IBM® Web Sphere Commerce

Store Development Guide

Version 5.5

<|ll

IBM® Web Sphere Commerce

Store Development Guide

Version 5.5

<|ll

Note:
Before using this information and the product it supports, be sure to read the
information in the Notices section.

First Edition, First Revision (September 2003)

This edition applies to IBM WebSphere Commerce Business Edition Version 5.5, IBM WebSphere Commerce -
Express Version 5.5, and IBM WebSphere Commerce Professional Edition Version 5.5 (product number 5724-A18),
and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition also applies to all subsequent releases and modifications of the above listed products, until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments by using the online IBM WebSphere Commerce
documentation feedback form, available at the following URL:

http://www-3.ibm.com/software/genservers/commerce/rcf.html

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Before you begin .. X
Conventions and terminology used in thls book . ix
Variables used in this book . X
Path variables. . .xi
Where to find new 1nformatlon . Xxii
Part 1. Overview 1
Chapter 1. Store development overview 3
Understanding store development in WebSphere
Commerce3
The purpose of your store .3
The representative business model for your store 3
The number of stores being developed. .4
The foundation for your store . .5
The degree of required customization . .7
Scenario: Developing and deploying a production
store. . 10
Part 2. Business models supported
by WebSphere Commerce 13
Chapter 2. Supported business models
in WebSphere Commerce. : . 15
Understanding supported business models in
WebSphere Commerce. .15
Direct sales .15
Hosting. . 16
Value chain . . .17
Sample stores in WebSphere Commerce . 20
Part 3. WebSphere Commerce
architecture . . 23
Chapter 3. WebSphere Commerce
organization structure . . 25
Understanding the WebSphere Commerce
organization structure . . 25
How does the organization structure support the
business models? . 26
Consumer direct. . 26
B2B direct . .27
Demand chain . 28
Supply chain . . 30
Hosting.32
Sample organization structures .34
Creating organization structures . 34
Chapter 4. Access control in
WebSphere Commerce. . 35
Understanding access control in WebSphere
Commerce. . 35

© Copyright IBM Corp. 2000, 2003

Access control policies. . . . 35
Understanding access control in the busmess models 38
Basic access control structure38
Consumer direct.40
B2B direct.43
Demand chain44
Supply chain.49
Hosting.b3
Access control in sample busmesses - 4
Adding access control to your stores57

Chapter 5. WebSphere Commerce

business policy framework 59
Understanding the WebSphere Commerce business
policy framework59
Business policies.59
Business Accounts B
Contracts and service agreements oo 059
Terms and conditions60
Business policies in sample busmesses60
Adding business policies to your site.60
Chapter 6. Instance architecture. . . . 61
WebSphere Commerce Server61
WebSphere Commerce Server instance6l
Chapter 7. Store architecture 63
Understanding the WebSphere Commerce store
architecture63
Store assets63
Multiple stores in a smgle mstance64
Relationships between stores . . . 66
Understanding how the store archltecture supports
the business models66
Customer facing stores66
Proxy stores68
Asset stores69
Stores in the supported busmess models .. .69

Part 4. Developing your storefront 73

Chapter 8. Developing your storefront 75

Storefront architecture . . . V6
Default commands and views75
Creating your store pages76
Developing a list of store pages.76
Developing a list of command and view URLs .79
Associating JSP filename to views80

Chapter 9. Caching your store pages 83

Planning your caching strategy.83
What pages should be cached83
Should pages be cached as whole pages or page
fragments 83

iii

Developing a more detailed caching strategy . . . 84

How the page or fragment is requested 84
Whether the page or fragment relies on a store
relationship84
How the cached data w111 be 1nva11dated .. .84
Implementing your caching strategy85
Understanding the cachespec.xml file.85

Invalidating cached data in the cachespec.xml f11e 88
Implementing caching for store pages that use

store relationships 89
Replacing the cache command functlons w1th
dynamic caching93
Part 5. Store data overview. 95
Chapter 10. Storedata. 97
What is store data?. . . 74
The store data 1nformat10n model 4
Store data information model viewed by
subsystem99
Store data 1nformat10n model v1ewed by data
type.99
Store data types and the sample busmesses . . 103
Tools for creating data 103
WebSphere Commerce Loader package . . . 103
Administration Console 103
WebSphere Commerce Accelerator 104
Organizational Administration Console. . . . 104
Tool and store data summary chart 104

Part 6. Developing your store data 107

Chapter 11. Site assets 109
Understanding site assets in WebSphere Commerce 109
Language. . . e B 10
Member attrlbutes e B ()
Attribute types 110
Member group types e N 0]
User . . . 5 (0
Organlzatlon e 4 (4]
Role10
Quantity unit conversion 111
Quantity units11
Tax types.11
Calculation usage11
Currency11
Number usage11
Item types112
Device formats112
Store relationship types 112
Site level trading agreement data. 112
Trading agreement type 112
Participantrole. 113
Policy type T O ¢
Terms and conditions type I <
Personalization attribute. 113
Attribute type113
Operator13
Attachment usage113

iV Store Development Guide

Creating site assets in WebSphere Commerce. . . 114
Chapter 12. Member assets 115
Understanding member assets in WebSphere
Commerce115
Members.16
Member attributes.117
Roles 117
Understanding customer assets in WebSphere
Commerce . . . O
Address mformatlon A I £
Interest lists 119
Understanding Seller assets in WebSphere
Commerce119
Stores12
Accounts.120
Contracts.120
Productsets.120
Price lists.121
Catalogs121
Fulfillment centers.121
Inventory items . . . 122
Understanding admlnlstrator assets in WebSphere
Commerceo 122

Creating member assets in WebSphere Commerce 122

Chapter 13. Store assets 123

Understanding store assets in WebSphere

Commerce123
Store entity 123

Creating store assets in WebSphere Commerce .. 124
Creating store data assets in an XML file . . . 124

Chapter 14. Relationships between

stores 129

Understanding relatronshlps between stores in

WebSphere Commerce129
Store relationships.129
Store relationship types . . . oo 129
Store relationship type descrlptlon B)

Creating store relationships in WebSphere

Commerce131

Chapter 15. Command, view, and URL

registry data. . . . : . 135

Understanding command, view and URL reglstrles

in WebSphere Commerce135
URL registry135
Command registry136
View registry 136
Creating new commands, views, and URLs . . 136

Registering commands, views, and URLs in

WebSphere Commerce 137
Creating an XML file to reglster commands
views,and URLs137

Chapter 16. Catalog assets 141

Understanding catalogs in WebSphere Commerce 141
Catalog142

Catalog groups .

Catalog entries .

Product sets .

Attributes

Attribute values

Package attributes .

Package attribute values. .
Creating catalog assets in WebSphere Commerce

Creating a master catalog

Displaying store catalog assets
Creating a sales catalog . .

Adding a product to a second category

Managing catalog assets in WebSphere Commerce

Catalog groups .
Catalog entries .
Product Management tools
Loader package

Chapter 17. Pricing assets.
Understanding pricing in WebSphere Commerce
Offer .
Offer price S
Trading position container .
Terms and conditions. .
Types of pricing terms and condltlons .
Trading agreement
Participant
Participant role.
Contract .
Business policy .
Price policy . .
Catalog entry shlppmg .
Other pricing assets .

Creating pricing assets in WebSphere Commerce

Creating pricing assets in an XML file .

Chapter 18. Contract assets .

Understanding contracts in WebSphere Commerce

Accounts (business accounts) .
Contracts.
Trading agreements
Participants .
Terms and condltlons
Business policies
Attachment .
Order item . .
Creating a default contract asset in WebSphere
Commerce .
Creating busmess pohcy XML flles .
Creating a default contract file.

Chapter 19. Fulfillment assets
Understanding fulfillment assets in WebSphere
Commerce .

Fulfillment center .

Receipts .

RaDetail .

Inventory. .

Shipping arrangements .

Other fulfillment assets .

. 142
. 143
. 144
. 144
. 145
. 145
. 145

145

. 146
. 162
. 164
. 165

167

. 167
. 168
. 169
. 170

171

171

. 172
. 172
. 172
. 172
. 172
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174

175

. 175

. 179

180

. 180
. 181
. 181
. 182
. 182
. 185
. 186
. 186

. 187
. 188
. 189

. 197

. 198
. 198
. 199
. 199
. 199
. 199
. 199

Creating fulfillment assets in WebSphere

Commerce200
Creating store fulflllment assets (non—ATP) .. 201

Chapter 20. Campaign assets 203

Understanding campaigns in WebSphere

Commerce203

Creating campaign assets in WebSphere Commerce 205

Chapter 21. Payments instruments 207
Create payment assets using an XML file 208
Customize environment for a payment cassette . . 209
Modify the store .jsp file. 209
Check the Cashier profile for the cassette VA
Check the cassette jsp file 212
Configure Merchant Settings in WebSphere
Commerce Payments. 212
Chapter 22. Language assets 215
Understanding language assets in WebSphere
Commerce . . e 1
Default language e 1]
Supported language216
Alternative language 216

Creating language assets in WebSphere Commerce 216

Chapter 23. Currency assets. 217
Understanding currency assets in WebSphere
Commerce217
Currency format218
Number usage 218
Currency format descrlptlon oo ... 219
Supported currency219
Currency conversionrule219
Counter currency . . . 219
Creating currency assets in WebSphere Commerce 219
Creating currency assets using an XML file . . 220

Chapter 24. Units of measure assets 223
Understanding units of measure in WebSphere
Commerce 223
Quantity unit and quantlty un1t format ... 224
Creating units of measure in WebSphere Commerce 225

Chapter 25. Jurisdiction assets. . . . 227
Understanding jurisdiction assets in WebSphere
Commerce . . . o227
Creating jurisdiction assets in WebSphere
Commerce228
Chapter 26. Shipping assets 229
Understanding shlppmg assets in WebSphere
Commerce 229
Shipping modes i (0]
Calculation codes230
Jurisdictions and jurisdiction groups . . 231
Creating shipping assets in WebSphere Commerce 231
Creating shipping assets using an XML file . . 232
Creating shipping fulfillment assets 240

Contents V

Creating store-catalog-shipping assets 242
Creating a default shipping mode 243
Chapter 27. Tax assets 245
Understanding tax assets in WebSphere Commerce 245
Tax category.246
Calculation code 246
Jurisdictions and jurisdiction groups L. 247
Creating tax assets in WebSphere Commerce . . . 248
Creating tax assets using an XML file 249
Creating tax fulfillment assets. 258
Creating store-catalog-tax assets 259
Chapter 28. Discount assets 261
Understanding rule-based discounts in WebSphere
Commerce26
Store default Currency e L2062
Calculationcode262
RLPromotion262
Blaze rule project263
Blaze rule service263
Discount service263
Blaze rule server 263
Understanding schema-based drscounts in
WebSphere Commerce263
Calculation code 263

Creating discount assets in WebSphere Commerce 264

Chapter 29. Inventory assets. 265
Understanding inventory assets in WebSphere
Commerce265
ATP inventory266
Non-ATP inventory . . . 267
Creating inventory assets in WebSphere Commerce 268
Managing inventory adjustment codes 268
Adding inventory adjustment codes. 270
Changing inventory adjustment codes 271
Deleting inventory adjustment codes 271
Chapter 30. Order assets 273
Understanding order assets in WebSphere
Commerce 0273
Orders and order 1tems Coe ... 273
Order items 274
Order quotation relatlonshlps .o . . 276
Creating order assets in WebSphere Commerce .. 277
Chapter 31. Vendor assets. 279
Understanding vendor assets in WebSphere
Commerce . . . e 29
Creating vendor assets e .o .280
Chapter 32. Customer profiles 281
Understanding customer profiles in WebSphere
Commerce281

Part 7. Adding access control to
your store 283

Vi Store Development Guide

Chapter 33. Access control in your

store 285

Understanding access control in WebSphere

Commerce28
Access control in stores oo 285

Adding access control to your store 289

Creating or editing access control in your store 289

Part 8. Globalizing your store . . . 293
Chapter 34. Globalization 295
Supporting globalization29
Sample stores29
Display formats . . . o299
Creating a new display format300
Creating a globalized store.303
Creating a store . . . 303

Managing your template for a globahzed 51te 303
One template for all stores and languages

programming model305
Adding a language to a store 307
Creating a globalized online catalog. 307
Manage globalization assets 308
Translate property files308
Part 9. Packaging your store . . . 311
Chapter 35. Packaging a store 313
Creating a store archive 315
Creating a sample store archive 316
Part 10. Publishing your store. . . 319
Chapter 36. Publishing a complete
store 321
Understanding publlsh in WebSphere Commerce 321
Start publish. 322
Unpack the assets from the store archrve .. . 324
Updates publish parameters 325
Publish data.325
Publish log files330
Making the store archive avallable to the
Administration Console332
Register the store archive in the
SARRegistry.xml file 332
Copy the store archive to the apphcable store
archive directory333

Chapter 37. Overview of loading store

data 335
Understanding data loadmg in WebSphere
Commerce 336
Loader package commands for loadmg store
data 339
Loader package commands for transformmg
and extracting data 359
Tools related to the Loader package commands 368
Loading store data369

Using the Loader package commands and

scripts . . .o . 370
Examples of resolvmg 1der1t1f1ers 0371
Example of loading data. . 378
Chapter 38. Loading WebSphere
Commerce database asset groups . 383
Database asset groups . . 383
Database asset loadmg sequence . . 383
Loading a store. . . 385
Loading database asset groups . 390
Chapter 39. Publishing business
accounts and contracts39
Publishing business accounts and contracts using
Administration Console or the command line . 395
Publishing business accounts and contracts using
commands . . . 396
Publishing business account assets . 396
Publishing contract assets . 396
Chapter 40. Publishing storefront
assets and store configuration files. . 399
Publishing storefront assets and store configuration
files using the Administration Console or the
command line . . 399
Publishing storefront assets and store confrguratron
files by copying to the WebSphere Commerce
Server . o . 399
Part 11. Adding WebSphere
Commerce features to your store . 403
Chapter 41. Adding customer care to
your store. .o . 405
Understanding customer care in a store . 406

Using the frameset . . 407

Using customer care without a frameset . 408

Defining Customer Care. . 410

Monitoring customers using customer care . 417

Sending requests directly to a customer care

queue . Coe e . 421

Customizing customer care. . 422
Adding customer care to your store . . 425

Part 1: Installing pre-requisites . 425

Part 2: Copying the customer care mtegratlon

files from the sample store . . 425

Part 3: Adding code to determine whlch page

the customer is browsing .o .. 427

Part 4: Adding a link to customer care . . 427

Part 5: Create an entry page that will redirect to

the customer care frameset page . . 427
Chapter 42. Adding e- Marketlng Spots
to your store. . 429
e-Marketing Spot . . 429

e-MarketingSpot bean . 433
Adding an e-Marketing Spot to your store pages 433
Part 12. Appendixes . 435
Appendix A. UML legend . 437
Appendix B. Creating your data . 439
Creating data for sample stores . 439
Appendix C. Database asset groups 441
Database asset groups dependencies. . 441
Notices . . 447
Trademarks . . 449

Contents Vii

viil Store Development Guide

Before you begin

The IBM® WebSphere® Commerce Store Development Guide provides information
about the WebSphere Commerce store architecture and the store development
process. In particular, it provides details on the following topics:

* Store development process

* Business models supported by WebSphere Commerce
* WebSphere Commerce architecture

* Developing your storefront

* Developing your store data

* Store data architecture

e Store data information model

* Globalizing your store

* Adding access control to your store

* Packaging your store

* Publishing your store

¢ Adding WebSphere Commerce features to your store

Conventions and terminology used in this book
This book uses the following highlighting conventions:
Boldface type Indicates commands or graphical user interface (GUI) controls such
as names of fields, icons, or menu choices.

Monospace type Indicates examples of text you enter exactly as shown, file names,
and directory paths and names.

Italic type Used to emphasize words. Italics also indicate names for which
you must substitute the appropriate values for your system.

This icon marks a Tip - additional information that can help you
complete a task.

Important
These sections highlight especially important information.

]

Note
These sections highlight significant information.

]

Indicates information specific to WebSphere Commerce
Business Edition.

Indicates information specific to WebSphere Commerce
Professional Edition.

© Copyright IBM Corp. 2000, 2003 ix

b Express | Indicates information-specific to WebSphere Commerce -

Express.
Indicates information specific to the

WebSphere Commerce development environment. The
development environment is WebSphere Commerce
Studio, Version 5.5.

- Express | Indicates information specific to the WebSphere
Commerce development environment. The development
environment is WebSphere Commerce - Express
Developer Edition, Version 5.5.

AlX Indicates information specific to programs running on
AIX®.
400 Indicates information specific to programs running on
0S/400°.
Indicates information that is specific to WebSphere

Commerce for Linux for xSeries™", information that is
specific to WebSphere Commerce for Linux for Eserver
zSeries” and S/390®, information that is specific to
WebSphere Commercefor Linux for Eserver iSeries™, and
information that is specific to WebSphere Commerce for
Linux for Eserver pSeries™.

Indicates information specific to programs running on
Solaris Operating Environment.

2000 Indicates information specific to programs running on
Windows® 2000.

Indicates information specific to DB2 Universal
Database™.

m Indicates information specific to Oracle9i Database.

Variables used in this book

Some of the key variables in this book are as follow:

businessmodel
The name of the sample business model with which you are working (for
example, consumer direct or B2B direct).

S ccil name

Cells are arbitrary, logical groupings of one or more nodes in a WebSphere
Application Server distributed network that are managed together. In this
definition, a node is a single WebSphere Application Server. One or more
cells managed by a single-occurrence of WebSphere Application Server
deployment manager are called a WebSphere Application Server
deployment manager cell.

cell_name
In WebSphere Commerce - Express, cell_name is equal to host_name.

host_name
This variable represents the fully qualified host name of your WebSphere
Commerce Server (for example, server.mydomain.ibm.com is fully
qualified).

X Store Development Guide

instance_name
This variable represents the name of the WebSphere Commerce instance
with which you are working (for example, malll).

storedir
This variable represent the name of the store directory in which your store
is located.

WAS _instance_name
This variable represents the name of the WebSphere Application Server
with which your WebSphere Commerce instance is associated.

Path variables

This guide uses the following variables to represent directory paths:

WC _installdir
This is the installation directory for WebSphere Commerce. The following
are the default installation directories for WebSphere Commerce on various
operating systems:

/usr/WebSphere/CommerceServer55

/QIBM/ProdData/CommerceServer55
/opt/WebSphere/CommerceServer55

/opt/WebSphere/CommerceServer55

C:\Program Files\WebSphere\CommerceServer55

WCDE _installdir
The installation directory for the WebSphere Commerce development
environment. For WebSphere Commerce Business Edition and WebSphere
Commerce Professional Edition, your development environment is
WebSphere Commerce Studio, Version 5.5. The following is the default
installation directory:
C:\WebSphere\CommerceStudio55.

For WebSphere Commerce - Express, the development environment is
WebSphere Commerce - Express Developer Edition, Version 5.5. The
following is the default installation directory:
C:\WebSphere\CommerceDev55

BRSO WC_userdir
This is the directory for all the data that is used by WebSphere Commerce

which can be modified or needs to be configured by a user. An example of
such data is WebSphere Commerce instance information. This directory is
unique to OS/400.

The WC_userdir variable represents the following directory:
/QIBM/UserData/CommerceServerss

WAS _installdir
This is the installation directory for WebSphere Application Server. The

following are the default installation directories for WebSphere Application
Server on various operating systems:

Before you begin xi

_ /QIBM /ProdData/WebAS5/Base

/usr/WebSphere/ AppServer
400
/opt/WebSphere/AppServer

/opt/WebSphere/ AppServer
C:\Program Files\WebSphere\ AppServer

WAS_userdir
This is the directory for all the data that is used by the WebSphere
Application Server that can be modified or needs to be configured by a
user. An example of such data is WebSphere Application Server instance
information. This directory is unique to OS/400.

The WAS_userdir variable represents the following directory:
/QIBM /UserData/WebAS5/Base/WAS_instance_name

WC _userdir

The WC_userdir variable represents the following directory:
/QIBM/UserData/WebAS5/Base/WAS_instance_name

workspace _dir
Used in the development environment. The variable represents
drive:\WebSphere\workspace_db2

Where to find new information

This book may be updated in the future. Check the following WebSphere
Commerce Web site for updates:

http:/ /www.ibm.com/software/commerce/library/

Updates may include new information.

xil Store Development Guide

Part 1. Overview

© Copyright IBM Corp. 2000, 2003

2 Store Development Guide

Chapter 1. Store development overview

This chapter provides an overview of the site or store development process in
WebSphere Commerce, and introduces many of the concepts discussed in this
guide.

Note: This guide uses the phrase store development to refer both to the processes
involved in creating a single store, and the processes involved in creating a
multi-store or site environment.

Understanding store development in WebSphere Commerce

Before starting to develop your site or store with WebSphere Commerce you need
to understand how the following factors affect the store development process. Each
of these factors is introduced in this chapter, but in most cases are explained in
more detail throughout this guide, and in some cases in other documents in the
WebSphere Commerce library.

How you choose to develop your store in WebSphere Commerce depends on the
following factors:

* The purpose of your store

* The representative business model for your store

* The number of stores being developed and their types
* The foundation for your store

* The degree of required customization

The purpose of your store
Stores are usually developed for one of the following purposes:

* Production: Production stores are fully functional stores in a production
environment, ready for use by customers or partners.

* Demo: Demo stores demonstrate certain capabilities for sales purposes. Demo
stores may be only partially functional.

* Sample: Sample stores are fully functional stores that are designed to be used as
a base on which you create your online store.

The representative business model for your store

Before developing your store, you need to understand which of the business
models supported by WebSphere Commerce best represents your store. WebSphere
Commerce supports sites or stores that are an instance of one of the following
business models:

Note: These business models are discussed in more detail in E Ehapter 2]
[“Supported business models in WebSphere Commerce,” on page 15)but a
brief introduction of each business model is provided here.

* Direct sales business model: As in previous releases, WebSphere Commerce
supports the direct sales business model. Using WebSphere Commerce you can
create sites or stores that support commerce transactions involving products,

© Copyright IBM Corp. 2000, 2003 3

4

services, or information directly between businesses and consumers or between
two businesses or parties. WebSphere Commerce supports the following types of
direct sales business models:

— Consumer direct business model: Consumer direct supports commerce
transactions involving products, services, or information between businesses
and consumers. Consumers typically purchase goods or services directly from
a business in a consumer direct scenario.

- B2B direct business model: B2B direct supports commerce
transactions involving products, services, or information between two
businesses or parties. Typical B2B direct transactions occur among buyers,
suppliers, manufacturers, resellers, distributors, and trading partners.

. Hosting business model: WebSphere Commerce also supports hosting
of merchants or other businesses by an Internet Service Provider or other
hosting provider.

. Value chain business model: Value chains support transactions
involving multiple enterprises or parties. Products, goods, services, or
information are delivered through the parties of the value chain from producers
to end users. A value chain also has relationship and administrative aspects, that
is, you can manage the relationship of the partners or enterprises in your value
chain, as well as offer some administrative services to those parties. WebSphere
Commerce supports the transactions and relationship management of the
following two types of value chains:

— Demand chains: Demand chains support both indirect sales channels and
direct sales channels.

— Supply chains: Supply chains support procurement and sourcing of goods.
WebSphere Commerce supports sourcing of goods through private
marketplaces. A private marketplace provides a forum for vendors to offer
their goods and services for sale to buyers with whom they have contractual
relationships.

Note: These business models are discussed in more detail in Ehapter 2]
[“Supported business models in WebSphere Commerce,” on page 15)

The number of stores being developed

Depending on your business, you may need to develop more than one store or
more than one type of store. For example, if your business sells directly to
customers, you may only need one store, which your customers access and
purchase goods from. However if you are supporting your demand chain, you
may need one main hub store for your business, and several stores that allow you
to connect to or administer your channels. You may also choose to host stores for
the organizations or businesses in your channels. For more information on the
demand chain, see|[Chapter 2, “Supported business models in WebSphere|
Commerce,” on page 15|

If you are in the business of hosting stores for merchants or other businesses, you
will also need to develop a hub store for managing merchants and handling
registration requests, and a method to develop sites for those you are hosting. For
more information on the hosting business model, see |[Chapter 2, “Supported|
bbusiness models in WebSphere Commerce,” on page 15

You can develop numerous types of stores as well as multiple stores per site with
WebSphere Commerce. For more details on stores types, see [Chapter 7, “Store]|
larchitecture,” on page 63)

Store Development Guide

The foundation for your store

Before creating a site or store with WebSphere Commerce you must decide where

you want to start development. WebSphere Commerce offers several samples that

you can use as the starting point for development, or you can choose to start from
scratch. For more details about the samples provided with WebSphere Commerce,
see the WebSphere Commerce Sample Store Guide.

Starting from a sample
The samples provided with WebSphere Commerce are packaged as store archives.

The store archive: A store archive file (.sar) is a ZIP archive file that contains all
the assets necessary to create a site or store. It is primarily used as a vehicle for
packaging and delivering stores. A store archive only needs to be published to the
WebSphere Commerce Server to create a functional store that you can view,
browse, and shop.

Typically, a store archive is composed of the following files:

* Web assets: The files that create your store pages, such as HTML files, JSP files,
images, graphics, and include files.

* Property resource bundles: Contains the text for your store pages. If your store
supports more than one language, the store archive will contain multiple
resource bundles, one per supported language, plus a default resource bundle
(which does not include a locale). For example, AddressText_en_US.properties
and AddressText.properties.

» Store data assets: The data to be loaded into the database. Store data assets
include data such as campaigns, catalog entries, currencies, fulfillment
information, pricing, shipping, store, and taxation information. For a more
detailed list of store data assets, see [Part 6, “Developing your store data,” on|

The store data assets in the sample store archives provided with WebSphere
Commerce are well-formed XML files valid for the Loader package. The store
archive XML files are intended to be portable and should not contain generated
primary keys that are specific to a particular instance of the database. Instead
they use internal aliases, which are resolved by the ID Resolver when the store
is published. The use of these conventions enables the portability of the sample
store archives. For more information, see|Part 9, “Packaging your store,” on page
311,

For more information on the Loader package, seeChapter 37, “Overview of|
[loading store data,” on page 335

Note: Store data assets also include the information to create a contract. The
contract information is not loaded through the Loader package; it
provides input to a command that creates contracts.

* Payment assets: Configuration information for WebSphere Commerce Payments.
The payment information is not loaded through the Loader package; it provides
input to a command that configures WebSphere Commerce Payments.

* Descriptors: XML files that describe the store archive and information on how it

should be published. These files include store-refs.xml, ibm-wc-1load.xml,
unpack.xml, and ForeignKeys.dtd.

For more information on the store archive, see [Chapter 35, “Packaging a store,” on|

Chapter 1. Store development overview 5

6

Publishing a store archive: You can publish a store archive using either the
publish utility in the Administration Console, or through the command line. For
more details on how to publish a store archive, see the WebSphere Commerce
Production online help, topic "Publishing a store archive”.

Types of samples: The samples provided with WebSphere Commerce are
categorized as follows:

* Composite stores archives

. Component store archives

* Basic store archive

Composite store archives: A composite store archive contains all the necessary
assets to create a working site. The sample composite store archives provided with
WebSphere Commerce usually contain the organization structure, predefined user
roles, and necessary access control policies to create the appropriate environment
for the corresponding business models. Composite store archives also contain the
necessary assets to create the stores or sites needed. For example, the demand
chain sample composite store archive contains a sample channel hub site, shared
catalog, and reseller and distributor stores.

WebSphere Commerce includes several composite store archives that contain fully
functional online sample sites that you can use as the basis for creating your own
store. These samples, which include direct sales stores (both consumer direct and

B2B direct), a demand chain business, a supplier

business, and a hosting site, implement many of the most commonly
used features in today’s top electronic commerce sites, and provide all the
necessary store assets. For more information about the samples provided with
WebSphere Commerce, see the WebSphere Commerce Sample Store Guide.

Why start with a sample composite store archive?: Starting with a sample
composite store archive loads all of the necessary data into the WebSphere
Commerce Server to create a fully functional site.

WebSphere Commerce requires that certain data be loaded into the WebSphere
Commerce Server database to create a functional site, and that this data be loaded
in the order determined by the schema. Since the sample component store archives
include all the mandatory data in the order and structure that the WebSphere
Commerce Server database requires, using one as a base for your own site saves
you a substantial amount of time during the initial creation period.

After publishing a sample composite store archive, you can edit it a lot or a little,
depending on your store needs. For example, you may only need to edit the data
using the tools available with WebSphere Commerce and change the look and feel
of the store pages using the development environment. Or, you may need to edit
the XML files or the database directly to make more comprehensive changes to the
data, and rewrite the store pages to change the store flow and features. Or using a
combination of the sample store and developing new store assets may be the
method of store development that works best for you. For example, if some of the
database assets in one of the sample stores closely match your store’s needs, but
the flow of that store’s pages does not, you can copy the database assets from the
store and customize them, while developing entirely new Web assets. For more
information on editing store data, see [Part 6, “Developing your store data,” on|

Store Development Guide

Component store archives: Each of the parts that make up the
composite store archive are also available as separate store archives. These store
archives are known as component store archives. A component store archive may
be an organization structure store archive, which contains the organization
structure and predefined user roles, or it may be a functioning store, or it may be a
collection of file or data assets that can be used as resources by other types of
stores. For more information about the samples provided with WebSphere
Commerce, see the WebSphere Commerce Sample Store Guide.

Why start with a sample component store archive?: Starting with a sample
component store archive, or a combination of sample component store archives
provides you with more flexibility than starting with a sample composite store
archive, as publishing a composite store archive creates a fully functional site. Parts
of this site may be appropriate for your needs, but other parts may not. For
example, if the flow of your store pages is significantly different than that of any of
the provided samples, or if you plan to significantly customize the WebSphere
Commerce Server database schema, you may choose to publish only certain parts
of a provided sample, rather than the entire sample. For example, you may choose
to publish only the sample organization structure, and then develop all of the
assets to create the stores in your site. Or you may choose to publish a sample
organization structure, and one or more of the sample component archives that
create either a store in the organization structure, or provide resources to be used
by other stores.

Note: If you are creating an instance of a value chain business model, it is
recommended that you start by publishing the sample organization
structure, as the organization structure that is needed for sites that contain
multiple entities is quite complex. For more information on how
organization structures work in WebSphere Commerce, see |“Understanding]
[the WebSphere Commerce organization structure” on page 25/

Basic store archive: WebSphere Commerce also provides a basic sample store that
provides the minimal set of assets needed to create a store in the WebSphere
Commerce Server.

Why start with the sample basic store?: Starting with the sample basic store
allows you to establish a store entity in the commerce server, in that the JSP files
can be invoked using the store ID. If you are creating a store that is very different
than any of the samples stores provided with WebSphere Commerce, you may
want to start with the sample basic store, as starting with the basic store allows a
developer to add assets as necessary, and does not require that you remove or
change assets which are not applicable to your store. For more information about
the basic store provided with WebSphere Commerce, see the WebSphere Commerce
Sample Store Guide.

Note: You can use the sample basic store in conjunction with one of the sample
organization structures provided.

Starting from scratch
It is also possible to start from scratch, that is not use any of the samples provided
with WebSphere Commerce.

The degree of required customization

Once you have decided on the foundation for your store, whether it be a sample
store, a sample organization structure or sample basic store, or from scratch, you

Chapter 1. Store development overview 7

8

need to determine what types of changes you will make to it. In general, most
store development in WebSphere Commerce falls into one of the following
categories:

* Adding or changing store functionality, including adding new features or
changing the store flow

* Creating or changing the look and feel of a store
¢ Creating or changing store data

In many cases, your store development effort will include a combination of all
three.

Adding or changing store functionality

Adding or changing store functionality, including changing the flow of your store,
or adding new features to your store, usually necessitates changes in business
logic. Tools for developing the business logic, including creating and extending
commands, creating customized code, and implementing business logic are
discussed in the WebSphere Commerce Programming Guide and Tutorials.

Note: Developers who are creating or changing the business logic must have
programming skills in Java', Enterprise JavaBeans ", WebSphere Studio
Application Developer, J2EE programming, and be familiar with the
WebSphere Commerce programming model and object model.

WebSphere Commerce Accelerator provides the ability to change some of the

features and store flows provided with the consumer direct and B2B direct sample

stores. For more information on what flows and functionality you can change and
how, see the WebSphere Commerce Production online help.

Creating or changing the look and feel of a store

Changing the look and feel of a store usually involves changing the storefront.
Storefront assets include Web assets such as HTML pages, JSP files, style sheets,
images, graphics and other multimedia file types. Developing your storefront
assets may include customizing the sample store pages, replacing them with
existing pages of your own, creating new pages, or doing a combination of all
three.

WebSphere Commerce provides the following tools to create or edit storefront
assets:

* WebSphere Studio Application Developer

WebSphere Studio Application Developer (packaged with WebSphere Commerce
Studio) includes the tools required to create and edit your storefront assets,
including HTML, graphics, multimedia, and JavaServer Pages (JSP) files. Page
Designer, included in WebSphere Studio Application Developer, allows you to
create HTML or JSP files, as well as animated images. You can also configure
WebSphere Studio Application Developer to use another Web development tool
of your choice. Refer to the WebSphere Studio online help for more information
on registering your own tools.

For more information on using the tools in WebSphere Commerce Studio to
create and edit your storefront assets, see the WebSphere Commerce Studio
online help. For more information on creating your storefront in WebSphere
Commerce, see [Chapter 8, “Developing your storefront,” on page 75,

Note: Developers who are creating or changing the storefront must have
programming skills in Java, JavaScript ", HTML, JSP technology, and be
familiar with the WebSphere Commerce store architecture.

* WebSphere Commerce Accelerator

Store Development Guide

WebSphere Commerce Accelerator includes the following tools to change the
look and feel of your store:

— Change Pages notebook
- Upload Logo notebook
— Change Style wizard

— Manage Files notebook
— Store Profile notebook

For more information these tools, see the WebSphere Commerce Production
online help.

Note: The tools listed above only work with stores based on the consumer direct

sample store, and hosted stores (in the hosting model and
demand chain model) created with the Store Creation wizard.

Creating or changing store data
You have several options for developing and editing the database assets in the

store.

* WebSphere Commerce Loader package

The WebSphere Commerce Loader package consists primarily of utilities for
preparing and loading data into a WebSphere Commerce database. Use the
Loader package to load large amounts of data and to update data in your
WebSphere Commerce database. The Loader utility in this package uses valid
and well-formed XML as input to load data into the database. Elements of the
XML document map to table names in the database, and element attributes map
to columns.

For information on using the Loader package to develop and load data assets,
see [Chapter 37, “Overview of loading store data,” on page 335

When to use WebSphere Commerce Loader package: Use the WebSphere
Commerce Loader package to initially load database assets into the WebSphere
Commerce database and to update them. The Loader package can also be used
to automate a regular data feed from a back end system.

WebSphere Commerce Accelerator

WebSphere Commerce Accelerator is a workbench of online tools primarily used
to maintain online stores through various store operations. However, since the
WebSphere Commerce Accelerator allows you to create or edit data, you can use
also use it as a store development tool, particularly when you are changing
small amounts of data. For a list of the database assets you can edit with the
WebSihere Commerce Accelerator, see [Part 6, “Developing your store data,” on|

When to use WebSphere Commerce Accelerator: Use the WebSphere Commerce
Accelerator when you are to create or update data.

Editing the database directly

You always have the option of editing the database directly using SQL inserts,
updates or deletes.

Note: SQL is database specific. Oracle may require a different SQL syntax. Note
that SQL statements will necessarily have database specific values and the
SQL statements may not be reusable in another WebSphere Commerce
Server instance.

Developers who are creating or changing the store data must be familiar
with the WebSphere Commerce store architecture, store data and store

Chapter 1. Store development overview 9

archives. To modify and extend the WebSphere Commerce database
schema for the purpose of implementing customized store functions, or
integrating with existing database information, the developer should have
database administrator skills for DB2® or Oracle.

Scenario: Developing and deploying a production store

10

This section outlines the recommended scenario for developing a production store

with WebSphere Commerce.

Table 1. Scenario: Developing and deploying a production store

Task

Subtasks

Reference

Determine which supported
business model reflects your
business

Chapter 2, “Supported|

business models inl

WebSphere Commerce,” on|

page 1§|

Determine the store flow

Part 4, “Developing your|

storefront,” on page 73|

Create use cases

Part 4, “Developing your|

storefront,” on page 73|

Analyze sample stores
provided with WebSphere

Commerce

WebSphere Commerce Sample
Store Guide

Determine which sample
store or other sample to use
as a starting point

WebSphere Commerce Sample
Store Guide

Create a baseline set of store
assets

Create a project in the
development environment
(Specific to the WebSphere
Commerce development
environment)

WebSphere Studio product
documentation

Publish one of the sample
store archives in the
development environment

WebSphere Commerce
Production online help, help
topic "Publishing a store
archive”

If possible, configure the
store using the change flow
tooling in the WebSphere
Commerce Accelerator

WebSphere Commerce
Production online help, help
topic "Changing store flows
using WebSphere Commerce
Accelerator”

Make any necessary database
schema changes

WebSphere Commerce
Programming Guide and
Tutorials

Check store assets into a
source control system
creating a master copy

WebSphere Commerce V5.5
Customization and Deployment
Handbook SG24-6969
Redbook.

Store Development Guide

Table 1. Scenario: Developing and deploying a production store (continued)

Determine the development
that must be done to create
store from baseline assets
(storefront, data and server
development)

Determine changes to look
and feel of store

WebSphere Commerce Sample
Store Guide

Part 4, “Developing your|

storefront,” on page 73|

Determine caching strategy
for store pages

Part 4, “Developing your|

storefront,” on page 73|

Determine changes to store
data

WebSphere Commerce Sample
Store Guide

Part 6, “Developing your|

store data,” on page 107]

Understand the
implementation used in the
sample store

WebSphere Commerce Sample
Store Guide

Analyze existing server
functionality to determine
where it will need
enhancements or
customization

WebSphere Commerce
Production and Development
online help

Determine the required
degree of integration with
back end systems

WebSphere Commerce
Production and Development
online help

Set up team environment

Each developer sets up a
development project in the
IDE, populates the project
with assets from the master
copy in the source control
system and the server assets
shipped with the product

WebSphere Commerce V5.5
Customization and Deployment
Handbook 5G24-6969
Redbook.

Developer gets baseline set
of assets running

Team familiarizes themselves
with the existing
functionality in the store
from the customer’s and
administrator’s point of view

WebSphere Commerce Sample
Store Guide

Develop the store assets

Modify and enhance the
storefront assets or create
new storefront assets

Part 4, “Developing your|

storefront,” on page 73|

Develop additional server
functionality (writing new
commands, EJBs, integrating
with back end systems)

WebSphere Commerce
Programming Guide and
Tutorials

Modify the data and create
additional data

Part 6, “Developing your|

store data,” on page 107]

Create production-ready data

Part 6, “Developing your|

store data,” on page 107]

Chapter 1. Store development overview

11

12

Table 1. Scenario: Developing and deploying a production store (continued)

Deploy developed assets into
production

WebSphere Commerce
Programming Guide and
Tutorials

Additional information can
also be found in WebSphere
Commerce V5.5 Customization
and Deployment Handbook,
S5G24-6969 Redbook.

Store Development Guide

Part 2. Business models supported by WebSphere Commerce

© Copyright IBM Corp. 2000, 2003 13

14 Store Development Guide

Chapter 2. Supported business models in WebSphere
Commerce

Before starting to develop your store or site with WebSphere Commerce you need
to understand what business models WebSphere Commerce supports. Most stores
you create with WebSphere Commerce will be an instance of one of these business
models.

Note: You can also create stores with WebSphere Commerce that do not conform
to the business models described in this chapter.

Understanding supported business models in WebSphere Commerce

WebSphere Commerce provides the architectural infrastructure to put businesses
that fit into one of the following business models online:

e Direct sales

. Hosting
. Value chain

Direct sales

Direct sales supports commerce transactions involving products, services, or
information directly between businesses and consumers or between two businesses
or parties. WebSphere Commerce supports the following types of direct sales
business models:

e Consumer direct

. B2B direct

Consumer direct

Consumer direct supports commerce transactions involving products, services, or
information between businesses and consumers. Consumers typically purchase
goods or services directly from a business in a consumer direct scenario.

The following diagram demonstrates a typical consumer direct business.

Customers __ Customersshop Retailer
ﬁ? at the retailer F

In a typical consumer direct business, customers buy directly from the business,
usually a retailer, as shown in this diagram. The business can be a retailer, a
manufacturer who sells their goods directly to consumers through their own retail
outlet, or any other business that sells goods or provides services directly to
consumers. For example, a business that sells to consumers directly through a
catalog would be considered a consumer direct business.

Organizations that are not traditionally considered businesses, such as

governments can also be considered consumer direct businesses. Governments may
provide goods and services directly to customers.

© Copyright IBM Corp. 2000, 2003 15

16

B2B direct

B2B direct supports commerce transactions involving products, services,
or information between two businesses or parties. Typical B2B direct transactions
occur between buyers, suppliers, manufacturers, resellers, distributors, and trading
partners.

The following diagram demonstrates a typical B2B direct business.

Buyers from one business
= Business —— purchase goods or services ——» = Business
from another.

In a typical B2B direct business, businesses purchase goods or services directly
from another business. The selling business can be a wholesaler, a distributor, a
manufacturer, or a retailer who sells to buyers from other businesses.

Organizations that are not traditionally considered businesses, such as
governments and the media can also be considered B2B direct businesses.
Governments may provide goods and services directly to businesses.

Hosting

The hosting model supports hosting of merchants or other businesses by
an Internet Service Provider (ISP) or other hosting provider.

There are two possible sides to the hosting business:

* hosted stores

* (optional) a site that allows customers to locate the stores that are hosted by the
provider

In order to manage relationships with the hosted stores, hosting models usually
include a hub (known in WebSphere Commerce as a hub store). This hub provides
self-provisioning tools that allow the merchant to create and administer a store, as
well as tools that allow the hosting provider to manage all hosted stores.

Hosting providers also usually include a store in which customers can find and
access the stores hosted by the provider.

The following diagram illustrates an example of hosting.

Host

Merchant —> |i (Internet Service
E- Provider or other)

Host
Customer | —p |i Merchant —» i (Internet Service
@ s s- Provider or other)

In this example, the merchant enters the host’s site and creating a store that will be
hosted by the site. Hosting providers often provide merchants with simple
self-provisioning tools that allow the merchant to administer a hosted store. When

Store Development Guide

a hosted store is open for business, customers can access the store via the host’s
site or by entering the hosted store directly.

| }

Host
Customer | —»

(Internet Service
Provider or other)
In this example, the customer has the option of entering the hosted store or
business directly or browsing the host’s site and then being transferred to the
hosted store or business.

Merchant —> |

Hosted stores are very similar to consumer direct stores. For specific differences
between the two, as implemented in the WebSphere Commerce sample stores, see
the WebSphere Commerce Sample Store Guide.

Value chain

New to WebSphere Commerce version 5.5 is the capability to enable
online business transactions involving multiple enterprises. Value chains support
transactions involving multiple enterprises or parties. Products, goods, services, or
information are delivered through the parties of the value chain from producers to
end users. A value chain also has relationship and administrative aspects, that is,
you can manage the relationship of the partners or enterprises in your value chain,
as well as offer some administrative services to those parties.

As a result, value chains must manage the two sides of their businesses: their
customers and direct sales, and their channel partners and suppliers. Each of these
sides requires its own management channels and practices.

In order to manage their relationships with partners or suppliers, value chain
business models usually include a hub (in WebSphere Commerce known as a hub
store). Value chain administrators can administer the operational aspects of the
value chain in the hub store, including enabling partners or suppliers to participate
in the value chain, that is, registering them, setting them up, creating
collaborations. Partners and suppliers can also access the hub store to complete
administrative tasks such as registering users.

In order to sell directly to customers (direct sales), value chains usually include a
storefront, where customers can purchase their good or services directly.

WebSphere Commerce supports the transactions through, and relationship
management of the following two types of value chains:

¢ Demand chain
* Supply chain

Chapter 2. Supported business models in WebSphere Commerce 17

18

The following diagram provides an overview of the partners and relationships
supported in value chains.

Value chains
Demand chain Supply chain
| l | | l |

Indirect sales Direct sales Procurement Sourcing
(selling through
channels)

Consumer B2B direct Strategic Private

direct sourcing marketplace

Demand chain

A demand chain is composed of the enterprises that sells a business’s
goods or services. For example, a demand chain may be composed of buyers who
initiate the sales transaction, the resellers who sell the manufacturer’s goods, and
the manufacturer who creates the goods. Or a demand chain may be composed of
the resellers who sell a manufacturer’s goods, the manufacturer who makes the
goods, and the distributors who supply the manufacturer’s goods to the resellers.
Demand chains also support direct sales channels, in which the demand chain
owner sells directly to customers or partners itself. For more information on direct
sales, see [‘Direct sales” on page 15]

Demand chain hosting: The demand chain owner may host stores for its channel
partners, for example resellers or distributors.

The following diagrams illustrate examples of some of the demand chains
supported by WebSphere Commerce.

Buyers, channel partners (resellers), and manufacturers:

Channel Partners “———4 Manufacturers
@ Buyers — (Resellers) — W or Distributors

In this example, buyers purchase goods from a manufacturer’s resellers (channel
partners). Resellers, in turn, obtain the goods from the manufacturer, via the
manufacturer’s hub.

Note: The resellers may be hosted by the manufacturer or be remote.

Store Development Guide

Resellers, manufacturers, and distributors:

hannel Partner: 1 — L

In this example the manufacturer provides a hub for their channel partners,
including resellers. Resellers and other channel partners may be able to do several
functions in this hub, including locating distributors of the manufacturer’s goods.

In order to locate suppliers, the reseller may browse a product catalog in the
private hub. If the desired products are available from more than one distributor,
the reseller can check product availability, distributors” location, and prices for
various distributors. Then, if the reseller chooses, they can split their order between
several distributors. The order is then sent to the distributor, who completes the
transaction and delivers the goods or services to the reseller. The reseller then sells
the goods or services directly to the consumer.

The demand chain sample site, the Commerce Plaza, is an example of this reseller,
manufacturer and distributor scenario.

Note: The resellers may be hosted by the manufacturer or be remote.

Other scenarios: The examples described in this section are just a few instances of
demand chains. The scenario details may change depending on the type of
business being conducted. For example, if the enterprise is a manufacturer, the
purpose of the hub may be to help the manufacturer’s resellers locate the
manufacturer’s goods from several distributors. If the enterprise is a distributor,
the purpose of the hub may be to help the distributor’s resellers find goods or
services from several different suppliers.

Supply chain

A supply chain is composed of the enterprises that provide services to a business.
WebSphere Commerce provides the architectural infrastructure to support supply
chains that take the form of a private marketplace.

A private marketplace provides a forum for vendors to offer their wares for sale.

Buyers enters this forum and after browsing through the available options, select

the appropriate goods or services.

Note: The private marketplace does not support competitive bidding and
counter-bidding or other methods of competition.

Supply chain hosting: The supply chain owner may host a stores for its
suppliers.

The following diagram illustrates an example of a supplier business.

Buyer — Private —» Supplier
marketplace 2B

In this example supply chain, the buyer enters the supplier’s hub to interact and
browses the an aggregated catalog in which products and offers from multiple

Chapter 2. Supported business models in WebSphere Commerce 19

suppliers are presented. The buyer can then select the desired offer or request
quotes from multiple suppliers. The buy also has the option of conducting business
or procuring from online suppliers directly.

Sample stores in WebSphere Commerce

WebSphere Commerce provides several sample stores that you can use to
familiarize yourself with how WebSphere Commerce supports the different
business models listed in this chapter. The samples available (and corresponding
store archive files) are as follows:

20

Table 2.

Consumer direct

B2B direct

Hosting

Business

Demand chain

Business

Supply chain

FashionFlow
(ConsumerDirect
.sar)

Express

Store

(ExpressStore.sar

ToolTech
(B2BDirect.sar)

Note: All the
stores listed
below are also
available in the
composite store
archive
Hosting.sar. It
is recommended
that you publish
Hosting.sar to
view the entire
hosting sample.

Note: All the
stores listed
below are also
available in the
composite store
archive
DemandChain.sar.
It is
recommended
that you publish
DemandChain.sar
to view the
entire demand
chain sample.

Note: All the
stores listed
below are also
available in the
composite store
archive
SupplyChain.sar.
Itis
recommended
that you publish
SupplyChain.sar
to view the
entire supply
chain sample.

Commerce Commerce Plaza | Commerce
Hosting Hub (ChannelHub.sar) | Supplier Hub
(Hosting (SuppTierHub.
Hub.sar) sar)

Store Directory
(Store

Catalog asset
store

Catalog asset
store (Catalog

Directory.sar) |(CatalogAsset AssetStore.sar)
Store.sar)
Catalog asset Reseller Supplier asset

store

storefront asset

store (Supplier

(CatalogAsset store AssetStore.sar)
Store.sar) (Resellerstore

frontAsset

Store.sar)
Hosted Distributor asset | Suppliers

storefront asset
store
(HostedStore
FrontAsset
Store.sar)

store
(DistributorAsse
Store.sar)

Hosted stores

Hosted reseller
stores

Distributor
stores

Store Development Guide

For more information on the types of stores in these samples, see [‘Understanding]
lhow the store architecture supports the business models” on page 66.| For more
detailed information on the sample stores, see the WebSphere Commerce Sample Store
Guide.

Note: Each sample also contains a component store archive that contains the
organization structure for the business model.

Note that these samples are representative of a specific instance of stores in each
business model and are not meant to demonstrate all possible variations available
in the business model. However, even if your specific instance of the business is
quite different from the sample provided, you may be able to use the samples as a
starting point for your own site, or use portions of it while creating your site. For
more detailed information on the samples provided with WebSphere Commerce,
see the WebSphere Commerce Sample Store Guide.

Chapter 2. Supported business models in WebSphere Commerce 21

22 Store Development Guide

Part 3. WebSphere Commerce architecture

This section provides an overview of how the WebSphere Commerce architecture

supports putting businesses online. In particular, this section discusses how
components of the WebSphere Commerce architecture allow the different parties
(for example, your customers, business partners, or distributors, resellers, and
suppliers) in your business to interact online.

In order to enable the different parties (for example, your customers, business

partners, vendors, suppliers, manufacturers, distributors, and administrators) that

contribute to your business to interact with your business and each other online,
WebSphere Commerce includes the following architectural components:

Organization structure
Access control model
Business policy framework
Instance architecture

Store architecture

Together these components create the architecture that allows the different partners

in your business to interact with each other.

© Copyright IBM Corp. 2000, 2003

23

24 Store Development Guide

Chapter 3. WebSphere Commerce organization structure

In order to allow customers or buyers to access your site, browse your catalog, and
place orders; or to allow employees to administer the site, including updating the
catalog, creating new promotions, or managing orders; or to allow resellers or
other business partners to complete transactions on your site, all actors in your
business scenario must be assigned a position in the WebSphere Commerce
organization structure.

Understanding the WebSphere Commerce organization structure

The WebSphere Commerce organization structure provides a framework for the
actors, or entities, in your business scenario. This framework is organized in a
hierarchical structure, which mimics typical organizational hierarchies with entries
for organizations and organizational units and users. The organizations and
organizational units in the framework act as owners for the parts of your business.
All parts of your business, including customers, administrators, stores, catalogs
and distributors, must be owned by an organization or organizational unit.

The organization structure and the access control model, discussed in
[“Access control in WebSphere Commerce,” on page 35| are closely related, in that
the access control model applies access control policies to organizations rather than
to individual entities (stores, customers, administrators and so on). The policies
that apply to an entity (or resource) are applied to the organizations that own the
entity or resource.

The following diagram outlines the basic WebSphere Commerce organization
structure. The basic organization structure is installed during instance creation,
regardless of the business model.

o=Root Organization

Site
Administrators

o=Default Organization

@ Customers

* Root organization: The root organization is the top level organization and is its
own parent. All organizations in the WebSphere Commerce organization
structure are descendents of the root organization. The site administrators are
owned by the root organization.

* Default organization: The default organization is owned by the root
organization. All guest customers and all customers in a consumer direct

© Copyright IBM Corp. 2000, 2003 25

scenario belong to the default organization. Customers in a B2B direct and value
chain scenario can belong to either the default organization, or other
organizations.

One or more other levels of organizational entities can exist beneath the parent
organizational entities. You can add as many child organizational entities as
necessary to support your business.

How does the organization structure support the business models?

The WebSphere Commerce organization structure is flexible enough to support all
entities in the supported business models. The diagrams in the following sections
demonstrate how a typical example of each business model can be mapped to the
WebSphere Commerce organization structure.

Consumer direct
The following diagram illustrates a typical consumer direct business.

Customers _ Customersshop Retailer
@ at the retailer =ib

In order to place this business online with WebSphere Commerce, the entities in
the preceding diagram must be assigned to the following organizations:

Site
Administrators

o=Default Organization

! f—

Seller
@ Customers @ Administrators

o=Seller Organization

ou=Consumer
Direct Organization

Retailer

* Root organization: All organizations in the business become descendents of the
root organization. The site administrators who maintain the online site, are
owned by the root.

26 Store Development Guide

— Default organization: All of the business’ customers are owned by the default
organization.

— Seller organization: A seller organization is created to own all the seller
organizations (including stores and the administrators who maintain the
store). The administrators who maintain the store’s functions (for example
customer service representatives, catalog and product managers) are termed
Seller administrators and are owned directly by the Seller organization.

- A child organizational unit (ou), consumer direct organization, is created
under the seller organization to own the store (Retailer).

- Express _JRYOF organization structure in WebSphere Commerce - Express is slightly
different than the consumer direct organization described above. In order to place
a consumer direct business online with WebSphere Commerce - Express, the
entities in the consumer direct diagram above must be assigned to the following
organizations:

o=Root Organization

_

Site
Administrators

o=Default Organization o=Seller Organization

T I |

) Seller
@ Customers Retailer @ Administrators

* Root organization: All organizations in the business become descendents of the
root organization. The site administrators who maintain the online site, are
owned by the root.

— Default organization: All of the business’ customers are owned by the default
organization.

— Seller organization: A seller organization is created to own all the stores
(Retailer) and the administrators who maintain the store. The administrators
who maintain the store’s functions (for example customer service
representatives, catalog and product managers) are termed Seller
administrators and are owned directly by the Seller organization.

B2B direct
The following diagram illustrates a typical B2B direct business.

Buyers from one business
— Business —— purchase goods or services ——» — Business
from another.

Chapter 3. WebSphere Commerce organization structure 27

In order to place this business online, the entities in the preceding diagram must
be assigned to the following organizations:

o=Root Organization

7

Site
Administrators

o=Seller Organization

T—\

Seller
Administrators

o=Default Organization

ou=Business
Direct Organization

@ Buyers Business
!

* Root organization: All organizations in the business become descendents of the
root organization. The site administrators who maintain the online site, are
owned by the root.

— Default organization: Unlike the consumer direct organization structure, the
customers are not owned by the default organization. Instead the customers
are buyers who are owned by the buyer organization.

o=Buyer Organization

— Buyer organization: Customers, known in B2B direct businesses as buyers,
are assigned their own organization in the B2B direct organization structure.

— Seller organization: A seller organization is created to own all the
organizations that own stores. The administrators who maintain the store’s
functions (for example customer service representatives, catalog and product
managers) are termed seller administrators and are owned directly by the
seller organization.

- A child organizational unit (ou), B2B direct organization, is created under
the seller organization to own the store (Business).

Demand chain

The following diagram illustrates an example of a demand chain business.

Channel Partners “———4 Manufacturers
@ Buyers —> (Resellers) — w or Distributors

28 Store Development Guide

In order to place this business online, the entities in the preceding diagram must
be assigned to the following organizations:

o=Root organization

—
[EP Site

administrators

o=Default organization

@ Customers

o=Demand chain
management organization

o=Reseller
organization

ou=Asset store
organization

ou=Channel hub
organization

ou=Distributor proxy
organization

Channel
administrators

i

o=Reseller A
organization

Channel
hub

Reseller A
administrators

Catalog
asset store

&

Reseller storefront
asset store

Distributor
asset store

{

ou=Distributor1
organization

ou=Consumer ‘
d

irect organization

Distributor proxy
store 1

Store A

* Root organization: All organizations in the business become descendents of the
root organization. As well, the administrators who will maintain the online site,
the Site Administrators, are added directly under the root.

— Default organization: By default, nothing is placed under the default
organization. Customers of the reseller stores may be placed under this
organization.

Demand chain management organization: The demand chain management
organization is created to own all of the channel related organizations (with
the exclusion of the organization that owns the resellers). The demand chain
management organization owns the following child organizational units:

- Channel hub organization: The channel hub organization is created to own
the channel hub. The administrators who maintain the channel hubs
functions, as well as administering the reseller organization, are termed
channel administrators and are owned directly by the channel hub
organization

- Distributor proxy organization: The distributor proxy organization is
created to own all connections to distributors. A child organizational unit is
created for each distributor proxy in the organization.

* Distributor organization: A new distributor organizational unit is
created for each distributor proxy in the site.

29

Chapter 3. WebSphere Commerce organization structure

- Asset store organization: The asset store organization is created to own all
assets that are used to create stores for channel partners (resellers and
distributors).

— Reseller organization: The reseller organization is created to own all of the
resellers in the demand chain. A child organization is created for each reseller.

- Reseller organization A, B, C: A new reseller organization is created under
the parent reseller organization, for each reseller store. The administrators
who maintain the store’s functions (for example customer service
representatives, catalog and product managers) are termed reseller
administrators and are owned directly by the corresponding reseller
organization.

Supply chain

The following diagram illustrates a typical supply chain business.

Private .
@ Buyer —> marketplace —> Supplier

30 Store Development Guide

In order to place this business online, the entities in the preceding diagram must

be assigned to the following organizations:

o=Root organization

o=Default organization

—

Site
administrators

o=Buyer A
organization

@ Buyers

o=Supplier
organization

o=Supplier A
organization

Supplier A
administrators

ou=B2B direct
organization

Store A

i

o=Supply chain
management
organization

ou=Asset store
organization

ou=Supplier hub
organization

Channel
administrators

_@ Supplier
hub

Catalog Supplier
asset store . asset store

* Root organization: All organizations in the business become descendents of the
root organization. As well, the administrators who will maintain the online site,

the Site Administrators, are added directly under the root.

— Default organization: By default, nothing is placed under the default
organization.

— Supply chain management organization: The supply chain management

organization is created to own all of the supply chain related organizations
(with the exclusion of the organization that owns the suppliers). The supply

chain management organization owns the following child organizational
units:

- Supplier hub organization: The supplier hub organization is created to

own the supplier hub. The administrators who maintain the supplier hubs

Chapter 3. WebSphere Commerce organization structure

functions, as well as administering the supplier organization, are termed
channel administrators and are owned directly by the supplier hub
organization

- Asset store organization: The asset store organization is created to own all
assets that are used to create stores for suppliers.

— Supplier organization: The supplier organization is created to own all of the
suppliers in the supply chain. A child organization is created for each
supplier.

- Supplier organization A, B, C: A new supplier organization is created
under the parent supplier organization, for each supplier store. The
administrators who maintain the store’s functions are termed supplier
administrators and are owned directly by the corresponding supplier
organization.

— Buyer organization: Buyers are given their own organization under the root.
All buyers are owned by the corresponding buyer organization.

Hosting

The following diagram illustrates a typical hosting business.

Host
Customer | —p |i Merchant —» i (Internet Service
@ s- E- Provider or other)

32 Store Development Guide

In order to place this business online, the entities in the preceding diagram must
be assigned to the following organizations:

o=Root organization

o=Default organization Site
administrators

@ Customers

o=Hosting
organization

o=Hosted seller
organization

ou=Store directory
organization

ou=Hosting hub
organization

o=Hosted seller A
organization

administrators

Hosted seller A Channel @ Hub Store
@ Pt A administrators T store directory

ou=Asset store
organization

ou=Consumer
direct organization

% Catalog ﬁ Hosted storefront
7). Store A 4} asset store asset store

* Root organization: All organizations in the business become descendents of the
root organization. As well, the administrators who will maintain the online site,
the Site Administrators, are added directly under the root.

— Default organization: All of the business’ customers are owned by the

Default organization

— Hosting organization: The hosting organization is created to own all of the
hosting related organizations (with the exclusion of the organization that
owns the hosted stores). The hosting organization owns the following child
organizational units:

- Hosting hub organization: The hosting hub organization is created to own
the hosting hub. The administrators who maintain the hosting hub’s
functions, as well as administering the hosting organization, are termed
channel administrators and are owned directly by the hosting hub
organization.

- Store directory organization: The store directory organization is created to
own the store directory.

- Asset store organization: The asset store organization is created to own all
assets that are used to create hosted stores.

Chapter 3. WebSphere Commerce organization structure 33

— Hosted seller organization: The hosted seller organization is created to own
all of the hosted stores. A child organization unit is created for each hosted
store.

- Hosted store organization A, B, C: A new hosted store organization is
created under the parent hosting organization, for each hosted store. The
administrators who maintain the store’s functions are termed hosted seller
administrators and are owned directly by the corresponding hosted store
organization.

Sample organization structures

WebSphere Commerce provides sample organizations structures for each supported
business model. These sample organization structures are available on their own
(as component store archives) allowing you to use the sample organization
structure as as starting point for your own site, or as part of the sample businesses.
For more information on the sample organization structures, see the WebSphere
Commerce Sample Store Guide.

Creating organization structures

Rather than create new organization structures for your site, it is recommended
that you begin by publishing one of the sample organization structures provided
with WebSphere Commerce, and then make changes to that organization structure
as necessary. For more information on editing organization data, see
[“Understanding member assets in WebSphere Commerce” on page 115/

34 Store Development Guide

Chapter 4. Access control in WebSphere Commerce

WebSphere Commerce allows you to determine, through access control, which
tasks a particular user, be they customers, buyers, administrators, distributors,
manufacturers, or suppliers, can perform in relation to your business.

The access control model for WebSphere Commerce is covered in detail in the
WebSphere Commerce Security Guide. However, in order to understand how access
control affects site and store development, a brief summary is provided here.

Understanding access control in WebSphere Commerce

Access control in WebSphere Commerce is composed of the following elements:
users, actions, resources, and relationships.

* Users are the people that use the system. For access control purposes, users
must be grouped into relevant access groups. One common attribute that is used
to determine membership of an access group is roles. Roles are assigned to users
on a per organization basis. For more information about roles, see
Some examples of access groups include registered customers, guest

customers, or administrative groups like customer service representatives.

* Actions are the activities that users can perform on the resource. For access
control purposes, actions must also be grouped into relevant action groups. For
example, a common action used in a store is a view. A view is invoked to
display a store page to customers. The views used in your store must be
declared as actions and assigned to an action group before they can be accessed.

* Resources are the entities that are protected. For example, if the action is a view,
the resource to be protected is the command that invoked the view, for example
com.ibm.commerce.command.ViewCommand. For access control purposes,
resources are grouped into resource groups.

* Relationships are the relationship between the user and the resource. Access
control policies may require that a relationship between the user and the
resource be satisfied. For example, users may only be allowed to display the
orders that they have created.

Access control policies

Access control policies authorize access groups to perform particular actions on the
resources of WebSphere Commerce, as long as the users in the access group satisfy
a particular relationship with respect to the resource.

WebSphere Commerce provides over three hundred default access control policies
that are loaded during instance creation. These policies cover a wide range of
common business activities, including order creation and processing, and trading,

such as request for quotes and contracts. The default policies
are documented in the WebSphere Commerce Security Guide.

Access control policy groups

In order for an access control policy to be applied to your store or site, it must
belong to an access control policy group and the policy group must be subscribed
by the organization that owns the resource. By default, all access control policies

© Copyright IBM Corp. 2000, 2003 35

36

provided with WebSphere Commerce are assigned to policy groups. For a list of
default policies provided with WebSphere Commerce, see the WebSphere Commerce
Security Guide.

Although access control policy groups are owned by organizations, they are not
automatically applied to the organization. An organization must subscribe to a
policy group in order for the access control policies to apply to the organization. If
the organization has child organizations, all policy groups the parent subscribes to
are automatically applied to the child organizations. However, if the child
organization subscribes directly to a policy group, the policy groups subscribed to
by the parent organization no longer apply to the child.

In previous versions of WebSphere Commerce, a policy applied to all resources
owned by the descendants of that policy’s owner organization. For example, if
Organization A had a certain policy and was the parent of Organization B, then
Organization B implicitly had that policy as well. In WebSphere Commerce 5.5,
organizations can now subscribe to policy groups. In WebSphere Commerce 5.5 , if
Organization B does not subscribe to any policy groups, the access control
framework will begin searching up the organization hierarchy until it encounters
an organization that subscribes to at least one policy group. If Organization B’s
immediate parent organization, Organization A, subscribes to a policy group, the
searching stops, and the policies in Organization A’s policy group are applied to
Organization A and B. This can be seen in the following diagram.

Root Organization

D Policy Group < - -@
Organization A

If Organization A does not subscribe to a policy group, the search continues up the
organization hierarchy, until an organization with a subscription is reached. This is
seen in the following diagram where the Root Organization subscribes to a policy

Store Development Guide

group. Organization B and Organization A inherit the policies in that group.

Root Organization

D Policy Group <- -

o= Root Organization

o= Organization A

o= Organization B

If Organization B subscribes to a policy group, the search stops at Organization B
and Organization B can only apply to those policies to which it has subscribed, as
shown in the following diagram.

Root Organization

D Policy Group <--

Organization A

D Policy Group o= Organization A

Organization B
D Policy Group <---

Note: In terms of access control, ownership of resources has a special meaning. All
resources must implement the com.ibm.commerce.security.Protectable
interface. One of the methods on this interface is getOwner(), which returns
the member ID of the owner of the resource. For example, the Order entity
bean is a resource that is protected by having its remote interface extend the
Protectable interface. The Order’s implementation of getOwner() is such that
a specific Order resource returns the owner of the store where the order was
placed. For policies where the resource is a command, for example,
com.ibm.commerce.command.ViewCommand, the default implementation of
getOwner() is to return the owner of the store that is currently in the
command context. If there is no store in the command context, then Root
Organization is used as the owner. For more information, see the WebSphere
Commerce Programming Guide and Tutorials.

o= Root Organization

o= Organization B

Chapter 4. Access control in WebSphere Commerce 37

Understanding access control in the business models

38

The WebSphere Commerce access control structure is flexible enough to support all
entities in the supported business models. The diagrams in the following sections
demonstrate how access control is applied to a typical example of each business
model.

Basic access control structure

The basic access control structure is installed during instance creation, regardless of
the business model.

o=Root organization

Site administrators have
Site Administrator role

]

Site
administrators

o=Default organization

]
]
v v iy

Guest shopper Management and B2B
management administration i
policy group policy group ROICYAIONE
Common shopping B2C
policy group policy group

Legend

Owns
————— » Subscribes

Role

The root organization owns the following default policy groups:

* Management and administration

* Common shopping

e B2C

+ B2B

However, the root organization only subscribes to the management and
administration policy group. As a result, these policies apply to the site

administrators, who are directly under the root.

The policies in the management and administration policy group do not apply to
the default organization through inheritance, as the default organization subscribes

Store Development Guide

to the guest shopper management policy group. In order for the management and
administration policies to apply, the default organization must subscribe to the
management and administration policy group explicitly.

The default organization owns the guest shopper management policy group.

Note: For more detailed information on the default policy groups, see the
appendix of the WebSphere Commerce Security Guide.

Chapter 4. Access control in WebSphere Commerce 39

Consumer direct

The following diagram describes a basic consumer direct organization and access
control structure.

o=Root organization
Site administrators
have Site Administrator A A
role in the root organization.

Site
administrators

o=Seller organization

o=Default organization

@ Customers

Seller
administrators

1
1
1
1
1
1
1
1

v

|
|
|
|
|
|
|
v

Guest shopper management
access control policy group

Management and
administration access control

policy group

Common shopping
access control policy group

D B2B policy group

1
1
1
1
1
1
1
1
1
1

@ @@

[] B2C policy group

I
I
I
I
FashionFlow policy group I
|
|
|
I

ou=Consumer
direct organization

Customers are assigned the
Registered Customer role in the
consumer direct organization.

Store A

40 Store Development Guide

Legend

Owns
————— » Subscribes

Role

In this diagram describing the basic consumer direct organization, the root
organization owns and subscribes to the default policy groups as described in
[“Basic access control structure” on page 38

The consumer direct organization subscribes directly to the B2C access control
policies, the management and administration policy group, and the common

shopping policy group.

The consumer direct organization also owns and subscribes to the FashionFlow
policy group. The FashionFlow policy group contains the following policy:

AllUsersExecuteFashionAllUsersViews
Since access control policy groups are subscribed by organizational entities, if you
are creating multiple stores in your site and want to apply different access control

policy groups to individual stores, you must create separate organizations to own
each store.

BEEEM The access control structure in WebSphere Commerce - Express is slightly
different than the consumer direct access control structure described above.

Chapter 4. Access control in WebSphere Commerce 41

The following diagram describes the access control structure in WebSphere
Commerce - Express:

o=Root organization/

A A

Site administrators
have Site Administrator
role in the root organization.

Site
administrators

o=Default organization
t .

]
@ Customers :

Customers are assigned the
Registered Customer role

|
v
Guest shopper management Management and
access control poIicy%roup administration access control
policy group
4
| |
|
|
. Common shopping !
D B2B policy group “ U access control policy group |
I

! I
I A !
1 e o e - !
l P!
I P!
I P!
I
) ! Express Store : I
U B2C policy group : U policy group 1!
1|
l o
1 A P

! I

! I

! I

in the seller organization.

o=Seller organization

T T MiniFashion

Seller Express E)
@ administrators Store ——— 1= | FashionFlow

In this diagram describing the consumer direct organization in WebSphere
Commerce - Express, the root organization owns and subscribes to the default
policy groups as described in [“Basic access control structure” on page 38|

The Seller organization subscribes directly to the B2C access control policies, B2B
access control policies, the management and administration policy group, and the
common shopping policy group.

The seller organization also owns and subscribes to the Express policy group. The
Express policy group contains the following policies:

42 Store Development Guide

* AllUsersExecuteExpressAllUsersViews

* RegisteredUsersExecuteExpressAllUsersViews

B2B direct

The following diagram describes a basic B2B direct organization and access control

structure.

o=Root organization
Site administrators

have Site Administrator
role in the root organization.

Site
administrators

o=Default organization

1
1
1
1
1
|

v

Guest shopper management
access control policy group

o=Seller organization

T

Seller
administrators

|
I
|
I
|
I
4____
4_________

Management and
administration access
control policy group

B2C policy group

Common shopping
access control policy group

G B2B policy group

o=Buyer A
organization

Buyers

0

Tooltech policy group

a @ o

ou=B2B direct
organization

Buyers are assigned the
Registered Customer role
in the B2B organization.

_@ Store D

Chapter 4. Access control in WebSphere Commerce 43

44

Legend

Owns
————— » Subscribes

Role

In this diagram, describing a basic B2B direct organization structure, the root
organization owns and subscribes to the default policy groups as described in
[“Basic access control structure” on page 38

The B2B direct organization subscribes directly to the B2B, management and
administration, and the common shopping policy groups.

The B2B direct organization also owns and subscribes to the ToolTech policy group.
The ToolTech policy group contains the following policies:

¢ AllUsersForToolTechExecuteToolTechAllUsersViews

¢ RegisteredCustomersForOrgForToolTechExecuteToolTech
RegisteredCustomerViews

Buyers are customers that place orders in a B2Bdirect store. All buyers must be
owned by a buyer organization. Typically, buyer organizations do not subscribe to
any policy groups, since management and administration policies inherited from
the root organization are sufficient.

Since access control policy groups are subscribed by organizational entities, if you
are creating multiple stores in your site, and want to apply different access control
policy groups to individual stores, you must create separate organizations to own
each store.

Demand chain

Business

In these diagrams, describing a demand chain organization structure, the root
organization owns and subscribes to the default policy groups as described in

Store Development Guide

[“Basic access control structure” on page 38

Management
and administration
policy group

Marketplace
policy group

o=Root organization

o=Demand chain
management organization

A A
I
I
|

Common shopping
policy group

ou=Channel hub
organization

B2B
policy group

Channel administrators
have Channel Manager role

» Subscribes

Owns

Role

Commerce
plaza

Channel
administrators

The channel hub organization subscribes directly to the Management and

administration policy group, the common shopping policy group, the B2B policy
group and owns and subscribes the Marketplace policy group. As a result, these
policies apply to the channel administrators, who are directly under the channel

hub organization, as well as to the channel hub (Commerce Plaza).

The Marketplace policy group contains the following policies:
+ AllUsersExecuteMarketplaceAllUserViews

* RegisteredCustomersForOrgExecuteMarketplaceRegistered
CustomerViews

Chapter 4. Access control in WebSphere Commerce

45

* ContractAdministratorsForChannelOrgExecuteCreate
CommandsOnMemberResource

* ContractAdministratorsForChannelOrgExecuteContract
DeployCommandsOnContractResource

* ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

o=Root organization

o=Demand chain
management organization

I
v
eI Common shoppin
and administration i e p—— pping
policy group policy group
4 4
I I
I |\ ____
1 ou=Distributor proxy
o _____ organization
ou=Distributor1
organization
ﬁ Distributor
T4} proxy store 1
Legend
Owns

————— » Subscribes

Role

The distributor proxy organization subscribes to the management and
administration policy group and the common shopping policy group. As a result,
these policies apply to the distributor organizations who are directly under the

46 Store Development Guide

distributor proxy organization.

o=Ro

ot organization

o=Demand chain
management organization

v

Management
and administration
policy group

store organization

ou=Asset

FashionFlow
policy group

E Catalog ﬁ Reseller storefront E Distributor
72}~ asset store <) asset store & asset store

Legend

Owns
————— » Subscribes

Role

The asset store organization does not subscribe directly to any policy groups. As a

result it inherits the management and administration policy group from the root

organization. These policies apply to the asset store organization and the asset

stores that it owns. The asset store
group, but does not subscribe to it.

organization owns the FashionFlow policy

Chapter 4. Access control in WebSphere Commerce

47

48

Note: The individual reseller consumer direct organizations will subscribe to the
FashionFlow policy group when the reseller store is created.

Store Development Guide

Management

0

policy group

and administration

o=Root organization

B2B Common shopping
policy group policy group
4 A

B2C
policy group

o=Reseller
organization

o=Reseller A
organization

0

ou=Consumer
direct organization

Store A
et

ou=Channel hub

o=D

emand chain

management organization

o=Default organization

@ Customers

organization

ou=Distributor proxy
organization

Reseller administrators

have Registered Customer role
in channel hub organization and
distributor proxy organization

Reseller A
administrators

Customers registered with store A
have Registered Customer role in the
consumer direct organization

0

store organization

ou=Asset

FashionFlow
policy group

Legend

Owns
————— » Subscribes

Role

The reseller organization does not subscribe directly to any policy groups. As a
result it inherits the management and administration policy group from the root
organization. These policies apply to the reseller organization and the reseller A
organizations that it owns as well as to the reseller A administrators.

The consumer direct organization subscribes directly to the management and
administration policy group, common shopping policy group, B2C and B2B policy
groups, as well as to the FashionFlow policy group. These policies apply to all
stores owned by the consumer direct organization.

Supply chain

In these diagrams, describing a basic supply chain organization structure, the root
organization owns and subscribes to the default policy groups as described in

Chapter 4. Access control in WebSphere Commerce 49

[“Basic access control structure” on page 38

o=Root organization

1
________ 1
' |
v |
Management Common shopping B2B
and administration olicy grou olicy grou
policy group e/t potiey grote

0=Supply chain
management organization

4

ou=Supplier hub
organization

Channel administrators

I
I
|
I have Channel Manager role
v
Supplier hub Supplier Channel
policy group hub administrators

Owns
————— » Subscribes

Role

The supplier hub organization subscribes directly to the management and
administration policy group, the common shopping policy group, the B2B policy
group and owns and subscribes to the Supplier hub policy group. As a result,
these policies apply to the channel administrators, who are directly under the
supplier hub organization, as well as to the supplier hub.

The Supplier hub policy group contains the following policies:
* AllUsersForSupplierHubExecuteSupplierHubAllUsersViews

* RegisteredCustomersForOrgForSupplierHubExecuteSupplierHub
RegisteredCustomerViews

* ContractAdministratorsForChannelOrgExecuteCreateCommands
OnMemberResource

50 Store Development Guide

* ContractAdministratorsForChannelOrgExecuteContractDeploy
CommandsOnContractResource

* ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

o=Root organization

Management
and administration
policy group

0=Supply chain
management organization

ou=Asset
store organization

Supplier profile ﬁ Catalog ﬁ Supplier
policy group = asset store = asset store

Owns
————— » Subscribes

Role

The asset store organization does not subscribe directly to any policy groups. As a
result it inherits the management and administration policy group from the root
organization. These policies apply to the asset store organization and the asset
stores that it owns. The asset store organization owns the supplier profile policy
group, but does not subscribe to it.

Chapter 4. Access control in WebSphere Commerce 51

52

Note: The individual supplier’s B2B direct organization will subscribe to the
supplier profile policy group when the supplier store is created.

o=Root organization

o=Buyer A
organization

o=Supplier
organization

]
@ Buyers 1 |
v

. Management Common B2B
Buyers registered and administration shopping Slicy arou
with store A have policy group policy group polley group

Registered Customer
role in B2B direct

o=Supplier A
organization

0=Supply chain
management organization

Supplier users have
Registered Customer role in
supplier hub organization

ou=Asset
store organization

ou=Supplier hub

]

1

1

]

1

1

]

1

1

Supplier A 1
administrators !
1

]

1

1

]

1

1

]

1

! organization

ou=B2B direct
organization

D Supplier profile
sorea M ' _______ - policy group

Legend

Owns
————— » Subscribes

Role

The supplier organization does not subscribe directly to any policy groups. As a
result it inherits the management and administration policy group from the root
organization. These policies apply to the supplier organization, the supplier A
organizations that it owns, and the supplier A administrators.

The B2B direct organization subscribes directly to the management and
administration, the common shopping, B2B and supplier profile policy groups.
These policies apply to all stores owned by the B2B direct organization.

Store Development Guide

The Supplier profile policy group contains the following policies:
* AllUsersForSupplierExecuteSupplierAllUsersViews

RegisteredCustomersForOrgForSupplierExecuteSupplierRegistered CustomerViews

Buyers are customers that place orders in a B2B store. All buyers must be owned
by a buyer organization. Typically, buyer organizations do not subscribe to any
policy groups, since management and administration policies inherited from the
root organization are sufficient.

Hosting
In these diagrams, describing a basic hosting organization structure, the root

organization owns and subscribes to the default policy groups as described in
[“Basic access control structure” on page 38

o=Root organization

o=Hosting
organization

v
Manager_ngnt _ B2B
and administration e G
policy group policy group
4 4
I I
: '--7 ou=Hosting hub
| organization
I
|
I
I
________________________ ! Channel administrators
I have Channel Manager role
I
v | |

Channel store Channel Channel
policy group store administrators

Chapter 4. Access control in WebSphere Commerce 53

Legend

Owns
————— » Subscribes

Role

The hosting hub subscribes directly to the management and administration policy
group, the B2B policy group, and owns and subscribes to the channel store policy
group. As a result, these policies apply to the channel administrators, who are
directly under the hosting hub organization, as well as to the channel store
(hosting hub).

The hosting hub policy group contains the following policies:
 AllUsersExecuteChannelStoreAllUsersViews

* ContractAdministratorsForChannelOrgExecuteCreate
CommandsOnMemberResource

* ContractAdministratorsForChannelOrgExecuteContract
DeployCommandsOnContractResource

* ContractAdministratorsForChannelOrgDisplayContract
DatabeanResourceGroup

o=Root organization

o=Hosting
organization

1

1

I

I

1

1

I

I

v
Management
and administration
policy group

ou=Store directory
organization

-

I

|

|

I
v |
Public store ﬁ Store
policy group directory

54 Store Development Guide

Legend

Owns
————— » Subscribes

Role

The store directory organization subscribes directly to the management and
administration policy group and owns and subscribes to the store directory policy
group. As a result, these policies apply to the store directory, which is directly
under the store directory organization.

The store directory policy group contains the following policy:
* AllUsersExecutePublicStoreAllUsersViews

o=Root organization

v

Management
and administration
policy group

o=Hosting
organization

ou=Asset
store organization

Hosted storefront
asset store
policy group

Legend

Owns
————— » Subscribes

Role

ﬁ Hosted storefront % Catalog
) asset store 7<)~ asset store

The asset store organization does not subscribe directly to any policy groups. As a

result it inherits the management and administration policy group from the root

organization. These policies apply to the asset store organization and the asset

stores that it owns. The asset store organization owns the hosted storefront asset

store policy group, but does not subscribe to it.

Chapter 4. Access control in WebSphere Commerce

55

Note: The individual hosted seller organizations will subscribe to the hosted
storefront asset store policy group when the hosted store is created.

o=Root organization

DBZB
L S .
policy group

o=Default organization

________ ! @ Customers
1

I | |
v
Common shopping Management B2C
. and administration) <« - -
policy group policy group policy group

o=Hosted seller
organization

o=Hosting
organization

ou=Asset
store organization

ou=Store directory
organization

ou=Hosting hub
organization

o=Hosted seller A
organization

Hosted storefront
asset store
policy group

Hosted seller administrators
have Registered Customer role
in hosting hub organization

Hosted seller A
administrators

ou=Consumer
direct organization

Customers registered with Store A have
Registered Customer role in consumer
direct organization

@ Store A

56 Store Development Guide

Legend

Owns
————— » Subscribes

Role

The hosted seller organization does not subscribe directly to any policy groups. As
a result it inherits the management and administration policy group from the root
organization. These policies apply to the hosted seller organization and the hosted
seller A organizations that it owns, as well as to the hosted seller A administrators.

The consumer direct organization subscribes directly to the management and
administration, the common shopping, B2B and B2C policy groups, as well as to
the hosted storefront asset store policy group. These policies apply to all stores
owned by the consumer direct organization.

Access control in sample businesses

Each of the sample businesses in WebSphere Commerce includes the access control
framework. For more detail on how the access control framework is implemented
in these businesses, see the WebSphere Commerce Sample Store Guide

Adding access control to your stores

For more information on adding access control to your stores, see [Chapter 33,
[“Access control in your store,” on page 285

Chapter 4. Access control in WebSphere Commerce 57

58 Store Development Guide

Chapter 5. WebSphere Commerce business policy framework

Business policies are sets of rules followed by a store or group of stores
that define business processes, industry practices, the scope and characteristics of a
store or group of stores offerings, and how the store or site interacts with
customers and other business partners. For example, your site may have business
policies determining when and how customers are allowed to return products to a
store, or business policies that determine what payment methods your store
accepts.

Understanding the WebSphere Commerce business policy framework

WebSphere Commerce provides a framework that allows you to implement your
store’s business policies in your online store or site. The business policy framework
consists of the following parts:

* Business policies
. Business accounts

* Contracts and service agreements

¢ Terms and conditions

Business policies

In most instances, you will have predefined business policies for your business
that you need to implement in your online store or site. WebSphere Commerce
provides a set of business policies that you can use as is, or change to meet your
needs. For more information on the default business policies provided with
WebSphere Commerce, see the WebSphere Commerce Production and
Development online help. For information on how to edit these business policies,
see WebSphere Commerce Production and Development online help.

Business Accounts

Business accounts define the relationship between a customer and your business.
Business accounts track contracts and orders for customer organizations and
configure how buyers from customer organizations shop in a store.

Contracts and service agreements

Before a customer or business partner (for example resellers or distributors) can
access your store, you must create a contract or service agreement that defines
customer or business partner access to your store. In the WebSphere Commerce
business policy framework, you create contracts for customers and service
agreements for other types of business partners.

 Contracts: A contract with a customer defines what areas of your store the
customer can access, what prices the customer will see, and for how long the
customer has access to your site and those prices. All stores must contain at least
one contract, as without a contract no one but internal administrators can access
your store. WebSphere Commerce provides a default contract that applies to all
customers shopping at a store. In WebSphere Commerce Professional Edition,
the default contract is the only supported contract.

© Copyright IBM Corp. 2000, 2003 59

. Service agreements: A service agreement with a business partner
(business partners may be resellers, distributors, manufacturers, suppliers, or
other partners) defines your arrangement with the business partner. For example
a service agreement with a reseller may define what access the reseller has to
your site, whether they can share your catalog, or whether you host a store for
them. A service agreement with a distributor may define how customers to your
site can receive quotes from a distributor, or how customers can access the
distributors site from yours.

Terms and conditions

Terms and conditions define how contracts and service agreements are
implemented for a particular customer or business partner. For contracts, terms
and conditions may define what is being sold under the contract; the price of the
items being sold; how the items are shipped to the customer; and how the
customer pays for the order. For service agreements with business partners, terms
and conditions may restrict the products the business partner is allowed to sell.

Terms and conditions usually reference business policies as most aspects of a site
or stores operations are defined by business policies. Terms and conditions provide
standard parameters for the business polices they reference. Providing parameters
to the business policies allows you to modify the behavior of business policies for
each contract.

Business policies in sample businesses

Each of the sample businesses in WebSphere Commerce includes the business
policy framework. For more detail on how the business policy framework is
implemented in these businesses, see the WebSphere Commerce Sample Store Guide.

Adding business policies to your site

60

For more information on implementing the business policy framework in your site,
see [Chapter 18, “Contract assets,” on page 179.]

Store Development Guide

Chapter 6. Instance architecture

This chapter provides an introduction to the WebSphere Commerce Server instance
architecture.

WebSphere Commerce Server

The WebSphere Commerce Server is a WebSphere Application Server application
that handles the store-and commerce-related functions of an e-commerce solution.
The storefront assets and business logic reside in a Web application within the
WebSphere Commerce Server. WebSphere Commerce provides a default Web
application (Stores.war) for your use, or you can create your own.

A Web application can contain the assets for one store, or the assets for multiple
stores. When a Web application contains multiple store fronts and business logic,
the assets for each store are separated by store directory (storedir).

WebSphere Commerce Server instance

A WebSphere Commerce Server instance is a deployed WebSphere Application
Server application with an associated database. An instance can support multiple
stores. All stores in an instance share the same database and may share some types
of data, for example, catalog, fulfillment, or receipts. All stores in an instance also
share the same EJB container.

You can create a single store in an instance, or you can create multiple stores in an
instance. For more information on multiple stores in instance, see [“Multiple stores|
fin a single instance” on page 64.|

© Copyright IBM Corp. 2000, 2003 61

62 Store Development Guide

Chapter 7. Store architecture

In order to support creating online stores, WebSphere Commerce provides a store
architecture. This architecture, as well as some examples of stores that can be
implemented using it, are described in this chapter.

Understanding the WebSphere Commerce store architecture

In order to support stores in your site, WebSphere Commerce provides a store
architecture that allows you to create online stores. The store architecture consists
of the following components:

* Store assets
* Support for multiple stores in a single instance
* Relationships between stores

Store assets

In WebSphere Commerce an online store is the place where all transactions for
your online business occur. All online stores created with WebSphere Commerce
include at least one of the following types of assets:

e Storefront: The external portion of your store, or the portion that displays to
your customers, is known as the storefront. The storefront is comprised of Web
assets such as HTML pages, JSP files, style sheets, images, graphics and other
multimedia file types. This guide discusses the concepts and tasks involved in
creating the JSP files that build your store pages. For more information, see
[Part 4, “Developing your storefront,” on page 73.|

* Business logic: The portion of your store that processes customer requests,
including the commands, customized code, is known as the business logic. For
more detailed information on creating business logic or customized code see the
WebSphere Commerce Programming Guide and Tutorials.

* Store data: The data assets that compose your store. In order to operate properly,
a store must have the data in place to support all customer activities. For
example, in order for a customer to make a purchase, your store must contain a
catalog of goods for sale, a process to handle orders, the inventory to fulfill the
request, and a shipping process. Your store must also have methods for
processing and collecting payment. The concepts and tasks involved in creating
store data are discussed in [Part 6, “Developing your store data,” on page 107

If a store contains all three types of assets, that is storefront assets, business logic,
and store data, it is a fully operational store. If a store contains only a subset of the
assets, that is it contains storefront assets and business logic, or store data and
business logic, or just store data, it is known in WebSphere Commerce as an asset
store.

Asset stores

Asset stores are collections of sharable resources (business artifacts, business
processes and storefront assets) that can be leveraged in other stores. For example,
instead of creating a catalog as part of the hub store, a hub store may leverage a
catalog asset store, which can also be shared by the hub’s channels or partners. An
asset store is usually composed of the assets that can be used by multiple stores.
For more information, see [“Relationships between stores” on page 66.

© Copyright IBM Corp. 2000, 2003 63

Multiple stores in a single instance

WebSphere Commerce allows you to support multiple online stores within your
WebSphere Commerce Server instance. The following diagram illustrates some
possible store configurations:

Store front ' Back-office . Store data
Single store in Store 1 | Store 1 |
an instance Web assets ! logic ! |
| . Store 1 catalog
; | Store 1 orders
Store 1 E Store 1 E
Web assets ! logic !
Multiple stores | | \
in an instance | | !
. , Store 1
Store 2 , Stqre 2 catalog and orders
Web assets H logic !
| \ Store 2
| | catalog and orders
1 1
Store 1 i Store 1 i
Web assets i logic i
Multiple stores ! !
in an instance, ' '
owned by the ' Shared logic ! |
same owner ! | &
(Conglomerate | i Shared catalog
stores) | | Store 1 orders
Store 2 ' Store 2 ' Store 2 orders
Web assets I logic I

The stores detailed in the preceding diagram are stand alone stores. That is,
although they are in the same instance, they do not share any data or have
relationships with each other. They have separate storefronts, business logic and
store data.

You can also create multiple stores in an instance that share the same storefront,

the same business logic, or the same store data, including catalogs, or any
combination of the three. The following diagram illustrates some possible

64 Store Development Guide

configurations in which stores share assets:

Shared catalog
Store 1 orders
Store 2 orders

T T
Storefront ! Business logic I Store data
| |
| I
I I
I I
I I
Store 1 | Store 1 |
| logic |
Multiple stores | |
in an instance Shared | I Store 1
sharing a storefront ! ' catalog and orders
storefront I I
I 1 Store 2
: Store 2 : catalog and orders
Store 2 \ logic |
I I
I I
T |
| |
I I
T I
I I
I I
Store 1 | Store 1 |
Web assets 1 logic 1
Multiple stores : :
in an instance I I Store 1
sharing ' Shared logic ! catalog and orders
business logic ! !
1 ! Store 2
: : catalog and orders
Store 2 | Store 2 |
Web assets | logic |
I I
I I
T I
| |
I I
T I
1 | Shared
I I
Store 1 | Store 1 | catalog data
Multiple stores il Eesits : gt :
in an instance | |
sharing catalog I I
data Store 2 : Store 2 :
Web assets | logic |
I I
I I
T I
I I
| |

Note: The preceding diagram only lists a few possible configurations between
multiple stores in an instance. Stores may share more than one asset type,
for example multiple stores in a site could share storefronts, business logic
and data, or any combination of the three.

For more information on how multiple stores in an instance share common store

assets, see [“Relationships between stores” on page 66.|

Multiple stores can exist in a single Stores Web module. If so, the store assets are

separated using the following methods:

* Storefront assets: Storefront assets for each store in the Stores Web module are

stored in a separate store directory (storedir). For example all storefront assets for
MyStore are in the MyStore directory.

* Business logic: The store ID is used to select the command implementation for
each store, as specified in the command registry.

Chapter 7. Store architecture

* Store data: Data assets are identified for each store by a unique index.

Relationships between stores

In order to support multiple stores in a site having the same storefront,
business logic or store data or any combination of shared assets, as well as
supporting other types of relationships between stores in a site, such as one store
hosting another, or transferring shopping carts from one store to another,
WebSphere Commerce now provides the architecture for a variety of relationships
between stores.

Relationships between stores allow one store to provide a service to another store.
For example store A may host store B, or store C may use the catalog data from
store D.

In order to implement these store relationships, code that supports each store
relationship is required. WebSphere Commerce includes many store relationships
and the supporting code. These store relationships can be loosely grouped into the
following categories:

* Relationships in which one store provides assets to another store. These types of
store relationships include one store providing URLs, commands, business
policies, property files, and currencies to another.

* Relationships in which one store has a "business relationship” with another

store. These types of store relationships including one store hosting another, or
one store referring orders to another store.

Note: For a detailed list of the default store relationships provided with
WebSihere Commerce, see |Chapter 14, “Relationships between stores,” onl

Understanding how the store architecture supports the business

models

In order to support the stores needed for the business models, WebSphere
Commerce uses the store architecture to create the following types of stores:

* Customer facing stores
* Proxy stores
* Asset stores

Note: These particular stores are recommended for implementing the business
models supported by WebSphere Commerce. You can also create your own
types of stores using the store architecture.

Customer facing stores

Customer facing stores are stores that customers can access directly. These stores
are the main components of your site. WebSphere Commerce supports the
following types of customer facing stores:

* Direct sales store: A store that supports commerce transactions involving
products, services, or information directly between businesses and consumers, or
between two businesses or parties. WebSphere Commerce supports two types of
direct sales stores:

— Consumer direct

- B2B direct

66 Store Development Guide

. Hub store: A store that enables its customers or partners to access
products or services available from one or more partners or clients of the hub
owner, through the use of other stores on the site.

. Hosted store: A store that is hosted by the site operator for the owner
of the store. The store owner may have the option of administering the store.

Creating direct sales and hub stores

Direct sales and hub stores are the most traditional stores in WebSphere
Commerce in terms of store creation. That is, you need to create storefront assets,
business logic and store data for each store. You have the option of creating these
assets traditionally, by creating the assets for that store only. However, you also
have the option of creating the assets to be used by other stores, by creating the
storefront and business logic assets either in an asset store or as data that can be
used across stores. You may also want to use assets from other stores to create
portions of your direct sales or hub store.

For information on creating storefront assets, see [Part 4, “Developing your
lstorefront,” on page 73| For more information on creating business logic or
customized code see the WebSphere Commerce Programming Guide and Tutorials. For
more information on creating store data, see [Part 6, “Developing your store data,”|
on page 107.| For more information on sharing assets between stores, see

Chapter 14, “Relationships between stores,” on page 129

Creating hosted stores

In the samples provided with WebSphere Commerce, the majority of the
hosted store is created by sharing assets from existing asset stores. For example,
rather than creating the storefront or catalog assets for each store you are hosting,
you use the storefront and, depending on your business, the catalog from another
store. In order to facilitate creating hosting stores, WebSphere Commerce uses asset
stores. The following diagram illustrates how hosted stores use the assets from the
hosted storefront asset store and the catalog asset store.

% Hosting

JE4) hub

ﬁ Catalog Hosted storefront
<)~ asset store asset store

n hosted Store
stores directory

Your hosted business administrators then have the option of making cosmetic
changes (such as a new look and feel, their own new logo and some of their own
text) to customize their store, as well as changing certain data (filtering the catalog,
changing prices and so on).

You can also create hosted stores traditionally, that is by creating the storefront
assets, business logic, and store data separately for each hosted store. For
information on creating storefront assets, see [Part 4, “Developing your storefront,”|
For more information on creating business logic or customized code

Chapter 7. Store architecture 67

68

see the WebSphere Commerce Programming Guide and Tutorials. For more information
on creating store data, see [Part 6, “Developing your store data,” on page 107/

The Store Creation wizard: The Store Creation wizard provided with WebSphere
Commerce allows you to create hosted stores quickly and easily. The wizard asks a
customer to provide some basic data about their store (name, description, and so
on), allows the customer to select the storefront or catalog they want to use, and
then creates the store for them. The resulting store has some unique data (basic
store data that makes it a unique store), but uses the storefront and catalog data
from existing asset stores.

The Store Creation wizard’s behavior is governed by a template, which determines
what options are available for creating the hosted store, including store
relationships, shipping modes, messages, and shared fulfillment center. WebSphere
Commerce provides several templates for the Store Creation wizard, one for each
supported business model. These templates are located in the following directory:

WC_installdir /xml/trading /xml

A template is associated with the Store Creation wizard, based on the type of
storefront asset store chosen in the wizard. For example if you choose to use assets
from the reseller storefront asset store (identified as RPS in the STORETYPE field
in the STORE table) the Store Creation wizard uses the
TemplateHostingContractRPS.xml.

For information on creating a hosted store using the Store Creation wizard, see the
WebSphere Commerce Production online help.

Note: If you prefer not to use the Store Creation wizard to create hosted stores,
you can create a service agreement based on one of the templates and then
import it into WebSphere Commerce. For information, see the WebSphere
Commerce Production online help.

In order to change the assets that the hosted store shares, you must change the
asset store. For more information, see [’Creating asset stores” on page 69.

Proxy stores

WebSphere Commerce also supports entities known as proxy stores. A proxy store
is a store that represents a business partner’s operational assets, provides the
business logic that allows the WebSphere Commerce site to interact with an
external business partner. For example, a proxy store may capture the orders
transferred to a remote order capture system, as well as capturing the suppliers’
inventory information or the information sent to a supplier’s fulfillment centers.
Unlike a customer facing store, a proxy store does not include a storefront and
cannot be accessed by users.

Creating proxy stores

Creating a proxy store is very similar to creating a hosted store, in that the
majority of the proxy’s stores assets are provided from existing stores (including
asset stores). As implemented in the samples provided with WebSphere Commerce,
the proxy store does not include a storefront. As a result, only the assets from
another store’s catalog are shared. The following diagram illustrates the distributor
proxy stores using the assets from the distributor asset store and the catalog asset

Store Development Guide

store.

% Channel
=(E hub

v
ﬁ Distributor % Catalog E Reseller
<) asset store - asset store i asset store
A A4 A

ﬁ n distributor ﬁ n reseller
) proxy stores T4} hosted stores

Rather than providing a user interface to create a proxy store, WebSphere
Commerce implements proxy stores through service agreements, which are then
imported into WebSphere Commerce, creating the proxy store. The service
agreement is governed by a template, which determines what information you
need to create. The template for creating proxy stores
(TemplateReferralContract.xml) is available in the following directory:

WC_installdir /xml/trading /xml

To create the proxy store, create a new service agreement following the template
and then import it into WebSphere Commerce. For more information, see the
WebSphere Commerce Production online help.

Asset stores

In order to facilitate the creation of customer facing stores and proxy stores,
WebSphere Commerce implements asset stores. Asset stores are collections of
sharable resources (business artifacts, business processes and storefront assets) that
can be leveraged in other stores. For example, instead of creating a catalog as part
of the hub store, a hub store may leverage a catalog asset store, which can also be
shared by the hub’s channels or partners. An asset store is usually composed of the
assets that can be used by multiple stores. For more information, see
[‘Relationships between stores” on page 66|

WebSphere Commerce provides sample catalog asset stores and storefront asset
stores.

Creating asset stores
Asset stores are stores that provide assets to another store. As implemented for the
samples provided with WebSphere Commerce, asset stores are composed of a
collection of assets, but are not fully functional stores. To create an asset store, you
follow the same methods as you would to create the assets in a direct sales or hub
store. That is, if you want the asset store to contain catalog assets, you create
catalog data following the instructions in Il’art 6, “Developing your store data,” on|
bage 107]1f the asset store will contain storefront assets, see [Part 4, “Developing]
our storefront,” on page 73/ If the asset store will contain business logic, see
WebSphere Commerce Programming Guide and Tutorials.

Stores in the supported business models

The following sections illustrate how stores are implemented in the sample
businesses.

Chapter 7. Store architecture 69

70

Note: Since the consumer direct and B2B direct samples each contain
one direct sales store, they are not discussed here.

Hosting

The following diagram illustrates the types of stores that compose the hosting
sample.

ﬁ Hosting
- hub

% Catalog ﬁ Hosted storefront
= asset store T+~ asset store
A A
|
I
I
n hosted Store
= stores = directory

The sample hosting site contains a hub store (hosting hub), two asset stores
(catalog asset store and the hosted storefront asset store) as well as the store

directory. The store directory is a listing of all the hosted stores in the site and acts

as a gateway to them. The hosting stores are created by using the assets from the
two asset stores.

Note that customers may choose to create their own catalog data, rather than using

the catalog defined in a catalog asset store. This variation creates a second
implementation of the hosting site, as illustrated in the following diagram:

% Hosting hub

Hosted
@ storefront
asset store
ﬁ n hosted ﬁ Store
<)~ stores <)~ directory

Demand chain

Store Development Guide

The following diagram illustrates the types of stores that compose the demand

chain sample.
Channel
hub

v
Distributor Catalog Reseller
asset store)~ asset store asset store
A A 4 A

ﬁ n distributor ﬁ nreseller
T}~ proxy stores T4} hosted stores

The demand chain sample site contains a hub store (channel hub), and three asset
stores (distributor asset store, catalog asset store and reseller storefront asset store).
Note that the channel hub uses the catalog assets defined in the catalog asset store.
The distributor proxy stores are creating by using the assets from the distributor
asset store, while the reseller hosted stores are created by using the assets from the
catalog asset store and reseller storefront asset store.

Supply chain
The following diagram illustrates the types of stores that compose the supply chain
sample.
ﬁ Supplier
7<) hub
SRR
v
Supplier Catalog
asset store asset store
4 4

@ n hosted
<) suppliers

The supply chain sample site contains a hub store (supplier hub), and two asset
stores (catalog asset store and supplier asset store). Note that the supplier hub uses
the assets defined in the catalog asset store. The hosted suppliers are created by
using the assets from the catalog asset store and supplier asset store.

Note: The supplier hub owner defines the catalog taxonomy (for example the

category structure, and possibly shared products and items) that the hosted
suppliers will use in the catalog asset store.

Chapter 7. Store architecture 71

72 Store Development Guide

Part 4. Developing your storefront

© Copyright IBM Corp. 2000, 2003

73

74 Store Development Guide

Chapter 8. Developing your storefront

This chapter provides an overview of the WebSphere Commerce storefront
architecture, including how the external portion of your store, the Web assets such
as HTML pages, JSP files, style sheets, images, graphics and other multimedia file
types, are displayed to your customers.

Storefront architecture

WebSphere Commerce uses a system of commands and views to display the Web
assets in a store front to customers.

* Commands perform a specific business process, such as adding a product to the
shopping cart, processing an order, updating a customer’s address book, or
displaying a specific product page. When the action is completed, the command
returns a view.

* Views display the results of commands and user actions, that is, views present
your store pages (JSP files) to the customers. In order for the view to invoke a
JSP file, the JSP filename must be registered with the view in the view registry
(VIEWREG) table. The corresponding JSP file is stored using the JSP filename in
the subdirectory (storedir) for the store under the WebSphere Commerce Stores
Web Application.

Both commands and views are invoked using URLs. For example, when a
customer clicks Shopping Cart in the sample store, the customer invokes the URL
https:/ /hostname/path/OrderltemDisplay?, which is passed into the WebSphere
Commerce Server. The WebSphere Commerce Server calls the OrderltemDisplay
command, and the shopping cart page is displayed to the customer.

When a customer clicks Help in the sample store, the customer invokes the URL
https:/ /hostname/path/HelpView?, which is passed into the WebSphere
Commerce Server. The WebSphere Commerce Server calls the HelpView, which
returns the Help page.

The WebSphere Commerce Server can also map multiple commands to a URL,
which allows each store to optionally have its own implementation of that
command.

Similarly, the WebSphere Commerce Server also allows you to map multiple JSP
files to a single view, where each store can optionally register different JSP
filenames for different device types

Default commands and views

WebSphere Commerce provides default commands and views which you can use
in your store. These default commands and views are listed in the
wcs.bootstrap.xml file. The bootstrap files are located in the following directory:

e WC_installdir /schema/xml

If a needed command or view is not provided, you can create your own. For
information on creating commands and views, see the WebSphere Commerce
Programming Guide and Tutorials.

© Copyright IBM Corp. 2000, 2003 75

Creating your store pages

76

The largest task in creating your store front is creating the actual store pages.
Before beginning development work on the store pages, you should complete the
following planning activities:

* Developing a list of store pages needed
* Developing a list of command and view URLs
* Associating JSP filenames with views

e Developing a list of access control policies. For more information, see
[Chapter 33, “Access control in your store,” on page 285

Note: While planning your store pages, you should also create a caching strategy.
For more information on caching, see [Chapter 9, “Caching your store]
[pages,” on page 83|

Developing a list of store pages

In order to develop a list of the pages needed to create your store, you need to
know the business and functional requirements of the store, as well as any
business processes that have been defined.

Working from use cases

Many people gather requirements in the form of use cases. Use cases define the
business processes in your store, in the form of interactions between the customer
and the proposed system. In the case of an online store, use cases may define how
a customer registers at the store, browses the catalog, or orders an item.

A set of use cases, detailing the business processes for the sample stores are
provided in the online help. These use cases can help you to more thoroughly
understand the flow of the sample stores, and can be used as a guide if you wish
to create use cases for your own store.

The following is an example of a Registration use case:

Registration use case: The registration process allows customers to enter personal
information in the database.

Actor:

e Customer

Main flow: The customer selects Register from the sidebar. The system then
displays a page with the following fields:

* E-mail

e Password

* Verify password

* First name

* Last name

* Age (optional)

* Gender (optional)

The customer enters the appropriate information in the above fields, and selects
Submit. The system creates a new customer in the system and saves the

customer’s information (E1, E2, E3). The system prompts the customer to manage
their account following the process in the Manage Personal Account use case.

Store Development Guide

Alternate flows: None.

Exception flows: E1: E-mail address already exists:

¢ If the e-mail address already exists in the system, the system displays an error
message asking the user to enter another e-mail address. The use case resumes
from beginning.

E2: Missing mandatory fields:

* If any of the following fields (E-mail, Password, Verify password, First name,
Last name) are not completed, the system issues an error message. The use case
resumes from beginning.

E3: Invalid password:

* If the password is invalid or does not match the verification password, the
system issues a warning.

Determine the store shopping flow: Regardless of whether you develop use
cases to illustrate your store’s business processes, or use another method, once
business processes are available, you can create the shopping flow for your store.

Note: Since use cases often contain flow information such as, "If the customer
selects Submit, the Order page displays,” use cases can provide useful
information for creating shopping flow diagrams.

The shopping flow reflects the requirements and business processes defined for

your store, illustrating how a customer will move through the store. For example, a

customer may enter your site through the home page and be asked to register

before browsing the catalog, or you may choose to allow customers to view the
catalog as guests, without registering. Some shopping flows allow customers to
complete a "quick checkout”, while others require that a customer completes all
checkout steps every time they make a purchase. Or, your shopping flow can offer
customers the choice of both checkouts.

To verify that the store flow diagram is complete, ensure that all steps in
the use cases for your store are illustrated in the store flow diagram.

Mapping out the shopping flow visually, as the following diagram for the
FashionFlow sample store’s shopping flow does, allows you to see how customers
will travel through your store.

Chapter 8. Developing your storefront 77

Note: This diagram only contain a portion of the FashionFlow store flow. For the
complete flow, see the WebSphere Commerce Sample Store Guide.

Home
page
. . Regist
Help Select category Select product Contact Us Privacy Policy Mig/;ig;l?r:t
v + v
Product Privacy 0
Help page Category L select —»| page Contact us policy Register or — Forgot ——» | Forgot your
pages product Login page password password
T
Add to Return to
Shopping Shopping . Send
Cart l Cart Login Register password
. Shopping Cart My)
Shopping 4_1 account “—Login— Registration Password
cart page page sent
Change
Personal Edit My
Checkout Information Address Book
New New 1. Choose Change
™ Al
billing «—biling —»| billing personal bggliess
address address address information
Delete Edit
Next L ¢
New New 2. Choose Delete Egg
shipping | 4— shipping—»| shipping address address
address address address
‘ Add New Address
Next
3. Choose Add new
shipping address
method
I
Next
4. Order
summary
Order Now
Legend
Order
These pages can be accessed confirmation
from any page in the site.

The diagram for the FashionFlow shopping flow is quite simple. Although it
includes the main flow of the a customer’s journey through the store, it does not
include any error scenarios. For example, what happens when a customer logs in
using the wrong password, or enters an invalid credit card number? However,
even a simple diagram like this allows you to develop a list of pages needed for
the store. To start you will need to create a view for every page listed in the
shopping flow diagram.

For example, if you were to create a store with the same shopping flow as in the
FashionFlow diagram, you would have to create the following pages:

Note: The following table lists the view names used in for the FashionFlow store

FashionFlow shopping flow diagram pages | Corresponding view

(as seen by customer)

Home page StoreCatalogDisplayView
Help page HelpView

Contact us ContactView

Privacy policy PrivacyView

Register or Login Page LogonForm

Forgot your password LogoffView

78 Store Development Guide

(as seen by customer)

FashionFlow shopping flow diagram pages

Corresponding view

Password sent ResetPasswordForm
My account page LogonForm

Change personal information UserRegistrationForm
Address book AddressBookForm
Add new address AddressForm

Delete address AddressBookForm
Edit address AddressForm
Registration page UserRegistrationForm

Shopping cart OrderltemDisplayViewShiptoAssoc
Choose billing address BillingAddressView
New billing address AddressForm

Choose shipping address

MultipleShipping AddressView

New shipping address

AddressForm

Choose shipping method

MultipleShippingMethod View

Order summary

AllocationCheck

Order confirmation

OrderOKView

Note: Many of the views used in FashionFlow were created specifically for
FashionFlow. These views are listed in the command.xml file in the
FashionFlow store archive. For more information, see ["Registering]
[commands, views, and URLs in WebSphere Commerce” on page 137.|

The above table implies only the basic set of pages you need to create. To
determine what other pages you need to create, you can look more closely at the
use cases or other methods used to define your business processes.

Error pages: The exception flows in your use cases can also help you determine
what error pages you need to create for your store. The registration use case for
FashionFlow specifies the following exceptions flows:

* E-mail address already exists: If the e-mail address already exists in the system,
the system displays an error message asking the user to enter another e-mail
address. The use case resumes from beginning.

* Missing mandatory fields: If any of the following fields (E-mail, Password,
Verify password, First name, Last name) are not completed, the system issues an
error message. The use case resumes from beginning.

¢ Invalid password: If the password does not match the verification password, the
system issues a warning.

As a result, you will need to create an error page or error message for each
exception flow.

Developing a list of command and view URLS

As demonstrated in the FashionFlow shopping flow diagram, business processes,
such as checkout and register, may require several pages. In order to combine these
pages into a working business process or flow, rather than just a collection of
pages, you must include commands and views in your pages.

Chapter 8. Developing your storefront 79

Developing a list of URLs needed

Just as you developed a list of pages necessary to create the store, you also need to
develop a list of the command and view URLs necessary to implement the
business processes for your store. Using the shopping flow diagram for your store,
and the list of default commands and views, identify the URLs necessary to
complete each action.

Understanding which command and view URLs are used in the sample stores may
also help you determine what URLs you need in your store. The following
illustration identifies the URLs for some of the actions in the FashionFlow
shopping flow diagram. For more details, see the information on the samples
stores in theWebSphere Commerce Sample Store Guide.

header.jsp footer.jsp sidebar.jsp The header, footer and sidebar
JSP files are included in every
page in the site. Many of the links
’ ‘ ‘ represented in the Home page are

‘ actually in the header or footer files.

Home page
StoreCatalogDisplay.jsp

‘ Register or
Help Select product Contact Us My Account
HelpView ProductDisplay ContactView LogonForm
Help page Product page Contact us Register or
Help.jsp ProductDisplay.jsp Contact.jsp Login page
LoginForm.jsp

Select category Shopping Cart Privacy Policy

CategoryDisplay OrderltemDisplay PrivacyView
Category pages Shopping Cart Privacy policy
CategoryDisplay.jsp OrderltemDisplay.jsp Privacy.jsp

Legend

These pages can be accessed
from any page in the site.

Bold Customer Action
Italics URL

Associating JSP filename to views

The WebSphere Commerce Server uses view commands to compose a view as a
response to a request. WebSphere Commerce Server provides the following view
commands:

* HttpForwardViewCommandImpl: This view command forwards the view request to
a JSP file.

* HttpRedirectViewCommandImpl: This view command redirects the view request to
another URL.

80 Store Development Guide

e HttpDirectViewCommandImpl: This type of view command sends the response
view directly to the client. It does not call a JSP file. Direct views allow
controller commands to produce the output response (rather than the view
command).

Use the HttpForwardViewCommandImpl view command to render JSP files directly.
For example, in the diagram illustrating the URLs used in FashionFlow, in order to
display the Help page (Help.jsp), the HelpView is registered in the view registry
and associated with the Help.jsp and the HttpForwardViewCommandImplcommand.
This is demonstrated in the following example:

<viewreg

viewname="HelpView"

devicefmt_id="-1"

storeent_id="@storeent_id_1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=Help.jsp"

internal="0"

https="0"

/>

Note that the the fully qualified classname for the interface and the
implementation class is used.

Use the HttpForwardViewCommandImpl view command to render views returned
from a display command. A display command reads data from the database, but
does not change it. For example, in the diagram illustrating the URLs used in
FashionFlow, the OrderltemDisplay command returns the
OrderltemDisplayViewShiptoAssoc view. When this view was registered in the
view registry, the OrderItemDisplay.jsp and the HttpForwardViewCommandImpl were
associated with it. This is demonstrated in the following example:

<viewreg

viewname="0rderItemDisplayViewShiptoAssoc"

devicefmt_id="-1"

storeent_id="@storeent id 1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImpl"
properties="docname=0rderItemDisplay.jsp"

internal="0"

https="0"

/>

You must associate a JSP filename for every view associated with every display
command (for example, OrderltemDisplay) you use. For more information about
associating JSP filenames with views, see [’Registering commands, views, and|
[URLs in WebSphere Commerce” on page 137]

Note: The product display and category display commands return views as well
as JSP filenames. These JSP filenames, which display products and categories
are stored in the catalog data. For more information, see [“Displaying store
[catalog assets” on page 162 You can optionally assign different JSP
filenames to display products and categories for each member group or
language supported by your store.

The HttpRedirectViewCommandImpl view command is used to render the output of
a non-display command (a command that changes the database). A non-display
command must be associated with a display command to avoid the command
being re-executed accidentally if the customer reloads the page or click the back
button.

Chapter 8. Developing your storefront 81

To redirect to a display command, specify the display command using the &URL=
parameter on the URL of the non-display command. For example, when you add
address information in the FashionFlow sample store Address form and click
Submit, it invokes the AddressAdd command. The URL used to invoke the
AddressAdd command specifies AddressBookForm command as the &URL=
parameter. This results in a redirect to the AddressBookForm display command,
which returns the AddressBookForm view. When the AddressBookForm view was
registered in the view registry, the AddressBookForm.jsp and the
HttpForwardViewCommandImpl were associated with it.

You must use the URL=parameter technique for all non-display commands.

Non-display commands are commands that cause changes to the data in the
database.

82 Store Development Guide

Chapter 9. Caching your store pages

While developing your storefront you also need to determine how to cache your
store pages. This chapter discusses creating and implementing a caching strategy
for your store.

Planning your caching strategy

When determining a caching strategy, you first need to consider the following
issues:

* What pages should be cached
* Should pages be cached as whole pages or page fragments

What pages should be cached

When creating your high level caching strategy, you first need to determine what
pages in your store should be cached. Pages that are good candidates for caching
are pages that are accessed frequently, but are also stable for a period of time, and
contain content that can be reused by a variety of users. For example, catalog
display pages are usually good candidates to enable caching.

Should pages be cached as whole pages or page fragments

In Version 5.5, WebSphere Commerce uses the WebSphere Application Server
dynamic cache service, which allows WebSphere Commerce to support both
caching of Web pages as a whole, and caching of fragments of pages. Caching a
Web page as a whole simply caches the entire page as one entity, even if it is
composed of several smaller fragments. Page fragments may include a separate
header, sidebar, or footer. Even the main body of the page may be broken into
several fragments. For example one fragment on the main body page may show a
product, while the a second fragment shows the price. Fragmenting pages allows
you to show content personalized for individual users. The sample store pages
provided with WebSphere Commerce are composed of several fragments (header,
sidebar, footer, main content).

If your store pages are composed of fragments you also have the opportunity of
caching the pages by fragments. Caching individual fragments allows you to cache
the portions of the page that are reusable for a wider audience. If a page contains
personalized information for only a small segment of your audience, caching this
page as a whole page will not allow the page to be reused very often because only
that segment of your audience can ever reuse that cached page. For example, if a
page displays a welcome message for each customer in the header and is cached
based on the user ID, then only that particular user can ever reuse that cached
page. However, if you decompose that page into fragments, you can cache the
fragments that get reused for most of your audience. For example, the footer,
sidebar, and product display fragments may be be applicable to all your users,
while the price and header fragments may be personalized.

When the page is requested, the individual fragments are reassembled to produce
the page.

Your store pages can be cached using whole page caching or fragment caching or a
combination of the two methods.

© Copyright IBM Corp. 2000, 2003 83

Developing a more detailed caching strategy

84

After you have determined what pages and page fragments should be cached, you
need to determine a more detailed caching strategy. For each page or fragment
your are planning to cache, you need to determine the following:

* How the page or fragment is requested
* Whether the page or fragment relies on a store relationship
* How the cached data will be invalidated

How the page or fragment is requested

How the JSP file (whether it is a single page, or a page fragment) is requested
determines how the WebSphere Application Server will cache it. For example, the
WebSphere Application Server needs to know whether the JSP file is displayed as a
response to a servlet, object, E]B, or a command. As a result, you need to compile a
list of how each page or fragment you plan to cache will be requested.

Whether the page or fragment relies on a store relationship

As discussed in |[Chapter 14, “Relationships between stores,” on page 129
and [Chapter 7, “Store architecture,” on page 63 stores may have relationships with
other stores that allow them to use data from another store. For example store A
may use the catalog data defined in store B. Stores may also have relationships
with multiple stores, allowing them to use data from several different sources. As
part of your detailed caching plan, you need to determine if the data displayed in
each page or fragment relies on a relationship with another store. If a page does
display information from another store, each time the data from other store is
updated, your cached pages will also need to be updated. For information on
caching store relationships, see [‘Implementing caching for store pages that use]
lstore relationships” on page 89

How the cached data will be invalidated

For each page or page fragment that you plan to cache, you also need to determine
when the cached page or fragment is no longer valid, and remove the
corresponding cache entries from the cache. This process is known as invalidation.
In order to determine when a cached page has changed, and thus can no longer is
valid, you need to determine what might make the cached page out of date. For
example a cached shopping cart page is invalid when a customer adds a new item
to the cart. Cached pages may also be invalidated when an administrator updates
the store with the WebSphere Commerce Accelerator, or when new catalog data is
added with the loader package, or the tooling in the WebSphere Commerce
Accelerator.

After you have compiled a list of all possible ways the cached page or fragment
can be invalidated, you need to determine which events are used to cause the
invalidation. Events that cause invalidation can include a servlet request, a
controller command or a task command and so on. For example, if you update a
product description using the product management tools in the WebSphere
Commerce Accelerator, WebSphere Commerce internally invokes the commands,
AddCatalogEntryDescCmd or UpdateCatalogEntryDescCmd to make the changes.
If you want to invalidate the cached pages that are changed by these commands,
you need to add invalidation policies to the cachespec.xml file that will intercept
the execution of the commands, and trigger the invalidation. For information on
implementing invalidation, see the following:

Store Development Guide

e The WebSphere Commerce Administration Guide, "Dynamic caching” chapter for
instructions on setting up new invalidation policies, and an example of cache
invalidation.

¢ |“Invalidating cached data in the cachespec.xml file” on page 88| for instructions
on how to merge the sample invalidation policies provided by WebSphere
Commerce with your store’s cachespec.xml file.

Implementing your caching strategy

After you have gathered all the details you need for your caching strategy, you
implement it by creating a cache policy file that defines the information you have
gathered, including what is to be cached and how, and how cached pages will be
invalidated. The WebSphere Application Server dynamic cache service uses this
cache policy file, known as cachespec.xml to implement caching in your store.

Each sample store provided with WebSphere Commerce includes a cachespec.xml
file that defines the caching strategy for that store. These files are located in the
following directory:

WC_installdir /samples/dynacache/BusinessModel

You have the option of changing these files if your store is based on a sample, or
using one of these files as a base for the cachespec.xml file for your store.

Understanding the cachespec.xml file

In order to cache WebSphere Commerce’s store pages, you must define cacheable
objects in the cachespec.xml file. WebSphere Commerce only uses a subset of the
elements defined in the cachespec.xml file. This subset of elements is explained in
this section. For more detailed information about the cachespec.xml file, see the
WebSphere Application Server Information Center

(http:/ /www.ibm.com/software/webservers/appserv/infocenter.html), topic
"Cachespec.xml file". For more information, see the WebSphere Commerce
Administration Guide, "Dynamic caching” chapter.

Understanding the elements used by WebSphere Commerce
WebSphere Commerce used the following elements in the cachespec.xml:

* Class
* Name
¢ Property

The use of these four elements is illustrated in the following example:

<cache-entry>
<class>servlet</class>
<name>/FashionFlow/ShoppingArea/CatalogSection/CategorySubsection
/StoreCatalogDisplay.jsp</name>
<property name="save-attributes">false</property>

Class: The class element is a required element. It determines how the WebSphere
Application Server will interpret the remaining cache policy definition. WebSphere
Commerce uses the following class values:

e command

* servlet

The value command refers to classes using the WebSphere Commerce
programming model.

Chapter 9. Caching your store pages 85

86

The value servlet refers to servlets or JSP files deployed in the WebSphere
Application Server servlet engine.

Note: For WebSphere Commerce version 5.5, only command invalidation is
supported.

Name: Name is the fully qualified class name of the servlet or command. Name is
a required element.

Name values for commands must include the package name. For example,
com. ibm.commerce.dynacache.commands.MemberGroupsCacheCmdImp]

Name values for servlet and JSP files must include the full URI of the JSP file or
servlet to be cached. For example, com.ibm.commerce.server.RequestServiet.class

/Too1Tech/ShoppingArea
/CatalogSection/CategorySubsection/StoreCatalogDisplay.jsp

Property: The property element takes the following form: <property
name=key>value</property>, where key is the name of the property being defined
and value is the corresponding value. You can set optional properties on a
cacheable object. For example,<property name="consume-
subfragments">true</property>

When caching WebSphere Commerce store pages, the following properties are
used:

Property Value Valid classes Description
EdgeCacheable True or False Default |Servlet If the property is
is false. true, then the given

servlet or JSP file is
externally requested
from an Edge Server.
Whether the servlet
or JSP file is
cacheable depends on
the rest of the cache

specification.

Store Development Guide

consume-
subfragments

True or False. Default
is false

Servlet

When a servlet is
cached only the
content of that servlet
is stored.
Placeholders for any
other fragments to
which it includes or
forwards are created.
Consume-
subfragments (CSF)
tells the cache to
continue saving
content when it
encounters a child
servlet via an
include. The parent
entry (the one
marked CSF) will
include all the
content from all
fragments in its cache
entry, which result in
one big cache entry
that has no includes
or forwards, but the
content from the
whole tree of entries.
This method can save
a significant amount
of application server
processing, but is
typically only useful
when the external
HTTP request
contains all the
information needed
to determine the
entire tree of
included fragments.

save-attributes

True or False. Default
is true.

Servlet

When save-attributes
is set to false, the
request attributes are
not saved with the
cache entry.

store-cookies

True or False. Default
is true.

Servlet

When store-cookies is
set to false, the
request cookies are
not saved with the
cache entry.

By default, DynaCache caches the cookies (when caching by servlet class) and all
request attributes (servlet and JSPs) along with the cache entries. However,
WebSphere Commerce cookies and request attributes contain user specific
information that should not be cached. As a result, the following property names

and values are mandatory when caching full pages:
<property name="save-attributes">false</property>

<property name="store-cookies">false</property>

Chapter 9. Caching your store pages 87

88

The following property name and value is mandatory for all cache-entries defined
for the JSPs files:

<property name="save-attributes">false</property>

Understanding cache-ID rules

A cache-ID uniquely identifies a cache entry. In order for the WebSphere
Application Server to cache an object, it must know how to generate a unique ID
for different invocations of that object. These IDs are created from either
user-written custom Java code or from rules defined in a cache entry’s cache

policy.

In the cachespec.xml file the cache-id element defines the rules for generating IDs.
Each cache entry may have multiple cache-ID rules that will execute in the defined
order until either a rule returns a non-empty cache ID, or no more rules are left to
execute. If none of the cache-ID generation rules produce a valid cache ID, then the
object is not cached.

These IDs are developed in one of the following ways:
* Using the component elements defined in the cache policy of a cache entry
* Writing custom Java code to build the ID from input variables and system state

Understanding dependency-ID rules
Dependency ID elements specify additional cache group identifiers that associate

multiple cache entries to the same group identifier. The dependency ID is
generated by concatenating the dependency ID base string with the values
returned by its component elements. If a required component returns a null value,
then the entire dependency ID is not generated and is not used.

You can validate the dependency IDs explicitly through the WebSphere Dynamic
Cache API, or by using another cache-entry invalidation element. Multiple
dependency ID rules can exist per cache-entry. All dependency ID rules execute
separately. For more information on how to define dependency ID rules, see the
WebSphere Commerce Administration Guide, "Dynamic caching” chapter.

Understanding invalidation rules

Invalidation rules can be defined in exactly the same manner as dependency IDs.
However, the IDs that are generated by invalidation rules are used to invalidate
cache entries that have the same dependency IDs. The invalidation ID is generated
by concatenating the invalidation ID base string with the values returned by its
component element. If a required component returns a null value, then the entire
invalidation ID is not generated and no invalidation occurs. Multiple invalidation
rules can exist per cache-entry. All invalidation rules execute separately. For more
information on how to define invalidation rules, see the WebSphere Commerce
Administration Guide.

Invalidating cached data in the cachespec.xml file

By default, the cachespec.xml files shipped with the sample store archives do not
include invalidation policies. If you would like to automate cache invalidation
using DynaCache in a sample store, or a store based on a sample, you must add
invalidation policies to the store’s cachespec.xml file. Sample invalidation policies
are provided in several cachespec.xml files in the following directory:

WC_installdir /samples/dynacache/invalidation

Store Development Guide

This directory contains separate cachespec.xml files for functional areas, including
catalog, shopping cart, store and so on. Each file contains invalidation policies for
that specific area.

If you plan to cache catalog pages in your store, you should add the invalidation
policies from the following files into your store:

* WC_installdir /samples/dynacache/invalidation/catalog/cachespec.xml
* WC_installdir /samples/dynacache/invalidation/membergroup/cachespec.xml

Note: For these member group invalidation rules you need to add additional
dependency IDs to the cache entries. See the content of this cachespec.xml
file for more details.

* WCL_installdir /samples/dynacache/invalidation/store/cachespec.xml

Adding sample invalidation policies to your store’s
cachespec.xml file
In order to add the invalidation policies provided in the sample invalidation files

into your store, do the following:
1. Open the cachespec.xml file for your store.

* WAS_installdir /installed Apps/ cell_name/ WC_instanceName.ear/
Stores.war/WEB-INF directory

If your store does not have caching policies defined and is based on a sample
provided with WebSphere Commerce, you can use a sample cachespec.xnml file
from the following directory:

* WCL_installdir /samples/dynacache/BusinessModel

2. Open sample invalidation cachespec.xml file. The sample invalidation
cachespec.xml files are located in the following directory:

* WCl_installdir /samples/dynacache/invalidation

3. Copy the invalidation policies from the sample invalidation file to the
cachespec.xml file for your store. You can place the invalidation policies at the
end of your store’s cachespec.xml file after the last element.

4. Ensure the invalidation IDs match the corresponding dependency IDs in the
caching policies. If a matching dependency IDs does not exist, then the
invalidation policies will not be executed and you should change either the ID
of the invalidation rule or the ID of the dependency-id rule so that they match.

Note: Your store may have additional or different business requirements that
require you to add additional invalidation policies and dependency IDs.

5. If necessary, change the name and directory of JSP files in the sections copied
from the sample invalidation files to match the information in the rest of your
store’s cachespec.xml file.

6. Save the file.

Implementing caching for store pages that use store
relationships

If your store is using data defined in another store through a store
relationship, you must use the request attributes specified by the cache filter to
define the relationships. The cache filter is a servlet filter that defines request
attributes from the session and store relationship information that can be used by
the WebSphere Application Server DynaCache. DynaCache then uses this
information to construct cache IDs and dependency IDs to be used for cache

Chapter 9. Caching your store pages 89

invalidation. For a list of the request attributes set up for session information, see
the WebSphere Commerce Administration Guide, "Dynamic caching” chapter.

The cache filter creates the store relationships information by calling the
getStorePath() and getStoresForRelatedStore() methods from the StoreAccessBean.

The corresponding information is listed in the following table:

Table 3.

Store Relationship

Store Relationship

Request Attributes

Request Attributes

measurement format

Type Identifier Name for Name for
getStorePath() getStoresFor

RelatedStore()

IBM commerce -1 DC_busN DC_bus_RS_N

businessPolicy

IBM commerce -3 DC_campN DC_camp_RS_N

business campaigns

IBM commerce -4 DC_catN DC_cat_RS_N

business catalog

IBM commerce -5 DC_cmdN DC_cmd_RS_N

business command

IBM commerce -6 DC_hostN DC_host_RS_N

hosted store

IBM commerce price |-7 DC_prcN DC_prc_RS_N

IBM commerce -8 DC_refN DC_ref RS_N

referral

IBM commerce -9 DC_segN DC_seg RS_N

segmentation

IBM commerce URL |-10 DC_urIN DC_url_RS_N

IBM commerce view |-11 DC_viewN DC_view_RS_N

IBM commerce -13 DC_invN DC_inv_RS_N

inventory

IBM commerce base |-14 DC_baseltemN DC_baseltem_RS_N

item

IBM commerce -15 DC_chsN DC_chs_RS_N

channel store

IBM commerce -17 DC_currConvN DC_currConv_RS_N

currency conversion

IBM commerce -18 DC_currFmtN DC_currFmt_RS_N

currency format

IBM commerce -19 DC_supCurrN DC_supCurr_RS_N

supported currency

IBM commerce -20 DC_cterCurrN DC_cterCurr_RS_N

counter value

currency

IBM commerce -21 DC_meaFmtN DC_meaFmt_RS_X

Note: The cache filter sets up multiple request attributes when multiple store IDs
are returned as DynaCache does not support an array of request attributes.

Store Development Guide

For example, if getStorePath() returns an array [10051, 10002] for the
resource id -4 (IBM commerce business catalog), then the request attributes

set up will be

* DC_cat0 is 10051
e DC_catl is 10002

Store relationship caching example

To understand how caching pages that use a store relationship works,

consider the following example.

Publishing the sample composite store archive DemandChain.sar and

then creating a hosted store (for example, ResellerOne) in that site creates the

following stores.

Table 4.

Store ID Directory Store Type

10001 CommercePlaza channel hub

10002 CommercePlazaCatalog catalog asset store

10003 CommercePlaza distributor proxy

10004 ConsumerDirectResellerProfilg hosted storefront asset store
10051 ResellerOne reseller hosted store

ResellerOne (10051), the reseller hosted store, uses the assets defined in the hosted

storefront asset store (10004) and the catalog asset store (1002).

In order to set up the caching relationship, the cache filter gets the following

information:
Table 5.
Store ID Relationship Type getStorePath() getStoresFor
RelatedStore()
10001 -1 (business policy) 10002 not applicable
-4 (catalog)
-7 (price)
-17 (currency format)
-19 (currency
supported)
10001 -6 (hosted store) 10051 not applicable
10051 -1 (business policy) |10051, 10002, 10004 |10051
-14 (base item)
10051 -3 (campaigns) 10051, 10004 10051

-5 (command) -10
(URL)
-11 (view)

Chapter 9. Caching your store pages

91

92

Table 5. (continued)

10051

-4 (catalog)

-7 (price)

-17 (currency
conversion)

-18 (currency format)
-19 (currency
supported)

-20 (counter value
currency)

-21 (measurement
format)

10051, 10002

10051

Then the cache filter sets up the following request attributes:

Table 6.

Store Relationship

Store ID 10051

store ID 10051

store ID 10001

-1 (business policy)

DC_bus0=10051
DC_bus1=10002
DC_bus2=10004

DC_bus_RS_0=10051

DC_bus0=10002

-2 (tax)

DC_tax0=10051
DC_tax1=10004

DC_tax_RS_0=10051

-4 (catalog)

DC_cat0=10051
DC_cat1=10002

DC_cat_RS_0=10051

DC_cat0=10002

-6 (hosted store)

DC_host0=10051

DC_host_RS_0=10001

DC_host0=10051

Whenever the catalog of the catalog asset store (10002) is changed, the catalog
pages of the ResellerOne store (10051) must also be invalidated before it can use

the information from the catalog asset store (10002). In order for the pages in 10051
to be invalidated, extra dependency IDs must be set up for this store relationship.

Setting up the extra dependency IDs for StoreCatalogDisplay is illustrated in the

following example:

<l-- Start Store Relationship Dependency Ids -->
<!-- DC_catl is the catalog Profile Store ID -->
<dependency-id>storeld

<component id="DC_catl" type="attribute">

<required>true</required>

</component>
</dependency-id>

<dependency-id>storeld:catalogld

<component id="DC catl" type="attribute">

<required>true</required>

</component>

<component id="catalogId" type="attribute">
<required>true</required>

</component>
</dependency-id>

<dependency-id>StoreCatalogDisplay:storeld
<component id="DC_catl" type="attribute">

<required>true</required>

</component>
</dependency-id>

<!-- Ends Store Relationship Dependency Ids -->

The extra dependency IDs created are as follows:

Store Development Guide

* storeld:10002

* storeld:catalogld:10002:10051

* StoreCatalogDisplay:storeld:10002

Once these extra dependency IDs are defined, whenever there changes to the

catalog asset store 10002 that cause the catalog asset store pages to be invalidated,
the hosted store (10051) pages will also be invalidated.

Replacing the cache command functions with dynamic caching

Previous versions of WebSphere Commerce used the CacheCommand
(com.ibm.commerce.cache.commands.CacheCommandImpl) to implement more
advanced caching configurations, for example, caching pages by the user’s state
and type determined from a customer profile.

In Version 5.5, using dynamic caching you can cache the servlet or JSP file result as
you would using the cache command, by adding the cache command logic to a JSP
file.

Consider the following example:

The StoreCatalogDisplay command can display different headers based on the
user’s state and type attributes. To cache the header JSP file, create a new JSP file,
CacheParametersSetup.jsp that includes the user’s state and type attributes. For
example:
<%@ page import="com.ibm.commerce.command.CommandContext" %>
<%

String userState = null;

String userType = null;

CommandContext cmdcontext = (CommandContext) request.getAttribute
(ECConstants.EC_COMMANDCONTEXT) ;
if (cmdContext !'= null) {
userState = cmdcontext.getUser().getState();
userType = cmdcontext.getUser().getRegisterType();

0,
%>

Then the StoreCatalogDisplay.jsp statically includes the
CacheParametersSetup.jsp and dynamically includes the CachedHeaderDisplay.jsp
using the userState and userType as input parameters:
<%@ include file="CacheParametersSetup.jsp"%>
<jsp:include page="CachedHeaderDisplay.jsp" flush="true">
<jsp:param name="storeld" value="<%= storeld %>" />
<jsp:param name="catalogld" value="<%= catalogld %>" />
<jsp:param name="langId" value="<%= languageld %>" />
<jsp:param name="userState" value="<%= userState %>" />
<jsp:param name="userType" value="<%= userType %>" />
</jsp:include>

The CachedHeaderDisplay.jsp file contains the logic to display different
information based on the input parameters.

<

o

if (userType.equals("G")) {

N
\%

<table cellpadding="0" cellspacing="0" border="0" width="100%" height="28">

</table>

Chapter 9. Caching your store pages 93

94

}

else {

N
\Y

<table cellpadding="0" cellspacing="0" border="0" width="100%" height="28">

</table>

A
o

N
Y

In order to complete caching, the input parameters must be identified by a
cache-ID rule.

<cache-entry>
<class>servlet</class>
<name>.../CachedHeaderDisplay.jsp</name>
<property name="save-attributes">false</property>

<cache-id>

<component id="storelId" type="parameter">
<required>true/required>

</component>

<component id="catalogId" type="parameter">
<required>true</required>

</component>

<component id="userState" type="parameter">
<required>true</required>

</component>

<component id="userType" type="parameter">
<required>true</required>

</component>

< /cache-id>

</cache-entry>

Store Development Guide

Part 5. Store data overview

© Copyright IBM Corp. 2000, 2003

95

96 Store Development Guide

Chapter 10. Store data

This chapter provides an overview of the WebSphere Commerce Server store data
architecture and the data assets that create a store. The WebSphere Commerce
Server information model is also introduced in this chapter.

What is store data?

Store data is the information loaded into the WebSphere Commerce Server
database, which allows your store to function. In order to operate properly, a store
must have the data in place to support all customer activities. For example, in
order for a customer to make a purchase, your store must contain a catalog of
goods for sale (catalog data), the data associated with processing orders (tax and
shipping data), and the inventory to fulfill the request (inventory and fulfillment
data).

The store data information model

This guide uses an information model to illustrate how store data is structured in
the WebSphere Commerce Server. The WebSphere Commerce Server information
model is a high-level abstraction of the information contained in the WebSphere
Commerce Server data models. The information model highlights the most
important features of the data models, but does not include the lower level details
that are specific to the schema and object implementations.

For example, certain tables and objects in the data model that contain
entity-relationship data (such as foreign key pairs) are not represented in the
information model as entities. Instead these entity relationships are implied by the
relationship lines between entities in the information models. The information
model also differs from the data model in that in the data model each entity
represents a table while in the information model any of the objects depicted may
be mapped to the same database table, or a single object may map to several
database tables. The information model also does not illustrate detail extensions
(additional data attributes of an entity that are stored in a separate table as a result
of implementation concerns: for example, the product description is a separately
stored extension of the product entity). Finally, unlike the data model, the
information model may also illustrate concepts of inheritance. For more
information on entity-relationship data and detail extensions, see the data model in
the WebSphere Commerce Production and Development online help.

For more information on the WebSphere Commerce object and data
models, see the WebSphere Commerce online help.

© Copyright IBM Corp. 2000, 2003 97

98

The following diagram illustrates the data assets of a WebSphere Commerce store.

Business Contracts Site Lewvel Customers Sellers
Policies Infarmation
T - [E Ei
- . ! s .
- ' ! ‘ .
. - ! B .
“ . ! s .
B . ! ‘ .
- - ! B
Campaigns . N | ! Payment
- - ! B
- . ! B
S % | ’ o
. . ! . .
kT R " " . i e . 7
. - ! . . .
] - . | ; e]
. - ! B B
Pricez . . ~. . ' N L . Fulfillment
. . \ ! . -
- . e -
s s
- R ENE ' L e -
Catalogs Stores - Irwerntany
R Lt S LR EE TR
o= T-
T TEIARREE S el
LT P S T el
URL Registry |- - R ' ' P N - Orders
A - . . ! . P -
Entries - L ; ' . U -
- . < - . ' . . . S
- . . . ' . - N
- . ‘ ! B -
- L - B ' ' ~ ~ .
—| - B ‘ ! . “ ~ . —|
- < - " 1 bl . K -
- i < - ' . " - —
“ew Registry L . ' . . - Jurizdictionz
Entriaz L S | B "
. < El v 1 ' ks -
—| . ‘ ! . —|
Command K N ' t Taxes
Registry Entries N ' B .
. . ! . “
B . ! 5 -
. ! 4 B
B . ! \ -
. ‘ ! . “
. —| ‘ —| , __l __l
Supported Supported Units of Supported Shipping Dizcourts
Languages heasure Cumencies

This diagram, and all others in the store data section are part of the
WebSphere Commerce information model. For more information on the
information model, see|“The store data information model” on page 97
For more information on the conventions used in this diagram, see
|[Appendix A, “UML legend,” on page 437

Each of the data assets illustrated in the above diagrams is discussed in more
detail in the chapters in [Part 6, “Developing your store data,” on page 107

Note:

Store Development Guide

In the UML notation, a dotted line with an arrow extending from an object
and pointing to another object indicates that the first object has a
dependency on the second object. In this diagram, the objects shown are
referred to as packages. Notice that data in some packages, such as lists of
Supported Currencies, are specific to a particular Store, and thus that
package is shown as dependent on the Store package. Other packages, such
as Catalogs, are not specific to any particular Store, but rather each Store
may use Catalogs, and thus the Store object is shown as dependent on the
Catalogs package. As a result, the lists of Supported Currencies form part of
a Store, while a Store uses Catalogs.

One part of a Store that is of particular interest is its Store
Relationships with other Stores. Each store relationship indicates that a Store
depends on another Store to provide some service or information.
Relationships can be defined to facilitate the use of one Store’s data, such as

its list of Supported Currencies, by another Store. In this scenario, the first
Store acts as a provider, or container, of data which is used by the second,
client, Store. As more client Stores are created, they can also define
relationships that indicate they obtain certain data from certain other Stores.
In this way Store relationships facilitate data sharing; the data can be created

and maintained once by the provider Store, and used b
Stores. For more information on store relationships, see

[“Relationships between stores,” on page 129

several client
Chapter 14

The data in the information model can be categorized in the following ways:

* by subsystem

* by data type

Store data information model viewed by subsystem

Each of the data assets in the store data information model can be grouped into
the following functional areas:

Table 7.
Merchand- |Marketing |Trading Order Catalog Member Run-time
ising Manage-
ment
Discounts | Campaigns |Contracts |Shipping |Catalogs Organiza- |Organiza-
tions tions
Vendors Customer Accounts | Taxes Prices Groups URL,
profiles commands,
and view
registry
Auctions E-mail Jurisdict- Users Supported
activity REQs ions Languages
Coupons Orders Supported
Units of
measure
Inventory Supported
Currencies
Fulfillment Site
Payment Store
Store
relation-
ships
Business
policies

Store data information model viewed by data type

Data in WebSphere Commerce stores conforms to the types depicted in the
following diagram. Each of the store data assets illustrated in the diagram in

[“Store data information model viewed by subsystem,”|can be classified as

belonging to one or more of the types of store data illustrated below.

Chapter 10. Store data 99

Operational

A
Managed
Sample Configuration
store archives
Core
v

WebSphere Commerce Server instance

WebSphere Commerce Server instance

The basic level of data is contained in the WebSphere Commerce Server instance.
When an instance is created, the bootstrap files, which are loaded in XML format,
populate the database with information. The bootstrap files create the following
types of data:

* Calculation usage types, device types (browsers, e-mail, I-'Mode, and so on),
message types, roles and addresses

e The default administrative ID, WCSADMIN

e The default commands, views and URLs

* The default business policies

e The default access groups and access control policies

¢ The languages and currencies supported by the instance

* The default quantity units and quantity unit conversions

¢ The default scheduled jobs and statecodes

* The default terms and conditions

* The default organization, which can be used as the store owner
¢ The default site organization

* The default store group

* The default information for staging

This information is available to all stores that exist in that instance, and is

identified as the Site Level Information in the diagram in [‘Store data information|
imodel viewed by subsystem” on page 99.|

For more detailed information on the bootstrap files and the database tables they
populate, see the WebSphere Commerce online help.

Core data
The next level of store data is the core data. Core data is divided into two levels:

* Organization

e Store

100 store Development Guide

The organization core data creates the minimum data for a business model specific
environment, including;:

* The organization structure.

* Predefined user roles.

* Necessary access control policies.

Organization core data is available in both the sample composite store archives,
and the sample organization structure component store archives.

The core data creates the minimum data for a store within that environment,
including:

* The store identifier in the STOREENT table. This creates a store in the database.
* The default contract.

* The store identifier in the contract database tables.

* The member identifier for the organization that owns the store in the contract
database tables.

* The store directory in the STORE table. The store directory is the directory in
which the store’s Web assets are located.

e The nickname or identifier for the store’s address in the STADDRESS table. The
nickname is unique for each store.

Store core data is available in both the sample composite store archives and the
sample component store archives.

If you published any of the sample store archives indicated above using the
publish utility in the Administration Console, this information was created for you.
The publish utility allows you to select the default organization that can act as the
store owner, or you can create another organization to act as the owner using the
Organization Administration Console. If you did not publish a sample composite
store archive to use as the basis of your store, you will have to load this
information into the database using the Loader package, or edit the database

directly. For more information on using the Loader package, see
[‘Overview of loading store data,” on page 335/

The Stores data in the diagram in|“Store data information model viewed by|
lsubsystem” on page 99|is core data.

Configuration data

Configuration data controls the commerce server runtime. The commerce server
runtime provides a framework in which the commerce applications are deployed
and executed. The framework consists of command execution, exception handling,
transaction control, data access, and persistence. The commerce server runtime
leverages the run time services provided by WebSphere Application Server to
support WebSphere Commerce Server applications. Configuration data determines
which commands, views, and JSP files your store will use to display store pages.

The following data assets identified in the diagram in|“Store data information|
imodel viewed by subsystem” on page 99 are classified as Configuration data:

¢ Command Registry Entries
¢ View Registry Entries
* URL Registry Entries

Chapter 10. Store data 101

102

Managed data

Managed data is data which the seller creates, and is read-only for customers of
the seller’s site. Since the seller is in complete control of the state of this data,
managed data may be managed through a content management system.

The following data assets identified in the diagram in|“Store data information
imodel viewed by subsystem” on page 99 that are classified as managed data:

* Business policies
* Campaigns

* Catalogs

* Contracts

* Coupons

* Currencies

* Customer profiles
* Discounts

* E-mail activity

¢ Fulfillment centers
¢ Inventory (configuration information for catalog items)
* Jurisdictions

* Languages

* Members

* Payment

* Prices

* Sellers

* Shipping

* Tax

* Units of measure
* Vendors

Operational data

Operational data is data which is created or changed (directly or indirectly) by
customers of the site as a result of their interactions with the site. For example,
customer orders are considered operational data, as are inventory levels, which go
up and down as your store operates. Customers are also considered operational
data. Data created by the seller can also be operational.

Since changes to operational data are not under the complete control of the seller,
this data is not managed using a content management system.

The following data assets identified in the diagram in|“Store data information|
imodel viewed by subsystem” on page 99 are classified as operational data:

¢ Auctions

* Contracts

e Customers

* E-mail activity

* Fulfillment

* Inventory (receipts, expected receipts, inventory allocation)
* Orders

. Request for Quotes (RFQ)

Store Development Guide

Note: In some instances the line between operational and managed data may be
hard to determine. For example, in one store, customer and contract data
may be considered managed data, while in another store, the same type of
data may be considered operational. The first store may manage their
customer data and related contracts because they have a specific set of
customers (that is, customers cannot register online). However, the second
store allows customers to register online, and create contract information
online.

A second example involves catalog data. In a single seller site, the catalog is
considered managed data. In a value chain site, catalog data may be
considered operational.

In some sites, certain records of the same data type may be considered
managed while other records are considered operational. For example, the
default contract may be managed data, but the specific contracts negotiated
online are operational data. Another example is e-mail activity. E-mail
activity information and templates are considered managed data, but the
actual e-mail activities generated from the templates and sent to customers
are considered operation data, as are any as are any of the events resulting
from the mailing, such as a customer opening the e-mail, or clicking on any
of the clickable contents of the e-mail.

Store data types and the sample businesses

The sample businesses provided with WebSphere Commerce include most of the
types of store data in store data architecture. For example, a WebSphere Commerce
Server instance must exist before a store can be created using a sample store or a
sample store can be published. Then when you create a store based on a sample
store using the tools in the publish utility in the Administration Console, the core
data is created. The sample stores include all the necessary configuration, and most
of the managed data required for a functional store. When creating stores based on
certain sample stores, you may be instructed to complete some set up of data,
using the tools in the WebSphere Commerce Accelerator.

Tools for creating data

WebSphere Commerce provides several tools to create and manipulate your store
data. These tools are listed below:

WebSphere Commerce Loader package

The Loader package consists primarily of utilities for preparing and loading data
into a WebSphere Commerce database. For more information, see
[“Publishing your store,” on page 319,

Administration Console

The Administration Console allows you to control your site or store by completing
administrative operations and configuration tasks. You can also use the
Administration Console to create new organizations and users, as well as assign
users to roles. The Administration Console also allows you to identify which
notification and messaging types will be available in your store. The
Administration Console contains the publish utility, which allows you to publish
sample business and stores.

Chapter 10. Store data 103

104

WebSphere Commerce Accelerator

The WebSphere Commerce Accelerator is a workbench of online tools that allow
you to create and maintain various store assets. A large portion of store data can
be created and managed using the tools in the WebSphere Commerce Accelerator.
For more information, see the [“Tool and store data summary chart.”|

Organizational Administration Console

The Organizational Administration Console allows you to create and manage the
organizations that access your site or store. The Organizational Administration
Console also allows the buyer administrator to manage buyers within their

organization.

Tool and store data summary chart

The following chart lists the tools you can use to create each type of data.

archive using the
Administration
Console, the core
data is created
for you. For
more
information on
using publish,
see the
WebSphere
Commerce
Production
online help.

Tools for Core data Configuration |Managed data | Operational
creating data data data
WebSphere Use the Loader |Use the Loader |Use the Loader |In general,
Commerce package to load |package to load |package to load |operational data
Loader package |core data in the |configuration managed data in | cannot be loaded
form of an XML |data in the form |the form of an | with the Loader
file. For more of an XML file. | XML file. For Package.
information, see |For more more However,
“Creating storel information, see |information, see |selected
data assets in an| ||”Creating an| the customer data
XML file” on| XML file to| corresponding | may be loaded
page 124 i chapters on the |using the Loader
managed data package.
assets.
Administration | When you Not applicable. |Not applicable. |Not applicable.
Console publish a store

Store Development Guide

Tools for
creating data

Core data

Configuration
data

Managed data

Operational
data

WebSphere
Commerce
Accelerator

Not applicable.

Not applicable.

Use the

WebSphere

Commerce

Accelerator to

create or edit the

following data:

¢ Campaigns

* Contracts (a
default
contract must
exist in the
database
before you can
use the
Business
Relationship
Management
tools in the
WebSphere
Commerce
Accelerator to
create
additional
contracts or
change
existing ones.
Use the
Loader
package, the
store creation
wizard, or
publish a store
archive to
create a
default
contract in the
database).

* Jurisdictions
* Taxes

* Shipping

* Currency

* Languages

Customers create
operational data
when they
register with the
store, or make
purchases from
it. However, in
some cases, you
can use the
WebSphere
Commerce
Accelerator to
place orders for
a customer, or to
create a return.

The WebSphere
Commerce
Accelerator also
allows you to
manage your
inventory
(receipts and
expected
receipts).

Chapter 10. Store data

105

106

Tools for
creating data

Core data

Configuration
data

Managed data

Operational
data

WebSphere
Commerce
Accelerator
continued

Not applicable.

Not applicable.

Fulfillment
* Discounts

* Catalogs (a
master catalog
must exist in
the database
before you can
use the
Product
Management
tools in the
WebSphere
Commerce
Accelerator to
add or change
product
information.
For a different
view of your
merchandise
and services,
create a sales
catalog by
changing the
XML source.
Use the
Loader
packageor
publish a store
archive to
create a
master catalog
in the
database.)

* Prices

Not applicable.

Organizational
Administration
Console

Use the
Organizational
Administration
Console to create
and manage
organizations.

Not applicable.

Not applicable.

Customers and
buyers are
created when
they enter the
store. However,
with the
Organizational
Administration
Console, you can
also manage
users and
approve buyers,
or create new
ones.

Store Development Guide

Part 6. Developing your store data

The chapters in this section explain each of the store data assets in more detail. The

store data assets in the this section are organized according to the WebSphere

Commerce store data architecture structure:
* WebSphere Commerce Server instance
— Site
* Core data
— Organization
— Store
— Relationships between stores
* Configuration data
— Command registry
- View Rregistry
— URL registry
* Managed data
— Catalog
— Prices
— Contracts (including Business Policies)
- Fulfillment
— Campaigns
- Payment
— Supported languages
— Supported currencies
— Supported units of measure
— Jurisdictions
— Shipping
— Taxation
— Discounts
* Operational data
— Inventory
Orders
Customers

— Auctions

RFQ

© Copyright IBM Corp. 2000, 2003

107

108 store Development Guide

Chapter 11. Site assets

Each WebSphere Commerce Server instance has its own database of relational
information. An instance is created by the bootstrap files, which populate the
database tables with information, after the schema has been created. Once the data
has been loaded, you can see the pre-loaded information in the appropriate
database tables. Many database tables contain store or store group level
information that is particular to a store or group of stores. Some tables contain
information that represents WebSphere Commerce site level capabilities available
for use by all stores in the instance. All of this information is managed by the
WebSphere Commerce Site Administrator. These capabilities are discussed in this
chapter. For more information on the bootstrap files, see the WebSphere Commerce
Production and Development online help. For more information on store-specific
asset information see [Chapter 13, “Store assets,” on page 123/

Understanding site assets in WebSphere Commerce

The following diagram illustrates the types of data the site contains and their
relationships to the site.

O O O O O

MemberAttribute User Role Organization MemberGroupType

O

ltemType

O

AttributeType

DeviceFormat

O

StoreRelType

" +definedLanguage Q
1.n Language

CalculationUsage

-

Q idefinedTaxType

O

NumberUsage

TaxType
+definedQuantityUnit 1.n +definedCurrency 1..n
O] ounit O O
QuantityUnitConversionRule 1 QuantityUnit Currency
+fromUnit 1

© Copyright IBM Corp. 2000, 2003 109

110

For more information on the conventions used in this diagram, see
|[Appendix A, “UML legend,” on page 437) This diagram, and all others in
the store data section are part of the WebSphere Commerce information
model. For more information on the information model, see
[data information model” on page 97/

Lan guage
A site can define many languages in the LANGUAGE table, and describe them in
the LANGUAGEDS table. Each store generally supports a subset of these
languages by adding rows to the STORELANG table. The ten pre-defined
languages are: German, Traditional and Simplified Chinese, Japanese, Korean,
Italian, French, Spanish, Brazilian Portuguese, and English.

Member attributes

Member attributes are stored in the MBRATTR table and represent the set of defined
attribute names for which values can be stored for organizations or users.
Examples of such attribute names include JobFunction, ProcurementCard,
SpendingLimit, ReferredBy, and CountryOfOperation. Attribute values for
particular organizations or users are stored in the MBRATTRVAL table, and these
values can be different for different stores or store groups.

Attribute types

Attribute types are stored in the ATTRTYPE table and represent the defined data
types that can be used to represent attribute values. Examples of data types
include INTEGER, STRING, and FLOAT.

Member group types

Member group types are stored in the MBRGRPTYPE table and represent the set of
defined member group usages. Member groups are assigned usages by adding
rows to the MBRGRPUSG table. Examples of member group usages include
AccessGroup (for use with access control policies) and UserGroup (for general
purposes, such as customer groups).

User

User represents authenticated user identities. Users generally represent customers
placing or approving orders on behalf of buying organizations, selling agents
processing orders for selling organizations or maintaining store level assets, or Site
Administrators maintaining the WebSphere Commerce Server instance. Each user is
associated with one site and is defined in the USERS table.

Organization

Organization represents organizations and organizational units within
organizations. Organizations generally represent business entities responsible for
buying or selling. Orders placed by customers in a B2B direct buying organization
are recorded as being placed on behalf of the buying organization. Stores, catalogs,
and fulfillment centers are owned by organizations that are responsible for certain
aspects of selling. Organizations are defined in the ORGENTITY table.

Role

Role represents the set of defined roles that users can be assigned within
organizations. For example, a user may be assigned the role of Customer Service
Representative within a selling organization, or may be assigned the role of Buyer

Store Development Guide

Approver within a buying organization. The names and descriptions of the default
roles are populated in the ROLE table. For more information on specific roles, see
the WebSphere Commerce online help.

Quantity unit conversion

Each site has quantity conversions. These represent multiplication or division
operations that are used to convert between different units of measure. These are
populated in the QTYCONVERT table.

Quantity units
Quantity units represent the set of units of measure for the site. They are defined in
the QTYUNIT table and described in the QTYUNITDSC table. Each store can
specify how amounts in each unit of measure are rounded and formatted for
display, depending on their intended usage, by adding rows to the QTYFORMAT
table.

Tax types
Tax types represent the calculation usages that calculate taxes. Sales tax and
shipping tax are two different calculation usages that calculate taxes. Tax types are
defined in the TAXTYPE table.

Calculation usage
Calculation usage represents the different kinds of calculations that can be
performed by the OrderPrepare command. Calculation usages are defined for
discounts, shipping, sales tax, shipping tax, and e-coupons. Calculation usages are
defined in the CALUSAGE table.

Currency
Each site defines a number of currencies in the SETCURR table and describes them
in the SETCURRDSC table. Each store supports a subset of these currencies by
adding rows to the CURLIST table, one row for each currency supported.

Note: For some of the site assets, such as Language, Currency, Quantity unit, and
Quantity unit conversion rule, the Site Administrator can extend the site
level capabilities by adding rows to the appropriate tables. For the others,
related customizations may be also be required to extend the site level
capabilities they represent. For example, if a Site Administrator added a new
number usage to display subtotals with a customized currency symbol, then
the program that displays subtotals would have to be customized to specify
the new subtotal number usage when formatting subtotal amounts for
display.

Number usage

Number usage represents the intended usage for numbers. Stores can specify
different rounding and formatting rules for the numbers they display according to
how they are used. For example, a store may round unit prices to four decimal
places by specifying the "unit price” usage, but other monetary amounts to two
decimal places by specifying the "default” usage. Number usage is defined in the
NUMBRUSG table, and described in the NUMBRUSGDS table.

Chapter 11. Site assets 111

112

ltem types
Item types represent the different kinds of base items. The two types of base items
in WebSphere Commerce are dynamic kit and normal item. Item types are
pre-defined in the ITEMTYPE table. For more information on base items, see
Khapter 29, “Inventory assets,” on page 265.|

Device formats
Device formats are stored in DEVICEFMT table and represent the many device
formats a site uses such as browsers, I_ MODE, e-mail, XMLMQ, and XMLHTTP.
All these device types allow users to interact with the site through various media.

Store relationship types

A store relationship type (StoreRelType) defines the type of relationship
between two stores. Each type of store relationship defines its own relationship,
that is, what roles each partner in the relationship will play and what the
relationship between the two is. A store relationship type is defined in the
STRELTYP table, and described in the STRELTYPDS table.

Site level trading agreement data

The following diagram illustrates the types of trading agreement data the site
contains and their relationships to the site.

Q AttachmentUsage TradingAgreementType

Operator

ParticipantRole

—
—
—
QO -
PAttribute Site PolicyType
V ! TermConditionType Policy TypeCmdinterface
Attribute Type T

TermConditionSubType

For more information on the conventions used in this diagram, see
|[Appendix A, “UML legend,” on page 437) This diagram, and all others in
the store data section are part of the WebSphere Commerce information

model. For more information on the information model, see
[data information model” on page 97/

Trading agreement type

WebSphere Commerce provides a number of trading mechanisms governing the
interactions between buyers and sellers. A trading agreement represents an
instance of a trading mechanism and records the properties of that instance of a
trading mechanism. Each contract, business account, and RFQ in WebSphere
Commerce is represented by a trading agreement. There is a single trading

Store Development Guide

agreement that governs all auctions in WebSphere Commerce. WebSphere
Commerce supports several trading agreement types, including account, contract,
RFQs, exchange, and auctions. The trading agreement types are defined in the
TRDTYPE table. For more information on trading agreements, see
[“Contract assets,” on page 179

Participant role

Participants in trading agreements take on specific roles within each trading
agreement. WebSphere Commerce supports several participant roles, including
creator, seller, buyer, supplier, approver, administrator, distributor, service provider,
reseller, host and recipient. Participant roles are defined in the PARTROLE table.

Policy type
WebSphere Commerce supports several types of business policies, including price,
product set, shipping mode, shipping charge, payment and several others. Policy
types are defined in the POLICYTYPE table. For more information on business
policies, see [Chapter 18, “Contract assets,” on page 179

Policy type command interface
The policy type command interface is the Java command interface for the business

policy object. The command for each policy instance must implement this interface.
There can be zero or more commands for each business policy object.

Terms and conditions type

Terms and conditions define the behavior and properties of a trading agreement.
WebSphere Commerce supports several terms and conditions types, including
pricing, payment, and shipping. Terms and conditions types are defined in the
TCTYPE table. For more information on terms and conditions, see
[“Contract assets,” on page 179

Terms and conditions sub type
Each terms and conditions type can contain several terms and conditions sub types.

Terms and conditions sub types are defined in the TCSUBTYPE.

Personalization attribute

The personalization attribute allows you to create attributes for products. The
personalization attribute is defined in the PATTRIBUTE table. Each personalization
attribute has one and only one attribute type.

Attribute type

The attribute type defines the type of the attribute. Attribute types are defined in
the ATTRTYPE table.

Operator

The operators used in the site include simple operator (allows a single value),
compound operator (range - continuous), and compound operator (set). Operators
are defined in the OPERATOR table.

Attachment usage

An attachment is a supporting document for a trading document. For example, it
can be a specification of a product, or a price list spreadsheet. Attachment usage
describe how and where attachments will be used. Attachment usage is defined in
the ATTACHUSG table.

Chapter 11. Site assets 113

Creating site assets in WebSphere Commerce

Site assets are created when you create an instance in the WebSphere Commerce
Server. For more information on creating an instance in the WebSphere Commerce
Server, refer to the WebSphere Commerce Installation Guide, "Creating a WebSphere
Commerce instance.”

114 Store Development Guide

Chapter 12. Member assets

This chapter first explains the WebSphere Commerce Member subsystem, then
describes the three types of members that are relevant to store developers:
customers, Sellers, and administrators. Note that WebSphere Commerce provides a
Member subsystem, which includes members or users, and organizations.

Understanding member assets in WebSphere Commerce

WebSphere Commerce member assets include data for participants of the
WebSphere Commerce system. A member can be a user, a group of users, or an
organizational entity. An administrator, such as a Site Administrator, assigns roles
to users and organizational entity members. Once a member is assigned a role, the
access control component authorizes the member to participate in activities. For
example, an organization can be a Buyer or a Seller, or both. A user can also be
assigned multiple roles. An administrator can create member groups, which are
groups of users categorized for various business reasons. Use the WebSphere
Commerce Administration Console to create and work with organizations, users,
roles, and member groups.

Business logic for the member assets provides member registration and profile
management services. Other services which are closely related to the member
assets include access control, authentication, and session management. For more
details about these topics, refer to the WebSphere Commerce development online
help.

© Copyright IBM Corp. 2000, 2003 115

116

The following diagram illustrates the WebSphere Commerce member assets.
Descriptions of each asset follow the diagram.

® O

Role
MemberRole

O

StoreEntity

0.1
+owner 1
2\ & +owner

O O
’1/ Member

MemberAttributeValue

I\
[\

O O

MemberAttribute MemberGroupMember

\/1

+descendant

Q +ancestor Q Q

Organization +descendant User MemberGroup

+intended usage
Org @ OrgUnit Q
MemberGroupType

+ancestor

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see ['The store data information model” on|
|page 97.|For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Members
A member in WebSphere Commerce can be any of the following:

* An organizational entity. This can be an organization, such as "IBM" or an
organizational unit within a large organization, such as the "Electronic
Commerce Division” within IBM.

* A user (either registered or non-registered). A registered user has a unique
identifier, and a password, and is required to provide profile data for
registration purposes. Registered users can be classified according to their profile

type: type ‘B’ denotes a business user (or a B2B direct customer) and
type of 'C’ denotes a retail user (or a consumer direct customer). For more
information about registered and non-registered users, refer to "Members” in the
WebSphere Commerce development online help.

* A member group. This is a group of users categorized for various business
reasons. The groupings can be used for access control purposes, for approval
purposes, as well as for marketing purposes (such as calculating discounts,
prices, and displaying products).

Store Development Guide

Each store entity (that is, a store or store group) is owned by a member.

Member attributes

Roles

A WebSphere Commerce member has a set of attributes and each attribute has a
value associated with it. A basic user profile for a member incorporates registration
information, demographics, address information, purchase history, and other
miscellaneous attributes.

A business user profile contains the same information as a basic user profile, as
well as employment information, such as an employee number or a job title, or a
job description. During registration, business users should identify the business
organization to which they belong. Profiles for organizational entities include this
additional information, such as organization name and business category.

Access control rules enforce user authority for performing profile management.
Member profiles can contain a variety of personal and business-related attributes
(such as roles, payment information, addresses, preferred languages and currencies,
and pervasive computing devices). Attributes can be store-sensitive. These
attributes are supported for users and organizational entities, but not member
groups.

Each user can perform one or more roles in an organization. A Site Administrator
assigns a role or roles to each member. For example, as a member of the IBM
organization, John Smith’s role as a Customer Service Representative means that
John performs tasks on behalf of IBM customers and assists them with inquiries or
concerns regarding their registration information, orders, or returns. John may also
have the role of a Customer Service Supervisor, who has all the responsibilities of
the tasks described above, as well as approval and supervisor authority over other
Customer Service Representatives.

The WebSphere Commerce system provides the following set of default role types:
* Business relationship roles

* Customer service roles

* Marketing roles

* Operational roles

* Organizational management roles

* Product management and merchandising roles

¢ Technical operations roles

For details about each of these roles, refer to the WebSphere Commerce
development online help topic "Roles”. A Site Administrator can assign these roles,
as well as any new roles created by the Site Administrator, by organizational

entity; that is, users who belong to an organizational entity can assume roles
assigned to that organizational entity.

When a user is assigned a role, the role is scoped to an organizational entity. This
can be any organizational entity; it does not have to be one of the user’s ancestors.
However, since roles are inherited, the user will play the assigned role in any
descendant of the organization for which the role is assigned. For example, if a
user is given a role in the Root Organization, then the user will play that role for
all organizational entities.

Chapter 12. Member assets 117

WebSphere Commerce roles can be assigned manually through the Organization
Administration Console, and automatically through the registration and session
management commands. This automated role assignment is based on the
configuration specified in the MemberRegistrationAttributes.xml file. WebSphere
Commerce 5.5 provides the MemberRegistrationAttributes.xml file, which can be
modified to suit particular registration requirements. For more information on
automated role assignment, and the MemberRegistrationAttributes.xml file, refer to
the WebSphere Commerce development online help topic
"MemberRegistrationAttributes XML and DTD files".

For more detailed information on the structure of member assets in
WebSphere Commerce, see the member object and data models in the
WebSphere Commerce development online help.

Understanding customer assets in WebSphere Commerce

118

A customer is a user within WebSphere Commerce. A customer can browse the
store’s online catalog, places an order, create an interest list, set up addresses (such
as for general contact, billing, and shipping purposes), and purchase from the store
or the Seller. A customer is also a user. The following diagram illustrates the assets
that a customer requires to place an order from a store.

As shown in the preceding diagram, the WebSphere Commerce system contains
members. Each user and organizational entity member can be assigned a role.

Note: In WebSphere Commerce, a member can be either an organizational entity,
user, or member group. Refer to|“Members” on page 116|for more details.

In this case, the user is a customer. A customer must provide address information
and can have an interest item list. The diagram illustrates the reciprocal
relationship between a member (customer) and the customer assets associated with
it: a customer must own and provide an address and can have an interest list to
shop at a store; the address and interest list depend on the existence of a customer.

Address information

A customer must provide three types of address information, when purchasing
from a store: the contact address, billing address, and shipping address. The
following describes these address types; each address can be unique or the same:

* A contact address is used to notify the customer for various purposes, such as
regarding the status or changes to an order, and notices about upcoming store
events (such as promotions or store maintenance). The customer’s contact
address includes the street name and number, city, state or province, ZIP or
postal code, country or region, e-mail address, phone number, and fax number.
Typically, the contact address is where the customer can be reached most easily,
such as a work address.

* A billing address is used to send a bill or invoice for purchases. A billing
address includes the street name and number, city, state or province, ZIP or
postal code, and country or region, phone number, and e-mail address. The
billing address may or may not be the same as the contact or shipping
addresses.

* A shipping address is used for delivering purchased goods. A shipping address
includes the street name and number, city, state or province, ZIP or postal code,
and country or region, phone number, and e-mail address. The shipping address
may or may not be the same as the contact or billing addresses.

Store Development Guide

Interest lists

Stores can support interest lists. That is, customers add products, that they may like
to order in the future, to their interest lists. An interest list is not a shopping cart; a
interest list can contain items from multiple stores, and does not contain prices,
shipping addresses, shipping modes, inventory availability information, or
calculated amounts such as discounts, shipping charges, and taxes.

Understanding Seller assets in WebSphere Commerce

A Seller is a user within WebSphere Commerce. The Seller supervises the overall
store objectives and management, in addition to tracking the store sales. A Seller
sells the goods and services to the customer. The Seller role is equivalent to a
merchant and has access to all WebSphere Commerce Accelerator capabilities. The
following diagram illustrates the assets that a Seller requires to maintain a store
and to sell to customers.

Stores Accounts Contracts ProductSets
] C /
Seller Address Members PriceLists
Information
Inventory Fulfillment
ltems Centers S

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see ['The store data information model” on|
F)age 97] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437)

As shown in the preceding diagram, the WebSphere Commerce system contains
members. Each member is assigned a role, such as Customer Service
Representative for the store, or Receiver at a warehouse. The Seller role can
maintain the following assets in order to sell to customers:

e Stores

. Accounts (optional)

* Contracts (or at least the WebSphere Commerce default contract)

* Product sets

* Price lists

* Catalogs

* Fulfillment centers

¢ Inventory items

The preceding diagram illustrates the relationship between a member (Seller) and

the Seller assets; that is, a Seller can have the assets listed above to maintain a
store and the assets need to have a Seller for deployment.

Chapter 12. Member assets 119

120

Stores

A WebSphere Commerce online store is comprised of a set of HTML and JavaServer
Pages files, as well as tax, shipping, payment, catalog and other database assets,
which are contained in a store archive. A store also contains store data, which is
the information populated into the WebSphere Commerce database to allow a store
to function.

For more information about WebSphere Commerce stores, refer to |Chapter 13,|
[“Store assets,” on page 123|and [Part 6, “Developing your store data,” on page 107 |

Accounts

Business

A store can set up business accounts for customers to allow them to purchase from

the store. An account contains the following information:

¢ The account name, which is often the name of the organization with which the
customer is associated. This organization has defined contracts with the store,
stipulating terms for the customer to shop at the store. For example, the
organization IBM may have contracts with the ABC Office Supplies Company.

* The representative name, which is the name of the representative organization
within the Seller’s organization that is responsible for the account.

* The number of contracts that belong to the account.

For more information about WebSphere Commerce accounts, refer to
[(business accounts)” on page 180 and the WebSphere Commerce online help.

Contracts

Typically, in WebSphere Commerce, all customers must shop under a contract. Each
account between the customer and the Seller must be associated with one or more
contracts (or at least a default contract for non-registered customers or customers to
shop at the store, or if you want customers to be able to purchase products not
covered by other contracts). A contract allows the customer to purchase products
from a store at a specified price for a specified period of time, under terms and
conditions, and business policies, stipulated in the contract. The Seller deploys the
contract so that customers can buy from the store.

The Buyer in a contract can be a user, an organization, or a member group. In the
case of the user, the Buyer is considered the customer. In the case of an
organization, which is defined as a Buyer in a contract, then any child of this
organization can act as a Buyer for the contract. In the case of a member group,
any user in the member group can act as a Buyer for the contract.

For more information about WebSphere Commerce contracts and the default
contract a Seller can use, refer to[“Contracts” on page 181)

Product sets

Product sets provide a mechanism for a Seller to categorize online catalogs into
logical subsets so that a Seller can allow various customers to take advantage of
different catalog views. Furthermore, a Seller can create a contract for a customer
and stipulate that the customer can only purchase products under a predefined
product set.

Store Development Guide

For more information about WebSphere Commerce product sets, refer to
lsets” on page 144

Price lists

A price list is associated with the price a Seller offers or presents to a customer. A
Seller can list different prices for the same product to different customers. In
WebSphere Commerce, a price offer is also known as a trading position and
represents the price of a catalog entry and criteria that the customer must satisfy in
order to qualify for that price.

In WebSphere Commerce, an Offer object is part of a TradingPositionContainer,
which is owned by a member. A TradingPositionContainer contains
TradingPositions, and can be made available to all customers, or to only customers
in certain groups through the trading agreements or contracts. Sometimes a
TradingPositionContainer is referred to as a price list. There are two kinds of price
lists: a standard price list which contains the base prices for the products in the
store catalog or a custom price list which specifies the list of products and their
customized prices.

For more information about WebSphere Commerce price lists, refer to|Chapter 17
[“Pricing assets,” on page 171

Catalogs

A WebSphere Commerce store uses at least one online catalog to showcase the
goods and services that the Seller offers for sale. Typically, an online catalog
contains prices, images, and descriptions of the items for sale. An online catalog
may also present merchandise into distinct categories to facilitate navigation.

Each store in the WebSphere Commerce system must have a master catalog, which
is used for catalog management. The master catalog is the central location to
manage a Seller’s merchandise; it is the single catalog containing all products,
items, relationships, and standard prices for everything that is for sale in the store.
If a Seller has more than one store, the master catalog can be shared between these
stores.

For more information about WebSphere Commerce product sets, refer to
(Chapter 16, “Catalog assets,” on page 141

Fulfillment centers

Fulfillment centers are used by stores as both inventory warehouses and shipping
and receiving centers. A Seller may have one or many fulfillment centers.

From a WebSphere Commerce server perspective, a FulfillmentCenter object is
separate from the Store object. It manages product inventory and shipping. To ship
an order, the fulfillment center relies on a ShippingMode object that is specified by
the customer. The ShippingMode object indicates the shipping carrier and method
of shipping for fulfilling orders. In a fulfillment center, the ShippingArrangement
object indicates that a Store object has arranged with a FulfillmentCenter object to
ship products using a certain ShippingMode.

For more information about WebSphere Commerce fulfillment centers, refer to
Chapter 19, “Fulfillment assets,” on page 197|and |Chapter 26, “Shipping assets,” on|

page 229.|

Chapter 12. Member assets 121

Inventory items

Inventory items include anything that can be physically accounted for in a Seller’s
fulfillment center. The WebSphere Commerce system defines specific types of
inventory that can be fulfilled, such as items, products, SKUs, bundles, and
packages; but these are all considered inventory. Products are configured for
fulfillment using the Product Management tools on WebSphere Commerce
Accelerator.

For more information about WebSphere Commerce inventory items, refer to the
WebSphere Commerce development online help and |[Chapter 29, “Inventoryl|
lassets,” on page 265

Understanding administrator assets in WebSphere Commerce

Administrators are simply users or members with assigned roles that allow them
to perform certain administrative activities. Refer to|’Understanding member]
lassets in WebSphere Commerce” on page 115|for more details on the assets which
can be associated with an administrator.

Creating member assets in WebSphere Commerce

122

To create a Seller (an organization that acts as the store owner) and to maintain
information about the Seller, use the WebSphere Commerce Administration
Console. For more information, see the WebSphere Commerce development online
help topic "Creating an organization”.

To create an administrator, use the WebSphere Commerce Administration Console
to create the user, then assign the desired roles to this user. For more information,
see the WebSphere Commerce development online help topics "Creating a user”
and "Assigning roles by user distinguish name”.

A customer is not created by the store developer; when a customer registers with a
store, registration information is collected and maintained by the WebSphere
Commerce system.

The sample stores provided with WebSphere Commerce each contain their own
versions of the MemberRegistrationAttributes.xml file, which is used for
configuring the automated role assignment for registration and session
management commands. If you choose to modify the organization structure, or
have particular requirements on role assignment, then you will have to modify this
file. Refer to the WebSphere Commerce development online help topic
"MemberRegistrationAttributes XML and DTD files” for more information on this
file and how to configure it to suit your needs.

Store Development Guide

Chapter 13. Store assets

In order to create a store in WebSphere Commerce you must first create the
following in the database:

* The store
* The group to which it belongs

* The abstract store entity object that dually represents a store or store group

Understanding store assets in WebSphere Commerce

The following diagram illustrates the store assets in the WebSphere Commerce

Server.
Q)

Member +owner 0.1 StoreAddress 0.1

1 +owner +contact +location
1..n

StoreEntity StoreEntityDescription

\
Store .i> StoreGroup

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
h_)age 97] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Store entity

A store entity is an abstract superclass that can represent either a store or a store

group.

A store entity has one owner (a member). For more information on members, see
[“Understanding member assets in WebSphere Commerce” on page 115/

Store entity description

The store entity description describes the store entity. A store entity may include a
description. If your store supports multiple languages, the store entity description
may be in multiple languages. The description may include a contact address for
the store entity, as well as a location address for the store entity.

© Copyright IBM Corp. 2000, 2003 123

Store
A store is a store entity. A store must belong to a store group.

Store group

A store group is a collection of stores. A store group is a store entity. The store
group acts as a container for common information, which can be stored at a store
group level and shared by all the stores in the store group. For example, stores in
the same store group can share information such as tax categories, supported
languages, supported currencies, calculation codes, and shipping jurisdictions.

Currently, only one store group can exist and be maintained at the site
administration level within a WebSphere Commerce Server.

For more detailed information on the structure of store assets in
WebSphere Commerce Server, see the store object and data models in the
WebSphere Commerce online help.

Creating store assets in WebSphere Commerce

124

The Store tools in WebSphere Commerce Accelerator allow you to create or edit the
following store assets:

* The store identifier and member identifier in the contact assets
* The store identifier in the STOREENT table

* The store directory in the STORE table

* The address nickname in the STADDRESS table

* The store description

* The store address

As a result, you have two options for creating store assets:

 Edit the existing store assets from one of the sample stores provided with
WebSphere Commerce.

* Create store assets in the form of an XML file that can be published as part of a
store archive, or loaded using the Loader package.

For information on creating store assets in the form of an XML file, see
lstore data assets in an XML file.”| For more information on editing the store using
theWebSphere Commerce Accelerator, see the WebSphere Commerce Production
online help.

Creating store data assets in an XML file

Create your store assets in the format of XML files that can be loaded into the
database using the Loader package. If you are creating a globalized store, you may
want to create separate XML files for each locale your store supports. The
locale-specific file should specify all description information, so it can be easily
translated. For more information on the Loader package, see [Part 10, “Publishing]|
lyour store,” on page 319,

The sample stores, from which many of the examples in these tasks are taken, use
one store.xml file for all information that does not need to be translated, and
another store.xml file for each locale the store supports, for the information that
needs to be translated. The locale-specific files contain all the description
information.

To create store assets, do the following:

Store Development Guide

1. Review the information in [Chapter 38, “Loading WebSphere Commerce|
[database asset groups,” on page 383

2. Review the XML files used to create store assets for the sample stores. All files
for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC installdir/samplestores

Note: The WebSphere Commerce Sample Store Guide contains information about
each of the data assets contained in the sample stores.

Each sample store includes several store.xml files, which include the store
information by language. Since the sample stores are translated into multiple
languages, there will be multiple store.xml files in each store. To view the
store.xml files in the store archive, decompress the store archive using a ZIP
program. The store.xml files are located in the data directory. The
language-specific store.xml is in a locale-specific subdirectory of the data
directory.

3. Review the information in [Appendix B, “Creating your data,” on page 439

4. Create a store.xml file, either by copying one of the store.xml files in the
sample store archives, or by creating a new one. For more information, see the
wes.dtd file. The DTD file is located in the following directory:

* WC _installdir/schema/xml
5. Create a store entity.

a. Using the following example as your guide, define a store entity in your
XML file for the STOREENT table.
<storeent
storeent_id="@storeent_id_1"
member_id="&MEMBER_ID"
type=IISII
identifier="ToolTech"
setccurr="USD"

/>

where

* storeent_id is a generated unique key.

+ member_id is the owner of the store entity.

* type is the kind of store entity: G = StoreGroup, S = Store.

* identifier is a string that, along with the owner, uniquely identifies the
store entity.

* setccurr is the default currency for a store entity, in other words, the
currency that will be used by a customer that does not already have a
preferred currency. If it is NULL for a Store, the default currency is
obtained from its store group.

6. Create a store address.

a. Using the following example as your guide, create the store address or
addresses in your XML file for the STADDRESS table. If you are creating a
globalized store, you should include this information in a locale-specific
XML file.

<staddress
staddress_id="@staddress_id_en_US_1"
member_id="&MEMBER_ID"
nickname="storeaddress_English"
address1="12xx Martindale Avenue"
address2="Suite 9xx"

Chapter 13. Store assets 125

126

businesstitle="ToolTech"
city="Toolsville"
state="Ontario"
zipcode="Lxx 1xx"
country="Canada"
phonel="1-800-555-1234"
fax1="1-800-555-4321"
emaill="info@tooltech.xxx"
/>

where
+ staddress_id is a generated unique key.

¢ member_id is the owner of the store entity.

7. Create a description for the store entity.

a.

Using the following example as your guide, create the description of the
store entity in your XML file for the STOREENTDS table. If you are creating
a globalized store, you should include this information in a locale-specific
XML file.
<storeentds

description="Commerce Models Store entity"

language_id="&en_US"

displayname="ToolTech"

storeent_id="@storeent_id_1"

staddress_id_cont="@staddress_id_en_US_1"

staddress_id_loc="@staddress_id en US 1"

where

* description is a longer description of the store entity, suitable for display
to customers.

* language_id is the default language for information displayed to
customers shopping in the store.

 displayname is a brief description of the store entity, suitable for display
to customers.

e storeent_id is the store entity.
* staddress_id_cont is the contact address of the StoreEntity.
* staddress_id_loc is the physical location of the StoreEntity.

8. Create a store in the database.

a.

Store Development Guide

Using the following example as your guide, define a store in your XML file
in the STORE table.

<store
store_id="@storeent_id 1"
directory="ToolTech"
ffmcenter_id="@ffmcenter_id_1"
Tanguage_id="&en_US"
storegrp_id="-1"
allocationgoodfor="43200"
bopmpadfactor="0"
defaultbooffset="2592000"
ffmcselectionflags="0"
maxbooffset="7776000"
rejectedordexpiry="259200"
rtnffmctr_id="@ffmcenter_id_1"
pricerefflags="0"
storetype="B2B"

/>

where

store_id is a generated unique key.

directory is the directory in which store-specific Web assets are found.
The directory is located under the document root of the Store.war Web
module.

ffmcenter_id is the default fulfillment center for the store.

Tanguage_id is the default language for information displayed to

customers shopping in the store.

storegrp_id is the store group the store is associated with. This number

is generated in the STOREGRP table.

allocationgoodfor means that the ReleaseExpired Allocations scheduler

job can be used to reverse ATP inventory allocations when this many

seconds have passed since the allocations were made.

bopmpadfactor means if this store calculates order amounts (such as tax

or shipping charges) differently for different fulfillment centers, the order

amount for a previously submitted order can change when fulfillment

centers are finally allocated to backordered items. This padding factor

represents a percentage by which the order amount presented to Payment

Manager can be increased, if necessary. For example, specify 5 to allow an

increase of up to 5 percent.

defaultbooffset is after an estimated availability time cannot be

determined for a backordered Orderltem, it will be set to this many

seconds in the future.

maxbooffset means if the estimated availability time for a backordered

Orderltem would normally exceed this many seconds in the future, it will

be set to this many seconds in the future.

rejectedordexpiry are orders with payment in Declined state longer than

this number of seconds and are candidates for cancellation.

rtnffmctr_id is the default fulfillment center for returning merchandise

to the store.

pricerefflags contains bit flags that control which TradingAgreements

and Offers are searched when prices are refreshed by the default

implementation of the GetContractUnitPrices task command:

— 1 = usePreviousOnly - Use the ones referenced by the Orderltems. Fail
if they can no longer be used.

— 2 = usePreviousOrSearchAgain - Same as usePreviousOnly, but instead
of failing when they can no longer be used, search the ones saved in
the ORDIOFFER and ORDITRD tables

— 4 = alwaysSearchAgain - Always search the ones saved in the
ORDIOFFER and ORDITRD tables.

storetype indicates one of the following store types, for use by a user
interface that provides appropriate functions depending on the StoreType:

— B2B = B2B direct

— B2C = Business-to-Consumer (consumer direct)

— CHS = Reseller Hub (Commerce Plaza)

— CPS = Master Catalog Profile Store (catalog asset store)

— RHS = Reseller Hosted Store

— RPS = Reseller Profile Store (reseller storefront asset store)
— DPS = Distributor Profile Store (distributor asset store)

- DPX = Distributor Proxy Store

— HCP = Commerce Hosting Hub (hosting hub)

Chapter 13. Store assets 127

128

— PBS = Store Directory

— MPS = Merchant Profile Store (hosting storefront asset store)
— MHS = Merchant Hosted Store

— SCP = Supplier Hub

— SPS = Supplier Profile Store (supplier asset store)

— SHS = Supplier Hosted Store

Note: The names denoted in brackets are the names of the corresponding
samples provided with WebSphere Commerce.

9. Define a supported language for the store.

a. Using the following example as your guide, define a supported language

for your store in your XML file to add information to the STORELANG
table. If your store supports multiple languages, you should include this
information in a locale-specific XML file (one for each language your store
supports).
<storelang

language_id="&en_US"

storeent_id="@storeent_id_1"

/>

where

* language_id is the language supported by the store entity.

¢ storeent_id is the store entity.

Using the following example as your guide, add information about the
language to the STORELANGDS table. If your store supports multiple

languages, you should include this information in a locale-specific XML file
(one for each language your store supports).

<storlangds
description="United States"
language_id="&en_US"
storeent_id="@storeent_id_1"
language_id_desc="&en_US"

/>

where

* description is a brief description of the language, suitable for display to
customers in a selection list.

* language_id is the language of the description.
¢ storeent_id is the store entity that supports the language.
* language_id_desc is the language being described.

For more information about the use of @ and & seelAEEendix B:|
[“Creating your data,” on page 439/

Store Development Guide

Chapter 14. Relationships between stores

WebSphere Commerce supports several types of relationships between
stores in a site. For example, one store may provide hosting services for another
store, or a store may use the catalog or currency assets provided by another store.

Understanding relationships between stores in WebSphere Commerce

The following diagram illustrates store relationships in the WebSphere Commerce

Server.

O

O

StoreRel

1 +relatedStore

+store Q

B Store
1

Store relationships

StoreRelType

vV

StoreRelTypeDescription

O

O

Language

A store relationship (captured in the StoreRel table) is the relationship between two
stores. All store relationships are directional, that is in each store relationship one

store provides the services and the second store in the relationship uses those
services. For example, store A uses the catalogs provided by store B.

Each store relationship has one store relationship type (StoreRelType).

Store relationship types

A store relationship type (StoreRelType) defines the type of relationship between two

stores. Each type of store relationship defines its own relationship, that is, what

roles each partner in the relationship will play and what the relationship between

the two is.

Store relationship types supported by WebSphere Commerce
WebSphere Commerce supports several relationship types between stores. The
default relationship types provided by WebSphere Commerce can be loosely

grouped into two categories:

* Relationships in which one store provides data assets to another store. For
example, store A provides the catalog data that is used in store B.

* Relationships in which one store has a "business relationship” with another

store, that is a store may host another store, or a store may transfer a shopping

cart to another store.

© Copyright IBM Corp. 2000, 2003

129

Relationships in which one store provides data assets to

Table 8.

another store:

Relationship Type

Description

For more information, see

com.ibm.commerce.
businessPolicy

One store uses business
policies defined in another
store.

Chapter 18, “Contract|
assets,” on page 179)

com.ibm.commerce.
campaigns

One store uses campaigns
defined in another store.

Chapter 20, “Campaign|
assets,” on page 203

com.ibm.commerce.catalog

One store uses catalog data
defined in another store.

Chapter 16, “Catalog]
assets,” on page 141]

com.ibm.commerce.command

One store uses commands
defined in another store.

Chapter 15, “Command |
view, and URL registry|
data,” on page 135

com.ibm.commerce.price

One store uses price data
defined in another store.

Chapter 17, “Pricing]
assets,” on page 171

com.ibm.commerce.
segmentation

One store uses customer
profile data defined in
another store.

Chapter 32, “Customer]
brofiles,” on page 281

com.ibm.commerce.URL

One store uses URLs defined
in another store.

Chapter 15, “Command)
view, and URL registry|
data,” on page 135|

com.ibm.commerce.view

One store uses views defined
in another store.

Chapter 15, “Command)
view, and URL registry|
data,” on page 135

com.ibm.commerce.storeitem

One store uses items defined
in another store.

Chapter 29, “Inventory|
assets,” on page 265|

com.ibm.commerce.
propertyFiles

One store uses properties files
defined in another store.

com.ibm.commerce.currency.
conversion

One store uses currency
conversion rates defined in
another store.

Chapter 23, “Currency|
assets,” on page 217

com.ibm.commerce.currency.
supported

One store uses currencies
supported in another store.

Chapter 23, “Currency|
assets,” on page 217

com.ibm.commerce.currency.
format

One store uses currency
formats defined in another
store.

Chapter 23, “Currency|
assets,” on page 217

com.ibm.commerce.currency.
countervalue

One store uses currency
countervalues defined in
another store.

Chapter 23, “Currency|
assets,” on page 217

com.ibm.commerce.
measurement.format

One store uses units of
measurement defined in
another store.

Chapter 24, “Units of]
measure assets,” on page]
223

One store may have relationships with multiple stores. That is, store A may want
to use the catalog resources from stores B, C, and D. In order to facilitate such
relationships between multiple stores, you must provide a sequence order for the
stores from which a store is using assets. Sequencing in relationships between
stores works in the following ways:

* Opverride: If the store relationship follows the override method of sequencing,
the store relationship with the lowest sequence number that is the store
relationship used. The following store relationships use the override method:

— command

Store Development Guide

— currency
— measurement
— price

— property files
— storeitem

- URL

— views

* Merge: If the store relationship follows the merge method of sequencing,
WebSphere Commerce looks for all store relationships associated with that store,
and merges the data from all of the associated stores. The following store

relationships use the merge method:
— business policies

— campaigns
- catalog
— segmentation

All of the default store relationship types are designated as using either the
override or merge method of sequencing.

Note: Although a store relationship type does not exist for contracts, a single
contract can be deployed to multiple stores. For more information, see the
WebSphere Commerce Production and Development online help.

Relationships in which one store has a "business relationship” with another

store:

Table 9.

Relationship Type

Description

com.ibm.commerce.
hostedStore

The hub store hosts the reseller, supplier or
hosted stores.

com.ibm.commerce.
referral

The hub store has referral relationships with
distributors. The hub store may transfer a
shopping cart to a distributor store. Usually
the store receiving the shopping cart is a
proxy store for an external system.

com.ibm.commerce.
channelStore

One store acts as the hub store for another
store. This relationship defines the relationship
between the store directory and the Hosting
hub.

Store relationship type description

A store relationship type description describes the type of relationship. Each store
relationship type description describes only one relationship type. The store
relationship type description may be available in more than one language.

Creating store relationships in WebSphere Commerce

Create your store relationships in the format of XML files that can be loaded into
the database using the Loader package. For more information on the Loader

package, see [Part 10, “Publishing your store,” on page 319

Chapter 14. Relationships between stores 131

132

Note: If you use the Store Creation wizard to create hosted stores (for more
information, see [“The Store Creation wizard” on page 68) or service
agreements to create distributor proxy stores (for more information, see
[“Creating proxy stores” on page 68) many of these store relationships are
created for you.

To create store relationship assets, do the following:

1. Review the information in [Chapter 38, “Loading WebSphere Commerce]
[database asset groups,” on page 383]

2. Review the XML files used to create store assets for the sample stores. All files
for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WCL_installdir /samplestores

Note: The WebSphere Commerce Sample Store Guide contains information about
each of the data assets contained in the sample stores.

3. Review the information in [Appendix B, “Creating your data,” on page 439

4. Create a storerelation.xml file, either by copying one of the
storerelation.xml files in the sample store archives, or by creating a new one.
For more information, see the wcs.dtd file. The DTD file is located in the
following directory:

e WC _installdir /schema/xml
5. Create a store relationship.

a. Using the following example as your guide, define a store entity in your
XML file for the STOREREL table.

<storerel
store_id="@storeent_id_1"
relatedstore_id="@storeent_id 2"
streltype="-4"

sequence="0"

state="1"

/>

where
 store_id is the primary store that uses the services of the related store.

* relatedstore_id is the store that provides the service used by the
primary store.

¢ streltype is the type of relationship. The default relationship types are as
follows:

— -1 com.ibm.commerce.businessPolicy
— -3 com.ibm.commerce.campaigns

— -4 com.ibm.commerce.catalog

— -5 com.ibm.commerce.command

— -6 com.ibm.commerce.hostedStore
— -7 com.ibm.commerce.price

— -8 com.ibm.commerce.referral

- -9 com.ibm.commerce.segmentation
— -10 com.ibm.commerce.URL

- -11 com.ibm.commerce.view

— -13 com.ibm.commerce.inventory

— -14 com.ibm.commerce.storeitem

Store Development Guide

— -15 com.ibm.commerce.channelStore

— -16 com.ibm.commerce.propertyFiles

— -17 com.ibm.commerce.currency.conversion
— -18 com.ibm.commerce.currency.format

- -19 com.ibm.commerce.currency.supported
— -20 com.ibm.commerce.currency.countervalue
- -21 com.ibm.commerce.measurement.format

* sequence defines the selection sequence when more than one related store
is defined for the same relationship type. Default is 0.

* state is the state of the relationship (0 = inactive, 1 = active). Default is 1.

For more information about the use of @ and & see |AEEendix B:|
|“Creating your data,” on page 439 |

Chapter 14. Relationships between stores 133

134 Store Development Guide

Chapter 15. Command, view, and URL registry data

The command, view, and URL registries are part of the WebSphere Commerce
command framework, which is described in more detail in WebSphere Commerce
Programming Guide and Tutorials, chapters one, "Overview”, two "Design patterns”
and six "Command implementation”. In order to understand how the command,
view, and URL registries fit into the information model, a brief overview is
provided here.

For more detailed information on the structure of command and view
assets in the WebSphere Commerce Server, see the command and view
data models in the WebSphere Commerce online help.

Understanding command, view and URL registries in WebSphere
Commerce

The WebSphere Commerce command framework determines how a command will
execute and then returns a response based on the view returned by the executed
command. The command execution and response is store dependent, which means
that the same command can be implemented differently for each store, as well as
return different responses for each store.

The following diagram illustrates the command, view, and URL registry structure
in the WebSphere Commerce Server.

O

StoreEntity

T

@ | O @

CommandRegistry ViewRegistry

URLRegistry

1

DeviceFormat

\l/

URL registry

The URL registry maps a command name to the actual interface of the command
to be executed. Each URL registry entry is store sensitive, that is, each store can
define a different interface for the same URL value. If the store version of the URL
registry cannot be found, then the URL registry defined for the site (store 0) is
used. By default, all URL registries are defined for the site.

URLs defined and registered in one store may be used by other stores. In
order for one store to use URLs defined in another store a store relationship of
type com.ibm.commerce.URL must be created between the stores. For more
information, see [Chapter 14, “Relationships between stores,” on page 129

© Copyright IBM Corp. 2000, 2003 135

136

View registry

Command registry

Every command, whether it is a controller or task command, can be defined in the
command registry. If a command is defined in the command registry, that
definition will be used as the command implementation when the command is
executed. If the command is not defined in the command registry, a default
implementation will be used instead. Every command interface is assigned a
default implementation that is used if the command is not defined the command
registry.

If a command is defined in the command registry as a site level command (store
0), the site level implementation is used, except when the command is executed for
a store that has defined a different implementation of the command.

The command registry allows different stores to use the same commands but to
extend part or all of the implementations without changing the original flow of the
command.

Commands defined and registered in one store may be used by other
stores. In order for one store to use commands defined in another store a store
relationship of type com.ibm.commerce.command must be created between the
stores. For more information, see [Chapter 14, “Relationships between stores,” on|

After a command is executed, in most cases, the requestor of the command
requires a response to be returned. When determining the response, the command
framework considers the following factors:

e The view found in the response properties after the command is executed.
* The store on whose behalf the command was executed.
* The device format of the request when the request was made.

Every view that returns a response must be defined in the view registry, either per
store, or by default, by site. Each store will normally define the view for each
possible device format of the incoming request. However, if a view is not defined
by a store, the default view for the site will be used. The adapter handling the
request will decide which device format and the default device format to use when
determining which view to call. There is no one generic device format, so
depending on the different types of requests that can be accepted by WebSphere
Commerce, there may be a view defined for each device format.

Views defined and registered in one store may be used by other stores. In
order for one store to use views defined in another store a store relationship of
type com.ibm.commerce.view must be created between the stores. For more
information, see [Chapter 14, “Relationships between stores,” on page 129

Creating new commands, views, and URLS

When you create a WebSphere Commerce Server instance, the default commands,
views, and URLs provided with WebSphere Commerce are registered in the
WebSphere Commerce Server database in the corresponding tables: CMDREG,
VIEWREG, and URLREG. These commands, views, and URLs are available for use
in all stores residing in the instance.

WebSphere Commerce also provides default JSP files to display the default views.
These JSP files are associated with the views in the VIEWREG table.

Store Development Guide

If you create new commands, views, or URLs, or customize existing ones, you
must register them in the corresponding database tables (CMDREG, VIEWREG,
and URLREG) before they are available for use in your store. If you create new JSP
files for use in your store, you must associate them with the corresponding view in
the VIEWREG table.

Note: If you create a new JSP file, but give it the same name as the default JSP file
associated with the view, you do not need to register the new JSP file in the
VIEWREG table.

Note: When creating new views, ensure that you associate access control policies
with each new view. For more information, see [“Adding access control to|
[your store” on page 289,

For more information on creating or customizing command, views, or URLs, see
the WebSphere Commerce Programming Guide and Tutorials. The WebSphere Commerce
Programming Guide and Tutorials also contains information on how and when to
register commands, views, URLs, and JSP files.

Registering commands, views, and URLs in WebSphere Commerce

If you create or customize multiple new commands, views, URLs, or JSP files for
your store, you may want to register them using an XML file, which you can then
load into the database using the Loader package, or as part of a store archive that
can be published using the publish utility in the Administration Console. For more
information on the Loader package, see [Part 10, “Publishing your store,” on page]

Note: Before creating an XML file to load new or customized commands, refer to
the WebSphere Commerce Programming Guide and Tutorials for more detail on
how commands work.

Creating an XML file to register commands, views, and URLsS

To create an XML file to register the new commands, views, and JSP files for your
store, do the following:

1. Review the information in [Chapter 38, “Loading WebSphere Commerce|
[database asset groups,” on page 383

2. Review the XML files used to register commands, views, JSP files for the
sample stores. Each sample store includes a command.xml file, which includes
the registration information. The store archive files are located in the following
directory:

* WC_installdir /samplestores

Note: The WebSphere Commerce Sample Store Guide contains information about
each of the data assets contained in the sample stores.

To view the contents of the store archive, use a decompression program. The

command.xml file is located in the data directory.

3. Review the information in [Appendix B, “Creating your data,” on page 439

4. Create a command.xml file, either by copying one of the command.xml files in the
sample store archives, or by creating a new one. For more information, see the
wes.dtd file. The DTD files are located in the following directory:

* WC_installdir /schema/xml

5. Controller commands must be registered in the URLREG table and the
CMDREG table. To register a new or customized controller command in the

Chapter 15. Command, view, and URL registry data 137

138

URLREG table, create an entry in the XML file for each new customized
controller command, using the following example as your guide:

<urlreg

url="MyProductDisplay"

storeent id="@storeent id 1"
interfacename="com.mystore.commerce.catalog.commands.ProductDisplayCmd"
https="0"

description="Product display command for my store"

authenticated="0"

internal="0" />

where

* urlreg is the name of the database table (URLREG) that this information will
populate.

e url is the URI name

* storeent_id is the store entity identifier and the use of the @ symbol is
known as internal-alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see|Appendix B, “Creating your]|
[data,” on page 439)

¢ interfacename is the controller command interface name

* https is the secure HTTP required for this URL request. Use 1 when secure
HTTP is required and 0 when it is not.

* authenticated is whether or not user log on is required for this URL request.
Use 1 when authentication is required and 0 when it is not.

* internal indicates whether the command is internal to WebSphere
Commerce. URLs that are internal are used by WebSphere Commerce tools.
Use 1 when it is internal and 0 when it is external. URLs you create should
be external.

To register a new controller command, or a new task command, in the
CMDREG table, create an entry in the XML file for each new or customized
controller or task commands, using the following example of a task command
(from the ToolTech sample store command.xml file) as your guide:

< cmdreg

storeent id="@storeent id 1"
interfacename="com.ibm.commerce.payment.commands.DoPaymentCmd"
classname="com. ibm.commerce.payment.commands.DoPaymentMPFCmdImp1"/>
where

* cmdreg is the name of the database table (CMDREG) that this information
will populate.

* storeent_id is the store entity identifier and the use of the @ symbol is
known as internal alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see |Appendix B, “Creating your]|
[data,” on page 439

Store Development Guide

e interfacename is the command interface name

* classname is the command implementation class name. Typically, this name
is the interface name with Impl appended at the end.

7. To register new views, or to associate new JSP files with a view, create an entry
in the VIEWREG table, using the following example (from the ToolTech sample
store command.xml file) as your guide:

<viewreg

viewname="0rderOptionsView"

devicefmt_id="-1"

storeent_id="@storeent id 1"
interfacename="com.ibm.commerce.command.ForwardViewCommand"
classname="com.ibm.commerce.command.HttpForwardViewCommandImp1"
properties="docname=Shipping.jsp"

internal="0"

https="0"/>

where

* viewreg is the name of the database table (VIEWREG) that this information
will populate.

e viewname is the name of the view.

* devicefmt_id is the type of device on which this view will be used, for
example, a browser.

* storeent_id is the store entity identifier and the use of the @ symbol is
known as internal-alias resolution. When using internal-alias resolution, an
alias is substituted in place of the primary key (identifier) in the XML
document. This alias is then used elsewhere in the XML file to refer to that
element. This eliminates the need to know the unique indexes necessary to
build the XML file. During publish, the ID Resolver replaces the @ symbol
with a unique value. For more information, see|Appendix B, “Creating your
[data,” on page 439)

* interfacename is the view command interface name. Default options are
ForwardView, DirectView, and RedirectView.

* classname is the view implementation class name. Typically, this name is the
interface name with Impl appended at the end.

* properties is the default name-value pairs set as input properties to the
command. If the same page is always displayed set the JSP file name in this
property, for example, docname=Shipping.jsp.

* internal indicates whether the view is internal to WebSphere Commerce.
Internal views are used by WebSphere Commerce tools. Use 1 when it is
internal and 0 when it is external. Views you create should be external.

* https is the secure HTTP required for this URL request. Use 1 when secure
HTTP is required and 0 when it is not.

For more information about the use of @ and & see |AEEendix B:|
[“Creating your data,” on page 439

Chapter 15. Command, view, and URL registry data 139

140 Store Development Guide

Chapter 16. Catalog assets

Like a traditional catalog, your online catalog consists of the goods and services
you offer for sale. Although the size and structure of online catalogs can differ
greatly from store to store, depending on the type and amount of merchandise
available for purchase, catalogs require the following:

* What you are selling, including
— Prices, which are almost always included in an online catalog.
— Product data, such as descriptions and images of your merchandise.

— Categories, as most, but not all catalogs divide merchandise into categories, to
facilitate navigation for customers.

* A display method for what you are selling. Catalog display pages outline how a
page looks to your customers and provide a consistent look and feel between
various catalog pages. How you structure your catalog depends on your
merchandise.

Understanding catalogs in WebSphere Commerce

WebSphere Commerce places several requirements on your store’s online catalog.
Every store in the WebSphere Commerce system must have a master catalog, also
referred as simply a catalog. The master catalog is the central location to manage
your store’s merchandise. It is the single catalog containing all products, items,
relationships, and standard prices for everything that is for sale in your store.

You can share the master catalog across stores and define as many stores as
needed. In addition to creating a master catalog for catalog management, you may
also choose to create one or more sales catalogs for display purposes. A sales catalog
can contain a subset or the same catalog entries as the master catalog, but will
have a much more flexible category structure for customer display purposes. While
there is only one master catalog, you can create as many sales catalogs as you
want. However, since you need to use the master catalog to manage your online
merchandise, we recommend that you also use the master catalog as your sales
catalog to minimize maintenance overhead.

If you are creating a new master catalog for a WebSphere Commerce store, or if
you are modifying an existing master catalog available from a WebSphere
Commerce sample store, such as ToolTech, you will have to ensure that your
catalog meets these requirements. The following diagram outlines the basic

© Copyright IBM Corp. 2000, 2003 141

142

structure of a master catalog in WebSphere Commerce.

Q +root Q +subCatalogGroup
Catalog CatalogGroup

+parent| +parent

+subCatalogEntry

O O

StoreEntity CatalogEntry
Lﬁ

O @) QL1

Item Product Package Bundle
1 0.1 0..1 0
1 DynamicKit
Attribute PackageAttribute
1 /|

1
AttributeValue e{ PackageAttributeValue %

This diagram, and all others in the store data section are part of the
WebSphere Commerce information model. For more information on the
information model, see[“The store data information model” on page 97
For more information on the conventions used in this diagram, see
|Appendix A, “UML legend,” on page 437

Catalog

The catalog is the starting point in the information model. The catalog contains all
hierarchical and navigational information for the online catalog, and is a collection
of catalog groups and catalog entries that are displayed and available for purchase
in an online store.

In WebSphere Commerce, a catalog is represented in the database by a catalog
entity. A catalog entity consists of a unique catalog ID and a description of the
catalog, for example, the catalog name. Since each catalog is a separate, unique
entity, it can easily be associated with one or more stores. Every store in the
WebSphere Commerce system must be related to at least one catalog entity.

Catalog groups

Catalog groups are generic groupings of your catalog entries, created for partitioning
purposes. A catalog group belongs to a catalog and may contain more than one
catalog group or catalog entries. You can associate catalog groups to more than one
catalog. A catalog group is also known as a category.

Store Development Guide

A flat catalog is a catalog that does not group its products in categories; instead, it
displays a list of products. Although it is possible to create a flat catalog in
WebSphere Commerce, it is recommended that you create catalog groups for
structural and navigational purposes.

When creating catalog groups, you must first arrange your catalog in a hierarchy,
or inverted tree. The tree begins at general catalog groups (called root categories,
or top categories), and branches out into increasingly specific subcategories until it
cannot be further divided. Each lowest level catalog group, which contains only
products, is a leaf. A catalog group is the parent to the categories immediately
below it, and a child of the one above. As an example, Men’s Fashion is a
grouping of the men’s apparel categories, while the catalog groups Pants and
Shirts are groupings of products.

Catalog entries

Each catalog group contains catalog entries. Catalog entries represent orderable
merchandise in an online catalog. The entries typically have a name or part
number, a description, one or more prices, images, and other details. A catalog
entry can be a product, item, bundle, package, static kit, or dynamic kit. If
necessary, you can create new catalog entry types that do not fit into one of the six
existing models. More information on each type of catalog entry is available below.

Products

A product is a type of catalog entry. A product acts as a template for a group of
items (or SKUs) that exhibit the same attributes. For example, a shirt is a product
in your catalog. After adding attributes and attribute values to the shirt, each
variation becomes an item, such as a small black shirt.

Items

An item is a tangible unit of merchandise that has a specific name, part number,
and price. For example, a small black shirt is an item while a shirt is a product. All
items related to a particular product exhibit the same set of attributes and are
distinguished by their attribute values.

Note: For WebSphere Commerce Accelerator users, the terms items and SKUs are
considered synonymous. When using the Product Management tools in the
WebSphere Commerce Accelerator, the orderable item is called a SKU. In the
WebSphere Commerce database schema, this particular type of catalog entry is
called an item.

Bundles

A bundle is a collection of catalog entries to allow customers to buy multiple items
at once. For example, a bundle for a computer might be composed of a central
processing unit, a monitor, a hard drive, and a CD-ROM drive. A bundle is a
grouping of items, or a combination of products, items, and fully resolved
packages. If you select a bundle which only contains items, the bundle is
decomposed into separate orderable SKUs that are added individually to the
shopping cart. However, if you select a bundle which contains products, these
products need to be resolved into items through SKU resolution before they can be
added to a shopping cart. In either case, once a bundle is decomposed and its
component items are added to a shopping cart, you can modify or remove each
item.

Packages
A package is an atomic collection of catalog entries. For example, a computer
package might contain a specific central processing unit, monitor, and hard drive

Chapter 16. Catalog assets 143

144

that cannot be sold separately. Similar to a product, a package has defining
attributes and is a container for fully resolved packages. A fully resolved package
is comparable to a SKU. A package has its own price and is an actual orderable
SKU that can be added to a shopping cart. You cannot decompose or modify a
package either during navigation or after the package has been placed in the
shopping cart.

Note: For WebSphere Commerce Accelerator users, packages and prebuilt kits are
considered synonymous. When using the Product Management tools in the
WebSphere Commerce Accelerator, a package is known as a prebuilt kit. In the
WebSphere Commerce database schema, this particular type of catalog entry is
called an package.

Dynamic kits

A dynamic kit is a type of catalog entry which can be dynamically configured by
the customer. This configuration (or grouping) of products is based on the
customer’s requirements and is sold as a single unit. The components of a dynamic
kit are controlled by an external product configurator through a set of predefined
rules and user interaction, and supplied at order entry time. Adding a dynamic kit
to an order is similar to adding a package. Like a package, the individual
components of a dynamic kit cannot be modified and the entire configuration must
be fulfilled as a whole. However, you may change the dynamic kit components by
reconfiguring it using an external product configurator.

Static Kits

A static kit is a group of products that are ordered as a unit. The information about
the products contained in a static kit is predefined and controlled within
WebSphere Commerce. The individual components within the order cannot be
modified and must be fulfilled together. A static kit will backorder if any of its
components are unavailable.

A static kit is first created as a package, then configured by an administrator.

Product sets

Product sets are associated with published catalog entries. A product set provides a
mechanism to partition your catalog into logical subsets. This partitioning allows
you to show different parts of your catalog to different users. You can create a
contract and specify that the participants of the contract are only entitled to
purchase products that fall into a predefined product set. WebSphere Commerce
provides tools to create and manage contracts and entitlement filtering rules on the
master catalog.

Attributes

Attributes are properties of products in an online store. There are two types of
attributes:

* Defining attributes are properties, such as color or size. Attribute values are the
property of an attribute such as a specific color (blue or yellow) or size
(medium). You must predefine attribute values before assigning them to items.
Attribute values are implicitly related to their attributes. Each possible
combination of attributes and attribute values equals a new item. After creating
attributes and their values, you can update information such as name,
description, and type (text, whole numbers, or decimal numbers). Defining
attributes are used for SKU resolution, where each possible combination of
attributes and attribute values defines an item.

Store Development Guide

* In contrast, descriptive attributes simply provide additional descriptions. For
example, some pieces of clothing should only be dry cleaned, never washed, and
a descriptive attribute can specify this dry clean only condition. Note that
descriptive attributes are not used for SKU resolution and are meant to enhance
product descriptions, or to provide easy customization for your business specific
information.

Attribute values

Attribute values are properties of an attribute such as a specific color (blue or
yellow) or size (small, medium, or large). You must predefine attribute values
before assigning them to items. Each possible combination of defining attributes
values defines an item.

Package attributes

Package attributes must be created from the attributes of the products that are
contained within packages. A package containing only items will have no package
attributes.

Package attribute values

Package attribute values are the values assigned to package attributes. Package
attribute values must be created from the attribute values of the products that are
contained within packages.

For more detailed information on the structure of catalog assets in
WebSphere Commerce, see the catalog data models in the WebSphere
Commerce online help.

Creating catalog assets in WebSphere Commerce

To create the catalog assets for your store, you need to create a master catalog by
adding information to several WebSphere Commerce database tables. You can
create your catalog using XML files that are loaded into the database by the Loader
package. If you are creating a globalized catalog, you will need separate XML files
for each locale your store supports. Each locale specific XML file adds the
translatable information, such as descriptions, for your catalog, catalog groups, and
catalog entries.

The following is an overview of the catalog creation process:

1. In WebSphere Commerce, a catalog is created using XML files. Creating a
catalog begins with a catalog entity, your database’s equivalent of a paper
catalog.

2. Create the catalog structure and navigation by adding catalog groups to
determine the categories and layout of your merchandise.

3. Create inventory information as a base for the catalog entries.

4. Add your merchandise in the form of catalog entries, which represent products,
SKUs, bundles, packages, static kits, and dynamic kits.

5. Attributes and attribute values are added to your catalog’s products to
distinguish the different SKUs from one another.

6. You can create packages and bundles to group certain catalog entries together
for promotional purposes.

7. The relationships between the catalog groups and catalog entries are created
next. This determines which entries belong to a catalog group.

Chapter 16. Catalog assets 145

146

You can create merchandising associations for your catalog entries as product
recommendation strategies.

Associate your catalog, catalog groups, and catalog entries to your WebSphere
Commerce store.

10. In the final steps, you need to create:

a. Taxes for your merchandise.
b. Shipping methods.

c. A fulfillment center to act as an inventory warehouse and a shipping and
receiving center. A store can have more than one fulfillment center defined.

d. Prices for your merchandise.

Creating a master catalog

To create a master catalog that contains multiple levels of categories, complete the
following tasks:

Part 1: Preparing for catalog creation

1.

Review the catalog information and its corresponding object and data models
within WebSphere Commerce. The catalog information is a component of the
WebSphere Commerce Server that provides online catalog navigation,
partitioning, categorization, and associations for orderable merchandise.

Review the WebSphere Commerce Loader package information. The Loader
package consists primarily of utilities for preparing and loading data into a
WebSphere Commerce database. You can use the Loader package to load large
amounts of data and to update data in your database. For more information on
the Loader package, see [Part 10, “Publishing your store,” on page 319)

Review the information in |[Appendix B, “Creating your data,” on page 439

Create an organization through the Administration Console to act as the catalog
owner. For more information, see the WebSphere Commerce online help topic
"Creating an organization”.

Create a new XML file for your master catalog by using the existing XML
entries and catalog.xml files from the ToolTech sample store as your guide. If
you are creating a globalized catalog, create a separate catalog.xml file for each
locale your store supports. The locale-specific file should specify all description
information, so it can be easily translated. In this example, one catalog.xml file
will be used for all information that does not need to be translated, and a
second catalog.xml will be used for each locale the store supports and will
include the information that needs to be translated. Or, if you prefer, you can
use the existing XML file from the ToolTech sample store and change the
information as needed. The catalog.xml files from the ToolTech sample store are
located in its store archive file. To view the catalog.xml files, decompress the
store archive using a ZIP program. The catalog.xml files are located in the
following data directory:

* WCL_installdir /samplestores

Note: The WebSphere Commerce online help contains information about each
of the data assets contained in the sample stores.

The catalog.dtd file is located in the following directory:
o WC_installdir /xml/sar

Store Development Guide

Part 2: Creating a catalog entity

1.

Using the following example from the ToolTech sample store as your guide,
create a catalog entity by adding information to the CATALOG and
CATALOGDSC tables. A catalog entity represents a catalog in the database.
<catalog

catalog_id="@catalog_id_ 1"

member_id="@seller_b2b_mbr_id"

identifier="ToolTech"

description="ToolTech Catalog"

tpclevel="0"
/>

where

* catalog_id is the internal reference number.

* member_id is the internal reference number that identifies the owner of the
catalog.

e identifier is an external name for the catalog.
¢ description is a description of the catalog.

Using the following example from the ToolTech sample store as your guide,
add the catalog’s description in the locale-specific XML file for translation
purposes:

<catalogdsc

catalog_id="@catalog_id_1"

language_id="&en_US;"

name="Store master catalog"

/>

where

 catalog_id is the internal reference number relating this language specific
information to a catalog.

* language_id is the identifier of the language.
* name is the language-dependent name of the catalog.

Part 3: Creating catalog groups

1.

Using the following example from the ToolTech sample store as your guide,
create catalog groups by adding information to the CATGROUP and
CATGRPDESC tables. Catalog groups, also known as categories, are groupings
of other catalog groups or products. Complete this task for each catalog group
in your catalog:

<catgroup

catgroup_id="@catgroup_id_1"

member_id="@seller_b2b mbr_id"

identifier="Woodworking"

markfordelete="0"

/>

where
* catgroup_id is the internal reference number of the catalog group

* member_id is the internal reference number that identifies the owner of the
catalog.

* identifer is an external name for the catalog.

* markfordelete indicates whether the catalog group has been marked for
deletion:

- 0 =no.

Chapter 16. Catalog assets 147

- 1 =yes.

2. Using the following example from the ToolTech sample store as your guide,
add the catalog group’s description in the locale-specific XML file for
translation purposes. Complete this task for each catalog group in your catalog:
<catgrpdesc
language_id="&en_US;"
catgroup_id="@catgroup_id_1"
name="Woodworking"
shortdescription="Woodworking"
longdescription="Woodworking"
published="1"

/>

where

* language_id is the identifier of the language.

e catgroup_id is the internal reference number of the catalog group.

* name is language-dependent name of the catalog.

* shortdescription is a brief description of the catalog group.

* longdescription is a detailed description of the catalog group.

* published indicates whether this catalog group should be displayed for the
language indicated by Tanguage_id:
- 0 =no.
- 1 =yes.

Note: Each time you create a catalog group and its description, the
catgroup_id changes to represent a new catalog group. For example,
catgroup_id="@catgroup_id_2" , catgroup_id="@catgroup_id_3" , and
catgroup_id="@catgroup_id_4", and so on.

3. After creating your catalog groups, assign a top-level catalog group to the
catalog by adding information to the CATTOGRP table. This catalog group is
the parent to the catalog groups immediately below it. Complete this task for
each top-level catalog group in your catalog. Use the following example from
the ToolTech sample store as your guide:
<cattogrp
catalog_id="@catalog_id 1"
catgroup_id="@catgroup_id_1"

/>

where
* catalog_id is the reference number of the catalog.
* catgroup_id is the reference number of the catalog group.

Note: Each time you assign top-level catalog groups to the catalog, the
catgroup_id is modified to represent a new catalog group association.
For example, catgroup_id="@catgroup_id_2",
catgroup_id="@catgroup_id 3", and catgroup_id="@catgroup_id 4", and
so on.

4. Once the parent and child structure has been determined for your catalog
groups, create relationships between the catalog groups by adding information
to the CATGRPREL table. Complete this task for each parent and child catalog
group structure in your catalog. Use the following example from the ToolTech
sample store as your guide:

148 Store Development Guide

<catgrprel
catgroup_id_parent="@catgroup_id_1"
catgroup_id_child="@catgroup id 11"
catalog_id="@catalog_id_1"
sequence="0"

/>

where

e catgroup_id_parent is the source catalog group of this relationship.

+ catgroup_id_child is the target catalog group of this relationship.

 catalog_id is the reference number of the catalog.

¢ sequence is the number that determines the display order of the contents of
the catalog group.

Note:

With each catalog group relationship, the catgroup_id_child and the
sequence is modified to represent a new relationship. For example,
subsequent relationships would be displayed as
catgroup_id_child="@catgroup_id_12" and sequence="1", and
catgroup_id_child="@catgroup_id_13" and sequence="2", and so on. If
you are not using a navigational structure in your catalog, then you can
remove the CATGRPREL relationship.

Part 4: Creating inventory information

1.

Using
create

the following example from the ToolTech sample store as your guide,
inventory information by adding information to the BASEITEM,

BASEITEMDSC, ITEMSPC, ITEMVERSN, VERSIONSPC, DISTARRANG, and
STOREITEM tables. Begin by creating base items by adding information to the
BASEITEM table. Base items represent a general family of products with a
common name and description. Complete this task for each group of inventory
items in your catalog:

<baseitem
baseitem_id="@baseitem_id_102"
member_id="@seller_b2b_mbr_id"
markfordelete="0"
partnumber="tooltech_sku_102"
itemtype_id="ITEM"
quantitymeasure="(C62"
quantitymultiple="1.0"

/>

where

e baseitem_id is the generated unique key.

* member_id is the owner of the base item.

¢ markfordelete indicates whether the base item is marked for deletion:

— 0 =no.

- 1 =yes.

* partnumber uniquely identifies the base item for the owner.

* itemtype_id is the type of base item:

— ITEM = items, packages, or bundles.
— DNKT = dynamic kits.
— STKT = static kits.
e quantitymeasure is the unit of measure for the quantity multiple.

Chapter 16. Catalog assets 149

150

e quantitymultiple is the amount of the base item that is measured in integral
units. Along with quantitymeasure, this indicates how much each integral
unit represents.

Note: You must create a base item for every product that you create in your
catalog. Each time you create a base item, the baseitem_id and
partnumber numbers change to create a new base item. For example, a
new base item would contain baseitem_id="@Gbaseitem_id_147" and
partnumber="tooltech _sku 147" as entries, while another base item
would contain baseitem id="@baseitem id 192" and
partnumber="tooltech _sku 192" as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add information about specified items to the database. A specified item is an
item with values for all its attributes, and represents an item, package, bundle,
or dynamic kit in the catalog. Complete this task for each specified item in
your catalog:

<itemspc

itemspc_id="@itemspc_id_106"

baseitem_id="@baseitem id_102"

markfordelete="0"

partnumber="T0000106"

member_id="@seller_b2b mbr_id"

discontinued="N"
/>

where

e itemspc_id is the generated unique key.

* baseitem_id is the product base item.

* markfordelete indicates whether the specified item is marked for deletion:
- 0 =no.
- 1 =yes.

¢ partnumber uniquely identifies the specified item for the owner.

* member_id is the owner of the specified item.

 discontinued indicates whether the specified item has been discontinued:

— Y = discontinued and can be ordered if there is sufficient inventory but it
cannot be backordered.

— N = active and may be backordered if out of stock.

Note: You must create a specified item for each item that you create in your
catalog. Each time you define a specified item, the
itemspc_id="@itemspc_id 107", baseitem_id="@baseitem id_ 102",
partnumber="T0000107" numbers change to create a new specified item.
For example, a new specified item would contain
itemspc_id="@itemspc_id 108", baseitem_id="@baseitem id 102", and
partnumber="T0000108" as entries, while another specified item would
contain itemspc_id, baseitem_id, and partnumber as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add the following information for a relationship between an item version and a
base item to the database. Complete this task for each such relationship in your
catalog:

Store Development Guide

<itemversn

itemversn_id="@itemversn_id_102"
baseitem_id="@baseitem_id 102"
expirationdate="2010-01-01 00:00:00.000000"
versionname="version"

/>

where

* itemversn_id is a generated reference number which identifies the item
version.

* baseitem id is the base item.
* expirationdate is the time the item version expires.
* versionname uniquely identifies the item version for its base item.

Note: Each time you create a relationship between an item version and a base
item, the itemversn_id and baseitem_id numbers change to create a new
relationship. baseitem_id matches an existing base item. For example, a
new relationship would contain itemversn_id="@itemversn_id_107" and
baseitem_id="@baseitem_id_107" as entries, while another relationship
would contain itemversn_id="@itemversn_id 108" and
baseitem jd="@baseitem id 108" as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add the following information for a relationship between a product version and
a specified item to the database. Complete this task for each such relationship
in your catalog:

<versionspc

versionspc_id="@versionspc_id_106"

itemspc_id="@itemspc_id_106"

itemversn_id="@itemversn_id 102"

/>

where

* versionspc_id is the generated unique identifier.

e itemspc_id is the specified item that the catalog entry relates to.
e itemversn_id identifies the item version.

Note: Each time you create a relationship between a product version and a
specified item, the versionspc_id and itemspc_id numbers change to
create a new relationship. itemspc_id matches an existing specified item.
For example, a new relationship would contain
versionspc_id="@versionspc_id_ 107" and
itemspc_id="@itemspc_id_107" as entries, while another relationship
would contain versionspc_id="@versionspc_id 108" and
itemspc_id="@itemspc_id_108" as entries, and so on.

Using the following example from the ToolTech sample store as your guide,
add the distribution arrangements to the database. A distribution arrangement
enables a store to sell its own inventory. Complete this task for each
distribution arrangement in your catalog:

<distarrang

distarrang_id="@distarrang_id_102"

wholesalestore_id="@storeent_id_1"

merchantstore_id="@storeent_id_1"
baseitem_id="@baseitem_id_ 102"

Chapter 16. Catalog assets 151

pickingmethod="F"
startdate="2000-12-25 00:00:00.000000"
enddate="2010-01-01 00:00:00.000000"
/>

where
e distarrang_id is the reference number of the distribution arrangement.

* wholesalestore_id is the wholesale store that owns the inventory that can be
sold by the merchant store. This wholesale store must be the same as
merchantstore_id.

¢ merchantstore_id is the merchant store that can sell from the inventory of
the wholesale store. This merchant store must be the same as
wholesalestore_id.

* baseitem_id is the product covered by the distribution arrangement.

e pickingmethod determines the sequence in which inventory is picked from
the RECEIPT table under this arrangement:

— F = FIFO (First In First Out): the least recently received inventory.
— L = LIFO (Last in First Out): the most recently received inventory.
e startdate is the time the distribution arrangement starts being effective.

* enddate is the time the distribution arrangement stops being effective.

Note: Each time you create a distribution arrangement, the distarrang_id and
the baseitem_id numbers change to create a new distribution
arrangement. For example, a second distribution arrangement might
contain the values distarrang_id="@distarrang_id_147" and
baseitem_id="@baseitem_id_147", while a third might contain
distarrang_id="@distarrang_id_192" and
baseitem_id="@baseitem_id_192", and so on.

6. Using the following example from the ToolTech sample store as your guide,
add the attributes that affect how a particular store allocates inventory for the
specified items of a particular base item to the database. Complete this task for
each base item in your catalog;:
<storeitem
baseitem_id="@baseitem_id 102"
storeent_id="@storeent_id_1"
trackinventory="Y"
forcebackorder="N"
releaseseparately="N"
returnnotdesired="N"
backorderable="Y"
creditable="Y"
mingtyforsplit="0"

/>

where
* baseitem_id is the base item.
» storeent_id is the store or the store group.

e trackinventory controls whether or not inventory is tracked in the RECEIPT
table:

- N = inventory is not tracked and there are no entries in the RECEIPT
table.

- Y = inventory is tracked in the RECEIPT table.

» forcebackorder temporarily suspends allocation of specified items for the
base item:

152 Store Development Guide

— N = inventory can be allocated (normal behavior).
- Y = inventory cannot be allocated, even if there is enough inventory.

* releaseseparately controls how specified order items for the base item are
released:
— N = order items may be released along with other order items.
— Y = order items must be released separately (in their own boxes).

* returnnotdesired indicates that an item return is not wanted (for example,
perishable food items), even if customer is willing or able to return it:

— N = request for credit evaluated based on the customer’s intention to
return the item, but the return is not expected.

— Y = request for credit evaluated as if return is expected.

* backorderable indicates that specified items for the base item cannot be
backordered:

— N = items may not be backordered.
- Y = items may be backordered.

e creditable indicates whether the merchant will, without an override, issue a
credit for this item:

— N = sold as-is.
— Y = creditable.

* mingtyforsplit indicates that order items will not be automatically split
during inventory allocation if the remaining unallocated quantity in the new
order item would be less than the specified minimum quantity.

Note: Each time you define the inventory allocation rules for a store item, the
baseitem_id number changes to represent a new base item. For example,
a new allocation might contain baseitem_id="@baseitem_id_147" while a
third might contain baseitem_id="@baseitem_id_192", and so on.

7. Using the following example from the ToolTech sample store as your guide,
add the base item description to the locale-specific XML file for translation
purposes. Complete this task for each base item description in your catalog:
<baseitmdsc
baseitem_id="@baseitem_id_102"
language_id="&en_US;"
shortdescription="Circular Saw"
longdescription="Light on weight but not in quality. The Circular Saw
weighs a maximum of 10.91bs., with a choice of a 12 or 14 amp motor,
and speeds of up to 600 rpms! Low friction 220V aluminum alloy shoe
will ensure the job gets done on time."

/>

where

* baseitem_id is the generated unique key.

¢ language_id is the language of this information.

* shortdescription is a brief description of the base item.

* longdescription is a detailed description of the base item.

Part 5: Creating catalog entries

1. Using the following example from the ToolTech sample store as your guide,
create catalog entries by adding information to the CATENTRY and
CATENTDESC tables. Each type of catalog entry — products, items, packages,
bundles, and dynamic kits — represents the orderable pieces of merchandise

Chapter 16. Catalog assets 153

154

for sale in your catalog. You need to define a base item for each product
catalog entry. Complete this task for each product catalog entry in your catalog:

<catentry
catentry_id="@product_id_102"
baseitem_id="@baseitem_id_102"
member_id="@seller_b2b mbr_id"
catenttype_id="ProductBean"
partnumber="T0000102"
mfpartnumber="Sprain-Tools-102"
mfname="Sprain Tools"
markfordelete="0"

buyable="1"

/>

where

Store Development Guide

catentry_id is the internal reference number of the product catalog entry.
baseitem_id is the base item that the catalog entry relates to.

member_id is the reference number that identifies the catalog entry.
catenttype_id identifies the type of catalog entry:

— ItemBean = identifies an item.

— ProductBean = identifies a product.

— PackageBean = identifies a package.

— BundleBean = identifies a bundle.

— DynamicKitBean = identifies a dynamic kit.

partnumber is the reference number that identifies the part number of the
catalog entry.

mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

mfname is the name of the manufacturer of the catalog entry.

markfordelete indicates whether the catalog entry is marked for deletion:

- 0 =no.
- 1=yes.
buyable indicates whether you can purchase the catalog entry individually:
- 0 =no.
- 1 =yes.

Note: Each time you add a base item to a product catalog entry, the
catentry_id and the baseitem_id sequence changes to represent a new
catalog entry. The catenttype_id changes depending on the type of
catalog entry.

Using the following example from the ToolTech sample store as your guide,
define a specified item for each catalog entry. Complete this task for each
catalog entry in your catalog:

<catentry
catentry_id="@catentry_id_106"
itemspc_id="@itemspc_id_106"
member_id="@seller_b2b_mbr_id"
catenttype_id="ItemBean"
partnumber="T0000106"
mfpartnumber="Sprain-Tools-106"
mfname="Sprain Tools"
markfordelete="0"

buyable="1"

/>

where
— catentry_id is the internal reference number of the catalog entry.
— itemspc_id is the specified item that the catalog entry belongs to.
— member_id is the reference number that identifies the catalog entry.
— cattentype_id identifies the type of catalog entry:

- ItemBean = identifies an item.

- ProductBean = identifies a product.

- PackageBean = identifies a package.

- BundleBean = identifies a bundle.

- DynamicKitBean = identifies a dynamic kit.

— partnumber is the reference number that identifies the part number of the
catalog entry.

— mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

— mfname is the name of manufacturer of the catalog entry.

— markfordelete indicates whether the catalog entry is marked for deletion:
- 0 =no.
- 1 =yes.

— buyable indicates whether you can purchase the catalog entry
individually:
- 0 =no.

- 1 =yes.

Note: Each time you add a specified item to a catalog entry, the catentry_id
and the itemspc_id sequence changes to represent a new catalog entry.
The catenttype_id changes depending on the type of catalog entry.
Under the master catalog structural restriction, a catalog entry cannot
belong to more than one category. To place a catalog entry in more
than one category, you must use a sales catalog.

Using the following example from the ToolTech sample store as your guide,
add the description to the locale-specific XML file. Complete this task for
each catalog entry description in your catalog:

<catentdesc

catentry_id="@product_id_102"

language_id="&en_US"

name="Circular"

shortdescription="Circular Saw"

longdescription="Light on weight but not in quality. The Circular Saw
weighs a maximum of 10.91bs., with a choice of a 12 or 14 amp motor,
and speeds of up to 600 rpms! Low friction 220V aluminum alloy shoe
will ensure the job gets done on time."
thumbnail="1images/circular_saw_sm.gif"
fullimage="1images/circular_saw.gif"

available="1"

published="1"

/>

where

— catentry_id is the internal reference number that indicates the catalog
entry that this language-specific information relates to.

— language_id is the identifier of the language.

— name is the language-dependent name of the catalog entry.

Chapter 16. Catalog assets 155

— shortdescription is a brief description of the catalog entry.
— longdescription is a detailed description of the catalog entry.
— thumbnail is the path for the thumbnail image.
— fullimage is the path for the full image.
— available indicates the length of time to availability of the catalog entry.
— pubTished indicates whether this catalog entry should be displayed for the
language indicated by Tanguage_id
- 0 = display.
- 1 = do not display.

Part 6: Creating attributes and attribute values

1. Using the following example from the ToolTech sample store as your guide,
create attributes and attribute values for your products by adding information
to the ATTRIBUTE and ATTRVALUE tables in the locale-specific XML file for
translation purposes. Each product in your catalog has a specific set of
attributes, such as size and color for a shirt or a pair of pants. Items are defined
by the attribute values. For example, while a shirt is a product, a medium,
black shirt is an item. Complete this task for each attribute in your catalog:
<attribute
attribute_id="@attribute_id_103"
language_id="&en_US"
attrtype_id="STRING"
name="Amps"
sequence="0"
description="Amps"
catentry_id="@product_id_102"
description2="Amps"

/>

where

* attribute_id is the internal reference number of the attribute.
* language_id is the language that this attribute pertains to.

* attrtype_id is the type of the corresponding attribute value.
* name is the name of the attribute.

* sequence is a sequence number that determines the display order of
attributes for a given product.

e description is the description of the attribute.

e catentry_id is the reference number of the product to which this attribute
belongs.

* description2 is an additional description of the attribute.

Note: Each time you add an attribute to a product defined by catentry_id, the
attribute_id sequence changes to represent a new attribute.

2. Using the following example from the ToolTech sample store as your guide,
add the attribute values. Complete this task for each attribute value in your
catalog;:
<attrvalue
attrvalue_id="@attrvalue_id 114"
language_id="&en_US"
attribute_id="@attribute_id 103"
name="12.0amps"
attrtype_id="STRING"
stringvalue="12.0amps"

156 Store Development Guide

sequence="0"

usage="1"
catentry_id="@catentry id 106"
/>

where
* attrvalue_id is the internal reference number of attribute value
* language_id is the language that this attribute value pertains to

e attribute_id is the internal reference number of the attribute associated with
the value

* name is the name of the attribute value
e attrtype_id is the type of attribute value
* stringvalue is the attribute value

* sequence is a sequence number that determines the display order of attribute
values for a given attribute

* usage is the type of attribute:
— 1 identifies a defining attribute used for SKU resolution.
— 0 (or another value) identifies a descriptive attribute.

* catentry id is the item ID that this attribute value describes

Note: Each time you add an attribute value to an attribute, the attrvalue_id
sequences changes to represent different values. The attribute_id
sequence changes to represent a different attribute. The sequence
increases with each new attribute values. For example, subsequent
attribute values would be sequence="1", sequence="2", and
sequence="3", and so on.

Part 7: Creating relationships between products and items

1.

After creating products and items for your catalog, define the relationships
between products and items by adding information to the CATENTREL table.
Use the following example from the ToolTech sample store as your guide.
Complete this task for each product and item relationship value in your
catalog:

<catentrel

catentry_id_parent="@product_id_147"

catreltype_id="PRODUCT ITEM"

catentry_id_child="@catentry_id_152"

sequence="2"

quantity="1"

/>

where

 catentry_id_parent is the reference number of the source catalog entry in
this relationship, that is, the product.

* catreltype_id is the type of relationship: PRODUCT_ITEM

e catentry_id_child is the reference number of the target catalog entry in this
relationship, that is, the item.

* sequence is the sequence number used to determine the display order.
* quantity is a quantity that can be associated with the relationship.

Note: Each time you add a relationship between a product and item, the

catentry_id_parent and the catentry_id_child numbers change to
create different relationships, based on the catreltype_id. With each new

Chapter 16. Catalog assets 157

relationship, the sequence number is different. For example, if you have
sequence="2", the next relationship will have sequence="3", followed by
sequence="4", and so on.

Part 8. Creating packages and bundles
1. Once you have created your products and items, create packages and bundles
by adding information to the CATENTRY, CATENTDESC, and CATENTREL
tables. As an example, use the following code sample to create a package or
bundle by adding information to the CATENTRY table. Complete this task for
each package and bundle in your catalog:
<catentry
catentry_id="@package_id_102"
member_id="@seller_b2b_mbr_id"
catenttype_id="PackageBean"
partnumber="sku-@package_id_102"
mfpartnumber="sku-@package id 102"
mfname="ToolTech"
markfordelete="0"
buyable="1"
/>

where
 catentry_id is the reference number of the catalog entry.

e member_id is the reference number that identifies the owner of the catalog
entry.

* catenttype_id identifies the type of catalog entry:
— PackageBean = identifies a package.
— BundleBean = identifies a bundle.

* partnumber is the reference number that identifies the part number of the
catalog entry.

* mfpartnumber is the part number used by the manufacturer to identify the
catalog entry.

e mfname is the name of the manufacturer of the catalog entry.

* markfordelete indicates if the catalog entry is marked for deletion:

- 0 =no.
- 1=yes.
* buyable indicates whether the catalog entry can be purchased individually:
- 0 =no.
- 1 =yes.

Note: Each time you create a package or a bundle, the catentry_id,
partnumber, and mfpartnumber numbers change to create different
package or bundle. For example, to create a new package, you could
use catentry_id="@package_id_103", partnumber="sku-
@package_id_103", and mfpartnumber="sku-@package_id_103",
including catenttype_id="PackageBean" to identify the entry as a
package. To create a new bundle, you could use
catentry id="@package id 110", partnumber="sku-@package id 110",
and mfpartnumber="sku-@package_id_110", including
catenttype_id="BundleBean" to identify the entry as a bundle, and so
on.

¢ As an example, use the following code sample to add the package or bundle
description by adding information to the CATENTDESC table in the

158 store Development Guide

locale-specific XML file for translation purposes. Complete this task for each
package and bundle description in your catalog:

<catentdesc

catentry_id="@catentry_id_102"

language_id="-1"

name="computer"

shortdescription="Computer"

longdescription="A combination of a central processing unit, monitor,
hard drive, and color printer. An ideal starter system."
thumbnail="1images/package_system_sm.gif"
fullimage="1images/package_system.gif"

available="1"

published="1"

/>

where

— catentry_id is the internal reference number that indicates the catalog
entry that this language specific information relates to.

— language_id is the identifier of the language.
— name is the language-dependent name of the catalog entry.
— shortdescription is a brief description of the catalog entry.
— longdescription is a detailed description of the catalog entry.
— thumbnail is the thumbnail image path of the catalog entry.
— fullimage is the full image path of the catalog entry.
— available indicates the length of time to availability of the catalog entry.
— pubTished indicates whether the catalog entry should be displayed for the
language indicated by language_id:
- 0 = do not display the catalog entry.
- 1 = display the catalog entry.

As an example, use the following code sample to create relationships
between packages or bundles and their components by adding information
to the CATENTREL table. Complete this task for each package or bundle
component relationship in your catalog:

<catentrel
catentry_id_parent="@catentry_id_102"
catreltype_id="PACKAGE_COMPONENT"
catentry_id_child="@catentry_id 97"
sequence="1.0"

quantity="1.0"

/>

where

— catentry_id_parent is the reference number of the source catalog entry in
this relationship, that is, the package or bundle.

— catreltype_id is the type of this relationship:

- PACKAGE_COMPONENT represents a relationship between a package
and its components.

- BUNDLE_COMPONENT represents a relationship between a bundle
and its components.

— catentry_id_child is the reference number of the target catalog entry in
this relationship, that is, the component.

— sequence is the sequence number used to determine the display order.
— quantity is a quantity that can be associated with the relationship.

Chapter 16. Catalog assets 159

160

Note: Each time you create a relationship between a package and bundle,
the catentry_id_parent and catentry_id_child number changes to
match existing catalog entries. With each new relationship, the
sequence number is different. For example, if you begin with
sequence="1.0", the next relationship will have sequence="2.0",
followed by sequence="3.0", and so on.

Part 9: Creating relationships between catalog groups and
catalog entries

1.

After creating catalog groups and catalog entries in your catalog, define the
relationships between catalog groups and catalog entries by adding information
to the CATGPENREL table. Under the master catalog structural restriction, a
catalog entry cannot belong to more than one category. To place a catalog entry
in more than one category, you must use a sales catalog. Use the following
example from the ToolTech sample store as your guide. Complete this task for
each catalog group and catalog entry relationship in your catalog:

<catgpenrel

catgroup_id="@catgroup_id_11"

catalog_id="@catalog_id_1"

catentry_id="@product_id_102"

sequence="0"
/>

where

 catgroup_id is the source catalog group of this relationship.

* catalog_id is the catalog inside of which this relationship is found.
+ catentry_id is the target catalog entry of this relationship.

* sequence is the sequence number that determines the display order of the
contents of the catalog group.

Note: Each time you create a relationship between catalog groups and catalog
entries, the catgroup_id and catentry_id numbers change to form new
relationships with different catalog groups and catalog entries. With each
new relationship, the sequence number is different. For example, if you
begin with sequence="0", the next relationship will have sequence="1",
followed by sequence="2", and so on.

Part 10: Creating merchandising associations

1.

As an example, use the following code sample to create merchandising
associations between catalog entries by adding information to the MASSOCECE
table. Complete this task for each merchandising association in your catalog;:
<massoccece

massoccece_id="@relationship_id_ 100"

massoctype_id="X-SELL"

catentry_id_from="@product_id_1"

catentry_id_to="@product_id_15"

massoc_id="REQUIRES"

quantity="2.0"

rank="1.00000"

/>

where

* massoccece_id is the reference number of this entry.

* massoctype_id is the identifier of the association type:
— X-SELL = cross-sell.
— UPSELL = up-sell.

Store Development Guide

— ACCESSORY = accessory.

— REPLACEMENT = replacement.
e catentry_id_from is the catalog entry that is the source of the association.
+ catentry_id_to is the catalog entry that is the target of the association.
* massoc_id is the identifier of the semantic specifier:

- REQUIRES

- COMES_WITH

- TEMP

- NONE
* quantity is the quantity related to this association.
* rank is the sequence number used for display order.

Note: Each time you add a merchandising association, the massoccece_id
number changes to represent a new relationship. The catentry_id_from
and the catentry_id_to numbers vary to create new merchandise
content for the association.

Part 11: Associating your catalog to a store

1.

Associate your catalog to a store by assigning the catalog, its catalog groups,
and catalog entries to a store in the database by using the existing
store-catalog.xml file from the ToolTech sample store as your guide. You should
also assign display pages to the catalog groups and catalog entries. Add this
information to the STORECAT, STORECENT, STORECGRP, DISPCGPREL, and
DISPENTREL tables. If you are creating a globalized catalog, create a separate
store-catalog relationship XML file for each locale your store supports:
<storecat

catalog_id="@catalog_id_1"

storeent_id="@storeent_id_1"

mastercatalog="1"

/>

where
 catalog_id is the reference number of the catalog.
* storeent_id is the reference number of the store entity in the database.

* mastercatalog specifies a master catalog for the store. A value of 1 indicates
that this catalog is designated as a master catalog.

Using the following example from the ToolTech sample store as your guide,

add catalog entries to the store-catalog relationship. Complete this task for each

catalog entry in your catalog:

<storecent
storeent_id="@storeent_id_1"
catentry_id="@product_id_102"
/>

where
* storeent_id is the reference number of the store entity in the database.
e catentry_id is the reference number of the catalog entry.

Note: Each time you add a catentry_id to the store entity, the reference
number changes to match an existing catalog entry.

Using the following example from the ToolTech sample store as your guide,
add catalog groups to the store entity. Complete this task for each catalog
group in your catalog:

Chapter 16. Catalog assets 161

162

<storecgrp
storeent_id="@storeent_id_1"
catgroup_id="@catgroup_id 1"
/>

where
* storeent_id is the reference number of the store entity in the database.

* catgroup_id is the reference number of the catalog group.

Note: Each time you add a catgroup_id to the store entity, the reference
number changes to match an existing catalog group.

Part 12: Associating taxes to your catalog

Associate taxes to the products and services in your catalog for a specific store.
You must associate a tax calculation code with the catalog entries by adding this
information to the to the CATENCALCD table. For more information, see
[“Creating tax assets in WebSphere Commerce” on page 248.|

Part 13: Associating shipping methods to your catalog

To associate shipping methods to the products and services in your catalog, you
must associate a shipping calculation code with the catalog entries. Add this
information to the CATENCALCD table. For more information, see
ishipping assets in WebSphere Commerce” on page 231

Part 14: Associating a fulfillment center to your catalog
Associate your catalog with a fulfillment center to ship products to customers. A
fulfillment center manages product inventory and shipping for a store. Add this
information to the FEMCENTER table. For more information, see
ffulfillment assets in WebSphere Commerce” on page 200

Part 15: Creating prices for your catalog entries

Create the pricing for your catalog entries. Pricing represents the price range for a
catalog entry and any criteria that must be satisfied in order to use that price. To
create a functional catalog, you need to add offering information to the database.
Add this information to the TRADEPOSCN, TDPSCNCNTR, MGPTRDPSCN,
OFFER, and OFFERPRICE tables. For more information, see [’Creating pricing]
lassets in WebSphere Commerce” on page 175./Or you can create or update the
pricing for a catalog entry using the Product Management tools in the WebSphere
Commerce Accelerator.

Part 16: Loading the XML file

After you have created your data, load the XML file into the database by either
using the Loader package or through the publish utility. For more information on
the Loader package, see [Part 10, “Publishing your store,” on page 319)

Note: You can also use the Product Management tools from the WebSphere
Commerce Accelerator to create catalog assets for your master catalog. For
more detailed information on the Product Management tools, see the
WebSphere Commerce online help.

Displaying store catalog assets

After associating a catalog, catalog groups, and catalog entries to a store, assign JSP
templates to display your catalog entries and catalog groups by creating these
relationships in the database. Create these relationships in the format of XML files
that can be loaded into the database using the Loader package.

Store Development Guide

The store-catalog.xml file from the ToolTech sample is located in its store archive
file. To view the store-catalog.xml file, decompress the store archive using a ZIP
program. The store-catalog.xml file is located in the following data directory:

* WC_installdir /samplestores

The store-catalog.dtd file is located in the following directory:
e WC_installdir /xml/sar

Before you can create store-catalog relationships, ensure that you have created the
store data assets. Complete the following tasks, each of which creates entries in the
store-catalog.xml file:

1. In order to display your catalog groups (categories) in your store, you must
assign JSP templates to your catalog groups. You can assign a particular display
page template to a catalog group or a default template to display all catalog
groups. Using the following example from the ToolTech sample store as your
guide, assign catalog group templates by adding information to the
DISPCGPREL table. Complete this task for each template you want to assign to
your catalog groups:
<dispcgprel
catgroup_id="@catgroup_id_1"
devicefmt_id="-1"
dispcgprel_id="@dispcgprel_id_1"
mbrgrp_id="0"
pagename="CategoryDisplay.jsp"
storeent_id="@storeent_id_1"
rank="0"/>

where

e catgroup_id is the reference number of the catalog group for which this page
name will be displayed. A value of 0 indicates that this page name will be
used for all catalog groups.

* devicefmt_id is the reference number of the device type that the page will be
displayed on. A value of -1 indicates that this template page will be used by
an HTTP browser.

* dispcgprel_id is the reference number of this entry.

* mbrgrp_id is the reference number of the member group for which this
template page will be displayed. A value of 0 indicates that this template
page will be used for all member groups.

* pagename is the name of the display template page.

* rank is a sequence number used to break ties when more than one page
satisfies the selection criteria.

Note: Each time you assign a JSP template to a catalog group, the catentry_id
changes sequence to match an existing catalog entry.

2. To display your catalog entries (products, items, packages, static kits, bundles,
and dynamic kits) in your store, you must assign JSP templates to your catalog
entries. You can assign a default template to display all catalog entries, or a
default to display each type of catalog entry, for example, a template for
products and another template for items, or a specific template for a specific
catalog entry. Using the following example from the ToolTech sample store as
your guide, assign templates by adding information to the DISPENTREL table.
Complete this task for each template you want to assign to your catalog entries:
<dispentrel

auctionstate="0"
catentry_id="0"

Chapter 16. Catalog assets 163

catenttype_id="ProductBean"
devicefmt_id="-1"
dispentrel_id="@dispentrel_id 1"
mbrgrp="0"
pagename="ProductDisplay.jsp"
storeent_id="@storeent_id_1"
rank="0"/>

where

auctionstate indicates that this template page displays a catalog entry that is
on auction:

— 0 = not an auction template.
— 1 = auction template.

catentry_id is the reference number of the catalog entry for which this page
name will be displayed. A value of 0 indicates that this page name will be
used for all catalog entries.

catenttype_id is the type of catalog entry that this page will be used to
display:

— ProductBean = displays a product.

ItemBean = displays an item.

PackageBean = displays a package.

BundleBean = displays a bundle.

DynamicKitBean = displays a dynamic kit.

devicefmt_id is the reference number of the device type that the page will be
displayed on. A value of -1 indicates that this template page will be used by
an HTTP browser.

dispentrel_id is the reference number of the catalog entry.

mbrgrp is the reference number of the member group for which this template
page will be displayed. A value of 0 indicates that this template page will be
used for all member groups.

pagename is the name of the display template page.

storeent_id is the reference number of the store for which this page will be
displayed.

rank is a sequence number used to break ties when more than one page
satisfies the selection criteria.

Note: Each time you assign a JSP template to a catalog entry, the catentry_id

changes sequence to match an existing catalog entry.

Creating a sales catalog

164

A WebSphere Commerce store allows two types of catalogs: master and sales. Sales
catalogs do not need to meet the structural restrictions that are placed on master
catalogs. Sales catalogs are meant to provide a flexible display structure to allow
you to create a catalog that suits your store’s requirements.

In particular, sales catalogs do not need to satisfy the following restrictions that are
imposed on master catalogs:

* A master catalog must be a proper tree, which means that there are no cycles
and cannot use the following structure: The parent category A has a subcategory
B. It is important that B and any of B’s subcategories are not the parent category
of A.

Store Development Guide

* A product cannot belong to more than one category.

The following task creates a sales catalog by modifying the FashionFlow sample
store catalog. The resulting catalog can no longer be classified as a master catalog
since the following steps introduce the categorization of some products into
multiple categories. A classic sales catalog is created by adding information to the
category relationship tables: CATGRPREL, which holds the subcategory
relationships, and CATGPENREL, which holds the category-product relationships.
Although these examples involve FashionFlow, you can follow these basic steps
with your own master catalog, making the appropriate adjustments to match your
catalog information, structure, and designs.

Adding a product to a second category

This example shows you how to copy products from one category to another while
preserving the original structure. The Homepage promotions category contains the
Summer Nightgown product, which could also belong under the Sleepwear
subcategory for the Women’s Fashions top category. These instructions will show
you how to copy the Summer Nightgown product and its SKUs to the Sleepwear
category.

To change the FashionFlow sample store master catalog to a sales catalog by
adding a product to a second category, do the following;:

1. Publish the FashionFlow store archive to create the FashionFlow sample store.
FashionFlow is available in US English and one of the nine national languages
shipped with WebSphere Commerce. Choose one of the
FashionFlow_en_US_locale.sar files for publication.

2. Open the catalog.xml file in an editor. The file is located in the following
WebSphere Commerce directory:

* WC_installdir /samplestores/FashionFlow /locale/data

3. Locate the CATGPENREL data section in the catalog.xml file. Create a new
product entry for Summer Nightgown, originally a product under the
Homepage promotions category. Under the CATGPENREL section, add the
following extract to include the product:
<catgpenrel
catgroup_id="@catgroup_id 18"
catalog_id="@catalog_id_1"
catentry_id="@product_id_2692"

sequence="2"
/>

where

* catgroup_id is the catalog group internal reference number as defined by the
FashionFlow sample store. In this example, @catgroup_id_18 is the Women’s
Sleepwear category.

* catalog_id is the internal reference number of the catalog as defined by the
FashionFlow sample store.

e catentry_id is the catalog entry internal reference number as defined by the
FashionFlow sample store. In this example, @catentry_id_2692 is the
Summer Nightgown product.

¢ sequence is the number that determines the display order of the contents of

the catalog group as defined by the FashionFlow sample store. In this
example, the Summer Nightgown product will be displayed last.

4. After adding the Summer Nightgown product entry, add the SKU entries for
the product under the CATGPENREL section, as defined in the FashionFlow

Chapter 16. Catalog assets 165

sample store. Currently, the Summer Nightgown product contains ten defined
SKUs. Under the CATGPENREL section, add the following extracts to include
the SKUs:

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2695"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2696"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2697"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2698"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2699"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2700"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id 2701"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2702"
sequence="2"

/>

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id_1"
catentry_id="@catentry_id_2703"
sequence="2"

/>

166 Store Development Guide

<catgpenrel
catgroup_id="@catgroup_id_18"
catalog_id="@catalog_id 1"
catentry_id="@catentry_id_2704"
sequence="2"

/>

where

 catgroup_id is the catalog group internal reference number as defined by the
FashionFlow sample store. In this example, @catgroup_id_18 is the Women's
Sleepwear category.

* catalog_id is the internal reference number of the catalog as defined by the
FashionFlow sample store.

* catentry_id is the catalog entry internal reference number as defined by the
FashionFlow sample store. In this example, @catentry_id_2695 through
@catentry_id_2704 represent the ten SKUs that have been defined for the
Summer Nightgown product.

* sequence is the number that determines the display order of the contents of
the catalog group as defined by the FashionFlow sample store. In this
example, the Summer Nightgown SKUs will be displayed last.

5. Save the catalog.xml file.

6. To view your changes, do one of the following: publish the modified
FashionFlow store archive from the Administration Console or load the
catalog.xml file with the Loader package as instructed in|“Loading databas¢|
[asset groups” on page 390

Managing catalog assets in WebSphere Commerce

Over time, you will need to update the database asset information from the master
catalog. Maintaining your catalog is an ongoing process, as you will need to
continually add and remove merchandise, create and associate categories or catalog
groups, and update product information, such as descriptions and price.

You can change your catalog assets by editing the WebSphere Commerce XML data
using the existing database entries and catalog.xml files from your store. Use the
WebSphere Commerce sample store XML files as a reference, located in the
following data directory:

* WCL_installdir /samplestores

Note: These examples originate from the FashionFlow sample store and identify
which XML elements must be modified to change the catalog asset
information.

Catalog groups

Catalog groups are created in a WebSphere Commerce catalog using the
CATGROUP and CATGRPDESC database tables. From the catalog.xml file, a
typical catalog group looks like the following extract:

<catgroup
catgroup_id="@catgroup_id_1"
member_id="&MEMBER_ID"
identifier="Accessories"
markfordelete="0"

/>

Chapter 16. Catalog assets 167

168

The catgroup_id is the internal reference number of the catalog group. Each
catalog group is assigned an internal reference number in WebSphere Commerce,
which identifies the group when adding catalog entries. The identifer is an
external name for the catalog group. Both elements are unique within the database
assets and cannot be duplicated.

Names and descriptions belong to the locale specific catalog.xml file, one of which
is required for each locale your store supports. A typical catalog group containing
translatable information looks like the following extract:

<catgrpdesc

language_id="&en_US"

catgroup_id="@catgroup_id_1"

name="Accessories"

shortdescription="Accessories"

longdescription="Accessories"

published="1"

/>

The Tanguage_id identifies the language of your catalog information. This identifier
must change to match each language your store supports. The name is displayed to
the customer, as are the shortdescription and longdescription elements, which
may contain a brief and detailed description of the catalog group.

When creating a new catalog group, follow the above structure for the information.

Notes:

1. While the identifer and name elements are identical in the above example, the
content can vary. For instance, you might choose to rename your catalog group
to Complementary Additions. In such a case, you do not need to change the
information in identifer, only name.

2. When deleting catalog groups, ensure that catgroup_id occurrences are
updated accordingly. For instance, if you also want to delete the catalog entries
under the catalog group, then you would remove the entire XML entries.
However, if you plan to keep the catalog entries, then you need to change the
catgroup_id to the correct group.

Catalog entries

Catalog entries are created in a WebSphere Commerce catalog using the
information from the CATENTRY and CATENTDESC database tables. A catalog
entry can be a product, item, package, bundle, static kit, or dynamic kit. From the
catalog.xml file, a typical catalog entry looks like the following extract:

<catentry
catentry_id="@product_id_102"
baseitem_id="@baseitem id 102"
member_id="&MEMBER_ID"
catenttype_id="ProductBean"
partnumber="product-sku-nf-102"
mfpartnumber="product-sku-nf-102"
mfname="FashionFlow"
markfordelete="0"

buyable="1"

/>

The catentry_id is the internal reference number of the product catalog entry. The
baseitem_id is base item that the catalog entry relates to, for inventory purposes.
The partnumber is the reference number that identifies the part number of the

Store Development Guide

catalog entry. The mfpartnumber is the part number used by the manufacturer to
identify the catalog entry. These elements are unique within the database assets
and cannot be duplicated.

The catenttype_id identifies the type of catalog entry: ItemBean, ProductBean,
PackageBean, StaticBean, BundleBean, or DynamicKitBean.

Names and descriptions belong to the locale specific catalog.xml file, one of which
is required for each locale your store supports. Merchandise images are also
included in this file. A typical catalog group containing translatable information
looks like the following extract:

<catentdesc

catentry_id="@product_id_102"

language_id="&en_US"

name="Belt"

shortdescription="Classic belt"

longdescription="This classic belt looks great with your favorite jeans,

or takes you to work in style. 1 1/2 inches wide in full-grain leather

with a solid nickel buckle."

thumbnail="1images/mens_accessories_belt_sm.gif"
fullimage="1images/mens_accessories_belt.gif"

available="1"

pubTished="1"

/>

The Tanguage_id identifies the language of your catalog information. This identifier
must change to match each language your store supports. The name is displayed to
the customer, as are the shortdescription and Tongdescription elements, which
may contain a brief and detailed description of the catalog entry.

When creating a new catalog entry, follow the above structure for the information.

Notes:

1. When deleting catalog entries, ensure that each occurrence of the unique
elements are updated accordingly. For instance, if you also want to delete the
catalog entries under the catalog group, then you would remove the entire
XML entries. However, if you plan to keep the catalog entries, then you need to
change the catgroup_id to the correct group.

2. Products must be created before other types of catalog entries.

If you do not want to manually change the XML files, you can use the Product
Management tools.

Product Management tools

The Product Management tools in the WebSphere Commerce Accelerator allow you
to manage the products in your store’s master catalog using various wizards and
notebooks. You can also use the Product Management dynamic table, which allows
you to update your catalog entry information directly. You can update your
catalog’s content or create new catalog data:

* Create, update, and delete products and product details using the wizard or
notebook. Products act as templates for SKUs, the individual items which are
ultimately sold to a customer. Product details include the product code (which
uniquely identifies the product), the product name and description, any
merchandising options (such as displaying a product to customers or indicating
if that product is part of a special promotion), the product images, tax and
shipping specifications, discounts assigned to the products, and manufacturer
information.

Chapter 16. Catalog assets 169

170

* Generate, update, and delete SKUs (or items) for purchase. SKUs represent each
orderable item of merchandise for sale. All SKUs related to a particular product
exhibit the same set of attributes and are distinguished by their attribute values.
Additions or changes made to SKUs include the same information as products,
except on an orderable basis.

* Create, update, and delete categories (or catalog groups), which are a group of
objects that have similar properties which are used to organize products or
services offered by the store. You can manage the category hierarchy of your
master catalog by creating, changing and deleting categories and details about
the categories, such as the category code, the name, and description, including
parent category and images.

* Associate products and SKUs with categories by choosing the parent category or
moving products and SKUs from one category to another.

* Create attributes and attribute values for products. Each possible combination of
attributes and attribute values equals a new SKU. You must predefine attribute
values before assigning them to SKUs. After creating attributes and their values,
you can create or update information such as name, description, (text, whole
numbers, or decimal numbers), and sequence in which the attributes and
attribute values will appear.

¢ Create, update, delete, and associate catalog pricing with products. You can
define a price for a product or SKU, in one or more currencies, along with a set
of conditions such as setting a price for single or bulk quantities, which must be
satisfied in order to use the price.

You can refer to the Product Management section in the online help for detailed
instructions on each task.

Notes:

1. The Product Management tools are recommended for minor changes only. For
large catalog updates, such as adding or removing seasonal merchandise or
preparing for a clearance sale, use the Loader package.

2. Any changes to the catalog data cannot be displayed in the store unless you
disable caching or remove the currently cached JSP pages. For more
information, refer to the CacheDelete command in the WebSphere Commerce
online help. The CacheDelete command initiates remote cleanup of the dynamic
page cache and allows you to manage the cache without requiring direct access
to the file system. Before using this command ensure that Auto Page
Invalidation is enabled. Note that you must be logged in as an administrator to
use this command.

Loader package

You can also maintain your catalog using the Loader package, formerly known as
part of the Catalog Manager. The Loader package is ideal for importing large
amounts of existing product information into the database. In WebSphere
Commerce, this is the primary tool to create and manage catalog information. This
package consists primarily of command utilities for preparing and loading data
into a WebSphere Commerce database. The Loader package also allows you to
extract data from a database as an XML document, transform XML data into
alternate XML formats, and transform data between a character-delimited variable
format and an XML data format.

Refer to the WebSphere Commerce Production online help for more information.

Store Development Guide

Chapter 17. Pricing assets

Pricing represents the price for a catalog entry and any criteria that must be

satisfied in order to use that price. In order to create a functional catalog, you need
to add pricing information to the database. You can create pricing information in

the format of XML files that can be loaded into the database using the Loader
package. Or you can use the Product Management tools from the WebSphere
Commerce Accelerator for small amounts of pricing data.
Understanding pricing in WebSphere Commerce

Server.

The following diagram illustrates the pricing assets in the WebSphere Commerce

Q +owner
Member 1
S~ +owner
~

R \\\\

17 ~_
\ 0..1 ~_
\ —

+owner \ ~__

\ a-q T~
\ ParticipantRole
\
\
\
\
\

~—_
~
~
1 I w\
\
\
\

StoreEntity
O :
Participant
0..1
TradingAgreement — Q
Store
/
0.1 / deployedContract
| +deployedContrac
0..1 /
Q Q ()] 0.1
BusinessPolicy TermCondition =
Contract +defaultContract
T T
PricePolicy PriceTCType Q
0.1,

Catalog

] TradingPositionContainer

? +root
OfferPrice
1..n

CatalogGroup
Q +parent
CatalogEntryShipping
NominalQuantityOfferredAt N +subCatalogEntry
e Q 0.1
Offer 1\ CatalogEntry
© Copyright IBM Corp. 2000, 2003

171

172

Offer

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 97.|For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Offers, or pricing, are different prices for the same product or item to different
customers or organizations. An offer represents the price of a catalog entry and
criteria, such as the quantity to be purchased, that the customer must satisfy in
order to pay that price. For example, merchandise or services are often priced
differently for children, students, adults, and seniors. In WebSphere Commerce, an
offer is also known as a trading position and is part of a trading position container.

Offer price

The offer price is a price at which catalog entries are offered by a store by means of
trading agreements or contracts. An offer can have one or more than one offer
prices defined in multiple currencies.

Trading position container

Terms

Types

An offer is part of a trading position container, which is owned by a member. A
trading position container contains trading positions. It can be made available to
all customers, or to only customers in certain groups through the trading
agreements or contracts, and the terms and conditions in the contracts. Under a
contract, a trading position container is a price business object that can be
referenced by multiple price business policies and can be shared by a store or all
stores in a store group. A trading position container is also referred to as a price
list.

and conditions

Terms and conditions define the behavior and properties of a trading agreement.
Many terms and conditions reference business policies because several aspects of a
store’s operation are defined by business policies.

of pricing terms and conditions

Pricing terms and conditions define what products are available
under a contract and what prices the customer will pay for the products. At least
one of the following pricing terms is required in a contract: The following pricing
terms and conditions are available in WebSphere Commerce:

Customized price list
This term specifies that both the list of products for sale and their prices
are customized for sale in a contract and their price is customized. Items
are not limited to a section of the store catalog, they can be from anywhere
in the store catalog.

Entire catalog with adjustment
This term offers all of the products available in a store catalog for sale with
a percentage adjustment (mark-up or discount) from the base price as
defined in the store catalog. If no adjustment is specified, items are sold at
the base price.

Price list with adjustment
This term offers all of the products available in a price list for sale with a

Store Development Guide

percentage adjustment (mark-up or discount) from the base price as
defined in the store catalog. If no adjustment is specified, items are sold at
the base price.

Price list with selective adjustment
This term is similar to price list with adjustment except the adjustment is
not applied to the entire price list. The adjustment is made on a subset of
the price list. The subset of the price list may either be a product set
business policy or a customized product set. For information on the
differences between the types of product sets, refer to ‘Contract terms and
conditions’ topic in the WebSphere Commerce online help.

Catalog with filtering
This term offers all of the products available in a store catalog for sale with
a percentage adjustment (mark-up or discount) from the base price as
defined in the store catalog. This term also offers all of the products
available in a category, or a list of specify products and items, for sale with
a percentage adjustment (mark-up or discount) from the base price as
defined in the price list referenced by this term. This term can also state
which categories, products and items are for sale or are not for sale in a
contract. Category product sets will behave as a product set business
policy. Item product sets will be customized products sets.

Trading agreement

A trading agreement can be a contract, an RFQ, a business account, or an
auction. A trading agreement is an agreement negotiated between a seller and a
buyer upon which the buyer is enabled to purchase certain items with the
specified terms and conditions and the business policies stipulated in the contract.
For example, it allows the customer to purchase products from a store at the
specified price for a specified period of time, under the pricing terms and
conditions In WebSphere Commerce, all customers must shop in a store under a
contract, A store may deploy one or more contracts and one of them can be
designated to be the default contract. A default contract contains a set of terms and
conditions that are associated with a set of store default policies. A trading
agreement may contain zero or more participants of different roles.

Participant

A participant can be part of either a trading agreement or terms and conditions. A
participant is a member which can be a member group, an organization, and so on.
If a participant of a buyer role is specified for a contract, a buyer must be a
member of the buyer participant in order to shop under the contract. The terms
and conditions in the contract can also contain zero or multiple participants.

Participant role
A participant can have one of the following participant roles:
¢ Creator
* Seller
* Buyer
e Supplier
* Approver
¢ Account holder
* Buyer contact
* Seller contact

Chapter 17. Pricing assets 173

174

e Attorney
¢ Administrator.

Contract

A contract contains the offer price for the product. In WebSphere Commerce, all
customers must shop under a contract. A contract allows the customer to purchase
products from a store at the specified price for a specified period of time, under
the terms and conditions, and business policies, stipulated in the contract. A store
owns zero or more contracts, and owns at least one default contract.

Business policy

Business policies are sets of rules followed by a store or store group that
define business processes, industry practices, and the scope and characteristics of a
store or store groups offerings. Business policies are enforced with a combination
of a combination of one or more business policy commands that implement the
rules of the business policy, a reference to a business object that the rules act on,
and a set of properties to configure the operation of the business policy commands.

Price policy
A price policy contains a reference to a price list and can be associated with
multiple business policy commands that define how the business policies will be
implemented on the price lists. The policy may be defined for a store or a store
group. If the policy is registered for a store group, then the policy may be used by
all stores in that group.

Catalog entry shipping

Catalog entry shipping information includes information about how the product is
packaged for shipping. Each catalog entry can have different types of shipping
information defined. For example, the height, weight, and length of the product
when packaged.

Other pricing assets
The following assets are associated with pricings:

* A member who owns the trading position container. A trading position container
only has one owner.

A store entity represents a store in the WebSphere Commerce Server database.

* A catalog contains catalog entries that will be referenced in a contract. The
catalog contains all hierarchical and navigational information for the online
catalog and is a collection of catalog groups and catalog entries that are available
for display and purchase at an online store.

* A catalog group, or category, are generic groupings of catalog entries, created for
navigational and catalog partitioning purposes. A catalog group belongs to a
catalog and may contain more than one catalog group or catalog entries. You can
associate catalog groups to more than one catalog.

* A catalog entry represents orderable merchandise in an online catalog. Catalog
entries belong to catalog groups. An offer is always associated with one catalog
entry.

For more detailed information on the structure of pricing assets in the
WebSphere Commerce Server, see the pricing object and data models in
the WebSphere Commerce online help.

Store Development Guide

Creating pricing assets in WebSphere Commerce

You have two options for creating your pricing assets:

* Create prices using the Product Management tools in the WebSphere Commerce
Accelerator. Using the tools in the WebSphere Commerce Accelerator is most
suited to creating prices for a very small catalog.

* Create prices in an XML file, which can be loaded by the WebSphere Commerce
Loader package, or as a part of a store archive, which can be published through
the Administration Console. This method is more suitable for creating large
amounts of data.

For more information on creating prices using the Product Management tools in
the WebSphere Commerce Accelerator, see the WebSphere Commerce online help.
For more information on creating prices in an XML file, see ['Creating pricing]
lassets in an XML file.”|

Creating pricing assets in an XML file

Create your pricing assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 10, “Publishing your store,” on page 319

1. Review the XML files used to create pricing assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC_installdir /samplestores

Note: The WebSphere Commerce online help contains information about each
of the data assets contained in the sample stores.

Each sample store includes two offering.xml files, which include the pricing

information. To view the offering.xml files in the store archive, decompress it

using a ZIP program. The offering.xml files are located in the data directory.

The language-specific offering.xml is in a locale-specific subdirectory of the

data directory.

2. Review the information in [Appendix B, “Creating your data,” on page 439

3. Create an offering.xml file, either by copying one of the offering.xml files in
the sample store archives, or by creating a new one. For more information, see
the DTD file that corresponds to offering.xml. The DTD files are located in the
following directory:

* WC_installdir /xml/sar
4. Create a trading position container. In order to offer prices for the goods in

your store, you must first create a trading position container. To create a
trading position container, add information to the TRADEPOSCN table.

a. Using the following example as your guide, create a trading position
container in your XML file in the TRADEPOSCN table:

<tradeposcn
tradeposcn_id="@tradeposcn_id_101"
member_id="@seller_b2b_mbr_id"
markfordelete="0"

name="ToolTech"

precedence="0"

/>
where
* tradeposcn_id is a generated unique key

Chapter 17. Pricing assets 175

176

e Oseller_b2b_mbr_id is the owner of the trading position container. For
the FashionFlow sample store, replace this with @Member_ID;.

* markfordelete is as follows:
— 0 = the TradingPositionContainer can be used

— 1 = the TradingPositionContainer has been marked for deletion (refer
to the DBClean utility) and should not be used

* name is a mnemonic name for the trading position container, unique for a
particular owner.

* precedence is when more than one trading position containers is qualified
at a particular time, the one with the highest PRECEDENCE is used.

5. Associate the master catalog with a trading position container by adding
information to the CATGRPTPC table. When you associate the master catalog
with a trading position container, every catalog entry in the master catalog
must have a standard price. For more information on creating master catalogs,
see [‘Displaying store catalog assets” on page 162.|

a. Using the following example as your guide, associate the master catalog to

the trading position container by adding information to the CATGRPTPC
table:

<catgrptpc
catalog_id="@catalog_id_1"
tradeposcn_id="@tradeposcn_id_101"
/>

where

 catalog_id is the master catalog.

* tradeposcn_id is the trading position container.

6. Create offers and offer price for catalog entries by adding information to the
OFFER and OFFERPRICE tables

a. Using the following example as your guide, create an offer for a catalog

Store Development Guide

entry by adding information to the OFFER table. Note that you must have
created catalog entries before you can create prices. For more information
on creating catalog entries, see|’Displaying store catalog assets” on page]

offer

offer_id="@offer_id_138"
startdate="2000-06-19 00:00:00.000000"
catentry_id="@product_id_102"
precedence="0"

published="1"

identifier="1"

flags="1"
tradeposcn_id="@tradeposcn_id_101"

/>

where
* offer_id is a generated unique key.

* startdate is the start of the time range during which this offer is
effective.

e catentry_id is the catalog entry offered for sale.

* precedence is when more than one offer is effective at a particular time,
the one with the highest PRECEDENCE is used.

* published is
— 0 = not published (temporarily disabled)

— 1 = published
— 2 = marked for deletion (and not published).

e identifier is a number that uniquely identifies this offer along with its
specified catalog entry and trading position container.

* flags are

— 1 = shiptoAddressRequired - if 1, OrderPrepare will return an error if
an Orderltem references this Offer but does not have a shipping
address.

 tradeposcn_id is the trading position container this offer is part of.

b. Using the following example as your guide, create an offerprice for a
catalog entry by adding information to the OFFERPRICE table. The offer
price is the actual price at which a catalog entry is offered for sale. Note
that you must have created catalog entries before you can create prices. For
more information on creating catalog entries, see ['Displaying store catalog]
lassets” on page 162.|

<offerprice
offer_id="@offer id 138"
currency="USD"
price="590.00"

/>

where
« offer_id is offer associated with this price.
* currency is the currency which the price is offered in.

* price is the price for the nominal quantity (see
CATENTSHIPNOMINALQUANTITY) of the product referred to by the
offer.

Note: To display multiple currencies in your store, create a separate XML
entry in the OFFERPRICE table for each currency. For example, to
display the currency in Canadian dollars, use currency="CAD" in a
new XML entry. The price value would change to reflect the price in
Canadian dollars. Or you can use a conversion, allowing the
customer to display different rates based on the currency they select.
For more information, see ['Creating currency assets using an XMI|
file” on page 220.|

C. Repeat steps a and b for all catalog entries in your catalog.

For more information about the use of @ and & see |AEEendix B:|
|“Creating your data,” on page 439

Chapter 17. Pricing assets 177

178 Store Development Guide

Chapter 18. Contract assets

In WebSphere Commerce, all customers must shop under a contract. A contract
allows customers to purchase products from a store at a specified price for a
specified period of time under specific conditions. When browsing a store’s
catalog, customers will only see products covered by the contracts they are entitled
to within the store.

If you want customers who do not have any contract with your store (for example,
guest shoppers) to be able to shop in the store, or if you want customers to be able
to purchase products not covered by their contracts, your store will require a
default contract.

— Important
WebSphere Commerce Professional Edition and WebSphere Commerce -
Express support only the store default contract.

Contracts other than the store default contract are supported only by
WebSphere Commerce Business Edition.

To allow all customers to shop at a store, a store created with WebSphere
Commerce must include the following:

* Business policies
e Default contract

The business policies are referenced by the default contract, thus allowing all
customers to shop at a store.

© Copyright IBM Corp. 2000, 2003 179

Understanding contracts in WebSphere Commerce

180

The following diagram illustrates the structure of contracts in WebSphere

+defaultContract

Q

BusinessPolicy

¢

Commerce:
AttachmentUsage StoreEntity
0..1 Zﬁ
O 0.1 O 0.1 O
Attachment Account +initialStore Store
0..1
Orderltem
0.1 1 +deployedContract
" O ot QO
0.1 TradingAgreement |1 Contract
¢ 1
TradingAgreementType
- o
o TermCondition
O 1 1
Participant TermConditionSubType PolicyType
l 4
1
ParticipantRole TermConditionType Policy TypeCmdinterface

Q

PolicyCommand

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [*The store data information model” on|

see|Appendix A, “UML legend,” on page 437)

[page 97 For more information on the conventions used in this diagram,

Business

Accounts (business accounts)

A business account represents the relationship between a buyer organization and a
seller organization. A business account can be used to organize various trading
agreements and to specify terms and conditions related to the relationship between
buyer and seller such as: invoice customization, purchase order verification, or
maintaining a buyer’s line of credit with the seller.

Contracts are associated with business accounts since they represent an agreement
between a buyer and a seller. The exception to this is the store default contract

which cannot be associated with a business account. A business account can have
many contracts associated with the account.

A business account is a type of trading agreement. For a description of trading
agreements, see [“Trading agreements” on page 181

Store Development Guide

Important: Business accounts are only supported by WebSphere Commerce
Business Edition.

Contracts

There are two types of active contracts associated with stores: deployed contracts
and default contracts. Deployed contracts entitle specific buyer organizations or
individual buyers and can be created using the WebSphere Commerce Accelerator
after you have created your store. A deployed contracts is associated with one
business account. A default contract defines the default behavior of your store for
buyers who do not have any other contracts with your store. A default contract can
only be created using XML and only one default contract may be defined for a
store. For more information on contracts, refer to the WebSphere Commerce
Production and Development online help information. For information on creating
a_default contract asset, see [“Creating a default contract asset in WebSphere]
Commerce” on page 187

A typical contract consists of the following elements:

Profile
The contract profile contains the identifying information for the contract.
This information includes a unique name for the contract, a short
description, and a time period for which the contract is valid.

Participants
Contract participants are the organizations that take part in the contract.
There is a buyer organization, a seller organization and contacts at both
organizations.

Terms and conditions
Contract terms and conditions are the rules that cover the actual
implementation of the contract. Contract terms and conditions cover such
information as product pricing, returns and refunds, payment, shipping,
and order approval.

Attachments
Contract attachments cover any information not covered by the previous
elements such as file attachments that provide additional information
about the contract and any general remarks about the contract. WebSphere
Commerce stores Universal Resource Identifiers (URIs) for contract
attachments, not the actual attachments.

Reference
A contract can refer to another contract to share its terms and conditions.
For example, contract A can refer to contract B. Thus, a buyer who is
entitled to contract A will be entitled to all the terms and conditions from
contract A, as well as to all the terms and conditions in contract B.

Trading agreements

A contract is a type of trading agreement. WebSphere Commerce provides a
number of trading mechanisms governing the interactions between buyers and
sellers. The following trading mechanisms are supported by different editions of
WebSphere Commerce:

¢ Auctions (supported by both Business and Professional Editions)

. Business accounts

* Contracts (see restrictions discussed previously in this chapter)

. Request for quotes (RFQs)

Chapter 18. Contract assets 181

182

All of these trading mechanisms have common properties. For example, all trading
mechanisms have participants and they all have rules governing the behavior of
the trading mechanism. The rules governing the behavior of trading mechanisms
are known as terms and conditions in WebSphere Commerce.

A trading agreement represents an instance of a trading mechanism and records
the properties of that instance of a trading mechanism. Each contract, business

account, and RFQ in WebSphere Commerce is represented by a trading
agreement. There is a single trading agreement that governs all auctions in
WebSphere Commerce.

A trading agreement consists of a profile stored in the TRADING table;
participants stored in the PARTICIPNT table; terms and conditions stored in the
TERMCOND table; and optional attachments stored as Universal Resource
Identifiers (URIs) in the ATTACHMENT table. Because a trading agreement can
have multiple attachments, attachments are related to the trading agreement
through the TRDATTACH table. Note that attachments are not supported for

RFQs.

In addition to the general trading agreement, each type of trading agreement stores
additional information specific to the type of trading agreement in its own table:
CONTRACT stores contract-specific information; RFQ stores RFQ-specific
information; and ACCOUNT stores business account-specific information.

Participants

Terms

Contract participants take on specific roles within each contract. Participants can be
a contact from a buyer organization and from a seller organization. If a contract
specifies the buyer participant to be null, then all users, including guests, are
entitled to the contract. Any contract may specify a null buyer participant.

and conditions

Terms and conditions define the behavior and properties of a trading agreement.
For contracts, the terms and conditions define how a contract is implemented for a
buyer organization. They define what is being sold under the contract; the price of
the items being sold; how the items are shipped; how orders are paid for; how
returns are handled; how orders are approved; and from where orders are shipped.

Some terms and conditions reference business policies because many aspects of a
store’s operation are defined by business policies. Terms and conditions provide
parameters for the business polices they reference. Providing parameters to the
business policies allows you to modify the behavior of business policies for each
contract. WebSphere Commerce supports the following terms and conditions
(terms and conditions that reference business policies are indicated with an asterisk
()-
Fulfillment center
This optional term allows you to specify the list of fulfillment centers from
which orders placed under the contract must be filled. This list must be a
subset of the fulfillment centers defined for the store. Fulfillment center
precedence is defined by the store and cannot be overridden by the terms
and conditions of a contract.

Order approval
This term specifies if orders must be approved by the customer
organization before filling the orders. You can specify an optional amount,

Store Development Guide

that includes taxes and shipping, that would allow orders with a value
below the amount to be filled without approval from the customer
organization. If an order total is over this amount, approval is required. If
a buyer is placing an order with order items under multiple contracts and
one item in the order has a contract specifying this term, the entire order is
subject to the order approval term that applies to the item.

Payment method*
This optional term specifies the payment methods that will be accepted for
orders made under the contract. The payment method could be as general
as a payment type, such as a credit card type, or as specific as a credit card
number to be used for payment. If no payment method term is specified in
a contract, payment in all methods accepted by the store will be accepted
for orders made under the contract.

Pricing terms and conditions
Pricing terms and conditions define what products are available under a
contract and what prices the customer will pay for the products. At least
one pricing term is required in a contract. The following pricing terms and
conditions are available in WebSphere Commerce:

Customized price list
This term specifies that both the list of products for sale and their
prices are customized for sale in a contract and their price is
customized. Items are not limited to a section of the store catalog
they can be from anywhere in the store catalog.

Entire catalog with adjustment
This term offers all of the products available in a store catalog for
sale with a percentage adjustment (mark-up or discount) from the
base price as defined in the store catalog. If no adjustment is
specified, items are sold at the base price.

Price list with adjustment®
This term offers all of the products available in a price list for sale
with a percentage adjustment (mark-up or discount) from the base
price as defined in the store catalog. If no adjustment is specified,
items are sold at the base price.

Price list with selective adjustment*
This term is similar to price list with adjustment except the
adjustment is not applied to the entire price list. The adjustment is
made on a subset of the price list. The subset of the price list may
either be a product set business policy or a customized product set.
For information on the differences between the types of product
sets, see the WebSphere Commerce Development online help.

Catalog with filtering *
This term offers all of the products available in a store catalog for
sale with a percentage adjustment (mark-up or discount) from the
base price as defined in the store catalog. This term also offers all
of the products available in a category, or a list of specify products
and items, for sale with a percentage adjustment (mark-up or
discount) from the base price as defined in the price list referenced
by this term. This term can also state which categories, products
and items are for sale or are not for sale in a contract. Category
product sets will behave as a product set business policy. Item
product sets will be customized products sets.

Chapter 18. Contract assets 183

Product constraint terms and conditions
Product constraint terms and conditions control what products are
included or excluded for sale under a contract. Product constraint terms
are optional. If no product constraint terms and conditions are specified in
a contract, all products specified in the contract’s price terms and
conditions are available for sale under the contract. The following product
constraint terms and conditions are available in WebSphere Commerce:

Customized product set exclusion
This term states the items in a customized product set are not for
sale in a contract.

Customized product set inclusion
This term states that items in a customized product set are for sale
in a contract.

Product set exclusion*
This term states the items in a product set business policy are not
for sale in a contract.

Product set inclusion*
This term states that items in a product set business policy are for
sale in a contract.

Exclusion terms have precedence over inclusion terms. This means that if a
product appears both an inclusion term and an exclusion term in the
contract, the product could not be purchased under the contract. For
information on the differences between a customized product set and
product set business policy, see the WebSphere Commerce Development
online help.

Returns terms and conditions
Returns terms and conditions specify how returns are handled under this
contract. If no returns terms and conditions are specified then returns can
not be created. If returns terms and conditions are specified they should
only be one set that applies to the entire contract. The following returns
terms and conditions are available in WebSphere Commerce:

Refund payment method*
This term specifies the payment method used to pay refunds to a
customer. If a return charge term is specified, at least one refund
payment method term must be specified as well. This term may
not be specified if returns are not allowed under the contract.

Return charge*
This term specifies how returns are automatically approved and
any deductions from the refund made for handling the return, for
example, restocking charges.

Right to buy amount
This term places a limit on the combined value of all orders, including
taxes and shipping, placed under a contract. The value of all orders made
under the contract must be less or equal to a specified amount. If this limit
is exceeded when placing an order, payment authorization for the order
will fail.

Shipping terms and conditions
Shipping terms and conditions specify how orders will be shipped, where
they will be shipped to and who will pay for the shipping. The following
shipping terms and conditions are available in WebSphere Commerce:

184 Store Development Guide

Shipping mode*
This optional term defines how orders created under a contract are
shipped. If this term is not specified in a contract, orders can be
shipped by any mode available in a store. A shipping mode is also
known as a shipping provider. A shipping provider is the
combination of a shipping carrier and its shipping service. For
example, XYZ Courier, Overnight is a shipping provider.

Ship-to address
This optional term specifies where products purchased under a
contract are shipped. Specifying this term and condition allows
you to limit the locations where orders can be shipped. If the
ship-to address term and condition is not specified, a ship-to
address must be specified each time an order is made under a
contract. If this term is specified, the buyer can not specify a new
ship-to address when placing an order, but must select a ship-to
address from a list of ship-to addresses.

Shipping charge type*
This term defines who pays for shipping orders. The following
types of shipping charges are supported:

* Shipping charges are paid by the buyer to the seller. The seller
calculates the shipping charges when the order is captured and
the shipping costs become part of the order total.

* Shipping charges are paid by the buyer to the shipping carrier.
The carrier calculates the shipping cost and assumes the
responsibility of collecting payment from the buyer. Shipping
costs are not calculated when the order is captured.

Referral Interface *
This term specifies the relationship between a store and a remote store. It
defines the functions supported by the remote store and the parameters to
be used in messages sent to the remote store.

Business policies

Business policies are sets of rules followed by a store or group of stores. Business
policies define business processes, industry practices, and the scope and
characteristics of a store’s or group of stores’” offerings. They are the central source
and reference template for all allowed and supported practices within a store or
group of stores.

In WebSphere Commerce, business policies are enforced with a combination of one
or more business policy commands that implement the rules of the business policy,
a reference to a business object that the rules act on, and a set of properties to
configure the operation of the business policy commands. Terms and conditions
may provide parameters for the business polices they reference. This allows the
behavior of the business policy to be modified depending on the term and
condition referencing the business policy.

Business policies are a sharable resource. When you list business policies
that can be used in a contract, the business policies listed are the ones owned by
the store in which the contract is being created, and the business policies owned by
any store with which there is a com.ibm.commerce.businessPolicy store
relationship. For more information about sharing assets across stores within a site,
refer to [Chapter 14, “Relationships between stores,” on page 129

Chapter 18. Contract assets 185

186

The following categories of business policies are provided in WebSphere
Commerce:

Catalog business policies
Catalog business policies define the scope and characteristics of the catalog
of products for sale in a store including prices and the categorization of
products in a store’s catalog.

Payment business policies
Invoicing, payment, and refund business policies define how a store
accepts payments, pays refunds, and the format of a store’s invoices.

Returns business policies
Returns business policies define if refunds are accepted, the time period
they are accepted for, and any re-stocking fees applied to returns.

Shipping business policies
Shipping business policies define the shipping providers a store can use
and the charges associated with each type.

Referral interface business policies
Referral interface business policies define the relationship between a proxy
store and a remote store.

Many contract terms and conditions reference business policies. This provides a
measure of control over the nature of contracts a store enters into while still
providing flexibility in creating the contract terms and conditions. For more
information on business policies, refer to the WebSphere Commerce Programming
Guide and Tutorials.

Attachment

An attachment provides addition information about a trading agreement that is not
covered by other elements of the trading agreement. An example is a file that
provides additional information about RFQ requirements and any general remarks

about the RFQ. A trading agreement can have multiple attachments.
Attachments are stored outside of WebSphere Commerce and the trading
agreement stores Universal Resource Identifiers (URIs) to the attachments.
Examples of URIs include the following:

* http://www.mycompany.com/information/documentl.txt
* file:///home/joeuser/mydocs/documentl
e ftp://ftp.mycompany.com/information/attachment.txt

All attachments can be assigned an attachment usage that indicates what the
attachment is for. The attachment usage is an optional property of an attachment.

Order item

An order item is a product or item that is included with an order. Different order
items in a single order may be purchased under different contract trading
agreements. Buyers can select the contract trading agreement they shop under at
either the start of the shopping flow or when they add an item to their order,
depending on the store design. When purchasing items under different contract
trading agreements the following rules apply:

* Contract trading agreements for all items in an order must share at least one
payment method. If the contract for an item does not share a payment method,
the buyer can not add that item to the order. Only the payment methods shared
by all items in an order can be used to pay for the order.

Store Development Guide

+ All items in an order must come from contract trading agreements belonging to
the same business account or the store default contract.

For more detailed information on the structure of contract assets in
WebSphere Commerce, see the contract data model in the WebSphere
Commerce Development online help.

Creating a default contract asset in WebSphere Commerce

The default contract defines the default behavior of a store. As with all contracts,
you can set the available products, prices, payment methods, shipping methods,
and other store behavior.

The store default contracts provided with the WebSphere Commerce sample stores
contain terms and conditions that specify the following:

¢ Customers can purchase all products available in the master catalog for the store
at standard prices set in the master catalog (no discounts or mark-ups).

* Any shipping charges are paid to the seller (store).

* Customers can return purchases without penalty charges within a certain
number of days.

e Customers can receive refunds using the same payment method used for the
original purchase.

Also, the most general version of a store’s default contract omits terms and
conditions that restrict the payment and shipping methods that buyers can use.
Omitting these terms allows buyers to pay for purchases using any of the default
payment methods supported by the store and use any shipping method available
in the store.

The default contract’s properties are defined in its terms and conditions. Some of
the terms and conditions reference business policies. For more information on
business policies and terms and conditions, refer to the WebSphere Commerce
Development online help.

To create a default contract asset, do the following:

1. Review the online information on terms and conditions, contracts, default
contracts, and business policies.

2. Review the business policies defined in the wcs.bootstrap.xml file. For
information on the wcs.bootstrap.xml file, refer to the online information.

3. Review the files used to create default contract assets for the sample stores. All
sample stores files are located in the corresponding store archive file. Each
sample store includes a businesspolicy.xml and contract.xml, which includes
additional business policy information and default contract information. The
store archive files are located in the WC_installdir /samplestores directory.

Notes:

a. The WebSphere Commerce online help contains information about each of
the data assets contained in the sample stores.

b. To view the businesspolicy.xml and contract.xml files in the store archive,
decompress them using a ZIP program. The files are located in the data
directory.

C. The contract asset files for the ToolTech sample store that is provided with
WebSphere Commerce Business Edition includes information for contracts
other than the store default contract.

Chapter 18. Contract assets 187

188

4. Review the information in |[Appendix B, “Creating your data,” on page 439 |

5. Create a businesspolicy.xml file by copying one of the businesspolicy.xml files
in the sample store archives, or by creating a new file. Instructions on creating
a new file are in|“Creating business policy XML files.”| If you want to create
different business policies from the ones discussed, see the DTD file that
corresponds to businesspolicy.xml. The DTD files are located in the
WC_installdir /xml/sar directory.

6. Load the businesspolicy.xml file using the Loader package. For more
information on the Loader package, see [Part 10, “Publishing your store,” on|
If you are creating a multicultural store, you may want to create
separate XML files for each locale your store supports. The locale-specific file
should specify all description information, so it can be easily translated.

7. Create a contract.xml file by copying one of the contract.xml files in the sample
store archives, or by creating a new file. Instructions for creating a new file are
in[“Creating a default contract file” on page 189.|If you want to create a more
complex default contract, review the B2BTrading.dtd or Package.xsd file which
defines the structure of a contract file. The B2BTrading.dtd file is located in the
WC_installdir /xml/trading/dtd directory; the Package.xsd file is located in the
WC_installdir /xml/trading/xsd directory.

8. Publish the contract using the ContractImportApprovedVersion command. For
more information, see [Chapter 39, “Publishing business accounts and|
[contracts,” on page 395.|Information on the ContractImportApprovedVersion
command is also available in the WebSphere Commerce Development online
help.

WebSphere Commerce Business Edition users can define contracts for specific
customers using the WebSphere Commerce Accelerator. For more information on
creating contracts for specific customers, refer to the WebSphere Commerce
Production online help.

Creating business policy XML files

While WebSphere Commerce provides a number of business policies that the terms
and conditions in your store’s default contract can reference, some business
policies must still be defined by you. You must define any return charge, return
approval, and pricing business policies that the store default contract terms
reference. Commands for these business policies are provided and can be used
without modification. If you want to create your own business policies, refer to the
WebSphere Commerce Programming Guide and Tutorials.

To create business policies for your store, you must create the business policy and
associate one or more commands with the business policy. To create a business
policy, add information to the POLICY table. To associate a command with a
business policy, add information to the POLICYCMD table.

To create a business policy and associate commands with the policy, do the
following:

1. Create a business policy in your business policies XML file by adding
information to the POLICY table. Use the following example as a guide:

<policy

policy id="@policy id_10"

policyname="MasterCatalogPriceList"

policytype id="Price"

storeent_id="@storeent_id_1"
properties="name=&STORE_IDENTIFIER;&orgentity_dn=0RGANIZATION_DN
/>

Store Development Guide

where
e policy_id is the unique, numeric identifier for the business policy.
* policyname is a unique name for this business policy.
* policytype_id is the type of policy being defined. Valid policytype_ids are:
— InvoiceFormat
- Payment
— Price
— ProductSet
— ReturnApproval
— ReturnCharge
— ReturnPayment
— ShippingCharge
— ShippingPayment
— Referrallnterface
* storeent_id is the store or store group.

* properties is a list of name—value pairs that is sent to the business policy
command.

2. Associate a command with the business policy in your business policies XML
file by adding information to the POLICYCMD table. Use the following
example as a guide:
<policycmd
policy_id="@policy_id_10"
businesscmdclass=

"com.ibm.com.commerce.price.commands.RetrievePricesCmdImpl"

/>

where

¢ policy_id is the numeric identifier of the business policy with which the
command is being associated.

* businesscmdclass is the name of Java class implementing the business policy.

The line breaks in the businesscmdclass attribute are for display purposes only.

For more information about the use of @ and & see |AEEendix BJ
|“Creating your data,” on page 439

Creating a default contract file

In order to create a default contract, you must define the contract, the contract
owner, the contract description, the contract participants, and the terms and
conditions of the contracts. Contract information is stored in four tables:
CONTRACT, PARTICIPNT, TRADING, and TERMCOND.

The default contract is associated with a store using the STOREDEF database table.
For WebSphere Commerce Business Edition users, contracts other than the default
contract are associated with a store using the STORECNTR database table.

You can create a default contract in XML, based on one of two formats: XSD or
DTD. Refer to the sections below for details on how to create each type.

Creating a default contract file in XSD
To create a default contract in XSD format, do the following:

Chapter 18. Contract assets 189

190

Define the default contract in your XML file. The default contract is defined at

the beginning of the XML file as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Package xmlns="http://www.ibm.com/WebSphereCommerce"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.ibm.com/WebSphereCommerce Package.xsd">

<BuyerContract state="Active" contractUsage="Default" comment="">
<ContractUniqueKey majorVersionNumber="1" minorVersionNumber="0"
name="&STORE_IDENTIFIER; Default Contract" origin="Manual">
<ContractOwner>

<OrganizationRef distinguishName="ou=&0RGENTITYNAME;,&0RGANIZATION DN;" />
</ContractOwner>

</ContractUniqueKey>

Note that line breaks in the Package and ContractUniqueKey elements are for
display purposes only.

Define the contract participants in your contract XML file. Use the following
example as a guide:

<Participant role="Buyer">
</Participant>
<Participant role="Seller">
<ParticipantMember>
<OrganizationRef distinguishName=""ou=&0RGENTITYNAME; ,&0RGANIZATION DN;"/>
</ParticipantMember>
</Participant>

where distinguishName is the name of the user that is the seller for this
contract in LDAP distinguished name format. For example,
uid=johnsmith,ou=People,o=ibm,o=com. In many cases, this will be the same as
the contract owner.

Note: No members are specified in the buyer participant role because the
contract is available to all users with a buyer role.

Define the contract description in your contract XML file. Use the following
example as a guide:

<ContractDescription title="This is a store default contract." Tocale="en_US"/>

where
e titleis a text description of the contract.

* Tlocale is the locale for the language that the title is in. The following values
are predefined for locale:

— en_US (English — US)

— fr_FR (French)

— de_DE (German)

— it_IT (Italian)

— es_ES (Spanish)

— pt_BR (Brazilian Portuguese)

— zh_CN (Simplified Chinese)

— zh_TW (Traditional Chinese)

— ko_KR (Korean)

— ja_JP (Japanese)

Additional values can be defined for locale by updating the language assets
for your store. For more information on language assets, see

[“Language assets,” on page 215/

Store Development Guide

4. Define the terms and conditions in your contract XML file. The XML elements
and attributes are different for the various types of terms and conditions. Use
the Package.xsd file to learn the XML elements and attributes to use for each
type of term. When defining terms and conditions the following attributes are
commonly used:

policyName
The name of the business policy that the term and condition references.
This name is stored in POLICY.POLICYNAME.

policy references
The type of business policy that the term and condition references.
Valid values are:

* PricePolicyRef

* ProductSetPolicyRef

* InvoiceFormatPolicyRef
+ PaymentPolicyRef

* ReturnApprovalPolicyRef
* ReturnChargePolicyRef
* ReturnPaymentPolicyRef
* ShippingChargePolicyRef
* ShippingModePolicyRef

storeRef
The store or store group for the term and condition.

distinguishName
The name of the user that owns the store or store group. The name
must be in LDAP distinguished name format. For example,
uid=wcsadmin,o=Root Organization.

The following sample terms and conditions are preceded by a description of
what they define:

 All buyers can purchase all items in the store’s master catalog at the prices
set in the master catalog;:

<PriceTCMasterCatalogWithOptionalAdjustment>
</PriceTCMasterCatalogWithOptionalAdjustment>

* Buyers pay any shipping charges to the seller:

<ShippingTCShippingCharge>
<ShippingChargePolicyRef policyName="StandardShippingChargeBySeller">
<StoreRef name="&STORE_IDENTIFIER;">
<Owner>
<OrganizationRef distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION_DN;" />
</Owner>
</StoreRef>
</ShippingChargePolicyRef>
</ShippingTCShippingCharge>
* Buyers can return products without any return charges. The products must
be returned within the number of days defined in the ApprovalByDays
business policy:
<ReturnTCReturnCharge>
<ReturnChargePolicyRef policyName="NoCharges">
<StoreRef name="&STORE_IDENTIFIER;">
<Owner>

<OrganizationRef distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION DN;" />

Chapter 18. Contract assets 191

192

</0wner>
</StoreRef>
</ReturnChargePolicyRef>
<ReturnApprovalPolicyRef policyName="ApprovalByDays">
<StoreRef name="&STORE_IDENTIFIER;">
<Qwner>
<OrganizationRef distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION DN;" />
</0Owner>
</StoreRef>
</ReturnApprovalPolicyRef>
</ReturnTCReturnCharge>

Note for WebSphere Commerce Business Edition users:

Omitting these terms and conditions from the store default contract indicates
that, by default, the store does not accept returns. Other contracts, however,

may allow buyers to do returns, by defining the returns term and condition.

Note for WebSphere Commerce Professional Edition users:
Omitting these terms and conditions from the store default contract indicates
that the store does not accept returns.

* Refunds are paid using the same payment method the buyer used when
completing the order:

<ReturnTCRefundPaymentMethod>
<ReturnPaymentPolicyRef policyName="UseOriginalPayment">
<StoreRef name="&STORE_IDENTIFIER;">
<Qwner>
<OrganizationRef distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION DN;" />
</Owner>
</StoreRef>
</ReturnPaymentPolicyRef>
</ReturnTCRefundPaymentMethod>

5. Close the XML file as follows:

</BuyerContract>
</Package>

For more information about the use of @ and & see|AQEendix B:|
|”Creating yvour data,” on page 439.|

Creating a default contract file in DTD format

In order to create a default contract, you must define the contract, the contract
owner, the contract description, the contract participants, and the terms and
conditions of the contracts. Contract information is stored in four tables:
CONTRACT, PARTICIPNT, TRADING, and TERMCOND.

The default contract is associated with a store using the STOREDEF database table.
For WebSphere Commerce Business Edition users, contracts other than the default
contract are associated with a store using the STORECNTR database table.

To create a default contract in DTD format, do the following:

1. Define the default contract in your XML file. The default contract is defined at
the beginning of the XML file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE Trading SYSTEM "B2BTrading.dtd">
<Trading>

Store Development Guide

<Contract state="Active" origin="Manual"
name="&STORE_IDENTIFIER; Default Contract" majorVersionNumber="1"
minorVersionNumber="0" contractUsage="Default">

Note that line breaks in the Contract element are for display purposes only.
Define the contract owner. Use the following example as a guide:

<ContractOwner>
<Member>
<Organization distinguishName="ou=&0RGENTITYNAME;,&0RGANIZATION_DN;" />
</Member>
</ContractOwner>

where distinguishName is the name of the user owning the contract in LDAP
distinguished name format. For example,
uid=johnsmith,ou=People,o0=1ibm,o0=com.

Define the contract description in your contract XML file. Use the following
example as a guide:

<ContractDescription title="This is a store default contract." languageld="-1">
</ContractDescription>

where
* titleis a text description of the contract.

* languageld is the language the title is in. The following values are predefined
for languageld:

— -1 (English - US)

— -2 (French)

— -3 (German)

— -4 (Italian)

— -5 (Spanish)

— -6 (Brazilian Portuguese)
— -7 (Simplified Chinese)
— -8 (Traditional Chinese)
— -9 (Korean)

— -10 (Japanese)
Additional values can be defined for 1anguageld by updating the language

assets for your store. For more information on language assets, see
[Chapter 22, “Language assets,” on page 215.|

Define the contract participants in your contract XML file. Use the following
example as a guide:
<Participant role="Buyer">
</Participant>
<Participant role="Seller">
<Member>
<Organization distinguishName="ou=&0RGENTITYNAME;,&0RGANIZATION DN;"/>
</Member>
</Participant>

where distinguishName is the name of the user that is the seller for this
contract in LDAP distinguished name format. For example,
uid=erickoeck,ou=People,o=ibm,o=com. In many cases, this will be the same as
the contract owner.

Chapter 18. Contract assets 193

194

Note: No members are specified in the buyer participant role because the
contract is available to all users with a buyer role.

Define the terms and conditions in your contract XML file. The XML elements
and attributes are different for the various types of terms and conditions. Use
the B2BTrading.dtd file to learn the XML elements and attributes to use for
each type of term. When defining terms and conditions the following attributes
are commonly used:

policyName
The name of the business policy that the term and condition references.
This name is stored in POLICY.POLICYNAME.

policyType
The type of business policy that the term and condition references.
Valid values are:

* Price

* ProductSet

¢ InvoiceFormat
¢ Payment

* ReturnApproval
¢ ReturnCharge
¢ ReturnPayment
 ShippingCharge
* ShippingMode

storeldentity
The store or store group for the term and condition.

distinguishName
The name of the user that owns the store or store group. The name
must be in LDAP distinguished name format. For example,
uid=wcsadmin,o=Root Organization.

The following sample terms and conditions are preceded by a description of
what they define:

* All buyers can purchase all items in the store’s master catalog at the prices
set in the master catalog:

<TermCondition>
<PriceTC>
<PriceTCMasterCatalogWithOptionalAdjustment>
</PriceTCMasterCatalogWithOptionalAdjustment>
</PriceTC>
</TermCondition>

* Buyers pay any shipping charges to the seller:

<TermCondition>
<ShippingTC>
<ShippingTCShippingCharge>
<PoTicyReference policyName="StandardShippingChargeBySeller"
policyType="ShippingCharge" storeldentity="&STORE_IDENTIFIER;">
<Member>
<Organization distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION_DN;" />
</Member>
</PolicyReference>
</ShippingTCShippingCharge>
</ShippingTC>
</TermCondition>

Store Development Guide

Line breaks in the PolicyReference element are for display purposes only.

* Buyers can return products without any return charges. The products must
be returned within the number of days defined in the ApprovalByDays
business policy:
<TermCondition>

<ReturnTC>
<ReturnTCReturnCharge>
<ReturnChargePolicyReference>
<PolicyReference policyName="NoCharges"
policyType="ReturnCharge"
storeldentity="&STORE_IDENTIFIER;">
<Member>
<Organization distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION DN;" />
</Member>
</PolicyReference>
</ReturnChargePolicyReference>
<ReturnApprovalPolicyReference>
<PolicyReference policyName="ApprovalByDays"
policyType="ReturnApproval"
storeldentity="&STORE_IDENTIFIER;">
<Member>
<Organization distinguishName="ou=&0RGENTITYNAME;,
&0RGANIZATION_DN;" />
</Member>
</PolicyReference>
</ReturnApprovalPolicyReference>
</ReturnTCReturnCharge>
</ReturnTC>
</TermCondition>

Line breaks in the PolicyReference elements are for display purposes only.

Note for WebSphere Commerce Business Edition users:

Omitting these terms and conditions from the store default contract indicates
that, by default, the store does not accept returns. Other contracts, however,

may allow buyers to do returns, by defining the returns term and condition.

Note for WebSphere Commerce Professional Edition users:
Omitting these terms and conditions from the store default contract indicates
that the store does not accept returns.

* Refunds are paid using the same payment method the buyer used when
completing the order:

<TermCondition>
<ReturnTC>
<ReturnTCRefundPaymentMethod>
<PolicyReference policyName="UseOriginalPayment"
policyType="ReturnPayment" storeldentity="&STORE IDENTIFIER;">
<Member>
<Organization distinguishName="ou=&40RGENTITYNAME;,
&0RGANIZATION DN;" />
</Member>
</PolicyReference>
</ReturnTCRefundPaymentMethod>
</ReturnTC>
</TermCondition>

Note that line breaks in the PolicyReference element are for display
purposes only.

6. Close the XML file as follows:

Chapter 18. Contract assets

195

</Contract>
</Trading>

For more information about the use of @ and & see|AEEendix B:|
[“Creating your data,” on page 439,

196 store Development Guide

Chapter 19. Fulfillment assets

Fulfillment centers are used by stores as both inventory warehouses and shipping
and receiving centers. A fulfillment center represents a place from which products
are shipped to customers. Inventory counts are maintained separately for each
fulfillment center. One store may have one or many fulfillment centers associated
with it. The fulfillment center manages the product inventory and shipping for a
store. Fulfillment includes picking, packing, and shipping. Picking is the selection
of products in one or more releases from a fulfillment center, packing is putting
these products into shipping containers, and shipping is sending them to
customers.

Products are configured for fulfillment with the Product wizard and the Product
notebook. Product configuration provides options to track inventory, allow
backorders, force backorders, release the product separately, and specify that the
product should not be returned.

Typically, there are a number of people working in a fulfillment center at one time,
each with a different task or tasks to perform. The WebSphere Commerce
Accelerator divides the most common tasks into roles, and these roles are assigned
to users. In the WebSphere Commerce Accelerator, you must select one fulfillment
center at logon time, if you have been assigned one or more roles pertaining to
fulfillment.

Note: For more information on fulfillment, fulfillment centers, and roles, refer to
the WebSphere Commerce online help.

© Copyright IBM Corp. 2000, 2003 197

Understanding fulfillment assets in WebSphere Commerce

In order to understand fulfillment assets, it is necessary to understand the
relationships between fulfillment and the store. This can be explained by the use of
an information model. The following sections describe the relationships that
fulfillment has to a store and other assets.

O @

ShippingJurisdictionGroupCalculationRule TaxdJurisdictionGroupCalculationRule

Ql / @)

Member / StoreltemFulfillmentCenter

O

PickBatch

O

Orderltem

O

ShippingArrangement

+owner /

Q +defaultFulfillmentCenter
Store FulfilmentCenter

1 0..1 1

O O

Receipt RaDetail

@

ltemFulfillmentCenter

O

Inventory

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
[page 97]For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Fulfillment center

In the preceding diagram, the fulfillment center is at the center of the fulfillment
process. A fulfillment center has an owner, defined in the MEMBER table. Each
store can be associated with multiple fulfillment centers, and a fulfillment center
can have several stores associated with it. There are several interactions between
the store and the fulfillment center, as indicated in the diagram. For more
information on store assets, see ["Understanding store assets in WebSphere|
[Commerce” on page 123.|

198 store Development Guide

Receipts

Fulfillment centers receive inventory for items on a daily, weekly, or monthly basis.
When inventory is received for an item, a receipt is created in the RECEIPT table
which records information about the quantity received, as well as the store which
owns the inventory. As orders are processed, the RECEIPT table is updated to
reflect the current available inventory levels. For information on creating receipts,
see [“Creating inventory assets in WebSphere Commerce” on page 268.|

RaDetail

RaDetail is the detailed information about items on an expected inventory record.
This information can be used to estimate when inventory may be expected to be
received at a fulfillment center and provide customers with expected shipping
dates for backordered items.

Inventory

A store has inventory which is associated with the fulfillment center. Inventory
includes everything that can be physically accounted for in a fulfillment center.
Inventory is associated with one store and one fulfillment center. Information
about the inventory that a store owns at the fulfillment center is also recorded such
as reserved quantities, amounts on backorder, and amounts allocated to
backorders. This information is stored in the ITEMFEMCTR table. For more
information on inventory and inventory assets, see [Chapter 29, “Inventory assets,”]

Shipping arrangements

A shipping arrangement is a relationship that enables a store to use a fulfillment
center. Shipping arrangements indicate that a fulfillment center can ship products
on behalf of a store using a shipping mode. Each store has a shipping arrangement
with a fulfillment center and vice versa. Shipping arrangements are set up in the
SHPARRANGE table. For information on creating shipping arrangements, see
[“Creating shipping fulfillment assets” on page 240

Other fulfillment assets

There are other relationships to a fulfillment center that are not directly related to a
store. A pick batch is one that is associated with one fulfillment center. A pick
batch groups together order releases for their processing as a unit at a fulfillment
center, and creates pick slips and pack slips. Once items have been picked and
packed, an order release can then be shipped, and the shipment can be confirmed.
Pick batch information is stored in the PICKBATCH table. An order item is also
associated with one fulfillment center. An item is a specific instance of a product,
defined by attributes. Information about each item in an order is stored in the
ORDERITEMS table. For more information on order assets, see [Chapter 30, “Order]
lassets,” on page 273/

Like other entities, a fulfillment center has rules which govern some of its actions.
Each fulfillment center has rules for tax and shipping charges. These are defined in
the TAXJCRULE and SHPJCRULE tables respectively. For more information on tax
and shipping assets, see [Chapter 26, “Shipping assets,” on page 229,| and
[“Understanding tax assets in WebSphere Commerce” on page 245

For more detailed information on the structure of fulfillment assets in
WebSphere Commerce Server, see the fulfillment data models in the
WebSphere Commerce online help.

Chapter 19. Fulfillment assets 199

Creating fulfillment assets in WebSphere Commerce

200

Before your store can ship goods to a customer, you must define the fulfillment
center, or centers, that will supply these goods. Create this information in the
format of XML files that can be loaded into the database using the Loader package.
For more information on the Loader package, see [Part 10, “Publishing your store,”]

Before creating assets, vou should also be familiar with the material covered in

(Chapter 38, “Loading WebSphere Commerce database asset groups,” on page 383,

To create fulfillment assets for your store using an XML file, do the following;:

1. Review the XML files used to create fulfillment assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:

* WC installdir/samplestores

Note: The WebSphere Commerce online help contains information about

each of the data assets contained in the sample stores.

Each sample store includes a fulfillment.xml file, which includes the
fulfillment information. To view the fulfillment.xml file in the store archive,
decompress it using a ZIP program. The fulfillment.xml file is located in the
data directory.

2. Review the information in |[Appendix B, “Creating your data,” on page 439

3. Create a fulfillment.xml file, either by copying one of the fulfillment.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to fulfillment.xml. The DTD
files are located in the following directory:

e WC installdir/xml/sar
4. Define the fulfillment center, or centers that your store supports:

a. Using the following example as your guide, define a fulfillment center in
the XML file in the FFMCENTER table:

<ffmcenter

ffmcenter_id="@ffmcenter_id_1"
member_id="@seller_b2b mbr_id"
name="ToolTech Home"
defaultshipoffset="0"
markfordelete="0"

/>

where

Store Development Guide

ffmcenter_id is a generated unique key
member_id is the owner of the fulfillment center

name is a string that, along with the owner, uniquely identifies this
fulfillment center.

defaultshipoffset is an estimate of the number of seconds it takes for an
item to be shipped from this fulfillment center. This value can be
overridden in the STORITMFEFC table.

markfordelete indicates whether the fulfillment center should be deleted
as follows: 0 = do not delete. 1 = delete if no longer in use. For more
details, see the information on the Database Cleanup utility in the
WebSphere Commerce online help.

b. Using the following example as your guide, describe the fulfillment center
in the XML file in the FEMCENTDS table. If you are creating a multicultural
store, you should include this information in a locale-specific XML file.
<ffmcentds

ffmcenter_id="@ffmcenter_id_1"

description="The fulfillment center that supplies products to ToolTech."
Tanguage_id="&en_US"

displayname="ToolTech Fulfillment"

staddress_id="@staddress_id_en_US_1"

/>

where

» ffmcenter_id is a generated unique key

e description is a description of the fulfillment center, suitable for display
to a customer.

* language_id is the language in which this information will display. (For
more information about support for different languages, see [Chapter 34,

[“Globalization,” on page 295

* displayname is the name of the fulfillment center, suitable for display to a
customer.

* staddress_id is the physical location of the fulfillment center.

C. Repeat steps a and b for all fulfillment centers that your store supports.

For more information about the use of @ and & see |AE]:_>endix B:l
|“Creating your data,” on page 439

Creating store fulfillment assets (non-ATP)

After you have defined the fulfillment center or centers that will supply goods for
your store, you must associate a fulfillment center to each product. That is, you
must identify which fulfillment center will supply which of your products. To
create this relationship, add information to the INVENTORY table. Create this
information in the format of XML files that can be loaded into the database using
the Loader package. For more information on the Loader package, see
[“‘Publishing your store,” on page 319.|

Note:

1. You must create store assets before you can associate a store with a
fulfillment center. For more information on creating store assets, see
[‘Creating store data assets in an XML file” on page 124 You must also
create the catalog assets before you can create the store fulfillment assets.
For more information, see [“Displaying store catalog assets” on page 162

2. Create store fulfillment assets only if you implement non-ATP
fulfillment. The INVENTORY table is not used by a store that includes
the ATP functions.

To create the store fulfillment relationship using an XML file, do the following;:

1. Review the XML files used to create store fulfillment assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file.

The store archive files are located in the following directory:
* WC installdir/samplestores

Chapter 19. Fulfillment assets 201

202

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a storefulfill.xml file, which includes the store
fulfillment information. To view the storefulfill.xml file in the store archive,

decompress it using a ZIP program. The storefulfill.xml file is located in the

data directory.

2. Review the information in [Appendix B, “Creating your data,” on page 439

3. Create a storefulfill.xml file, either by copying one of the storefulfill.xm]
files in the sample store archives, or by creating a new one. For more
information, see the wcs.dtd file in the WC_installdir/schema/xml directory or
the DTD included in the store archive.

4. Using the following example as your guide, create a store-fullfillment center
relationship in the XML file, by adding information to the INVENTORY table.

<inventory
catentry_id="@catentry_id_1470"
quantity="100"
ffmcenter_id="@ffmcenter_id 1"
store_id="@storeent_id_1"
quantitymeasure="C62"
inventoryflags="0"

/>

where
 catentry_id is the catalog entry that this fulfillment center will supply.

e quantity is the quantity amount, in units indicated by
QUANTITYMEASURE, available from this fulfillment center.

» ffmcenter_id is the fulfillment center that will be supplying the inventory.
* store_id is the store for which the inventory is being supplied.

* quantitymeasure is the unit of measurement for QUANTITY.

* inventoryflags are bit flags that indicate how QUANTITY is used:

- 1 = noUpdate. The default UpdateInventory task command does not
update QUANTITY.

— 2 = noCheck. The default CheckInventory and Updatelnventory task
commands do not check QUANTITY.

5. Repeat step 3 for each catalog entry in your store.

For more information about the use of @ and & seelAEEendix BJ
|“Creating your data,” on page 439

Store Development Guide

Chapter 20. Campaign assets

Campaigns serve to organize your marketing efforts. Campaigns are typically

created by either a Marketing Manager, or by a Merchandising Manager. They are

often associated with a certain set of objectives. For instance, a "Back to School”

campaign may have an objective of increasing sales of children’s clothes during the

campaign.

Understanding campaigns in WebSphere Commerce

The following diagram illustrates the campaign assets in the WebSphere Commerce

Server:
EMarketingSpot Store Campaign
0..1 0..1
InitiativeSchedule 1 Initiative

This diagram, and all others in the store data section are part of the

WebSphere Commerce Server information model. For more information

on the information model, see [“The store data information model” on|
[page 97] For more information on the conventions used in this diagram,

see|Appendix A, “UML legend,” on page 437]

Campaigns, and their associated assets are scoped to stores.

Within WebSphere Commerce, campaigns contain any number of campaign
initiatives, which define a condition. The campaign initiatives generate targeted

content for the customers, when the defined condition is evaluated to be true. The

result is that a campaign is the high-level marketing element that organizes the

© Copyright IBM Corp. 2000, 2003

203

204

initiatives. The campaign initiative information model is displayed below:

|nitiativng{ Rule M Condition }ou{ CustomerProfile
1

1

Action CustomerBehavior
A\

5

’ ProductRecommendation ‘ ’ AwarenessAdRecommendation ‘
ProductAssociation‘ ’ CategoryRecommendation ‘
Collateral
N
N
Discount
/ 1 / 1
RelatedCatalogEntry Product CatalogGroup CouponPromotion

Campaign initiatives are associated with a campaign that contains a collection of
initiatives. As an example of this relationship, if an office supply store had a "Back
to School” campaign, the initiatives would be responsible for lower-level actions,
such as advertising a discount on pens, or suggesting lined paper to any customer
who has registered and listed her occupation as a student.

Campaign initiatives are capable of displaying four types of dynamic content:
* Suggestive selling initiative

* Collaborative filtering-based recommendation

¢ Awareness advertisement

* Merchandising association

Suggestive selling content provides rule-based category and product
recommendations, targeted at a specific customer audience, based on a customer’s
profile, and other customers’ behaviors. The targetable customer behaviors include
the total value of the shopping cart, the contents of the shopping cart, and the
contents of the customer’s purchase history.

Collaborative filtering-based recommendations also create product
recommendations, but they use a different recommendation algorithm, which
targets items based on customers’ overall behavior, rather than predefined rules.

Awareness advertisements provide advertising content targeted at a specific
customer audience, based on the same criteria as those used for suggestive selling,
but they are intended to be used to increase a customer’s awareness about
activities at the online store, highlight special offers, and to increase brand

Store Development Guide

awareness. Awareness advertisements follow the information model shown here:

’ AwarenessAdRecommendation ‘

/ : Coll Q
/ ollateral

Discount CouponPromotion

Merchandising associations create up-sell and cross-sell opportunities, based on the
static associations defined in the catalog. In order to create an initiative of this
type, a method of selecting the source product in the association must be defined,
so that the proper source is used when the e-Marketing Spot is invoked, to return
the target products. The method can select the source based on either the content
of the current page, the contents of the shopping cart, or the contents of the
shopper’s purchase history, as sources of the association.

Initiatives can be incorporated into any page on the site. When the site is designed,
special placeholders, called e-Marketing Spots, are placed on the site. When
displayed to a customer, these placeholders are replaced by the specific targeted
content. Target locations are assigned by scheduling initiatives to display in
e-Marketing Spots in the desired locations. For more information on adding
e-Marketing Spots to your store, see (Chapter 42, “Adding e-Marketing Spots to|
[your store,” on page 429

Campaign initiatives contain a condition that determines when and to whom they
are displayed. This condition is defined when the initiative is created and can be
changed during the lifetime of the initiative to adjust the initiative’s visibility and
the displayed content. For more information about customer profiles, see

[Chapter 32, “Customer profiles,” on page 281

Campaign initiatives generate statistics about their use. These statistics can be
viewed using the WebSphere Commerce Accelerator by Merchants, Marketing
Managers, and Merchandising Managers. The statistics illustrate an initiative’s
clickthrough rate for each e-Marketing Spot where it is implemented. These
statistics provide feedback on the effectiveness of the initiative, as well as
comparative success rates among the various locations in which it displays.

Creating campaign assets in WebSphere Commerce

Campaigns and campaign initiatives are typically created by either a Marketing
Manager, or by a Merchandising Manager using the Campaign and Campaign
Initiative wizards in the WebSphere Commerce Accelerator. For more information,
see the WebSphere Commerce online help.

For more information on adding e-Marketing Spots to your store, see [Chapter 42,
[“Adding e-Marketing Spots to your store,” on page 429

Chapter 20. Campaign assets 205

206 Store Development Guide

Chapter 21. Payments instruments

WebSphere Commerce provides an optional component called WebSphere
Commerce Payments (formerly known as IBM Payment Manager).

If you wish to use WebSphere Commerce Payments with your store, you must
include a payment asset file in your store archive. Before publishing your store
archive, ensure that your Payments instance is started, then, when the store archive
is published, the payment asset file (included as part of the sample store archives)
sets up the following information in WebSphere Commerce Payments:

* The merchant_ID in the WebSphere Commerce Payments database.
* The type of cassette used in the store.

* An account in the WebSphere Commerce Payments database for each currency
specified as supported by the store in the payment asset file. If your store does
not support the currency specified in the payment asset file, the account will not
be created.

e A brand, or brands, for each account.

To set up a payment asset file and set up your store to use WebSphere Commerce
Payments, do the following:

* Create payment data in the form of an XML file (paymentinfo.xml) that is loaded
during store publish using the Administration Console. This configures
WebSphere Commerce Payments with the merchant and the brand types
specified for the store being published. For more information, see
[payment assets using an XML file” on page 208

Note: paymentinfo.xml does not populate tables in the WebSphere Commerce
Server database. It configures WebSphere Commerce Payments.
paymentinfo.xml is only applicable if you are using offline credit card as
the payment method.

After the store archive has been published, you can place orders using the
payment information set up in the sample store archive. If you want to add new
brands, you must configure WebSphere Commerce Payments to work with each
brand.

 If you will use an IBM payment cassette other than the OfflineCard or
CustomOffline cassette, modify the sample store Web assets as described in
[“Customize environment for a payment cassette” on page 209/

* Complete the set up of WebSphere Commerce Payments for your store using the
Administration Console or the WebSphere Commerce Payments user interface. If
you use the Administration Console, menu items appear on the Payments menu.
If you use the WebSphere Commerce Payments user interface, menu items
appear under Administration in the navigation frame. For more information on
setup tasks, see the topic "Setting up WebSphere Commerce Payments for your store”
in the WebSphere Commerce Production online help.

If you intend to use a payment mechanism other than WebSphere Commerce

Payments, the steps to follow to use your payment mechanism are similar to the
following procedures.

© Copyright IBM Corp. 2000, 2003 207

Create payment assets using an XML file

To create payment assets for your store using an XML file, do the following:

1. Review the XML files used to create payment assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC installdir/samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a paymentinfo.xml file, which include the payment
information. To view the paymentinfo.xml file in the store archive, decompress
it using a ZIP program. The paymentinfo.xml files are located in the data
directory.

2. Create a paymentinfo.xml file, either by copying one of the paymentinfo.xml
files in the sample store archives, or by creating a new one. For more
information, see the DTD file that corresponds to the paymentinfo.xml. The
DTD file is located in the following directory: WC_installdir/xml/sar.

3. Enable or disable WebSphere Commerce Payments.

a. Using the following example as your guide, in your XML file enable or
disable WebSphere Commerce Payments and specify what types of payment
cassette, currencies and brands your store accepts:
<paymentinfo>

<PaymentManager enable="yes"/>
<Cassette type="OfflineCard">
<Account currency="USD">
<Brand type="MasterCard"/>
<Brand type="VISA"/>
<Brand type="American Express"/>
<Account/>
<Account currency="EUR">
<Brand type="MasterCard"/>
<Brand type="VISA"/>
<Brand type="American Express"/>
</Account>
</Cassette>
</paymentinfo>

where:

* enable is whether WebSphere Commerce Payments is enabled or
disabled. When WebSphere Commerce Payments is disabled, your store
will not be able to process payment transactions through the Payments
component, although the Payments user interface will still function. If
you disable the Payments component, there is no need to specify the
other elements in the paymentinfo element.

¢ Cassette type is the type of cassette supported.

¢ Account currency is the currency your store supports. Account currency
is required if you are using the OfflineCard cassette type. The currency
must be identified in a three-letter code conforming to the ISO 4217
standard. For example, "USD" for U.S. dollars.

* Brand type is the type of credit card supported by the account and the
currency.

208 Store Development Guide

Customize environment for a payment cassette

WebSphere Commerce provides sample stores that can use the OfflineCard or
CustomOffline cassette as the payment cassette for handling payment transactions.
These cassettes are automatically configured as being available for use as a
payment method for the sample stores. The sample store Web assets need to be
modified to use any other payment cassette. The instructions in this section
describe how to customize your environment to use other IBM payment cassettes
provided with WebSphere Commerce.

For a store to use an IBM payment cassette, you must first have selected the
WebSphere Commerce Payments component for installation. Installation
instructions are provided in the WebSphere Commerce Installation Guide for your
platform. The WebSphere Commerce installation program installs both the
Payments framework and the cassette software. You must then use the WebSphere
Commerce Configuration Manager to perform necessary post-installation tasks,
such as creating a Payments instance and adding a cassette to an instance. Refer to
the WebSphere Commerce Installation Guide and the Configuration Manager online
help for instructions on configuring a Payments instance.

After adding a payment cassette to a Payments instance, check the following
customization steps to ensure that your WebSphere Commerce sample store can
process payments through the payment cassette you have selected:

1. Modify the store .jsp file to specify the payment cassette.
2. Check the cassette’s Cashier profile.

3. Check the cassette’s .jsp file that supports the clerk order (guest order)
placement page.

4. Configure the Merchant Settings.

These steps are described in the following sections.

Modify the store .jsp file

If you are not going to use the OfflineCard or CustomOffline cassette with the
sample store, you must modify the store’s jsp file. By default, the store’s jsp file is
set up to use the OfflineCard cassette; therefore, you must modify the file to use
any other cassette. The FashionFlow store also uses the CustomOffline cassette.

For a list of .jsp files to review for possible modification, see [Table 10 on page 211}

To modify the jsp file, follow these steps:

1. Create a store in WebSphere Commerce using a sample store such as
FashionFlow.

2. Go to the following directory:
WAS_installdir /installed Apps/ cell_name/
WC_instance_name.ear /Stores.war/

For iSeries, the path is:

WAS _userdir / WAS_instance_name /
installed Apps/cell_name/WC_instance_name.ear /Stores.war/.The store you
created has its own directory within the war directory.

3. From your store’s directory, open the OrderSubmitForm. jsp file in a text editor.

Chapter 21. Payments instruments 209

210

The Contract Tools in the WebSphere Commerce Accelerator supports
all payment cassettes. The OrderSubmitForm.jsp file must honor the payment
terms and conditions of the contract that was set up between the Buyer
organization and the Seller.

Search for the following text in the OrderSubmitForm.jsp file:
if (info[i].getPolicyName().trim().equals("0fflineCard"))

Change the name of the payment policy from 0fflineCard to one of the
following as appropriate:

CustomOffline

BankServACH

Paymentech

VisaNet

VisaNet_PCard

For more information about policies, see the POLICY database table in the
WebSphere Commerce Development online help.

The policy for CustomOffline supports processing of custom payment
transactions such as cash on delivery or COD, Bill-Me-Later or coupons that are
often executed outside of WebSphere Commerce Payments.

The policy for BankServACH supports processing of online electronic check
payments using the BankServ payment gateway that interfaces with the
Automated Clearing House Network (ACH).

The policy for Paymentech supports online authorization and settlement of
credit card and non-PIN based debit card payments.

The policy for VisaNet supports processing of credit card transactions using the
Vital Processing Services or First Horizon Merchant Services (FHMS) financial
network.

Note: If you are using the Cassette for VisaNet with purchasing card support,
select VisaNet_PCard rather than VisaNet.

For more information about these cassettes, refer to the cassette supplements.

If your store uses the Quick Checkout function, you should also change the
name of the payment policy in these other files:
ShoppingArea\CheckoutSection\QuickCheckoutSubsection\QuickCheckoutForm.jsp
UserArea\AccountSection\QuickCheckoutProfileSubsection\QuickCheckoutProfileForm.jsp
(Optional) If you are using the credit card method of payment and need to add
additional fields in the user interface to collect additional information from the
user, review the StandardCreditCard.jsp file also for possible modifications.
See [Table 10 on page 211| for path information.

To enable credit card brands to be displayed when doing a purchase with a
particular payment method that involves the use of credit cards, be sure that an
option value exists in the jsp file for the payment method. For example, to
enable credit card brands to be displayed when doing a purchase with the
Paymentech payment method, search for <select name="cardBrand">. Add a
new line underneath this text and add the following:

<option value="Paymentech">Paymentech</option>.

Store Development Guide

Table 10. Store .jsp files to review

JSP file

Business model/sample

Purpose of change

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/
OrderSubmitForm.jsp

Consumer direct
(Fashion Flow or
Express), hosted reseller

change payment policy
name from OfflineCard

/ShoppingArea/CheckoutSection/QuickCheckoutSubsection/
QuickCheckoutForm. jsp

/UserArea/AccountSection/QuickCheckoutProfileSubsection/
QuickCheckoutProfileForm.jsp

Consumer direct
(Fashion Flow or
Express)

change payment policy
name from OfflineCard

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/
StandardCreditCard.jsp

Consumer direct
(Fashion Flow or
Express)

enable credit card brand
to display

/ShoppingArea/CheckoutSection/StandardCheckoutSubsection/
StandardCreditCardDisplay.jsp

B2B direct (ToolTech),
value chain - supply

enable credit card brand
to display

Check the Cashier profile for the cassette

A WebSphere Commerce Payments Cashier profile should be available for any IBM
payment cassette provided with WebSphere Commerce. The Cashier profile is used
to create orders in the Payments component.

You may want to edit the Cashier profile to set certain parameters, such as the
APPROVEFLAG and DEPOSITFLAG parameters. Since not all cassette parameters
are alike, refer to the cassette supplement for more information about setting

parameters:

* WebSphere Commerce Payments CustomOffline Cassette Supplement

* WebSphere Commerce Payments OfflineCard Cassette Supplement

* WebSphere Commerce Payments Cassette for BankServACH Supplement

* WebSphere Commerce Payments Cassette for Paymentech Supplement

* WebSphere Commerce Payments Cassette for VisaNet Supplement

Cashier profiles associated with IBM-provided payment cassettes include the

following:

WC51_BankServACH.profile
WC51_CustomOffline_BillMe.profile
WC51_CustomOffline_COD.profile
WC51_OfflineCard.profile

WC51 VisaNet.profile
WC51_VisaNet_PCard.profile
WC_Paymentech.profile

The cassette profile should be stored in the WebSphere Commerce instances profile

directory.

To locate the directory in which the profile is stored, look for the WebSphere
Commerce configuration file for the instance you created. If you used the default
instance name of ‘"demo’, the configuration file is:

WC _installdir /instances/demo/xml/demo.xml

For iSeries, the path would be:

WC _userdir /instances/demo/xml/demo.xml

Chapter 21. Payments instruments

211

Then, look at the directory specified by the ProfilePath attribute of the Payment
Manager element in the configuration file. This attribute specifies where the profile
should be located. If you used the default instance name of ‘demo’, the directory
path in which to store the profile would be the following;:

WC_installdir /instances/demo/xml/payment

For iSeries, the path is:
WC_userdir /instances/demo/xml/payment

If you edit the cassette’s Cashier profile to set parameters, be sure to save the
profile in the WC_installdir/instances/instance_name/xm1/payment directory,
where instance_name is the name of the instance you are using.

For iSeries, the path is:
WC_userdir /instances/instance_name/xml/payment

The actual cashier profile used by a payment business policy is specified by the
profileName property value in the Properties field of the payment business policy.
Refer to the POLICY database table in the online help for more information about
business policies.

Check the cassette .jsp file

Payments are processed through the WebSphere Commerce Accelerator if an order
clerk places a guest order on behalf of a customer. The payment data for the
cassette is gathered using the cassette’s .jsp file.

The cassette .jsp file is called the “payment attribute page” in WebSphere
Commerce. The actual page used is specified by the attrPageName property value
in the Properties field of the payment business policy. For more information see the
POLICY database table in the WebSphere Commerce Development online help.
Both the store flow and WebSphere Commerce Accelerator flow should make use
of the payments attribute page.

The cassette’s .jsp file should already be located in the following directory:
WC_installdir /wc.ear/CommerceAccelerator.war/tools/order /buyPages/

WAS_installdir /installed Apps/ cell_name/WC_demo.ear/CommerceAccelerator.war/
tools/order/buypages

For iSeries, the path is:

QIBM/userdata/webas5/base/WAS_instance_name/installed Apps/
cell_name/WC_demo.ear/CommerceAccelerator.war/tools/order/buypages

If you wish to customize the “buy page” information, modify the .jsp file
accordingly.

Configure Merchant Settings in WebSphere Commerce
Payments

To configure the merchant for the IBM payment cassette, follow the instructions
provided in the supplement for the cassette. Merchant settings can be modified

212 Store Development Guide

through the WebSphere Commerce Administration Console or the Payments user
interface (http://host_name:port/webapp/PaymentManager). You must have
Payment Administrator or Merchant Administrator authority in WebSphere
Commerce Payments to configure merchant settings.

Chapter 21. Payments instruments 213

214 Store Development Guide

Chapter 22. Language assets

In WebSphere Commerce, your site can define many languages which can be used
within it. At instance creation, the LANGUAGE table can have ten supported
languages including German, Traditional and Simplified Chinese, Japanese, Korean,
Italian, French, Spanish, Brazilian Portuguese, and English. Sites can define
additional languages, or dialects of existing languages, to tailor the way
information is presented to customers from different cultures or demographics.

Understanding language assets in WebSphere Commerce

In order to understand language assets, it is necessary to understand the
relationships between languages and the store. This can be explained by the use of
an information model below. The following section describes the relationships and
associations language has to a store and other assets.

The diagram below depicts the language asset information model.

O @ @

AlternativeLanguage StoreEntity SupportedLanguage

/ \\ ‘
T
Q

Store

0..1 \+defaultLanguage

+shoppingLanguage Q 1

~ -

1/ Language

+supportedLanguage

N
1

+alternativeLanguage

There are four classifications of languages in WebSphere Commerce. They are:
* Default language,

* Supported language,

* Alternative language, and

* Shopping language.

Each one of these classifications performs a different role in the store. All
languages are stored in the LANGUAGE table.

Default language

A default language is associated with each store. This is the language that the store
has chosen to use as its main language, and will be the language displayed to
customers that do not explicitly choose a shopping language. The default language
for a store is implicitly supported by the store; that is, the store must always be

© Copyright IBM Corp. 2000, 2003 215

able to display information in the default language, or one of its alternative
languages, if any are defined in the LANGPAIR table. When information is not
available in one of its supported languages, or alternative languages, the
information will be displayed in the default language.

Supported language

The STORELANG table indicates the languages each store supports. A store must
be able to display information in its supported languages, or one of their alternative
languages, if any are defined in the LANGPAIR table. A store also supports all
languages supported by its store group.

For more information on adding a supported language, see|[’Adding a language to]
la store” on page 307)

Alternative language

When information is not available in the one of the supported languages the store
tries to display the information in an alternative language, if it is available. A store
can specify the sequence in which to try each of its alternative languages. The
alternative languages for a store include the alternative languages for its store
group. Alternative languages can be useful when some information is available in
only one language, but should be made available to customers shopping in a
different, related, language. This might be the case when, for example, not all
information has yet been translated into all supported languages, or when, for
example, two very similar dialects of the same language are supported, sometimes
with identical information.

For more detailed information on the structure of language assets in
WebSphere Commerce Server, see the language data models in the
WebSphere Commerce online help.

Creating language assets in WebSphere Commerce

216

You can define the languages your store supports in one of the following ways:
* Using the store tools in WebSphere Commerce Accelerator

* In an XML file that will be loaded by the Loader package, or by the publishing
tool in the Administration Console

* Editing the database directly using SQL inserts
* Using SQL edits and updates

Note: The tools work with pre-populated XML files in the form of a store archive.

For more information on defining store supported languages using store tools, see
the WebSphere Commerce online help. For more information on defining store
supported languages in an XML file, see [“Creating store data assets in an XMI|
ffile” on page 124.|

Store Development Guide

Chapter 23. Currency assets

You can display prices in your site in one currency, or you can display multiple
currencies by following the instructions provided for the euro (see
lcurrency” on page 219). For a site with multiple stores, you can use different
currencies for the stores, or you can assign currencies to the store group.

Depending on the nature of the site that you are creating, you can specify what
currencies you want to use and how they are displayed.

In WebSphere Commerce, you can allow customers to select a shopping currency.
The shopping currency is the currency in which customers pay for products at a
specific store. All monetary amounts on the store pages are displayed in this
currency. When customers change their shopping currency, the prices for the items
that they have added to their shopping carts and their order totals are
automatically converted, recalculated, and displayed in the new shopping currency.

Customers can shop in many currencies, including the euro. The euro became the
legal currency for the European Union on January 1, 1999, and is now used in
financial markets. The conversion rates between the euro and the currencies of all
participating countries are fixed.

Understanding currency assets in WebSphere Commerce

The following diagram illustrates the currency structure in the WebSphere
Commerce Server:

© Copyright IBM Corp. 2000, 2003 217

218

O

@)

. StoreEntity o
’\ Language
\\
\
\ 17
\\
\\
\
\ Q
\\ CurrencyFormatDescription
CurrencyFormat
Q Q IE
CounterCurrencyPair SupportedCurrency
\\ NumberUsage
\ 0.1 |
\\+defauItCurrency . 1
\ Q!
+counterValueCurrency Currency HoCurrency CurrencyConversionRule
1 I \1
+shoppingCurrency +romCurrency

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see ['The store data information model” on|

|page 97‘|F0r more information on the conventions used in this diagram,

see|Appendix A, “UML legend,” on page 437

In the diagram above, currency is at the center of the information model. Each
store, or group of stores, has a default currency.

Currency format

A store entity can have many currency formatting rules. If a store does not have a
formatting rule for a particular currency, it uses the formatting rule of its store
group. Currency formats are set up in the CURFORMAT table.

The currency format asset can be used by other stores as described in [Chapter 14,

[“Relationships between stores,” on page 129.|

Number usage

Each formatted currency rule is associated with one number usage. Numbers such
as quantities and monetary amounts can be rounded and formatted differently
depending on their associated usage. Stores can specify different rounding and
formatting rules for the numbers they display according to how they are used,
such as a store may round unit prices to four decimal places by specifying the unit

Store Development Guide

price usage, but other currency amounts to two decimal places by specifying the
default usage. Number usage is stored in the NUMBRUSG table.

Currency format description

A currency format rule can have many currency format descriptions. A currency
format description describes how to format (for display purposes) a monetary
amount in a particular currency and particular language. Each description is
associated with a language in the LANGUAGE table. For more information on
language assets see, |Chapter 22, “Language assets,” on page 215.| For more
information about support for globalization, see [Chapter 34, “Globalization,” on|
Currency format descriptions are stored in the CURFMTDESC table.

Supported currency

A store entity can have many supported currencies. A supported currency is one in
which payment is accepted.

The supported currency asset can be used by other stores as described in
[Chapter 14, “Relationships between stores,” on page 129

Currency conversion rule

All currencies have rules governing their conversions to and from other currencies.
Each currency conversion rule can be used to convert a price (stored in the database
in a particular currency) to an amount customers will be charged in a supported
shopping currency.

The supported currency conversion rule asset can be used by other stores as
described in [Chapter 14, “Relationships between stores,” on page 129

Counter currency

Counter currencies are currency amounts that are displayed along with a supported
currency. They cannot be used for purchases but are used for informational
purposes. If customers decide to shop in the euro, they can have the European
Monetary Union monetary amounts, and other currency amounts displayed in the
store. Amounts in the shopping currency are converted to all the counter value
currencies for that shopping currency. The counter currencies are paired with a
supported currency such as the Netherlands guilder, and the euro. Counter
currency pairs are stored in the CURCVLIST table.

The currency countervalue asset can be used by other stores as described in
[Chapter 14, “Relationships between stores,” on page 129

For more detailed information on the structure of currency assets in
WebSphere Commerce Server, see the currency data model in the
WebSphere Commerce online help.

Creating currency assets in WebSphere Commerce

The Administration Console in WebSphere Commerce allows you to add supported
currencies to your store and to select a default currency for your store. For more
information on which assets you can edit with the Administration Console, see the
WebSphere Commerce online help topic "Changing store database assets.”

Chapter 23. Currency assets 219

Note: The Administration Console works with pre-populated XML files in the
form of a store archive.

You can also add supported currencies and a default currency to your store using
an XML file that can be loaded into the database using the Loader package. This
method also allows you to create other types of currency assets, including defining
currency conversion rates, and counter value currencies.

For information on working with currencies, see the WebSphere Commerce
Development online help. For information on creating new currency assets in the
form of an XML file, see [‘Creating currency assets using an XML file.”|

Creating currency assets using an XML file

Create the currency assets for your store in the format of XML files that can be
loaded into the database using the Loader package. For more information on the
Loader package, see [Part 10, “Publishing your store,” on page 319)

Before creating assets, you should be familiar with the material covered in
(Chapter 38, “Loading WebSphere Commerce database asset groups,” on page 383.|

To create currency assets for your store using an XML file, do the following;:

1. Review the XML files used to create currency assets for the sample stores. All
files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WCL_installdir /samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a currency.xml file, which includes the currency
information. To view the currency.xml files in the store archive, decompress it
using a ZIP program. The currency.xml files are located in the data directory.

2. Review the information in |[Appendix B, “Creating your data,” on page 439

3. Create a currency.xml file, either by copying one of the currency.xml files in
the sample store archives, or by creating a new one. For more information, see
the wes.dtd file in the WC_installdir/schema/xml directory or the DTD
included in the store archive.

4. Define the currencies supported by your store.

a. Using the following example as your guide, define the currencies supported
by your store in your XML file for the CURLIST table:

<curlist currstr="USD" storeent_id="@storeent_id_1" />

where:

* currstr is the 3 character ISO 4217 currency code representing the
supported currency. This code must appear in the SETCCURR column of
the SETCURR table. A store must be able to accept payment in all its
supported currencies.

+ storeent_id is the store entity.

b. Repeat for each currency supported by store.

The default currency for the store is defined in the STOREENT table. For
more information, see [“Creating store data assets in an XML file” on page|

220 Store Development Guide

5. (Optional) What currency prices in your store display in depends on how you
set up your prices. You can define prices for every currency used in your store,
or you can define prices for the default currency only. For more information on
setting up prices, [“Creating pricing assets in WebSphere Commerce” on page
175.

If when setting up prices, you defined prices for the default currency only, yet
want to display prices in your store in other supported currencies, you must
add conversion rates to your store. Use this conversion rate to convert from the
default currency to the supported currency.

a.

Determine the currency from which you will be converting, for example, US
dollar (USD), and the currency or currencies to which you are converting,
for example the Yen (JPY). To determine the ISO currency codes for each
currency, see ISO 4217 codes for international currencies.

Using the following example as your guide, add conversion information to
the CURCONVERT table:

<curconvert
storeent_id="@storeent_id_1"
fromcurr="USD"

tocurr="JPY"

factor="105.10"
multiplyordivide="M"
bidirectional="Y"

updatable="Y"
curconvert_id="@curconvert_id_1" />

where:
* storeent_id is the store entity.

¢ fromcurr is the currency from which you are converting. An amount in
the FROMCURR currency is normally part of a rule or other information
used to determine a price, discount, shipping charge, or similar amount
associated with a product offered for sale.

* tocurr is the currency to which you are converting. TOCURR is normally
the currency in which the customer intends to pay. Amounts in this
currency are normally part of an order item, such as a unit price,
shipping charge, or tax amount.

e factor is the conversion factor.

* multiplyordivide is as follows: To convert from FROMCURR to
TOCURR:

- M = Multiply by FACTOR

- D = Divide by FACTOR

For bidirectional rules, conversion from TOCURR to FROMCURR is
allowed using the inverse operation.

* bidirectional indicates whether the rule is bidirectional or
unidirectional:

— Y = bidirectional
— N = unidirectional

* updatable is a flag intended to be used by a user interface that manages
currency conversion rules. Valid values:

— N = conversion rate is irrevocable - should never be changed
- Y = conversion rate can be changed
* curconvert_id is a generated unique key.
Repeat steps a and b for all currencies in which you want to display prices.

Chapter 23. Currency assets 221

222

Even if you have defined prices for all supported currencies in your
pricing information, you may want to define the currency conversion
rates for the supported currencies in your store.

6. (Optional) If you want to include display prices both in the shopping currency,
and a counter currency (for example, display prices in both the Netherlands
guilder and the euro), you must add information to the CURCVLIST table.

a. Using the following example as your guide, add conversion information to
the CURCVLIST table:
<curcvlist
storeent_id="@storeent_id_1"
currstr="NLG"
countervaluecurr="EUR"
displayseq="1" />

where:
* storeent_id is the store entity.

e currstr is the three character ISO 4217 currency code representing the
currency. This code must appear in the SETCCURR column of the
SETCURR table is the currency from which you are converting. An
amount in the FROMCURR currency is normally part of a rule or other
information used to determine a price, discount, shipping charge, or
similar amount associated with a product offered for sale.

¢ countervaluecurr is the three character ISO 4217 currency code
representing the counter value currency. This code must appear in the
SETCCURR column of the SETCURR table.

* displayseq is the number which indicates the presentation order of the
counter value currency. Counter value currencies are displayed in
ascending order based on the counter value display sequence specified in
the DISPLAYSEQ column in the CURCVLIST table.

For more information about the use of @ and & see[Appendix BJ
|“Creating your data,” on page 439

Other currency tasks
For more information on currency in general and on other currency tasks,

including:
* Adding new currencies not currently supported by WebSphere Commerce
* Changing existing currency formats

see the WebSphere Commerce Development online help.

Store Development Guide

Chapter 24. Units of measure assets

Products can be sold, and inventory tracked, in a variety of quantity units, such as
kilograms, inches, liters, and so on. Of these units, products can be ordered in
minimum quantities, and by multiples of specific quantities.

The controller commands use the UOM (unit of measure) to specify the quantity
unit. If a UOM parameter is not specified, then the customer’s specified quantity is
multiplied by the nominal quantity of the catalog entry in the CATENTSHIP
database table. The result is known as the requested quantity.

The requested quantity is rounded up to the next highest quantity multiple for the
catalog entry. For example, if the multiple is 2 kilograms and the requested
quantity is 4.1 kilograms, the result of the rounding would be 6 kilograms. The
rounded quantity is used when checking inventory, which has its own quantity
unit. If the inventory quantity unit and the catalog entry quantity unit are
different, there must be a conversion between the two units.

When Available to Promise (ATP) inventory is enabled (refer to the
ALLOCATIONGOODEFOR column of the STORE table), the inventory quantity unit
is defined in the QUANTITYMEASURE column of the BASEITEM table.
Otherwise, it is defined in the QUANTITYMEASURE column of the INVENTORY
table.

The rounded quantity divided by the nominal quantity of the catalog entry is
known as the normalized quantity. The normalized quantity is stored in the order
item or the interest item, depending on the command being run. For example, if
the rounded quantity is 6 kilograms and the nominal quantity is 2 kilograms, then
the normalized quantity is 3.

When finding an offer for a catalog entry, the requested quantity can affect which
offer gives the best price, and hence determines which offer will be used. For
example, if the rounded quantity is 6 kg and there are two offers, one that specifies
a price of $4.00 for the nominal quantity of 2 kilograms and a minimum quantity
of 10 kilograms, and another that specifies a price of $4.50 for the nominal quantity
of 2 kilograms and a minimum quantity of 2 kilograms, then only the second offer
can be used.

Understanding units of measure in WebSphere Commerce

The following diagram illustrates the structure of units of measure in the
WebSphere Commerce Server:

© Copyright IBM Corp. 2000, 2003 223

224

@

StoreEntity

O @) ! Q)

NumberUsage - QuantityUnitFormat - QuantityUnit

o 1 O

QuantityUnitFormatDescription - Language

/

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see ['The store data information model” on|
|page 97.|For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Quantity unit and quantity unit format

A quantity unit is the unit of measurement used in the store, for example,
kilograms, pounds, meters, inches, liters, and so on. The quantity unit format is
how this quantity unit is formatted in the store, for example how many decimal
places are used when displaying the quantity unit.

Each quantity unit format is part of only one store entity, but each store entity may
have several quantity unit formats.

A quantity unit format can exist for each quantity unit and number usage, and
may have one or more quantity unit format descriptions, depending on how many
languages the store supports.

Quantity units defined in one store may be used by other stores. In order
for one store to use quantity units defined in another store a store relationship of
type com.ibm.commerce.measurement.format must be created between the stores.
For more information, see [Chapter 14, “Relationships between stores,” on page 129 |

Quantity unit format description
A quantity unit format description describes how to format (for display purposes) a
quantity amount in a particular quantity unit, in a particular language.

Number usage

Number usage defines the way a number is used in an application. For example, by
using number usage codes in your WebSphere Commerce code, you can choose the
way you would like that number (currency or quantity) to be formatted or
rounded. These codes (defined in the NUMBRUSG table) allow the number to be
formatted according to the rules specified for that type of number usage in the
CURFORMAT, CURFMTDESC, QTYFORMAT and QTYFMTDESC tables. This
allows stores to format numbers in different ways to meet the requirements of a
variety of situations.

Store Development Guide

For more detailed information on the structure of unit of measure assets
in WebSphere Commerce Server, see the quantity unit data model in the
WebSphere Commerce online help.

Creating units of measure in WebSphere Commerce

Units of measure are pre-populated in the WebSphere Commerce Server database
when an instance is created. For more information, see IChapter 11, “Site assets,” 0n|

You can also define new units of measure in WebSphere Commerce for use in your
store, or delete units of measure that you do not want to use in your store.

To define new units of measure for use in your store, add information to the
following database tables:

« QTYUNIT
 QTUNITDSC
« QTYFORMAT
« QTYFMTDESC
« QTYUNITMAP
« QTYCONVERT

Chapter 24. Units of measure assets 225

226 Store Development Guide

Chapter 25. Jurisdiction assets

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions can
be grouped together to form jurisdiction groups.

Jurisdiction groups are used in the calculation of the shipping charge and tax
charges on orders. That is, a jurisdiction group can be used to qualify shipping
charges and tax calculation rules used. These qualified calculation rules are
applicable to items in an order only if the item is being shipped to an address
within one of the jurisdictions in a jurisdiction group that is associated with the
calculation rule. As a result, shipping charges and tax amounts may be calculated
differently depending on the shipping addresses for the different items in the
order.

Understanding jurisdiction assets in WebSphere Commerce

The following diagram illustrates how jurisdictions and jurisdictions groups fit into
the WebSphere Commerce Server.

O

’—0 . e
StoreEntity

+definedJurisdiction

+definedJurisdictionGroup

@ O

JurisdictionGroup Jurisdiction

A\
/\

A\
T /T\

|
TaxdJurisdictionGroup nGroup Taxdurisdiction

ShippingdJurisdictionGroup InGroup

ShippingdJurisdiction

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [*The store data information model” on|
[page 97] For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437)

© Copyright IBM Corp. 2000, 2003 227

In WebSphere Commerce a jurisdiction or jurisdiction group is part of a store, and
is exclusive to the store or store group for which it is created. For example, if you
create three jurisdictions for your store, and then delete your store, the jurisdictions
are also deleted. They are not available for use by any other existing stores, or any
stores you might create in the future.

However, if you create jurisdictions for a store group, jurisdictions are not deleted
when the stores in that group are deleted. The jurisdictions would be available for
new stores created in that store group.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Shipping jurisdictions can be grouped together to form
shipping jurisdiction groups, which qualify shipping charge calculation rules.
Similarly, tax jurisdictions can be grouped together to form tax jurisdiction groups,
which qualify tax calculation rules.

For more detailed information on the structure of jurisdiction assets in
theWebSphere Commerce Server, see the jurisdiction data model in the
WebSphere Commerce online help.

Creating jurisdiction assets in WebSphere Commerce

228

You must create jurisdiction assets for your store in order to apply tax and
shipping charges. For more information on creating jurisdictions, see f’Creating ta>_<|

assets in WebSphere Commerce” on page 248| or [“Creating shipping assets inf

WebSphere Commerce” on page 231.

Once jurisdictions have been created for your store, you can edit them or create
new ones, using the Tax and Shipping notebooks in the store tools on the
WebSphere Commerce Accelerator.

Note: A jurisdiction group is automatically created for every jurisdiction created.
Jurisdictions are created for stores, but not for store groups.

Store Development Guide

Chapter 26. Shipping assets

Shipping is how a store handles physically delivering goods to customers. In most
cases, goods are shipped from a fulfillment center, a separate agency that is
responsible for warehousing the store’s goods.

In order to offer shipping services, and charge for these services, a store created
with WebSphere Commerce should include the following:

* At least one shipping mode
At least one shipping calculation code
* Jurisdictions and jurisdiction groups

Understanding shipping assets in WebSphere Commerce

The following diagram illustrates the shipping structure in the WebSphere
Commerce Server.

O

+definedJurisdictionGroup

StoreEntity JurisdictionGroup ~J
+definedJurisdiction Q
Jurisdiction
O 0
+definedCalculationCode CalculationCode ShippingJurisdictionGroup
? ShippingdJurisdiction
O e
CalculationRule ntroup
] Store \
\ ShippingJurisdictionGroup —
* 0..1 \\
\) - "
+defaultShippingMode % +definedShippingMode
Ol O
ShippingMode ShippingJurisdictionGroupCalculationRule
'0..1
//
0.1

O @

ShippingArrangement FulfillmentCenter

\

/\
+defaultFulfillmentCenter 0..1

© Copyright IBM Corp. 2000, 2003 229

230

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 97.|For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Shipping modes

The shipping mode is a way of shipping goods. More specifically, a shipping mode
is the combination of a shipping carrier (which is a company that provides
shipping services from a fulfillment center to a customer), and the shipping service
offered by that carrier. For example, ABC Shipping Company, Overnight service
and ABC Shipping Company, Express delivery are shipping modes.

A shipping mode belongs to a store entity. If the store entity is deleted, the
shipping modes defined within that store entity are also deleted. A store is not
required to have a default shipping mode, but it is recommended.

Shipping arrangements

A shipping arrangement is an arrangement between the store and the fulfillment
center, indicating that a fulfillment center will ship goods for a particular store
using specified shipping modes. Certain restrictions can be placed on a shipping
arrangement, including the time period for which the shipping arrangement is
effective, and the shipping jurisdictions.

If a shipping arrangement is associated with a shipping mode, it applies only for
that shipping mode. Otherwise, the shipping arrangement applies to all available
shipping modes. A shipping arrangement is part of a store and will be deleted if
the store is deleted.

Calculation codes

Calculation codes are used to calculate shipping charges, that is, a shipping
calculation code indicates how shipping charges are calculated for order items. In
order to calculate shipping charges on the order item, you must assign shipping
calculation codes to either a catalog entry or a group of catalog entries.

A calculation code is part of a store entity. A calculation code can only be
associated with one store entity, but a store entity may have several calculation
codes. If the store entity is deleted, the calculation codes associated with that store
entity are also deleted.

For more information about the use of calculation codes, see the
WebSphere Commerce Calculation Framework Guide.

Calculation rules

Each calculation code has a set of calculation rules. Shipping charges for an order
item may vary depending on the shipping mode, fulfillment center, and which
shipping jurisdictions. ShippingJurisdictionGroupCalculationRules are relationship
objects that associate shipping calculation rules with jurisdictions, fulfillment
centers, and shipping modes, to determine which calculation rules should be used
for each order item.

If the calculation rule, or any of the other objects referred to by the
ShippingJurisdictionGroupCalculationRules, is deleted, the

Store Development Guide

ShippingJurisdictionGroupCalculation rule is also deleted.

For more information about the use of calculation codes, see the
WebSphere Commerce Calculation Framework Guide.

Jurisdictions and jurisdiction groups

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions are
grouped together to form jurisdiction groups.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Each of these jurisdictions is part of a corresponding group,
for example, shipping jurisdictions are in the shipping jurisdictions group and tax
jurisdictions are in the tax jurisdictions group.

Jurisdiction groups are associated with calculation rules. The calculation rule uses
the jurisdiction group as part of the calculation to determine the shipping charge
amount.

Jurisdictions and jurisdiction groups are part of a store entity. If the store entity is
deleted, the jurisdictions and jurisdiction groups associated with that store entity
are also deleted.

One shipping address may resolve to several shipping jurisdictions. For example, a
shipping address in New York, United States will apply to the following shipping
jurisdictions: "New York, United States”, "United States”, and "World". When a
shipping address applies to multiple shipping jurisdictions, several shipping
calculation rules will be applicable. In such cases, the precedence of the associated
Shipping]JurisdictionGroupCalculationRules is used to determine which rule or
rules will be used.

For more detailed information on the structure of shipping assets in
WebSphere Commerce Server, see the shipping data models in the
WebSphere Commerce online help.

Creating shipping assets in WebSphere Commerce

The shipping tools in WebSphere Commerce Accelerator allow you to create and
edit certain shipping assets (for example shipping modes and jurisdictions), but not
all shipping assets. The following list details the database tables that can be edited
by the shipping tools:

« CALCODE

* CALCODEDSC
 CALRULE

* SHPJCRULE

* CRULESCALE
* CALSCALE

* CALSCALEDS
« CALRANGE

* CALRLOOKUP
* SHIPMODE

Chapter 26. Shipping assets 231

232

« SHPMODEDSC
« SHPARRANGE
« SHPARJURGP
« JURST

« JURSTGROUP
« JURSTGPREL
« CATENCALCD
« CATGPCALCD

You can also create your shipping assets in the format of XML files that can be
loaded into the database using the Loader package. As a result, you have the
following two options for creating shipping assets:

* Create new or edit the existing shipping assets from one of the sample stores
provided with WebSphere Commerce

* Create new shipping assets in the form of an XML file

For information on creating or editing shipping assets using the WebSphere
Commerce Accelerator, see the WebSphere Commerce Production online help. For
information on creating new shipping assets in the form of an XML file, see
[“Creating shipping assets using an XML file.”]

Creating shipping assets using an XML file

Create your shipping assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 10, “Publishing your store,” on page 319 If you are creating a globalized
store, you may want to create separate XML files for each locale your store
supports. The locale-specific file should specify all description information, so it
can be easily translated. For more information on creating globalized stores, see
[Chapter 34, “Globalization,” on page 295.|

The sample stores, from which many of the examples in these tasks are taken, use
one shipping.xml file for all information that does not need to be translated, and
another shipping.xml file for each locale the store supports, for the information
that needs to be translated. The locale-specific files contain all the description
information, so it can be easily translated.

To create shipping assets for your store using an XML file, do the following:

1. Review the WebSphere Commerce Calculation Framework Guide. The WebSphere
Commerce calculation framework calculates monetary amounts (for example,
shipping) associated with the product or service a customer has selected to
purchase.

2. Review the information in [Chapter 38, “Loading WebSphere Commercel
[database asset groups,” on page 383

3. Review the XML files used to create shipping assets for the sample stores. All
files in the sample stores are located in the corresponding store archive file.
Each sample store includes two or more shipping.xml files, which include the
shipping information. The store archive files are located in the following
directory:

* WCL_installdir /samplestores

Note: The WebSphere Commerce Sample Store Guide contains information about
each of the data assets contained in the sample stores.
To view the shipping.xml files in the store archive, decompress them using a

Store Development Guide

ZIP program. The shipping.xml files are located in the data directory. The
language-specific shipping.xml is in a locale-specific subdirectory of the data
directory.

. Review the information in |[Appendix B, “Creating your data,” on page 439

. Create a shipping.xml file, either by copying one of the shipping.xml files in
the sample store archives, or by creating a new one. For more information, see
the wes.dtd file. The DTD file is located in the following directory:

e WC_installdir /schema/xml

. Define the jurisdictions and jurisdiction group to which you are shipping goods
and services. All jurisdictions must belong to a jurisdiction group.

a. Using the following example as your guide, define a jurisdiction group in
your XML file in the JURSTGROUP table:

<jurstgroup

jurstgroup_id="@jurstgroup_id 1"
description="Jurisdiction Groupl for Shipping"
subclass="1"

storeent_id="@storeent_id_1"

code="World"/>

where

e jurstgroup_id is a generated unique key

* description is a brief description of the jurisdiction group, suitable for
display in a user interface that manages jurisdiction groups.

* subclass is the jurisdiction group subclass as follows:
— 1 = Shipping]JurisdictionGroup
- 2 = TaxJurisdictionGroup

* storeent_id is the store entity associated with this jurisdiction group.

+ code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

b. Using the following example as your guide, define a jurisdiction in your
XML file in the JURST table.

< jurst

jurst_id="@jurst_id 1"

storeent_id="@storeent_id_1"

code="World"

subclass="1"/>

where

e Jjurst_id is a generated unique key

* storeent_id is the store entity associated with this jurisdiction group.

* code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

* subclass is the jurisdiction subclass as follows:
— 1 = Shipping]Jurisdiction
— 2 = TaxJurisdiction

c. Using the following example as your guide, associate the jurisdiction you

created in step b with the jurisdiction group you defined in step a, by
adding information to the JURSTGRPREL table.

<jurstgprel

Chapter 26. Shipping assets 233

jurst_id="@jurst_id 1"
Jurstgroup_id="@jurstgroup_id_1"
subclass="1"/>

where

* Jurst_id is the jurisdiction

* Jjurstgroup_id is the jurisdiction group

* subclass is the subclass of the jurisdiction and of the jurisdiction group
These should match:

— 1 = ShippingJurisdiction[Group]
— 2 = TaxJurisdiction[Group]

d. Repeat steps a through c for all jurisdictions and jurisdiction groups your
store supports.

7. Define the shipping modes your store will use.

a. Using the following example as your guide, define a shipping mode in your
XML file for the SHIPMODE table:

<shipmode

shipmode_id="@shipmode_id_1"

fieldl

storeent_id="@storeent id 1"

code="Ground 1 week"

carrier="XYZ Carrier"/>

where:

* shipmode_id is a generated unique key.

» fieldl is a field available for customization.

* storeent_id is the store entity associated with this shipping mode.
* code is the merchant assigned code, unique for the store entity.
* carrier is the name or identifier of the carrier.

b. Using the following example as your guide, add information about the
shipping mode to the SHPMODEDSC table. If you are creating a
multicultural store, you should include this information in a locale-specific
XML file:

< shpmodedsc

description="International mail"

field1="USD$5.00 per order plus USD$1.00 for each item"
field2="5 business days"

shipmode id="@shipmode_id 1"

Tanguage_id="&en US;"/>

where:

¢ description is a brief description of the ShippingMode, suitable for
display to a customer for selection.

e fieldl and field2 are fields available for customization.
* shipmode_id is a generated unique key.
¢ language_id is the language used.
C. Repeat steps a and b for all shipping modes in your store.
8. Define the calculation codes to be used by your store.

234 Store Development Guide

. Using the following examples as your guide, define the calculation code in
your XML file for the CALCODE table.

< calcode
calcode_id="@calcode_id_1"
code="shipping Code 1- per/order"
calusage_id="-2"
storeent_id="@storeent_id_1"
groupby="0"

published="1"
sequence="+0.00E+000"

calmethod id="-23"
calmethod_id_app="-24"
calmethod id gfy="-22"

flags="0" />

where:

* calcode_id is a generated unique key.

* code is a character string that uniquely identifies this CalculationCode,
given a particular CalculationUsage and StoreEntity.

» calusage_id indicates the kind of calculation this CalculationCode is used
for. For example, the CalculationCode may be used to calculate one of the
following monetary amounts:

— Discounts (-1)

Shipping charges (-2)
Sales tax (-3)
Shipping tax (-4)

Coupons (-5)

* storeent_id is the store entity associated with this calculation code.

* groupby are bit flags indicating to the CalculationCodeCombineMethod
how Orderltems should be grouped when performing calculations. 0 =
No grouping. Place all applicable Orderltems in a single group. Refer to
CALCODE table: details in the WebSphere Commerce online help for more
information.

* published specifies whether or not the calculation code is published:

— 0 = Not published (temporarily disabled)
— 1 = Published
— 2 = Marked for deletion (and not published)

* sequenceCalculationCodes are calculated and applied in sequence from

lowest to highest. If two calculation codes have the same sequence

number, the calculation codes with the lower calcode_id will be
calculated first.

* calmethod_id is the CalculationCodeCalculateMethod that defines how to
calculate a monetary amount for this CalculationCode.
calmethod_id="-23", the CalculationCodeCalculateMethod for shipping, is
the only shipping calculation method provided with WebSphere
Commerce.

 calmethod_id_app is the CalculationCodeApplyMethod that stores the
calculated amount for the associated Orderltems. calmethod_id_app="-

Chapter 26. Shipping assets 235

236

b.

C.

24", the CalculationCodeApplyMethod for shipping is the only shipping
apply method provided with WebSphere Commerce.

* calmethod_id_gfy is the CalculationCodeQualifyMethod that defines
which Orderltems are associated with this CalculationCode.
calmethod_id_gfy="-22", the CalculationCodeQualifyMethod for shipping
is the only shipping qualification method provided with WebSphere
Commerce.

+ flags specifies whether the CalculationCodeQualifyMethod of this
CalculationCode should be invoked.

— 0 = unrestricted. The method will not be invoked
— 1 = restricted. The method will be invoked.

Using the following example as your guide, add the calculation code
description information in your XML file for the CALCODEDSC table. If
you are creating a globalized store, you should include this information in a
locale-specific XML file.

<calcodedsc

calcode_id="@calcode_id_3"

description="5.00USD per order"

language_id="&en_US"

longdescription= "This shipping calculation code charges
5.00USD per order."

/>

where

* calcode_id is the calculation code to which this information applies.
¢ description is a short description of the calculation code.

* language_id is the language for which this information applies.

* longdescription is the detailed description of the calculation code.
Repeat steps a and b for each calculation code used in your store.

9. Define the calculation rules for your store.

a.

Store Development Guide

Using the following example as your guide, set up the calculation rule in
your XML file for the CALRULE table:

<calrule

calrule_id="@calrule_id_1"

calcode_id="@calcode_id_1"

startdate="1900-01-01 00:00:00.000000"
enddate="2100-01-01 00:00:00.000000"
sequence="+1.00000000000000E+000"

combination="2"

calmethod_id="-27"

calmethod id gqfy="-26"

flags="1"

identifier="1" />where

¢ calrule_id is a generated unique identifier.

 calcode_id is the calculation code this calculation rule is part of.
* startdate is the time this calculation rule becomes effective.
* enddate is the time this calculation rule stops being effective.

* sequence is the order this calculation rule will be processed in.
Calculation rules for the same calculation code are processed in sequence
from lowest to highest value.

* combination specifies the bit flag for special processing to be performed
by the default CalculationRuleCombineMethod implementation. Refer to
the CALRULE table in the WebSphere Commerce online help for more
information.

* calmethod_id is the CalculationRuleCalculateMethod that calculates a
monetary result for a set of Orderltems.

* calmethod_id_gfy is the CalculationRuleQualifyMethod that determines
which of a set of OrderItems should be sent to the
CalculationRuleCalculateMethod.

* flags are used by CalculationRuleCombineMethod to determine how this
calculation rule may be combined with other calculation rules. Refer to
CALRULE table for more information.

e ijdentifier identifies this calculation rule, in combination with its
calculation code.

For more information see the CALRULE table in the WebSphere Commerce
online help.

b. Repeat step a for each calculation rule used in your store. Note that each
calculation code may have several calculation rules. For example,
calcode_id="@calcode_id_1" may be associated with several calrule_ids.

10. Define calculation scales for your store.

A calculation scale is the set of ranges that will apply to the calculation. For
example, for shipping costs you may have a set of weight ranges that each
correspond to a particular cost. That is, a product that weighs between 0 to 5
kg might cost $10.00 to ship. And a product weighing 5 to 10 kg might cost
$15.00 to ship. These ranges create a scale.

a. Using the following example as your guide, set up the calculation scale in
your XML file for the CALSCALE table:

<calscale

calscale_id="@calscale_id_1"

code="Scale Code 1 per order USD"
storeent_id="@storeent_id_1"
calusage_id="-2"

setccurr="USD"

calmethod_id="-28"/>

where

* calscale_id is a generated unique identifier.

* code is a character string that uniquely identifies this calculation scale,
given a particular calculation usage and store entity.

e storeent_id is the store entity that this calculation scale is part of.

* calusage_id indicates the kind of calculation this CalculationScale is
used for. For example, the CalculationScale may be used to calculate one
of the following monetary amounts:

— Discounts (-1)

Shipping charges (-2)
— Sales tax (-3)
Shipping tax (-4)

Coupons (-5)

Chapter 26. Shipping assets 237

238

* setccurr if specified, indicates the currency for the range start values of
the calculation range objects for this calculation scale. The
CalculationScaleLookupMethod should return a "lookup number” in this
currency.

* calmethod_id is the CalculationScaleLookupMethod that given a set of
order items determines a lookup value, a base monetary value, a result
multiplier, and a set of mathematical weights that can be used by the
calculation scale to calculate a monetary amount. To determine which
CalculationScaleLookupMethod to use, do the following;:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the
link for the CALMETHOD table: details. This table lists the types of
calculation methods available. The
MonetaryCalculationScaleLookupMethod method is 9.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC_installdir /schema

— Locate the section listing the available calculation methods
(CALMETHOD,).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation methods, which have a subclass of 7; there are
several. Pick the one which meets your needs.

For more information, see the CALSCALE table in the WebSphere
Commerce online help.

. Repeat step a for each calculation scale used in your store. For example,

for shipping, FashionFlow creates a cost per order scale and a cost per
item scale.

11. Define calculation ranges for the calculation scales.

Store Development Guide

a. Using the following example as your guide, set up the calculation range in

your XML file for the CALRANGE table.

<calrange

calrange _id="@calrange id 1"

calscale_id="@calscale_id_1"

calmethod_id="-33"

rangestart="0.00000"

cumulative="0"/>

where

* calrange_id is a generated unique identifier.

* calscale_id is the calculation scale this calculation range is part of.

¢ calmethod_id is the CalculationRangeMethod that determines a
monetary amount from the CalculationRangeLookupResult. For
example, Fixed AmountCalculationRangeCmd,
PerUnitAmountCalculationRangeCmd, or
PercentageCalculationRangeCmd. To determine the
CalculationRangeMethod, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the

12.

link for the CALMETHOD table: details. This table lists the types of
calculation methods available. The CalculationRangeMethod is 10.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC_installdir/schema

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation methods which have a subclass of 9; there are
several. Pick the one which meets your needs.

e cumulative are the valid values:

— 0 = only the matching CalculationRange with the highest
RANGESTART value is used.

— 1 = all matching CalculationRanges are used. The calculated monetary
amounts are summed to arrive at the final result.

For more information, see the CALRANGE table in the WebSphere
Commerce online help.

Repeat step a for each calculation range associated with the calculation
scale used in your store.

Define the calculation lookup values for the calculation scales. The calculation
lookup values are the values associated with the calculation scale. For
example, a calculation scale includes the following weight ranges and
associated prices for shipping:

* 0 to 5 kg costs $10.00
* 5 to 10 kg costs $15.00

The lookup values are $10.00 and $15.00.

a.

Using the following examples as your guide, set up the calculation lookup
values in your XML file for the CALRLOOKUP table. If you are creating a
multicultural store, you should include this information in a locale-specific
XML file, that is, one file per locale that your store supports. For example,
if your store ships to customers in the United States and Japan, you should
add the US dollar lookup values in one XML file, and the Yen lookup
values in another XML file.

<calrlookup

calrlookup_id="@calrlookup_id 1"
setccurr="USD"

calrange_id="@calrange_id_1"

value="5.00"/>

where

* calrlookup_id is a generated unique identifier.

* calrange_id is the calculation range this calculation range lookup result
is part of.

* value is the value of the calculation range lookup result, used by the
calculation range method of the calculation range to determine a
monetary result.

Chapter 26. Shipping assets 239

For more information, see the CALRLOOKUP table in the WebSphere
Commerce online help.

b. Repeat step a for each lookup value associated with the calculation scale
used in your store.

13. Associate the calculation rule and calculation scale

a. Using the following examples as your guide, associate the calculate scale
with the calculation rule in your XML file for the CRULESCALE table.

< crulescale
calrule_id="@calrule_id_1"
calscale_id="@calscale_id_1" />
where

e calrule_id is the calculation rule.

* calscale_id is the calculation scale.

b. Repeat step a for each calculation scale and rule association.

For more information about the use of @ and & see|AEEendix B:|
[“Creating your data,” on page 439.|

Creating shipping fulfillment assets

In order for your shipping assets to work correctly in your store, you must
associate the shipping jurisdiction groups to the calculation rules and the
fulfillment centers to the shipping modes used in the store.

You must create your fulfillment assets before you can associate your shipping
assets to a fulfillment center. For more information on creating fulfillment assets,
see [“Creating fulfillment assets in WebSphere Commerce” on page 200,

After you have created the fulfillment assets, associate shipping assets to them by
adding information to the SHPJCRULE and SHPARRANGE tables. Do the
following:

1. Review theWebSphere Commerce Calculation Framework Guide. The WebSphere
Commerce calculation framework calculates monetary amounts (for example,
shipping) associated with the product or service a customer has selected to
purchase.

2. Review the information in [Chapter 38, “Loading WebSphere Commerce|
[database asset groups,” on page 383

3. Review the XML files used to create shipping fulfillment assets for the sample
stores. All files for the sample stores are located in the corresponding store
archive file. Each sample store includes a shipfulfill.xml file, which includes
the shipping fulfillment information. To view the shipfulfill.xml file in the
store archive, decompress it using a ZIP program. The shipfulfill.xml file is
located in the data directory.

The store archive files are located in the following directory:
* WC_installdir /samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

4. Review the information in|[Appendix B, “Creating your data,” on page 439

240 Store Development Guide

Create a shipfulfill.xml file, either by copying one of the shipfulfill.xml
files in the sample store archives, or by creating a new one. For more
information, see the wcs.dtd file. The DTD files are located in the following
directory:

e WC _installdir /schema/xml

Associate calculation rules to a shipping jurisdiction group by adding
information to the SHPJCRULE table. Use the following example as your guide.
If you are creating a multicultural store, also create an XML file for each locale
your store supports.

<shpjcrule

calrule_id="@calrule_id_1"

ffmcenter_id="@ffmcenter_id_1"

jurstgroup_id="@jurstgroup_id 1"

precedence="0"

shipmode_id="@shipmode_id_1"

shpjcrule_id="@shpjcrule_id_1"

where

* calrule_id is the calculation rule used.

+ ffmcenter_id is the fulfillment center. If this is NULL then this association
applies to all fulfillment centers.

* Jjurstgroup_id is the shipping jurisdiction group. If this is NULL, then this
association applies to all shipping jurisdiction groups.

* precedence is when a shipping address falls within more than one of the
specified shipping jurisdiction groups for the same fulfillment center and
shipping mode. Only the calculation rule with the highest
SHPJCRULE.PRECEDENCE value qualifies.

* shipmode_id is the shipping mode.
* shpjcrule_id is a generated unique identifier.

Repeat step 3 for each jurisdiction group, fulfillment center and rule association
in your store.
Associate the shipping mode and a fulfillment center to your store, by adding
information to the SHPARRANGE table. Use the following example as your
guide:
<shparrange

shparrange_id="@shparrange_id_2"

store_id="@storeent_id_1"

ffmcenter_id="@ffmcenter_id_1"

shipmode_id= "@shipmode id 2"

startdate="1970-06-22 23:00:00.000000"

enddate= "2008-06-22 23:00:00.000000"

precedence= "0"

flags="0"
/>

where
* shparrange_id is a generated unique identifier.
* store_id is the store.

» ffmcenter_id is the fulfillment center.

¢ shipmode_id is the shipping mode. NULL indicates this shipping
arrangement can be used regardless of shipping mode.

 startdate is the time this shipping arrangement starts being effective.
* enddate is the time this shipping arrangement stops being effective.

Chapter 26. Shipping assets 241

242

* precedence is when more than one shipping arrangement (for the same store
and shipping mode) is effective at a particular time; the one with the highest
PRECEDENCE is used.

+ flags contains bit flags:

— 1 = restricted - This shipping arrangement applies only to order items
whose shipping address matches one of the shipping jurisdiction groups
associated (through the SHPARJURGP table) with this shipping
arrangement.

9. Repeat step 5 for all shipping modes used in your store.

For more information about the use of @ and & see|AEEendix B:|
[“Creating your data,” on page 439

Creating store-catalog-shipping assets

In order to associate shipping modes with your store, you must associate a
calculation code with the catalog entries in your store for each contract your store
includes.

You must create your store and catalog assets before you can create
store-catalog-shipping assets. For more information on creating store assets, see

[“Creating store data assets in an XML file” on page 124.|For more information on

creating catalog assets, see [“Displaying store catalog assets” on page 162

To create store-catalog-shipping assets, do the following:
1. Review the WebSphere Commerce Calculation Framework Guide. The WebSphere

Commerce calculation framework calculates monetary amounts (for example,
shipping) associated with the product or service a customer has selected to
purchase.

. Review the information in |[Chapter 38, “Loading WebSphere Commerce]

[database asset groups,” on page 383

. Review the XML files used to create shipping fulfillment assets for the sample

stores. All files for the sample stores are located in the corresponding store
archive file.

The store archive files are located in the following directory:
* WC_installdir /samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a store-catalog-shipping.xml file, which includes
the shipping fulfillment information. To view the store-catalog-shipping.xm]
file in the store archive, decompress it using a ZIP program. The
store-catalog-shipping.xml file is located in the data directory.

. Review the information in [Appendix B, “Creating your data,” on page 439

. Create a store-catalog-shipping.xml file, either by copying one of the

store-catalog-shipping.xml files in the sample store archives, or by creating a
new one. For more information, see the wcs.dtd file . The DTD files are located
in the following directory:

e WC_installdir /schema/xml

. Create the store-catalog-shipping relationship by adding information to the

CATENCALCD table. Use the following example as your guide:

Store Development Guide

<catencalcd
calcode_id="@calcode_id_1"
catencalcd_id="@catencalcd id_1"
store_id="@storeent_id_1"

/>

where
* calcode_id is the calculation code.

* catencalcd_id is a generated unique identifier.
* store_id is the store.

For more information about the use of @ and & see |AE]:_>endix B:|
|“Creating your data,” on page 439

Creating a default shipping mode

In order to set a default shipping mode for the store, you must add information to
the STOREDEEF table. To add information to the STOREDEF table, do the
following:

1.

2.

Review the information in |Chapter 38, “Loading WebSphere Commerce]
[database asset groups,” on page 383

Review the XML files used to create store default assets for the sample stores.
All files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC_installdir /samplestores

Note: The WebSphere Commerce online help contains information about
each of the data assets contained in the sample stores.

Each sample store includes a store-defaults.xml file, which includes the
default shipping information. To view the store-defaults.xml file in the store
archive, decompress it using a ZIP program. The store-defaults.xml file is
located in the data directory.

Review the information in [Appendix B, “Creating your data,” on page 439

Create a store-defaults.xml file, either by copying one of the
store-defaults.xml files in the sample store archives, or by creating a new one.
For more information, see the wcs.dtd file. The DTD files are located in the
following directory:

e WC_installdir /schema/xml

Using the following example as your guide, in your XML file, specify the
default shipping mode for the store by adding information to the STOREDEF
table:

<storedef
store_id="@storeent_id_1"
shipmode_id="@shipmode_id_1"

/>

where

* store_id is the store.

* shipmode_id is the default shipping mode for the store.

Chapter 26. Shipping assets 243

For more information about the use of @ and & see|AEEendix BJ
|“Creating your data,” on page 439

244 Store Development Guide

Chapter 27. Tax assets

In order to charge and collect taxes on the goods and services your store provides,
a store created with WebSphere Commerce must include the following:

* Tax categories
* Calculation codes
e Jurisdictions and jurisdiction groups

The combination of the tax categories, calculation codes, and jurisdictions and
jurisdiction groups create the tax charges for the store.

Understanding tax assets in WebSphere Commerce

The following diagram illustrates the taxation structure in WebSphere Commerce

Server.
Q +definedJurisdictionGroup Q
StoreEntity * JurisdictionGroup
‘\\\\
A\ \\\\\\ ‘\‘
\\\\\\idefinedJurisdiction \
+definedCalculationCode B Q
Jurisdiction
Q O :
Store CalculationCode LA
Q _ Q Taxdurisdiction
TaxCategory — 0.1 CalculationRule
1
Q InGroup
TaxType

TaxJurisdictionGroup —

TaxdJurisdictionGroupCalculationRule

0..1 Q

— FulfillmentCenter

+defaultFulfillmentCenter

© Copyright IBM Corp. 2000, 2003 245

246

This diagram, and all others in the store data section are part of the
WebSphere Commerce Server information model. For more information
on the information model, see [“The store data information model” on|
|page 97.|For more information on the conventions used in this diagram,
see|Appendix A, “UML legend,” on page 437

Tax category

Tax categories correspond to the different kinds of tax a store may be required to
collect, such as federal, state or provincial, and municipal.

A tax category is part of one store entity, although a store entity may have several
tax categories. If the store entity is deleted, the tax categories associated with that
store entity are also deleted.

Tax type

A store typically collects two type of taxes: sales or use tax, and shipping tax. Each
tax category has one fax type. Although each tax category may only be of one tax
type, (for example the tax category federal is a sales tax type), several different tax
categories may belong to the same tax type (for example, the tax type sales tax,
applies to the categories federal, provincial, and municipal).

Calculation code

Calculation codes are used to calculate tax charges, that is, a tax calculation code
indicates how tax is calculated for order items. In order to calculate tax on the
order item, you must assign sales tax and shipping tax calculation codes to either a
catalog entry or a group of catalog entries. Only one tax calculation code of each
tax type can be applied to a particular catalog entry or group of catalog entries.
Typically, sales or use tax is levied on the net price, and shipping tax is levied on
shipping charges.

A calculation code is part of a store entity. A calculation code can only be
associated with one store entity, but a store entity may have several calculation
codes. If the store entity is deleted, the calculation codes associated with that store
entity are also deleted.

For more information about the use of calculation codes, see the IBM
WebSphere Commerce Calculation Framework Guide.

Calculation rules

Each calculation code has at least one calculation rule, which defines the
calculations for each tax category, and specifies the conditions under which the
calculations will be done. Each tax calculation rule is associated with a tax
category, a jurisdiction group and a fulfillment center, which together define the
conditions under which the calculation rule is used. For example, a different rule
may be selected to calculate an amount for a particular tax category depending on
the shipping address and fulfillment center specified in the order.

Each calculation rule belongs to exactly one calculation code.

A particular tax calculation code can have several calculation rules, one for each
combination of tax category, tax jurisdiction group, and fulfillment center
associated with the store. Each sales tax and shipping tax calculation rule can be
associated with multiple TaxJurisdictionGroupCalculationRules (TaxRules). For

Store Development Guide

example in the chart below, calculation rule 10001 is applicable to both jurisdiction
groups 1234 and 1235.

TAXJCRULE_ID | CALRULE_ID FFMCENTER_ID| JURSTGROUP_IDPRECEDENCE
10001 10001 NULL 1234 0
10002 10001 NULL 1235 0

Each TaxRule defines the conditions under which the calculation rule should be
applied. For example, you may define a calculation rule for each jurisdiction group
to which the store ships. In the example below, calculation rule 10001 is applicable
to both jurisdiction group 1234 and 1235.

In the following example, the tax calculation code uses calculation rule A for the
provincial sales tax category, when the tax jurisdiction is Alberta, and rule C when
the tax jurisdiction is British Columbia.

Tax jurisdiction Federal sales tax Provincial sales tax

Alberta, Canada

Calculation rule B, which
gives Y%

calculation rule A, which
gives X%

British Columbia, Canada Calculation rule B, which

gives Y%

calculation rule C, which
gives Z%

When a shipping address matches more than one tax jurisdiction group, the
calculation rule with the highest associated TAXJCRULE.PRECEDENCE column
value is used.

The association of TaxJurisdictionGroupCalculationRules (TaxRule) with a
calculation rule determines when the calculation rule is applicable. A sales tax or
shipping tax calculation rule is applicable when any one of the conditions given by
the TaxRules is met. In the example below, calculation rule 10001 is applicable
when you are shipping to jurisdiction group 1001, or when you are shipping from
fulfillment center 1001, or you are shipping to jurisdiction group 1001.

CALRULE_ID FFMCENTER_ID JURSTGROUP_ID
10001 NULL 1001
10001 1001 1001

Each TaxJurisdictionGroupCalculationRule is associated with at most 1 jurisdiction
group. Calculation rules themselves are not directly associated with jurisdiction
groups.

For more information about the use of calculation rules, see the IBM
WebSphere Commerce Calculation Framework Guide.

Jurisdictions and jurisdiction groups

Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions are
grouped together to form jurisdiction groups.

WebSphere Commerce supports two types of jurisdictions: shipping jurisdictions
and tax jurisdictions. Each of these jurisdictions is part of a corresponding group,

Chapter 27. Tax assets 247

for example, shipping jurisdictions are in the shipping jurisdictions group and tax
jurisdictions are in the tax jurisdictions group.

Jurisdictions and jurisdiction groups determine which calculation rules are used to
calculate the tax charges.

Jurisdictions and jurisdiction groups are part of a store entity. Each jurisdiction and
jurisdiction group is part of one store entity, however a store entity may have
several jurisdictions or jurisdiction groups. If the store entity is deleted, the
jurisdictions and jurisdiction groups associated with that store entity are also
deleted.

For more detailed information on the structure of tax assets in WebSphere
Commerce Server, see the tax data models in the WebSphere Commerce
online help.

Creating tax assets in WebSphere Commerce

248

The tax tools in the WebSphere Commerce Accelerator allow you to create and edit
certain tax assets (for example tax categories and jurisdictions), but not all tax
assets.

The following list details the database tables that can be edited by the tax tools:
+ CALCODE

+ CALCODEDSC
* CALRULE

* TAXJCRULE

* CRULESCALE
* CALSCALE

* CALSCALEDS
+ CALRANGE

+ CALRLOOKUP
* TAXCGRY

* TAXCGRYDS
* JURST

* JURSTGROUP
* JURSTGPREL
* CATENCALCD
* CATGPCALCD

You can also create your tax assets in the format of XML files that can be loaded
into the database using the Loader package. As a result, you have the following
two options for creating shipping assets:

* Create new or edit the existing tax assets from one of the sample stores provided
with WebSphere Commerce.

¢ Create new tax assets in the form of an XML file.

For information on editing the tax assets in an existing store archive, or general tax
information, see the WebSphere Commerce online help. For information on
creating new tax assets in the form of an XML file, see [“Creating tax assets using|
lan XML file” on page 249

Store Development Guide

Creating tax assets using an XML file

Create your tax assets in the format of XML files that can be loaded into the
database using the Loader package. For more information on the Loader package,
see [Part 10, “Publishing your store,” on page 319]If you are creating a globalized
store, you may want to create separate XML files for each locale your store
supports. The locale-specific file should specify all description information, so it
can be easily translated.

The sample stores, from which many of the examples in these tasks are taken, use
one tax.xml file for all information that does not need to be translated, and
another tax.xml file for each locale the store supports, for the information that
needs to be translated. The locale-specific files contain all the description
information

To create tax assets for your store using an XML file, do the following:

1. Review the information in [Chapter 38, “Loading WebSphere Commerce]
[database asset groups,” on page 383 Review the IBM WebSphere Commerce
Calculation Framework Guide. The WebSphere Commerce calculation framework
calculates monetary amounts (for example, taxes) associated with the product
or service a customer has selected to purchase.

2. Review the XML files used to create tax assets for the sample stores. All files
for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC_installdir /samplestores

3. Review the information in [Appendix B, “Creating your data,” on page 439

4. Create a tax.xml file, either by copying one of the tax.xml files in the sample
store archives, or by creating a new one. For more information, see the DTD file
that corresponds to tax.xml. The DTD file is located in the following directory:

e WC _installdir /schema

5. Define the jurisdictions and jurisdiction groups to which you are shipping
goods and services. Assign your tax jurisdictions to tax jurisdiction groups
according to their applicable tax category calculation rules.

a. Using the following example as your guide, define a jurisdiction group in
your XML file in the JURSTGROUP table:

<jurstgroup
Jjurstgroup_id="@jurstgroup_id_2"
description="Tax Jurstiction Group 1"
subclass="2"
storeent_id="@storeent_id_1"
code="Wor1d"/>

where

e Jjurstgroup_id is a generated unique key

 description is a brief description of the jurisdiction group, suitable for
display in a user interface that manages jurisdiction groups.

* subclass is the jurisdiction group subclass as follows:
— 1 = ShippingJurisdictionGroup
- 2 = TaxJurisdictionGroup

* storeent_id is the store entity associated with this jurisdiction group.

* code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

Chapter 27. Tax assets 249

b. Using the following example as your guide, define a jurisdiction in your
XML file in the JURST table.

<jurst

Jjurst_id="@jurst_id_2"

storeent_id="@storeent id 1"

code="World"

subclass="2"/>

where

* Jjurst_idis a generated unique key

* storeent_id is the store entity associated with this jurisdiction group.

+ code which, together with its store entity and subclass, uniquely identifies
this jurisdiction group.

* subclass is the jurisdiction subclass as follows:
— 1 = ShippingJurisdiction
— 2 = TaxJurisdiction

c. Using the following example as your guide, associate the jurisdiction you

created in step b with the jurisdiction group you defined in step a, by
adding information to the JURSTGRPREL table.

<jurstgprel
jurst_id="@jurst_id 2"
jurstgroup_id="@jurstgroup_id_1"
subclass="2"/>
where
* Jjurst_id is the jurisdiction
* Jjurstgroup_idis the jurisdiction group
* subclass is the subclass of the jurisdiction and of the jurisdiction group
These should match:
— 1 = ShippingJurisdiction[Group]
— 2 = TaxJurisdiction[Group]

d. Repeat steps a through c for all jurisdictions and jurisdiction groups your
store supports.

6. Define the tax categories your store will use.

a. Using the following example as your guide, define a tax category in your
XML file for the TAXCGRY table:

<taxcgry
taxcgry_id="@taxcgry_id_1"
taxtype_id="-3"
storeent_id="@storeent_id_1"
name="Sales Tax"
displayseq="0"
displayusage="0"/>

where:
+ taxcgry_id is a generated unique key.

+ taxtype_id="-3" is the tax type for this tax category. WebSphere
Commerce supports two tax types:

— sales or use tax (-3)
— shipping tax (-4)
* storeent_id is the store entity associated with this tax category.

250 Store Development Guide

* name is the name of the tax category. Along with the store entity, the
name uniquely identifies this tax category.

+ displayseq specifies the sequence, from lowest to highest, of tax amounts
when displayed, for example, in an order.

 displayusage specifies that this tax category in relation to the
PriceDataBean as follows:

— 0 = is not calculated
— 1 = is calculated

The PriceDataBean can be used to obtain tax amounts that should be
shown along with the product price.

b. Repeat step a for each tax category used in your store.

c. Using the following example as your guide, add the tax category
description information in your XML file for the TAXCGRYDS table. If you
are creating a multicultural store, you should include this information in a
locale-specific XML file.
<taxcgryds

taxcgry_id="@taxcgry id 1"
description="Sales Tax"
Tanguage_id="&en_US"/>

where
* taxcgry_id is the tax category.

* description is a brief description of the tax category, suitable for display
to customers.

* language_id is the language in which this information will display.
d. Repeat step c for each tax category used in your store.
7. Define the calculation codes to be used by your store.

a. Using the following examples as your guide, define the calculation code in
your XML file for the CALCODE table.

<calcode
calcode_id="@calcode_id_3"
code="Tax Code 1"
calusage_id="-3"
storeent_id="@storeent_id_1"
groupby="0"

pubTished="1"

sequence="0"
calmethod_id="-43"
calmethod_id_app="-44"
calmethod_id_qfy="-42"
displaylevel="0"

flags="0"

precedence="0"

/>

where:
 calcode_id is a generated unique key.

* code is a character string that uniquely identifies this calculation code,
given a particular calculation usage and store entity.

* calusage_id indicates the kind of calculation this calculation code is used
for. For example, the calculation code may be used to calculate one of the
following monetary amounts:

— Discounts (-1)
— Shipping charges (-2)

Chapter 27. Tax assets 251

252

Store Development Guide

— Sales tax (-3)

— Shipping tax (-4)

— Coupons (-5)

storeent_id is the store entity associated with this calculation code.
groupby are bit flags indicating to the calculation code combine method
how order items should be grouped when performing calculations. Zero
specifies no grouping (all applicable order items are in a single group).

Refer to CALCODE table: details in the WebSphere Commerce online help
for more information.

pubTished specifies whether or not the calculation code is published:
— 0 = not published (temporarily disabled)

— 1 = published

— 2 = marked for deletion (and not published)

sequence is the order in which the calculation code is calculated.
Calculation codes are calculated and applied in sequence from lowest to
highest. If two calculation codes have the same sequence number, the
calculation codes with the lower calcode_id will be calculated first.

calmethod_idThe calculation code calculate method that defines how to
calculate the tax amounts for this calculation code. In order to determine
which calculation code calculate method to use, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The calculation code calculate method type
is 3.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC _installdir /schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and —4 for shipping tax).

— Locate the calculation method which has the subclass of 3. This
calculation method is —43.

calmethod_id_app is the CalculationCodeApplyMethod that stores the

calculated amount for the associated Orderltems. Use the method

described in calmethod_id to determine which calculation code apply

method to use.

— calmethod_id_app="-44" is the CalculationCodeApplyMethod for Sales
tax

calmethod_id_qfy is the CalculationCodeQualifyMethod that defines

which order items are associated with this calculation code. Use the

method described in calmethod_id to determine which calculation code

qualify method to use.

— calmethod_id_qfy="-42" is the CalculationCodeQualifyMethod for
Sales tax.

display Tevel determines if amounts calculated by this calculation code

should be displayed with each:

— 0 = Orderltem

- 1= Order
- 2 = product

3 = item

4 = contract

* flags specifies whether the CalculationCodeQualifyMethod of this
calculation code should be invoked.

— 0 = unrestricted. The method will not be invoked
— 1 = restricted. The method will be invoked.

b. Using the following example as your guide, add the calculation code
description information in your XML file for the CALCODEDSC table. If
you are creating a multicultural store, you should include this information
in a locale-specific XML file.
<calcodedsc

calcode_id="@calcode_id_ 3"

description="Vitamins

language_id="&en_US"

longdescription= "In Ontario vitamins are taxed federally, but
not provincially."

/>

where
* calcode_id is the calculation code to which this information applies.
* description is a short description of the calculation code.
* language_id is the language for which this information applies.
* longdescriptionis the detailed description of the calculation code.
C. Repeat steps a and b for each calculation code used in your store.
8. Define the calculation rules for your store.

a. Using the following example as your guide, set up the calculation rule in
your XML file for the CALRULE table:
<calrule

calrule_id="@calrule_id_10"
calcode_id="@calcode_id_3"
startdate="1900-01-01 00:00:00.000000"
taxcgry_id="@taxcgry_id_1"
enddate="2100-01-01 00:00:00.000000"
flags="1"

identifier="1"

combination="2"

calmethod_id="-47"
calmethod_id_qfy="-46"

/>

where

* calrule_id is a generated unique identifier.

¢ calcode_id is the calculation code this calculation rule is part of.

* startdate is the time this calculation rule becomes effective.
 taxcgry_id is the tax category for which this calculation rule is effective.
* enddate is the time this calculation rule stops being effective.

* combination are used by CalculationRuleCombineMethod to determine
how this calculation rule may be combined with other calculation rules.
Refer to CALRULE table for more information.

* identifier identifies this calculation rule, in combination with its
calculation code.

Chapter 27. Tax assets 253

254

+ flagsspecifies the bit flag to indicate special processing to be performed
by the default CalculationRuleCombineMethod implementation. Refer to
the CALRULE table in the WebSphere Commerce online help for more
information.

* calmethod_id is the CalculationRuleCalculateMethod that calculates a
monetary result for a set of order items. To determine which calculation
rule calculate method to use, do the following;:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The calculation rule calculate method is 7.

— Open the bootstrap file wcs.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC _installdir /schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD).

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation method which has the subclass of 7. This
calculation method is -47.

* calmethod_id_qgfy is the CalculationRuleQualifyMethod that determines
which of a set of Orderltems should be sent to the
CalculationRuleCalculateMethod. Use the method described in
calmethod_id to determine which calculation rule qualify method to use.

b. Repeat step a for each calculation rule used in your store. Note that each

calculation code may have several calculation rules, one for each applicable
tax category. For example, calcode_id="@calcode_id_1" may be associated
with several calrule_ids.

9. Define calculation scales for your store.

A calculation scale is the set of ranges that will apply to the calculation. These
ranges create a scale.

a. Using the following example as your guide, set up the calculation scale in

Store Development Guide

your XML file for the CALSCALE table:

<calscale
calscale_id="@calscale_id_19"
code="Sales Tax 1"
storeent_id="@storeent_id_1"
calusage_id="-3"
setccurr="USD"
calmethod_id="-53"

/>

where
 calscale_id is a generated unique identifier.

* code is a character string that uniquely identifies this calculation scale,
given a particular calculation usage and store entity.

e storeent_id is the store entity that this calculation scale is part of.

* calusage_id indicates the kind of calculation this CalculationScale is used
for. For example, the CalculationScale may be used to calculate one of the
following monetary amounts:

— discounts (-1)

— shipping charges (-2)
— sales tax (-3)

— shipping tax (-4)

— coupons (-5)

* setccurr if specified, indicates the currency for the range start values of
the calculation range objects for this calculation scale. The
CalculationScaleLookupMethod will return a "lookup number” in this
currency. In this case, it is not specified; the
CalculationScaleLookupMethod will return a lookup number in the
currency of the order. The currency does not need to be specified unless
the scale range start values are non-zero.

* calmethod_id is the CalculationScaleLookupMethod that given a set of
order items determines a lookup number, a base monetary value, a result
multiplier, and a set of mathematical weights that can be used by the
calculation scale to calculate a monetary amount. To determine which
CalculationScaleLookupMethod to use, do the following;:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the link
for the CALMETHOD table: details. This table lists the types of
CALMETHOD:s available. The
MonetaryCalculationScaleLookupMethod method is 9.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC _installdir /schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD,.

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation method which has the subclass of 9. There are
several calculation methods with the subclass of 9. Pick the one which
meets your needs.

For more information, see the CALSCALE table in the WebSphere
Commerce online help.
. Repeat step a for each calculation scale used in your store.

c. Using the following example as your guide, add the calculation scale

description information in your XML file for the CALSCALDS table. If you
are creating a multicultural store, you should include this information in a
locale-specific XML file.
<calscaleds

calscale_id="@calscale_id_19"

description="Sales Tax 5% "

language_id="&en_US"

/>

where
* calscale_id is the calculation scale to which this description applies.

* descriptionis a brief description of the calculation scale, suitable for
display to customers to explain how a calculation is performed. For
example, "$.10 per kilogram, minimum charge of $5.00.” or "10% off
quantities of 5 or more.”

* language_id is the language in which this information will display.

Chapter 27. Tax assets 255

d. Repeat step c for each calculation scale used in your store.
10. Define calculation ranges for the calculation scales.

a. Using the following example as your guide, set up the calculation range in
your XML file for the CALRANGE table.
<calrange
calrange_id="@calrange_id_37"
calscale_id="@calscale_id 19"
calmethod_id="-59"
rangestart="0.00000"
cumulative="0"

/>

where
 calrange_id is a generated unique identifier.
 calscale_id is the calculation scale this calculation range is part of.

* calmethod_id is the CalculationRangeMethod that determines a
monetary amount from the CalculationRangeLookupResult. For
example, Fixed AmountCalculationRangeCmd,
PerUnitAmountCalculationRangeCmd, or
PercentageCalculationRangeCmd. To determine the
CalculationRangeMethod, do the following:

— Refer to the CALMETHOD table in the WebSphere Commerce online
help. Refer to the description for the SUBCLASS column. Click the
link for the CALMETHOD table: details. This table lists the types of
CALMETHODs available. The CalculationRangeMethod is 10.

— Open the bootstrap file wes.bootstrap_xx_XX.xml, where xx_XX is the
code for the locale. The bootstrap files are located in the following
directory:

- WC _installdir /schema/xml

— Locate the section listing the available calculation methods
(CALMETHOD,.

— Locate the calculation methods with the calusage_ID value for tax (-3
for sales tax and -4 for shipping tax).

— Locate the calculation method which has the subclass of 10. There are
several calculation methods with the subclass of 10. Pick the one
which meets your needs.

* rangestart is if a lookup number is greater than or equal to
RANGESTART, or if RANGESTART is NULL, this row matches the
lookup number.

* cumulative is the following:

— 0 = only the matching CalculationRange with the highest
RANGESTART value is used.

- 1 = all matching CalculationRanges are used. The calculated
monetary amounts are summed to arrive at the final result.
For more information, see the CALRANGE table in the WebSphere
Commerce online help.

b. Repeat step a for each calculation range associated with the calculation
scale used in your store. In the example above there is only one range,
since all amounts are taxed at the same rate.

11. Define the calculation lookup values for the calculation scales. The calculation
lookup values are the values associated with the calculation scale. For

256 Store Development Guide

example, a calculation scale includes the following ranges and associated tax
rates for Ontario provincial sales tax on meals served in a restaurant:

¢ $0.00 - $3.99 taxed at the rate of 0.00%
* $4.00 and up taxed at the rate of 8.00%
The lookup values are 0.00 and 8.00.

a. Using the following examples as your guide, set up the calculation lookup
in your XML file for the CALRLOOKUP table.
<calrlookup
calrlookup_id="@calrlookup_id 37"
calrange_id="@calrange_id_37"
value="5.00"
/>

where
 calrlookup_id is a generated unique identifier.

* calrange_id is the calculation range this calculation range lookup result
is part of.

* value is the value of the calculation range lookup result, used by the
calculation range method of the calculation range to determine a
monetary result. In this example, the tax rate is 5.00%.

For more information, see the CALRLOOKUP table in the WebSphere
Commerce online help.

b. Repeat steps a and b for each lookup value associated with the calculation
scale used in your store. In this example, there is only one CALRLOOKUP
value, since CALRLOOKUP.SETCCURR is NULL, and there is only one
CALRANGE, since the tax rate is the same for all amounts.

12. Associate the calculation rule and calculation scale.

a. Using the following examples as your guide, associate the calculate scale
with the calculation rule in your XML file for the CRULESCALE table.
<crulescale

calrule_id="@calrule_id_10"
calscale_id="@calscale_id 19"

/>

where
* calrule_id is the calculation rule.
* calscale id is the calculation scale.

b. Repeat step a for each calculation scale and rule association. In example
used above, there is only one calculation scale for each calculation rule.

Note: If the tax rate varies depending on the amount purchased, you will
need to create scales with non-zero rangestart values. Then, you will
need to create a calculation scale for each supported currency
(setting CALSCALE.SETCCURR to the appropriate currency) for
which you have not established a conversion rate (refer to the
CURCONVERT table) and associate them all with the calculation
rule for that particular tax category. For example, there is no Ontario
provincial sales tax on meals under $4.00. If your store supported
selling meals in US dollars, you would need to either establish a
conversion from US dollars to Canadian dollars, or create a separate
tax calculation scale with an appropriate rangestart value, perhaps

Chapter 27. Tax assets 257

258

$6.00 USD, and associate it with the same tax calculation rule. Only
the appropriate calculation scale would be used, according to the
currency of the order.

For more information about the use of @ and & see|AEEendix B:|
|“Creating your data,” on page 439

Creating tax fulfillment assets

In order for your tax assets to work correctly in your store, you must associate the
tax jurisdiction groups in your store to the fulfillment center used by your store,
and then associate a calculation rule to both.

You must create your fulfillment assets before you can associate your tax assets to
a fulfillment center. For more information on creating fulfillment assets, see
[“Creating fulfillment assets in WebSphere Commerce” on page 200)

After you have created the fulfillment assets, associate your tax assets to them, by

adding add information to the TAXJCRULE table. Do the following:

1. Review the IBM WebSphere Commerce Calculation Framework Guide. The
WebSphere Commerce calculation framework calculates monetary amounts (for
example, taxes) associated with the product or service a customer has selected
to purchase.

2. Review the XML files used to create tax fulfillment assets for the sample stores.
All files for the sample stores are located in the corresponding store archive file.

The store archive files are located in the following directory:
* WC_installdir /samplestores

Each sample store includes a taxfulfill.xml file, which include the tax
information. To view the taxfulfill.xml file in the store archive, decompress it
using a ZIP program. The taxfulfill.xml file is located in the data directory.

3. Review the information in [Appendix B, “Creating your data,” on page 439

4. Create a taxfulfill.xml file, either by copying one of the taxfulfill.xml files
in the sample store archives, or by creating a new one. For more information,
see the DTD file that corresponds to taxfulfill.xml. The DTD files are located
in the following directory:

e WC _installdir /xml/sar
5. Using the following example as your guide, in your XML file add information
for the TAXJCRULE table:

<taxjcrule

taxjcrule id="@taxjcrule id 1"
calrule_id="@calrule_id_10"
ffmcenter_id="@ffmcenter_id_1"
jurstgroup_id="@jurstgroup_id_2"
precedence="0"

/>
where
e taxjcrule_id is a generated unique identifier.

* calrule_id is the calculation rule used.

» ffmcenter_id is the fulfillment center. If this is NULL then this association
applies to all fulfillment centers.

Store Development Guide

6.

e jurstgroup_id is the tax jurisdiction group. If this is NULL, then this
association applies to all tax jurisdiction groups.

* precedence is when a shipping address falls within more than one of the
specified tax jurisdiction groups, for the same fulfillment center, only the
calculation rule with the highest TAXJCRULE.PRECEDENCE value qualifies.

Repeat step 3 for each jurisdiction group, fulfillment center and rule association
in your store.

For more information about the use of @ and & see |AEEendix B:|
[“Creating your data,” on page 439

Creating store-catalog-tax assets

In order to associate taxes with the goods and services in your store, you must
associate a calculation code with the catalog entries in your store for each contract
your store includes.

You must create your store and catalog assets before you can create
store-catalog-tax assets. For more information on creating store assets, see

[“Creating store data assets in an XML file” on page 124.|For more information on

creating catalog assets, see [‘Displaying store catalog assets” on page 162

To create