

Determine

which

sample

store

or

other

sample

to

use

as

a

starting

point

WebSphere

Commerce

Sample

Store

Guide

Create

a

baseline

set

of

store

assets

Create

a

project

in

the

development

environment

(Specific

to

the

WebSphere

Commerce

development

environment)

WebSphere

Studio

product

documentation

Publish

one

of

the

sample

store

archives

in

the

development

environment

WebSphere

Commerce

Production

online

help,

help

topic

″Publishing

a

store

archive″

If

possible,

configure

the

store

using

the

change

flow

tooling

in

the

WebSphere

Commerce

Accelerator

WebSphere

Commerce

Production

online

help,

help

topic

″Changing

store

flows

using

WebSphere

Commerce

Accelerator″

Make

any

necessary

database

schema

changes

WebSphere

Commerce

Programming

Guide

and

Tutorials

Check

store

assets

into

a

source

control

system

creating

a

master

copy

WebSphere

Commerce

V5.5

Customization

and

Deployment

Handbook

SG24-6969

Redbook.

10

Store

Development

Guide

Table

1.

Scenario:

Developing

and

deploying

a

production

store

(continued)

Determine

the

development

that

must

be

done

to

create

store

from

baseline

assets

(storefront,

data

and

server

development)

Determine

changes

to

look

and

feel

of

store

WebSphere

Commerce

Sample

Store

Guide
Part

4,

“Developing

your

storefront,”

on

page

73

Determine

caching

strategy

for

store

pages

Part

4,

“Developing

your

storefront,”

on

page

73

Determine

changes

to

store

data

WebSphere

Commerce

Sample

Store

Guide
Part

6,

“Developing

your

store

data,”

on

page

107

Understand

the

implementation

used

in

the

sample

store

WebSphere

Commerce

Sample

Store

Guide

Analyze

existing

server

functionality

to

determine

where

it

will

need

enhancements

or

customization

WebSphere

Commerce

Production

and

Development

online

help

Determine

the

required

degree

of

integration

with

back

end

systems

WebSphere

Commerce

Production

and

Development

online

help

Set

up

team

environment

Each

developer

sets

up

a

development

project

in

the

IDE,

populates

the

project

with

assets

from

the

master

copy

in

the

source

control

system

and

the

server

assets

shipped

with

the

product

WebSphere

Commerce

V5.5

Customization

and

Deployment

Handbook

SG24-6969

Redbook.

Developer

gets

baseline

set

of

assets

running

Team

familiarizes

themselves

with

the

existing

functionality

in

the

store

from

the

customer’s

and

administrator’s

point

of

view

WebSphere

Commerce

Sample

Store

Guide

Develop

the

store

assets

Modify

and

enhance

the

storefront

assets

or

create

new

storefront

assets

Part

4,

“Developing

your

storefront,”

on

page

73

Develop

additional

server

functionality

(writing

new

commands,

EJBs,

integrating

with

back

end

systems)

WebSphere

Commerce

Programming

Guide

and

Tutorials

Modify

the

data

and

create

additional

data

Part

6,

“Developing

your

store

data,”

on

page

107

Create

production-ready

data

Part

6,

“Developing

your

store

data,”

on

page

107

Chapter

1.

Store

development

overview

11

Table

1.

Scenario:

Developing

and

deploying

a

production

store

(continued)

Deploy

developed

assets

into

production

WebSphere

Commerce

Programming

Guide

and

Tutorials
Additional

information

can

also

be

found

in

WebSphere

Commerce

V5.5

Customization

and

Deployment

Handbook,

SG24-6969

Redbook.

12

Store

Development

Guide

Part

2.

Business

models

supported

by

WebSphere

Commerce

©

Copyright

IBM

Corp.

2000,

2003

13

14

Store

Development

Guide

Chapter

2.

Supported

business

models

in

WebSphere

Commerce

Before

starting

to

develop

your

store

or

site

with

WebSphere

Commerce

you

need

to

understand

what

business

models

WebSphere

Commerce

supports.

Most

stores

you

create

with

WebSphere

Commerce

will

be

an

instance

of

one

of

these

business

models.

Note:

You

can

also

create

stores

with

WebSphere

Commerce

that

do

not

conform

to

the

business

models

described

in

this

chapter.

Understanding

supported

business

models

in

WebSphere

Commerce

WebSphere

Commerce

provides

the

architectural

infrastructure

to

put

businesses

that

fit

into

one

of

the

following

business

models

online:

v

Direct

sales

v

Business

Hosting

v

Business

Value

chain

Direct

sales

Direct

sales

supports

commerce

transactions

involving

products,

services,

or

information

directly

between

businesses

and

consumers

or

between

two

businesses

or

parties.

WebSphere

Commerce

supports

the

following

types

of

direct

sales

business

models:

v

Consumer

direct

v

Business

B2B

direct

Consumer

direct

Consumer

direct

supports

commerce

transactions

involving

products,

services,

or

information

between

businesses

and

consumers.

Consumers

typically

purchase

goods

or

services

directly

from

a

business

in

a

consumer

direct

scenario.

The

following

diagram

demonstrates

a

typical

consumer

direct

business.

RetailerCustomers shop
at the retailer

Customers

In

a

typical

consumer

direct

business,

customers

buy

directly

from

the

business,

usually

a

retailer,

as

shown

in

this

diagram.

The

business

can

be

a

retailer,

a

manufacturer

who

sells

their

goods

directly

to

consumers

through

their

own

retail

outlet,

or

any

other

business

that

sells

goods

or

provides

services

directly

to

consumers.

For

example,

a

business

that

sells

to

consumers

directly

through

a

catalog

would

be

considered

a

consumer

direct

business.

Organizations

that

are

not

traditionally

considered

businesses,

such

as

governments

can

also

be

considered

consumer

direct

businesses.

Governments

may

provide

goods

and

services

directly

to

customers.

©

Copyright

IBM

Corp.

2000,

2003

15

B2B

direct

Business

B2B

direct

supports

commerce

transactions

involving

products,

services,

or

information

between

two

businesses

or

parties.

Typical

B2B

direct

transactions

occur

between

buyers,

suppliers,

manufacturers,

resellers,

distributors,

and

trading

partners.

The

following

diagram

demonstrates

a

typical

B2B

direct

business.

Business Business
Buyers from one business
purchase goods or services
from another.

In

a

typical

B2B

direct

business,

businesses

purchase

goods

or

services

directly

from

another

business.

The

selling

business

can

be

a

wholesaler,

a

distributor,

a

manufacturer,

or

a

retailer

who

sells

to

buyers

from

other

businesses.

Organizations

that

are

not

traditionally

considered

businesses,

such

as

governments

and

the

media

can

also

be

considered

B2B

direct

businesses.

Governments

may

provide

goods

and

services

directly

to

businesses.

Hosting

Business

The

hosting

model

supports

hosting

of

merchants

or

other

businesses

by

an

Internet

Service

Provider

(ISP)

or

other

hosting

provider.

There

are

two

possible

sides

to

the

hosting

business:

v

hosted

stores

v

(optional)

a

site

that

allows

customers

to

locate

the

stores

that

are

hosted

by

the

provider

In

order

to

manage

relationships

with

the

hosted

stores,

hosting

models

usually

include

a

hub

(known

in

WebSphere

Commerce

as

a

hub

store).

This

hub

provides

self-provisioning

tools

that

allow

the

merchant

to

create

and

administer

a

store,

as

well

as

tools

that

allow

the

hosting

provider

to

manage

all

hosted

stores.

Hosting

providers

also

usually

include

a

store

in

which

customers

can

find

and

access

the

stores

hosted

by

the

provider.

The

following

diagram

illustrates

an

example

of

hosting.

Host
(Internet Service
Provider or other)

Merchant

Host
(Internet Service
Provider or other)

MerchantCustomer

In

this

example,

the

merchant

enters

the

host’s

site

and

creating

a

store

that

will

be

hosted

by

the

site.

Hosting

providers

often

provide

merchants

with

simple

self-provisioning

tools

that

allow

the

merchant

to

administer

a

hosted

store.

When

16

Store

Development

Guide

a

hosted

store

is

open

for

business,

customers

can

access

the

store

via

the

host’s

site

or

by

entering

the

hosted

store

directly.

Host
(Internet Service
Provider or other)

MerchantCustomer

In

this

example,

the

customer

has

the

option

of

entering

the

hosted

store

or

business

directly

or

browsing

the

host’s

site

and

then

being

transferred

to

the

hosted

store

or

business.

Hosted

stores

are

very

similar

to

consumer

direct

stores.

For

specific

differences

between

the

two,

as

implemented

in

the

WebSphere

Commerce

sample

stores,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Value

chain

Business

New

to

WebSphere

Commerce

version

5.5

is

the

capability

to

enable

online

business

transactions

involving

multiple

enterprises.

Value

chains

support

transactions

involving

multiple

enterprises

or

parties.

Products,

goods,

services,

or

information

are

delivered

through

the

parties

of

the

value

chain

from

producers

to

end

users.

A

value

chain

also

has

relationship

and

administrative

aspects,

that

is,

you

can

manage

the

relationship

of

the

partners

or

enterprises

in

your

value

chain,

as

well

as

offer

some

administrative

services

to

those

parties.

As

a

result,

value

chains

must

manage

the

two

sides

of

their

businesses:

their

customers

and

direct

sales,

and

their

channel

partners

and

suppliers.

Each

of

these

sides

requires

its

own

management

channels

and

practices.

In

order

to

manage

their

relationships

with

partners

or

suppliers,

value

chain

business

models

usually

include

a

hub

(in

WebSphere

Commerce

known

as

a

hub

store).

Value

chain

administrators

can

administer

the

operational

aspects

of

the

value

chain

in

the

hub

store,

including

enabling

partners

or

suppliers

to

participate

in

the

value

chain,

that

is,

registering

them,

setting

them

up,

creating

collaborations.

Partners

and

suppliers

can

also

access

the

hub

store

to

complete

administrative

tasks

such

as

registering

users.

In

order

to

sell

directly

to

customers

(direct

sales),

value

chains

usually

include

a

storefront,

where

customers

can

purchase

their

good

or

services

directly.

WebSphere

Commerce

supports

the

transactions

through,

and

relationship

management

of

the

following

two

types

of

value

chains:

v

Demand

chain

v

Supply

chain

Chapter

2.

Supported

business

models

in

WebSphere

Commerce

17

The

following

diagram

provides

an

overview

of

the

partners

and

relationships

supported

in

value

chains.

Value chains

Demand chain

Direct sales

Consumer
direct

B2B direct

Indirect sales
(selling through
channels)

Supply chain

Procurement Sourcing

Strategic
sourcing

Private
marketplace

Demand

chain

Business

A

demand

chain

is

composed

of

the

enterprises

that

sells

a

business’s

goods

or

services.

For

example,

a

demand

chain

may

be

composed

of

buyers

who

initiate

the

sales

transaction,

the

resellers

who

sell

the

manufacturer’s

goods,

and

the

manufacturer

who

creates

the

goods.

Or

a

demand

chain

may

be

composed

of

the

resellers

who

sell

a

manufacturer’s

goods,

the

manufacturer

who

makes

the

goods,

and

the

distributors

who

supply

the

manufacturer’s

goods

to

the

resellers.

Demand

chains

also

support

direct

sales

channels,

in

which

the

demand

chain

owner

sells

directly

to

customers

or

partners

itself.

For

more

information

on

direct

sales,

see

“Direct

sales”

on

page

15.

Demand

chain

hosting:

The

demand

chain

owner

may

host

stores

for

its

channel

partners,

for

example

resellers

or

distributors.

The

following

diagrams

illustrate

examples

of

some

of

the

demand

chains

supported

by

WebSphere

Commerce.

Buyers,

channel

partners

(resellers),

and

manufacturers:

Channel Partners
(Resellers)Buyers

Manufacturers
or Distributors

In

this

example,

buyers

purchase

goods

from

a

manufacturer’s

resellers

(channel

partners).

Resellers,

in

turn,

obtain

the

goods

from

the

manufacturer,

via

the

manufacturer’s

hub.

Note:

The

resellers

may

be

hosted

by

the

manufacturer

or

be

remote.

18

Store

Development

Guide

Resellers,

manufacturers,

and

distributors:

Channel Partners
(Resellers) Manufacturer Distributor

In

this

example

the

manufacturer

provides

a

hub

for

their

channel

partners,

including

resellers.

Resellers

and

other

channel

partners

may

be

able

to

do

several

functions

in

this

hub,

including

locating

distributors

of

the

manufacturer’s

goods.

In

order

to

locate

suppliers,

the

reseller

may

browse

a

product

catalog

in

the

private

hub.

If

the

desired

products

are

available

from

more

than

one

distributor,

the

reseller

can

check

product

availability,

distributors’

location,

and

prices

for

various

distributors.

Then,

if

the

reseller

chooses,

they

can

split

their

order

between

several

distributors.

The

order

is

then

sent

to

the

distributor,

who

completes

the

transaction

and

delivers

the

goods

or

services

to

the

reseller.

The

reseller

then

sells

the

goods

or

services

directly

to

the

consumer.

The

demand

chain

sample

site,

the

Commerce

Plaza,

is

an

example

of

this

reseller,

manufacturer

and

distributor

scenario.

Note:

The

resellers

may

be

hosted

by

the

manufacturer

or

be

remote.

Other

scenarios:

The

examples

described

in

this

section

are

just

a

few

instances

of

demand

chains.

The

scenario

details

may

change

depending

on

the

type

of

business

being

conducted.

For

example,

if

the

enterprise

is

a

manufacturer,

the

purpose

of

the

hub

may

be

to

help

the

manufacturer’s

resellers

locate

the

manufacturer’s

goods

from

several

distributors.

If

the

enterprise

is

a

distributor,

the

purpose

of

the

hub

may

be

to

help

the

distributor’s

resellers

find

goods

or

services

from

several

different

suppliers.

Supply

chain

Business

A

supply

chain

is

composed

of

the

enterprises

that

provide

services

to

a

business.

WebSphere

Commerce

provides

the

architectural

infrastructure

to

support

supply

chains

that

take

the

form

of

a

private

marketplace.

A

private

marketplace

provides

a

forum

for

vendors

to

offer

their

wares

for

sale.

Buyers

enters

this

forum

and

after

browsing

through

the

available

options,

select

the

appropriate

goods

or

services.

Note:

The

private

marketplace

does

not

support

competitive

bidding

and

counter-bidding

or

other

methods

of

competition.

Supply

chain

hosting:

The

supply

chain

owner

may

host

a

stores

for

its

suppliers.

The

following

diagram

illustrates

an

example

of

a

supplier

business.

Buyer Supplier
Private
marketplace

In

this

example

supply

chain,

the

buyer

enters

the

supplier’s

hub

to

interact

and

browses

the

an

aggregated

catalog

in

which

products

and

offers

from

multiple

Chapter

2.

Supported

business

models

in

WebSphere

Commerce

19

suppliers

are

presented.

The

buyer

can

then

select

the

desired

offer

or

request

quotes

from

multiple

suppliers.

The

buy

also

has

the

option

of

conducting

business

or

procuring

from

online

suppliers

directly.

Sample

stores

in

WebSphere

Commerce

WebSphere

Commerce

provides

several

sample

stores

that

you

can

use

to

familiarize

yourself

with

how

WebSphere

Commerce

supports

the

different

business

models

listed

in

this

chapter.

The

samples

available

(and

corresponding

store

archive

files)

are

as

follows:

Table

2.

Consumer

direct

Business

B2B

direct

Business

Hosting

Business

Demand

chain

Business

Supply

chain

FashionFlow

(ConsumerDirect
.sar)

2000Express

Express

Store

(ExpressStore.sar)

ToolTech

(B2BDirect.sar)

Note:

All

the

stores

listed

below

are

also

available

in

the

composite

store

archive

Hosting.sar.

It

is

recommended

that

you

publish

Hosting.sar

to

view

the

entire

hosting

sample.

Note:

All

the

stores

listed

below

are

also

available

in

the

composite

store

archive

DemandChain.sar.

It

is

recommended

that

you

publish

DemandChain.sar

to

view

the

entire

demand

chain

sample.

Note:

All

the

stores

listed

below

are

also

available

in

the

composite

store

archive

SupplyChain.sar.

It

is

recommended

that

you

publish

SupplyChain.sar

to

view

the

entire

supply

chain

sample.

Commerce

Hosting

Hub

(Hosting

Hub.sar)

Commerce

Plaza

(ChannelHub.sar)

Commerce

Supplier

Hub

(SupplierHub.
sar)

Store

Directory

(Store
Directory.sar)

Catalog

asset

store

(CatalogAsset
Store.sar)

Catalog

asset

store

(Catalog
AssetStore.sar)

Catalog

asset

store

(CatalogAsset
Store.sar)

Reseller

storefront

asset

store

(Resellerstore
frontAsset
Store.sar

)

Supplier

asset

store

(Supplier
AssetStore.sar)

Hosted

storefront

asset

store

(HostedStore
FrontAsset
Store.sar)

Distributor

asset

store

(DistributorAsset
Store.sar)

Suppliers

Hosted

stores

Hosted

reseller

stores

Distributor

stores

20

Store

Development

Guide

For

more

information

on

the

types

of

stores

in

these

samples,

see

“Understanding

how

the

store

architecture

supports

the

business

models”

on

page

66.

For

more

detailed

information

on

the

sample

stores,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Note:

Each

sample

also

contains

a

component

store

archive

that

contains

the

organization

structure

for

the

business

model.

Note

that

these

samples

are

representative

of

a

specific

instance

of

stores

in

each

business

model

and

are

not

meant

to

demonstrate

all

possible

variations

available

in

the

business

model.

However,

even

if

your

specific

instance

of

the

business

is

quite

different

from

the

sample

provided,

you

may

be

able

to

use

the

samples

as

a

starting

point

for

your

own

site,

or

use

portions

of

it

while

creating

your

site.

For

more

detailed

information

on

the

samples

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Chapter

2.

Supported

business

models

in

WebSphere

Commerce

21

22

Store

Development

Guide

Part

3.

WebSphere

Commerce

architecture

This

section

provides

an

overview

of

how

the

WebSphere

Commerce

architecture

supports

putting

businesses

online.

In

particular,

this

section

discusses

how

components

of

the

WebSphere

Commerce

architecture

allow

the

different

parties

(for

example,

your

customers,

business

partners,

or

distributors,

resellers,

and

suppliers)

in

your

business

to

interact

online.

In

order

to

enable

the

different

parties

(for

example,

your

customers,

business

partners,

vendors,

suppliers,

manufacturers,

distributors,

and

administrators)

that

contribute

to

your

business

to

interact

with

your

business

and

each

other

online,

WebSphere

Commerce

includes

the

following

architectural

components:

v

Organization

structure

v

Access

control

model

v

Business

policy

framework

v

Instance

architecture

v

Store

architecture

Together

these

components

create

the

architecture

that

allows

the

different

partners

in

your

business

to

interact

with

each

other.

©

Copyright

IBM

Corp.

2000,

2003

23

24

Store

Development

Guide

Chapter

3.

WebSphere

Commerce

organization

structure

In

order

to

allow

customers

or

buyers

to

access

your

site,

browse

your

catalog,

and

place

orders;

or

to

allow

employees

to

administer

the

site,

including

updating

the

catalog,

creating

new

promotions,

or

managing

orders;

or

to

allow

resellers

or

other

business

partners

to

complete

transactions

on

your

site,

all

actors

in

your

business

scenario

must

be

assigned

a

position

in

the

WebSphere

Commerce

organization

structure.

Understanding

the

WebSphere

Commerce

organization

structure

The

WebSphere

Commerce

organization

structure

provides

a

framework

for

the

actors,

or

entities,

in

your

business

scenario.

This

framework

is

organized

in

a

hierarchical

structure,

which

mimics

typical

organizational

hierarchies

with

entries

for

organizations

and

organizational

units

and

users.

The

organizations

and

organizational

units

in

the

framework

act

as

owners

for

the

parts

of

your

business.

All

parts

of

your

business,

including

customers,

administrators,

stores,

catalogs

and

distributors,

must

be

owned

by

an

organization

or

organizational

unit.

The

organization

structure

and

the

access

control

model,

discussed

in

Chapter

4,

“Access

control

in

WebSphere

Commerce,”

on

page

35,

are

closely

related,

in

that

the

access

control

model

applies

access

control

policies

to

organizations

rather

than

to

individual

entities

(stores,

customers,

administrators

and

so

on).

The

policies

that

apply

to

an

entity

(or

resource)

are

applied

to

the

organizations

that

own

the

entity

or

resource.

The

following

diagram

outlines

the

basic

WebSphere

Commerce

organization

structure.

The

basic

organization

structure

is

installed

during

instance

creation,

regardless

of

the

business

model.

Site
Administrators

o=Root Organization

o=Default Organization

Customers

v

Root

organization:

The

root

organization

is

the

top

level

organization

and

is

its

own

parent.

All

organizations

in

the

WebSphere

Commerce

organization

structure

are

descendents

of

the

root

organization.

The

site

administrators

are

owned

by

the

root

organization.

v

Default

organization:

The

default

organization

is

owned

by

the

root

organization.

All

guest

customers

and

all

customers

in

a

consumer

direct

©

Copyright

IBM

Corp.

2000,

2003

25

scenario

belong

to

the

default

organization.

Customers

in

a

B2B

direct

and

value

chain

scenario

can

belong

to

either

the

default

organization,

or

other

organizations.

One

or

more

other

levels

of

organizational

entities

can

exist

beneath

the

parent

organizational

entities.

You

can

add

as

many

child

organizational

entities

as

necessary

to

support

your

business.

How

does

the

organization

structure

support

the

business

models?

The

WebSphere

Commerce

organization

structure

is

flexible

enough

to

support

all

entities

in

the

supported

business

models.

The

diagrams

in

the

following

sections

demonstrate

how

a

typical

example

of

each

business

model

can

be

mapped

to

the

WebSphere

Commerce

organization

structure.

Consumer

direct

The

following

diagram

illustrates

a

typical

consumer

direct

business.

RetailerCustomers shop
at the retailer

Customers

In

order

to

place

this

business

online

with

WebSphere

Commerce,

the

entities

in

the

preceding

diagram

must

be

assigned

to

the

following

organizations:

ou=Consumer
Direct Organization

RetailerHarold's Market

Site
Administrators

o=Root Organization

o=Seller Organizationo=Default Organization

Customers Seller
Administrators

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

The

site

administrators

who

maintain

the

online

site,

are

owned

by

the

root.

26

Store

Development

Guide

–

Default

organization:

All

of

the

business’

customers

are

owned

by

the

default

organization.

–

Seller

organization:

A

seller

organization

is

created

to

own

all

the

seller

organizations

(including

stores

and

the

administrators

who

maintain

the

store).

The

administrators

who

maintain

the

store’s

functions

(for

example

customer

service

representatives,

catalog

and

product

managers)

are

termed

Seller

administrators

and

are

owned

directly

by

the

Seller

organization.

-

A

child

organizational

unit

(ou),

consumer

direct

organization,

is

created

under

the

seller

organization

to

own

the

store

(Retailer).

2000Express

The

organization

structure

in

WebSphere

Commerce

-

Express

is

slightly

different

than

the

consumer

direct

organization

described

above.

In

order

to

place

a

consumer

direct

business

online

with

WebSphere

Commerce

-

Express,

the

entities

in

the

consumer

direct

diagram

above

must

be

assigned

to

the

following

organizations:

Harold's Market

Site
Administrators

o=Root Organization

o=Seller Organizationo=Default Organization

RetailerCustomers Seller
Administrators

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

The

site

administrators

who

maintain

the

online

site,

are

owned

by

the

root.

–

Default

organization:

All

of

the

business’

customers

are

owned

by

the

default

organization.

–

Seller

organization:

A

seller

organization

is

created

to

own

all

the

stores

(Retailer)

and

the

administrators

who

maintain

the

store.

The

administrators

who

maintain

the

store’s

functions

(for

example

customer

service

representatives,

catalog

and

product

managers)

are

termed

Seller

administrators

and

are

owned

directly

by

the

Seller

organization.

B2B

direct

Business

The

following

diagram

illustrates

a

typical

B2B

direct

business.

Business Business
Buyers from one business
purchase goods or services
from another.

Chapter

3.

WebSphere

Commerce

organization

structure

27

In

order

to

place

this

business

online,

the

entities

in

the

preceding

diagram

must

be

assigned

to

the

following

organizations:

ou=Business
Direct Organization

BusinessHarold's Market

Site
Administrators

o=Root Organization

o=Seller Organizationo=Default Organization

Seller
Administrators

o=Buyer Organization

Buyers

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

The

site

administrators

who

maintain

the

online

site,

are

owned

by

the

root.

–

Default

organization:

Unlike

the

consumer

direct

organization

structure,

the

customers

are

not

owned

by

the

default

organization.

Instead

the

customers

are

buyers

who

are

owned

by

the

buyer

organization.

–

Buyer

organization:

Customers,

known

in

B2B

direct

businesses

as

buyers,

are

assigned

their

own

organization

in

the

B2B

direct

organization

structure.

–

Seller

organization:

A

seller

organization

is

created

to

own

all

the

organizations

that

own

stores.

The

administrators

who

maintain

the

store’s

functions

(for

example

customer

service

representatives,

catalog

and

product

managers)

are

termed

seller

administrators

and

are

owned

directly

by

the

seller

organization.

-

A

child

organizational

unit

(ou),

B2B

direct

organization,

is

created

under

the

seller

organization

to

own

the

store

(Business).

Demand

chain

Business

The

following

diagram

illustrates

an

example

of

a

demand

chain

business.

Channel Partners
(Resellers)Buyers

Manufacturers
or Distributors

28

Store

Development

Guide

In

order

to

place

this

business

online,

the

entities

in

the

preceding

diagram

must

be

assigned

to

the

following

organizations:

Harold's Market Harold's Market Harold's Market

Harold's Market

Harold's Market

Customers

Harold's Market

ou=Consumer
direct organization

Store A

o=Default organization

ou=Channel hub
organization

ou=Asset store
organization

ou=Distributor1
organization

ou=Distributor proxy
organization

o=Demand chain
management organization

o=Reseller
organization

o=Reseller A
organization

Site
administrators

Reseller A
administrators

Channel
administrators

Channel
hub

Catalog
asset store

Distributor
asset store

Reseller storefront
asset store

Distributor proxy
store 1

o=Root organization

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

As

well,

the

administrators

who

will

maintain

the

online

site,

the

Site

Administrators,

are

added

directly

under

the

root.

–

Default

organization:

By

default,

nothing

is

placed

under

the

default

organization.

Customers

of

the

reseller

stores

may

be

placed

under

this

organization.

–

Demand

chain

management

organization:

The

demand

chain

management

organization

is

created

to

own

all

of

the

channel

related

organizations

(with

the

exclusion

of

the

organization

that

owns

the

resellers).

The

demand

chain

management

organization

owns

the

following

child

organizational

units:

-

Channel

hub

organization:

The

channel

hub

organization

is

created

to

own

the

channel

hub.

The

administrators

who

maintain

the

channel

hubs

functions,

as

well

as

administering

the

reseller

organization,

are

termed

channel

administrators

and

are

owned

directly

by

the

channel

hub

organization

-

Distributor

proxy

organization:

The

distributor

proxy

organization

is

created

to

own

all

connections

to

distributors.

A

child

organizational

unit

is

created

for

each

distributor

proxy

in

the

organization.

v

Distributor

organization:

A

new

distributor

organizational

unit

is

created

for

each

distributor

proxy

in

the

site.

Chapter

3.

WebSphere

Commerce

organization

structure

29

-

Asset

store

organization:

The

asset

store

organization

is

created

to

own

all

assets

that

are

used

to

create

stores

for

channel

partners

(resellers

and

distributors).
–

Reseller

organization:

The

reseller

organization

is

created

to

own

all

of

the

resellers

in

the

demand

chain.

A

child

organization

is

created

for

each

reseller.

-

Reseller

organization

A,

B,

C:

A

new

reseller

organization

is

created

under

the

parent

reseller

organization,

for

each

reseller

store.

The

administrators

who

maintain

the

store’s

functions

(for

example

customer

service

representatives,

catalog

and

product

managers)

are

termed

reseller

administrators

and

are

owned

directly

by

the

corresponding

reseller

organization.

Supply

chain

Business

The

following

diagram

illustrates

a

typical

supply

chain

business.

Buyer Supplier
Private
marketplace

30

Store

Development

Guide

In

order

to

place

this

business

online,

the

entities

in

the

preceding

diagram

must

be

assigned

to

the

following

organizations:

Harold's Market

Harold's Market

Harold's Market Harold's Market

o=Default organization

o=Buyer A
organization

o=Supplier
organization

ou=B2B direct
organization

o=Supplier A
organization

Site
administrators

Supplier A
administrators

Store A

ou=Supplier hub
organization

ou=Asset store
organization

o=Supply chain
management
organization

Channel
administrators

Supplier
hub

Catalog
asset store

Supplier
asset store

o=Root organization

Buyers

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

As

well,

the

administrators

who

will

maintain

the

online

site,

the

Site

Administrators,

are

added

directly

under

the

root.

–

Default

organization:

By

default,

nothing

is

placed

under

the

default

organization.

–

Supply

chain

management

organization:

The

supply

chain

management

organization

is

created

to

own

all

of

the

supply

chain

related

organizations

(with

the

exclusion

of

the

organization

that

owns

the

suppliers).

The

supply

chain

management

organization

owns

the

following

child

organizational

units:

-

Supplier

hub

organization:

The

supplier

hub

organization

is

created

to

own

the

supplier

hub.

The

administrators

who

maintain

the

supplier

hubs

Chapter

3.

WebSphere

Commerce

organization

structure

31

functions,

as

well

as

administering

the

supplier

organization,

are

termed

channel

administrators

and

are

owned

directly

by

the

supplier

hub

organization

-

Asset

store

organization:

The

asset

store

organization

is

created

to

own

all

assets

that

are

used

to

create

stores

for

suppliers.
–

Supplier

organization:

The

supplier

organization

is

created

to

own

all

of

the

suppliers

in

the

supply

chain.

A

child

organization

is

created

for

each

supplier.

-

Supplier

organization

A,

B,

C:

A

new

supplier

organization

is

created

under

the

parent

supplier

organization,

for

each

supplier

store.

The

administrators

who

maintain

the

store’s

functions

are

termed

supplier

administrators

and

are

owned

directly

by

the

corresponding

supplier

organization.
–

Buyer

organization:

Buyers

are

given

their

own

organization

under

the

root.

All

buyers

are

owned

by

the

corresponding

buyer

organization.

Hosting

Business

The

following

diagram

illustrates

a

typical

hosting

business.

Host
(Internet Service
Provider or other)

MerchantCustomer

32

Store

Development

Guide

In

order

to

place

this

business

online,

the

entities

in

the

preceding

diagram

must

be

assigned

to

the

following

organizations:

Harold's Market

o=Default organization

o=Hosted seller
organization

o=Hosted seller A
organization

ou=Consumer
direct organization

Customers

Store A

Harold's Market Harold's Market

Harold's Market Harold's Market

ou=Hosting hub
organization

ou=Asset store
organization

ou=Store directory
organization

o=Hosting
organization

Channel
administrators

Hub
store

Store
directory

Catalog
asset store

Hosted storefront
asset store

Hosted seller A
administrators

Site
administrators

o=Root organization

v

Root

organization:

All

organizations

in

the

business

become

descendents

of

the

root

organization.

As

well,

the

administrators

who

will

maintain

the

online

site,

the

Site

Administrators,

are

added

directly

under

the

root.

–

Default

organization:

All

of

the

business’

customers

are

owned

by

the

Default

organization

–

Hosting

organization:

The

hosting

organization

is

created

to

own

all

of

the

hosting

related

organizations

(with

the

exclusion

of

the

organization

that

owns

the

hosted

stores).

The

hosting

organization

owns

the

following

child

organizational

units:

-

Hosting

hub

organization:

The

hosting

hub

organization

is

created

to

own

the

hosting

hub.

The

administrators

who

maintain

the

hosting

hub’s

functions,

as

well

as

administering

the

hosting

organization,

are

termed

channel

administrators

and

are

owned

directly

by

the

hosting

hub

organization.

-

Store

directory

organization:

The

store

directory

organization

is

created

to

own

the

store

directory.

-

Asset

store

organization:

The

asset

store

organization

is

created

to

own

all

assets

that

are

used

to

create

hosted

stores.

Chapter

3.

WebSphere

Commerce

organization

structure

33

–

Hosted

seller

organization:

The

hosted

seller

organization

is

created

to

own

all

of

the

hosted

stores.

A

child

organization

unit

is

created

for

each

hosted

store.

-

Hosted

store

organization

A,

B,

C:

A

new

hosted

store

organization

is

created

under

the

parent

hosting

organization,

for

each

hosted

store.

The

administrators

who

maintain

the

store’s

functions

are

termed

hosted

seller

administrators

and

are

owned

directly

by

the

corresponding

hosted

store

organization.

Sample

organization

structures

WebSphere

Commerce

provides

sample

organizations

structures

for

each

supported

business

model.

These

sample

organization

structures

are

available

on

their

own

(as

component

store

archives)

allowing

you

to

use

the

sample

organization

structure

as

as

starting

point

for

your

own

site,

or

as

part

of

the

sample

businesses.

For

more

information

on

the

sample

organization

structures,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Creating

organization

structures

Rather

than

create

new

organization

structures

for

your

site,

it

is

recommended

that

you

begin

by

publishing

one

of

the

sample

organization

structures

provided

with

WebSphere

Commerce,

and

then

make

changes

to

that

organization

structure

as

necessary.

For

more

information

on

editing

organization

data,

see

“Understanding

member

assets

in

WebSphere

Commerce”

on

page

115.

34

Store

Development

Guide

Chapter

4.

Access

control

in

WebSphere

Commerce

WebSphere

Commerce

allows

you

to

determine,

through

access

control,

which

tasks

a

particular

user,

be

they

customers,

buyers,

administrators,

distributors,

manufacturers,

or

suppliers,

can

perform

in

relation

to

your

business.

The

access

control

model

for

WebSphere

Commerce

is

covered

in

detail

in

the

WebSphere

Commerce

Security

Guide.

However,

in

order

to

understand

how

access

control

affects

site

and

store

development,

a

brief

summary

is

provided

here.

Understanding

access

control

in

WebSphere

Commerce

Access

control

in

WebSphere

Commerce

is

composed

of

the

following

elements:

users,

actions,

resources,

and

relationships.

v

Users

are

the

people

that

use

the

system.

For

access

control

purposes,

users

must

be

grouped

into

relevant

access

groups.

One

common

attribute

that

is

used

to

determine

membership

of

an

access

group

is

roles.

Roles

are

assigned

to

users

on

a

per

organization

basis.

For

more

information

about

roles,

see

“Roles”

on

page

117.

Some

examples

of

access

groups

include

registered

customers,

guest

customers,

or

administrative

groups

like

customer

service

representatives.

v

Actions

are

the

activities

that

users

can

perform

on

the

resource.

For

access

control

purposes,

actions

must

also

be

grouped

into

relevant

action

groups.

For

example,

a

common

action

used

in

a

store

is

a

view.

A

view

is

invoked

to

display

a

store

page

to

customers.

The

views

used

in

your

store

must

be

declared

as

actions

and

assigned

to

an

action

group

before

they

can

be

accessed.

v

Resources

are

the

entities

that

are

protected.

For

example,

if

the

action

is

a

view,

the

resource

to

be

protected

is

the

command

that

invoked

the

view,

for

example

com.ibm.commerce.command.ViewCommand.

For

access

control

purposes,

resources

are

grouped

into

resource

groups.

v

Relationships

are

the

relationship

between

the

user

and

the

resource.

Access

control

policies

may

require

that

a

relationship

between

the

user

and

the

resource

be

satisfied.

For

example,

users

may

only

be

allowed

to

display

the

orders

that

they

have

created.

Access

control

policies

Access

control

policies

authorize

access

groups

to

perform

particular

actions

on

the

resources

of

WebSphere

Commerce,

as

long

as

the

users

in

the

access

group

satisfy

a

particular

relationship

with

respect

to

the

resource.

WebSphere

Commerce

provides

over

three

hundred

default

access

control

policies

that

are

loaded

during

instance

creation.

These

policies

cover

a

wide

range

of

common

business

activities,

including

order

creation

and

processing,

and

trading,

such

as

request

for

Business

quotes

and

Business

contracts.

The

default

policies

are

documented

in

the

WebSphere

Commerce

Security

Guide.

Access

control

policy

groups

In

order

for

an

access

control

policy

to

be

applied

to

your

store

or

site,

it

must

belong

to

an

access

control

policy

group

and

the

policy

group

must

be

subscribed

by

the

organization

that

owns

the

resource.

By

default,

all

access

control

policies

©

Copyright

IBM

Corp.

2000,

2003

35

provided

with

WebSphere

Commerce

are

assigned

to

policy

groups.

For

a

list

of

default

policies

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Security

Guide.

Although

access

control

policy

groups

are

owned

by

organizations,

they

are

not

automatically

applied

to

the

organization.

An

organization

must

subscribe

to

a

policy

group

in

order

for

the

access

control

policies

to

apply

to

the

organization.

If

the

organization

has

child

organizations,

all

policy

groups

the

parent

subscribes

to

are

automatically

applied

to

the

child

organizations.

However,

if

the

child

organization

subscribes

directly

to

a

policy

group,

the

policy

groups

subscribed

to

by

the

parent

organization

no

longer

apply

to

the

child.

In

previous

versions

of

WebSphere

Commerce,

a

policy

applied

to

all

resources

owned

by

the

descendants

of

that

policy’s

owner

organization.

For

example,

if

Organization

A

had

a

certain

policy

and

was

the

parent

of

Organization

B,

then

Organization

B

implicitly

had

that

policy

as

well.

In

WebSphere

Commerce

5.5,

organizations

can

now

subscribe

to

policy

groups.

In

WebSphere

Commerce

5.5

,

if

Organization

B

does

not

subscribe

to

any

policy

groups,

the

access

control

framework

will

begin

searching

up

the

organization

hierarchy

until

it

encounters

an

organization

that

subscribes

to

at

least

one

policy

group.

If

Organization

B’s

immediate

parent

organization,

Organization

A,

subscribes

to

a

policy

group,

the

searching

stops,

and

the

policies

in

Organization

A’s

policy

group

are

applied

to

Organization

A

and

B.

This

can

be

seen

in

the

following

diagram.

o= Organization A

o= Organization B

o= Root OrganizationPolicy Group

Policy Group

Root Organization

Organization A

If

Organization

A

does

not

subscribe

to

a

policy

group,

the

search

continues

up

the

organization

hierarchy,

until

an

organization

with

a

subscription

is

reached.

This

is

seen

in

the

following

diagram

where

the

Root

Organization

subscribes

to

a

policy

36

Store

Development

Guide

group.

Organization

B

and

Organization

A

inherit

the

policies

in

that

group.

o= Organization A

o= Organization B

o= Root OrganizationPolicy Group

Root Organization

If

Organization

B

subscribes

to

a

policy

group,

the

search

stops

at

Organization

B

and

Organization

B

can

only

apply

to

those

policies

to

which

it

has

subscribed,

as

shown

in

the

following

diagram.

o= Organization A

o= Organization B

o= Root OrganizationPolicy Group

Policy Group

Policy Group

Root Organization

Organization A

Organization B

Note:

In

terms

of

access

control,

ownership

of

resources

has

a

special

meaning.

All

resources

must

implement

the

com.ibm.commerce.security.Protectable

interface.

One

of

the

methods

on

this

interface

is

getOwner(),

which

returns

the

member

ID

of

the

owner

of

the

resource.

For

example,

the

Order

entity

bean

is

a

resource

that

is

protected

by

having

its

remote

interface

extend

the

Protectable

interface.

The

Order’s

implementation

of

getOwner()

is

such

that

a

specific

Order

resource

returns

the

owner

of

the

store

where

the

order

was

placed.

For

policies

where

the

resource

is

a

command,

for

example,

com.ibm.commerce.command.ViewCommand,

the

default

implementation

of

getOwner()

is

to

return

the

owner

of

the

store

that

is

currently

in

the

command

context.

If

there

is

no

store

in

the

command

context,

then

Root

Organization

is

used

as

the

owner.

For

more

information,

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

Chapter

4.

Access

control

in

WebSphere

Commerce

37

Understanding

access

control

in

the

business

models

The

WebSphere

Commerce

access

control

structure

is

flexible

enough

to

support

all

entities

in

the

supported

business

models.

The

diagrams

in

the

following

sections

demonstrate

how

access

control

is

applied

to

a

typical

example

of

each

business

model.

Basic

access

control

structure

The

basic

access

control

structure

is

installed

during

instance

creation,

regardless

of

the

business

model.

Site
administrators

Site administrators have
Site Administrator role

o=Root organization

o=Default organization

Guest shopper
management
policy group

Management and
administration
policy group

Common shopping
policy group

B2C
policy group

B2B
policy group

Legend

Owns

Subscribes

Role

The

root

organization

owns

the

following

default

policy

groups:

v

Management

and

administration

v

Common

shopping

v

B2C

v

B2B

However,

the

root

organization

only

subscribes

to

the

management

and

administration

policy

group.

As

a

result,

these

policies

apply

to

the

site

administrators,

who

are

directly

under

the

root.

The

policies

in

the

management

and

administration

policy

group

do

not

apply

to

the

default

organization

through

inheritance,

as

the

default

organization

subscribes

38

Store

Development

Guide

to

the

guest

shopper

management

policy

group.

In

order

for

the

management

and

administration

policies

to

apply,

the

default

organization

must

subscribe

to

the

management

and

administration

policy

group

explicitly.

The

default

organization

owns

the

guest

shopper

management

policy

group.

Note:

For

more

detailed

information

on

the

default

policy

groups,

see

the

appendix

of

the

WebSphere

Commerce

Security

Guide.

Chapter

4.

Access

control

in

WebSphere

Commerce

39

Consumer

direct

The

following

diagram

describes

a

basic

consumer

direct

organization

and

access

control

structure.

Harold's Market

Harold's Market

Harold's Market

B2C policy group

o=Root organization

Guest shopper management
access control policy group

Management and
administration access control
policy group

Site
administrators

o=Seller organization

Customers

Customers are assigned the
Registered Customer role in the
consumer direct organization.

Seller
administrators

Store A

ou=Consumer
direct organization

B2B policy group
Common shopping
access control policy group

FashionFlow policy group

o=Default organization

Site administrators
have Site Administrator
role in the root organization.

40

Store

Development

Guide

Legend

Owns

Subscribes

Role

In

this

diagram

describing

the

basic

consumer

direct

organization,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

“Basic

access

control

structure”

on

page

38.

The

consumer

direct

organization

subscribes

directly

to

the

B2C

access

control

policies,

the

management

and

administration

policy

group,

and

the

common

shopping

policy

group.

The

consumer

direct

organization

also

owns

and

subscribes

to

the

FashionFlow

policy

group.

The

FashionFlow

policy

group

contains

the

following

policy:

AllUsersExecuteFashionAllUsersViews

Since

access

control

policy

groups

are

subscribed

by

organizational

entities,

if

you

are

creating

multiple

stores

in

your

site

and

want

to

apply

different

access

control

policy

groups

to

individual

stores,

you

must

create

separate

organizations

to

own

each

store.

2000Express

The

access

control

structure

in

WebSphere

Commerce

-

Express

is

slightly

different

than

the

consumer

direct

access

control

structure

described

above.

Chapter

4.

Access

control

in

WebSphere

Commerce

41

The

following

diagram

describes

the

access

control

structure

in

WebSphere

Commerce

-

Express:

FashionFlow

B2C policy group

o=Root organization

Guest shopper management
access control policy group

Management and
administration access control
policy group

Site
administrators

Seller
administrators

Customers

Customers are assigned the
Registered Customer role
in the seller organization.

MiniFashion

Express
Store

B2B policy group
Common shopping
access control policy group

Express Store
policy group

o=Default organization

Site administrators
have Site Administrator
role in the root organization.

o=Seller organization

In

this

diagram

describing

the

consumer

direct

organization

in

WebSphere

Commerce

-

Express,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

“Basic

access

control

structure”

on

page

38.

The

Seller

organization

subscribes

directly

to

the

B2C

access

control

policies,

B2B

access

control

policies,

the

management

and

administration

policy

group,

and

the

common

shopping

policy

group.

The

seller

organization

also

owns

and

subscribes

to

the

Express

policy

group.

The

Express

policy

group

contains

the

following

policies:

42

Store

Development

Guide

v

AllUsersExecuteExpressAllUsersViews

v

RegisteredUsersExecuteExpressAllUsersViews

B2B

direct

Business

The

following

diagram

describes

a

basic

B2B

direct

organization

and

access

control

structure.

Harold's Market

o=Root organization

Guest shopper management
access control policy group

Management and
administration access
control policy group

Site
administrators

o=Seller organization

Seller
administrators

Store D

ou=B2B direct
organization

B2B policy group

B2C policy group Common shopping
access control policy group

Tooltech policy group

o=Default organization

Buyers are assigned the
Registered Customer role
in the B2B organization.

o=Buyer A
organization

Buyers

Site administrators
have Site Administrator
role in the root organization.

Chapter

4.

Access

control

in

WebSphere

Commerce

43

Legend

Owns

Subscribes

Role

In

this

diagram,

describing

a

basic

B2B

direct

organization

structure,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

“Basic

access

control

structure”

on

page

38.

The

B2B

direct

organization

subscribes

directly

to

the

B2B,

management

and

administration,

and

the

common

shopping

policy

groups.

The

B2B

direct

organization

also

owns

and

subscribes

to

the

ToolTech

policy

group.

The

ToolTech

policy

group

contains

the

following

policies:

v

AllUsersForToolTechExecuteToolTechAllUsersViews

v

RegisteredCustomersForOrgForToolTechExecuteToolTech
RegisteredCustomerViews

Buyers

are

customers

that

place

orders

in

a

B2Bdirect

store.

All

buyers

must

be

owned

by

a

buyer

organization.

Typically,

buyer

organizations

do

not

subscribe

to

any

policy

groups,

since

management

and

administration

policies

inherited

from

the

root

organization

are

sufficient.

Since

access

control

policy

groups

are

subscribed

by

organizational

entities,

if

you

are

creating

multiple

stores

in

your

site,

and

want

to

apply

different

access

control

policy

groups

to

individual

stores,

you

must

create

separate

organizations

to

own

each

store.

Demand

chain

Business

In

these

diagrams,

describing

a

demand

chain

organization

structure,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

44

Store

Development

Guide

“Basic

access

control

structure”

on

page

38.

Harold's Market

Management
and administration
policy group

Marketplace
policy group

Common shopping
policy group

B2B
policy group

o=Root organization

Channel
administrators

Channel administrators
have Channel Manager role

o=Demand chain
management organization

ou=Channel hub
organization

Commerce
plaza

Legend

Owns

Subscribes

Role

The

channel

hub

organization

subscribes

directly

to

the

Management

and

administration

policy

group,

the

common

shopping

policy

group,

the

B2B

policy

group

and

owns

and

subscribes

the

Marketplace

policy

group.

As

a

result,

these

policies

apply

to

the

channel

administrators,

who

are

directly

under

the

channel

hub

organization,

as

well

as

to

the

channel

hub

(Commerce

Plaza).

The

Marketplace

policy

group

contains

the

following

policies:

v

AllUsersExecuteMarketplaceAllUserViews

v

RegisteredCustomersForOrgExecuteMarketplaceRegistered
CustomerViews

Chapter

4.

Access

control

in

WebSphere

Commerce

45

v

ContractAdministratorsForChannelOrgExecuteCreate
CommandsOnMemberResource

v

ContractAdministratorsForChannelOrgExecuteContract
DeployCommandsOnContractResource

v

ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

Harold's Market

Management
and administration
policy group

Common shopping
policy group

o=Root organization

o=Demand chain
management organization

ou=Distributor1
organization

ou=Distributor proxy
organization

Distributor
proxy store 1

Legend

Owns

Subscribes

Role

The

distributor

proxy

organization

subscribes

to

the

management

and

administration

policy

group

and

the

common

shopping

policy

group.

As

a

result,

these

policies

apply

to

the

distributor

organizations

who

are

directly

under

the

46

Store

Development

Guide

distributor

proxy

organization.

Harold's Market Harold's MarketHarold's Market

Management
and administration
policy group

FashionFlow
policy group

o=Demand chain
management organization

o=Root organization

Catalog
asset store

Distributor
asset store

Reseller storefront
asset store

ou=Asset
store organization

Legend

Owns

Subscribes

Role

The

asset

store

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

asset

store

organization

and

the

asset

stores

that

it

owns.

The

asset

store

organization

owns

the

FashionFlow

policy

group,

but

does

not

subscribe

to

it.

Chapter

4.

Access

control

in

WebSphere

Commerce

47

Note:

The

individual

reseller

consumer

direct

organizations

will

subscribe

to

the

FashionFlow

policy

group

when

the

reseller

store

is

created.

Harold's Market

ou=Channel hub
organization

ou=Asset
store organization

ou=Distributor proxy
organization

o=Default organizationManagement
and administration
policy group

Common shopping
policy group

B2B
policy group

B2C
policy group

o=Root organization

Customers

Store A

Reseller administrators
have Registered Customer role
in channel hub organization and
distributor proxy organization

Customers registered with store A
have Registered Customer role in the
consumer direct organization

FashionFlow
policy group

Reseller A
administrators

o=Reseller A
organization

o=Reseller
organization

o=Demand chain
management organization

ou=Consumer
direct organization

48

Store

Development

Guide

Legend

Owns

Subscribes

Role

The

reseller

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

reseller

organization

and

the

reseller

A

organizations

that

it

owns

as

well

as

to

the

reseller

A

administrators.

The

consumer

direct

organization

subscribes

directly

to

the

management

and

administration

policy

group,

common

shopping

policy

group,

B2C

and

B2B

policy

groups,

as

well

as

to

the

FashionFlow

policy

group.

These

policies

apply

to

all

stores

owned

by

the

consumer

direct

organization.

Supply

chain

Business

In

these

diagrams,

describing

a

basic

supply

chain

organization

structure,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

Chapter

4.

Access

control

in

WebSphere

Commerce

49

“Basic

access

control

structure”

on

page

38.

Harold's Market

Management
and administration
policy group

Common shopping
policy group

B2B
policy group

Channel administrators
have Channel Manager role

Supplier hub
policy group

o=Root organization

o=Supply chain
management organization

ou=Supplier hub
organization

Supplier
hub

Channel
administrators

Legend

Owns

Subscribes

Role

The

supplier

hub

organization

subscribes

directly

to

the

management

and

administration

policy

group,

the

common

shopping

policy

group,

the

B2B

policy

group

and

owns

and

subscribes

to

the

Supplier

hub

policy

group.

As

a

result,

these

policies

apply

to

the

channel

administrators,

who

are

directly

under

the

supplier

hub

organization,

as

well

as

to

the

supplier

hub.

The

Supplier

hub

policy

group

contains

the

following

policies:

v

AllUsersForSupplierHubExecuteSupplierHubAllUsersViews

v

RegisteredCustomersForOrgForSupplierHubExecuteSupplierHub
RegisteredCustomerViews

v

ContractAdministratorsForChannelOrgExecuteCreateCommands
OnMemberResource

50

Store

Development

Guide

v

ContractAdministratorsForChannelOrgExecuteContractDeploy
CommandsOnContractResource

v

ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

Harold's Market Harold's Market

Management
and administration
policy group

o=Root organization

o=Supply chain
management organization

ou=Asset
store organization

Supplier profile
policy group

Catalog
asset store

Supplier
asset store

Legend

Owns

Subscribes

Role

The

asset

store

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

asset

store

organization

and

the

asset

stores

that

it

owns.

The

asset

store

organization

owns

the

supplier

profile

policy

group,

but

does

not

subscribe

to

it.

Chapter

4.

Access

control

in

WebSphere

Commerce

51

Note:

The

individual

supplier’s

B2B

direct

organization

will

subscribe

to

the

supplier

profile

policy

group

when

the

supplier

store

is

created.

Harold's Market

Buyers registered
with store A have
Registered Customer
role in B2B direct

Store A

o=Root organization

Management
and administration
policy group

Common
shopping
policy group

B2B
policy group

Supplier profile
policy group

o=Buyer A
organization

o=Supplier
organization

Buyers

o=Supplier A
organization

Supplier users have
Registered Customer role in
supplier hub organization

Supplier A
administrators

ou=B2B direct
organization

o=Supply chain
management organization

ou=Supplier hub
organization

ou=Asset
store organization

Legend

Owns

Subscribes

Role

The

supplier

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

supplier

organization,

the

supplier

A

organizations

that

it

owns,

and

the

supplier

A

administrators.

The

B2B

direct

organization

subscribes

directly

to

the

management

and

administration,

the

common

shopping,

B2B

and

supplier

profile

policy

groups.

These

policies

apply

to

all

stores

owned

by

the

B2B

direct

organization.

52

Store

Development

Guide

The

Supplier

profile

policy

group

contains

the

following

policies:

v

AllUsersForSupplierExecuteSupplierAllUsersViews

v

RegisteredCustomersForOrgForSupplierExecuteSupplierRegisteredCustomerViews

Buyers

are

customers

that

place

orders

in

a

B2B

store.

All

buyers

must

be

owned

by

a

buyer

organization.

Typically,

buyer

organizations

do

not

subscribe

to

any

policy

groups,

since

management

and

administration

policies

inherited

from

the

root

organization

are

sufficient.

Hosting

Business

In

these

diagrams,

describing

a

basic

hosting

organization

structure,

the

root

organization

owns

and

subscribes

to

the

default

policy

groups

as

described

in

“Basic

access

control

structure”

on

page

38.

Harold's Market

o=Hosting
organization

o=Root organization

ou=Hosting hub
organization

Management
and administration
policy group

B2B
policy group

Channel store
policy group

Channel
store

Channel administrators
have Channel Manager role

Channel
administrators

Chapter

4.

Access

control

in

WebSphere

Commerce

53

Legend

Owns

Subscribes

Role

The

hosting

hub

subscribes

directly

to

the

management

and

administration

policy

group,

the

B2B

policy

group,

and

owns

and

subscribes

to

the

channel

store

policy

group.

As

a

result,

these

policies

apply

to

the

channel

administrators,

who

are

directly

under

the

hosting

hub

organization,

as

well

as

to

the

channel

store

(hosting

hub).

The

hosting

hub

policy

group

contains

the

following

policies:

v

AllUsersExecuteChannelStoreAllUsersViews

v

ContractAdministratorsForChannelOrgExecuteCreate
CommandsOnMemberResource

v

ContractAdministratorsForChannelOrgExecuteContract
DeployCommandsOnContractResource

v

ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

Harold's Market

Management
and administration
policy group

Public store
policy group

Store
directory

ou=Store directory
organization

o=Hosting
organization

o=Root organization

54

Store

Development

Guide

Legend

Owns

Subscribes

Role

The

store

directory

organization

subscribes

directly

to

the

management

and

administration

policy

group

and

owns

and

subscribes

to

the

store

directory

policy

group.

As

a

result,

these

policies

apply

to

the

store

directory,

which

is

directly

under

the

store

directory

organization.

The

store

directory

policy

group

contains

the

following

policy:

v

AllUsersExecutePublicStoreAllUsersViews

Harold's MarketHarold's Market

ou=Asset
store organization

o=Root organization

o=Hosting
organization

Management
and administration
policy group

Hosted storefront
asset store
policy group

Catalog
asset store

Hosted storefront
asset store

Legend

Owns

Subscribes

Role

The

asset

store

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

asset

store

organization

and

the

asset

stores

that

it

owns.

The

asset

store

organization

owns

the

hosted

storefront

asset

store

policy

group,

but

does

not

subscribe

to

it.

Chapter

4.

Access

control

in

WebSphere

Commerce

55

Note:

The

individual

hosted

seller

organizations

will

subscribe

to

the

hosted

storefront

asset

store

policy

group

when

the

hosted

store

is

created.

Harold's Market

o=Default organization

Common shopping
policy group

Management
and administration
policy group

B2C
policy group

o=Root organization

Customers

ou=Hosting hub
organization

ou=Consumer
direct organization

ou=Asset
store organization

ou=Store directory
organization

Store A

Hosted seller administrators
have Registered Customer role
in hosting hub organization

Customers registered with Store A have
Registered Customer role in consumer
direct organization

Hosted storefront
asset store
policy group

Hosted seller A
administrators

o=Hosted seller A
organization

o=Hosting
organization

o=Hosted seller
organization

B2B
policy group

56

Store

Development

Guide

Legend

Owns

Subscribes

Role

The

hosted

seller

organization

does

not

subscribe

directly

to

any

policy

groups.

As

a

result

it

inherits

the

management

and

administration

policy

group

from

the

root

organization.

These

policies

apply

to

the

hosted

seller

organization

and

the

hosted

seller

A

organizations

that

it

owns,

as

well

as

to

the

hosted

seller

A

administrators.

The

consumer

direct

organization

subscribes

directly

to

the

management

and

administration,

the

common

shopping,

B2B

and

B2C

policy

groups,

as

well

as

to

the

hosted

storefront

asset

store

policy

group.

These

policies

apply

to

all

stores

owned

by

the

consumer

direct

organization.

Access

control

in

sample

businesses

Each

of

the

sample

businesses

in

WebSphere

Commerce

includes

the

access

control

framework.

For

more

detail

on

how

the

access

control

framework

is

implemented

in

these

businesses,

see

the

WebSphere

Commerce

Sample

Store

Guide

Adding

access

control

to

your

stores

For

more

information

on

adding

access

control

to

your

stores,

see

Chapter

33,

“Access

control

in

your

store,”

on

page

285.

Chapter

4.

Access

control

in

WebSphere

Commerce

57

58

Store

Development

Guide

Chapter

5.

WebSphere

Commerce

business

policy

framework

Business

Business

policies

are

sets

of

rules

followed

by

a

store

or

group

of

stores

that

define

business

processes,

industry

practices,

the

scope

and

characteristics

of

a

store

or

group

of

stores

offerings,

and

how

the

store

or

site

interacts

with

customers

and

other

business

partners.

For

example,

your

site

may

have

business

policies

determining

when

and

how

customers

are

allowed

to

return

products

to

a

store,

or

business

policies

that

determine

what

payment

methods

your

store

accepts.

Understanding

the

WebSphere

Commerce

business

policy

framework

WebSphere

Commerce

provides

a

framework

that

allows

you

to

implement

your

store’s

business

policies

in

your

online

store

or

site.

The

business

policy

framework

consists

of

the

following

parts:

v

Business

policies

v

Business

Business

accounts

v

Contracts

and

Business

service

agreements

v

Terms

and

conditions

Business

policies

In

most

instances,

you

will

have

predefined

business

policies

for

your

business

that

you

need

to

implement

in

your

online

store

or

site.

WebSphere

Commerce

provides

a

set

of

business

policies

that

you

can

use

as

is,

or

change

to

meet

your

needs.

For

more

information

on

the

default

business

policies

provided

with

WebSphere

Commerce,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

For

information

on

how

to

edit

these

business

policies,

see

WebSphere

Commerce

Production

and

Development

online

help.

Business

Accounts

Business

Business

accounts

define

the

relationship

between

a

customer

and

your

business.

Business

accounts

track

contracts

and

orders

for

customer

organizations

and

configure

how

buyers

from

customer

organizations

shop

in

a

store.

Contracts

and

service

agreements

Before

a

customer

or

business

partner

(for

example

resellers

or

distributors)

can

access

your

store,

you

must

create

a

contract

or

service

agreement

that

defines

customer

or

business

partner

access

to

your

store.

In

the

WebSphere

Commerce

business

policy

framework,

you

create

contracts

for

customers

and

service

agreements

for

other

types

of

business

partners.

v

Contracts:

A

contract

with

a

customer

defines

what

areas

of

your

store

the

customer

can

access,

what

prices

the

customer

will

see,

and

for

how

long

the

customer

has

access

to

your

site

and

those

prices.

All

stores

must

contain

at

least

one

contract,

as

without

a

contract

no

one

but

internal

administrators

can

access

your

store.

WebSphere

Commerce

provides

a

default

contract

that

applies

to

all

customers

shopping

at

a

store.

In

WebSphere

Commerce

Professional

Edition,

the

default

contract

is

the

only

supported

contract.

©

Copyright

IBM

Corp.

2000,

2003

59

v

Business

Service

agreements:

A

service

agreement

with

a

business

partner

(business

partners

may

be

resellers,

distributors,

manufacturers,

suppliers,

or

other

partners)

defines

your

arrangement

with

the

business

partner.

For

example

a

service

agreement

with

a

reseller

may

define

what

access

the

reseller

has

to

your

site,

whether

they

can

share

your

catalog,

or

whether

you

host

a

store

for

them.

A

service

agreement

with

a

distributor

may

define

how

customers

to

your

site

can

receive

quotes

from

a

distributor,

or

how

customers

can

access

the

distributors

site

from

yours.

Terms

and

conditions

Terms

and

conditions

define

how

contracts

and

service

agreements

are

implemented

for

a

particular

customer

or

business

partner.

For

contracts,

terms

and

conditions

may

define

what

is

being

sold

under

the

contract;

the

price

of

the

items

being

sold;

how

the

items

are

shipped

to

the

customer;

and

how

the

customer

pays

for

the

order.

For

service

agreements

with

business

partners,

terms

and

conditions

may

restrict

the

products

the

business

partner

is

allowed

to

sell.

Terms

and

conditions

usually

reference

business

policies

as

most

aspects

of

a

site

or

stores

operations

are

defined

by

business

policies.

Terms

and

conditions

provide

standard

parameters

for

the

business

polices

they

reference.

Providing

parameters

to

the

business

policies

allows

you

to

modify

the

behavior

of

business

policies

for

each

contract.

Business

policies

in

sample

businesses

Each

of

the

sample

businesses

in

WebSphere

Commerce

includes

the

business

policy

framework.

For

more

detail

on

how

the

business

policy

framework

is

implemented

in

these

businesses,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Adding

business

policies

to

your

site

For

more

information

on

implementing

the

business

policy

framework

in

your

site,

see

Chapter

18,

“Contract

assets,”

on

page

179.

60

Store

Development

Guide

Chapter

6.

Instance

architecture

This

chapter

provides

an

introduction

to

the

WebSphere

Commerce

Server

instance

architecture.

WebSphere

Commerce

Server

The

WebSphere

Commerce

Server

is

a

WebSphere

Application

Server

application

that

handles

the

store-and

commerce-related

functions

of

an

e-commerce

solution.

The

storefront

assets

and

business

logic

reside

in

a

Web

application

within

the

WebSphere

Commerce

Server.

WebSphere

Commerce

provides

a

default

Web

application

(Stores.war)

for

your

use,

or

you

can

create

your

own.

A

Web

application

can

contain

the

assets

for

one

store,

or

the

assets

for

multiple

stores.

When

a

Web

application

contains

multiple

store

fronts

and

business

logic,

the

assets

for

each

store

are

separated

by

store

directory

(storedir).

WebSphere

Commerce

Server

instance

A

WebSphere

Commerce

Server

instance

is

a

deployed

WebSphere

Application

Server

application

with

an

associated

database.

An

instance

can

support

multiple

stores.

All

stores

in

an

instance

share

the

same

database

and

may

share

some

types

of

data,

for

example,

catalog,

fulfillment,

or

receipts.

All

stores

in

an

instance

also

share

the

same

EJB

container.

You

can

create

a

single

store

in

an

instance,

or

you

can

create

multiple

stores

in

an

instance.

For

more

information

on

multiple

stores

in

instance,

see

“Multiple

stores

in

a

single

instance”

on

page

64.

©

Copyright

IBM

Corp.

2000,

2003

61

62

Store

Development

Guide

Chapter

7.

Store

architecture

In

order

to

support

creating

online

stores,

WebSphere

Commerce

provides

a

store

architecture.

This

architecture,

as

well

as

some

examples

of

stores

that

can

be

implemented

using

it,

are

described

in

this

chapter.

Understanding

the

WebSphere

Commerce

store

architecture

In

order

to

support

stores

in

your

site,

WebSphere

Commerce

provides

a

store

architecture

that

allows

you

to

create

online

stores.

The

store

architecture

consists

of

the

following

components:

v

Store

assets

v

Support

for

multiple

stores

in

a

single

instance

v

Relationships

between

stores

Store

assets

In

WebSphere

Commerce

an

online

store

is

the

place

where

all

transactions

for

your

online

business

occur.

All

online

stores

created

with

WebSphere

Commerce

include

at

least

one

of

the

following

types

of

assets:

v

Storefront:

The

external

portion

of

your

store,

or

the

portion

that

displays

to

your

customers,

is

known

as

the

storefront.

The

storefront

is

comprised

of

Web

assets

such

as

HTML

pages,

JSP

files,

style

sheets,

images,

graphics

and

other

multimedia

file

types.

This

guide

discusses

the

concepts

and

tasks

involved

in

creating

the

JSP

files

that

build

your

store

pages.

For

more

information,

see

Part

4,

“Developing

your

storefront,”

on

page

73.

v

Business

logic:

The

portion

of

your

store

that

processes

customer

requests,

including

the

commands,

customized

code,

is

known

as

the

business

logic.

For

more

detailed

information

on

creating

business

logic

or

customized

code

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

v

Store

data:

The

data

assets

that

compose

your

store.

In

order

to

operate

properly,

a

store

must

have

the

data

in

place

to

support

all

customer

activities.

For

example,

in

order

for

a

customer

to

make

a

purchase,

your

store

must

contain

a

catalog

of

goods

for

sale,

a

process

to

handle

orders,

the

inventory

to

fulfill

the

request,

and

a

shipping

process.

Your

store

must

also

have

methods

for

processing

and

collecting

payment.

The

concepts

and

tasks

involved

in

creating

store

data

are

discussed

in

Part

6,

“Developing

your

store

data,”

on

page

107.

If

a

store

contains

all

three

types

of

assets,

that

is

storefront

assets,

business

logic,

and

store

data,

it

is

a

fully

operational

store.

If

a

store

contains

only

a

subset

of

the

assets,

that

is

it

contains

storefront

assets

and

business

logic,

or

store

data

and

business

logic,

or

just

store

data,

it

is

known

in

WebSphere

Commerce

as

an

asset

store.

Asset

stores

Asset

stores

are

collections

of

sharable

resources

(business

artifacts,

business

processes

and

storefront

assets)

that

can

be

leveraged

in

other

stores.

For

example,

instead

of

creating

a

catalog

as

part

of

the

hub

store,

a

hub

store

may

leverage

a

catalog

asset

store,

which

can

also

be

shared

by

the

hub’s

channels

or

partners.

An

asset

store

is

usually

composed

of

the

assets

that

can

be

used

by

multiple

stores.

For

more

information,

see

“Relationships

between

stores”

on

page

66.

©

Copyright

IBM

Corp.

2000,

2003

63

Multiple

stores

in

a

single

instance

WebSphere

Commerce

allows

you

to

support

multiple

online

stores

within

your

WebSphere

Commerce

Server

instance.

The

following

diagram

illustrates

some

possible

store

configurations:

Store 1
Web assets

Store 1
Web assets

Store 1
logic

Store 2
logic

Store 1
Web assets

Store 2
Web assets

Store 2
Web assets

Single store in
an instance

Multiple stores
in an instance,
owned by the
same owner
(Conglomerate
stores)

Multiple stores
in an instance

Store front Back-office Store data

Store 1
logic

Store 1
logic

Store 2
logic

Shared logic

Store 1 catalog
Store 1 orders

Shared catalog
Store 1 orders
Store 2 orders

Store 1
catalog and orders

Store 2
catalog and orders

The

stores

detailed

in

the

preceding

diagram

are

stand

alone

stores.

That

is,

although

they

are

in

the

same

instance,

they

do

not

share

any

data

or

have

relationships

with

each

other.

They

have

separate

storefronts,

business

logic

and

store

data.

You

can

also

create

multiple

stores

in

an

instance

that

share

the

same

storefront,

the

same

business

logic,

or

the

same

store

data,

including

catalogs,

or

any

combination

of

the

three.

The

following

diagram

illustrates

some

possible

64

Store

Development

Guide

configurations

in

which

stores

share

assets:

Store 1

Store 2

Shared logic

Shared
storefront

Multiple stores
in an instance
sharing a
storefront

Multiple stores
in an instance
sharing
business logic

Multiple stores
in an instance
sharing catalog
data

Storefront Business logic Store data

Store 1
logic

Store 1
logic

Store 1
logic

Shared
catalog data

Store 1
Web assets

Store 1
Web assets

Store 2
logic

Store 2
logic

Store 2
logic

Store 2
Web assets

Store 2
Web assets

Store 1
catalog and orders

Store 1
catalog and orders

Shared catalog
Store 1 orders
Store 2 orders

Store 2
catalog and orders

Store 2
catalog and orders

Note:

The

preceding

diagram

only

lists

a

few

possible

configurations

between

multiple

stores

in

an

instance.

Stores

may

share

more

than

one

asset

type,

for

example

multiple

stores

in

a

site

could

share

storefronts,

business

logic

and

data,

or

any

combination

of

the

three.

For

more

information

on

how

multiple

stores

in

an

instance

share

common

store

assets,

see

“Relationships

between

stores”

on

page

66.

Multiple

stores

can

exist

in

a

single

Stores

Web

module.

If

so,

the

store

assets

are

separated

using

the

following

methods:

v

Storefront

assets:

Storefront

assets

for

each

store

in

the

Stores

Web

module

are

stored

in

a

separate

store

directory

(storedir).

For

example

all

storefront

assets

for

MyStore

are

in

the

MyStore

directory.

v

Business

logic:

The

store

ID

is

used

to

select

the

command

implementation

for

each

store,

as

specified

in

the

command

registry.

Chapter

7.

Store

architecture

65

v

Store

data:

Data

assets

are

identified

for

each

store

by

a

unique

index.

Relationships

between

stores

Business

In

order

to

support

multiple

stores

in

a

site

having

the

same

storefront,

business

logic

or

store

data

or

any

combination

of

shared

assets,

as

well

as

supporting

other

types

of

relationships

between

stores

in

a

site,

such

as

one

store

hosting

another,

or

transferring

shopping

carts

from

one

store

to

another,

WebSphere

Commerce

now

provides

the

architecture

for

a

variety

of

relationships

between

stores.

Relationships

between

stores

allow

one

store

to

provide

a

service

to

another

store.

For

example

store

A

may

host

store

B,

or

store

C

may

use

the

catalog

data

from

store

D.

In

order

to

implement

these

store

relationships,

code

that

supports

each

store

relationship

is

required.

WebSphere

Commerce

includes

many

store

relationships

and

the

supporting

code.

These

store

relationships

can

be

loosely

grouped

into

the

following

categories:

v

Relationships

in

which

one

store

provides

assets

to

another

store.

These

types

of

store

relationships

include

one

store

providing

URLs,

commands,

business

policies,

property

files,

and

currencies

to

another.

v

Relationships

in

which

one

store

has

a

″business

relationship″

with

another

store.

These

types

of

store

relationships

including

one

store

hosting

another,

or

one

store

referring

orders

to

another

store.

Note:

For

a

detailed

list

of

the

default

store

relationships

provided

with

WebSphere

Commerce,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Understanding

how

the

store

architecture

supports

the

business

models

In

order

to

support

the

stores

needed

for

the

business

models,

WebSphere

Commerce

uses

the

store

architecture

to

create

the

following

types

of

stores:

v

Customer

facing

stores

v

Proxy

stores

v

Asset

stores

Note:

These

particular

stores

are

recommended

for

implementing

the

business

models

supported

by

WebSphere

Commerce.

You

can

also

create

your

own

types

of

stores

using

the

store

architecture.

Customer

facing

stores

Customer

facing

stores

are

stores

that

customers

can

access

directly.

These

stores

are

the

main

components

of

your

site.

WebSphere

Commerce

supports

the

following

types

of

customer

facing

stores:

v

Direct

sales

store:

A

store

that

supports

commerce

transactions

involving

products,

services,

or

information

directly

between

businesses

and

consumers,

or

between

two

businesses

or

parties.

WebSphere

Commerce

supports

two

types

of

direct

sales

stores:

–

Consumer

direct

–

Business

B2B

direct

66

Store

Development

Guide

v

Business

Hub

store:

A

store

that

enables

its

customers

or

partners

to

access

products

or

services

available

from

one

or

more

partners

or

clients

of

the

hub

owner,

through

the

use

of

other

stores

on

the

site.

v

Business

Hosted

store:

A

store

that

is

hosted

by

the

site

operator

for

the

owner

of

the

store.

The

store

owner

may

have

the

option

of

administering

the

store.

Creating

direct

sales

and

hub

stores

Direct

sales

and

Business

hub

stores

are

the

most

traditional

stores

in

WebSphere

Commerce

in

terms

of

store

creation.

That

is,

you

need

to

create

storefront

assets,

business

logic

and

store

data

for

each

store.

You

have

the

option

of

creating

these

assets

traditionally,

by

creating

the

assets

for

that

store

only.

However,

you

also

have

the

option

of

creating

the

assets

to

be

used

by

other

stores,

by

creating

the

storefront

and

business

logic

assets

either

in

an

asset

store

or

as

data

that

can

be

used

across

stores.

You

may

also

want

to

use

assets

from

other

stores

to

create

portions

of

your

direct

sales

or

hub

store.

For

information

on

creating

storefront

assets,

see

Part

4,

“Developing

your

storefront,”

on

page

73.

For

more

information

on

creating

business

logic

or

customized

code

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

For

more

information

on

creating

store

data,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

For

more

information

on

sharing

assets

between

stores,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Creating

hosted

stores

Business

In

the

samples

provided

with

WebSphere

Commerce,

the

majority

of

the

hosted

store

is

created

by

sharing

assets

from

existing

asset

stores.

For

example,

rather

than

creating

the

storefront

or

catalog

assets

for

each

store

you

are

hosting,

you

use

the

storefront

and,

depending

on

your

business,

the

catalog

from

another

store.

In

order

to

facilitate

creating

hosting

stores,

WebSphere

Commerce

uses

asset

stores.

The

following

diagram

illustrates

how

hosted

stores

use

the

assets

from

the

hosted

storefront

asset

store

and

the

catalog

asset

store.

Harold's Market

Harold's Market

Harold's Market

Harold's Market

Harold's Market

Hosted storefront
asset store

hosted
stores
n

Catalog
asset store

Hosting
hub

Store
directory

Your

hosted

business

administrators

then

have

the

option

of

making

cosmetic

changes

(such

as

a

new

look

and

feel,

their

own

new

logo

and

some

of

their

own

text)

to

customize

their

store,

as

well

as

changing

certain

data

(filtering

the

catalog,

changing

prices

and

so

on).

You

can

also

create

hosted

stores

traditionally,

that

is

by

creating

the

storefront

assets,

business

logic,

and

store

data

separately

for

each

hosted

store.

For

information

on

creating

storefront

assets,

see

Part

4,

“Developing

your

storefront,”

on

page

73.

For

more

information

on

creating

business

logic

or

customized

code

Chapter

7.

Store

architecture

67

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

For

more

information

on

creating

store

data,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

The

Store

Creation

wizard:

The

Store

Creation

wizard

provided

with

WebSphere

Commerce

allows

you

to

create

hosted

stores

quickly

and

easily.

The

wizard

asks

a

customer

to

provide

some

basic

data

about

their

store

(name,

description,

and

so

on),

allows

the

customer

to

select

the

storefront

or

catalog

they

want

to

use,

and

then

creates

the

store

for

them.

The

resulting

store

has

some

unique

data

(basic

store

data

that

makes

it

a

unique

store),

but

uses

the

storefront

and

catalog

data

from

existing

asset

stores.

The

Store

Creation

wizard’s

behavior

is

governed

by

a

template,

which

determines

what

options

are

available

for

creating

the

hosted

store,

including

store

relationships,

shipping

modes,

messages,

and

shared

fulfillment

center.

WebSphere

Commerce

provides

several

templates

for

the

Store

Creation

wizard,

one

for

each

supported

business

model.

These

templates

are

located

in

the

following

directory:

WC_installdir/xml/trading/xml

A

template

is

associated

with

the

Store

Creation

wizard,

based

on

the

type

of

storefront

asset

store

chosen

in

the

wizard.

For

example

if

you

choose

to

use

assets

from

the

reseller

storefront

asset

store

(identified

as

RPS

in

the

STORETYPE

field

in

the

STORE

table)

the

Store

Creation

wizard

uses

the

TemplateHostingContractRPS.xml.

For

information

on

creating

a

hosted

store

using

the

Store

Creation

wizard,

see

the

WebSphere

Commerce

Production

online

help.

Note:

If

you

prefer

not

to

use

the

Store

Creation

wizard

to

create

hosted

stores,

you

can

create

a

service

agreement

based

on

one

of

the

templates

and

then

import

it

into

WebSphere

Commerce.

For

information,

see

the

WebSphere

Commerce

Production

online

help.

In

order

to

change

the

assets

that

the

hosted

store

shares,

you

must

change

the

asset

store.

For

more

information,

see

“Creating

asset

stores”

on

page

69.

Proxy

stores

WebSphere

Commerce

also

supports

entities

known

as

proxy

stores.

A

proxy

store

is

a

store

that

represents

a

business

partner’s

operational

assets,

provides

the

business

logic

that

allows

the

WebSphere

Commerce

site

to

interact

with

an

external

business

partner.

For

example,

a

proxy

store

may

capture

the

orders

transferred

to

a

remote

order

capture

system,

as

well

as

capturing

the

suppliers’

inventory

information

or

the

information

sent

to

a

supplier’s

fulfillment

centers.

Unlike

a

customer

facing

store,

a

proxy

store

does

not

include

a

storefront

and

cannot

be

accessed

by

users.

Creating

proxy

stores

Creating

a

proxy

store

is

very

similar

to

creating

a

hosted

store,

in

that

the

majority

of

the

proxy’s

stores

assets

are

provided

from

existing

stores

(including

asset

stores).

As

implemented

in

the

samples

provided

with

WebSphere

Commerce,

the

proxy

store

does

not

include

a

storefront.

As

a

result,

only

the

assets

from

another

store’s

catalog

are

shared.

The

following

diagram

illustrates

the

distributor

proxy

stores

using

the

assets

from

the

distributor

asset

store

and

the

catalog

asset

68

Store

Development

Guide

store.

Harold's Market

Harold's Market

Harold's MarketHarold's Market

Harold's Market

Harold's Market

Catalog
asset store

n reseller
hosted stores

Reseller
asset store

Distributor
asset store

n distributor
proxy stores

Channel
hub

Rather

than

providing

a

user

interface

to

create

a

proxy

store,

WebSphere

Commerce

implements

proxy

stores

through

service

agreements,

which

are

then

imported

into

WebSphere

Commerce,

creating

the

proxy

store.

The

service

agreement

is

governed

by

a

template,

which

determines

what

information

you

need

to

create.

The

template

for

creating

proxy

stores

(TemplateReferralContract.xml)

is

available

in

the

following

directory:

WC_installdir/xml/trading/xml

To

create

the

proxy

store,

create

a

new

service

agreement

following

the

template

and

then

import

it

into

WebSphere

Commerce.

For

more

information,

see

the

WebSphere

Commerce

Production

online

help.

Asset

stores

In

order

to

facilitate

the

creation

of

customer

facing

stores

and

proxy

stores,

WebSphere

Commerce

implements

asset

stores.

Asset

stores

are

collections

of

sharable

resources

(business

artifacts,

business

processes

and

storefront

assets)

that

can

be

leveraged

in

other

stores.

For

example,

instead

of

creating

a

catalog

as

part

of

the

hub

store,

a

hub

store

may

leverage

a

catalog

asset

store,

which

can

also

be

shared

by

the

hub’s

channels

or

partners.

An

asset

store

is

usually

composed

of

the

assets

that

can

be

used

by

multiple

stores.

For

more

information,

see

“Relationships

between

stores”

on

page

66.

WebSphere

Commerce

provides

sample

catalog

asset

stores

and

storefront

asset

stores.

Creating

asset

stores

Asset

stores

are

stores

that

provide

assets

to

another

store.

As

implemented

for

the

samples

provided

with

WebSphere

Commerce,

asset

stores

are

composed

of

a

collection

of

assets,

but

are

not

fully

functional

stores.

To

create

an

asset

store,

you

follow

the

same

methods

as

you

would

to

create

the

assets

in

a

direct

sales

or

hub

store.

That

is,

if

you

want

the

asset

store

to

contain

catalog

assets,

you

create

catalog

data

following

the

instructions

in

Part

6,

“Developing

your

store

data,”

on

page

107.

If

the

asset

store

will

contain

storefront

assets,

see

Part

4,

“Developing

your

storefront,”

on

page

73.

If

the

asset

store

will

contain

business

logic,

see

WebSphere

Commerce

Programming

Guide

and

Tutorials.

Stores

in

the

supported

business

models

The

following

sections

illustrate

how

stores

are

implemented

in

the

sample

businesses.

Chapter

7.

Store

architecture

69

Note:

Since

the

consumer

direct

and

Business

B2B

direct

samples

each

contain

one

direct

sales

store,

they

are

not

discussed

here.

Hosting

Business

The

following

diagram

illustrates

the

types

of

stores

that

compose

the

hosting

sample.

Harold's Market

Harold's Market

Harold's Market

Harold's Market

Harold's Market

Hosted storefront
asset store

hosted
stores
n

Catalog
asset store

Hosting
hub

Store
directory

The

sample

hosting

site

contains

a

hub

store

(hosting

hub),

two

asset

stores

(catalog

asset

store

and

the

hosted

storefront

asset

store)

as

well

as

the

store

directory.

The

store

directory

is

a

listing

of

all

the

hosted

stores

in

the

site

and

acts

as

a

gateway

to

them.

The

hosting

stores

are

created

by

using

the

assets

from

the

two

asset

stores.

Note

that

customers

may

choose

to

create

their

own

catalog

data,

rather

than

using

the

catalog

defined

in

a

catalog

asset

store.

This

variation

creates

a

second

implementation

of

the

hosting

site,

as

illustrated

in

the

following

diagram:

Harold's Market

Harold's Market

Harold's Market Harold's Market

Hosting hub

Hosted
storefront
asset store

hosted
stores
n Store

directory

Demand

chain

Business

70

Store

Development

Guide

The

following

diagram

illustrates

the

types

of

stores

that

compose

the

demand

chain

sample.

Harold's Market

Harold's Market

Harold's MarketHarold's Market

Harold's Market

Harold's Market

Catalog
asset store

n reseller
hosted stores

Reseller
asset store

Distributor
asset store

n distributor
proxy stores

Channel
hub

The

demand

chain

sample

site

contains

a

hub

store

(channel

hub),

and

three

asset

stores

(distributor

asset

store,

catalog

asset

store

and

reseller

storefront

asset

store).

Note

that

the

channel

hub

uses

the

catalog

assets

defined

in

the

catalog

asset

store.

The

distributor

proxy

stores

are

creating

by

using

the

assets

from

the

distributor

asset

store,

while

the

reseller

hosted

stores

are

created

by

using

the

assets

from

the

catalog

asset

store

and

reseller

storefront

asset

store.

Supply

chain

Business

The

following

diagram

illustrates

the

types

of

stores

that

compose

the

supply

chain

sample.

Harold's Market

Harold's Market

Harold's Market

Harold's Market

Supplier
asset store

n hosted
suppliers

Supplier
hub

Catalog
asset store

The

supply

chain

sample

site

contains

a

hub

store

(supplier

hub),

and

two

asset

stores

(catalog

asset

store

and

supplier

asset

store).

Note

that

the

supplier

hub

uses

the

assets

defined

in

the

catalog

asset

store.

The

hosted

suppliers

are

created

by

using

the

assets

from

the

catalog

asset

store

and

supplier

asset

store.

Note:

The

supplier

hub

owner

defines

the

catalog

taxonomy

(for

example

the

category

structure,

and

possibly

shared

products

and

items)

that

the

hosted

suppliers

will

use

in

the

catalog

asset

store.

Chapter

7.

Store

architecture

71

72

Store

Development

Guide

Part

4.

Developing

your

storefront

©

Copyright

IBM

Corp.

2000,

2003

73

74

Store

Development

Guide

Chapter

8.

Developing

your

storefront

This

chapter

provides

an

overview

of

the

WebSphere

Commerce

storefront

architecture,

including

how

the

external

portion

of

your

store,

the

Web

assets

such

as

HTML

pages,

JSP

files,

style

sheets,

images,

graphics

and

other

multimedia

file

types,

are

displayed

to

your

customers.

Storefront

architecture

WebSphere

Commerce

uses

a

system

of

commands

and

views

to

display

the

Web

assets

in

a

store

front

to

customers.

v

Commands

perform

a

specific

business

process,

such

as

adding

a

product

to

the

shopping

cart,

processing

an

order,

updating

a

customer’s

address

book,

or

displaying

a

specific

product

page.

When

the

action

is

completed,

the

command

returns

a

view.

v

Views

display

the

results

of

commands

and

user

actions,

that

is,

views

present

your

store

pages

(JSP

files)

to

the

customers.

In

order

for

the

view

to

invoke

a

JSP

file,

the

JSP

filename

must

be

registered

with

the

view

in

the

view

registry

(VIEWREG)

table.

The

corresponding

JSP

file

is

stored

using

the

JSP

filename

in

the

subdirectory

(storedir)

for

the

store

under

the

WebSphere

Commerce

Stores

Web

Application.

Both

commands

and

views

are

invoked

using

URLs.

For

example,

when

a

customer

clicks

Shopping

Cart

in

the

sample

store,

the

customer

invokes

the

URL

https://hostname/path/OrderItemDisplay?,

which

is

passed

into

the

WebSphere

Commerce

Server.

The

WebSphere

Commerce

Server

calls

the

OrderItemDisplay

command,

and

the

shopping

cart

page

is

displayed

to

the

customer.

When

a

customer

clicks

Help

in

the

sample

store,

the

customer

invokes

the

URL

https://hostname/path/HelpView?,

which

is

passed

into

the

WebSphere

Commerce

Server.

The

WebSphere

Commerce

Server

calls

the

HelpView,

which

returns

the

Help

page.

The

WebSphere

Commerce

Server

can

also

map

multiple

commands

to

a

URL,

which

allows

each

store

to

optionally

have

its

own

implementation

of

that

command.

Similarly,

the

WebSphere

Commerce

Server

also

allows

you

to

map

multiple

JSP

files

to

a

single

view,

where

each

store

can

optionally

register

different

JSP

filenames

for

different

device

types

Default

commands

and

views

WebSphere

Commerce

provides

default

commands

and

views

which

you

can

use

in

your

store.

These

default

commands

and

views

are

listed

in

the

wcs.bootstrap.xml

file.

The

bootstrap

files

are

located

in

the

following

directory:

v

WC_installdir/schema/xml

If

a

needed

command

or

view

is

not

provided,

you

can

create

your

own.

For

information

on

creating

commands

and

views,

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

©

Copyright

IBM

Corp.

2000,

2003

75

Creating

your

store

pages

The

largest

task

in

creating

your

store

front

is

creating

the

actual

store

pages.

Before

beginning

development

work

on

the

store

pages,

you

should

complete

the

following

planning

activities:

v

Developing

a

list

of

store

pages

needed

v

Developing

a

list

of

command

and

view

URLs

v

Associating

JSP

filenames

with

views

v

Developing

a

list

of

access

control

policies.

For

more

information,

see

Chapter

33,

“Access

control

in

your

store,”

on

page

285.

Note:

While

planning

your

store

pages,

you

should

also

create

a

caching

strategy.

For

more

information

on

caching,

see

Chapter

9,

“Caching

your

store

pages,”

on

page

83.

Developing

a

list

of

store

pages

In

order

to

develop

a

list

of

the

pages

needed

to

create

your

store,

you

need

to

know

the

business

and

functional

requirements

of

the

store,

as

well

as

any

business

processes

that

have

been

defined.

Working

from

use

cases

Many

people

gather

requirements

in

the

form

of

use

cases.

Use

cases

define

the

business

processes

in

your

store,

in

the

form

of

interactions

between

the

customer

and

the

proposed

system.

In

the

case

of

an

online

store,

use

cases

may

define

how

a

customer

registers

at

the

store,

browses

the

catalog,

or

orders

an

item.

A

set

of

use

cases,

detailing

the

business

processes

for

the

sample

stores

are

provided

in

the

online

help.

These

use

cases

can

help

you

to

more

thoroughly

understand

the

flow

of

the

sample

stores,

and

can

be

used

as

a

guide

if

you

wish

to

create

use

cases

for

your

own

store.

The

following

is

an

example

of

a

Registration

use

case:

Registration

use

case:

The

registration

process

allows

customers

to

enter

personal

information

in

the

database.

Actor:

v

Customer

Main

flow:

The

customer

selects

Register

from

the

sidebar.

The

system

then

displays

a

page

with

the

following

fields:

v

E-mail

v

Password

v

Verify

password

v

First

name

v

Last

name

v

Age

(optional)

v

Gender

(optional)

The

customer

enters

the

appropriate

information

in

the

above

fields,

and

selects

Submit.

The

system

creates

a

new

customer

in

the

system

and

saves

the

customer’s

information

(E1,

E2,

E3).

The

system

prompts

the

customer

to

manage

their

account

following

the

process

in

the

Manage

Personal

Account

use

case.

76

Store

Development

Guide

Alternate

flows:

None.

Exception

flows:

E1:

E-mail

address

already

exists:

v

If

the

e-mail

address

already

exists

in

the

system,

the

system

displays

an

error

message

asking

the

user

to

enter

another

e-mail

address.

The

use

case

resumes

from

beginning.

E2:

Missing

mandatory

fields:

v

If

any

of

the

following

fields

(E-mail,

Password,

Verify

password,

First

name,

Last

name)

are

not

completed,

the

system

issues

an

error

message.

The

use

case

resumes

from

beginning.

E3:

Invalid

password:

v

If

the

password

is

invalid

or

does

not

match

the

verification

password,

the

system

issues

a

warning.

Determine

the

store

shopping

flow:

Regardless

of

whether

you

develop

use

cases

to

illustrate

your

store’s

business

processes,

or

use

another

method,

once

business

processes

are

available,

you

can

create

the

shopping

flow

for

your

store.

Note:

Since

use

cases

often

contain

flow

information

such

as,

″If

the

customer

selects

Submit,

the

Order

page

displays,″

use

cases

can

provide

useful

information

for

creating

shopping

flow

diagrams.

The

shopping

flow

reflects

the

requirements

and

business

processes

defined

for

your

store,

illustrating

how

a

customer

will

move

through

the

store.

For

example,

a

customer

may

enter

your

site

through

the

home

page

and

be

asked

to

register

before

browsing

the

catalog,

or

you

may

choose

to

allow

customers

to

view

the

catalog

as

guests,

without

registering.

Some

shopping

flows

allow

customers

to

complete

a

″quick

checkout″,

while

others

require

that

a

customer

completes

all

checkout

steps

every

time

they

make

a

purchase.

Or,

your

shopping

flow

can

offer

customers

the

choice

of

both

checkouts.

To

verify

that

the

store

flow

diagram

is

complete,

ensure

that

all

steps

in

the

use

cases

for

your

store

are

illustrated

in

the

store

flow

diagram.

Mapping

out

the

shopping

flow

visually,

as

the

following

diagram

for

the

FashionFlow

sample

store’s

shopping

flow

does,

allows

you

to

see

how

customers

will

travel

through

your

store.

Chapter

8.

Developing

your

storefront

77

Note:

This

diagram

only

contain

a

portion

of

the

FashionFlow

store

flow.

For

the

complete

flow,

see

the

WebSphere

Commerce

Sample

Store

Guide.

Home
page

Product
page

Shopping
cart

2. Choose
shipping
address

1. Choose
billing
address

3. Choose
shipping
method

4. Order
summary

Order
confirmation

New
shipping
address

New
billing
address

My
account
page

Address
book

Registration
page

Edit
address

Delete
address

Contact us Forgot your
password

Password
sent

Privacy
policy

RegisterLog in
Send
password

Change
Personal
Information

Contact Us Privacy Policy

Edit My
Address Book

Select category Select product

Return to
Shopping
Cart

Add to
Shopping
Cart

Checkout

Next

Next

Next

Order Now

Shopping Cart

Legend

These pages can be accessed
from any page in the site.

Change
personal
information

Add new
address

Help page

Help

Forgot
password

Register or
My Account

Category
pages

Register or
Login page

Log in

Delete Edit

Add New Address

New
shipping
address

New
billing
address

Select
product

The

diagram

for

the

FashionFlow

shopping

flow

is

quite

simple.

Although

it

includes

the

main

flow

of

the

a

customer’s

journey

through

the

store,

it

does

not

include

any

error

scenarios.

For

example,

what

happens

when

a

customer

logs

in

using

the

wrong

password,

or

enters

an

invalid

credit

card

number?

However,

even

a

simple

diagram

like

this

allows

you

to

develop

a

list

of

pages

needed

for

the

store.

To

start

you

will

need

to

create

a

view

for

every

page

listed

in

the

shopping

flow

diagram.

For

example,

if

you

were

to

create

a

store

with

the

same

shopping

flow

as

in

the

FashionFlow

diagram,

you

would

have

to

create

the

following

pages:

Note:

The

following

table

lists

the

view

names

used

in

for

the

FashionFlow

store

FashionFlow

shopping

flow

diagram

pages

(as

seen

by

customer)

Corresponding

view

Home

page

StoreCatalogDisplayView

Help

page

HelpView

Contact

us

ContactView

Privacy

policy

PrivacyView

Register

or

Login

Page

LogonForm

Forgot

your

password

LogoffView

78

Store

Development

Guide

FashionFlow

shopping

flow

diagram

pages

(as

seen

by

customer)

Corresponding

view

Password

sent

ResetPasswordForm

My

account

page

LogonForm

Change

personal

information

UserRegistrationForm

Address

book

AddressBookForm

Add

new

address

AddressForm

Delete

address

AddressBookForm

Edit

address

AddressForm

Registration

page

UserRegistrationForm

Shopping

cart

OrderItemDisplayViewShiptoAssoc

Choose

billing

address

BillingAddressView

New

billing

address

AddressForm

Choose

shipping

address

MultipleShippingAddressView

New

shipping

address

AddressForm

Choose

shipping

method

MultipleShippingMethodView

Order

summary

AllocationCheck

Order

confirmation

OrderOKView

Note:

Many

of

the

views

used

in

FashionFlow

were

created

specifically

for

FashionFlow.

These

views

are

listed

in

the

command.xml

file

in

the

FashionFlow

store

archive.

For

more

information,

see

“Registering

commands,

views,

and

URLs

in

WebSphere

Commerce”

on

page

137.

The

above

table

implies

only

the

basic

set

of

pages

you

need

to

create.

To

determine

what

other

pages

you

need

to

create,

you

can

look

more

closely

at

the

use

cases

or

other

methods

used

to

define

your

business

processes.

Error

pages:

The

exception

flows

in

your

use

cases

can

also

help

you

determine

what

error

pages

you

need

to

create

for

your

store.

The

registration

use

case

for

FashionFlow

specifies

the

following

exceptions

flows:

v

E-mail

address

already

exists:

If

the

e-mail

address

already

exists

in

the

system,

the

system

displays

an

error

message

asking

the

user

to

enter

another

e-mail

address.

The

use

case

resumes

from

beginning.

v

Missing

mandatory

fields:

If

any

of

the

following

fields

(E-mail,

Password,

Verify

password,

First

name,

Last

name)

are

not

completed,

the

system

issues

an

error

message.

The

use

case

resumes

from

beginning.

v

Invalid

password:

If

the

password

does

not

match

the

verification

password,

the

system

issues

a

warning.

As

a

result,

you

will

need

to

create

an

error

page

or

error

message

for

each

exception

flow.

Developing

a

list

of

command

and

view

URLs

As

demonstrated

in

the

FashionFlow

shopping

flow

diagram,

business

processes,

such

as

checkout

and

register,

may

require

several

pages.

In

order

to

combine

these

pages

into

a

working

business

process

or

flow,

rather

than

just

a

collection

of

pages,

you

must

include

commands

and

views

in

your

pages.

Chapter

8.

Developing

your

storefront

79

Developing

a

list

of

URLs

needed

Just

as

you

developed

a

list

of

pages

necessary

to

create

the

store,

you

also

need

to

develop

a

list

of

the

command

and

view

URLs

necessary

to

implement

the

business

processes

for

your

store.

Using

the

shopping

flow

diagram

for

your

store,

and

the

list

of

default

commands

and

views,

identify

the

URLs

necessary

to

complete

each

action.

Understanding

which

command

and

view

URLs

are

used

in

the

sample

stores

may

also

help

you

determine

what

URLs

you

need

in

your

store.

The

following

illustration

identifies

the

URLs

for

some

of

the

actions

in

the

FashionFlow

shopping

flow

diagram.

For

more

details,

see

the

information

on

the

samples

stores

in

theWebSphere

Commerce

Sample

Store

Guide.

Legend

These pages can be accessed
from any page in the site.

Bold

URL

Customer Action

Italics

Help page
Help.jsp

Category pages
CategoryDisplay.jsp

Product page
ProductDisplay.jsp

header.jsp

Shopping Cart
OrderItemDisplay.jsp

footer.jsp

Register or
Login page
LoginForm.jsp

Contact us
Contact.jsp

sidebar.jsp The header, footer and sidebar
JSP files are included in every
page in the site. Many of the links
represented in the Home page are
actually in the header or footer files.

Privacy policy
Privacy.jsp

Help Select product

Shopping Cart Privacy Policy

Contact Us
HelpView ProductDisplay

OrderItemDisplay PrivacyView

ContactView

Register or
My Account
LogonForm

Select category
CategoryDisplay

Home page
StoreCatalogDisplay.jsp

Associating

JSP

filename

to

views

The

WebSphere

Commerce

Server

uses

view

commands

to

compose

a

view

as

a

response

to

a

request.

WebSphere

Commerce

Server

provides

the

following

view

commands:

v

HttpForwardViewCommandImpl:

This

view

command

forwards

the

view

request

to

a

JSP

file.

v

HttpRedirectViewCommandImpl:

This

view

command

redirects

the

view

request

to

another

URL.

80

Store

Development

Guide

v

HttpDirectViewCommandImpl:

This

type

of

view

command

sends

the

response

view

directly

to

the

client.

It

does

not

call

a

JSP

file.

Direct

views

allow

controller

commands

to

produce

the

output

response

(rather

than

the

view

command).

Use

the

HttpForwardViewCommandImpl

view

command

to

render

JSP

files

directly.

For

example,

in

the

diagram

illustrating

the

URLs

used

in

FashionFlow,

in

order

to

display

the

Help

page

(Help.jsp),

the

HelpView

is

registered

in

the

view

registry

and

associated

with

the

Help.jsp

and

the

HttpForwardViewCommandImplcommand.

This

is

demonstrated

in

the

following

example:

<viewreg

viewname="HelpView"

devicefmt_id="-1"

storeent_id="@storeent_id_1"

interfacename="com.ibm.commerce.command.ForwardViewCommand"

classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"

properties="docname=Help.jsp"

internal="0"

https="0"

/>

Note

that

the

the

fully

qualified

classname

for

the

interface

and

the

implementation

class

is

used.

Use

the

HttpForwardViewCommandImpl

view

command

to

render

views

returned

from

a

display

command.

A

display

command

reads

data

from

the

database,

but

does

not

change

it.

For

example,

in

the

diagram

illustrating

the

URLs

used

in

FashionFlow,

the

OrderItemDisplay

command

returns

the

OrderItemDisplayViewShiptoAssoc

view.

When

this

view

was

registered

in

the

view

registry,

the

OrderItemDisplay.jsp

and

the

HttpForwardViewCommandImpl

were

associated

with

it.

This

is

demonstrated

in

the

following

example:

<viewreg

viewname="OrderItemDisplayViewShiptoAssoc"

devicefmt_id="-1"

storeent_id="@storeent_id_1"

interfacename="com.ibm.commerce.command.ForwardViewCommand"

classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"

properties="docname=OrderItemDisplay.jsp"

internal="0"

https="0"

/>

You

must

associate

a

JSP

filename

for

every

view

associated

with

every

display

command

(for

example,

OrderItemDisplay)

you

use.

For

more

information

about

associating

JSP

filenames

with

views,

see

“Registering

commands,

views,

and

URLs

in

WebSphere

Commerce”

on

page

137.

Note:

The

product

display

and

category

display

commands

return

views

as

well

as

JSP

filenames.

These

JSP

filenames,

which

display

products

and

categories

are

stored

in

the

catalog

data.

For

more

information,

see

“Displaying

store

catalog

assets”

on

page

162.

You

can

optionally

assign

different

JSP

filenames

to

display

products

and

categories

for

each

member

group

or

language

supported

by

your

store.

The

HttpRedirectViewCommandImpl

view

command

is

used

to

render

the

output

of

a

non-display

command

(a

command

that

changes

the

database).

A

non-display

command

must

be

associated

with

a

display

command

to

avoid

the

command

being

re-executed

accidentally

if

the

customer

reloads

the

page

or

click

the

back

button.

Chapter

8.

Developing

your

storefront

81

To

redirect

to

a

display

command,

specify

the

display

command

using

the

&URL=

parameter

on

the

URL

of

the

non-display

command.

For

example,

when

you

add

address

information

in

the

FashionFlow

sample

store

Address

form

and

click

Submit,

it

invokes

the

AddressAdd

command.

The

URL

used

to

invoke

the

AddressAdd

command

specifies

AddressBookForm

command

as

the

&URL=

parameter.

This

results

in

a

redirect

to

the

AddressBookForm

display

command,

which

returns

the

AddressBookForm

view.

When

the

AddressBookForm

view

was

registered

in

the

view

registry,

the

AddressBookForm.jsp

and

the

HttpForwardViewCommandImpl

were

associated

with

it.

You

must

use

the

URL=parameter

technique

for

all

non-display

commands.

Non-display

commands

are

commands

that

cause

changes

to

the

data

in

the

database.

82

Store

Development

Guide

Chapter

9.

Caching

your

store

pages

While

developing

your

storefront

you

also

need

to

determine

how

to

cache

your

store

pages.

This

chapter

discusses

creating

and

implementing

a

caching

strategy

for

your

store.

Planning

your

caching

strategy

When

determining

a

caching

strategy,

you

first

need

to

consider

the

following

issues:

v

What

pages

should

be

cached

v

Should

pages

be

cached

as

whole

pages

or

page

fragments

What

pages

should

be

cached

When

creating

your

high

level

caching

strategy,

you

first

need

to

determine

what

pages

in

your

store

should

be

cached.

Pages

that

are

good

candidates

for

caching

are

pages

that

are

accessed

frequently,

but

are

also

stable

for

a

period

of

time,

and

contain

content

that

can

be

reused

by

a

variety

of

users.

For

example,

catalog

display

pages

are

usually

good

candidates

to

enable

caching.

Should

pages

be

cached

as

whole

pages

or

page

fragments

In

Version

5.5,

WebSphere

Commerce

uses

the

WebSphere

Application

Server

dynamic

cache

service,

which

allows

WebSphere

Commerce

to

support

both

caching

of

Web

pages

as

a

whole,

and

caching

of

fragments

of

pages.

Caching

a

Web

page

as

a

whole

simply

caches

the

entire

page

as

one

entity,

even

if

it

is

composed

of

several

smaller

fragments.

Page

fragments

may

include

a

separate

header,

sidebar,

or

footer.

Even

the

main

body

of

the

page

may

be

broken

into

several

fragments.

For

example

one

fragment

on

the

main

body

page

may

show

a

product,

while

the

a

second

fragment

shows

the

price.

Fragmenting

pages

allows

you

to

show

content

personalized

for

individual

users.

The

sample

store

pages

provided

with

WebSphere

Commerce

are

composed

of

several

fragments

(header,

sidebar,

footer,

main

content).

If

your

store

pages

are

composed

of

fragments

you

also

have

the

opportunity

of

caching

the

pages

by

fragments.

Caching

individual

fragments

allows

you

to

cache

the

portions

of

the

page

that

are

reusable

for

a

wider

audience.

If

a

page

contains

personalized

information

for

only

a

small

segment

of

your

audience,

caching

this

page

as

a

whole

page

will

not

allow

the

page

to

be

reused

very

often

because

only

that

segment

of

your

audience

can

ever

reuse

that

cached

page.

For

example,

if

a

page

displays

a

welcome

message

for

each

customer

in

the

header

and

is

cached

based

on

the

user

ID,

then

only

that

particular

user

can

ever

reuse

that

cached

page.

However,

if

you

decompose

that

page

into

fragments,

you

can

cache

the

fragments

that

get

reused

for

most

of

your

audience.

For

example,

the

footer,

sidebar,

and

product

display

fragments

may

be

be

applicable

to

all

your

users,

while

the

price

and

header

fragments

may

be

personalized.

When

the

page

is

requested,

the

individual

fragments

are

reassembled

to

produce

the

page.

Your

store

pages

can

be

cached

using

whole

page

caching

or

fragment

caching

or

a

combination

of

the

two

methods.

©

Copyright

IBM

Corp.

2000,

2003

83

Developing

a

more

detailed

caching

strategy

After

you

have

determined

what

pages

and

page

fragments

should

be

cached,

you

need

to

determine

a

more

detailed

caching

strategy.

For

each

page

or

fragment

your

are

planning

to

cache,

you

need

to

determine

the

following:

v

How

the

page

or

fragment

is

requested

v

Whether

the

page

or

fragment

relies

on

a

store

relationship

v

How

the

cached

data

will

be

invalidated

How

the

page

or

fragment

is

requested

How

the

JSP

file

(whether

it

is

a

single

page,

or

a

page

fragment)

is

requested

determines

how

the

WebSphere

Application

Server

will

cache

it.

For

example,

the

WebSphere

Application

Server

needs

to

know

whether

the

JSP

file

is

displayed

as

a

response

to

a

servlet,

object,

EJB,

or

a

command.

As

a

result,

you

need

to

compile

a

list

of

how

each

page

or

fragment

you

plan

to

cache

will

be

requested.

Whether

the

page

or

fragment

relies

on

a

store

relationship

Business

As

discussed

in

Chapter

14,

“Relationships

between

stores,”

on

page

129

and

Chapter

7,

“Store

architecture,”

on

page

63,

stores

may

have

relationships

with

other

stores

that

allow

them

to

use

data

from

another

store.

For

example

store

A

may

use

the

catalog

data

defined

in

store

B.

Stores

may

also

have

relationships

with

multiple

stores,

allowing

them

to

use

data

from

several

different

sources.

As

part

of

your

detailed

caching

plan,

you

need

to

determine

if

the

data

displayed

in

each

page

or

fragment

relies

on

a

relationship

with

another

store.

If

a

page

does

display

information

from

another

store,

each

time

the

data

from

other

store

is

updated,

your

cached

pages

will

also

need

to

be

updated.

For

information

on

caching

store

relationships,

see

“Implementing

caching

for

store

pages

that

use

store

relationships”

on

page

89.

How

the

cached

data

will

be

invalidated

For

each

page

or

page

fragment

that

you

plan

to

cache,

you

also

need

to

determine

when

the

cached

page

or

fragment

is

no

longer

valid,

and

remove

the

corresponding

cache

entries

from

the

cache.

This

process

is

known

as

invalidation.

In

order

to

determine

when

a

cached

page

has

changed,

and

thus

can

no

longer

is

valid,

you

need

to

determine

what

might

make

the

cached

page

out

of

date.

For

example

a

cached

shopping

cart

page

is

invalid

when

a

customer

adds

a

new

item

to

the

cart.

Cached

pages

may

also

be

invalidated

when

an

administrator

updates

the

store

with

the

WebSphere

Commerce

Accelerator,

or

when

new

catalog

data

is

added

with

the

loader

package,

or

the

tooling

in

the

WebSphere

Commerce

Accelerator.

After

you

have

compiled

a

list

of

all

possible

ways

the

cached

page

or

fragment

can

be

invalidated,

you

need

to

determine

which

events

are

used

to

cause

the

invalidation.

Events

that

cause

invalidation

can

include

a

servlet

request,

a

controller

command

or

a

task

command

and

so

on.

For

example,

if

you

update

a

product

description

using

the

product

management

tools

in

the

WebSphere

Commerce

Accelerator,

WebSphere

Commerce

internally

invokes

the

commands,

AddCatalogEntryDescCmd

or

UpdateCatalogEntryDescCmd

to

make

the

changes.

If

you

want

to

invalidate

the

cached

pages

that

are

changed

by

these

commands,

you

need

to

add

invalidation

policies

to

the

cachespec.xml

file

that

will

intercept

the

execution

of

the

commands,

and

trigger

the

invalidation.

For

information

on

implementing

invalidation,

see

the

following:

84

Store

Development

Guide

v

The

WebSphere

Commerce

Administration

Guide,

″Dynamic

caching″

chapter

for

instructions

on

setting

up

new

invalidation

policies,

and

an

example

of

cache

invalidation.

v

“Invalidating

cached

data

in

the

cachespec.xml

file”

on

page

88

for

instructions

on

how

to

merge

the

sample

invalidation

policies

provided

by

WebSphere

Commerce

with

your

store’s

cachespec.xml

file.

Implementing

your

caching

strategy

After

you

have

gathered

all

the

details

you

need

for

your

caching

strategy,

you

implement

it

by

creating

a

cache

policy

file

that

defines

the

information

you

have

gathered,

including

what

is

to

be

cached

and

how,

and

how

cached

pages

will

be

invalidated.

The

WebSphere

Application

Server

dynamic

cache

service

uses

this

cache

policy

file,

known

as

cachespec.xml

to

implement

caching

in

your

store.

Each

sample

store

provided

with

WebSphere

Commerce

includes

a

cachespec.xml

file

that

defines

the

caching

strategy

for

that

store.

These

files

are

located

in

the

following

directory:

WC_installdir/samples/dynacache/BusinessModel

You

have

the

option

of

changing

these

files

if

your

store

is

based

on

a

sample,

or

using

one

of

these

files

as

a

base

for

the

cachespec.xml

file

for

your

store.

Understanding

the

cachespec.xml

file

In

order

to

cache

WebSphere

Commerce’s

store

pages,

you

must

define

cacheable

objects

in

the

cachespec.xml

file.

WebSphere

Commerce

only

uses

a

subset

of

the

elements

defined

in

the

cachespec.xml

file.

This

subset

of

elements

is

explained

in

this

section.

For

more

detailed

information

about

the

cachespec.xml

file,

see

the

WebSphere

Application

Server

Information

Center

(http://www.ibm.com/software/webservers/appserv/infocenter.html),

topic

″Cachespec.xml

file″.

For

more

information,

see

the

WebSphere

Commerce

Administration

Guide,

″Dynamic

caching″

chapter.

Understanding

the

elements

used

by

WebSphere

Commerce

WebSphere

Commerce

used

the

following

elements

in

the

cachespec.xml:

v

Class

v

Name

v

Property

The

use

of

these

four

elements

is

illustrated

in

the

following

example:

<cache-entry>

<class>servlet</class>

<name>/FashionFlow/ShoppingArea/CatalogSection/CategorySubsection
/StoreCatalogDisplay.jsp</name>

<property

name="save-attributes">false</property>

Class:

The

class

element

is

a

required

element.

It

determines

how

the

WebSphere

Application

Server

will

interpret

the

remaining

cache

policy

definition.

WebSphere

Commerce

uses

the

following

class

values:

v

command

v

servlet

The

value

command

refers

to

classes

using

the

WebSphere

Commerce

programming

model.

Chapter

9.

Caching

your

store

pages

85

The

value

servlet

refers

to

servlets

or

JSP

files

deployed

in

the

WebSphere

Application

Server

servlet

engine.

Note:

For

WebSphere

Commerce

version

5.5,

only

command

invalidation

is

supported.

Name:

Name

is

the

fully

qualified

class

name

of

the

servlet

or

command.

Name

is

a

required

element.

Name

values

for

commands

must

include

the

package

name.

For

example,

com.ibm.commerce.dynacache.commands.MemberGroupsCacheCmdImpl

Name

values

for

servlet

and

JSP

files

must

include

the

full

URI

of

the

JSP

file

or

servlet

to

be

cached.

For

example,

com.ibm.commerce.server.RequestServlet.class

/ToolTech/ShoppingArea
/CatalogSection/CategorySubsection/StoreCatalogDisplay.jsp.

Property:

The

property

element

takes

the

following

form:

<property

name=key>value</property>,

where

key

is

the

name

of

the

property

being

defined

and

value

is

the

corresponding

value.

You

can

set

optional

properties

on

a

cacheable

object.

For

example,<property

name="consume-
subfragments">true</property>

When

caching

WebSphere

Commerce

store

pages,

the

following

properties

are

used:

Property

Value

Valid

classes

Description

EdgeCacheable

True

or

False

Default

is

false.

Servlet

If

the

property

is

true,

then

the

given

servlet

or

JSP

file

is

externally

requested

from

an

Edge

Server.

Whether

the

servlet

or

JSP

file

is

cacheable

depends

on

the

rest

of

the

cache

specification.

86

Store

Development

Guide

consume-
subfragments

True

or

False.

Default

is

false

Servlet

When

a

servlet

is

cached

only

the

content

of

that

servlet

is

stored.

Placeholders

for

any

other

fragments

to

which

it

includes

or

forwards

are

created.

Consume-
subfragments

(CSF)

tells

the

cache

to

continue

saving

content

when

it

encounters

a

child

servlet

via

an

include.

The

parent

entry

(the

one

marked

CSF)

will

include

all

the

content

from

all

fragments

in

its

cache

entry,

which

result

in

one

big

cache

entry

that

has

no

includes

or

forwards,

but

the

content

from

the

whole

tree

of

entries.

This

method

can

save

a

significant

amount

of

application

server

processing,

but

is

typically

only

useful

when

the

external

HTTP

request

contains

all

the

information

needed

to

determine

the

entire

tree

of

included

fragments.

save-attributes

True

or

False.

Default

is

true.

Servlet

When

save-attributes

is

set

to

false,

the

request

attributes

are

not

saved

with

the

cache

entry.

store-cookies

True

or

False.

Default

is

true.

Servlet

When

store-cookies

is

set

to

false,

the

request

cookies

are

not

saved

with

the

cache

entry.

By

default,

DynaCache

caches

the

cookies

(when

caching

by

servlet

class)

and

all

request

attributes

(servlet

and

JSPs)

along

with

the

cache

entries.

However,

WebSphere

Commerce

cookies

and

request

attributes

contain

user

specific

information

that

should

not

be

cached.

As

a

result,

the

following

property

names

and

values

are

mandatory

when

caching

full

pages:

<property

name="save-attributes">false</property>

<property

name="store-cookies">false</property>

Chapter

9.

Caching

your

store

pages

87

The

following

property

name

and

value

is

mandatory

for

all

cache-entries

defined

for

the

JSPs

files:

<property

name="save-attributes">false</property>

Understanding

cache-ID

rules

A

cache-ID

uniquely

identifies

a

cache

entry.

In

order

for

the

WebSphere

Application

Server

to

cache

an

object,

it

must

know

how

to

generate

a

unique

ID

for

different

invocations

of

that

object.

These

IDs

are

created

from

either

user-written

custom

Java

code

or

from

rules

defined

in

a

cache

entry’s

cache

policy.

In

the

cachespec.xml

file

the

cache-id

element

defines

the

rules

for

generating

IDs.

Each

cache

entry

may

have

multiple

cache-ID

rules

that

will

execute

in

the

defined

order

until

either

a

rule

returns

a

non-empty

cache

ID,

or

no

more

rules

are

left

to

execute.

If

none

of

the

cache-ID

generation

rules

produce

a

valid

cache

ID,

then

the

object

is

not

cached.

These

IDs

are

developed

in

one

of

the

following

ways:

v

Using

the

component

elements

defined

in

the

cache

policy

of

a

cache

entry

v

Writing

custom

Java

code

to

build

the

ID

from

input

variables

and

system

state

Understanding

dependency-ID

rules

Dependency

ID

elements

specify

additional

cache

group

identifiers

that

associate

multiple

cache

entries

to

the

same

group

identifier.

The

dependency

ID

is

generated

by

concatenating

the

dependency

ID

base

string

with

the

values

returned

by

its

component

elements.

If

a

required

component

returns

a

null

value,

then

the

entire

dependency

ID

is

not

generated

and

is

not

used.

You

can

validate

the

dependency

IDs

explicitly

through

the

WebSphere

Dynamic

Cache

API,

or

by

using

another

cache-entry

invalidation

element.

Multiple

dependency

ID

rules

can

exist

per

cache-entry.

All

dependency

ID

rules

execute

separately.

For

more

information

on

how

to

define

dependency

ID

rules,

see

the

WebSphere

Commerce

Administration

Guide,

″Dynamic

caching″

chapter.

Understanding

invalidation

rules

Invalidation

rules

can

be

defined

in

exactly

the

same

manner

as

dependency

IDs.

However,

the

IDs

that

are

generated

by

invalidation

rules

are

used

to

invalidate

cache

entries

that

have

the

same

dependency

IDs.

The

invalidation

ID

is

generated

by

concatenating

the

invalidation

ID

base

string

with

the

values

returned

by

its

component

element.

If

a

required

component

returns

a

null

value,

then

the

entire

invalidation

ID

is

not

generated

and

no

invalidation

occurs.

Multiple

invalidation

rules

can

exist

per

cache-entry.

All

invalidation

rules

execute

separately.

For

more

information

on

how

to

define

invalidation

rules,

see

the

WebSphere

Commerce

Administration

Guide.

Invalidating

cached

data

in

the

cachespec.xml

file

By

default,

the

cachespec.xml

files

shipped

with

the

sample

store

archives

do

not

include

invalidation

policies.

If

you

would

like

to

automate

cache

invalidation

using

DynaCache

in

a

sample

store,

or

a

store

based

on

a

sample,

you

must

add

invalidation

policies

to

the

store’s

cachespec.xml

file.

Sample

invalidation

policies

are

provided

in

several

cachespec.xml

files

in

the

following

directory:

WC_installdir/samples/dynacache/invalidation

88

Store

Development

Guide

This

directory

contains

separate

cachespec.xml

files

for

functional

areas,

including

catalog,

shopping

cart,

store

and

so

on.

Each

file

contains

invalidation

policies

for

that

specific

area.

If

you

plan

to

cache

catalog

pages

in

your

store,

you

should

add

the

invalidation

policies

from

the

following

files

into

your

store:

v

WC_installdir/samples/dynacache/invalidation/catalog/cachespec.xml

v

WC_installdir/samples/dynacache/invalidation/membergroup/cachespec.xml

Note:

For

these

member

group

invalidation

rules

you

need

to

add

additional

dependency

IDs

to

the

cache

entries.

See

the

content

of

this

cachespec.xml

file

for

more

details.

v

WC_installdir/samples/dynacache/invalidation/store/cachespec.xml

Adding

sample

invalidation

policies

to

your

store’s

cachespec.xml

file

In

order

to

add

the

invalidation

policies

provided

in

the

sample

invalidation

files

into

your

store,

do

the

following:

1.

Open

the

cachespec.xml

file

for

your

store.

v

WAS_installdir/installedApps/cell_name/WC_instanceName.ear/
Stores.war/WEB-INF

directory

If

your

store

does

not

have

caching

policies

defined

and

is

based

on

a

sample

provided

with

WebSphere

Commerce,

you

can

use

a

sample

cachespec.xml

file

from

the

following

directory:

v

WC_installdir/samples/dynacache/BusinessModel

2.

Open

sample

invalidation

cachespec.xml

file.

The

sample

invalidation

cachespec.xml

files

are

located

in

the

following

directory:

v

WC_installdir/samples/dynacache/invalidation
3.

Copy

the

invalidation

policies

from

the

sample

invalidation

file

to

the

cachespec.xml

file

for

your

store.

You

can

place

the

invalidation

policies

at

the

end

of

your

store’s

cachespec.xml

file

after

the

last

element.

4.

Ensure

the

invalidation

IDs

match

the

corresponding

dependency

IDs

in

the

caching

policies.

If

a

matching

dependency

IDs

does

not

exist,

then

the

invalidation

policies

will

not

be

executed

and

you

should

change

either

the

ID

of

the

invalidation

rule

or

the

ID

of

the

dependency-id

rule

so

that

they

match.

Note:

Your

store

may

have

additional

or

different

business

requirements

that

require

you

to

add

additional

invalidation

policies

and

dependency

IDs.

5.

If

necessary,

change

the

name

and

directory

of

JSP

files

in

the

sections

copied

from

the

sample

invalidation

files

to

match

the

information

in

the

rest

of

your

store’s

cachespec.xml

file.

6.

Save

the

file.

Implementing

caching

for

store

pages

that

use

store

relationships

Business

If

your

store

is

using

data

defined

in

another

store

through

a

store

relationship,

you

must

use

the

request

attributes

specified

by

the

cache

filter

to

define

the

relationships.

The

cache

filter

is

a

servlet

filter

that

defines

request

attributes

from

the

session

and

store

relationship

information

that

can

be

used

by

the

WebSphere

Application

Server

DynaCache.

DynaCache

then

uses

this

information

to

construct

cache

IDs

and

dependency

IDs

to

be

used

for

cache

Chapter

9.

Caching

your

store

pages

89

invalidation.

For

a

list

of

the

request

attributes

set

up

for

session

information,

see

the

WebSphere

Commerce

Administration

Guide,

″Dynamic

caching″

chapter.

The

cache

filter

creates

the

store

relationships

information

by

calling

the

getStorePath()

and

getStoresForRelatedStore()

methods

from

the

StoreAccessBean.

The

corresponding

information

is

listed

in

the

following

table:

Table

3.

Store

Relationship

Type

Store

Relationship

Identifier

Request

Attributes

Name

for

getStorePath()

Request

Attributes

Name

for

getStoresFor
RelatedStore()

IBM

commerce

businessPolicy

-1

DC_busN

DC_bus_RS_N

IBM

commerce

business

campaigns

-3

DC_campN

DC_camp_RS_N

IBM

commerce

business

catalog

-4

DC_catN

DC_cat_RS_N

IBM

commerce

business

command

-5

DC_cmdN

DC_cmd_RS_N

IBM

commerce

hosted

store

-6

DC_hostN

DC_host_RS_N

IBM

commerce

price

-7

DC_prcN

DC_prc_RS_N

IBM

commerce

referral

-8

DC_refN

DC_ref_RS_N

IBM

commerce

segmentation

-9

DC_segN

DC_seg_RS_N

IBM

commerce

URL

-10

DC_urlN

DC_url_RS_N

IBM

commerce

view

-11

DC_viewN

DC_view_RS_N

IBM

commerce

inventory

-13

DC_invN

DC_inv_RS_N

IBM

commerce

base

item

-14

DC_baseItemN

DC_baseItem_RS_N

IBM

commerce

channel

store

-15

DC_chsN

DC_chs_RS_N

IBM

commerce

currency

conversion

-17

DC_currConvN

DC_currConv_RS_N

IBM

commerce

currency

format

-18

DC_currFmtN

DC_currFmt_RS_N

IBM

commerce

supported

currency

-19

DC_supCurrN

DC_supCurr_RS_N

IBM

commerce

counter

value

currency

-20

DC_cterCurrN

DC_cterCurr_RS_N

IBM

commerce

measurement

format

-21

DC_meaFmtN

DC_meaFmt_RS_X

Note:

The

cache

filter

sets

up

multiple

request

attributes

when

multiple

store

IDs

are

returned

as

DynaCache

does

not

support

an

array

of

request

attributes.

90

Store

Development

Guide

For

example,

if

getStorePath()

returns

an

array

[10051,

10002]

for

the

resource

id

-4

(IBM

commerce

business

catalog),

then

the

request

attributes

set

up

will

be

v

DC_cat0

is

10051

v

DC_cat1

is

10002

Store

relationship

caching

example

Business

To

understand

how

caching

pages

that

use

a

store

relationship

works,

consider

the

following

example.

Publishing

the

sample

composite

store

archive

Business

DemandChain.sar

and

then

creating

a

hosted

store

(for

example,

ResellerOne)

in

that

site

creates

the

following

stores.

Table

4.

Store

ID

Directory

Store

Type

10001

CommercePlaza

channel

hub

10002

CommercePlazaCatalog

catalog

asset

store

10003

CommercePlaza

distributor

proxy

10004

ConsumerDirectResellerProfile

hosted

storefront

asset

store

10051

ResellerOne

reseller

hosted

store

ResellerOne

(10051),

the

reseller

hosted

store,

uses

the

assets

defined

in

the

hosted

storefront

asset

store

(10004)

and

the

catalog

asset

store

(1002).

In

order

to

set

up

the

caching

relationship,

the

cache

filter

gets

the

following

information:

Table

5.

Store

ID

Relationship

Type

getStorePath()

getStoresFor
RelatedStore()

10001

-1

(business

policy)

-4

(catalog)

-7

(price)

-17

(currency

format)

-19

(currency

supported)

10002

not

applicable

10001

-6

(hosted

store)

10051

not

applicable

10051

-1

(business

policy)

-14

(base

item)

10051,

10002,

10004

10051

10051

-3

(campaigns)

-5

(command)

-10

(URL)

-11

(view)

10051,

10004

10051

Chapter

9.

Caching

your

store

pages

91

Table

5.

(continued)

10051

-4

(catalog)

-7

(price)

-17

(currency

conversion)

-18

(currency

format)

-19

(currency

supported)

-20

(counter

value

currency)

-21

(measurement

format)

10051,

10002

10051

Then

the

cache

filter

sets

up

the

following

request

attributes:

Table

6.

Store

Relationship

Store

ID

10051

store

ID

10051

store

ID

10001

-1

(business

policy)

DC_bus0=10051

DC_bus1=10002

DC_bus2=10004

DC_bus_RS_0=10051

DC_bus0=10002

-2

(tax)

DC_tax0=10051

DC_tax1=10004

DC_tax_RS_0=10051

-4

(catalog)

DC_cat0=10051

DC_cat1=10002

DC_cat_RS_0=10051

DC_cat0=10002

-6

(hosted

store)

DC_host0=10051

DC_host_RS_0=10001

DC_host0=10051

Whenever

the

catalog

of

the

catalog

asset

store

(10002)

is

changed,

the

catalog

pages

of

the

ResellerOne

store

(10051)

must

also

be

invalidated

before

it

can

use

the

information

from

the

catalog

asset

store

(10002).

In

order

for

the

pages

in

10051

to

be

invalidated,

extra

dependency

IDs

must

be

set

up

for

this

store

relationship.

Setting

up

the

extra

dependency

IDs

for

StoreCatalogDisplay

is

illustrated

in

the

following

example:

<!--

Start

Store

Relationship

Dependency

Ids

-->

<!--

DC_cat1

is

the

catalog

Profile

Store

ID

-->

<dependency-id>storeId

<component

id="DC_cat1"

type="attribute">

<required>true</required>

</component>

</dependency-id>

<dependency-id>storeId:catalogId

<component

id="DC_cat1"

type="attribute">

<required>true</required>

</component>

<component

id="catalogId"

type="attribute">

<required>true</required>

</component>

</dependency-id>

<dependency-id>StoreCatalogDisplay:storeId

<component

id="DC_cat1"

type="attribute">

<required>true</required>

</component>

</dependency-id>

<!--

Ends

Store

Relationship

Dependency

Ids

-->

The

extra

dependency

IDs

created

are

as

follows:

92

Store

Development

Guide

v

storeId:10002

v

storeId:catalogId:10002:10051

v

StoreCatalogDisplay:storeId:10002

Once

these

extra

dependency

IDs

are

defined,

whenever

there

changes

to

the

catalog

asset

store

10002

that

cause

the

catalog

asset

store

pages

to

be

invalidated,

the

hosted

store

(10051)

pages

will

also

be

invalidated.

Replacing

the

cache

command

functions

with

dynamic

caching

Previous

versions

of

WebSphere

Commerce

used

the

CacheCommand

(com.ibm.commerce.cache.commands.CacheCommandImpl)

to

implement

more

advanced

caching

configurations,

for

example,

caching

pages

by

the

user’s

state

and

type

determined

from

a

customer

profile.

In

Version

5.5,

using

dynamic

caching

you

can

cache

the

servlet

or

JSP

file

result

as

you

would

using

the

cache

command,

by

adding

the

cache

command

logic

to

a

JSP

file.

Consider

the

following

example:

The

StoreCatalogDisplay

command

can

display

different

headers

based

on

the

user’s

state

and

type

attributes.

To

cache

the

header

JSP

file,

create

a

new

JSP

file,

CacheParametersSetup.jsp

that

includes

the

user’s

state

and

type

attributes.

For

example:

<%@

page

import="com.ibm.commerce.command.CommandContext"

%>

<%

String

userState

=

null;

String

userType

=

null;

CommandContext

cmdcontext

=

(CommandContext)

request.getAttribute
(ECConstants.EC_COMMANDCONTEXT);

if

(cmdContext

!=

null)

{

userState

=

cmdcontext.getUser().getState();

userType

=

cmdcontext.getUser().getRegisterType();

}

%>

Then

the

StoreCatalogDisplay.jsp

statically

includes

the

CacheParametersSetup.jsp

and

dynamically

includes

the

CachedHeaderDisplay.jsp

using

the

userState

and

userType

as

input

parameters:

<%@

include

file="CacheParametersSetup.jsp"%>

<jsp:include

page="CachedHeaderDisplay.jsp"

flush="true">

<jsp:param

name="storeId"

value="<%=

storeId

%>"

/>

<jsp:param

name="catalogId"

value="<%=

catalogId

%>"

/>

<jsp:param

name="langId"

value="<%=

languageId

%>"

/>

<jsp:param

name="userState"

value="<%=

userState

%>"

/>

<jsp:param

name="userType"

value="<%=

userType

%>"

/>

</jsp:include>

The

CachedHeaderDisplay.jsp

file

contains

the

logic

to

display

different

information

based

on

the

input

parameters.

<%

if

(userType.equals("G"))

{

%>

<table

cellpadding="0"

cellspacing="0"

border="0"

width="100%"

height="28">

.

.

.

</table>

<%

Chapter

9.

Caching

your

store

pages

93

}

else

{

%>

<table

cellpadding="0"

cellspacing="0"

border="0"

width="100%"

height="28">

.

.

.

</table>

<%

}

%>

In

order

to

complete

caching,

the

input

parameters

must

be

identified

by

a

cache-ID

rule.

<cache-entry>

<class>servlet</class>

<name>.../CachedHeaderDisplay.jsp</name>

<property

name="save-attributes">false</property>

<cache-id>

<component

id="storeId"

type="parameter">

<required>true/required>

</component>

<component

id="catalogId"

type="parameter">

<required>true</required>

</component>

<component

id="userState"

type="parameter">

<required>true</required>

</component>

<component

id="userType"

type="parameter">

<required>true</required>

</component>

<

/cache-id>

.

.

.

</cache-entry>

94

Store

Development

Guide

Part

5.

Store

data

overview

©

Copyright

IBM

Corp.

2000,

2003

95

96

Store

Development

Guide

Chapter

10.

Store

data

This

chapter

provides

an

overview

of

the

WebSphere

Commerce

Server

store

data

architecture

and

the

data

assets

that

create

a

store.

The

WebSphere

Commerce

Server

information

model

is

also

introduced

in

this

chapter.

What

is

store

data?

Store

data

is

the

information

loaded

into

the

WebSphere

Commerce

Server

database,

which

allows

your

store

to

function.

In

order

to

operate

properly,

a

store

must

have

the

data

in

place

to

support

all

customer

activities.

For

example,

in

order

for

a

customer

to

make

a

purchase,

your

store

must

contain

a

catalog

of

goods

for

sale

(catalog

data),

the

data

associated

with

processing

orders

(tax

and

shipping

data),

and

the

inventory

to

fulfill

the

request

(inventory

and

fulfillment

data).

The

store

data

information

model

This

guide

uses

an

information

model

to

illustrate

how

store

data

is

structured

in

the

WebSphere

Commerce

Server.

The

WebSphere

Commerce

Server

information

model

is

a

high-level

abstraction

of

the

information

contained

in

the

WebSphere

Commerce

Server

data

models.

The

information

model

highlights

the

most

important

features

of

the

data

models,

but

does

not

include

the

lower

level

details

that

are

specific

to

the

schema

and

object

implementations.

For

example,

certain

tables

and

objects

in

the

data

model

that

contain

entity-relationship

data

(such

as

foreign

key

pairs)

are

not

represented

in

the

information

model

as

entities.

Instead

these

entity

relationships

are

implied

by

the

relationship

lines

between

entities

in

the

information

models.

The

information

model

also

differs

from

the

data

model

in

that

in

the

data

model

each

entity

represents

a

table

while

in

the

information

model

any

of

the

objects

depicted

may

be

mapped

to

the

same

database

table,

or

a

single

object

may

map

to

several

database

tables.

The

information

model

also

does

not

illustrate

detail

extensions

(additional

data

attributes

of

an

entity

that

are

stored

in

a

separate

table

as

a

result

of

implementation

concerns:

for

example,

the

product

description

is

a

separately

stored

extension

of

the

product

entity).

Finally,

unlike

the

data

model,

the

information

model

may

also

illustrate

concepts

of

inheritance.

For

more

information

on

entity-relationship

data

and

detail

extensions,

see

the

data

model

in

the

WebSphere

Commerce

Production

and

Development

online

help.

For

more

information

on

the

WebSphere

Commerce

object

and

data

models,

see

the

WebSphere

Commerce

online

help.

©

Copyright

IBM

Corp.

2000,

2003

97

The

following

diagram

illustrates

the

data

assets

of

a

WebSphere

Commerce

store.

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Each

of

the

data

assets

illustrated

in

the

above

diagrams

is

discussed

in

more

detail

in

the

chapters

in

Part

6,

“Developing

your

store

data,”

on

page

107

Note:

In

the

UML

notation,

a

dotted

line

with

an

arrow

extending

from

an

object

and

pointing

to

another

object

indicates

that

the

first

object

has

a

dependency

on

the

second

object.

In

this

diagram,

the

objects

shown

are

referred

to

as

packages.

Notice

that

data

in

some

packages,

such

as

lists

of

Supported

Currencies,

are

specific

to

a

particular

Store,

and

thus

that

package

is

shown

as

dependent

on

the

Store

package.

Other

packages,

such

as

Catalogs,

are

not

specific

to

any

particular

Store,

but

rather

each

Store

may

use

Catalogs,

and

thus

the

Store

object

is

shown

as

dependent

on

the

Catalogs

package.

As

a

result,

the

lists

of

Supported

Currencies

form

part

of

a

Store,

while

a

Store

uses

Catalogs.

98

Store

Development

Guide

Business One

part

of

a

Store

that

is

of

particular

interest

is

its

Store

Relationships

with

other

Stores.

Each

store

relationship

indicates

that

a

Store

depends

on

another

Store

to

provide

some

service

or

information.

Relationships

can

be

defined

to

facilitate

the

use

of

one

Store’s

data,

such

as

its

list

of

Supported

Currencies,

by

another

Store.

In

this

scenario,

the

first

Store

acts

as

a

provider,

or

container,

of

data

which

is

used

by

the

second,

client,

Store.

As

more

client

Stores

are

created,

they

can

also

define

relationships

that

indicate

they

obtain

certain

data

from

certain

other

Stores.

In

this

way

Store

relationships

facilitate

data

sharing;

the

data

can

be

created

and

maintained

once

by

the

provider

Store,

and

used

by

several

client

Stores.

For

more

information

on

store

relationships,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

The

data

in

the

information

model

can

be

categorized

in

the

following

ways:

v

by

subsystem

v

by

data

type

Store

data

information

model

viewed

by

subsystem

Each

of

the

data

assets

in

the

store

data

information

model

can

be

grouped

into

the

following

functional

areas:

Table

7.

Merchand-
ising

Marketing

Trading

Order

Manage-
ment

Catalog

Member

Run-time

Discounts

Campaigns

Contracts

Shipping

Catalogs

Organiza-
tions

Organiza-
tions

Vendors

Customer

profiles

Accounts

Taxes

Prices

Groups

URL,

commands,

and

view

registry

Auctions

E-mail

activity

Business

RFQs

Jurisdict-
ions

Users

Supported

Languages

Coupons

Orders

Supported

Units

of

measure

Inventory

Supported

Currencies

Fulfillment

Site

Payment

Store

Store

relation-
ships

Business

policies

Store

data

information

model

viewed

by

data

type

Data

in

WebSphere

Commerce

stores

conforms

to

the

types

depicted

in

the

following

diagram.

Each

of

the

store

data

assets

illustrated

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem,”

can

be

classified

as

belonging

to

one

or

more

of

the

types

of

store

data

illustrated

below.

Chapter

10.

Store

data

99

WebSphere Commerce Server instance

Core

Configuration

Managed

Operational

Sample
store archives

WebSphere

Commerce

Server

instance

The

basic

level

of

data

is

contained

in

the

WebSphere

Commerce

Server

instance.

When

an

instance

is

created,

the

bootstrap

files,

which

are

loaded

in

XML

format,

populate

the

database

with

information.

The

bootstrap

files

create

the

following

types

of

data:

v

Calculation

usage

types,

device

types

(browsers,

e-mail,

I-Mode,

and

so

on),

message

types,

roles

and

addresses

v

The

default

administrative

ID,

WCSADMIN

v

The

default

commands,

views

and

URLs

v

The

default

business

policies

v

The

default

access

groups

and

access

control

policies

v

The

languages

and

currencies

supported

by

the

instance

v

The

default

quantity

units

and

quantity

unit

conversions

v

The

default

scheduled

jobs

and

statecodes

v

The

default

terms

and

conditions

v

The

default

organization,

which

can

be

used

as

the

store

owner

v

The

default

site

organization

v

The

default

store

group

v

The

default

information

for

staging

This

information

is

available

to

all

stores

that

exist

in

that

instance,

and

is

identified

as

the

Site

Level

Information

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem”

on

page

99.

For

more

detailed

information

on

the

bootstrap

files

and

the

database

tables

they

populate,

see

the

WebSphere

Commerce

online

help.

Core

data

The

next

level

of

store

data

is

the

core

data.

Core

data

is

divided

into

two

levels:

v

Organization

v

Store

100

Store

Development

Guide

The

organization

core

data

creates

the

minimum

data

for

a

business

model

specific

environment,

including:

v

The

organization

structure.

v

Predefined

user

roles.

v

Necessary

access

control

policies.

Organization

core

data

is

available

in

both

the

sample

composite

store

archives,

and

the

sample

organization

structure

component

store

archives.

The

core

data

creates

the

minimum

data

for

a

store

within

that

environment,

including:

v

The

store

identifier

in

the

STOREENT

table.

This

creates

a

store

in

the

database.

v

The

default

contract.

v

The

store

identifier

in

the

contract

database

tables.

v

The

member

identifier

for

the

organization

that

owns

the

store

in

the

contract

database

tables.

v

The

store

directory

in

the

STORE

table.

The

store

directory

is

the

directory

in

which

the

store’s

Web

assets

are

located.

v

The

nickname

or

identifier

for

the

store’s

address

in

the

STADDRESS

table.

The

nickname

is

unique

for

each

store.

Store

core

data

is

available

in

both

the

sample

composite

store

archives

and

the

sample

component

store

archives.

If

you

published

any

of

the

sample

store

archives

indicated

above

using

the

publish

utility

in

the

Administration

Console,

this

information

was

created

for

you.

The

publish

utility

allows

you

to

select

the

default

organization

that

can

act

as

the

store

owner,

or

you

can

create

another

organization

to

act

as

the

owner

using

the

Organization

Administration

Console.

If

you

did

not

publish

a

sample

composite

store

archive

to

use

as

the

basis

of

your

store,

you

will

have

to

load

this

information

into

the

database

using

the

Loader

package,

or

edit

the

database

directly.

For

more

information

on

using

the

Loader

package,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

The

Stores

data

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem”

on

page

99

is

core

data.

Configuration

data

Configuration

data

controls

the

commerce

server

runtime.

The

commerce

server

runtime

provides

a

framework

in

which

the

commerce

applications

are

deployed

and

executed.

The

framework

consists

of

command

execution,

exception

handling,

transaction

control,

data

access,

and

persistence.

The

commerce

server

runtime

leverages

the

run

time

services

provided

by

WebSphere

Application

Server

to

support

WebSphere

Commerce

Server

applications.

Configuration

data

determines

which

commands,

views,

and

JSP

files

your

store

will

use

to

display

store

pages.

The

following

data

assets

identified

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem”

on

page

99

are

classified

as

Configuration

data:

v

Command

Registry

Entries

v

View

Registry

Entries

v

URL

Registry

Entries

Chapter

10.

Store

data

101

Managed

data

Managed

data

is

data

which

the

seller

creates,

and

is

read-only

for

customers

of

the

seller’s

site.

Since

the

seller

is

in

complete

control

of

the

state

of

this

data,

managed

data

may

be

managed

through

a

content

management

system.

The

following

data

assets

identified

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem”

on

page

99

that

are

classified

as

managed

data:

v

Business

policies

v

Campaigns

v

Catalogs

v

Contracts

v

Coupons

v

Currencies

v

Customer

profiles

v

Discounts

v

E-mail

activity

v

Fulfillment

centers

v

Inventory

(configuration

information

for

catalog

items)

v

Jurisdictions

v

Languages

v

Members

v

Payment

v

Prices

v

Sellers

v

Shipping

v

Tax

v

Units

of

measure

v

Vendors

Operational

data

Operational

data

is

data

which

is

created

or

changed

(directly

or

indirectly)

by

customers

of

the

site

as

a

result

of

their

interactions

with

the

site.

For

example,

customer

orders

are

considered

operational

data,

as

are

inventory

levels,

which

go

up

and

down

as

your

store

operates.

Customers

are

also

considered

operational

data.

Data

created

by

the

seller

can

also

be

operational.

Since

changes

to

operational

data

are

not

under

the

complete

control

of

the

seller,

this

data

is

not

managed

using

a

content

management

system.

The

following

data

assets

identified

in

the

diagram

in

“Store

data

information

model

viewed

by

subsystem”

on

page

99

are

classified

as

operational

data:

v

Auctions

v

Contracts

v

Customers

v

E-mail

activity

v

Fulfillment

v

Inventory

(receipts,

expected

receipts,

inventory

allocation)

v

Orders

v

Business

Request

for

Quotes

(RFQ)

102

Store

Development

Guide

Note:

In

some

instances

the

line

between

operational

and

managed

data

may

be

hard

to

determine.

For

example,

in

one

store,

customer

and

contract

data

may

be

considered

managed

data,

while

in

another

store,

the

same

type

of

data

may

be

considered

operational.

The

first

store

may

manage

their

customer

data

and

related

contracts

because

they

have

a

specific

set

of

customers

(that

is,

customers

cannot

register

online).

However,

the

second

store

allows

customers

to

register

online,

and

create

contract

information

online.

A

second

example

involves

catalog

data.

In

a

single

seller

site,

the

catalog

is

considered

managed

data.

In

a

value

chain

site,

catalog

data

may

be

considered

operational.

In

some

sites,

certain

records

of

the

same

data

type

may

be

considered

managed

while

other

records

are

considered

operational.

For

example,

the

default

contract

may

be

managed

data,

but

the

specific

contracts

negotiated

online

are

operational

data.

Another

example

is

e-mail

activity.

E-mail

activity

information

and

templates

are

considered

managed

data,

but

the

actual

e-mail

activities

generated

from

the

templates

and

sent

to

customers

are

considered

operation

data,

as

are

any

as

are

any

of

the

events

resulting

from

the

mailing,

such

as

a

customer

opening

the

e-mail,

or

clicking

on

any

of

the

clickable

contents

of

the

e-mail.

Store

data

types

and

the

sample

businesses

The

sample

businesses

provided

with

WebSphere

Commerce

include

most

of

the

types

of

store

data

in

store

data

architecture.

For

example,

a

WebSphere

Commerce

Server

instance

must

exist

before

a

store

can

be

created

using

a

sample

store

or

a

sample

store

can

be

published.

Then

when

you

create

a

store

based

on

a

sample

store

using

the

tools

in

the

publish

utility

in

the

Administration

Console,

the

core

data

is

created.

The

sample

stores

include

all

the

necessary

configuration,

and

most

of

the

managed

data

required

for

a

functional

store.

When

creating

stores

based

on

certain

sample

stores,

you

may

be

instructed

to

complete

some

set

up

of

data,

using

the

tools

in

the

WebSphere

Commerce

Accelerator.

Tools

for

creating

data

WebSphere

Commerce

provides

several

tools

to

create

and

manipulate

your

store

data.

These

tools

are

listed

below:

WebSphere

Commerce

Loader

package

The

Loader

package

consists

primarily

of

utilities

for

preparing

and

loading

data

into

a

WebSphere

Commerce

database.

For

more

information,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Administration

Console

The

Administration

Console

allows

you

to

control

your

site

or

store

by

completing

administrative

operations

and

configuration

tasks.

You

can

also

use

the

Administration

Console

to

create

new

organizations

and

users,

as

well

as

assign

users

to

roles.

The

Administration

Console

also

allows

you

to

identify

which

notification

and

messaging

types

will

be

available

in

your

store.

The

Administration

Console

contains

the

publish

utility,

which

allows

you

to

publish

sample

business

and

stores.

Chapter

10.

Store

data

103

WebSphere

Commerce

Accelerator

The

WebSphere

Commerce

Accelerator

is

a

workbench

of

online

tools

that

allow

you

to

create

and

maintain

various

store

assets.

A

large

portion

of

store

data

can

be

created

and

managed

using

the

tools

in

the

WebSphere

Commerce

Accelerator.

For

more

information,

see

the

“Tool

and

store

data

summary

chart.”

Organizational

Administration

Console

The

Organizational

Administration

Console

allows

you

to

create

and

manage

the

organizations

that

access

your

site

or

store.

The

Organizational

Administration

Console

also

allows

the

buyer

administrator

to

manage

buyers

within

their

organization.

Tool

and

store

data

summary

chart

The

following

chart

lists

the

tools

you

can

use

to

create

each

type

of

data.

Tools

for

creating

data

Core

data

Configuration

data

Managed

data

Operational

data

WebSphere

Commerce

Loader

package

Use

the

Loader

package

to

load

core

data

in

the

form

of

an

XML

file.

For

more

information,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

Use

the

Loader

package

to

load

configuration

data

in

the

form

of

an

XML

file.

For

more

information,

see

“Creating

an

XML

file

to

register

commands,

views,

and

URLs”

on

page

137.

Use

the

Loader

package

to

load

managed

data

in

the

form

of

an

XML

file.

For

more

information,

see

the

corresponding

chapters

on

the

managed

data

assets.

In

general,

operational

data

cannot

be

loaded

with

the

Loader

Package.

However,

selected

customer

data

may

be

loaded

using

the

Loader

package.

Administration

Console

When

you

publish

a

store

archive

using

the

Administration

Console,

the

core

data

is

created

for

you.

For

more

information

on

using

publish,

see

the

WebSphere

Commerce

Production

online

help.

Not

applicable.

Not

applicable.

Not

applicable.

104

Store

Development

Guide

Tools

for

creating

data

Core

data

Configuration

data

Managed

data

Operational

data

WebSphere

Commerce

Accelerator

Not

applicable.

Not

applicable.

Use

the

WebSphere

Commerce

Accelerator

to

create

or

edit

the

following

data:

v

Campaigns

v

Contracts

(a

default

contract

must

exist

in

the

database

before

you

can

use

the

Business

Relationship

Management

tools

in

the

WebSphere

Commerce

Accelerator

to

create

additional

contracts

or

change

existing

ones.

Use

the

Loader

package,

the

store

creation

wizard,

or

publish

a

store

archive

to

create

a

default

contract

in

the

database).

v

Jurisdictions

v

Taxes

v

Shipping

v

Currency

v

Languages

Customers

create

operational

data

when

they

register

with

the

store,

or

make

purchases

from

it.

However,

in

some

cases,

you

can

use

the

WebSphere

Commerce

Accelerator

to

place

orders

for

a

customer,

or

to

create

a

return.

The

WebSphere

Commerce

Accelerator

also

allows

you

to

manage

your

inventory

(receipts

and

expected

receipts).

Chapter

10.

Store

data

105

Tools

for

creating

data

Core

data

Configuration

data

Managed

data

Operational

data

WebSphere

Commerce

Accelerator

continued

Not

applicable.

Not

applicable.

v

Fulfillment

v

Discounts

v

Catalogs

(a

master

catalog

must

exist

in

the

database

before

you

can

use

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator

to

add

or

change

product

information.

For

a

different

view

of

your

merchandise

and

services,

create

a

sales

catalog

by

changing

the

XML

source.

Use

the

Loader

packageor

publish

a

store

archive

to

create

a

master

catalog

in

the

database.)

v

Prices

Not

applicable.

Organizational

Administration

Console

Use

the

Organizational

Administration

Console

to

create

and

manage

organizations.

Not

applicable.

Not

applicable.

Customers

and

buyers

are

created

when

they

enter

the

store.

However,

with

the

Organizational

Administration

Console,

you

can

also

manage

users

and

approve

buyers,

or

create

new

ones.

106

Store

Development

Guide

Part

6.

Developing

your

store

data

The

chapters

in

this

section

explain

each

of

the

store

data

assets

in

more

detail.

The

store

data

assets

in

the

this

section

are

organized

according

to

the

WebSphere

Commerce

store

data

architecture

structure:

v

WebSphere

Commerce

Server

instance

–

Site
v

Core

data

–

Organization

–

Store

–

Relationships

between

stores
v

Configuration

data

–

Command

registry

–

View

Rregistry

–

URL

registry
v

Managed

data

–

Catalog

–

Prices

–

Contracts

(including

Business

Policies)

–

Fulfillment

–

Campaigns

–

Payment
–

Supported

languages

–

Supported

currencies

–

Supported

units

of

measure

–

Jurisdictions

–

Shipping

–

Taxation

–

Discounts
v

Operational

data

–

Inventory

–

Orders

–

Customers

–

Auctions

–

Business

RFQ

©

Copyright

IBM

Corp.

2000,

2003

107

108

Store

Development

Guide

Chapter

11.

Site

assets

Each

WebSphere

Commerce

Server

instance

has

its

own

database

of

relational

information.

An

instance

is

created

by

the

bootstrap

files,

which

populate

the

database

tables

with

information,

after

the

schema

has

been

created.

Once

the

data

has

been

loaded,

you

can

see

the

pre-loaded

information

in

the

appropriate

database

tables.

Many

database

tables

contain

store

or

store

group

level

information

that

is

particular

to

a

store

or

group

of

stores.

Some

tables

contain

information

that

represents

WebSphere

Commerce

site

level

capabilities

available

for

use

by

all

stores

in

the

instance.

All

of

this

information

is

managed

by

the

WebSphere

Commerce

Site

Administrator.

These

capabilities

are

discussed

in

this

chapter.

For

more

information

on

the

bootstrap

files,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

For

more

information

on

store-specific

asset

information

see

Chapter

13,

“Store

assets,”

on

page

123.

Understanding

site

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

types

of

data

the

site

contains

and

their

relationships

to

the

site.

Language

CurrencyQuantityUnitQuantityUnitConversionRule

1+fromUnit

1

+toUnit

CalculationUsage

TaxType

NumberUsage

StoreRelType

ItemType

MemberGroupTypeUser OrganizationRole

DeviceFormat

MemberAttribute

AttributeType

1

Site
1..n

+definedLanguage

1..n+definedCurrency1..n+definedQuantityUnit

+definedCalculationUsage

+definedTaxType

©

Copyright

IBM

Corp.

2000,

2003

109

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

Language

A

site

can

define

many

languages

in

the

LANGUAGE

table,

and

describe

them

in

the

LANGUAGEDS

table.

Each

store

generally

supports

a

subset

of

these

languages

by

adding

rows

to

the

STORELANG

table.

The

ten

pre-defined

languages

are:

German,

Traditional

and

Simplified

Chinese,

Japanese,

Korean,

Italian,

French,

Spanish,

Brazilian

Portuguese,

and

English.

Member

attributes

Member

attributes

are

stored

in

the

MBRATTR

table

and

represent

the

set

of

defined

attribute

names

for

which

values

can

be

stored

for

organizations

or

users.

Examples

of

such

attribute

names

include

JobFunction,

ProcurementCard,

SpendingLimit,

ReferredBy,

and

CountryOfOperation.

Attribute

values

for

particular

organizations

or

users

are

stored

in

the

MBRATTRVAL

table,

and

these

values

can

be

different

for

different

stores

or

store

groups.

Attribute

types

Attribute

types

are

stored

in

the

ATTRTYPE

table

and

represent

the

defined

data

types

that

can

be

used

to

represent

attribute

values.

Examples

of

data

types

include

INTEGER,

STRING,

and

FLOAT.

Member

group

types

Member

group

types

are

stored

in

the

MBRGRPTYPE

table

and

represent

the

set

of

defined

member

group

usages.

Member

groups

are

assigned

usages

by

adding

rows

to

the

MBRGRPUSG

table.

Examples

of

member

group

usages

include

AccessGroup

(for

use

with

access

control

policies)

and

UserGroup

(for

general

purposes,

such

as

customer

groups).

User

User

represents

authenticated

user

identities.

Users

generally

represent

customers

placing

or

approving

orders

on

behalf

of

buying

organizations,

selling

agents

processing

orders

for

selling

organizations

or

maintaining

store

level

assets,

or

Site

Administrators

maintaining

the

WebSphere

Commerce

Server

instance.

Each

user

is

associated

with

one

site

and

is

defined

in

the

USERS

table.

Organization

Organization

represents

organizations

and

organizational

units

within

organizations.

Organizations

generally

represent

business

entities

responsible

for

buying

or

selling.

Orders

placed

by

customers

in

a

B2B

direct

buying

organization

are

recorded

as

being

placed

on

behalf

of

the

buying

organization.

Stores,

catalogs,

and

fulfillment

centers

are

owned

by

organizations

that

are

responsible

for

certain

aspects

of

selling.

Organizations

are

defined

in

the

ORGENTITY

table.

Role

Role

represents

the

set

of

defined

roles

that

users

can

be

assigned

within

organizations.

For

example,

a

user

may

be

assigned

the

role

of

Customer

Service

Representative

within

a

selling

organization,

or

may

be

assigned

the

role

of

Buyer

110

Store

Development

Guide

Approver

within

a

buying

organization.

The

names

and

descriptions

of

the

default

roles

are

populated

in

the

ROLE

table.

For

more

information

on

specific

roles,

see

the

WebSphere

Commerce

online

help.

Quantity

unit

conversion

Each

site

has

quantity

conversions.

These

represent

multiplication

or

division

operations

that

are

used

to

convert

between

different

units

of

measure.

These

are

populated

in

the

QTYCONVERT

table.

Quantity

units

Quantity

units

represent

the

set

of

units

of

measure

for

the

site.

They

are

defined

in

the

QTYUNIT

table

and

described

in

the

QTYUNITDSC

table.

Each

store

can

specify

how

amounts

in

each

unit

of

measure

are

rounded

and

formatted

for

display,

depending

on

their

intended

usage,

by

adding

rows

to

the

QTYFORMAT

table.

Tax

types

Tax

types

represent

the

calculation

usages

that

calculate

taxes.

Sales

tax

and

shipping

tax

are

two

different

calculation

usages

that

calculate

taxes.

Tax

types

are

defined

in

the

TAXTYPE

table.

Calculation

usage

Calculation

usage

represents

the

different

kinds

of

calculations

that

can

be

performed

by

the

OrderPrepare

command.

Calculation

usages

are

defined

for

discounts,

shipping,

sales

tax,

shipping

tax,

and

e-coupons.

Calculation

usages

are

defined

in

the

CALUSAGE

table.

Currency

Each

site

defines

a

number

of

currencies

in

the

SETCURR

table

and

describes

them

in

the

SETCURRDSC

table.

Each

store

supports

a

subset

of

these

currencies

by

adding

rows

to

the

CURLIST

table,

one

row

for

each

currency

supported.

Note:

For

some

of

the

site

assets,

such

as

Language,

Currency,

Quantity

unit,

and

Quantity

unit

conversion

rule,

the

Site

Administrator

can

extend

the

site

level

capabilities

by

adding

rows

to

the

appropriate

tables.

For

the

others,

related

customizations

may

be

also

be

required

to

extend

the

site

level

capabilities

they

represent.

For

example,

if

a

Site

Administrator

added

a

new

number

usage

to

display

subtotals

with

a

customized

currency

symbol,

then

the

program

that

displays

subtotals

would

have

to

be

customized

to

specify

the

new

subtotal

number

usage

when

formatting

subtotal

amounts

for

display.

Number

usage

Number

usage

represents

the

intended

usage

for

numbers.

Stores

can

specify

different

rounding

and

formatting

rules

for

the

numbers

they

display

according

to

how

they

are

used.

For

example,

a

store

may

round

unit

prices

to

four

decimal

places

by

specifying

the

″unit

price″

usage,

but

other

monetary

amounts

to

two

decimal

places

by

specifying

the

″default″

usage.

Number

usage

is

defined

in

the

NUMBRUSG

table,

and

described

in

the

NUMBRUSGDS

table.

Chapter

11.

Site

assets

111

Item

types

Item

types

represent

the

different

kinds

of

base

items.

The

two

types

of

base

items

in

WebSphere

Commerce

are

dynamic

kit

and

normal

item.

Item

types

are

pre-defined

in

the

ITEMTYPE

table.

For

more

information

on

base

items,

see

Chapter

29,

“Inventory

assets,”

on

page

265.

Device

formats

Device

formats

are

stored

in

DEVICEFMT

table

and

represent

the

many

device

formats

a

site

uses

such

as

browsers,

I_MODE,

e-mail,

XMLMQ,

and

XMLHTTP.

All

these

device

types

allow

users

to

interact

with

the

site

through

various

media.

Store

relationship

types

Business

A

store

relationship

type

(StoreRelType)

defines

the

type

of

relationship

between

two

stores.

Each

type

of

store

relationship

defines

its

own

relationship,

that

is,

what

roles

each

partner

in

the

relationship

will

play

and

what

the

relationship

between

the

two

is.

A

store

relationship

type

is

defined

in

the

STRELTYP

table,

and

described

in

the

STRELTYPDS

table.

Site

level

trading

agreement

data

The

following

diagram

illustrates

the

types

of

trading

agreement

data

the

site

contains

and

their

relationships

to

the

site.

TermConditionSubType

PolicyTypeCmdInterface

PAttribute

AttributeType

1

TradingAgreementType

TermConditionType

Operator

AttachmentUsage

PolicyType

ParticipantRole

Site

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

Trading

agreement

type

WebSphere

Commerce

provides

a

number

of

trading

mechanisms

governing

the

interactions

between

buyers

and

sellers.

A

trading

agreement

represents

an

instance

of

a

trading

mechanism

and

records

the

properties

of

that

instance

of

a

trading

mechanism.

Each

contract,

business

account,

and

RFQ

in

WebSphere

Commerce

is

represented

by

a

trading

agreement.

There

is

a

single

trading

112

Store

Development

Guide

agreement

that

governs

all

auctions

in

WebSphere

Commerce.

WebSphere

Commerce

supports

several

trading

agreement

types,

including

account,

contract,

RFQs,

exchange,

and

auctions.

The

trading

agreement

types

are

defined

in

the

TRDTYPE

table.

For

more

information

on

trading

agreements,

see

Chapter

18,

“Contract

assets,”

on

page

179.

Participant

role

Participants

in

trading

agreements

take

on

specific

roles

within

each

trading

agreement.

WebSphere

Commerce

supports

several

participant

roles,

including

creator,

seller,

buyer,

supplier,

approver,

administrator,

distributor,

service

provider,

reseller,

host

and

recipient.

Participant

roles

are

defined

in

the

PARTROLE

table.

Policy

type

WebSphere

Commerce

supports

several

types

of

business

policies,

including

price,

product

set,

shipping

mode,

shipping

charge,

payment

and

several

others.

Policy

types

are

defined

in

the

POLICYTYPE

table.

For

more

information

on

business

policies,

see

Chapter

18,

“Contract

assets,”

on

page

179.

Policy

type

command

interface

The

policy

type

command

interface

is

the

Java

command

interface

for

the

business

policy

object.

The

command

for

each

policy

instance

must

implement

this

interface.

There

can

be

zero

or

more

commands

for

each

business

policy

object.

Terms

and

conditions

type

Terms

and

conditions

define

the

behavior

and

properties

of

a

trading

agreement.

WebSphere

Commerce

supports

several

terms

and

conditions

types,

including

pricing,

payment,

and

shipping.

Terms

and

conditions

types

are

defined

in

the

TCTYPE

table.

For

more

information

on

terms

and

conditions,

see

Chapter

18,

“Contract

assets,”

on

page

179.

Terms

and

conditions

sub

type

Each

terms

and

conditions

type

can

contain

several

terms

and

conditions

sub

types.

Terms

and

conditions

sub

types

are

defined

in

the

TCSUBTYPE.

Personalization

attribute

The

personalization

attribute

allows

you

to

create

attributes

for

products.

The

personalization

attribute

is

defined

in

the

PATTRIBUTE

table.

Each

personalization

attribute

has

one

and

only

one

attribute

type.

Attribute

type

The

attribute

type

defines

the

type

of

the

attribute.

Attribute

types

are

defined

in

the

ATTRTYPE

table.

Operator

The

operators

used

in

the

site

include

simple

operator

(allows

a

single

value),

compound

operator

(range

-

continuous),

and

compound

operator

(set).

Operators

are

defined

in

the

OPERATOR

table.

Attachment

usage

An

attachment

is

a

supporting

document

for

a

trading

document.

For

example,

it

can

be

a

specification

of

a

product,

or

a

price

list

spreadsheet.

Attachment

usage

describe

how

and

where

attachments

will

be

used.

Attachment

usage

is

defined

in

the

ATTACHUSG

table.

Chapter

11.

Site

assets

113

Creating

site

assets

in

WebSphere

Commerce

Site

assets

are

created

when

you

create

an

instance

in

the

WebSphere

Commerce

Server.

For

more

information

on

creating

an

instance

in

the

WebSphere

Commerce

Server,

refer

to

the

WebSphere

Commerce

Installation

Guide,

″Creating

a

WebSphere

Commerce

instance.″

114

Store

Development

Guide

Chapter

12.

Member

assets

This

chapter

first

explains

the

WebSphere

Commerce

Member

subsystem,

then

describes

the

three

types

of

members

that

are

relevant

to

store

developers:

customers,

Sellers,

and

administrators.

Note

that

WebSphere

Commerce

provides

a

Member

subsystem,

which

includes

members

or

users,

and

organizations.

Understanding

member

assets

in

WebSphere

Commerce

WebSphere

Commerce

member

assets

include

data

for

participants

of

the

WebSphere

Commerce

system.

A

member

can

be

a

user,

a

group

of

users,

or

an

organizational

entity.

An

administrator,

such

as

a

Site

Administrator,

assigns

roles

to

users

and

organizational

entity

members.

Once

a

member

is

assigned

a

role,

the

access

control

component

authorizes

the

member

to

participate

in

activities.

For

example,

an

organization

can

be

a

Buyer

or

a

Seller,

or

both.

A

user

can

also

be

assigned

multiple

roles.

An

administrator

can

create

member

groups,

which

are

groups

of

users

categorized

for

various

business

reasons.

Use

the

WebSphere

Commerce

Administration

Console

to

create

and

work

with

organizations,

users,

roles,

and

member

groups.

Business

logic

for

the

member

assets

provides

member

registration

and

profile

management

services.

Other

services

which

are

closely

related

to

the

member

assets

include

access

control,

authentication,

and

session

management.

For

more

details

about

these

topics,

refer

to

the

WebSphere

Commerce

development

online

help.

©

Copyright

IBM

Corp.

2000,

2003

115

The

following

diagram

illustrates

the

WebSphere

Commerce

member

assets.

Descriptions

of

each

asset

follow

the

diagram.

MemberGroupMember

UserOrganization

+descendant

+ancestor
+descendant

+ancestor

MemberRole

1

MemberGroupType

MemberGroup

+intended usage

Role

MemberAttribute

Member

1
+owner

MemberAttributeValue

1

1

StoreEntity

1

+owner
0..1

Org OrgUnit

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Members

A

member

in

WebSphere

Commerce

can

be

any

of

the

following:

v

An

organizational

entity.

This

can

be

an

organization,

such

as

″IBM″

or

an

organizational

unit

within

a

large

organization,

such

as

the

″Electronic

Commerce

Division″

within

IBM.

v

A

user

(either

registered

or

non-registered).

A

registered

user

has

a

unique

identifier,

and

a

password,

and

is

required

to

provide

profile

data

for

registration

purposes.

Registered

users

can

be

classified

according

to

their

profile

type:

type

’B’

denotes

a

business

user

(or

a

Business

B2B

direct

customer)

and

type

of

’C’

denotes

a

retail

user

(or

a

consumer

direct

customer).

For

more

information

about

registered

and

non-registered

users,

refer

to

″Members″

in

the

WebSphere

Commerce

development

online

help.

v

A

member

group.

This

is

a

group

of

users

categorized

for

various

business

reasons.

The

groupings

can

be

used

for

access

control

purposes,

for

approval

purposes,

as

well

as

for

marketing

purposes

(such

as

calculating

discounts,

prices,

and

displaying

products).

116

Store

Development

Guide

Each

store

entity

(that

is,

a

store

or

store

group)

is

owned

by

a

member.

Member

attributes

A

WebSphere

Commerce

member

has

a

set

of

attributes

and

each

attribute

has

a

value

associated

with

it.

A

basic

user

profile

for

a

member

incorporates

registration

information,

demographics,

address

information,

purchase

history,

and

other

miscellaneous

attributes.

A

business

user

profile

contains

the

same

information

as

a

basic

user

profile,

as

well

as

employment

information,

such

as

an

employee

number

or

a

job

title,

or

a

job

description.

During

registration,

business

users

should

identify

the

business

organization

to

which

they

belong.

Profiles

for

organizational

entities

include

this

additional

information,

such

as

organization

name

and

business

category.

Access

control

rules

enforce

user

authority

for

performing

profile

management.

Member

profiles

can

contain

a

variety

of

personal

and

business-related

attributes

(such

as

roles,

payment

information,

addresses,

preferred

languages

and

currencies,

and

pervasive

computing

devices).

Attributes

can

be

store-sensitive.

These

attributes

are

supported

for

users

and

organizational

entities,

but

not

member

groups.

Roles

Each

user

can

perform

one

or

more

roles

in

an

organization.

A

Site

Administrator

assigns

a

role

or

roles

to

each

member.

For

example,

as

a

member

of

the

IBM

organization,

John

Smith’s

role

as

a

Customer

Service

Representative

means

that

John

performs

tasks

on

behalf

of

IBM

customers

and

assists

them

with

inquiries

or

concerns

regarding

their

registration

information,

orders,

or

returns.

John

may

also

have

the

role

of

a

Customer

Service

Supervisor,

who

has

all

the

responsibilities

of

the

tasks

described

above,

as

well

as

approval

and

supervisor

authority

over

other

Customer

Service

Representatives.

The

WebSphere

Commerce

system

provides

the

following

set

of

default

role

types:

v

Business

relationship

roles

v

Customer

service

roles

v

Marketing

roles

v

Operational

roles

v

Organizational

management

roles

v

Product

management

and

merchandising

roles

v

Technical

operations

roles

For

details

about

each

of

these

roles,

refer

to

the

WebSphere

Commerce

development

online

help

topic

″Roles″.

A

Site

Administrator

can

assign

these

roles,

as

well

as

any

new

roles

created

by

the

Site

Administrator,

by

organizational

entity;

that

is,

users

who

belong

to

an

organizational

entity

can

assume

roles

assigned

to

that

organizational

entity.

When

a

user

is

assigned

a

role,

the

role

is

scoped

to

an

organizational

entity.

This

can

be

any

organizational

entity;

it

does

not

have

to

be

one

of

the

user’s

ancestors.

However,

since

roles

are

inherited,

the

user

will

play

the

assigned

role

in

any

descendant

of

the

organization

for

which

the

role

is

assigned.

For

example,

if

a

user

is

given

a

role

in

the

Root

Organization,

then

the

user

will

play

that

role

for

all

organizational

entities.

Chapter

12.

Member

assets

117

WebSphere

Commerce

roles

can

be

assigned

manually

through

the

Organization

Administration

Console,

and

automatically

through

the

registration

and

session

management

commands.

This

automated

role

assignment

is

based

on

the

configuration

specified

in

the

MemberRegistrationAttributes.xml

file.

WebSphere

Commerce

5.5

provides

the

MemberRegistrationAttributes.xml

file,

which

can

be

modified

to

suit

particular

registration

requirements.

For

more

information

on

automated

role

assignment,

and

the

MemberRegistrationAttributes.xml

file,

refer

to

the

WebSphere

Commerce

development

online

help

topic

″MemberRegistrationAttributes

XML

and

DTD

files″.

For

more

detailed

information

on

the

structure

of

member

assets

in

WebSphere

Commerce,

see

the

member

object

and

data

models

in

the

WebSphere

Commerce

development

online

help.

Understanding

customer

assets

in

WebSphere

Commerce

A

customer

is

a

user

within

WebSphere

Commerce.

A

customer

can

browse

the

store’s

online

catalog,

places

an

order,

create

an

interest

list,

set

up

addresses

(such

as

for

general

contact,

billing,

and

shipping

purposes),

and

purchase

from

the

store

or

the

Seller.

A

customer

is

also

a

user.

The

following

diagram

illustrates

the

assets

that

a

customer

requires

to

place

an

order

from

a

store.

As

shown

in

the

preceding

diagram,

the

WebSphere

Commerce

system

contains

members.

Each

user

and

organizational

entity

member

can

be

assigned

a

role.

Note:

In

WebSphere

Commerce,

a

member

can

be

either

an

organizational

entity,

user,

or

member

group.

Refer

to

“Members”

on

page

116

for

more

details.

In

this

case,

the

user

is

a

customer.

A

customer

must

provide

address

information

and

can

have

an

interest

item

list.

The

diagram

illustrates

the

reciprocal

relationship

between

a

member

(customer)

and

the

customer

assets

associated

with

it:

a

customer

must

own

and

provide

an

address

and

can

have

an

interest

list

to

shop

at

a

store;

the

address

and

interest

list

depend

on

the

existence

of

a

customer.

Address

information

A

customer

must

provide

three

types

of

address

information,

when

purchasing

from

a

store:

the

contact

address,

billing

address,

and

shipping

address.

The

following

describes

these

address

types;

each

address

can

be

unique

or

the

same:

v

A

contact

address

is

used

to

notify

the

customer

for

various

purposes,

such

as

regarding

the

status

or

changes

to

an

order,

and

notices

about

upcoming

store

events

(such

as

promotions

or

store

maintenance).

The

customer’s

contact

address

includes

the

street

name

and

number,

city,

state

or

province,

ZIP

or

postal

code,

country

or

region,

e-mail

address,

phone

number,

and

fax

number.

Typically,

the

contact

address

is

where

the

customer

can

be

reached

most

easily,

such

as

a

work

address.

v

A

billing

address

is

used

to

send

a

bill

or

invoice

for

purchases.

A

billing

address

includes

the

street

name

and

number,

city,

state

or

province,

ZIP

or

postal

code,

and

country

or

region,

phone

number,

and

e-mail

address.

The

billing

address

may

or

may

not

be

the

same

as

the

contact

or

shipping

addresses.

v

A

shipping

address

is

used

for

delivering

purchased

goods.

A

shipping

address

includes

the

street

name

and

number,

city,

state

or

province,

ZIP

or

postal

code,

and

country

or

region,

phone

number,

and

e-mail

address.

The

shipping

address

may

or

may

not

be

the

same

as

the

contact

or

billing

addresses.

118

Store

Development

Guide

Interest

lists

Stores

can

support

interest

lists.

That

is,

customers

add

products,

that

they

may

like

to

order

in

the

future,

to

their

interest

lists.

An

interest

list

is

not

a

shopping

cart;

a

interest

list

can

contain

items

from

multiple

stores,

and

does

not

contain

prices,

shipping

addresses,

shipping

modes,

inventory

availability

information,

or

calculated

amounts

such

as

discounts,

shipping

charges,

and

taxes.

Understanding

Seller

assets

in

WebSphere

Commerce

A

Seller

is

a

user

within

WebSphere

Commerce.

The

Seller

supervises

the

overall

store

objectives

and

management,

in

addition

to

tracking

the

store

sales.

A

Seller

sells

the

goods

and

services

to

the

customer.

The

Seller

role

is

equivalent

to

a

merchant

and

has

access

to

all

WebSphere

Commerce

Accelerator

capabilities.

The

following

diagram

illustrates

the

assets

that

a

Seller

requires

to

maintain

a

store

and

to

sell

to

customers.

Catalogs

PriceLists

ContractsAccounts ProductSetsStores

Fulfillment
Centers

Inventory
Items

MembersSeller Address
Information

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

As

shown

in

the

preceding

diagram,

the

WebSphere

Commerce

system

contains

members.

Each

member

is

assigned

a

role,

such

as

Customer

Service

Representative

for

the

store,

or

Receiver

at

a

warehouse.

The

Seller

role

can

maintain

the

following

assets

in

order

to

sell

to

customers:

v

Stores

v

Business

Accounts

(optional)

v

Contracts

(or

at

least

the

WebSphere

Commerce

default

contract)

v

Product

sets

v

Price

lists

v

Catalogs

v

Fulfillment

centers

v

Inventory

items

The

preceding

diagram

illustrates

the

relationship

between

a

member

(Seller)

and

the

Seller

assets;

that

is,

a

Seller

can

have

the

assets

listed

above

to

maintain

a

store

and

the

assets

need

to

have

a

Seller

for

deployment.

Chapter

12.

Member

assets

119

Stores

A

WebSphere

Commerce

online

store

is

comprised

of

a

set

of

HTML

and

JavaServer

Pages

files,

as

well

as

tax,

shipping,

payment,

catalog

and

other

database

assets,

which

are

contained

in

a

store

archive.

A

store

also

contains

store

data,

which

is

the

information

populated

into

the

WebSphere

Commerce

database

to

allow

a

store

to

function.

For

more

information

about

WebSphere

Commerce

stores,

refer

to

Chapter

13,

“Store

assets,”

on

page

123

and

Part

6,

“Developing

your

store

data,”

on

page

107.

Accounts

Business

A

store

can

set

up

business

accounts

for

customers

to

allow

them

to

purchase

from

the

store.

An

account

contains

the

following

information:

v

The

account

name,

which

is

often

the

name

of

the

organization

with

which

the

customer

is

associated.

This

organization

has

defined

contracts

with

the

store,

stipulating

terms

for

the

customer

to

shop

at

the

store.

For

example,

the

organization

IBM

may

have

contracts

with

the

ABC

Office

Supplies

Company.

v

The

representative

name,

which

is

the

name

of

the

representative

organization

within

the

Seller’s

organization

that

is

responsible

for

the

account.

v

The

number

of

contracts

that

belong

to

the

account.

For

more

information

about

WebSphere

Commerce

accounts,

refer

to

“Accounts

(business

accounts)”

on

page

180

and

the

WebSphere

Commerce

online

help.

Contracts

Typically,

in

WebSphere

Commerce,

all

customers

must

shop

under

a

contract.

Each

account

between

the

customer

and

the

Seller

must

be

associated

with

one

or

more

contracts

(or

at

least

a

default

contract

for

non-registered

customers

or

customers

to

shop

at

the

store,

or

if

you

want

customers

to

be

able

to

purchase

products

not

covered

by

other

contracts).

A

contract

allows

the

customer

to

purchase

products

from

a

store

at

a

specified

price

for

a

specified

period

of

time,

under

terms

and

conditions,

and

business

policies,

stipulated

in

the

contract.

The

Seller

deploys

the

contract

so

that

customers

can

buy

from

the

store.

The

Buyer

in

a

contract

can

be

a

user,

an

organization,

or

a

member

group.

In

the

case

of

the

user,

the

Buyer

is

considered

the

customer.

In

the

case

of

an

organization,

which

is

defined

as

a

Buyer

in

a

contract,

then

any

child

of

this

organization

can

act

as

a

Buyer

for

the

contract.

In

the

case

of

a

member

group,

any

user

in

the

member

group

can

act

as

a

Buyer

for

the

contract.

For

more

information

about

WebSphere

Commerce

contracts

and

the

default

contract

a

Seller

can

use,

refer

to

“Contracts”

on

page

181.

Product

sets

Product

sets

provide

a

mechanism

for

a

Seller

to

categorize

online

catalogs

into

logical

subsets

so

that

a

Seller

can

allow

various

customers

to

take

advantage

of

different

catalog

views.

Furthermore,

a

Seller

can

create

a

contract

for

a

customer

and

stipulate

that

the

customer

can

only

purchase

products

under

a

predefined

product

set.

120

Store

Development

Guide

For

more

information

about

WebSphere

Commerce

product

sets,

refer

to

“Product

sets”

on

page

144.

Price

lists

A

price

list

is

associated

with

the

price

a

Seller

offers

or

presents

to

a

customer.

A

Seller

can

list

different

prices

for

the

same

product

to

different

customers.

In

WebSphere

Commerce,

a

price

offer

is

also

known

as

a

trading

position

and

represents

the

price

of

a

catalog

entry

and

criteria

that

the

customer

must

satisfy

in

order

to

qualify

for

that

price.

In

WebSphere

Commerce,

an

Offer

object

is

part

of

a

TradingPositionContainer,

which

is

owned

by

a

member.

A

TradingPositionContainer

contains

TradingPositions,

and

can

be

made

available

to

all

customers,

or

to

only

customers

in

certain

groups

through

the

trading

agreements

or

contracts.

Sometimes

a

TradingPositionContainer

is

referred

to

as

a

price

list.

There

are

two

kinds

of

price

lists:

a

standard

price

list

which

contains

the

base

prices

for

the

products

in

the

store

catalog

or

a

custom

price

list

which

specifies

the

list

of

products

and

their

customized

prices.

For

more

information

about

WebSphere

Commerce

price

lists,

refer

to

Chapter

17,

“Pricing

assets,”

on

page

171.

Catalogs

A

WebSphere

Commerce

store

uses

at

least

one

online

catalog

to

showcase

the

goods

and

services

that

the

Seller

offers

for

sale.

Typically,

an

online

catalog

contains

prices,

images,

and

descriptions

of

the

items

for

sale.

An

online

catalog

may

also

present

merchandise

into

distinct

categories

to

facilitate

navigation.

Each

store

in

the

WebSphere

Commerce

system

must

have

a

master

catalog,

which

is

used

for

catalog

management.

The

master

catalog

is

the

central

location

to

manage

a

Seller’s

merchandise;

it

is

the

single

catalog

containing

all

products,

items,

relationships,

and

standard

prices

for

everything

that

is

for

sale

in

the

store.

If

a

Seller

has

more

than

one

store,

the

master

catalog

can

be

shared

between

these

stores.

For

more

information

about

WebSphere

Commerce

product

sets,

refer

to

Chapter

16,

“Catalog

assets,”

on

page

141.

Fulfillment

centers

Fulfillment

centers

are

used

by

stores

as

both

inventory

warehouses

and

shipping

and

receiving

centers.

A

Seller

may

have

one

or

many

fulfillment

centers.

From

a

WebSphere

Commerce

server

perspective,

a

FulfillmentCenter

object

is

separate

from

the

Store

object.

It

manages

product

inventory

and

shipping.

To

ship

an

order,

the

fulfillment

center

relies

on

a

ShippingMode

object

that

is

specified

by

the

customer.

The

ShippingMode

object

indicates

the

shipping

carrier

and

method

of

shipping

for

fulfilling

orders.

In

a

fulfillment

center,

the

ShippingArrangement

object

indicates

that

a

Store

object

has

arranged

with

a

FulfillmentCenter

object

to

ship

products

using

a

certain

ShippingMode.

For

more

information

about

WebSphere

Commerce

fulfillment

centers,

refer

to

Chapter

19,

“Fulfillment

assets,”

on

page

197

and

Chapter

26,

“Shipping

assets,”

on

page

229.

Chapter

12.

Member

assets

121

Inventory

items

Inventory

items

include

anything

that

can

be

physically

accounted

for

in

a

Seller’s

fulfillment

center.

The

WebSphere

Commerce

system

defines

specific

types

of

inventory

that

can

be

fulfilled,

such

as

items,

products,

SKUs,

bundles,

and

packages;

but

these

are

all

considered

inventory.

Products

are

configured

for

fulfillment

using

the

Product

Management

tools

on

WebSphere

Commerce

Accelerator.

For

more

information

about

WebSphere

Commerce

inventory

items,

refer

to

the

WebSphere

Commerce

development

online

help

and

Chapter

29,

“Inventory

assets,”

on

page

265.

Understanding

administrator

assets

in

WebSphere

Commerce

Administrators

are

simply

users

or

members

with

assigned

roles

that

allow

them

to

perform

certain

administrative

activities.

Refer

to

“Understanding

member

assets

in

WebSphere

Commerce”

on

page

115

for

more

details

on

the

assets

which

can

be

associated

with

an

administrator.

Creating

member

assets

in

WebSphere

Commerce

To

create

a

Seller

(an

organization

that

acts

as

the

store

owner)

and

to

maintain

information

about

the

Seller,

use

the

WebSphere

Commerce

Administration

Console.

For

more

information,

see

the

WebSphere

Commerce

development

online

help

topic

″Creating

an

organization″.

To

create

an

administrator,

use

the

WebSphere

Commerce

Administration

Console

to

create

the

user,

then

assign

the

desired

roles

to

this

user.

For

more

information,

see

the

WebSphere

Commerce

development

online

help

topics

″Creating

a

user″

and

″Assigning

roles

by

user

distinguish

name″.

A

customer

is

not

created

by

the

store

developer;

when

a

customer

registers

with

a

store,

registration

information

is

collected

and

maintained

by

the

WebSphere

Commerce

system.

The

sample

stores

provided

with

WebSphere

Commerce

each

contain

their

own

versions

of

the

MemberRegistrationAttributes.xml

file,

which

is

used

for

configuring

the

automated

role

assignment

for

registration

and

session

management

commands.

If

you

choose

to

modify

the

organization

structure,

or

have

particular

requirements

on

role

assignment,

then

you

will

have

to

modify

this

file.

Refer

to

the

WebSphere

Commerce

development

online

help

topic

″MemberRegistrationAttributes

XML

and

DTD

files″

for

more

information

on

this

file

and

how

to

configure

it

to

suit

your

needs.

122

Store

Development

Guide

Chapter

13.

Store

assets

In

order

to

create

a

store

in

WebSphere

Commerce

you

must

first

create

the

following

in

the

database:

v

The

store

v

The

group

to

which

it

belongs

v

The

abstract

store

entity

object

that

dually

represents

a

store

or

store

group

Understanding

store

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

store

assets

in

the

WebSphere

Commerce

Server.

Store StoreGroup1

StoreEntity

Member

1 +owner

StoreEntityDescription
1..n

StoreAddress

1

+owner 0..1

+contact

0..1

+location

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Store

entity

A

store

entity

is

an

abstract

superclass

that

can

represent

either

a

store

or

a

store

group.

A

store

entity

has

one

owner

(a

member).

For

more

information

on

members,

see

“Understanding

member

assets

in

WebSphere

Commerce”

on

page

115.

Store

entity

description

The

store

entity

description

describes

the

store

entity.

A

store

entity

may

include

a

description.

If

your

store

supports

multiple

languages,

the

store

entity

description

may

be

in

multiple

languages.

The

description

may

include

a

contact

address

for

the

store

entity,

as

well

as

a

location

address

for

the

store

entity.

©

Copyright

IBM

Corp.

2000,

2003

123

Store

A

store

is

a

store

entity.

A

store

must

belong

to

a

store

group.

Store

group

A

store

group

is

a

collection

of

stores.

A

store

group

is

a

store

entity.

The

store

group

acts

as

a

container

for

common

information,

which

can

be

stored

at

a

store

group

level

and

shared

by

all

the

stores

in

the

store

group.

For

example,

stores

in

the

same

store

group

can

share

information

such

as

tax

categories,

supported

languages,

supported

currencies,

calculation

codes,

and

shipping

jurisdictions.

Currently,

only

one

store

group

can

exist

and

be

maintained

at

the

site

administration

level

within

a

WebSphere

Commerce

Server.

For

more

detailed

information

on

the

structure

of

store

assets

in

WebSphere

Commerce

Server,

see

the

store

object

and

data

models

in

the

WebSphere

Commerce

online

help.

Creating

store

assets

in

WebSphere

Commerce

The

Store

tools

in

WebSphere

Commerce

Accelerator

allow

you

to

create

or

edit

the

following

store

assets:

v

The

store

identifier

and

member

identifier

in

the

contact

assets

v

The

store

identifier

in

the

STOREENT

table

v

The

store

directory

in

the

STORE

table

v

The

address

nickname

in

the

STADDRESS

table

v

The

store

description

v

The

store

address

As

a

result,

you

have

two

options

for

creating

store

assets:

v

Edit

the

existing

store

assets

from

one

of

the

sample

stores

provided

with

WebSphere

Commerce.

v

Create

store

assets

in

the

form

of

an

XML

file

that

can

be

published

as

part

of

a

store

archive,

or

loaded

using

the

Loader

package.

For

information

on

creating

store

assets

in

the

form

of

an

XML

file,

see

“Creating

store

data

assets

in

an

XML

file.”

For

more

information

on

editing

the

store

using

theWebSphere

Commerce

Accelerator,

see

the

WebSphere

Commerce

Production

online

help.

Creating

store

data

assets

in

an

XML

file

Create

your

store

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

If

you

are

creating

a

globalized

store,

you

may

want

to

create

separate

XML

files

for

each

locale

your

store

supports.

The

locale-specific

file

should

specify

all

description

information,

so

it

can

be

easily

translated.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

The

sample

stores,

from

which

many

of

the

examples

in

these

tasks

are

taken,

use

one

store.xml

file

for

all

information

that

does

not

need

to

be

translated,

and

another

store.xml

file

for

each

locale

the

store

supports,

for

the

information

that

needs

to

be

translated.

The

locale-specific

files

contain

all

the

description

information.

To

create

store

assets,

do

the

following:

124

Store

Development

Guide

1.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

2.

Review

the

XML

files

used

to

create

store

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

Sample

Store

Guide

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

several

store.xml

files,

which

include

the

store

information

by

language.

Since

the

sample

stores

are

translated

into

multiple

languages,

there

will

be

multiple

store.xml

files

in

each

store.

To

view

the

store.xml

files

in

the

store

archive,

decompress

the

store

archive

using

a

ZIP

program.

The

store.xml

files

are

located

in

the

data

directory.

The

language-specific

store.xml

is

in

a

locale-specific

subdirectory

of

the

data

directory.

3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

store.xml

file,

either

by

copying

one

of

the

store.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

file

is

located

in

the

following

directory:

v

WC_installdir/schema/xml

5.

Create

a

store

entity.

a.

Using

the

following

example

as

your

guide,

define

a

store

entity

in

your

XML

file

for

the

STOREENT

table.

<storeent

storeent_id="@storeent_id_1"

member_id="&MEMBER_ID"

type="S"

identifier="ToolTech"

setccurr="USD"

/>

where

v

storeent_id

is

a

generated

unique

key.

v

member_id

is

the

owner

of

the

store

entity.

v

type

is

the

kind

of

store

entity:

G

=

StoreGroup,

S

=

Store.

v

identifier

is

a

string

that,

along

with

the

owner,

uniquely

identifies

the

store

entity.

v

setccurr

is

the

default

currency

for

a

store

entity,

in

other

words,

the

currency

that

will

be

used

by

a

customer

that

does

not

already

have

a

preferred

currency.

If

it

is

NULL

for

a

Store,

the

default

currency

is

obtained

from

its

store

group.
6.

Create

a

store

address.

a.

Using

the

following

example

as

your

guide,

create

the

store

address

or

addresses

in

your

XML

file

for

the

STADDRESS

table.

If

you

are

creating

a

globalized

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<staddress

staddress_id="@staddress_id_en_US_1"

member_id="&MEMBER_ID"

nickname="storeaddress_English"

address1="12xx

Martindale

Avenue"

address2="Suite

9xx"

Chapter

13.

Store

assets

125

businesstitle="ToolTech"

city="Toolsville"

state="Ontario"

zipcode="Lxx

1xx"

country="Canada"

phone1="1-800-555-1234"

fax1="1-800-555-4321"

email1="info@tooltech.xxx"

/>

where

v

staddress_id

is

a

generated

unique

key.

v

member_id

is

the

owner

of

the

store

entity.
7.

Create

a

description

for

the

store

entity.

a.

Using

the

following

example

as

your

guide,

create

the

description

of

the

store

entity

in

your

XML

file

for

the

STOREENTDS

table.

If

you

are

creating

a

globalized

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<storeentds

description="Commerce

Models

Store

entity"

language_id="&en_US"

displayname="ToolTech"

storeent_id="@storeent_id_1"

staddress_id_cont="@staddress_id_en_US_1"

staddress_id_loc="@staddress_id_en_US_1"

where

v

description

is

a

longer

description

of

the

store

entity,

suitable

for

display

to

customers.

v

language_id

is

the

default

language

for

information

displayed

to

customers

shopping

in

the

store.

v

displayname

is

a

brief

description

of

the

store

entity,

suitable

for

display

to

customers.

v

storeent_id

is

the

store

entity.

v

staddress_id_cont

is

the

contact

address

of

the

StoreEntity.

v

staddress_id_loc

is

the

physical

location

of

the

StoreEntity.
8.

Create

a

store

in

the

database.

a.

Using

the

following

example

as

your

guide,

define

a

store

in

your

XML

file

in

the

STORE

table.

<store

store_id="@storeent_id_1"

directory="ToolTech"

ffmcenter_id="@ffmcenter_id_1"

language_id="&en_US"

storegrp_id="-1"

allocationgoodfor="43200"

bopmpadfactor="0"

defaultbooffset="2592000"

ffmcselectionflags="0"

maxbooffset="7776000"

rejectedordexpiry="259200"

rtnffmctr_id="@ffmcenter_id_1"

pricerefflags="0"

storetype="B2B"

/>

where

126

Store

Development

Guide

v

store_id

is

a

generated

unique

key.

v

directory

is

the

directory

in

which

store-specific

Web

assets

are

found.

The

directory

is

located

under

the

document

root

of

the

Store.war

Web

module.

v

ffmcenter_id

is

the

default

fulfillment

center

for

the

store.

v

language_id

is

the

default

language

for

information

displayed

to

customers

shopping

in

the

store.

v

storegrp_id

is

the

store

group

the

store

is

associated

with.

This

number

is

generated

in

the

STOREGRP

table.

v

allocationgoodfor

means

that

the

ReleaseExpiredAllocations

scheduler

job

can

be

used

to

reverse

ATP

inventory

allocations

when

this

many

seconds

have

passed

since

the

allocations

were

made.

v

bopmpadfactor

means

if

this

store

calculates

order

amounts

(such

as

tax

or

shipping

charges)

differently

for

different

fulfillment

centers,

the

order

amount

for

a

previously

submitted

order

can

change

when

fulfillment

centers

are

finally

allocated

to

backordered

items.

This

padding

factor

represents

a

percentage

by

which

the

order

amount

presented

to

Payment

Manager

can

be

increased,

if

necessary.

For

example,

specify

5

to

allow

an

increase

of

up

to

5

percent.

v

defaultbooffset

is

after

an

estimated

availability

time

cannot

be

determined

for

a

backordered

OrderItem,

it

will

be

set

to

this

many

seconds

in

the

future.

v

maxbooffset

means

if

the

estimated

availability

time

for

a

backordered

OrderItem

would

normally

exceed

this

many

seconds

in

the

future,

it

will

be

set

to

this

many

seconds

in

the

future.

v

rejectedordexpiry

are

orders

with

payment

in

Declined

state

longer

than

this

number

of

seconds

and

are

candidates

for

cancellation.

v

rtnffmctr_id

is

the

default

fulfillment

center

for

returning

merchandise

to

the

store.

v

pricerefflags

contains

bit

flags

that

control

which

TradingAgreements

and

Offers

are

searched

when

prices

are

refreshed

by

the

default

implementation

of

the

GetContractUnitPrices

task

command:

–

1

=

usePreviousOnly

-

Use

the

ones

referenced

by

the

OrderItems.

Fail

if

they

can

no

longer

be

used.

–

2

=

usePreviousOrSearchAgain

-

Same

as

usePreviousOnly,

but

instead

of

failing

when

they

can

no

longer

be

used,

search

the

ones

saved

in

the

ORDIOFFER

and

ORDITRD

tables

–

4

=

alwaysSearchAgain

-

Always

search

the

ones

saved

in

the

ORDIOFFER

and

ORDITRD

tables.
v

storetype

indicates

one

of

the

following

store

types,

for

use

by

a

user

interface

that

provides

appropriate

functions

depending

on

the

StoreType:

–

B2B

=

B2B

direct

–

B2C

=

Business-to-Consumer

(consumer

direct)

–

CHS

=

Reseller

Hub

(Commerce

Plaza)

–

CPS

=

Master

Catalog

Profile

Store

(catalog

asset

store)

–

RHS

=

Reseller

Hosted

Store

–

RPS

=

Reseller

Profile

Store

(reseller

storefront

asset

store)

–

DPS

=

Distributor

Profile

Store

(distributor

asset

store)

–

DPX

=

Distributor

Proxy

Store

–

HCP

=

Commerce

Hosting

Hub

(hosting

hub)

Chapter

13.

Store

assets

127

–

PBS

=

Store

Directory

–

MPS

=

Merchant

Profile

Store

(hosting

storefront

asset

store)

–

MHS

=

Merchant

Hosted

Store

–

SCP

=

Supplier

Hub

–

SPS

=

Supplier

Profile

Store

(supplier

asset

store)

–

SHS

=

Supplier

Hosted

Store

Note:

The

names

denoted

in

brackets

are

the

names

of

the

corresponding

samples

provided

with

WebSphere

Commerce.
9.

Define

a

supported

language

for

the

store.

a.

Using

the

following

example

as

your

guide,

define

a

supported

language

for

your

store

in

your

XML

file

to

add

information

to

the

STORELANG

table.

If

your

store

supports

multiple

languages,

you

should

include

this

information

in

a

locale-specific

XML

file

(one

for

each

language

your

store

supports).

<storelang

language_id="&en_US"

storeent_id="@storeent_id_1"

/>

where

v

language_id

is

the

language

supported

by

the

store

entity.

v

storeent_id

is

the

store

entity.
b.

Using

the

following

example

as

your

guide,

add

information

about

the

language

to

the

STORELANGDS

table.

If

your

store

supports

multiple

languages,

you

should

include

this

information

in

a

locale-specific

XML

file

(one

for

each

language

your

store

supports).

<storlangds

description="United

States"

language_id="&en_US"

storeent_id="@storeent_id_1"

language_id_desc="&en_US"

/>

where

v

description

is

a

brief

description

of

the

language,

suitable

for

display

to

customers

in

a

selection

list.

v

language_id

is

the

language

of

the

description.

v

storeent_id

is

the

store

entity

that

supports

the

language.

v

language_id_desc

is

the

language

being

described.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

128

Store

Development

Guide

Chapter

14.

Relationships

between

stores

Business

WebSphere

Commerce

supports

several

types

of

relationships

between

stores

in

a

site.

For

example,

one

store

may

provide

hosting

services

for

another

store,

or

a

store

may

use

the

catalog

or

currency

assets

provided

by

another

store.

Understanding

relationships

between

stores

in

WebSphere

Commerce

The

following

diagram

illustrates

store

relationships

in

the

WebSphere

Commerce

Server.

Store

StoreRel

1 +relatedStore

1

+store

StoreRelType

1

StoreRelTypeDescription

1

Language

1

Store

relationships

A

store

relationship

(captured

in

the

StoreRel

table)

is

the

relationship

between

two

stores.

All

store

relationships

are

directional,

that

is

in

each

store

relationship

one

store

provides

the

services

and

the

second

store

in

the

relationship

uses

those

services.

For

example,

store

A

uses

the

catalogs

provided

by

store

B.

Each

store

relationship

has

one

store

relationship

type

(StoreRelType).

Store

relationship

types

A

store

relationship

type

(StoreRelType)

defines

the

type

of

relationship

between

two

stores.

Each

type

of

store

relationship

defines

its

own

relationship,

that

is,

what

roles

each

partner

in

the

relationship

will

play

and

what

the

relationship

between

the

two

is.

Store

relationship

types

supported

by

WebSphere

Commerce

WebSphere

Commerce

supports

several

relationship

types

between

stores.

The

default

relationship

types

provided

by

WebSphere

Commerce

can

be

loosely

grouped

into

two

categories:

v

Relationships

in

which

one

store

provides

data

assets

to

another

store.

For

example,

store

A

provides

the

catalog

data

that

is

used

in

store

B.

v

Relationships

in

which

one

store

has

a

″business

relationship″

with

another

store,

that

is

a

store

may

host

another

store,

or

a

store

may

transfer

a

shopping

cart

to

another

store.

©

Copyright

IBM

Corp.

2000,

2003

129

Relationships

in

which

one

store

provides

data

assets

to

another

store:

Table

8.

Relationship

Type

Description

For

more

information,

see

com.ibm.commerce.
businessPolicy

One

store

uses

business

policies

defined

in

another

store.

Chapter

18,

“Contract

assets,”

on

page

179

com.ibm.commerce.
campaigns

One

store

uses

campaigns

defined

in

another

store.

Chapter

20,

“Campaign

assets,”

on

page

203

com.ibm.commerce.catalog

One

store

uses

catalog

data

defined

in

another

store.

Chapter

16,

“Catalog

assets,”

on

page

141

com.ibm.commerce.command

One

store

uses

commands

defined

in

another

store.

Chapter

15,

“Command,

view,

and

URL

registry

data,”

on

page

135

com.ibm.commerce.price

One

store

uses

price

data

defined

in

another

store.

Chapter

17,

“Pricing

assets,”

on

page

171

com.ibm.commerce.
segmentation

One

store

uses

customer

profile

data

defined

in

another

store.

Chapter

32,

“Customer

profiles,”

on

page

281

com.ibm.commerce.URL

One

store

uses

URLs

defined

in

another

store.

Chapter

15,

“Command,

view,

and

URL

registry

data,”

on

page

135

com.ibm.commerce.view

One

store

uses

views

defined

in

another

store.

Chapter

15,

“Command,

view,

and

URL

registry

data,”

on

page

135

com.ibm.commerce.storeitem

One

store

uses

items

defined

in

another

store.

Chapter

29,

“Inventory

assets,”

on

page

265

com.ibm.commerce.
propertyFiles

One

store

uses

properties

files

defined

in

another

store.

com.ibm.commerce.currency.
conversion

One

store

uses

currency

conversion

rates

defined

in

another

store.

Chapter

23,

“Currency

assets,”

on

page

217

com.ibm.commerce.currency.
supported

One

store

uses

currencies

supported

in

another

store.

Chapter

23,

“Currency

assets,”

on

page

217

com.ibm.commerce.currency.
format

One

store

uses

currency

formats

defined

in

another

store.

Chapter

23,

“Currency

assets,”

on

page

217

com.ibm.commerce.currency.
countervalue

One

store

uses

currency

countervalues

defined

in

another

store.

Chapter

23,

“Currency

assets,”

on

page

217

com.ibm.commerce.
measurement.format

One

store

uses

units

of

measurement

defined

in

another

store.

Chapter

24,

“Units

of

measure

assets,”

on

page

223

One

store

may

have

relationships

with

multiple

stores.

That

is,

store

A

may

want

to

use

the

catalog

resources

from

stores

B,

C,

and

D.

In

order

to

facilitate

such

relationships

between

multiple

stores,

you

must

provide

a

sequence

order

for

the

stores

from

which

a

store

is

using

assets.

Sequencing

in

relationships

between

stores

works

in

the

following

ways:

v

Override:

If

the

store

relationship

follows

the

override

method

of

sequencing,

the

store

relationship

with

the

lowest

sequence

number

that

is

the

store

relationship

used.

The

following

store

relationships

use

the

override

method:

–

command

130

Store

Development

Guide

–

currency

–

measurement

–

price

–

property

files

–

storeitem

–

URL

–

views
v

Merge:

If

the

store

relationship

follows

the

merge

method

of

sequencing,

WebSphere

Commerce

looks

for

all

store

relationships

associated

with

that

store,

and

merges

the

data

from

all

of

the

associated

stores.

The

following

store

relationships

use

the

merge

method:

–

business

policies

–

campaigns

–

catalog

–

segmentation

All

of

the

default

store

relationship

types

are

designated

as

using

either

the

override

or

merge

method

of

sequencing.

Note:

Although

a

store

relationship

type

does

not

exist

for

contracts,

a

single

contract

can

be

deployed

to

multiple

stores.

For

more

information,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

Relationships

in

which

one

store

has

a

″business

relationship″

with

another

store:

Table

9.

Relationship

Type

Description

com.ibm.commerce.
hostedStore

The

hub

store

hosts

the

reseller,

supplier

or

hosted

stores.

com.ibm.commerce.
referral

The

hub

store

has

referral

relationships

with

distributors.

The

hub

store

may

transfer

a

shopping

cart

to

a

distributor

store.

Usually

the

store

receiving

the

shopping

cart

is

a

proxy

store

for

an

external

system.

com.ibm.commerce.
channelStore

One

store

acts

as

the

hub

store

for

another

store.

This

relationship

defines

the

relationship

between

the

store

directory

and

the

Hosting

hub.

Store

relationship

type

description

A

store

relationship

type

description

describes

the

type

of

relationship.

Each

store

relationship

type

description

describes

only

one

relationship

type.

The

store

relationship

type

description

may

be

available

in

more

than

one

language.

Creating

store

relationships

in

WebSphere

Commerce

Create

your

store

relationships

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Chapter

14.

Relationships

between

stores

131

Note:

If

you

use

the

Store

Creation

wizard

to

create

hosted

stores

(for

more

information,

see

“The

Store

Creation

wizard”

on

page

68)

or

service

agreements

to

create

distributor

proxy

stores

(for

more

information,

see

“Creating

proxy

stores”

on

page

68)

many

of

these

store

relationships

are

created

for

you.

To

create

store

relationship

assets,

do

the

following:

1.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

2.

Review

the

XML

files

used

to

create

store

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

Sample

Store

Guide

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.
3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

storerelation.xml

file,

either

by

copying

one

of

the

storerelation.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

file

is

located

in

the

following

directory:

v

WC_installdir/schema/xml
5.

Create

a

store

relationship.

a.

Using

the

following

example

as

your

guide,

define

a

store

entity

in

your

XML

file

for

the

STOREREL

table.

<storerel

store_id="@storeent_id_1"

relatedstore_id="@storeent_id_2"

streltype="-4"

sequence="0"

state="1"

/>

where

v

store_id

is

the

primary

store

that

uses

the

services

of

the

related

store.

v

relatedstore_id

is

the

store

that

provides

the

service

used

by

the

primary

store.

v

streltype

is

the

type

of

relationship.

The

default

relationship

types

are

as

follows:

–

-1

com.ibm.commerce.businessPolicy

–

-3

com.ibm.commerce.campaigns

–

-4

com.ibm.commerce.catalog

–

-5

com.ibm.commerce.command

–

-6

com.ibm.commerce.hostedStore

–

-7

com.ibm.commerce.price

–

-8

com.ibm.commerce.referral

–

-9

com.ibm.commerce.segmentation

–

-10

com.ibm.commerce.URL

–

-11

com.ibm.commerce.view

–

-13

com.ibm.commerce.inventory

–

-14

com.ibm.commerce.storeitem

132

Store

Development

Guide

–

-15

com.ibm.commerce.channelStore

–

-16

com.ibm.commerce.propertyFiles

–

-17

com.ibm.commerce.currency.conversion

–

-18

com.ibm.commerce.currency.format

–

-19

com.ibm.commerce.currency.supported

–

-20

com.ibm.commerce.currency.countervalue

–

-21

com.ibm.commerce.measurement.format
v

sequence

defines

the

selection

sequence

when

more

than

one

related

store

is

defined

for

the

same

relationship

type.

Default

is

0.

v

state

is

the

state

of

the

relationship

(0

=

inactive,

1

=

active).

Default

is

1.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Chapter

14.

Relationships

between

stores

133

134

Store

Development

Guide

Chapter

15.

Command,

view,

and

URL

registry

data

The

command,

view,

and

URL

registries

are

part

of

the

WebSphere

Commerce

command

framework,

which

is

described

in

more

detail

in

WebSphere

Commerce

Programming

Guide

and

Tutorials,

chapters

one,

″Overview″,

two

″Design

patterns″

and

six

″Command

implementation″.

In

order

to

understand

how

the

command,

view,

and

URL

registries

fit

into

the

information

model,

a

brief

overview

is

provided

here.

For

more

detailed

information

on

the

structure

of

command

and

view

assets

in

the

WebSphere

Commerce

Server,

see

the

command

and

view

data

models

in

the

WebSphere

Commerce

online

help.

Understanding

command,

view

and

URL

registries

in

WebSphere

Commerce

The

WebSphere

Commerce

command

framework

determines

how

a

command

will

execute

and

then

returns

a

response

based

on

the

view

returned

by

the

executed

command.

The

command

execution

and

response

is

store

dependent,

which

means

that

the

same

command

can

be

implemented

differently

for

each

store,

as

well

as

return

different

responses

for

each

store.

The

following

diagram

illustrates

the

command,

view,

and

URL

registry

structure

in

the

WebSphere

Commerce

Server.

DeviceFormat

ViewRegistry

1

StoreEntity

CommandRegistryURLRegistry
0..1

URL

registry

The

URL

registry

maps

a

command

name

to

the

actual

interface

of

the

command

to

be

executed.

Each

URL

registry

entry

is

store

sensitive,

that

is,

each

store

can

define

a

different

interface

for

the

same

URL

value.

If

the

store

version

of

the

URL

registry

cannot

be

found,

then

the

URL

registry

defined

for

the

site

(store

0)

is

used.

By

default,

all

URL

registries

are

defined

for

the

site.

Business

URLs

defined

and

registered

in

one

store

may

be

used

by

other

stores.

In

order

for

one

store

to

use

URLs

defined

in

another

store

a

store

relationship

of

type

com.ibm.commerce.URL

must

be

created

between

the

stores.

For

more

information,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

©

Copyright

IBM

Corp.

2000,

2003

135

Command

registry

Every

command,

whether

it

is

a

controller

or

task

command,

can

be

defined

in

the

command

registry.

If

a

command

is

defined

in

the

command

registry,

that

definition

will

be

used

as

the

command

implementation

when

the

command

is

executed.

If

the

command

is

not

defined

in

the

command

registry,

a

default

implementation

will

be

used

instead.

Every

command

interface

is

assigned

a

default

implementation

that

is

used

if

the

command

is

not

defined

the

command

registry.

If

a

command

is

defined

in

the

command

registry

as

a

site

level

command

(store

0),

the

site

level

implementation

is

used,

except

when

the

command

is

executed

for

a

store

that

has

defined

a

different

implementation

of

the

command.

The

command

registry

allows

different

stores

to

use

the

same

commands

but

to

extend

part

or

all

of

the

implementations

without

changing

the

original

flow

of

the

command.

Business

Commands

defined

and

registered

in

one

store

may

be

used

by

other

stores.

In

order

for

one

store

to

use

commands

defined

in

another

store

a

store

relationship

of

type

com.ibm.commerce.command

must

be

created

between

the

stores.

For

more

information,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

View

registry

After

a

command

is

executed,

in

most

cases,

the

requestor

of

the

command

requires

a

response

to

be

returned.

When

determining

the

response,

the

command

framework

considers

the

following

factors:

v

The

view

found

in

the

response

properties

after

the

command

is

executed.

v

The

store

on

whose

behalf

the

command

was

executed.

v

The

device

format

of

the

request

when

the

request

was

made.

Every

view

that

returns

a

response

must

be

defined

in

the

view

registry,

either

per

store,

or

by

default,

by

site.

Each

store

will

normally

define

the

view

for

each

possible

device

format

of

the

incoming

request.

However,

if

a

view

is

not

defined

by

a

store,

the

default

view

for

the

site

will

be

used.

The

adapter

handling

the

request

will

decide

which

device

format

and

the

default

device

format

to

use

when

determining

which

view

to

call.

There

is

no

one

generic

device

format,

so

depending

on

the

different

types

of

requests

that

can

be

accepted

by

WebSphere

Commerce,

there

may

be

a

view

defined

for

each

device

format.

Business

Views

defined

and

registered

in

one

store

may

be

used

by

other

stores.

In

order

for

one

store

to

use

views

defined

in

another

store

a

store

relationship

of

type

com.ibm.commerce.view

must

be

created

between

the

stores.

For

more

information,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Creating

new

commands,

views,

and

URLs

When

you

create

a

WebSphere

Commerce

Server

instance,

the

default

commands,

views,

and

URLs

provided

with

WebSphere

Commerce

are

registered

in

the

WebSphere

Commerce

Server

database

in

the

corresponding

tables:

CMDREG,

VIEWREG,

and

URLREG.

These

commands,

views,

and

URLs

are

available

for

use

in

all

stores

residing

in

the

instance.

WebSphere

Commerce

also

provides

default

JSP

files

to

display

the

default

views.

These

JSP

files

are

associated

with

the

views

in

the

VIEWREG

table.

136

Store

Development

Guide

If

you

create

new

commands,

views,

or

URLs,

or

customize

existing

ones,

you

must

register

them

in

the

corresponding

database

tables

(CMDREG,

VIEWREG,

and

URLREG)

before

they

are

available

for

use

in

your

store.

If

you

create

new

JSP

files

for

use

in

your

store,

you

must

associate

them

with

the

corresponding

view

in

the

VIEWREG

table.

Note:

If

you

create

a

new

JSP

file,

but

give

it

the

same

name

as

the

default

JSP

file

associated

with

the

view,

you

do

not

need

to

register

the

new

JSP

file

in

the

VIEWREG

table.

Note:

When

creating

new

views,

ensure

that

you

associate

access

control

policies

with

each

new

view.

For

more

information,

see

“Adding

access

control

to

your

store”

on

page

289.

For

more

information

on

creating

or

customizing

command,

views,

or

URLs,

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

The

WebSphere

Commerce

Programming

Guide

and

Tutorials

also

contains

information

on

how

and

when

to

register

commands,

views,

URLs,

and

JSP

files.

Registering

commands,

views,

and

URLs

in

WebSphere

Commerce

If

you

create

or

customize

multiple

new

commands,

views,

URLs,

or

JSP

files

for

your

store,

you

may

want

to

register

them

using

an

XML

file,

which

you

can

then

load

into

the

database

using

the

Loader

package,

or

as

part

of

a

store

archive

that

can

be

published

using

the

publish

utility

in

the

Administration

Console.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Note:

Before

creating

an

XML

file

to

load

new

or

customized

commands,

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorials

for

more

detail

on

how

commands

work.

Creating

an

XML

file

to

register

commands,

views,

and

URLs

To

create

an

XML

file

to

register

the

new

commands,

views,

and

JSP

files

for

your

store,

do

the

following:

1.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

2.

Review

the

XML

files

used

to

register

commands,

views,

JSP

files

for

the

sample

stores.

Each

sample

store

includes

a

command.xml

file,

which

includes

the

registration

information.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

Sample

Store

Guide

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.
To

view

the

contents

of

the

store

archive,

use

a

decompression

program.

The

command.xml

file

is

located

in

the

data

directory.
3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

command.xml

file,

either

by

copying

one

of

the

command.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/schema/xml
5.

Controller

commands

must

be

registered

in

the

URLREG

table

and

the

CMDREG

table.

To

register

a

new

or

customized

controller

command

in

the

Chapter

15.

Command,

view,

and

URL

registry

data

137

URLREG

table,

create

an

entry

in

the

XML

file

for

each

new

customized

controller

command,

using

the

following

example

as

your

guide:

<urlreg

url="MyProductDisplay"

storeent_id="@storeent_id_1″

interfacename="com.mystore.commerce.catalog.commands.ProductDisplayCmd"

https="0"

description="Product

display

command

for

my

store"

authenticated="0"

internal="0"

/>

where

v

urlreg

is

the

name

of

the

database

table

(URLREG)

that

this

information

will

populate.

v

url

is

the

URI

name

v

storeent_id

is

the

store

entity

identifier

and

the

use

of

the

@

symbol

is

known

as

internal-alias

resolution.

When

using

internal-alias

resolution,

an

alias

is

substituted

in

place

of

the

primary

key

(identifier)

in

the

XML

document.

This

alias

is

then

used

elsewhere

in

the

XML

file

to

refer

to

that

element.

This

eliminates

the

need

to

know

the

unique

indexes

necessary

to

build

the

XML

file.

During

publish,

the

ID

Resolver

replaces

the

@

symbol

with

a

unique

value.

For

more

information,

see

Appendix

B,

“Creating

your

data,”

on

page

439.

v

interfacename

is

the

controller

command

interface

name

v

https

is

the

secure

HTTP

required

for

this

URL

request.

Use

1

when

secure

HTTP

is

required

and

0

when

it

is

not.

v

authenticated

is

whether

or

not

user

log

on

is

required

for

this

URL

request.

Use

1

when

authentication

is

required

and

0

when

it

is

not.

v

internal

indicates

whether

the

command

is

internal

to

WebSphere

Commerce.

URLs

that

are

internal

are

used

by

WebSphere

Commerce

tools.

Use

1

when

it

is

internal

and

0

when

it

is

external.

URLs

you

create

should

be

external.
6.

To

register

a

new

controller

command,

or

a

new

task

command,

in

the

CMDREG

table,

create

an

entry

in

the

XML

file

for

each

new

or

customized

controller

or

task

commands,

using

the

following

example

of

a

task

command

(from

the

ToolTech

sample

store

command.xml

file)

as

your

guide:

<

cmdreg

storeent_id="@storeent_id_1"

interfacename="com.ibm.commerce.payment.commands.DoPaymentCmd"

classname="com.ibm.commerce.payment.commands.DoPaymentMPFCmdImpl"/>

where

v

cmdreg

is

the

name

of

the

database

table

(CMDREG)

that

this

information

will

populate.

v

storeent_id

is

the

store

entity

identifier

and

the

use

of

the

@

symbol

is

known

as

internal

alias

resolution.

When

using

internal-alias

resolution,

an

alias

is

substituted

in

place

of

the

primary

key

(identifier)

in

the

XML

document.

This

alias

is

then

used

elsewhere

in

the

XML

file

to

refer

to

that

element.

This

eliminates

the

need

to

know

the

unique

indexes

necessary

to

build

the

XML

file.

During

publish,

the

ID

Resolver

replaces

the

@

symbol

with

a

unique

value.

For

more

information,

see

Appendix

B,

“Creating

your

data,”

on

page

439.

138

Store

Development

Guide

v

interfacename

is

the

command

interface

name

v

classname

is

the

command

implementation

class

name.

Typically,

this

name

is

the

interface

name

with

Impl

appended

at

the

end.
7.

To

register

new

views,

or

to

associate

new

JSP

files

with

a

view,

create

an

entry

in

the

VIEWREG

table,

using

the

following

example

(from

the

ToolTech

sample

store

command.xml

file)

as

your

guide:

<viewreg

viewname="OrderOptionsView"

devicefmt_id="-1"

storeent_id="@storeent_id_1"

interfacename="com.ibm.commerce.command.ForwardViewCommand"

classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"

properties="docname=Shipping.jsp"

internal="0"

https="0"/>

where

v

viewreg

is

the

name

of

the

database

table

(VIEWREG)

that

this

information

will

populate.

v

viewname

is

the

name

of

the

view.

v

devicefmt_id

is

the

type

of

device

on

which

this

view

will

be

used,

for

example,

a

browser.

v

storeent_id

is

the

store

entity

identifier

and

the

use

of

the

@

symbol

is

known

as

internal-alias

resolution.

When

using

internal-alias

resolution,

an

alias

is

substituted

in

place

of

the

primary

key

(identifier)

in

the

XML

document.

This

alias

is

then

used

elsewhere

in

the

XML

file

to

refer

to

that

element.

This

eliminates

the

need

to

know

the

unique

indexes

necessary

to

build

the

XML

file.

During

publish,

the

ID

Resolver

replaces

the

@

symbol

with

a

unique

value.

For

more

information,

see

Appendix

B,

“Creating

your

data,”

on

page

439.

v

interfacename

is

the

view

command

interface

name.

Default

options

are

ForwardView,

DirectView,

and

RedirectView.

v

classname

is

the

view

implementation

class

name.

Typically,

this

name

is

the

interface

name

with

Impl

appended

at

the

end.

v

properties

is

the

default

name-value

pairs

set

as

input

properties

to

the

command.

If

the

same

page

is

always

displayed

set

the

JSP

file

name

in

this

property,

for

example,

docname=Shipping.jsp.

v

internal

indicates

whether

the

view

is

internal

to

WebSphere

Commerce.

Internal

views

are

used

by

WebSphere

Commerce

tools.

Use

1

when

it

is

internal

and

0

when

it

is

external.

Views

you

create

should

be

external.

v

https

is

the

secure

HTTP

required

for

this

URL

request.

Use

1

when

secure

HTTP

is

required

and

0

when

it

is

not.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Chapter

15.

Command,

view,

and

URL

registry

data

139

140

Store

Development

Guide

Chapter

16.

Catalog

assets

Like

a

traditional

catalog,

your

online

catalog

consists

of

the

goods

and

services

you

offer

for

sale.

Although

the

size

and

structure

of

online

catalogs

can

differ

greatly

from

store

to

store,

depending

on

the

type

and

amount

of

merchandise

available

for

purchase,

catalogs

require

the

following:

v

What

you

are

selling,

including

–

Prices,

which

are

almost

always

included

in

an

online

catalog.

–

Product

data,

such

as

descriptions

and

images

of

your

merchandise.

–

Categories,

as

most,

but

not

all

catalogs

divide

merchandise

into

categories,

to

facilitate

navigation

for

customers.
v

A

display

method

for

what

you

are

selling.

Catalog

display

pages

outline

how

a

page

looks

to

your

customers

and

provide

a

consistent

look

and

feel

between

various

catalog

pages.

How

you

structure

your

catalog

depends

on

your

merchandise.

Understanding

catalogs

in

WebSphere

Commerce

WebSphere

Commerce

places

several

requirements

on

your

store’s

online

catalog.

Every

store

in

the

WebSphere

Commerce

system

must

have

a

master

catalog,

also

referred

as

simply

a

catalog.

The

master

catalog

is

the

central

location

to

manage

your

store’s

merchandise.

It

is

the

single

catalog

containing

all

products,

items,

relationships,

and

standard

prices

for

everything

that

is

for

sale

in

your

store.

You

can

share

the

master

catalog

across

stores

and

define

as

many

stores

as

needed.

In

addition

to

creating

a

master

catalog

for

catalog

management,

you

may

also

choose

to

create

one

or

more

sales

catalogs

for

display

purposes.

A

sales

catalog

can

contain

a

subset

or

the

same

catalog

entries

as

the

master

catalog,

but

will

have

a

much

more

flexible

category

structure

for

customer

display

purposes.

While

there

is

only

one

master

catalog,

you

can

create

as

many

sales

catalogs

as

you

want.

However,

since

you

need

to

use

the

master

catalog

to

manage

your

online

merchandise,

we

recommend

that

you

also

use

the

master

catalog

as

your

sales

catalog

to

minimize

maintenance

overhead.

If

you

are

creating

a

new

master

catalog

for

a

WebSphere

Commerce

store,

or

if

you

are

modifying

an

existing

master

catalog

available

from

a

WebSphere

Commerce

sample

store,

such

as

ToolTech,

you

will

have

to

ensure

that

your

catalog

meets

these

requirements.

The

following

diagram

outlines

the

basic

©

Copyright

IBM

Corp.

2000,

2003

141

structure

of

a

master

catalog

in

WebSphere

Commerce.

Bundle

DynamicKit

PackageProduct

PackageAttribute

0..1

PackageAttributeValue

1

Attribute

0..1

1

AttributeValue
1

1

Item

1

Catalog CatalogGroup

+parent

+subCatalogGroup+root

StoreEntity CatalogEntry

+subCatalogEntry

+parent

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Catalog

The

catalog

is

the

starting

point

in

the

information

model.

The

catalog

contains

all

hierarchical

and

navigational

information

for

the

online

catalog,

and

is

a

collection

of

catalog

groups

and

catalog

entries

that

are

displayed

and

available

for

purchase

in

an

online

store.

In

WebSphere

Commerce,

a

catalog

is

represented

in

the

database

by

a

catalog

entity.

A

catalog

entity

consists

of

a

unique

catalog

ID

and

a

description

of

the

catalog,

for

example,

the

catalog

name.

Since

each

catalog

is

a

separate,

unique

entity,

it

can

easily

be

associated

with

one

or

more

stores.

Every

store

in

the

WebSphere

Commerce

system

must

be

related

to

at

least

one

catalog

entity.

Catalog

groups

Catalog

groups

are

generic

groupings

of

your

catalog

entries,

created

for

partitioning

purposes.

A

catalog

group

belongs

to

a

catalog

and

may

contain

more

than

one

catalog

group

or

catalog

entries.

You

can

associate

catalog

groups

to

more

than

one

catalog.

A

catalog

group

is

also

known

as

a

category.

142

Store

Development

Guide

A

flat

catalog

is

a

catalog

that

does

not

group

its

products

in

categories;

instead,

it

displays

a

list

of

products.

Although

it

is

possible

to

create

a

flat

catalog

in

WebSphere

Commerce,

it

is

recommended

that

you

create

catalog

groups

for

structural

and

navigational

purposes.

When

creating

catalog

groups,

you

must

first

arrange

your

catalog

in

a

hierarchy,

or

inverted

tree.

The

tree

begins

at

general

catalog

groups

(called

root

categories,

or

top

categories),

and

branches

out

into

increasingly

specific

subcategories

until

it

cannot

be

further

divided.

Each

lowest

level

catalog

group,

which

contains

only

products,

is

a

leaf.

A

catalog

group

is

the

parent

to

the

categories

immediately

below

it,

and

a

child

of

the

one

above.

As

an

example,

Men’s

Fashion

is

a

grouping

of

the

men’s

apparel

categories,

while

the

catalog

groups

Pants

and

Shirts

are

groupings

of

products.

Catalog

entries

Each

catalog

group

contains

catalog

entries.

Catalog

entries

represent

orderable

merchandise

in

an

online

catalog.

The

entries

typically

have

a

name

or

part

number,

a

description,

one

or

more

prices,

images,

and

other

details.

A

catalog

entry

can

be

a

product,

item,

bundle,

package,

static

kit,

or

dynamic

kit.

If

necessary,

you

can

create

new

catalog

entry

types

that

do

not

fit

into

one

of

the

six

existing

models.

More

information

on

each

type

of

catalog

entry

is

available

below.

Products

A

product

is

a

type

of

catalog

entry.

A

product

acts

as

a

template

for

a

group

of

items

(or

SKUs)

that

exhibit

the

same

attributes.

For

example,

a

shirt

is

a

product

in

your

catalog.

After

adding

attributes

and

attribute

values

to

the

shirt,

each

variation

becomes

an

item,

such

as

a

small

black

shirt.

Items

An

item

is

a

tangible

unit

of

merchandise

that

has

a

specific

name,

part

number,

and

price.

For

example,

a

small

black

shirt

is

an

item

while

a

shirt

is

a

product.

All

items

related

to

a

particular

product

exhibit

the

same

set

of

attributes

and

are

distinguished

by

their

attribute

values.

Note:

For

WebSphere

Commerce

Accelerator

users,

the

terms

items

and

SKUs

are

considered

synonymous.

When

using

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator,

the

orderable

item

is

called

a

SKU.

In

the

WebSphere

Commerce

database

schema,

this

particular

type

of

catalog

entry

is

called

an

item.

Bundles

A

bundle

is

a

collection

of

catalog

entries

to

allow

customers

to

buy

multiple

items

at

once.

For

example,

a

bundle

for

a

computer

might

be

composed

of

a

central

processing

unit,

a

monitor,

a

hard

drive,

and

a

CD-ROM

drive.

A

bundle

is

a

grouping

of

items,

or

a

combination

of

products,

items,

and

fully

resolved

packages.

If

you

select

a

bundle

which

only

contains

items,

the

bundle

is

decomposed

into

separate

orderable

SKUs

that

are

added

individually

to

the

shopping

cart.

However,

if

you

select

a

bundle

which

contains

products,

these

products

need

to

be

resolved

into

items

through

SKU

resolution

before

they

can

be

added

to

a

shopping

cart.

In

either

case,

once

a

bundle

is

decomposed

and

its

component

items

are

added

to

a

shopping

cart,

you

can

modify

or

remove

each

item.

Packages

A

package

is

an

atomic

collection

of

catalog

entries.

For

example,

a

computer

package

might

contain

a

specific

central

processing

unit,

monitor,

and

hard

drive

Chapter

16.

Catalog

assets

143

that

cannot

be

sold

separately.

Similar

to

a

product,

a

package

has

defining

attributes

and

is

a

container

for

fully

resolved

packages.

A

fully

resolved

package

is

comparable

to

a

SKU.

A

package

has

its

own

price

and

is

an

actual

orderable

SKU

that

can

be

added

to

a

shopping

cart.

You

cannot

decompose

or

modify

a

package

either

during

navigation

or

after

the

package

has

been

placed

in

the

shopping

cart.

Note:

For

WebSphere

Commerce

Accelerator

users,

packages

and

prebuilt

kits

are

considered

synonymous.

When

using

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator,

a

package

is

known

as

a

prebuilt

kit.

In

the

WebSphere

Commerce

database

schema,

this

particular

type

of

catalog

entry

is

called

an

package.

Dynamic

kits

A

dynamic

kit

is

a

type

of

catalog

entry

which

can

be

dynamically

configured

by

the

customer.

This

configuration

(or

grouping)

of

products

is

based

on

the

customer’s

requirements

and

is

sold

as

a

single

unit.

The

components

of

a

dynamic

kit

are

controlled

by

an

external

product

configurator

through

a

set

of

predefined

rules

and

user

interaction,

and

supplied

at

order

entry

time.

Adding

a

dynamic

kit

to

an

order

is

similar

to

adding

a

package.

Like

a

package,

the

individual

components

of

a

dynamic

kit

cannot

be

modified

and

the

entire

configuration

must

be

fulfilled

as

a

whole.

However,

you

may

change

the

dynamic

kit

components

by

reconfiguring

it

using

an

external

product

configurator.

Static

kits

A

static

kit

is

a

group

of

products

that

are

ordered

as

a

unit.

The

information

about

the

products

contained

in

a

static

kit

is

predefined

and

controlled

within

WebSphere

Commerce.

The

individual

components

within

the

order

cannot

be

modified

and

must

be

fulfilled

together.

A

static

kit

will

backorder

if

any

of

its

components

are

unavailable.

A

static

kit

is

first

created

as

a

package,

then

configured

by

an

administrator.

Product

sets

Product

sets

are

associated

with

published

catalog

entries.

A

product

set

provides

a

mechanism

to

partition

your

catalog

into

logical

subsets.

This

partitioning

allows

you

to

show

different

parts

of

your

catalog

to

different

users.

You

can

create

a

contract

and

specify

that

the

participants

of

the

contract

are

only

entitled

to

purchase

products

that

fall

into

a

predefined

product

set.

WebSphere

Commerce

provides

tools

to

create

and

manage

contracts

and

entitlement

filtering

rules

on

the

master

catalog.

Attributes

Attributes

are

properties

of

products

in

an

online

store.

There

are

two

types

of

attributes:

v

Defining

attributes

are

properties,

such

as

color

or

size.

Attribute

values

are

the

property

of

an

attribute

such

as

a

specific

color

(blue

or

yellow)

or

size

(medium).

You

must

predefine

attribute

values

before

assigning

them

to

items.

Attribute

values

are

implicitly

related

to

their

attributes.

Each

possible

combination

of

attributes

and

attribute

values

equals

a

new

item.

After

creating

attributes

and

their

values,

you

can

update

information

such

as

name,

description,

and

type

(text,

whole

numbers,

or

decimal

numbers).

Defining

attributes

are

used

for

SKU

resolution,

where

each

possible

combination

of

attributes

and

attribute

values

defines

an

item.

144

Store

Development

Guide

v

In

contrast,

descriptive

attributes

simply

provide

additional

descriptions.

For

example,

some

pieces

of

clothing

should

only

be

dry

cleaned,

never

washed,

and

a

descriptive

attribute

can

specify

this

dry

clean

only

condition.

Note

that

descriptive

attributes

are

not

used

for

SKU

resolution

and

are

meant

to

enhance

product

descriptions,

or

to

provide

easy

customization

for

your

business

specific

information.

Attribute

values

Attribute

values

are

properties

of

an

attribute

such

as

a

specific

color

(blue

or

yellow)

or

size

(small,

medium,

or

large).

You

must

predefine

attribute

values

before

assigning

them

to

items.

Each

possible

combination

of

defining

attributes

values

defines

an

item.

Package

attributes

Package

attributes

must

be

created

from

the

attributes

of

the

products

that

are

contained

within

packages.

A

package

containing

only

items

will

have

no

package

attributes.

Package

attribute

values

Package

attribute

values

are

the

values

assigned

to

package

attributes.

Package

attribute

values

must

be

created

from

the

attribute

values

of

the

products

that

are

contained

within

packages.

For

more

detailed

information

on

the

structure

of

catalog

assets

in

WebSphere

Commerce,

see

the

catalog

data

models

in

the

WebSphere

Commerce

online

help.

Creating

catalog

assets

in

WebSphere

Commerce

To

create

the

catalog

assets

for

your

store,

you

need

to

create

a

master

catalog

by

adding

information

to

several

WebSphere

Commerce

database

tables.

You

can

create

your

catalog

using

XML

files

that

are

loaded

into

the

database

by

the

Loader

package.

If

you

are

creating

a

globalized

catalog,

you

will

need

separate

XML

files

for

each

locale

your

store

supports.

Each

locale

specific

XML

file

adds

the

translatable

information,

such

as

descriptions,

for

your

catalog,

catalog

groups,

and

catalog

entries.

The

following

is

an

overview

of

the

catalog

creation

process:

1.

In

WebSphere

Commerce,

a

catalog

is

created

using

XML

files.

Creating

a

catalog

begins

with

a

catalog

entity,

your

database’s

equivalent

of

a

paper

catalog.

2.

Create

the

catalog

structure

and

navigation

by

adding

catalog

groups

to

determine

the

categories

and

layout

of

your

merchandise.

3.

Create

inventory

information

as

a

base

for

the

catalog

entries.

4.

Add

your

merchandise

in

the

form

of

catalog

entries,

which

represent

products,

SKUs,

bundles,

packages,

static

kits,

and

dynamic

kits.

5.

Attributes

and

attribute

values

are

added

to

your

catalog’s

products

to

distinguish

the

different

SKUs

from

one

another.

6.

You

can

create

packages

and

bundles

to

group

certain

catalog

entries

together

for

promotional

purposes.

7.

The

relationships

between

the

catalog

groups

and

catalog

entries

are

created

next.

This

determines

which

entries

belong

to

a

catalog

group.

Chapter

16.

Catalog

assets

145

8.

You

can

create

merchandising

associations

for

your

catalog

entries

as

product

recommendation

strategies.

9.

Associate

your

catalog,

catalog

groups,

and

catalog

entries

to

your

WebSphere

Commerce

store.

10.

In

the

final

steps,

you

need

to

create:

a.

Taxes

for

your

merchandise.

b.

Shipping

methods.

c.

A

fulfillment

center

to

act

as

an

inventory

warehouse

and

a

shipping

and

receiving

center.

A

store

can

have

more

than

one

fulfillment

center

defined.

d.

Prices

for

your

merchandise.

Creating

a

master

catalog

To

create

a

master

catalog

that

contains

multiple

levels

of

categories,

complete

the

following

tasks:

Part

1:

Preparing

for

catalog

creation

1.

Review

the

catalog

information

and

its

corresponding

object

and

data

models

within

WebSphere

Commerce.

The

catalog

information

is

a

component

of

the

WebSphere

Commerce

Server

that

provides

online

catalog

navigation,

partitioning,

categorization,

and

associations

for

orderable

merchandise.

2.

Review

the

WebSphere

Commerce

Loader

package

information.

The

Loader

package

consists

primarily

of

utilities

for

preparing

and

loading

data

into

a

WebSphere

Commerce

database.

You

can

use

the

Loader

package

to

load

large

amounts

of

data

and

to

update

data

in

your

database.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

an

organization

through

the

Administration

Console

to

act

as

the

catalog

owner.

For

more

information,

see

the

WebSphere

Commerce

online

help

topic

″Creating

an

organization″.

5.

Create

a

new

XML

file

for

your

master

catalog

by

using

the

existing

XML

entries

and

catalog.xml

files

from

the

ToolTech

sample

store

as

your

guide.

If

you

are

creating

a

globalized

catalog,

create

a

separate

catalog.xml

file

for

each

locale

your

store

supports.

The

locale-specific

file

should

specify

all

description

information,

so

it

can

be

easily

translated.

In

this

example,

one

catalog.xml

file

will

be

used

for

all

information

that

does

not

need

to

be

translated,

and

a

second

catalog.xml

will

be

used

for

each

locale

the

store

supports

and

will

include

the

information

that

needs

to

be

translated.

Or,

if

you

prefer,

you

can

use

the

existing

XML

file

from

the

ToolTech

sample

store

and

change

the

information

as

needed.

The

catalog.xml

files

from

the

ToolTech

sample

store

are

located

in

its

store

archive

file.

To

view

the

catalog.xml

files,

decompress

the

store

archive

using

a

ZIP

program.

The

catalog.xml

files

are

located

in

the

following

data

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

The

catalog.dtd

file

is

located

in

the

following

directory:

v

WC_installdir/xml/sar

146

Store

Development

Guide

Part

2:

Creating

a

catalog

entity

1.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

create

a

catalog

entity

by

adding

information

to

the

CATALOG

and

CATALOGDSC

tables.

A

catalog

entity

represents

a

catalog

in

the

database.

<catalog

catalog_id="@catalog_id_1"

member_id="@seller_b2b_mbr_id"

identifier="ToolTech"

description="ToolTech

Catalog"

tpclevel="0"

/>

where

v

catalog_id

is

the

internal

reference

number.

v

member_id

is

the

internal

reference

number

that

identifies

the

owner

of

the

catalog.

v

identifier

is

an

external

name

for

the

catalog.

v

description

is

a

description

of

the

catalog.
2.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

catalog’s

description

in

the

locale-specific

XML

file

for

translation

purposes:

<catalogdsc

catalog_id="@catalog_id_1"

language_id="&en_US;"

name="Store

master

catalog"

/>

where

v

catalog_id

is

the

internal

reference

number

relating

this

language

specific

information

to

a

catalog.

v

language_id

is

the

identifier

of

the

language.

v

name

is

the

language-dependent

name

of

the

catalog.

Part

3:

Creating

catalog

groups

1.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

create

catalog

groups

by

adding

information

to

the

CATGROUP

and

CATGRPDESC

tables.

Catalog

groups,

also

known

as

categories,

are

groupings

of

other

catalog

groups

or

products.

Complete

this

task

for

each

catalog

group

in

your

catalog:

<catgroup

catgroup_id="@catgroup_id_1"

member_id="@seller_b2b_mbr_id"

identifier="Woodworking"

markfordelete="0"

/>

where

v

catgroup_id

is

the

internal

reference

number

of

the

catalog

group

v

member_id

is

the

internal

reference

number

that

identifies

the

owner

of

the

catalog.

v

identifer

is

an

external

name

for

the

catalog.

v

markfordelete

indicates

whether

the

catalog

group

has

been

marked

for

deletion:

–

0

=

no.

Chapter

16.

Catalog

assets

147

–

1

=

yes.
2.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

catalog

group’s

description

in

the

locale-specific

XML

file

for

translation

purposes.

Complete

this

task

for

each

catalog

group

in

your

catalog:

<catgrpdesc

language_id="&en_US;"

catgroup_id="@catgroup_id_1"

name="Woodworking"

shortdescription="Woodworking"

longdescription="Woodworking"

published="1"

/>

where

v

language_id

is

the

identifier

of

the

language.

v

catgroup_id

is

the

internal

reference

number

of

the

catalog

group.

v

name

is

language-dependent

name

of

the

catalog.

v

shortdescription

is

a

brief

description

of

the

catalog

group.

v

longdescription

is

a

detailed

description

of

the

catalog

group.

v

published

indicates

whether

this

catalog

group

should

be

displayed

for

the

language

indicated

by

language_id:

–

0

=

no.

–

1

=

yes.

Note:

Each

time

you

create

a

catalog

group

and

its

description,

the

catgroup_id

changes

to

represent

a

new

catalog

group.

For

example,

catgroup_id="@catgroup_id_2"

,

catgroup_id="@catgroup_id_3"

,

and

catgroup_id="@catgroup_id_4",

and

so

on.

3.

After

creating

your

catalog

groups,

assign

a

top-level

catalog

group

to

the

catalog

by

adding

information

to

the

CATTOGRP

table.

This

catalog

group

is

the

parent

to

the

catalog

groups

immediately

below

it.

Complete

this

task

for

each

top-level

catalog

group

in

your

catalog.

Use

the

following

example

from

the

ToolTech

sample

store

as

your

guide:

<cattogrp

catalog_id="@catalog_id_1"

catgroup_id="@catgroup_id_1"

/>

where

v

catalog_id

is

the

reference

number

of

the

catalog.

v

catgroup_id

is

the

reference

number

of

the

catalog

group.

Note:

Each

time

you

assign

top-level

catalog

groups

to

the

catalog,

the

catgroup_id

is

modified

to

represent

a

new

catalog

group

association.

For

example,

catgroup_id="@catgroup_id_2"

,

catgroup_id="@catgroup_id_3"

,

and

catgroup_id="@catgroup_id_4",

and

so

on.

4.

Once

the

parent

and

child

structure

has

been

determined

for

your

catalog

groups,

create

relationships

between

the

catalog

groups

by

adding

information

to

the

CATGRPREL

table.

Complete

this

task

for

each

parent

and

child

catalog

group

structure

in

your

catalog.

Use

the

following

example

from

the

ToolTech

sample

store

as

your

guide:

148

Store

Development

Guide

<catgrprel

catgroup_id_parent="@catgroup_id_1"

catgroup_id_child="@catgroup_id_11"

catalog_id="@catalog_id_1"

sequence="0"

/>

where

v

catgroup_id_parent

is

the

source

catalog

group

of

this

relationship.

v

catgroup_id_child

is

the

target

catalog

group

of

this

relationship.

v

catalog_id

is

the

reference

number

of

the

catalog.

v

sequence

is

the

number

that

determines

the

display

order

of

the

contents

of

the

catalog

group.

Note:

With

each

catalog

group

relationship,

the

catgroup_id_child

and

the

sequence

is

modified

to

represent

a

new

relationship.

For

example,

subsequent

relationships

would

be

displayed

as

catgroup_id_child="@catgroup_id_12"

and

sequence="1",

and

catgroup_id_child="@catgroup_id_13"

and

sequence="2",

and

so

on.

If

you

are

not

using

a

navigational

structure

in

your

catalog,

then

you

can

remove

the

CATGRPREL

relationship.

Part

4:

Creating

inventory

information

1.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

create

inventory

information

by

adding

information

to

the

BASEITEM,

BASEITEMDSC,

ITEMSPC,

ITEMVERSN,

VERSIONSPC,

DISTARRANG,

and

STOREITEM

tables.

Begin

by

creating

base

items

by

adding

information

to

the

BASEITEM

table.

Base

items

represent

a

general

family

of

products

with

a

common

name

and

description.

Complete

this

task

for

each

group

of

inventory

items

in

your

catalog:

<baseitem

baseitem_id="@baseitem_id_102"

member_id="@seller_b2b_mbr_id"

markfordelete="0"

partnumber="tooltech_sku_102"

itemtype_id="ITEM"

quantitymeasure="C62"

quantitymultiple="1.0"

/>

where

v

baseitem_id

is

the

generated

unique

key.

v

member_id

is

the

owner

of

the

base

item.

v

markfordelete

indicates

whether

the

base

item

is

marked

for

deletion:

–

0

=

no.

–

1

=

yes.
v

partnumber

uniquely

identifies

the

base

item

for

the

owner.

v

itemtype_id

is

the

type

of

base

item:

–

ITEM

=

items,

packages,

or

bundles.

–

DNKT

=

dynamic

kits.

–

STKT

=

static

kits.
v

quantitymeasure

is

the

unit

of

measure

for

the

quantity

multiple.

Chapter

16.

Catalog

assets

149

v

quantitymultiple

is

the

amount

of

the

base

item

that

is

measured

in

integral

units.

Along

with

quantitymeasure,

this

indicates

how

much

each

integral

unit

represents.

Note:

You

must

create

a

base

item

for

every

product

that

you

create

in

your

catalog.

Each

time

you

create

a

base

item,

the

baseitem_id

and

partnumber

numbers

change

to

create

a

new

base

item.

For

example,

a

new

base

item

would

contain

baseitem_id="@baseitem_id_147"

and

partnumber="tooltech_sku_147"

as

entries,

while

another

base

item

would

contain

baseitem_id="@baseitem_id_192"

and

partnumber="tooltech_sku_192"

as

entries,

and

so

on.

2.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

information

about

specified

items

to

the

database.

A

specified

item

is

an

item

with

values

for

all

its

attributes,

and

represents

an

item,

package,

bundle,

or

dynamic

kit

in

the

catalog.

Complete

this

task

for

each

specified

item

in

your

catalog:

<itemspc

itemspc_id="@itemspc_id_106"

baseitem_id="@baseitem_id_102"

markfordelete="0"

partnumber="T0000106"

member_id="@seller_b2b_mbr_id"

discontinued="N"

/>

where

v

itemspc_id

is

the

generated

unique

key.

v

baseitem_id

is

the

product

base

item.

v

markfordelete

indicates

whether

the

specified

item

is

marked

for

deletion:

–

0

=

no.

–

1

=

yes.
v

partnumber

uniquely

identifies

the

specified

item

for

the

owner.

v

member_id

is

the

owner

of

the

specified

item.

v

discontinued

indicates

whether

the

specified

item

has

been

discontinued:

–

Y

=

discontinued

and

can

be

ordered

if

there

is

sufficient

inventory

but

it

cannot

be

backordered.

–

N

=

active

and

may

be

backordered

if

out

of

stock.

Note:

You

must

create

a

specified

item

for

each

item

that

you

create

in

your

catalog.

Each

time

you

define

a

specified

item,

the

itemspc_id="@itemspc_id_107",

baseitem_id="@baseitem_id_102",

partnumber="T0000107"

numbers

change

to

create

a

new

specified

item.

For

example,

a

new

specified

item

would

contain

itemspc_id="@itemspc_id_108",

baseitem_id="@baseitem_id_102",

and

partnumber="T0000108"

as

entries,

while

another

specified

item

would

contain

itemspc_id,

baseitem_id,

and

partnumber

as

entries,

and

so

on.

3.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

following

information

for

a

relationship

between

an

item

version

and

a

base

item

to

the

database.

Complete

this

task

for

each

such

relationship

in

your

catalog:

150

Store

Development

Guide

<itemversn

itemversn_id="@itemversn_id_102"

baseitem_id="@baseitem_id_102"

expirationdate="2010-01-01

00:00:00.000000"

versionname="version"

/>

where

v

itemversn_id

is

a

generated

reference

number

which

identifies

the

item

version.

v

baseitem_id

is

the

base

item.

v

expirationdate

is

the

time

the

item

version

expires.

v

versionname

uniquely

identifies

the

item

version

for

its

base

item.

Note:

Each

time

you

create

a

relationship

between

an

item

version

and

a

base

item,

the

itemversn_id

and

baseitem_id

numbers

change

to

create

a

new

relationship.

baseitem_id

matches

an

existing

base

item.

For

example,

a

new

relationship

would

contain

itemversn_id="@itemversn_id_107"

and

baseitem_id="@baseitem_id_107"

as

entries,

while

another

relationship

would

contain

itemversn_id="@itemversn_id_108"

and

baseitem_id="@baseitem_id_108"

as

entries,

and

so

on.

4.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

following

information

for

a

relationship

between

a

product

version

and

a

specified

item

to

the

database.

Complete

this

task

for

each

such

relationship

in

your

catalog:

<versionspc

versionspc_id="@versionspc_id_106"

itemspc_id="@itemspc_id_106"

itemversn_id="@itemversn_id_102"

/>

where

v

versionspc_id

is

the

generated

unique

identifier.

v

itemspc_id

is

the

specified

item

that

the

catalog

entry

relates

to.

v

itemversn_id

identifies

the

item

version.

Note:

Each

time

you

create

a

relationship

between

a

product

version

and

a

specified

item,

the

versionspc_id

and

itemspc_id

numbers

change

to

create

a

new

relationship.

itemspc_id

matches

an

existing

specified

item.

For

example,

a

new

relationship

would

contain

versionspc_id="@versionspc_id_107"

and

itemspc_id="@itemspc_id_107"

as

entries,

while

another

relationship

would

contain

versionspc_id="@versionspc_id_108"

and

itemspc_id="@itemspc_id_108"

as

entries,

and

so

on.

5.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

distribution

arrangements

to

the

database.

A

distribution

arrangement

enables

a

store

to

sell

its

own

inventory.

Complete

this

task

for

each

distribution

arrangement

in

your

catalog:

<distarrang

distarrang_id="@distarrang_id_102"

wholesalestore_id="@storeent_id_1"

merchantstore_id="@storeent_id_1"

baseitem_id="@baseitem_id_102"

Chapter

16.

Catalog

assets

151

pickingmethod="F"

startdate="2000-12-25

00:00:00.000000"

enddate="2010-01-01

00:00:00.000000"

/>

where

v

distarrang_id

is

the

reference

number

of

the

distribution

arrangement.

v

wholesalestore_id

is

the

wholesale

store

that

owns

the

inventory

that

can

be

sold

by

the

merchant

store.

This

wholesale

store

must

be

the

same

as

merchantstore_id.

v

merchantstore_id

is

the

merchant

store

that

can

sell

from

the

inventory

of

the

wholesale

store.

This

merchant

store

must

be

the

same

as

wholesalestore_id.

v

baseitem_id

is

the

product

covered

by

the

distribution

arrangement.

v

pickingmethod

determines

the

sequence

in

which

inventory

is

picked

from

the

RECEIPT

table

under

this

arrangement:

–

F

=

FIFO

(First

In

First

Out):

the

least

recently

received

inventory.

–

L

=

LIFO

(Last

in

First

Out):

the

most

recently

received

inventory.
v

startdate

is

the

time

the

distribution

arrangement

starts

being

effective.

v

enddate

is

the

time

the

distribution

arrangement

stops

being

effective.

Note:

Each

time

you

create

a

distribution

arrangement,

the

distarrang_id

and

the

baseitem_id

numbers

change

to

create

a

new

distribution

arrangement.

For

example,

a

second

distribution

arrangement

might

contain

the

values

distarrang_id="@distarrang_id_147"

and

baseitem_id="@baseitem_id_147",

while

a

third

might

contain

distarrang_id="@distarrang_id_192"

and

baseitem_id="@baseitem_id_192",

and

so

on.

6.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

attributes

that

affect

how

a

particular

store

allocates

inventory

for

the

specified

items

of

a

particular

base

item

to

the

database.

Complete

this

task

for

each

base

item

in

your

catalog:

<storeitem

baseitem_id="@baseitem_id_102"

storeent_id="@storeent_id_1"

trackinventory="Y"

forcebackorder="N"

releaseseparately="N"

returnnotdesired="N"

backorderable="Y"

creditable="Y"

minqtyforsplit="0"

/>

where

v

baseitem_id

is

the

base

item.

v

storeent_id

is

the

store

or

the

store

group.

v

trackinventory

controls

whether

or

not

inventory

is

tracked

in

the

RECEIPT

table:

–

N

=

inventory

is

not

tracked

and

there

are

no

entries

in

the

RECEIPT

table.

–

Y

=

inventory

is

tracked

in

the

RECEIPT

table.
v

forcebackorder

temporarily

suspends

allocation

of

specified

items

for

the

base

item:

152

Store

Development

Guide

–

N

=

inventory

can

be

allocated

(normal

behavior).

–

Y

=

inventory

cannot

be

allocated,

even

if

there

is

enough

inventory.
v

releaseseparately

controls

how

specified

order

items

for

the

base

item

are

released:

–

N

=

order

items

may

be

released

along

with

other

order

items.

–

Y

=

order

items

must

be

released

separately

(in

their

own

boxes).
v

returnnotdesired

indicates

that

an

item

return

is

not

wanted

(for

example,

perishable

food

items),

even

if

customer

is

willing

or

able

to

return

it:

–

N

=

request

for

credit

evaluated

based

on

the

customer’s

intention

to

return

the

item,

but

the

return

is

not

expected.

–

Y

=

request

for

credit

evaluated

as

if

return

is

expected.
v

backorderable

indicates

that

specified

items

for

the

base

item

cannot

be

backordered:

–

N

=

items

may

not

be

backordered.

–

Y

=

items

may

be

backordered.
v

creditable

indicates

whether

the

merchant

will,

without

an

override,

issue

a

credit

for

this

item:

–

N

=

sold

as-is.

–

Y

=

creditable.
v

minqtyforsplit

indicates

that

order

items

will

not

be

automatically

split

during

inventory

allocation

if

the

remaining

unallocated

quantity

in

the

new

order

item

would

be

less

than

the

specified

minimum

quantity.

Note:

Each

time

you

define

the

inventory

allocation

rules

for

a

store

item,

the

baseitem_id

number

changes

to

represent

a

new

base

item.

For

example,

a

new

allocation

might

contain

baseitem_id="@baseitem_id_147"

while

a

third

might

contain

baseitem_id="@baseitem_id_192",

and

so

on.

7.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

base

item

description

to

the

locale-specific

XML

file

for

translation

purposes.

Complete

this

task

for

each

base

item

description

in

your

catalog:

<baseitmdsc

baseitem_id="@baseitem_id_102"

language_id="&en_US;"

shortdescription="Circular

Saw"

longdescription="Light

on

weight

but

not

in

quality.

The

Circular

Saw

weighs

a

maximum

of

10.9lbs.,

with

a

choice

of

a

12

or

14

amp

motor,

and

speeds

of

up

to

600

rpms!

Low

friction

220V

aluminum

alloy

shoe

will

ensure

the

job

gets

done

on

time."

/>

where

v

baseitem_id

is

the

generated

unique

key.

v

language_id

is

the

language

of

this

information.

v

shortdescription

is

a

brief

description

of

the

base

item.

v

longdescription

is

a

detailed

description

of

the

base

item.

Part

5:

Creating

catalog

entries

1.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

create

catalog

entries

by

adding

information

to

the

CATENTRY

and

CATENTDESC

tables.

Each

type

of

catalog

entry

—

products,

items,

packages,

bundles,

and

dynamic

kits

—

represents

the

orderable

pieces

of

merchandise

Chapter

16.

Catalog

assets

153

for

sale

in

your

catalog.

You

need

to

define

a

base

item

for

each

product

catalog

entry.

Complete

this

task

for

each

product

catalog

entry

in

your

catalog:

<catentry

catentry_id="@product_id_102"

baseitem_id="@baseitem_id_102"

member_id="@seller_b2b_mbr_id"

catenttype_id="ProductBean"

partnumber="T0000102"

mfpartnumber="Sprain-Tools-102"

mfname="Sprain

Tools"

markfordelete="0"

buyable="1"

/>

where

v

catentry_id

is

the

internal

reference

number

of

the

product

catalog

entry.

v

baseitem_id

is

the

base

item

that

the

catalog

entry

relates

to.

v

member_id

is

the

reference

number

that

identifies

the

catalog

entry.

v

catenttype_id

identifies

the

type

of

catalog

entry:

–

ItemBean

=

identifies

an

item.

–

ProductBean

=

identifies

a

product.

–

PackageBean

=

identifies

a

package.

–

BundleBean

=

identifies

a

bundle.

–

DynamicKitBean

=

identifies

a

dynamic

kit.
v

partnumber

is

the

reference

number

that

identifies

the

part

number

of

the

catalog

entry.

v

mfpartnumber

is

the

part

number

used

by

the

manufacturer

to

identify

the

catalog

entry.

v

mfname

is

the

name

of

the

manufacturer

of

the

catalog

entry.

v

markfordelete

indicates

whether

the

catalog

entry

is

marked

for

deletion:

–

0

=

no.

–

1

=

yes.
v

buyable

indicates

whether

you

can

purchase

the

catalog

entry

individually:

–

0

=

no.

–

1

=

yes.

Note:

Each

time

you

add

a

base

item

to

a

product

catalog

entry,

the

catentry_id

and

the

baseitem_id

sequence

changes

to

represent

a

new

catalog

entry.

The

catenttype_id

changes

depending

on

the

type

of

catalog

entry.

v

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

define

a

specified

item

for

each

catalog

entry.

Complete

this

task

for

each

catalog

entry

in

your

catalog:

<catentry

catentry_id="@catentry_id_106"

itemspc_id="@itemspc_id_106"

member_id="@seller_b2b_mbr_id"

catenttype_id="ItemBean"

partnumber="T0000106"

mfpartnumber="Sprain-Tools-106"

mfname="Sprain

Tools"

markfordelete="0"

buyable="1"

/>

154

Store

Development

Guide

where

–

catentry_id

is

the

internal

reference

number

of

the

catalog

entry.

–

itemspc_id

is

the

specified

item

that

the

catalog

entry

belongs

to.

–

member_id

is

the

reference

number

that

identifies

the

catalog

entry.

–

cattentype_id

identifies

the

type

of

catalog

entry:

-

ItemBean

=

identifies

an

item.

-

ProductBean

=

identifies

a

product.

-

PackageBean

=

identifies

a

package.

-

BundleBean

=

identifies

a

bundle.

-

DynamicKitBean

=

identifies

a

dynamic

kit.
–

partnumber

is

the

reference

number

that

identifies

the

part

number

of

the

catalog

entry.

–

mfpartnumber

is

the

part

number

used

by

the

manufacturer

to

identify

the

catalog

entry.

–

mfname

is

the

name

of

manufacturer

of

the

catalog

entry.

–

markfordelete

indicates

whether

the

catalog

entry

is

marked

for

deletion:

-

0

=

no.

-

1

=

yes.
–

buyable

indicates

whether

you

can

purchase

the

catalog

entry

individually:

-

0

=

no.

-

1

=

yes.

Note:

Each

time

you

add

a

specified

item

to

a

catalog

entry,

the

catentry_id

and

the

itemspc_id

sequence

changes

to

represent

a

new

catalog

entry.

The

catenttype_id

changes

depending

on

the

type

of

catalog

entry.

Under

the

master

catalog

structural

restriction,

a

catalog

entry

cannot

belong

to

more

than

one

category.

To

place

a

catalog

entry

in

more

than

one

category,

you

must

use

a

sales

catalog.

v

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

description

to

the

locale-specific

XML

file.

Complete

this

task

for

each

catalog

entry

description

in

your

catalog:

<catentdesc

catentry_id="@product_id_102"

language_id="&en_US"

name="Circular"

shortdescription="Circular

Saw"

longdescription="Light

on

weight

but

not

in

quality.

The

Circular

Saw

weighs

a

maximum

of

10.9lbs.,

with

a

choice

of

a

12

or

14

amp

motor,

and

speeds

of

up

to

600

rpms!

Low

friction

220V

aluminum

alloy

shoe

will

ensure

the

job

gets

done

on

time."

thumbnail="images/circular_saw_sm.gif"

fullimage="images/circular_saw.gif"

available="1"

published="1"

/>

where

–

catentry_id

is

the

internal

reference

number

that

indicates

the

catalog

entry

that

this

language-specific

information

relates

to.

–

language_id

is

the

identifier

of

the

language.

–

name

is

the

language-dependent

name

of

the

catalog

entry.

Chapter

16.

Catalog

assets

155

–

shortdescription

is

a

brief

description

of

the

catalog

entry.

–

longdescription

is

a

detailed

description

of

the

catalog

entry.

–

thumbnail

is

the

path

for

the

thumbnail

image.

–

fullimage

is

the

path

for

the

full

image.

–

available

indicates

the

length

of

time

to

availability

of

the

catalog

entry.

–

published

indicates

whether

this

catalog

entry

should

be

displayed

for

the

language

indicated

by

language_id

-

0

=

display.

-

1

=

do

not

display.

Part

6:

Creating

attributes

and

attribute

values

1.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

create

attributes

and

attribute

values

for

your

products

by

adding

information

to

the

ATTRIBUTE

and

ATTRVALUE

tables

in

the

locale-specific

XML

file

for

translation

purposes.

Each

product

in

your

catalog

has

a

specific

set

of

attributes,

such

as

size

and

color

for

a

shirt

or

a

pair

of

pants.

Items

are

defined

by

the

attribute

values.

For

example,

while

a

shirt

is

a

product,

a

medium,

black

shirt

is

an

item.

Complete

this

task

for

each

attribute

in

your

catalog:

<attribute

attribute_id="@attribute_id_103"

language_id="&en_US"

attrtype_id="STRING"

name="Amps"

sequence="0"

description="Amps"

catentry_id="@product_id_102"

description2="Amps"

/>

where

v

attribute_id

is

the

internal

reference

number

of

the

attribute.

v

language_id

is

the

language

that

this

attribute

pertains

to.

v

attrtype_id

is

the

type

of

the

corresponding

attribute

value.

v

name

is

the

name

of

the

attribute.

v

sequence

is

a

sequence

number

that

determines

the

display

order

of

attributes

for

a

given

product.

v

description

is

the

description

of

the

attribute.

v

catentry_id

is

the

reference

number

of

the

product

to

which

this

attribute

belongs.

v

description2

is

an

additional

description

of

the

attribute.

Note:

Each

time

you

add

an

attribute

to

a

product

defined

by

catentry_id,

the

attribute_id

sequence

changes

to

represent

a

new

attribute.

2.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

the

attribute

values.

Complete

this

task

for

each

attribute

value

in

your

catalog:

<attrvalue

attrvalue_id="@attrvalue_id_114"

language_id="&en_US"

attribute_id="@attribute_id_103"

name="12.0amps"

attrtype_id="STRING"

stringvalue="12.0amps"

156

Store

Development

Guide

sequence="0"

usage="1"

catentry_id="@catentry_id_106"

/>

where

v

attrvalue_id

is

the

internal

reference

number

of

attribute

value

v

language_id

is

the

language

that

this

attribute

value

pertains

to

v

attribute_id

is

the

internal

reference

number

of

the

attribute

associated

with

the

value

v

name

is

the

name

of

the

attribute

value

v

attrtype_id

is

the

type

of

attribute

value

v

stringvalue

is

the

attribute

value

v

sequence

is

a

sequence

number

that

determines

the

display

order

of

attribute

values

for

a

given

attribute

v

usage

is

the

type

of

attribute:

–

1

identifies

a

defining

attribute

used

for

SKU

resolution.

–

0

(or

another

value)

identifies

a

descriptive

attribute.
v

catentry_id

is

the

item

ID

that

this

attribute

value

describes

Note:

Each

time

you

add

an

attribute

value

to

an

attribute,

the

attrvalue_id

sequences

changes

to

represent

different

values.

The

attribute_id

sequence

changes

to

represent

a

different

attribute.

The

sequence

increases

with

each

new

attribute

values.

For

example,

subsequent

attribute

values

would

be

sequence="1",

sequence="2",

and

sequence="3",

and

so

on.

Part

7:

Creating

relationships

between

products

and

items

1.

After

creating

products

and

items

for

your

catalog,

define

the

relationships

between

products

and

items

by

adding

information

to

the

CATENTREL

table.

Use

the

following

example

from

the

ToolTech

sample

store

as

your

guide.

Complete

this

task

for

each

product

and

item

relationship

value

in

your

catalog:

<catentrel

catentry_id_parent="@product_id_147"

catreltype_id="PRODUCT_ITEM"

catentry_id_child="@catentry_id_152"

sequence="2"

quantity="1"

/>

where

v

catentry_id_parent

is

the

reference

number

of

the

source

catalog

entry

in

this

relationship,

that

is,

the

product.

v

catreltype_id

is

the

type

of

relationship:

PRODUCT_ITEM

v

catentry_id_child

is

the

reference

number

of

the

target

catalog

entry

in

this

relationship,

that

is,

the

item.

v

sequence

is

the

sequence

number

used

to

determine

the

display

order.

v

quantity

is

a

quantity

that

can

be

associated

with

the

relationship.

Note:

Each

time

you

add

a

relationship

between

a

product

and

item,

the

catentry_id_parent

and

the

catentry_id_child

numbers

change

to

create

different

relationships,

based

on

the

catreltype_id.

With

each

new

Chapter

16.

Catalog

assets

157

relationship,

the

sequence

number

is

different.

For

example,

if

you

have

sequence="2",

the

next

relationship

will

have

sequence="3",

followed

by

sequence="4",

and

so

on.

Part

8:

Creating

packages

and

bundles

1.

Once

you

have

created

your

products

and

items,

create

packages

and

bundles

by

adding

information

to

the

CATENTRY,

CATENTDESC,

and

CATENTREL

tables.

As

an

example,

use

the

following

code

sample

to

create

a

package

or

bundle

by

adding

information

to

the

CATENTRY

table.

Complete

this

task

for

each

package

and

bundle

in

your

catalog:

<catentry

catentry_id="@package_id_102"

member_id="@seller_b2b_mbr_id"

catenttype_id="PackageBean"

partnumber="sku-@package_id_102"

mfpartnumber="sku-@package_id_102"

mfname="ToolTech"

markfordelete="0"

buyable="1"

/>

where

v

catentry_id

is

the

reference

number

of

the

catalog

entry.

v

member_id

is

the

reference

number

that

identifies

the

owner

of

the

catalog

entry.

v

catenttype_id

identifies

the

type

of

catalog

entry:

–

PackageBean

=

identifies

a

package.

–

BundleBean

=

identifies

a

bundle.
v

partnumber

is

the

reference

number

that

identifies

the

part

number

of

the

catalog

entry.

v

mfpartnumber

is

the

part

number

used

by

the

manufacturer

to

identify

the

catalog

entry.

v

mfname

is

the

name

of

the

manufacturer

of

the

catalog

entry.

v

markfordelete

indicates

if

the

catalog

entry

is

marked

for

deletion:

–

0

=

no.

–

1

=

yes.
v

buyable

indicates

whether

the

catalog

entry

can

be

purchased

individually:

–

0

=

no.

–

1

=

yes.

Note:

Each

time

you

create

a

package

or

a

bundle,

the

catentry_id,

partnumber,

and

mfpartnumber

numbers

change

to

create

different

package

or

bundle.

For

example,

to

create

a

new

package,

you

could

use

catentry_id="@package_id_103",

partnumber="sku-
@package_id_103",

and

mfpartnumber="sku-@package_id_103",

including

catenttype_id="PackageBean"

to

identify

the

entry

as

a

package.

To

create

a

new

bundle,

you

could

use

catentry_id="@package_id_110",

partnumber="sku-@package_id_110",

and

mfpartnumber="sku-@package_id_110",

including

catenttype_id="BundleBean"

to

identify

the

entry

as

a

bundle,

and

so

on.

v

As

an

example,

use

the

following

code

sample

to

add

the

package

or

bundle

description

by

adding

information

to

the

CATENTDESC

table

in

the

158

Store

Development

Guide

locale-specific

XML

file

for

translation

purposes.

Complete

this

task

for

each

package

and

bundle

description

in

your

catalog:

<catentdesc

catentry_id="@catentry_id_102"

language_id="-1"

name="computer"

shortdescription="Computer"

longdescription="A

combination

of

a

central

processing

unit,

monitor,

hard

drive,

and

color

printer.

An

ideal

starter

system."

thumbnail="images/package_system_sm.gif"

fullimage="images/package_system.gif"

available="1"

published="1"

/>

where

–

catentry_id

is

the

internal

reference

number

that

indicates

the

catalog

entry

that

this

language

specific

information

relates

to.

–

language_id

is

the

identifier

of

the

language.

–

name

is

the

language-dependent

name

of

the

catalog

entry.

–

shortdescription

is

a

brief

description

of

the

catalog

entry.

–

longdescription

is

a

detailed

description

of

the

catalog

entry.

–

thumbnail

is

the

thumbnail

image

path

of

the

catalog

entry.

–

fullimage

is

the

full

image

path

of

the

catalog

entry.

–

available

indicates

the

length

of

time

to

availability

of

the

catalog

entry.

–

published

indicates

whether

the

catalog

entry

should

be

displayed

for

the

language

indicated

by

language_id:

-

0

=

do

not

display

the

catalog

entry.

-

1

=

display

the

catalog

entry.
v

As

an

example,

use

the

following

code

sample

to

create

relationships

between

packages

or

bundles

and

their

components

by

adding

information

to

the

CATENTREL

table.

Complete

this

task

for

each

package

or

bundle

component

relationship

in

your

catalog:

<catentrel

catentry_id_parent="@catentry_id_102"

catreltype_id="PACKAGE_COMPONENT"

catentry_id_child="@catentry_id_97"

sequence="1.0"

quantity="1.0"

/>

where

–

catentry_id_parent

is

the

reference

number

of

the

source

catalog

entry

in

this

relationship,

that

is,

the

package

or

bundle.

–

catreltype_id

is

the

type

of

this

relationship:

-

PACKAGE_COMPONENT

represents

a

relationship

between

a

package

and

its

components.

-

BUNDLE_COMPONENT

represents

a

relationship

between

a

bundle

and

its

components.
–

catentry_id_child

is

the

reference

number

of

the

target

catalog

entry

in

this

relationship,

that

is,

the

component.

–

sequence

is

the

sequence

number

used

to

determine

the

display

order.

–

quantity

is

a

quantity

that

can

be

associated

with

the

relationship.

Chapter

16.

Catalog

assets

159

Note:

Each

time

you

create

a

relationship

between

a

package

and

bundle,

the

catentry_id_parent

and

catentry_id_child

number

changes

to

match

existing

catalog

entries.

With

each

new

relationship,

the

sequence

number

is

different.

For

example,

if

you

begin

with

sequence="1.0",

the

next

relationship

will

have

sequence="2.0",

followed

by

sequence="3.0",

and

so

on.

Part

9:

Creating

relationships

between

catalog

groups

and

catalog

entries

1.

After

creating

catalog

groups

and

catalog

entries

in

your

catalog,

define

the

relationships

between

catalog

groups

and

catalog

entries

by

adding

information

to

the

CATGPENREL

table.

Under

the

master

catalog

structural

restriction,

a

catalog

entry

cannot

belong

to

more

than

one

category.

To

place

a

catalog

entry

in

more

than

one

category,

you

must

use

a

sales

catalog.

Use

the

following

example

from

the

ToolTech

sample

store

as

your

guide.

Complete

this

task

for

each

catalog

group

and

catalog

entry

relationship

in

your

catalog:

<catgpenrel

catgroup_id="@catgroup_id_11"

catalog_id="@catalog_id_1"

catentry_id="@product_id_102"

sequence="0"

/>

where

v

catgroup_id

is

the

source

catalog

group

of

this

relationship.

v

catalog_id

is

the

catalog

inside

of

which

this

relationship

is

found.

v

catentry_id

is

the

target

catalog

entry

of

this

relationship.

v

sequence

is

the

sequence

number

that

determines

the

display

order

of

the

contents

of

the

catalog

group.

Note:

Each

time

you

create

a

relationship

between

catalog

groups

and

catalog

entries,

the

catgroup_id

and

catentry_id

numbers

change

to

form

new

relationships

with

different

catalog

groups

and

catalog

entries.

With

each

new

relationship,

the

sequence

number

is

different.

For

example,

if

you

begin

with

sequence="0",

the

next

relationship

will

have

sequence="1",

followed

by

sequence="2",

and

so

on.

Part

10:

Creating

merchandising

associations

1.

As

an

example,

use

the

following

code

sample

to

create

merchandising

associations

between

catalog

entries

by

adding

information

to

the

MASSOCECE

table.

Complete

this

task

for

each

merchandising

association

in

your

catalog:

<massoccece

massoccece_id="@relationship_id_100"

massoctype_id="X-SELL"

catentry_id_from="@product_id_1"

catentry_id_to="@product_id_15"

massoc_id="REQUIRES"

quantity="2.0"

rank="1.00000"

/>

where

v

massoccece_id

is

the

reference

number

of

this

entry.

v

massoctype_id

is

the

identifier

of

the

association

type:

–

X-SELL

=

cross-sell.

–

UPSELL

=

up-sell.

160

Store

Development

Guide

–

ACCESSORY

=

accessory.

–

REPLACEMENT

=

replacement.
v

catentry_id_from

is

the

catalog

entry

that

is

the

source

of

the

association.

v

catentry_id_to

is

the

catalog

entry

that

is

the

target

of

the

association.

v

massoc_id

is

the

identifier

of

the

semantic

specifier:

–

REQUIRES

–

COMES_WITH

–

TEMP

–

NONE
v

quantity

is

the

quantity

related

to

this

association.

v

rank

is

the

sequence

number

used

for

display

order.

Note:

Each

time

you

add

a

merchandising

association,

the

massoccece_id

number

changes

to

represent

a

new

relationship.

The

catentry_id_from

and

the

catentry_id_to

numbers

vary

to

create

new

merchandise

content

for

the

association.

Part

11:

Associating

your

catalog

to

a

store

1.

Associate

your

catalog

to

a

store

by

assigning

the

catalog,

its

catalog

groups,

and

catalog

entries

to

a

store

in

the

database

by

using

the

existing

store-catalog.xml

file

from

the

ToolTech

sample

store

as

your

guide.

You

should

also

assign

display

pages

to

the

catalog

groups

and

catalog

entries.

Add

this

information

to

the

STORECAT,

STORECENT,

STORECGRP,

DISPCGPREL,

and

DISPENTREL

tables.

If

you

are

creating

a

globalized

catalog,

create

a

separate

store-catalog

relationship

XML

file

for

each

locale

your

store

supports:

<storecat

catalog_id="@catalog_id_1"

storeent_id="@storeent_id_1"

mastercatalog="1"

/>

where

v

catalog_id

is

the

reference

number

of

the

catalog.

v

storeent_id

is

the

reference

number

of

the

store

entity

in

the

database.

v

mastercatalog

specifies

a

master

catalog

for

the

store.

A

value

of

1

indicates

that

this

catalog

is

designated

as

a

master

catalog.
2.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

catalog

entries

to

the

store-catalog

relationship.

Complete

this

task

for

each

catalog

entry

in

your

catalog:

<storecent

storeent_id="@storeent_id_1"

catentry_id="@product_id_102"

/>

where

v

storeent_id

is

the

reference

number

of

the

store

entity

in

the

database.

v

catentry_id

is

the

reference

number

of

the

catalog

entry.

Note:

Each

time

you

add

a

catentry_id

to

the

store

entity,

the

reference

number

changes

to

match

an

existing

catalog

entry.

3.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

add

catalog

groups

to

the

store

entity.

Complete

this

task

for

each

catalog

group

in

your

catalog:

Chapter

16.

Catalog

assets

161

<storecgrp

storeent_id="@storeent_id_1"

catgroup_id="@catgroup_id_1"

/>

where

v

storeent_id

is

the

reference

number

of

the

store

entity

in

the

database.

v

catgroup_id

is

the

reference

number

of

the

catalog

group.

Note:

Each

time

you

add

a

catgroup_id

to

the

store

entity,

the

reference

number

changes

to

match

an

existing

catalog

group.
.

Part

12:

Associating

taxes

to

your

catalog

Associate

taxes

to

the

products

and

services

in

your

catalog

for

a

specific

store.

You

must

associate

a

tax

calculation

code

with

the

catalog

entries

by

adding

this

information

to

the

to

the

CATENCALCD

table.

For

more

information,

see

“Creating

tax

assets

in

WebSphere

Commerce”

on

page

248.

Part

13:

Associating

shipping

methods

to

your

catalog

To

associate

shipping

methods

to

the

products

and

services

in

your

catalog,

you

must

associate

a

shipping

calculation

code

with

the

catalog

entries.

Add

this

information

to

the

CATENCALCD

table.

For

more

information,

see

“Creating

shipping

assets

in

WebSphere

Commerce”

on

page

231.

Part

14:

Associating

a

fulfillment

center

to

your

catalog

Associate

your

catalog

with

a

fulfillment

center

to

ship

products

to

customers.

A

fulfillment

center

manages

product

inventory

and

shipping

for

a

store.

Add

this

information

to

the

FFMCENTER

table.

For

more

information,

see

“Creating

fulfillment

assets

in

WebSphere

Commerce”

on

page

200.

Part

15:

Creating

prices

for

your

catalog

entries

Create

the

pricing

for

your

catalog

entries.

Pricing

represents

the

price

range

for

a

catalog

entry

and

any

criteria

that

must

be

satisfied

in

order

to

use

that

price.

To

create

a

functional

catalog,

you

need

to

add

offering

information

to

the

database.

Add

this

information

to

the

TRADEPOSCN,

TDPSCNCNTR,

MGPTRDPSCN,

OFFER,

and

OFFERPRICE

tables.

For

more

information,

see

“Creating

pricing

assets

in

WebSphere

Commerce”

on

page

175.

Or

you

can

create

or

update

the

pricing

for

a

catalog

entry

using

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator.

Part

16:

Loading

the

XML

file

After

you

have

created

your

data,

load

the

XML

file

into

the

database

by

either

using

the

Loader

package

or

through

the

publish

utility.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Note:

You

can

also

use

the

Product

Management

tools

from

the

WebSphere

Commerce

Accelerator

to

create

catalog

assets

for

your

master

catalog.

For

more

detailed

information

on

the

Product

Management

tools,

see

the

WebSphere

Commerce

online

help.

Displaying

store

catalog

assets

After

associating

a

catalog,

catalog

groups,

and

catalog

entries

to

a

store,

assign

JSP

templates

to

display

your

catalog

entries

and

catalog

groups

by

creating

these

relationships

in

the

database.

Create

these

relationships

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

162

Store

Development

Guide

The

store-catalog.xml

file

from

the

ToolTech

sample

is

located

in

its

store

archive

file.

To

view

the

store-catalog.xml

file,

decompress

the

store

archive

using

a

ZIP

program.

The

store-catalog.xml

file

is

located

in

the

following

data

directory:

v

WC_installdir/samplestores

The

store-catalog.dtd

file

is

located

in

the

following

directory:

v

WC_installdir/xml/sar

Before

you

can

create

store-catalog

relationships,

ensure

that

you

have

created

the

store

data

assets.

Complete

the

following

tasks,

each

of

which

creates

entries

in

the

store-catalog.xml

file:

1.

In

order

to

display

your

catalog

groups

(categories)

in

your

store,

you

must

assign

JSP

templates

to

your

catalog

groups.

You

can

assign

a

particular

display

page

template

to

a

catalog

group

or

a

default

template

to

display

all

catalog

groups.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

assign

catalog

group

templates

by

adding

information

to

the

DISPCGPREL

table.

Complete

this

task

for

each

template

you

want

to

assign

to

your

catalog

groups:

<dispcgprel

catgroup_id="@catgroup_id_1"

devicefmt_id="-1"

dispcgprel_id="@dispcgprel_id_1"

mbrgrp_id="0"

pagename="CategoryDisplay.jsp"

storeent_id="@storeent_id_1"

rank="0"/>

where

v

catgroup_id

is

the

reference

number

of

the

catalog

group

for

which

this

page

name

will

be

displayed.

A

value

of

0

indicates

that

this

page

name

will

be

used

for

all

catalog

groups.

v

devicefmt_id

is

the

reference

number

of

the

device

type

that

the

page

will

be

displayed

on.

A

value

of

–1

indicates

that

this

template

page

will

be

used

by

an

HTTP

browser.

v

dispcgprel_id

is

the

reference

number

of

this

entry.

v

mbrgrp_id

is

the

reference

number

of

the

member

group

for

which

this

template

page

will

be

displayed.

A

value

of

0

indicates

that

this

template

page

will

be

used

for

all

member

groups.

v

pagename

is

the

name

of

the

display

template

page.

v

rank

is

a

sequence

number

used

to

break

ties

when

more

than

one

page

satisfies

the

selection

criteria.

Note:

Each

time

you

assign

a

JSP

template

to

a

catalog

group,

the

catentry_id

changes

sequence

to

match

an

existing

catalog

entry.

2.

To

display

your

catalog

entries

(products,

items,

packages,

static

kits,

bundles,

and

dynamic

kits)

in

your

store,

you

must

assign

JSP

templates

to

your

catalog

entries.

You

can

assign

a

default

template

to

display

all

catalog

entries,

or

a

default

to

display

each

type

of

catalog

entry,

for

example,

a

template

for

products

and

another

template

for

items,

or

a

specific

template

for

a

specific

catalog

entry.

Using

the

following

example

from

the

ToolTech

sample

store

as

your

guide,

assign

templates

by

adding

information

to

the

DISPENTREL

table.

Complete

this

task

for

each

template

you

want

to

assign

to

your

catalog

entries:

<dispentrel

auctionstate="0"

catentry_id="0"

Chapter

16.

Catalog

assets

163

catenttype_id="ProductBean"

devicefmt_id="-1"

dispentrel_id="@dispentrel_id_1"

mbrgrp="0"

pagename="ProductDisplay.jsp"

storeent_id="@storeent_id_1"

rank="0"/>

where

v

auctionstate

indicates

that

this

template

page

displays

a

catalog

entry

that

is

on

auction:

–

0

=

not

an

auction

template.

–

1

=

auction

template.
v

catentry_id

is

the

reference

number

of

the

catalog

entry

for

which

this

page

name

will

be

displayed.

A

value

of

0

indicates

that

this

page

name

will

be

used

for

all

catalog

entries.

v

catenttype_id

is

the

type

of

catalog

entry

that

this

page

will

be

used

to

display:

–

ProductBean

=

displays

a

product.

–

ItemBean

=

displays

an

item.

–

PackageBean

=

displays

a

package.

–

BundleBean

=

displays

a

bundle.

–

DynamicKitBean

=

displays

a

dynamic

kit.
v

devicefmt_id

is

the

reference

number

of

the

device

type

that

the

page

will

be

displayed

on.

A

value

of

–1

indicates

that

this

template

page

will

be

used

by

an

HTTP

browser.

v

dispentrel_id

is

the

reference

number

of

the

catalog

entry.

v

mbrgrp

is

the

reference

number

of

the

member

group

for

which

this

template

page

will

be

displayed.

A

value

of

0

indicates

that

this

template

page

will

be

used

for

all

member

groups.

v

pagename

is

the

name

of

the

display

template

page.

v

storeent_id

is

the

reference

number

of

the

store

for

which

this

page

will

be

displayed.

v

rank

is

a

sequence

number

used

to

break

ties

when

more

than

one

page

satisfies

the

selection

criteria.

Note:

Each

time

you

assign

a

JSP

template

to

a

catalog

entry,

the

catentry_id

changes

sequence

to

match

an

existing

catalog

entry.

Creating

a

sales

catalog

A

WebSphere

Commerce

store

allows

two

types

of

catalogs:

master

and

sales.

Sales

catalogs

do

not

need

to

meet

the

structural

restrictions

that

are

placed

on

master

catalogs.

Sales

catalogs

are

meant

to

provide

a

flexible

display

structure

to

allow

you

to

create

a

catalog

that

suits

your

store’s

requirements.

In

particular,

sales

catalogs

do

not

need

to

satisfy

the

following

restrictions

that

are

imposed

on

master

catalogs:

v

A

master

catalog

must

be

a

proper

tree,

which

means

that

there

are

no

cycles

and

cannot

use

the

following

structure:

The

parent

category

A

has

a

subcategory

B.

It

is

important

that

B

and

any

of

B’s

subcategories

are

not

the

parent

category

of

A.

164

Store

Development

Guide

v

A

product

cannot

belong

to

more

than

one

category.

The

following

task

creates

a

sales

catalog

by

modifying

the

FashionFlow

sample

store

catalog.

The

resulting

catalog

can

no

longer

be

classified

as

a

master

catalog

since

the

following

steps

introduce

the

categorization

of

some

products

into

multiple

categories.

A

classic

sales

catalog

is

created

by

adding

information

to

the

category

relationship

tables:

CATGRPREL,

which

holds

the

subcategory

relationships,

and

CATGPENREL,

which

holds

the

category-product

relationships.

Although

these

examples

involve

FashionFlow,

you

can

follow

these

basic

steps

with

your

own

master

catalog,

making

the

appropriate

adjustments

to

match

your

catalog

information,

structure,

and

designs.

Adding

a

product

to

a

second

category

This

example

shows

you

how

to

copy

products

from

one

category

to

another

while

preserving

the

original

structure.

The

Homepage

promotions

category

contains

the

Summer

Nightgown

product,

which

could

also

belong

under

the

Sleepwear

subcategory

for

the

Women’s

Fashions

top

category.

These

instructions

will

show

you

how

to

copy

the

Summer

Nightgown

product

and

its

SKUs

to

the

Sleepwear

category.

To

change

the

FashionFlow

sample

store

master

catalog

to

a

sales

catalog

by

adding

a

product

to

a

second

category,

do

the

following:

1.

Publish

the

FashionFlow

store

archive

to

create

the

FashionFlow

sample

store.

FashionFlow

is

available

in

US

English

and

one

of

the

nine

national

languages

shipped

with

WebSphere

Commerce.

Choose

one

of

the

FashionFlow_en_US_locale.sar

files

for

publication.

2.

Open

the

catalog.xml

file

in

an

editor.

The

file

is

located

in

the

following

WebSphere

Commerce

directory:

v

WC_installdir/samplestores/FashionFlow/locale/data
3.

Locate

the

CATGPENREL

data

section

in

the

catalog.xml

file.

Create

a

new

product

entry

for

Summer

Nightgown,

originally

a

product

under

the

Homepage

promotions

category.

Under

the

CATGPENREL

section,

add

the

following

extract

to

include

the

product:

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@product_id_2692"

sequence="2"

/>

where

v

catgroup_id

is

the

catalog

group

internal

reference

number

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

@catgroup_id_18

is

the

Women’s

Sleepwear

category.

v

catalog_id

is

the

internal

reference

number

of

the

catalog

as

defined

by

the

FashionFlow

sample

store.

v

catentry_id

is

the

catalog

entry

internal

reference

number

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

@catentry_id_2692

is

the

Summer

Nightgown

product.

v

sequence

is

the

number

that

determines

the

display

order

of

the

contents

of

the

catalog

group

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

the

Summer

Nightgown

product

will

be

displayed

last.
4.

After

adding

the

Summer

Nightgown

product

entry,

add

the

SKU

entries

for

the

product

under

the

CATGPENREL

section,

as

defined

in

the

FashionFlow

Chapter

16.

Catalog

assets

165

sample

store.

Currently,

the

Summer

Nightgown

product

contains

ten

defined

SKUs.

Under

the

CATGPENREL

section,

add

the

following

extracts

to

include

the

SKUs:

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2695"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2696"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2697"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2698"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2699"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2700"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2701"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2702"

sequence="2"

/>

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2703"

sequence="2"

/>

166

Store

Development

Guide

<catgpenrel

catgroup_id="@catgroup_id_18"

catalog_id="@catalog_id_1"

catentry_id="@catentry_id_2704"

sequence="2"

/>

where

v

catgroup_id

is

the

catalog

group

internal

reference

number

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

@catgroup_id_18

is

the

Women’s

Sleepwear

category.

v

catalog_id

is

the

internal

reference

number

of

the

catalog

as

defined

by

the

FashionFlow

sample

store.

v

catentry_id

is

the

catalog

entry

internal

reference

number

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

@catentry_id_2695

through

@catentry_id_2704

represent

the

ten

SKUs

that

have

been

defined

for

the

Summer

Nightgown

product.

v

sequence

is

the

number

that

determines

the

display

order

of

the

contents

of

the

catalog

group

as

defined

by

the

FashionFlow

sample

store.

In

this

example,

the

Summer

Nightgown

SKUs

will

be

displayed

last.
5.

Save

the

catalog.xml

file.

6.

To

view

your

changes,

do

one

of

the

following:

publish

the

modified

FashionFlow

store

archive

from

the

Administration

Console

or

load

the

catalog.xml

file

with

the

Loader

package

as

instructed

in

“Loading

database

asset

groups”

on

page

390.

Managing

catalog

assets

in

WebSphere

Commerce

Over

time,

you

will

need

to

update

the

database

asset

information

from

the

master

catalog.

Maintaining

your

catalog

is

an

ongoing

process,

as

you

will

need

to

continually

add

and

remove

merchandise,

create

and

associate

categories

or

catalog

groups,

and

update

product

information,

such

as

descriptions

and

price.

You

can

change

your

catalog

assets

by

editing

the

WebSphere

Commerce

XML

data

using

the

existing

database

entries

and

catalog.xml

files

from

your

store.

Use

the

WebSphere

Commerce

sample

store

XML

files

as

a

reference,

located

in

the

following

data

directory:

v

WC_installdir/samplestores

Note:

These

examples

originate

from

the

FashionFlow

sample

store

and

identify

which

XML

elements

must

be

modified

to

change

the

catalog

asset

information.

Catalog

groups

Catalog

groups

are

created

in

a

WebSphere

Commerce

catalog

using

the

CATGROUP

and

CATGRPDESC

database

tables.

From

the

catalog.xml

file,

a

typical

catalog

group

looks

like

the

following

extract:

<catgroup

catgroup_id="@catgroup_id_1"

member_id="&MEMBER_ID"

identifier="Accessories"

markfordelete="0"

/>

Chapter

16.

Catalog

assets

167

The

catgroup_id

is

the

internal

reference

number

of

the

catalog

group.

Each

catalog

group

is

assigned

an

internal

reference

number

in

WebSphere

Commerce,

which

identifies

the

group

when

adding

catalog

entries.

The

identifer

is

an

external

name

for

the

catalog

group.

Both

elements

are

unique

within

the

database

assets

and

cannot

be

duplicated.

Names

and

descriptions

belong

to

the

locale

specific

catalog.xml

file,

one

of

which

is

required

for

each

locale

your

store

supports.

A

typical

catalog

group

containing

translatable

information

looks

like

the

following

extract:

<catgrpdesc

language_id="&en_US"

catgroup_id="@catgroup_id_1"

name="Accessories"

shortdescription="Accessories"

longdescription="Accessories"

published="1"

/>

The

language_id

identifies

the

language

of

your

catalog

information.

This

identifier

must

change

to

match

each

language

your

store

supports.

The

name

is

displayed

to

the

customer,

as

are

the

shortdescription

and

longdescription

elements,

which

may

contain

a

brief

and

detailed

description

of

the

catalog

group.

When

creating

a

new

catalog

group,

follow

the

above

structure

for

the

information.

Notes:

1.

While

the

identifer

and

name

elements

are

identical

in

the

above

example,

the

content

can

vary.

For

instance,

you

might

choose

to

rename

your

catalog

group

to

Complementary

Additions.

In

such

a

case,

you

do

not

need

to

change

the

information

in

identifer,

only

name.

2.

When

deleting

catalog

groups,

ensure

that

catgroup_id

occurrences

are

updated

accordingly.

For

instance,

if

you

also

want

to

delete

the

catalog

entries

under

the

catalog

group,

then

you

would

remove

the

entire

XML

entries.

However,

if

you

plan

to

keep

the

catalog

entries,

then

you

need

to

change

the

catgroup_id

to

the

correct

group.

Catalog

entries

Catalog

entries

are

created

in

a

WebSphere

Commerce

catalog

using

the

information

from

the

CATENTRY

and

CATENTDESC

database

tables.

A

catalog

entry

can

be

a

product,

item,

package,

bundle,

static

kit,

or

dynamic

kit.

From

the

catalog.xml

file,

a

typical

catalog

entry

looks

like

the

following

extract:

<catentry

catentry_id="@product_id_102"

baseitem_id="@baseitem_id_102"

member_id="&MEMBER_ID"

catenttype_id="ProductBean"

partnumber="product-sku-nf-102"

mfpartnumber="product-sku-nf-102"

mfname="FashionFlow"

markfordelete="0"

buyable="1"

/>

The

catentry_id

is

the

internal

reference

number

of

the

product

catalog

entry.

The

baseitem_id

is

base

item

that

the

catalog

entry

relates

to,

for

inventory

purposes.

The

partnumber

is

the

reference

number

that

identifies

the

part

number

of

the

168

Store

Development

Guide

catalog

entry.

The

mfpartnumber

is

the

part

number

used

by

the

manufacturer

to

identify

the

catalog

entry.

These

elements

are

unique

within

the

database

assets

and

cannot

be

duplicated.

The

catenttype_id

identifies

the

type

of

catalog

entry:

ItemBean,

ProductBean,

PackageBean,

StaticBean,

BundleBean,

or

DynamicKitBean.

Names

and

descriptions

belong

to

the

locale

specific

catalog.xml

file,

one

of

which

is

required

for

each

locale

your

store

supports.

Merchandise

images

are

also

included

in

this

file.

A

typical

catalog

group

containing

translatable

information

looks

like

the

following

extract:

<catentdesc

catentry_id="@product_id_102"

language_id="&en_US"

name="Belt"

shortdescription="Classic

belt"

longdescription="This

classic

belt

looks

great

with

your

favorite

jeans,

or

takes

you

to

work

in

style.

1

1/2

inches

wide

in

full-grain

leather

with

a

solid

nickel

buckle."

thumbnail="images/mens_accessories_belt_sm.gif"

fullimage="images/mens_accessories_belt.gif"

available="1"

published="1"

/>

The

language_id

identifies

the

language

of

your

catalog

information.

This

identifier

must

change

to

match

each

language

your

store

supports.

The

name

is

displayed

to

the

customer,

as

are

the

shortdescription

and

longdescription

elements,

which

may

contain

a

brief

and

detailed

description

of

the

catalog

entry.

When

creating

a

new

catalog

entry,

follow

the

above

structure

for

the

information.

Notes:

1.

When

deleting

catalog

entries,

ensure

that

each

occurrence

of

the

unique

elements

are

updated

accordingly.

For

instance,

if

you

also

want

to

delete

the

catalog

entries

under

the

catalog

group,

then

you

would

remove

the

entire

XML

entries.

However,

if

you

plan

to

keep

the

catalog

entries,

then

you

need

to

change

the

catgroup_id

to

the

correct

group.

2.

Products

must

be

created

before

other

types

of

catalog

entries.

If

you

do

not

want

to

manually

change

the

XML

files,

you

can

use

the

Product

Management

tools.

Product

Management

tools

The

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator

allow

you

to

manage

the

products

in

your

store’s

master

catalog

using

various

wizards

and

notebooks.

You

can

also

use

the

Product

Management

dynamic

table,

which

allows

you

to

update

your

catalog

entry

information

directly.

You

can

update

your

catalog’s

content

or

create

new

catalog

data:

v

Create,

update,

and

delete

products

and

product

details

using

the

wizard

or

notebook.

Products

act

as

templates

for

SKUs,

the

individual

items

which

are

ultimately

sold

to

a

customer.

Product

details

include

the

product

code

(which

uniquely

identifies

the

product),

the

product

name

and

description,

any

merchandising

options

(such

as

displaying

a

product

to

customers

or

indicating

if

that

product

is

part

of

a

special

promotion),

the

product

images,

tax

and

shipping

specifications,

discounts

assigned

to

the

products,

and

manufacturer

information.

Chapter

16.

Catalog

assets

169

v

Generate,

update,

and

delete

SKUs

(or

items)

for

purchase.

SKUs

represent

each

orderable

item

of

merchandise

for

sale.

All

SKUs

related

to

a

particular

product

exhibit

the

same

set

of

attributes

and

are

distinguished

by

their

attribute

values.

Additions

or

changes

made

to

SKUs

include

the

same

information

as

products,

except

on

an

orderable

basis.

v

Create,

update,

and

delete

categories

(or

catalog

groups),

which

are

a

group

of

objects

that

have

similar

properties

which

are

used

to

organize

products

or

services

offered

by

the

store.

You

can

manage

the

category

hierarchy

of

your

master

catalog

by

creating,

changing

and

deleting

categories

and

details

about

the

categories,

such

as

the

category

code,

the

name,

and

description,

including

parent

category

and

images.

v

Associate

products

and

SKUs

with

categories

by

choosing

the

parent

category

or

moving

products

and

SKUs

from

one

category

to

another.

v

Create

attributes

and

attribute

values

for

products.

Each

possible

combination

of

attributes

and

attribute

values

equals

a

new

SKU.

You

must

predefine

attribute

values

before

assigning

them

to

SKUs.

After

creating

attributes

and

their

values,

you

can

create

or

update

information

such

as

name,

description,

(text,

whole

numbers,

or

decimal

numbers),

and

sequence

in

which

the

attributes

and

attribute

values

will

appear.

v

Create,

update,

delete,

and

associate

catalog

pricing

with

products.

You

can

define

a

price

for

a

product

or

SKU,

in

one

or

more

currencies,

along

with

a

set

of

conditions

such

as

setting

a

price

for

single

or

bulk

quantities,

which

must

be

satisfied

in

order

to

use

the

price.

You

can

refer

to

the

Product

Management

section

in

the

online

help

for

detailed

instructions

on

each

task.

Notes:

1.

The

Product

Management

tools

are

recommended

for

minor

changes

only.

For

large

catalog

updates,

such

as

adding

or

removing

seasonal

merchandise

or

preparing

for

a

clearance

sale,

use

the

Loader

package.

2.

Any

changes

to

the

catalog

data

cannot

be

displayed

in

the

store

unless

you

disable

caching

or

remove

the

currently

cached

JSP

pages.

For

more

information,

refer

to

the

CacheDelete

command

in

the

WebSphere

Commerce

online

help.

The

CacheDelete

command

initiates

remote

cleanup

of

the

dynamic

page

cache

and

allows

you

to

manage

the

cache

without

requiring

direct

access

to

the

file

system.

Before

using

this

command

ensure

that

Auto

Page

Invalidation

is

enabled.

Note

that

you

must

be

logged

in

as

an

administrator

to

use

this

command.

Loader

package

You

can

also

maintain

your

catalog

using

the

Loader

package,

formerly

known

as

part

of

the

Catalog

Manager.

The

Loader

package

is

ideal

for

importing

large

amounts

of

existing

product

information

into

the

database.

In

WebSphere

Commerce,

this

is

the

primary

tool

to

create

and

manage

catalog

information.

This

package

consists

primarily

of

command

utilities

for

preparing

and

loading

data

into

a

WebSphere

Commerce

database.

The

Loader

package

also

allows

you

to

extract

data

from

a

database

as

an

XML

document,

transform

XML

data

into

alternate

XML

formats,

and

transform

data

between

a

character-delimited

variable

format

and

an

XML

data

format.

Refer

to

the

WebSphere

Commerce

Production

online

help

for

more

information.

170

Store

Development

Guide

Chapter

17.

Pricing

assets

Pricing

represents

the

price

for

a

catalog

entry

and

any

criteria

that

must

be

satisfied

in

order

to

use

that

price.

In

order

to

create

a

functional

catalog,

you

need

to

add

pricing

information

to

the

database.

You

can

create

pricing

information

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

Or

you

can

use

the

Product

Management

tools

from

the

WebSphere

Commerce

Accelerator

for

small

amounts

of

pricing

data.

Understanding

pricing

in

WebSphere

Commerce

The

following

diagram

illustrates

the

pricing

assets

in

the

WebSphere

Commerce

Server.

PricePolicy

Store
TradingAgreement

ParticipantRole

PriceTCType

TermCondition
Contract

+deployedContract

0..1

+defaultContract

0..1

Participant

0..1

11

0..1

Catalog

TradingPositionContainer

0..1

OfferPrice

BusinessPolicy

Member

1
+owner

0..11

+owner

CatalogGroup

+root

Offer

1..n

NominalQuantityOfferredAt

StoreEntity

1

+owner

CatalogEntry

+subCatalogEntry

+parent

1

CatalogEntryShipping

1
0..1

©

Copyright

IBM

Corp.

2000,

2003

171

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Offer

Offers,

or

pricing,

are

different

prices

for

the

same

product

or

item

to

different

customers

or

organizations.

An

offer

represents

the

price

of

a

catalog

entry

and

criteria,

such

as

the

quantity

to

be

purchased,

that

the

customer

must

satisfy

in

order

to

pay

that

price.

For

example,

merchandise

or

services

are

often

priced

differently

for

children,

students,

adults,

and

seniors.

In

WebSphere

Commerce,

an

offer

is

also

known

as

a

trading

position

and

is

part

of

a

trading

position

container.

Offer

price

The

offer

price

is

a

price

at

which

catalog

entries

are

offered

by

a

store

by

means

of

trading

agreements

or

contracts.

An

offer

can

have

one

or

more

than

one

offer

prices

defined

in

multiple

currencies.

Trading

position

container

An

offer

is

part

of

a

trading

position

container,

which

is

owned

by

a

member.

A

trading

position

container

contains

trading

positions.

It

can

be

made

available

to

all

customers,

or

to

only

customers

in

certain

groups

through

the

trading

agreements

or

contracts,

and

the

terms

and

conditions

in

the

contracts.

Under

a

contract,

a

trading

position

container

is

a

price

business

object

that

can

be

referenced

by

multiple

price

business

policies

and

can

be

shared

by

a

store

or

all

stores

in

a

store

group.

A

trading

position

container

is

also

referred

to

as

a

price

list.

Terms

and

conditions

Terms

and

conditions

define

the

behavior

and

properties

of

a

trading

agreement.

Many

terms

and

conditions

reference

business

policies

because

several

aspects

of

a

store’s

operation

are

defined

by

business

policies.

Types

of

pricing

terms

and

conditions

Professional

Business

Pricing

terms

and

conditions

define

what

products

are

available

under

a

contract

and

what

prices

the

customer

will

pay

for

the

products.

At

least

one

of

the

following

pricing

terms

is

required

in

a

contract:

The

following

pricing

terms

and

conditions

are

available

in

WebSphere

Commerce:

Customized

price

list

This

term

specifies

that

both

the

list

of

products

for

sale

and

their

prices

are

customized

for

sale

in

a

contract

and

their

price

is

customized.

Items

are

not

limited

to

a

section

of

the

store

catalog,

they

can

be

from

anywhere

in

the

store

catalog.

Entire

catalog

with

adjustment

This

term

offers

all

of

the

products

available

in

a

store

catalog

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

If

no

adjustment

is

specified,

items

are

sold

at

the

base

price.

Price

list

with

adjustment

This

term

offers

all

of

the

products

available

in

a

price

list

for

sale

with

a

172

Store

Development

Guide

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

If

no

adjustment

is

specified,

items

are

sold

at

the

base

price.

Price

list

with

selective

adjustment

This

term

is

similar

to

price

list

with

adjustment

except

the

adjustment

is

not

applied

to

the

entire

price

list.

The

adjustment

is

made

on

a

subset

of

the

price

list.

The

subset

of

the

price

list

may

either

be

a

product

set

business

policy

or

a

customized

product

set.

For

information

on

the

differences

between

the

types

of

product

sets,

refer

to

’Contract

terms

and

conditions’

topic

in

the

WebSphere

Commerce

online

help.

Catalog

with

filtering

This

term

offers

all

of

the

products

available

in

a

store

catalog

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

This

term

also

offers

all

of

the

products

available

in

a

category,

or

a

list

of

specify

products

and

items,

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

price

list

referenced

by

this

term.

This

term

can

also

state

which

categories,

products

and

items

are

for

sale

or

are

not

for

sale

in

a

contract.

Category

product

sets

will

behave

as

a

product

set

business

policy.

Item

product

sets

will

be

customized

products

sets.

Trading

agreement

Business

A

trading

agreement

can

be

a

contract,

an

RFQ,

a

business

account,

or

an

auction.

A

trading

agreement

is

an

agreement

negotiated

between

a

seller

and

a

buyer

upon

which

the

buyer

is

enabled

to

purchase

certain

items

with

the

specified

terms

and

conditions

and

the

business

policies

stipulated

in

the

contract.

For

example,

it

allows

the

customer

to

purchase

products

from

a

store

at

the

specified

price

for

a

specified

period

of

time,

under

the

pricing

terms

and

conditions

In

WebSphere

Commerce,

all

customers

must

shop

in

a

store

under

a

contract,

A

store

may

deploy

one

or

more

contracts

and

one

of

them

can

be

designated

to

be

the

default

contract.

A

default

contract

contains

a

set

of

terms

and

conditions

that

are

associated

with

a

set

of

store

default

policies.

A

trading

agreement

may

contain

zero

or

more

participants

of

different

roles.

Participant

A

participant

can

be

part

of

either

a

trading

agreement

or

terms

and

conditions.

A

participant

is

a

member

which

can

be

a

member

group,

an

organization,

and

so

on.

If

a

participant

of

a

buyer

role

is

specified

for

a

contract,

a

buyer

must

be

a

member

of

the

buyer

participant

in

order

to

shop

under

the

contract.

The

terms

and

conditions

in

the

contract

can

also

contain

zero

or

multiple

participants.

Participant

role

A

participant

can

have

one

of

the

following

participant

roles:

v

Creator

v

Seller

v

Buyer

v

Supplier

v

Approver

v

Account

holder

v

Buyer

contact

v

Seller

contact

Chapter

17.

Pricing

assets

173

v

Attorney

v

Administrator.

Contract

A

contract

contains

the

offer

price

for

the

product.

In

WebSphere

Commerce,

all

customers

must

shop

under

a

contract.

A

contract

allows

the

customer

to

purchase

products

from

a

store

at

the

specified

price

for

a

specified

period

of

time,

under

the

terms

and

conditions,

and

business

policies,

stipulated

in

the

contract.

A

store

owns

zero

or

more

contracts,

and

owns

at

least

one

default

contract.

Business

policy

Business

Business

policies

are

sets

of

rules

followed

by

a

store

or

store

group

that

define

business

processes,

industry

practices,

and

the

scope

and

characteristics

of

a

store

or

store

groups

offerings.

Business

policies

are

enforced

with

a

combination

of

a

combination

of

one

or

more

business

policy

commands

that

implement

the

rules

of

the

business

policy,

a

reference

to

a

business

object

that

the

rules

act

on,

and

a

set

of

properties

to

configure

the

operation

of

the

business

policy

commands.

Price

policy

A

price

policy

contains

a

reference

to

a

price

list

and

can

be

associated

with

multiple

business

policy

commands

that

define

how

the

business

policies

will

be

implemented

on

the

price

lists.

The

policy

may

be

defined

for

a

store

or

a

store

group.

If

the

policy

is

registered

for

a

store

group,

then

the

policy

may

be

used

by

all

stores

in

that

group.

Catalog

entry

shipping

Catalog

entry

shipping

information

includes

information

about

how

the

product

is

packaged

for

shipping.

Each

catalog

entry

can

have

different

types

of

shipping

information

defined.

For

example,

the

height,

weight,

and

length

of

the

product

when

packaged.

Other

pricing

assets

The

following

assets

are

associated

with

pricings:

v

A

member

who

owns

the

trading

position

container.

A

trading

position

container

only

has

one

owner.

v

A

store

entity

represents

a

store

in

the

WebSphere

Commerce

Server

database.

v

A

catalog

contains

catalog

entries

that

will

be

referenced

in

a

contract.

The

catalog

contains

all

hierarchical

and

navigational

information

for

the

online

catalog

and

is

a

collection

of

catalog

groups

and

catalog

entries

that

are

available

for

display

and

purchase

at

an

online

store.

v

A

catalog

group,

or

category,

are

generic

groupings

of

catalog

entries,

created

for

navigational

and

catalog

partitioning

purposes.

A

catalog

group

belongs

to

a

catalog

and

may

contain

more

than

one

catalog

group

or

catalog

entries.

You

can

associate

catalog

groups

to

more

than

one

catalog.

v

A

catalog

entry

represents

orderable

merchandise

in

an

online

catalog.

Catalog

entries

belong

to

catalog

groups.

An

offer

is

always

associated

with

one

catalog

entry.

For

more

detailed

information

on

the

structure

of

pricing

assets

in

the

WebSphere

Commerce

Server,

see

the

pricing

object

and

data

models

in

the

WebSphere

Commerce

online

help.

174

Store

Development

Guide

Creating

pricing

assets

in

WebSphere

Commerce

You

have

two

options

for

creating

your

pricing

assets:

v

Create

prices

using

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator.

Using

the

tools

in

the

WebSphere

Commerce

Accelerator

is

most

suited

to

creating

prices

for

a

very

small

catalog.

v

Create

prices

in

an

XML

file,

which

can

be

loaded

by

the

WebSphere

Commerce

Loader

package,

or

as

a

part

of

a

store

archive,

which

can

be

published

through

the

Administration

Console.

This

method

is

more

suitable

for

creating

large

amounts

of

data.

For

more

information

on

creating

prices

using

the

Product

Management

tools

in

the

WebSphere

Commerce

Accelerator,

see

the

WebSphere

Commerce

online

help.

For

more

information

on

creating

prices

in

an

XML

file,

see

“Creating

pricing

assets

in

an

XML

file.”

Creating

pricing

assets

in

an

XML

file

Create

your

pricing

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

1.

Review

the

XML

files

used

to

create

pricing

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.
Each

sample

store

includes

two

offering.xml

files,

which

include

the

pricing

information.

To

view

the

offering.xml

files

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

offering.xml

files

are

located

in

the

data

directory.

The

language-specific

offering.xml

is

in

a

locale-specific

subdirectory

of

the

data

directory.

2.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

3.

Create

an

offering.xml

file,

either

by

copying

one

of

the

offering.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

offering.xml.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/xml/sar
4.

Create

a

trading

position

container.

In

order

to

offer

prices

for

the

goods

in

your

store,

you

must

first

create

a

trading

position

container.

To

create

a

trading

position

container,

add

information

to

the

TRADEPOSCN

table.

a.

Using

the

following

example

as

your

guide,

create

a

trading

position

container

in

your

XML

file

in

the

TRADEPOSCN

table:

<tradeposcn

tradeposcn_id="@tradeposcn_id_101"

member_id="@seller_b2b_mbr_id"

markfordelete="0"

name="ToolTech"

precedence="0"

/>

where

v

tradeposcn_id

is

a

generated

unique

key

Chapter

17.

Pricing

assets

175

v

@seller_b2b_mbr_id

is

the

owner

of

the

trading

position

container.

For

the

FashionFlow

sample

store,

replace

this

with

@Member_ID;.

v

markfordelete

is

as

follows:

–

0

=

the

TradingPositionContainer

can

be

used

–

1

=

the

TradingPositionContainer

has

been

marked

for

deletion

(refer

to

the

DBClean

utility)

and

should

not

be

used
v

name

is

a

mnemonic

name

for

the

trading

position

container,

unique

for

a

particular

owner.

v

precedence

is

when

more

than

one

trading

position

containers

is

qualified

at

a

particular

time,

the

one

with

the

highest

PRECEDENCE

is

used.
5.

Associate

the

master

catalog

with

a

trading

position

container

by

adding

information

to

the

CATGRPTPC

table.

When

you

associate

the

master

catalog

with

a

trading

position

container,

every

catalog

entry

in

the

master

catalog

must

have

a

standard

price.

For

more

information

on

creating

master

catalogs,

see

“Displaying

store

catalog

assets”

on

page

162.

a.

Using

the

following

example

as

your

guide,

associate

the

master

catalog

to

the

trading

position

container

by

adding

information

to

the

CATGRPTPC

table:

<catgrptpc

catalog_id="@catalog_id_1"

tradeposcn_id="@tradeposcn_id_101"

/>

where

v

catalog_id

is

the

master

catalog.

v

tradeposcn_id

is

the

trading

position

container.
6.

Create

offers

and

offer

price

for

catalog

entries

by

adding

information

to

the

OFFER

and

OFFERPRICE

tables

a.

Using

the

following

example

as

your

guide,

create

an

offer

for

a

catalog

entry

by

adding

information

to

the

OFFER

table.

Note

that

you

must

have

created

catalog

entries

before

you

can

create

prices.

For

more

information

on

creating

catalog

entries,

see

“Displaying

store

catalog

assets”

on

page

162.

offer

offer_id="@offer_id_138"

startdate="2000-06-19

00:00:00.000000"

catentry_id="@product_id_102"

precedence="0"

published="1"

identifier="1"

flags="1"

tradeposcn_id="@tradeposcn_id_101"

/>

where

v

offer_id

is

a

generated

unique

key.

v

startdate

is

the

start

of

the

time

range

during

which

this

offer

is

effective.

v

catentry_id

is

the

catalog

entry

offered

for

sale.

v

precedence

is

when

more

than

one

offer

is

effective

at

a

particular

time,

the

one

with

the

highest

PRECEDENCE

is

used.

v

published

is

–

0

=

not

published

(temporarily

disabled)

176

Store

Development

Guide

–

1

=

published

–

2

=

marked

for

deletion

(and

not

published).
v

identifier

is

a

number

that

uniquely

identifies

this

offer

along

with

its

specified

catalog

entry

and

trading

position

container.

v

flags

are

–

1

=

shiptoAddressRequired

-

if

1,

OrderPrepare

will

return

an

error

if

an

OrderItem

references

this

Offer

but

does

not

have

a

shipping

address.
v

tradeposcn_id

is

the

trading

position

container

this

offer

is

part

of.
b.

Using

the

following

example

as

your

guide,

create

an

offerprice

for

a

catalog

entry

by

adding

information

to

the

OFFERPRICE

table.

The

offer

price

is

the

actual

price

at

which

a

catalog

entry

is

offered

for

sale.

Note

that

you

must

have

created

catalog

entries

before

you

can

create

prices.

For

more

information

on

creating

catalog

entries,

see

“Displaying

store

catalog

assets”

on

page

162.

<offerprice

offer_id="@offer_id_138"

currency="USD"

price="590.00"

/>

where

v

offer_id

is

offer

associated

with

this

price.

v

currency

is

the

currency

which

the

price

is

offered

in.

v

price

is

the

price

for

the

nominal

quantity

(see

CATENTSHIP.NOMINALQUANTITY)

of

the

product

referred

to

by

the

offer.

Note:

To

display

multiple

currencies

in

your

store,

create

a

separate

XML

entry

in

the

OFFERPRICE

table

for

each

currency.

For

example,

to

display

the

currency

in

Canadian

dollars,

use

currency="CAD"

in

a

new

XML

entry.

The

price

value

would

change

to

reflect

the

price

in

Canadian

dollars.

Or

you

can

use

a

conversion,

allowing

the

customer

to

display

different

rates

based

on

the

currency

they

select.

For

more

information,

see

“Creating

currency

assets

using

an

XML

file”

on

page

220.

c.

Repeat

steps

a

and

b

for

all

catalog

entries

in

your

catalog.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Chapter

17.

Pricing

assets

177

178

Store

Development

Guide

Chapter

18.

Contract

assets

In

WebSphere

Commerce,

all

customers

must

shop

under

a

contract.

A

contract

allows

customers

to

purchase

products

from

a

store

at

a

specified

price

for

a

specified

period

of

time

under

specific

conditions.

When

browsing

a

store’s

catalog,

customers

will

only

see

products

covered

by

the

contracts

they

are

entitled

to

within

the

store.

If

you

want

customers

who

do

not

have

any

contract

with

your

store

(for

example,

guest

shoppers)

to

be

able

to

shop

in

the

store,

or

if

you

want

customers

to

be

able

to

purchase

products

not

covered

by

their

contracts,

your

store

will

require

a

default

contract.

Important

WebSphere

Commerce

Professional

Edition

and

WebSphere

Commerce

-

Express

support

only

the

store

default

contract.

Contracts

other

than

the

store

default

contract

are

supported

only

by

WebSphere

Commerce

Business

Edition.

To

allow

all

customers

to

shop

at

a

store,

a

store

created

with

WebSphere

Commerce

must

include

the

following:

v

Business

policies

v

Default

contract

The

business

policies

are

referenced

by

the

default

contract,

thus

allowing

all

customers

to

shop

at

a

store.

©

Copyright

IBM

Corp.

2000,

2003

179

Understanding

contracts

in

WebSphere

Commerce

The

following

diagram

illustrates

the

structure

of

contracts

in

WebSphere

Commerce:

TermConditionType PolicyTypeCmdInterface

AttachmentUsage

ParticipantRole

TermConditionSubType PolicyType

TradingAgreementType

+defaultContract

+deployedContract

Account Store

StoreEntity

Contract

Attachment

Participant

PolicyCommand

OrderItem

+initialStore

0..1

TermCondition BusinessPolicy

1

1

1

1

1

0..1 0..1

0..1

0..1

0..1

0..1

0..1
0..1

0..1

TradingAgreement

1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Accounts

(business

accounts)

Business

A

business

account

represents

the

relationship

between

a

buyer

organization

and

a

seller

organization.

A

business

account

can

be

used

to

organize

various

trading

agreements

and

to

specify

terms

and

conditions

related

to

the

relationship

between

buyer

and

seller

such

as:

invoice

customization,

purchase

order

verification,

or

maintaining

a

buyer’s

line

of

credit

with

the

seller.

Contracts

are

associated

with

business

accounts

since

they

represent

an

agreement

between

a

buyer

and

a

seller.

The

exception

to

this

is

the

store

default

contract

which

cannot

be

associated

with

a

business

account.

A

business

account

can

have

many

contracts

associated

with

the

account.

A

business

account

is

a

type

of

trading

agreement.

For

a

description

of

trading

agreements,

see

“Trading

agreements”

on

page

181.

180

Store

Development

Guide

Important:

Business

accounts

are

only

supported

by

WebSphere

Commerce

Business

Edition.

Contracts

There

are

two

types

of

active

contracts

associated

with

stores:

deployed

contracts

and

default

contracts.

Deployed

contracts

entitle

specific

buyer

organizations

or

individual

buyers

and

can

be

created

using

the

WebSphere

Commerce

Accelerator

after

you

have

created

your

store.

A

deployed

contracts

is

associated

with

one

business

account.

A

default

contract

defines

the

default

behavior

of

your

store

for

buyers

who

do

not

have

any

other

contracts

with

your

store.

A

default

contract

can

only

be

created

using

XML

and

only

one

default

contract

may

be

defined

for

a

store.

For

more

information

on

contracts,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help

information.

For

information

on

creating

a

default

contract

asset,

see

“Creating

a

default

contract

asset

in

WebSphere

Commerce”

on

page

187.

A

typical

contract

consists

of

the

following

elements:

Profile

The

contract

profile

contains

the

identifying

information

for

the

contract.

This

information

includes

a

unique

name

for

the

contract,

a

short

description,

and

a

time

period

for

which

the

contract

is

valid.

Participants

Contract

participants

are

the

organizations

that

take

part

in

the

contract.

There

is

a

buyer

organization,

a

seller

organization

and

contacts

at

both

organizations.

Terms

and

conditions

Contract

terms

and

conditions

are

the

rules

that

cover

the

actual

implementation

of

the

contract.

Contract

terms

and

conditions

cover

such

information

as

product

pricing,

returns

and

refunds,

payment,

shipping,

and

order

approval.

Attachments

Contract

attachments

cover

any

information

not

covered

by

the

previous

elements

such

as

file

attachments

that

provide

additional

information

about

the

contract

and

any

general

remarks

about

the

contract.

WebSphere

Commerce

stores

Universal

Resource

Identifiers

(URIs)

for

contract

attachments,

not

the

actual

attachments.

Reference

A

contract

can

refer

to

another

contract

to

share

its

terms

and

conditions.

For

example,

contract

A

can

refer

to

contract

B.

Thus,

a

buyer

who

is

entitled

to

contract

A

will

be

entitled

to

all

the

terms

and

conditions

from

contract

A,

as

well

as

to

all

the

terms

and

conditions

in

contract

B.

Trading

agreements

A

contract

is

a

type

of

trading

agreement.

WebSphere

Commerce

provides

a

number

of

trading

mechanisms

governing

the

interactions

between

buyers

and

sellers.

The

following

trading

mechanisms

are

supported

by

different

editions

of

WebSphere

Commerce:

v

Auctions

(supported

by

both

Business

and

Professional

Editions)

v

Business

Business

accounts

v

Contracts

(see

restrictions

discussed

previously

in

this

chapter)

v

Business

Request

for

quotes

(RFQs)

Chapter

18.

Contract

assets

181

All

of

these

trading

mechanisms

have

common

properties.

For

example,

all

trading

mechanisms

have

participants

and

they

all

have

rules

governing

the

behavior

of

the

trading

mechanism.

The

rules

governing

the

behavior

of

trading

mechanisms

are

known

as

terms

and

conditions

in

WebSphere

Commerce.

A

trading

agreement

represents

an

instance

of

a

trading

mechanism

and

records

the

properties

of

that

instance

of

a

trading

mechanism.

Each

contract,

business

account,

and

Business

RFQ

in

WebSphere

Commerce

is

represented

by

a

trading

agreement.

There

is

a

single

trading

agreement

that

governs

all

auctions

in

WebSphere

Commerce.

A

trading

agreement

consists

of

a

profile

stored

in

the

TRADING

table;

participants

stored

in

the

PARTICIPNT

table;

terms

and

conditions

stored

in

the

TERMCOND

table;

and

optional

attachments

stored

as

Universal

Resource

Identifiers

(URIs)

in

the

ATTACHMENT

table.

Because

a

trading

agreement

can

have

multiple

attachments,

attachments

are

related

to

the

trading

agreement

through

the

TRDATTACH

table.

Note

that

attachments

are

not

supported

for

Business

RFQs.

In

addition

to

the

general

trading

agreement,

each

type

of

trading

agreement

stores

additional

information

specific

to

the

type

of

trading

agreement

in

its

own

table:

CONTRACT

stores

contract-specific

information;

Business

RFQ

stores

RFQ-specific

information;

and

ACCOUNT

stores

business

account-specific

information.

Participants

Contract

participants

take

on

specific

roles

within

each

contract.

Participants

can

be

a

contact

from

a

buyer

organization

and

from

a

seller

organization.

If

a

contract

specifies

the

buyer

participant

to

be

null,

then

all

users,

including

guests,

are

entitled

to

the

contract.

Any

contract

may

specify

a

null

buyer

participant.

Terms

and

conditions

Terms

and

conditions

define

the

behavior

and

properties

of

a

trading

agreement.

For

contracts,

the

terms

and

conditions

define

how

a

contract

is

implemented

for

a

buyer

organization.

They

define

what

is

being

sold

under

the

contract;

the

price

of

the

items

being

sold;

how

the

items

are

shipped;

how

orders

are

paid

for;

how

returns

are

handled;

how

orders

are

approved;

and

from

where

orders

are

shipped.

Some

terms

and

conditions

reference

business

policies

because

many

aspects

of

a

store’s

operation

are

defined

by

business

policies.

Terms

and

conditions

provide

parameters

for

the

business

polices

they

reference.

Providing

parameters

to

the

business

policies

allows

you

to

modify

the

behavior

of

business

policies

for

each

contract.

WebSphere

Commerce

supports

the

following

terms

and

conditions

(terms

and

conditions

that

reference

business

policies

are

indicated

with

an

asterisk

(*)).

Fulfillment

center

This

optional

term

allows

you

to

specify

the

list

of

fulfillment

centers

from

which

orders

placed

under

the

contract

must

be

filled.

This

list

must

be

a

subset

of

the

fulfillment

centers

defined

for

the

store.

Fulfillment

center

precedence

is

defined

by

the

store

and

cannot

be

overridden

by

the

terms

and

conditions

of

a

contract.

Order

approval

This

term

specifies

if

orders

must

be

approved

by

the

customer

organization

before

filling

the

orders.

You

can

specify

an

optional

amount,

182

Store

Development

Guide

that

includes

taxes

and

shipping,

that

would

allow

orders

with

a

value

below

the

amount

to

be

filled

without

approval

from

the

customer

organization.

If

an

order

total

is

over

this

amount,

approval

is

required.

If

a

buyer

is

placing

an

order

with

order

items

under

multiple

contracts

and

one

item

in

the

order

has

a

contract

specifying

this

term,

the

entire

order

is

subject

to

the

order

approval

term

that

applies

to

the

item.

Payment

method*

This

optional

term

specifies

the

payment

methods

that

will

be

accepted

for

orders

made

under

the

contract.

The

payment

method

could

be

as

general

as

a

payment

type,

such

as

a

credit

card

type,

or

as

specific

as

a

credit

card

number

to

be

used

for

payment.

If

no

payment

method

term

is

specified

in

a

contract,

payment

in

all

methods

accepted

by

the

store

will

be

accepted

for

orders

made

under

the

contract.

Pricing

terms

and

conditions

Pricing

terms

and

conditions

define

what

products

are

available

under

a

contract

and

what

prices

the

customer

will

pay

for

the

products.

At

least

one

pricing

term

is

required

in

a

contract.

The

following

pricing

terms

and

conditions

are

available

in

WebSphere

Commerce:

Customized

price

list

This

term

specifies

that

both

the

list

of

products

for

sale

and

their

prices

are

customized

for

sale

in

a

contract

and

their

price

is

customized.

Items

are

not

limited

to

a

section

of

the

store

catalog

they

can

be

from

anywhere

in

the

store

catalog.

Entire

catalog

with

adjustment

This

term

offers

all

of

the

products

available

in

a

store

catalog

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

If

no

adjustment

is

specified,

items

are

sold

at

the

base

price.

Price

list

with

adjustment*

This

term

offers

all

of

the

products

available

in

a

price

list

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

If

no

adjustment

is

specified,

items

are

sold

at

the

base

price.

Price

list

with

selective

adjustment*

This

term

is

similar

to

price

list

with

adjustment

except

the

adjustment

is

not

applied

to

the

entire

price

list.

The

adjustment

is

made

on

a

subset

of

the

price

list.

The

subset

of

the

price

list

may

either

be

a

product

set

business

policy

or

a

customized

product

set.

For

information

on

the

differences

between

the

types

of

product

sets,

see

the

WebSphere

Commerce

Development

online

help.

Catalog

with

filtering

*

This

term

offers

all

of

the

products

available

in

a

store

catalog

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

store

catalog.

This

term

also

offers

all

of

the

products

available

in

a

category,

or

a

list

of

specify

products

and

items,

for

sale

with

a

percentage

adjustment

(mark-up

or

discount)

from

the

base

price

as

defined

in

the

price

list

referenced

by

this

term.

This

term

can

also

state

which

categories,

products

and

items

are

for

sale

or

are

not

for

sale

in

a

contract.

Category

product

sets

will

behave

as

a

product

set

business

policy.

Item

product

sets

will

be

customized

products

sets.

Chapter

18.

Contract

assets

183

Product

constraint

terms

and

conditions

Product

constraint

terms

and

conditions

control

what

products

are

included

or

excluded

for

sale

under

a

contract.

Product

constraint

terms

are

optional.

If

no

product

constraint

terms

and

conditions

are

specified

in

a

contract,

all

products

specified

in

the

contract’s

price

terms

and

conditions

are

available

for

sale

under

the

contract.

The

following

product

constraint

terms

and

conditions

are

available

in

WebSphere

Commerce:

Customized

product

set

exclusion

This

term

states

the

items

in

a

customized

product

set

are

not

for

sale

in

a

contract.

Customized

product

set

inclusion

This

term

states

that

items

in

a

customized

product

set

are

for

sale

in

a

contract.

Product

set

exclusion*

This

term

states

the

items

in

a

product

set

business

policy

are

not

for

sale

in

a

contract.

Product

set

inclusion*

This

term

states

that

items

in

a

product

set

business

policy

are

for

sale

in

a

contract.

Exclusion

terms

have

precedence

over

inclusion

terms.

This

means

that

if

a

product

appears

both

an

inclusion

term

and

an

exclusion

term

in

the

contract,

the

product

could

not

be

purchased

under

the

contract.

For

information

on

the

differences

between

a

customized

product

set

and

product

set

business

policy,

see

the

WebSphere

Commerce

Development

online

help.

Returns

terms

and

conditions

Returns

terms

and

conditions

specify

how

returns

are

handled

under

this

contract.

If

no

returns

terms

and

conditions

are

specified

then

returns

can

not

be

created.

If

returns

terms

and

conditions

are

specified

they

should

only

be

one

set

that

applies

to

the

entire

contract.

The

following

returns

terms

and

conditions

are

available

in

WebSphere

Commerce:

Refund

payment

method*

This

term

specifies

the

payment

method

used

to

pay

refunds

to

a

customer.

If

a

return

charge

term

is

specified,

at

least

one

refund

payment

method

term

must

be

specified

as

well.

This

term

may

not

be

specified

if

returns

are

not

allowed

under

the

contract.

Return

charge*

This

term

specifies

how

returns

are

automatically

approved

and

any

deductions

from

the

refund

made

for

handling

the

return,

for

example,

restocking

charges.

Right

to

buy

amount

This

term

places

a

limit

on

the

combined

value

of

all

orders,

including

taxes

and

shipping,

placed

under

a

contract.

The

value

of

all

orders

made

under

the

contract

must

be

less

or

equal

to

a

specified

amount.

If

this

limit

is

exceeded

when

placing

an

order,

payment

authorization

for

the

order

will

fail.

Shipping

terms

and

conditions

Shipping

terms

and

conditions

specify

how

orders

will

be

shipped,

where

they

will

be

shipped

to

and

who

will

pay

for

the

shipping.

The

following

shipping

terms

and

conditions

are

available

in

WebSphere

Commerce:

184

Store

Development

Guide

Shipping

mode*

This

optional

term

defines

how

orders

created

under

a

contract

are

shipped.

If

this

term

is

not

specified

in

a

contract,

orders

can

be

shipped

by

any

mode

available

in

a

store.

A

shipping

mode

is

also

known

as

a

shipping

provider.

A

shipping

provider

is

the

combination

of

a

shipping

carrier

and

its

shipping

service.

For

example,

XYZ

Courier,

Overnight

is

a

shipping

provider.

Ship-to

address

This

optional

term

specifies

where

products

purchased

under

a

contract

are

shipped.

Specifying

this

term

and

condition

allows

you

to

limit

the

locations

where

orders

can

be

shipped.

If

the

ship-to

address

term

and

condition

is

not

specified,

a

ship-to

address

must

be

specified

each

time

an

order

is

made

under

a

contract.

If

this

term

is

specified,

the

buyer

can

not

specify

a

new

ship-to

address

when

placing

an

order,

but

must

select

a

ship-to

address

from

a

list

of

ship-to

addresses.

Shipping

charge

type*

This

term

defines

who

pays

for

shipping

orders.

The

following

types

of

shipping

charges

are

supported:

v

Shipping

charges

are

paid

by

the

buyer

to

the

seller.

The

seller

calculates

the

shipping

charges

when

the

order

is

captured

and

the

shipping

costs

become

part

of

the

order

total.

v

Shipping

charges

are

paid

by

the

buyer

to

the

shipping

carrier.

The

carrier

calculates

the

shipping

cost

and

assumes

the

responsibility

of

collecting

payment

from

the

buyer.

Shipping

costs

are

not

calculated

when

the

order

is

captured.

Referral

Interface

*

This

term

specifies

the

relationship

between

a

store

and

a

remote

store.

It

defines

the

functions

supported

by

the

remote

store

and

the

parameters

to

be

used

in

messages

sent

to

the

remote

store.

Business

policies

Business

policies

are

sets

of

rules

followed

by

a

store

or

group

of

stores.

Business

policies

define

business

processes,

industry

practices,

and

the

scope

and

characteristics

of

a

store’s

or

group

of

stores’

offerings.

They

are

the

central

source

and

reference

template

for

all

allowed

and

supported

practices

within

a

store

or

group

of

stores.

In

WebSphere

Commerce,

business

policies

are

enforced

with

a

combination

of

one

or

more

business

policy

commands

that

implement

the

rules

of

the

business

policy,

a

reference

to

a

business

object

that

the

rules

act

on,

and

a

set

of

properties

to

configure

the

operation

of

the

business

policy

commands.

Terms

and

conditions

may

provide

parameters

for

the

business

polices

they

reference.

This

allows

the

behavior

of

the

business

policy

to

be

modified

depending

on

the

term

and

condition

referencing

the

business

policy.

Business

Business

policies

are

a

sharable

resource.

When

you

list

business

policies

that

can

be

used

in

a

contract,

the

business

policies

listed

are

the

ones

owned

by

the

store

in

which

the

contract

is

being

created,

and

the

business

policies

owned

by

any

store

with

which

there

is

a

com.ibm.commerce.businessPolicy

store

relationship.

For

more

information

about

sharing

assets

across

stores

within

a

site,

refer

to

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Chapter

18.

Contract

assets

185

The

following

categories

of

business

policies

are

provided

in

WebSphere

Commerce:

Catalog

business

policies

Catalog

business

policies

define

the

scope

and

characteristics

of

the

catalog

of

products

for

sale

in

a

store

including

prices

and

the

categorization

of

products

in

a

store’s

catalog.

Payment

business

policies

Invoicing,

payment,

and

refund

business

policies

define

how

a

store

accepts

payments,

pays

refunds,

and

the

format

of

a

store’s

invoices.

Returns

business

policies

Returns

business

policies

define

if

refunds

are

accepted,

the

time

period

they

are

accepted

for,

and

any

re-stocking

fees

applied

to

returns.

Shipping

business

policies

Shipping

business

policies

define

the

shipping

providers

a

store

can

use

and

the

charges

associated

with

each

type.

Referral

interface

business

policies

Referral

interface

business

policies

define

the

relationship

between

a

proxy

store

and

a

remote

store.

Many

contract

terms

and

conditions

reference

business

policies.

This

provides

a

measure

of

control

over

the

nature

of

contracts

a

store

enters

into

while

still

providing

flexibility

in

creating

the

contract

terms

and

conditions.

For

more

information

on

business

policies,

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

Attachment

An

attachment

provides

addition

information

about

a

trading

agreement

that

is

not

covered

by

other

elements

of

the

trading

agreement.

An

example

is

a

file

that

provides

additional

information

about

RFQ

requirements

and

any

general

remarks

about

the

Business

RFQ.

A

trading

agreement

can

have

multiple

attachments.

Attachments

are

stored

outside

of

WebSphere

Commerce

and

the

trading

agreement

stores

Universal

Resource

Identifiers

(URIs)

to

the

attachments.

Examples

of

URIs

include

the

following:

v

http://www.mycompany.com/information/document1.txt

v

file:///home/joeuser/mydocs/document1

v

ftp://ftp.mycompany.com/information/attachment.txt

All

attachments

can

be

assigned

an

attachment

usage

that

indicates

what

the

attachment

is

for.

The

attachment

usage

is

an

optional

property

of

an

attachment.

Order

item

An

order

item

is

a

product

or

item

that

is

included

with

an

order.

Different

order

items

in

a

single

order

may

be

purchased

under

different

contract

trading

agreements.

Buyers

can

select

the

contract

trading

agreement

they

shop

under

at

either

the

start

of

the

shopping

flow

or

when

they

add

an

item

to

their

order,

depending

on

the

store

design.

When

purchasing

items

under

different

contract

trading

agreements

the

following

rules

apply:

v

Contract

trading

agreements

for

all

items

in

an

order

must

share

at

least

one

payment

method.

If

the

contract

for

an

item

does

not

share

a

payment

method,

the

buyer

can

not

add

that

item

to

the

order.

Only

the

payment

methods

shared

by

all

items

in

an

order

can

be

used

to

pay

for

the

order.

186

Store

Development

Guide

v

All

items

in

an

order

must

come

from

contract

trading

agreements

belonging

to

the

same

business

account

or

the

store

default

contract.

For

more

detailed

information

on

the

structure

of

contract

assets

in

WebSphere

Commerce,

see

the

contract

data

model

in

the

WebSphere

Commerce

Development

online

help.

Creating

a

default

contract

asset

in

WebSphere

Commerce

The

default

contract

defines

the

default

behavior

of

a

store.

As

with

all

contracts,

you

can

set

the

available

products,

prices,

payment

methods,

shipping

methods,

and

other

store

behavior.

The

store

default

contracts

provided

with

the

WebSphere

Commerce

sample

stores

contain

terms

and

conditions

that

specify

the

following:

v

Customers

can

purchase

all

products

available

in

the

master

catalog

for

the

store

at

standard

prices

set

in

the

master

catalog

(no

discounts

or

mark–ups).

v

Any

shipping

charges

are

paid

to

the

seller

(store).

v

Customers

can

return

purchases

without

penalty

charges

within

a

certain

number

of

days.

v

Customers

can

receive

refunds

using

the

same

payment

method

used

for

the

original

purchase.

Also,

the

most

general

version

of

a

store’s

default

contract

omits

terms

and

conditions

that

restrict

the

payment

and

shipping

methods

that

buyers

can

use.

Omitting

these

terms

allows

buyers

to

pay

for

purchases

using

any

of

the

default

payment

methods

supported

by

the

store

and

use

any

shipping

method

available

in

the

store.

The

default

contract’s

properties

are

defined

in

its

terms

and

conditions.

Some

of

the

terms

and

conditions

reference

business

policies.

For

more

information

on

business

policies

and

terms

and

conditions,

refer

to

the

WebSphere

Commerce

Development

online

help.

To

create

a

default

contract

asset,

do

the

following:

1.

Review

the

online

information

on

terms

and

conditions,

contracts,

default

contracts,

and

business

policies.

2.

Review

the

business

policies

defined

in

the

wcs.bootstrap.xml

file.

For

information

on

the

wcs.bootstrap.xml

file,

refer

to

the

online

information.

3.

Review

the

files

used

to

create

default

contract

assets

for

the

sample

stores.

All

sample

stores

files

are

located

in

the

corresponding

store

archive

file.

Each

sample

store

includes

a

businesspolicy.xml

and

contract.xml,

which

includes

additional

business

policy

information

and

default

contract

information.

The

store

archive

files

are

located

in

the

WC_installdir/samplestores

directory.

Notes:

a.

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

b.

To

view

the

businesspolicy.xml

and

contract.xml

files

in

the

store

archive,

decompress

them

using

a

ZIP

program.

The

files

are

located

in

the

data

directory.

c.

The

contract

asset

files

for

the

ToolTech

sample

store

that

is

provided

with

WebSphere

Commerce

Business

Edition

includes

information

for

contracts

other

than

the

store

default

contract.

Chapter

18.

Contract

assets

187

4.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

5.

Create

a

businesspolicy.xml

file

by

copying

one

of

the

businesspolicy.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

file.

Instructions

on

creating

a

new

file

are

in

“Creating

business

policy

XML

files.”

If

you

want

to

create

different

business

policies

from

the

ones

discussed,

see

the

DTD

file

that

corresponds

to

businesspolicy.xml.

The

DTD

files

are

located

in

the

WC_installdir/xml/sar

directory.

6.

Load

the

businesspolicy.xml

file

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

If

you

are

creating

a

multicultural

store,

you

may

want

to

create

separate

XML

files

for

each

locale

your

store

supports.

The

locale-specific

file

should

specify

all

description

information,

so

it

can

be

easily

translated.

7.

Create

a

contract.xml

file

by

copying

one

of

the

contract.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

file.

Instructions

for

creating

a

new

file

are

in

“Creating

a

default

contract

file”

on

page

189.

If

you

want

to

create

a

more

complex

default

contract,

review

the

B2BTrading.dtd

or

Package.xsd

file

which

defines

the

structure

of

a

contract

file.

The

B2BTrading.dtd

file

is

located

in

the

WC_installdir/xml/trading/dtd

directory;

the

Package.xsd

file

is

located

in

the

WC_installdir/xml/trading/xsd

directory.

8.

Publish

the

contract

using

the

ContractImportApprovedVersion

command.

For

more

information,

see

Chapter

39,

“Publishing

business

accounts

and

contracts,”

on

page

395.

Information

on

the

ContractImportApprovedVersion

command

is

also

available

in

the

WebSphere

Commerce

Development

online

help.

WebSphere

Commerce

Business

Edition

users

can

define

contracts

for

specific

customers

using

the

WebSphere

Commerce

Accelerator.

For

more

information

on

creating

contracts

for

specific

customers,

refer

to

the

WebSphere

Commerce

Production

online

help.

Creating

business

policy

XML

files

While

WebSphere

Commerce

provides

a

number

of

business

policies

that

the

terms

and

conditions

in

your

store’s

default

contract

can

reference,

some

business

policies

must

still

be

defined

by

you.

You

must

define

any

return

charge,

return

approval,

and

pricing

business

policies

that

the

store

default

contract

terms

reference.

Commands

for

these

business

policies

are

provided

and

can

be

used

without

modification.

If

you

want

to

create

your

own

business

policies,

refer

to

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

To

create

business

policies

for

your

store,

you

must

create

the

business

policy

and

associate

one

or

more

commands

with

the

business

policy.

To

create

a

business

policy,

add

information

to

the

POLICY

table.

To

associate

a

command

with

a

business

policy,

add

information

to

the

POLICYCMD

table.

To

create

a

business

policy

and

associate

commands

with

the

policy,

do

the

following:

1.

Create

a

business

policy

in

your

business

policies

XML

file

by

adding

information

to

the

POLICY

table.

Use

the

following

example

as

a

guide:

<policy

policy_id="@policy_id_10"

policyname="MasterCatalogPriceList"

policytype_id="Price"

storeent_id="@storeent_id_1"

properties="name=&STORE_IDENTIFIER;&orgentity_dn=ORGANIZATION_DN

/>

188

Store

Development

Guide

where

v

policy_id

is

the

unique,

numeric

identifier

for

the

business

policy.

v

policyname

is

a

unique

name

for

this

business

policy.

v

policytype_id

is

the

type

of

policy

being

defined.

Valid

policytype_ids

are:

–

InvoiceFormat

–

Payment

–

Price

–

ProductSet

–

ReturnApproval

–

ReturnCharge

–

ReturnPayment

–

ShippingCharge

–

ShippingPayment

–

ReferralInterface
v

storeent_id

is

the

store

or

store

group.

v

properties

is

a

list

of

name–value

pairs

that

is

sent

to

the

business

policy

command.
2.

Associate

a

command

with

the

business

policy

in

your

business

policies

XML

file

by

adding

information

to

the

POLICYCMD

table.

Use

the

following

example

as

a

guide:

<policycmd

policy_id="@policy_id_10"

businesscmdclass=

"com.ibm.com.commerce.price.commands.RetrievePricesCmdImpl"

/>

where

v

policy_id

is

the

numeric

identifier

of

the

business

policy

with

which

the

command

is

being

associated.

v

businesscmdclass

is

the

name

of

Java

class

implementing

the

business

policy.

The

line

breaks

in

the

businesscmdclass

attribute

are

for

display

purposes

only.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

a

default

contract

file

In

order

to

create

a

default

contract,

you

must

define

the

contract,

the

contract

owner,

the

contract

description,

the

contract

participants,

and

the

terms

and

conditions

of

the

contracts.

Contract

information

is

stored

in

four

tables:

CONTRACT,

PARTICIPNT,

TRADING,

and

TERMCOND.

The

default

contract

is

associated

with

a

store

using

the

STOREDEF

database

table.

For

WebSphere

Commerce

Business

Edition

users,

contracts

other

than

the

default

contract

are

associated

with

a

store

using

the

STORECNTR

database

table.

You

can

create

a

default

contract

in

XML,

based

on

one

of

two

formats:

XSD

or

DTD.

Refer

to

the

sections

below

for

details

on

how

to

create

each

type.

Creating

a

default

contract

file

in

XSD

To

create

a

default

contract

in

XSD

format,

do

the

following:

Chapter

18.

Contract

assets

189

1.

Define

the

default

contract

in

your

XML

file.

The

default

contract

is

defined

at

the

beginning

of

the

XML

file

as

follows:

<?xml

version="1.0"

encoding="UTF-8"?>

<Package

xmlns="http://www.ibm.com/WebSphereCommerce"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/WebSphereCommerce

Package.xsd">

<BuyerContract

state="Active"

contractUsage="Default"

comment="">

<ContractUniqueKey

majorVersionNumber="1"

minorVersionNumber="0"

name="&STORE_IDENTIFIER;

Default

Contract"

origin="Manual">

<ContractOwner>

<OrganizationRef

distinguishName="ou=&ORGENTITYNAME;,&ORGANIZATION_DN;"

/>

</ContractOwner>

</ContractUniqueKey>

Note

that

line

breaks

in

the

Package

and

ContractUniqueKey

elements

are

for

display

purposes

only.

2.

Define

the

contract

participants

in

your

contract

XML

file.

Use

the

following

example

as

a

guide:

<Participant

role="Buyer">

</Participant>

<Participant

role="Seller">

<ParticipantMember>

<OrganizationRef

distinguishName=""ou=&ORGENTITYNAME;,&ORGANIZATION_DN;"/>

</ParticipantMember>

</Participant>

where

distinguishName

is

the

name

of

the

user

that

is

the

seller

for

this

contract

in

LDAP

distinguished

name

format.

For

example,

uid=johnsmith,ou=People,o=ibm,o=com.

In

many

cases,

this

will

be

the

same

as

the

contract

owner.

Note:

No

members

are

specified

in

the

buyer

participant

role

because

the

contract

is

available

to

all

users

with

a

buyer

role.

3.

Define

the

contract

description

in

your

contract

XML

file.

Use

the

following

example

as

a

guide:

<ContractDescription

title="This

is

a

store

default

contract."

locale="en_US"/>

where

v

title

is

a

text

description

of

the

contract.

v

locale

is

the

locale

for

the

language

that

the

title

is

in.

The

following

values

are

predefined

for

locale:

–

en_US

(English

–

US)

–

fr_FR

(French)

–

de_DE

(German)

–

it_IT

(Italian)

–

es_ES

(Spanish)

–

pt_BR

(Brazilian

Portuguese)

–

zh_CN

(Simplified

Chinese)

–

zh_TW

(Traditional

Chinese)

–

ko_KR

(Korean)

–

ja_JP

(Japanese)

Additional

values

can

be

defined

for

locale

by

updating

the

language

assets

for

your

store.

For

more

information

on

language

assets,

see

Chapter

22,

“Language

assets,”

on

page

215.

190

Store

Development

Guide

4.

Define

the

terms

and

conditions

in

your

contract

XML

file.

The

XML

elements

and

attributes

are

different

for

the

various

types

of

terms

and

conditions.

Use

the

Package.xsd

file

to

learn

the

XML

elements

and

attributes

to

use

for

each

type

of

term.

When

defining

terms

and

conditions

the

following

attributes

are

commonly

used:

policyName

The

name

of

the

business

policy

that

the

term

and

condition

references.

This

name

is

stored

in

POLICY.POLICYNAME.

policy

references

The

type

of

business

policy

that

the

term

and

condition

references.

Valid

values

are:

v

PricePolicyRef

v

ProductSetPolicyRef

v

InvoiceFormatPolicyRef

v

PaymentPolicyRef

v

ReturnApprovalPolicyRef

v

ReturnChargePolicyRef

v

ReturnPaymentPolicyRef

v

ShippingChargePolicyRef

v

ShippingModePolicyRef

storeRef

The

store

or

store

group

for

the

term

and

condition.

distinguishName

The

name

of

the

user

that

owns

the

store

or

store

group.

The

name

must

be

in

LDAP

distinguished

name

format.

For

example,

uid=wcsadmin,o=Root

Organization.

The

following

sample

terms

and

conditions

are

preceded

by

a

description

of

what

they

define:

v

All

buyers

can

purchase

all

items

in

the

store’s

master

catalog

at

the

prices

set

in

the

master

catalog:

<PriceTCMasterCatalogWithOptionalAdjustment>

</PriceTCMasterCatalogWithOptionalAdjustment>

v

Buyers

pay

any

shipping

charges

to

the

seller:

<ShippingTCShippingCharge>

<ShippingChargePolicyRef

policyName="StandardShippingChargeBySeller">

<StoreRef

name="&STORE_IDENTIFIER;">

<Owner>

<OrganizationRef

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Owner>

</StoreRef>

</ShippingChargePolicyRef>

</ShippingTCShippingCharge>

v

Buyers

can

return

products

without

any

return

charges.

The

products

must

be

returned

within

the

number

of

days

defined

in

the

ApprovalByDays

business

policy:

<ReturnTCReturnCharge>

<ReturnChargePolicyRef

policyName="NoCharges">

<StoreRef

name="&STORE_IDENTIFIER;">

<Owner>

<OrganizationRef

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

Chapter

18.

Contract

assets

191

</Owner>

</StoreRef>

</ReturnChargePolicyRef>

<ReturnApprovalPolicyRef

policyName="ApprovalByDays">

<StoreRef

name="&STORE_IDENTIFIER;">

<Owner>

<OrganizationRef

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Owner>

</StoreRef>

</ReturnApprovalPolicyRef>

</ReturnTCReturnCharge>

Note

for

WebSphere

Commerce

Business

Edition

users:
Omitting

these

terms

and

conditions

from

the

store

default

contract

indicates

that,

by

default,

the

store

does

not

accept

returns.

Other

contracts,

however,

may

allow

buyers

to

do

returns,

by

defining

the

returns

term

and

condition.

Note

for

WebSphere

Commerce

Professional

Edition

users:
Omitting

these

terms

and

conditions

from

the

store

default

contract

indicates

that

the

store

does

not

accept

returns.

v

Refunds

are

paid

using

the

same

payment

method

the

buyer

used

when

completing

the

order:

<ReturnTCRefundPaymentMethod>

<ReturnPaymentPolicyRef

policyName="UseOriginalPayment">

<StoreRef

name="&STORE_IDENTIFIER;">

<Owner>

<OrganizationRef

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Owner>

</StoreRef>

</ReturnPaymentPolicyRef>

</ReturnTCRefundPaymentMethod>

5.

Close

the

XML

file

as

follows:

</BuyerContract>

</Package>

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

a

default

contract

file

in

DTD

format

In

order

to

create

a

default

contract,

you

must

define

the

contract,

the

contract

owner,

the

contract

description,

the

contract

participants,

and

the

terms

and

conditions

of

the

contracts.

Contract

information

is

stored

in

four

tables:

CONTRACT,

PARTICIPNT,

TRADING,

and

TERMCOND.

The

default

contract

is

associated

with

a

store

using

the

STOREDEF

database

table.

For

WebSphere

Commerce

Business

Edition

users,

contracts

other

than

the

default

contract

are

associated

with

a

store

using

the

STORECNTR

database

table.

To

create

a

default

contract

in

DTD

format,

do

the

following:

1.

Define

the

default

contract

in

your

XML

file.

The

default

contract

is

defined

at

the

beginning

of

the

XML

file

as

follows:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

Trading

SYSTEM

"B2BTrading.dtd">

<Trading>

192

Store

Development

Guide

<Contract

state="Active"

origin="Manual"

name="&STORE_IDENTIFIER;

Default

Contract"

majorVersionNumber="1"

minorVersionNumber="0"

contractUsage="Default">

Note

that

line

breaks

in

the

Contract

element

are

for

display

purposes

only.

2.

Define

the

contract

owner.

Use

the

following

example

as

a

guide:

<ContractOwner>

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,&ORGANIZATION_DN;"

/>

</Member>

</ContractOwner>

where

distinguishName

is

the

name

of

the

user

owning

the

contract

in

LDAP

distinguished

name

format.

For

example,

uid=johnsmith,ou=People,o=ibm,o=com.

3.

Define

the

contract

description

in

your

contract

XML

file.

Use

the

following

example

as

a

guide:

<ContractDescription

title="This

is

a

store

default

contract."

languageId="-1">

</ContractDescription>

where

v

title

is

a

text

description

of

the

contract.

v

languageId

is

the

language

the

title

is

in.

The

following

values

are

predefined

for

languageId:

–

-1

(English

–

US)

–

-2

(French)

–

-3

(German)

–

-4

(Italian)

–

-5

(Spanish)

–

-6

(Brazilian

Portuguese)

–

-7

(Simplified

Chinese)

–

-8

(Traditional

Chinese)

–

-9

(Korean)

–

-10

(Japanese)

Additional

values

can

be

defined

for

languageId

by

updating

the

language

assets

for

your

store.

For

more

information

on

language

assets,

see

Chapter

22,

“Language

assets,”

on

page

215.
4.

Define

the

contract

participants

in

your

contract

XML

file.

Use

the

following

example

as

a

guide:

<Participant

role="Buyer">

</Participant>

<Participant

role="Seller">

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,&ORGANIZATION_DN;"/>

</Member>

</Participant>

where

distinguishName

is

the

name

of

the

user

that

is

the

seller

for

this

contract

in

LDAP

distinguished

name

format.

For

example,

uid=erickoeck,ou=People,o=ibm,o=com.

In

many

cases,

this

will

be

the

same

as

the

contract

owner.

Chapter

18.

Contract

assets

193

Note:

No

members

are

specified

in

the

buyer

participant

role

because

the

contract

is

available

to

all

users

with

a

buyer

role.

5.

Define

the

terms

and

conditions

in

your

contract

XML

file.

The

XML

elements

and

attributes

are

different

for

the

various

types

of

terms

and

conditions.

Use

the

B2BTrading.dtd

file

to

learn

the

XML

elements

and

attributes

to

use

for

each

type

of

term.

When

defining

terms

and

conditions

the

following

attributes

are

commonly

used:

policyName

The

name

of

the

business

policy

that

the

term

and

condition

references.

This

name

is

stored

in

POLICY.POLICYNAME.

policyType

The

type

of

business

policy

that

the

term

and

condition

references.

Valid

values

are:

v

Price

v

ProductSet

v

InvoiceFormat

v

Payment

v

ReturnApproval

v

ReturnCharge

v

ReturnPayment

v

ShippingCharge

v

ShippingMode

storeIdentity

The

store

or

store

group

for

the

term

and

condition.

distinguishName

The

name

of

the

user

that

owns

the

store

or

store

group.

The

name

must

be

in

LDAP

distinguished

name

format.

For

example,

uid=wcsadmin,o=Root

Organization.

The

following

sample

terms

and

conditions

are

preceded

by

a

description

of

what

they

define:

v

All

buyers

can

purchase

all

items

in

the

store’s

master

catalog

at

the

prices

set

in

the

master

catalog:

<TermCondition>

<PriceTC>

<PriceTCMasterCatalogWithOptionalAdjustment>

</PriceTCMasterCatalogWithOptionalAdjustment>

</PriceTC>

</TermCondition>

v

Buyers

pay

any

shipping

charges

to

the

seller:

<TermCondition>

<ShippingTC>

<ShippingTCShippingCharge>

<PolicyReference

policyName="StandardShippingChargeBySeller"

policyType="ShippingCharge"

storeIdentity="&STORE_IDENTIFIER;">

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Member>

</PolicyReference>

</ShippingTCShippingCharge>

</ShippingTC>

</TermCondition>

194

Store

Development

Guide

Line

breaks

in

the

PolicyReference

element

are

for

display

purposes

only.

v

Buyers

can

return

products

without

any

return

charges.

The

products

must

be

returned

within

the

number

of

days

defined

in

the

ApprovalByDays

business

policy:

<TermCondition>

<ReturnTC>

<ReturnTCReturnCharge>

<ReturnChargePolicyReference>

<PolicyReference

policyName="NoCharges"

policyType="ReturnCharge"

storeIdentity="&STORE_IDENTIFIER;">

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Member>

</PolicyReference>

</ReturnChargePolicyReference>

<ReturnApprovalPolicyReference>

<PolicyReference

policyName="ApprovalByDays"

policyType="ReturnApproval"

storeIdentity="&STORE_IDENTIFIER;">

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Member>

</PolicyReference>

</ReturnApprovalPolicyReference>

</ReturnTCReturnCharge>

</ReturnTC>

</TermCondition>

Line

breaks

in

the

PolicyReference

elements

are

for

display

purposes

only.

Note

for

WebSphere

Commerce

Business

Edition

users:
Omitting

these

terms

and

conditions

from

the

store

default

contract

indicates

that,

by

default,

the

store

does

not

accept

returns.

Other

contracts,

however,

may

allow

buyers

to

do

returns,

by

defining

the

returns

term

and

condition.

Note

for

WebSphere

Commerce

Professional

Edition

users:
Omitting

these

terms

and

conditions

from

the

store

default

contract

indicates

that

the

store

does

not

accept

returns.

v

Refunds

are

paid

using

the

same

payment

method

the

buyer

used

when

completing

the

order:

<TermCondition>

<ReturnTC>

<ReturnTCRefundPaymentMethod>

<PolicyReference

policyName="UseOriginalPayment"

policyType="ReturnPayment"

storeIdentity="&STORE_IDENTIFIER;">

<Member>

<Organization

distinguishName="ou=&ORGENTITYNAME;,

&ORGANIZATION_DN;"

/>

</Member>

</PolicyReference>

</ReturnTCRefundPaymentMethod>

</ReturnTC>

</TermCondition>

Note

that

line

breaks

in

the

PolicyReference

element

are

for

display

purposes

only.
6.

Close

the

XML

file

as

follows:

Chapter

18.

Contract

assets

195

</Contract>

</Trading>

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

196

Store

Development

Guide

Chapter

19.

Fulfillment

assets

Fulfillment

centers

are

used

by

stores

as

both

inventory

warehouses

and

shipping

and

receiving

centers.

A

fulfillment

center

represents

a

place

from

which

products

are

shipped

to

customers.

Inventory

counts

are

maintained

separately

for

each

fulfillment

center.

One

store

may

have

one

or

many

fulfillment

centers

associated

with

it.

The

fulfillment

center

manages

the

product

inventory

and

shipping

for

a

store.

Fulfillment

includes

picking,

packing,

and

shipping.

Picking

is

the

selection

of

products

in

one

or

more

releases

from

a

fulfillment

center,

packing

is

putting

these

products

into

shipping

containers,

and

shipping

is

sending

them

to

customers.

Products

are

configured

for

fulfillment

with

the

Product

wizard

and

the

Product

notebook.

Product

configuration

provides

options

to

track

inventory,

allow

backorders,

force

backorders,

release

the

product

separately,

and

specify

that

the

product

should

not

be

returned.

Typically,

there

are

a

number

of

people

working

in

a

fulfillment

center

at

one

time,

each

with

a

different

task

or

tasks

to

perform.

The

WebSphere

Commerce

Accelerator

divides

the

most

common

tasks

into

roles,

and

these

roles

are

assigned

to

users.

In

the

WebSphere

Commerce

Accelerator,

you

must

select

one

fulfillment

center

at

logon

time,

if

you

have

been

assigned

one

or

more

roles

pertaining

to

fulfillment.

Note:

For

more

information

on

fulfillment,

fulfillment

centers,

and

roles,

refer

to

the

WebSphere

Commerce

online

help.

©

Copyright

IBM

Corp.

2000,

2003

197

Understanding

fulfillment

assets

in

WebSphere

Commerce

In

order

to

understand

fulfillment

assets,

it

is

necessary

to

understand

the

relationships

between

fulfillment

and

the

store.

This

can

be

explained

by

the

use

of

an

information

model.

The

following

sections

describe

the

relationships

that

fulfillment

has

to

a

store

and

other

assets.

Member StoreItemFulfillmentCenter

PickBatch

ShippingJurisdictionGroupCalculationRule TaxJurisdictionGroupCalculationRule

OrderItem

RaDetail

Inventory

ShippingArrangement

FulfillmentCenter
1

1+owner

1
0..1

1
1 0..1

1

ItemFulfillmentCenter

Receipt
0..1

Store
0..1

+defaultFulfillmentCenter

1

1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Fulfillment

center

In

the

preceding

diagram,

the

fulfillment

center

is

at

the

center

of

the

fulfillment

process.

A

fulfillment

center

has

an

owner,

defined

in

the

MEMBER

table.

Each

store

can

be

associated

with

multiple

fulfillment

centers,

and

a

fulfillment

center

can

have

several

stores

associated

with

it.

There

are

several

interactions

between

the

store

and

the

fulfillment

center,

as

indicated

in

the

diagram.

For

more

information

on

store

assets,

see

“Understanding

store

assets

in

WebSphere

Commerce”

on

page

123.

198

Store

Development

Guide

Receipts

Fulfillment

centers

receive

inventory

for

items

on

a

daily,

weekly,

or

monthly

basis.

When

inventory

is

received

for

an

item,

a

receipt

is

created

in

the

RECEIPT

table

which

records

information

about

the

quantity

received,

as

well

as

the

store

which

owns

the

inventory.

As

orders

are

processed,

the

RECEIPT

table

is

updated

to

reflect

the

current

available

inventory

levels.

For

information

on

creating

receipts,

see

“Creating

inventory

assets

in

WebSphere

Commerce”

on

page

268.

RaDetail

RaDetail

is

the

detailed

information

about

items

on

an

expected

inventory

record.

This

information

can

be

used

to

estimate

when

inventory

may

be

expected

to

be

received

at

a

fulfillment

center

and

provide

customers

with

expected

shipping

dates

for

backordered

items.

Inventory

A

store

has

inventory

which

is

associated

with

the

fulfillment

center.

Inventory

includes

everything

that

can

be

physically

accounted

for

in

a

fulfillment

center.

Inventory

is

associated

with

one

store

and

one

fulfillment

center.

Information

about

the

inventory

that

a

store

owns

at

the

fulfillment

center

is

also

recorded

such

as

reserved

quantities,

amounts

on

backorder,

and

amounts

allocated

to

backorders.

This

information

is

stored

in

the

ITEMFFMCTR

table.

For

more

information

on

inventory

and

inventory

assets,

see

Chapter

29,

“Inventory

assets,”

on

page

265.

Shipping

arrangements

A

shipping

arrangement

is

a

relationship

that

enables

a

store

to

use

a

fulfillment

center.

Shipping

arrangements

indicate

that

a

fulfillment

center

can

ship

products

on

behalf

of

a

store

using

a

shipping

mode.

Each

store

has

a

shipping

arrangement

with

a

fulfillment

center

and

vice

versa.

Shipping

arrangements

are

set

up

in

the

SHPARRANGE

table.

For

information

on

creating

shipping

arrangements,

see

“Creating

shipping

fulfillment

assets”

on

page

240.

Other

fulfillment

assets

There

are

other

relationships

to

a

fulfillment

center

that

are

not

directly

related

to

a

store.

A

pick

batch

is

one

that

is

associated

with

one

fulfillment

center.

A

pick

batch

groups

together

order

releases

for

their

processing

as

a

unit

at

a

fulfillment

center,

and

creates

pick

slips

and

pack

slips.

Once

items

have

been

picked

and

packed,

an

order

release

can

then

be

shipped,

and

the

shipment

can

be

confirmed.

Pick

batch

information

is

stored

in

the

PICKBATCH

table.

An

order

item

is

also

associated

with

one

fulfillment

center.

An

item

is

a

specific

instance

of

a

product,

defined

by

attributes.

Information

about

each

item

in

an

order

is

stored

in

the

ORDERITEMS

table.

For

more

information

on

order

assets,

see

Chapter

30,

“Order

assets,”

on

page

273.

Like

other

entities,

a

fulfillment

center

has

rules

which

govern

some

of

its

actions.

Each

fulfillment

center

has

rules

for

tax

and

shipping

charges.

These

are

defined

in

the

TAXJCRULE

and

SHPJCRULE

tables

respectively.

For

more

information

on

tax

and

shipping

assets,

see

Chapter

26,

“Shipping

assets,”

on

page

229,

and

“Understanding

tax

assets

in

WebSphere

Commerce”

on

page

245.

For

more

detailed

information

on

the

structure

of

fulfillment

assets

in

WebSphere

Commerce

Server,

see

the

fulfillment

data

models

in

the

WebSphere

Commerce

online

help.

Chapter

19.

Fulfillment

assets

199

Creating

fulfillment

assets

in

WebSphere

Commerce

Before

your

store

can

ship

goods

to

a

customer,

you

must

define

the

fulfillment

center,

or

centers,

that

will

supply

these

goods.

Create

this

information

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Before

creating

assets,

you

should

also

be

familiar

with

the

material

covered

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

To

create

fulfillment

assets

for

your

store

using

an

XML

file,

do

the

following:

1.

Review

the

XML

files

used

to

create

fulfillment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

fulfillment.xml

file,

which

includes

the

fulfillment

information.

To

view

the

fulfillment.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

fulfillment.xml

file

is

located

in

the

data

directory.

2.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

3.

Create

a

fulfillment.xml

file,

either

by

copying

one

of

the

fulfillment.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

fulfillment.xml.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/xml/sar

4.

Define

the

fulfillment

center,

or

centers

that

your

store

supports:

a.

Using

the

following

example

as

your

guide,

define

a

fulfillment

center

in

the

XML

file

in

the

FFMCENTER

table:

<ffmcenter

ffmcenter_id="@ffmcenter_id_1"

member_id="@seller_b2b_mbr_id"

name="ToolTech

Home"

defaultshipoffset="0"

markfordelete="0"

/>

where

v

ffmcenter_id

is

a

generated

unique

key

v

member_id

is

the

owner

of

the

fulfillment

center

v

name

is

a

string

that,

along

with

the

owner,

uniquely

identifies

this

fulfillment

center.

v

defaultshipoffset

is

an

estimate

of

the

number

of

seconds

it

takes

for

an

item

to

be

shipped

from

this

fulfillment

center.

This

value

can

be

overridden

in

the

STORITMFFC

table.

v

markfordelete

indicates

whether

the

fulfillment

center

should

be

deleted

as

follows:

0

=

do

not

delete.

1

=

delete

if

no

longer

in

use.

For

more

details,

see

the

information

on

the

Database

Cleanup

utility

in

the

WebSphere

Commerce

online

help.

200

Store

Development

Guide

b.

Using

the

following

example

as

your

guide,

describe

the

fulfillment

center

in

the

XML

file

in

the

FFMCENTDS

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<ffmcentds

ffmcenter_id="@ffmcenter_id_1"

description="The

fulfillment

center

that

supplies

products

to

ToolTech."

language_id="&en_US"

displayname="ToolTech

Fulfillment"

staddress_id="@staddress_id_en_US_1"

/>

where

v

ffmcenter_id

is

a

generated

unique

key

v

description

is

a

description

of

the

fulfillment

center,

suitable

for

display

to

a

customer.

v

language_id

is

the

language

in

which

this

information

will

display.

(For

more

information

about

support

for

different

languages,

see

Chapter

34,

“Globalization,”

on

page

295.)

v

displayname

is

the

name

of

the

fulfillment

center,

suitable

for

display

to

a

customer.

v

staddress_id

is

the

physical

location

of

the

fulfillment

center.
c.

Repeat

steps

a

and

b

for

all

fulfillment

centers

that

your

store

supports.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

store

fulfillment

assets

(non-ATP)

After

you

have

defined

the

fulfillment

center

or

centers

that

will

supply

goods

for

your

store,

you

must

associate

a

fulfillment

center

to

each

product.

That

is,

you

must

identify

which

fulfillment

center

will

supply

which

of

your

products.

To

create

this

relationship,

add

information

to

the

INVENTORY

table.

Create

this

information

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Note:

1.

You

must

create

store

assets

before

you

can

associate

a

store

with

a

fulfillment

center.

For

more

information

on

creating

store

assets,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

You

must

also

create

the

catalog

assets

before

you

can

create

the

store

fulfillment

assets.

For

more

information,

see

“Displaying

store

catalog

assets”

on

page

162.

2.

Create

store

fulfillment

assets

only

if

you

implement

non-ATP

fulfillment.

The

INVENTORY

table

is

not

used

by

a

store

that

includes

the

ATP

functions.

To

create

the

store

fulfillment

relationship

using

an

XML

file,

do

the

following:

1.

Review

the

XML

files

used

to

create

store

fulfillment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Chapter

19.

Fulfillment

assets

201

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

storefulfill.xml

file,

which

includes

the

store

fulfillment

information.

To

view

the

storefulfill.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

storefulfill.xml

file

is

located

in

the

data

directory.

2.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

3.

Create

a

storefulfill.xml

file,

either

by

copying

one

of

the

storefulfill.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file

in

the

WC_installdir/schema/xml

directory

or

the

DTD

included

in

the

store

archive.

4.

Using

the

following

example

as

your

guide,

create

a

store-fullfillment

center

relationship

in

the

XML

file,

by

adding

information

to

the

INVENTORY

table.

<inventory

catentry_id="@catentry_id_1470"

quantity="100"

ffmcenter_id="@ffmcenter_id_1"

store_id="@storeent_id_1"

quantitymeasure="C62"

inventoryflags="0"

/>

where

v

catentry_id

is

the

catalog

entry

that

this

fulfillment

center

will

supply.

v

quantity

is

the

quantity

amount,

in

units

indicated

by

QUANTITYMEASURE,

available

from

this

fulfillment

center.

v

ffmcenter_id

is

the

fulfillment

center

that

will

be

supplying

the

inventory.

v

store_id

is

the

store

for

which

the

inventory

is

being

supplied.

v

quantitymeasure

is

the

unit

of

measurement

for

QUANTITY.

v

inventoryflags

are

bit

flags

that

indicate

how

QUANTITY

is

used:

–

1

=

noUpdate.

The

default

UpdateInventory

task

command

does

not

update

QUANTITY.

–

2

=

noCheck.

The

default

CheckInventory

and

UpdateInventory

task

commands

do

not

check

QUANTITY.
5.

Repeat

step

3

for

each

catalog

entry

in

your

store.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

202

Store

Development

Guide

Chapter

20.

Campaign

assets

Campaigns

serve

to

organize

your

marketing

efforts.

Campaigns

are

typically

created

by

either

a

Marketing

Manager,

or

by

a

Merchandising

Manager.

They

are

often

associated

with

a

certain

set

of

objectives.

For

instance,

a

″Back

to

School″

campaign

may

have

an

objective

of

increasing

sales

of

children’s

clothes

during

the

campaign.

Understanding

campaigns

in

WebSphere

Commerce

The

following

diagram

illustrates

the

campaign

assets

in

the

WebSphere

Commerce

Server:

CampaignStore

Initiative

0..1

EMarketingSpot

InitiativeSchedule

0..1

1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Campaigns,

and

their

associated

assets

are

scoped

to

stores.

Within

WebSphere

Commerce,

campaigns

contain

any

number

of

campaign

initiatives,

which

define

a

condition.

The

campaign

initiatives

generate

targeted

content

for

the

customers,

when

the

defined

condition

is

evaluated

to

be

true.

The

result

is

that

a

campaign

is

the

high-level

marketing

element

that

organizes

the

©

Copyright

IBM

Corp.

2000,

2003

203

initiatives.

The

campaign

initiative

information

model

is

displayed

below:

CustomerProfile

CustomerBehavior

Initiative Condition 1..nRule11 11

Action

1
1

ProductAssociation

RelatedCatalogEntry

ProductRecommendation

Product CatalogGroup

CategoryRecommendation

1
Discount

AwarenessAdRecommendation

1

CouponPromotion

Collateral

1

Campaign

initiatives

are

associated

with

a

campaign

that

contains

a

collection

of

initiatives.

As

an

example

of

this

relationship,

if

an

office

supply

store

had

a

″Back

to

School″

campaign,

the

initiatives

would

be

responsible

for

lower-level

actions,

such

as

advertising

a

discount

on

pens,

or

suggesting

lined

paper

to

any

customer

who

has

registered

and

listed

her

occupation

as

a

student.

Campaign

initiatives

are

capable

of

displaying

four

types

of

dynamic

content:

v

Suggestive

selling

initiative

v

Collaborative

filtering-based

recommendation

v

Awareness

advertisement

v

Merchandising

association

Suggestive

selling

content

provides

rule-based

category

and

product

recommendations,

targeted

at

a

specific

customer

audience,

based

on

a

customer’s

profile,

and

other

customers’

behaviors.

The

targetable

customer

behaviors

include

the

total

value

of

the

shopping

cart,

the

contents

of

the

shopping

cart,

and

the

contents

of

the

customer’s

purchase

history.

Collaborative

filtering-based

recommendations

also

create

product

recommendations,

but

they

use

a

different

recommendation

algorithm,

which

targets

items

based

on

customers’

overall

behavior,

rather

than

predefined

rules.

Awareness

advertisements

provide

advertising

content

targeted

at

a

specific

customer

audience,

based

on

the

same

criteria

as

those

used

for

suggestive

selling,

but

they

are

intended

to

be

used

to

increase

a

customer’s

awareness

about

activities

at

the

online

store,

highlight

special

offers,

and

to

increase

brand

204

Store

Development

Guide

awareness.

Awareness

advertisements

follow

the

information

model

shown

here:

CouponPromotion

Collateral

1

Discount

AwarenessAdRecommendation

1

Merchandising

associations

create

up-sell

and

cross-sell

opportunities,

based

on

the

static

associations

defined

in

the

catalog.

In

order

to

create

an

initiative

of

this

type,

a

method

of

selecting

the

source

product

in

the

association

must

be

defined,

so

that

the

proper

source

is

used

when

the

e-Marketing

Spot

is

invoked,

to

return

the

target

products.

The

method

can

select

the

source

based

on

either

the

content

of

the

current

page,

the

contents

of

the

shopping

cart,

or

the

contents

of

the

shopper’s

purchase

history,

as

sources

of

the

association.

Initiatives

can

be

incorporated

into

any

page

on

the

site.

When

the

site

is

designed,

special

placeholders,

called

e-Marketing

Spots,

are

placed

on

the

site.

When

displayed

to

a

customer,

these

placeholders

are

replaced

by

the

specific

targeted

content.

Target

locations

are

assigned

by

scheduling

initiatives

to

display

in

e-Marketing

Spots

in

the

desired

locations.

For

more

information

on

adding

e-Marketing

Spots

to

your

store,

see

Chapter

42,

“Adding

e-Marketing

Spots

to

your

store,”

on

page

429.

Campaign

initiatives

contain

a

condition

that

determines

when

and

to

whom

they

are

displayed.

This

condition

is

defined

when

the

initiative

is

created

and

can

be

changed

during

the

lifetime

of

the

initiative

to

adjust

the

initiative’s

visibility

and

the

displayed

content.

For

more

information

about

customer

profiles,

see

Chapter

32,

“Customer

profiles,”

on

page

281.

Campaign

initiatives

generate

statistics

about

their

use.

These

statistics

can

be

viewed

using

the

WebSphere

Commerce

Accelerator

by

Merchants,

Marketing

Managers,

and

Merchandising

Managers.

The

statistics

illustrate

an

initiative’s

clickthrough

rate

for

each

e-Marketing

Spot

where

it

is

implemented.

These

statistics

provide

feedback

on

the

effectiveness

of

the

initiative,

as

well

as

comparative

success

rates

among

the

various

locations

in

which

it

displays.

Creating

campaign

assets

in

WebSphere

Commerce

Campaigns

and

campaign

initiatives

are

typically

created

by

either

a

Marketing

Manager,

or

by

a

Merchandising

Manager

using

the

Campaign

and

Campaign

Initiative

wizards

in

the

WebSphere

Commerce

Accelerator.

For

more

information,

see

the

WebSphere

Commerce

online

help.

For

more

information

on

adding

e-Marketing

Spots

to

your

store,

see

Chapter

42,

“Adding

e-Marketing

Spots

to

your

store,”

on

page

429.

Chapter

20.

Campaign

assets

205

206

Store

Development

Guide

Chapter

21.

Payments

instruments

WebSphere

Commerce

provides

an

optional

component

called

WebSphere

Commerce

Payments

(formerly

known

as

IBM

Payment

Manager).

If

you

wish

to

use

WebSphere

Commerce

Payments

with

your

store,

you

must

include

a

payment

asset

file

in

your

store

archive.

Before

publishing

your

store

archive,

ensure

that

your

Payments

instance

is

started,

then,

when

the

store

archive

is

published,

the

payment

asset

file

(included

as

part

of

the

sample

store

archives)

sets

up

the

following

information

in

WebSphere

Commerce

Payments:

v

The

merchant_ID

in

the

WebSphere

Commerce

Payments

database.

v

The

type

of

cassette

used

in

the

store.

v

An

account

in

the

WebSphere

Commerce

Payments

database

for

each

currency

specified

as

supported

by

the

store

in

the

payment

asset

file.

If

your

store

does

not

support

the

currency

specified

in

the

payment

asset

file,

the

account

will

not

be

created.

v

A

brand,

or

brands,

for

each

account.

To

set

up

a

payment

asset

file

and

set

up

your

store

to

use

WebSphere

Commerce

Payments,

do

the

following:

v

Create

payment

data

in

the

form

of

an

XML

file

(paymentinfo.xml)

that

is

loaded

during

store

publish

using

the

Administration

Console.

This

configures

WebSphere

Commerce

Payments

with

the

merchant

and

the

brand

types

specified

for

the

store

being

published.

For

more

information,

see

“Create

payment

assets

using

an

XML

file”

on

page

208.

Note:

paymentinfo.xml

does

not

populate

tables

in

the

WebSphere

Commerce

Server

database.

It

configures

WebSphere

Commerce

Payments.

paymentinfo.xml

is

only

applicable

if

you

are

using

offline

credit

card

as

the

payment

method.

After

the

store

archive

has

been

published,

you

can

place

orders

using

the

payment

information

set

up

in

the

sample

store

archive.

If

you

want

to

add

new

brands,

you

must

configure

WebSphere

Commerce

Payments

to

work

with

each

brand.

v

If

you

will

use

an

IBM

payment

cassette

other

than

the

OfflineCard

or

CustomOffline

cassette,

modify

the

sample

store

Web

assets

as

described

in

“Customize

environment

for

a

payment

cassette”

on

page

209.

v

Complete

the

set

up

of

WebSphere

Commerce

Payments

for

your

store

using

the

Administration

Console

or

the

WebSphere

Commerce

Payments

user

interface.

If

you

use

the

Administration

Console,

menu

items

appear

on

the

Payments

menu.

If

you

use

the

WebSphere

Commerce

Payments

user

interface,

menu

items

appear

under

Administration

in

the

navigation

frame.

For

more

information

on

setup

tasks,

see

the

topic

″Setting

up

WebSphere

Commerce

Payments

for

your

store″

in

the

WebSphere

Commerce

Production

online

help.

If

you

intend

to

use

a

payment

mechanism

other

than

WebSphere

Commerce

Payments,

the

steps

to

follow

to

use

your

payment

mechanism

are

similar

to

the

following

procedures.

©

Copyright

IBM

Corp.

2000,

2003

207

Create

payment

assets

using

an

XML

file

To

create

payment

assets

for

your

store

using

an

XML

file,

do

the

following:

1.

Review

the

XML

files

used

to

create

payment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

paymentinfo.xml

file,

which

include

the

payment

information.

To

view

the

paymentinfo.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

paymentinfo.xml

files

are

located

in

the

data

directory.

2.

Create

a

paymentinfo.xml

file,

either

by

copying

one

of

the

paymentinfo.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

the

paymentinfo.xml.

The

DTD

file

is

located

in

the

following

directory:

WC_installdir/xml/sar.

3.

Enable

or

disable

WebSphere

Commerce

Payments.

a.

Using

the

following

example

as

your

guide,

in

your

XML

file

enable

or

disable

WebSphere

Commerce

Payments

and

specify

what

types

of

payment

cassette,

currencies

and

brands

your

store

accepts:

<paymentinfo>

<PaymentManager

enable="yes"/>

<Cassette

type="OfflineCard">

<Account

currency="USD">

<Brand

type="MasterCard"/>

<Brand

type="VISA"/>

<Brand

type="American

Express"/>

<Account/>

<Account

currency="EUR">

<Brand

type="MasterCard"/>

<Brand

type="VISA"/>

<Brand

type="American

Express"/>

</Account>

</Cassette>

</paymentinfo>

where:

v

enable

is

whether

WebSphere

Commerce

Payments

is

enabled

or

disabled.

When

WebSphere

Commerce

Payments

is

disabled,

your

store

will

not

be

able

to

process

payment

transactions

through

the

Payments

component,

although

the

Payments

user

interface

will

still

function.

If

you

disable

the

Payments

component,

there

is

no

need

to

specify

the

other

elements

in

the

paymentinfo

element.

v

Cassette

type

is

the

type

of

cassette

supported.

v

Account

currency

is

the

currency

your

store

supports.

Account

currency

is

required

if

you

are

using

the

OfflineCard

cassette

type.

The

currency

must

be

identified

in

a

three-letter

code

conforming

to

the

ISO

4217

standard.

For

example,

″USD″

for

U.S.

dollars.

v

Brand

type

is

the

type

of

credit

card

supported

by

the

account

and

the

currency.

208

Store

Development

Guide

Customize

environment

for

a

payment

cassette

WebSphere

Commerce

provides

sample

stores

that

can

use

the

OfflineCard

or

CustomOffline

cassette

as

the

payment

cassette

for

handling

payment

transactions.

These

cassettes

are

automatically

configured

as

being

available

for

use

as

a

payment

method

for

the

sample

stores.

The

sample

store

Web

assets

need

to

be

modified

to

use

any

other

payment

cassette.

The

instructions

in

this

section

describe

how

to

customize

your

environment

to

use

other

IBM

payment

cassettes

provided

with

WebSphere

Commerce.

For

a

store

to

use

an

IBM

payment

cassette,

you

must

first

have

selected

the

WebSphere

Commerce

Payments

component

for

installation.

Installation

instructions

are

provided

in

the

WebSphere

Commerce

Installation

Guide

for

your

platform.

The

WebSphere

Commerce

installation

program

installs

both

the

Payments

framework

and

the

cassette

software.

You

must

then

use

the

WebSphere

Commerce

Configuration

Manager

to

perform

necessary

post-installation

tasks,

such

as

creating

a

Payments

instance

and

adding

a

cassette

to

an

instance.

Refer

to

the

WebSphere

Commerce

Installation

Guide

and

the

Configuration

Manager

online

help

for

instructions

on

configuring

a

Payments

instance.

After

adding

a

payment

cassette

to

a

Payments

instance,

check

the

following

customization

steps

to

ensure

that

your

WebSphere

Commerce

sample

store

can

process

payments

through

the

payment

cassette

you

have

selected:

1.

Modify

the

store

.jsp

file

to

specify

the

payment

cassette.

2.

Check

the

cassette’s

Cashier

profile.

3.

Check

the

cassette’s

.jsp

file

that

supports

the

clerk

order

(guest

order)

placement

page.

4.

Configure

the

Merchant

Settings.

These

steps

are

described

in

the

following

sections.

Modify

the

store

.jsp

file

If

you

are

not

going

to

use

the

OfflineCard

or

CustomOffline

cassette

with

the

sample

store,

you

must

modify

the

store’s

.jsp

file.

By

default,

the

store’s

.jsp

file

is

set

up

to

use

the

OfflineCard

cassette;

therefore,

you

must

modify

the

file

to

use

any

other

cassette.

The

FashionFlow

store

also

uses

the

CustomOffline

cassette.

For

a

list

of

.jsp

files

to

review

for

possible

modification,

see

Table

10

on

page

211.

To

modify

the

.jsp

file,

follow

these

steps:

1.

Create

a

store

in

WebSphere

Commerce

using

a

sample

store

such

as

FashionFlow.

2.

Go

to

the

following

directory:

WAS_installdir/installedApps/cell_name/
WC_instance_name.ear/Stores.war/

400

For

iSeries,

the

path

is:

WAS_userdir/WAS_instance_name/
installedApps/cell_name/WC_instance_name.ear/Stores.war/.The

store

you

created

has

its

own

directory

within

the

war

directory.

3.

From

your

store’s

directory,

open

the

OrderSubmitForm.jsp

file

in

a

text

editor.

Chapter

21.

Payments

instruments

209

Business The

Contract

Tools

in

the

WebSphere

Commerce

Accelerator

supports

all

payment

cassettes.

The

OrderSubmitForm.jsp

file

must

honor

the

payment

terms

and

conditions

of

the

contract

that

was

set

up

between

the

Buyer

organization

and

the

Seller.

4.

Search

for

the

following

text

in

the

OrderSubmitForm.jsp

file:

if

(info[i].getPolicyName().trim().equals("OfflineCard"))

Change

the

name

of

the

payment

policy

from

OfflineCard

to

one

of

the

following

as

appropriate:

CustomOffline

BankServACH

Paymentech

VisaNet

VisaNet_PCard

For

more

information

about

policies,

see

the

POLICY

database

table

in

the

WebSphere

Commerce

Development

online

help.

The

policy

for

CustomOffline

supports

processing

of

custom

payment

transactions

such

as

cash

on

delivery

or

COD,

Bill-Me-Later

or

coupons

that

are

often

executed

outside

of

WebSphere

Commerce

Payments.

The

policy

for

BankServACH

supports

processing

of

online

electronic

check

payments

using

the

BankServ

payment

gateway

that

interfaces

with

the

Automated

Clearing

House

Network

(ACH).

The

policy

for

Paymentech

supports

online

authorization

and

settlement

of

credit

card

and

non-PIN

based

debit

card

payments.

The

policy

for

VisaNet

supports

processing

of

credit

card

transactions

using

the

Vital

Processing

Services

or

First

Horizon

Merchant

Services

(FHMS)

financial

network.

Note:

If

you

are

using

the

Cassette

for

VisaNet

with

purchasing

card

support,

select

VisaNet_PCard

rather

than

VisaNet.

For

more

information

about

these

cassettes,

refer

to

the

cassette

supplements.

If

your

store

uses

the

Quick

Checkout

function,

you

should

also

change

the

name

of

the

payment

policy

in

these

other

files:

ShoppingArea\CheckoutSection\QuickCheckoutSubsection\QuickCheckoutForm.jsp

UserArea\AccountSection\QuickCheckoutProfileSubsection\QuickCheckoutProfileForm.jsp

5.

(Optional)

If

you

are

using

the

credit

card

method

of

payment

and

need

to

add

additional

fields

in

the

user

interface

to

collect

additional

information

from

the

user,

review

the

StandardCreditCard.jsp

file

also

for

possible

modifications.

See

Table

10

on

page

211

for

path

information.

To

enable

credit

card

brands

to

be

displayed

when

doing

a

purchase

with

a

particular

payment

method

that

involves

the

use

of

credit

cards,

be

sure

that

an

option

value

exists

in

the

.jsp

file

for

the

payment

method.

For

example,

to

enable

credit

card

brands

to

be

displayed

when

doing

a

purchase

with

the

Paymentech

payment

method,

search

for

<select

name="cardBrand">.

Add

a

new

line

underneath

this

text

and

add

the

following:

<option

value="Paymentech">Paymentech</option>.

210

Store

Development

Guide

Table

10.

Store

.jsp

files

to

review

JSP

file

Business

model/sample

Purpose

of

change

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/

OrderSubmitForm.jsp

Consumer

direct

(Fashion

Flow

or

Express),

hosted

reseller

change

payment

policy

name

from

OfflineCard

/ShoppingArea/CheckoutSection/QuickCheckoutSubsection/

QuickCheckoutForm.jsp

/UserArea/AccountSection/QuickCheckoutProfileSubsection/

QuickCheckoutProfileForm.jsp

Consumer

direct

(Fashion

Flow

or

Express)

change

payment

policy

name

from

OfflineCard

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/

StandardCreditCard.jsp

Consumer

direct

(Fashion

Flow

or

Express)

enable

credit

card

brand

to

display

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/

StandardCreditCardDisplay.jsp

B2B

direct

(ToolTech),

value

chain

-

supply

enable

credit

card

brand

to

display

Check

the

Cashier

profile

for

the

cassette

A

WebSphere

Commerce

Payments

Cashier

profile

should

be

available

for

any

IBM

payment

cassette

provided

with

WebSphere

Commerce.

The

Cashier

profile

is

used

to

create

orders

in

the

Payments

component.

You

may

want

to

edit

the

Cashier

profile

to

set

certain

parameters,

such

as

the

APPROVEFLAG

and

DEPOSITFLAG

parameters.

Since

not

all

cassette

parameters

are

alike,

refer

to

the

cassette

supplement

for

more

information

about

setting

parameters:

v

WebSphere

Commerce

Payments

CustomOffline

Cassette

Supplement

v

WebSphere

Commerce

Payments

OfflineCard

Cassette

Supplement

v

WebSphere

Commerce

Payments

Cassette

for

BankServACH

Supplement

v

WebSphere

Commerce

Payments

Cassette

for

Paymentech

Supplement

v

WebSphere

Commerce

Payments

Cassette

for

VisaNet

Supplement

Cashier

profiles

associated

with

IBM-provided

payment

cassettes

include

the

following:

WC51_BankServACH.profile

WC51_CustomOffline_BillMe.profile

WC51_CustomOffline_COD.profile

WC51_OfflineCard.profile

WC51_VisaNet.profile

WC51_VisaNet_PCard.profile

WC_Paymentech.profile

The

cassette

profile

should

be

stored

in

the

WebSphere

Commerce

instances

profile

directory.

To

locate

the

directory

in

which

the

profile

is

stored,

look

for

the

WebSphere

Commerce

configuration

file

for

the

instance

you

created.

If

you

used

the

default

instance

name

of

’demo’,

the

configuration

file

is:

WC_installdir/instances/demo/xml/demo.xml

400

For

iSeries,

the

path

would

be:

WC_userdir/instances/demo/xml/demo.xml

Chapter

21.

Payments

instruments

211

Then,

look

at

the

directory

specified

by

the

ProfilePath

attribute

of

the

Payment

Manager

element

in

the

configuration

file.

This

attribute

specifies

where

the

profile

should

be

located.

If

you

used

the

default

instance

name

of

’demo’,

the

directory

path

in

which

to

store

the

profile

would

be

the

following:

WC_installdir/instances/demo/xml/payment

400

For

iSeries,

the

path

is:

WC_userdir/instances/demo/xml/payment

If

you

edit

the

cassette’s

Cashier

profile

to

set

parameters,

be

sure

to

save

the

profile

in

the

WC_installdir/instances/instance_name/xml/payment

directory,

where

instance_name

is

the

name

of

the

instance

you

are

using.

400

For

iSeries,

the

path

is:

WC_userdir/instances/instance_name/xml/payment

The

actual

cashier

profile

used

by

a

payment

business

policy

is

specified

by

the

profileName

property

value

in

the

Properties

field

of

the

payment

business

policy.

Refer

to

the

POLICY

database

table

in

the

online

help

for

more

information

about

business

policies.

Check

the

cassette

.jsp

file

Payments

are

processed

through

the

WebSphere

Commerce

Accelerator

if

an

order

clerk

places

a

guest

order

on

behalf

of

a

customer.

The

payment

data

for

the

cassette

is

gathered

using

the

cassette’s

.jsp

file.

The

cassette

.jsp

file

is

called

the

“payment

attribute

page”

in

WebSphere

Commerce.

The

actual

page

used

is

specified

by

the

attrPageName

property

value

in

the

Properties

field

of

the

payment

business

policy.

For

more

information

see

the

POLICY

database

table

in

the

WebSphere

Commerce

Development

online

help.

Both

the

store

flow

and

WebSphere

Commerce

Accelerator

flow

should

make

use

of

the

payments

attribute

page.

The

cassette’s

.jsp

file

should

already

be

located

in

the

following

directory:

WC_installdir/wc.ear/CommerceAccelerator.war/tools/order/buyPages/

WAS_installdir/installedApps/cell_name/WC_demo.ear/CommerceAccelerator.war/

tools/order/buypages

400

For

iSeries,

the

path

is:

QIBM/userdata/webas5/base/WAS_instance_name/installedApps/

cell_name/WC_demo.ear/CommerceAccelerator.war/tools/order/buypages

If

you

wish

to

customize

the

“buy

page”

information,

modify

the

.jsp

file

accordingly.

Configure

Merchant

Settings

in

WebSphere

Commerce

Payments

To

configure

the

merchant

for

the

IBM

payment

cassette,

follow

the

instructions

provided

in

the

supplement

for

the

cassette.

Merchant

settings

can

be

modified

212

Store

Development

Guide

through

the

WebSphere

Commerce

Administration

Console

or

the

Payments

user

interface

(http://host_name:port/webapp/PaymentManager).

You

must

have

Payment

Administrator

or

Merchant

Administrator

authority

in

WebSphere

Commerce

Payments

to

configure

merchant

settings.

Chapter

21.

Payments

instruments

213

214

Store

Development

Guide

Chapter

22.

Language

assets

In

WebSphere

Commerce,

your

site

can

define

many

languages

which

can

be

used

within

it.

At

instance

creation,

the

LANGUAGE

table

can

have

ten

supported

languages

including

German,

Traditional

and

Simplified

Chinese,

Japanese,

Korean,

Italian,

French,

Spanish,

Brazilian

Portuguese,

and

English.

Sites

can

define

additional

languages,

or

dialects

of

existing

languages,

to

tailor

the

way

information

is

presented

to

customers

from

different

cultures

or

demographics.

Understanding

language

assets

in

WebSphere

Commerce

In

order

to

understand

language

assets,

it

is

necessary

to

understand

the

relationships

between

languages

and

the

store.

This

can

be

explained

by

the

use

of

an

information

model

below.

The

following

section

describes

the

relationships

and

associations

language

has

to

a

store

and

other

assets.

The

diagram

below

depicts

the

language

asset

information

model.

StoreEntityAlternativeLanguage SupportedLanguage

Store

Language1

+shoppingLanguage

1+alternativeLanguage

1

+supportedLanguage

0..1 +defaultLanguage

There

are

four

classifications

of

languages

in

WebSphere

Commerce.

They

are:

v

Default

language,

v

Supported

language,

v

Alternative

language,

and

v

Shopping

language.

Each

one

of

these

classifications

performs

a

different

role

in

the

store.

All

languages

are

stored

in

the

LANGUAGE

table.

Default

language

A

default

language

is

associated

with

each

store.

This

is

the

language

that

the

store

has

chosen

to

use

as

its

main

language,

and

will

be

the

language

displayed

to

customers

that

do

not

explicitly

choose

a

shopping

language.

The

default

language

for

a

store

is

implicitly

supported

by

the

store;

that

is,

the

store

must

always

be

©

Copyright

IBM

Corp.

2000,

2003

215

able

to

display

information

in

the

default

language,

or

one

of

its

alternative

languages,

if

any

are

defined

in

the

LANGPAIR

table.

When

information

is

not

available

in

one

of

its

supported

languages,

or

alternative

languages,

the

information

will

be

displayed

in

the

default

language.

Supported

language

The

STORELANG

table

indicates

the

languages

each

store

supports.

A

store

must

be

able

to

display

information

in

its

supported

languages,

or

one

of

their

alternative

languages,

if

any

are

defined

in

the

LANGPAIR

table.

A

store

also

supports

all

languages

supported

by

its

store

group.

For

more

information

on

adding

a

supported

language,

see

“Adding

a

language

to

a

store”

on

page

307.

Alternative

language

When

information

is

not

available

in

the

one

of

the

supported

languages

the

store

tries

to

display

the

information

in

an

alternative

language,

if

it

is

available.

A

store

can

specify

the

sequence

in

which

to

try

each

of

its

alternative

languages.

The

alternative

languages

for

a

store

include

the

alternative

languages

for

its

store

group.

Alternative

languages

can

be

useful

when

some

information

is

available

in

only

one

language,

but

should

be

made

available

to

customers

shopping

in

a

different,

related,

language.

This

might

be

the

case

when,

for

example,

not

all

information

has

yet

been

translated

into

all

supported

languages,

or

when,

for

example,

two

very

similar

dialects

of

the

same

language

are

supported,

sometimes

with

identical

information.

For

more

detailed

information

on

the

structure

of

language

assets

in

WebSphere

Commerce

Server,

see

the

language

data

models

in

the

WebSphere

Commerce

online

help.

Creating

language

assets

in

WebSphere

Commerce

You

can

define

the

languages

your

store

supports

in

one

of

the

following

ways:

v

Using

the

store

tools

in

WebSphere

Commerce

Accelerator

v

In

an

XML

file

that

will

be

loaded

by

the

Loader

package,

or

by

the

publishing

tool

in

the

Administration

Console

v

Editing

the

database

directly

using

SQL

inserts

v

Using

SQL

edits

and

updates

Note:

The

tools

work

with

pre-populated

XML

files

in

the

form

of

a

store

archive.

For

more

information

on

defining

store

supported

languages

using

store

tools,

see

the

WebSphere

Commerce

online

help.

For

more

information

on

defining

store

supported

languages

in

an

XML

file,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

216

Store

Development

Guide

Chapter

23.

Currency

assets

You

can

display

prices

in

your

site

in

one

currency,

or

you

can

display

multiple

currencies

by

following

the

instructions

provided

for

the

euro

(see

“Counter

currency”

on

page

219).

For

a

site

with

multiple

stores,

you

can

use

different

currencies

for

the

stores,

or

you

can

assign

currencies

to

the

store

group.

Depending

on

the

nature

of

the

site

that

you

are

creating,

you

can

specify

what

currencies

you

want

to

use

and

how

they

are

displayed.

In

WebSphere

Commerce,

you

can

allow

customers

to

select

a

shopping

currency.

The

shopping

currency

is

the

currency

in

which

customers

pay

for

products

at

a

specific

store.

All

monetary

amounts

on

the

store

pages

are

displayed

in

this

currency.

When

customers

change

their

shopping

currency,

the

prices

for

the

items

that

they

have

added

to

their

shopping

carts

and

their

order

totals

are

automatically

converted,

recalculated,

and

displayed

in

the

new

shopping

currency.

Customers

can

shop

in

many

currencies,

including

the

euro.

The

euro

became

the

legal

currency

for

the

European

Union

on

January

1,

1999,

and

is

now

used

in

financial

markets.

The

conversion

rates

between

the

euro

and

the

currencies

of

all

participating

countries

are

fixed.

Understanding

currency

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

currency

structure

in

the

WebSphere

Commerce

Server:

©

Copyright

IBM

Corp.

2000,

2003

217

Language

CounterCurrencyPair

CurrencyConversionRule

SupportedCurrency

CurrencyFormatDescription

1

Currency

1

+shoppingCurrency

1

+counterValueCurrency

1

+toCurrency

1

+fromCurrency

1

StoreEntity

0..1
+defaultCurrency

CurrencyFormat

1..n

1

NumberUsage

1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

In

the

diagram

above,

currency

is

at

the

center

of

the

information

model.

Each

store,

or

group

of

stores,

has

a

default

currency.

Currency

format

A

store

entity

can

have

many

currency

formatting

rules.

If

a

store

does

not

have

a

formatting

rule

for

a

particular

currency,

it

uses

the

formatting

rule

of

its

store

group.

Currency

formats

are

set

up

in

the

CURFORMAT

table.

The

currency

format

asset

can

be

used

by

other

stores

as

described

in

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Number

usage

Each

formatted

currency

rule

is

associated

with

one

number

usage.

Numbers

such

as

quantities

and

monetary

amounts

can

be

rounded

and

formatted

differently

depending

on

their

associated

usage.

Stores

can

specify

different

rounding

and

formatting

rules

for

the

numbers

they

display

according

to

how

they

are

used,

such

as

a

store

may

round

unit

prices

to

four

decimal

places

by

specifying

the

unit

218

Store

Development

Guide

price

usage,

but

other

currency

amounts

to

two

decimal

places

by

specifying

the

default

usage.

Number

usage

is

stored

in

the

NUMBRUSG

table.

Currency

format

description

A

currency

format

rule

can

have

many

currency

format

descriptions.

A

currency

format

description

describes

how

to

format

(for

display

purposes)

a

monetary

amount

in

a

particular

currency

and

particular

language.

Each

description

is

associated

with

a

language

in

the

LANGUAGE

table.

For

more

information

on

language

assets

see,

Chapter

22,

“Language

assets,”

on

page

215.

For

more

information

about

support

for

globalization,

see

Chapter

34,

“Globalization,”

on

page

295.

Currency

format

descriptions

are

stored

in

the

CURFMTDESC

table.

Supported

currency

A

store

entity

can

have

many

supported

currencies.

A

supported

currency

is

one

in

which

payment

is

accepted.

The

supported

currency

asset

can

be

used

by

other

stores

as

described

in

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Currency

conversion

rule

All

currencies

have

rules

governing

their

conversions

to

and

from

other

currencies.

Each

currency

conversion

rule

can

be

used

to

convert

a

price

(stored

in

the

database

in

a

particular

currency)

to

an

amount

customers

will

be

charged

in

a

supported

shopping

currency.

The

supported

currency

conversion

rule

asset

can

be

used

by

other

stores

as

described

in

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Counter

currency

Counter

currencies

are

currency

amounts

that

are

displayed

along

with

a

supported

currency.

They

cannot

be

used

for

purchases

but

are

used

for

informational

purposes.

If

customers

decide

to

shop

in

the

euro,

they

can

have

the

European

Monetary

Union

monetary

amounts,

and

other

currency

amounts

displayed

in

the

store.

Amounts

in

the

shopping

currency

are

converted

to

all

the

counter

value

currencies

for

that

shopping

currency.

The

counter

currencies

are

paired

with

a

supported

currency

such

as

the

Netherlands

guilder,

and

the

euro.

Counter

currency

pairs

are

stored

in

the

CURCVLIST

table.

The

currency

countervalue

asset

can

be

used

by

other

stores

as

described

in

Chapter

14,

“Relationships

between

stores,”

on

page

129.

For

more

detailed

information

on

the

structure

of

currency

assets

in

WebSphere

Commerce

Server,

see

the

currency

data

model

in

the

WebSphere

Commerce

online

help.

Creating

currency

assets

in

WebSphere

Commerce

The

Administration

Console

in

WebSphere

Commerce

allows

you

to

add

supported

currencies

to

your

store

and

to

select

a

default

currency

for

your

store.

For

more

information

on

which

assets

you

can

edit

with

the

Administration

Console,

see

the

WebSphere

Commerce

online

help

topic

″Changing

store

database

assets.″

Chapter

23.

Currency

assets

219

Note:

The

Administration

Console

works

with

pre-populated

XML

files

in

the

form

of

a

store

archive.

You

can

also

add

supported

currencies

and

a

default

currency

to

your

store

using

an

XML

file

that

can

be

loaded

into

the

database

using

the

Loader

package.

This

method

also

allows

you

to

create

other

types

of

currency

assets,

including

defining

currency

conversion

rates,

and

counter

value

currencies.

For

information

on

working

with

currencies,

see

the

WebSphere

Commerce

Development

online

help.

For

information

on

creating

new

currency

assets

in

the

form

of

an

XML

file,

see

“Creating

currency

assets

using

an

XML

file.”

Creating

currency

assets

using

an

XML

file

Create

the

currency

assets

for

your

store

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

Before

creating

assets,

you

should

be

familiar

with

the

material

covered

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

To

create

currency

assets

for

your

store

using

an

XML

file,

do

the

following:

1.

Review

the

XML

files

used

to

create

currency

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

currency.xml

file,

which

includes

the

currency

information.

To

view

the

currency.xml

files

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

currency.xml

files

are

located

in

the

data

directory.

2.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

3.

Create

a

currency.xml

file,

either

by

copying

one

of

the

currency.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file

in

the

WC_installdir/schema/xml

directory

or

the

DTD

included

in

the

store

archive.

4.

Define

the

currencies

supported

by

your

store.

a.

Using

the

following

example

as

your

guide,

define

the

currencies

supported

by

your

store

in

your

XML

file

for

the

CURLIST

table:

<curlist

currstr="USD"

storeent_id="@storeent_id_1"

/>

where:

v

currstr

is

the

3

character

ISO

4217

currency

code

representing

the

supported

currency.

This

code

must

appear

in

the

SETCCURR

column

of

the

SETCURR

table.

A

store

must

be

able

to

accept

payment

in

all

its

supported

currencies.

v

storeent_id

is

the

store

entity.
b.

Repeat

for

each

currency

supported

by

store.

The

default

currency

for

the

store

is

defined

in

the

STOREENT

table.

For

more

information,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

220

Store

Development

Guide

5.

(Optional)

What

currency

prices

in

your

store

display

in

depends

on

how

you

set

up

your

prices.

You

can

define

prices

for

every

currency

used

in

your

store,

or

you

can

define

prices

for

the

default

currency

only.

For

more

information

on

setting

up

prices,

“Creating

pricing

assets

in

WebSphere

Commerce”

on

page

175.

If

when

setting

up

prices,

you

defined

prices

for

the

default

currency

only,

yet

want

to

display

prices

in

your

store

in

other

supported

currencies,

you

must

add

conversion

rates

to

your

store.

Use

this

conversion

rate

to

convert

from

the

default

currency

to

the

supported

currency.

a.

Determine

the

currency

from

which

you

will

be

converting,

for

example,

US

dollar

(USD),

and

the

currency

or

currencies

to

which

you

are

converting,

for

example

the

Yen

(JPY).

To

determine

the

ISO

currency

codes

for

each

currency,

see

ISO

4217

codes

for

international

currencies.

b.

Using

the

following

example

as

your

guide,

add

conversion

information

to

the

CURCONVERT

table:

<curconvert

storeent_id="@storeent_id_1"

fromcurr="USD"

tocurr="JPY"

factor="105.10"

multiplyordivide="M"

bidirectional="Y"

updatable="Y"

curconvert_id="@curconvert_id_1"

/>

where:

v

storeent_id

is

the

store

entity.

v

fromcurr

is

the

currency

from

which

you

are

converting.

An

amount

in

the

FROMCURR

currency

is

normally

part

of

a

rule

or

other

information

used

to

determine

a

price,

discount,

shipping

charge,

or

similar

amount

associated

with

a

product

offered

for

sale.

v

tocurr

is

the

currency

to

which

you

are

converting.

TOCURR

is

normally

the

currency

in

which

the

customer

intends

to

pay.

Amounts

in

this

currency

are

normally

part

of

an

order

item,

such

as

a

unit

price,

shipping

charge,

or

tax

amount.

v

factor

is

the

conversion

factor.

v

multiplyordivide

is

as

follows:

To

convert

from

FROMCURR

to

TOCURR:

–

M

=

Multiply

by

FACTOR

–

D

=

Divide

by

FACTOR

For

bidirectional

rules,

conversion

from

TOCURR

to

FROMCURR

is

allowed

using

the

inverse

operation.

v

bidirectional

indicates

whether

the

rule

is

bidirectional

or

unidirectional:

–

Y

=

bidirectional

–

N

=

unidirectional
v

updatable

is

a

flag

intended

to

be

used

by

a

user

interface

that

manages

currency

conversion

rules.

Valid

values:

–

N

=

conversion

rate

is

irrevocable

-

should

never

be

changed

–

Y

=

conversion

rate

can

be

changed
v

curconvert_id

is

a

generated

unique

key.
c.

Repeat

steps

a

and

b

for

all

currencies

in

which

you

want

to

display

prices.

Chapter

23.

Currency

assets

221

Even

if

you

have

defined

prices

for

all

supported

currencies

in

your

pricing

information,

you

may

want

to

define

the

currency

conversion

rates

for

the

supported

currencies

in

your

store.

6.

(Optional)

If

you

want

to

include

display

prices

both

in

the

shopping

currency,

and

a

counter

currency

(for

example,

display

prices

in

both

the

Netherlands

guilder

and

the

euro),

you

must

add

information

to

the

CURCVLIST

table.

a.

Using

the

following

example

as

your

guide,

add

conversion

information

to

the

CURCVLIST

table:

<curcvlist

storeent_id="@storeent_id_1"

currstr="NLG"

countervaluecurr="EUR"

displayseq="1"

/>

where:

v

storeent_id

is

the

store

entity.

v

currstr

is

the

three

character

ISO

4217

currency

code

representing

the

currency.

This

code

must

appear

in

the

SETCCURR

column

of

the

SETCURR

table

is

the

currency

from

which

you

are

converting.

An

amount

in

the

FROMCURR

currency

is

normally

part

of

a

rule

or

other

information

used

to

determine

a

price,

discount,

shipping

charge,

or

similar

amount

associated

with

a

product

offered

for

sale.

v

countervaluecurr

is

the

three

character

ISO

4217

currency

code

representing

the

counter

value

currency.

This

code

must

appear

in

the

SETCCURR

column

of

the

SETCURR

table.

v

displayseq

is

the

number

which

indicates

the

presentation

order

of

the

counter

value

currency.

Counter

value

currencies

are

displayed

in

ascending

order

based

on

the

counter

value

display

sequence

specified

in

the

DISPLAYSEQ

column

in

the

CURCVLIST

table.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Other

currency

tasks

For

more

information

on

currency

in

general

and

on

other

currency

tasks,

including:

v

Adding

new

currencies

not

currently

supported

by

WebSphere

Commerce

v

Changing

existing

currency

formats

see

the

WebSphere

Commerce

Development

online

help.

222

Store

Development

Guide

Chapter

24.

Units

of

measure

assets

Products

can

be

sold,

and

inventory

tracked,

in

a

variety

of

quantity

units,

such

as

kilograms,

inches,

liters,

and

so

on.

Of

these

units,

products

can

be

ordered

in

minimum

quantities,

and

by

multiples

of

specific

quantities.

The

controller

commands

use

the

UOM

(unit

of

measure)

to

specify

the

quantity

unit.

If

a

UOM

parameter

is

not

specified,

then

the

customer’s

specified

quantity

is

multiplied

by

the

nominal

quantity

of

the

catalog

entry

in

the

CATENTSHIP

database

table.

The

result

is

known

as

the

requested

quantity.

The

requested

quantity

is

rounded

up

to

the

next

highest

quantity

multiple

for

the

catalog

entry.

For

example,

if

the

multiple

is

2

kilograms

and

the

requested

quantity

is

4.1

kilograms,

the

result

of

the

rounding

would

be

6

kilograms.

The

rounded

quantity

is

used

when

checking

inventory,

which

has

its

own

quantity

unit.

If

the

inventory

quantity

unit

and

the

catalog

entry

quantity

unit

are

different,

there

must

be

a

conversion

between

the

two

units.

When

Available

to

Promise

(ATP)

inventory

is

enabled

(refer

to

the

ALLOCATIONGOODFOR

column

of

the

STORE

table),

the

inventory

quantity

unit

is

defined

in

the

QUANTITYMEASURE

column

of

the

BASEITEM

table.

Otherwise,

it

is

defined

in

the

QUANTITYMEASURE

column

of

the

INVENTORY

table.

The

rounded

quantity

divided

by

the

nominal

quantity

of

the

catalog

entry

is

known

as

the

normalized

quantity.

The

normalized

quantity

is

stored

in

the

order

item

or

the

interest

item,

depending

on

the

command

being

run.

For

example,

if

the

rounded

quantity

is

6

kilograms

and

the

nominal

quantity

is

2

kilograms,

then

the

normalized

quantity

is

3.

When

finding

an

offer

for

a

catalog

entry,

the

requested

quantity

can

affect

which

offer

gives

the

best

price,

and

hence

determines

which

offer

will

be

used.

For

example,

if

the

rounded

quantity

is

6

kg

and

there

are

two

offers,

one

that

specifies

a

price

of

$4.00

for

the

nominal

quantity

of

2

kilograms

and

a

minimum

quantity

of

10

kilograms,

and

another

that

specifies

a

price

of

$4.50

for

the

nominal

quantity

of

2

kilograms

and

a

minimum

quantity

of

2

kilograms,

then

only

the

second

offer

can

be

used.

Understanding

units

of

measure

in

WebSphere

Commerce

The

following

diagram

illustrates

the

structure

of

units

of

measure

in

the

WebSphere

Commerce

Server:

©

Copyright

IBM

Corp.

2000,

2003

223

Language

StoreEntity

QuantityUnit

QuantityUnitFormatDescription

1

QuantityUnitFormat

1

1..n

NumberUsage

1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Quantity

unit

and

quantity

unit

format

A

quantity

unit

is

the

unit

of

measurement

used

in

the

store,

for

example,

kilograms,

pounds,

meters,

inches,

liters,

and

so

on.

The

quantity

unit

format

is

how

this

quantity

unit

is

formatted

in

the

store,

for

example

how

many

decimal

places

are

used

when

displaying

the

quantity

unit.

Each

quantity

unit

format

is

part

of

only

one

store

entity,

but

each

store

entity

may

have

several

quantity

unit

formats.

A

quantity

unit

format

can

exist

for

each

quantity

unit

and

number

usage,

and

may

have

one

or

more

quantity

unit

format

descriptions,

depending

on

how

many

languages

the

store

supports.

Business

Quantity

units

defined

in

one

store

may

be

used

by

other

stores.

In

order

for

one

store

to

use

quantity

units

defined

in

another

store

a

store

relationship

of

type

com.ibm.commerce.measurement.format

must

be

created

between

the

stores.

For

more

information,

see

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Quantity

unit

format

description

A

quantity

unit

format

description

describes

how

to

format

(for

display

purposes)

a

quantity

amount

in

a

particular

quantity

unit,

in

a

particular

language.

Number

usage

Number

usage

defines

the

way

a

number

is

used

in

an

application.

For

example,

by

using

number

usage

codes

in

your

WebSphere

Commerce

code,

you

can

choose

the

way

you

would

like

that

number

(currency

or

quantity)

to

be

formatted

or

rounded.

These

codes

(defined

in

the

NUMBRUSG

table)

allow

the

number

to

be

formatted

according

to

the

rules

specified

for

that

type

of

number

usage

in

the

CURFORMAT,

CURFMTDESC,

QTYFORMAT

and

QTYFMTDESC

tables.

This

allows

stores

to

format

numbers

in

different

ways

to

meet

the

requirements

of

a

variety

of

situations.

224

Store

Development

Guide

For

more

detailed

information

on

the

structure

of

unit

of

measure

assets

in

WebSphere

Commerce

Server,

see

the

quantity

unit

data

model

in

the

WebSphere

Commerce

online

help.

Creating

units

of

measure

in

WebSphere

Commerce

Units

of

measure

are

pre-populated

in

the

WebSphere

Commerce

Server

database

when

an

instance

is

created.

For

more

information,

see

Chapter

11,

“Site

assets,”

on

page

109.

You

can

also

define

new

units

of

measure

in

WebSphere

Commerce

for

use

in

your

store,

or

delete

units

of

measure

that

you

do

not

want

to

use

in

your

store.

To

define

new

units

of

measure

for

use

in

your

store,

add

information

to

the

following

database

tables:

v

QTYUNIT

v

QTUNITDSC

v

QTYFORMAT

v

QTYFMTDESC

v

QTYUNITMAP

v

QTYCONVERT

Chapter

24.

Units

of

measure

assets

225

226

Store

Development

Guide

Chapter

25.

Jurisdiction

assets

Jurisdictions

are

geographical

regions

or

zones

representing

a

country

or

region,

province

or

territory,

or

zip

code

range,

to

which

you

sell

goods.

Jurisdictions

can

be

grouped

together

to

form

jurisdiction

groups.

Jurisdiction

groups

are

used

in

the

calculation

of

the

shipping

charge

and

tax

charges

on

orders.

That

is,

a

jurisdiction

group

can

be

used

to

qualify

shipping

charges

and

tax

calculation

rules

used.

These

qualified

calculation

rules

are

applicable

to

items

in

an

order

only

if

the

item

is

being

shipped

to

an

address

within

one

of

the

jurisdictions

in

a

jurisdiction

group

that

is

associated

with

the

calculation

rule.

As

a

result,

shipping

charges

and

tax

amounts

may

be

calculated

differently

depending

on

the

shipping

addresses

for

the

different

items

in

the

order.

Understanding

jurisdiction

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

how

jurisdictions

and

jurisdictions

groups

fit

into

the

WebSphere

Commerce

Server.

JurisdictionGroup

StoreEntity

+definedJurisdictionGroup

Jurisdiction

+definedJurisdiction

ShippingJurisdictionShippingJurisdictionGroup InGroup

TaxJurisdictionTaxJurisdictionGroup
InGroup

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

©

Copyright

IBM

Corp.

2000,

2003

227

In

WebSphere

Commerce

a

jurisdiction

or

jurisdiction

group

is

part

of

a

store,

and

is

exclusive

to

the

store

or

store

group

for

which

it

is

created.

For

example,

if

you

create

three

jurisdictions

for

your

store,

and

then

delete

your

store,

the

jurisdictions

are

also

deleted.

They

are

not

available

for

use

by

any

other

existing

stores,

or

any

stores

you

might

create

in

the

future.

However,

if

you

create

jurisdictions

for

a

store

group,

jurisdictions

are

not

deleted

when

the

stores

in

that

group

are

deleted.

The

jurisdictions

would

be

available

for

new

stores

created

in

that

store

group.

WebSphere

Commerce

supports

two

types

of

jurisdictions:

shipping

jurisdictions

and

tax

jurisdictions.

Shipping

jurisdictions

can

be

grouped

together

to

form

shipping

jurisdiction

groups,

which

qualify

shipping

charge

calculation

rules.

Similarly,

tax

jurisdictions

can

be

grouped

together

to

form

tax

jurisdiction

groups,

which

qualify

tax

calculation

rules.

For

more

detailed

information

on

the

structure

of

jurisdiction

assets

in

theWebSphere

Commerce

Server,

see

the

jurisdiction

data

model

in

the

WebSphere

Commerce

online

help.

Creating

jurisdiction

assets

in

WebSphere

Commerce

You

must

create

jurisdiction

assets

for

your

store

in

order

to

apply

tax

and

shipping

charges.

For

more

information

on

creating

jurisdictions,

see

“Creating

tax

assets

in

WebSphere

Commerce”

on

page

248

or

“Creating

shipping

assets

in

WebSphere

Commerce”

on

page

231.

Once

jurisdictions

have

been

created

for

your

store,

you

can

edit

them

or

create

new

ones,

using

the

Tax

and

Shipping

notebooks

in

the

store

tools

on

the

WebSphere

Commerce

Accelerator.

Note:

A

jurisdiction

group

is

automatically

created

for

every

jurisdiction

created.

Jurisdictions

are

created

for

stores,

but

not

for

store

groups.

228

Store

Development

Guide

Chapter

26.

Shipping

assets

Shipping

is

how

a

store

handles

physically

delivering

goods

to

customers.

In

most

cases,

goods

are

shipped

from

a

fulfillment

center,

a

separate

agency

that

is

responsible

for

warehousing

the

store’s

goods.

In

order

to

offer

shipping

services,

and

charge

for

these

services,

a

store

created

with

WebSphere

Commerce

should

include

the

following:

v

At

least

one

shipping

mode

v

At

least

one

shipping

calculation

code

v

Jurisdictions

and

jurisdiction

groups

Understanding

shipping

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

shipping

structure

in

the

WebSphere

Commerce

Server.

JurisdictionGroup

Jurisdiction

CalculationCode

StoreEntity

+definedJurisdictionGroup

+definedJurisdiction

+definedCalculationCode

CalculationRule

FulfillmentCenter

ShippingMode

+definedShippingMode

Store

+defaultShippingMode

0..1

+defaultFulfillmentCenter 0..1

ShippingJurisdiction

ShippingJurisdictionGroupCalculationRule

0..1

1

ShippingArrangement

1

0..1

ShippingJurisdictionGroup

InGroup

1

ShippingJurisdictionGroup

©

Copyright

IBM

Corp.

2000,

2003

229

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Shipping

modes

The

shipping

mode

is

a

way

of

shipping

goods.

More

specifically,

a

shipping

mode

is

the

combination

of

a

shipping

carrier

(which

is

a

company

that

provides

shipping

services

from

a

fulfillment

center

to

a

customer),

and

the

shipping

service

offered

by

that

carrier.

For

example,

ABC

Shipping

Company,

Overnight

service

and

ABC

Shipping

Company,

Express

delivery

are

shipping

modes.

A

shipping

mode

belongs

to

a

store

entity.

If

the

store

entity

is

deleted,

the

shipping

modes

defined

within

that

store

entity

are

also

deleted.

A

store

is

not

required

to

have

a

default

shipping

mode,

but

it

is

recommended.

Shipping

arrangements

A

shipping

arrangement

is

an

arrangement

between

the

store

and

the

fulfillment

center,

indicating

that

a

fulfillment

center

will

ship

goods

for

a

particular

store

using

specified

shipping

modes.

Certain

restrictions

can

be

placed

on

a

shipping

arrangement,

including

the

time

period

for

which

the

shipping

arrangement

is

effective,

and

the

shipping

jurisdictions.

If

a

shipping

arrangement

is

associated

with

a

shipping

mode,

it

applies

only

for

that

shipping

mode.

Otherwise,

the

shipping

arrangement

applies

to

all

available

shipping

modes.

A

shipping

arrangement

is

part

of

a

store

and

will

be

deleted

if

the

store

is

deleted.

Calculation

codes

Calculation

codes

are

used

to

calculate

shipping

charges,

that

is,

a

shipping

calculation

code

indicates

how

shipping

charges

are

calculated

for

order

items.

In

order

to

calculate

shipping

charges

on

the

order

item,

you

must

assign

shipping

calculation

codes

to

either

a

catalog

entry

or

a

group

of

catalog

entries.

A

calculation

code

is

part

of

a

store

entity.

A

calculation

code

can

only

be

associated

with

one

store

entity,

but

a

store

entity

may

have

several

calculation

codes.

If

the

store

entity

is

deleted,

the

calculation

codes

associated

with

that

store

entity

are

also

deleted.

For

more

information

about

the

use

of

calculation

codes,

see

the

WebSphere

Commerce

Calculation

Framework

Guide.

Calculation

rules

Each

calculation

code

has

a

set

of

calculation

rules.

Shipping

charges

for

an

order

item

may

vary

depending

on

the

shipping

mode,

fulfillment

center,

and

which

shipping

jurisdictions.

ShippingJurisdictionGroupCalculationRules

are

relationship

objects

that

associate

shipping

calculation

rules

with

jurisdictions,

fulfillment

centers,

and

shipping

modes,

to

determine

which

calculation

rules

should

be

used

for

each

order

item.

If

the

calculation

rule,

or

any

of

the

other

objects

referred

to

by

the

ShippingJurisdictionGroupCalculationRules,

is

deleted,

the

230

Store

Development

Guide

ShippingJurisdictionGroupCalculation

rule

is

also

deleted.

For

more

information

about

the

use

of

calculation

codes,

see

the

WebSphere

Commerce

Calculation

Framework

Guide.

Jurisdictions

and

jurisdiction

groups

Jurisdictions

are

geographical

regions

or

zones

representing

a

country

or

region,

province

or

territory,

or

zip

code

range,

to

which

you

sell

goods.

Jurisdictions

are

grouped

together

to

form

jurisdiction

groups.

WebSphere

Commerce

supports

two

types

of

jurisdictions:

shipping

jurisdictions

and

tax

jurisdictions.

Each

of

these

jurisdictions

is

part

of

a

corresponding

group,

for

example,

shipping

jurisdictions

are

in

the

shipping

jurisdictions

group

and

tax

jurisdictions

are

in

the

tax

jurisdictions

group.

Jurisdiction

groups

are

associated

with

calculation

rules.

The

calculation

rule

uses

the

jurisdiction

group

as

part

of

the

calculation

to

determine

the

shipping

charge

amount.

Jurisdictions

and

jurisdiction

groups

are

part

of

a

store

entity.

If

the

store

entity

is

deleted,

the

jurisdictions

and

jurisdiction

groups

associated

with

that

store

entity

are

also

deleted.

One

shipping

address

may

resolve

to

several

shipping

jurisdictions.

For

example,

a

shipping

address

in

New

York,

United

States

will

apply

to

the

following

shipping

jurisdictions:

″New

York,

United

States″,

″United

States″,

and

″World″.

When

a

shipping

address

applies

to

multiple

shipping

jurisdictions,

several

shipping

calculation

rules

will

be

applicable.

In

such

cases,

the

precedence

of

the

associated

ShippingJurisdictionGroupCalculationRules

is

used

to

determine

which

rule

or

rules

will

be

used.

For

more

detailed

information

on

the

structure

of

shipping

assets

in

WebSphere

Commerce

Server,

see

the

shipping

data

models

in

the

WebSphere

Commerce

online

help.

Creating

shipping

assets

in

WebSphere

Commerce

The

shipping

tools

in

WebSphere

Commerce

Accelerator

allow

you

to

create

and

edit

certain

shipping

assets

(for

example

shipping

modes

and

jurisdictions),

but

not

all

shipping

assets.

The

following

list

details

the

database

tables

that

can

be

edited

by

the

shipping

tools:

v

CALCODE

v

CALCODEDSC

v

CALRULE

v

SHPJCRULE

v

CRULESCALE

v

CALSCALE

v

CALSCALEDS

v

CALRANGE

v

CALRLOOKUP

v

SHIPMODE

Chapter

26.

Shipping

assets

231

v

SHPMODEDSC

v

SHPARRANGE

v

SHPARJURGP

v

JURST

v

JURSTGROUP

v

JURSTGPREL

v

CATENCALCD

v

CATGPCALCD

You

can

also

create

your

shipping

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

As

a

result,

you

have

the

following

two

options

for

creating

shipping

assets:

v

Create

new

or

edit

the

existing

shipping

assets

from

one

of

the

sample

stores

provided

with

WebSphere

Commerce

v

Create

new

shipping

assets

in

the

form

of

an

XML

file

For

information

on

creating

or

editing

shipping

assets

using

the

WebSphere

Commerce

Accelerator,

see

the

WebSphere

Commerce

Production

online

help.

For

information

on

creating

new

shipping

assets

in

the

form

of

an

XML

file,

see

“Creating

shipping

assets

using

an

XML

file.”

Creating

shipping

assets

using

an

XML

file

Create

your

shipping

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

If

you

are

creating

a

globalized

store,

you

may

want

to

create

separate

XML

files

for

each

locale

your

store

supports.

The

locale-specific

file

should

specify

all

description

information,

so

it

can

be

easily

translated.

For

more

information

on

creating

globalized

stores,

see

Chapter

34,

“Globalization,”

on

page

295.

The

sample

stores,

from

which

many

of

the

examples

in

these

tasks

are

taken,

use

one

shipping.xml

file

for

all

information

that

does

not

need

to

be

translated,

and

another

shipping.xml

file

for

each

locale

the

store

supports,

for

the

information

that

needs

to

be

translated.

The

locale-specific

files

contain

all

the

description

information,

so

it

can

be

easily

translated.

To

create

shipping

assets

for

your

store

using

an

XML

file,

do

the

following:

1.

Review

the

WebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

shipping)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

3.

Review

the

XML

files

used

to

create

shipping

assets

for

the

sample

stores.

All

files

in

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

Each

sample

store

includes

two

or

more

shipping.xml

files,

which

include

the

shipping

information.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

Sample

Store

Guide

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.
To

view

the

shipping.xml

files

in

the

store

archive,

decompress

them

using

a

232

Store

Development

Guide

ZIP

program.

The

shipping.xml

files

are

located

in

the

data

directory.

The

language-specific

shipping.xml

is

in

a

locale-specific

subdirectory

of

the

data

directory.
4.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

5.

Create

a

shipping.xml

file,

either

by

copying

one

of

the

shipping.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

file

is

located

in

the

following

directory:

v

WC_installdir/schema/xml
6.

Define

the

jurisdictions

and

jurisdiction

group

to

which

you

are

shipping

goods

and

services.

All

jurisdictions

must

belong

to

a

jurisdiction

group.

a.

Using

the

following

example

as

your

guide,

define

a

jurisdiction

group

in

your

XML

file

in

the

JURSTGROUP

table:

<jurstgroup

jurstgroup_id="@jurstgroup_id_1"

description="Jurisdiction

Group1

for

Shipping"

subclass="1"

storeent_id="@storeent_id_1"

code="World"/>

where

v

jurstgroup_id

is

a

generated

unique

key

v

description

is

a

brief

description

of

the

jurisdiction

group,

suitable

for

display

in

a

user

interface

that

manages

jurisdiction

groups.

v

subclass

is

the

jurisdiction

group

subclass

as

follows:

–

1

=

ShippingJurisdictionGroup

–

2

=

TaxJurisdictionGroup
v

storeent_id

is

the

store

entity

associated

with

this

jurisdiction

group.

v

code

which,

together

with

its

store

entity

and

subclass,

uniquely

identifies

this

jurisdiction

group.
b.

Using

the

following

example

as

your

guide,

define

a

jurisdiction

in

your

XML

file

in

the

JURST

table.

<

jurst

jurst_id="@jurst_id_1"

storeent_id="@storeent_id_1"

code="World"

subclass="1"/>

where

v

jurst_id

is

a

generated

unique

key

v

storeent_id

is

the

store

entity

associated

with

this

jurisdiction

group.

v

code

which,

together

with

its

store

entity

and

subclass,

uniquely

identifies

this

jurisdiction

group.

v

subclass

is

the

jurisdiction

subclass

as

follows:

–

1

=

ShippingJurisdiction

–

2

=

TaxJurisdiction
c.

Using

the

following

example

as

your

guide,

associate

the

jurisdiction

you

created

in

step

b

with

the

jurisdiction

group

you

defined

in

step

a,

by

adding

information

to

the

JURSTGRPREL

table.

<jurstgprel

Chapter

26.

Shipping

assets

233

jurst_id="@jurst_id_1"

jurstgroup_id="@jurstgroup_id_1"

subclass="1"/>

where

v

jurst_id

is

the

jurisdiction

v

jurstgroup_id

is

the

jurisdiction

group

v

subclass

is

the

subclass

of

the

jurisdiction

and

of

the

jurisdiction

group

These

should

match:

–

1

=

ShippingJurisdiction[Group]

–

2

=

TaxJurisdiction[Group]
d.

Repeat

steps

a

through

c

for

all

jurisdictions

and

jurisdiction

groups

your

store

supports.
7.

Define

the

shipping

modes

your

store

will

use.

a.

Using

the

following

example

as

your

guide,

define

a

shipping

mode

in

your

XML

file

for

the

SHIPMODE

table:

<shipmode

shipmode_id="@shipmode_id_1"

field1

storeent_id="@storeent_id_1"

code="Ground

1

week"

carrier="XYZ

Carrier"/>

where:

v

shipmode_id

is

a

generated

unique

key.

v

field1

is

a

field

available

for

customization.

v

storeent_id

is

the

store

entity

associated

with

this

shipping

mode.

v

code

is

the

merchant

assigned

code,

unique

for

the

store

entity.

v

carrier

is

the

name

or

identifier

of

the

carrier.
b.

Using

the

following

example

as

your

guide,

add

information

about

the

shipping

mode

to

the

SHPMODEDSC

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file:

<

shpmodedsc

description="International

mail"

field1="USD$5.00

per

order

plus

USD$1.00

for

each

item"

field2="5

business

days"

shipmode_id="@shipmode_id_1"

language_id="&en_US;"/>

where:

v

description

is

a

brief

description

of

the

ShippingMode,

suitable

for

display

to

a

customer

for

selection.

v

field1

and

field2

are

fields

available

for

customization.

v

shipmode_id

is

a

generated

unique

key.

v

language_id

is

the

language

used.
c.

Repeat

steps

a

and

b

for

all

shipping

modes

in

your

store.
8.

Define

the

calculation

codes

to

be

used

by

your

store.

234

Store

Development

Guide

a.

Using

the

following

examples

as

your

guide,

define

the

calculation

code

in

your

XML

file

for

the

CALCODE

table.

<

calcode

calcode_id="@calcode_id_1"

code="shipping

Code

1-

per/order"

calusage_id="-2"

storeent_id="@storeent_id_1"

groupby="0″

published="1"

sequence="+0.00E+000"

calmethod_id="-23"

calmethod_id_app="-24"

calmethod_id_qfy="-22"

flags="0"

/>

where:

v

calcode_id

is

a

generated

unique

key.

v

code

is

a

character

string

that

uniquely

identifies

this

CalculationCode,

given

a

particular

CalculationUsage

and

StoreEntity.

v

calusage_id

indicates

the

kind

of

calculation

this

CalculationCode

is

used

for.

For

example,

the

CalculationCode

may

be

used

to

calculate

one

of

the

following

monetary

amounts:

–

Discounts

(-1)

–

Shipping

charges

(-2)

–

Sales

tax

(-3)

–

Shipping

tax

(-4)

–

Coupons

(-5)
v

storeent_id

is

the

store

entity

associated

with

this

calculation

code.

v

groupby

are

bit

flags

indicating

to

the

CalculationCodeCombineMethod

how

OrderItems

should

be

grouped

when

performing

calculations.

0

=

No

grouping.

Place

all

applicable

OrderItems

in

a

single

group.

Refer

to

CALCODE

table:

details

in

the

WebSphere

Commerce

online

help

for

more

information.

v

published

specifies

whether

or

not

the

calculation

code

is

published:

–

0

=

Not

published

(temporarily

disabled)

–

1

=

Published

–

2

=

Marked

for

deletion

(and

not

published)
v

sequenceCalculationCodes

are

calculated

and

applied

in

sequence

from

lowest

to

highest.

If

two

calculation

codes

have

the

same

sequence

number,

the

calculation

codes

with

the

lower

calcode_id

will

be

calculated

first.

v

calmethod_id

is

the

CalculationCodeCalculateMethod

that

defines

how

to

calculate

a

monetary

amount

for

this

CalculationCode.

calmethod_id=″-23″,

the

CalculationCodeCalculateMethod

for

shipping,

is

the

only

shipping

calculation

method

provided

with

WebSphere

Commerce.

v

calmethod_id_app

is

the

CalculationCodeApplyMethod

that

stores

the

calculated

amount

for

the

associated

OrderItems.

calmethod_id_app=″-

Chapter

26.

Shipping

assets

235

24″,

the

CalculationCodeApplyMethod

for

shipping

is

the

only

shipping

apply

method

provided

with

WebSphere

Commerce.

v

calmethod_id_qfy

is

the

CalculationCodeQualifyMethod

that

defines

which

OrderItems

are

associated

with

this

CalculationCode.

calmethod_id_qfy=″-22″,

the

CalculationCodeQualifyMethod

for

shipping

is

the

only

shipping

qualification

method

provided

with

WebSphere

Commerce.

v

flags

specifies

whether

the

CalculationCodeQualifyMethod

of

this

CalculationCode

should

be

invoked.

–

0

=

unrestricted.

The

method

will

not

be

invoked

–

1

=

restricted.

The

method

will

be

invoked.
b.

Using

the

following

example

as

your

guide,

add

the

calculation

code

description

information

in

your

XML

file

for

the

CALCODEDSC

table.

If

you

are

creating

a

globalized

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<calcodedsc

calcode_id="@calcode_id_3"

description="5.00USD

per

order"

language_id="&en_US"

longdescription=

"This

shipping

calculation

code

charges

5.00USD

per

order."

/>

where

v

calcode_id

is

the

calculation

code

to

which

this

information

applies.

v

description

is

a

short

description

of

the

calculation

code.

v

language_id

is

the

language

for

which

this

information

applies.

v

longdescription

is

the

detailed

description

of

the

calculation

code.
c.

Repeat

steps

a

and

b

for

each

calculation

code

used

in

your

store.
9.

Define

the

calculation

rules

for

your

store.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

rule

in

your

XML

file

for

the

CALRULE

table:

<calrule

calrule_id="@calrule_id_1"

calcode_id="@calcode_id_1"

startdate="1900-01-01

00:00:00.000000"

enddate="2100-01-01

00:00:00.000000"

sequence="+1.00000000000000E+000"

combination="2"

calmethod_id="-27"

calmethod_id_qfy="-26"

flags="1"

identifier="1"

/>where

v

calrule_id

is

a

generated

unique

identifier.

v

calcode_id

is

the

calculation

code

this

calculation

rule

is

part

of.

v

startdate

is

the

time

this

calculation

rule

becomes

effective.

v

enddate

is

the

time

this

calculation

rule

stops

being

effective.

v

sequence

is

the

order

this

calculation

rule

will

be

processed

in.

Calculation

rules

for

the

same

calculation

code

are

processed

in

sequence

from

lowest

to

highest

value.

236

Store

Development

Guide

v

combination

specifies

the

bit

flag

for

special

processing

to

be

performed

by

the

default

CalculationRuleCombineMethod

implementation.

Refer

to

the

CALRULE

table

in

the

WebSphere

Commerce

online

help

for

more

information.

v

calmethod_id

is

the

CalculationRuleCalculateMethod

that

calculates

a

monetary

result

for

a

set

of

OrderItems.

v

calmethod_id_qfy

is

the

CalculationRuleQualifyMethod

that

determines

which

of

a

set

of

OrderItems

should

be

sent

to

the

CalculationRuleCalculateMethod.

v

flags

are

used

by

CalculationRuleCombineMethod

to

determine

how

this

calculation

rule

may

be

combined

with

other

calculation

rules.

Refer

to

CALRULE

table

for

more

information.

v

identifier

identifies

this

calculation

rule,

in

combination

with

its

calculation

code.

For

more

information

see

the

CALRULE

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

calculation

rule

used

in

your

store.

Note

that

each

calculation

code

may

have

several

calculation

rules.

For

example,

calcode_id=″@calcode_id_1″

may

be

associated

with

several

calrule_ids.
10.

Define

calculation

scales

for

your

store.

A

calculation

scale

is

the

set

of

ranges

that

will

apply

to

the

calculation.

For

example,

for

shipping

costs

you

may

have

a

set

of

weight

ranges

that

each

correspond

to

a

particular

cost.

That

is,

a

product

that

weighs

between

0

to

5

kg

might

cost

$10.00

to

ship.

And

a

product

weighing

5

to

10

kg

might

cost

$15.00

to

ship.

These

ranges

create

a

scale.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

scale

in

your

XML

file

for

the

CALSCALE

table:

<calscale

calscale_id="@calscale_id_1"

code="Scale

Code

1

per

order

USD"

storeent_id="@storeent_id_1"

calusage_id="-2"

setccurr="USD"

calmethod_id="-28"/>

where

v

calscale_id

is

a

generated

unique

identifier.

v

code

is

a

character

string

that

uniquely

identifies

this

calculation

scale,

given

a

particular

calculation

usage

and

store

entity.

v

storeent_id

is

the

store

entity

that

this

calculation

scale

is

part

of.

v

calusage_id

indicates

the

kind

of

calculation

this

CalculationScale

is

used

for.

For

example,

the

CalculationScale

may

be

used

to

calculate

one

of

the

following

monetary

amounts:

–

Discounts

(-1)

–

Shipping

charges

(-2)

–

Sales

tax

(-3)

–

Shipping

tax

(-4)

–

Coupons

(-5)

Chapter

26.

Shipping

assets

237

v

setccurr

if

specified,

indicates

the

currency

for

the

range

start

values

of

the

calculation

range

objects

for

this

calculation

scale.

The

CalculationScaleLookupMethod

should

return

a

″lookup

number″

in

this

currency.

v

calmethod_id

is

the

CalculationScaleLookupMethod

that

given

a

set

of

order

items

determines

a

lookup

value,

a

base

monetary

value,

a

result

multiplier,

and

a

set

of

mathematical

weights

that

can

be

used

by

the

calculation

scale

to

calculate

a

monetary

amount.

To

determine

which

CalculationScaleLookupMethod

to

use,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

calculation

methods

available.

The

MonetaryCalculationScaleLookupMethod

method

is

9.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema
–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

-4

for

shipping

tax).

–

Locate

the

calculation

methods,

which

have

a

subclass

of

7;

there

are

several.

Pick

the

one

which

meets

your

needs.

For

more

information,

see

the

CALSCALE

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

calculation

scale

used

in

your

store.

For

example,

for

shipping,

FashionFlow

creates

a

cost

per

order

scale

and

a

cost

per

item

scale.
11.

Define

calculation

ranges

for

the

calculation

scales.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

range

in

your

XML

file

for

the

CALRANGE

table.

<calrange

calrange_id="@calrange_id_1"

calscale_id="@calscale_id_1"

calmethod_id="-33"

rangestart="0.00000"

cumulative="0"/>

where

v

calrange_id

is

a

generated

unique

identifier.

v

calscale_id

is

the

calculation

scale

this

calculation

range

is

part

of.

v

calmethod_id

is

the

CalculationRangeMethod

that

determines

a

monetary

amount

from

the

CalculationRangeLookupResult.

For

example,

FixedAmountCalculationRangeCmd,

PerUnitAmountCalculationRangeCmd,

or

PercentageCalculationRangeCmd.

To

determine

the

CalculationRangeMethod,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

238

Store

Development

Guide

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

calculation

methods

available.

The

CalculationRangeMethod

is

10.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema

–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

-4

for

shipping

tax).

–

Locate

the

calculation

methods

which

have

a

subclass

of

9;

there

are

several.

Pick

the

one

which

meets

your

needs.
v

cumulative

are

the

valid

values:

–

0

=

only

the

matching

CalculationRange

with

the

highest

RANGESTART

value

is

used.

–

1

=

all

matching

CalculationRanges

are

used.

The

calculated

monetary

amounts

are

summed

to

arrive

at

the

final

result.

For

more

information,

see

the

CALRANGE

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

calculation

range

associated

with

the

calculation

scale

used

in

your

store.
12.

Define

the

calculation

lookup

values

for

the

calculation

scales.

The

calculation

lookup

values

are

the

values

associated

with

the

calculation

scale.

For

example,

a

calculation

scale

includes

the

following

weight

ranges

and

associated

prices

for

shipping:

v

0

to

5

kg

costs

$10.00

v

5

to

10

kg

costs

$15.00

The

lookup

values

are

$10.00

and

$15.00.

a.

Using

the

following

examples

as

your

guide,

set

up

the

calculation

lookup

values

in

your

XML

file

for

the

CALRLOOKUP

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file,

that

is,

one

file

per

locale

that

your

store

supports.

For

example,

if

your

store

ships

to

customers

in

the

United

States

and

Japan,

you

should

add

the

US

dollar

lookup

values

in

one

XML

file,

and

the

Yen

lookup

values

in

another

XML

file.

<calrlookup

calrlookup_id="@calrlookup_id_1"

setccurr="USD"

calrange_id="@calrange_id_1"

value="5.00"/>

where

v

calrlookup_id

is

a

generated

unique

identifier.

v

calrange_id

is

the

calculation

range

this

calculation

range

lookup

result

is

part

of.

v

value

is

the

value

of

the

calculation

range

lookup

result,

used

by

the

calculation

range

method

of

the

calculation

range

to

determine

a

monetary

result.

Chapter

26.

Shipping

assets

239

For

more

information,

see

the

CALRLOOKUP

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

lookup

value

associated

with

the

calculation

scale

used

in

your

store.
13.

Associate

the

calculation

rule

and

calculation

scale

a.

Using

the

following

examples

as

your

guide,

associate

the

calculate

scale

with

the

calculation

rule

in

your

XML

file

for

the

CRULESCALE

table.

<

crulescale

calrule_id="@calrule_id_1"

calscale_id="@calscale_id_1"

/>

where

v

calrule_id

is

the

calculation

rule.

v

calscale_id

is

the

calculation

scale.
b.

Repeat

step

a

for

each

calculation

scale

and

rule

association.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

shipping

fulfillment

assets

In

order

for

your

shipping

assets

to

work

correctly

in

your

store,

you

must

associate

the

shipping

jurisdiction

groups

to

the

calculation

rules

and

the

fulfillment

centers

to

the

shipping

modes

used

in

the

store.

You

must

create

your

fulfillment

assets

before

you

can

associate

your

shipping

assets

to

a

fulfillment

center.

For

more

information

on

creating

fulfillment

assets,

see

“Creating

fulfillment

assets

in

WebSphere

Commerce”

on

page

200.

After

you

have

created

the

fulfillment

assets,

associate

shipping

assets

to

them

by

adding

information

to

the

SHPJCRULE

and

SHPARRANGE

tables.

Do

the

following:

1.

Review

theWebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

shipping)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

3.

Review

the

XML

files

used

to

create

shipping

fulfillment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

Each

sample

store

includes

a

shipfulfill.xml

file,

which

includes

the

shipping

fulfillment

information.

To

view

the

shipfulfill.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

shipfulfill.xml

file

is

located

in

the

data

directory.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.
4.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

240

Store

Development

Guide

5.

Create

a

shipfulfill.xml

file,

either

by

copying

one

of

the

shipfulfill.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/schema/xml
6.

Associate

calculation

rules

to

a

shipping

jurisdiction

group

by

adding

information

to

the

SHPJCRULE

table.

Use

the

following

example

as

your

guide.

If

you

are

creating

a

multicultural

store,

also

create

an

XML

file

for

each

locale

your

store

supports.

<shpjcrule

calrule_id="@calrule_id_1"

ffmcenter_id="@ffmcenter_id_1"

jurstgroup_id="@jurstgroup_id_1"

precedence="0"

shipmode_id="@shipmode_id_1"

shpjcrule_id="@shpjcrule_id_1"

where

v

calrule_id

is

the

calculation

rule

used.

v

ffmcenter_id

is

the

fulfillment

center.

If

this

is

NULL

then

this

association

applies

to

all

fulfillment

centers.

v

jurstgroup_id

is

the

shipping

jurisdiction

group.

If

this

is

NULL,

then

this

association

applies

to

all

shipping

jurisdiction

groups.

v

precedence

is

when

a

shipping

address

falls

within

more

than

one

of

the

specified

shipping

jurisdiction

groups

for

the

same

fulfillment

center

and

shipping

mode.

Only

the

calculation

rule

with

the

highest

SHPJCRULE.PRECEDENCE

value

qualifies.

v

shipmode_id

is

the

shipping

mode.

v

shpjcrule_id

is

a

generated

unique

identifier.
7.

Repeat

step

3

for

each

jurisdiction

group,

fulfillment

center

and

rule

association

in

your

store.

8.

Associate

the

shipping

mode

and

a

fulfillment

center

to

your

store,

by

adding

information

to

the

SHPARRANGE

table.

Use

the

following

example

as

your

guide:

<shparrange

shparrange_id="@shparrange_id_2"

store_id="@storeent_id_1"

ffmcenter_id="@ffmcenter_id_1"

shipmode_id=

"@shipmode_id_2"

startdate="1970-06-22

23:00:00.000000"

enddate=

"2008-06-22

23:00:00.000000"

precedence=

"0"

flags="0"

/>

where

v

shparrange_id

is

a

generated

unique

identifier.

v

store_id

is

the

store.

v

ffmcenter_id

is

the

fulfillment

center.

v

shipmode_id

is

the

shipping

mode.

NULL

indicates

this

shipping

arrangement

can

be

used

regardless

of

shipping

mode.

v

startdate

is

the

time

this

shipping

arrangement

starts

being

effective.

v

enddate

is

the

time

this

shipping

arrangement

stops

being

effective.

Chapter

26.

Shipping

assets

241

v

precedence

is

when

more

than

one

shipping

arrangement

(for

the

same

store

and

shipping

mode)

is

effective

at

a

particular

time;

the

one

with

the

highest

PRECEDENCE

is

used.

v

flags

contains

bit

flags:

–

1

=

restricted

-

This

shipping

arrangement

applies

only

to

order

items

whose

shipping

address

matches

one

of

the

shipping

jurisdiction

groups

associated

(through

the

SHPARJURGP

table)

with

this

shipping

arrangement.
9.

Repeat

step

5

for

all

shipping

modes

used

in

your

store.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

store-catalog-shipping

assets

In

order

to

associate

shipping

modes

with

your

store,

you

must

associate

a

calculation

code

with

the

catalog

entries

in

your

store

for

each

contract

your

store

includes.

You

must

create

your

store

and

catalog

assets

before

you

can

create

store-catalog-shipping

assets.

For

more

information

on

creating

store

assets,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

For

more

information

on

creating

catalog

assets,

see

“Displaying

store

catalog

assets”

on

page

162.

To

create

store-catalog-shipping

assets,

do

the

following:

1.

Review

the

WebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

shipping)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

3.

Review

the

XML

files

used

to

create

shipping

fulfillment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

store-catalog-shipping.xml

file,

which

includes

the

shipping

fulfillment

information.

To

view

the

store-catalog-shipping.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

store-catalog-shipping.xml

file

is

located

in

the

data

directory.

4.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

5.

Create

a

store-catalog-shipping.xml

file,

either

by

copying

one

of

the

store-catalog-shipping.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file

.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/schema/xml
6.

Create

the

store-catalog-shipping

relationship

by

adding

information

to

the

CATENCALCD

table.

Use

the

following

example

as

your

guide:

242

Store

Development

Guide

<catencalcd

calcode_id="@calcode_id_1"

catencalcd_id="@catencalcd_id_1"

store_id="@storeent_id_1"

/>

where

v

calcode_id

is

the

calculation

code.

v

catencalcd_id

is

a

generated

unique

identifier.

v

store_id

is

the

store.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

a

default

shipping

mode

In

order

to

set

a

default

shipping

mode

for

the

store,

you

must

add

information

to

the

STOREDEF

table.

To

add

information

to

the

STOREDEF

table,

do

the

following:

1.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

2.

Review

the

XML

files

used

to

create

store

default

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Note:

The

WebSphere

Commerce

online

help

contains

information

about

each

of

the

data

assets

contained

in

the

sample

stores.

Each

sample

store

includes

a

store-defaults.xml

file,

which

includes

the

default

shipping

information.

To

view

the

store-defaults.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

store-defaults.xml

file

is

located

in

the

data

directory.

3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

store-defaults.xml

file,

either

by

copying

one

of

the

store-defaults.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

wcs.dtd

file.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/schema/xml
5.

Using

the

following

example

as

your

guide,

in

your

XML

file,

specify

the

default

shipping

mode

for

the

store

by

adding

information

to

the

STOREDEF

table:

<storedef

store_id="@storeent_id_1"

shipmode_id="@shipmode_id_1"

/>

where

v

store_id

is

the

store.

v

shipmode_id

is

the

default

shipping

mode

for

the

store.

Chapter

26.

Shipping

assets

243

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

244

Store

Development

Guide

Chapter

27.

Tax

assets

In

order

to

charge

and

collect

taxes

on

the

goods

and

services

your

store

provides,

a

store

created

with

WebSphere

Commerce

must

include

the

following:

v

Tax

categories

v

Calculation

codes

v

Jurisdictions

and

jurisdiction

groups

The

combination

of

the

tax

categories,

calculation

codes,

and

jurisdictions

and

jurisdiction

groups

create

the

tax

charges

for

the

store.

Understanding

tax

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

taxation

structure

in

WebSphere

Commerce

Server.

JurisdictionGroup

Jurisdiction

TaxType

StoreEntity

+definedJurisdictionGroup

+definedJurisdiction

CalculationCode

+definedCalculationCode

TaxCategory

1

TaxJurisdiction
CalculationRule

0..1

TaxJurisdictionGroup

InGroup

TaxJurisdictionGroupCalculationRule
1

Store

FulfillmentCenter

1
0..1

+defaultFulfillmentCenter

©

Copyright

IBM

Corp.

2000,

2003

245

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Tax

category

Tax

categories

correspond

to

the

different

kinds

of

tax

a

store

may

be

required

to

collect,

such

as

federal,

state

or

provincial,

and

municipal.

A

tax

category

is

part

of

one

store

entity,

although

a

store

entity

may

have

several

tax

categories.

If

the

store

entity

is

deleted,

the

tax

categories

associated

with

that

store

entity

are

also

deleted.

Tax

type

A

store

typically

collects

two

type

of

taxes:

sales

or

use

tax,

and

shipping

tax.

Each

tax

category

has

one

tax

type.

Although

each

tax

category

may

only

be

of

one

tax

type,

(for

example

the

tax

category

federal

is

a

sales

tax

type),

several

different

tax

categories

may

belong

to

the

same

tax

type

(for

example,

the

tax

type

sales

tax,

applies

to

the

categories

federal,

provincial,

and

municipal).

Calculation

code

Calculation

codes

are

used

to

calculate

tax

charges,

that

is,

a

tax

calculation

code

indicates

how

tax

is

calculated

for

order

items.

In

order

to

calculate

tax

on

the

order

item,

you

must

assign

sales

tax

and

shipping

tax

calculation

codes

to

either

a

catalog

entry

or

a

group

of

catalog

entries.

Only

one

tax

calculation

code

of

each

tax

type

can

be

applied

to

a

particular

catalog

entry

or

group

of

catalog

entries.

Typically,

sales

or

use

tax

is

levied

on

the

net

price,

and

shipping

tax

is

levied

on

shipping

charges.

A

calculation

code

is

part

of

a

store

entity.

A

calculation

code

can

only

be

associated

with

one

store

entity,

but

a

store

entity

may

have

several

calculation

codes.

If

the

store

entity

is

deleted,

the

calculation

codes

associated

with

that

store

entity

are

also

deleted.

For

more

information

about

the

use

of

calculation

codes,

see

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

Calculation

rules

Each

calculation

code

has

at

least

one

calculation

rule,

which

defines

the

calculations

for

each

tax

category,

and

specifies

the

conditions

under

which

the

calculations

will

be

done.

Each

tax

calculation

rule

is

associated

with

a

tax

category,

a

jurisdiction

group

and

a

fulfillment

center,

which

together

define

the

conditions

under

which

the

calculation

rule

is

used.

For

example,

a

different

rule

may

be

selected

to

calculate

an

amount

for

a

particular

tax

category

depending

on

the

shipping

address

and

fulfillment

center

specified

in

the

order.

Each

calculation

rule

belongs

to

exactly

one

calculation

code.

A

particular

tax

calculation

code

can

have

several

calculation

rules,

one

for

each

combination

of

tax

category,

tax

jurisdiction

group,

and

fulfillment

center

associated

with

the

store.

Each

sales

tax

and

shipping

tax

calculation

rule

can

be

associated

with

multiple

TaxJurisdictionGroupCalculationRules

(TaxRules).

For

246

Store

Development

Guide

example

in

the

chart

below,

calculation

rule

10001

is

applicable

to

both

jurisdiction

groups

1234

and

1235.

TAXJCRULE_ID

CALRULE_ID

FFMCENTER_ID

JURSTGROUP_ID

PRECEDENCE

10001

10001

NULL

1234

0

10002

10001

NULL

1235

0

Each

TaxRule

defines

the

conditions

under

which

the

calculation

rule

should

be

applied.

For

example,

you

may

define

a

calculation

rule

for

each

jurisdiction

group

to

which

the

store

ships.

In

the

example

below,

calculation

rule

10001

is

applicable

to

both

jurisdiction

group

1234

and

1235.

In

the

following

example,

the

tax

calculation

code

uses

calculation

rule

A

for

the

provincial

sales

tax

category,

when

the

tax

jurisdiction

is

Alberta,

and

rule

C

when

the

tax

jurisdiction

is

British

Columbia.

Tax

jurisdiction

Federal

sales

tax

Provincial

sales

tax

Alberta,

Canada

Calculation

rule

B,

which

gives

Y%

calculation

rule

A,

which

gives

X%

British

Columbia,

Canada

Calculation

rule

B,

which

gives

Y%

calculation

rule

C,

which

gives

Z%

When

a

shipping

address

matches

more

than

one

tax

jurisdiction

group,

the

calculation

rule

with

the

highest

associated

TAXJCRULE.PRECEDENCE

column

value

is

used.

The

association

of

TaxJurisdictionGroupCalculationRules

(TaxRule)

with

a

calculation

rule

determines

when

the

calculation

rule

is

applicable.

A

sales

tax

or

shipping

tax

calculation

rule

is

applicable

when

any

one

of

the

conditions

given

by

the

TaxRules

is

met.

In

the

example

below,

calculation

rule

10001

is

applicable

when

you

are

shipping

to

jurisdiction

group

1001,

or

when

you

are

shipping

from

fulfillment

center

1001,

or

you

are

shipping

to

jurisdiction

group

1001.

CALRULE_ID

FFMCENTER_ID

JURSTGROUP_ID

10001

NULL

1001

10001

1001

1001

Each

TaxJurisdictionGroupCalculationRule

is

associated

with

at

most

1

jurisdiction

group.

Calculation

rules

themselves

are

not

directly

associated

with

jurisdiction

groups.

For

more

information

about

the

use

of

calculation

rules,

see

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

Jurisdictions

and

jurisdiction

groups

Jurisdictions

are

geographical

regions

or

zones

representing

a

country

or

region,

province

or

territory,

or

zip

code

range,

to

which

you

sell

goods.

Jurisdictions

are

grouped

together

to

form

jurisdiction

groups.

WebSphere

Commerce

supports

two

types

of

jurisdictions:

shipping

jurisdictions

and

tax

jurisdictions.

Each

of

these

jurisdictions

is

part

of

a

corresponding

group,

Chapter

27.

Tax

assets

247

for

example,

shipping

jurisdictions

are

in

the

shipping

jurisdictions

group

and

tax

jurisdictions

are

in

the

tax

jurisdictions

group.

Jurisdictions

and

jurisdiction

groups

determine

which

calculation

rules

are

used

to

calculate

the

tax

charges.

Jurisdictions

and

jurisdiction

groups

are

part

of

a

store

entity.

Each

jurisdiction

and

jurisdiction

group

is

part

of

one

store

entity,

however

a

store

entity

may

have

several

jurisdictions

or

jurisdiction

groups.

If

the

store

entity

is

deleted,

the

jurisdictions

and

jurisdiction

groups

associated

with

that

store

entity

are

also

deleted.

For

more

detailed

information

on

the

structure

of

tax

assets

in

WebSphere

Commerce

Server,

see

the

tax

data

models

in

the

WebSphere

Commerce

online

help.

Creating

tax

assets

in

WebSphere

Commerce

The

tax

tools

in

the

WebSphere

Commerce

Accelerator

allow

you

to

create

and

edit

certain

tax

assets

(for

example

tax

categories

and

jurisdictions),

but

not

all

tax

assets.

The

following

list

details

the

database

tables

that

can

be

edited

by

the

tax

tools:

v

CALCODE

v

CALCODEDSC

v

CALRULE

v

TAXJCRULE

v

CRULESCALE

v

CALSCALE

v

CALSCALEDS

v

CALRANGE

v

CALRLOOKUP

v

TAXCGRY

v

TAXCGRYDS

v

JURST

v

JURSTGROUP

v

JURSTGPREL

v

CATENCALCD

v

CATGPCALCD

You

can

also

create

your

tax

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

As

a

result,

you

have

the

following

two

options

for

creating

shipping

assets:

v

Create

new

or

edit

the

existing

tax

assets

from

one

of

the

sample

stores

provided

with

WebSphere

Commerce.

v

Create

new

tax

assets

in

the

form

of

an

XML

file.

For

information

on

editing

the

tax

assets

in

an

existing

store

archive,

or

general

tax

information,

see

the

WebSphere

Commerce

online

help.

For

information

on

creating

new

tax

assets

in

the

form

of

an

XML

file,

see

“Creating

tax

assets

using

an

XML

file”

on

page

249

248

Store

Development

Guide

Creating

tax

assets

using

an

XML

file

Create

your

tax

assets

in

the

format

of

XML

files

that

can

be

loaded

into

the

database

using

the

Loader

package.

For

more

information

on

the

Loader

package,

see

Part

10,

“Publishing

your

store,”

on

page

319.

If

you

are

creating

a

globalized

store,

you

may

want

to

create

separate

XML

files

for

each

locale

your

store

supports.

The

locale-specific

file

should

specify

all

description

information,

so

it

can

be

easily

translated.

The

sample

stores,

from

which

many

of

the

examples

in

these

tasks

are

taken,

use

one

tax.xml

file

for

all

information

that

does

not

need

to

be

translated,

and

another

tax.xml

file

for

each

locale

the

store

supports,

for

the

information

that

needs

to

be

translated.

The

locale-specific

files

contain

all

the

description

information

To

create

tax

assets

for

your

store

using

an

XML

file,

do

the

following:

1.

Review

the

information

in

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

Review

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

taxes)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

XML

files

used

to

create

tax

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores
3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

tax.xml

file,

either

by

copying

one

of

the

tax.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

tax.xml.

The

DTD

file

is

located

in

the

following

directory:

v

WC_installdir/schema
5.

Define

the

jurisdictions

and

jurisdiction

groups

to

which

you

are

shipping

goods

and

services.

Assign

your

tax

jurisdictions

to

tax

jurisdiction

groups

according

to

their

applicable

tax

category

calculation

rules.

a.

Using

the

following

example

as

your

guide,

define

a

jurisdiction

group

in

your

XML

file

in

the

JURSTGROUP

table:

<jurstgroup

jurstgroup_id="@jurstgroup_id_2"

description="Tax

Jurstiction

Group

1"

subclass="2"

storeent_id="@storeent_id_1"

code="World"/>

where

v

jurstgroup_id

is

a

generated

unique

key

v

description

is

a

brief

description

of

the

jurisdiction

group,

suitable

for

display

in

a

user

interface

that

manages

jurisdiction

groups.

v

subclass

is

the

jurisdiction

group

subclass

as

follows:

–

1

=

ShippingJurisdictionGroup

–

2

=

TaxJurisdictionGroup
v

storeent_id

is

the

store

entity

associated

with

this

jurisdiction

group.

v

code

which,

together

with

its

store

entity

and

subclass,

uniquely

identifies

this

jurisdiction

group.

Chapter

27.

Tax

assets

249

b.

Using

the

following

example

as

your

guide,

define

a

jurisdiction

in

your

XML

file

in

the

JURST

table.

<jurst

jurst_id="@jurst_id_2"

storeent_id="@storeent_id_1"

code="World"

subclass="2"/>

where

v

jurst_id

is

a

generated

unique

key

v

storeent_id

is

the

store

entity

associated

with

this

jurisdiction

group.

v

code

which,

together

with

its

store

entity

and

subclass,

uniquely

identifies

this

jurisdiction

group.

v

subclass

is

the

jurisdiction

subclass

as

follows:

–

1

=

ShippingJurisdiction

–

2

=

TaxJurisdiction
c.

Using

the

following

example

as

your

guide,

associate

the

jurisdiction

you

created

in

step

b

with

the

jurisdiction

group

you

defined

in

step

a,

by

adding

information

to

the

JURSTGRPREL

table.

<jurstgprel

jurst_id="@jurst_id_2"

jurstgroup_id="@jurstgroup_id_1"

subclass="2"/>

where

v

jurst_id

is

the

jurisdiction

v

jurstgroup_idis

the

jurisdiction

group

v

subclass

is

the

subclass

of

the

jurisdiction

and

of

the

jurisdiction

group

These

should

match:

–

1

=

ShippingJurisdiction[Group]

–

2

=

TaxJurisdiction[Group]
d.

Repeat

steps

a

through

c

for

all

jurisdictions

and

jurisdiction

groups

your

store

supports.
6.

Define

the

tax

categories

your

store

will

use.

a.

Using

the

following

example

as

your

guide,

define

a

tax

category

in

your

XML

file

for

the

TAXCGRY

table:

<taxcgry

taxcgry_id="@taxcgry_id_1"

taxtype_id="-3"

storeent_id="@storeent_id_1"

name="Sales

Tax"

displayseq="0"

displayusage="0"/>

where:

v

taxcgry_id

is

a

generated

unique

key.

v

taxtype_id="-3"

is

the

tax

type

for

this

tax

category.

WebSphere

Commerce

supports

two

tax

types:

–

sales

or

use

tax

(-3)

–

shipping

tax

(-4)
v

storeent_id

is

the

store

entity

associated

with

this

tax

category.

250

Store

Development

Guide

v

name

is

the

name

of

the

tax

category.

Along

with

the

store

entity,

the

name

uniquely

identifies

this

tax

category.

v

displayseq

specifies

the

sequence,

from

lowest

to

highest,

of

tax

amounts

when

displayed,

for

example,

in

an

order.

v

displayusage

specifies

that

this

tax

category

in

relation

to

the

PriceDataBean

as

follows:

–

0

=

is

not

calculated

–

1

=

is

calculated

The

PriceDataBean

can

be

used

to

obtain

tax

amounts

that

should

be

shown

along

with

the

product

price.
b.

Repeat

step

a

for

each

tax

category

used

in

your

store.

c.

Using

the

following

example

as

your

guide,

add

the

tax

category

description

information

in

your

XML

file

for

the

TAXCGRYDS

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<taxcgryds

taxcgry_id="@taxcgry_id_1"

description="Sales

Tax"

language_id="&en_US"/>

where

v

taxcgry_id

is

the

tax

category.

v

description

is

a

brief

description

of

the

tax

category,

suitable

for

display

to

customers.

v

language_id

is

the

language

in

which

this

information

will

display.
d.

Repeat

step

c

for

each

tax

category

used

in

your

store.
7.

Define

the

calculation

codes

to

be

used

by

your

store.

a.

Using

the

following

examples

as

your

guide,

define

the

calculation

code

in

your

XML

file

for

the

CALCODE

table.

<calcode

calcode_id="@calcode_id_3"

code="Tax

Code

1"

calusage_id="-3"

storeent_id="@storeent_id_1"

groupby="0"

published="1"

sequence="0"

calmethod_id="-43"

calmethod_id_app="-44"

calmethod_id_qfy="-42"

displaylevel="0"

flags="0"

precedence="0"

/>

where:

v

calcode_id

is

a

generated

unique

key.

v

code

is

a

character

string

that

uniquely

identifies

this

calculation

code,

given

a

particular

calculation

usage

and

store

entity.

v

calusage_id

indicates

the

kind

of

calculation

this

calculation

code

is

used

for.

For

example,

the

calculation

code

may

be

used

to

calculate

one

of

the

following

monetary

amounts:

–

Discounts

(-1)

–

Shipping

charges

(-2)

Chapter

27.

Tax

assets

251

–

Sales

tax

(-3)

–

Shipping

tax

(-4)

–

Coupons

(-5)
v

storeent_id

is

the

store

entity

associated

with

this

calculation

code.

v

groupby

are

bit

flags

indicating

to

the

calculation

code

combine

method

how

order

items

should

be

grouped

when

performing

calculations.

Zero

specifies

no

grouping

(all

applicable

order

items

are

in

a

single

group).

Refer

to

CALCODE

table:

details

in

the

WebSphere

Commerce

online

help

for

more

information.

v

published

specifies

whether

or

not

the

calculation

code

is

published:

–

0

=

not

published

(temporarily

disabled)

–

1

=

published

–

2

=

marked

for

deletion

(and

not

published)
v

sequence

is

the

order

in

which

the

calculation

code

is

calculated.

Calculation

codes

are

calculated

and

applied

in

sequence

from

lowest

to

highest.

If

two

calculation

codes

have

the

same

sequence

number,

the

calculation

codes

with

the

lower

calcode_id

will

be

calculated

first.

v

calmethod_idThe

calculation

code

calculate

method

that

defines

how

to

calculate

the

tax

amounts

for

this

calculation

code.

In

order

to

determine

which

calculation

code

calculate

method

to

use,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

CALMETHODs

available.

The

calculation

code

calculate

method

type

is

3.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema/xml
–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

—4

for

shipping

tax).

–

Locate

the

calculation

method

which

has

the

subclass

of

3.

This

calculation

method

is

—43.
v

calmethod_id_app

is

the

CalculationCodeApplyMethod

that

stores

the

calculated

amount

for

the

associated

OrderItems.

Use

the

method

described

in

calmethod_id

to

determine

which

calculation

code

apply

method

to

use.

–

calmethod_id_app=″-44″

is

the

CalculationCodeApplyMethod

for

Sales

tax
v

calmethod_id_qfy

is

the

CalculationCodeQualifyMethod

that

defines

which

order

items

are

associated

with

this

calculation

code.

Use

the

method

described

in

calmethod_id

to

determine

which

calculation

code

qualify

method

to

use.

–

calmethod_id_qfy=″-42″

is

the

CalculationCodeQualifyMethod

for

Sales

tax.
v

display

level

determines

if

amounts

calculated

by

this

calculation

code

should

be

displayed

with

each:

–

0

=

OrderItem

252

Store

Development

Guide

–

1

=

Order

–

2

=

product

–

3

=

item

–

4

=

contract
v

flags

specifies

whether

the

CalculationCodeQualifyMethod

of

this

calculation

code

should

be

invoked.

–

0

=

unrestricted.

The

method

will

not

be

invoked

–

1

=

restricted.

The

method

will

be

invoked.
b.

Using

the

following

example

as

your

guide,

add

the

calculation

code

description

information

in

your

XML

file

for

the

CALCODEDSC

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<calcodedsc

calcode_id="@calcode_id_3"

description="Vitamins

language_id="&en_US"

longdescription=

"In

Ontario

vitamins

are

taxed

federally,

but

not

provincially."

/>

where

v

calcode_id

is

the

calculation

code

to

which

this

information

applies.

v

description

is

a

short

description

of

the

calculation

code.

v

language_id

is

the

language

for

which

this

information

applies.

v

longdescriptionis

the

detailed

description

of

the

calculation

code.
c.

Repeat

steps

a

and

b

for

each

calculation

code

used

in

your

store.
8.

Define

the

calculation

rules

for

your

store.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

rule

in

your

XML

file

for

the

CALRULE

table:

<calrule

calrule_id="@calrule_id_10"

calcode_id="@calcode_id_3"

startdate="1900-01-01

00:00:00.000000"

taxcgry_id="@taxcgry_id_1"

enddate="2100-01-01

00:00:00.000000"

flags="1"

identifier="1"

combination="2"

calmethod_id="-47"

calmethod_id_qfy="-46"

/>

where

v

calrule_id

is

a

generated

unique

identifier.

v

calcode_id

is

the

calculation

code

this

calculation

rule

is

part

of.

v

startdate

is

the

time

this

calculation

rule

becomes

effective.

v

taxcgry_id

is

the

tax

category

for

which

this

calculation

rule

is

effective.

v

enddate

is

the

time

this

calculation

rule

stops

being

effective.

v

combination

are

used

by

CalculationRuleCombineMethod

to

determine

how

this

calculation

rule

may

be

combined

with

other

calculation

rules.

Refer

to

CALRULE

table

for

more

information.

v

identifier

identifies

this

calculation

rule,

in

combination

with

its

calculation

code.

Chapter

27.

Tax

assets

253

v

flagsspecifies

the

bit

flag

to

indicate

special

processing

to

be

performed

by

the

default

CalculationRuleCombineMethod

implementation.

Refer

to

the

CALRULE

table

in

the

WebSphere

Commerce

online

help

for

more

information.

v

calmethod_id

is

the

CalculationRuleCalculateMethod

that

calculates

a

monetary

result

for

a

set

of

order

items.

To

determine

which

calculation

rule

calculate

method

to

use,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

CALMETHODs

available.

The

calculation

rule

calculate

method

is

7.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema/xml
–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

-4

for

shipping

tax).

–

Locate

the

calculation

method

which

has

the

subclass

of

7.

This

calculation

method

is

-47.
v

calmethod_id_qfy

is

the

CalculationRuleQualifyMethod

that

determines

which

of

a

set

of

OrderItems

should

be

sent

to

the

CalculationRuleCalculateMethod.

Use

the

method

described

in

calmethod_id

to

determine

which

calculation

rule

qualify

method

to

use.
b.

Repeat

step

a

for

each

calculation

rule

used

in

your

store.

Note

that

each

calculation

code

may

have

several

calculation

rules,

one

for

each

applicable

tax

category.

For

example,

calcode_id=″@calcode_id_1″

may

be

associated

with

several

calrule_ids.
9.

Define

calculation

scales

for

your

store.

A

calculation

scale

is

the

set

of

ranges

that

will

apply

to

the

calculation.

These

ranges

create

a

scale.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

scale

in

your

XML

file

for

the

CALSCALE

table:

<calscale

calscale_id="@calscale_id_19"

code="Sales

Tax

1"

storeent_id="@storeent_id_1"

calusage_id="-3"

setccurr="USD"

calmethod_id="-53"

/>

where

v

calscale_id

is

a

generated

unique

identifier.

v

code

is

a

character

string

that

uniquely

identifies

this

calculation

scale,

given

a

particular

calculation

usage

and

store

entity.

v

storeent_id

is

the

store

entity

that

this

calculation

scale

is

part

of.

v

calusage_id

indicates

the

kind

of

calculation

this

CalculationScale

is

used

for.

For

example,

the

CalculationScale

may

be

used

to

calculate

one

of

the

following

monetary

amounts:

–

discounts

(-1)

254

Store

Development

Guide

–

shipping

charges

(-2)

–

sales

tax

(-3)

–

shipping

tax

(-4)

–

coupons

(-5)
v

setccurr

if

specified,

indicates

the

currency

for

the

range

start

values

of

the

calculation

range

objects

for

this

calculation

scale.

The

CalculationScaleLookupMethod

will

return

a

″lookup

number″

in

this

currency.

In

this

case,

it

is

not

specified;

the

CalculationScaleLookupMethod

will

return

a

lookup

number

in

the

currency

of

the

order.

The

currency

does

not

need

to

be

specified

unless

the

scale

range

start

values

are

non-zero.

v

calmethod_id

is

the

CalculationScaleLookupMethod

that

given

a

set

of

order

items

determines

a

lookup

number,

a

base

monetary

value,

a

result

multiplier,

and

a

set

of

mathematical

weights

that

can

be

used

by

the

calculation

scale

to

calculate

a

monetary

amount.

To

determine

which

CalculationScaleLookupMethod

to

use,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

CALMETHODs

available.

The

MonetaryCalculationScaleLookupMethod

method

is

9.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema/xml
–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

-4

for

shipping

tax).

–

Locate

the

calculation

method

which

has

the

subclass

of

9.

There

are

several

calculation

methods

with

the

subclass

of

9.

Pick

the

one

which

meets

your

needs.

For

more

information,

see

the

CALSCALE

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

calculation

scale

used

in

your

store.

c.

Using

the

following

example

as

your

guide,

add

the

calculation

scale

description

information

in

your

XML

file

for

the

CALSCALDS

table.

If

you

are

creating

a

multicultural

store,

you

should

include

this

information

in

a

locale-specific

XML

file.

<calscaleds

calscale_id="@calscale_id_19"

description="Sales

Tax

5%

"

language_id="&en_US"

/>

where

v

calscale_id

is

the

calculation

scale

to

which

this

description

applies.

v

descriptionis

a

brief

description

of

the

calculation

scale,

suitable

for

display

to

customers

to

explain

how

a

calculation

is

performed.

For

example,

″$.10

per

kilogram,

minimum

charge

of

$5.00.″

or

″10%

off

quantities

of

5

or

more.″

v

language_id

is

the

language

in

which

this

information

will

display.

Chapter

27.

Tax

assets

255

d.

Repeat

step

c

for

each

calculation

scale

used

in

your

store.
10.

Define

calculation

ranges

for

the

calculation

scales.

a.

Using

the

following

example

as

your

guide,

set

up

the

calculation

range

in

your

XML

file

for

the

CALRANGE

table.

<calrange

calrange_id="@calrange_id_37"

calscale_id="@calscale_id_19"

calmethod_id="-59"

rangestart="0.00000"

cumulative="0"

/>

where

v

calrange_id

is

a

generated

unique

identifier.

v

calscale_id

is

the

calculation

scale

this

calculation

range

is

part

of.

v

calmethod_id

is

the

CalculationRangeMethod

that

determines

a

monetary

amount

from

the

CalculationRangeLookupResult.

For

example,

FixedAmountCalculationRangeCmd,

PerUnitAmountCalculationRangeCmd,

or

PercentageCalculationRangeCmd.

To

determine

the

CalculationRangeMethod,

do

the

following:

–

Refer

to

the

CALMETHOD

table

in

the

WebSphere

Commerce

online

help.

Refer

to

the

description

for

the

SUBCLASS

column.

Click

the

link

for

the

CALMETHOD

table:

details.

This

table

lists

the

types

of

CALMETHODs

available.

The

CalculationRangeMethod

is

10.

–

Open

the

bootstrap

file

wcs.bootstrap_xx_XX.xml,

where

xx_XX

is

the

code

for

the

locale.

The

bootstrap

files

are

located

in

the

following

directory:

-

WC_installdir/schema/xml
–

Locate

the

section

listing

the

available

calculation

methods

(CALMETHOD).

–

Locate

the

calculation

methods

with

the

calusage_ID

value

for

tax

(-3

for

sales

tax

and

-4

for

shipping

tax).

–

Locate

the

calculation

method

which

has

the

subclass

of

10.

There

are

several

calculation

methods

with

the

subclass

of

10.

Pick

the

one

which

meets

your

needs.
v

rangestart

is

if

a

lookup

number

is

greater

than

or

equal

to

RANGESTART,

or

if

RANGESTART

is

NULL,

this

row

matches

the

lookup

number.

v

cumulative

is

the

following:

–

0

=

only

the

matching

CalculationRange

with

the

highest

RANGESTART

value

is

used.

–

1

=

all

matching

CalculationRanges

are

used.

The

calculated

monetary

amounts

are

summed

to

arrive

at

the

final

result.

For

more

information,

see

the

CALRANGE

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

step

a

for

each

calculation

range

associated

with

the

calculation

scale

used

in

your

store.

In

the

example

above

there

is

only

one

range,

since

all

amounts

are

taxed

at

the

same

rate.
11.

Define

the

calculation

lookup

values

for

the

calculation

scales.

The

calculation

lookup

values

are

the

values

associated

with

the

calculation

scale.

For

256

Store

Development

Guide

example,

a

calculation

scale

includes

the

following

ranges

and

associated

tax

rates

for

Ontario

provincial

sales

tax

on

meals

served

in

a

restaurant:

v

$0.00

-

$3.99

taxed

at

the

rate

of

0.00%

v

$4.00

and

up

taxed

at

the

rate

of

8.00%

The

lookup

values

are

0.00

and

8.00.
a.

Using

the

following

examples

as

your

guide,

set

up

the

calculation

lookup

in

your

XML

file

for

the

CALRLOOKUP

table.

<calrlookup

calrlookup_id="@calrlookup_id_37"

calrange_id="@calrange_id_37"

value="5.00"

/>

where

v

calrlookup_id

is

a

generated

unique

identifier.

v

calrange_id

is

the

calculation

range

this

calculation

range

lookup

result

is

part

of.

v

value

is

the

value

of

the

calculation

range

lookup

result,

used

by

the

calculation

range

method

of

the

calculation

range

to

determine

a

monetary

result.

In

this

example,

the

tax

rate

is

5.00%.

For

more

information,

see

the

CALRLOOKUP

table

in

the

WebSphere

Commerce

online

help.

b.

Repeat

steps

a

and

b

for

each

lookup

value

associated

with

the

calculation

scale

used

in

your

store.

In

this

example,

there

is

only

one

CALRLOOKUP

value,

since

CALRLOOKUP.SETCCURR

is

NULL,

and

there

is

only

one

CALRANGE,

since

the

tax

rate

is

the

same

for

all

amounts.
12.

Associate

the

calculation

rule

and

calculation

scale.

a.

Using

the

following

examples

as

your

guide,

associate

the

calculate

scale

with

the

calculation

rule

in

your

XML

file

for

the

CRULESCALE

table.

<crulescale

calrule_id="@calrule_id_10"

calscale_id="@calscale_id_19"

/>

where

v

calrule_id

is

the

calculation

rule.

v

calscale_id

is

the

calculation

scale.
b.

Repeat

step

a

for

each

calculation

scale

and

rule

association.

In

example

used

above,

there

is

only

one

calculation

scale

for

each

calculation

rule.

Note:

If

the

tax

rate

varies

depending

on

the

amount

purchased,

you

will

need

to

create

scales

with

non-zero

rangestart

values.

Then,

you

will

need

to

create

a

calculation

scale

for

each

supported

currency

(setting

CALSCALE.SETCCURR

to

the

appropriate

currency)

for

which

you

have

not

established

a

conversion

rate

(refer

to

the

CURCONVERT

table)

and

associate

them

all

with

the

calculation

rule

for

that

particular

tax

category.

For

example,

there

is

no

Ontario

provincial

sales

tax

on

meals

under

$4.00.

If

your

store

supported

selling

meals

in

US

dollars,

you

would

need

to

either

establish

a

conversion

from

US

dollars

to

Canadian

dollars,

or

create

a

separate

tax

calculation

scale

with

an

appropriate

rangestart

value,

perhaps

Chapter

27.

Tax

assets

257

$6.00

USD,

and

associate

it

with

the

same

tax

calculation

rule.

Only

the

appropriate

calculation

scale

would

be

used,

according

to

the

currency

of

the

order.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

tax

fulfillment

assets

In

order

for

your

tax

assets

to

work

correctly

in

your

store,

you

must

associate

the

tax

jurisdiction

groups

in

your

store

to

the

fulfillment

center

used

by

your

store,

and

then

associate

a

calculation

rule

to

both.

You

must

create

your

fulfillment

assets

before

you

can

associate

your

tax

assets

to

a

fulfillment

center.

For

more

information

on

creating

fulfillment

assets,

see

“Creating

fulfillment

assets

in

WebSphere

Commerce”

on

page

200.

After

you

have

created

the

fulfillment

assets,

associate

your

tax

assets

to

them,

by

adding

add

information

to

the

TAXJCRULE

table.

Do

the

following:

1.

Review

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

taxes)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

XML

files

used

to

create

tax

fulfillment

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores

Each

sample

store

includes

a

taxfulfill.xml

file,

which

include

the

tax

information.

To

view

the

taxfulfill.xml

file

in

the

store

archive,

decompress

it

using

a

ZIP

program.

The

taxfulfill.xml

file

is

located

in

the

data

directory.

3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

taxfulfill.xml

file,

either

by

copying

one

of

the

taxfulfill.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

taxfulfill.xml.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/xml/sar
5.

Using

the

following

example

as

your

guide,

in

your

XML

file

add

information

for

the

TAXJCRULE

table:

<taxjcrule

taxjcrule_id="@taxjcrule_id_1"

calrule_id="@calrule_id_10"

ffmcenter_id="@ffmcenter_id_1"

jurstgroup_id="@jurstgroup_id_2"

precedence="0"

/>

where

v

taxjcrule_id

is

a

generated

unique

identifier.

v

calrule_id

is

the

calculation

rule

used.

v

ffmcenter_id

is

the

fulfillment

center.

If

this

is

NULL

then

this

association

applies

to

all

fulfillment

centers.

258

Store

Development

Guide

v

jurstgroup_id

is

the

tax

jurisdiction

group.

If

this

is

NULL,

then

this

association

applies

to

all

tax

jurisdiction

groups.

v

precedence

is

when

a

shipping

address

falls

within

more

than

one

of

the

specified

tax

jurisdiction

groups,

for

the

same

fulfillment

center,

only

the

calculation

rule

with

the

highest

TAXJCRULE.PRECEDENCE

value

qualifies.
6.

Repeat

step

3

for

each

jurisdiction

group,

fulfillment

center

and

rule

association

in

your

store.

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Creating

store-catalog-tax

assets

In

order

to

associate

taxes

with

the

goods

and

services

in

your

store,

you

must

associate

a

calculation

code

with

the

catalog

entries

in

your

store

for

each

contract

your

store

includes.

You

must

create

your

store

and

catalog

assets

before

you

can

create

store-catalog-tax

assets.

For

more

information

on

creating

store

assets,

see

“Creating

store

data

assets

in

an

XML

file”

on

page

124.

For

more

information

on

creating

catalog

assets,

see

“Displaying

store

catalog

assets”

on

page

162.

To

create

store-catalog-tax

assets,

do

the

following:

1.

Review

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

The

WebSphere

Commerce

calculation

framework

calculates

monetary

amounts

(for

example,

shipping)

associated

with

the

product

or

service

a

customer

has

selected

to

purchase.

2.

Review

the

XML

files

used

to

create

store-catalog-tax

assets

for

the

sample

stores.

All

files

for

the

sample

stores

are

located

in

the

corresponding

store

archive

file.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores
3.

Review

the

information

in

Appendix

B,

“Creating

your

data,”

on

page

439.

4.

Create

a

store-catalog-tax.xml

file,

either

by

copying

one

of

the

store-catalog-tax.xml

files

in

the

sample

store

archives,

or

by

creating

a

new

one.

For

more

information,

see

the

DTD

file

that

corresponds

to

store-catalog-tax.xml.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/xml/sar
5.

Create

the

store-catalog-tax

relationship

by

adding

information

to

the

CATENCALCD

table.

Use

the

following

example

as

your

guide:

<catencalcd

calcode_id="@calcode_id_3"

catencalcd_id="@catencalcd_id_3"

store_id="@storeent_id_1"

/>

where

v

calcode_id

is

the

calculation

code.

v

catencalcd_id

is

a

generated

unique

identifier.

v

store_id

is

the

store.

Chapter

27.

Tax

assets

259

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

260

Store

Development

Guide

Chapter

28.

Discount

assets

Discounts

allow

you

to

offer

customers

price

incentives

to

drive

sales,

or

promote

a

product.

WebSphere

Commerce

has

two

available

discount

implementations;

rule-based

discounts,

and

schema-based

discounts.

Either

implementation

enables

percentage

discounts

(such

as

10%

off)

or

fixed-amount

discounts

(such

as

$15

off).

Discounts

can

apply

to

specific

products

or

to

the

total

purchase.

For

example,

you

can

offer

a

20%

reduction

to

senior

citizens;

or

if

you

have

many

red

baseball

caps

in

stock,

you

can

offer

a

25%

discount

on

the

caps

for

a

limited

time.

Rule-based

discounts

go

beyond

these

discount

types

to

offer

shipping

discounts,

and

free

gifts

with

qualifying

purchases.

Understanding

rule-based

discounts

in

WebSphere

Commerce

The

following

diagram

illustrates

the

rule-based

discount

structure

in

the

WebSphere

Commerce

Server.

RLOrderLevelPromotionItem

Package RLItemLevelPromotion

1..n
1

1..n
1

Product RLProductLevelPromotion
1..n 1

MemberGroup

CalculationCode

CatalogEntry

StoreDefaultCurrency

OrderLevelShippingDiscount

StoreEntity

11

ShippingMode

1

1
Store

0..1

DiscountService

1

0..1

RLPromotion

1

1

BlazeRuleProject

0..n

BlazeRuleServer

BlazeRuleService 10..n

1
0..n

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

©

Copyright

IBM

Corp.

2000,

2003

261

Store

default

currency

This

is

the

default

currency

for

the

store

as

defined

in

the

STOREENT

table.

Rule-based

discounts

are

defined

in

this

currency,

but

may

be

evaluated

on

demand,

using

any

currency

supported

by

the

store.

For

more

information

on

currency

usage,

see

Chapter

23,

“Currency

assets,”

on

page

217.

Calculation

code

A

discount

is

represented

in

the

calculation

framework

by

a

discount

calculation

code.

A

discount

calculation

code

indicates

how

the

discount

is

calculated

for

order

items

by

the

corresponding

calculation

rule.

A

calculation

code

belongs

to

a

store

entity.

Multiple

calculation

codes

can

be

defined

within

a

store

entity.

If

the

store

entity

is

deleted,

the

calculation

codes

defined

within

that

store

entity

are

also

deleted.

Each

discount

calculation

code

can

have

a

start

date

and

an

end

date,

which

define

the

time

period

in

which

the

discount

is

effective.

The

discount

calculation

code

can

also

be

associated

with

one

or

more

member

groups,

which

define

the

eligible

member

groups.

RLPromotion

This

is

the

parent

object

for

rule-based

discounts.

While

RLPromotion

is

the

object

type

name,

it

should

be

understood

that

it

corresponds

to

a

rule-based

discount.

Each

rule-based

discount

has

a

name,

various

descriptions

which

display

in

different

circumstances,

a

priority,

a

target

segment

(predefined

customer

profile),

and

an

execution

schedule

governing

both

dates

and

times.

The

priority

attribute

should

be

further

clarified.

The

priority

attribute

exists

to

help

resolve

conflicts

when

there

are

multiple

discounts

that

can

be

applied

concurrently.

Applicable

discounts

are

applied

in

the

order

defined

by

their

respective

priority

values,

in

descending

order.

That

is,

the

discount

with

the

highest

priority

value

is

applied

first.

All

of

the

child

objects

listed

below

further

categorize

the

rule-based

discount

types,

and

introduce

values

specific

to

the

discount

type

where

required.

Each

of

these

objects

also

contains

the

appropriate

logic

to

manipulate

the

domain

XML

file,

which

defines

the

discount.

RLProduct

level

promotion

These

objects

represent

product

level

rule-based

discounts.

This

class

is

derived

from

the

RLPromotion

class.

This

class

requires

an

additional

attribute,

SKU,

which

identifies

the

target

product.

RLItem

level

promotion

These

objects

represent

item

level

rule-based

discounts.

This

class

is

derived

from

the

RLPromotion

class.

This

class

requires

an

additional

attribute,

catEntryID,

which

identifies

the

target

product.

These

item

level

promotions

are

also

used

to

target

prebuilt

kits

with

rule-based

discounts

since

they

are

separately

orderable,

with

their

own

catEntryID

and

price.

Bundles

and

dynamic

kits

are

not

targetable

by

rule-based

discounts.

RLOrder

level

promotion

These

objects

represent

order

level

rule-based

discounts.

This

is

a

derivative

of

the

RLPromotion.

This

class

requires

an

additional

attribute,

262

Store

Development

Guide

inCombineWithProductLevelDiscount,

which

determines

whether

the

order

level

discount

can

be

applied

at

the

same

time

as

a

product

level

promotion.

Order

level

shipping

discount:

This

class

is

derived

from

the

RLOrder

level

promotion

class.

This

class

requires

additional

attributes

which

define

the

shipping

method

to

use,

and

the

discounted

rate.

Blaze

rule

project

The

Blaze

rule

project

contains

all

of

the

currently

defined

discounts

for

a

store,

generated

from

the

domain

XML

file.

The

rule

project

resides

in

the

file

system,

and

is

used

to

populate

the

discount

service.

Blaze

rule

service

This

is

an

interface

WebSphere

Commerce

uses

to

communicate

with

the

Blaze

rule

server.

Discount

service

Extends

from

the

Blaze

rule

service,

and

contains

an

instance

of

the

rule

project

wherein

evaluation

and

calculation

take

place.

This

service

passes

the

discount

context,

an

object

containing

information

about

the

applicable

discounts,

to

the

WbeSphere

Commerce

calculation

framework..

Blaze

rule

server

Blaze

software

that

evaluates

the

rule

project

whenever

a

request

arrives

from

the

order

processing

commands.

Understanding

schema-based

discounts

in

WebSphere

Commerce

The

following

diagram

illustrates

the

schema-based

discount

structure

in

the

WebSphere

Commerce

Server.

Store

StoreEntity

RecognizedMemberGroup

CalculationRule

CalculationCode

+definedCalculationCode

MemberGroup
1

+customerGroup

+customerGroup +customerGroup

Calculation

code

A

discount

is

represented

by

and

calculated

using

a

discount

calculation

code.

A

discount

calculation

code

indicates

how

the

discount

is

calculated

for

order

items.

A

calculation

code

belongs

to

a

store

entity.

Multiple

calculation

codes

can

be

defined

within

a

store

entity.

If

the

store

entity

is

deleted,

the

calculation

codes

defined

within

that

store

entity

are

also

deleted.

Chapter

28.

Discount

assets

263

Each

discount

calculation

code

can

have

a

start

date

and

an

end

date,

which

define

the

time

period

in

which

the

discount

is

effective.

The

discount

calculation

code

can

also

be

associated

with

one

or

more

member

groups,

which

define

the

eligible

member

groups.

The

discount

calculation

code

can

be

attached

to

one

or

more

catalog

entries,

and

catalog

groups.

Attaching

a

calculation

code

to

a

catalog

group

has

the

same

effect

as

attaching

it

to

all

the

catalog

entries

directly

in

the

catalog

group.

However,

discount

calculation

codes

attached

to

catalog

group

A

are

not

attached

to

products

and

items

in

catalog

group

B

if

catalog

group

A

contains

catalog

group

B.

Catalog

entries

or

catalog

groups

may

have

more

than

one

discount

associated

with

them.

When

more

than

one

discount

calculation

code

is

applicable

to

an

order,

discount

calculations

are

performed

in

ascending

sequence

of

their

calculation

code

sequence

attributes.

Note:

Define

discount

sequence

orders

to

implement

discounts

on

discounts.

The

order

items

are

grouped

for

calculation

in

one

of

the

following

ways:

v

Per

trading

agreement

v

Per

product

v

Per

offer

v

Per

shipping

address

For

more

information,

see

the

WebSphere

Commerce

online

help.

For

more

information

about

the

use

of

calculation

codes,

see

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

Calculation

rules

Each

calculation

code

has

a

set

of

calculation

rules,

which

define

the

conditions

under

which

the

calculation

will

be

done.

Each

discount

calculation

rule

is

associated

with

one

or

more

member

groups,

for

whom

the

discount

is

effective.

Member

groups

may

be

eligible

for

more

than

one

discount

at

a

time.

Note:

If

an

eligible

member

group

is

defined

at

the

calculation

code

level,

it

does

not

need

to

be

defined

again

at

the

calculation

rule

level.

For

more

information

about

the

use

of

calculation

rules,

see

the

IBM

WebSphere

Commerce

Calculation

Framework

Guide.

Creating

discount

assets

in

WebSphere

Commerce

The

primary

method

of

creating

discounts

in

a

store

created

with

WebSphere

Commerce

is

using

the

Discount

wizard

in

the

WebSphere

Commerce

Accelerator.

For

more

information

on

creating

discounts

using

the

WebSphere

Commerce

Accelerator,

see

the

WebSphere

Commerce

online

help.

Discounts

can

also

be

created

by

using

an

XML

file

and

then

loaded

by

the

Loader

package.

However,

discounts

created

in

this

manner,

as

well

as

discounts

imported

during

migration

from

previous

versions,

will

function

correctly,

but

may

not

display

properly

in

the

WebSphere

Commerce

Accelerator.

264

Store

Development

Guide

Chapter

29.

Inventory

assets

Inventory

includes

anything

that

can

be

physically

accounted

for

in

a

fulfillment

center.

There

are

specific

definitions

of

types

of

inventory

that

can

be

fulfilled,

such

as

items,

products,

SKUs,

bundles,

and

packages;

but

these

are

all

considered

inventory.

Products

are

configured

for

fulfillment

in

the

Product

wizard

and

the

Product

notebook.

This

includes

options

to

track

inventory,

allow

backorder,

force

backorder,

release

separately,

and

specify

that

the

product

should

not

be

returned.

The

WebSphere

Commerce

Accelerator

distinguishes

between

two

major

types

of

inventory

that

can

be

received:

v

Expected

inventory

that

has

an

associated

expected

inventory

record

v

Ad

hoc

inventory,

or

inventory

not

recorded

as

expected

Expected

inventory

is

received

from

a

vendor

and

typically

paid

for

with

a

purchase

order.

The

WebSphere

Commerce

Accelerator

tracks

expected

inventory

with

expected

inventory

records,

and

allows

you

to

record

an

external

identifier,

typically

a

purchase

order

number

from

an

external

system.

In

this

way,

you

can

easily

keep

track

of

the

inventory

you

have

ordered,

as

well

as

what

has

and

has

not

arrived.

Expected

inventory

details

are

the

specifics

about

products

in

an

expected

inventory

record,

such

as

the

fulfillment

center

expecting

the

product,

the

expected

receipt

date,

quantity

expected,

and

comments.

An

expected

inventory

record

cannot

be

deleted

once

inventory

has

been

received

against

it,

and

expected

inventory

details

cannot

be

changed

or

deleted

once

any

of

that

inventory

has

been

received.

When

orders

are

placed

for

inventory

that

is

available

in

a

fulfillment

center,

the

order

system

allocates

inventory

to

those

orders.

Allocating

inventory

to

an

order

makes

it

unavailable

to

the

order

system.

If

the

order

is

canceled,

the

inventory

becomes

available

again.

If

an

order

is

placed

for

inventory

that

is

not

available,

a

backorder

can

be

created.

If

there

is

expected

inventory

that

could

be

used

to

fulfill

the

backorder,

then

the

expected

inventory

is

allocated

to

the

backorder

and

the

customer

can

be

provided

with

an

expected

ship

date.

Ad

hoc

inventory

receipts

are

created

when

inventory

arrives

at

a

fulfillment

center

without

a

corresponding

expected

inventory

record.

This

could

be

due

to

an

unexpected

inventory

arrival,

or

it

could

be

the

choice

of

the

merchant

or

seller

not

to

use

expected

inventory

records

to

record

inventory

receipts.

Note:

Products

must

exist

in

the

WebSphere

Commerce

system

in

order

to

be

received,

whether

the

inventory

receipt

is

expected

or

ad

hoc.

Understanding

inventory

assets

in

WebSphere

Commerce

To

understand

inventory

assets,

it

is

necessary

to

understand

the

relationships

between

inventory

and

the

store.

This

can

be

explained

by

the

use

of

an

information

model.

The

following

sections

describe

the

relationships

and

associations

inventory

has

to

a

store

and

other

assets.

The

diagrams

below

depict

the

relationships

and

associations

for

available-to-promise

(ATP)

inventory

and

non-ATP

inventory.

A

store

may

use

either

ATP

or

non-ATP

inventory

methods.

A

store

is

considered

to

be

enabled

for

ATP

if

the

ALLOCATIONGOODFOR

column

©

Copyright

IBM

Corp.

2000,

2003

265

in

the

STORE

database

table

contains

a

value

greater

than

zero.

Each

diagram

and

its

associations

are

described

below.

For

more

information

on

ATP,

see

the

online

help.

ATP

inventory

CatalogEntry

Item

StoreEntity FulfillmentCenter

ItemSpecification
0..1

Product

StoreItem

1

Member

1

+owner

1

+owner

StoreItemFulfillmentCenter

1 1

BaseItem
0..1

1

1 +owner

1

DistributionArrangement

1

Store

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Base

item

The

base

item

is

the

center

of

the

inventory

diagram

and

represents

a

general

family

of

goods

with

a

common

name

and

description.

Base

items

are

used

exclusively

for

fulfillment

and

are

not

particular

to

any

store.

Each

catalog

entry

that

represents

a

product

in

the

catalog,

has

a

corresponding

base

item

for

fulfillment

purposes.

Base

items

are

defined

in

the

BASEITEM

table.

Item

specification

An

item

specification

is

a

base

item

with

values

defined

for

all

its

attributes.

Each

catalog

entry

that

represents

an

item

in

the

catalog

has

a

corresponding

item

specification

for

fulfillment

purposes.

Catalog

entries

Products

and

items

are

catalog

entries.

Catalog

entries

are

associated

with

store

entities,

meaning

catalog

entries,

such

as

products

and

items,

are

found

in

stores.

266

Store

Development

Guide

Distribution

arrangement

A

distribution

arrangement

is

associated

with

a

base

item,

enabling

a

store

to

sell

its

own

inventory.

Distribution

arrangements

are

stored

in

the

DISTARRANG

table.

Store

item

A

store

item

represents

attributes

that

affect

the

way

a

particular

store

or

store

group

allocates

inventory

for

the

specified

items

of

a

particular

base

item,

including

whether

to

allow

backorders

and

track

inventory.

The

STORITMFFC

table

defines

an

estimate

of

the

number

of

seconds

it

takes

from

the

time

an

order

item

is

released

for

fulfillment,

until

it

is

shipped

to

the

customer.

This

table

is

only

populated

if

a

store

wishes

to

define

an

override

to

the

FFMCENTER

default

shipping

offset

for

a

store

item.

The

store

item

asset

can

be

used

by

other

stores

as

described

in

Chapter

14,

“Relationships

between

stores,”

on

page

129.

Non-ATP

inventory

Item ItemSpecification
0..1

Product BaseItem
0..1

StoreEntity Member

1 +owner

1

+owner

CatalogEntry

FulfillmentCenter

1

+owner

Inventory

1

1

Store
0..1

+defaultFulfillmentCenter

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Chapter

29.

Inventory

assets

267

The

base

item

is

also

the

center

of

the

non-ATP

inventory

diagram.

The

relationship

of

the

base

item

to

products,

items,

and

catalog

entries,

is

the

same

as

for

the

general

inventory

diagram.

A

base

item

is

still

owned

by

a

member,

and

once

defined

by

that

member,

can

be

sold

in

the

store.

In

this

case

however,

there

is

no

distribution

arrangement,

store

item

association,

or

store

item

fulfillment

center.

Fulfillment

center

Inventory

is

associated

with

one

fulfillment

center

and

one

store.

A

store

can

designate

one

default

fulfillment

center.

Like

base

items,

fulfillment

centers

are

owned

by

members.

For

more

information

on

fulfillment

assets,

seeChapter

19,

“Fulfillment

assets,”

on

page

197.

For

more

detailed

information

on

the

structure

of

inventory

assets

in

the

WebSphere

Commerce

Server,

see

the

inventory

object

and

data

models

in

the

WebSphere

Commerce

online

help.

Creating

inventory

assets

in

WebSphere

Commerce

Since

inventory

is

operational

data,

it

changes

daily,

as

your

customers

purchase

products

from

your

store,

or

return

items

to

it.

As

a

result

your

inventory

levels

go

up

and

down

as

you

sell

products,

and

as

your

fulfillment

centers

receive

new

inventory

from

suppliers.

The

WebSphere

Commerce

Accelerator

allows

you

to

complete

the

following

inventory

related

tasks:

v

Record

expected

inventory

v

Receive

expected

and

ad

hoc

inventory

from

vendors

v

Adjust

inventory

v

Maintain

return

records

v

Maintain

return

reasons

v

Receive

returned

inventory

from

customers

v

Manage

returned

inventory

disposition

For

more

information

on

using

the

WebSphere

Commerce

Accelerator

to

manage

inventory,

see

the

WebSphere

Commerce

online

help.

Managing

inventory

adjustment

codes

Inventory

adjustment

codes

are

provided

by

WebSphere

Commerce

to

enable

users

to

specify

the

reason

why

a

particular

adjustment

to

the

inventory

is

being

made.

The

following

table

lists

the

inventory

adjustment

codes

that

are

initially

provided

with

WebSphere

Commerce.

You

can

also

view

these

codes

by

entering

a

SELECT

*

database

query

against

the

INVADJCODE

and

INVADJDESC

database

tables.

As

store

developer,

you

can

add,

change,

or

delete

these

codes

as

necessary

to

fit

the

needs

of

your

inventory

environment.

The

codes

described

in

the

table

below

should

be

thought

of

as

examples

of

the

types

of

codes

that

you

can

use.

You

can

achieve

a

more

customized

environment

by

adding

your

own

adjustment

codes

or

by

modifying

the

codes

that

are

preloaded.

268

Store

Development

Guide

Table

11.

Preloaded

inventory

adjustment

codes

Adjustment

code

Description

Explanation

RTND

Returned

Use

this

code

to

specify

that

an

item*

was

returned

to

inventory.

For

example,

a

customer

may

return

an

item

from

an

order

because

it

was

the

wrong

color

or

size.

This

code

is

preloaded

for

use

by

all

sample

stores.

EXPD

Expired

Use

this

code

to

specify

that

an

item

had

expired

in

the

inventory.

For

example,

prescription

drugs

or

products

with

a

short

shelf

life

(such

as

dairy

products)

could

expire.

This

code

is

preloaded

for

use

by

all

sample

stores.

DMGD

Damaged

Use

this

code

to

specify

that

an

item

is

damaged

(for

example,

it

may

be

dented,

scratched,

broken,

or

defective).

This

code

is

preloaded

for

use

by

all

sample

stores.

LOST

Lost

Use

this

code

to

specify

that

an

item

was

lost

in

or

stolen

from

the

fulfillment

center

or

storage

location.

This

code

is

preloaded

for

use

by

all

sample

stores.

MSCT

Miscount

Use

this

code

to

specify

that

the

count

made

of

the

item

was

previously

wrong.

This

code

is

preloaded

for

use

by

all

sample

stores.

PCNT

Physical

Count

Use

this

code

to

specify

the

actual

physical

count

of

the

item.

This

code

is

preloaded

for

Consumer

direct

and

B2B

direct

sample

stores

but

not

hosted

stores.

SPLG

Spoilage

Use

this

code

to

specify

that

an

item

has

spoiled.

This

code

is

preloaded

for

Consumer

direct

and

B2B

direct

sample

stores

but

not

hosted

stores.

DISC

Discard

Use

this

code

to

indicate

that

an

item

has

or

will

be

discarded

from

inventory.

This

code

is

preloaded

for

Consumer

direct

and

B2B

direct

sample

stores

but

not

hosted

stores.

*The

word

″item″

is

used

in

the

general

sense

here.

Inventory

goods

may

be

items,

products,

SKUs,

bundles,

and

packages.

In

this

table,

the

value

shown

in

the

Adjustment

code

column

represents

the

value

found

in

the

ADJUSTCODE

column

of

the

INVADJCODE

database

table.

The

value

shown

in

the

Description

column

represents

the

value

found

in

the

DESCRIPTION

column

in

the

INVADJDESC

database

table.

To

add,

change,

or

delete

inventory

adjustment

codes,

use

the

Load

command

(massloader)

command.

Details

about

the

Load

command

are

provided

in

“Load

command”

on

page

349.

For

more

information

about

how

data

is

organized

in

the

sample

stores,

see

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

Before

using

the

Load

command,

be

sure

that

the

wcs.dtd

file

is

included

in

your

path

(WC_installdir\schema\xml).

The

massloader.cmd

file

must

also

be

in

your

path

(WC_installdir\bin).

Chapter

29.

Inventory

assets

269

Adding

inventory

adjustment

codes

To

add

inventory

adjustment

codes

for

your

store,

do

the

following:

1.

Create

an

XML

file

(with

a

name

of

your

choice)

similar

to

the

following

example,

and

place

it

in

a

location

where

the

Loader

can

find

it.

In

the

XML

file,

specify

values

for

the

invadjcode

and

invadjdesc

elements

to

add

the

new

inventory

adjustment

code

to

two

database

tables:

INVADJ

and

INVADJDESC.

The

invadjcode_id

should

be

the

same

value

in

both

tables

for

any

given

code.

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

import

SYSTEM

"wcs.dtd">

<import>

<invadjcode

invadjcode_id="404"

adjustcode="BRKN"

storeent_id="-1"

markfordelete="0"

/>

<invadjdesc

invadjcode_id="404"

description="BROKEN"

language_id="-1"

/>

</import>

where:

v

invadjcode_id

is

an

adjustment

code

identifier

you

assign.

The

identifier

is

used

internally

and

is

not

displayed

to

users

in

the

WebSphere

Commerce

user

interface.

v

adjustcode

is

a

4-character

code

that

uniquely

identifies

the

code,

suitable

for

display

in

a

user

interface.

v

storeent_id

is

the

identifier

for

the

store

entity

or

store

group.

To

add

this

inventory

adjustment

code

to

all

stores,

enter

a

value

of

″−1″.

Otherwise,

provide

a

specific

store

entity

or

store

group

identifier.

v

description

is

a

text

description

of

the

inventory

adjustment

code,

suitable

for

display

in

a

user

interface.

v

language_id

is

the

default

language

for

information

displayed

to

customers

shopping

in

the

store.

For

more

information

about

language

support,

see

Chapter

34,

“Globalization,”

on

page

295.

If

you

have

a

need

to

add

more

than

one

inventory

adjustment

code,

you

can

specify

multiple

codes

in

the

XML

file.

2.

Run

the

Load

command

against

your

XML

file

to

load

your

data

into

the

two

target

databases.

Windows

massload.cmd

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

AIX

Linux

Become

wasuser

first

(the

WebSphere

Application

Server

user

ID):

su

-

wasuser

Then,

issue

this

command:

./massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

400

Start

a

QShell

session

(STRQSH).

Then,

run

the

following

command

from

the

WC_installdir/bin

directory:

massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

3.

Confirm

the

addition

of

the

inventory

adjustment

codes

by

running

a

database

query

to

view

the

new

code

values

were

added

to

both

tables.

270

Store

Development

Guide

Changing

inventory

adjustment

codes

To

change

the

description

of

an

inventory

adjustment

code,

do

the

following:

1.

Follow

steps

similar

to

adding

a

new

code,

but

change

the

values

for

the

adjustcode

and

description

elements

in

the

XML

file

for

the

particular

invadjcode_id.

For

example:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

import

SYSTEM

"wcs.dtd">

<import>

<invadjcode

invadjcode_id="404"

adjustcode="DEFE"

storeent_id="-1"

markfordelete="0"

/>

<invadjdesc

invadjcode_id="404"

description="DEFECTIVE"

language_id="-1"

/>

</import>

In

this

example,

the

previous

adjustment

code

and

description

(BRKN,

BROKEN)

are

changed

to

the

new

values

shown.

If

necessary

you

can

change

the

invadjcode_id

values

also.

To

find

the

invadjcode_id

you

can

issue

the

massextract.cmd

(the

Extract

command).

More

information

about

the

Extract

command

is

available

in

the

WebSphere

Commerce

Development

online

help.

The

massextract.cmd

extracts

the

data

from

the

database

and

puts

it

into

an

XML

file.

You

can

then

browse

the

file

to

find

the

invadjcode_id

value.

As

an

alternative,

you

can

also

run

a

SELECT

*

query

on

the

INVADJCODE

and

INVADJDESC

database

tables.

2.

Run

the

same

massload.cmd

as

for

adding

a

new

adjustment

code:

Windows

massload.cmd

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

AIX

Linux

As

wasuser,

run

this

command:

./massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

400

Start

a

QShell

session

(STRQSH).

Then,

run

the

following

command

from

the

WC_installdir/bin

directory:

massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

sqlimport

3.

Confirm

that

the

inventory

adjustment

codes

were

changed

in

the

database

tables.

Deleting

inventory

adjustment

codes

To

delete

an

inventory

adjustment

code

from

the

WebSphere

Commerce

database

tables,

do

the

following:

1.

Create

an

XML

file

containing

the

codes

you

want

to

delete.

Refer

to

the

sample

XML

file

shown

in

“Adding

inventory

adjustment

codes”

on

page

270

for

an

example.

2.

Run

the

massload.cmd

but

be

sure

to

specify

the

delete

method

as

shown

Windows

massload.cmd

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

delete

AIX

Linux

As

wasuser,

run

this

command:

Chapter

29.

Inventory

assets

271

./massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

delete

400

Start

a

QShell

session

(STRQSH).

Then,

run

the

following

command

from

the

WC_installdir/bin

directory:

massload.sh

-dbname

dbname

-dbuser

dbuser

-dbpwd

dbpwd

-infile

xml_file_name

-method

delete

3.

Confirm

that

the

inventory

adjustment

codes

were

deleted

from

the

database

tables.

272

Store

Development

Guide

Chapter

30.

Order

assets

Order

assets

in

the

WebSphere

Commerce

system

provide

shopping

cart,

order

management,

and

order

processing

functionality.

Order

processing

capabilities

include

quick

order

or

buy,

scheduled

orders,

multiple

pending

orders,

reorders,

splitting

orders

and

backorders.

Related

services,

such

as

pricing,

taxation,

payment,

inventory,

and

fulfillment,

are

also

part

of

the

order

assets.

Understanding

order

assets

in

WebSphere

Commerce

The

following

diagram

illustrates

the

order

assets

in

the

WebSphere

Commerce

Server.

Descriptions

of

each

asset

follows

the

diagram.

OrderPaymentInfo

Currency StoreEntity

0..1

+defaultCurrency Member1

+owner

Order

1 1
+customer

+seller

OrderItem

Address

1 +owner

0..1

+billTo

0..1+shipTo

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

Orders

and

order

items

In

the

WebSphere

Commerce

system,

for

a

customer

or

shopper,

an

order

is

a

list

of

selected

products

(for

example,

an

order

can

contain

two

books

and

a

CD)

and

each

product

on

that

list

is

an

order

item

(for

example,

each

book

and

CD

is

an

order

item

of

the

same

order).

When

a

customer

places

an

order

with

the

store,

the

customer

must

provide

a

billing

address

to

which

the

store

sends

the

invoice.

A

single

currency

identifier

is

associated

with

each

order.

From

a

store

perspective,

an

order

is

a

list

of

order

items.

It

is

part

of

the

store’s

data.

Currency

A

store

can

display

prices

in

one

currency,

or

use

multiple

currencies.

Each

store

must

also

define

a

default

currency.

You

can

also

allow

customers

to

select

a

shopping

currency.

If

the

shopping

currency

is

the

same

as

the

default

currency

for

the

store,

it

is

already

supported

in

the

STOREENT

table.

If

the

shopping

currency

is

not

the

default

currency

for

the

store,

then

you

must

add

the

currency

to

the

CURLIST

table.

Customers

use

the

shopping

currency

to

place

orders

at

your

store.

©

Copyright

IBM

Corp.

2000,

2003

273

Payment

information

Once

a

customer

has

selected

a

preferred

shopping

currency,

all

payment

will

be

processed

in

that

currency.

Depending

on

the

store’s

payment

support

and

policies,

customers

can

pay

for

purchases

using

online

payment

(where

a

customer

provides

payment

information

over

the

Internet

on

the

store’s

site)

or

offline

payment

(where

the

customer

provides

payment

information

without

Internet

channels,

such

as

through

phone

or

fax).

Regardless

of

online

or

offline

payment

methods,

customers

must

provide

payment

information

when

placing

orders,

including

any

of

the

following:

v

Payment

method:

The

customer’s

method

of

payment

for

the

order.

Depending

on

the

payment

cassettes

configured

in

WebSphere

Commerce

Payments

for

the

store,

you

can

set

up

the

store

to

accept

offline

payment,

or

use

other

payment

protocols

for

online

payments

that

do

not

require

customers

to

use

an

online

wallet,

or

a

custom

payment

method.

v

For

credit

card

payments,

information

about

the

card:

The

customer’s

credit

card

brand,

number,

and

expiry

date

used

to

pay

for

the

order.

Credit

card

information

is

typically

required

if

the

store

supports

online

payment.

v

Purchase

order

number:

The

purchase

order

number,

which

the

customer

may

have

provided

when

ordering

at

the

store.

The

purchase

order

number

authenticates

the

customer

as

one

that

is

authorized

to

order

from

the

store,

as

stipulated

in

the

terms

within

the

contract

between

the

store

and

the

customer.

Order

items

Order

items

are

the

individual

products

or

items

that

make

up

an

order.

An

order

must

have

at

least

one

order

item.

Each

order

item

represents

something

that

a

customer

has

selected

for

purchase.

In

addition,

each

order

item

has

a

reference

to

a

trading

agreement

(usually

a

contract),

a

shipping

mode,

a

fulfillment

center,

and

a

price

offer.

Discounts,

shipping

charges,

and

total

tax

are

stored

with

each

order

item.

274

Store

Development

Guide

The

following

diagram

illustrates

the

WebSphere

Commerce

order

item

assets.

Descriptions

of

each

asset

follows

the

diagram.

Member

Contract

SubOrder

ShippingMode

FulfillmentCenter

1

+owner

Order

1

+customer

Address

1+owner

0..1

+shipTo

TermCondition

TradingAgreement

0..1

1

CatalogEntry

OrderItem

0..1

0..1

0..10..1
+shipTo

0..10..1

0..1

Offer

1

0..1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Suborders

Order

items

are

grouped

to

form

suborders.

A

suborder

is

the

part

of

an

order

that

is

being

shipped

to

a

specific

address.

For

example,

a

customer

may

indicate

different

shipping

addresses

for

different

products

in

the

shopping

cart.

Each

shipping

address

and

the

products

associated

with

it

constitute

a

suborder.

Order

items

in

a

suborder

have

the

same

shipping

address,

and

can

be

used

to

display

sub-totals

of

their

order

item

amounts.

The

quantity

attribute

of

the

OrderItem

object

is

a

unitless

number

that

can

be

multiplied

by

the

nominal

quantity

attribute

of

the

CatalogEntryShippingInformation

object

associated

with

the

CatalogEntry

object

to

arrive

at

the

actual

quantity

represented

by

the

OrderItem.

The

CatalogEntryShippingInformation

object

specifies

the

unit

of

measurement

in

which

quantities

are

stated.

Although

orders

are

usually

associated

with

a

single

store,

a

special

type

of

order

that

can

be

associated

either

with

a

store

or

a

store

group

is

the

order

profile.

The

order

profile

is

represented

in

the

object

model

as

an

Order

with

status

of

’Q’.

The

order

profile

holds

default

information

about

a

customer,

such

as

payment

information,

shipping

address,

shipping

mode,

and

billing

address.

Other

order

item

assets

An

order

item

can

be

associated

with

zero

or

one

of

each

of

the

following

objects.

Chapter

30.

Order

assets

275

v

A

shipping

address

for

the

customer

who

placed

the

order

containing

the

order

item.

A

customer

must

specify

a

shipping

address

during

the

order

process,

so

that

the

store’s

fulfillment

center

can

use

this

address

to

ship

the

order

item

appropriately.

v

A

fulfillment

center

for

shipping

and

receiving

order

items

required

by

customer

orders,

and

for

storing

inventory

for

the

order

item.

v

A

shipping

mode

for

the

order

item,

which

is

a

combination

of

a

shipping

carrier

(a

company

that

provides

shipping

services

from

a

fulfillment

center

to

a

customer),

and

the

shipping

service

offered

by

that

carrier.

For

example,

ABC

Shipping

Company,

Overnight

service

and

ABC

Shipping

Company,

Express

delivery

are

shipping

modes.

v

A

price

offer

associated

with

the

order

item.

By

including

different

offers

in

different

price

lists

(or

″trading

position

containers″),

stores

can

present

different

prices

for

the

same

product

or

SKU

to

different

customers.

For

example,

a

travel

agency

may

offer

plane

tickets

in

four

different

price

lists:

adult

pricing,

seniors

pricing,

children’s

pricing,

and

student

pricing.

v

A

catalog

entry

for

the

order

item;

that

is,

each

order

item

orders

an

item

from

a

catalog.

v

A

trading

agreement

that

defines

the

terms

and

conditions

under

which

the

item

is

ordered.

This

is

normally

a

contract,

but

may

be

a

Business

Request

for

Quotation

(RFQ),

representing

a

negotiation,

until

the

order

has

been

submitted

for

processing.

For

more

detailed

information

on

the

structure

of

order

assets

in

the

WebSphere

Commerce

Server,

see

the

order

object

and

data

models

in

the

WebSphere

Commerce

online

help.

Order

quotation

relationships

The

following

diagram

describes

order

quotation

relationships.

OrderQuotationSelectionRel OrderQuotationSubmissionRel

InitialOrderQuotationRel

Store TradingAgreement

OrderItem

0..1

OrderQuotationRel

0..1

+childStore

0..1

Order

+parent

0..1

0..1

+child

StoreEntity

+seller

FinalOrderQuotationRel

For

more

detailed

information

on

the

structure

of

order

assets

in

the

WebSphere

Commerce

Server,

see

the

order

object

and

data

models

in

the

WebSphere

Commerce

online

help.

An

order

quotation

relationship

(OrderQuotationRel)

is

a

relationship

between

a

parent

shopping

cart

order

and

a

child

quotation-related

order.

In

the

Value

chain

(demand)

business

model,

where

selling

is

done

through

channels,

channel

area

276

Store

Development

Guide

shoppers

can

use

a

shopping

cart

to

obtain

price

quotations,

from

multiple

stores,

for

products

or

services,

select

quantities

from

the

resulting

quotations,

and

submit

orders

to

the

stores

that

provided

the

quotations.

Order

quotation

relationships

indicate

the

store

and

contract

(trading

agreement)

from

which

the

quotation

was

requested.

A

parent

shopping

cart

can

have

the

following

types

of

child

quotation-related

orders

for

each

quotation

store

and

contract

pair:

an

initial

quotation,

a

current

quotation

selection,

a

final

quotation,

and

one

or

more

submitted

orders.

The

child

order

of

an

InitialOrderQuotationRel

represents

the

initial

quotation

received

for

items

in

a

parent

shopping

cart

order.

An

initial

quotation

may

include

alternate

and

related

products

not

explicitly

mentioned

in

the

parent

order.

The

child

order

for

an

OrderQuotationSelectionRel

represents

the

items,

and

their

quantities,

currently

selected

from

the

initial

or

final

quotation.

An

OrderQuotationSelectionRel

child

order

can

be

submitted

to

its

store

for

processing.

The

child

order

for

a

FinalOrderQuotationRel

represents

the

final

quotation

received

for

items

in

a

selection

order.

A

final

quotation

provides

prices

and

quantities

for

only

the

items

in

the

selection

order

when

the

request

for

a

final

quotation

was

sent.

The

child

order

of

an

OrderQuotationSubmissionRel

represents

a

submitted

order.

When

a

selection

order

is

submitted,

its

OrderQuotationSelectionRel

object

is

changed

to

be

an

OrderQuotationSubmissionRel

object.

Creating

order

assets

in

WebSphere

Commerce

A

customer

can

place

orders

from

a

store,

or

request

that

a

Customer

Service

Representative

for

the

store

help

complete

this

task

(using

the

WebSphere

Commerce

Accelerator).

To

create

an

order

on

behalf

of

a

Consumer

direct

customer,

see

the

WebSphere

Commerce

online

help

topic

″Creating

an

order

for

a

registered

customer″

and

″Creating

an

order

for

a

non-registered

customer″.

To

create

an

order

on

behalf

of

a

B2B

direct

customer,

see

the

help

topic

″Creating

an

order

for

a

business

user″.

Chapter

30.

Order

assets

277

278

Store

Development

Guide

Chapter

31.

Vendor

assets

A

vendor

represents

a

source

for

merchandise

received

at

a

fulfillment

center,

or

expected

to

be

received

at

a

fulfillment

center.

Depending

on

the

store

model,

vendors

are

defined

by

the

Buyer,

Product

Manager,

Seller

(Merchant),

or

some

other

authorized

role.

Through

the

WebSphere

Commerce

Accelerator,

you

can

view

a

list

of

all

vendors,

create

a

new

vendor,

change

an

existing

vendor,

and

delete

a

vendor.

The

vendor

record

includes

information

about

the

vendor,

such

as

the

name,

address,

and

contact

information.

Vendors

must

be

created

before

the

store

can

create

expected

inventory

records.

Expected

inventory

records

are

shown

by

vendor,

External

ID

(usually

a

purchase

order

number),

and

order

date

on

the

Expected

Inventory

page.

For

more

information

about

managing

vendor

records,

refer

to

the

Vendor

information

topics

in

the

WebSphere

Commerce

Production

online

help.

Understanding

vendor

assets

in

WebSphere

Commerce

The

following

section

describes

the

relationships

that

vendors

have

to

a

store

and

other

assets.

StoreEntity

Member

1+owner

Vendor

Store

ReplenishmentAdvisement

1

1

FulfillmentCenter 1
+owner

Receipt

0..1

1RaDetail

1

0..1

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

Vendor

represents

the

source

from

which

a

store

receives

merchandise,

and

can

be

thought

of

as

a

supplier

to

the

store.

Replenishment

advisement

is

synonymous

with

expected

inventory

record.

Receipts

refer

to

inventory

receipts.

Normally,

a

receipt

results

from

an

expected

inventory

record.

©

Copyright

IBM

Corp.

2000,

2003

279

RaDetail

represents

detailed

information

about

items

on

an

expected

inventory

record,

such

as

the

date

the

inventory

is

expected,

fulfillment

center

ID,

and

quantity

ordered.

For

more

information

about

inventory

receipts,

see

Chapter

29,

“Inventory

assets,”

on

page

265.

Creating

vendor

assets

Vendor

assets

can

be

created

using

the

WebSphere

Commerce

Accelerator.

See

the

topic

″Creating

a

vendor″

in

the

WebSphere

Commerce

Production

online

help

for

instructions.

280

Store

Development

Guide

Chapter

32.

Customer

profiles

Customer

profiles

help

organize

your

marketing

efforts

by

grouping

the

targets

of

your

marketing

messages.

Customer

profiles

are

typically

created

by

either

a

Merchant

using

the

WebSphere

Commerce

Accelerator.

Understanding

customer

profiles

in

WebSphere

Commerce

The

following

diagram

illustrates

the

customer

profile

assets

in

the

WebSphere

Commerce

Server:

MemberGroup

CustomerCustomerProfile

This

diagram,

and

all

others

in

the

store

data

section

are

part

of

the

WebSphere

Commerce

Server

information

model.

For

more

information

on

the

information

model,

see

“The

store

data

information

model”

on

page

97.

For

more

information

on

the

conventions

used

in

this

diagram,

see

Appendix

A,

“UML

legend,”

on

page

437.

A

customer

profile

incorporates

registration

information,

demographics,

address

information,

customer

culture,

purchase

history,

and

other

miscellaneous

attributes

which

define

a

dynamic

group

of

customers

or

accounts.

Customer

profiles

serve

as

targets

for

advertising,

promotions,

suggestive

selling,

discounts,

and

e-mail

activities.

You

must

create

customer

profiles

before

creating

campaigns.

Profiles

are

considered

dynamic

because

customers

belong

to

them

based

on

their

personal

data,

and

purchase

history,

both

of

which

may

change.

For

example,

you

might

create

profiles

based

on

a

customer’s

registration

status.

If

you

create

a

profile

that

requires

customers

to

be

registered

to

qualify,

an

unregistered

customer

will

be

excluded.

If

that

same

customer

registers

at

a

later

date,

they

would

then

become

a

member

of

that

target

profile,

and

would

continue

to

be

a

member

until

the

profile

is

deleted.

Customer

profiles

also

support

static

criteria.

You

can

explicitly

include

or

exclude

particular

customers

or

accounts,

which

overrides

any

defined

dynamic

criteria.

In

this

way

for

example,

you

can

include

a

customer

in

a

profile

that

they

would

otherwise

not

match,

or

exclude

an

account

from

a

profile

that

it

would

otherwise

match.

In

other

words,

if

both

static

and

dynamic

criteria

have

been

defined

in

the

same

customer

profile,

the

dynamic

criteria

will

be

evaluated

first,

then

the

static

criteria.

Furthermore,

the

customers

or

accounts

that

you

can

explicitly

include

or

exclude

can

be

based

on

the

data

mining

results

from

WebSphere

Commerce

Analyzer.

WebSphere

Commerce

integrates

the

advanced

analytics

from

WebSphere

Commerce

Analyzer,

allowing

Merchants

to

easily

create

an

explicit

customer

profile

based

on

the

segments

which

WebSphere

Commerce

Analyzer

generates.

©

Copyright

IBM

Corp.

2000,

2003

281

282

Store

Development

Guide

Part

7.

Adding

access

control

to

your

store

©

Copyright

IBM

Corp.

2000,

2003

283

284

Store

Development

Guide

Chapter

33.

Access

control

in

your

store

WebSphere

Commerce

allows

you

to

determine,

through

access

control,

which

tasks

a

particular

user,

be

they

customers

or

administrators,

can

perform.

This

chapter

focuses

on

how

you

can

add

access

control

to

your

store,

thus

restricting

which

pages

your

customers

can

see,

and

which

tasks

in

the

store

they

can

perform.

For

more

information

on

the

access

control

in

WebSphere

Commerce,

see

Chapter

4,

“Access

control

in

WebSphere

Commerce,”

on

page

35.

For

greater

detail

on

the

access

control

model,

see

the

WebSphere

Commerce

Security

Guide.

Understanding

access

control

in

WebSphere

Commerce

Access

control

in

stores

All

stores

created

in

WebSphere

Commerce

are

subject

to

the

default

access

control

policies

that

are

subscribed

by

the

organization

that

owns

the

store

or

inherited

from

that

organization’s

ancestors.

By

default,

the

Root

Organization

subscribes

to

the

management

and

administration

policy

group.

If

you

create

your

store

based

on

one

of

the

sample

stores

provided

with

WebSphere

Commerce,

you

will

create

store

specific

access

control

policies

and

policy

groups

that

are

owned

and

subscribed

by

the

organization

that

owns

the

store.

In

addition

to

the

store

specific

policy

group,

the

owning

organization

may

also

subscribe

to

the

management

and

administration,

common

shopping

and

B2C

or

B2B

policy

groups,

depending

on

the

nature

of

your

store.

For

more

information

on

subscribing

policy

groups,

see

the

WebSphere

Commerce

Security

Guide.

When

you

are

creating

your

own

store,

regardless

of

whether

it

is

based

on

a

sample,

you

may

want

to

create

new

access

control

policies

or

modify

existing

policies,

which

will

only

apply

to

stores

owned

by

that

organization.

For

example,

if

you

create

new

views

to

display

your

store

pages,

you

must

assign

access

control

policies

to

these

views.

Access

control

data

is

defined

in

high

level

access

control

policy

files.

These

files

define

the

possible

actions,

action

groups,

resources,

resource

groups,

and

relationships

that

can

be

used

by

any

policy.

They

also

define

policies

and

policy

group

subscriptions

specific

to

a

particular

organization.

The

sample

stores

provided

with

WebSphere

Commerce

contain

these

high

level

access

control

policy

files.

The

following

section

illustrates

how

the

samples

stores

use

these

access

control

policy

files

to

define

access

control

policy

groups

subscribed

by

the

organization.

Access

control

in

the

samples

stores

All

of

the

sample

stores

contain

the

high

level

access

control

policy

files,

which

define

access

control

policies

and

policy

groups

created

specifically

for

the

stores.

These

access

control

data

are

owned

by

the

organization

that

owns

the

store.

The

high

level

access

control

policy

files

for

the

sample

stores

are

as

follows:

v

Consumer

direct

©

Copyright

IBM

Corp.

2000,

2003

285

–

FashionFlowAccessControl.xml

v

Business

B2B

direct

–

ToolTechAccessControl.xml

v

Business

Demand

chain

–

CommercePlazaAccessControl.xml

(for

the

channel

hub)

–

ResellerStoreFrontAssetStoreAccessControl.xml

v

Business

Supply

chain

–

SupplierHubAccessControl.xml

–

SupplierAssetStoreAccessControl.xml

v

Business

Hosting

–

CommerceHostingHubAccessControl.xml

–

HostedStoreFrontAssetStoreAccessControl.xml

–

StoreDirectoryAccessControl.xml

These

files

are

located

in

the

following

directory:

v

WC_installdir

/samples/stores/businessmodel

Note:

2000Express

The

Express

Store

high

level

access

control

file

is

located

in

the

Express

Store

store

archve

(ExpressStore.sar)

.

The

high

level

access

control

file

is

called

AccessControl.xml.

Understanding

the

sample

store

access

control

policy

files:

To

understand

how

access

control

is

added

at

the

store

level,

familiarize

yourself

with

the

high

level

sample

store

access

control

policy

files.

The

following

examples

are

taken

from

the

Business

ToolTechAccessControl.xml

file.

Defining

actions:

The

first

section

of

the

Business

ToolTechAccessControl.xml

file

defines

the

new

actions

in

the

store,

which

are

not

covered

by

bootstrap

access

control

policies.

In

this

case,

the

actions

are

all

views

used

in

the

store.

In

order

to

display

a

page

in

your

store

using

a

view

that

can

be

called

directly

from

a

URL,

or

that

can

be

launched

by

a

redirect

from

another

command

(in

contrast

to

being

launched

by

forwarding

to

the

view)

you

must

define

it

as

an

action.

Consider

the

following

example:

<!--

[Start

of

Action

definitions]

-->

<!--

[this

is

the

dictionary

of

possible

actions

-->

<Action

Name="GenericApplicationError"

CommandName="GenericApplicationError">

</Action>

<Action

Name="GenericSystemError"

CommandName="GenericSystemError">

</Action>

<Action

Name="OrderOptionsView"

CommandName="OrderOptionsView">

</Action>

<!--[End

of

Action

definitions]

-->

where

v

Action

Name

is

the

label

used

to

reference

this

action

in

the

XML

file.

In

these

examples,

the

label

is

the

same

as

the

view

name.

286

Store

Development

Guide

v

CommandName

is

the

name

of

the

view

that

is

stored

in

the

VIEWNAME

column

of

the

VIEWREG

table.

The

CommandName

will

be

stored

in

the

Action

column

of

the

ACACTION

table.

Defining

action

groups:

The

second

section

defines

the

action

group.

The

action

group

is

a

grouping

of

the

actions

defined

in

the

first

section

of

the

file.

In

the

ToolTech

example,

all

new

user

views

are

grouped

into

the

group

ToolTechAllUserViews,

which

will

be

used

in

a

policy

that

will

allow

all

users

to

access

those

views,

or

the

ToolTechRegisteredCustomerViews,

which

will

be

used

in

a

policy

that

will

allow

only

registered

users

to

access

those

views.

Note:

You

can

also

add

actions

that

are

defined

elsewhere

in

WebSphere

Commerce

to

your

action

groups.

If

defined

elsewhere

in

WebSphere

Commerce,

these

actions

need

to

be

redefined

in

the

Action

list

discussed

in

“Defining

actions”

on

page

286.
<!--

[Start

of

Action

Group

definitions]

-->

<!--

Dictionary

of

grouped

actions

usable

in

policies

-->

<!--

cross-component

view-related

action

groups

-->

<ActionGroup

Name="ToolTechAllUsersViews"

OwnerID="RootOrganization">

<ActionGroupAction

Name="UserRegistrationForm"/>

<ActionGroupAction

Name="UserRegistrationErrorView"/>

<ActionGroupAction

Name="GenericApplicationError"/>

<ActionGroupAction

Name="GenericSystemError"/>

<ActionGroupAction

Name="LogonForm"/>

</ActionGroup>

<!--

[End

of

Action

Group

definitions]

-->

where

v

ActionGroup

Name

is

the

name

of

the

action

group.

The

action

group

name

is

defined

in

the

ACACTGRP

table.

v

OwnerID

is

the

owner

of

the

action

group.

The

Root

Organization

is

typically

the

owner

of

the

action

group.

If

any

other

organization

is

used,

the

orgentity

id

of

that

organization

is

used.

v

ActionGroupAction

Name

is

the

name

of

an

action

that

belongs

to

this

group.

The

ActionGroupAction

Name

must

match

the

name

defined

in

the

Action

Name

element

in

“Defining

actions”

on

page

286.

This

action

to

action

group

relationship

is

stored

in

the

ACACTACTGP

table.

Defining

policies:

The

next

section

defines

the

new

policies

used

in

the

store.

<!--

[Start

of

Policy

definitions]

-->

<!--

AllUsers

for

ToolTech

can

execute

ToolTechAllUsersViews

-->

<Policy

Name="AllUsersForToolTechExecuteToolTechAllUsersViews"

OwnerID="&seller_b2b_mbr_id;"

UserGroup="AllUsers"

UserGroupOwner="RootOrganization"

ActionGroupName="ToolTechAllUsersViews"

ResourceGroupName="ViewCommandResourceGroup"

PolicyType="groupableStandard">

</Policy>

<!--

RegisteredApprovedUsers

for

ToolTech

can

execute

ToolTechRegisteredApprovedUsersViews

-->

<Policy

Name="RegisteredCustomersForOrgForTool
TechExecuteToolTechRegisteredCustomerViews"

Chapter

33.

Access

control

in

your

store

287

OwnerID="&seller_b2b_mbr_id;"

UserGroup="RegisteredCustomersForOrg"

UserGroupOwner="RootOrganization"

ActionGroupName="ToolTechRegisteredCustomerViews"

ResourceGroupName="ViewCommandResourceGroup"

PolicyType="groupableTemplate">

</Policy>

<!--

[End

of

of

Policy

definitions]

-->

where

v

Policy

Name

is

the

name

of

the

policy

being

defined.

The

policy

is

defined

in

the

ACPOLICY

table.

v

OwnerId

is

the

owner

of

the

policy.

In

this

case

the

owner

of

the

policy

is

the

organization

that

owns

the

store.

v

UserGroup

is

the

group

of

users

(the

access

group)

to

whom

the

policy

applies.

v

UserGroupOwner

is

the

owner

of

the

access

group.

In

this

example,

the

owner

of

the

access

group

is

different

than

the

policy

owner.

If

the

the

policy

owner

and

the

UserGroupOwner

are

the

same,

this

element

can

be

omitted.

v

ActionGroupName

is

the

group

of

actions

to

which

the

policy

applies.

v

ResourceGroupName

is

the

group

of

resources

to

which

the

policy

applies.In

this

example,

the

resource

group,

ViewCommandResourceGroup,

is

already

defined

in

the

bootstrap

data.

Hence,

it

is

not

required

to

be

redefined

in

this

high

level

xml

file.

v

PolicyType

is

the

type

of

the

policy.

A

policy

can

be

either

a

groupableStandard

or

groupableTemplate

type.

For

more

information

on

policy

types,

see

the

WebSphere

Commerce

Security

Guide.

Defining

policy

groups:

The

final

section

defines

the

specific

policy

group

for

the

store.

<PolicyGroup

Name="ToolTechPolicyGroup"

OwnerID="&seller_b2b_mbr_id;">

<PolicyGroupPolicy

Name="AllUsersForToolTechExecuteToolTechAllUsersViews"/>

<PolicyGroupPolicy

Name="RegisteredCustomersForOrgForToolTechExecuteTool
TechRegisteredCustomerViews"/>

<PolicyGroupSubscription

OrganizationID="&seller_b2b_orgentity_id;"/>

</PolicyGroup

where

v

PolicyGroup

Name

is

the

name

of

the

policy

group.

It

is

defined

in

the

ACPOLGRP

table.

v

OwnerID

is

the

owner

of

the

policy

group.

In

this

example,

the

owner

of

the

policy

group

is

the

organization

that

owns

the

store.

v

PolicyGroupPolicy

Name

is

the

name

of

the

policy

that

belongs

to

this

group.

This

policy

to

policy

group

relationship

is

stored

in

the

ACPOLGPPOL

table.

v

PolicyGroupSubscription

OrganizationID

is

the

organization

that

subscribes

this

policy

group.

This

subscription

is

stored

in

the

ACPLGPSUBS

table.

For

more

information

on

using

XML

files

for

access

control,

see

the

″Customizing

access

control

policies

using

XML″

chapter

in

the

WebSphere

Commerce

Security

Guide.

288

Store

Development

Guide

Adding

access

control

to

your

store

From

a

store

development

perspective

the

most

common

types

of

access

control

needed

are

for

the

new

views

and

commands

you

create

for

your

store.

However,

you

may

want

to

add

other

types

of

access

control

to

your

store.

For

more

information

on

access

control

for

views,

commands

and

other

features,

see

the

WebSphere

Commerce

Security

Guide.

Before

continuing

with

the

next

steps

outlined

in

the

this

guide,

ensure

you

review

the

WebSphere

Commerce

Security

Guide.

If

you

are

adding

new

access

control

features

to

a

store

based

on

a

sample

store,

edit

the

existing

high

level

access

control

policy

XML

file.

If

you

are

adding

access

control

to

a

store

not

based

on

a

sample

store,

you

will

need

to

create

a

new

high

level

access

control

policy

XML

file.

For

detailed

instructions

for

both

scenarios,

see

“Creating

or

editing

access

control

in

your

store.”

Creating

or

editing

access

control

in

your

store

The

access

control

assets

are

different

than

the

other

assets

in

the

store

in

that

for

access

control

you

create

high

level

access

control

XML

files

and

then

transform

and

load

them.

To

create

or

edit

access

control

assets,

do

the

following:

1.

Review

the

high

level

XML

files

used

to

create

store

assets

for

the

sample

stores:

samplestorenameAccessPolicies.xml

.

These

files

are

located

in

the

following

directory:

v

WC_installdir/samples/stores/businessmodel

For

the

syntax

of

the

high

level

access

control

xml

files,

see

the

DTD

file

that

are

referred

to

by

the

samplestorenameAccessPolicies.xml.

The

DTD

files

are

located

in

the

following

directory:

v

WC_installdir/xml/policies/dtd

If

you

are

changing

a

store

based

on

a

sample,

edit

these

files.

If

you

are

adding

access

control

to

a

store

not

based

on

the

sample,

create

a

new

high

level

access

control

file

for

your

store

by

copying

one

of

the

sample

store

files.

After

copying

the

file,

just

rename

it

and

edit

as

appropriate.

For

more

information

on

adding

access

control

to

your

store,

see

the

WebSphere

Commerce

Security

Guide.

2.

Copy

the

appropriate

samplestorenameAccessPolicies.xml

file

to

the

following

directory:

v

WC_installdir/xml/policies/xml

3.

Replace

the

placeholders

identified

in

the

following

chart

with

the

actual

values.

To

find

the

values,

do

the

following

steps:

a.

Find

the

value

for

the

distinguished

name

(DN)

by

using

the

following

query.

Use

the

DN

values

supplied

in

the

chart

below

in

the

query:

v

select

orgentity_id

from

orgentity

where

dn=

<the

DN

of

the

organization>

Example:

In

the

CommercePlazaAccessControl.xml

file,

replace

&channel_mbr_id;

and

&channel_orgentity_id;

with

the

value

you

find

using

the

above

query,

when

the

DN

value

is

ou=Reseller

Hub

Organization,

o=Demand

Chain

Management

Organization,

o=Root

Organization.

Chapter

33.

Access

control

in

your

store

289

Table

12.

File

name

Replace

the

following

placeholders

with

the

actual

value

DN

value

Business

CommercePlazaAccess
Control.xml

&channel_mbr_id;
&channel_orgentity_id;

ou=Reseller

Hub

Organization,o=Demand

Chain

Management

Organization,o=Root

Organization

&proxy_orgentity_id;

ou=Distributor

Proxy

Organization,o=Demand

Chain

Management

Organization,o=Root

Organization

Business

ResellerStoreFrontAsset
StoreAccessControl.xml

&profile_mbr_id;

ou=Asset

Store

Organization,o=Demand

Chain

Management

Organization,o=Root

Organization

Business

SupplierAssetStoreAccess
Control.xml

&profile_orgentity_id
&;profile_mbr_id;

ou=Asset

Store

Organization,

o=Supply

Chain

Management

Organization,o=Root

Organization

Business

SupplierHubAccessControl.xml

&channel_orgentity_id;
&channel_orgentity_id;

ou=Supplier

Hub

Organization,o=Supply

Chain

Management

Organization,o=Root

Organization

FashionFlowAccessControl.xml

&seller_b2c_mbr_id;
&seller_b2c_orgentity_id;

″ou=B2C,o=Seller

Organization,o=Root

Organization″

Business

ToolTechAccessControl
.xml

&seller_b2b_mbr_id;
seller_b2b_orgentity_id;

ou=B2B,o=Seller

Organization,o=Root

Organization

CommerceHostingHubl
AccessControl.xml

&channel_mbr_id;
&channel_orgentity_id;

ou=Hosting

Hub

Organization,o=Hosting

Organization,o=Root

Organization

HostedStoreFrontAsset
StoreAccessControl.xml

&profile_mbr_id;

ou=Asset

Store

Organization,o=Hosting

Organization,o=Root

Organization

StoreDirectoryAccess
Control.xml

&public_mbr_id;
&public_orgentity_id;

ou=Store

Directory

Organization,o=Hosting

Organization,o=Root

Organization

4.

Add

the

appropriate

access

control

information

to

the

file.

For

more

information

see

“Access

control

in

the

samples

stores”

on

page

285

and

the

WebSphere

Commerce

Security

Guide.

5.

Run

the

acpload

command

to

transform

the

file,samplestorenameAccessPolicies.xml,

and

load

it

into

the

database.

290

Store

Development

Guide

Note:

The

database

user

ID

must

have

the

following

permissions

in

order

to

execute

the

acpload

command:

v

read/write/execute

authority

to

the

directories,

subdirectories

and

files

of

WC_installdir/xml/policies,

WC_installdir/logs.

v

read/execute

authority

to

the

WC_installdir/bin

directory

and

its

files.

a.

At

a

command

prompt,

change

the

directory

to

the

following:

v

WC_installdir/bin

b.

Run

the

acpload

command

file.

v

2000

Syntax:

acpload.cmd

databasename

database

user

database

user

password

Policies

XML

file

[schema

name]

Example:

acpload

mall

dbuser

dbusrpwd

ChannelHubAccessControl.xml

v

400

AIX

Solaris

Linux

Syntax:

acpload.sh

databasename

database

user

database

user

password

Policies

XML

file

[schema

name]

Example:

acpload.sh

mall

dbuser

dbusrpwd

ChannelHubAccessControl.xml
c.

Check

the

following

log

file

to

ensure

that

the

access

control

data

has

been

loaded

successfully:

v

WC_installdir/logs/acpload.log

v

400

WC_userdir/instances/acpload.log

For

more

information

about

the

use

of

@

and

&

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Chapter

33.

Access

control

in

your

store

291

292

Store

Development

Guide

Part

8.

Globalizing

your

store

©

Copyright

IBM

Corp.

2000,

2003

293

294

Store

Development

Guide

Chapter

34.

Globalization

Supporting

globalization

WebSphere

Commerce

is

translated

to

the

following

ten

languages:

v

United

States

English

v

French

v

German

v

Italian

v

Spanish

v

Brazilian

Portuguese

v

Simplified

Chinese

v

Traditional

Chinese

v

Korean

v

Japanese

This

includes

the

software,

its

documentation,

user

interfaces,

and

the

samples.

You

can

add

support

for

other

languages.

You

can

translate

many

of

the

features

of

your

site,

such

as

product

descriptions,

messages

and

text

on

the

pages.

This

applies

to

pages

on

your

store

as

well

as

on

the

browser

based

WebSphere

Commerce

tools,

such

as

the

WebSphere

Commerce

Accelerator

and

the

Administration

Console.

WebSphere

Commerce

includes

several

features

that

allow

you

to

create

a

site

that

can

be

tailored

to

fit

the

needs

of

an

international

or

culturally

diverse

customer

base.

Through

the

use

of

Java

technology

and

a

flexible

database

schema,

some

of

the

cultural

characteristics

of

your

site

that

you

can

vary,

depending

on

location

or

customer

preference,

including:

Language

A

store

may

be

viewed

in

more

than

one

language.

For

example,

you

may

wish

to

allow

users

to

choose

the

language

in

which

they

would

like

to

view

your

site,

or

you

may

want

to

automatically

select

a

default

language,

depending

on

the

location

of

the

store.

Currency

A

store

may

display

prices

in

more

than

one

currency.

In

WebSphere

Commerce,

the

selection

of

a

specific

currency

is

not

related

to

the

selection

of

a

particular

language.

Cultural

format

Data

may

be

displayed

in

various

customizable

formats.

Customers

from

different

cultures

may

have

different

expectations

about

how

certain

information

should

be

displayed.

For

example,

a

decimal

number

may

be

indicated

by

using

either

a

comma

or

a

period,

depending

on

the

language,

or

country

or

region

of

the

customer.

Address

Addresses

may

be

entered,

stored,

and

displayed

in

various

formats,

to

conform

to

different

international

standards.

Taxation

Taxation

rules

may

be

defined

for

different

jurisdictions.

This

includes

rules

for

sales

and

other

business

taxes.

©

Copyright

IBM

Corp.

2000,

2003

295

Shipping

Shipping

rules

and

carriers

may

be

defined

for

different

jurisdictions.

Payment

method

Payment

methods

may

be

defined

for

different

jurisdictions.

Prices

The

price

can

be

set

in

one

currency

and

a

conversion

factor

can

convert

from

this

currency

to

other

currencies,

or

the

price

can

be

set

per

currency.

Online

catalog

content

Product

and

category

descriptions,

attributes,

and

images

may

be

varied

across

locations.

WebSphere

Commerce

allows

a

merchant

to

manage

online

catalog

content

for

selectable

display

format

by

defining

each

format

within

the

language

table.

You

can

also

maintain

a

master

product

catalog

that

can

be

shared

by

a

number

of

stores.

The

WebSphere

Commerce

database

has

been

designed

to

allow

you

the

flexibility

to

create

and

maintain

internationally

recognizable

data

by

using

Unicode

UTF-8

encoding,

or

400

UCS-2,

which

can

be

converted

into

most

international

encoding

formats

when

sent

to

the

Web

browser.

For

a

working

sample

of

a

site

globalized

for

many

countries,

see

any

of

the

sample

stores.

The

Administration

Console

and

WebSphere

Commerce

Accelerator

support

globalization

usage.

These

tools

display

in

any

of

the

ten

national

languages

supported

by

WebSphere

Commerce.

They

use

a

programming

model

that

allows

for

additional

languages

to

be

added

without

affecting

the

general

functioning

or

look-and-feel

of

the

pages.

You

can

translate

the

tools

into

other

languages,

just

as

you

would

translate

a

store

or

other

Web

site.

To

translate

the

tools

modify

the

appropriate

properties

files

located

under

the

following

directory:

WAS_userdir/installedApps/cell_name/WC_instance_name.ear/properties
/com/ibm/commerce/tools/

Sample

stores

The

sample

stores

and

sites

provides

a

foundation

to

create

your

store.

All

the

sample

stores

demonstrate

how

you

can

create

and

maintain

a

globalized

site.

The

sample

stores

allow

customers

to

select

the

language

in

which

they

would

like

to

view

the

site.

In

FashionFlow

and

Commerce

Plaza,

you

select

the

desired

display

format

from

a

list.

The

list

is

displayed

in

a

drop-down

list

on

the

left-hand

frame

throughout

the

site.

Customers

can

navigate

through

the

site,

viewing

it

in

the

language

of

their

choice.

Business

In

ToolTech,

you

switch

languages

by

going

to

the

personal

information

page

to

select

your

preferred

language.

Business

In

Commerce

Hosting

Hub,

and

Commerce

Supplier

Hub,

on

the

logon

page,

there

is

a

drop-down

list

available

from

which

you

select

your

language.

The

sample

stores

use

the

single

template

for

all

stores

and

languages

programming

model.

Each

supported

language

has

its

own

property

file,

which

contains

the

translated

text

and

messages

for

that

language.

All

store

archives

contain:

publishNLS.properties,

publishNLS_en_US.properties.

These

are

just

used

in

the

publish

wizard.

296

Store

Development

Guide

For

FashionFlow

and

hosted

stores

based

on

FashionFlow:

v

infashiontext_locale.properties

v

infashiontext_dynamic_locale.properties

v

infashiontext_dynamic_labels_locale.properties

(only

used

for

the

Change

pages

GUI)

v

AuctionSample_locale.properties

Business

For

ToolTech

it

is:

v

tooltechtext_locale.properties

Business

For

Commerce

Plaza,

it

is:

v

pcdmarket_locale.properties

Business

For

Commerce

Supplier

Hub,

it

is:

v

tooltechtext_locale.properties

Business

For

Commerce

Hosting

Hub,

it

is:

v

b2cHostingChannel_locale.properties

Business

For

the

Store

Directory

in

the

Hosting

sample

it

is:

v

b2cHostingPublic_locale.properties

Within

the

property

file,

a

number

of

elements

of

the

page

are

translated:

Text

Textual

page

content.

Labels

Form

field

labels.

Messages

Error,

status,

and

confirmation

messages.

Alternate

text

For

images,

Java

applets,

and

other

embedded

objects.

Determining

the

character

set

The

character

set

in

which

the

text

is

displayed

in

a

browser

is

defined

in

the

property

file

using

the

ENCODESTATEMENT

property.

For

example,

the

infashiontext_en_US.properties

file

contains

the

statement:

ENCODESTATEMENT

=

text/html;

charset=ISO_8859-1

Because

encoding

is

specified

within

the

property

file

instead

of

in

the

JSP

template,

the

character

set

can

be

different

for

each

language.

The

character-encoding

of

the

generated

JSP

page

is

set

using

the

following

statement

in

the

JSP

template:

<%response.setContentType(infashiontext.getString
(″ENCODESTATEMENT″));

%>

At

run

time,

each

requested

JavaServer

Page

includes

the

file

EnvironmentSetup.jsp.

Within

this

file,

the

command

context

is

retrieved,

and

from

that,

the

locale

is

used

to

retrieve

the

infashiontext

Properties

java

object,

which

obtains

its

values

from

the

infashiontext_locale.properties

file

in

the

appropriate

locale-specific

directory.

The

template

then

has

access

to

each

of

the

properties

as

needed,

through

the

use

of

the

getString()

method

of

the

ResourceBundle

object.

Note:

This

is

for

the

value

chain

hosted

stores

created

with

the

Store

Creation

Wizard

only.

When

a

seller

creates

a

hosted

store,

this

is

not

a

regular

store

publish,

and

additional

store

language

assets

beyond

the

store

default

language

are

not

carried

over

into

the

hosted

store.

So,

if

a

seller

adds

a

supported

Chapter

34.

Globalization

297

language

to

a

store,

the

store

assets

for

that

language

are

not

available.

If

a

supported

language

is

going

to

be

added

to

a

hosted

store,

ensure

that

the

translated

assets

(properties

files)

are

available

to

the

store

or

the

store

pages

will

not

function

correctly.

Displaying

translated

images

The

locale

and

language

are

retrieved

at

run

time

to

determine

the

correct

folder

in

which

to

look

for

the

image

file.

The

template

might

look

for

the

file

FashionFlow/language_Locale/images/go_button.gif,

where

language_Locale

is

replaced

by

the

display

format

from

the

command

context.

For

example,

the

resulting

page

will

display

the

image:

FashionFlow/en_US/images/go_button.gif

or

FashionFlow/jp_JA/images/go_button.gif

.

Displaying

catalog

content

The

catalog

contains

multiple

translations,

one

for

each

supported

locale.

At

run

time,

the

command

context

is

sent

through

a

data

bean

to

determine

which

translation

to

retrieve

from

the

database

and

display

on

the

page.

Resource

bundles

and

property

files

Resource

bundles

and

property

files

allow

you

to

maintain

collections

of

java

objects

that

are

locale-specific

for

your

JavaServer

Pages.

When

the

page

needs

a

locale-specific

resource,

such

as

a

form

field

label,

a

graphical

user

interface

message,

or

a

value

for

a

drop-down

menu,

the

page

can

load

it

from

the

resource

bundle

or

property

file

that

is

appropriate

for

the

selected

locale,

allowing

the

customer

to

view

the

page

in

their

own

language.

In

this

way,

you

can

create

JSP

templates

that

are

largely

independent

of

the

customer’s

locale,

isolating

all

of

the

locale-specific

information

in

the

resource

bundles

or

property

files.

Although

resource

bundles

and

property

files

perform

similar

functions,

there

are

some

differences

in

the

manner

in

which

they

are

processed.

The

table

below

shows

some

of

the

more

important

differences

between

resource

bundles

and

property

files:

Table

13.

ListResource

bundles

and

property

files

Property

files

ListResource

bundles

Text

files

Compiled

format

Slight

performance

degradation

Slight

performance

boost

If

a

property

file

is

changed,

WebSphere

Application

Server

must

be

restarted

to

see

the

changes.

If

a

resource

bundle

is

changed,

it

must

be

recompiled

and

WebSphere

Application

Server

must

be

restarted

to

see

the

changes.

Language

and

locale

dependent.

One

file

should

exist

for

each

locale.

You

need

to

run

native2ascii

on

non-ISO-8859-1

characters.

Language

and

locale

dependent.

One

file

should

exist

for

each

locale.

You

need

to

run

native2ascii

on

non-ISO-8859-1

characters.

For

an

example

of

how

property

files

can

be

used

in

a

site

globalized

for

many

countries,

refer

to

the

sample

stores.

For

more

information

on

these

topics,

visit

the

Sun

Microsystems

Java

Web

site.

Data

storage

and

transfer

A

single

store

can

display

pages

in

multiple

languages,

even

when

the

languages

use

different

character

sets.

To

accomplish

this,

data

is

stored

in

the

WebSphere

Commerce

database

in

a

universal

format

that

can

be

applied

to

a

wide

number

of

298

Store

Development

Guide

languages.

Since

not

all

Web

browsers

support

the

same

character

sets,

when

the

data

is

requested

by

a

JavaServer

Page,

it

is

converted

into

an

appropriate

character

set.

The

following

describes

how

data

travels

from

the

database

to

the

browser:

1.

Text

data

is

stored

in

the

WebSphere

Commerce

database

using

Unicode

UTF-8

encoding

or

400

UCS-2.

2.

JDBC

drivers

load

the

data

from

the

database,

converting

it

from

UTF-8

to

Java’s

native

16-bit

Unicode

encoding.

3.

The

JSP

files

output

the

data

using

the

Java

16-bit

encoding.

4.

WebSphere

Application

Server

converts

the

JSP

file

output

from

16-bit

Unicode

to

the

target

encoding.

The

encoding

can

either

be

specified

in

the

JSP

file

or

in

a

property

file.

For

example,

to

specify

Shift-JIS

encoding

for

a

Japanese

page,

you

could

do

the

following:

v

JSP

file

<%@

page

contentType=″text/html;

charset=Shift-JIS″%>

.

v

Property

file

ENCODESTATEMENT

=

text/html;

charset=Shift-JIS

The

character-encoding

of

the

generated

JSP

file

is

set

using

the

following

statement

in

the

JSP

template:

<%response.setContentType(fashionflowtext.getString

(″ENCODESTATEMENT″));

%>

Since

not

all

browsers

can

understand

every

encoding

scheme,

we

recommend

that

you

specify

the

more

well

known

encoding

schemes,

such

as

UTF-8

and

Shift-JIS.

5.

The

converted

data

is

sent

back

to

the

browser.

6.

The

browser

interprets

the

HTTP

reply

based

on

the

encoding

specified

in

the

header.

The

following

describes

how

data

travels

from

the

browser

to

the

database:

1.

Data

is

entered

into

the

browser.

Multilingual

data

can

be

entered

using

an

input

method.

2.

WebSphere

Commerce

converts

the

data

coming

from

the

browser

into

Java

16-bit

encoding

using

the

setCharacterEncoding()

method.

Each

LANGUAGE_ID

in

the

LANGUAGE

table

is

mapped

to

an

encoding

value

using

the

ENCODING

column.

This

value

is

used

to

interpret

the

data

coming

from

the

browser.

3.

The

data

is

sent

to

the

database

where

it

is

converted

from

Java

16-bit

to

UTF-8

encoding,

which

is

how

it

is

stored

in

the

database.

Display

formats

Display

formats

allow

a

single

store

to

sell

to

a

globalized,

multilingual

customer

base.

Each

display

format

can

be

identified

by

three

factors:

a

language,

a

region,

and

a

variant

you

can

define.

You

can

design

your

site

to

display

different

content

to

groups

that

differ

on

any

of

these

factors.

For

example,

you

could

use

language

and

locale

to

have

a

separate

format

for

US

English

and

Canadian

English.

These

display

formats

could

have

the

same

text,

but

different

currencies

and

units

of

measurement.

You

could

add

a

display

format

for

Canadian

French.

This

display

format

could

display

the

same

currency

and

units

of

measurement

as

Canadian

English,

but

the

text

would

be

in

Canadian

French.

You

could

even

use

the

third

factor

to

have

a

separate

format

for

specific

audiences

within

a

culture,

such

as

teens,

scientists,

or

technical

professionals,

tailoring

your

site

to

suit

their

expectations.

Chapter

34.

Globalization

299

A

customer

can

either

choose

the

format

in

which

they

would

like

to

view

the

site,

or

you

can

set

a

default

value

for

them.

Information

regarding

the

format

is

passed

through

a

URL

parameter

when

you

want

to

change

the

language.

For

example,

if

you

pass

in

langId=-2,

the

session

will

set

the

current

language

to

French.

The

langID

is

stored

in

the

session.

When

the

customer

requests

a

page,

the

display

format

determines

the

Web

assets

and

catalog

information

to

retrieve.

Creating

a

new

display

format

To

create

a

new

display

format,

do

the

following:

1.

Run

the

following

command:

select

*

from

language

This

command

returns

the

language

IDs

in

use

by

currently

available

display

formats.

Choose

the

next

available

ID_VALUE.

2.

Run

the

following

command:

insert

into

language

(LANGUAGE_ID,

ENCODING,

LOCALENAME,

LANGUAGE,

COUNTRY)

values

(ID_Value,

ENCODING_VALUE,

’x’,

’y’,

’z’)

where:

ID_VALUE

The

value

you

selected

in

step

2.

LANGUAGE_ID

(Required)

An

identifier

to

uniquely

identify

the

display

format.

ENCODING_VALUE

(Required)

The

character

encoding

value

that

the

browser

should

use

to

display

the

page

for

this

language.

This

should

be

the

same

encoding

value

used

in

your

property

files.

ENCODESTATEMENT

=

text/html;

charset=[ENCODING_VALUE].

A

list

of

encoding

values

supported

by

the

Sun

JDK

is

available

from

the

Sun

Java

site

at

www.java.sun.com.

LOCALENAME

(Required)

A

java

locale

used

to

represent

a

political,

geographical,

or

cultural

region

that

has

a

distinct

language

and

customs

for

formatting.

The

localename

is

the

two-letter

ISO

639

language

code,

followed

by

the

two-letter

ISO

3166

country

code,

separated

by

an

underscore.

LANGUAGE

(Optional)

The

name

of

the

language.

COUNTRY

(Optional)

The

country

or

region

for

the

display

format.

VARIANT

(Optional)

The

variant

column

is

an

extra

column

that

allows

you

to

describe

a

subgroup

within

a

particular

culture,

such

as

teen,

technical,

other

any

other

classification.

For

example,

to

add

a

display

format

for

Italian

as

spoken

in

the

United

States,

you

could

execute

the

statement:

insert

into

language

(LANGUAGE_ID,

ENCODING,

LOCALENAME,

LANGUAGE,

COUNTRY)

values

(’333’,

’ISO8859-1’,

’it_US’,

’Italian’,

’United

States’)

You

may

also

want

to

specify

an

alternative

language,

refer

to

Example

of

creating

a

new

display

format.

3.

Add

an

entry

to

the

LANGUAGEDS

table.

For

an

example,

refer

to

Example

of

creating

a

new

display

format.

4.

Add

an

entry

to

the

LANGPAIR

table.

For

an

example,

refer

to

Example

of

creating

a

new

display

format.

5.

Add

a

language

to

a

store.

For

details

on

how

to

add

a

language

to

your

store,

see

“Adding

a

language

to

a

store”

on

page

307

300

Store

Development

Guide

Example

of

creating

a

new

display

format

The

following

example

shows

how

you

could

create

a

display

format

to

view

the

FashionFlow

sample

store

pages

in

Thai.

1.

Translate

the

infashiontext_locale.properties

file

to

Thai.

2.

Ensure

that

the

encoding

statement

in

the

properties

file

references

a

character

set

that

target

browsers

will

support.

For

Thai

the

encode

statement

is

as

follows:

ENCODESTATEMENT

=

text/html;

charset=MS874

3.

Save

the

file

as

infashiontext_th_TH.properties

4.

Open

a

DB2

command

window.

5.

Run

the

following

command:

select

*

from

language

This

command

returns

the

language

IDs

in

use

by

currently

available

display

formats.

Choose

the

next

available

ID_VALUE.

In

this

example,

the

ID_VALUE

is

for

Thai

is

3.

6.

Run

the

following

command:

insert

into

language

(LANGUAGE_ID,

ENCODING,

LOCALENAME,

LANGUAGE,

COUNTRY,

MIMECHARSET)

values

(ID_Value,

ENCODING_VALUE,

’w’,

’x’,

’y’,

’z’)

Using

the

following

values:

insert

into

language

(LANGUAGE_ID,

ENCODING,

LOCALENAME,

LANGUAGE,

COUNTRY)

values

(’3’,

’MS874’,

’th_TH’,

’Thai’,

’Thailand’,

’MS874’)

where:

ID_VALUE

The

value

you

selected

in

step

2.

LANGUAGE_ID

(Required)

An

identifier

to

uniquely

identify

the

display

format.

ENCODING_VALUE

(Required)

The

character

encoding

value

that

the

browser

should

use

to

display

the

page

for

this

language.

A

list

of

encoding

values

supported

by

the

Sun

JDK

is

available

from

the

Sun

Java

site

at

www.java.sun.com.

The

encoding

value

must

be

supported

by

the

Sun

JDK.

LOCALENAME

(Required)

A

java

locale

used

to

represent

a

political,

geographical,

or

cultural

region

that

has

a

distinct

language

and

customs

for

formatting.

The

localename

is

the

two-letter

ISO

639

language

code,

followed

by

the

two-letter

ISO

3166

country

code,

separated

by

an

underscore.

For

ISO

language

codes

refer

to

the

following

International

Standards

Organization

Web

site

at

www.iso.ch.

LANGUAGE

(Optional)

The

name

of

the

language.

COUNTRY

(Optional)

The

country

or

region

for

the

display

format.

MIMECHARSET

(Optional)

The

charset

used

in

MIME

messaging.

VARIANT

(Optional)

The

variant

column

is

an

extra

column

that

allows

you

to

describe

a

subgroup

within

a

particular

culture,

such

as

teen,

technical,

other

any

other

classification.
7.

Add

an

entry

to

the

LANGUAGEDS

table:

languageds

language_id=-1,

description=your_language_name_in_English,

language_id_desc=-11.

For

example:

″languageds

language_id=-1,

description=French,

language_id_desc=-11,

languageds

language_id=-11,

description=Your_language_name_in_your_own_language,

language_id_desc=-11,

Chapter

34.

Globalization

301

desc=-11.

For

example:

″languageds

language_id=-11,

description=Francais,

language_id_desc=-11.

8.

Create

an

alternative

language

for

Thai

used

if

the

data

requested

in

Thai

does

not

exist.

This

is

useful

if

not

all

the

data

in

the

database

is

translated

into

the

new

language.

To

create

an

alternative

language

run

the

following

command:

insert

into

langpair(LANGUAGE_ID,

LANGUAGE_ID_ALT,

SEQUENCE,

STOREENT_ID)

values

(ID_Value,

ID_Value_ALT,

’x’,

’y’)

Using

the

following

values:

insert

into

langpair(LANGUAGE_ID,

LANGUAGE_ID_ALT,

SEQUENCE

,

STOREENT_ID)

values

(’3’,’-1’,

’1’

’12345’)

where

LANGUAGE_ID

The

requested

Language.

LANGUAGE_ID_ALT

The

alternative

Language.

SEQUENCE

When

the

requested

Language

is

supported

as

specified

in

the

STORELANG

table,

but

information

is

not

available

in

that

Language,

each

alternative

Language

is

tried

in

ascending

order

of

SEQUENCE.

A

store

may

override

the

SEQUENCE

specified

for

its

StoreGroup.

STOREENT_ID

The

StoreEntity

this

relationship

belongs

to.

The

alternative

Language

relationships

for

a

Store

include

the

alternative

Language

relationships

for

its

StoreGroup.

The

above

insert

statement

will

assign

English

(language

id

=

-1)

as

the

first

alternative

language

to

try

for

store

with

id

’12345’

in

the

event

that

no

Thai

data

is

found.

9.

Convert

any

properties

file

from

native

to

ascii:

Copy

infashiontext_th_TH.properties

to

a

temporary

directory

(for

example,

/tmp).

Run

the

following

command:

JDK_dir/bin/native2ascii

-encoding

TIS620

/tmp/infashiontext_th_TH.properties

/tmp/infashiontext_th_TH_new.properties.

Copy

this:

/tmp/infashiontext_th_TH_new.properties

to

this

directory:

/WAS_userdir/installedApps/cell_name/WC_instance.ear/Stores.war/WEB-
INF/classes/storeDir/infashiontext_th_TH.properties.

Where

JDK_dir

is

the

path

to

your

JDK.

Multilingual

data

entry

You

can

display

multiple

languages

simultaneously

in

a

browser,

if

the

browser

supports

Unicode.

Both

Netscape

Navigator

and

Internet

Explorer

Version

4

or

higher

support

Unicode

display.

However,

your

operating

system

may

not

have

the

characters

you

need

to

enter

text

in

some

languages.

To

do

this,

you

may

need

to

use

an

input

method.

An

input

method

is

a

a

software

component

that

converts

key

presses

into

text

input

which

can

not

be

typed

directly.

Input

methods

are

normally

used

to

input

text

for

languages

which

have

more

characters

than

can

fit

on

a

standard

keyboard,

such

as

Japanese,

Chinese

and

Korean,

Thai

and

Hindi.

A

common

input

method

tool

is

Microsoft®

Global

Input

Method

Editor

which

is

available

from

the

Microsoft

Web

site.

The

Global

IME

is

appropriate

for

both

customers

to

enter

data

on

shopping

pages,

and

for

Administrators

to

enter

data

in

the

WebSphere

Commerce

Accelerator

and

Administration

Console.

If

you

choose

to

not

use

an

input

method,

you

can

also

enter

data

in

different

languages

provided

that

you

have

a

number

of

machines

setup,

each

using

a

different

operating

system

language

with

a

properly

configured

browser.

A

browser

will

automatically

support

the

language

that

is

native

to

the

machine

on

which

it

is

installed.

For

example,

to

enter

Japanese

and

German

data,

you

can

setup

two

machines,

one

using

a

German

operating

system

and

one

using

a

Japanese

operating

system,

each

with

a

browser

capable

of

displaying

data

from

that

operating

system.

For

more

information

on

this

issue,

consult

the

documentation

for

your

operating

system

or

Web

browser.

Unicode:

WebSphere

Commerce

text

data

is

encoded

using

the

Unicode

character

set.

Unicode

can

display

characters

used

in

the

major

languages,

including

302

Store

Development

Guide

European,

Middle

Eastern

and

Asian

languages.

In

WebSphere

Commerce,

the

Unicode

UTF-8

standard

is

used

to

store

data

in

multiple

languages

in

the

same

database

instance.

Although

customers

do

not

need

to

have

a

Unicode-enabled

browser

to

view

sites

driven

by

WebSphere

Commerce,

administrators

may

need

one

if

they

want

to

view

their

site

in

more

than

one

language

on

the

same

machine.

If

you

want

to

view

your

site

in

a

language

other

than

English,

you

need

a

Unicode

enabled

browser.

For

more

information

on

Unicode,

visit

the

Unicode

Web

site.

Creating

a

globalized

store

To

create

a

globalized

store,

do

the

following

1.

Create

a

store.

2.

Manage

your

template.

3.

Add

a

language

to

your

store.

4.

Create

a

globalized

catalog.

5.

Manage

your

globalized

assets.

6.

Translate

your

property

files

Creating

a

store

You

can

either

create

a

store

by

publishing

one

of

the

sample

store

archives

and

editing

the

resulting

store,

or

you

can

create

the

storefront,

business

logic,

or

data

assets

separately.

v

Storefront:

The

external

portion

of

your

store,

or

the

portion

that

displays

to

your

customers,

is

known

as

the

storefront.

The

storefront

is

comprised

of

Web

assets

such

as

HTML

pages,

JSP

files,

style

sheets,

images,

graphics

and

other

multimedia

file

types.

For

more

information,

see

Part

4,

“Developing

your

storefront,”

on

page

73.

v

Business

logic:

The

portion

of

your

store

that

processes

customer

requests,

including

the

commands,

customized

code,

is

known

as

the

business

logic.

For

more

detailed

information

on

creating

business

logic

or

customized

code

see

the

WebSphere

Commerce

Programming

Guide

and

Tutorials.

v

Store

data:

The

data

assets

that

compose

your

store.

In

order

to

operate

properly,

a

store

must

have

the

data

in

place

to

support

all

customer

activities.

For

example,

in

order

for

a

customer

to

make

a

purchase,

your

store

must

contain

a

catalog

of

goods

for

sale,

a

process

to

handle

orders,

the

inventory

to

fulfill

the

request,

and

a

shipping

process.

Your

store

must

also

have

methods

for

processing

and

collecting

payment.

The

concepts

and

tasks

involved

in

creating

store

data

are

discussed

in

Part

6,

“Developing

your

store

data,”

on

page

107.

For

more

information

on

publishing

a

sample

store

archive,

see

the

WebSphere

Commerce

Production

online

help,

topic

’Publishing

a

store

archive″.

Managing

your

template

for

a

globalized

site

To

manage

static

pages

and

dynamic

templates

in

a

globalized

site,

it

is

necessary

to

store

files

in

a

directory

structure

that

allows

for

the

quick

and

easy

identification

of

the

files

and

which

locale

they

belong

to.

The

file

directory

path

is

constructed

based

on

the

WebSphere

Commerce

instance,

the

Business

store

path

contained

within

the

store

profile

and

also

the

registered

file

path.

When

you

create

a

globalized

site,

you

create

multiple

stores,

each

one

representing

a

supported

shipping

jurisdiction

of

the

site,

and

each

one

having

a

list

of

supported

languages.

Since

the

template

files

influence

the

look-and-feel

of

a

Chapter

34.

Globalization

303

site,

the

template

files

are

stored

under

locale-specific

directories

so

that

they

can

be

selected

similar

to

the

manner

in

which

resource

bundles

are

selected,

using

a

locale

value.

When

the

system

selects

a

template

to

use

for

a

particular

language

format,

the

locale

is

used

to

determine

the

language

format

that

will

be

used

to

determine

the

directory

from

which

the

file

is

retrieved.

There

are

three

models

for

template

storage

in

a

globalized

environment:

Table

14.

Template

storage

in

a

globalized

environment

One

template

for

all

stores

and

languages

One

template

per

language

One

template

per

store

Customization

For

most

stores

provides

sufficient

levels

of

customization

between

each

store

and

each

store

language

format.

Allows

the

maximum

level

of

customization

between

each

store

and

each

language

format.

Some

level

of

customization

between

each

store.

Look

and

feel

of

pages

Pages

will

look

similar.

Pages

can

be

very

different.

Pages

have

the

same

general

layout.

Maintenance

Allows

for

easy

site-wide

page-design

changes

since

only

one

template

needs

to

be

changed.

For

most

globalized

sites,

this

model

provides

optimal

levels

of

maintainability

and

scalability.

Must

manage

multiple

copies

of

each

template.

Changes

that

affect

all

stores,

or

all

language

formats

have

to

be

made

to

every

template.

Site-wide

changes

to

the

look

of

a

JSP

file

will

have

to

be

made

across

multiple

templates.

When

to

use

Use

when

the

look

and

feel

for

each

store

and

each

language

is

very

similar.

Use

when

page

look

and

feel

and

content

between

languages

are

very

different.

In

this

case,

there

is

not

much

that

can

be

shared

across

languages

and

it

is

easier

to

develop

separate

pages

for

each

language.

Use

when

stores

differ

in

look

and

feel

significantly,

but

the

store’s

look

and

feel

remains

relatively

the

same

regardless

of

the

language.

When

not

to

use

Do

not

use

if

site

is

meant

to

look

very

different

between

stores

and

languages

Do

not

use

if

pages

are

very

similar

between

stores

and

between

language

formats.

Do

not

use

if

stores

look

and

feel

are

very

similar.

Property

files

Required.

Each

supported

language

also

has

its

own

property

file

that

is

included

when

the

page

is

generated.

Not

required.

Each

store

and

locale

combination

has

its

own

JavaServer

Page

template.

Required.

To

allow

for

template

sharing

between

each

language

format.

Shopping

flow

The

shopping

flow

between

languages

and

stores

remains

the

same.

The

shopping

flow

can

change

significantly

between

languages.

The

shopping

flow

between

languages

and

stores

remains

the

same.

304

Store

Development

Guide

One

template

for

all

stores

and

languages

programming

model

image/
text

JSP
templates

Displayed
JSP files

Included page
components
(such as header,
footer, or navigation bar)

Image files
(culturally
neutral)

Image files
(culturally
specific)

en_US

fr_CA

de_DE

fr_FR

en_GB

Message files
(resource bundles/
property files)

In

the

one

template

for

all

stores

and

languages

programming

model,

each

page

consists

of

a

single

JavaServer

Page

template,

containing

a

basic

page

layout

and

culturally

neutral

data

and

images.

This

template

is

combined

at

run

time

with

culturally

sensitive

components,

based

on

the

display

format

selected

by

the

customer.

Changes

to

the

design

of

a

page

only

need

to

be

made

once,

regardless

of

the

number

of

cultures

supported.

Adding

or

removing

languages

or

cultures

is

simple,

since

the

culturally

sensitive

is

separate

from

other

features

of

the

page.

The

following

table

shows

how

files

may

be

organized.

Note

that

webapp

refers

to

the

root

directory

of

the

site

or

application.

Within

that

directory

you

might

have

a

common

directory

and

a

directory

for

each

display

format,

or

language-locale

combination

supported.

The

exact

structure

is

up

to

you.

At

run

time,

the

template

uses

the

language

and

locale

information

from

the

command

context,

and

uses

it

to

determine

the

appropriate

folder

from

which

to

retrieve

the

property

file,

image

files,

and

any

other

culturally

specific

content.

For

example,

if

the

command

context

indicates

an

en_US

display

format,

it

will

use

the

site_root/en_US/sensitivetext.properties

file

and

will

retrieve

images

from

the

site_root/en_US/images/

directory.

Table

15.

One

template

for

all

stores

and

languages

programming

model

Templates

/webapp/common/web/template/template.jsp

The

same

template

is

used

for

all

display

formats.

Included

page

components

/webapp/common/web/template/header.jsp

/webapp/common/web/template/footer.jsp

The

common

page

components

are

in

this

directory.

Culturally

neutral

image

files

/webapp/common/web/images/image.gif

Images

are

in

a

common

directory

and

used

for

all

display

formats.

Chapter

34.

Globalization

305

Table

15.

One

template

for

all

stores

and

languages

programming

model

(continued)

Property

files

(select

either

of

the

following

methods

to

store

property

files)

/webapp/language_LocaleA/web/sensitivetext.properties

/webapp/language_LocaleB/web/sensitivetext.properties

Each

display

format

has

a

separate

property

file.

The

property

files

for

different

display

formats

have

the

same

base

name,

with

the

locale

suffix

xx_XX

appended

to

the

name

before

the

file

extension.

They

are

located

in

the

same

directory.

The

directory

name

is

based

on

the

Language_Locale

combination

as

it

appears

in

the

LOCALENAME

column

of

the

LANGUAGE

table.

For

an

example

of

this

method,

see

a

sample

store.

OR

you

can

use

this

method:

/webapp/properties/sensitivetext_Language_LocaleA.properties

/webapp/properties/sensitivetext_Language_LocaleB.properties

Property

files

are

stored

in

a

single

directory,

but

have

locale-specific

file

names.

Culturally

specific

image

files

/webapp/language_LocaleA/web/images/image.gif

/webapp/language_LocaleB/web/images/image.gif

A

separate

translated

image

is

stored

for

each

display

format.

The

files

have

the

same

name,

but

they

located

in

different

directories,

corresponding

to

the

name

of

the

display

format

to

which

they

apply.

The

Language_Locale

combination

represents

the

display

format,

as

it

appears

in

the

LOCALENAME

column

of

the

LANGUAGE

table.

One

template

for

all

stores

and

languages

directory

structure

This

model

is

suitable

where

the

look

and

feel

for

each

store

and

each

language

are

very

similar.

You

only

need

to

maintain

one

set

of

JSP

templates,

but

you

must

manage

a

series

of

property

files.

This

method

is

the

template

management

model

to

maintain

and

it

allows

for

site-wide

page-design

changes

since

only

one

template

needs

to

be

changed.

For

example,

if

you

have

two

store

locations,

each

displaying

US

English

and

Canadian

French,

you

might

organize

your

JSP

templates

as

follows:

/webapp/common/web/template/abc.jsp

The

path

for

the

property

files

for

this

JSP

template

would

be

stored

as

follows:

/webapp/common/web/properties/en_US/abc.properties

/webapp/common/web/properties/fr_CA/abc.properties

In

this

case,

when

registering

the

JSP

files,

only

the

file

type

needs

to

be

included

in

the

file

registry.

Using

this

method,

only

one

set

of

JSP

files

needs

to

be

registered

for

all

stores

and

all

locales.

Here,

the

property

files

must

be

stored

separately

because

they

contain

culturally

sensitive

information,

whereas

the

template

itself,

which

is

completely

neutral,

is

stored

in

a

common

directory.

For

a

working

example

of

this

template

management

strategy,

refer

to

a

sample

store.

One

template

per

language

directory

structure

To

use

this

model,

a

separate

directory

must

be

created

within

each

store’s

template

directory

for

each

language

supported

by

that

store.

A

different

template

must

be

stored

within

each

of

these

language-dependent

directories.

No

property

files

are

required

in

this

model,

since

each

store

and

locale

combination

has

its

own

JavaServer

Page

template.

For

example,

if

you

have

two

store

locations,

each

displaying

United

States

English

and

Canadian

French,

you

might

organize

your

JSP

templates

as

follows:

/webapp/StoreA/web/template/en_US/abc.jsp

/webapp/StoreA/web/template/fr_CA/abc.jsp

306

Store

Development

Guide

/webapp/StoreB/web/template/en_US/abc.jsp

/webapp/StoreB/web/template/fr_CA/abc.jsp

In

this

case,

when

registering

the

JSP

template,

the

locale

and

file

type

will

have

to

be

included

in

the

file

registry.

Each

store

and

each

locale

must

have

a

complete

set

of

registered

templates

.

One

template

for

each

store

directory

structure

JSP

templates

for

this

model

are

shared

within

a

store,

but

are

exclusive

to

a

single

store.

JSP-include

files

are

required

in

this

model

to

allow

for

template

sharing

between

each

language

format.

For

example,

if

you

have

two

store

locations,

each

displaying

United

States

English

and

Canadian

French,

you

might

organize

your

JSP

templates

as

follows:

/webapp/StoreA/web/template/abc.jsp

/webapp/StoreB/web/template/abc.jsp

The

path

for

property

files

within

this

template

management

model

would

resemble

this

example:

/webapp/StoreA/web/properties/en_US/abc.properties

/webapp/StoreA/web/properties/fr_CA/abc.properties

/webapp/StoreB/web/properties/en_US/abc.properties

/webapp/StoreB/web/properties/fr_CA/abc.properties

When

registering

the

JSP

templates

for

this

model,

only

the

file

type

needs

to

be

included

in

the

file

registry.

Each

store

will

have

to

register

its

own

complete

list

of

the

JSP

files.

Adding

a

language

to

a

store

To

add

support

for

a

new

language

to

an

existing

store,

do

the

following:

1.

Ensure

that

the

language

is

available

to

your

site.

For

a

list

of

the

ten

national

languages

supported,

refer

to

multilingual

support.

If

the

language

is

available

go

to

step

3,

if

not,

go

to

the

next

step.

2.

Create

a

new

display

format

for

the

language.

Use

the

Store

Profile

notebook

to

add

the

language

to

the

list

of

those

supported

by

the

store.

3.

Copy

the

national

languages

file,

for

example,

for

FashionFlow

it

would

be

infashiontext_locale.properties

to

this

location:

AppServer/installedApps/host/WC_demo1.ear/Stores.war/WEB-
INF/classes/storeDir

There

are

many

other

XML

files

that

need

to

be

translated

and

populated

using

the

Loader,

such

asw

tax.xml,

store.xml,

fulfillment.xml,

catalog.xml,

businesspolicy.xml,

contract.xml,

accesscontrol.xml,

shipping.xml.

Creating

a

globalized

online

catalog

To

create

a

flexible

online

catalog

that

is

suitable

for

a

globalized

site,

include

multiple

details

about

each

product,

one

for

each

language

or

culture

you

want

to

support.

Consider

that

there

are

often

differences

between

cultures

that

go

beyond

just

language,

such

as

the

way

certain

types

of

data

are

represented.

For

example,

in

some

cultures,

a

decimal

number

is

represented

by

a

comma,

whereas

in

others

it

is

represented

using

a

period.

1.

For

each

language

that

your

store

supports

you

must

create

a

catalog.

Select

one

of

the

following

catalog

creation

methods:

v

Create

a

catalog

using

the

Loader

package

or

a

catalog

tool

of

your

choice.

v

Create

your

catalog

data

in

XML

files

and

load

it

into

the

database

using

the

Loader

package,

or

publish

it

in

a

store

archive

format

using

the

Administration

Console.

For

more

information,

see

Creating

a

catalog.

Chapter

34.

Globalization

307

v

Convert

your

existing

catalog

to

an

XML

file

format,

suitable

for

use

with

the

Loader,

and

then

load

the

information

into

the

database.

For

more

information,

see

Loader

package.

v

Create

your

catalog

using

the

sample

store

catalogs

as

a

base,

and

then

change

the

information

using

the

Product

Management

tools

(this

works

for

small

amounts

of

data

only).
2.

For

each

catalog

that

you

create

consider

how

to

present

the

following

types

of

information.

Online

catalog

products

There

are

multiple

language

descriptions

for

each

catalog

entry.

Product

descriptions

Language

and

phrasing

of

the

descriptions

can

be

varied,

highlighting

different

features

to

different

groups

of

customers.

Prices

Prices

can

be

varied

to

reflect

tariffs

and

other

shipping

expenses,

and

can

be

expressed

in

different

currencies.

Cultural

formats

Dates,

names,

measurement

units,

and

other

data

can

be

formatted

to

suit

cultural

expectations.

Product

images

You

may

want

to

display

different

product

images

to

different

customers.

Manage

globalization

assets

To

manage

your

Web

assets,

it

is

recommended

that

you

employ

a

globalized

programming

model

that

uses

one

JSP

template

for

all

stores

and

languages,

including

the

basic

design

of

each

page

along

with

any

culturally

neutral

information.

The

remaining

culturally

sensitive

text

is

added

to

your

pages

at

run

time

through

the

use

of

resource

bundles

or

property

files.

Determine

which

Web

assets

to

translate.

This

list

might

include:

banners,

images,

applets,

text,

messages,

and

other

culturally

sensitive

content

displayed

in

your

pages.

Create

multiple

versions

of

some

of

these

components,

one

for

each

language

or

culture

supported

by

your

site.

For

an

example

how

assets

can

be

managed

in

a

globalized

store,

refer

to

a

sample

store.

Translate

property

files

To

translate

property

files,

do

the

following:

1.

Open

the

property

file

using

any

text

editor.

2.

Translate

the

text

in

the

property

file

noting

the

following:

v

Do

not

translate

the

keyword.

The

keyword

is

the

content

to

the

left

of

the

equal

sign.

Source:

lastName.Label=Last

Name

Translation:

lastName.Label=Nom

de

famille

v

For

option

attributes,

only

translate

values

to

the

right

of

the

semi-colon

(;).

Source:

title.Options=MR;Mr.|MRS;Mrs.|MS;Ms.

Translation:

title.Options=MR;M.|MRS;Mme.|MS;Mlle.

Source:

publishPhone.Options=Y;Yes|N;No

Translation:

publishPhone.Options=Y;Oui|N;Non

v

Optionally,

translate

comments,

that

is,

any

line

that

begins

with

the

pound

sign

(#).
3.

Save

the

property

file

as

text.

If

you

are

using

a

programming

model

where:

308

Store

Development

Guide

a.

Property

files

have

the

same

name

but

are

stored

in

locale

specific

directories

v

Save

the

file

to

the

correct

directory
b.

Property

files

are

stored

in

the

same

directory

but

the

locale

is

appended

to

the

name

v

Append

the

appropriate

locale

to

the

file

name.

The

extension

must

be

.properties
4.

If

the

property

file

contains

characters

which

are

non-Latin

1

and

non-Unicode,

use

the

the

native2ascii

converter

to

convert

the

data

from

non-ascii

format

to

Unicode

ascii

representations.

This

process

will

make

the

data

contained

within

the

property

file

platform

independent.

The

native2ascii

converter

is

in

the

following

directory:

WC_installdir\jdk\bin

400

WC_installdir/Java400/jdk13/bin

For

additional

information

about

the

native2ascii

converter

refer

to

the

following

site:

www.java.sun.com

Chapter

34.

Globalization

309

310

Store

Development

Guide

Part

9.

Packaging

your

store

©

Copyright

IBM

Corp.

2000,

2003

311

312

Store

Development

Guide

Chapter

35.

Packaging

a

store

If

you

want

to

use

your

store

as

a

sample

to

be

delivered

to

others,

to

publish

it

using

the

publish

utility

in

the

Administration

Console

or

to

deploy

it

on

another

server

or

platform,

you

can

package

it

in

the

store

archive

form.

Typically,

a

store

archive

is

composed

of

the

following

files:

v

Web

assets:

The

files

that

create

your

store

pages,

such

as

HTML

files,

JSP

files,

images,

graphics,

and

include

files.

v

Property

resource

bundles:

Contains

the

text

for

your

store

pages.

If

your

store

supports

more

than

one

language,

the

store

archive

will

contain

multiple

resource

bundles,

one

per

supported

language,

plus

a

default

resource

bundle

(which

does

not

include

a

locale).

For

example,

AddressText_en_US.properties

and

AddressText.properties.

v

Store

data

assets:

The

data

to

be

loaded

into

the

database.

Store

data

assets

include

data

such

as

campaigns,

catalog

entries,

currencies,

fulfillment

information,

pricing,

shipping,

store,

and

taxation

information.

For

a

more

detailed

list

of

store

data

assets,

see

Part

6,

“Developing

your

store

data,”

on

page

107.

The

store

data

assets

in

the

sample

store

archives

provided

with

WebSphere

Commerce

are

part

of

a

well-formed,

XML

file

valid

for

the

Loader

package.

The

store

data

assets

XML

files

are

intended

to

be

portable

and

should

not

contain

generated

primary

keys

that

are

specific

to

a

particular

instance

of

the

database.

Instead

they

use

internal

aliases,

which

are

resolved

by

the

ID

Resolver

when

the

store

is

published.

The

use

of

these

conventions

allows

the

sample

store

archives

to

be

portable.

For

more

information,

see

Part

9,

“Packaging

your

store,”

on

page

311.

For

more

information

on

the

Loader

package,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

Note:

Store

data

assets

also

include

contract

information,

which

provides

the

required

information

to

create

a

contract.

The

contract

information

is

not

loaded

through

the

Loader

package;

it

provides

input

to

a

command

that

creates

contracts.

v

Payment

assets:

Configuration

information

for

WebSphere

Commerce

Payments.

The

payment

information

is

not

loaded

through

the

Loader

package;

it

provides

input

to

a

command

that

configures

WebSphere

Commerce

Payments.

v

Descriptors:

XML

files

that

describe

the

store

archive

and

information

on

how

it

should

be

published.

These

files

include

store-refs.xml,

ibm-wc-load.xml,

unpack.xml,

and

ForeignKeys.dtd.

The

files

in

the

sample

store

archives

are

grouped

into

the

following

structure:

v

Store

directory

–

JSPs

files,

HTML:

grouped

into

subdirectories

by

functional

areas.

For

example,

ShoppingArea,

AuctionArea,

CustomerServiceArea.

Each

of

these

Areas

is

then

grouped

in

sections.

For

example,

the

ShoppingArea

is

subdivided

into

the

CatalogSection,

the

CheckoutSection,

the

DiscountSection

and

the

ShopcartSection.

Each

of

these

sections

may

also

be

divided

into

sections

if

necessary.

–

Images:

The

images

in

the

sample

store

archives

are

grouped

by

locale.

©

Copyright

IBM

Corp.

2000,

2003

313

v

SAR-INF

–

Contains

information

specific

to

publishing

this

store

archive,

including

the

following

files:

-

store-refs.xml:

defines

the

publish

parameters

to

be

used

with

this

store

archive.

-

properties

files:

the

text

used

to

describe

the

publish

parameters

for

this

store

archive.

The

sample

store

archives

also

include

locale-specific

versions

of

this

properties

file.

-

unpack.xml:

determines

which

assets

in

the

store

archive

will

be

unpacked,

how

they

will

be

unpacked

and

where

they

will

be

unpacked.

Note:

For

more

information

on

the

store-refs.xml

and

unpack.xml

files,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.

v

WEB-INF

–

Properties

files:

The

store’s

properties

files

are

located

in

the

following

directory

structure

in

WEB-INF:

-

Classes

v

Store

directory

–

Store

data

assets:

The

store’s

data

assets,

in

the

form

of

XML

are

located

in

the

following

directory

structure

in

WEB-INF:

-

Stores

Note:

The

composite

store

archive

include

an

additional

business

model

directory.

v

Store

directory

–

data:

If

the

store

contains

multiple

language,

the

locale

specific

XML

files

are

grouped

by

locale.

The

data

directory

also

contains

the

following

files

needed

for

publishing

the

store

archive:

-

ForeignKeys.dtd:

stores

the

publishing

parameter

values.These

parameters

are

entity

name-value

pairs

which

are

referenced

by

the

store

data

assets

XML.

-

ibm-wc-load.xml:

controls

the

loading

of

the

data.

-

store-data-assets.xml:

an

XML

file

that

includes

all

the

store

data

to

be

loaded.

Notes:

1.

For

more

information

on

the

ForeignKeys.dtd

and

ibm-wc-load.xml

files,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.

2.

Payment

configuration

information,

in

the

form

of

an

XML

file,

is

also

included

in

the

data

directory.
–

Files

for

changing

store

flow:

If

the

flow

of

the

store

can

be

changed

using

the

store

tools

in

the

WebSphere

Commerce

Accelerator,

the

necessary

files

are

located

in

the

following

directory

structure:

-

xml

v

tools

–

stores

-

Store

directory

v

devtools

–

flow

314

Store

Development

Guide

Creating

a

store

archive

The

packaging

structure

of

the

store

archive

is

flexible.

The

instructions

given

here

reflect

the

structure

of

the

samples

provided

with

WebSphere

Commerce,

however,

you

can

alter

this

structure

to

meet

your

needs.

Your

store

archive

must

include

a

SAR-INF

directory

that

contains

a

store-refs.xml

file

and

anunpack.xml

file.

The

paths

defined

in

thes

two

files

must

be

consistent

with

the

structure

of

your

store

archive.

To

package

your

store

as

a

store

archive,

do

the

following:

1.

Review

the

structure

and

content

of

the

sample

store

archives

provided

with

WebSphere

Commerce.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores/businessmodel

To

view

the

store

archive,

use

a

decompression

program.

2.

Create

a

temporary

directory

on

the

WebSphere

Commerce

Server

for

your

store.

For

example,

mystore.

3.

Create

the

following

subdirectories:

v

Store

directory

(name

of

your

store)

v

SAR-INF

v

WEB-INF
4.

In

the

Store

directory

directory

do

the

following:

v

Create

subdirectories

for

your

JSP

files

by

functional

areas.

See

the

sample

store

archives

for

an

example.

Copy

your

JSP

files

and

any

necessary

HTML

files

to

these

subdirectories.

v

Create

a

subdirectory

for

your

image

files.

If

your

store

supports

several

languages,

create

subdirectories

for

language-specific

information

using

locale

names.

For

example,

en_US.

Copy

your

image

files

to

these

subdirectories.
5.

In

the

SAR-INF

directory

do

the

following:

a.

Create

a

store-refs.xml

file

for

your

store

archive.

Using

an

existing

store-refs.xml

file

from

a

sample

store

archive

as

an

example,

create

a

store-refs.xml

file

for

your

store.

For

more

information

on

the

XML

specifications,

see

the

descriptor,

store-refs.dtd

in

the

following

directory:

v

WC_installdir/xml/sar

Note:

For

more

information

on

the

store-refs.xml

file,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.

b.

(Optional)

If

you

want

the

store

archive

to

have

parameters

that

a

user

can

select

while

publishing

from

the

Administration

Console,

create

a

properties

file

that

describes

these

parameters.

Save

this

file

in

a

subdirectory

named

properties.

c.

Using

an

existing

unpack.xml

file

from

a

sample

store

archive

as

an

example,

create

an

unpack.xml

file

for

your

store.

The

unpack.xml

file

determines

how

the

store

archive

will

be

unpacked.

For

more

information

on

the

XML

specifications,

see

the

descriptor,

unpack.dtd

in

the

following

directory:

v

WC_installdir/xml/sar

Note:

For

more

information

on

the

unpack.xml

file,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.

Chapter

35.

Packaging

a

store

315

6.

In

the

WEB-INF

directory,

do

the

following:

a.

Create

the

following

subdirectory

structure

for

your

store’s

properties

files:

v

classes

–

Store

directory

b.

Copy

your

properties

files

into

the

Store

directory.

c.

Create

the

following

subdirectory

structure

for

your

store’s

data

assets:

v

stores

–

Store

directory

-

data:

If

your

store

supports

several

languages,

create

subdirectories

for

language-specific

information

using

locale

names.

For

example,

en_US.
d.

Copy

the

data

assets

into

the

data

directory

and

corresponding

subdirectories.

e.

Using

an

existing

ibm-wc-load.xml

file

from

a

sample

store

archive

as

an

example,

create

an

ibm-wc-load.xml

file

for

your

store.

The

ibm-wc-load.xml

file

determines

how

the

store

data

will

be

loaded.

For

more

information

on

the

XML

specifications,

see

the

descriptor,

ibm-wc-load

in

the

following

directory:

v

WC_installdir/xml/sar

Note:

For

more

information

on

the

ibm-wc-load.xml

file,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.

f.

(Optional)

If

you

want

the

store

archive

to

have

parameters

that

a

user

can

select

while

publishing

from

the

Administration

Console,

you

must

create

a

ForeignKeys.dtd

file

that

store

the

values

for

these

parameters.

Using

an

existing

ForeignKeys.dtd

file

from

a

sample

store

archive

as

an

example,

create

an

ForeignKeys.dtd

file

for

your

store.

Note:

For

more

information

on

the

ForeignKeys.dtd

file,

see

Chapter

36,

“Publishing

a

complete

store,”

on

page

321.
7.

Create

a

ZIP

file

composed

of

the

Store

directory,

the

SAR—INF

directory,

and

the

WEB-INF

directory.

Name

this

ZIP

file

storearchivename.sar.

8.

If

you

want

to

publish

your

store

archive

using

the

Administration

Console,

see

“Making

the

store

archive

available

to

the

Administration

Console”

on

page

332.

Creating

a

sample

store

archive

After

packaging

your

store

as

a

store

archive,

you

may

choose

to

use

it

as

a

sample

store

in

the

Administration

Console.

In

order

to

use

your

store

archive

as

a

sample

store

archive,

do

the

following:

1.

Save

the

store

archive

file

to

the

following

directory:

v

WC_installdir/samplestores
2.

(Optional)

Create

preview

pages.

In

order

for

previews

of

your

store

pages

to

display

in

the

Administration

Console,

you

must

create

preview

pages.

Do

the

following:

a.

(Optional)

In

the

publish

utility

in

the

Administration

Console,

select

a

store

archive

to

publish,

then

click

Preview.

The

pages

that

display

are

called

preview

pages.

These

pages

are

HTML

files

that

present

a

pre-defined

sample

shopping

flow,

and

act

as

a

preview

of

the

sample

store.

b.

Determine

the

shopping

flow

you

want

to

show

in

your

preview

pages.

316

Store

Development

Guide

c.

(Optional)

Create

some

sample

data

in

a

published

store.

For

example,

add

items

into

the

shopping

cart,

and

create

a

few

shipping

addresses

and

billing

addresses.

You

will

be

creating

the

preview

pages

from

this

store,

and

data

makes

the

pages

look

more

realistic.

d.

Using

Internet

Explorer,

browse

the

store.

Save

the

HTML

for

each

page,

by

selecting

File,

Save

As.

You

should

also

save

the

style

sheet

(.css)

and

images.

Save

the

files

to

the

following

directories:

v

stylesheet.css

–

WC_installdir/wc.ear/SiteAdministration.war/
tools/devtools/preview/locale/
businessmodel/storedir/

v

HTML

–

WC_installdir/wc.ear/SiteAdministration.war/
tools/devtools/preview/locale/
businessmodel/storedir

v

locale

independent

images

–

WC_installdir/wc.ear/SiteAdministration.war/
tools/devtools/preview/images/
businessmodel/storedir

v

locale

dependent

images

–

WC_installdir/wc.ear/SiteAdministration.war/
tools/devtools/preview/locale/
businessmodel/storedir/images

e.

Since

the

location

of

the

images

and

the

css

file

have

changed,

you

must

change

the

references

to

the

images

and

css

file

in

the

HTML

pages.

After

changing

the

references,

ensure

that

you

can

view

the

images

when

you

open

the

HTML

pages

in

a

browser.

f.

Change

the

links

in

the

HTML

pages

from

commands

to

links

that

reference

the

HTML

files.
3.

Add

the

store

archive

to

the

sarregistry.xml

file

so

that

it

will

display

in

the

publish

utility

in

the

Administration

Console.

For

instructions,

see

“Making

the

store

archive

available

to

the

Administration

Console”

on

page

332.

Chapter

35.

Packaging

a

store

317

318

Store

Development

Guide

Part

10.

Publishing

your

store

In

order

to

create

a

functioning

store,

the

store

front

Web

assets

must

be

published

to

the

WebSphere

Commerce

Server,

and

the

store

data

must

be

published

to

the

WebSphere

Commerce

database.

The

chapters

in

this

section

discuss

the

publishing

options

WebSphere

Commerce

provides:

v

Chapter

36,

“Publishing

a

complete

store,”

on

page

321

-

This

chapter

discusses

publishing

an

entire

store

(store

front

and

store

data

assets),

if

the

store

is

in

the

form

of

a

store

archive,

using

either

the

Administration

Console

or

the

command

line

publish.

v

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335

-

This

chapter

discusses

publishing

the

store

data

assets

to

the

database

using

the

Loader

package.

v

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383

-

This

chapter

discusses

publishing

groups

of

store

data

assets

or

all

of

the

store

data

to

the

database

using

the

Loader

package.

v

Chapter

39,

“Publishing

business

accounts

and

contracts,”

on

page

395

-

This

chapter

discusses

publishing

the

account,

contract

and

product

set

assets.

v

Chapter

40,

“Publishing

storefront

assets

and

store

configuration

files,”

on

page

399

-

This

chapter

discusses

publishing

the

store

front

assets

and

the

store

configuration

files.

©

Copyright

IBM

Corp.

2000,

2003

319

320

Store

Development

Guide

Chapter

36.

Publishing

a

complete

store

In

order

to

create

a

functioning

store,

the

store

front

Web

assets

must

be

published

to

the

WebSphere

Commerce

Server,

and

the

store

data

must

be

published

to

the

WebSphere

Commerce

database.

This

chapter

discusses

publishing

an

entire

store

(store

front

and

store

data

assets),

if

the

store

is

in

the

form

of

a

store

archive,

using

either

the

publish

utility

in

the

Administration

Console,

or

the

command

line

publish.

Note:

If

you

prefer

not

to

package

your

store

as

a

store

archive,

you

can

publish

the

assets

individually.

For

more

information,

seeChapter

37,

“Overview

of

loading

store

data,”

on

page

335,

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383,

Chapter

39,

“Publishing

business

accounts

and

contracts,”

on

page

395,

and

Chapter

40,

“Publishing

storefront

assets

and

store

configuration

files,”

on

page

399.

Understanding

publish

in

WebSphere

Commerce

The

publish

option

that

is

available

from

the

Administration

Console

or

from

the

command

line

allows

you

to

publish

a

complete

store

(storefront

and

store

data

assets)

all

at

once.

In

order

to

use

this

option,

your

store

assets

must

be

packaged

in

the

form

of

a

store

archive.

For

more

information

on

packaging

your

store

as

a

store

archive,

see

Part

9,

“Packaging

your

store,”

on

page

311.

©

Copyright

IBM

Corp.

2000,

2003

321

The

following

diagram

outlines

the

steps

in

the

publishing

process.

WebSphere Commerce

Administration
Console

Command line

Start Publish Start Publish

Site
administrator

Publish process
1. Unpacks store assets from the store archive
2. Updates publish parameters
3. Publish data (typical scenario)
a

. Configure payment

.

Creates merchant
Creates account (offline cassette)

Assigns user authority
f. Creates parameters .jsp

Loads store data to the database
• Calls ID Resolver to resolve IDs
• Calls Loader to load resolved

master XML into database
b. Reconciles the store languages
c. Updates registry components
d. Calls commands to publish product sets,

business accounts, and contracts
e

•
•
•
•

Creates payment brands (offline cassette)

Start

publish

In

order

to

publish

a

store,

you

must

have

Site

Administrator

authority.

Site

Administrators

can

initiate

the

publish

process

using

either

of

the

following

methods:

v

Administration

Console

v

Command

line

Both

methods

of

publishing

require

you

to

specify

the

store

archive

you

want

to

publish.

Note:

In

order

to

publish

a

store

archive

using

the

Administration

Console,

it

must

be

in

the

right

location

or

registered.

For

more

information,

see

“Making

the

store

archive

available

to

the

Administration

Console”

on

page

332.
You

may

then

change

values

for

selected

parameters,

if

available,

including

the

store

identifier

(the

name

that

uniquely

identifies

the

store),

store

directory

(the

unique

location

to

which

the

JSP

files

and

the

images

will

be

published)

and

organization

(the

organization

to

which

you

publish

the

store

archive).

Publish

parameters

in

the

Administration

Console

The

publish

parameters

in

the

publish

utility

in

the

Administration

Console

are

defined

by

the

store-refs.xml

file

in

each

store

archive.

322

Store

Development

Guide

Look

at

the

following

example

of

a

store-refs.xml

file

from

the

ConsumerDirectStore.sar

file.

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

store-refs

SYSTEM

"store-refs.dtd">

<store-refs

target-dtd="WEB-INF/stores/FashionFlow/data/ForeignKeys.dtd"

deploy-descriptor="WEB-INF/stores/FashionFlow/data/ibm-wc-load.xml"

resource-bundle="/SAR-INF/properties/publishNLS">

ref

id="storeDir"

entity="STORE_DIR"

>

<input

type="text"/>

</ref>

<ref

id="storeIdent"

entity="STORE_IDENTIFIER"

>

input

type="text"/>

</ref>

<ref

id

=

"parentOrg"

entity="ORGANIZATION_DN">

<input

type="member"

/>

</ref>

</store-refs>

This

file

defines

three

publish

parameters

for

the

ConsumerDirectStore.sar

file:

v

<ref

id="storeDir"

entity="STORE_DIR"

>

<input

type="text"/>

This

entity

creates

the

publish

parameter

store

directory.

v

<ref

id="storeIdent"

entity="STORE_IDENTIFIER"

>

<

input

type="text"/>

This

entity

creates

the

publish

parameter

store

identifier.

v

<ref

id

=

"parentOrg"

entity="ORGANIZATION_DN">

<input

type="member"

/>

This

entity

creates

the

publish

parameter

organization.

where

v

ref

id

is

used

as

the

key

in

the

properties

file

specified

by

the

store-refs

resource-bundle

attribute.

It

is

used

to

obtain

the

translatable

parameter

name

and

the

description

that

displays

in

the

publish

parameters

page.

v

entity

is

the

name

of

the

ENTITY

in

the

target-dtd

that

is

edited

by

this

parameter.

v

input

type

controls

how

the

parameter

is

displayed

on

screen.

If

the

input

type

is

text,

the

parameter

is

displayed

in

an

editable

field.

If

the

input

type

is

member,

all

of

the

existing

organizations

display

in

a

drop-down

list.

Read-only

parameters

cannot

be

edited.

The

values

that

a

user

enters

for

these

parameters

are

stored

in

the

file

identified

in

the

target-dtd

file.

The

target

dtd

is

defined

in

the

following

code:

target-dtd="WEB-INF/stores/ConsumerDirect/data/ForeignKeys.dtd

This

file

is

also

part

of

the

store

archive

and

is

unpacked

with

the

store

data

assets.

The

entity

value

corresponding

to

each

parameter

is

updated

in

the

unpacked

file.

The

DTD

inside

the

store

archive

is

not

updated.

The

values

for

the

parameters

are

stored

in

this

file

(in

this

case

ForeignKeys.dtd)

until

publish

is

instantiated.

Finally,

if

a

store

may

be

published

in

several

languages,

as

the

sample

stores

are,

the

publish

parameters

and

their

accompanying

descriptions

are

found

in

locale

specific

files.

The

field

label

and

description

for

each

publish

parameter

are

located

in

the

properties

file

defined

in

the

resource-bundle

attribute

of

the

Chapter

36.

Publishing

a

complete

store

323

store-refs.xml.

During

publish,

publish

looks

for

the

specific

locale

for

the

language

used

in

the

Administration

Console.

The

stores-ref.xml

file

also

defines

these

files:

v

resource-bundle="/SAR-INF/properties/publishNLS"

Note:

Publishing

parameters

are

only

available

through

the

Administration

Console.

If

you

publish

a

store

archive

through

the

command

line,

you

cannot

specify

parameter

values.

The

default

values

contained

in

the

store

archive

will

be

used.

The

deploy

descriptor

specifies

the

location

of

the

file(

ibm-wc-load.xml)

lthat

controls

the

publish

data

portion

of

the

publishing

process.

For

example,deploy-descriptor="WEB-INF/stores/FashionFlow/data/ibm-wc-load.xml

After

selecting

your

parameters,

you

click

Finish

to

initiate

the

publish.

After

you

have

initiated

the

publish

process

using

either

the

Administration

Console

or

the

command

line,

you

do

not

have

to

do

anything

else.

All

other

steps

listed

in

the

preceding

diagram,

and

in

this

chapter

are

completed

by

the

WebSphere

Commerce

system.

For

more

detailed

information

on

how

to

publish

a

store

archive

using

either

the

Administration

Console

or

the

command

line,

see

the

WebSphere

Commerce

Production

online

help,

topic,

″Publishing

a

store

archive″.

Unpack

the

assets

from

the

store

archive

After

you

have

clicked

Finish

in

the

publish

wizard

in

the

Administration

Console,

or

run

publish

from

the

command

line,

WebSphere

Commerce

unpacks

the

assets

from

the

store

archive

to

the

WebSphere

Commerce

Server.

Unpacking

the

assets

is

controlled

by

the

unpack.xml

file,

located

in

the

SAR-INF

directory

in

the

store

archive.

The

following

example

of

an

unpack.xml

file

is

from

the

ConsumerDirect.sar

file:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

ibm-wc-unpack

SYSTEM

"unpack.dtd">

<ibm-wc-unpack>

<unpack>

<include

file="*"/>

<exclude

file="SAR-INF/*"/>

<exclude

file="*.zip"/>

<exclude

file="*.war"/>

<exclude

file="FashionFlow/devtools/flow/ui/*.properties"/>

<exclude

file="xml/*"/>

<rename-store-dir

target-name="FashionFlow">

<store-dir

path="WEB-INF/stores/FashionFlow"

/>

<store-dir

path="FashionFlow"

/>

<store-dir

path="WEB-INF/classes/FashionFlow"

/>

<store-dir

path="WEB-INF/xml/tools/stores/FashionFlow"

/>

</rename-store-dir>

</unpack>

<unpack

dest="${wc:ToolsStoresPropertiesPath}">

<include

file="FashionFlow/devtools/flow/ui/*.properties"/>

<rename-store-dir

target-name="FashionFlow">

<store-dir

path="FashionFlow"

/>

</rename-store-dir>

</unpack>

<unpack

dest="${wc:instanceDir}">

<include

file="xml/member/MemberRegistrationAttributes.xml"/>

</unpack>

</ibm-wc-unpack>

324

Store

Development

Guide

The

unpack.xml

file

determines

which

files

to

unpack

(using

the

include

and

exclude

elements),

to

which

directories

the

files

will

be

unpacked

(using

the

unpack

dest

entity),

and

also

renames

directories

(using

the

rename-store-dir

entity).

By

default,

unpack

unpacks

all

of

the

files

of

the

store

archive

that

it

is

located

in.

However,

unpack

can

also

unpack

just

certain

files

within

the

store

archive,

if

specified.

Also

by

default,

unpack

unpacks

the

files

to

the

path

obtained

by

combining

the

StoreDocRoot

and

StoreWebPath

paths

from

the

DevTools

element

in

the

instance

XML.

This

path

points

to

the

document

root

of

the

Stores

Web

module.

However,

if

specified,

as

in

the

above

example,

<unpack

dest="${wc:ToolsStoresPropertiesPath}">,

unpack

will

unpack

the

files

in

another

location.

Note

unpack

accepts

variables.

In

this

case

the

"${wc:ToolsStoresPropertiesPath}"

the

ToolsStoresPropertiesPath

variable

is

an

attribute

of

the

devtools

element

in

the

instance.xml.

Updates

publish

parameters

After

the

assets

are

unpacked

from

the

store

archive,

WebSphere

Commerce

updates

the

DTD

file

(in

the

sample

stores,

ForeignKeys.dtd)

with

the

publishing

parameter

values

created

or

selected

in

the

publish

wizard.

For

example,

if

the

original

file

contained

<!ENTITY

STORE_IDENTIFIER

"FashionFlow">,

the

updated

file

contains

<!ENTITY

STORE_IDENTIFIER

"MyFashion">.

Note:

Publishing

parameters

are

only

available

through

the

Administration

Console.

If

you

publish

a

store

archive

through

the

command

line

you

can

not

select

publishing

parameters

Publish

data

After

the

files

are

unpacked

and

the

publish

parameters

are

updated,

a

scheduled

job

is

created

for

the

publish

process.

The

scheduled

job

number

for

publishing

the

store

archive

is

displayed

in

the

publishing

utility

in

the

Administration

Console.

When

the

scheduler

runs

the

publish

job,

WebSphere

Commerce

typically

completes

the

following

actions:

v

Loads

store

data

from

the

XML

in

the

store

archive

to

the

database

v

Reconciles

store

data

v

Updates

the

registry

components

v

Calls

the

commands

to

publish

business

accounts

and

contracts

v

Configures

payment

v

Creates

parameters.jsp

file

The

publish

job

is

controlled

by

the

ibm-wc-load.xml

file,

contained

in

each

store

archive.This

file

is

specified

by

the

deploy-descriptor

attribute

in

the

stores-refs.xml

file.

ibm-wc-load.xml

The

ibm-wc-load.xml

file

determines

what

tasks

will

be

completed

in

the

publish

job

and

the

sequence

of

these

tasks.

The

following

is

an

example

of

an

ibm-wc-load.xml

file:

<data-deploy

base-dir="."

default-target="all">

<asset

id="master"

location="store-data-assets.xml"/>

<asset

id="resolved.master"

location="store-data-assets.resolved.xml"/>

<asset

id="foreignKeys"

location="ForeignKeys.dtd"

type="dtd"/>

<asset

id="pmconfigfile"

location="paymentinfo.xml"/>

Chapter

36.

Publishing

a

complete

store

325

<deploy-task-cmd

name="configPM"

class="com.ibm.commerce.tools.devtools.
publish.tasks.payment.ConfigurePaymentTaskCmd"/>

<target

id="all">

<task

name="idresolve">

param

name="infile"

value="${asset:master}"

/>

param

name="outfile"

value="${asset:resolved.master}"

/>

</task>

<task

name="massload">

param

name="infile"

value="${asset:resolved.master}"

/>

param

name="maxerror"

value="1"

/>

param

name="noprimary"

value="error"

/>

</task>

<task

name="configPM">

param

name="paymentConfigFilename"

value="${asset:pmconfigfile}"

/>

param

name="storeIdentifier"

value="
${asset:foreignKeys#STORE_IDENTIFIER}"

/>

param

name="organizationDN"

value="
${asset:foreignKeys#ORGANIZATION_DN}"

/>

</task>

</target>

</data-deploy>

where

v

base-dir

is

the

directory

of

the

the

information

that

is

to

be

published.

"."

indicated

that

the

information

is

located

in

the

same

directory

as

the

ibm-wc-load.xml

file.

v

default-target

is

the

ID

of

a

target

that

is

to

be

executed.

Only

one

target

is

executed

during

publish.

v

asset

id

is

the

ID

assigned

to

the

assets

to

be

published.

Assets

are

assigned

IDs

as

more

than

one

task

may

act

upon

them

during

the

publish

process.

v

location

is

the

location

of

the

asset

assigned

the

ID,

relative

to

the

base

directory

(base-dir).

v

deploy-task-cmd

name

is

the

short

name

assigned

to

task

commands

used

within

the

publish

process.

v

deploy-task-cmd

class

is

the

full

name

of

task

commands

used

within

the

publish

process.

v

target

id

is

a

name

given

to

a

sequence

of

tasks

that

are

executed

as

a

group.

Multiple

targets

can

be

defined

but

only

the

one

referred

to

by

default

target

is

executed

during

publish.

v

task

name

is

the

name

of

the

task

to

be

completed.

Note

that

in

this

sample

the

short

name

of

the

task

is

used.

You

may

add

new

tasks

to

the

ibm-wc-load.xml

file,

but

any

new

task

must

extend

the

following

command:

com.ibm.commerce.tools.devtools.publish.tasks.DeployTaskCmd.

v

param

name

is

the

name

of

the

parameter

for

the

task.

Input

parameters

are

passed

to

the

task

as

name-value

pair

strings.

v

value

is

the

value

for

the

parameter.

Note

that

values

can

be

variables.

These

variables

will

be

resolved

when

the

task

is

run.

Loads

store

data

from

the

XML

files

in

the

store

archive

to

the

database

While

loading

the

store

data

from

the

XML

files

in

the

store

archive

to

the

database,

WebSphere

Commerce

does

the

following:

Calls

the

ID

Resolver

to

resolve

IDs:

The

ID

Resolver,

which

is

a

Loader

package

utility,

generates

unique

identifiers

for

XML

elements

in

the

store

archive

XML

files.

For

example,

the

ID

Resolver

replaces

the

@

alias

used

in

the

sample

store

326

Store

Development

Guide

XML

files

with

a

unique

value.

For

an

example

of

internal-alias

resolution

used

in

the

sample

stores,

see

Appendix

B,

“Creating

your

data,”

on

page

439.

Note:

The

ID

Resolver

can

also

resolve

identifiers

for

already

published

stores,

when

you

republish.

For

example

if

you

have

published

the

store

archive

once,

and

you

need

to

republish

the

store

archive

or

portions

of

it,

ID

Resolver

retrieves

the

unique

identifiers

from

the

database

and

uses

those

during

the

republishing

process.
For

more

information

on

the

ID

Resolver

and

the

other

components

of

the

Loader

package,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

When

the

publish

calls

the

ID

Resolver,

it

must

specify

which

ID

Resolver

method

to

use.

The

ID

Resolver

has

several

methods,

which

can

be

used

to

process

the

ID

Resolver

input;

specifically,

whether

to

treat

the

data

as

if

identifiers

exist

in

the

original

data

(update

method)

or

do

not

(load

method).

Mixed

method

is

used

when

some

identifiers

exist

and

others

do

not.

You

can

specify

which

method

the

publish

will

use

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml.

By

default,

publish

uses

the

mixed

method.

For

more

information

on

the

ID

Resolver

methods,

see

“ID

Resolve

command”

on

page

339.

Publish

must

also

specify

a

customizer

file

to

be

used

with

the

ID

Resolver.

The

default

customizer

files

are

the

following:

DBConnectionCustomizer

or

OracleConnectionCustomizer.

The

OracleConnectionCustomizer

customizer

file

is

located

in

the

following

directory:

v

WAS_installdir/installedApps/cell_name/
WC_instance_name.ear/properties

The

DBConnectionCustomizer

file

is

located

in

the

following

ZIP

file:

v

WAS_installdir/installedApps/cell_name/
WC_instance_name.ear/properties

v

400

WAS_userdir/WAS_instance_name/installedApps/
cell_name/WC_instance_name.ear/lib/loader/IdResGen.zip

Note:

If

you

want

to

specify

your

own

customizer

file,

you

must

change

the

value

of

the

following

attribute

in

the

DevTools

section

of

the

instance_name.xml

file:

v

IDResolverCustomizerFile="myIDResolverCustomizerFile"

store-data-asset.xml:

Each

sample

store

archive

contains

a

store-data-asset.xml

file.

The

store-data-asset.xml

file

includes

placeholders

for

all

of

the

data

asset

files

in

the

store

archive

that

will

be

included

during

publish.

The

following

is

an

portion

of

the

store-data-asset.xml

file

for

the

ConsumerDirect.sar,

illustrating

the

placeholders:

<?xml

version="1.0"?>

<!DOCTYPE

import

SYSTEM

"store-data-assets.dtd">

<import>

&modelorg.xml;

Chapter

36.

Publishing

a

complete

store

327

&modelorgrole.xml;

&storeorg.xml;

&storeorgrole.xml;

&fulfillment.xml;

&store.xml;

&en_US_store.xml;

&en_US_fulfillment.xml;

&catalog.xml;

&en_US_catalog.xml;

&tax.xml;

During

publish,

all

the

data

assets

identified

with

placeholders

in

the

store-data-asset.xml

file

are

consolidated

into

the

store-data-asset.xml

file,

creating

one

large

data

file.

The

ID

Resolver

uses

the

store-data-asset.xml

and

corresponding

DTD

file,

store-data-asset.dtd

to

resolve

the

IDs.

After

the

IDs

are

resolved,

ID

Resolver

creates

the

following

file,

store-data-asset.resolved.xml

file,

which

contains

the

unique

identifiers.

If

an

error

occurs

during

the

ID

resolving

process,

the

Loader

package

adds

an

entry

to

the

messages.txt

file.

For

more

information,

see

“Publish

log

files”

on

page

330.

Calls

the

Loader

package

to

load

the

resolved

master

XML

file

into

the

database:

The

Loader

package

loads

the

resolved

store-data-asset.resolved.xml

into

the

database.

If

an

error

occurs

during

the

loading

process,

the

Loader

package

adds

an

entry

to

the

messages.txt

file.

For

more

information

on

the

Loader

package,

see

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

When

the

Administration

Console

or

command

line

publish

calls

the

Loader

package,

it

must

specify

which

Loader

method

to

use.

The

Administration

Console

can

use

any

of

the

following

Loader

methods:

v

SQL

import

v

Import

v

Load

Note:

By

default

the

Administration

Console

uses

the

SQL

import

method.
You

can

specify

which

method

the

Administration

Console

or

the

command

line

publish

will

call

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml,

using

the

LoaderMode

attribute

in

the

DevTools

element.

v

SQL

import:

This

method

uses

Java

Database

Connectivity

(JDBC)

to

insert

and

update

data,

providing

the

most

flexible

method

of

operation

but

also

the

slowest

for

importing

large

amounts

of

data

into

a

small

number

of

tables.

It

allows

column-level

update.

It

is

recommended

that

you

use

SQL

import.

Note:

SQL

import

method

is

the

safest

method

to

use

because

it

will

not

corrupt

your

database

if

the

data

is

invalid.

Before

you

can

load

using

SQL

import,

the

records

must

meet

the

database

schema

constraints.

The

other

Loader

methods

are

faster

because

they

are

bulk

loaded

into

the

database

without

much

checking.

As

a

result

you

must

be

certain

of

data

correctness

before

using

the

other

methods.

v

Import:

This

method

uses

DB2

native

import

functions

and

allows

cell-level

update

with

medium

speed

and

flexibility.

This

method

is

not

available

with

Oracle.

328

Store

Development

Guide

v

Load:

This

method

uses

the

native

facilities

of

the

RDBMS

(DB2

Load

or

SQLLoad)

and

is

the

fastest

method

for

loading

large

amounts

of

data

into

a

small

number

of

tables.

For

more

information

on

the

methods

in

the

load

command,

see

“Load

command”

on

page

349.

The

Administration

Console

and

the

command

line

publish

must

also

specify

a

customizer

file

to

be

used

with

the

Loader.

If

you

do

not

specify

a

customizer

file

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml,

the

publish

code

will

use

the

default

customizer

file:

MassLoadCustomizer.

Note:

If

you

want

to

specify

your

own

customizer

file,

you

must

change

the

value

of

the

following

attribute

in

the

DevTools

section

of

the

instance_name.xml

file:

v

LoaderCustomizerFile="myLoaderCustomizerFile"

By

default

the

WebSphere

Commerce

Configuration

File,

instance_name.xml,

does

not

specify

a

value

for

this

attribute.

Reconciles

the

store

languages

The

sample

store

archives

contain

data

for

all

languages

supported

by

WebSphere

Commerce.

As

a

result,

when

the

Loader

package

loads

the

store

data,

all

language

information

is

loaded

for

the

store.

However,

a

store

can

only

support

the

languages

that

are

supported

by

the

instance

the

store

resides

in.

The

reconcile

store

language

task

ensures

that

only

the

languages

supported

in

the

instance

are

enabled

in

the

store.

If

you

want

to

add

support

to

the

instance

for

additional

languages,

do

so

by

using

the

Configuration

Manager.

For

more

information,

see

the

WebSphere

Commerce

Production

online

help,

topic

″Configuration

Manager.″

Updates

registry

components

The

publish

process

also

updates

the

registry

components.

Publish

updates

all

of

the

registries

in

WebSphere

Commerce

by

calling

the

com.ibm.commerce.scheduler.commands.RefreshRegistryCmd.

For

more

information

on

the

registries,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

Calls

command

to

publish

business

accounts

and

contracts

Some

of

the

store

database

assets,

(contracts

and

business

accounts)

cannot

be

loaded

by

the

Loader

package,

so

publish

also

calls

the

corresponding

commands

to

publish

those

assets

to

the

WebSphere

Commerce

Server.

These

commands

are

as

follows:

v

AccountImport

—

Creates

a

business

account

from

the

businessaccount.xml

file

in

the

store

archive.

v

ContractImportApprovedVersion

—

Imports

a

contract

from

the

contract.xml

file

in

the

store

archive.

v

ProductSetPublish

—

Synchronizes

the

product

set

data

in

the

database

with

the

catalog

before

business

accounts

and

contracts

are

created.

The

Administration

Console

and

the

command

line

publish

call

the

ProductSetPublish

command,

which

then

calls

the

AccountImport

and

ContractImportApprovedVersion

commands.

For

more

information

on

publishing

business

accounts

and

contracts,

see

Chapter

39,

“Publishing

business

accounts

and

contracts,”

on

page

395.

Chapter

36.

Publishing

a

complete

store

329

Configures

payment

The

publishing

process

also

includes

a

step

to

configure

payment.

WebSphere

Commerce

supports

WebSphere

Commerce

Payments.

If

you

plan

to

use

WebSphere

Commerce

Payments

as

your

method

of

processing

payment,

you

should

create

a

payment

XML

file

as

described

in

Chapter

21,

“Payments

instruments,”

on

page

207.

If

a

payment

XML

file

is

included

in

the

store

archive

being

published,

WebSphere

Commerce

will

complete

the

following

payment

configuration

during

publish:

v

Create

the

merchant.

v

Create

the

account

(for

offline

cassettes

only).

v

Create

the

brands

specified

in

paymentinfo.xml

(for

offline

cassettes

only).

v

Assign

user

authority.

Error

handling:

If

an

error

occurs

during

the

configure

payment

phase

of

the

publish

process,

you

can

view

the

error

message

in

the

publish

logs

(see

“Publish

log

files”).

Creates

parameters.jsp

file

The

publish

process

creates

the

file

parameters.jsp.

This

file

includes

the

storeId

parameter.

.

The

index.jsp

file

in

the

sample

stores

uses

this

parameter

to

launch

the

store.

parameters.jsp

is

located

in

the

following

directory:

v

WAS_installdir/installedApps/cell_name/WC_instance_name.ear/Stores.war/
storedir/include

v

400

WAS_userdir/WAS_instance_name/installedApps/cell_name
/WC_instance_name.ear/Stores.war/storedir/include

Error

handling

If

an

error

occurs

during

the

publish

assets

phase

of

the

publish

process,

you

can

view

the

error

message

either

in

the

publish

logs

(see

“Publish

log

files”)

or

through

the

Publish

Summary

page

in

the

Administration

Console.

Publish

log

files

Any

errors

encountered

during

the

publish

assets

phase

of

the

publishing

process

are

written

to

the

following

log

and

trace

files:

v

activity.log:

WebSphere

Application

Server

log.

All

error

messages

in

WebSphere

Commerce

are

written

to

activity.log.

Check

this

log

first

when

publish

fails.

activity.log

is

located

in

the

following

directory:

–

WAS_installdir/logs

–

400

WAS_userdir/logs

–

2000Developer

WCDE_installdir/workspace_name/.metadata/plugins/
com.ibm.etools.server.core/tmp0/logs

v

SystemOut.log

and

SystemErr.log:

SystemOut.log

is

located

in

the

following

directory

Contains

any

information

written

to

standard

output

and

standard

error

during

store

publish.

SystemOut.log

and

SystemErr.log

is

located

in

the

following

directory:

–

WAS_installdir/logs/instance_name

–

400

WAS_userdir/WAS_instance_name/logs/WC_instance_name

330

Store

Development

Guide

Note:

SystemOut.log

and

SystemErr.log

are

not

available

in

the

development

environment.

Information

written

to

standard

output

or

standard

error

are

displayed

in

the

WebSphere

Studio

console

and

captured

in

the

following

location:

–

workspaceDir\.metadata\.plugins\com.ibm.etools.server.core\tmp0\
logs\server1\trace.log

v

messages.txt:

Contains

error

messages

from

the

Loader

package

part

of

the

publishing

process.

Check

this

log

first

when

publish

fails.

Line

or

column

numbers

mentioned

in

these

error

messages

refer

to

the

store-data-
asset.resolved.xmlfile.messages.txt

is

located

in

the

following

directory:

–

WC_installdir/instances/instance_name/logs

–

400

WC_userdir/instances/instance_name/logs

–

2000Developer

WCDE_installdir/Commerce/logs

Line

or

column

numbers

mentioned

in

these

error

messages

may

also

refer

to

store-data-asset.xml

file.

v

trace.txt:

Contains

trace

information

for

the

Loader

package

part

of

the

publishing

process.

This

file

also

contains

messages

about

the

IDResolver

part

of

the

publishing

process.

By

default,

trace.txt

is

turned

off.

trace.txt

is

located

in

the

following

directory:

–

WC_installdir/instances/instance_name/logs

–

400

WC_userdir/instances/instance_name/logs

Note:

By

default,

trace

is

turned

on,

and

is

generated

as

a

circular

log

file.

–

2000Developer

WCDE_installdir/Commerce/instances/instance_name/logs
v

trace.log:

Part

of

the

WebSphere

Application

Server

trace

logs.

Contains

trace

information

for

the

publishing

process,

if

the

WC_DEVTOOLS

trace

component

is

enabled.

For

more

information

on

enabling

logging,

see

the

WebSphere

Commerce

Administration

Guide,

Configuration

chapter.

trace.log

is

located

in

the

following

directory:

–

WAS_installdir/logs/WC_instance_name

–

400

WAS_userdirlogs/WC_instance_name

–

2000Developer

workspaceDir\.metadata\.plugins\com.ibm.etools.server.core\tmp0
\logs\server1

v

400

RESWCSID.txt:

Contains

messages

from

the

IDResolver

part

of

the

publishing

process.

Line

or

column

numbers

mentioned

in

messages

refer

to

the

input

files,

for

example

the

store-data-assets.xml

file.

RESWCSID.txt

is

located

in

the

following

directory:

–

WC_userdir/instances/instance_name/logs

To

configure

the

trace.txt

and

messages.txt

log

files

(that

is,

adjust

the

log

level

or

other

options),

edit

the

following

file:

v

WC_installdir/instances/instance_name/xml/loader/WCALoggerConfig.xml

v

400

WC_userdir/instances/instance_name/xml/
loader/WCALoggerConfig.xml

v

2000Developer

WCDE_installdir/Commerce/instances/instance_name/xml
/loader/WCALoggerConfig.xml

Chapter

36.

Publishing

a

complete

store

331

Making

the

store

archive

available

to

the

Administration

Console

In

order

to

publish

a

store

archive

from

the

Administration

Console,

the

store

archive

must

be

available

to

the

Administration

Console

through

one

of

the

following

methods:

v

Register

the

store

archive

in

the

SARRegistry.xml

file

v

Copy

the

store

archive

to

the

applicable

store

archive

directory

Register

the

store

archive

in

the

SARRegistry.xml

file

In

order

to

publish

the

store

archive

and

to

preview

the

store

from

the

Administration

Console,

the

store

archive

must

be

registered

in

the

SARRegistry.xml

file.

The

SARRegistry.xml

file

is

located

in

the

following

directory:

v

WC_installdir/xml/tools/devtools

v

400

WC_userdir/xml/tools/devtools

To

register

the

store

archive,

include

the

path

of

the

store

archive

file,

as

well

as

the

path

to

any

preview

files

in

the

SARRegistry.xml

file.

The

following

example

illustrates

the

entry

that

registers

the

consumer

direct

sample

store

archive

in

the

SARRegistry.xml

file.

<!--

Consumer

Direct

-->

<SampleSAR

fileName="ConsumerDirect.sar"

relativePath="ConsumerDirect">

<view

name="ConsumerDirect"

/>

<view

name="default"

/>

<html

locale="de_DE"

featureFile=""

sampleSite="de_DE/B2C/FashionFlow/
index.html"/>

<html

locale="en_US"

featureFile=""

sampleSite="en_US/B2C/FashionFlow/
index.html"/>

<html

locale="es_ES"

featureFile=""

sampleSite="es_ES/B2C/FashionFlow/
index.html"/>

<html

locale="fr_FR"

featureFile=""

sampleSite="fr_FR/B2C/FashionFlow/
index.html"/>

<html

locale="it_IT"

featureFile=""

sampleSite="it_IT/B2C/FashionFlow/
index.html"/>

<html

locale="ja_JP"

featureFile=""

sampleSite="ja_JP/B2C/FashionFlow
index.html"/>

<html

locale="ko_KR"

featureFile=""

sampleSite="ko_KR/B2C/FashionFlow/
index.html"/>

<html

locale="pt_BR"

featureFile=""

sampleSite="pt_BR/B2C/FashionFlow/
index.html"/>

<html

locale="zh_CN"

featureFile=""

sampleSite="zh_CN/B2C/FashionFlow/
index.html"/>

<html

locale="zh_TW"

featureFile=""

sampleSite="zh_TW/B2C/FashionFlow/
index.html"/>

</SampleSAR>

where

v

fileName

is

the

name

of

the

store

archive.

v

relativePath

is

the

directory

path

relative

to

the

sampleSarPath

attribute

of

the

DevTools

element

in

the

WebSphere

Commerce

configuration

file,

instance_name.xml.

v

view

name

is

the

name

of

the

view

that

the

store

archive

will

display

in

from

the

Publish

user

interface.

Note

that

a

store

archive

may

display

in

multiple

views.

For

example,

displays

in

both

the

Consumer

Direct

view

and

the

default

view.

v

html

locale

is

the

locale

for

the

HTML

preview

files.

v

featureFileFeature

file

is

deprecated

an

no

longer

used.

332

Store

Development

Guide

Copy

the

store

archive

to

the

applicable

store

archive

directory

If

you

want

to

publish

the

store

archive

from

the

Administration

Console,

but

do

not

plan

to

include

preview

pages,

or

specify

the

Publishing

view

in

which

the

store

displays

in

the

Administration

Console,

you

can

simply

copy

the

store

archive

to

the

following

directory:

v

WC_installdir/instances/instance_name/sar

The

store

archive

will

display

in

the

Default

view.

Chapter

36.

Publishing

a

complete

store

333

334

Store

Development

Guide

Chapter

37.

Overview

of

loading

store

data

After

creating

your

store

data,

you

can

choose

to

package

it

as

a

store

archive

and

publish

it

using

WebSphere

Commerce

Administration

Console

or

you

can

load

it

directly

into

the

WebSphere

Commerce

Server

database

using

the

WebSphere

Commerce

Loader

package.

Refer

to

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383

and

“Loading

database

asset

groups”

on

page

390

for

information

on

the

loading

process

for

WebSphere

Commerce

database

asset

groups.

The

Loader

package

provides

six

command-line

utilities

and

two

related

administrative

tools

that

you

can

use

to

prepare

data

for

loading

as

well

as

to

load

data

into

your

store.

These

commands

and

tools

use

Extensible

Markup

Language

(XML)

data

files

to

manage

the

information.

©

Copyright

IBM

Corp.

2000,

2003

335

Understanding

data

loading

in

WebSphere

Commerce

The

data

preparation,

loading,

and

extraction

processes

that

you

can

perform

using

the

Loader

package

commands

are

shown

in

the

following

figure.

WebSphere

Commerce

Database

DTD

Generic

XML

data file

CSV

data file

WebSphere

Commerce

XML

data file

XML data

file with

resolved

identifiers

Extraction

filter file

XML

data file

XML

schema file

Parameter

file

Database

XSLT

rule file

L
o

a
d

in
g

s
to

re
d

a
ta

in
to

W
e
b

S
p

h
e
re

C
o

m
m

e
rc

e

DTD Generate command

Text Transform command

XML Transform command

ID Resolve command

Load command

Extract command

DTD
XML

data file

Note

that

a

dotted

line

indicates

the

two

processes

that

are

most

commonly

used

to

load

store

data

into

a

WebSphere

Commerce

Server

database:

resolving

identifiers

and

loading

the

data.

These

processes

are

the

focus

of

this

chapter.

For

more

information

on

preparing

your

data

for

loading

into

a

WebSphere

Commerce

Server

database,

refer

to

Part

5,

“Store

data

overview,”

on

page

95.

336

Store

Development

Guide

The

following

two

Loader

package

command-line

utilities

are

commonly

used

for

loading

data

into

a

WebSphere

Commerce

Server

database:

v

ID

Resolve

command

To

load

XML

data

into

a

WebSphere

Commerce

Server

database

using

the

Loader

package,

the

XML

elements

must

map

directly

to

the

schema

of

the

targeted

WebSphere

Commerce

Server

database.

All

XML

elements

that

have

attributes

corresponding

to

unique

or

primary

keys

in

the

database

schema

must

have

unique

identifiers;

and

all

non-nullable

columns

of

the

database

schema

must

have

corresponding

attributes

defined

with

non-null

values.

The

ID

Resolver

can

generate

unique

identifiers

for

unique

or

primary

key

attributes

of

qualifying

XML

elements.

Note:

As

referred

to

in

this

document,

an

identifier

is

a

value

in

a

single

column

of

a

database

table

that

gives

each

row

a

unique

identity.

If

you

use

the

ID

Resolver

to

generate

identifiers,

it

obtains

a

base

value

from

the

KEYS

or

SUBKEYS

table

and

increments

the

value

sequentially

to

resolve

an

identifier

for

each

row

in

the

database

table.

For

information

on

this

command,

refer

to

“ID

Resolve

command”

on

page

339,

“Using

the

Loader

package

commands

and

scripts”

on

page

370,

and

“Examples

of

resolving

identifiers”

on

page

371.

v

Load

command

The

Loader

uses

valid

and

well-formed

XML

files

as

input

to

load

data

into

the

database.

Elements

of

the

XML

document

map

to

table

names

in

the

database;

and

element

attributes

map

to

columns.

Note:

Refer

to

the

World

Wide

Web

Consortium

(W3C)

XML

guidelines

for

a

description

of

the

validity

and

well-formedness

constraints.

For

information

on

this

command,

refer

to

“Load

command”

on

page

349,

“Using

the

Loader

package

commands

and

scripts”

on

page

370,

and

“Example

of

loading

data”

on

page

378.

These

commands

are

the

primary

focus

of

this

chapter.

The

following

Loader

package

command-line

utilities

can

also

be

used

to

manage

your

data:

v

DTD

Generate

command

The

DTD

Generator

generates

a

document

type

definition

(DTD)

that

describes

the

tables

and

columns

of

the

target

database

into

which

XML

data

is

to

be

loaded.

The

DTD

Generator

can

also

generate

an

XML

schema

for

the

database.

The

DTD

Generator

can

create

a

DTD

based

on

the

WebSphere

Commerce

database

schema.

If

you

use

the

DTDs

provided

with

the

sample

store

archives

and

you

do

not

modify

the

database

schema,

you

normally

do

not

need

to

generate

a

DTD

using

the

DTD

Generator.

Refer

to

“DTD

Generate

command”

on

page

359

for

more

information.

v

Extract

command

The

Extractor

uses

a

query

against

a

database

to

extract

selected

subsets

of

data

from

the

database

into

an

XML

document.

You

can

use

this

command

to

extract

data

from

your

database

into

an

XML

format.

Refer

to

“Extract

command”

on

page

362

for

more

information.

Chapter

37.

Overview

of

loading

store

data

337

v

Text

Transform

command

The

Text

Transformer

transforms

data

between

a

character-delimited

variable

format

and

an

XML

data

format.

If

your

data

cannot

be

extracted

directly

from

a

database

in

an

XML

format,

for

example,

you

can

save

your

data

in

a

character-delimited

variable

format

then

use

this

command

to

transform

it

into

an

XML

format.

Refer

to

“Text

Transform

command”

on

page

365

for

more

information.

v

XML

Transform

command

The

XML

Transformer

transforms

the

data

in

an

XML

document

to

an

alternate

XML

format.

It

uses

Extensible

Stylesheet

Language

(XSL)

to

define

the

mapping

rules

for

the

transformation.

You

can

use

this

command

to

convert

your

XML

data

into

a

format

that

maps

directly

to

the

schema

of

the

target

WebSphere

Commerce

database

into

which

you

want

to

load

the

data.

Refer

to

“XML

Transform

command”

on

page

366

for

more

information.

These

commands

are

not

the

primary

focus

of

this

chapter.

For

detailed

information

on

these

commands,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

The

WebSphere

Commerce

Loader

package

also

includes

the

following

tools

to

assist

in

the

administration

of

its

data-management

functions:

v

Text

Transformation

tool

The

Text

Transformation

tool

helps

you

process

a

transformation

of

data

between

a

character-delimited

variable

format

and

an

XML

data

format

using

the

Text

Transform

command.

v

XSL

editor

The

XSL

editor

gives

you

a

visual

interface

for

editing

XSL

files

that

can

be

used

by

the

XML

Transformer.

Using

the

XSL

editor,

you

establish

the

association

from

an

element

in

a

source

DTD

to

an

element

in

a

target

DTD

when

defining

the

mapping

rules

for

transforming

data

between

XML

formats.

These

tools

are

not

the

primary

focus

of

this

chapter.

For

detailed

information

on

these

tools,

refer

to

the

most

recent

version

of

the

WebSphere

Commerce

Production

and

Development

online

help.

338

Store

Development

Guide

Loader

package

commands

for

loading

store

data

ID

Resolve

command

This

command

generates

unique

identifiers

for

XML

data

elements

that

require

them

before

the

elements

can

be

loaded

into

a

database.

If

your

source

XML

data

already

supplies

the

necessary

unique

identifiers,

you

do

not

have

to

run

the

ID

Resolver.

The

WebSphere

Commerce

database

schema

defines

primary

and

foreign

keys

within

its

tables

that

are

used

to

represent

various

relationships

between

the

tables.

For

this

reason,

WebSphere

Commerce

XML

elements

must

contain

corresponding

attributes

with

unique

identifiers.

Within

the

WebSphere

Commerce

Server

database,

the

tables

whose

identifiers

must

be

resolved

are

those

defined

in

the

KEYS

and

SUBKEYS

tables.

These

tables

are

called

primary

tables

within

WebSphere

Commerce.

For

more

information

on

the

KEYS

and

SUBKEYS

tables,

see

the

WebSphere

Commerce

online

help.

Note:

If

it

is

necessary

to

resolve

identifiers

for

a

table

that

is

not

defined

in

the

KEYS

or

SUBKEYS

table,

add

the

table

to

the

SUBKEYS

table

before

running

the

ID

Resolver.

Because

WebSphere

Commerce

XML

elements

and

attributes

are

intended

to

be

portable

across

databases

and

across

database

instances,

its

identifiers

are

usually

represented

using

internal

aliases.

Before

the

data

can

be

loaded

into

any

WebSphere

Commerce

Server

database,

these

aliases

must

be

resolved

into

valid

numeric

identifiers.

For

more

information,

refer

to

Appendix

B,

“Creating

your

data,”

on

page

439.

Notes:

1.

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

2.

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

./idresgen.sh

-dbname s

-method load

update

mixed

-dbuser s -dbpwd s -infile s -outfile s

-customizer s

-maxerror s

-schemaname s -optimize s

-propfile s -poolsize s

ID Resolve

Note:

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Chapter

37.

Overview

of

loading

store

data

339

Parameter

values:

-dbname

AIX

Linux

Solaris

Name

of

the

target

database.

400

This

is

the

database

name

as

displayed

in

the

relational

database

directory

(WRKRDBDIRE).

-dbuser

AIX

Linux

Solaris

Name

of

the

user

connecting

to

the

database.

400

This

is

usually

the

same

as

the

instance

user

name.

-dbpwd

Password

for

the

user

connecting

to

the

database

-infile

Name

of

the

input

XML

document

containing

table

records

-outfile

Name

of

the

output

XML

file

to

be

produced;

this

file

can

be

used

as

input

to

the

Loader

-method

Method

to

be

used

in

processing

the

input

file.

The

command

can

treat

the

input

file

as

though

the

records

do

not

exist

in

the

database

(load)

or

as

if

there

are

already

identifiers

for

the

input

objects

(update).

Use

the

mixed

method

when

some

records

do

not

exist

in

database

and

some

do.

The

default

method

is

load.

-propfile

Text

file

containing

Java

properties

in

the

form

of

name=value

pairs.

This

property

file

sets

the

way

in

which

the

ID

Resolver

resolves

identifiers.

It

is

used

to

describe

which

columns

of

a

primary

entry

should

be

used

as

lookups

for

tables

that

require

the

identifier

of

a

primary

row.

This

file

defines

the

column

names

for

foreign-key

identifier

lookup

and

the

select

predicate

for

main

table

(such

as

CATEGORY

and

PRODUCT)

queries.

You

can

omit

entries

in

this

file

for

tables

that

have

a

defined

unique

index

that

does

not

include

the

identifier.

This

parameter

is

optional.

IdResolveKeys.properties

is

the

default

file.

This

property

file

can

be

specified

as

shown

in

either

of

the

following

examples:

AIX

Linux

Solaris

-propfile

WC_installdir/my_directory/file_name.properties

-propfile

WC_installdir/my_directory/file_name

400

-propfile

WC_userdir/my_directory/file_name.properties

-propfile

WC_userdir/my_directory/file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-propfile

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-propfile

file_name

340

Store

Development

Guide

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use

For

more

information

on

creating

and

specifying

a

new

properties

file

for

use

with

the

ID

Resolver,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-poolsize

Number

of

identifiers

to

be

reserved.

This

parameter

is

optional.

The

default

number

is

50.

-maxerror

Number

of

errors

after

which

the

ID

Resolver

will

terminate.

This

parameter

is

optional.

The

default

value

is

1.

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

ID

Resolver

functions.

The

default

file

is:

AIX

Linux

Solaris

DB2ConnectionCustomizer.properties

400

ISeries_RESWCSID_Customizer.properties

If

you

have

configured

your

instance

to

use

the

toolbox

driver,

then

use

the

Toolbox_RESWCSID_Customizer

customizer

file

provided

for

the

toolbox

driver.

You

must

also

specify

the

hostname

for

the

-dbname

parameter.

The

following

is

an

example

of

invoking

the

idresgen.sh

script:

./idresgen.sh

-dbname

MY.HOSTNAME.CA

-dbuser

instance

-dbpwd

mypass

-infile

/path/infile.xml

-outfile

/path/outfile.xml

-method

sqlimport

-customizer

Toolbox_RESWCSID_Customizer

The

customizer

property

file

can

be

specified

as

shown

in

either

of

the

following

examples:

AIX

Linux

Solaris

-customizer

WC_installdir/my_directory/file_name.properties

-customizer

WC_installdir/my_directory/file_name

400

-customizer

WC_userdir/my_directory/file_name.properties

-customizer

WC_userdir/my_directory/file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

want

to

use.

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

Chapter

37.

Overview

of

loading

store

data

341

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

KEYS

table

in

the

database.

400

If

neither

a

command-line

nor

a

property-file

specification

for

the

-schemaname

parameter

exists,

the

command

defaults

to

the

value

of

the

-dbuser

parameter.

-optimize

-optimize

no

The

IdResolver

will

skip

duplicate

record

checking

before

writing

resolved

records

to

the

output

file.

This

option

allows

the

user

to

switch

off

the

optimization

feature

in

IdResolver.

Windows

idresgen.cmd

-dbname s

-method load

update

mixed

-dbuser s -dbpwd s -infile s -outfile s

-customizer s

-maxerror s

-schemaname s -optimize s

-propfile s -poolsize s

ID Resolve

342

Store

Development

Guide

Parameter

values:

-dbname

Name

of

the

target

database

-dbuser

Name

of

the

user

connecting

to

the

database

-dbpwd

Password

for

the

user

connecting

to

the

database

-infile

Name

of

the

input

XML

document

containing

table

records

-outfile

Name

of

the

output

XML

file

to

be

produced;

this

file

can

be

used

as

input

to

the

Loader

-method

Method

to

be

used

in

processing

the

input

file.

The

command

can

treat

the

input

file

as

though

the

records

do

not

exist

in

the

database

(load)

or

as

if

there

are

already

identifiers

for

the

input

objects

(update).

Use

the

mixed

method

when

some

records

do

not

exist

in

database

and

some

do.

The

default

method

is

load.

-propfile

Text

file

containing

Java

properties

in

the

form

of

name=value

pairs.

This

property

file

sets

the

way

in

which

the

ID

Resolver

resolves

identifiers.

It

is

used

to

describe

which

columns

of

a

primary

entry

should

be

used

as

lookups

for

tables

that

require

the

identifier

of

a

primary

row.

This

file

defines

the

column

names

for

foreign-key

identifier

lookup

and

the

select

predicate

for

main

table

(such

as

CATEGORY

and

PRODUCT)

queries.

You

can

omit

entries

in

this

file

for

tables

that

have

a

defined

unique

index

that

does

not

include

the

identifier.

This

parameter

is

optional.

IdResolveKeys.properties

is

the

default

file.

This

property

file

can

be

specified

as

shown

in

either

of

the

following

examples:

-propfile

WC_installdir\my_directory\

file_name.properties

-propfile

WC_installdir\my_directory\file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-propfile

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-propfile

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

want

to

use.

For

more

information

on

creating

and

specifying

a

new

properties

file

for

use

with

the

ID

Resolver,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-poolsize

Number

of

identifiers

to

be

reserved.

This

parameter

is

optional.

The

default

number

is

50.

Chapter

37.

Overview

of

loading

store

data

343

-maxerror

Number

of

errors

after

which

the

ID

Resolver

will

terminate.

This

parameter

is

optional.

The

default

value

is

1.

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

ID

Resolver

functions.

DB2ConnectionCustomizer.properties

is

the

default

file.

The

customizer

property

file

can

be

specified

as

shown

in

either

of

the

following

examples:

-customizer

WC_installdir\my_directory\file_name.properties

-customizer

WC_installdir\my_directory\file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

useFor

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

KEYS

table

in

the

database.

-optimize

-optimize

no

The

IdResolver

will

skip

duplicate

record

checking

before

writing

resolved

records

to

the

output

file.

This

option

allows

the

user

to

switch

off

the

optimization

feature

in

IdResolver.

Resolution

techniques:

The

ID

Resolver

resolves

identifiers

using

a

combination

of

two

or

three

of

the

following

techniques,

depending

on

whether

or

not

a

properties

file

is

used.

v

Internal-alias

resolution

When

using

internal-alias

ID

resolution,

an

alias

is

substituted

for

the

unique

key

(identifier)

in

the

source

XML

document.

This

alias

is

then

used

elsewhere

in

the

XML

file

to

refer

to

that

element.

Internal

aliases

must

be

used

consistently

throughout

the

XML

file.

For

example,

if

an

address-book

ID,

ADDRBOOK_ID,

is

aliased

to

@addrbook_1,

all

foreign-key

references

to

that

ID

in

the

file

must

use

@addrbook_1.

Note

that

aliases

are

transient

to

the

specific

XML

file.

They

are

not

saved;

and

an

alias

cannot

be

used

in

a

separate

XML

file

without

introducing

the

alias

344

Store

Development

Guide

again.

During

publish

in

the

Administration

Console,

however,

publish

concatenates

the

XML

files

so

that

resolution

can

occur

across

all

of

the

data.

v

Unique-index

resolution

The

ID

Resolver

can

also

analyze

the

database

schema

to

determine

whether

or

not

there

is

a

unique

index

that

fulfills

its

requirements.

The

ID

Resolver

looks

for

a

unique

index

only

when

there

is

no

entry

in

the

properties

file

for

the

table

being

analyzed

or

when

there

is

no

properties

file.

If

these

conditions

are

true,

a

unique-index

check

is

performed.

The

unique

index

is

considered

valid

if

it

exists

and

does

not

include

the

primary

key

for

the

table.

Chapter

37.

Overview

of

loading

store

data

345

v

Properties-file

specification

The

ID

Resolver

lets

you

use

an

alternate

Java

properties

file

to

describe

which

columns

of

a

primary

entry

should

be

used

as

lookups

for

tables

that

require

the

identifier

of

a

primary

row.

The

sample

store

archives

provided

with

WebSphere

Commerce

use

internal

aliases

in

their

XML

files.

This

allows

the

store

archives

to

be

portable

across

databases.

Although

the

unique-index

and

properties-file

specification

techniques

also

allow

for

portability

across

databases,

a

user

can

change

what

the

unique

columns

are

at

any

time

and

cause

problems

when

these

techniques

are

later

used

for

ID

resolution.

If

a

user

changes

a

unique

column,

for

example,

the

column

name

must

then

be

changed

in

the

property-file

definition.

With

the

internal-alias

technique,

however,

a

change

in

the

database

does

not

necessitate

a

change

in

the

XML

or

properties

files.

When

publishing

from

the

WebSphere

Commerce

Administration

Console

or

using

the

Loader

package,

the

ID

Resolver

replaces

the

alias

with

a

unique

value.

Once

the

data

is

loaded,

the

aliases

are

transparent

to

the

user.

For

more

information,

refer

to

Appendix

B,

“Creating

your

data,”

on

page

439.

The

ID

Resolver

uses

the

following

process:

v

If

your

input

XML

data

has

an

element

from

a

primary

table

that

already

has

a

hard-coded

identifier

(″12345″

for

example),

the

ID

Resolver

does

not

create

a

new

identifier

for

that

element.

v

If

your

input

XML

data

has

an

element

from

a

primary

table

that

does

not

have

an

identifier,

the

ID

Resolver

looks

in

the

database

to

see

whether

or

not

there

is

already

a

row

for

this

element.

Looking

up

the

element

in

the

database

requires

that

other

columns

in

the

element

be

used

to

form

a

unique

key.

These

other

columns

can

be

specified

in

the

properties

file;

or

the

ID

Resolver

can

be

allowed

to

determine

which

columns

to

use.

–

If

a

properties

file

is

being

used

and

there

is

an

entry

in

the

properties

file

for

the

table

being

analyzed,

the

ID

Resolver

uses

the

columns

specified

in

the

properties

file

to

form

the

unique

key.

–

If

there

is

no

properties

file

being

used

or

there

is

no

entry

in

the

properties

file

for

the

table

being

analyzed,

the

ID

Resolver

uses

unique-index

resolution.

Unique-index

resolution

uses

any

of

the

specified

unique

indexes

on

a

table

as

a

means

of

locating

the

identifier.

For

example,

MEMBER_ID

plus

IDENTIFIER

is

a

unique

index

on

the

CATALOG

table

and

can

therefore

be

used

as

a

resolution

point

to

the

foreign

key

CATALOG_ID

of

the

CATALOGDSC

table.

The

element

is

deemed

to

already

exist

in

the

database

if

there

is

a

row

with

the

same

unique

key;

otherwise,

it

is

seen

as

a

new

piece

of

data.

v

If

the

element

already

exists

as

a

row

in

the

database,

its

identifier

is

retrieved

and

saved

so

that

it

can

be

used

later.

Otherwise,

a

new

identifier

is

generated

by

ID

Resolver

using

an

available

value

in

the

KEYS

or

SUBKEYS

table.

v

If

you

specified

an

internal

alias

for

the

element

(″@store_id_1″

for

example)

in

the

XML

document,

that

alias

is

associated

with

the

identifier

so

that

the

identifier

can

be

looked

up

later

using

the

same

internal

alias.

v

Subsequent

XML

document

elements

that

need

to

refer

to

an

element

from

the

primary

table

use

either

the

internal

alias

if

the

primary

table

element

had

one

(″@store_id_1″

for

example)

or

the

values

of

the

lookup

columns

if

it

did

not

346

Store

Development

Guide

(″@WC2001@100″

for

example).

In

either

case,

the

value

specified

is

used

to

look

up

the

actual

identifier

and

the

value

is

replaced

with

that

identifier.

v

When

the

output

XML

document

is

produced,

all

primary

table

elements

have

actual

identifiers

in

them

and

all

elements

that

refer

to

those

primary

table

elements

refer

to

them

using

the

actual

identifiers,

not

the

internal

aliases

or

lookup

column

values

mentioned

above.

This

is

the

fully

resolved

XML

document.

Methods

for

the

ID

Resolve

command:

The

ID

Resolve

command

lets

you

choose

the

load,

update,

or

mixed

method

to

process

the

input

file.

Load

method:

The

load

method

for

the

ID

Resolver

is

used

to

generate

new

identifiers

for

all

new

records

that

are

loaded

into

the

database.

Note:

If

you

specify

the

load

method

for

the

ID

Resolver,

the

records

in

the

input

file

should

not

already

exist

in

the

database.

If

the

load

method

is

used

with

the

ID

Resolver

and

a

record

in

the

source

XML

file

already

exists

in

the

target

database,

the

Loader

will

generate

an

error

when

you

load

the

data.

The

ID

Resolver

will

assign

a

new

primary

key

to

the

record

in

the

XML

file

during

ID

resolution;

but

when

you

load

the

data

into

the

database,

an

error

will

be

generated.

The

Loader

will

not

stop

at

the

point

of

processing

the

duplicate

record;

but

it

will

report

an

error

and

the

duplicate

record

will

not

be

loaded

into

the

database.

The

following

example

is

used

to

generate

identifiers

for

data

elements

that

are

new

to

the

database:

v

AIX

Linux

400

Solaris

./idresgen.sh

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

load

-customizer

customizer

-schemaname

wcsadmin

v

Windows

idresgen

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

load

-customizer

customizer

-schemaname

wcsadmin

Note:

Refer

to

“Using

the

Loader

package

commands

and

scripts”

on

page

370

for

the

location

of

the

appropriate

ID

Resolve

command

or

script.

Update

method:

If

you

specify

the

update

method

for

the

ID

Resolver,

the

records

in

the

input

file

should

already

exist

in

the

database.

The

ID

Resolver

locates

the

identifiers

in

the

database

as

described

on

page

346.

If

a

record

does

not

exist

in

the

database,

the

ID

Resolver

is

not

able

to

resolve

the

identifier

for

this

record

and

it

indicates

that

an

error

has

occurred.

Chapter

37.

Overview

of

loading

store

data

347

The

following

example

is

used

to

locate

identifiers

for

data

elements

that

already

exist

in

the

database:

v

AIX

Linux

400

Solaris

./idresgen.sh

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

update

-customizer

customizer

-schemaname

wcsadmin

v

Windows

idresgen

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

update

-customizer

customizer

-schemaname

wcsadmin

Note:

Refer

to

“Using

the

Loader

package

commands

and

scripts”

on

page

370

for

the

location

of

the

appropriate

ID

Resolve

command

or

script.

Mixed

method:

If

the

input

data

file

contains

records

that

already

exist

in

the

database

as

well

as

some

records

that

are

new,

the

ID

Resolver

must

be

run

using

the

mixed

method.

With

this

method,

the

ID

Resolver

creates

new

identifiers

for

records

only

if

the

records

do

not

exist

in

the

database.

Otherwise,

the

existing

identifier

is

obtained

from

the

database.

The

following

example

is

used

to

generate

identifiers

for

new

data

and

to

locate

identifiers

for

data

elements

that

already

exist

in

the

database:

v

AIX

Linux

400

Solaris

./idresgen.sh

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

mixed

-customizer

customizer

-schemaname

wcsadmin

v

Windows

idresgen

-dbname

db

-dbuser

user

-dbpwd

pwd

-infile

input.xml

-outfile

output.xml

-method

mixed

-customizer

customizer

-schemaname

wcsadmin

Notes:

1.

Refer

to

“Using

the

Loader

package

commands

and

scripts”

on

page

370

for

the

location

of

the

appropriate

ID

Resolve

command

or

script.

2.

Mixed

method

is

the

recommended

method

for

the

Administration

Console.

For

detailed

information

on

setting

up

and

customizing

the

files

used

to

run

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

348

Store

Development

Guide

Load

command

This

command

loads

an

XML

input

file

into

a

target

database.

AIX

Linux

400

Solaris

Load

./massload.sh

-dbname s

import

-dbuser s -dbpwd s -infile s -method

-directory s

load

-customizer s -schemaname s

-noprimary -commitcount s -maxerror serror

sqlimport skip

delete insert

createonly

loadonly

Notes:

1.

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

2.

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-dbname

AIX

Linux

Solaris

Name

of

the

target

database

400

This

is

the

database

name

as

displayed

in

the

relational

database

directory

(WRKRDBDIRE).

-dbuser

AIX

Linux

Solaris

Name

of

the

user

connecting

to

the

database.

400

This

is

usually

the

same

as

the

instance

user

name.

-dbpwd

Password

for

the

user

connecting

to

the

database

-infile

Name

of

the

input

XML

file

-directory

You

use

the

-infile

parameter

if

you

are

using

any

option

other

than

loadonly

for

the

-method

parameter

as

described

below.

If

you

use

the

loadonly

method,

you

must

replace

the

-infile

parameter

with

the

-directory

parameter

or

an

error

will

result.

For

the

value

of

the

-directory

parameter

when

you

use

the

loadonly

method,

specify

the

fully

qualified

path

of

the

MassLoadOutputFiles

directory

that

was

created

using

the

createonly

method

as

described

below.

Chapter

37.

Overview

of

loading

store

data

349

-method

Mode

of

operation

for

the

Loader

to

use

when

modifying

the

database

using

input

data

load

The

load

method

uses

the

native

loader

from

the

database

vendor.

You

can

use

the

load

method

for

both

local

and

remote

Oracle

databases;

but

the

load

method

can

only

be

used

for

local

DB2

databases.

400

The

load

method

does

not

support

bit

data

or

DBCLOB

fields.

import

The

import

method

uses

the

import

or

update

option

if

it

is

available

from

the

database

vendor.

If

the

import

or

update

option

is

not

available,

SQL

statements

using

JDBC

are

used

to

update

the

database.

The

default

is

import.

400

The

import

method

can

only

be

used

on

local

databases.

sqlimport

The

SQL

import

(sqlimport)

method

can

be

used

with

both

local

and

remote

databases.

delete

The

delete

method

deletes

data

from

the

database

createonly

To

improve

performance

during

instance

creation,

use

the

createonly

method.

Use

the

createonly

method

to

create

mass-load

data

(MLD)

files

without

loading

the

data

into

the

database.

The

files

that

are

created

when

you

use

this

method

(.mld

and

.cmd

files)

are

placed

in

a

directory

named

MassLoadOutputFiles.

AIX

Linux

Solaris

This

directory

is

created

as

a

subdirectory

under

the

directory

from

which

you

run

the

Load

command,

which

is

your

working

directory.

As

a

result,

your

working

directory

must

be

writable.

400

This

directory

is

created

as

a

subdirectory

of

the

temp

directory,

located

in

the

root

directory

of

the

instance.

The

default

location

of

the

directory

will

be

WC_userdir/instances/instance_name/temp/MassLoadOutputFiles.

Here

is

an

example

of

running

the

Load

command

using

the

createonly

method:

./massload.sh

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_installdir/data/example.xml

-method

createonly

400

./massload.sh

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_userdir/data/example.xml

-method

createonly

You

can

later

use

your

native

database

load

utility

to

load

the

MLD

files

that

you

created

into

a

WebSphere

Commerce

database

by

running

the

Load

command

using

the

loadonly

method

described

below.

350

Store

Development

Guide

Note:

The

program

obtains

information

about

the

native

database

load

utility

that

your

database

product

uses

from

the

customizer

property

file.

loadonly

Use

the

loadonly

method

to

load

MLD

files

that

were

created

using

the

createonly

method

described

previously.

When

you

use

the

loadonly

method,

you

must

also

use

the

-directory

parameter

or

an

error

will

result.

Note:

The

-directory

parameter

replaces

the

-infile

parameter

that

you

would

specify

if

you

were

using

any

method

other

than

loadonly.

For

the

value

of

the

-directory

parameter,

you

must

specify

the

fully

qualified

path

of

the

MassLoadOutputFiles

directory

that

was

created

using

the

createonly

method.

Here

is

an

example

of

running

the

Load

command

using

the

loadonly

method

(and

the

required

-directory

parameter)

:

./massload.sh

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-method

loadonly

-directory

WC_installdir/bin/MassLoadOutputFiles

-schemaname

wcsadmin

Always

specify

the

name

of

the

target

database

schema

using

the

-schemaname

parameter

when

you

run

the

Load

command

using

this

method.

Otherwise,

the

program

uses

the

name

of

the

database

schema

obtained

when

the

MassLoadOutputFiles

directory

and

its

files

were

originally

created.When

you

use

the

loadonly

method,

errors

and

other

messages

are

saved

in

files

that

have

a

.log

extension.

These

log

files

are

written

to

the

MassLoadOutputFiles

directory

specified

for

the

-directory

parameter.

Use

the

loadonly

method

only

for

instance

creation.

If

you

use

it

at

any

other

time,

the

result

may

not

be

desirable.

-noprimary

Action

the

Loader

must

take

when

the

primary

key

is

missing

for

a

record

in

the

input

file

v

The

error

option

indicates

that

it

should

report

the

missing

primary

key

as

an

error

and

terminate.

v

The

skip

option

skips

any

record

in

the

input

file

that

does

not

have

a

primary

key.

v

The

insert

option

tries

to

insert

or

delete

the

data.

This

parameter

is

optional.

The

default

action

is

error.

-commitcount

Number

of

records

processed

before

the

database

commit

occurs

when

using

the

SQL

import

method

of

operation.

This

parameter

is

optional.

The

default

number

is

1.

-maxerror

Number

of

errors

after

which

the

Loader

will

terminate

in

the

SQL

import

method

of

operation.

This

parameter

is

optional.

The

default

value

is

1.

Chapter

37.

Overview

of

loading

store

data

351

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

Loader

functions.

The

default

file

is:

AIX

Linux

Solaris

MassLoadCustomizer.properties

400

ISeries_LODWCSDTA_Customizer.properties

If

you

have

configured

your

instance

to

use

the

toolbox

driver,

then

use

the

Toolbox_LODWCSDTA_Customizer

customizer

file

provided

for

the

toolbox

driver.

You

must

also

specify

the

hostname

for

the

-dbname

parameter.

The

following

is

an

example

of

invoking

the

massload.sh

script:

./massload.sh

-dbname

MY.HOSTNAME.CA

-dbuser

instance

-dbpwd

mypass

-method

sqlimport

-customizer

Toolbox_LODWCSDTA_Customizer

-infile

/path/file.xml

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

AIX

Linux

Solaris

-customizer

WC_installdir/my_directory/file_name.properties

-customizer

WC_installdir/my_directory/file_name

400

-customizer

WC_userdir/my_directory/file_name.properties

-customizer

WC_userdir/my_directory/file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

useFor

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

KEYS

table

in

the

database.

400

If

neither

a

command-line

nor

a

property-file

specification

for

the

-schemaname

parameter

exists,

the

command

defaults

to

the

value

of

the

-dbuser

parameter.

352

Store

Development

Guide

Windows

Load

massload.cmd

-dbname s

import

-dbuser s -dbpwd s -infile s -method

-directory s

load

-customizer s -schemaname s

-noprimary -commitcount s -maxerror serror

sqlimport skip

delete insert

createonly

loadonly

Note:

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-dbname

Name

of

the

target

database

-dbuser

Name

of

the

user

connecting

to

the

database

-dbpwd

Password

for

the

user

connecting

to

the

database

-infile

Name

of

the

input

XML

file

-directory

You

use

the

-infile

parameter

if

you

are

using

any

option

other

than

loadonly

for

the

-method

parameter

as

described

below.

If

you

use

the

loadonly

method,

you

must

replace

the

-infile

parameter

with

the

-directory

parameter

or

an

error

will

result.

For

the

value

of

the

-directory

parameter

when

you

use

the

loadonly

method,

specify

the

fully

qualified

path

of

the

MassLoadOutputFiles

directory

that

was

created

using

the

createonly

method

as

described

below.

-method

Mode

of

operation

for

the

Loader

to

use

when

inserting

data

into

the

database

load

The

load

method

uses

the

native

loader

from

the

database

vendor.

You

can

use

the

load

method

for

both

local

and

remote

Oracle

databases;

but

the

load

method

can

only

be

used

for

local

DB2

databases.

Although

the

import

method

can

be

used

to

load

data

into

local

or

remote

databases,

it

is

usually

used

to

load

data

into

remote

DB2

databases.

import

The

import

method

uses

the

import

or

update

option

if

it

is

Chapter

37.

Overview

of

loading

store

data

353

available

from

the

database

vendor.

If

the

import

or

update

option

is

not

available,

SQL

statements

using

JDBC

are

used

to

update

the

database.

The

default

is

import.

sqlimport

The

SQL

import

(sqlimport)

method

can

be

used

with

both

local

and

remote

databases.

delete

The

delete

method

deletes

data

from

the

database.

createonly

To

improve

performance

during

instance

creation,

use

the

createonly

method.

Use

the

createonly

method

to

create

mass-load

data

(MLD)

files

without

loading

the

data

into

the

database.

The

files

that

are

created

when

you

use

this

method

(.mld

and

.cmd

files)

are

placed

in

a

directory

named

MassLoadOutputFiles.

This

directory

is

created

as

a

subdirectory

under

the

directory

from

which

you

run

the

Load

command,

which

is

your

working

directory.

As

a

result,

your

working

directory

must

be

writable.

Here

is

an

example

of

running

the

Load

command

using

the

createonly

method:

massload

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_installdir\data\example.xml

-method

createonly

You

can

later

use

your

native

database

load

utility

to

load

the

MLD

files

that

you

created

into

a

WebSphere

Commerce

database

by

running

the

Load

command

using

the

loadonly

method

described

below.

Note:

The

program

obtains

information

about

the

native

database

load

utility

that

your

database

product

uses

from

the

customizer

property

file.

loadonly

Use

the

loadonly

method

to

load

MLD

files

that

were

created

using

the

createonly

method

described

previously.

When

you

use

the

loadonly

method,

you

must

also

use

the

-directory

parameter

or

an

error

will

result.

Note:

The

-directory

parameter

replaces

the

-infile

parameter

that

you

would

specify

if

you

were

using

any

method

other

than

loadonly.

For

the

value

of

the

-directory

parameter,

you

must

specify

the

fully

qualified

path

of

the

MassLoadOutputFiles

directory

that

was

created

using

the

createonly

method.

Here

is

an

example

of

running

the

Load

command

using

the

loadonly

method

(and

the

required

-directory

parameter)

:

massload

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-method

loadonly

-directory

WC_installdir\bin\MassLoadOutputFiles

-schemaname

wcsadmin

Always

specify

the

name

of

the

target

database

schema

using

the

-schemaname

parameter

when

you

run

the

Load

command

using

354

Store

Development

Guide

this

method.

Otherwise,

the

program

uses

the

name

of

the

database

schema

obtained

when

the

MassLoadOutputFiles

directory

and

its

files

were

originally

created.When

you

use

the

loadonly

method,

errors

and

other

messages

are

saved

in

files

that

have

a

.log

extension.

These

log

files

are

written

to

the

MassLoadOutputFiles

directory

specified

for

the

-directory

parameter.

Use

the

loadonly

method

only

for

instance

creation.

If

you

use

it

at

any

other

time,

the

result

may

not

be

desirable.

-noprimary

Action

the

Loader

must

take

when

the

primary

key

is

missing

for

a

record

in

the

input

file

v

The

error

option

indicates

that

it

should

report

the

missing

primary

key

as

an

error

and

terminate.

v

The

skip

option

skips

any

record

in

the

input

file

that

does

not

have

a

primary

key.

v

The

insert

option

tries

to

process

(insert

or

delete)

the

data.

This

parameter

is

optional.

The

default

action

is

error.

-commitcount

Number

of

records

processed

before

the

database

commit

occurs

when

using

the

SQL

import

method

of

operation.

This

parameter

is

optional.

The

default

number

is

1.

-maxerror

Number

of

errors

after

which

the

Loader

will

terminate

in

the

SQL

import

method

of

operation.

This

parameter

is

optional.

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

Loader

functions.

The

default

file

is

MassLoadCustomizer.properties.

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

-customizer

WC_installdir\my_directory\file_name.properties

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use.

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

most

recent

version

of

the

WebSphere

Commerce

Production

and

Development

online

help

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

Chapter

37.

Overview

of

loading

store

data

355

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

KEYS

table

in

the

database.

Methods

for

the

Load

command:

Before

loading

data,

you

should

determine

which

of

the

available

methods

of

processing

will

produce

the

best

results.

Load

method:

Consider

the

load

method

in

any

of

the

following

situations:

v

The

source

data

is

clean,

and

the

database

does

not

contain

any

data

Note:

Clean

data

is

data

that

does

not

violate

any

of

the

constraints

of

the

tables

into

which

it

is

being

loaded.

v

The

source

data

is

clean,

and

the

database

does

not

contain

the

data

that

is

being

loaded

v

The

source

data

is

clean,

one

or

more

of

the

targeted

tables

do

not

contain

primary

keys,

and

the

database

does

not

contain

the

data

that

is

being

loaded

v

The

database

is

a

local

DB2

database

v

The

database

is

a

local

or

remote

Oracle

database

v

The

database

is

not

being

accessed

by

other

users

or

applications

while

the

load

is

taking

place

400

With

the

load

method,

data

is

loaded

into

the

database.

If

the

data

already

exists,

the

command

fails

as

a

result

of

a

duplicate-key

error

and

a

duplicate-error

message

displays.

The

following

restrictions

exist

on

using

the

load

method:

v

400

The

load

method

cannot

insert

or

update

data

in

bit

data

fields

or

DBCLOB

fields.

Only

new

records

are

inserted

into

the

database;

existing

records

will

cause

an

error.

v

With

the

load

method,

only

new

records

are

inserted

into

the

database;

existing

records

are

not

updated.

The

load

method

can

only

be

used

for

local,

not

remote,

DB2

databases.

Import

method:

AIX

Linux

Solaris

Windows

With

the

import

method

for

DB2,

data

is

also

loaded

into

the

database.

If

the

data

already

exists,

it

is

not

deleted

but

is

updated

with

new

values.

Consider

this

method

in

any

of

the

following

situations:

v

The

database

management

system

is

DB2

v

You

do

not

know

whether

or

not

the

data

is

clean

v

You

have

to

update

large

sets

of

homogeneous

data

at

a

column

level

v

All

of

the

tables

into

which

data

is

being

imported

have

primary

keys

400

With

the

import

method,

data

is

also

loaded

into

the

database.

If

the

data

already

exists,

it

is

not

deleted

but

it

is

updated

with

new

values.

Consider

this

method

in

any

of

the

following

situations:

v

You

do

not

know

whether

or

not

the

data

is

clean

v

The

data

already

exists

in

the

database

v

All

of

the

tables

into

which

data

is

being

imported

have

primary

keys

356

Store

Development

Guide

The

following

restrictions

exist

on

using

the

import

method:

v

The

database

management

system

must

be

DB2

in

order

to

use

the

import

method.

v

400

The

import

method

cannot

insert

or

update

data

in

bit

data

fields

or

DBCLOB

fields

and

can

be

used

only

on

local

databases

v

With

the

import

method,

the

Loader

only

inserts

or

updates

tables

that

have

primary

keys

defined

on

them;

the

import

method

cannot

insert

or

update

data

in

tables

that

do

not

have

a

primary

key.

If

the

input

record

only

has

values

for

columns

that

are

primary,

the

record

is

rejected.

SQL

import

method:

With

the

SQL

import

method,

JDBC

or

SQL

statements

are

used

to

update

or

insert

data

into

the

database.

Data

is

inserted

if

it

does

not

already

exist,

and

existing

data

is

updated.

Consider

this

method

in

any

of

the

following

situations:

v

You

are

updating

existing

data

and

require

column-level

updates

v

Some

of

the

data

is

not

clean

v

The

database

is

not

local

Note:

If

you

are

using

Product

Advisor

search-space

synchronization,

you

must

use

the

SQL

import

method

for

loading

data.

Delete

method:

The

delete

method

is

used

to

delete

data

that

is

in

the

input

XML

document

from

the

database.

The

element

must

contain

the

values

for

the

primary

key

or

the

unique

index

for

the

table.

If

the

data

being

deleted

has

data

in

another

table

that

is

dependent

on

it

with

″cascade

on

delete″

enabled,

the

dependent

data

is

also

deleted.

Createonly

method

for

AIX,

Linux,

Solaris,

and

Windows

systems:

To

improve

performance

during

instance

creation,

use

the

createonly

method.

Use

the

createonly

method

to

create

mass-load

data

(MLD)

files

without

loading

the

data

into

the

database.

You

can

later

use

your

native

database

load

utility

to

load

the

MLD

files

that

you

created

into

a

WebSphere

Commerce

database

by

running

the

Load

command

using

the

loadonly

method.

Loadonly

method

for

AIX,

Linux,

Solaris,

and

Windows

systems:

Use

the

loadonly

method

to

load

MLD

files

that

were

created

using

the

createonly

method.

Use

the

loadonly

method

only

for

instance

creation.

If

you

use

it

at

any

other

time,

the

result

may

not

be

desirable.

Comparing

the

methods:

v

Comparison

of

the

SQL

import

and

load

methods

The

SQL

import

method

checks

for

data

consistency,

including

foreign

references,

and

allows

you

to

update

existing

data.

The

load

method

does

not.

v

Comparison

of

the

import

and

SQL

import

methods

The

import

and

SQL

import

methods

perform

similar

functions.

The

import

method

is

typically

faster,

but

it

requires

disk

space

for

temporary

files.

The

import

method

can

only

insert

or

update

tables

that

have

primary

keys

defined

in

them;

whereas,

the

SQL

import

method

does

not

require

that

tables

have

primary

keys

in

them.

v

Comparison

of

methods

based

on

database

product

used

The

import

and

load

methods

use

native

utilities

that

are

optimized

for

DB2,

while

the

SQL

import

method

uses

JDBC

calls

(which

are

generic

to

many

database

products).

Chapter

37.

Overview

of

loading

store

data

357

Performance

considerations:

When

using

the

Loader

to

load

large

documents

into

a

database,

consider

the

following

items:

v

Java

Virtual

Machine

(JVM)

heap

size

By

default,

the

maximum

amount

of

memory

allocated

to

the

JVM

heap

is

64

MB.

If

this

is

not

increased,

the

JVM

can

eventually

run

out

of

memory

during

the

load

process.

The

maximum

amount

of

memory

allocated

to

the

Java

heap

can

be

varied

by

using

the

JVM

-mx

option

in

the

Java

command.

v

Trace

logging

The

trace

logger

can

exhaust

the

JVM

heap

when

loading

a

large

XML

document.

Trace

information

is

used

mostly

for

debugging

a

run

if

the

run

fails.

If

tracing

the

load

process

is

not

necessary,

the

trace

should

be

turned

off.

There

is

a

significant

performance

gain

when

the

trace

is

turned

off.

The

trace

is

turned

off

by

modifying

the

logging

configuration

XML

document.

For

information

on

modifying

the

logging

configuration

XML

document,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

v

Commit

count

The

default

commit

count

for

the

Loader

when

it

is

operating

in

SQL

import

mode

is

1.

By

default,

therefore,

transactions

are

committed

for

every

update

or

insertion

into

the

database.

To

improve

the

performance

of

the

Loader

for

large

documents,

the

commit

count

should

be

increased.

After

taking

into

consideration

the

size

of

the

input.xml

file,

you

may

use

a

commit

count

larger

than

the

number

of

records

in

your

file.

This

enables

rollback

of

the

entire

input.xml

file

if

an

error

occurs.

The

commit

count

for

the

Loader

is

changed

using

the

-commitcount

count

option

for

the

Load

command

(where

count

is

the

number

of

statements

executed

before

the

transaction

is

committed).

v

Logging

configuration

Unusually

slow

progress

when

loading

data

could

result

from

one

of

the

following

situations:

–

The

user

invoking

the

Loader

does

not

have

permission

to

write

to

the

directory

or

to

update

the

file

specified

in

the

logging

configuration

document.

–

The

directory

specified

as

the

location

of

the

file

in

the

logging

configuration

document

does

not

exist.

–

The

drive

specified

as

the

location

of

the

file

in

the

logging

configuration

document

does

not

have

enough

space.

When

you

correct

any

of

these

problems,

you

may

need

to

change

the

specified

location

of

the

file

by

modifying

the

logging

configuration

document

(WCALoggerConfig.xml

by

default).

For

information

on

modifying

the

logging

configuration

XML

document,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

For

detailed

information

on

setting

up

and

customizing

the

files

used

to

run

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

358

Store

Development

Guide

Loader

package

commands

for

transforming

and

extracting

data

DTD

Generate

command

This

command

creates

a

DTD

for

use

with

the

Loader

package.

This

DTD

is

used

throughout

the

data

loading

process.

Depending

on

how

you

invoke

the

command,

the

DTD

Generator

can

generate

a

DTD

alone

or

a

DTD

along

with

an

XML

schema.

The

DTD

Generator

can

create

a

DTD

based

on

the

WebSphere

Commerce

database

schema.

If

you

use

the

DTDs

provided

with

the

sample

store

archives

and

you

do

not

modify

the

database

schema,

you

do

not

need

to

generate

a

DTD

using

the

DTD

Generator.

The

DTDs

that

are

provided

are

located

in

the

WC_installdir/xml/sar

directory.

It

is

recommended

that

you

use

the

DTDs

provided.

If

you

customize

a

database

schema,

however,

you

must

either

edit

the

DTD

provided

to

match

your

changes

or

create

a

new

DTD.

AIX

Linux

400

Solaris

./dtdgen.sh

-dbname s -dbuser s -dbpwd s -outfile s

-tablenames s

-infile s

-customizer s -schemaname s

DTD Generate

Notes:

1.

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

2.

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Chapter

37.

Overview

of

loading

store

data

359

Parameter

values:

-dbname

AIX

Linux

Solaris

Name

of

the

target

database

400

This

is

the

database

name

as

displayed

in

the

relational

database

directory

(WRKRDBDIRE)

-dbuser

AIX

Linux

Solaris

Name

of

the

user

connecting

to

the

database

400

This

is

usually

the

same

as

the

instance

user

name

-dbpwd

Password

for

the

user

connecting

to

the

database

-outfile

Name

of

the

output

DTD

file

(preferably

with

a

.dtd

extension)

-infile

Name

of

an

input

file

containing

a

database-table

name

on

each

line

-tablenames

Names

of

tables

separated

by

commas

and

enclosed

in

quotation

marks

(″″)

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

DTD

Generator

functions.

The

default

file

is:

AIX

Linux

Solaris

DB2ConnectionCustomizer.properties

400

ISeries_GENWCSDTD_Customizer.properties

If

you

have

configured

your

instance

to

use

the

toolbox

driver,

then

use

the

Toolbox_GENWCSDTD_Customizer

customizer

file

provided

for

the

toolbox

driver.

You

must

also

specify

the

hostname

for

the

-dbname

parameter.

The

following

is

an

example

of

invoking

the

dtdgen.sh

script:

./dtdgen.sh

-dbname

MY.HOSTNAME.CA

-dbuser

instance

-dbpwd

mypass

-outfile

/path/out.dtd

method

sqlimport

-customizer

Toolbox_GENWCSDTD_Customizer

-infile

/path/file.xml

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

AIX

Linux

Solaris

-customizer

WC_installdir/my_directory/file_name.properties

-customizer

WC_installdir/my_directory/file_name

400

-customizer

WC_userdir/my_directory/file_name.properties

-customizer

WC_userdir/my_directory/file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

360

Store

Development

Guide

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use.

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

owner

of

the

table

in

the

database.

400

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

name

of

the

database

user.

Windows

dtdgen.cmd

-dbname s -dbuser s -dbpwd s -outfile s

-tablenames s

-infile s

-customizer s -schemaname s

DTD Generate

Note:

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-dbname

Name

of

the

target

database

-dbuser

Name

of

the

user

connecting

to

the

database

-dbpwd

Password

for

the

user

connecting

to

the

database

-outfile

Name

of

the

output

DTD

file

-infile

Name

of

an

input

file

containing

a

database-table

name

on

each

line

-tablenames

Names

of

tables

separated

by

commas

-customizer

Name

of

the

customizer

property

file

to

be

used.

This

parameter

is

optional.

The

customizer

property

file

sets

the

way

that

the

DTD

Generator

Chapter

37.

Overview

of

loading

store

data

361

functions.

DB2ConnectionCustomizer.properties

is

the

default

file.

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

-customizer

WC_installdir\my_directory\file_name.properties

-customizer

WC_installdir\my_directory\file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use.

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

target

database

schema.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

owner

of

the

table

in

the

database.

For

detailed

information

on

setting

up

and

customizing

the

files

used

to

run

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

Extract

command

This

command

extracts

a

selected

subset

of

data

from

a

database

in

the

form

of

an

XML

file.

To

extract

data

from

a

database

using

the

Extractor,

you

must

specify

the

data

that

you

want

to

extract

using

an

extraction-filter

file.

The

extraction

filter

that

you

use

depends

on

the

type

of

data

that

you

want

to

extract.

AIX

Linux

400

Solaris

./massextract.sh

-filter s -outfile s -dbname s -dbuser s -dbpwd s

-customizer s -schemaname s

Extract

Notes:

1.

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

362

Store

Development

Guide

2.

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-filter

Name

of

the

extraction-filter

file

-outfile

Name

of

the

output

XML

file

where

the

extracted

data

will

be

stored

-dbname

AIX

Linux

Solaris

Name

of

the

database

from

which

data

is

being

extracted

400

This

is

the

database

name

as

displayed

in

the

relational

database

directory

(WRKRDBDIRE)

-dbuser

AIX

Linux

Solaris

Database

user

name

for

the

database

from

which

data

is

being

extracted

400

This

is

usually

the

same

as

the

instance

user

name

-dbpwd

Password

associated

with

the

user

name

for

the

database

from

which

data

is

being

extracted

-customizer

Name

of

the

customizer

property

file

to

be

used.

The

customizer

property

file

sets

the

way

that

the

Extractor

functions.

The

default

file

is:

AIX

Linux

Solaris

DB2ConnectionCustomizer.properties

400

ISeries_EXTWCSDTA_Customizer.properties

If

you

have

configured

your

instance

to

use

the

toolbox

driver,

then

use

the

Toolbox_EXTWCSDTA_Customizer

customizer

file

provided

for

the

toolbox

driver.

You

must

also

specify

the

hostname

for

the

-dbname

parameter.

The

following

is

an

example

of

invoking

the

massextract.sh

script:

./massextract.sh

-dbname

MY.HOSTNAME.CA

-dbuser

instance

-dbpwd

mypass

-filter/path/filter.xml

-outfile

/path/file.xml

-customizer

Toolbox_EXTWCSDTA_Customizer

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

AIX

Linux

Solaris

DB2ConnectionCustomizer.properties

-customizer

WC_installdir/my_directory/file_name.properties

-customizer

WC_installdir/my_directory/file_name

400

-customizer

WC_userdir/my_directory/file_name.properties

-customizer

WC_userdir/my_directory/file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

Chapter

37.

Overview

of

loading

store

data

363

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use.

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

database

schema

from

which

data

is

being

extracted.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

table

in

the

database.

400

If

neither

a

command-line

nor

a

property-file

specification

for

the

-schemaname

parameter

exists,

the

command

defaults

to

the

value

of

the

-dbuser

parameter.

Windows

massextract.cmd

-filter s -outfile s -dbname s -dbuser s -dbpwd s

-customizer s -schemaname s

Extract

Note:

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-filter

Name

of

the

extraction-filter

file

-outfile

Name

of

the

output

XML

file

where

the

extracted

data

will

be

stored

-dbname

Name

of

the

database

from

which

data

is

being

extracted

-dbuser

Database

user

name

for

the

database

from

which

data

is

being

extracted

-dbpwd

Password

associated

with

the

user

name

for

the

database

from

which

data

is

being

extracted

-customizer

Name

of

the

customizer

property

file

to

be

used.

The

customizer

property

file

sets

the

way

that

the

Extractor

functions.

DB2ConnectionCustomizer.properties

is

the

default

file.

The

customizer

property

file

can

be

specified

as

shown

in

the

following

example:

364

Store

Development

Guide

-customizer

WC_installdir\my_directory\file_name.properties

-customizer

WC_installdir\my_directory\file_name

If

this

file

exists

in

the

current

directory,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name.properties

If

this

file

exists

in

a

directory

specified

in

the

classpath

system-environment

variable,

the

same

file

can

be

specified

as

shown

in

the

following

example:

-customizer

file_name

where,

my_directory

is

a

user

defined

directory

and

file_name

is

the

name

of

the

property

file

that

you

are

going

to

use.

For

more

information

on

creating

and

specifying

a

new

customizer

property

file,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

-schemaname

Name

of

the

database

schema

from

which

data

is

being

extracted.

This

parameter

is

optional.

If

this

parameter

is

not

specified

when

running

the

command,

the

command

looks

for

a

name=value

pair

in

the

customizer

property

file

that

specifies

the

value

of

SchemaName.

If

this

pair

is

present

in

the

property

file,

the

command

uses

the

value

specified.

If

neither

a

command-line

nor

a

property-file

specification

for

this

parameter

exists,

the

command

defaults

to

the

schema

name

of

the

table

in

the

database.

For

more

information

on

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

Text

Transform

command

This

command

transforms

data

between

a

character-delimited

variable

format

and

an

XML

format.

AIX

Linux

400

Solaris

./txttransform.sh

parameter.txt

Text Transform

Note:

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

Parameter

values:

The

following

values

are

specified

and

separated

by

commas

in

a

parameter

file

(parameter.txt):

input

file

Name

of

the

file

to

be

transformed

schema

file

Name

of

the

XML

schema

file

to

be

used

in

the

transformation

Chapter

37.

Overview

of

loading

store

data

365

output

file

Name

of

the

output

file

in

which

the

transformed

data

will

be

stored

transformation

method

Method

to

be

used

in

adding

the

data

to

the

output

file.

Specify

Create

if

a

new

file

is

to

be

created;

or

specify

Append

if

the

output

data

is

to

be

appended

to

an

existing

data

file.

This

file

is

also

referred

to

as

a

″manifest″

or

″command″

file.

It

can

contain

multiple

lines

of

four

parameters

each.

Windows

txttransform.cmd

parameter.txt

Text Transform

Parameter

values:

The

following

values

are

specified

and

separated

by

commas

in

a

parameter

file

(parameter.txt):

input

file

Name

of

the

file

to

be

transformed

schema

file

Name

of

the

XML

schema

file

to

be

used

in

the

transformation

output

file

Name

of

the

output

file

in

which

the

transformed

data

will

be

stored

transformation

method

Method

to

be

used

in

adding

the

data

to

the

output

file.

Specify

Create

if

a

new

file

is

to

be

created;

or

specify

Append

if

the

output

data

is

to

be

appended

to

an

existing

data

file.

Note:

This

file

is

also

referred

to

as

a

″manifest″

or

″command″

file.

It

can

contain

multiple

lines

of

four

parameters

each.

For

more

information

on

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

XML

Transform

command

This

command

converts

an

XML

file

into

an

alternate

XML

format.

AIX

Linux

400

Solaris

./xmltransform.sh

-infile s -transform s -outfile s

-param s

XML Transform

366

Store

Development

Guide

Notes:

1.

The

above

diagram

is

intended

primarily

as

a

reference

for

the

command

parameters.

2.

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-infile

Name

of

the

file

to

be

transformed

-transform

Name

of

the

transform

XSL

mapping

rule

file

-outfile

Name

of

the

output

XML

file

in

which

the

transformed

data

will

be

stored

-param

Parameter

to

be

passed

to

the

XSL

mapping

rule

file.

This

parameter

is

optional.

This

parameter

can

be

specified

multiple

times

to

pass

multiple

name=value

pairs.

Windows

xmltransform.cmd

-infile s -transform s -outfile s

-param s

XML Transform

Note:

File

names

specified

as

parameters

for

this

command

can

be

preceded

by

relative

or

absolute

paths.

Parameter

values:

-infile

Name

of

the

file

to

be

transformed

-transform

Name

of

the

transform

XSL

mapping

rule

file

-outfile

Name

of

the

output

XML

file

in

which

the

transformed

data

will

be

stored

-param

Parameter

to

be

passed

to

the

XSL

mapping

rule

file.

This

parameter

is

optional.

This

parameter

can

be

specified

multiple

times

to

pass

multiple

name=value

pairs.

For

more

information

on

this

command,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

Chapter

37.

Overview

of

loading

store

data

367

Tools

related

to

the

Loader

package

commands

Text

Transformation

tool

The

Text

Transformation

tool

helps

you

to

process

a

transformation

of

data

between

a

character-delimited

variable

format

and

an

XML

format

using

the

Text

Transform

command.

The

following

views

are

provided:

1.

The

Text

Schema

Edit

View

allows

you

to

create

and

modify

the

XML

schema

file

to

be

used

in

a

transformation.

2.

The

Transformation

Command

Edit

View

allows

you

to

create

and

modify

the

actual

commands

used

to

run

the

transformation

process.

3.

The

Transformation

Command

Process

View

allows

you

to

launch

the

transformation

process.

For

more

information

on

this

tool,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

XSL

editor

The

XML

Transformer

uses

XSL

to

define

the

rules

for

transforming

an

XML

file

into

another

XML

file.

The

mapping

function

in

the

XSL

editor

gives

you

a

visual

interface

with

which

you

can

establish

the

association

from

an

element

in

a

source

DTD

to

an

element

in

a

target

DTD.

Given

two

DTDs,

you

can

develop

XSL

rules

that

determine

how

an

XML

file

that

conforms

to

the

first

(source)

DTD

is

transformed

into

a

file

that

conforms

to

the

second

(target)

DTD.

For

more

information

on

this

tool,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

368

Store

Development

Guide

Loading

store

data

This

section

provides

examples

of

how

to

load

store

data

into

your

WebSphere

Commerce

Server

database

using

the

Loader

package

command-line

utilities.

Notes:

1.

The

examples

in

this

section

are

performed

in

a

Windows

environment.

For

information

on

running

these

commands

in

other

environments,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

2.

Although

the

Loader

package

command-line

utilities

support

DB2,

DB2

for

iSeries,

and

Oracle

databases,

only

the

commands

and

options

for

DB2

are

included

in

the

following

examples.

If

you

are

using

a

database

other

than

DB2,

make

sure

that

you

modify

your

customizer

properties

files

as

described

in

the

WebSphere

Commerce

Production

and

Development

online

help.

Refer

to

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383

and

“Loading

database

asset

groups”

on

page

390

for

information

on

the

loading

process

for

WebSphere

Commerce

database

asset

groups.

Chapter

37.

Overview

of

loading

store

data

369

Using

the

Loader

package

commands

and

scripts

To

run

the

Loader

package

commands,

use

the

scripts

or

commands

provided

in

the

WC_installdir/bin

directory

within

WebSphere

Commerce.

The

scripts

and

commands

are

as

follows:

v

AIX

Linux

400

Solaris

dtdgen.sh

DTD

Generate

shell

script

idresgen.sh

ID

Resolve

shell

script

massload.sh

Load

shell

script

massextract.sh

Extract

shell

script

txttransform.sh

Text

Transform

shell

script

xmltransform.sh

XML

Transform

shell

script

v

Windows

dtdgen.cmd

DTD

Generate

command

idresgen.cmd

ID

Resolve

command

massload.cmd

Load

command

massextract.cmd

Extract

command

txttransform.cmd

Text

Transform

command

xmltransform.cmd

XML

Transform

command

370

Store

Development

Guide

Examples

of

resolving

identifiers

The

examples

of

identifier

resolution

described

in

this

section

use

the

store-asset

files

from

the

Business

ToolTech

sample

store.

Because

this

example

is

based

on

loading

new

data

into

the

WebSphere

Commerce

Server

database,

we

will

use

the

load

method.

If

you

later

need

to

modify

certain

elements

within

the

XML

document,

you

can

do

so

using

the

update

method.

The

update

method

should

run

faster

than

the

load

method

because

no

new

identifiers

are

allocated

with

the

update

method.

With

the

update

method,

a

database

query

is

performed

to

locate

the

identifier

and

an

error

is

reported

if

the

identifier

is

not

found.

Refer

to

the

discussion

beginning

on

page

346

for

more

information

on

how

this

process

works.

If

your

input

XML

file

contains

elements

that

already

exist

in

the

database

as

well

as

elements

that

do

not,

use

the

mixed

method.

With

the

mixed

method,

a

database

lookup

is

done

first

and

an

identifier

is

assigned

to

the

element

if

the

record

is

not

found.

When

in

doubt,

use

the

the

mixed

method.

Although

the

load

and

update

methods

provide

faster

performance

than

the

mixed

method,

the

resolved

XML

file

produced

by

using

the

mixed

method

has

a

greater

likelihood

of

loading

without

errors.

For

a

discussion

of

how

the

ID

Resolver

works,

refer

to

“Methods

for

the

ID

Resolve

command”

on

page

347.

Resolving

identifiers

in

XML

files

with

internal

aliases

To

resolve

identifiers

using

internal

aliases

before

loading

the

data

into

your

WebSphere

Commerce

Server

database,

run

the

ID

Resolve

command

as

shown

in

the

following

example.

Note:

This

example

assumes

that

WebSphere

Commerce

is

installed

on

a

Windows

machine.

If

you

have

WebSphere

Commerce

installed

on

a

different

operating

system,

please

substitute

the

appropriate

values

for

your

operating

system.

1.

Create

a

working

directory.

For

this

example,

create

the

WC_installdir/test

directory.

Note:

If

you

do

not

use

WC_installdir/test

as

your

working

directory,

substitute

the

name

and

path

of

the

working

directory

that

you

do

use

for

WC_installdir/test

in

the

examples

shown

in

the

remainder

of

this

chapter.

2.

Make

sure

that

your

input

XML

file

as

well

as

any

referenced

DTD

files

are

in

a

location

where

the

ID

Resolver

can

find

them.

For

this

example,

do

the

following:

a.

From

the

Windows

command

prompt,

enter

the

following

command:

copy

WC_installdir\samplestores\

B2BDirect\B2BDirect.sar

WC_installdir\test

This

copies

the

B2BDirect.sar

file

into

WC_installdir\test.

Chapter

37.

Overview

of

loading

store

data

371

b.

From

a

Windows

command

prompt,

enter

the

following

command:

cd

to

WC_installdir\test

c.

Do

one

of

the

following:

v

If

you

have

Java

installed,

enter

the

following

command

from

the

Windows

command

prompt:

jar

-xvf

B2BDirect.sar

This

extracts

the

business

direct

ToolTech

sample

store

XML

files

into

drive:\WebSphere\CommerceServer55\test.

v

Use

any

up-to-date

unzipper

product

(such

as

WinZip

or

PKZIP)

to

extract

the

entire

contents

of

WC_installdir\samplestores\B2BDirect\B2BDirect.sar

into

WC_installdir\test.

This

extracts

the

Business

ToolTech

sample

store

XML

files

into

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data.

d.

From

the

Windows

command

prompt,

enter

the

following

command:

copy

WC_installdir\xml\sar\store.dtd

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data

This

copies

the

store.dtd

file

into

WC_installdir\test\WEB-
INF\stores\BusinessDirect\data\ToolTech\data.

e.

From

the

Windows

command

prompt,

enter

the

following

command:

copy

WC_installdir\xml\sar\DBLoadMacros.dtd

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data

This

copies

the

DBLoadMacros.dtd

file

into

WC_installdir\test\WEB-
INF\stores\BusinessDirect\data\ToolTech\data.

f.

From

the

Windows

command

prompt,

enter

the

following

command:

copy

WC_installdir\xml\sar\fulfillment.dtd

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data

This

copies

the

fulfillment.dtd

file

into

WC_installdir\test\WEB-
INF\stores\BusinessDirect\data\ToolTech\data.

3.

Make

sure

that

the

WebSphere

Commerce

schema

is

loaded

into

your

database

along

with

the

necessary

bootstrap

data

by

creating

an

appropriate

WebSphere

Commerce

Server

database

instance.

Note:

For

information

on

creating

an

instance,

refer

to

the

WebSphere

Commerce

Installation

Guide

for

your

operating

system.

The

WebSphere

Commerce

Server

database

instance

that

this

example

uses

is

called

mall.

Primary

and

foreign

keys

will

be

obtained

from

the

KEYS

and

SUBKEYS

tables

of

this

database;

therefore,

the

ID

Resolver

will

be

unable

to

resolve

the

identifiers

if

the

database

is

not

loaded

properly.

4.

To

resolve

identifiers

for

the

fulfillment.xml

file,

do

the

following:

a.

Edit

the

fulfillment.xmlfile

to

include

the

following:

<?xml

version="1.0"

encoding="UTF—8"?>

<!DOCTYPE

fulfillment—asset

SYSTEM

"fulfillment.dtd">

<fulfillment—asset>

</fulfillment—asset>

The

fulfillment.xml

should

look

like

the

following:

372

Store

Development

Guide

<?xml

version="1.0"

encoding="UTF—8"?>

<!DOCTYPE

fulfillment—asset

SYSTEM

"fulfillment.dtd">

<fulfillment—asset>

<!--defaultshipoffset

can

be

overridden

in

the

STORITMFFC

table.-->

<!--Now

in

ToolTech

STORITMFFC.shippingoffset

is

set

to

86400

seconds

which

is

one

day--<

<ffmcenter

ffmcenter_id="@ffmcenter_id_1"

member_id="&MEMBER_ID;"

name="ToolTech

Home"

defaultshipoffset="0"

markfordelete="0"

/>

</fulfillment—asset>

b.

Edit

the

DBLoadMacros.dtd

file

to

include

the

following,

if

it

is

missing:

<!ENTITY

MEMBER_ID

"−2001">

c.

Enter

the

following

command

to

run

the

ID

Resolver

against

the

fulfillment.xml

file

(where

the

FFMCENTER

table

is

defined):

idresgen

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data\

fulfillment.xml

-outfile

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data

\fulfillment1.xml

-method

load

where

v

mall

should

be

changed

to

the

name

of

the

target

database

if

you

are

not

using

mall

v

The

first

db2admin

should

be

changed

to

the

name

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

v

The

second

db2admin

should

be

changed

to

the

password

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

The

resolved

element

in

the

fulfillment1.xml

output

file

looks

like

this:

<fulfillment-asset>

<ffmcenter

FFMCENTER_ID="10001"

MEMBER_ID="-2001"

NAME="ToolTech

Home"

DEFAULTSHIPOFFSET="0"

MARKFORDELETE="0"

/>

</fulfillment-asset>

Note:

This

is

an

example.

Your

output

file

may

contain

different

values.
5.

To

resolve

identifiers

for

the

store.xml

file,

do

the

following:

a.

Edit

the

store.xmlfile

to

include

the

following:

<?xml

version="1.0"

encoding="UTF—8"?>

<!DOCTYPE

store—asset

SYSTEM

"store.dtd">

<store—asset>

</store—asset>

b.

Get

the

FFMCENTER_ID

key

from

the

resulting

output

file

(fulfillment1.xml)

and

substitute

that

key

for

all

occurrences

of

@ffmcenter_id_1

in

your

working

copy

of

store.xml

in

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data

c.

Edit

the

DBLoadMacros.dtd

file

to

include

the

following,

if

it

is

missing:

Chapter

37.

Overview

of

loading

store

data

373

<!ENTITY

MEMBER_ID

"−2001">

<!ENTITY

STORE_IDENTIFIER

"ToolTech">

<!ENTITY

STORE_DIR

"ToolTech">

d.

Enter

the

following

command:

idresgen

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_installdir\test\WEB-INF\stores\

BusinessDirect\data\ToolTech\data\store.xml-outfile

WC_installdir\test\WEB-INF\stores\

BusinessDirect\data\ToolTech\data\store1.xml

-method

load

where

v

mall

should

be

changed

to

the

name

of

the

target

database

if

you

are

not

using

mall

v

the

first

db2admin

should

be

changed

to

the

name

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

v

the

second

db2admin

should

be

changed

to

the

password

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

The

fully

resolved

elements

in

the

store1.xml

output

file

look

like

this:

<store-asset>

<storeent

STOREENT_ID="10151"

MEMBER_ID="-2001"

TYPE="S"

IDENTIFIER="ToolTech"

SETCCURR="USD"

/>

<store

STORE_ID="10151"

DIRECTORY="ToolTech"

FFMCENTER_ID="10001"

LANGUAGE_ID="-1"

STOREGRP_ID="-1"

ALLOCATIONGOODFOR="43200"

BOPMPADFACTOR="0"

DEFAULTBOOFFSET="2592000"

FFMCSELECTIONFLAGS="0"

MAXBOOFFSET="7776000"

REJECTEDORDEXPIRY="259200"

RTNFFMCTR_ID="10001"

PRICEREFFLAGS="0"

STORETYPE="B2B"

/>

<vendor

VENDOR_ID="10001"

STOREENT_ID="10151"

VENDORNAME="Tooltech

Vendor"

MARKFORDELETE="0"

/>

<dispentrel

AUCTIONSTATE="0"

CATENTRY_ID="0"

CATENTTYPE_ID="ProductBean"

DEVICEFMT_ID="-1"

DISPENTREL_ID="10001"

MBRGRP_ID="0"

PAGENAME="CatalogProductDisplay.jsp"

STOREENT_ID="10151"

RANK="0"

/>

<dispentrel

AUCTIONSTATE="0"

CATENTRY_ID="0"

374

Store

Development

Guide

CATENTTYPE_ID="ItemBean"

DEVICEFMT_ID="-1"

DISPENTREL_ID="10002"

MBRGRP_ID="0"

PAGENAME="CatalogItemDisplay.jsp"

STOREENT_ID="10151"

RANK="0"

/>

<dispcgprel

CATGROUP_ID="0"

DEVICEFMT_ID="-1"

DISPCGPREL_ID="10001"

MBRGRP_ID="0"

PAGENAME="CatalogCategories.jsp"

STOREENT_ID="10151"

RANK="0"

/>

<invadjcode

ADJUSTCODE="PCNT"

INVADJCODE_ID="10001"

MARKFORDELETE="0"

STOREENT_ID="10151"

/>

<invadjcode

ADJUSTCODE="SPLG"

INVADJCODE_ID="10002"

MARKFORDELETE="0"

STOREENT_ID="10151"

/>

<invadjcode

ADJUSTCODE="DISC"

INVADJCODE_ID="10003"

MARKFORDELETE="0"

STOREENT_ID="10151"

/>

<rtnreason

REASONTYPE="C"

RTNREASON_ID="10001"

STOREENT_ID="10151"

MARKFORDELETE="0"

CODE="WPR"

/>

<rtnreason

REASONTYPE="B"

RTNREASON_ID="10002"

STOREENT_ID="10151"

MARKFORDELETE="0"

CODE="DEF"

/>

<rtnreason

REASONTYPE="M"

RTNREASON_ID="10003"

STOREENT_ID="10151"

MARKFORDELETE="0"

CODE="ERR"

/>

<rtnreason

REASONTYPE="M"

RTNREASON_ID="10004"

STOREENT_ID="10151"

MARKFORDELETE="0"

CODE="WPS"

/>

</store-asset>

Note:

This

is

an

example.

Your

output

file

may

contain

different

values.

Chapter

37.

Overview

of

loading

store

data

375

6.

In

the

store.xml

file,

you

will

find

the

following

element:

<storeent

STOREENT_ID="@storeent_id_1"

MEMBER_ID="@seller_b2b_mbr_id"

TYPE="S"

IDENTIFIER="&STORE_IDENTIFIER"

SETCURR="USD"

/>

This

element

of

store.xml

maps

to

the

storeeent

table

in

the

database;

and

its

STOREENT_ID

MEMBER_ID,

TYPE,

IDENTIFIER,

and

SETCURR

attributes

map

to

columns

in

that

table.

The

@storeent_id_1

specification

is

an

internal

alias

for

the

value

of

the

STOREENT_ID

attribute;

and

&MEMBER_ID;

is

an

entity

parameter.

The

value

of

the

entity

&MEMBER_ID;

has

to

be

substituted

before

it

can

be

loaded

using

the

Loader.

The

value

of

&MEMBER_ID;

is

defined

in

the

DBLoadMacros.dtd

macro

file;

and

the

value

is

substituted

from

that

file.

When

the

ID

Resolver

encounters

@storeent_id_1,

it

looks

in

its

cache

of

primary

tables

to

see

if

storeent

is

present.

Because

it

is

a

primary

table,

storeeent

is

present.

The

ID

Resolver

fetches

the

counter

for

that

table,

increments

it,

and

replaces

the

internal

alias

with

the

result.

All

other

such

entries

in

the

store.xml

file

are

processed

in

the

same

way.

7.

Make

sure

that

your

path

includes

the

directory

containing

the

appropriate

ID

Resolve

command

or

script

as

listed

in

“Using

the

Loader

package

commands

and

scripts”

on

page

370.

For

this

example,

enter

the

following

command

from

a

Windows

command

prompt:

cd

WC_installdir\bin

where

WC_installdir\bin

should

be

changed

to

the

name

of

the

directory

containing

the

ID

Resolve

command

idresgen.cmd

if

it

is

not

located

in

WC_installdir\bin

on

your

system.

8.

From

the

Windows

command

prompt,

enter

the

following

command:

idresgen

-dbname

mall

-dbuser

wcs

-dbpwd

wcs1

−infile

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\

data\store.xml

-outfile

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\

data\store1.xml−method

load

where

v

mall

should

be

changed

to

the

name

of

the

target

database

if

you

are

not

using

mall

v

the

first

db2admin

should

be

changed

to

the

name

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

v

the

second

db2admin

should

be

changed

to

the

password

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

The

first

output

XML

fragment

in

store1.xml

looks

like

this:

<storeent

STOREENT_ID="10001"

MEMBER_ID="-2001"

TYPE="S"

IDENTIFIER="ToolTech"

SETCCURR="USD"

/>

Note:

This

is

an

example.

Your

output

file

may

contain

different

values.

376

Store

Development

Guide

The

second

XML

fragment

in

store1.xml

looks

like

this:

<store

STORE_ID="10001"

DIRECTORY="ToolTech"

FFMCENTER_ID=""

LANGUAGE_ID="-1"

STOREGRP_ID="-1"

ALLOCATIONGOODFOR="43200"

BOPMPADFACTOR="0"

DEFAULTBOOFFSET="2592000"

FFMCSELECTIONFLAGS="0"

MAXBOOFFSET="7776000"

REJECTEDORDEXPIRY="259200"

RTNFFMCTR_ID=""

PRICEREFFLAGS="0"

STORETYPE="B2B"

/>

Note:

This

is

an

example.

Your

output

file

may

contain

different

values.

You

can

resolve

identifiers

using

one

of

the

following

options:

v

Option

1:

a.

Merge

the

fulfillment.xml

and

store.xml

files

by

adding

any

content

that

is

unique

in

fulfillment.xml

(including

the

reference

to

fulfillment.dtd)

to

store.xml,

making

sure

that

the

ffmcenter

element

shown

below

precedes

the

store

element.

<ffmcenter

FFMCENTER_ID="@ffmcenter_id_1"

MEMBER_ID="&MEMBER_ID;"

NAME="ToolTech

Home"

DEFAULTBOOFFSET="0"

MARKFORDELETE="0"

/>

b.

Run

the

ID

Resolver

against

the

merged

file.
v

Option

2:

Load

the

store-assets

data

group

using

the

process

described

in

“Loading

database

asset

groups”

on

page

390.

Specifying

a

properties

file

with

the

ID

Resolver

You

can

modify

the

way

in

which

the

ID

Resolver

resolves

identifiers

by

using

the

-propfile

parameter.

The

default

properties

file

is

IdResolveKeys.properties.

To

modify

and

use

IdResolveKeys.properties,

copy

this

file

into

a

user

defined

directory,

make

the

required

changes

and

then

specify

this

new

file

when

invoking

the

ID

Resolve

command.

The

default

IdResolveKeys.properties

file

is

located

in

the

WC_installdir/properties

directory:

The

property-file

specification

takes

precedence

over

the

use

of

internal

aliases.

Here

is

a

sample

XML

fragment

from

the

store.xml

file:

<store

STORE_ID="@storeent_id_1"

DIRECTORY="ToolTech"

FFMCENTER_ID="@ffmcenter_id_1"

LANGUAGE_ID="&en_US;"

STOREGRP_ID="-1"

ALLOCATIONGOODFOR="43200"

BOPMPADFACTORr="0"

DEFAULTBOOFFSET="2592000"

FFMCSELECTIONFLAGS="0"

MAXBOOFFSET="7776000"

REJECTEDORDEXPIRY="259200"

Chapter

37.

Overview

of

loading

store

data

377

RTNFFMCTR_ID="@ffmcenter_id_1"

PRICEREFFLAGS="0"

STORETYPE="B2B"

/>

If

you

run

the

ID

Resolver

with

the

-propfile

specified

as

WC_installdir\test\WEB-
INF\stores\

BusinessDirect\data\ToolTech\data\myPropFile

and

the

specified

file,

myPropFile.properties,

contains

the

following

entries:

NAMEDELIMETER=@

SELECTDELIMETER=:

FFMCENTER=@FFMCENTER_ID@MEMBER_ID:10051

-2001

the

ID

Resolver

queries

the

database

for

the

FFMCENTER

table

with

a

where

clause

of

10051

and

-2001

when

the

store

element

is

processed.

The

index

that

is

returned

for

this

value

is

then

used

to

resolve

the

identifier

for

FFMCENTER_ID.

For

more

information

on

using

this

command,

refer

to

“ID

Resolve

command”

on

page

339.

Example

of

loading

data

When

you

have

resolved

the

identifiers

in

the

XML

file

if

necessary,

you

are

ready

to

load

the

data

into

the

WebSphere

Commerce

Server

database.

Note:

If

you

have

properly

resolved

the

identifiers

in

your

XML

data,

your

source

XML

file

should

not

contain

any

of

the

following:

v

words

preceded

by

an

at

(@)

symbol

v

words

preceded

by

an

ampersand

(&)

symbol

v

identifiers

with

empty

quotation

marks

(″″)

The

presence

of

any

of

these

is

an

indication

that

your

XML

file

is

not

ready

to

be

loaded.

The

example

of

loading

data

described

in

this

section

uses

the

fulfillment1.xml

file

that

was

resolved

in

“Examples

of

resolving

identifiers”

on

page

371.

To

load

data

into

your

WebSphere

Commerce

Server

database,

run

the

Load

command

as

shown

in

the

following

example:

1.

Create

a

working

directory.

For

this

example,

use

the

directory

called

WC_installdir\test\WEB-INF\stores\

BusinessDirect\data\ToolTech\data\

that

you

created

in

“Examples

of

resolving

identifiers”

on

page

371.

2.

Make

sure

that

your

input

XML

file

is

in

a

location

where

the

Loader

can

find

it.

For

this

example,

make

sure

that

the

fulfillment1.xml

output

file

that

you

created

in

“Examples

of

resolving

identifiers”

on

page

371

is

in

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech\data\.

3.

Make

sure

that

you

back

up

your

WebSphere

Commerce

Server

database

so

that

you

can

restore

the

database

from

the

backup

if

an

unrecoverable

error

occurs.

Note:

See

the

backup

and

recovery

documentation

provided

with

your

database

product

for

information

on

backing

up

your

database.

378

Store

Development

Guide

4.

Make

sure

that

your

path

includes

the

directory

containing

the

appropriate

Load

command

or

script

as

listed

in

“Using

the

Loader

package

commands

and

scripts”

on

page

370.

For

this

example,

enter

the

following

command

from

a

Windows

command

prompt:

cd

WC_installdir\bin

where

WC_installdir\bin

should

be

changed

to

the

name

of

the

directory

containing

the

Load

command

massload.cmd

if

it

is

not

located

in

WC_installdir\bin

on

your

system.

5.

Run

the

Load

command

against

your

resolved

XML

file

to

load

your

data

into

the

target

database.

Chapter

37.

Overview

of

loading

store

data

379

For

this

example,

enter

the

following

command

from

a

Windows

command

prompt:

massload

-dbname

mall

-dbuser

db2admin

-dbpwd

db2admin

-infile

WC_installdir\test\WEB-INF\stores\BusinessDirect\data\ToolTech

\data\fulfillment1.xml

-method

sqlimport

-commitcount

50

where

v

mall

should

be

changed

to

the

name

of

the

target

database

if

you

are

not

using

mall

v

the

first

db2admin

should

be

changed

to

the

name

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

v

the

second

db2admin

should

be

changed

to

the

password

of

the

user

connecting

to

the

database

if

you

are

not

using

db2admin

Even

though

there

are

less

than

50

elements

to

be

loaded,

this

example

specifies

a

value

of

50

for

-commitcount.

This

is

for

performance

reasons.

By

default,

the

commit

count

is

1.

Using

this

default

causes

a

commit

operation

for

each

record

written

to

the

database.

Setting

the

number

to

50

in

the

above

example

ensures

that

database

I/O

occurs

only

once

if

loading

is

successful

and

that

nothing

is

written

to

the

database

if

errors

occur.

If

you

have

a

large

amount

of

data

to

load,

however,

it

is

recommended

that

you

do

not

set

the

commit-count

value

as

large

as

the

number

of

elements

for

the

following

reasons:

v

A

high

commit-count

value

causes

high

memory

consumption.

v

When

the

commit-count

value

is

smaller

than

the

number

of

elements,

at

least

some

data

is

written

to

the

database.

Depending

on

the

value

of

-maxerror,

a

smaller

value

for

-commitcount

ensures

that

some

data

is

written

to

the

database

before

the

maximum

number

of

errors

is

exceeded

and

the

tool

terminates.

The

default

value

for

-maxerror

is

1.

The

default

for

the

-noprimary

option

is

error

so

that

the

tool

reports

errors

and

terminates

when

primary

keys

are

missing.

Because

these

examples

do

not

load

the

store

assets

in

the

order

used

by

the

Administration

Console

and

described

in

“Database

asset

loading

sequence”

on

page

383,

the

store1.xml

file

created

in

“Examples

of

resolving

identifiers”

on

page

371

may

violate

the

integrity

constraints

of

some

tables.

If

you

tried

to

load

store1.xml

without

modification

using

the

load

method,

a

constraint

violation

would

cause

the

database

to

enter

pending

state.

For

simplicity,

therefore,

this

example

of

using

the

Load

command

is

based

on

the

resolved

version

of

the

fulfillment.xml

file,

whose

only

foreign

key

is

that

of

the

MEMBER_ID

defined

in

the

sample

store.

This

example

loads

the

resolved

fulfillment1.xml

file

that

was

output

in

“Examples

of

resolving

identifiers”

on

page

371

and

uses

the

SQL

import

method.

When

you

are

not

sure

that

the

contents

of

your

XML

file

are

clean,

use

the

SQL

import

method

as

shown

in

this

example

with

the

-commitcount

and

-maxerror

parameters

set

appropriately

so

that

any

database

constraint

violations

are

reported

without

altering

the

database

and

jeopardizing

database

integrity.

When

you

run

this

command,

a

trace

text

file

(trace.txt)

is

created

in

the

execution

subdirectory

(WC_installdir\bin

in

the

above

example)

by

default.

For

400

the

trace.txt

is

created

in

QIBM/Userdata/CommerceServer55/instances/instance_name/logs.

by

default.

If

your

WCALoggerConfig.xml

logging

configuration

file

has

been

altered

to

place

trace.txt

in

a

different

location,

go

to

that

location

to

inspect

the

file.

For

more

380

Store

Development

Guide

information

on

customizing

WCALoggerConfig.xml,

refer

to

the

WebSphere

Commerce

Production

and

Development

online

help.

The

trace.txt

file

contains

a

listing

of

the

actions

performed

by

the

command

and

their

results.

If

you

use

the

SQL

import

method

with

the

command

as

shown

in

the

above

example,

the

end

of

trace.txt

will

contain

an

entry

indicating

the

number

of

records

committed.

For

more

information

on

using

this

command,

refer

to

“Load

command”

on

page

349.

Chapter

37.

Overview

of

loading

store

data

381

382

Store

Development

Guide

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

If

you

do

not

want

to

create

all

the

database

assets

and

package

them

into

a

store

archive

file

before

publication,

then

you

can

load

database

asset

groups

using

the

WebSphere

Commerce

Loader

package.

The

first

part

of

this

chapter

explains

WebSphere

Commerce

database

asset

groups,

and

how

a

grouping

is

determined.

The

second

part

describes

the

loading

process

for

these

database

asset

groups

into

the

WebSphere

Commerce

database.

Before

reading

this

section,

you

should

thoroughly

review

the

information

in

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335,

which

helps

you

understand

what

you

need

to

know

to

load

database

asset

groups

with

the

Loader

package.

Database

asset

groups

Database

assets

are

divided

into

groups

to

simplify

the

creation

and

loading

processes.

These

database

asset

groups

comprise

a

logically

related

set

of

tables.

The

order

in

which

a

database

asset

group

is

organized

is

important

to

loading,

since

before

loading

the

relationship

between

the

data,

the

data

must

exist.

To

load

the

entire

set

of

database

assets

for

a

store,

you

need

to

follow

the

“Database

asset

loading

sequence.”

To

load

a

single

group

of

database

assets,

you

need

to

ensure

that

this

group

is

logically

complete.

For

example,

when

publishing

a

store

archive,

you

can

choose

to

omit

the

catalog

database

assets,

which

can

then

be

published

at

a

later

time.

In

this

case,

any

database

assets

dependent

on

the

catalog

(inventory,

price

lists,

and

some

shipping

and

taxation

data)

also

remain

unpublished.

To

publish

the

omitted

data,

ensure

that

the

catalog

database

assets

are

logically

complete:

that

is,

the

base

items,

catalog

entries,

attributes,

and

so

on

must

be

provided.

You

must

also

publish

the

dependent

database

assets

which

must

be

logically

complete

amongst

itself.

In

other

words,

each

SKU

must

have

the

appropriate

inventory,

price,

shipping,

and

taxes

defined.

In

this

case,

related

catalog

data

which

is

logically

complete

is

collectively

called

the

catalog

database

asset

group.

WebSphere

Commerce

database

assets

described

in

the

previous

chapters

of

this

guide

can

be

arranged

into

groups.

A

group

is

a

logically

complete

set

of

data,

which

can

be

loaded

individually.

Each

database

asset

group

consists

of

WebSphere

Commerce

database

tables

and

has

external

dependencies

as

described

in

Appendix

C,

“Database

asset

groups,”

on

page

441.

The

table

list

is

based

on

the

WebSphere

Commerce

sample

stores,

however

the

list

is

applicable

to

any

generic

store.

Remember

that

the

list

of

tables

for

each

database

asset

group

is

not

exhaustive,

but

provided

as

a

general

guideline.

You

may

need

to

include

or

exclude

some

tables

depending

on

your

store’s

specific

needs.

Database

asset

loading

sequence

There

is

a

certain

order

to

follow

to

successfully

load

database

asset

groups.

Each

group

is

considered

structurally

complete

and

independent

from

the

other

database

asset

groups.

There

are,

however,

foreign

key

relationships

within

a

database

asset

group.

Such

relationships

(with

the

data

from

other

groups)

are

called

the

external

dependencies

of

a

database

asset

group.

©

Copyright

IBM

Corp.

2000,

2003

383

The

external

dependencies

of

a

database

asset

group

must

be

met

before

loading

the

group

into

the

WebSphere

Commerce

database.

Any

group

defined

as

the

external

dependency

of

a

given

database

asset

group

must

be

loaded

first.

You

can

find

the

list

of

external

dependencies

and

related

tables

in

“Database

asset

groups

dependencies”

on

page

441.

Note:

A

WebSphere

Commerce

store

requires

a

store

owner.

You

can

use

the

default

organization,

available

as

the

default

owner.

Business

To

load

this

group,

create

a

new

organization

instead

of

using

the

default

one.

Load

the

database

asset

groups

in

the

following

order:

1.

Database

asset

groups

dependent

on

bootstrap

data

only.

a.

Load

the

organization

database

assets

first.
2.

Database

asset

group

dependent

on

fulfillment

owner.

a.

Fulfillment

database

assets.

Except

for

the

organization

database

asset

group,

several

other

database

asset

groups

have

a

direct

or

indirect

external

dependency

on

the

data

defined

in

this

group.
3.

Database

asset

groups

dependent

on

store

owner

organization.

a.

Access

control

database

assets

are

dependent

on

the

store

owner

organization

(ORGENTITY_ID).

None

of

the

other

database

asset

groups

have

a

dependency

on

the

data

defined

in

this

group,

which

means

that

access

control

database

assets

can

be

loaded

at

any

time.

However,

the

access

control

owner

must

be

the

same

as

the

store

owner.

b.

Store

database

assets

are

dependent

on

the

store

owner

organization

(ORGENTITY_ID).

The

store

can

refer

to

a

fulfillment

center.

The

store

owner

organization

can

also

be

the

fulfillment

center’s

owner

organization.

4.

Database

asset

groups

dependent

on

the

store

database

assets.

The

following

groups

can

be

loaded

in

any

order:

a.

Campaign

database

assets.

b.

Command

database

assets.

c.

Currency

database

assets.

d.

Policy

database

assets.

e.

Shipping

database

assets.

f.

Tax

database

assets.
5.

Other

database

asset

groups.

a.

Catalog

database

assets

are

dependent

on

the

shipping

and

tax

database

asset

groups.

b.

Store

default

database

assets

have

external

dependencies

on

the

shipping

database

asset

group.

If

shipping

database

assets

do

not

exist,

then

this

group

does

not

need

to

be

populated.

c.

Contract

database

assets

are

dependent

on

the

organization

assets.

The

contract

database

assets

are

not

loaded

directly.

Refer

to

“Publishing

contract

assets”

on

page

396

for

more

information.

You

should

load

the

contract

assets

after

the

other

database

asset

groups.

Refer

to

Appendix

C,

“Database

asset

groups,”

on

page

441

to

see

the

contents

of

the

database

asset

groups

as

formed

by

the

WebSphere

Commerce

sample

stores.

384

Store

Development

Guide

Loading

a

store

To

assist

you

in

loading

database

assets,

sample

stores

are

available

with

WebSphere

Commerce

5.5.

To

load

XML

data

for

an

entire

store

into

the

WebSphere

Commerce

database,

do

the

following:

1.

Review

the

following

information:

a.

Appendix

B,

“Creating

your

data,”

on

page

439.

b.

Appendix

C,

“Database

asset

groups,”

on

page

441,

as

you

need

to

know

which

WebSphere

Commerce

database

asset

files

and

database

tables

are

affected.

c.

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335,

which

provides

the

background

information

for

the

Loader

package.

2.

Plan

your

loading

process

for

a

complete

set

of

store

database

assets.

Whether

you

want

to

load

a

single

database

asset

group

as

instructed

in

“Loading

database

asset

groups”

on

page

390

or

an

entire

store,

the

basic

process

remains

the

same.

In

the

next

steps,

you

will

use

or

create

the

following

files

for

your

loading

process:

a.

one

or

more

database

asset

files

for

each

group.

When

you

load

the

complete

store,

you

need

all

of

your

created

database

asset

files.

For

example,

you

will

need

a

database

asset.xml

file

(as

in

campaign.xml,

catalog.xml

or

currency.xml),

and

separate,

locale

specific

database

asset.xml

files

for

locale

your

store

supports.

Examples

of

such

files

are

contained

within

the

WebSphere

Commerce

sample

store

archives.

The

sample

store

archives

are

organized

by

business

model

in

the

WC_installdir/samplestores

directory.

Note

that

not

all

database

asset

groups

require

locale

specific

information.

b.

a

new

XML

file

which

consolidates

all

the

XML

database

asset

files

for

your

store,

contains

the

XML

entity

references,

and

contains

the

root

element

for

the

entire

store.

This

is

referred

to

as

the

main

database

asset

group

XML

file.

You

can

find

this

file

in

the

sample

package,

called

store-data-assets.xml.

c.

a

new

DTD

file

which

defines

all

the

data

types

required

by

the

XML

files

from

a

database

asset

group,

referred

to

as

the

main

database

asset

group

DTD

file.

You

can

find

this

file

in

the

sample

package,

called

store-data-assets.dtd.

d.

a

second

DTD

file

which

defines

the

external

dependencies.

You

may

need

to

include

this

file

in

the

main

database

asset

group

DTD

file.

You

can

find

this

file

in

the

sample

package,

called

ForeignKeys.dtd.

e.

a

third

DTD

file

containing

the

definition

of

all

WebSphere

Commerce

tables.

The

wcs.dtd

file

already

exists

in

WebSphere

Commerce,

located

in

the

WC_installdir/schema/xml

directory.

You

may

need

to

include

this

file

in

the

main

database

asset

group

DTD

file.

If

you

have

not

customized

the

WebSphere

Commerce

schema,

then

you

can

use

this

file

without

modification.

3.

Create

the

database

asset

XML

files

as

instructed

in

previous

chapters

from

this

guide.

If

you

completed

the

tasks

in

the

asset

chapters,

then

these

XML

files

already

exist.

The

database

asset

files

should

not

contain

any

DTD

declarations

or

page

directives

at

the

start

of

the

file

since

this

may

cause

conflicts

when

the

files

are

concatenated.

The

only

file

that

must

have

a

root

element

is

the

main

database

asset

group

XML

file.

Note:

If

you

have

database

asset

files

for

more

than

one

language,

then

each

file

must

begin

with

<?xml

encoding

=

locale

specific

encoding>.

For

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

385

example,

English

database

asset

files

should

specify

<?xml

encoding

=

"UTF-8"?>,

but

French

files

should

specify

<?xml

encoding

=

"ISO-8859-1"?>.

4.

Create

the

main

database

asset

group

XML

file

for

the

entire

set

of

store

data.

This

file

contains

reference

entities

to

include

various

database

asset

XML

files

for

your

store.

By

using

external

reference

entities,

you

can

concatenate

the

XML

files

to

simplify

the

ID

Resolve

command

and

the

load

process.

Also,

internal

aliases

used

within

each

XML

file

can

be

external

to

another

XML

database

asset

file

within

a

group

or

across

other

groups

when

loading

more

than

one

group

at

a

time.

An

XML

parser

would

substitute

the

contents

of

the

file

referenced

by

the

external

reference

entity

in

place

of

the

external

reference.

Using

the

following

example

for

loading

the

entire

set

of

store

data

as

your

guide,

you

can

create

your

database

asset

group

file

based

on

this

extract:

<?xml

version="1.0"?>

<!DOCTYPE

import

SYSTEM

"store-data-assets.dtd">

<import>

<!Fulfillment

data

group

-->

&fulfillment.xml;

<!--

Store

data

group

-->

&store.xml;

&en_US_store.xml;

&fr_FR_store.xml;

<!--

Tax

data

group

-->

&tax.xml;

&en_US_tax.xml;

&fr_FR_tax.xml;

&taxfulfill.xml;

<!--

Shipping

data

group

-->

&shipping.xml;

&en_US_shipping.xml;

&fr_FR_shipping.xml;

&shipfulfill.xml;

<!--

Catalog

data

group

-->

&catalog.xml;

&en_US_catalog.xml;

&fr_FR_catalog.xml;

&storecatalog.xml;

&storefulfill.xml;

&offering.xml;

&store-catalog-tax.xml;

&store-catalog-shipping.xml;

<!--

Currency

data

group

-->

¤cy.xml;

&en_US_currency.xml;

&fr_FR_currency.xml;

<!--

Campaign

data

group

-->

&campaign.xml;

&en_US_campaign.xml;

&fr_FR_campaign.xml;

<!--

Business

policy

data

group

-->

&businesspolicy.xml;

&en_US_businesspolicy.xml;

&fr_FR_businesspolicy.xml;

<!--

Access

control

data

group

-->

386

Store

Development

Guide

&accesscontrol.xml;

&en_US_accesscontrol.xml;

&fr_FR_accesscontrol.xml;

<!--

Other

data

groups

-->

&command.xml;

&store-default.xml;

</import>

where

v

import

is

the

root

element

of

the

XML

document.

The

root

element

has

already

been

defined

in

the

wcs.dtd

file,

provided

with

WebSphere

Commerce,

and

includes

the

definitions

for

all

the

WebSphere

Commerce

database

tables.

However,

if

you

customized

the

WebSphere

Commerce

schema,

you

may

need

to

use

a

different

root

element.

You

can

generate

a

new

DTD

file

that

reflects

the

customized

schema

or

you

can

update

the

existing

wcs.dtd

file.

v

store-data-assets.dtd

refers

to

the

name

of

the

main

database

asset

group

DTD

file

you

will

create

in

the

next

step.

The

commented

text

separates

the

different

database

asset

groups

for

your

store.

v

&database

asset.xml;

is

an

XML

entity

reference

to

the

database

asset

XML

fragment

file.

The

path

and

location

of

the

database

asset

are

defined

in

the

database

asset

group

DTD

file.

The

name

of

the

&database

asset.xml;

file

will

change

to

match

the

database

asset

already

created

for

each

group.

v

&locale_database

asset.xml;

is

needed

for

each

language

your

store

supports.

If

your

store

is

unilingual,

then

only

reference

one

file.

If

your

store

supports

more

than

one

language,

then

you

require

a

reference

for

each

language.

The

above

extract

assumes

that

your

store

supports

the

English

and

French

languages.

5.

Create

a

main

database

asset

group

DTD

file

that

defines

the

above

entities

and

the

other

DTD

files

required

by

the

database

assets.

Using

the

following

example

for

the

entire

set

of

store

database

assets

as

your

guide,

you

can

create

your

main

database

asset

group

DTD

file:

<!ENTITY

%

wcs.dtd

SYSTEM

"absolute

path

for

WebSphere

Commerce

wcs.dtd

file">

%wcs.dtd;

<!ENTITY

%

ForeignKeys.dtd

SYSTEM

"ForeignKeys.dtd">

%ForeignKeys.dtd;

<!ENTITY

fulfillment.xml

SYSTEM

"data/fulfillment.xml">

<!ENTITY

en_US_fulfillment.xml

SYSTEM

"data/en_US/fulfillment.xml">

<!ENTITY

fr_FR_fulfillment.xml

SYSTEM

"data/fr_FR/fulfillment.xml">

<!ENTITY

store.xml

SYSTEM

"data/store.xml">

<!ENTITY

en_US_store.xml

SYSTEM

"data/en_US/store.xml">

<!ENTITY

fr_FR_store.xml

SYSTEM

"data/fr_FR/store.xml">

<!ENTITY

tax.xml

SYSTEM

"data/tax.xml">

<!ENTITY

en_US_tax.xml

SYSTEM

"data/en_US/tax.xml">

<!ENTITY

fr_FR_tax.xml

SYSTEM

"data/fr_FR/tax.xml">

<!ENTITY

taxfulfill.xml

SYSTEM

"data/taxfulfill.xml">

<!ENTITY

shipping.xml

SYSTEM

"data/shipping.xml">

<!ENTITY

en_US_shipping.xml

SYSTEM

"data/en_US/shipping.xml">

<!ENTITY

fr_FR_shipping.xml

SYSTEM

"data/fr_FR/shipping.xml">

<!ENTITY

shipfulfill.xml

SYSTEM

"data/shipfulfill.xml">

<!ENTITY

catalog.xml

SYSTEM

"data/catalog.xml">

<!ENTITY

en_US_catalog.xml

SYSTEM

"data/en_US/catalog.xml">

<!ENTITY

fr_FR_catalog.xml

SYSTEM

"data/fr_FR/catalog.xml">

<!ENTITY

store-catalog.xml

SYSTEM

"data/store-catalog.xml">

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

387

<!ENTITY

storefulfill.xml

SYSTEM

"data/storefulfill.xml">

<!ENTITY

offering.xml

SYSTEM

"data/offering.xml">

<!ENTITY

store-catalog-tax.xml

SYSTEM

"data/store-catalog-tax.xml">

<!ENTITY

store-catalog-shipping.xml

SYSTEM

"data/store-catalog-shipping.xml">

<!ENTITY

currency.xml

SYSTEM

"data/currency.xml">

<!ENTITY

en_US_currency.xml

SYSTEM

"data/en_US/currency.xml">

<!ENTITY

fr_FR_currency.xml

SYSTEM

"data/fr_FR/currency.xml">

<!ENTITY

campaign.xml

SYSTEM

"data/campaign.xml">

<!ENTITY

en_US_campaign.xml

SYSTEM

"data/en_US/campaign.xml">

<!ENTITY

fr_FR_campaign.xml

SYSTEM

"data/fr_FR/campaign.xml">

<!ENTITY

businesspolicy.xml

SYSTEM

"data/businesspolicy.xml">

<!ENTITY

en_US_businesspolicy.xml

SYSTEM

"data/en_US/businesspolicy.xml">

<!ENTITY

fr_FR_businesspolicy.xml

SYSTEM

"data/fr_FR/businesspolicy.xml">

<!ENTITY

accesscontrol.xml

SYSTEM

"data/accesscontrol.xml">

<!ENTITY

en_US_accesscontrol.xml

SYSTEM

"data/en_US/accesscontrol.xml">

<!ENTITY

fr_FR_accesscontrol.xml

SYSTEM

"data/fr_FR/accesscontrol.xml">

<!ENTITY

command.xml

SYSTEM

"data/command.xml">

<!ENTITY

store-defaults.xml

SYSTEM

"data/store-defaults.xml">

where

v

wcs.dtd

refers

to

the

DTD

file

containing

data

defined

outside

its

database

asset

group.

This

file,

provided

with

WebSphere

Commerce,

also

defines

the

root

element

used

in

the

database

asset

group

XML

file.

v

ForeignKeys.dtd

refers

to

the

DTD

file

which

defines

elements

other

than

the

root

element.

This

file

contains

all

the

XML

entity

reference

declarations

and

definitions

for

the

external

dependencies

outside

the

database

asset

group.

As

such,

the

XML

files

have

references

to

foreign

key

values

that

are

not

created

as

part

of

the

database

asset

group

and

must

already

be

loaded

into

the

database

before

this

group.

Note:

Ensure

that

the

path

is

correctly

identified.

In

this

example,

the

file

is

in

the

same

directory

as

the

main

database

asset

group

DTD

file.

v

store.xml,

en_US_store.xml,

and

fr_FR_store.xml

are

the

external

reference

entities

used

in

the

main

database

asset

group

XML

file,

assuming

your

store

supports

English

and

French.

To

use

the

reference,

follow

the

entity

reference

convention:

&alias_name;.

v

database

asset.xml

refers

to

the

name

of

the

XML

files

from

which

the

database

assets

are

loaded.

This

name

will

change

to

match

the

database

assets

files

already

created

for

each

group.

Examples

of

such

files

are

contained

within

the

WebSphere

Commerce

sample

store

archives.

The

sample

store

archives

are

organized

by

business

model

in

the

WC_installdir/samplestores

directory.

v

The

locale_database

asset.xml

files

are

needed

for

each

language

your

store

supports,

located

under

the

above

directories.

If

your

store

is

unilingual,

then

you

would

only

reference

one

file.

If

your

store

supports

more

than

one

language,

then

you

would

require

a

locale-specific

file

for

each

language.

The

above

extract

assumes

that

your

store

supports

the

English

and

French

languages.

6.

Each

database

asset

group

requires

information

defined

outside

its

domain

or

its

set

of

data,

as

each

group

may

have

external

dependencies.

You

can

provide

this

data

in

a

DTD

file.

For

example,

the

store

database

asset

group

has

the

following

external

dependencies:

388

Store

Development

Guide

bootstrap.LANGUAGE.LANGUAGE_ID,

bootstrap.MEMBER.MEMBER_ID,

bootstrap.SETCURR.SETCURR_ID,

fulfillment.FFMCENTER.FFMCENTER_ID

When

loading

a

database

asset

group

or

the

entire

set

of

store

assets,

the

external

dependencies

must

be

defined

from

the

WebSphere

Commerce

database.

To

use

this

data,

follow

the

corresponding

XML

entity

reference.

For

example,

to

use

the

data

defined

by

the

ffmcenter_id

entity,

you

would

write

&ffmcenter_id;

in

your

XML

file.

Using

the

following

example

for

store

database

assets

as

your

guide,

you

can

create

your

DTD

file

based

on

this

extract,

called

ForeignKeys.dtd:

<!ENTITY

en_US

"-1">

<!ENTITY

fr_FR

"-2">

<!ENTITY

de_DE

"-3">

<!ENTITY

it_IT

"-4">

<!ENTITY

es_ES

"-5">

<!ENTITY

pt_BR

"-6">

<!ENTITY

zh_CN

"-7">

<!ENTITY

zh_TW

"-8">

<!ENTITY

ko_KR

"-9">

<!ENTITY

ja_JP

"-10">

<!ENTITY

MEMBER_ID

"-2000">

<!ENTITY

ffmcenter_id

"10001">

where

v

MEMBER_ID

is

the

internal

reference

number

that

identifies

the

owner

of

the

store.

v

ffmcenter

is

the

reference

number

for

your

store’s

fulfillment

center.

Since

your

store

can

use

more

than

one

fulfillment

center,

more

than

one

can

be

defined

in

the

ForeignKeys.dtd

file.

v

locale

is

the

WebSphere

Commerce

reference

number

for

each

locale

(identified

by

country

or

region

and

language).

The

values

are

located

in

the

LANGUAGE

database

table.

Note:

If

you

are

splitting

an

existing

store

archive

into

database

asset

groups,

ensure

that

all

references

to,

as

an

example,

alias

@ffmcenter_id

are

replaced

with

the

corresponding

entity

reference:

&ffmcenter_id;.

7.

Once

all

the

data

files

have

been

created,

run

the

IDResolve

command

against

the

main

database

asset

group

XML

file

to

resolve

the

data

as

described

in

“ID

Resolve

command”

on

page

339.

8.

Run

the

Load

command

on

the

resolved

data

file

as

described

in

“Load

command”

on

page

349.

To

verify

your

loading

process,

refer

to

the

log

files:

v

idresgen.db2.log

and

massload.db2.log

v

idresgen.oracle.log

and

massload.oracle.log

The

log

files

are

located

under:

v

AIX

Linux

Solaris

Windows

WC_installdir/logs

v

400

WC_userdir/instances/instance_name/logs

9.

Business

Run

the

AccountImport

command

as

described

in

“Publishing

business

account

assets”

on

page

396.

10.

If

applicable,

publish

contracts

as

described

in

“Publishing

contract

assets”

on

page

396.

11.

Complete

the

tasks

in

“Publishing

storefront

assets

and

store

configuration

files

by

copying

to

the

WebSphere

Commerce

Server”

on

page

399

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

389

Loading

database

asset

groups

To

load

XML

data

for

a

single

database

asset

group

into

the

WebSphere

Commerce

database,

do

the

following:

1.

Review

the

following

information:

a.

Appendix

B,

“Creating

your

data,”

on

page

439

b.

Appendix

C,

“Database

asset

groups,”

on

page

441,

as

you

need

to

know

which

WebSphere

Commerce

asset

files

and

database

tables

are

affected.

c.

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335,

which

provides

the

background

information

for

the

Loader

package.

2.

Plan

your

loading

process

and

decide

which

database

asset

group

you

you

will

load.

Whether

you

want

to

load

the

entire

set

of

store

database

assets

as

instructed

in

“Loading

a

store”

on

page

385

or

a

single

database

asset

group,

the

basic

process

remains

the

same.

In

the

next

steps,

you

will

use

or

create

the

following

files

for

your

loading

process:

a.

one

or

more

database

asset

files,

depending

on

which

group

you

choose.

For

example,

if

you

load

the

store

database

group

assets,

you

will

need

a

store.xml

file

and

a

separate

store.xml

file

for

each

locale

your

store

supports.

Examples

of

such

files

are

contained

within

the

WebSphere

Commerce

sample

store

archives.

The

sample

store

archives

are

organized

by

business

model

in

the

WC_installdir/samplestores

directory.

Note

that

not

all

database

asset

groups

require

locale

specific

information.

b.

a

new

XML

file

which

consolidates

all

the

XML

database

asset

files,

contains

the

XML

entity

references,

and

contains

the

root

element

for

the

database

assets.

This

is

referred

to

as

the

main

database

asset

group

XML

file.

You

can

find

this

file

in

the

sample

package,

called

store-all-assets.xml.

c.

a

new

DTD

file

which

defines

all

the

data

types

required

by

the

XML

files

from

a

database

asset

group,

referred

to

as

the

main

database

asset

group

DTD

file.

You

can

find

this

file

in

the

sample

package,

called

store-all-assets.dtd.

d.

a

second

DTD

file

which

defines

the

external

dependencies.

You

may

need

to

include

this

file

in

the

main

database

asset

group

DTD

file.

You

can

find

this

file

in

the

sample

package,

called

Nondatabase

asset

groupForeignKeys.dtd.

e.

a

third

DTD

file

containing

the

definition

of

all

the

WebSphere

Commerce

tables.

The

wcs.dtd

file

already

exists

in

WebSphere

Commerce,

located

in

the

WC_installdir/schema/xml

directory.You

may

need

to

include

this

file

in

the

main

database

asset

group

DTD

file.

If

you

have

not

customized

the

WebSphere

Commerce

schema,

then

you

can

use

this

file

without

modification.

3.

Create

the

database

asset

XML

files

for

the

group

you

will

load

as

instructed

in

previous

chapters

from

this

guide.

If

you

completed

the

tasks

in

the

asset

chapters,

then

these

XML

files

already

exist.

The

database

asset

files

should

not

contain

any

DTD

declaration

or

page

directives

at

the

start

of

the

file

since

this

may

cause

conflicts

when

the

files

are

concatenated.

Also,

for

simplicity

you

may

decide

not

to

create

any

root

elements.

The

only

file

that

must

have

a

root

element

is

the

main

database

asset

group

XML

file.

Note:

If

you

have

database

asset

files

for

more

than

one

language,

then

each

file

must

begin

with

<?xml

encoding

=

locale

specific

encoding>.

For

example,

English

database

asset

files

should

specify

<?xml

encoding

=

"UTF-8"?>,

but

French

files

should

specify

<?xml

encoding

=

390

Store

Development

Guide

"ISO-8859-1"?>.

You

must

ensure

that

the

encoding

you

specify

matches

the

actual

encoding

of

the

file.

4.

Create

the

main

database

asset

group

XML

file

for

each

group

you

want

to

load.

This

file

contains

reference

entities

to

include

various

XML

files

in

one

database

asset

group,

or

more.

By

using

external

reference

entities,

you

can

concatenate

the

XML

files

to

simplify

the

ID

Resolve

command

and

the

load

process.

Also,

the

internal

aliases

used

within

each

XML

file

can

be

external

to

another

XML

data

file

within

a

group

or

across

groups

when

loading

more

than

one

group

at

a

time.

An

XML

parser

would

substitute

the

contents

of

the

file

referenced

by

the

external

reference

entity

in

place

of

the

external

reference.

Using

the

following

example

for

loading

the

single

store

database

asset

group

as

your

guide,

you

can

create

your

database

asset

group

XML

file

based

on

this

extract:

<?xml

version="1.0"?>

<!DOCTYPE

import

SYSTEM

"store-assets.dtd">

<import>

&store.xml;

&en_US_store.xml;

&fr_FR_store.xml;

</import>

where

v

import

is

the

root

element

of

the

XML

document.

The

root

element

has

already

been

defined

in

the

wcs.dtd

file,

provided

with

WebSphere

Commerce,

and

includes

the

definitions

for

all

the

WebSphere

Commerce

database

tables.

However,

if

you

customized

the

WebSphere

Commerce

schema,

you

may

need

to

use

a

different

root

element.

You

can

generate

a

new

DTD

file

that

reflects

the

customized

schema

or

you

can

update

the

wcs.dtd

file.

v

store-assets.dtd

refers

to

the

name

of

the

main

database

asset

group

DTD

file

you

will

create

in

the

next

step.

v

&store.xml;

is

an

XML

entity

reference

to

the

database

asset

group

XML

file.

The

path

and

location

are

defined

in

the

database

asset

group

DTD

file.

This

name

will

change

to

match

the

assets

files

already

created

for

each

group.

v

locale_store.xml;

is

needed

for

each

language

your

store

supports.

If

your

store

is

unilingual,

then

only

reference

one

file.

If

your

store

supports

more

than

one

language,

then

you

would

require

a

reference

for

each

language.

The

above

extract

assumes

that

your

store

supports

the

English

and

French

languages.

5.

Create

a

main

database

asset

group

DTD

file

that

defines

the

above

entities

and

the

other

DTD

files

required

by

the

group.

Using

the

following

example

for

loading

the

single

store

database

asset

group

as

your

guide,

you

can

create

your

main

database

asset

group

DTD

file

for

any

data

group:

<!ENTITY

%

wcs.dtd

SYSTEM

"absolute

path

for

WebSphere

Commerce

wcs.dtd

file">

%wcs.dtd;

<!ENTITY

%

ForeignKeys.dtd

SYSTEM

"ForeignKeys.dtd">

%ForeignKeys.dtd;

<!ENTITY

store.xml

SYSTEM

"store.xml">

<!ENTITY

en_US_store.xml

SYSTEM

"en_US/store.xml">

<!ENTITY

fr_FR_store.xml

SYSTEM

"fr_FR/store.xml">

where

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

391

v

wcs.dtd

refers

to

the

DTD

file

containing

data

defined

outside

its

database

asset

group.

This

file,

provided

with

WebSphere

Commerce,

also

resolves

and

defines

the

root

element

used

in

the

database

asset

group

XML

file.

v

ForeignKeys.dtd

refers

to

the

DTD

file

which

defines

elements

other

than

the

root

element.

This

file

contains

all

the

XML

entity

reference

declarations

and

definitions

for

the

external

dependencies

outside

the

database

asset

group.

As

such,

the

XML

files

have

references

to

foreign

key

values

that

are

not

created

as

part

of

the

database

asset

group

and

must

already

be

loaded

into

the

database

before

this

group.

Note:

Ensure

that

the

path

is

correctly

identified.

In

this

example,

the

file

is

in

the

same

directory

as

the

database

asset

group

DTD

file.

v

store.xml,

en_US_store.xml,

and

fr_FR_store.xml

are

the

external

reference

entities

used

in

the

database

asset

group

XML

file.

To

use

the

reference,

follow

the

entity

reference

convention:

&alias_name;.

v

store.xml

refers

to

the

data

file

for

the

group

from

which

the

database

assets

are

loaded.

This

name

will

change

to

match

the

database

assets

files

already

created

for

each

group.

Note

that

the

locale-specific

XML

files

are

under

the

WC_installdir/samplestores

directory.

v

The

path_store.xml

files

are

needed

for

each

language

your

store

supports,

located

under

the

above

directories.

If

your

store

is

unilingual,

then

you

would

only

reference

one

file.

If

your

store

supports

more

than

one

language,

then

you

would

require

a

locale-specific

file

for

each

language.

The

above

extract

assumes

your

store

supports

the

English

and

French

languages.

6.

Each

database

asset

group

requires

information

defined

outside

its

domain

or

its

set

of

data,

as

each

group

may

have

external

dependencies.

You

can

provide

this

data

in

a

DTD

file.

For

example,

the

store

database

asset

group

has

the

following

external

dependencies:

bootstrap.LANGUAGE.LANGUAGE_ID,

bootstrap.MEMBER.MEMBER_ID,

bootstrap.SETCURR.SETCURR_ID,

fulfillment.FFMCENTER.FFMCENTER_ID

When

loading

a

data

group

or

the

entire

set

of

store

data,

the

following

external

dependencies

must

be

defined

from

the

WebSphere

Commerce

database.

To

use

this

data,

follow

the

corresponding

XML

entity

reference.

For

example,

to

use

the

data

defined

by

the

ffmcenter_id

entity,

you

would

write

&ffmcenter_id;

in

your

XML

file.

Using

the

following

example

for

the

store

database

asset

group

as

your

guide,

you

can

create

your

DTD

file

based

on

this

extract,

called

Nondatabase

asset

groupForeignKeys.dtd:

<!ENTITY

en_US

"-1">

<!ENTITY

fr_FR

"-2">

<!ENTITY

de_DE

"-3">

<!ENTITY

it_IT

"-4">

<!ENTITY

es_ES

"-5">

<!ENTITY

pt_BR

"-6">

<!ENTITY

zh_CN

"-7">

<!ENTITY

zh_TW

"-8">

<!ENTITY

ko_KR

"-9">

<!ENTITY

ja_JP

"-10">

<!ENTITY

MEMBER_ID

"-2000">

<!ENTITY

ffmcenter_id

"10001">

where

v

MEMBER_ID

is

the

internal

reference

number

that

identifies

the

owner

of

the

store.

392

Store

Development

Guide

v

ffmcenter

is

the

reference

number

for

your

store’s

fulfillment

center.

Since

your

store

can

use

more

than

one

fulfillment

center,

more

than

one

can

be

defined

in

the

ForeignKeys.dtd

file.

v

locale

is

the

WebSphere

Commerce

reference

number

for

each

locale

(identified

by

country

or

region

and

language).

The

values

are

located

in

the

LANGUAGE

database

table.

Notes:

a.

If

you

are

splitting

an

existing

store

archive

into

database

asset

groups,

ensure

that

all

references

to,

as

an

example,

alias

@ffmcenter_id

are

replaced

with

the

corresponding

entity

reference:

&ffmcenter_id;.

b.

If

you

are

referencing

a

member

ID

that

already

exists

in

the

database,

then

you

can

replace

the

internal

alias

used

in

the

sample

store

data

with

&MEMBER_ID;.

If

not,

you

can

include

the

XML

needed

to

resolve

the

member

ID

using

@member_id.

7.

Once

all

the

data

files

have

been

created,

run

the

IDResolve

command

against

the

database

asset

group

XML

file

to

resolve

the

data

as

described

in

“ID

Resolve

command”

on

page

339.

8.

Run

the

Load

command

on

the

resolved

data

file

as

described

in

“Load

command”

on

page

349.

To

verify

your

loading

process,

refer

to

the

log

files:

v

idresgen.db2.log

and

massload.db2.log

v

idresgen.oracle.log

and

massload.oracle.log

The

log

files

are

located

under:

v

AIX

Linux

Solaris

Windows

WC_installdir/logs

v

400

WC_userdir/instances/instance_name/logs

9.

Business

Run

the

AccountImport

command

as

described

in

“Publishing

business

account

assets”

on

page

396.

10.

If

applicable,

publish

contracts

as

described

in

“Publishing

contract

assets”

on

page

396.

11.

Complete

the

tasks

in

“Publishing

storefront

assets

and

store

configuration

files

by

copying

to

the

WebSphere

Commerce

Server”

on

page

399

Chapter

38.

Loading

WebSphere

Commerce

database

asset

groups

393

394

Store

Development

Guide

Chapter

39.

Publishing

business

accounts

and

contracts

Some

of

the

store

database

assets,

(business

accounts,

and

contracts)

cannot

be

loaded

by

the

Loader

package.

You

can

publish

these

database

assets

by

using

the

Administration

Console

or

from

the

command

line,

as

part

of

the

publishing

a

complete

store

option,

described

in

Chapter

36,

“Publishing

a

complete

store,”

on

page

321,

or

you

can

publish

business

accounts

and

contracts

using

their

corresponding

commands.

These

commands

are

as

follows:

v

AccountImport—

Creates

business

accounts

from

the

businessaccount.xml

file

in

the

store

archive.

v

ContractImportApprovedVersion—Creates

a

contract

from

the

contract.xml

file.

If

the

contract

is

in

active

state,

the

command

creates

and

deploys

the

contract.

Even

if

the

contract.xml

file

contains

more

than

one

contract

the

command

only

needs

to

be

called

once.

Note:

For

more

information

on

these

commands,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

Business

account

assets

are

included

in

the

form

of

XML

files

in

some

of

the

sample

store

archives

provided

with

WebSphere

Commerce.

However,

it

is

recommended

that

you

create

business

account

assets

using

the

tools

provided,

rather

than

creating

XML

files

for

these

assets.

For

more

information

on

creating

these

assets

using

the

tools

provided,

see

the

WebSphere

Commerce

Production

online

help.

The

instructions

for

publishing

business

accounts

are

included

in

the

following

sections,

in

case

you

choose

to

publish

the

corresponding

XML

files

provided

with

the

sample

store

archives,

or

create

your

own.

Note:

If

you

are

not

using

Administration

Console

to

publish

the

business

accounts

or

contracts,

the

store

and

catalog

assets

must

be

published

before

you

can

publish

business

accounts,

and

contracts.

In

particular

you

need

the

store

and

catalog

identifiers,

as

well

as

the

ID

for

the

organization

that

owns

the

store,

as

well

as

the

IDs

for

any

buyer

organizations

associated

with

the

contract.

If

the

terms

and

conditions

of

your

contract

do

not

specify

a

particular

catalog,

you

do

not

need

to

publish

a

catalog

before

publishing

a

business

account

or

contract.

If

you

publish

these

assets

using

Administration

Console

or

the

command

line

publish,

ensure

that

you

select

the

catalog

option,

or

that

your

store

already

has

a

published

catalog.

If

you

publish

these

assets

using

the

corresponding

commands,

ensure

that

you

have

already

loaded

the

assets

listed

above

into

the

database.

Publishing

business

accounts

and

contracts

using

Administration

Console

or

the

command

line

You

can

publish

business

accounts

and

contracts

using

the

Administration

Console,

or

using

the

publish

utility

from

the

command

line.

In

order

to

publish

the

business

accounts

and

contracts

using

either

the

Administration

Console

or

the

command

line,

the

assets

must

be

packaged

in

the

store

archive

format.

For

more

information

on

packaging

the

store

front

assets

as

a

store

archive,

see

Part

9,

“Packaging

your

store,”

on

page

311.

©

Copyright

IBM

Corp.

2000,

2003

395

For

detailed

step-by-step

instructions

on

publishing

assets

using

the

Administration

Console

or

the

command

line,

see

the

WebSphere

Commerce

Production

online

help.

Publishing

business

accounts

and

contracts

using

commands

If

you

prefer

not

to

package

your

assets

as

a

store

archive,

you

can

still

publish

the

business

accounts

and

contracts

using

the

corresponding

commands:

v

AccountImport—

Creates

business

accounts

from

the

businessaccount.xml

file

in

the

store

archive.

v

ContractImportApprovedVersion—

Imports

an

approved

or

active

contract

into

WebSphere

Commerce

Server

from

an

XML

file.

Before

importing

the

contract,

the

command

ensures

that

the

contract

being

imported

contains

the

necessary

terms

and

conditions

and

is

a

valid

contract.

Publishing

business

account

assets

To

publish

the

business

account

assets

obtained

from

the

sample

stores,

do

the

following:

1.

Copy

ForeignKeys.dtd

to

the

following

location:

v

WC_installdir/xml/trading/dtd

v

400

WC_userdir/instances/instance_name/xml/trading/xml

ForeignKeys.dtd

contains

the

entity

values

referenced

by

businessaccount.xml.

2.

Copy

businessaccount.xml

to

the

following

location:

v

WC_installdir/xml/trading/xml

v

400

WC_userdir/instances/instance_name/xml/trading/xml
3.

Open

the

Administration

Console.

Login

as

an

administrator.

4.

In

a

browser,

type

the

following

URL:

v

https://hostname:8002/webapp/wcs/admin/servlet/AccountImport?
fileName=businessaccount.xml&URL=
The

URL

to

redirect

to

upon

successful

completion

Note:

For

more

information

on

the

command

syntax

and

parameters,

see

the

WebSphere

Commerce

Production

and

Development

online

help.

Publishing

contract

assets

To

publish

the

contract

assets

obtained

from

the

sample

stores,

do

the

following::

1.

Copy

ForeignKeys.dtd

to

the

following

location:

v

WC_installdir/xml/trading/dtd

v

400

WC_userdir/instances/instance_name/xml/trading/xml

ForeignKeys.dtd

contains

the

entity

values

referenced

by

businessaccount.xml.

2.

Copy

contract.xml

to

the

following

location:

v

WC_installdir/xml/trading/xml

v

400

WC_userdir/instances/instance_name/xml/trading/xml
3.

Open

the

Administration

Console.

Login

as

an

administrator.

4.

In

a

browser,

type

the

following:

v

https://hostname:8002/webapp/wcs/admin/servlet/
ContractImportApprovedVersion?fileName=contract.xml
&xsd=false&URL=ContractDisplay

396

Store

Development

Guide

5.

If

your

store

contains

multiple

contract.xml

files

(for

example,

locale

specific

contract

files),

repeat

steps

1

through

4

for

each

contract.xml

file.

Chapter

39.

Publishing

business

accounts

and

contracts

397

398

Store

Development

Guide

Chapter

40.

Publishing

storefront

assets

and

store

configuration

files

Publishing

the

storefront

assets,

the

HTML

and

JSP

files,

properties

files

or

resource

bundles,

and

images

and

graphics

that

create

your

store

pages,

is

part

of

the

process

of

creating

a

functional

store.

You

can

publish

your

storefront

assets

using

the

Administration

Console

or

from

the

command

line,

as

part

of

the

publishing

a

complete

store

option,

described

in

Chapter

36,

“Publishing

a

complete

store,”

on

page

321,

or

you

can

publish

the

storefront

assets

by

simply

copying

the

assets

to

a

specified

location

on

the

WebSphere

Commerce

Server.

If

you

publish

JSP

files

contained

in

the

sample

stores

and

you

plan

to

change

the

store

flow,

you

will

also

need

to

publish

the

store

configuration

files

that

are

part

of

that

store

archive.

The

XML

configuration

files

for

the

store

are

located

in

the

following

directory

in

the

store

archive:

WEB-INF/xml/tools/stores/StoreDirectory/devtools/flow

The

properties

file

for

the

Change

Flow

tooling

are

located

in

the

following

directory

in

the

store

archive:

StoreDirectory/devtools/flow/ui

Publishing

storefront

assets

and

store

configuration

files

using

the

Administration

Console

or

the

command

line

You

can

publish

the

storefront

assets

and

store

configuration

files

using

the

Administration

Console,

or

using

the

publish

utility

from

the

command

line.

In

order

to

publish

the

store

front

assets

and

store

configuration

files

using

either

the

Administration

Console

or

the

command

line,

the

storefront

assets

and

store

configuration

files

must

be

packaged

in

the

store

archive

format.

For

more

information

on

packaging

the

storefront

assets

as

a

store

archive,

see

Part

9,

“Packaging

your

store,”

on

page

311.

Publishing

storefront

assets

and

store

configuration

files

by

copying

to

the

WebSphere

Commerce

Server

If

you

prefer

not

to

package

your

assets

as

a

store

archive,

you

can

still

publish

the

storefront

assets

by

copying

them

directly

to

the

WebSphere

Commerce

Server.

The

Web

assets

(HTML,

JSP

files,

images,

and

graphics)

must

be

copied

to

the

Web

application

document

root.

The

resource

bundles

or

properties

files

must

be

copied

to

the

application’s

properties

path.

The

store

configuration

files

must

be

copied

to

the

appropriate

locations

under

the

stores

or

tools

web

modules.

Note:

When

you

unzip

the

sample

store

archives

into

the

Stores

web

module,

(retaining

the

path

structure)

the

file

assets

will

be

placed

in

the

correct

location.

However,

the

properties

files

used

by

the

Change

Flow

tool

(StoreDirectory/devtools/flow/ui/*.properties)

must

be

copied

to

the

ToolsStoresPropertiesPath

defined

in

the

WebSphere

Commerce

configuration

file,

instance_name.xml.

©

Copyright

IBM

Corp.

2000,

2003

399

To

copy

the

store

front

assets

and

the

store

configuration

files

to

the

WebSphere

Commerce

Server,

do

the

following:

1.

Copy

the

JSP

files,

HTML,

include

files,

images

and

graphics

to

the

store

directory

(storedir)

in

the

Stores

Web

application

document

root:

v

WAS_installdir/installedApps/cell_name/WC_instance_name.ear/
Stores.war/storedir

v

400

WAS_userdir/WAS_instance_name/installedApps/
cell_name/WC_instance_name.ear/Stores.war/storedir

where

storedir

is

the

value

of

the

DIRECTORY

column

from

the

STORE

database

table.

2.

Copy

the

resource

bundles

and

properties

files

to

the

application

properties

path:

v

WAS_installdir/installedApps/cell_name/
WC_instance_name.ear/Stores.war/WEB-INF/
classes/storedir

v

400

WAS_userdir/WAS_instance_name/InstalledApps/cell_name/
WC_instance_name.ear/Stores.war/WEB-INF/
classes/storedir

3.

Copy

the

store

configuration

files

to

the

locations

defined

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml.

This

file

is

located

in

the

following

directory:

v

WC_installdir/instances/instance_name/xml

v

400

WC_userdir/instances/instance_name/xml

The

store

configuration

files

are

copied

to

the

following

locations:

v

The

store

configuration

XML

(WEB-
INF\xml\tools\stores\storedirectory\devtools\flow)

is

copied

to

the

ToolsStoresXMLPath.

This

path

is

defined

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml.

v

The

store

configuration

properties

files

are

copied

to

the

ToolsStoresPropertiesPath.

This

path

is

defined

in

the

WebSphere

Commerce

Configuration

File,

instance_name.xml.
4.

Launch

the

store

using

one

of

the

following

methods:

v

Use

the

StoreCatalogDisplay

command:

StoreCatalogDisplay?storeId=storeId&catalogId=catalogId&langId=langId

where

–

storeId

is

the

value

located

in

the

STORE_ID

column

of

the

STORE

database

table,

–

catalogId

is

the

value

located

in

the

CATALOG_ID

column

of

the

CATALOG

database

table,

–

langId

is

the

value

of

the

LANGUAGE_ID

column

of

the

LANGUAGE

database

table

for

a

given

locale.

For

a

list

of

default

WebSphere

Commerce

values,

refer

to

the

LANGUAGE

database

table.
v

If

your

store

is

based

on

a

WebSphere

Commerce

sample

store,

assemble

the

store’s

URL

by

editing

the

index.jsp

file

under:

–

WAS_installdir/installedApps/instance_name
/WC_instance_name.ear/Stores.war/storedir

–

400

WAS_userdir/WAS_instance_name/
installedApps/cell_name/WC_instance_name.ear/Stores.war/storedir

400

Store

Development

Guide

Add

the

correct

values

for

the

following

parameters:

–

hostname

is

the

fully-qualified

name

of

your

WebSphere

Commerce

machine,

–

storeId

is

the

value

located

in

the

STORE_ID

column

of

the

STORE

database

table,

–

catalogId

is

the

value

located

in

the

CATALOG_ID

column

of

the

CATALOG

database

table,

–

langId

is

the

value

of

the

LANGUAGE_ID

column

of

the

LANGUAGE

database

table

for

a

given

locale.

For

a

list

of

default

WebSphere

Commerce

values,

refer

to

the

LANGUAGE

database

table.

To

view

your

store

in

a

browser,

launch

the

following

URL:

http://host

name/webapp/wcs/stores/servlet/storedir/index.jsp

Chapter

40.

Publishing

storefront

assets

and

store

configuration

files

401

402

Store

Development

Guide

Part

11.

Adding

WebSphere

Commerce

features

to

your

store

In

order

to

add

certain

features

available

in

WebSphere

Commerce

to

your

store,

you

need

to

complete

some

manual

steps.

The

chapters

in

this

section

discuss

adding

the

following

features

to

your

store:

v

Chapter

41,

“Adding

customer

care

to

your

store,”

on

page

405

v

Chapter

42,

“Adding

e-Marketing

Spots

to

your

store,”

on

page

429

©

Copyright

IBM

Corp.

2000,

2003

403

404

Store

Development

Guide

Chapter

41.

Adding

customer

care

to

your

store

Professional

Business

The

customer

care

feature

in

WebSphere

Commerce

provides

real-time

customer

service

support

by

way

of

a

synchronous

text

interface

using

the

Lotus®

Sametime™

server.

When

customer

care

is

enabled

in

your

store,

a

customer

may

enter

the

store,

click

on

a

link

and

connect

to

a

Customer

Service

Representative

(CSR).

Then,

the

customer

can

can

communicate

with

a

CSR

over

the

Internet.

Note:

This

chapter

covers

how

to

enable

customer

care

in

your

store.

However,

before

you

can

enable

customer

care

in

your

store,

you

must

first

install

a

Sametime

server

and

configure

it

to

work

with

WebSphere

Commerce.

For

more

information,

see

the

WebSphere

Commerce

Additional

Software

guide.

If

the

Sametime

server

does

not

use

the

same

LDAP

server

as

WebSphere

Commerce,

you

must

also

register

CSRs

in

the

Administration

Console

to

enable

them

to

use

customer

care.

For

more

information

on

this

task,

as

well

as

the

overall

concepts

of

customer

care

and

how

a

CSR

uses

customer

care,

see

the

WebSphere

Commerce

online

help.

Note:

You

can

enable

customer

care

in

your

store

quickly

and

easily

using

the

WebSphere

Commerce

Accelerator,

if

you

create

your

store

based

on

one

of

the

following

sample

stores:

v

Business

B2B

direct

(ToolTech)

v

Consumer

direct

(FashionFlow)

After

publishing

the

store

using

the

publish

utility

in

the

Administration

Console,

open

the

WebSphere

Commerce

Accelerator,

select

the

Stores

menu,

then

select

Change

Flow

and

enable

the

customer

care

features.

For

more

detailed

instructions,

see

the

WebSphere

Commerce

Production

online

help,

help

topic

″Changing

store

flows

using

WebSphere

Commerce

Accelerator″

However,

if

you

do

not

create

your

store

using

a

sample

store

as

a

base,

you

will

have

to

do

some

work

to

enable

customer

care

in

your

store.

The

remainder

of

this

chapter

discusses

the

concepts

and

steps

necessary

to

enable

customer

care

in

a

store

not

based

on

one

of

the

samples.

Note:

The

sample

stores

Business

ToolTech

and

FashionFlow

demonstrate

how

customer

care

should

be

implemented,

and

provide

the

code

that

you

can

use

in

your

store

to

enable

customer

care.

This

chapter

will

refer

to

examples

from

these

two

stores

to

illustrate

how

to

enable

customer

care

in

your

store.

Ensure

that

you

have

the

latest

version

of

the

sample

stores

when

reading

this

chapter.

Note:

To

support

backward

compatibility

and

the

built-in

JVM

that

comes

with

Internet

Explorer

and

Netscape

browsers

version

4.x,

the

applet

code

is

developed

with

JDK1.1

and

AWT

components.

Therefore

some

of

the

features

available

with

JDK

1.2

or

higher

(including

language

support,

BI-direction

support,

and

accessibility)

will

not

be

available

or

fully

supported.

Sun

Java

plug-ins

and

Netscape

browser

6

and

7

are

not

supported.

©

Copyright

IBM

Corp.

2000,

2003

405

Understanding

customer

care

in

a

store

When

a

customer

selects

the

customer

care

link,

for

example,

Live

Chat

with

Customer

Assistant,

in

a

store

enabled

with

customer

care,

an

applet

containing

the

chat

window

is

launched.

This

applet

is

run

within

a

hidden

frameset

that

does

not

interfere

with

the

look

and

feel

of

the

site.

The

following

diagram

illustrates

the

composition

of

the

frameset.

frameset (in index.jsp)

frame name = main (visible) contains site content

content panel

shopper side applet

frame name = sametime (hidden)
contains shopper side applet

frame name = jsframe (hidden)
used for confirmation of applet initialization

frame name = StUpdate (hidden)
refreshes the customer's name or ID

sidebar - jsp “include”
on every content panel

page content

link to request help

to Sametime
server

monitoring
information

page
push

starts chat
session

The

frameset

includes

four

frames:

v

Main:

The

frame

that

contains

the

content

for

your

store,

including

the

files

that

create

the

store

pages,

that

is

the

files

that

create

the

body

of

the

page,

the

header

and

footer

files,

and

the

sidebar

files.

The

contents

of

this

frame

are

visible

to

the

visitors

to

your

store.

Note

that

the

main

frame

contains

the

following

connections

to

the

Sametime

frame:

a

link

to

customer

care

and

monitoring

information.

Monitoring

information

is

discussed

in

more

detail

in

“Monitoring

customers

using

customer

care”

on

page

417.

v

Sametime:

The

frame

that

contains

the

customer

care

applet.

This

frame

is

not

visible

to

your

store’s

visitors.

However,

when

a

customer

clicks

on

the

link

to

launch

the

applet,

the

customer

will

see

the

customer

care

window.

This

frame

also

pushes

information

to

the

main

frame,

through

the

page

push

feature.

v

jsframe:

The

frame

that

confirms

that

the

applet

has

been

loaded

properly.

The

contents

of

this

frame

do

not

display

to

customers.

v

StUpdate:

The

frame

refreshes

the

customer’s

information,

including

the

customer’s

name

or

ID.

406

Store

Development

Guide

Using

the

frameset

Launching

the

customer

care

applet

in

a

frameset

separates

the

applet

code

from

the

code

in

the

store

pages.

As

the

diagram

above

illustrates,

the

store

pages

are

contained

in

the

main

frame

of

the

frameset,

while

the

applet

code

is

contained

in

the

Sametime

frame.

By

separating

the

applet

code

from

the

store

pages

you

reduce

network

traffic,

as

the

applet

is

only

downloaded

once.

Using

a

frameset

also

allows

you

to

maintain

the

connection

with

the

Sametime

server.

If

the

applet

was

part

of

each

page

and

not

the

frameset,

a

new

Sametime

session

would

be

created

each

time

a

customer

accessed

a

new

page.

Since

the

customer

care

applet

logs

on

to

the

Sametime

server

anonymously,

creating

a

new

session

each

time

a

customer

accessed

a

new

page

would

not

allow

you

to

trace

the

customers

activities

through

the

store.

Using

the

frameset,

the

customer’s

original

Sametime

session

is

maintained,

and

the

customer’s

activities

are

sent

back

to

the

Sametime

server

as

attributes

change.

Issues

with

using

framesets

Although

using

a

frameset

is

the

recommended

method

to

implement

Customer

Care

in

your

store,

you

should

be

aware

of

the

following

issues

with

using

framesets:

v

Single

point

of

entry:

Customers

can

only

use

customer

care

if

they

browse

your

store

within

the

framework.

Likewise,

CSRs

can

only

monitor

customer

movement

through

the

frameset.

To

ensure

that

customers

are

browsing

the

store

via

the

frameset,

they

must

access

the

site

through

a

single

entry

point.

If

a

customer

accesses

your

store

through

another

page

(for

example,

a

catalog

page),

they

will

not

be

in

the

frameset.

v

Bookmarking:

When

using

the

frameset

customers

will

only

be

able

to

bookmark

the

URL

of

the

frameset,

not

individual

pages.

v

Refreshing:

When

a

customer

is

in

the

frameset

and

clicks

refresh,

they

will

be

taken

back

to

the

original

page,

as

coded

in

the

frameset,

which

may

not

be

the

same

page

that

is

currently

displaying

in

the

browser.

v

Resizing

browser

window:

If

a

customer

resizes

the

browser

window

while

in

the

frameset,

the

browser

may

automatically

reload

the

entry

address.

If

the

entry

address

is

reloaded,

the

connection

to

the

Sametime

Server

may

be

terminated.

Different

browsers

behave

differently

in

this

situation.

v

Security:

In

order

to

work

correctly,

pages

within

the

customer

care

frameset

must

be

able

to

communicate

with

each

other.

This

communication

is

enabled

by

JavaScript

function

calls.

When

a

customer

is

browsing

a

site

through

a

frameset,

each

individual

frame,

as

well

as

the

frameset

(the

URL

in

the

location

bar)

maintains

its

own

connection,

either

unsecure

(http,

by

default

port

80)

or

secure

(https,

by

default

port

443).

If

a

customer

is

browsing

the

store

via

an

unsecure

connection

all

frames

within

the

frameset

are

in

HTTP.

In

this

scenario

there

are

no

issues

with

SSL.

However,

if

the

customer

browses

to

a

secure

page

(for

example,

the

registration

page),

the

main

frame

within

the

frameset

will

switch

to

HTTPS,

while

the

rest

of

the

frames

remain

unsecure

(http).

In

this

situation,

a

customer

will

not

be

able

to

launch

the

customer

care

applet.

The

browser

will

not

authorize

launching

the

applet,

because

the

JavaScript

function

that

calls

the

applet

(secure,

port

443)

appears

to

be

coming

from

a

different

server

than

the

URL

in

the

location

bar

of

the

browser

(HTTP,

port

80).

To

solve

this

problem,

you

should

always

use

the

StoreFramesetView

command

to

enter

the

store,

as

it

will

enforce

the

HTTPS

connection

for

the

frameset

URL.

v

In

order

to

communicate

between

frames,

the

Java

applet

and

JavaScript

functions

also

must

communicate.

Since

the

applet

code

base

is

on

the

Sametime

Chapter

41.

Adding

customer

care

to

your

store

407

server,

not

the

WebSphere

Commerce

Server,

some

browsers

(for

example

Netscape

versions

6

and

7)

that

use

the

Sun

Java

plug-in

prevent

the

JavaScript

from

communicating

with

Java

applets

that

are

loaded

from

a

different

host.

Using

customer

care

without

a

frameset

Customer

care

will

work

without

a

frameset,

however

none

of

the

monitoring

customer

activities

will

be

available

to

the

CSR.

That

is,

information

gathered

from

a

customer

is

only

accurate

to

the

moment

when

the

customer

submits

the

help

request.

If

after

that

point

a

customer

changes

pages,

or

adds

more

items

to

the

shopping

cart,

the

new

information

will

not

be

updated

for

the

CSR

in

the

monitoring

list.

In

order

to

use

customer

care

without

a

frameset,

do

the

following:

1.

Add

the

following

code

to

the

JSP

file

that

includes

the

link

to

launch

the

chat

page:

<script>

function

LaunchChat()

{

<%

String

pname

=

request.getRequestURI();

int

indpn

=

pname.lastIndexOf(’/’);

indpn

=

pname.lastIndexOf(’/’,

indpn-1);

if(indpn

!=

-1)

{

pname

=

pname.substring(indpn+1);}

String

headerType

=

(String)

request.getAttribute("liveHelpPageType");

if

(headerType==null)

{

headerType="";}

if

(headerType.equals("personal"))

{

%>

currentPageURL=’PERSONAL_URL’;

<%

}

else

{

%>

currentPageURL=escape(location.href);

<%

}

%>

currentpageDesc="<%=pname%>";

chatURL="<%=com.ibm.commerce.tools.util.UIUtil.getWebappPath(request)%>

CCChatPageView?"

+

"pageURL="

+

currentPageURL

+

"&pageDesc="

+

currentpageDesc;

WindowName="";

chatAttr="toolbars=no,location=no,directories=no,status=yes,

menubar=no,scrollbars=no,resizable=no,width=360,height=400"

window.open(chatURL,WindowName,

chatAttr);

return

true;

}

</script>

Note:

Ensure

that

the

width

and

height

are

the

same

as

defined

in

the

APPLET

tag

of

CustomerCareChatSetup.jsp.

2.

If

the

page

you

add

the

above

code

to

is

is

a

personal

page,

ensure

you

define

the

personal

page

before

this

code

block

with

following

statement:

request.setAttribute("liveHelpPageType",

"personal");

3.

You

may

also

want

to

add

additional

parameter

value

pairs

in

the

chatURL

string

for

customized

attributes

or

other

useful

information,

which

can

be

picked

up

in

CustomerCareChatSetup.jsp

through

the

request

object.

4.

Add

the

following

code

to

launch

the

chat

page

from

a

link

or

an

image:

<FONT

COLOR="#ffffff"

STYLE="font-size

:

8pt">

<%=

tooltechtext.getString("LiveHelp")%>

5.

(Optional)

Customize

the

CustomerCareChatSetup.jsp

file

to

pass

in

additional

customer

information.

The

following

applet

parameters

allow

you

to

customize

408

Store

Development

Guide

the

CustomerCareChatSetup.jsp.

Table

16.

Customizable

Parameter

Name

Description

Note

CHAT_FONT_SIZE

Font

size

to

be

used

in

the

chat

area.

Default

value

is

12.

CHAT_FONT_COLOR

Font

color

to

be

used

for

incoming

messages

in

the

chat

area.

Default

is

blue

(#0000FF).

CHAT_NAME_LENGTH

Length

of

characters

that

are

reserved

for

displaying

user

names

in

the

chat

area.

Default

is

15.

WAIT_RANGE_1

Integer

value,

if

the

number

of

waiting

customer

in

the

store

is

less

than

this

value,

the

waiting

message

1

displays.

Otherwise

the

waiting

message

according

to

the

WAIT_RANGE_2

setting

displays.

Use

-1

when

only

message

1

will

be

displayed.

WAIT_RANGE_2

Integer

value,

if

the

number

of

customers

waiting

in

the

store

is

less

than

this

value,

but

greater

than

WAIT_RANGE_1,

waiting

message

2

displays.

Otherwise

the

waiting

message

according

to

the

WAIT_RANGE_3

setting

displays.

Ignored

if

WAIT_RANGE_1

is

-1.

Use

-1

to

disable

this

range.

WAIT_RANGE_3

Integer

value,

if

the

number

of

customers

waiting

in

the

store

is

less

than

this

value,

but

greater

than

WAIT_RANGE_2,

waiting

message

3

displays.

Otherwise

waiting

message

4

displays.

Ignored

if

WAIT_RANGE_2

is

-1.

Use

-1

to

disable

this

range.

contentFrame

Name

of

the

frame

that

is

used

for

regular

WebSphere

Commercestore

pages.

Default

is

″_blank″.

When

the

CSR

sends

back

a

URL,

it

will

always

launch

a

new

browser

window.

COUNTER_UNIT_WAIT

Integer

value,

indicates

how

frequently

the

wait

counter

should

increased

by

1.

Default

is

30

seconds.

Ensure

it

is

the

same

as

defined

in

the

store’s

CustomerCareMonitorList.jsp

file.

WIDTH

Preferred

width

of

the

chat

frame

in

pixel.

The

default

width

is

360

pixels.

The

length

of

the

invitation

message

will

affect

the

finial

width.

HEIGHT

Height

of

the

chat

frame

in

pixels.

The

default

is

400

pixels.

Chapter

41.

Adding

customer

care

to

your

store

409

Table

16.

(continued)

QUEUE_ID

Customer

Care

queue

ID

Providing

a

valid

queue

ID

will

put

the

help

request

directly

into

the

queue.

ML_ATTRIBUTES

List

of

customized

monitoring

attribute

IDs,

separated

by

commas.

Example:

<PARAM

name=″ML_ATTRIBUTES″

value=″8001,9002″>

ML_ATTRIBUTE_xxxx

Provide

the

value

of

customized

monitoring

attribute

xxxx

(xxxxx

is

the

attribute

ID)

Example

<PARAM

name=″ML_ATTRIBUTE_8001″

value=″A

value

string

″>
Ensure

the

attribute

ID

has

already

been

defined

in

ML_ATTRIBUTES

parameter,

or

this

parameter

will

be

ignored.

Defining

Customer

Care

Before

using

customer

care

in

your

store,

the

following

information

must

be

defined:

v

Defining

the

store’s

monitoring

list

v

Defining

the

store’s

topic

list

v

Defining

the

store’s

URLs

The

following

sections

explain

these

concepts,

using

examples

from

the

sample

stores

to

illustrate

how

information

is

defined.

Defining

the

store’s

monitoring

list

Each

store

contains

a

file

that

defines

the

items

to

be

monitored

by

the

CSR.

The

file,

CustomerCareMonitorList.jsp,

is

located

in

the

following

directory:

v

WAS_installdir/installedApps/instance_name/WC_instance_name.ear/Stores.war
/storedir/CustomerServiceArea/CollaborationSection

v

400

WAS_userdir/WAS_instance_name/installedApps/cell_name/
WC_instance_name.ear/Stores.war/storedir/CustomerServiceArea/
CollaborationSection

CustomerCareMonitorList.jsp

is

loaded

into

the

CSR

applet

when

the

WebSphere

Commerce

Accelerator

calls

the

CCMonitorListView

command.

This

command

returns

a

JSP

file

that

returns

the

following

XML

string,

which

defines

the

monitoring

information

for

the

store:

<?xml

version="1.0"

encoding="UTF-8"?>

<WCS_CUSTOMERCARE>

<MONITORING_LIST>

<ATTR

ID="4"

LABEL="MonitoringVisitorsTableCurrentPage"

></ATTR>

<ATTR

ID="3010"

LABEL="MonitoringVisitorsTableInSite"

UNIT="30"

></ATTR>

<ATTR

ID="3011"

LABEL="MonitoringVisitorsTableInPage"

UNIT="30"

></ATTR>

<ATTR

ID="6"

LABEL="MonitoringVisitorsTableCart"

></ATTR>

</MONITORING_LIST>

</WCS_CUSTOMERCARE>

The

attribute

element

(ATTR),

as

illustrated

above,

defines

a

monitoring

attribute

for

the

customer.

Table

17.

Attribute

Name

Description

Note

410

Store

Development

Guide

Table

17.

(continued)

ID

The

Sametime

attribute

ID

that

is

used

to

track

this

item.

required

Label

The

label

key

for

the

description

of

this

item

in

the

properties

file.

The

corresponding

description

will

display

in

the

CSR

applet.

required

Unit

The

integer

value

that

indicates

after

how

many

seconds

that

the

counter

will

increase

by

1.

optional.

Used

by

predefined

counter

attributes

only.

When

the

CSR

launches

the

CSR

applet,

the

applet

loads

the

XML

string,

creating

a

monitoring

list.

The

monitoring

list

displays

the

string

value

associated

with

the

corresponding

Sametime

attribute.

If

necessary,

JavaScript

functions

retrieve

the

attribute

values

from

appropriate

store

pages.

Note:

If

the

XML

string

contains

an

error,

or

the

CustomerCareMonitorList.jsp

file

cannot

be

located,

the

CSR

applet

uses

the

default

monitoring

list,

which

only

includes

the

customer’s

name.

Example

CustomerCareMonitorList.jsp:

The

following

code

example

is

from

the

B2B

direct

sample

store,

ToolTech:

<%

//

Create

XML

string

String

strCfg=ECLivehelpConstants.EC_CC_XML_HEADER

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.EC_CC_XML_ROOT)

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.

EC_CC_XML_MONITORING_LIST);

%>

<%

//

modify

this

block

to

customize

monitoring

list

strCfg=strCfg

+

LiveHelpConfiguration.getMonitorAttributeElementString
(ECLivehelpConstants.EC_CC_ST_ATTR_PAGE_URL,

"MonitoringVisitorsTableCurrentPage")

+

LiveHelpConfiguration.getCloseTagString(ECLivehelpConstants.

EC_CC_XML_MONITORING_ATTR);

strCfg=strCfg

+

LiveHelpConfiguration.getMonitorCounterAttributeElementString
(ECLivehelpConstants.EC_CC_ST_ATTR_SITE_COUNTER,

"MonitoringVisitorsTableInSite","30")

+

LiveHelpConfiguration.getCloseTagString(ECLivehelpConstants.

EC_CC_XML_MONITORING_ATTR);

strCfg=strCfg

+

LiveHelpConfiguration.getMonitorCounterAttribute

ElementString
(ECLivehelpConstants.EC_CC_ST_ATTR_PAGE_COUNTER,

"MonitoringVisitorsTableInPage",

"30")

+

LiveHelpConfiguration.getCloseTagString(ECLivehelpConstants.

EC_CC_XML_MONITORING_ATTR);

strCfg=strCfg

+

LiveHelpConfiguration.getMonitorAttributeElementString
(ECLivehelpConstants.EC_CC_ST_ATTR_CART_ITEMS,

"MonitoringVisitorsTableCart")

+

LiveHelpConfiguration.getCloseTagString
(ECLivehelpConstants.EC_CC_XML_MONITORING_ATTR);

%>

<%

strCfg=strCfg

+

LiveHelpConfiguration.getCloseTagString

Chapter

41.

Adding

customer

care

to

your

store

411

(ECLivehelpConstants.EC_CC_XML_MONITORING_LIST)

+

LiveHelpConfiguration.getCloseTagString
(ECLivehelpConstants.EC_CC_XML_ROOT);

%>

The

sample

uses

the

utility

methods

of

the

LiveHelpConfiguration

class

to

ensure

the

correctness

of

the

XML.

In

order

to

avoid

parsing

problems,

the

sample

also

uses

encoded

attribute

values.

The

following

table

provides

more

detail

on

the

methods.

Table

18.

Method

Description

Notes™

static

String

getOpenTagString(String

tagName)

returns

an

open

tag

string

LiveHelpConfiguration.
getOpenTagString(″HELLO″)

returns

string

<HELLO>

static

String

getCloseTagString(String

tagName)

returns

a

closed

tag

string

LiveHelpConfiguration.
getCloseTagString
(″HELLO″)

returns

string

</HELLO>

static

String

getMonitorAttribute
ElementString(String

sAttributeId,

String

sLabelKey)

returns

an

ATTR

element

string

for

the

monitoring

list

LiveHelpConfiguration.
getMonitorAttribute
ElementString(″1234″,

″myLabel″)

returns

string

<ATTR

ID=″1234″

LABEL=″myLabel″

>

static

String

getMonitorCounter
AttributeElementString
(String

sAttributeId,

String

sLabelKey,

String

sUnit)

returns

a

Counter

ATTR

element

string

for

the

monitoring

list

LiveHelpConfiguration
.getMonitorCounter
AttributeElementString
(″1234″,

″myLabel″,″60″)

returns

string

<ATTR

ID=″1234″

LABEL=″myLabel″

UNIT=″60″

>

The

following

table

lists

the

predefined

Sametime

attribute

IDs

that

can

be

monitored.

Table

19.

Attribute

ID

Description

Label

Key

String

Notes

ECLivehelpConstants.
EC_CC_ST_ATTR_
PAGE_URL

The

web

page

that

shopper

is

browsing

″MonitoringVisitors
TableCurrentPage″

Requires

input

from

store

pages

ECLivehelpConstants.
EC_CC_ST_ATTR_
CART_ITEMS

The

number

of

items

that

have

been

added

to

the

shopping

cart

″MonitoringVisitors
TableCart″

Requires

input

from

store

pages

ECLivehelpConstants.
EC_CC_ST_A
TTR_SITE_COUNTER

How

long

the

customer

has

been

in

the

store

site

″Monitoring
VisitorsTable
InSite″

Counter

attribute,

uses

UNIT

to

set

the

updating

frequency

ECLivehelpConstants
.EC_CC_ST_ATTR
_PAGE_COUNTER

How

long

the

customer

has

been

in

this

page

″Monitoring
VisitorsTable
InPage″

Counter

attribute,

uses

UNIT

to

set

the

updating

frequency,

requires

input

from

store

pages

to

reset

the

counter

412

Store

Development

Guide

Table

19.

(continued)

ECLivehelpConstants.
EC_CC_ST_ATTR
_WAIT_COUNTER

How

long

the

customer

has

been

waiting

for

the

CSR

″Monitoring
Visitors
TableInWait″

Counter

attribute,

uses

UNIT

to

set

the

updating

frequency.

Reset

by

a

customer

submitting

a

help

request

or

when

a

customer

is

requeued

by

a

CSR

during

chatting.
It

is

also

used

to

determine

which

customer

will

be

served

first

by

the

CSR

when

the

CSR

uses

the

″Serve

Next″

button

ECLivehelpConstants.
EC_CC_ST
ATTR
REQ_QUEUE

Name

of

the

queue

that

the

customer’s

request

is

in

″Monitoring
VisitorsTable
Queue

Initial

queue

name,

may

be

provided

when

a

customer

submits

a

help

request

in

store

page

ECLivehelpConstants.
EC_CC_
ST_ATTR
_REQ_CSR_NAME

Name

of

the

CSR

that

is

chatting

with

the

customer

″Monitoring
Visitors
TableCSR″

Will

be

updated

when

a

CSR

accepts

a

request

from

a

queue

Note:

Customized

monitoring

items

can

be

defined

using

the

attribute

ID

greater

than

8000.

For

example,

<ATTR

ID="8004"

LABEL="MonitoringVisitorsTableItem8004"></ATTR>

Defining

the

store’s

topic

list

Each

store

contains

a

file

that

defines

the

topics

that

can

be

used

by

the

CSR

during

the

chat

session

with

a

customer.

The

file,

CustomerCareStoreQuestionList.jsp,

is

located

in

the

following

directory:

v

WAS_installdir/installedApps/instance_name/
WC_instance_name.ear/Stores.war/storedir/CustomerServiceArea//
CollaborationSection

v

400

WAS_userdir/WAS_instance_name/
installedApps/cell_name/WC_instance_name.ear/
Stores.war/storedir/CustomerServiceArea/CollaborationSection

This

JSP

file

returns

the

following

XML

string,

which

defines

the

chat

topics

for

the

store:

<?xml

version="1.0"

encoding="UTF-8"?>

<WCS_CUSTOMERCARE>

<QUESTION_LIST>

<GROUP

NAME="TopicGroupName"

>

<

<QUESTION

TITLE="TopicName"

TEXT="Topic+Text"

></QUESTION>

/GROUP>

</QUESTION_LIST>

</WCS_CUSTOMERCARE>

The

group

element

(GROUP),

as

illustrated

above,

defines

a

topic

group

which

can

have

multiple

subtopics.

It

has

the

following

attributes:

Chapter

41.

Adding

customer

care

to

your

store

413

Table

20.

Attribute

Name

Description

Note

Name

If

a

group

name

is

duplicate,

the

latest

group

definition

is

used

required

The

question

element

(QUESTION)

defines

a

single

topic.

It

has

the

following

attributes:

Table

21.

Attribute

Name

Description

Note

Title

If

a

title

is

duplicate,

the

last

title

definition

is

used.

required

Text

The

content

of

the

topic.

required

Example

CustomerCareStoreQuestionList.jsp:

The

following

code

is

from

the

B2B

direct

sample

store’s,

ToolTech,

CustomerCareStoreQuestionList.jsp:

<%

//

Create

XML

string

String

strCfg=ECLivehelpConstants.EC_CC_XML_HEADER

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.EC_CC_XML_ROOT)

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.

EC_CC_XML_QUESTION_LIST);

%>

<%

//unmark

this

block

to

add

Topic

group/topics

//

start

of

Topic

group

block,

repeat

for

more

topic

groups

strCfg=strCfg

+

LiveHelpConfiguration.getTopicGroupElementString

("TopicGroupName");

//

start

of

Topic

block,

repeat

for

all

topics

in

the

same

group

strCfg=strCfg

+

LiveHelpConfiguration.getTopicElementString("TopicName","
Topic

Text")

+

LiveHelpConfiguration.getCloseTagString(ECLivehelpConstants.

EC_CC_XML_QUESTION_QUESTION);

//

end

of

Topic

block

strCfg=strCfg

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_QUESTION_GROUP);

//

end

of

Topic

group

block

%>

<%

strCfg=strCfg

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_QUESTION_LIST)

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_ROOT);

%>

The

sample

uses

the

utility

methods

of

the

LiveHelpConfiguration

class

to

ensure

the

correctness

of

the

XML.

The

following

table

provides

more

detail

on

the

methods.

Notes:

1.

In

order

to

avoid

parsing

problems,

the

sample

also

uses

encoded

attribute

values.

Unicode

string

is

also

used

to

avoid

character

corruption.

2.

To

support

multiple

languages,

you

may

use

a

properties

file

per

language,

and

retrieve

the

translated

name

or

topic

according

to

the

language

ID

selected

in

CSR’s

session.

414

Store

Development

Guide

Table

22.

Method

Description

Notes

static

String

getOpenTagString
(String

tagName)

returns

an

open

tag

string

LiveHelpConfiguration.
getOpenTagString
(″HELLO″)

returns

string

<HELLO>

static

String

getCloseTagString(String

tagName)

returns

a

closed

tag

string

LiveHelpConfiguration.
getCloseTagString
(″HELLO″)

returns

string

</HELLO>

static

String

getTopicGroupElement
String
(String

sGroupName)

returns

a

GROUP

element

string

for

the

topic

list

LiveHelpConfiguration.
getTopicGroupElementString
(″myGroup″)

returns

string

<GROUP

NAME

=

’myGroup’>

static

String

getTopic
ElementString
(String

sTitle,

String

sText)

returns

a

QUESTION

element

string

for

the

topic

list

LiveHelpConfiguration.
getTopicElementString
(″myTitle″,

″myText″)

returns

<QUESTION

TITLE

=″myTitle″

TEXT

=″myText″>

Defining

the

store’s

URL

list

Each

store

contains

a

file

that

defines

the

URLs

that

the

CSR

can

send

to

a

customer’s

browser

during

the

chat

session.

The

file,

CustomerCareStoreURLList.jsp

,

is

located

in

the

following

directory:

v

WAS_installdir/installedApps/instance_name
/WC_instance_name.ear/Stores.war/storedir/CustomerServiceArea/
CollaborationSection

v

400

WAS_userdir/WAS_instance_name/installedApps/cell_name
/WC_instance_name.ear/Stores.war/storedir/CustomerServiceArea/
CollaborationSection

This

JSP

file

returns

the

following

XML

string,

which

contains

the

URL

information

for

the

store:

<?xml

version="1.0"

encoding="UTF-8"?>

<WCS_CUSTOMERCARE>

<URL_LIST>

<GROUP

NAME="URLGroupName"

>

<PAGE

NAME="IBM"

URL="http%3A%2F%2Fwww.ibm.com"

></PAGE>

</GROUP>

</URL_LIST>

</WCS_CUSTOMERCARE>

The

group

element

(GROUP),

as

illustrated

above,

defines

a

URL

group

which

can

have

multiple

URLs.

It

has

the

following

attributes:

v

Name:

The

name

of

the

URL

group.

Name

is

a

required

attribute.

If

a

group

name

is

duplicate,

the

latest

group

definition

is

used.

The

page

element

(PAGE)

defines

a

single

URL

address.

It

has

the

following

attributes:

v

Name:

The

name

of

the

URL

page.

Name

is

a

required

attribute.

If

a

page

name

is

duplicate,

the

latest

page

definition

is

used.

v

URL:

The

URL

address

of

the

page.

URL

is

a

required

attribute.

Chapter

41.

Adding

customer

care

to

your

store

415

Example

CustomerCareStoreURLList.jsp:

The

following

code

is

from

the

B2B

direct

sample

store’s,

ToolTech,

CustomerCareStoreURLList.jsp:

<%

//

Create

XML

string

String

strCfg=ECLivehelpConstants.EC_CC_XML_HEADER

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.

EC_CC_XML_ROOT)

+

LiveHelpConfiguration.getOpenTagString(ECLivehelpConstants.

EC_CC_XML_URL_LIST);

%>

<%

//unmark

following

block

to

add

URL

group/pages

//

start

of

URL

group

block,

repeat

for

more

URL

groups

strCfg=strCfg

+

LiveHelpConfiguration.getURLGroupElementString("URLGroupName");

//

start

of

URL

pages

block,

repeat

for

all

pages

in

the

same

group

strCfg=strCfg

+

LiveHelpConfiguration.getURLPageElementString

("IBM","http://www.ibm.com")

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_URL_PAGE);

//

end

of

URL

pages

block

strCfg=strCfg

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_URL_GROUP);

//

end

of

URL

group

block

%>

<%

strCfg=strCfg

+

LiveHelpConfiguration.getCloseTagString

(ECLivehelpConstants.EC_CC_XML_URL_LIST)

+

LiveHelpConfiguration.getCloseTagString(ECLivehelpConstants.EC_CC_XML_ROOT);

%>

The

sample

uses

the

utility

methods

of

the

LiveHelpConfiguration

class

to

ensure

the

correctness

of

the

XML.

The

following

table

provides

more

detail

on

the

methods.

Note:

In

order

to

avoid

parsing

problems,

the

sample

also

uses

encoded

attribute

values.

Unicode

string

is

also

used

to

avoid

character

corruption.

Table

23.

Method

Description

Notes

static

String

getOpenTagString(String

tagName)

returns

an

open

tag

string

LiveHelpConfiguration
.getOpenTagString
(″HELLO″)

returns

string

<HELLO>

static

String

getCloseTagString(String

tagName)

returns

a

closed

tag

string

LiveHelpConfiguration.
getCloseTagString
(″HELLO″)

returns

string

</HELLO>

static

String

getTopicGroup
ElementString
(String

sGroupName)

returns

a

GROUP

element

string

for

the

URL

list

LiveHelpConfiguration.
getTopicGroupElementString
(″myGroup″)

returns

string

<GROUP

NAME

=

’myGroup’>

static

String

getURLPage
ElementString
(String

sName,

String

sURL)

returns

a

PAGE

element

string

for

URL

list

LiveHelpConfiguration.
getURLPageElement
String
(″myName″,

″myURL″)

returns

<QUESTION

TITLE

=″myName″

TEXT

=″myURL″>

416

Store

Development

Guide

Monitoring

customers

using

customer

care

When

a

customer

selects

a

link

in

the

main

frame,

a

new

page

is

returned,

setting

the

following

chain

of

events

in

motion.

1.

This

new

page

includes

the

CustomerCareHeaderSetup.jsp

file

in

its

header.

2.

CustomerCareHeaderSetup.jsp

calls

the

following

JavaScript

function

in

the

frameset

page:

parent.setPageParams().

3.

parent.setPageParams()

updates

the

variables

to

save

the

current

store

page

information,

and

then

calls

UpdateStInfo().

4.

UpdateStInfo()

reloads

the

StUpdate

frame,

which

then

calls

the

CCShopperInfoUpdatePageView

view

command.

5.

When

the

CCShopperInfoUpdatePageView

returns,

it

loads

the

CustomerCareInformationSetup.jsp

file,

and

gathers

customer

information

including

the

customer

name,

ID,

and

items

in

the

customer’s

shopping

cart.

6.

CCShopperInfoUpdatePageView

then

calls

setCustomerName(),

setShoppingCartItems()

to

update

this

customer

information,

and

then

calls

changeSTAttributes()

to

update

all

the

customer

attributes

in

the

applet.

7.

changeSTAttributes()

calls

several

applet

methods

to

update

the

attributes

values

that

the

CSR

is

monitoring.

8.

changeSTAttributes()

then

calls

the

changeWCSAttrs()

method

of

the

applet

to

send

all

of

the

updated

attribute

values

to

the

Sametime

system,

which

then

notifies

the

CSR

applet

that

the

attribute

values

have

been

changed..

Customer

care

allows

you

to

monitor

the

customers

who

are

corresponding

with

the

CSRs

in

your

store

by

v

Obtaining

the

customer’s

name

or

ID

v

Determining

which

page

the

customer

is

browsing

v

Tracking

the

items

in

the

shopping

cart

v

Tracking

customized

monitoring

items

Customized

code

is

added

to

the

store

pages

in

order

to

obtain

this

information.

The

following

sections

discuss

how

each

of

these

monitoring

features

are

implemented

in

the

sample

stores.

Obtaining

the

customer’s

name

or

ID

Once

the

customer

care

applet

is

launched

and

the

CSR

is

logged

on,

the

CSR

is

able

to

identify

who

is

using

the

applet

by

name

or

by

shopper

ID.

The

sample

stores

include

specialized

code

that

work

with

the

customer

care

applet

to

determine

the

customer’s

name

or

shopper

ID.

This

code

determines

whether

the

customer

is

a

guest

customer,

a

guest

customer

with

items

in

a

shopping

cart

or

a

registered

customer,

then

assigns

a

name

or

ID

to

the

customer,

and

passes

this

name

back

to

the

customer

care

applet.

These

names

then

display

to

the

CSR.

For

example,

if

the

customer

is

a

guest

customer,

who

hasn’t

placed

anything

in

the

shopping

cart,

the

customer

is

assigned

a

generated

ID,

with

shopper

ID

-1002.

If

the

customer

is

a

guest

with

items

in

the

shopping

cart,

the

shopper

ID

will

display,

and

if

the

customer

is

registered,

their

first

name

and

last

names

display.

The

sample

stores

obtain

the

customer’s

name

or

ID

by

including

the

CustomerCareInformationSetup.jsp

in

the

store

pages

header

file.

The

following

code

in

the

CustomerCareInformationSetup.jsp

file

obtains

the

customer’s

name

and

ID:

<jsp:useBean

id="userRDB"

class="com.ibm.commerce.user.beans.
UserRegistrationDataBean"

scope="page">

<%

DataBeanManager.activate(userRDB,

request);

%>

</jsp:useBean>

Chapter

41.

Adding

customer

care

to

your

store

417

<%

String

customer_name="";

customer_name=userRDB.getUserId();

if

(userRDB.findUser()){

if

(userRDB.getLastName()

!=null

&&

userRDB.getLastName().
length()

>

0){

if

(locale.toString().equals("ja_JP")||locale.toString().
equals("ko_KR")||locale.toString().equals("zh_CN")||locale.toString().
equals("zh_TW"))

{customer_name

=

userRDB.getLastName()

+

"

"

+

userRDB.getFirstName();}

else

{customer_name

=

userRDB.getFirstName()

+

"

"

+

userRDB.getLastName();}

}

}

if

(customer_name.equals("-1002"))

{

customer_name="";

}

else

{

//

need

to

check

order

items

....

}

customer_name=customer_name.trim();

%>

Note:

Each

time

a

customer

browses

a

new

page

in

the

store,

the

customer’s

name

or

ID

is

refreshed.

The

following

code

in

the

CustomerCareInformationSetup.jsp

file

updates

the

customer’s

name

and

ID:

<script

language="javascript">

....

function

changeSTAttributes()

{

if

(typeof

top.setCustomerName

==

’function’)

{

top.setCustomerName(<%=userRDB.getUserId()%>,

’<%=customer_name%>’);

top.setShoppingCartItems(<%=shoppingCartItems%>);

top.changeSTAttributes();

}

}

/script>

In

the

sample

store’s

Logout

page,

more

custom

code

is

included,

which

sets

the

customer

name

to

a

generated

ID

and

resets

the

number

of

items

in

the

shopping

cart

to

zero.

The

Logout

page

is

UserLogoffRouter.jsp.

The

custom

code

is

as

follows:

<HTML>

<HEAD>

<SCRIPT

language="javascript">

if

(typeof

parent.setCustomerName

==

’function’)

parent.setCustomerName

(parent.WCSGUESTID,

’’)

if

(typeof

parent.setShoppingCartItems

==

’function’)

parent.setShoppingCartItems(0);

</SCRIPT>

</HEAD>

</HTML>

Determining

which

page

the

customer

is

browsing

Customer

care

also

allows

CSRs

to

determine

what

page

the

customers

in

the

store

are

currently

browsing.

The

sample

stores

determine

what

pages

the

customers

are

in,

by

including

CustomerCareHeaderSetup.jsp

file

in

the

header

file

418

Store

Development

Guide

(HeaderDisplay.jsp).

The

following

code

in

the

CustomerCareHeaderSetup.jsp

file

obtains

the

page

URL

information

and

updates

the

shopper

applet:

<script

language="javascript">

var

PageName="";

var

PersonalPage=false;

<%

String

pname

=

request.getRequestURI();

int

indpn

=

pname.lastIndexOf(’/’);

indpn

=

pname.lastIndexOf(’/’,

indpn-1);

if(indpn

!=

-1)

pname

=

pname.substring(indpn+1);

String

headerType

=

(String)

request.getAttribute("liveHelpPageType");

if

(headerType==null)

headerType="";

//

Determine

if

this

is

a

personal

page

or

not

if

(headerType.equals("personal"))

{

%>

if

(typeof

parent.setPageParams

==

’function’)

{

PersonalPage=true;

parent.setPageParams(’PERSONAL_URL’,

’<%=pname%>’);

}

<%

}

else

{

%>

if

(typeof

parent.setPageParams

==

’function’)

parent.setPageParams(location.href,

’%=pname%>’);

<%

}

%>

Pagename="<%=pname%>";

</script>

You

should

not

allow

CSR

to

see

customer

pages

that

contain

personalized

information,

since

the

content

viewed

by

CSR

may

not

be

the

same

as

viewed

by

a

customer.

For

example,

a

CSR

might

not

have

access

to

a

campaign

page,

a

page

that

includes

a

price

determined

by

a

contract,

or

a

page

that

includes

the

user

ID,

for

example,

the

address

book

page.

These

pages

should

be

marked

as

personal

to

avoid

misleading

the

CSR

during

a

chat

session.

In

order

to

mark

pages

as

personal,

that

is,

not

available

to

the

CSR,

the

sample

stores

include

the

following

code

in

the

header

page,

just

before

the

CustomerCareHeaderSetup.jsp

file

is

included.

<flow:ifEnabled

feature="customerCare">

<%

request.setAttribute("liveHelpPageType",

"personal");

%>

</flow:ifEnabled>

Note:

Although

a

CSR

cannot

see

the

content

of

a

page

marked

personal

by

using

the

View

Customer

Page

button,

the

CSR

can

see

the

URL

of

that

page.

Tracking

the

number

of

items

in

the

shopping

cart

Customer

Care

also

allows

CSRs

to

track

how

many

items

a

customer

has

in

their

shopping

cart

at

any

time.

The

following

code

in

the

CustomerCareInformationSetup.jsp

file

obtains

the

number

of

items

in

the

shopping

cart:

Chapter

41.

Adding

customer

care

to

your

store

419

<%

JSPHelper

jhelper

=

new

JSPHelper(request);

String

storeId

=

jhelper.getParameter("storeId");

int

shoppingCartItems

=

0;

%>

<

jsp:useBean

id="userRDB"

class="com.ibm.commerce.user.beans.
UserRegistrationDataBean"

scope="page">

<%

DataBeanManager.activate(userRDB,

request);

%></jsp:useBean>

<%

....

//

need

to

check

order

items

OrderListDataBean

orderListBean

=

new

OrderListDataBean();

orderListBean.setStoreId(new

Integer(storeId));

orderListBean.setOrderStatus("P");

orderListBean.setUserId(cmdcontext.getUserId());

DataBeanManager.activate(orderListBean,

request);

Vector

pendingOrders

=

orderListBean.getOrders();

for

(int

k=0;

k<

pendingOrders.size();

k++)

{

OrderAccessBean

next_order

=

(OrderAccessBean)

pendingOrders.
elementAt(k);

OrderDataBean

orderBean

=

new

OrderDataBean();

orderBean.setOrderId(next_order.getOrderId());

DataBeanManager.activate(orderBean,

request);

//Get

items

in

the

order

OrderItemDataBean

[]

orderItems

=

orderBean.getOrderItemDataBeans();

for

(int

i

=

0;

((orderItems

!=

null)

&&

(i

<

orderItems.length));

i++)

{

OrderItemDataBean

orderItem

=

orderItems[i];

shoppingCartItems

+=

orderItem.getQuantityInEJBType().intValue();

}

}

....

%>

The

following

JavaScript

function

will

update

the

cart

information

to

Sametime

applet:

<script

language="javascript">

...

function

changeSTAttributes()

{

if

(typeof

top.setCustomerName

==

’function’)

{

top.setCustomerName(<%=userRDB.getUserId()%>,

’<%=customer_name%>’);

top.setShoppingCartItems(<%=shoppingCartItems%>);

top.changeSTAttributes();

}

}

</script>

Note:

A

CSR

can

view

the

contents

of

the

shopping

cart

using

the

View

Shopping

Cart

button.

For

more

information,

see

the

WebSphere

Commerce

online

help.

The

sample

stores

determine

the

number

of

items

in

the

shopping

cart

by

adding

the

following

code

to

the

above

pages:

v

First

an

int

variable

is

defined

int

liveHelpShoppingCartItems

=

0;

v

Next,

the

following

line

of

code

is

used

to

add

the

quantity

to

liveHelpShoppingCartItems

whenever

there

is

an

orderitem

addition

to

the

cart:

420

Store

Development

Guide

liveHelpShoppingCartItems+=

orderItem.getQuantityInEJBType().intValue();

v

Then,

the

following

code

is

added

at

the

end

of

the

page

to

set

the

customer

name

to

the

guest

shopper

ID,

and

to

obtain

the

number

of

items

in

the

customer’s

shopping

cart.

<script

language="javascript">

if

(typeof

parent.setShoppingCartItems

==

’function’)

parent.setShoppingCartItems(<%=liveHelpShoppingCartItems%>);

</script>

The

following

code

is

used

in

the

empty

shopping

cart

page

and

the

order

confirmation

page

to

reset

the

number

of

items

in

the

cart

to

zero:

<script

language="javascript">

if

(typeof

parent.setShoppingCartItems

==

’function’)

parent.setShoppingCartItems(0);

</script

Tracking

customized

monitoring

items

In

order

to

track

customized

monitoring

items,

do

the

following:

1.

Define

a

monitoring

attribute

ID,

(attribute

IDs

less

than

8000

are

reserved).

For

more

information,

see

“Defining

the

store’s

monitoring

list”

on

page

410.

2.

Define

a

JavaScript

variable

in

the

Sametime.js

file

to

save

the

attribute

ID

and

value,

and

allow

access

from

all

the

frames.

For

example:

var

myTrackAttributeId=8001;

var

myTrackAttributeValue="anything″;

3.

Add

JavaScript

code

to

assign

or

update

the

value

for

this

variable

in

store

pages.

For

example:

top.myTrackAttributeValue="new

Value";

4.

.

Call

the

setWcsAttribute()

method

of

the

applet

to

update

the

attribute

in

changeSTAttributes()

function

in

the

Sametime.js

file:

function

changeSTAttributes()

{

if(CustomerAppletIsUp)

{

sametime.document.applets["InteractivePresenceApplet"].
setWcsAttribute(myTrackAttributeId,myTrackAttributeValue);

sametime.document.applets["InteractivePresenceApplet"].
changeWCSAttrs();

}

else

setTimeout("changeSTAttributes()",3000);

//

wait

for

3

sec

and

try

again

}

Note:

Insert

your

code

before

the

changeWCSAttrs()

method.

Sending

requests

directly

to

a

customer

care

queue

By

default,

when

a

customer

requests

a

live

chat

with

CSR,

the

customer’s

request

will

be

placed

into

a

default

queue

(queueId=0).

It

is

then

the

CSR’s

responsibility

to

route

the

request

to

a

more

specific

queue.

However,

you

can

also

customize

your

store

page

to

send

requests

directly

to

a

defined

customer

care

queues.

To

customize

your

store

pages

to

send

requests

to

a

defined

queue,

do

the

following:

1.

Create

customer

care

queues

for

your

store

using

the

WebSphere

Commerce

Accelerator.

For

more

information,

see

the

WebSphere

Commerce

Production

online

help.

2.

Assign

these

queues

to

CSRs.

For

more

information,

see

the

WebSphere

Commerce

Production

online

help.

3.

Keep

a

record

of

the

queue

IDs

of

the

queues

you

have

created.

For

example

the

queue

ID

is

10020.

Chapter

41.

Adding

customer

care

to

your

store

421

4.

Use

JavaScript

to

update

the

reqQueue

variable

in

store

JSPs.

For

example,

top.reqQueue="10020";.

Queue

information

will

not

be

automatically

updated

after

a

CSR

launches

the

CSR

applet.

If

a

new

queue

is

added

into

the

system,

or

an

existing

queue

is

changed,

the

changes

will

not

take

effect

until

the

CSR

launches

the

CSR

applet

again.

If

the

queue

ID

is

not

recognized

by

a

CSR

applet,

the

queue

ID

will

be

put

back

into

the

default

queue

for

the

CSR.

This

behavior

does

not

affect

the

queue

attribute

value

associated

with

the

customer.

Customizing

customer

care

You

have

the

following

options

to

customize

customer

care:

v

Customizing

applet

parameters

v

Customizing

store

messages

Customizing

applet

parameters

The

following

table

lists

the

customizable

applet

parameters,

which

allow

you

to

customize

customer

care

by

modifying

the

CustomerCareFrameSetup.jsp

file.

Table

24.

Customizable

Parameter

Name

Description

Note

CHAT_FONT_SIZE

Font

size

to

be

used

in

CharArea

Default

value

is

12

CHAT_FONT_COLOR

Font

color

to

be

used

for

incoming

message

in

the

chat

area.

Default

is

blue

(#0000FF)

CHAT_NAME_LENGTH

Length

of

characters

reserved

for

displaying

user

names

in

the

chat

area.

Default

is

15

WAIT_RANGE_1

Integer

value,

if

the

number

of

waiting

customer

in

the

store

is

less

than

this

value,

the

waiting

message

1,

displays.

Otherwise

the

waiting

message

according

to

the

WAIT_RANGE_2

setting

displays.

Use

-1

when

only

message

1

will

be

displayed.

WAIT_RANGE_2

Integer

value,

if

the

number

of

waiting

customer

in

the

store

is

less

than

this

value,

but

greater

than

WAIT_RANGE_1,

the

waiting

message

2

displays.

Otherwise

the

waiting

message

according

to

the

WAIT_RANGE_3

setting

displays.

Ignored

if

WAIT_RANGE_1

is

-1.

Use

-1

to

disable

this

range.

422

Store

Development

Guide

Table

24.

(continued)

WAIT_RANGE_3

Integer

value,

if

the

number

of

waiting

customer

in

the

store

is

less

than

this

value,

but

greater

than

WAIT_RANGE_2

the

waiting

message

3,

displays,

otherwise

the

waiting

message

4

displays.

Ignored

if

WAIT_RANGE_2

is

-1.

Use

-1

to

disable

this

range.

contentFrame

Name

of

the

frame

that

is

used

for

regular

WebSphere

Commerce

store

pages

Default

is

″main″

COUNTER_UNIT_PAGE

Integer

value

that

indicates

how

frequently

the

page

counter

will

increase

by

1

Default

is

30

seconds.

Ensure

it

is

the

same

value

as

defined

in

the

store’s

CustomerCare
MonitorList.jsp

file.

COUNTER_UNIT_SITE

Integer

value

that

indicates

how

frequently

the

site

counter

will

increase

by

1

Default

is

30

seconds.

Ensure

it

is

the

same

value

as

defines

in

the

store’s

CustomerCareMonitorList.jsp

file.

COUNTER_UNIT_WAIT

Integer

value

that

indicates

how

frequently

the

wait

counter

will

increase

by

1

Default

is

30

seconds.

Ensure

it

is

the

same

value

as

defined

in

the

store’s

CustomerCareMonitorList.jsp

file.

WIDTH

Preferred

width

of

the

chat

frame

in

pixels

Default

is

360

pixel.

The

length

of

the

invitation

message

will

affect

the

final

width.

HEIGHT

Height

of

the

chat

frame

in

pixels

Default

is

400®

pixel.

Customizing

store

messages

The

messages

that

display

to

a

customer

when

they

initially

connect

to

a

CSR,

for

example,

″Hello,

how

can

I

help

you?″,

or

″Our

office

hours

are

from

9

a.m.

to

9

p.m.

are

stored

in

properties

files

in

on

the

Sametime

Server.

The

properties

files

are

divided

into

two

types

of

files:

Customer.properties

and

Agent.properties.

The

Customer.properties

file

contains

messages

that

display

to

the

customer,

while

the

Agent.properties

file

contains

information

that

displays

to

the

CSR.

Both

of

these

files

also

have

corresponding

locale-specific

files,

for

example

Customer_de_DE.properties

and

Agent_de_DE.properties,

for

each

locale

installed

in

your

instance

of

WebSphere

Commerce.

To

change

the

messages

in

these

files,

do

the

following:

1.

Locate

the

properties

files

on

the

Sametime

Server.

By

default,

these

properties

files

are

located

in

the

following

directory:

v

Customer_Care_installdir\properties
2.

Make

the

necessary

changes.

The

following

table

lists

the

message

keys

for

each

message.

Table

25.

Message

Key

Description

Notes

Chapter

41.

Adding

customer

care

to

your

store

423

Table

25.

(continued)

WelcomeMessage

The

first

message

to

be

displayed

in

the

customer’s

applet

after

the

CSR

accepts

a

chat

request.

GoodbyeMessage

Message

displayed

in

the

customer

applet

right

after

the

CSR

or

customer

ends

the

chat

session.

PushPageMessage

Message

to

be

displayed

in

the

customer

applet

after

the

CSR

sends

a

URL

to

the

customer’s

browser.

CallCSRMessage

Message

to

be

displayed

when

a

customer

submits

a

help

request

and

the

applet

is

connecting

to

the

Sametime

server.

NoConnectionMessage

Message

to

be

displayed

when

the

customer

applet

is

unable

to

connect

to

the

Sametime

server

or

has

lost

connection

with

the

Sametime

server.

StoreCloseMessage

Message

to

be

displayed

when

CSRs

are

not

available

to

serving

the

customer.

Always

displayed

with

the

StoreWorkingHour

message.

StoreWorkingHour

Message

to

be

displayed

when

CSRs

are

not

available

to

serve

the

customer.

Describes

the

store’s

hours

of

operation.

Always

displayed

with

the

StoreCloseMessage

message.

WaitingMessage

Message

to

be

displayed

when

a

customer

submits

a

request

and

the

total

number

of

waiting

customers

is

less

than

WAIT_RANGE_1.

WaitingMessage1

Message

to

be

displayed

when

a

customer

submits

a

request

and

the

total

number

of

waiting

customers

is

less

than

WAIT_RANGE_2,

but

greater

than

WAIT_RANGE_1.

WaitingMessage2

Message

to

be

displayed

when

a

customer

submits

a

request

and

the

total

number

of

waiting

customers

is

less

than

WAIT_RANGE_3,

but

greater

than

WAIT_RANGE_2.

424

Store

Development

Guide

Table

25.

(continued)

WaitingMessage3

Message

to

be

displayed

when

a

customer

submits

a

request

and

the

total

number

of

waiting

customers

is

greater

than

WAIT_RANGE_3.

CIWarningLabelLineOne

The

first

line

of

the

invitation

message

that

displays

when

a

CSR

initiates

a

chat

request

to

a

customer.

The

display

length

of

the

message

will

affect

the

width

of

the

chat

frame.

The

line

separator

character

should

not

be

used.

CIWarningLabelLineTwo

The

second

line

of

the

invitation

message

that

displays

when

a

CSR

initiates

a

chat

request

to

a

customer.

The

display

length

of

the

message

will

affect

the

width

of

the

chat

frame.

The

line

separator

should

not

be

used.

Note:

The

line

separator

character

″\n″

should

be

inserted

in

the

message

to

start

a

new

line.

If

not,

the

message

may

exceeds

the

boundary

of

the

display

area.

Note:

You

may

need

to

modify

properties

for

different

locales

to

ensure

the

correct

translation

of

the

message.

3.

Close

and

save

the

file.

Adding

customer

care

to

your

store

To

add

customer

care

to

a

store

that

is

not

based

on

a

sample,

do

the

following:

Part

1:

Installing

pre-requisites

In

order

for

customer

care

to

work

in

your

store,

you

must

do

the

following:

v

Install

a

Sametime

server.

For

more

information,

see

the

WebSphere

Commerce

Additional

Software

guide.

v

Install

the

WebSphere

Commerce

Sametime

integration

package.

For

more

information,

see

the

WebSphere

Commerce

Additional

Software

guide.

v

Stop

the

WebSphere

Commerce

instance,

then

enable

Sametime

in

the

Configuration

Manager,

then

restart

the

instance.

For

more

information,

see

the

WebSphere

Commerce

Additional

Software

guide.

v

If

the

Sametime

server

does

not

use

the

same

LDAP

server

as

WebSphere

Commerce,

create

a

CSR

and

register

the

CSR

for

customer

care

using

the

Administration

Console.

For

more

information,

see

the

WebSphere

Commerce

Production

online

help.

Part

2:

Copying

the

customer

care

integration

files

from

the

sample

store

The

sample

stores

FashionFlow

and

ToolTech

include

the

following

files

which

are

used

to

integrate

customer

care

into

the

store:

v

Sametime.js:

Contains

JavaScript

functions

that

are

included

for

all

frames.

The

functions

from

this

file

are

called

with

a

parent

prefix

from

pages

in

the

main

frame,

for

example,

parent.setCustomerName.

Chapter

41.

Adding

customer

care

to

your

store

425

v

CustomerCareBlankSetup.jsp::

An

empty

JSP

file.

It

is

called

by

the

CCShopperBlankPageView

command,

as

a

placeholder

for

the

frames.

v

CustomerCareFrameSetup.jsp

:

Contains

JavaScript

functions

and

embeds

the

customer

care

applet

for

the

store

front.

It

is

called

by

the

CCShopperFramePageView

command,

and

loads

the

customer

applet

in

the

frameset..

v

CustomerCareAppletReadySetup.jsp

:

:

Indicates

that

the

applet

is

loaded

properly.

It

is

called

by

the

CCShopperReadyPageView

command,

and

indicates

that

the

customer

applet

is

ready

for

Javascript

functions.

v

CustomerCareHeaderSetup.jsp:

A

header

file

that

passes

in

a

parameter

to

the

applet

indicating

whether

the

page

that

includes

this

header

is

a

personal

page

or

not.

It

must

be

included

in

every

page

to

update

the

customer’s

page

URL.

v

CustomerCareInformationSetup.jsp:

Updates

the

customer’s

name

information

and

ID.

It

is

called

by

the

CCShopperInfoUpdatePageView

command.

v

CustomerCareMonitorList.jsp:

The

monitoring

list

configuration

file.

it

is

called

by

the

CSR

to

load

monitoring

list.

v

CustomerCareStoreQuestionList.jsp:

The

topic

list

configuration

file.

It

is

called

by

the

CSR

to

load

the

store

topic

list

v

CustomerCareStoreURLList.jsp:

The

store

level

URL

list

configuration

file.

It

is

called

by

CSR

to

load

the

store

URL

list

v

CustomerCareChatSetup.jsp:

The

setup

file

for

using

customer

care

without

a

frameset.

It

is

called

by

the

CCChatPageView

command

and

launches

the

customer

applet

in

the

non-frameset

configuration.

v

EnvironmentSetup.jsp:

Used

by

all

customer

care

JSP

files

for

store

level

configuration

(for

example,

resource

bundles).

v

index.jsp:

The

entry

page

that

redirects

the

customer’s

browser

to

the

frameset

page

or

regular

catalog

pages

according

to

the

customer

care

store

flow

settings.

v

StoreFramesetPage.jsp:

It

is

called

by

the

StoreFramesetView

command

to

construct

a

frameset

for

customer

care.

To

copy

the

Sametime

integration

files

from

the

sample

store

to

your

store,

do

the

following:

1.

Locate

the

store

archive

file

for

the

consumer

direct

(FashionFlow

store)

or

the

B2B

direct

(ToolTech)

store.

The

store

archive

files

are

located

in

the

following

directory:

v

WC_installdir/samplestores
2.

Open

either

the

ConsumerDirect

or

B2BDirect

folder,

then

select

a

consumerdirect.sar

or

B2Bdirect.sar.

3.

Open

the

store

archive

file

using

WinZip

or

a

similar

tool.

4.

Select

the

files

listed

above:

5.

Extract

the

files

to

the

directory

that

contains

the

web

assets

for

your

store.

To

maintain

the

same

directory

structure

as

the

samples

stores,

you

may

want

to

create

subdirectories

for

the

following

files:

v

.../CustomerServiceArea/CollaborationSection

–

CustomerCareAppletReadySetup.jsp

–

CustomerCareBlankSetup.jsp

–

CustomerCareBlankSetup.jsp

–

CustomerCareFrameSetup.jsp

–

CustomerCareInformationSetup.jsp

–

CustomerCareMonitorList.jsp

426

Store

Development

Guide

–

CustomerCareStoreQuestionList.jsp

–

CustomerCareStoreURLList.jsp

–

CustomerCareChatSetup.jsp
v

/include

–

CustomerCareHeaderSetup.jsp

–

EnvironmentSetup.jsp
v

..\

–

index.jsp

–

Sametime.js

–

StoreFramesetPage.jsp

Part

3:

Adding

code

to

determine

which

page

the

customer

is

browsing

To

determine

which

page

the

customer

is

browsing,

do

the

following:

1.

Include

the

CustomerCareHeaderSetup.jsp

file

to

the

store’s

header

file,

for

example:

<%@

include

file="include\CustomerCareHeaderSetup.jsp"

%>

2.

Add

the

following

code

to

any

pages

that

should

be

marked

personal,

and

thus

not

available

for

access

by

the

CSR.

Ensure

the

following

code

is

added

before

you

include

the

CustomerCareHeaderSetup.jsp

file.

<flow:ifEnabled

feature="customerCare">

<%

request.setAttribute("liveHelpPageType",

"personal");

%>

</flow:ifEnabled>=incfile%>"flush="true"/>

Part

4:

Adding

a

link

to

customer

care

To

allow

customers

to

access

customer

care

in

your

store,

do

the

following:

1.

Determine

where

you

would

like

to

place

the

link

to

customer

care.

For

example,

you

may

want

to

place

the

link

in

a

navigation

bar,

so

it

is

always

available

to

customers,

or

in

certain

pages

in

the

store.

2.

Copy

the

following

code

into

the

pages

that

will

contain

the

link:

Note:

You

may

need

to

replace

infashiontext

with

the

object

name

used

for

that

store

resource).
<a

href="javascript:if((parent.sametime

!=

null))

top.interact();"><%=infashiontext.getString("LiveHelp")%>

Part

5:

Create

an

entry

page

that

will

redirect

to

the

customer

care

frameset

page

Since

the

frameset

is

required

for

most

customer

care

features

to

function

properly,

the

customer

must

call

the

StoreFramesetView

command

to

activate

the

frameset.

For

an

example,

see

index.jsp

of

the

consumer

direct

or

B2B

direct

sample

store.

Chapter

41.

Adding

customer

care

to

your

store

427

428

Store

Development

Guide

Chapter

42.

Adding

e-Marketing

Spots

to

your

store

e-Marketing

Spots

reserve

space

on

your

store

pages

in

which

personalized

marketing

content

for

campaign

initiatives

displays.

When

a

page

is

requested

by

a

customer,

any

e-Marketing

Spots

present

on

the

page

will

communicate

with

the

rule

server

to

process

the

rule-based

code

associated

with

the

spot.

Each

e-Marketing

Spot

has

one

or

more

campaign

initiatives

associated

with

it.

For

more

information

on

campaigns

and

campaign

initiatives,

see

Chapter

20,

“Campaign

assets,”

on

page

203

and

the

WebSphere

Commerce

online

help.

In

order

to

for

campaign

initiatives

to

display

correctly

on

your

store

pages,

an

e-Marketing

Spot

must

be

added

to

the

JSP

file,

and

then

registered

in

the

database

using

the

WebSphere

Commerce

Accelerator.

This

chapter

discusses

how

to

add

e-Marketing

Spots

to

the

store’s

JSP

files.

For

more

information

on

registering

the

e-Marketing

Spot

in

the

database

using

the

WebSphere

Commerce

Accelerator,

see

the

WebSphere

Commerce

online

help.

e-Marketing

Spot

The

following

is

an

example

of

an

e-Marketing

Spot.

<!--

==

//*--

//*

The

sample

contained

herein

is

provided

to

you

"AS

IS".

//*

//*

It

is

furnished

by

IBM

as

a

simple

example

and

has

not

been

thoroughly

tested

//*

under

all

conditions.

IBM,

therefore,

cannot

guarantee

its

reliability,

//*

serviceability

or

functionality.

//*

//*

This

sample

may

include

the

names

of

individuals,

companies,

brands

and

products

//*

in

order

to

illustrate

concepts

as

completely

as

possible.

All

of

these

names

//*

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

actual

persons

//*

or

business

enterprises

is

entirely

coincidental.

//*--

//*

===

-->

<%

/**

*

START

-

the

following

code

should

exist

only

once

in

a

page,

it

initialize

the

*

command

context

and

store

data

bean.

*/

//

create

the

store

bean

to

get

the

store

directory

String

collateralPath

=

"/webapp/wcs/stores/";

com.ibm.commerce.command.CommandContext

emsCommandContext

=

(com.ibm.commerce.command.CommandContext)

request.getAttribute(com.ibm.commerce.server.ECConstants.EC_COMMANDCONTEXT);

com.ibm.commerce.common.beans.StoreDataBean

storeDataBean

=

new

com.ibm.commerce.common.beans.StoreDataBean();

storeDataBean.setStoreId(emsCommandContext.getStoreId().toString());

com.ibm.commerce.beans.DataBeanManager.activate(storeDataBean,

request);

if

(storeDataBean.getDirectory()

!=

null)

{

collateralPath

+=

storeDataBean.getDirectory()

+

"/";

}

/**

*

END

-

the

following

code

should

exist

only

once

in

a

page,

it

initialize

the

*

command

context

and

store

data

bean.

*/

%>

<!--

==

//

The

following

HTML

form

submits

the

request

on

the

e-Marketing

Spot

to

the

ClickInfo

//

command

which

captures

the

campaign

statistics,

and

redirects

to

the

location

specified

//

by

the

URL

parameter.

===

-->

<form

name="storeEmsForm"

method="POST"

action="/webapp/wcs/stores/servlet/ClickInfo">

©

Copyright

IBM

Corp.

2000,

2003

429

<input

type="hidden"

name="evtype">

<input

type="hidden"

name="mpe_id">

<input

type="hidden"

name="intv_id">

<input

type="hidden"

name="URL">

</form>

<%

/**

*

START

-

the

following

code

can

be

used

to

drop

multiple

e-Marketing

Spots

onto

the

page.

*

Customize

the

appropriate

EMarketingSpot

instance

name

and

the

e-Marketing

Spot

*

name

before

use.

Duplicate

this

code

if

more

than

1

spot

is

needed,

but

do

not

*

use

the

same

spot

name.

*/

//

create

the

e-Marketing

Spot

com.ibm.commerce.marketing.beans.EMarketingSpot

eMarketingSpot

=

new

com.ibm.commerce.marketing.beans.EMarketingSpot();

//

IMPORTANT

-

set

the

correct

name

here

String

emsName

=

request.getParameter("emsName");

if

(emsName

==

null)

{

emsName

=

"defaultEMSName";

}

eMarketingSpot.setName(emsName);

//

Set

the

catalog

entry

ID

that

is

currently

displaying

on

the

page.

This

is

required

if

the

//

up-sell/cross-sell

initiative

is

based

on

the

content

of

the

current

page.

String

sourceCatentryId

=

request.getParameter("sourceCatentryId");

if

(sourceCatentryId

!=

null)

{

eMarketingSpot.setSourceCatalogEntryId(sourceCatentryId);

//

use

this

method

to

set

single

ID

//eMarketingSpot.setMultipleSourceCatalogEntryId(sourceCatentryId2);

//

use

this

method

to

set

multiple

IDs

}

//

the

maximum

number

of

products/categories/ad

copies

that

display

through

this

//

e-Marketing

Spot

can

be

set

here

eMarketingSpot.setMaximumNumberOfCatalogEntries(20);

eMarketingSpot.setMaximumNumberOfCategories(20);

eMarketingSpot.setMaximumNumberOfCollateral(20);

eMarketingSpot.setMaximumNumberOfAssociateCatalogEntries(20);

//

instantiate

the

bean

com.ibm.commerce.beans.DataBeanManager.activate(eMarketingSpot,

request);

%>

<%

//

The

following

block

is

used

to

display

the

up-sell/cross-sell

products

associated

with

//

this

e-marketing

spot.

The

product

display

page

which

shows

the

selected

product

in

the

//

campaign

will

be

referenced

through

the

submittion

of

the

HTML

form

attached

above.

if

(eMarketingSpot.getAssociateCatalogEntries()

!=

null

&&

eMarketingSpot.getAssociateCatalogEntries().length

<

0)

{

%>

<TABLE>

<%

for

(int

i=0;

i<eMarketingSpot.getAssociateCatalogEntries().length;

i++)

{

String

associateCatalogEntryThumbNail

=

null;

String

associateCatalogEntryShortDescription

=

null;

try

{

associateCatalogEntryThumbNail

=

eMarketingSpot.getAssociateCatalogEntries()[i].getDescription(emsCommandContext.

getLanguageId()).getThumbNail();

associateCatalogEntryShortDescription

=

eMarketingSpot.getAssociateCatalogEntries()[i].getDescription(emsCommandContext.

getLanguageId()).getShortDescription();

}

catch

(Exception

e)

{

//

no

description

defined

for

the

current

language

}

%>

<TR>

<TD>

<A

HREF="/webapp/wcs/stores/servlet/ClickInfo?evtype=CpgnClick&mpe_id=<%=

eMarketingSpot.getId()

%>&intv_id=<%=

eMarketingSpot.getAssociateCatalogEntries()[i].getInitiativeId()

%>

&URL=/webapp/wcs/stores/servlet/ProductDisplay&<%=

com.ibm.commerce.server.ECConstants.EC_STORE_ID

%>=<%=

emsCommandContext.getStoreId().toString()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_PRODUCT_ID

%>=<%=

eMarketingSpot.getAssociateCatalogEntries()[i].getCatalogEntryID()

%>&<%=

430

Store

Development

Guide

com.ibm.commerce.server.ECConstants.EC_LANGUAGE_ID

%>=<%=

emsCommandContext.getLanguageId().toString()

%>">

<IMG

SRC="<%=

collateralPath

+

associateCatalogEntryThumbNail

%>"

ALT="<%=

associateCatalogEntryShortDescription

%>"

BORDER=0

WIDTH=60>

</TD>

<TD><%=

associateCatalogEntryShortDescription

%></TD>

</TR>

<%

}

%>

</TABLE>

<%

}

%>

<%

//

The

following

block

is

used

to

display

the

advertisements

associated

with

this

//

e-marketing

spot.

The

URL

link

defined

with

an

advertisement

can

be

referenced

through

//

the

submittion

of

the

HTML

form

attached

above.

if

(eMarketingSpot.getCollateral()

!=

null

&&

eMarketingSpot.getCollateral().length

>

0)

{

%>

<TABLE>

<%

for

(int

i=0;

i<eMarketingSpot.getCollateral().length;

i++)

{

%>

<TR>

<%

if

(eMarketingSpot.getCollateral()[i].getTypeName().equals("Image"))

{

%>

<TD>

<A

HREF="javascript:document.storeEmsForm.evtype.value=’CpgnClick’;

document.storeEmsForm.mpe_id.value=’<%=

eMarketingSpot.getId()

%>’;document.storeEmsForm.intv_id.value=’<%=

eMarketingSpot.getCollateral()[i].getInitiativeId()

%>’;document.storeEmsForm.URL.value=’<%=

eMarketingSpot.getCollateral()[i].getUrlLink()

%>’;document.storeEmsForm.submit();">

<IMG

SRC="<%=

collateralPath

+

eMarketingSpot.getCollateral()[i].getLocation()

%>">

</TD>

<TD>

<%=

eMarketingSpot.getCollateral()[i].getMarketingText()

%>

</TD>

<%

}

else

if

(eMarketingSpot.getCollateral()[i].getTypeName().equals("Flash"))

{

%>

<TD>

<EMBED

src="<%=

collateralPath

+

eMarketingSpot.getCollateral()[i].getLocation()

%>"

quality=high

bgcolor=#FFFFFF

WIDTH=120

HEIGHT=90

TYPE="application/x-shockwave-flash"></EMBED>

</TD>

<TD>

<A

HREF="javascript:document.storeEmsForm.evtype.value=’CpgnClick’;

document.storeEmsForm.mpe_id.value=’<%=

eMarketingSpot.getId()

%>’;document.storeEmsForm.intv_id.value=’<%=

eMarketingSpot.getCollateral()[i].getInitiativeId()

%>’;document.storeEmsForm.URL.value=’<%=

eMarketingSpot.getCollateral()[i].getUrlLink()

%>’;document.storeEmsForm.submit();">

<%=

eMarketingSpot.getCollateral()[i].getMarketingText()

%>

</TD>

<%

}

%>

</TR>

<%

}

%>

</TABLE>

<%

}

%>

<%

//

The

following

block

is

used

to

display

the

categories

associated

with

this

e-marketing

//

spot.

The

category

display

page

which

shows

the

selected

category

in

the

campaign

will

//

be

referenced

through

the

submittion

of

the

HTML

form

attached

above.

if

(eMarketingSpot.getCategories()

!=

null

&&

eMarketingSpot.getCategories().length

>

0)

{

%>

<TABLE>

<%

for

(int

i=0;

i<eMarketingSpot.getCategories().length;

i++)

{

String

catalogGroupName

=

null;

String

catalogGroupLongDescription

=

null;

try

{

catalogGroupName

=

eMarketingSpot.getCategories()[i].getDescription

(emsCommandContext.getLanguageId()).getName();

catalogGroupLongDescription

=

eMarketingSpot.getCategories()[i].getDescription

(emsCommandContext.getLanguageId()).getLongDescription();

}

catch

(Exception

e)

{

//

no

description

defined

for

the

current

language

Chapter

42.

Adding

e-Marketing

Spots

to

your

store

431

}

%>

<TR>

<TD>

<A

HREF="/webapp/wcs/stores/servlet/ClickInfo?evtype=CpgnClick&mpe_id=<%=

eMarketingSpot.getId()

%>&intv_id=<%=

eMarketingSpot.getCategories()[i].getInitiativeId()

%>&URL=/webapp/wcs/stores/servlet/CategoryDisplay&<%=

com.ibm.commerce.server.ECConstants.EC_STORE_ID

%>=<%=

emsCommandContext.getStoreId().toString()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_CATEGORY_ID

%>=<%=

eMarketingSpot.getCategories()[i].getCategoryId()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_CATALOG_ID

%>=<%=

eMarketingSpot.getCategories()[i].getCatalogId()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_LANGUAGE_ID

%>=<%=

emsCommandContext.getLanguageId().toString()

%>">

<%=

catalogGroupName

%>

</TD>

<TD><%=

catalogGroupLongDescription

%></TD>

</TR>

<%

}

%>

</TABLE>

<%

}

%>

<%

//

The

following

block

is

used

to

display

the

products

associated

with

this

e-Marketing

//

Spot.

The

product

display

page

which

shows

the

selected

product

in

the

campaign

will

//

be

referenced

through

the

submittion

of

the

HTML

form

attached

above.

if

(eMarketingSpot.getCatalogEntries()

!=

null

&&

eMarketingSpot.getCatalogEntries().length

>

0)

{

%>

<TABLE>

<%

for

(int

i=0;

i<eMarketingSpot.getCatalogEntries().length;

i++)

{

String

catalogEntryThumbNail

=

null;

String

catalogEntryShortDescription

=

null;

try

{

catalogEntryThumbNail

=

eMarketingSpot.getCatalogEntries()[i].getDescription(emsCommandContext.

getLanguageId()).getThumbNail();

catalogEntryShortDescription

=

eMarketingSpot.getCatalogEntries()[i].getDescription(emsCommandContext.

getLanguageId()).getShortDescription();

}

catch

(Exception

e)

{

//

no

description

defined

for

the

current

language

}

%>

<TR>

<TD>

<A

HREF="/webapp/wcs/stores/servlet/ClickInfo?evtype=CpgnClick&mpe_id=<%=

eMarketingSpot.getId()

%>&intv_id=<%=

eMarketingSpot.getCatalogEntries()[i].getInitiativeId()

%>&URL=/webapp/wcs/stores/servlet/ProductDisplay&<%=

com.ibm.commerce.server.ECConstants.EC_STORE_ID

%>=<%=

emsCommandContext.getStoreId().toString()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_PRODUCT_ID

%>=<%=

eMarketingSpot.getCatalogEntries()[i].getCatalogEntryID()

%>&<%=

com.ibm.commerce.server.ECConstants.EC_LANGUAGE_ID

%>=<%=

emsCommandContext.getLanguageId().toString()

%>">

<IMG

SRC="<%=

collateralPath

+

catalogEntryThumbNail

%>"

ALT="<%=

catalogEntryShortDescription

%>"

BORDER=0

WIDTH=60>

</TD>

<TD><%=

catalogEntryShortDescription

%></TD>

</TR>

<%

}

%>

</TABLE>

<%

}

%>

<%

/**

*

END

-

the

following

code

is

used

to

drop

multiple

e-Marketing

Spots

onto

the

page.

*

Customize

the

appropriate

e-Marketing

Spot

name

before

use.

*

Duplicate

this

code

if

more

than

1

spot

is

needed,

but

do

not

use

the

same

spot

name.

*/

%>

432

Store

Development

Guide

The

preceding

e-Marketing

Spot

supports

four

types

of

campaign

initiatives:

v

Product

recommendation

v

Category

recommendation

v

Awareness

advertisement

v

Merchandising

association

Note:

For

more

detailed

information

on

each

of

these

initiatives,

see

Chapter

20,

“Campaign

assets,”

on

page

203.

e-MarketingSpot

bean

e-Marketing

Spots

use

the

e-MarketingSpot

bean

to

return

the

results

of

campaign

initiatives

that

are

currently

scheduled

onto

the

spot.

Using

different

properties

of

the

bean

allows

you

to

customize

your

e-Marketing

Spot

and

the

corresponding

campaign

initiative.

For

more

information

on

the

e-MarketingSpot

bean

and

its

properties,

see

the

WebSphere

Commerce

online

help.

Adding

an

e-Marketing

Spot

to

your

store

pages

In

order

to

add

an

e-Marketing

Spot

to

your

store

pages,

do

the

following:

1.

Determine

on

which

JSP

files

the

spot

will

display.

The

spot

can

be

added

to

multiple

JSP

files.

2.

Determine

where

on

the

JSP

file

to

place

the

spot.

3.

Copy

the

sample

e-Marketing

Spot

in

“e-Marketing

Spot”

on

page

429

to

a

new

JPS

file

inside

of

the

store

Web

application.

4.

Customize

the

sample

e-Marketing

Spot

to

fit

the

layout

of

your

JSP

file(s).

5.

Within

the

e-Marketing

Spot

code,

give

the

e-Marketing

Spot

a

name.

Note:

e-Marketing

Spots

should

be

descriptively

named

so

as

to

include

their

location,

such

as

HomePageAd,

or

CheckOutPageRecommendation.

This

helps

to

reduce

confusion

about

where

it

will

appear,

and

what

content

it

should

contain.

If

necessary,

numbers

can

be

added

to

the

name

to

differentiate

between

two

e-Marketing

Spots

appearing

on

the

same

page.

e-Marketing

Spot

names

must

be

valid

Java

identifiers.

You

must

use

this

same

name

when

registering

the

e-Marketing

Spot

in

the

database

using

the

WebSphere

Commerce

Accelerator.

6.

Add

the

e-Marketing

Spot

to

the

JSP

file

by

dynamically

including

the

spot

using

the

<jsp:include>

tag.

7.

If

you

require

more

than

one

e-Marketing

Spot

per

JSP

file,

repeat

steps

2

through

6.

8.

Register

the

e-Marketing

Spot

in

the

database

using

the

WebSphere

Commerce

Accelerator.

For

detailed

instructions,

see

the

WebSphere

Commerce

online

help.

Note:

a.

If

you

plan

to

add

the

store

ID,

catalog

ID,

or

language

ID

to

the

URL

using

the

following

convention,

″langId=<%=

languageId

%>″,

note

that

the

JSP

in

which

the

e-marketing

spot

is

embedded

must

make

the

appropriate

ID

available.

The

IDs

can

also

be

retreived

through

the

command

context,

for

example,

getCommandContext().getLanguageId()?).

b.

The

URL

parameter,

CatalogDisplay

should

start

with

″&″

instead

of

″?″

because

the

code

isn’t

referencing

the

command

directly.

Chapter

42.

Adding

e-Marketing

Spots

to

your

store

433

c.

By

using

the

Java

dynamic

include

tag

to

add

the

e-Marketing

Spot

to

the

store

JSP,

the

new

Dynacache

feature

can

be

enabled,

so

that

the

content

of

the

JSP,

excluding

the

e-Marketing

Spot,

will

be

cached.

The

e-Marketing

Spot

will

be

refreshed

on

every

visit,

thus

displaying

the

proper

dynamic

content.

Here

is

an

example

of

how

the

dynamic

include

can

be

used

to

add

the

e-Marketing

Spot

to

a

JSP

file,

called

ESpot.jsp:

<jsp:include

page="ESpot.jsp"

flush="true">

<jsp:param

name="emsName"

value="StoreHomePage"

/>

</jsp:include>

d.

If

a

merchandising

association

initiative

is

being

scheduled

to

the

e-Marketing

Spot,

and

the

source

of

the

association

is

based

on

the

content

of

the

page,

it

can

be

set

using

the

setSourceCatalogEntryId(String

source)

and

the

setMultipleCatalogEntryId(String

source)

methods

provided

in

com.ibm.commerce.marketing.beans.EMarketingSpot.

For

example,

in

the

Product

Display

page,

if

the

product

displayed

in

the

page

is

to

be

used

as

the

source

of

the

association,

the

following

method

will

be

invoked:

eSpot.setSourceCatalogEntryId(productId)

where

eSpot

is

an

instance

of

the

com.ibm.commerce.marketing.beans.EMarketingSpot

class,

and

productId

is

the

identifier

of

the

source

product.

434

Store

Development

Guide

Part

12.

Appendixes

©

Copyright

IBM

Corp.

2000,

2003

435

436

Store

Development

Guide

Appendix

A.

UML

legend

Unified

Modeling

Language

is

a

standard

graphical

language

for

presenting

different

elements

of

software

design.

The

following

examples

are

some

of

the

most

common

elements

of

UML.

For

further

detail

about

formal

specifications,

refer

to

http://www.rational.com

and

http://www.omg.org.

UML

diagrams

consist

of

the

following

items:

v

Boxes:

Boxes

represent

classes

of

objects.

The

class

names

appear

at

the

top

of

the

box.

Attributes,

if

shown,

appear

below

the

class

name.

The

class

name

and

attributes

are

separated

by

a

line.

v

Lines:

Lines

represent

possible

relationships

between

objects

of

two

classes.

Objects

of

the

class

on

one

end

of

the

line

can

be

″associated″

of

the

class

on

the

other

end

of

the

line..

v

Solid

diamonds:

Solid

diamonds

on

the

end

of

a

line

indicate

containment

by

value.

Objects

of

the

class

on

the

other

end

of

the

line

are

part

of

one

and

only

one

object

of

the

class

the

diamond

touches.

v

Open

diamonds:

Open

diamonds

on

the

end

of

a

line

indicate

containment

by

reference.

Objects

at

the

diamond

end

of

the

line

can

be

thought

of

as

grouping

objects

of

the

class

at

the

other

end

of

the

line.

v

Cardinality

numbers:

These

appear

at

the

end

of

relationship

lines

to

indicate

a

cardinality

restriction.

The

following

table

summarizes

cardinality

restrictions:

Cardinality

number

Relationship

type

1

one

and

only

one

0..1

zero

or

one

0..n

zero

or

more

1..n

one

or

more

If

no

cardinality

restriction

is

shown,

the

cardinality

is

assumed

to

be

0..n,

unless

a

solid

diamond

appears

on

the

end

of

a

relationship

line.

In

that

case,

the

cardinality

must

be

1.

v

Plus

signs:

Plus

signs

appearing

at

the

end

of

relationship

lines

indicate

the

object

of

the

class

at

the

end

of

the

line

plays

a

role

in

the

relationship.

Text

following

the

plus

sign

indicates

the

object’s

role

in

the

relationship.

v

Arrows:

Arrows

at

the

end

of

a

relationship

line

indicate

the

direction

of

the

relationship

between

two

objects

is

in

the

direction

of

the

arrow.

The

absence

of

any

arrows

on

a

relationship

line

indicates

the

direction

of

the

relationship

between

the

objects

is

normally

in

both

directions.

©

Copyright

IBM

Corp.

2000,

2003

437

The

following

diagrams

illustrate

the

above

concepts:

Entity bean 2

+association role

Entity bean 2

This

diagram

shows

two

entity

beans

with

the

decoration

stereotype

symbol

indicating

an

Enterprise

Java

Bean.

There

is

a

unidirectional

association

from

the

first

bean

to

the

second

entity

bean.

The

plus

sign

is

followed

by

text

that

describes

what

role

Entity

bean

2

plays

the

association.

Member StoreEntity
1

+owner

In

this

diagram,

a

StoreEntity

has

one

and

only

one

owner,

which

is

a

Member.

A

Member

may

own

zero

or

more

StoreEntities.

The

plus

sign

indicates

that

the

Member

plays

a

role

in

the

relationship.

In

this

case

the

Member

is

the

owner

of

the

StoreEntity.

The

arrow

indicates

that

you

would

normally

find

out

the

owner

of

a

StoreEntity

by

asking

the

StoreEntity

for

its

owner,

and

not

asking

a

Member

for

all

the

StoreEntities

it

owns.

Order OrderItem

In

this

diagram,

an

OrderItem

is

always

part

of

one

and

only

one

Order.

An

Order

has

zero

or

more

OrderItems.

TaxCodeClassification
0..1 CalculationCode

This

diagram

indicates

that

a

CalculationCode

is

grouped

by

zero

or

one

TaxCodeClassifications

and

a

TaxCodeClassification

groups

zero

or

more

CalculationCodes.

438

Store

Development

Guide

Appendix

B.

Creating

your

data

Before

creating

store

data

in

the

form

of

XML

files,

do

the

following:

v

Review

the

information

in

Chapter

37,

“Overview

of

loading

store

data,”

on

page

335.

v

Determine

the

order

of

the

information

you

are

creating.

The

information

in

each

of

the

store

data

chapters

advises

you

on

the

order

in

which

to

create

the

data,

but

when

creating

XML

files

remember

that

information

for

a

parent

table

must

precede

information

for

a

child

table.

For

more

information

on

the

order

of

loading

assets,

see

Chapter

38,

“Loading

WebSphere

Commerce

database

asset

groups,”

on

page

383.

Creating

data

for

sample

stores

Data

in

sample

store

archives

takes

the

form

of

well-formed,

XML

files

valid

for

the

Loader

package.

The

store

archive

XML

files

are

intended

to

be

portable

and

should

not

contain

generated

primary

keys

that

are

specific

to

a

particular

instance

of

the

database.

Instead

they

use

internal-aliases,

which

are

resolved

by

the

ID

Resolver

at

the

time

of

publish.

The

use

of

these

conventions

allows

the

sample

store

archives

to

be

copied

and

published

multiple

times.

It

is

not

necessary

to

use

these

conventions

when

creating

store

data

for

your

store

in

the

form

of

XML

files,

unless

you

plan

to

create

a

sample

store

archive

that

will

be

used

to

generate

several

stores,

or

unless

you

want

to

create

a

store

archive

that

is

portable,

that

is

a

store

archive

that

can

be

published

to

another

WebSphere

Commerce

instance.

As

a

result,

the

sample

store

archives

use

the

following

conventions:

v

@

as

in

ffmcenter_id="@ffmcenter_id_1".

The

use

of

the

@

symbol

is

known

as

internal-alias

resolution.

The

ID

Resolver,

which

is

a

Loader

package

utility,

generates

identifiers

for

XML

elements

that

require

them.

One

of

the

techniques

ID

Resolver

uses

is

internal-alias

resolution.

When

using

internal-alias

resolution,

an

alias

is

substituted

in

place

of

the

primary

key

(identifier)

in

the

XML

document.

This

alias

is

then

used

elsewhere

in

the

XML

file

to

refer

to

that

element.

This

eliminates

the

need

to

know

the

unique

indexes

necessary

to

build

the

XML

file.

During

publish

in

the

Administration

Console,

or

using

the

Loader

package,

the

ID

Resolver

replaces

the

@

symbol

with

a

unique

value.

See

the

following

examples

from

an

XML

file:

–

Pre-ID

Resolver

<catalog

catalog_id="@catalog_id_1"

member_id="&MEMBER_ID;"

identifer=FashionFlow"

description="FashionFlow

Catalog"

tpclevel="0"/>

–

Post

ID

Resolver

<catalog

catalog_id="10001"

member_id="-2000"

identifer=FashionFlow"

description="FashionFlow

Catalog"

tpclevel="0"/>

©

Copyright

IBM

Corp.

2000,

2003

439

where

10001

is

the

unique

ID

assigned

by

the

ID

Resolver

and

-2000

is

the

member

ID

selected

by

the

user

in

the

Administration

Console.

The

resulting

XML

file

then

gets

loaded

using

the

Loader

package.

Running

the

files

through

the

ID

Resolver

ensures

that

numerous

stores

can

be

created

from

a

single

set

of

XML

files.

440

Store

Development

Guide

Appendix

C.

Database

asset

groups

All

WebSphere

Commerce

database

assets

are

divided

into

groups

for

creation

and

loading.

These

groups

are

a

logically

related

set

of

tables.

The

order

in

which

these

database

asset

groups

are

organized

is

important

to

data

loading,

since

certain

objects

must

exist

before

loading

the

relationship

between

objects.

When

loading

database

assets

in

XML

format

for

your

store,

you

can

choose

to

load

only

selected

groups.

These

groups

consist

of

the

database

assets

created

in

the

previous

chapters,

such

as

catalog

or

fulfillment.

Before

loading

data

groups

as

instructed

in

“Loading

database

asset

groups”

on

page

390,

do

the

following:

v

Determine

which

database

asset

group

you

are

loading.

Each

group

contains

dependencies

which

must

be

met

before

the

assets

can

be

loaded.

Review

the

information

in

“Database

asset

groups

dependencies.”

v

Ensure

that

you

have

created

or

updated

the

XML

files

for

the

selected

database

asset

group.

The

information

in

each

of

the

asset

chapters

advises

you

on

the

order

in

which

to

create

the

database

assets,

but

when

creating

or

updating

XML

files,

remember

that

information

for

a

parent

table

must

precede

information

for

a

child

table.

Database

asset

groups

dependencies

Each

database

asset

group

draws

its

information

from

WebSphere

Commerce

database

tables.

Database

assets

have

dependencies

within

their

own

group.

That

is,

a

database

asset

group

cannot

draw

data

in

other

XML

files

from

a

different

data

group,

and

each

group

is

independent

minus

the

foreign

keys.

However,

if

the

database

asset

group

needs

to

refer

to

the

external

data

defined

in

another

group,

then

you

need

to

provide

that

data

manually.

This

means

that

the

data

from

one

group

has

an

external

dependency

on

data

defined

outside

of

its

domain,

that

is,

on

another

database

asset

group.

External

dependencies

occur

when

a

database

asset

group

has

a

foreign

key

relationship

to

the

primary

key

of

a

table

in

another

group.

To

load

a

database

asset

group,

its

external

dependencies

must

be

satisfied.

To

use

an

example

from

the

chart

below,

one

of

the

external

dependencies

for

the

store

database

asset

group

is

fulfillment.FFMCENTER.FFMCENTER_ID,

which

indicates

that

the

fulfillment

database

assets

must

already

exist

in

the

WebSphere

Commerce

database

before

you

can

load

the

store

database

asset

group.

Consider

the

following

chart

before

you

begin

your

loading

process.

Each

group

of

database

assets

is

dependent

on

other

database

tables,

from

which

the

data

is

loaded.

Some

points

to

remember:

v

Some

external

dependencies

may

not

be

satisfied

by

a

single

group.

Site

wide

or

general

database

assets,

used

by

every

store,

are

pre-populated

at

instance

creation

in

the

bootstrap

and

can

be

readily

accessed.

Tables

contained

in

database

asset

groups

have

foreign

key

references

to

this

type

of

data.

Bootstrap

data

is

divided

into

common

and

locale-specific

data.

If

you

have

a

multilingual

store,

you

need

to

choose

the

common

and

the

locale-specific

bootstrap

data.

For

example,

you

need

the

language

and

member

bootstrap

data.

The

instance

creation

process

populates

the

LANGUAGE

table

with

the

supported

WebSphere

Commerce

languages

for

your

store

and

creates

a

root

organization

(MEMBER.MEMBER_ID=-2001)

and

a

default

organization

(MEMBER.MEMBER_ID=-2000).

©

Copyright

IBM

Corp.

2000,

2003

441

You

must

use

the

root

organization

where

required,

but

you

should

create

a

store

owner

organization

instead

of

using

the

default

organization.

For

more

information

about

organizations

and

their

hierarchy,

refer

to

the

WebSphere

Commerce

online

help.

v

The

files

listed

under

the

External

dependencies

column

use

the

following

naming

structure:

database

asset

group.database

table.database

column.

Using

the

store.STOREENT.STOREENT_ID

file

as

an

example,

the

data

is

taken

from

the

store

database

asset

group,

STOREENT

table,

and

STOREENT_ID

column.

File

names

beginning

with

bootstrap

indicate

that

the

data

was

populated

during

the

WebSphere

Commerce

instance

creation.

v

The

files

listed

under

the

External

dependencies

column

contain

foreign

key

references

to

the

Related

tables.

These

tables

must

be

populated

first.

v

For

presentation

purposes

only,

the

tables

have

been

split

to

indicate

the

locale-specific

tables

containing

multilingual

information,

such

as

product

descriptions.

v

The

tables

in

the

chart

represent

the

database

assets

from

the

WebSphere

Commerce

sample

stores.

The

tables

may

vary

according

to

your

store’s

size,

function,

and

needs.

Depending

on

your

store’s

requirements,

ensure

that

you

include

all

database

tables

containing

your

store’s

assets,

even

if

that

particular

table

is

not

listed

below.

Access

control

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID

(root

and

store

owner

organizations),

bootstrap.MEMBER.MEMBER_ID

(root

and

store

owner

organizations)

accesscontrol.xml
ACACTACTGP,

ACACTGRP,

ACACTION,

ACPOLICY,

ACRESCGRY,

ACRESGPRES,

ACRESGRP

accesscontrol.xml
ACACGPDESC,

ACACTDESC,

ACPOLDESC,

ACRSCGDES,

ACRESGPDES

Business

policy

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID,

boostrap.MEMBER.MEMBER_ID,

store.STOREENT.STOREENT_ID

(store

owner

organization)

businesspolicy.xml
POLICY,

POLICYCMD

businesspolicy.xml
POLICYDESC

Campaign

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

store.STOREENT.STOREENT_ID

campaign.xml
CAMPAIGN,

COLLATERAL,

EMSPOT

campaign.xml
COLLDESC

Catalog

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

442

Store

Development

Guide

bootstrap.LANGUAGE.LANGUAGE_ID,

bootstrap.MEMBER.MEMBER_ID

(store

owner

organization),

store.STOREENT.STOREENT_ID,

shipping.CALCODE.CALCODE_ID,

tax.CALCODE.CALCODE_ID

catalog.xml
BASEITEM,

CATALOG,

CATENTREL,

CATENTRY,

CATGROUP,

CATGRPREL,

CATTOGRP,

ITEMSPC,

ITEMVERSN,

RA,

RADETAIL,

STOREITEM,

STORITMFFC,

VERSIONSPC

offering.xml

CATGRPTPC,

MGPTRDPSCN,

OFFER,

OFFERPRICE,

TRADEPOSCN

storefulfill.xml

INVENTORY

store-catalog.xml

DISPCGPREL,

DISPENTREL,

STORECAT,

STORECENT,

STORECGRP

store-catalog-
shipping.xml

CATENTCALCD,

CATENTSHIP
store-catalog-
tax.xml

CATENTCALD

catalog.xml
ATTRIBUTE,

ATTRVALUE,

BASEITMDSC,

CATALOGDSC,

CATENTDESC,

CATGRPDESC,

PKGATTR,

PKGATTRVAL,

Command

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

store.STOREENT.STOREENT_ID

command.xml
CMDREG,

VIEWREG

N/A

Business

Contract

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

store.STOREENT.STOREENT_ID

The

contract

database

tables

are

not

loaded

directly

and

follow

a

different

process

than

the

other

WebSphere

Commerce

data

groups.

Refer

to

“Publishing

contract

assets”

on

page

396for

more

information.

Currency

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

Appendix

C.

Database

asset

groups

443

store.STOREENT.STOREENT_ID

currency.xml
CURCVLIST

currency.xml
CURCONVERT,

CURLIST

Fulfillment

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID,

boostrap.MEMBER.MEMBER_ID

(store

owner

organization)

fulfillment.xml
FFMCENTER,

STADDRESS

fulfillment.xml
FFMCENTDS

Organization

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID

(root

and

store

owner

organizations),

boostrap.MEMBER.MEMBER_ID

(root

and

store

owner

organizations)

organization.xml
ADDRBOOK,

ADDRESS,

MBRREL,

MEMBER,

ORGENTITY

N/A

Shipping

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID,

bootstrap.MEMBER.MEMBER_ID

(store

owner

organization),

fulfillment.FFMCENTER.FFMCENTER_ID,

store.STOREENT.STOREENT_ID

shipping.xml
CALCODE,

CALRULE,

CRULESCALE,

JURST,

JURSTGPREL,

JURSTGROUP,

SHIPMODE,

STENCALUSG

shipping.xml

SHPJCRULE,

SHPARRANGE

shipping.xml
CALCODEDSC,

CALRANGE,

CALRLOOKUP,

CALSCALE,

SHPMODEDSC

Store

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID,

bootstrap.MEMBER.MEMBER_ID

(store

owner

organization),

bootstrap.SETCURR.SETCURR_ID,

fulfillment.FFMCENTER.FFMCENTER_ID

store.xml
INVADJCODE,

RTNREASON,

STORE,

STORENT,

STORELANG,

VENDOR

store.xml
FFMCENTDS,

INVADJDESC,

RTNRSNDESC,

STADDRESS,

STOREENTDS,

STORLANGDS,

VENDORDESC

Store

default

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

444

Store

Development

Guide

shipping.SHIPMODE.SHIPMODE_ID

(if

applicable,

this

file

must

be

loaded

first),

contract.CONTRACT.CONTRACT_ID,

store.STOREENT.STOREENT_ID

store-default.xml
STOREDEF

N/A

Tax

database

assets

External

dependencies

Related

tables

from

the

database

asset

XML

files

Related

locale-specific

tables

from

the

database

asset

XML

files

bootstrap.LANGUAGE.LANGUAGE_ID,

boostrap.MEMBER.MEMBER_ID

(store

owner

organization),

store.STOREENT.STOREENT_ID,

fulfillment.FFMCENTER.FFMCENTER_ID,

store.STOREENT.STOREENT_ID

tax.xml
CALCODE,

CALRANGE,

CALRLOOKUP,

CALRULE,

CALSCALE,

CRULESCALE,

JURST,

JURSTGROUP,

JURSTGPREL,

STENCALUSG,

TAXCGRY,

TAXJCRULE

taxfulfill.xml
TAXJCRULE

tax.xml
CALCODEDSC,

CALSCALEDS,

TAXCGRYDS

Appendix

C.

Database

asset

groups

445

446

Store

Development

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing
IBM

Corporation
500

Columbus

Avenue
Thornwood,

NY

10594
U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation
Licensing
2-31

Roppongi

3-chome,

Minato-ku
Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

©

Copyright

IBM

Corp.

2000,

2003

447

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Canada

Ltd.
Office

of

the

Lab

Director
8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

All

IBM

prices

shown

are

IBM’s

suggested

retail

prices,

are

current

and

are

subject

to

change

without

notice.

Dealer

prices

may

vary.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

448

Store

Development

Guide

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©Copyright

International

Business

Machines

Corporation

2001.

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©Copyright

IBM

Corp.

2000,

2001.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Credit

card

images,

trademarks,

and

trade

names

provided

in

this

product

should

be

used

only

by

merchants

authorized

by

the

credit

card

mark’s

owner

to

accept

payment

via

that

credit

card.

Trademarks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

AIX

IBM

WebSphere

AS/400®

IBM

Payment

Manager

DB2

iSeries

DB2

Universal

Database

OS/400

eServer

VisualAge®

Microsoft,

Windows,

and

Windows

NT®,

Active

Directory,

and

the

Windows

logo

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Oracle

is

a

registered

trademark

and

Oracle8

is

a

trademark

of

Oracle

Corporation.

SET

Secure

Electronic

Transaction™,

SET™

and

the

SET

logo

are

trademarks

owned

by

SET

Secure

Electronic

Transaction

LLC.

Use

of

the

trademarks

without

a

written

license

from

SET

Secure

Electronic

Transaction

LLC

is

strictly

prohibited.

Solaris,

Solaris

Operating

Environment,

Java,

JavaServer

Pages,

JavaBeans,

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

UNIX®

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

and

service

names

may

be

the

trademarks

or

service

marks

of

others.

Notices

449

450

Store

Development

Guide

����

Printed

in

USA

	Contents
	Before you begin
	Conventions and terminology used in this book
	Variables used in this book
	Path variables
	Where to find new information

	Part 1. Overview
	Chapter 1. Store development overview
	Understanding store development in WebSphere Commerce
	The purpose of your store
	The representative business model for your store
	The number of stores being developed
	The foundation for your store
	Starting from a sample
	Starting from scratch

	The degree of required customization
	Adding or changing store functionality
	Creating or changing the look and feel of a store
	Creating or changing store data

	Scenario: Developing and deploying a production store

	Part 2. Business models supported by WebSphere Commerce
	Chapter 2. Supported business models in WebSphere Commerce
	Understanding supported business models in WebSphere Commerce
	Direct sales
	Consumer direct
	B2B direct

	Hosting
	Value chain
	Demand chain
	Supply chain

	Sample stores in WebSphere Commerce

	Part 3. WebSphere Commerce architecture
	Chapter 3. WebSphere Commerce organization structure
	Understanding the WebSphere Commerce organization structure
	How does the organization structure support the business models?
	Consumer direct
	B2B direct
	Demand chain
	Supply chain
	Hosting

	Sample organization structures
	Creating organization structures

	Chapter 4. Access control in WebSphere Commerce
	Understanding access control in WebSphere Commerce
	Access control policies
	Access control policy groups

	Understanding access control in the business models
	Basic access control structure
	Consumer direct
	B2B direct
	Demand chain
	Supply chain
	Hosting

	Access control in sample businesses
	Adding access control to your stores

	Chapter 5. WebSphere Commerce business policy framework
	Understanding the WebSphere Commerce business policy framework
	Business policies
	Business Accounts
	Contracts and service agreements
	Terms and conditions

	Business policies in sample businesses
	Adding business policies to your site

	Chapter 6. Instance architecture
	WebSphere Commerce Server
	WebSphere Commerce Server instance

	Chapter 7. Store architecture
	Understanding the WebSphere Commerce store architecture
	Store assets
	Asset stores

	Multiple stores in a single instance
	Relationships between stores

	Understanding how the store architecture supports the business models
	Customer facing stores
	Creating direct sales and hub stores
	Creating hosted stores

	Proxy stores
	Creating proxy stores

	Asset stores
	Creating asset stores

	Stores in the supported business models
	Hosting
	Demand chain
	Supply chain

	Part 4. Developing your storefront
	Chapter 8. Developing your storefront
	Storefront architecture
	Default commands and views

	Creating your store pages
	Developing a list of store pages
	Working from use cases

	Developing a list of command and view URLs
	Developing a list of URLs needed

	Associating JSP filename to views

	Chapter 9. Caching your store pages
	Planning your caching strategy
	What pages should be cached
	Should pages be cached as whole pages or page fragments

	Developing a more detailed caching strategy
	How the page or fragment is requested
	Whether the page or fragment relies on a store relationship
	How the cached data will be invalidated

	Implementing your caching strategy
	Understanding the cachespec.xml file
	Understanding the elements used by WebSphere Commerce
	Understanding cache-ID rules
	Understanding dependency-ID rules
	Understanding invalidation rules

	Invalidating cached data in the cachespec.xml file
	Adding sample invalidation policies to your store's cachespec.xml file

	Implementing caching for store pages that use store relationships
	Store relationship caching example

	Replacing the cache command functions with dynamic caching

	Part 5. Store data overview
	Chapter 10. Store data
	What is store data?
	The store data information model
	Store data information model viewed by subsystem
	Store data information model viewed by data type
	WebSphere Commerce Server instance
	Core data
	Configuration data
	Managed data
	Operational data

	Store data types and the sample businesses

	Tools for creating data
	WebSphere Commerce Loader package
	Administration Console
	WebSphere Commerce Accelerator
	Organizational Administration Console
	Tool and store data summary chart

	Part 6. Developing your store data
	Chapter 11. Site assets
	Understanding site assets in WebSphere Commerce
	Language
	Member attributes
	Attribute types
	Member group types
	User
	Organization
	Role
	Quantity unit conversion
	Quantity units
	Tax types
	Calculation usage
	Currency
	Number usage
	Item types
	Device formats
	Store relationship types
	Site level trading agreement data
	Trading agreement type
	Participant role
	Policy type
	Policy type command interface

	Terms and conditions type
	Terms and conditions sub type

	Personalization attribute
	Attribute type
	Operator
	Attachment usage

	Creating site assets in WebSphere Commerce

	Chapter 12. Member assets
	Understanding member assets in WebSphere Commerce
	Members
	Member attributes
	Roles

	Understanding customer assets in WebSphere Commerce
	Address information
	Interest lists

	Understanding Seller assets in WebSphere Commerce
	Stores
	Accounts
	Contracts
	Product sets
	Price lists
	Catalogs
	Fulfillment centers
	Inventory items

	Understanding administrator assets in WebSphere Commerce
	Creating member assets in WebSphere Commerce

	Chapter 13. Store assets
	Understanding store assets in WebSphere Commerce
	Store entity
	Store entity description
	Store
	Store group

	Creating store assets in WebSphere Commerce
	Creating store data assets in an XML file

	Chapter 14. Relationships between stores
	Understanding relationships between stores in WebSphere Commerce
	Store relationships
	Store relationship types
	Store relationship types supported by WebSphere Commerce

	Store relationship type description

	Creating store relationships in WebSphere Commerce

	Chapter 15. Command, view, and URL registry data
	Understanding command, view and URL registries in WebSphere Commerce
	URL registry
	Command registry
	View registry
	Creating new commands, views, and URLs

	Registering commands, views, and URLs in WebSphere Commerce
	Creating an XML file to register commands, views, and URLs

	Chapter 16. Catalog assets
	Understanding catalogs in WebSphere Commerce
	Catalog
	Catalog groups
	Catalog entries
	Products
	Items
	Bundles
	Packages
	Dynamic kits
	Static kits

	Product sets
	Attributes
	Attribute values
	Package attributes
	Package attribute values

	Creating catalog assets in WebSphere Commerce
	Creating a master catalog
	Part 1: Preparing for catalog creation
	Part 2: Creating a catalog entity
	Part 3: Creating catalog groups
	Part 4: Creating inventory information
	Part 5: Creating catalog entries
	Part 6: Creating attributes and attribute values
	Part 7: Creating relationships between products and items
	Part 8: Creating packages and bundles
	Part 9: Creating relationships between catalog groups and catalog entries
	Part 10: Creating merchandising associations
	Part 11: Associating your catalog to a store
	Part 12: Associating taxes to your catalog
	Part 13: Associating shipping methods to your catalog
	Part 14: Associating a fulfillment center to your catalog
	Part 15: Creating prices for your catalog entries
	Part 16: Loading the XML file

	Displaying store catalog assets

	Creating a sales catalog
	Adding a product to a second category

	Managing catalog assets in WebSphere Commerce
	Catalog groups
	Catalog entries
	Product Management tools
	Loader package

	Chapter 17. Pricing assets
	Understanding pricing in WebSphere Commerce
	Offer
	Offer price
	Trading position container
	Terms and conditions
	Types of pricing terms and conditions
	Trading agreement
	Participant
	Participant role
	Contract
	Business policy
	Price policy
	Catalog entry shipping
	Other pricing assets

	Creating pricing assets in WebSphere Commerce
	Creating pricing assets in an XML file

	Chapter 18. Contract assets
	Understanding contracts in WebSphere Commerce
	Accounts (business accounts)
	Contracts
	Trading agreements
	Participants
	Terms and conditions
	Business policies
	Attachment
	Order item

	Creating a default contract asset in WebSphere Commerce
	Creating business policy XML files
	Creating a default contract file
	Creating a default contract file in XSD
	Creating a default contract file in DTD format

	Chapter 19. Fulfillment assets
	Understanding fulfillment assets in WebSphere Commerce
	Fulfillment center
	Receipts
	RaDetail
	Inventory
	Shipping arrangements
	Other fulfillment assets

	Creating fulfillment assets in WebSphere Commerce
	Creating store fulfillment assets (non-ATP)

	Chapter 20. Campaign assets
	Understanding campaigns in WebSphere Commerce
	Creating campaign assets in WebSphere Commerce

	Chapter 21. Payments instruments
	Create payment assets using an XML file
	Customize environment for a payment cassette
	Modify the store .jsp file
	Check the Cashier profile for the cassette
	Check the cassette .jsp file
	Configure Merchant Settings in WebSphere Commerce Payments

	Chapter 22. Language assets
	Understanding language assets in WebSphere Commerce
	Default language
	Supported language
	Alternative language

	Creating language assets in WebSphere Commerce

	Chapter 23. Currency assets
	Understanding currency assets in WebSphere Commerce
	Currency format
	Number usage
	Currency format description
	Supported currency
	Currency conversion rule
	Counter currency

	Creating currency assets in WebSphere Commerce
	Creating currency assets using an XML file
	Other currency tasks

	Chapter 24. Units of measure assets
	Understanding units of measure in WebSphere Commerce
	Quantity unit and quantity unit format
	Quantity unit format description
	Number usage

	Creating units of measure in WebSphere Commerce

	Chapter 25. Jurisdiction assets
	Understanding jurisdiction assets in WebSphere Commerce
	Creating jurisdiction assets in WebSphere Commerce

	Chapter 26. Shipping assets
	Understanding shipping assets in WebSphere Commerce
	Shipping modes
	Shipping arrangements

	Calculation codes
	Calculation rules

	Jurisdictions and jurisdiction groups

	Creating shipping assets in WebSphere Commerce
	Creating shipping assets using an XML file
	Creating shipping fulfillment assets
	Creating store-catalog-shipping assets
	Creating a default shipping mode

	Chapter 27. Tax assets
	Understanding tax assets in WebSphere Commerce
	Tax category
	Tax type

	Calculation code
	Calculation rules

	Jurisdictions and jurisdiction groups

	Creating tax assets in WebSphere Commerce
	Creating tax assets using an XML file
	Creating tax fulfillment assets
	Creating store-catalog-tax assets

	Chapter 28. Discount assets
	Understanding rule-based discounts in WebSphere Commerce
	Store default currency
	Calculation code
	RLPromotion
	RLProduct level promotion
	RLItem level promotion
	RLOrder level promotion

	Blaze rule project
	Blaze rule service
	Discount service
	Blaze rule server

	Understanding schema-based discounts in WebSphere Commerce
	Calculation code
	Calculation rules

	Creating discount assets in WebSphere Commerce

	Chapter 29. Inventory assets
	Understanding inventory assets in WebSphere Commerce
	ATP inventory
	Base item
	Item specification
	Catalog entries
	Distribution arrangement
	Store item

	Non-ATP inventory
	Fulfillment center

	Creating inventory assets in WebSphere Commerce
	Managing inventory adjustment codes
	Adding inventory adjustment codes
	Changing inventory adjustment codes
	Deleting inventory adjustment codes

	Chapter 30. Order assets
	Understanding order assets in WebSphere Commerce
	Orders and order items
	Currency
	Payment information

	Order items
	Suborders
	Other order item assets

	Order quotation relationships

	Creating order assets in WebSphere Commerce

	Chapter 31. Vendor assets
	Understanding vendor assets in WebSphere Commerce
	Creating vendor assets

	Chapter 32. Customer profiles
	Understanding customer profiles in WebSphere Commerce

	Part 7. Adding access control to your store
	Chapter 33. Access control in your store
	Understanding access control in WebSphere Commerce
	Access control in stores
	Access control in the samples stores

	Adding access control to your store
	Creating or editing access control in your store

	Part 8. Globalizing your store
	Chapter 34. Globalization
	Supporting globalization
	Sample stores
	Displaying translated images
	Displaying catalog content
	Resource bundles and property files
	Data storage and transfer

	Display formats
	Creating a new display format
	Example of creating a new display format
	Multilingual data entry

	Creating a globalized store
	Creating a store
	Managing your template for a globalized site
	One template for all stores and languages programming model
	One template for all stores and languages directory structure
	One template per language directory structure
	One template for each store directory structure

	Adding a language to a store
	Creating a globalized online catalog
	Manage globalization assets
	Translate property files

	Part 9. Packaging your store
	Chapter 35. Packaging a store
	Creating a store archive
	Creating a sample store archive

	Part 10. Publishing your store
	Chapter 36. Publishing a complete store
	Understanding publish in WebSphere Commerce
	Start publish
	Publish parameters in the Administration Console

	Unpack the assets from the store archive
	Updates publish parameters
	Publish data
	ibm-wc-load.xml
	Loads store data from the XML files in the store archive to the database
	Reconciles the store languages
	Updates registry components
	Calls command to publish business accounts and contracts
	Configures payment
	Creates parameters.jsp file
	Error handling

	Publish log files

	Making the store archive available to the Administration Console
	Register the store archive in the SARRegistry.xml file
	Copy the store archive to the applicable store archive directory

	Chapter 37. Overview of loading store data
	Understanding data loading in WebSphere Commerce
	Loader package commands for loading store data
	ID Resolve command
	Load command

	Loader package commands for transforming and extracting data
	DTD Generate command
	Extract command
	Text Transform command
	XML Transform command

	Tools related to the Loader package commands
	Text Transformation tool
	XSL editor

	Loading store data
	Using the Loader package commands and scripts
	Examples of resolving identifiers
	Resolving identifiers in XML files with internal aliases
	Specifying a properties file with the ID Resolver

	Example of loading data

	Chapter 38. Loading WebSphere Commerce database asset groups
	Database asset groups
	Database asset loading sequence

	Loading a store
	Loading database asset groups

	Chapter 39. Publishing business accounts and contracts
	Publishing business accounts and contracts using Administration Console or the command line
	Publishing business accounts and contracts using commands
	Publishing business account assets
	Publishing contract assets

	Chapter 40. Publishing storefront assets and store configuration files
	Publishing storefront assets and store configuration files using the Administration Console or the command line
	Publishing storefront assets and store configuration files by copying to the WebSphere Commerce Server

	Part 11. Adding WebSphere Commerce features to your store
	Chapter 41. Adding customer care to your store
	Understanding customer care in a store
	Using the frameset
	Issues with using framesets

	Using customer care without a frameset
	Defining Customer Care
	Defining the store's monitoring list
	Defining the store's topic list
	Defining the store's URL list

	Monitoring customers using customer care
	Obtaining the customer's name or ID
	Determining which page the customer is browsing
	Tracking the number of items in the shopping cart
	Tracking customized monitoring items

	Sending requests directly to a customer care queue
	Customizing customer care
	Customizing applet parameters
	Customizing store messages

	Adding customer care to your store
	Part 1: Installing pre-requisites
	Part 2: Copying the customer care integration files from the sample store
	Part 3: Adding code to determine which page the customer is browsing
	Part 4: Adding a link to customer care
	Part 5: Create an entry page that will redirect to the customer care frameset page

	Chapter 42. Adding e-Marketing Spots to your store
	e-Marketing Spot
	e-MarketingSpot bean

	Adding an e-Marketing Spot to your store pages

	Part 12. Appendixes
	Appendix A. UML legend
	Appendix B. Creating your data
	Creating data for sample stores

	Appendix C. Database asset groups
	Database asset groups dependencies

	Notices
	Trademarks

