
IBM WebSphere Commerce

Payments Programming Guide and
Reference
Version 5.5

���

IBM WebSphere Commerce

Payments Programming Guide and
Reference
Version 5.5

���

Note

Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices”, on page 151.

Third Edition (June 2003)

This edition applies to version 5.5 of IBM WebSphere Commerce Payments and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product.

Contains security software from RSA Data Security, Inc.Copyright © 1994 RSA Data Security, Inc. All rights
reserved.

© Copyright International Business Machines Corporation 1997, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Conventions used in this book v
Terminology used in this book vi
Additional information vi

WebSphere Commerce vi
WebSphere Application Server viii
DB2 Universal Database viii

Part 1. Introduction 1

Chapter 1. WebSphere Commerce
Payments concepts. 3
Understanding WebSphere Commerce Payments
terms 3
What’s new for release 5.5 4

Part 2. Programming guide 7

Chapter 2. WebSphere Commerce
Payments commands 9
WebSphere Commerce Payments requests 9
The HTTP body 10

Character set issues. 11
Communication 11
WebSphere Commerce Payments responses 11

Formatting commands. 12
WebSphere Commerce Payments command security 13

Users 13
Role-based access control 14
Role permissions table 15

Chapter 3. Cashier. 19
Introduction to the Cashier 19
Cashier profiles 20
Designing your integration 20

Managing Cashier profiles 20
Mapping merchant numbers. 21
Mapping order numbers 21
Designing profiles 21
AVS 23
Trace 23
Error log 23

Writing cashier profiles 23
Basic profile structure 23
WebSphere Commerce Payments configuration in
profiles 24
Select statements 24
CollectPayment 25
Command 25
Buy page information 25
Parameters 26

Writing your integration 27
Building profiles. 27

Including necessary files 28
Creating a Cashier object 29
CollectPayment 29
Creating orders in the WebSphere Commerce
Payments – issueCommand() 30
Checking the status of an order – checkPayment() 30
Using BuyPageInformation 31
Tracing 31
Exceptions. 31
Writing extensions 31

SampleCheckout application. 32
Overview 32
Requirements. 33
Configuration 33
SampleCheckout profiles 34

Chapter 4. Client API library (CAL) . . . 37
CAL public classes 37
Creating a PaymentServerClient 38
Preparing the iSeries for SSL support when using
CAL 39
Issuing WebSphere Commerce Payments commands 39

Specifying additional information in the HTTP
Header 40

Processing responses from WebSphere Commerce
Payments 41

Process returned objects 41
Closing the PaymentServerClient 41
Sample CAL program 42
Installing files required by CAL 42
For machines that don’t have WebSphere Commerce
Payments installed 43

Chapter 5. Event notification 45
Event types and contents 45

State change event 46
Cassette-specific event 46
Network management event. 46

Registering events 47
Event ListenerURL parameter 47

Part 3. Programming reference . . . 49

Chapter 6. WebSphere Commerce
Payments command reference 51
Query commands 51
About 52
AcceptPayment 54

Using the AmountExp10 keyword 54
Approve 56
ApproveReversal 56
BatchClose. 57
BatchOpen. 58
BatchPurge 59

© Copyright IBM Corp. 1997, 2003 iii

CancelOrder 59
CassetteControl 60
CloseOrder 61
CreateAccount 61
CreateMerchant 63
CreateMerchantCassetteObject 64
CreateMerEventListener 65
CreatePaySystem 65
CreateSNMEventListener 66
CreateSystemCassetteObject 67
DeleteAccount 67
DeleteBatch 68
DeleteMerchant 68
DeleteMerchantCassetteObject 69
DeleteMerEventListener 70
DeletePaySystem 70
DeleteSNMEventListener 71
DeleteSystemCassetteObject 72
Deposit 72
DepositReversal 73
ModifyAccount 74
ModifyCassette 75
ModifyMerchant. 76
ModifyMerchantCassetteObject 77
ModifyMerEventListener 78
ModifyPayServer 78
ModifyPaySystem 79
ModifySNMEventListener 80
ModifySystemCassetteObject 80
ModifyUserStatus 81
QueryAccounts 81
QueryBatches. 82
QueryCassette 84
QueryCredits 85
QueryEventListeners 87
QueryMerchants 88
QueryOrders 89
QueryPayments 92
QueryPaymentServer 93
QueryPaySystems 94
QueryUsers 94

Optional parameters 94
Valid combination of parameters 95
Access control details 97

ReceivePayment 97
Refund 99
RefundReversal. 100
SetUserAccessRights 100

Access control rules for Merchant
Administrators 101

Chapter 7. WebSphere Commerce
Payments data 103
WebSphere Commerce Payments payment objects 103

Order 103
Order states 105
Payments. 107
Payment states 108
Split payments 109
AVS common codes 109
Credits 109
Credit states 110
Batches 111
Batch states 112

WebSphere Commerce Payments About objects . . 112
Payment Server About 113
Cassette About 113

WebSphere Commerce Payments administration
objects 113

Payment Server. 113
Cassette 114
Merchant 115
Payment System 115
Account 116
Event Listener 117
User 117

Part 4. Appendixes 119

Appendix A. WebSphere Commerce
Payments return codes 121
Primary return codes 121
Secondary return codes (generic) 123

Appendix B. ISO currency codes . . . 139

Appendix C. Obtaining requests for
comments 149

Appendix D. Notices 151
Trademarks 152

Glossary 155

Index 163

iv Payments Programming Guide and Reference

About this book

This book is for programmers who are responsible for developing applications that
communicate and interact with the WebSphere® Commerce Payments component
of WebSphere Commerce. Programmers who develop payment cassettes for use
with WebSphere Commerce Payments may find this information useful.

Note: IBM® WebSphere Commerce Payments for Multiplatforms (hereafter called
WebSphere Commerce Payments) was previously known as IBM WebSphere
Payment Manager for Multiplatforms. Starting with version 3.1.3, the
payments application was renamed to WebSphere Commerce Payments and
references to the product were changed throughout this document.
References to the former product may still appear in this document and
apply to earlier releases of the product.

Conventions used in this book
This book uses the following highlighting conventions:
v Boldface type indicates commands or graphical user interface (GUI) controls

such as names of fields, icons, or menu choices.
v Monospace type indicates examples of text you enter exactly as shown, file

names, and directory paths and names.
v Italic type is used to emphasize words. Italics also indicate names for which you

must substitute the appropriate values for your system. When you see the
following names, substitute your system value as described.

2000Windows indicates information specific to the Windows® operating environment.

2000AIX indicates information specific to AIX®.

2000Solaris indicates information specific to the Solaris Operating Environment.

2000400 indicates information specific to the IBM iSeries™ 400 (formerly called
AS/400®).

2000Linux indicates information specific to Linux on Intel® workstations and also to
Linux for IBM eServer iSeries, pSeries™, zSeries™ and S/390® systems.

2000UNIX indicates information specific to UNIX® platforms (AIX, Solaris, Linux).

WC_installdir represents the following default installation paths for WebSphere
Commerce:

2000AIX /usr/lpp/WebSphere/CommerceServernn

2000Linux 2000Solaris /opt/WebSphere/CommerceServernn

2000Windows drive:\WebSphere\CommerceServernn

© Copyright IBM Corp. 1997, 2003 v

2000400 /QIBM/ProdData/CommerceServernn

Payments_installdir represents the following default installation paths for
Payment Server:

2000AIX /usr/lpp/WebSphere/CommerceServernn/payments

2000Linux 2000Solaris /opt/WebSphere/CommerceServernn/payments

2000Windows drive:\WebSphere\CommerceServernn\payments

2000400 /QIBM/ProdData/CommercePayments/Vnn

Terminology used in this book
This book may use some terms that are unfamiliar to you, such as payment cassette,
merchant server, and payment gateway. Refer to the glossary provided in this
document for a definition of terms used in this book and in other WebSphere
Commerce Payments documentation. Terms are also described in the WebSphere
Commerce online help.

The following terms used in WebSphere Commerce Payments documents have
similarities to other terms used in WebSphere Commerce online help and
publications:

Store and merchant
In WebSphere Commerce, the term store is used to refer to an online store.
An online store uses Internet technologies to sell or exchange goods or
services. In WebSphere Commerce Payments, a store is equivalent to a
merchant. For example, when you see a reference in this document to
merchant settings or adding merchants, think of it as store settings or
adding stores.

Site Administrator and Payments Administrator
A Site Administrator is a defined role in WebSphere Commerce that installs,
configures, and maintains WebSphere Commerce and the associated
software and hardware. This role typically controls access and
authorization and has the most authority when performing administrative
tasks.

Similarly, in the Payments component of WebSphere Commerce, the
Payments Administrator has the most authority when performing Payment
functions. Although the Site Administrator can perform Payments
Administrator tasks, the Payments Administrator cannot perform all Site
Administrator tasks.

Additional information
More information about WebSphere Commerce and the Payments component is
available from a variety of sources in different formats.

WebSphere Commerce
The following are sources of WebSphere Commerce information:
v Online help
v Portable document format (PDF) files

vi Payments Programming Guide and Reference

v Web sites

Using the online help
The WebSphere Commerce online information provides information about
customizing, administering, and reconfiguring WebSphere Commerce.

The WebSphere Commerce Payments online help provides information about how
to use the graphical user interfaces associated with the Payments component. The
Payments online help is available by clicking the question mark icon in the upper
right corner of the user interface panel.

Locating the printable documentation
Some of the WebSphere Commerce online information is also available on your
system in PDF files, which you can view and print using Adobe Acrobat Reader. In
addition, WebSphere Commerce Payments documents are provided as PDF files.
You can download the Acrobat Reader for free from the Adobe Web site at the
following Web address:

http://www.adobe.com

PDF files can be accessed through the WebSphere Commerce online help and
through the WebSphere Commerce Web site for product information.

Viewing the WebSphere Commerce Web site for product
information
WebSphere Commerce product information is available at the WebSphere
Commerce technical library Web site:
http://www.ibm.com/software/commerce/wscom/library/lit-tech.html.

A copy of this book, and any updated versions of this book, are available as PDF
files from the Web site.

Other WebSphere Commerce Payments documentation and Web
sites
The following documents provide information related to the Payments component
of WebSphere Commerce:
v The WebSphere Commerce Installation Guide provides instructions on how to install

and configure WebSphere Commerce Payments for your platform.
v The WebSphere Commerce Administration Guide contains conceptual information

and shows how to configure WebSphere Commerce Payments using the
Configuration Manager user interface.

v The WebSphere Commerce Payments OfflineCard Cassette Supplement provides
information about a payment cassette used to record payment information that a
merchant can process later manually using the WebSphere Commerce Payments
user interface.

v The WebSphere Commerce Payments CustomOffline Cassette Supplement provides
information about a payment cassette that is available to manage information
surrounding manual payment transactions, such as Collect On Delivery, Bill Me
Later or other merchant-defined methods.

v The WebSphere Commerce Payments Cassette for VisaNet Supplement provides
information about using WebSphere Commerce Payments to access the VisaNet
system, including installation and configuration information.

v The WebSphere Commerce Payments Cassette for BankServACH Supplement provides
information about using WebSphere Commerce Payments to access the

About this book vii

Automated Clearing House (ACH) network through the BankServ gateway.
Installation and configuration information is included.

v The WebSphere Commerce Payments Cassette for Paymentech Supplement provides
information about using WebSphere Commerce Payments to access the
Paymentech Salem, N.H., processing center to process credit and debit card
transactions. Installation and configuration information is included.

All documents are provided in Portable Document Format (PDF).

Visit the following Web sites for more information about WebSphere Commerce
Payments:
v http://www.ibm.com/software/webservers/commerce/payment/ provides

more information on the WebSphere Commerce payment-processing software,
including information about the payment cassettes that are available for use
with WebSphere Commerce Payments.

v http://www.ibm.com/software/webservers/commerce/payments/support.html
provides current WebSphere Commerce Payments technical information and
links to the latest WebSphere Commerce Payments documentation.

v http://www.ibm.com/software/webservers/commerce/payment/paymentcards.
html provides information about WebSphere Commerce Payments cassette
development.

WebSphere Commerce support and download information is available at the
following Web sites:
v http://www.ibm.com/software/commerce/wscom/support/index.html
v http://www.ibm.com/software/commerce/wscom/downloads/index.html

WebSphere Application Server
WebSphere Application Server information is available at the WebSphere
Application Server Web site: http://www.ibm.com/software/webservers/appserv.

DB2 Universal Database
DB2 Universal Database information is available at the following Web site:
http://www.ibm.com/software/data/db2/udb.

viii Payments Programming Guide and Reference

Part 1. Introduction

© Copyright IBM Corp. 1997, 2003 1

2 Payments Programming Guide and Reference

Chapter 1. WebSphere Commerce Payments concepts

WebSphere Commerce Payments provides a generic framework with the capability
of supporting different payment methods with protocol-specific cassettes. A
merchant uses the payment and administration commands to process orders.
WebSphere Commerce Payments translates the generic command into a payment
protocol-specific request and forwards it to the appropriate recipient, such as a
payment gateway or a secure Web server. WebSphere Commerce Payments records
its transactions in a relational database.

All integrations of WebSphere Commerce Payments will issue order creation calls,
as dictated by the underlying payment cassette. For many merchant systems that
will suffice, and all other tasks will be done through the WebSphere Commerce
Payments interface. Merchants who want a tighter integration of additional
WebSphere Commerce Payments financial commands with other existing business
formats, will want to issue additional commands, like Approve, Deposit and
BatchClose.

Understanding WebSphere Commerce Payments terms
The following terms and concepts are used throughout this book. Refer to the
glossary provided in this document for a definition of other terms used in this
book and in other WebSphere Commerce Payments documentation. Terms are also
described in the WebSphere Commerce online help.

batch Collection of payments and credits which are settled together.

buyer A person making an Internet purchase from the merchant.

Cashier
A component that allows merchant software to fully utilize new cassettes
without requiring code modification. The cashier uses payment option
profiles for each cassette to describe the required cassette-specific
parameters as well as the methods of collecting that information from the
merchant software environment.

cassette
A software package that plugs into the WebSphere Commerce Payments
framework and provides support for a specific electronic payment system.
Cassettes can be developed both by IBM and by third parties. Examples
include the IBM cassettes for VisaNet, BankServACH, and Paymentech.

credit A credit represents an interaction between a merchant and a bank when
the merchant instructs the bank to refund money to the buyer.

event listener
A registrant with WebSphere Commerce Payments that wants to be
notified when significant events occur and object states change.

framework
The portion of WebSphere Commerce Payments that enables different
merchant servers using different payment systems to issue the same
generic commands to WebSphere Commerce Payments and use the same
generic data. WebSphere Commerce Payments uses protocol-specific
cassettes to translate the generic calls to protocol-specific messages.

© Copyright IBM Corp. 1997, 2003 3

merchant
A business with an Internet shopping presence. The merchant will
integrate WebSphere Commerce Payments with its merchant software.

Note: This term is similar to the term store in WebSphere Commerce. In
WebSphere Commerce Payments, a store is equivalent to a merchant.
For example, when you see a reference in this document to
merchant settings or adding merchants, think of it as store settings
or adding stores.

merchant software
The software that supports the merchant Internet business using
WebSphere Commerce Payments to process and manage Internet
payments. In addition to WebSphere Commerce Payments, this software
will generally include Web-based software for browsing catalogs, managing
shopping carts and placing orders. Depending on the integration level with
the merchant’s business, support for inventory management, shipping, and
accounting software might also be included.

Payments Administrator
In WebSphere Commerce, a Site Administrator is a defined role in
WebSphere Commerce that installs, configures, and maintains WebSphere
Commerce and the associated software and hardware. This role typically
controls access and authorization and has the most authority when
performing administrative tasks.

In the Payments component of WebSphere Commerce, the Payments
Administrator has the most authority when performing Payment functions.
Although the Site Administrator can perform Payments Administrator
tasks, the Payments Administrator cannot perform all Site Administrator
tasks.

order A WebSphere Commerce Payments order is an authorization from a buyer
to make one or more payments using a single payment method.

payment
A payment represents one interaction between a merchant and a financial
institution to approve and capture all or part of an order. Money moves
from buyer to the merchant.

realm A registry of users along with a single method of authenticating those
users. A user must be defined in a realm before being granted access to
resources.

What’s new for release 5.5
All cassettes (IBM provided or third party) previously installed on WebSphere
Commerce Payments, Version 2.2 or higher should continue to function after
successfully installing WebSphere Commerce Payments, Version 5.5.

Before you install WebSphere Commerce Payments, refer to the WebSphere
Commerce Installation Guide for your platform.

Directory file structure changes
Some changes were made to WebSphere Commerce Payments directory file
structure. These changes are reflected in this document and include some
file name changes. For example:
v The etillCal.zip package is now called eTillCal.jar.

4 Payments Programming Guide and Reference

v The Payments_installdir/include subdirectory is now located in this
path: Payments_installdir/wc.mpf.ear/Payments.war/include.

v With the exception of the instances subdirectory, the directory structure
for iSeries now matches the structure for workstation platforms.

v The SampleCheckout application is in its own WAR file inside the
WebSphere Commerce Payments EAR file. As a result, it is accessed
through host_name:port/webapp/SampleCheckout rather than
host_name:port/webapp/PaymentManager/SampleCheckout.

Installation and configuration changes
WebSphere Commerce Payments no longer has its own installation
program. As a component of WebSphere Commerce, it is installed through
the WebSphere Commerce installation program as described in the
WebSphere Commerce Installation Guide. After installation, you must
configure a Payments instance through the WebSphere Commerce
Configuration Manager.

Using the Configuration Manager, you can configure and manage
WebSphere Commerce instances, including instances of the Payments
component. The Configuration Manager enables you to create, update, and
delete Payments instances, start and stop them, change instance passwords,
and add and remove cassettes for an instance. For more information about
creating an instance, refer to the WebSphere Commerce Installation Guide. The
WebSphere Commerce Administration Guide provides additional information
about how to perform configuration tasks in WebSphere Commerce.

IBM-provided cassettes
The Cassette for SET™ and Cassette for CyberCash are no longer
supported. The cassettes provided with WebSphere Commerce Payments
consist of the following:
v OfflineCard Cassette
v CustomOffline Cassette
v Cassette for BankServACH
v Cassette for Paymentech
v Cassette for VisaNet

Default port removal
There is no longer a default port specified for WebSphere Commerce
Payments (formerly, it was 80). Ports are specified through the WebSphere
Commerce Configuration Manager.

Message and trace facility changes

WebSphere Commerce Payments now uses WebSphere Application Server
message and trace facilities rather than its own facilities to generate system
message and trace output. This change provides problem determination
data in a more consistent fashion, making it easier for you to collect and
understand the data in a WebSphere environment.
v Message changes include the following:

Messages can be viewed in the WebSphere Application Server
administrative console using the Log Analyzer. You can use the Log
Analyzer to view messages in the activity.log file in the
WAS_installdir/logs/instancename_Commerce_Payments_Server directory.
Formerly, messages were written to the PMError file in the Payments
logpath directory (Payments_installdir/logs) by default.

Chapter 1. WebSphere Commerce Payments concepts 5

Additionally, a WebSphere Commerce symptom database is available as
a problem determination aid. Using the WebSphere Log Analyzer, you
can view detailed information about Commerce system messages
(including Payments messages) and view detailed explanations about the
messages and suggested user response actions. More information about
using the Log Analyzer with WebSphere Commerce logs, and the
symptom database, is provided in the WebSphere Commerce Administration
Guide. Also, refer to the WebSphere Application Server InfoCenter for
complete details about the Log Analyzer.

v Trace changes include the following:
The Trace panel, which was formerly used to enable tracing, no longer
appears in the WebSphere Commerce Payments graphical user interface.
To control which file the trace text is written to, use the WebSphere
Application Server trace service to define where to output trace data,
instead of the PMTrace1.log and PMTrace2.log files in the Payments logs
directory. The PMTrace log files are no longer supported.

ModifyPayServer and ModifyCassette commands changes
Because WebSphere Commerce Payments now takes advantage of
WebSphere message and trace facilities, the ModifyPayServer and
ModifyCassette API commands have changed, and the Payment Server
(PSPaymentServer) object no longer supports the logPath, traceFileSize,
and traceSetting attributes.

The ModifyPayServer command, which modifies the global properties of
the Payments component, no longer supports the following optional
keywords: LOGPATH, TRACEFILESIZE, and TRACESETTING.

The ModifyCassette command, which modifies the properties of a cassette,
no longer supports the optional TRACESETTING keyword.

In addition, generic secondary return codes 508 and 614, which related to
the error log path and error log, are eliminated. Secondary return codes are
listed in “Secondary return codes (generic)” on page 123.

Refer to the WebSphere Commerce Administration Guide for more information
about the WebSphere JRas Message and Diagnostic Trace Facility, trace
components, and how to set trace levels for WebSphere Commerce
Payments.

6 Payments Programming Guide and Reference

Part 2. Programming guide

WebSphere Commerce Payments provides a number of programming interfaces to
allow you to integrate the product into your system. The following diagram
identifies these interfaces.

The central concept of WebSphere Commerce Payments is to provide a framework
for managing multiple payment systems while presenting a single interface to
users. WebSphere Commerce Payments introduces the notion of a payment cassette
which is a piece of plug-in software that supports a single payment system.
WebSphere Commerce Payments will route incoming payment requests to the
relevant cassette and responses will be as payment system-neutral as possible,
thereby enabling new cassettes to be added to the system with little or no
disruption to existing integration software. This publication addresses the
programming interfaces that can be used by applications to integrate with
WebSphere Commerce Payments and its cassettes. The cassette programming
interface, which enables software developers to write new cassettes for WebSphere
Commerce Payments, is fully described in the IBM WebSphere Commerce
Payments Cassette Kit information at
http://www.ibm.com/software/webservers/commerce/payments/download.html.

The main programming interface to WebSphere Commerce Payments is based on
HTTP and XML standards. WebSphere Commerce Payments accepts commands as
HTTP POST requests and returns XML documents embedded in HTTP responses.
There are commands for all the payment processing functions and almost all of the
administrative functions. Because the interface uses HTTP and XML standards, it is
possible to invoke WebSphere Commerce Payments commands from a variety of

Application

Application

HTTP/XML
Interface

HTTP
Request

HTTP Event
Notification

WebSphere
Commerce Payments

C a s s e t t e s

XML
Response

Java Client API Library Java Cashier

Figure 1. Programming interfaces

© Copyright IBM Corp. 1997, 2003 7

programming languages. Chapter 2, “WebSphere Commerce Payments commands”,
on page 9 describes how these requests and responses should be formed and lists

the full set of WebSphere Commerce Payments commands along with their
required and optional parameters. It is important to note that you will also need to
refer to the supplemental documentation for each cassette you are using to
understand the additional keywords that can be specified for each request as well
as the additional cassette XML data that is provided for each response.

A Java™ Client API Library (CAL) is provided with WebSphere Commerce
Payments that makes it easy to integrate Java software with WebSphere Commerce
Payments. Using CAL, you can build Java requests and process Java response
objects. CAL handles the building of the HTTP request and the parsing of the XML
responses under the covers. The Client API Library is discussed in Chapter 4,
“Client API library (CAL)”, on page 37.

When creating WebSphere Commerce Payments orders, it is necessary to pass
information that is specific to the payment cassette that will process payments for
that order. Examples of cassette-specific data include credit card numbers, check
numbers, voucher IDs and expiry dates. If the code you write to handle order
creation is hard-coded to support only certain cassettes, then when you add a new
cassette to your system, you need to recode. To avoid this problem, WebSphere
Commerce Payments provides a Java based library of functions called the Cashier.
The Cashier uses profiles (XML documents) to describe all the parameters that are
required by a cassette for order creation. That way, if you use the Cashier to create
WebSphere Commerce Payments orders, you will not need to write order creation
code that is specific to any given cassettes. The Cashier is described in Chapter 3,
“Cashier”, on page 19.

WebSphere Commerce Payments provides an event notification mechanism that
can alert you when certain events occur. The supported event triggers include the
starting or stopping of the WebSphere Commerce Payments and its cassettes, the
change in status of orders belonging to a given merchant or special events defined
by particular cassettes. You can tell WebSphere Commerce Payments which events
you are interested in. When the event is triggered, WebSphere Commerce
Payments will create an HTTP POST message and send it to the URL you
specified. You will need to write a servlet or CGI program (known as an event
listener) to process event notifications. The event notification mechanism is
described in Chapter 5, “Event notification”, on page 45.

8 Payments Programming Guide and Reference

Chapter 2. WebSphere Commerce Payments commands

Merchant business software can issue administration, payment, and query
commands to WebSphere Commerce Payments. These commands consist of
keyword-value pairs. (See Chapter 6, “WebSphere Commerce Payments command
reference”, on page 51, for command tables.) Commands are executed by issuing
requests and waiting for the responses. WebSphere Commerce Payments requests
are formatted as HTTP POST messages. WebSphere Commerce Payments responses
are XML documents embedded in HTTP. (For a detailed description of the XML
objects, and associated fields, see Chapter 7, “WebSphere Commerce Payments
data”, on page 103.) This chapter describes the HTTP POST, communication with
WebSphere Commerce Payments and the XML output.

WebSphere Commerce Payments requests
Merchant software issues commands to WebSphere Commerce Payments by
creating an HTTP POST message and sending it to WebSphere Commerce
Payments. Like any HTTP POST message, a command consists of a header and a
body. Following is an example of a WebSphere Commerce Payments command:
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 187
Content-Type: application/x-www-form-urlencoded

OPERATION=ACCEPTPAYMENT&ETAPIVERSION=3&PAYMENTTYPE=OfflineCard
&MERCHANTNUMBER=123456789&ORDERNUMBER=91600886&AMOUNT=500
&CURRENCY=840&%24EXPIRY=200212&%24PAN=5015550000033019&%24BRAND=ROBO

Note: The breaks in the HTTP body in the example above are for formatting
purposes only. Syntax has to be on the same line.

WebSphere Commerce Payments commands require the header to contain a
number of specified keyword-value pairs, encoded in a particular format. The
HTTP header must contain the following fields with these values:
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
Content-Encoding: 8859_1
Content-Type: application/x-www-form-urlencoded

In addition, the header must contain additional fields with calculated values:

Host: <PaymentServer host>
This should be the TCP/IP hostname of WebSphere Commerce Payments

Content-Length: <length>
The length of the HTTP body in bytes

© Copyright IBM Corp. 1997, 2003 9

Authorization: Basic <authorization-string>
The authorization string consists of a userid and password string,
separated by a single colon (″:″) character. The string should be encoded
with a base64 encoding.
authorization-string=base64–user-pass
base64-user-pass=<base64encoding of user-password,
except not limited to 76 char/line>
user-pass=user":"password
userid=*<TEXT excluding ":">
password=*TEXT

Optionally, the HTTP header may contain a PM-Accept-Language HTTP header.
This header indicates the language in which WebSphere Commerce Payments
should provide return code messages in the response message.
PM-Accept-Language: Locales should be specified according to the HTTP RFC
2068. Locales supported by WebSphere Commerce Payments include: pt (Brazilian
Portuguese), en (English), fr (French), de (German), it (Italian), ja (Japanese), ko
(Korean), zh (simplified Chinese), es (Spanish), zh_TW (traditional Chinese). Note
that, although more than one locale can be specified on the PM-Accept-Language
HTTP header, WebSphere Commerce Payments will only use the first locale. If no
PM-Accept-Language header is sent, WebSphere Commerce Payments will use the
locale of the machine where WebSphere Commerce Payments is installed.

The client or merchant programmer may wish to specify additional header fields,
to use HTTP functionality beyond the minimal WebSphere Commerce Payments
communication requirements. The interpretation of these fields is dependent on the
network environment and the Web server under which WebSphere Commerce
Payments is installed.

The HTTP body
The body of a WebSphere Commerce Payments command consists of a set of
keyword-value pairs, formatted using the encoding specified by the HTTP
content-type: application/x-www-form-urlencoded.

Keywords can be included multiple times (for example, multiple order numbers
specified in a query order command).

The command body must be formatted according to the following rules:
v Each WebSphere Commerce Payments command parameter and its associated

argument (each keyword-value pair of a WebSphere Commerce Payments
command), are separated from each other by an equals (″=″) character.

v Each keyword-value pair is separated from other keyword-value pairs by an
ampersand (″&″) character.

v The keywords and values are URL encoded, which is also the way that binary
data is sent to WebSphere Commerce Payments. Rules for URL encoding follow:
– All space characters (hex 0X20 ASCII characters) are replaced by ″+″

characters (hex 0x2B characters)
– All bytes of each keyword and value that do not map to an alphanumeric

US-ASCII character must be escaped. Each of these bytes are replaced with
the escape sequence ″%HH″ where HH is the two hexadecimal digits
representing the ASCII code of the character (byte).

v Keywords are case insensitive. Values are case sensitive

10 Payments Programming Guide and Reference

Character set issues
All WebSphere Commerce Payments keywords are specified in the US-ASCII
character set. Values must be encoded in the UTF-8 character set prior to the
URL-encoding of the HTTP POST body. For example, the Unicode character 0x3053
is represented in UTF-8 as 0xE3, 0x81, 0x93. Once this value is URL encoded, it is
%E3%81%93.

Note: For US-ASCII string or numeric values, no translation is necessary.

Communication
To send a command to WebSphere Commerce Payments:
1. Open a TCP connection to the WebSphere Commerce Payments host and port.

The port is configured through the WebSphere Commerce Configuration
Manager.

2. Send a request and wait for the response.
3. Close the connection.

If communication fails prior to receipt of the response, it is uncertain whether or
not the WebSphere Commerce Payments command has actually executed. To
determine if the command has executed, issue query commands to confirm that
the command was received and processed.

If you want to use SSL, configure the Web server on the WebSphere Commerce
Payments to support SSL connections. Once the Web server is configured for SSL,
you can send commands using SSL. You must be ready to participate and perform
all steps to create SSL communication.

WebSphere Commerce Payments responses
WebSphere Commerce Payments responses are XML documents, embedded in
HTTP. The format of the XML document is defined in the WebSphere Commerce
Payments Document Type Definition (DTD). IBMPaymentServer.dtd contains the
DTD and this file can be found in the
Payments_installdir/wc.mpf.ear/Payments.war/include subdirectory.

Every HTTP response contains an XML document with a PSApiResult element that
identifies the primary and secondary return code, along with an object count and
additional return code messages, which may contain descriptions of any
WebSphere Commerce Payments return code pairs. For a description of primary
and secondary return code values, see Appendix A, “WebSphere Commerce
Payments return codes”, on page 121.

Cassette specific objects are represented using the cassette object and cassette
configuration elements. Details about individual properties can be found in the
respective cassette supplement. (See the cassette supplement documentation for
more information.)

Query commands will additionally contain descriptions of WebSphere Commerce
Payments objects and the number of objects returned. Framework objects are
described in the DTD (Document Type Definition) and in the object definition
tables found in Chapter 7, “WebSphere Commerce Payments data”, on page 103.
The DTD for this XML document can be either:
v Included in the response

Chapter 2. WebSphere Commerce Payments commands 11

v Found in the file IBMPaymentServer.dtd

When WebSphere Commerce Payments successfully receives, processes and
responds to a request, it returns an HTTP status code of 200. Other HTTP status
codes can be returned by the Web server, due to situations like an authentication
failure or when WebSphere Application Server is not running. This status code,
along with any information in the body, indicates the source of the problem.

Formatting commands
Following are two examples of XML documents resulting from an AcceptPayment
command, and a QueryOrders with Payments command.

AcceptPayment
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 187
Content-Type: application/x-www-form-urlencoded

OPERATION=ACCEPTPAYMENT&ETAVERSION=3&PAYMENTTYPE=OfflineCard&MERCHANTNUMBER=
123456789&ORDERNUMBER=94184938&AMOUNT=500&CURRENCY=840&%24EXPIRY=
200212&%24PAN=5015550000033019&%24BRAND=ROBO

<?xml version="1.0" encoding="UTF-8"?>
<PSApiResult objectCount="0" primaryRC="0" secondaryRC="0">
</PSApiResult>

QueryOrders with Payments
The following example is a response to a QueryOrder with Payment command.
There are two order objects contained in the response document:
v First order object contains one payment
v The second order object does not contain any payments
POST /webapp/PaymentManager/PaymentServlet HTTP/1.1
Connection: Keep-Alive
Accept: application/xml
PM-Accept-Language: en-US
Authorization: Basic YWRtaW46YWRtaW4=
Host: localhost
User-Agent: Java PaymentServerClient
Content-Encoding: 8859_1
Content-Length: 100
Content-Type: application/x-www-form-urlencoded

OPERATION=QUERYORDERS&ETAVERSION=3&PAYMENTTYPE=OfflineCard&MERCHANTNUMBER=
123456789&WITHPAYMENTS=1

<?xml version="1.0" encoding="UTF-8"?>
<PSApiResult objectCount="2" primaryRC="0" secondaryRC="0">

<OrderCollection size="2" withCredits="0" withPayments="1">
<PSOrder ID="O:123456789:94184938" amount="500" amountExp10="-2"

approvesAllowed="1" brand="ROBO" currency="840" merchantAccount="1"
merchantNumber="123456789" merchantOriginated="1" numberOfCredits="0"
numberOfPayments="1" orderNumber="94184938" paymentType="OfflineCard"
state="order_refundable" timeStampCreated="966461827000"
timeStampModified="966463091000" unapprovedAmount="0">

<PaymentCollection size="1" withOrders="0">
<PSPayment ID="P:123456789:94184938:1" amountExp10="-2"

approveAmount="500" currency="840" depositAmount="0" merchantAccount="1"

12 Payments Programming Guide and Reference

merchantNumber="123456789" orderNumber="94184938" paymentNumber="1"
paymentType="OfflineCard" state="payment_approved"
timeStampCreated="966463091000" timeStampModified="966463092000">

<CassetteExtensionObject>
</CassetteExtensionObject>

</PSPayment>
</PaymentCollection>
<CassetteExtensionObject>

<CassetteProperty propertyId="Expiry" value="200212">
</CassetteProperty>
<CassetteProperty propertyId="AccountNumber" value="1">
</CassetteProperty>
<CassetteProperty propertyId="Brand" value="ROBO">
</CassetteProperty>
<CassetteProperty propertyId="AmountApproved" value="500">
</CassetteProperty>
<CassetteProperty propertyId="Pan" value="5015550000033019">
</CassetteProperty>

</CassetteExtensionObject>
</PSOrder>
<PSOrder ID="O:123456789:92005267" amount="500" amountExp10="-2"

approvesAllowed="1" brand="ROBO" currency="840" merchantAccount="1"
merchantNumber="123456789" merchantOriginated="1" numberOfCredits="0"
numberOfPayments="0" orderNumber="92005267" paymentType="OfflineCard"
state="order_refundable" timeStampCreated="966459650000"
timeStampModified="966459650000" unapprovedAmount="500">

<PaymentCollection size="0" withOrders="0">
</PaymentCollection>
<CassetteExtensionObject>

<CassetteProperty propertyId="Expiry" value="200212">
</CassetteProperty>
<CassetteProperty propertyId="AccountNumber" value="1">
</CassetteProperty>
<CassetteProperty propertyId="Brand" value="ROBO">
</CassetteProperty>
<CassetteProperty propertyId="AmountApproved" value="0">
</CassetteProperty>
<CassetteProperty propertyId="Pan" value="5015550000033019">
</CassetteProperty>

</CassetteExtensionObject>
</PSOrder>

</OrderCollection>
</PSApiResult>

WebSphere Commerce Payments command security
When WebSphere Commerce Payments receives a command issued by the user, it
will process the command as follows:
v Authenticate the user by the realm. Users are defined in the WCSRealm.
v Authorizes the user through the access control facility.
v Process the command.

The following sections describe the concepts associated with command security.

Users
Authentication is done through the use of realms. A realm is a registry of users
that is responsible for managing the user’s name, password, and perhaps some
other form of user identification.

A WebSphere Commerce Payments user must be defined in the WCSRealm before
being granted access to WebSphere Commerce Payments resources. Payments

Chapter 2. WebSphere Commerce Payments commands 13

Administrators and Merchant Administrators can use the WebSphere Commerce
Payments API command or the Payments user interface Users window to assign
access to a user defined in a realm.

Role-based access control
WebSphere Commerce Payments employs a role-based access control scheme
which defines four WebSphere Commerce Payments roles: Payments
Administrator, Merchant Administrator, Supervisor, and Clerk. It is recommended
that these roles be assigned to WebSphere Commerce users having the roles shown
in Table 1.

Table 1. Suggested role assignment

Payments role WebSphere Commerce role

Payments Administrator Site Administrator

Merchant Administrator Site Administrator

Supervisor Operations Manager, Sales Manager

Clerk Customer Service Supervisor

The user’s role determines which commands can be issued by that user.

A user other than the Payments Administrator can associate with multiple
merchants. For example, a Merchant Administrator can manage more than one
merchant. Similarly, Supervisors and Clerks can issue commands for multiple
merchants. WebSphere Commerce Payments supports the following role-based
access scenarios:
v Payments Administrators can issue all of the API commands for all merchants.
v Merchant Administrators can perform all functions for the merchants with

whom they associate, except for several limitations on the SetUserAccessRights
and the QueryUsers commands (for more information on these commands, see
“QueryUsers” on page 94 and “SetUserAccessRights” on page 100).

v Supervisors and Clerks can issue limited commands for the merchants with
whom they associate.

Assigning a user’s access permissions
A user’s permission (or role) can be assigned or changed only by the Payments
Administrator or the Merchant Administrator. The Payments Administrator can
assign or change any user’s access rights and can assign or change a user’s role to
whatever he wants that user’s role to be, including the role of Payments
Administrator.

The Merchant Administrator can only assign or remove a user as a Merchant
Administrator, Supervisor, or Clerk. Further, the Merchant Administrator can do so
only under one of the following conditions:
1. If the user being granted access to multiple merchants does not currently have

access rights in WebSphere Commerce Payments, then the Merchant
Administrator can grant this user access only to merchants that he (as the
Merchant Administrator) already has access to.

2. If the user being granted access to multiple merchants does have access rights in
WebSphere Commerce Payments, then the merchants with whom he is
currently associated should also be associated with the assigning Merchant

14 Payments Programming Guide and Reference

Administrator. Further, the merchants who are being assigned to associate with
the user should also be a subset of the merchants associated with the assigning
Merchant Administrator.

For example, the user X is the Merchant Administrator for merchants A, B, and C.
User Y does not have access rights in WebSphere Commerce Payments. X can
assign Y as the Merchant Administrator for the merchants A, B, and C or for the
merchants A and B. However, if the user Y has access rights in merchants other
than A, B and C (for example the user Y is the Merchant Administrator for the
merchant D), then the user X cannot change the user Y’s access rights.

The following figure uses set notation to represent some typical scenarios.

In Figure 2, user X has given access rights to some of X’s merchants to user Y.

In Figure 3, X and Y are associated with different sets of merchants even though
they both associate with some common merchants. In this case, neither X nor Y can
change the other’s permissions even though they are both Merchant Administrators
for a common set of merchants.

Role permissions table
Each role has an associated set of operations that can be performed by a user
having this role. The following notation is used to describe the capabilities of each
role listed in Table 2.

Table 2. Field values for role capabilities

Field value Role capabilities

Y Allowed to perform the command.

Merchants of X Merchants of Y

Figure 2. Example showing access rights

Merchants of X Merchants of Y

Figure 3. Example showing users associated with common merchants

Chapter 2. WebSphere Commerce Payments commands 15

Table 2. Field values for role capabilities (continued)

Field value Role capabilities

M Allowed to perform the command, if the user’s merchant
number includes all the merchant numbers in the command. If
there is no merchant number specified in the command,
authorization fails.

u Allowed to perform the command, if the user attempting the
command matches the user specified in the command. If there
is no user specified in the command, authorization fails.

a Allowed to perform the command, if SETUserAccessRights
special authorization logic allows it. For more information on
the SETUserAccessRights command, see
“SetUserAccessRights” on page 100.

m Allowed to perform the command, if QueryUsers special
authorization logic allows it. For more information on the
QueryUsers command, see “QueryUsers” on page 94.

<blank> A user with this role is not allowed to perform the command.

The following table illustrates the capabilities each role has. An asterisk (*)
following a command indicates that the command does not have a required
merchant number parameter.

Table 3. Role capabilities

Command Payments
Admin

Merchant
Admin

Supervisor Clerk

About* Y Y Y Y

AcceptPayment Y M M M

Approve Y M M M

ApproveReversal Y M M M

BatchClose Y M M M

BatchOpen Y M M M

BatchPurge Y M M M

CancelOrder Y M M

CassetteControl Y M M M

CloseOrder Y M M

CreateAccount Y M

CreateMerchant Y

CreateMerchantCassetteObject* Y M

CreateMerEventListener Y M

CreatePaySystem Y

CreateSNMEventListener Y

CreateSystemCassetteObject* Y

DeleteAccount Y M

DeleteBatch Y M M M

DeleteMerchant Y

DeleteMerchantCassetteObject* Y M

16 Payments Programming Guide and Reference

Table 3. Role capabilities (continued)

Command Payments
Admin

Merchant
Admin

Supervisor Clerk

DeleteMerEventListener Y M

DeletePaySystem Y

DeleteSNMEventListener Y

DeleteSystemCassetteObject* Y

Deposit Y M M M

DepositReversal Y M M

ModifyAccount Y M

ModifyCassette* Y

ModifyMerchant Y M

ModifyMerchantCassetteObject* Y M

ModifyMerEventListener Y M

ModifyPayServer* Y

ModifyPaySystem Y

ModifySNMEventListener Y

ModifySystemCassetteObject* Y

ModifyUserStatus Y M

QueryAccounts Y M M M

QueryBatches Y M M M

QueryCassettes Y

QueryCredits Y M M M

QueryEventListeners Y M

QueryMerchants Y M M M

QueryOrders Y M M M

QueryPayments Y M M M

QueryPaymentServer Y

QueryPaySystems Y M M M

QueryUsers Y m u u

ReceivePayment Y M M M

Refund Y M M

RefundReversal Y M M

SetUserAccessRights* Y a

Note: A user may not update himself. That is to say, user ″admin″ may not call
SETUSERACCESSRIGHTS with the user parameter set to ″admin″.

Chapter 2. WebSphere Commerce Payments commands 17

18 Payments Programming Guide and Reference

Chapter 3. Cashier

This chapter describes the WebSphere Commerce Payments Cashier and Cashier
profiles, and discusses what you should consider when integrating with
WebSphere Commerce Payments through the Cashier.

Introduction to the Cashier
The Cashier is WebSphere Commerce Payments code that can be invoked by client
applications, such as merchant software, to simplify the process of creating
WebSphere Commerce Payments orders and other WebSphere Commerce Payments
commands. The Cashier uses XML documents called profiles that describe how
commands such as orders should be created for a given cassette. This allows the
client code writer to concentrate on integrating with WebSphere Commerce
Payments in a generic way rather than having to write code that deals with
cassette-specific information.

You can still create WebSphere Commerce Payments orders without using the
Cashier; programs can use the AcceptPayment and ReceivePayment APIs.
However, the use of the Cashier is preferred since it allows the potential for new
cassettes to be introduced to the system without the need for rewriting any code.

The Cashier is written in Java and is included in the eTillCal.jar package. It
provides a set of methods that can be invoked directly by a WebSphere Commerce
Payments client application. The Cashier itself uses the Client API Library (CAL) to
send AcceptPayment, ReceivePayment, and other commands to WebSphere
Commerce Payments. Therefore, the Cashier benefits from all the advantages of
CAL. The code can operate remotely from WebSphere Commerce Payments, and
can be configured to use a socks server and encrypt messages via SSL if required.
The profiles used by the Cashier must be available where the Cashier is running.

The principal Cashier method is collectPayment(); this is the method that client
applications must invoke to create a WebSphere Commerce Payments order.
collectPayment() takes a profile name, the locale, and a list of environment

Browser
Web

Server
Servlet
Engine

SampleCheckout
servlet

Cashier

SampleCheckout.xml

WebSphere
Commerce
Payments

profiles

Localization files for
BuyPageInformation

Figure 4. The WebSphere Commerce Payments Cashier

© Copyright IBM Corp. 1997, 2003 19

variables as arguments. It loads the corresponding profile and uses it to build an
AcceptPayment or ReceivePayment API request. The environment variables are
used to supply the API parameter values.

To query the state of WebSphere Commerce Payments orders and payments, you
can use the checkPayment() method at any time after the collectPayment() call.

Additionally, you can use the issueCommand() method to build and issue other
API requests on WebSphere Commerce Payments. Currently the only supported
API through issueCommand() is the Deposit API.

Cashier profiles
Cashier profiles are XML documents that describe how WebSphere Commerce
Payments commands should be created. All profiles must include the following:
v Required WebSphere Commerce Payments parameters
v Required cassette parameters
v Specifications for how the Cashier supplies values for the above parameters

Profiles may include the following:
v An indication of whether a wallet is used. This flag determines whether the

Cashier will issue an AcceptPayment command or a ReceivePayment command.
v Indication of which WebSphere Commerce Payments instance to use for each

profile
v Optional WebSphere Commerce Payments parameters
v Optional cassette parameters
v Buy page information that specifies how client code should build buy pages to

collect buyer information. For example, an HTML form that collects credit card
information required by a specific cassette

v An indication of whether diagnostic information is to be enabled for the profile

Cashier profiles allow parameter values to be specified in four ways:
1. Hard-coded as constants in the profile
2. Passed as an environment variable on the collectPayment() or issueCommand()

calls
3. Specified as originating from a relational database field
4. Specified as being calculated by Cashier extension code

If your system already has easy access to data needed by your profiles, then it is
practical to pass this data to the Cashier in environment variables on the
collectPayment() or issueCommand() calls. If data is difficult for your system to
obtain, or is required by only a few profiles, then passing this as environment
variables may be inefficient because you will be deriving this data for all calls to
collectPayment() orissueCommand(), whether the data is required or not.

Designing your integration
This section describes considerations for writing code that integrates with
WebSphere Commerce Payments via the Cashier.

Managing Cashier profiles
Before using the Cashier, you should determine which profiles you want to make
available on your site. Cassette writers should provide Cashier profiles that are

20 Payments Programming Guide and Reference

adaptable for your use. These profiles are stored in the profiles subdirectory of
WebSphere Commerce Payments. However, even if a cassette does not provide any
profiles, they can easily be created by following the cassette’s supplement guide
and the instructions in “Writing cashier profiles” on page 23.

If your system supports multiple stores or merchants, you must decide how you
will determine which profiles are in active use. In the simplest case, all merchants
or stores may always use a single set of profiles. However, in a more complex
scenario, different merchants or stores may support different sets of profiles. In this
case, you must provide support to map these merchants or stores to the profiles
they use. You may also need to provide tools to administer this table of merchant
to profile mappings.

Mapping merchant numbers
Merchants are the objects with which cassettes are associated and against which
orders are placed. They are identified by merchant numbers of up to nine numeric
digits. Because you can create more than one merchant number for each merchant
entity in your system, it is important to consider how to map the merchant or store
entities in your system against merchant numbers in WebSphere Commerce
Payments. If there is a one-to-one correspondence, and the identifier you use for
your merchant or store can be represented as a string of up to nine digits, then you
need not store WebSphere Commerce Payments merchant numbers in your system.
Otherwise, you must decide how to store WebSphere Commerce Payments
merchant numbers as foreign keys.

Mapping order numbers
Orders are identified by order numbers of up to nine digits. Each order number
must be unique for each merchant number, so it is theoretically possible for a
single instance of WebSphere Commerce Payments to have 999,999,999 merchants,
each with 999,999,999 orders. (Of course, practical limitation would become
unmanageable before reaching these limits.)

A WebSphere Commerce Payments order has a specific definition that might not
precisely match the use of an order in your system. Each WebSphere Commerce
Payments order is an authorization from a buyer to make one or more payments
against a particular payment method. An order in which a buyer uses multiple
payment methods must be represented in WebSphere Commerce Payments as
multiple orders. An example would be a down-payment paid by credit card with
the balance paid later by check.

You decide how to map orders in your system with orders in WebSphere
Commerce Payments. If necessary, you may need to store one or more WebSphere
Commerce Payments order numbers with each order in your system.

Designing profiles
Because each profile contains data specifying how to derive the values of
parameters for WebSphere Commerce Payments and cassettes, profiles are usually
specific to a single integration and cannot be copied to another system without
modification. This section lists some of the things to consider when designing how
profiles will work for your integration.

WebSphere Commerce Payments configuration
There are two ways to configure your system to point to one or more WebSphere
Commerce Payments instances:

Chapter 3. Cashier 21

1. By specifying the WebSphere Commerce Payments configuration inside each
Cashier profile

2. By specifying the configuration inside your application and using that
configuration for all Cashier profiles.

Either way, it is important to understand that an order is managed by a single
WebSphere Commerce Payments instance. Therefore, when the order is created,
you must record which WebSphere Commerce Payments instance owns the order.
If you use profile-based configuration, you can do this by storing the profile name
along with the order. Later, when you want to perform payment operations on the
order, you can query the Cashier to discover which WebSphere Commerce
Payments instance owns the order and direct your API requests to that instance.

Profile parameter sources
Remember to keep in mind that either collectPayment() or issueCommand() can be
used, but that we recommend going to the use of issueCommand().

When using the Cashier, you must decide where your profiles will get their API
parameter values.

If your system already has easy access to data needed by your profiles, then it is
practical to pass this data to the Cashier in environment variables on the
collectPayment() issueCommand() call. If data is difficult for your system to obtain,
or is required by only a few profiles, then passing this as environment variables
may be inefficient because you will be deriving this data for all calls to
collectPayment() issueCommand(), whether the data is required or not.

In these cases, you may prefer to have the Cashier derive the data itself. If the data
is available in a relational database, you can code your profiles to instruct the
Cashier to perform a database query to get it. Or, you can write Cashier extension
code to derive the parameter value. Refer to “Writing your integration” on page 27
to see how this can be done.

Buy page information
Using the Cashier and profiles allows your WebSphere Commerce Payments
integration to support the addition of future payment cassettes without the need
for recoding your system. New cassettes will require different payment information
to be collected on the buy page. Even within the set of credit card cassettes, there
are differences in the buy pages that are presented to a buyer. For example, some
cassettes support the Address Verification Service (AVS) and others do not.

If you write your integration to use information in the Cashier profiles to build
buy pages it becomes much easier to support new cassettes by avoiding the need
to recode your buy pages for the new cassettes.

The profile’s buy page information is determined entirely by your integration
design. It could contain the HTML required to build a form to present to the
buyer; it could be an XML document that describes the data that should be
collected; or it could be a pointer to a Java Server Page or Active Server Page that
collects the data. The only thing you must ensure is that the data entered by the
buyer is made available when the Cashier is using the profile’s parameter
definitions to build the WebSphere Commerce Payments API request.

Publish profile interface
One of the major advantages of the Cashier is that other people can write profiles
that work with your integration. Having integrated with WebSphere Commerce
Payments using the Cashier, new cassettes can be supported by providing the

22 Payments Programming Guide and Reference

relevant Cashier profiles, with no requirement for program code changes. To
publish the interface, include the specification for buy page information, parameter
sources, and whether profiles need to contain WebSphere Commerce Payments
configuration information.

AVS
WebSphere Commerce Payments cassettes return AVS result codes to merchants on
financial transactions. Because these codes are cassette-specific (meaning they vary
by WebSphere Commerce Payments cassette), WebSphere Commerce Payments
provides a set of common AVS result codes to extend the cassette-specific codes.
For a mapping of the common AVS result codes to the cassette-specific codes, see
“AVS common codes” on page 109.

Trace
The Cashier provides a trace mechanism that allows diagnostic information to be
written directly to your own system logs, simplifying the process of diagnosing
problems. This facility writes all trace information to one log, thus avoiding the
difficulties involved with correlating multiple logs. To use this facility, follow the
instructions in “Writing your integration” on page 27. If integrating this trace
information is not required for your system, the Cashier provides a simple trace
class that writes the diagnostic information directly to a flat file.

Recording trace information represents a small performance overhead. For this
reason, tracing can be enabled and disabled on a per profile basis. The Profile
element supports an enableTrace attribute that allows you to control tracing.

Error log
Although the Cashier provides a trace facility for use by service personnel in
diagnosing problems, it does not record errors for use by users. Instead, the
Cashier throws Java exceptions when an error condition is detected. It is the
responsibility of your system to catch these exceptions and report them
appropriately to the user.

Writing cashier profiles
The WebSphere Commerce online help provides information on how to create new
Cashier profiles for WebSphere Commerce.

Four things are required to write a cashier profile:
1. Knowledge of the structure of cashier profiles
2. Specifications of both the required and optional WebSphere Commerce

Payments parameters
3. Specifications of both the required and optional cassette parameters
4. Specification of the integration with the cashier

If the cassette writer provides cassette profiles, they are stored in the profiles
directory where WebSphere Commerce Payments is installed. These profiles can
easily be copied and modified to work with other systems. If no template profile is
available, then you must construct a new profile.

Basic profile structure
Cashier profiles are XML documents that implement the profile.dtd document
type definition. They have the following basic structure:

Chapter 3. Cashier 23

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Profile SYSTEM "profile.dtd">
<Profile useWallet="false" enableTrace="false">

...

</Profile>

When the useWallet attribute is set to true, the Cashier builds a ReceivePayment
API request for collectPayment(); when set to false, an AcceptPayment API request
is constructed for collectPayment(). The enableTrace attribute indicates whether
diagnostic information should be recorded when the Cashier is using this profile.

WebSphere Commerce Payments configuration in profiles
Optionally, profiles can also contain a WebSphere Commerce Payments
configuration element as follows:
<Profile useWallet="false">

<PaymentManagerConfiguration
hostname="..."
port="..."
userid=""
password="..."
useSSL="true"
socksHostname="..."
socksPort="..."

dtdPath="..."
/>

...

</Profile>

This information indicates how the Cashier communicates with a WebSphere
Commerce Payments instance when using this profile. The hostname and port
attributes identify the socket where WebSphere Commerce Payments is listening
for API requests. The userid and password attributes specify the identity and
credentials that the Cashier should assume when building API requests.
socksHostname and socksPort are optional attributes that indicate the socks server
to use, if any. useSSL is a flag that indicates whether the communication with
WebSphere Commerce Payments should be encrypted using SSL. The optional
dtdPath parameter specifies the path of the WebSphere Commerce Payments DTD.

Note: The PaymentManagerConfiguration element is not supported by WebSphere
Commerce.

Select statements
If the merchant integration supports the use of relational database queries to derive
values for parameter values, then the profile may also contain one or more
SelectStatement elements.
<Profile useWallet="false">

<SelectStatement id="..." allowMultiples="...">
SELECT * FROM ... WHERE ...

</SelectStatement>

...

</Profile>

24 Payments Programming Guide and Reference

The contents of the element form the SQL query statement. The id attribute
specifies an identifier for the statement that can be used in subsequent
DatabaseValue elements to refer back to this statement. When building an SQL
statement which does not send back repeating data, ensure that the statement
returns exactly one row, which can be accomplished by not specifying the
allowMultiples attribute, or specifying allowMultiples=″false″. In this case, the
Cashier reports zero or more then one row as errors.

The optional allowMultiples attribute, if ″true″, indicates that the SQL query may
return multiple rows of data. In this case, the cashier will create multiple
arguments in the API request for each database parameter that references the select
statement. There will be as many arguments as there are rows returned from the
query and each argument will be distinguished by adding a period and an
incrementing integer to the end of the argument. For example, if a parameter with
ID $LINEITEM references a select statement with allowMultiples set to ″true″, and
the SQL query returns three rows, then three arguments will be generated in the
API request by the cashier: $LINEITEM.1, $LINEITEM.2 and $LINEITEM.3

CollectPayment
The CollectPayment element contains all the data needed to create WebSphere
Commerce Payments orders using the Cashier.
<Profile useWallet="false">

<CollectPayment>

...

</CollectPayment>
</Profile>

Command
The Command element contains all the data needed to create WebSphere
Commerce Payments commands using the Cashier. Although this command can be
used to build and issue any WebSphere Commerce Payments API request, the only
API currently supported is Deposit.
<Profile useWallet="false">

<Command name="DEPOSIT">

...

</Command>
</Profile>

Buy page information
The system that integrates with the Cashier specifies whether a
BuyPageInformation element is required, and if so, what format it must take.

<BuyPageInformation reference="..."

...

</BuyPageInformation>

BuyPageInformation elements are valid within either CollectPayment or Command
elements.

The optional reference attribute is a free-form field. Its use is defined by the system
that integrates with the Cashier. Read the documentation to see if and how this
field should be used.

Chapter 3. Cashier 25

Parameters
Parameter elements specify how the Cashier can derive values for each parameter
on the WebSphere Commerce Payments API request.
<name="ACCEPTPAYMENT">

<Parameter
name="..."
encoding="... "
maxBytes="..."
sensitive="..."
allowNullValue="...">

...
</Parameter>

Parameter elements are valid within either CollectPayment or Command elements.

The name attribute indicates the name of the API parameter keyword that is sent
to WebSphere Commerce Payments. The element contents indicate how the value
should be derived. There are four ways to derive these values: constants, variables,
database entries, and extensions.

The optional encoding attribute is used if the parameter needs to be in a particular
character encoding. The value is a valid Java name for an encoding. The default
encoding is UTF8.

The optional maxBytes attribute is used to limit the number of bytes of the
parameter passed to WebSphere Commerce Payments. This can be useful to
prevent a parameter containing non-critical data from causing a command to fail
because the parameter value is too long.

The optional sensitive attribute, when set to ″true″ ensures that the cashier will not
display the value of the parameter in the cashier trace file. This is useful for
protecting sensitive data, such as credit card numbers from being obtained illicitly.

Constant parameters
Constant parameters allow unchanging parameter value to be hard-coded inside
the profile.
<Parameter name="..."><CharacterText>1</CharacterText></Parameter>

Variable parameters
Environment variable parameters specify that the value for the parameter is
provided by the system that integrates with the Cashier. Environment variable
values are specified by enclosing the variable name in curly braces {} inside the
Parameter element content. The Cashier reports an error if a specified variable was
not passed in on the collectPayment() call.
<Parameter name="..."><CharacterText>{var1}{var2}</CharacterText></Parameter>

Database parameters
Database parameters indicate that a value is derived by performing a query on a
relational database and looking in the column indicated by the columnName
attribute for the result. The statementID attribute refers to the id attribute of a
previously declared SelectStatement element. The Cashier reports an error if the
query cannot be performed or the column name does not exist.
<Parameter name="...">

<DatabaseValue statementID="..." columnName="..."/>
</Parameter>

26 Payments Programming Guide and Reference

Extension parameters
Extension parameters indicate that a custom-written program must be executed to
derive a parameter value. The name attribute of the ExtensionValue element
indicates the name of the program to run. See “Writing your integration” for
details about writing Cashier extensions.
<Parameter name="...">

<ExtensionValue name="..."/>
</Parameter>

Writing your integration
The following topics discuss the requirements for writing your integration. They
are as follows:
v Building profiles
v Including the necessary files
v Creating a Cashier object
v Creating orders in WebSphere Commerce Payments with collectPayment()
v Checking the status of an order with checkPayment()
v Using BuyPageInformation
v Tracing
v Exceptions
v Writing extensions

Note: Javadoc is provided for the Cashier in the Payments_installdir/javadoc/cal
directory of your WebSphere Commerce Payments installation.

Building profiles
In “Designing your integration” on page 20, you chose which profiles to make
available on your site. This may have included writing your own profiles. The next
step is to edit these profiles for use with your merchant software. This part can be
broken into several parts.

WebSphere Commerce Payments configuration
If your integration will use multiple WebSphere Commerce Payments instances,
then you might choose to store your WebSphere Commerce Payments
configuration information within your profiles. To do this, you must supply the
PaymentManagerConfiguration element in your profiles. This element indicates the
location of your WebSphere Commerce Payments instance, the userid and
password to use for this instance, whether or not to use SSL, and (optionally) socks
server information.

Parameters and SelectStatements
When you have a complete list of WebSphere Commerce Payments and cassette
parameters to provide in your profile, you must specify where each parameter will
get its value. The value can come from one of four sources: a hard-coded constant
in the profile, a value from the order processing environment passed on the
collectPayment() or issueCommand() call, a field in a relational database, or it may
be calculated by Cashier extension code. For each parameter in the profile, you
must define where the relevant value can be found in your merchant software.
(Your merchant software may publish a formal definition of its interface, which
provides a list of WebSphere Commerce Payments parameters and the locations of
their values in that merchant software.)

Chapter 3. Cashier 27

For example, if the Cashier will run on a system in which there is only one
merchant, then it would make sense to hard-code the MERCHANTNUMBER
parameter in your Cashier profiles:
<Parameter name="MERCHANTNUMBER"><CharacterText>1</CharacterText></Parameter>

To specify that the value for the WebSphere Commerce Payments
ORDERNUMBER parameter is included in the Map passed on issueCommand()
(associated with the key orderNum), include the following:
<Parameter name="ORDERNUMBER"><CharacterText>{orderNum}</CharacterText></Parameter>

To specify that the values for the WebSphere Commerce Payments AMOUNT and
CURRENCY parameters will be retrieved from a relational database, include the
following:
<SelectStatement id="sql1">SELECT AMT, CUR FROM ORDER_TABLE WHERE ORDERNUMBER=
{orderNum}</SelectStatement>
<Parameter name="AMOUNT"><DatabaseValue statementID="sql1" columnName="AMT">
</Parameter>
<Parameter name="CURRENCY"><DatabaseValue statementID="sql1" columnName="CUR">
</Parameter>

For this example, the amount and currency for the order are retrieved from the
ORDER_TABLE in the columns called AMT and CUR, respectively. Note that the
parameters reference a SelectStatement which provides a row of data for a single
order. orderNum in the SelectStatement must be provided in the data passed to
collectPayment() or issueCommand().

To specify that the value for the WebSphere Commerce Payments ORDERURL
parameter will be constructed in a Cashier extension class named URLBuilder,
include the following:
<Parameter name="ORDERURL"><ExtensionValue name="URLBuilder"></Parameter>

URLBuilder must be a Java class which implements the CashierExtension interface.
URLBuilder.class must be placed in your classpath.

Buy page information
In “Designing your integration” on page 20 there are descriptions of some ways in
which your integration may use the BuyPageInformation element of your profiles.
Based on your integration design, you must provide information which will make
the generation of buy pages possible. If your merchant software supports shopping
in multiple languages, then you should give extra consideration to localization
issues on the buy page.

When you have finished editing your profiles, it is recommended that you save
them with file names that conform to the following convention: .
MerchantSoftwareNameCassetteName.profile

For example, WebSphere Commerce Payments provides a profile for use with the
SampleCheckout servlet and the OfflineCard cassette, which is called
SampleCheckoutOfflineCard.profile.

Including necessary files
To use the Cashier, include the following files in the classpath:
v eTillCal.jar.
v xml4j.jar.
v eTillxml4j209.jar.

28 Payments Programming Guide and Reference

v ibmjsse.jar. This file is only needed if using SSL support for communication
with WebSphere Commerce Payments.

v A JDBC driver. This is only needed if using Database Value parameters.
v Any extension classes referenced in the Cashier’s profiles.

You should provide all the Cashier’s profiles and the profile.dtd in a single
directory.

Creating a Cashier object
There are three ways to construct a Cashier object:
1. You can construct a Cashier without specifying any information about the

Cashier-to-WebSphere Commerce Payments communication channel (such as
the WebSphere Commerce Payments hostname and port, and whether or not to
use SSL). With this method, the cashier profiles must include the
<PaymentManagerConfiguration> element which includes the needed
information.
public Cashier(String profileDirectory) throws Cashier Exception

2. Alternately, you can specify WebSphere Commerce Payments configuration
information on the constructor of the Cashier. In this case, it is not necessary to
include <PaymentManagerConfiguration> element in your profiles. However, if
you do include <PaymentManagerConfiguration> in a profile, it will override
the constructor-provided configuration information.
public Cashier(String profileDirectory,

String paymentsHostname
String paymentsPort
String userid
String password
boolean useSSL) throws CashierException

3. You can use the following constructor which allows you to connect to
WebSphere Commerce Payments via a socks server.
public Cashier(String profileDirectory,

String paymentsHostname,
int paymentsPort,
String socksHostname,

int socksPort,
String userid,
String password,
boolean useSSL) throws CashierException

You should decide which method to use based on the design of your integration.
For example, if you use a single WebSphere Commerce Payments and you
frequently change the administrator’s password, it would be easier to provide
WebSphere Commerce Payments configuration on the Cashier’s constructor rather
than having to update PaymentManagerConfiguration elements in each of your
profiles.

The Cashier can be safely used in a multi-threaded environment. Internally, it
maintains a cache of profiles and consequently you can optimize your integration
by reusing the same Cashier instance (rather than repeatedly instantiating new
Cashier objects).

CollectPayment
The CollectPayment element contains all the data needed to create WebSphere
Commerce Payments orders using the cashier.
<Profile useWallet="false">

<CollectPayment>

Chapter 3. Cashier 29

...

</CollectPayment>
</Profile>

Creating orders in the WebSphere Commerce Payments –
issueCommand()

To create orders in WebSphere Commerce Payments, call the cashier’s
issueCommand() method. The arguments of the issueCommand() method include:
v command is the constant indicating which command you wish to issue. See the

Cashier class documentation for the list of allowed commands. To create orders,
the command must be ACCEPTPAYMENT or RECEIVEPAYMENT.

v profileName is the name of the profile which used to create the WebSphere
Commerce Payments command.

v locale is the locale in which your merchant software is presenting text to a
shopper (optional)

v values from the order processing environment
v a database connection (optional)
v queryable is an optional querying interface, which can be used to return a list of

values for a parameter using a Hashtable.

The determination of which profile should be used is typically based on the
buyer’s choice of payment method. For example, you may provide a profile for
Cash On Delivery orders and another for credit card orders. The locale which you
supply to issueCommand() should match the locale in which the buyer is
shopping. WebSphere Commerce Payments will use this value to create a localized
message which may be displayed to the shopper in the event of an error. This
allows for new cassettes to be added without the merchant software having to
construct its own error messages.

Any information that is available when your merchant software is processing
orders should be passed to the Cashier. Depending on your merchant software,
this may include the parameters which constitute an HTTP request, name-value
pairs, or others. Any data used by your profiles should be put in a Map and
passed on the issueCommand() call.

An initialized JDBC Connection should be supplied if your profiles include any
DatabaseValue parameters. Note that the Cashier will not close the JDBC
Connection during the issueCommand() call.

Checking the status of an order – checkPayment()
The Cashier provides a simple method called checkPayment() to query the status
of an order that you have created. A call to checkPayment() will return a
CheckPaymentResponse object which contains the state of the order. The Cashier
Javadoc (provided with WebSphere Commerce Payments) describes the possible
values which this state can have.
CheckPaymentResponse checkPaymentResponse =
cashier.checkPayment(merchantNumber, orderNumber);

if (checkPaymentResponse.getPrimaryReturnCode() == 0 &&
checkPaymentResponse.getSecondaryReturnCode() == 0)

{
switch (checkPaymentResponse.getState())
{

30 Payments Programming Guide and Reference

case CheckPaymentResponse.APPROVED:
...

case CheckPaymentResponse.MISSING:
...

...
}

}
else
{

...
}

Using BuyPageInformation
Buy Page Information, as defined by your integration design, can be retrieved by
calling the Cashier’s getBuyPageInformation() method. To retrieve the Buy Page
Information reference, you call getBuyPageInformationReference().

Tracing
The Cashier provides a trace mechanism to aid in the writing of your integration.
A trace class (SimpleCashierTrace) is provided in eTillCal.jar which will write to
a file. Alternatively, by implementing the CashierTrace interface, it is possible to
have the Cashier use your merchant software’s existing trace classes.

Tracing can be enabled on a per-profile basis to help diagnose problematic profiles.
Tracing for a profile is enabled by setting enableTrace=″true″ in the Profile element.
Cashier cashier = new Cashier("d:\\cashierProfileDirectory");
SimpleCashierTrace simpleCashierTrace =
new SimpleCashierTrace("d:\\cashierLogDirectory");
cashier.setTraceClass(simpleCashierTrace);

Exceptions
When an error occurs in the Cashier, an exception is thrown indicates the source of
the problem. There are two varieties of exceptions in the Cashier: ProfileExceptions
and CashierExceptions. The Cashier throws a ProfileException when the Cashier
encounters a profile that is not well-formed, is not valid, or has logical errors that
prevent it from being used to create orders. CashierExceptions are thrown when
the Cashier is used improperly or when there is an error accessing the merchant
database.

When calling the Cashier, you should be aware that issueCommand(),
collectPayment(), and checkPayment() throw
PaymentServerCommunicationExceptions. This provides you the opportunity to
write retry logic around these calls.

CashierExceptions and ProfileExceptions may contain a Throwable object which
will provide further details of the error. Both of these exception provide a method
called getNestedException() to provide access to this Throwable object.

Writing extensions
Values for most WebSphere Commerce Payments parameters can be obtained using
constants, values from your order processing environment, or values from your
databases. However, there may be some parameters for which the value can not be
so easily derived. For example, if a parameter requires a textual description of the
shopper’s order and your merchant software doesn’t contain that description in the
proper format, then you may need to code a cashier extension to build the proper
value for this parameter.

Chapter 3. Cashier 31

A Cashier Extension is code that is run by the cashier to build a value for a
WebSphere Commerce Payments parameter. To write a Cashier Extension, you
must write a class which implements the CashierExtension interface. This interface
contains only a single method – getValue(). getValue() is called in a Cashier
Extension when using a cashier profile which contains an ExtensionValue
parameter references that extension.
public class SampleExtension implements CashierExtension
{

public String getValue(String keyword, Hashtable environmentValues,
Hashtable PaymentsParameters, Connection connection,
CashierTrace cashierTrace, Locale locale) throws CashierException

{
if (keyword.equals("$DATETIME"))
{

Date date = new Date();
return date.toString();

}
else if (keyword.equals("$RANDOMNUMBER"))
{
return String.valueOf(Math.random());
}
else ...

}

}

SampleCheckout application
SampleCheckout is a sample application that demonstrates how applications can
use the Cashier to integrate with WebSphere Commerce Payments. The application
uses an HTML interface that can be accessed from the URL
http://host_name:port/webapp/SampleCheckout. Source code is provided in the
Payments_installdir/samples/SampleCheckout directory.

Overview
SampleCheckout is a simple order entry system that allows orders to be created
using different payment methods. Users must enter basic order information, such
as order number, merchant number and order amount, as well as the payment
information used to collect payment for the order. SampleCheckout allows the
configuration of any number of different payment methods; each payment method
is supported by a Cashier profile. The SampleCheckout profiles contain the HTML
needed to build the payment information part of the buy page as well as the data
needed to build an API request to create the order in WebSphere Commerce
Payments.

SampleCheckout attempts to display the buy page using the language preference
of the user’s browser. SampleCheckout is translated into the same languages
supported by WebSphere Commerce Payments. If a user’s language preference is
not supported, the buy page is presented in English. To select a language for
Internet Explorer, click Tools from the menu bar, then Internet Options, and then
click the Languages button. From Netscape Navigator, click Edit from the menu
bar, then Preferences, then select Language under the Navigator category. Fields
marked with a red asterisk are required input. Others are optional.

SampleCheckout works for both Cashier profiles that do not use a wallet and those
that do. If profiles do require a wallet, SampleCheckout assumes that the
ReceivePayment API response from WebSphere Commerce Payments contains an
HTTP wallet wake up message.

32 Payments Programming Guide and Reference

Requirements
The SampleCheckout application uses Java Server Pages (JSP) and dynamic HTML
technologies. It is automatically installed and configured for all IBM cassettes when
WebSphere Commerce Payments is installed. To use it, you must have a servlet
engine that supports JSP (such as WebSphere Application Server) and a browser
that supports dynamic HTML.

The Web Server must be configured to serve the files in the directory
web/SampleCheckout in response to URIs beginning with /webapp/SampleCheckout.

On workstation platforms, a servlet called SampleCheckoutServlet must be defined
to the servlet engine with a classpath containing the following: eTillCal.jar,
xml4j.jar, and ibmjsse.jar.

2000400 The classpath must contain eTillCal.jar and xml4j.jar.

If you modify the SampleCheckout java source code files in the
Payments_installdir/samples/SampleCheckout directory to create new classes,
ensure that you place the new class files in the following directory so that they will
be used:
Payments_installdir/wc.mpf.ear/SampleCheckout.war/WEB-INF/classes

Configuration

SampleCheckout uses a configuration file named
samples/SampleCheckout/SampleCheckout.xml to define the following:
v The WebSphere Commerce Payments configuration information (hostname, port,

use of socks and SSL). Since SampleCheckout provides a global method for
storing WebSphere Commerce Payments configuration information, it is not
necessary for each profile to specify a PaymentManagerConfiguration element.

v The available payment methods and which Cashier profiles each method uses.
New payment methods can be supported by SampleCheckout by adding the
following element to the PaymentOptionList element of SampleCheckout.xml:
<PaymentOption id="newmethod" profile="newprofname">

New Payment Method
</PaymentOption>

where newmethod is the ID of this new payment method, newprofname is the
name of the Cashier profile that supports the method, and ″New Payment
Method″ is the label that is displayed on the SampleCheckout buy page.

v The currencies supported by SampleCheckout.

Merchant
Software

Cashier

WebSphere
Commerce
Payments

profiles

socks and SSL supported

Figure 5. WebSphere Commerce Payments Cashier

Chapter 3. Cashier 33

SampleCheckout profiles
When WebSphere Commerce Payments is installed, SampleCheckout profiles are
installed in a profile directory:
Payments_installdir/wc.mpf.ear/SampleCheckout.war/profiles. SampleCheckout
profiles must contain a BuyPageInformation element and the parameter definitions
for all the parameters required by WebSphere Commerce Payments and the
specified cassette for the profile. SampleCheckout profiles do not need to contain
WebSphere Commerce Payments configuration information since this is specified in
the SampleCheckout configuration file. However, if a
PaymentManagerConfiguration element is specified, then it will override the
configuration specified in SampleCheckout.xml.

Buy page information
The BuyPageInformation element in each profile must contain the HTML to create
the payment information section of the buy page. Each profile’s
BuyPageInformation contents is inserted into the HTML <table> and <form> tags
as follows:
<FORM NAME="cassetteform" METHOD="POST"
ACTION="/webapp/SampleCheckout">

<TABLE BORDER="0" WIDTH="100%" CELLSPACING="1" CELLPADDING="2">

... <BuyPageInformation> contents ...

</TABLE>
</FORM>

SampleCheckout provides localization support for the contents of the
BuyPageInformation element via Java ResourceBundle files. These files contain a
mapping of keywords to text and this allows writers of SampleCheckout profiles to
avoid hard coding text in the BuyPageInformation elements. Instead, at run-time,
SampleCheckout replaces the keywords enclosed in curly braces with text from the
ResourceBundle for the user requested language. The name of the ResourceBundle
used by SampleCheckout BuyPageInformation elements is indicated by the
reference attribute. For example, if a SampleCheckout profile contains the
following elements:
<BuyPageInformation reference="SampleCheckoutOfflineCard">

...
<p>{BPMESSAGE}</p>
...

</BuyPageInformation>

and the user has requested buy pages in Canadian French, then the application
will search for localized text for BPMESSAGE in the following Java
ResourceBundles until it finds a match.

SampleCheckoutOfflineCard_fr_CA.class
SampleCheckoutOfflineCard_fr_CA.properties
SampleCheckoutOfflineCard_fr.class
SampleCheckoutOfflineCard_fr.properties
SampleCheckoutOfflineCard.class
SampleCheckoutOfflineCard.properties

Profile environment variables
The following table defines the variables that SampleCheckout makes available to
its profiles. These variables can be used in a profile by enclosing the variable name
in curly braces. For example, {merchantnumber} is replaced by the merchant
number entered by the user on the buy page.

34 Payments Programming Guide and Reference

Variable name Content

merchantnumber The merchant number entered on the form

ordernumber The order number entered on the form

currency The 3-digit number for the ISO 4217
currency selected on the form

currencyAlpha The 3-letter alphabetic value for the ISO
4217 currency

amount The amount entered on the form

amountLowestCurrUnits The amount value, converted to the
currency’s lowest units; for example, 5 US
dollars converts to 500 cents.

paymentOption The Payment method selected on the form

other form variables as specified in the
BuyPageInformation element of each profile

The value entered on the form

Chapter 3. Cashier 35

36 Payments Programming Guide and Reference

Chapter 4. Client API library (CAL)

Merchant business software can issue payment, administration, and query
commands to WebSphere Commerce Payments. Requests are sent to WebSphere
Commerce Payments by issuing HTTP POST messages, and responses are received
from the WebSphere Commerce Payments in the form of XML documents
embedded in the HTTP. The Java Client API Library (CAL) provides a Java
programming interface that enables merchant software written in Java to issue
these commands to WebSphere Commerce Payments and receive the responses.
CAL provides a wrapper that shields the merchant software writer from having to
understand the details of HTTP communications and XML document parsing. CAL
provides Java objects that allow a merchant program to:
v Create requests to be sent to WebSphere Commerce Payments
v Communicate with WebSphere Commerce Payments via a TCP connection or a

SSL connection
v Process responses from WebSphere Commerce Payments

A merchant program written to use CAL has several steps:
v Create a PaymentServerClient
v Issue commands to WebSphere Commerce Payments

– Create a Hashtable object and populate it with keyword/value pairs
– Issue the command
– Process the return codes
– Process the returned data

v Close the PaymentServerClient

The remainder of this section describes these steps at a high level. Details can be
found in the Javadoc, which can be found in the following directory location:

2000Windows 2000UNIX 2000400 Payments_installdir/javadoc

CAL public classes
CAL is structured as a Java Class library with a number of public classes. These
classes can be divided into three groups:
1. Client classes: A merchant program will create one instance of these classes to

communicate with WebSphere Commerce Payments.
v PaymentServerClient: Communicate with WebSphere Commerce Payments

over a TCP connection (with or without SOCKS support)
v PaymentServerSSLClient: Communicate with WebSphere Commerce

Payments over an SSL connection
2. The Response class:Each command issued to WebSphere Commerce Payments

returns an instance of this class: PaymentServerResponse
3. The PSObject classes: Data returned from Query commands is processed into a

set of PSObjects reflecting the actual WebSphere Commerce Payments objects.
v PSObject: superclass of all these objects
v PSAdminObject: superclass of all administration objects
v PSOrder: represents an Order

© Copyright IBM Corp. 1997, 2003 37

v PSPayment: represents a Payment
v PSCredit: represents a Credit
v PSBatch: represents a Batch
v PSBatchTotal: represents batch totals for a particular currency
v PSPaymentServer: represents the Payment Server administration object
v PSMerchant: represents a Merchant administration object
v PSCassette: represents a Cassette administration object
v PSMerchantCassetteSettings: represents a PaymentSystem administration

object
v PSAccount: represents an Account administration object
v PSCassetteObject: represents an object attached by a cassette to a generic

object
v PSCassetteConfigObject: represents an administration object attached by a

cassette to a generic administration object
v PSAbout: provides version information for WebSphere Commerce Payments

and the user name of the person issuing the command
v PSCassetteAbout: provides version information for a WebSphere Commerce

Payments cassette

Creating a PaymentServerClient
A PaymentServerClient represents a connection from the merchant program to
WebSphere Commerce Payments. It is a persistent object, designed to be created at
the beginning of a merchant program, used and reused throughout that program
and closed when the program terminates. The PaymentServerClient has a single
socket connection that it maintains until the PaymentServerClient is closed. The
PaymentServerClient can be created in several ways to reflect different
communication options.

A basic PaymentServerClient is constructed with three arguments:
PaymentServerClient (String dtdPath, String hostName, int portNumber)

This constructor creates a client that will communicate using TCP to WebSphere
Commerce Payments at hostName:portNumber. Two additional arguments,
socksHost and socksPort, can be added to the basic constructor. This will create a
client that communicates to WebSphere Commerce Payments through a SOCKS
server.
PaymentServerclient(String dtdPath, String hostName, int portNumber,
String socksHost, int socksPort)

Two additional constructors allow the specification of a hashtable to be used to
specify additional keyword/value pairs to be passed in the HTTP header.
PaymentServerClient (String dtdPath, String hostName, int portNumber,
Hashtable httpHeaderFields)
PaymentServerClient (String dtdPath, String hostName, int portNumber,
String socksHost, int socksPort, Hashtable httpHeaderFields)

Other communication options are created with subclasses of PaymentServerClient.
A PaymentServerSSLClient communicates with WebSphere Commerce Payments
over an SSL connection.
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber)
PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,

String socksHost, int socksPort)

38 Payments Programming Guide and Reference

PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,
Hashtable httpHeaderFields)

PaymentServerSSLClient(String dtdPath, String hostName, int portNumber,
String socksHost, int socksPort, Hashtable httpHeaderFields)

Note: The DTDPath specified when the PaymentServerClient is instantiated is
used throughout the session (for all subsequent commands processed before
the close () method). The DTDPath on the PaymentServerClient is optional
and can be NULL but better performance can be realized if the DTDPath is
specified.

Preparing the iSeries for SSL support when using CAL

Note: These instructions are for 2000400 only and apply to you only if you are
using CAL.

To prepare your system to use Secure Sockets Layer (SSL), you must install the
Digital Certificate Manager Licensed Program: 5722–SS1 OS/400 — Digital
Certificate Manager

You must also install one of the following Cryptographic Access Provider Licensed
Programs:
v 5722-AC2 Cryptographic Access Provider 56-Bit
v 5722-AC3 Cryptographic Access Provider 128-Bit

If client authentication is required by the server, you may set the following
properties to specify which digital certificate to use:
v os400.certificateContainer
v os400.certificateLabel

If these properties are not set, the default system certificate (if any) will be used.
More information on iSeries documentation to install Java/SSL is found at:
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html. Follow the link
for the current iSeries version, then select: Programming, Java, iSeries
Development Kit for Java, Security, Secure Sockets Layer.

Issuing WebSphere Commerce Payments commands
The issueCommand method of PaymentServerClient is used to send commands to
WebSphere Commerce Payments. There are several overloaded versions of the
issueCommand method. At a minimum, each issueCommand method takes the
following parameters:

WebSphere Commerce Payments API command name
The name of the WebSphere Commerce Payments API command name. See
Chapter 6, “WebSphere Commerce Payments command reference”, on
page 51 for a list of WebSphere Commerce Payments API commands. The
public interface PaymentCommandConstants defines constants for each API
command. Refer to the Javadoc for details.

A hashtable of the keyword/value pairs to be sent with the WebSphere
Commerce Payments command

This Java Hashtable represents the parameters to be passed with the
specified API command. The keys to the hashtable are Strings that
represent the API command parameter name. The values represent the
value of the API command parameter. The values can be one of these
types:

Chapter 4. Client API library (CAL) 39

v String: a Unicode string in all supported character sets
v byte[]: a byte array, for binary data
v Integer: a 4-byte integer
v Date: a Java Date (java.util.Date) representing a timestamp
v Boolean: a boolean value
v Vector: a vector of any of the above. Vector values are a special case. If a

keyword is assigned a Vector of values, it will be included in the HTTP
body multiple times, one for each entry in the Vector.

It should be noted that CAL does not check these keyword/value pairs to
ensure they are valid for the specified keyword, or that the data types of
the values are correct. CAL simply passes all keyword/value pairs on to
WebSphere Commerce Payments. See Chapter 6, “WebSphere Commerce
Payments command reference”, on page 51 for a list of required and
optional parameters for each WebSphere Commerce Payments command.
The public interface PaymentCommandConstants defines constants for each
API command parameter value. Refer to the Javadoc for details.

Authentication information
When WebSphere Commerce Payments receives a command, it
authenticates the user through the use of the WCSRealm. When writing
programs using WebSphere Commerce Payments, it must be understood
that this is the realm WebSphere Commerce Payments is using. The realm
contains the list of users that are potentially authorized to access
WebSphere Commerce Payments, along with their authentication
information. The realm dictates whether or not each command should have
a userId/password associated with it, or, more generally, a byte array that
contains other authentication credentials. The WCSRealm uses
userId/password for authentication. Use of the WCSRealm is noted in the
WebSphere Commerce Payments Settings screen in the user interface.

The basic version of the issueCommand method is:
issueCommand(String command, Hashtable keywordValuePairs, String basicAuthUserid,

String basicAuthPassword)

In addition, there is a version of the issueCommand method that allow the
specification of a hashtable to be used to specify additional keyword/value pairs
to be passed in the HTTP header:
issueCommand(String command, Hashtable keywordValuePairs, Hashtable httpHeaderPairs,
String basicAuthUserid, String basicAuthPassword)

The issueCommand method will throw an exception in the event of errors or other
processing problems.

Specifying additional information in the HTTP Header
There are two ways to specify additional information in the HTTP Header:
v In the constructor of the PaymentServerClient object, which causes the

additional parameters to be specified on all commands issued to WebSphere
Commerce Payments.

v In the issueCommand method, which causes the additional parameters to be
specified only for the command that is being issued, thus allowing the HTTP
Header to be tailored for each WebSphere Commerce Payments command. An
example of this occurs on the AcceptPayment and ReceivePayment API
commands. For these commands, WebSphere Commerce Payments will return
message text when the processing of the command was not successful. The

40 Payments Programming Guide and Reference

message text provides additional information in the language preference of the
client application as specified by the PM-Accept-Language tag in the HTTP
header. If the PM-Accept-Language tag is not specified in the HTTP Header, then
the default language of the machine running the servlet is used. See the
PaymentServerResponse methods getBuyerMessage() and getMerchantMessage()
for additional information regarding these messages. In addition, CAL provides
a convenience method to create the keyword/value pair for the
PM-Accept-Language tag. See the PaymentServerClient method
addLocaleToHttpHeader for details.

Processing responses from WebSphere Commerce Payments
A PaymentServerResponse object is returned by the issueCommand method. This
object contains methods that allow the merchant software to access the primary
and secondary return codes that were returned as a result of issuing the command
to the WebSphere Commerce Payments. See Appendix A, “WebSphere Commerce
Payments return codes”, on page 121 for a list of WebSphere Commerce Payments
return codes. If a programmatic error occurs, a Java exception is thrown. There are
two types of exceptions defined in CAL:
v PaymentServerCommunicationException: This exception is thrown when CAL is

having trouble communicating with WebSphere Commerce Payments. Possible
causes include:
– CAL received a bad HTTP response; this generally means that something is

wrong with the Payment Servlet or the WebServer/WebSphere configuration.
– CAL took an IOException, which means that the TCP layer or the SSL layer

threw an IOException (for example, could not connect to WebSphere
Commerce Payments, or the connection went down prematurely). If this
exception results from an IOException, the IOException is stored within the
PaymentServerCommunicationException (and can be accessed by the merchant
programmer).

v PaymentServerClientException: This is an internal exception thrown by CAL. It
indicates a defect in CAL.

Process returned objects
When a command results in returned data (for example, Query commands), a set
of PSObjects is returned as part of the PaymentServerResponse. These objects
correspond to basic WebSphere Commerce Payments objects. The interpretation of
these fields can be found in Chapter 7, “WebSphere Commerce Payments data”, on
page 103.

The PaymentServerResponse object contains the method getObjectCount which
returns the number of objects that were returned in the response. This is especially
useful for queries using RETURNATMOST, which limits the size of data.

Closing the PaymentServerClient
The PaymentServerClient classcontains a close() method. Merchant programs
should call close() prior to exiting. This is not particularly important for simple
programs using standard TCP or SOCKS communication because the Java Runtime
will clean up these resources on exit. However, it is extremely important for SSL
clients. Failure to call close() on these clients can result in problems when the
merchant’s application is restarted. Since merchant programs can be converted to
use SSL at any time, it is good practice to ensure that close() is called in all cases.

Chapter 4. Client API library (CAL) 41

Sample CAL program
This section contains a skeleton of a simple CAL program. Sample CAL programs
are available and are located in the following directory location:

2000Windows 2000UNIX 2000400 Payments_installdir/samples

A merchant program written to use CAL has three primary steps:
1. Create a PaymentServerClient
2. Issue commands to WebSphere Commerce Payments

a. Create a hashtable and populate it with keyword-value pairs
b. Issue the command
c. Process the return codes
d. Process the returned data

3. Close the PaymentServerClient

An example CAL program follows:
PaymentServerClient client = new PaymentServerClient(dtdPath, hostName,
port);

while (...)
{

Hashtable keywordValuePairs = new Hashtable();
keywordValuePairs.put("merchantnumber","123456789");
... using documentation in the programming reference as a guide, fill

in other keywordValuePairs ...

PaymentServerResponse response =
client.issueCommand(command,keywordValuePairs,userid,password);

int primaryRC = response.getPrimaryRC();
int secondaryRC = response.getSecondaryRC();
... process return codes ...
String contentType = response.getContentType();
if (contentType != null)
... process contentType

Enumeration objects = response.getObjects();
while (objects.hasMoreElements())

{
PSObject object = (PSObject) objects.nextElement();
... process object ...

}
}

client.close();

Installing files required by CAL
All files required by CAL should already be provided by WebSphere Commerce.

2000Windows 2000UNIX 2000400 Files can be found in a zipped file called eTillCal.jar,
which is found in the Payments_installdir/etillClientSDK.zip directory.

Be sure to include the required class libraries in the CLASSPATH environment
variable for the system or for the session in which your WebSphere Commerce
Payments application will run.

42 Payments Programming Guide and Reference

For machines that don’t have WebSphere Commerce Payments
installed

If you plan to write to the CAL interface or execute CAL programs from a machine
that does not have WebSphere Commerce Payments installed, perform the
following steps:

2000Windows 2000UNIX 2000400

1. From a machine where WebSphere Commerce Payments is installed, copy the
following files to your machine. These files can be found in the WebSphere
Commerce Payments directory:
v eTillCal.jar

v eTillxml4j209.jar

v 2000Windows 2000UNIX ibmjsse.jar (Only required at runtime if you are using
SSL.)

The eTillCal.jar, eTillxml4j209.jar, and ibmjsse.jar files are contained in
the Payments_installdir/etillClientSDK.zip file. The ibmjsse.jar file is not
used in an iSeries environment.

2. 2000400 If you want to use SSL through CAL running on another iSeries
system, you will also need the Licensed Programs listed in the ″Preparing
iSeries for SSL Support″ section on the remote iSeries system.

Note: If you want SSL support through CAL running on a non-iSeries system,
copy ibmjsse.jar.

3. Edit your system CLASSPATH to include eTillCal.jar and eTillxml4j209.jar.

Chapter 4. Client API library (CAL) 43

44 Payments Programming Guide and Reference

Chapter 5. Event notification

WebSphere Commerce Payments provides an event notification service to enable
merchant software (or non-merchant software such as network management
systems) to listen for events and perform appropriate actions in the merchant’s
business system. For instance, an action may be to deliver an order to the shipping
department when an event indicates that an order has been approved. This service
can optimize performance for systems that normally issue Query commands to
determine the state of WebSphere Commerce Payments objects. By listening for the
events that occur when object states change, a merchant system can react quickly
without incurring the full overhead of a polling loop. In addition, the event
notification service can be used by network management software to monitor the
health of WebSphere Commerce Payments.

Merchant software registers its interest in WebSphere Commerce Payments events
and specifies a URL. When events occur, the event notification service sends an
HTTP POST to a destination specified by the URL. The merchant software should
be responsible to receive the events. The merchant software that listens for these
events can be a CGI, Java Servlet or a program which listens to the port specified
in the registration.

Event types and contents
The WebSphere Commerce Payments event notification service defines and will
send the following three types of events:
1. State change event. These events are sent when the state of a framework object

has been changed. For example, the state of an Order object is changed from
″Received″ to ″Approved″.

2. Cassette-specific event. The cassette can use this event type to notify
merchants of events that occur within the cassette. The cassette defines the
content of the event. Not all cassettes will implement cassette-specific events.

3. Network management event. These events are sent when WebSphere
Commerce Payments is started or stopped.

WebSphere Commerce Payments provides the ″state change event″ for the
framework financial objects and the framework up and down network
management events. The merchant software should refer to the appropriate
cassette supplement to find out which cassette events are being supported.

Every event contains the following ″basic″ contents:
v EventType: The type of event.
v Timestamp: Time when the event happens.
v ObjectID: Identifies the object which the event is referring to. The ObjectID may

consist of several fields.

Different event types may contain different information, which is described in the
next section.

© Copyright IBM Corp. 1997, 2003 45

State change event
State change event

Name Value

EventType ″1″

Object One of the following values:

v Order

v Payment

v Credit

v Batch

<ObjectID> The ObjectID is dependent on the Object type. Each
object is identified by a set of keys. (For example, an
Order is identified by its MerchantNumber and
OrderNumber.)

PreviousState State name. See “WebSphere Commerce Payments
payment objects” on page 103 for state definitions.

Current State State name. See “WebSphere Commerce Payments
payment objects” on page 103 for state definitions.

TransactionId Transaction identifier that was supplied by the user
on the AcceptPayment or ReceivePayment API.

OrderData1 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData2 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData3 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData4 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

OrderData5 Auxiliary data that was supplied by the user on the
AcceptPayment or ReceivePayment API.

Cassette-specific event
For cassette-specific events, in addition to the name-value pairs defined in the
following table, each cassette can define its own name-value pairs. The
documentation for each cassette will detail the cassette-specific name-value pairs
and the rules which define when these events are sent.

Cassette-specific event

Name Value

EventType ″2″

CassetteName <CassetteName> value in ASCII character string.

MerchantNumber Integer in ASCII characters.

Network management event
Network management events

Name Value

EventType ″3″

46 Payments Programming Guide and Reference

Network management events

Name Value

ComponentName Either one of the following values in ASCII character
string:

v Framework

v <CassetteName>

Status Either one of the following integer values in ASCII
string:

v ″1″: (Denotes running)

v ″2″: (Denotes not running)

For example, WebSphere Commerce Payments will send a State Change Event with
the following contents to the event listeners:
EVENTTYPE=1
TIMEGENERATED=
MERCHANTNUMBER=
PREVIOUSSTATE=
CURRENTSTATE=
OBJECT=
ORDERNUMBER=
PAYMENTNUMBER=
CREDITNUMBER=
BATCHNUMBER=
ACCOUNTNUMBER=

WebSphere Commerce Payments will send a Network Management Event with the
following contents to the event listeners:
EVENTTYPE=3
TIMEGENERATED=
COMPONENTNAME=
STATUS=

Registering events
To receive events, the merchant software must register itself with WebSphere
Commerce Payments. There are two types of event listeners: merchant and
non-merchant. Merchant listeners can only register merchant-specific events (all
state-change and cassette-specific events). Non-merchant software, such as a
network management system, can only register a network management event. The
merchant and the non-merchant software can register the same type of events
multiple times. In this case, the events will be broadcast to each of the registered
locations.

The API commands for registering and managing event listeners are discussed in
Chapter 6, “WebSphere Commerce Payments command reference”, on page 51.

Event ListenerURL parameter
When creating an event listener, a valid ListenerURL is a required keyword. In
WebSphere Commerce Payments, a valid ListenerURL is defined as a valid Java
URL. The same valid Listener URL may have a different format. For example:
http://foo and http://foo/ are the same URLs, but http://foo/xx and http://foo/xx/ are two
different URLs. The WebSphere Commerce Payments command will convert a
valid URL into the WebSphere Commerce Payments canonical URL format, which
is a valid URL with the following extensions:

Chapter 5. Event notification 47

v The WebSphere Commerce Payments command will insert the port number ″80″
if the port number is not defined.

v The WebSphere Commerce Payments command will insert the hostname
″localhost″ if the hostname is not defined.

v The WebSphere Commerce Payments command will insert the hostname
″localhost″ and the port number ″80″ if neither is defined.

By using this canonical URL format, the QueryEventListener command will return
the same listener for slightly different input URL strings. For example, if the port
number of the listener is 80, then no matter which port number is specified in the
URL, the same listener will be returned.

48 Payments Programming Guide and Reference

Part 3. Programming reference

© Copyright IBM Corp. 1997, 2003 49

50 Payments Programming Guide and Reference

Chapter 6. WebSphere Commerce Payments command
reference

Parameters for the commands described here apply to the framework only.
Additional parameters for specific cassettes are discussed in the appropriate
cassette supplement. Note that in most cases, WebSphere Commerce Payments
does not check for duplicate parameters. If more than one instance of a parameter
is specified, then the last instance will be used.

Clients send commands to WebSphere Commerce Payments by using HTTP POST
requests, containing lists of keyword-value pairs. This chapter presents:
v WebSphere Commerce Payments financial and administrative commands
v Command descriptions
v List of required and optional keywords
v Guidelines regarding payment commands and query commands

Each command contains the name OPERATION. The value of the OPERATION
parameter specifies the requested procedure.

In addition to OPERATION, ETAPIVERSION specifies the version number of the
API. ETAPIVERSION is also required on every command.

Other name-value pairs in each command are dependent on the value of the
OPERATION. The name-value pairs required by the payment operations are listed
in the following tables. Other general guidelines for the name-value pairs include:
v The keyword strings are case-insensitive.
v Do not use leading zeros for any integers in ASCII characters.

Query commands
The following general rules apply to all queries:
v Each query has a set of search modifiers and a set of operational parameters. The

modifiers determine the search criteria and the operational parameters affect the
behavior or output of the command.

v All of the financial queries return either a ″collection″ or a ″keyCollection″ of the
fundamental object being queried. The determination of collection versus
keyCollection is made by the setting of the KEYSONLY parameter.

v Some keywords may be specified multiple times to achieve a search for a set of
order values (for example, STATE=batch_opening, STATE=batch_open,
STATE=batch_closed). For parameters that do not support multiple instances,
WebSphere Commerce Payments will not return an error and makes no
guarantee as to which value will be used.

v To control the query results size, applications may use the RETURNATMOST
parameter. RETURNATMOST limits the number of objects or object identifiers
returned for a given query, even if that number is less than the actual number of
objects that match the query. The maximum number of objects that can be
returned is ten thousand. For more information on query results, see “Process
returned objects” on page 41.

v You can specify the minimum role a user must have to be allowed to view
sensitive data. For each query command, the framework will check the user’s

© Copyright IBM Corp. 1997, 2003 51

role against that minimum role and will set an indicator in the QueryRequest
object to indicate whether sensitive data should be returned in full view or if it
should be masked out. A JVM system parameter (wpm.MinSensitiveAccessRole)
can be set through the WebSphere Commerce Configuration Manager to specify
the role a user should have to view sensitive data (Clerk, Supervisor, Merchant
Administrator, Payments Administrator, or none). For more information about
setting the Minimum Access Role field in the Configuration Manager, refer to
the Configuration Manager online help.

About
The ABOUT command is typically used in two ways:
v As a ping mechanism to check to see if WebSphere Commerce Payments is

running.
v To return version information on WebSphere Commerce Payments and the

installed cassettes, as well as the username running the command.

For more information on the structured response returned by the ABOUT
command, see “Payment Server About” on page 113 and “Cassette About” on
page 113.

A successful execution of an ABOUT command will return primary and secondary
return codes of ″0″, ″0″.

The ABOUT command is the only command that can be run by a
non-authenticated user. When this command is run by a non-authenticated user, the
command returns only a primary and secondary return code.

Required keywords for About command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OPERATION ASCII character string ″About″

Optional keywords for About command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

AcceptPayment
Use the ACCEPTPAYMENT command to create Order objects when an electronic
wallet is not used. In general, if the command is successful, the order will be
placed in Ordered state. If the command fails, the order will not be created. Pass
protocol specific data on this command; however, specifics depend on the cassette.
Refer to the particular cassette supplement for details

During the processing of an AcceptPayment command, you can ensure that the
cassette handles the Approval step separately from the Order creation step. Select

52 Payments Programming Guide and Reference

the Asynchronous Auto Approve payment processing option to indicate that the
approval is asynchronously scheduled to occur. Thus, the buyer does not have to
wait for the approval to occur before receiving a response for the original purchase
request.

When creating an order, you may want to approve or deposit funds automatically.
The APPROVEFLAG and DEPOSITFLAG keywords indicate whether or not a
Payment object should be approved and deposited. Refer to the appropriate table
below for additional keywords used if APPROVEFLAG or DEPOSITFLAG are
specified.

Required keywords for AcceptPayment command

Required keywords Value

AMOUNT A positive 32-bit integer in ASCII characters.

CURRENCY Integer in ASCII characters. See Appendix B, Currency Codes,
for a list of ISO currency codes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″AcceptPayment″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTTYPE ASCII character string. Specifies the payment cassette or
protocol being used. For example, OfflineCard.

Optional keywords for AcceptPayment command

Optional keywords Value

AMOUNTEXP10 Integer in ASCII characters. Indicates the number of
decimal places to shift. Valid values are -10 to 10. for more
information about this keyword, refer to “Using the
AmountExp10 keyword” on page 54.

APPROVEFLAG Integer in ASCII characters. Indicates whether the approvals
should be attempted automatically. Default is 0. Supported
values are:

0 - Indicates transaction should not be approved.

1 - Indicates transaction should be approved automatically.

2 - Indicates transaction should be approved
asynchronously.

DTDPATH Path to the locally stored DTD. The value of this parameter
is used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the
complete DTD is returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

ORDERDATA1 Auxiliary data supplied by the user, specified as an ASCII
character string between 1 and 254 bytes in length.

ORDERDATA2 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

ORDERDATA3 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

Chapter 6. WebSphere Commerce Payments command reference 53

Optional keywords for AcceptPayment command

Optional keywords Value

ORDERDATA4 Auxiliary data supplied by the user, specified as a binary
string between 1 and 254 bytes in length.

ORDERDATA5 Auxiliary data supplied by the user, specified as a binary
string with an arbitrary length.

ORDERURL URL containing order details.

TRANSACTIONID Transaction identifier supplied by the user, specified as an
ASCII character string between 1 and 128 bytes in length.

The following tables list the required and optional keywords for
APPROVEFLAG=1 or 2.

Required keywords if APPROVEFLAG is set to 1 or 2.

Required keywords Value

PAYMENTAMOUNT A 32-bit positive integer in ASCII characters.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Optional keywords if APPROVEFLAG is set to 1or 2.

Optional keywords Value

DEPOSITFLAG Boolean value in ASCII characters. Indicates whether the
deposit should be attempted automatically. This flag is only
valid if APPROVE=1 (order is automatically approved).
Supported values are:

0 - Funds should not be automatically deposited.

1 - Funds should be automatically deposited.

If DEPOSITFLAG=1, then the following keyword is optional:

Optional keyword if DEPOSITFLAG is set to 1.

Optional keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. Must be from 1 to 999999999.

Using the AmountExp10 keyword
All amount values are expressed as an amount with currency and exponent. For
example, $5.00 USD (U.S. Dollars) is expressed with Amount=500, Currency=840
(the ISO currency code for USD), and AmountExp10 =-2.

All current ISO currencies have exactly one valid exponent value, so the exponent
can be inferred from the currency. WebSphere Commerce Payments maintains a
mapping table from currencies to exponents as shown in Appendix B, Currency
Codes. During order creation, (that is, on RECEIVEPAYMENT or
ACCEPTPAYMENT commands), merchant software must always specify both
AMOUNT and CURRENCY keywords. If the currency specified is a known
currency in the ISO table, the corresponding exponent will be used. If the currency
specified is not known (that is, it is not present in the ISO table), then an

54 Payments Programming Guide and Reference

additional parameter (AMOUNTEXP10) will be needed to specify the exponent.
The existence of the AMOUNTEXP10 parameter allows for flexibility in supporting
future currencies.

AMOUNTEXP10 specified on API CURRENCY present in mapping table

True True

If the exponent passed in on the AMOUNTEXP10
parameter is the same as the one in the mapping
table, then the exponent is used.

If the exponent passed in differs from the one in the
table, then a parameter error occurs.

True False

The exponent passed in on the AMOUNTEXP10
parameter is used.

False True

The exponent derived from the mapping table is
used.

False False

A ″parameter not found″ error occurs.

Approve
The APPROVE command is used by the merchant to ask the financial system if the
buyer should be allowed to make the purchase. For example, for a credit card
system, this command would result in a credit card authorization.

The APPROVE command creates a new Payment object for an existing order. This
command is legal when the order is in Ordered or Refundable state. If successful,
the payment will be in either Approved, Deposited, or Closed state if
DEPOSITFLAG is set to 1. If unsuccessful, the payment will be in Declined state.

When approving a payment, you may want to make a deposit automatically. The
DEPOSITFLAG keyword indicates that a Payment object should be deposited.
Refer to the appropriate table below for additional keywords, if DEPOSITFLAG is
set to 1.

Required keywords for Approve command

Required keywords Value

AMOUNT A positive 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″Approve″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Chapter 6. WebSphere Commerce Payments command reference 55

Optional keywords for Approve command

Optional keywords Value

DEPOSITFLAG Indicates whether the approved payment should be deposited
automatically. Default is 0. Supported values are:

0 - Funds should not be automatically deposited.

1 - Funds should be automatically deposited.

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

The following keyword is optional if DEPOSITFLAG=1.

Optional keywords if DEPOSITFLAG is set to 1.

Optional keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. A numeric string of up to nine characters. Must
be from 1 to 999999999.

ApproveReversal
An ApproveReversal command modifies the approved amount of a payment. For
example, if a payment enters the ApprovalExpired state, then you can use the
ApproveReversal command either to get a new approval or to void the payment.
ApproveReversal is valid for payments in the Approved state. If the
ApproveReversal is successful, and the amount specified is ″0,″ then the payment
moves to Void state. If the amount specified is not ″0,″ then the payment stays in
Approved state and the approved amount is modified.

Required keywords for ApproveReversal command

Required keywords Value

AMOUNT Must be positive 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″ApproveReversal″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Optional keywords for ApproveReversal command

Optional keywords Value

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

56 Payments Programming Guide and Reference

BatchClose
The BATCHCLOSE command closes a batch and moves the Batch object into
Closed state. All Payment and Credit objects associated with this batch move to
Closed state as well. This command is only permissible if:
v The batch is in Open state
v The account allows the merchant to close the batch
v The merchant control attribute is set to true

Required keywords for BatchClose command

Required keywords Value

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″BatchClose″

Optional keywords for BatchClose command

Optional keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD. If
this parameter is not specified, the complete
DTD is returned as an internal DTD. The
length of the DTDPath must be from 1 to 254
bytes.

FORCE Valid values are ″0″ and ″1″. A value of ″1″
indicates a local close should be performed
even if the financial operation fails.

BatchOpen
The BATCHOPEN command creates a Batch object and, if successful, puts the
batch into Open state. This command is only permissible if the account allows
merchants to open batches.

Note: In a scenario where there is one merchant (123456789), with two accounts
(acct#1, acct#2), if a BatchOpen is issued with acct#1, batch#1, the batch will
open. When a BatchOpen is sent with acct#2, batch#1, the BatchOpen will
fail and the following message is displayed:
Tue Jun22 13:04:31 EDT 1999 CEPFW0715: Batch ID 299 already exists for
Merchant 123456789 and account 2.

The second test will fail because only one batch with a given BatchNumber
can be in the system at any one time.

Required keywords for BatchOpen command

Required keywords Value

OPERATION ASCII character string ″BatchOpen″

Chapter 6. WebSphere Commerce Payments command reference 57

Required keywords for BatchOpen command

Required keywords Value

ACCOUNTNUMBER Integer in ASCII characters. This value is a
unique ID that indicates the acquirer to the
merchant. The value must match the
WebSphere Commerce Payments configured
AccountNumber value. Must be from 1 to
999999999.

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTTYPE ASCII character string that identifies the
payment cassette or protocol.

Optional keyword for BatchOpen command

Optional keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

BatchPurge
The BATCHPURGE command clears out a batch and returns the Batch object to
Open state. All Payment and Credit objects associated with this batch are removed
from the batch, with Payment objects returned to Approved state and Credit
objects returned to Void state. This command is only permissible if the
PurgeAllowed attribute is set to true.

Required keywords for BatchPurge command

Required keywords Value

BATCHNUMBER A numeric string of up to nine characters.
Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″BatchPurge″

58 Payments Programming Guide and Reference

Optional keywords for BatchPurge command

Optional keywords Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

CancelOrder
The CANCELORDER command moves an Order into Canceled state. You can
invoke the CancelOrder command for an Order that satisfies the following criteria:
v It has no Payments or Credits associated with it, OR
v Any associated Payments or Credits are in their respective Reset, Void,

ApprovalExpired or Declined state.

Once an Order is in Canceled state, no operations are legal except for CancelOrder.
If the optional parameter, DELETEORDER, is set to ″1,″ then the Order will be
pruned. All related Payments and Credits will also be deleted; cassette-specific
objects will be deleted as well.

Required keywords for CancelOrder command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″CancelOrder″

ORDERNUMBER Integer in ASCII characters. Must be form 1
to 999999999.

Optional keywords for CancelOrder command

Optional keywords Value

DELETEORDER Indicates that the order and all ancillary
objects should be deleted. Default is ″0″.
Supported values are:

0-Objects should not be deleted.

1-Objects should be deleted.

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

Chapter 6. WebSphere Commerce Payments command reference 59

CassetteControl
The CASSETTECONTROL command is used to perform cassette-specific functions
that do not correspond to any generic commands. CASSETTECONTROL is not
interpreted by the framework, but is passed down to the cassette.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CassetteControl command

Required keywords Value

CASSETTECOMMAND Command name in ASCII characters. Maximum length is
1000 bytes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OPERATION ASCII character string ″CassetteControl″.

PAYMENTTYPE ASCII character string. Specifies the payment cassette or
protocol being used.

Optional keywords for CassetteControl command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

CloseOrder
The CLOSEORDER command moves an Order into Closed state. You can invoke
the CLOSEORDER command for an Order that satisfies the following criteria:
v It has at least one Payment or Credit associated with it, AND
v All of the Payments and Credits associated with the Order are in their respective

Closed state.

Once an Order is in Closed state, no operations are legal on it except for
CancelOrder. If the optional parameter DELETEORDER is set to ″1″, then the
database will be pruned, so you can call CloseOrder on an Order in Closed state.
Payments and Credits must be closed.

Required keywords for CloseOrder

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″CloseOrder″.

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

60 Payments Programming Guide and Reference

Optional keywords for CloseOrder command

Optional keywords Value

DELETEORDER Indicates that the order and all ancillary
objects should be deleted. Default is 0.
Supported values are:

0-Order and all ancillary objects should not
be deleted.

1-Order and all ancillary objects should be
deleted.

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

CreateAccount
The CREATEACCOUNT command creates an Account object for the specified
Payment System object.

Required keywords for CreateAccount command

Required keywords Value

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to
999999999.

Specifies an identifier for the new Account.

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the new account.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x,
3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to
999999999.

Specifies an identifier for the new Account.

OPERATION ASCII character string ″CreateAccount″

Optional keywords for CreateAccount command

Optional keywords Value

ACCOUNTTITLE UTF-8 string that is either null or from 1 to 254 bytes.
If present, the value passed in will replace the
AccountTitle specified Account object.

DTDPATH Path to the locally-stored DTD. The value of this
parameter is used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to
254 bytes.

Chapter 6. WebSphere Commerce Payments command reference 61

Optional keywords for CreateAccount command

Optional keywords Value

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″
denote false and true, respectively. If present, the
value passed in will replace the Enabled field of the
Account object.

Indicates whether the Account object should be active.

FINANCIALINSTITUTION UTF-8 string that is either null or from 1 to 254 bytes.
If present, the value passed in will replace the
Financial Institution specified Account object.

APAPPROVEFLAG Approve flag for AcceptPayment. ASCII character
string ″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

RPAPPROVEFLAG Approve flag for ReceivePayment. ASCII character
string ″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

APDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
APAPPROVEFLAG is defined and not set to 0.
Otherwise PRC_INVALID_PARAMETER_
COMBINATION_, RC_AP_DEPOSITFLAG will be
returned.

RPDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
RPAPPROVEFLAG is defined and not set to
0.Otherwise PRC_INVALID_PARAMETER_
COMBINATION_, RC_RP_DEPOSITFLAG will be
returned.

APPROVALEXPIRATION Integer value that indicates the number of days after a
payment has been approved that the approval expires.
This field supports configurable approval expiration
where this setting controls whether a payment
approval associated with the account will expire after
the elapsed time. A value of 0 implies no expiration.
When a payment approval expires, it will be placed in
the ApprovalExpired state.
Note: A cassette is allowed to cause payment
approvals to expire independently of this setting, but
this parameter allows the framework to detect
payment approval expiration on behalf of the cassette.
Add a cross reference to Payment States to see a
description of the ApprovalExpired state.

62 Payments Programming Guide and Reference

Note: APAPPROVEFLAG AND RPAPPROVEFLAG values are superseded by the
API Approve flag when the API Approve flag contains a non-zero, non-null
value.

CreateMerchant
The CREATEMERCHANT command creates a Merchant object.

Required keywords for CreateMerchant command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies the identifier for the new Merchant object.

OPERATION ASCII character string ″CreateMerchant″.

Optional keywords for CreateMerchant command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the Merchant object.

Indicates whether the Merchant object should be active.

MERCHANTTITLE UTF-8 string that is either null or from 1 to 128 bytes. If
present; the value passed in will replace the MerchantTitle
specified Merchant object.

CreateMerchantCassetteObject
The CREATEMERCHANTCASSETTEOBJECT command is used to create a
cassette-specific object with the type specified in the OBJECTNAME keyword.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CreateMerchantCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the MerchantCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x).

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies an identifier for MerchantCassette object.

Chapter 6. WebSphere Commerce Payments command reference 63

Required keywords for CreateMerchantCassetteObject command

Required keywords Value

OBJECTNAME ASCII character string. Value specified by the cassette.

Specifies an identifier for MerchantCassette object. Maximum
length is 1000 bytes.

OPERATION ASCII character string ″CreateMerchantCassetteObject″

Optional keywords for the CreateMerchantCassetteObject command.

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the MerchantCassette object.

Indicates whether the MerchantCassette object should be
enabled.

CreateMerEventListener
The CREATEMEREVENTLISTENER command creates a merchant event listener.

Required keywords for CreateMerEventListener command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette-specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number should be specified
through the WebSphere Commerce Configuration Manager.
A valid URL from 1 to 256 characters.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″CreateMerEventListener″.

64 Payments Programming Guide and Reference

Optional keywords for CreateMerEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath is from 1 to 254 bytes.

SOCKSHOST Host name of the socks server. This parameter is required
only for the event being sent through a socks server.
Maximum length is 256 bytes.

SOCKSPORT Port number of the socks server. This parameter is only used
if SOCKSHOST is specified. The default is 1080. The value for
a (nonnull) SocksPort parameter must be a positive 16-bit
unsigned integer from 1 to 65535.

Required keywords if EventType is set to 2.

Required keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for registering cassette events. No
parameter limitations-must match an existing cassette or
will fail.

CreatePaySystem
The CREATEPAYSYSTEM command creates a Payment System object for assigning
the specified merchant permission to use the specified cassette.

Required keywords for CreatePaySystem command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the new PaySystem object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Specifies an identifier for the new PaySystem object.

OPERATION ASCII character string ″CreatePaySystem″.

Optional keywords for CreatePaySystem command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in
will replace the Enabled field of the PaySystem object.

Indicates whether the PaySystem object should be active.

Chapter 6. WebSphere Commerce Payments command reference 65

CreateSNMEventListener
The CREATESNMEVENTLISTENER command creates a system network
management event listener.

Required keywords for CreateSNMEventListener command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

EVENTTYPE ″3″ (Identifies the SNM event type.) Other values reserved for
future use.

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be specified
through the WebSphere Commerce Configuration Manager. A
valid URL from 1 to 256 characters.

OPERATION ASCII character string ″CreateSNMEventListener″.

Optional keywords for CreateSNMEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

SOCKSHOST Host name of the socks server. This parameter is required
only for the event being sent through a socks server.
Parameter values must be a valid integer (if specified).
Maximum length is 256 bytes.

SOCKSPORT Port number of the socks server. This parameter is only used
if SOCKSHOST is specified. The default is 1080. The value for
a (nonnull) SocksPort parameter must be a positive 16-bit
unsigned integer from 1 to 65535.

CreateSystemCassetteObject
The CREATESYSTEMCASSETTEOBJECT command creates a cassette-specific object
with the type specified in the OBJECTNAME keyword.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for CreateSystemCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the SystemCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

66 Payments Programming Guide and Reference

Required keywords for CreateSystemCassetteObject command

Required keywords Value

OBJECTNAME ASCII character string. Value specified by the cassette.

Specifies an identifier for the SystemCassette object.

OPERATION ASCII character string ″CreateSystemCassetteObject″.

Optional keywords for CreateSystemCassetteObject command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
is used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the SystemCassette object.

Indicates whether the SystemCassette object should be
active.

DeleteAccount
The DELETEACCOUNT command deletes the specified Account object and all its
subsidiary objects.

Required keywords for DeleteAccount command

Required keywords Value

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with MERCHANTNUMBER and
CASSETTENAME, it uniquely identifies the target Account
object for this command.

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER and ACCOUNTNUMBER, uniquely
identifies the target Account object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME and
ACCOUNTNUMBER, it uniquely identifies the target
Account object for this command.

OPERATION ASCII character string ″DeleteAccount″.

Optional keyword for DeleteAccount command.

Optional keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Chapter 6. WebSphere Commerce Payments command reference 67

DeleteBatch
The DELETEBATCH command prunes the specified batch from the database
tables. The DELETEBATCH command is legal only when a batch is in Closed state.

Required keywords for DeleteBatch command

Required keywords Value

BATCHNUMBER Integer in ASCII characters. Identifies the
number of the batch which this payment is
assigned. Must be from 1 to 999999999.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″DeleteBatch″.

Optional keyword for DeleteBatch command

Optional keyword Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

DeleteMerchant
The DELETEMERCHANT command deletes the specified Merchant object and all
its subsidiary objects.

Required keywords for DeleteMerchant command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. Use
the target Merchant object for this command.

OPERATION ASCII character string ″DeleteMerchant″.

Optional keyword for DeleteMerchant command

Optional keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

68 Payments Programming Guide and Reference

DeleteMerchantCassetteObject
The DELETEMERCHANTCASSETTEOBJECT command deletes the cassette object
with the type specified by the object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for DeleteMerchantCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER, OBJECTNAME and protocol data
parameters, uniquely identifies the target MerchantCassette
for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME, OBJECTNAME and data
parameters, uniquely identifies the target MerchantCassette
for this command.

OBJECTNAME ASCII character string value specified by the cassette. In
conjunction with CASSETTENAME, MERCHANTNUMBER
protocol data parameters, uniquely identifies the target
MerchantCassette object for this command. The maximum
length is 1000 bytes.

OPERATION ASCII character string ″DeleteMerchantCassetteObject″

Optional keyword for DeleteMerchantCassetteObject command.

Optional keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteMerEventListener
The DELETEMEREVENTLISTENER command deletes the MerEventListener object.

Required keywords for DeleteMerEventListener command

Required keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for registering cassette events. No
parameter limitations-must match an existing cassette or will
fail.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

Chapter 6. WebSphere Commerce Payments command reference 69

Required keywords for DeleteMerEventListener command

Required keywords Value

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette-specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be specified
through the WebSphere Commerce Configuration Manager.
No parameter limitations.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″DeleteMerEventListener″.

Optional keywords for DeleteMerEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeletePaySystem
The DELETEPAYSYSTEM command deletes the specified Payment System object
and all its subsidiary objects.

Required keywords for DeletePaySystem command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
MERCHANTNUMBER, uniquely identifies the target
MerchantCassetteSettings object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999. In
conjunction with CASSETTENAME, uniquely identifies the
MerchantCassetteSettings object for this command.

OPERATION ASCII character string ″DeletePaySystem″.

Optional keyword for DeletePaySystem command

Optional keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

70 Payments Programming Guide and Reference

DeleteSNMEventListener
The DELETESNMEVENTLISTENER command deletes the specified system
network management event listener.

Required keywords for DeleteSNMEventListener command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

EVENTTYPE ″3″ (Identifies the SNM event type. Other values reserved for
future use.)

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be specified
through the WebSphere Commerce Configuration Manager. A
valid URL from 1 to 256 characters.

OPERATION ASCII character string ″DeleteSNMEventListener″.

Optional keyword for DeleteSNMEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

DeleteSystemCassetteObject
The DELETESYSTEMCASSETTEOBJECT command deletes the Cassette object with
type specified by object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for DeleteSystemCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. In conjunction with
OBJECTNAME and protocol data parameters, uniquely
identifies the target SystemCassette object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OBJECTNAME ASCII character string. Value specified by the cassette. In
conjunction with CASSETTENAME and protocol data
parameters, uniquely identifies the target SystemCassette
object for the command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″DeleteSystemCassetteObject″.

Chapter 6. WebSphere Commerce Payments command reference 71

Optional keyword for DeleteSystemCassetteObject command.

Optional keyword Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Deposit
The DEPOSIT command results in the association of a specified payment with a
batch and the subsequent deposit of previously approved monies for that payment.
The DEPOSIT command is legal when operating on deposits in Approved state.

If successful, the specified payment is moved into Deposited state.

Required keywords for Deposit command

Required keywords Value

AMOUNT Must be a 32-bit integer in ASCII characters.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″Deposit.″

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

Optional keywords for Deposit command

Optional keywords Value

BATCHNUMBER Identifies the batch under which this
payment will be processed. Must be from 1
to 999999999.

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

DepositReversal
A DEPOSITREVERSAL command disassociates a payment from a batch. This
command is legal for payments in Deposited state. If successful, the payment
moves to Approved state or Void state, and the deposited amount is reset to ″0″.

72 Payments Programming Guide and Reference

Required keywords for DepositReversal command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

OPERATION ASCII character string ″DepositReversal.″

ORDERNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1
to 999999999.

Optional keywords for DepositReversal command

Optional keyword Value

DTDPATH Path to the locally stored DTD. The value of
this parameter is used in the XML document
to specify the location of the external DTD.
If this parameter is not specified, the
complete DTD is returned as an internal
DTD. The length of the DTDPath must be
from 1 to 254 bytes.

ModifyAccount
The MODIFYACCOUNT command is used to change the attributes of a specified
Account object.

Required keywords for ModifyAccount command

Required keywords Value

ACCOUNTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with MERCHANTNUMBER and
CASSETTENAME, uniquely identifies the target Account for
this command.

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with MERCHANTNUMBER and
ACCOUNTNUMBER, uniquely identifies the target Account
for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME and
ACCOUNTNUMBER, uniquely identifies the target Account
for this command.

OPERATION ASCII character string ″ModifyAccount″.

Chapter 6. WebSphere Commerce Payments command reference 73

Optional keywords for ModifyAccount command

Optional keywords Value

ACCOUNTTITLE UTF-8 string that is either null or from 1 to 254 bytes. If
present, the value passed in will replace the AccountTitle
specified Account object.

DTDPATH Path to the locally-stored DTD. The value of this
parameter is used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an internal
DTD. The length of the DTDPath must be from 1 to 254
bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. If present, the value
passed in will replace the Enabled field of the Account
object.

Indicates whether the Account object should be active.

FINANCIALINSTITUTION UTF-8 string that is either null or from 1 to 255 bytes. If
present, the value passed in will replace the
FinancialInstitution specified Account object.

APAPPROVEFLAG Approve flag for AcceptPayment. ASCII character string
″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

RPAPPROVEFLAG Approve flag for ReceivePayment. ASCII character string
″0″, ″1″, or ″2″. Default is ″0″

″0″ indicates transaction should not be approved.

″1″ indicates transaction should be approved
automatically.

″2″ indicates transaction should be approved
asynchronously.

APDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
APAPPROVEFLAG is defined and not set to 0. Otherwise
PRC_INVALID_PARAMETER_ COMBINATION_,
RC_AP_DEPOSITFLAG will be returned.

RPDEPOSITFLAG ASCII character string ″0″ or ″1″, where ″0″ and ″1″
denote false and true, respectively. Only specified if
RPAPPROVEFLAG is defined and not set to 0. Otherwise
PRC_INVALID_PARAMETER_ COMBINATION_,
RC_RP_DEPOSITFLAG will be returned.

74 Payments Programming Guide and Reference

Optional keywords for ModifyAccount command

Optional keywords Value

APPROVALEXPIRATION Integer value that indicates the number of days after a
payment has been approved that the approval expires.
This field supports configurable approval expiration
where this setting controls whether a payment approval
associated with the account will expire after the elapsed
time. A value of 0 implies no expiration. When a payment
approval expires, it will be placed in the ApprovalExpired
state.
Note: A cassette is allowed to cause payment approvals
to expire independently of this setting, but this parameter
allows the framework to detect payment approval
expiration on behalf of the cassette. For a description of
the ApprovalExpired state see: “Payment states” on
page 108

Note: APAPPROVEFLAG AND RPAPPROVEFLAG values are superceded by the
API Approve flag when the API approve flag contains a non-zero, non-null
value.

ModifyCassette
The MODIFYCASSETTE command is used to modify the properties of the
specified cassette object.

Required keywords for ModifyCassette command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes. Identifies the target
cassette object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OPERATION ASCII character string ″ModifyCassette.″

Optional keywords for ModifyCassette command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the Cassette object.

Indicates whether the Cassette object should be active.

Chapter 6. WebSphere Commerce Payments command reference 75

ModifyMerchant
The MODIFYMERCHANT command modifies the properties of the specified
Merchant object.

Required keywords for ModifyMerchant command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Identifies the target Merchant object for the command.

OPERATION ASCII character string ″ModifyMerchant.″

Optional keywords for ModifyMerchant command

Required keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true respectively. If present, the value passed in will
replace the Enabled field of the Merchant object.

Indicates whether the Merchant object should be active.

MERCHANTTITLE UTF-8 string that is either null or from 1 to 128 bytes present;
the value passed in will replace the MerchantTitle specified
Merchant object.

ModifyMerchantCassetteObject
The MODIFYMERCHANTCASSETTEOBJECT command modifies the properties of
the Cassette object with type specified by the object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for ModifyMerchantCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

Specifies an identifier for the MerchantCassette object.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x,
3.1.x, and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME, OBJECTNAME
and protocol data parameters, it uniquely identifies the
target MerchantCassette object for the command.

76 Payments Programming Guide and Reference

Required keywords for ModifyMerchantCassetteObject command

Required keywords Value

OBJECTNAME ASCII character string. Value specified by the cassette.

In conjunction with CASSETTENAME,
MERCHANTNUMBER, and protocol data parameters,
uniquely identifies the target MerchantCassette for this
command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″ModifyMerchantCassetteObject.″

Optional keywords for ModifyMerchantCassetteObject command.

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the MerchantCassette object.

Indicates whether the MerchantCassette object should be
enabled.

ModifyMerEventListener
The MODIFYMEREVENTLISTENER command modifies the specified
MerEventListener object.

Required keywords for ModifyMerEventListener command

Required keywords Value

ENABLED Can be set to 1(true) or 0 (false).

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

EVENTTYPE Integer in ASCII characters that identifies the event type.
Events have the following values:

1: State change event

2: Cassette specific event

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be specified
through the WebSphere Commerce Configuration Manager.
No parameter limitations.

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″ModifyMerEventListener.″

Chapter 6. WebSphere Commerce Payments command reference 77

Optional keywords for ModifyMerEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Required keyword is EventType is set to 2.

Required keywords Value

CASSETTENAME ASCII character string up to 64 bytes that identifies the
cassette name. Required for modifying cassette events. No
parameter limitations. Must match an existing cassette.

ModifyPayServer
The MODIFYPAYSERVER command modifies the global properties of the Payment
Server object.

Required keywords for ModifyPayServer command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OPERATION ASCII character string ″ModifyPayServer.″

Optional keywords for ModifyPayServer command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1″, where ″0″ and ″1″ denote
false and true, respectively. If present, the value passed in
will replace the Enabled field of the PayServer object.

Indicates whether the PaymentServer object should be active.

ETILLHOSTNAME ASCII character string, either null or from 1 to 254 characters
present, the value passed in will replace the ETillHostname
field in the PaymentServer object.

A nonnull value indicates the DNS hostname that should be
sent when sending messages to WebSphere Commerce
Payments. A null value indicates that DNS lookup should be
used to determine the value.

ModifyPaySystem
The MODIFYPAYSYSTEM command modifies the specified Payment System object.

78 Payments Programming Guide and Reference

Required keywords for ModifyPaySystem command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with MERCHANTNUMBER, uniquely
identifies the target Payment System object command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

In conjunction with CASSETTENAME, uniquely identifies the
target PaymentSystem object command.

OPERATION ASCII character string ″ModifyPaySystem″

Optional keywords for ModifyPaySystem command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in
will replace the Enabled field of the ModifyPaySystem object.

Indicates whether the ModifyPaySystem object should be
active.

ModifySNMEventListener
The MODIFYSNMEVENTLISTENER command modifies the System Network
Management Event Listener object.

Required keywords for ModifySNMEventListener command

Required keywords Value

ENABLED Can be set to 1 (true) or 0 (false)

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

EVENTTYPE 3: Identifies the SNM event type. Other values reserved for
future use.

LISTENERURL ASCII character string that identifies where the events show
(for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be specified
through the WebSphere Commerce Configuration Manager. A
valid URL from 1 to 256 characters.

OPERATION ASCII character string ″ModifySNMEventListener″

Chapter 6. WebSphere Commerce Payments command reference 79

Optional keywords for ModifySNMEventListener command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ModifySystemCassetteObject
The MODIFYSYSTEMCASSETTEOBJECT command modifies the properties of the
Cassette object with the type specified by object name.

Refer to the appropriate cassette supplement for details on how this command is
used.

Required keywords for ModifySystemCassetteObject command

Required keywords Value

CASSETTENAME ASCII character string from 1 to 64 bytes.

In conjunction with OBJECTNAME and protocol data
parameters, uniquely identifies the target SystemCassette
object for this command.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OBJECTNAME ASCII character string. Value specified by the cassette.

In conjunction with CASSETTENAME and protocol data
parameters, uniquely the target SystemCassette object for
this command. The maximum length is 1000 bytes.

OPERATION ASCII character string ″ModifySystemCassetteObject.″

Optional keywords for ModifySystemCassetteObject command.

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
is used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

ENABLED ASCII character string ″0″ or ″1,″ where ″0″ and ″1″ denotes
false and true, respectively. If present, the value passed in
will replace the Enabled field of the SystemCassette object.

Indicates whether the SystemCassette object should be
active.

ModifyUserStatus
This command changes the status of the user who has the access rights to
WebSphere Commerce Payments. Access control for this function is limited to the
Payments Administrators and the Merchant Administrator. The Merchant
Administrator can only ″modify user status″ of the user in his merchant.

80 Payments Programming Guide and Reference

Required keywords for ModifyUserStatus command

Required keywords Value

ENABLED Can be set to 1 (true) or 0 (false)

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER String form of numeric merchant number. This keyword is
required if any of the request is issued by a Merchant
Administrator.

OPERATION ASCII character string ″ModifyUserStatus.″

USER Byte array containing userid characters. ASCII character
string from 1 to 80 characters.

ROLE The value assigned to each WebSphere Commerce Payments
role. For designated values, see Table 5 on page 95

QueryAccounts
The QUERYACCOUNTS command returns a collection of Account objects in XML
format.

Required keywords and operational parameters for QueryAccounts command

Required keyword Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION N ASCII character string ″QueryAccounts.″

Optional operational parameter for QueryAccounts command

Optional operational
parameter

Value

DTDPATH Path to the locally-stored DTD. The value of this parameter
will be used in the XML document to specify the location of
the external DTD. If this parameter is not specified, the
complete DTD will be returned as an internal DTD. The
length of the DTDPath must be from 1 to 254 bytes.

Search modifiers for QueryAccounts command

Optional keywords Multiple
allowed?

Value

ACCOUNTNUMBER Y The account number. Integer in ASCII
characters. Must be from 1 to 999999999.

CASSETTENAME Y The name of the cassette. ASCII character
string with a maximum length of 64 bytes.

MERCHANTNUMBER Y The merchant number. Integer in ASCII
characters. Must be from 1 to 999999999.

Chapter 6. WebSphere Commerce Payments command reference 81

QueryBatches
The QUERYBATCHES command returns a collection of WebSphere Commerce
Payments batch objects or batchkeys.

Required keywords and operational parameters for QueryBatches command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION ASCII character string ″QueryBatches.″

Optional operational parameters for QueryBatches command.

Optional operational parameter Value

DTDPATH ASCII character string. Path to the locally-stored
DTD. The value of this parameter will be used in the
XML document to specify the location of the external
DTD. If this parameter is not specified, the complete
DTD will be returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique batch identifiers (in the form
″orderNumber:batchNumber″) should be returned.

0: The complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or unique
credit identifiers to return for this call. This enables
the application to control the amount of data
returned by a given query call. A 32-bit positive
integer in ASCII characters.

WITHCREDITS 1: All related PSCredit objects should be located and
kept with the batch objects.

0: Credits will not be returned.

WITHPAYMENTS 1: All related PSPayment objects should be located
and kept with the batch objects.

0: Payments will not be returned.

Search modifiers for QueryBatches command.

Optional search modifiers Multiple
allowed?

Value

ACCOUNTNUMBER Y Merchant’s account with its financial
institution. Integer in ASCII characters.
Must be from 1 to 999999999.

BALANCESTATUS Y An ASCII character string containing one of
the following values:

″batch_not_yet_balanced″

″batch_balanced″

″batch_out_of_balance″

82 Payments Programming Guide and Reference

Search modifiers for QueryBatches command.

Optional search modifiers Multiple
allowed?

Value

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

CLOSEALLOWED N 1: Only batches which the merchant is
allowed to close should be returned.

0: Only batches that will be closed by the
financial institution should be returned. If
this parameter is not specified, or if any
other value is specified, then both types of
batches will be returned.

CLOSEBEGINTIME N A date and time to be used as the lower
limit of the close time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

CLOSEENDTIME N A date and time to be used as the upper
limit of the close time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

OPENBEGINTIME N A date and time to be used as the lower
limit of the open time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

Chapter 6. WebSphere Commerce Payments command reference 83

Search modifiers for QueryBatches command.

Optional search modifiers Multiple
allowed?

Value

OPENENDTIME N A date and time to be used as the upper
limit of the open time of the batch. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24-hour clock), 01 January
1970.

PAYMENTTYPE Y ASCII character string. Specifies the
payment cassette or protocol. Value has a
maximum length of 10 bytes.

STATE Y An ASCII character string containing one of
the following values:

v ″batch_opening″

v ″batch_open″

v ″batch_closing″

v ″batch_closed″

QueryCassette
A QUERYCASSETTE command returns a collection of Cassette objects in XML
format.

Required keywords and operational parameters for QueryCassettes command

Required keyword Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

OPERATION ASCII character string ″QueryCassettes.″

Optional operational parameter for QueryCassettes command

Optional operational parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an
internal DTD. The length of the DTDPath must be
from 1 to 254 bytes.

Search modifiers for QueryCassettes command

Optional Search Modifiers Multiple
Allowed?

Value

CASSETTENAME Y The name of the cassette. ASCII character
string with a maximum length of 64 bytes.

84 Payments Programming Guide and Reference

QueryCredits
The QUERYCREDITS command returns a collection of WebSphere Commerce
Payments Credit objects or unique payment identifiers (in the form: ″orderNumber:
creditNumber″).

Required keywords and operational parameters for QueryCredits command

Required keyword Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION ASCII character string ″QueryCredits″.

Optional operational parameters for QueryCredits command.

Optional operational parameters Value

DTDPATH ASCII character string. Path to the locally-stored
DTD. The value of this parameter will be used in the
XML document to specify the location of the external
DTD. If this parameter is not specified, the complete
DTD will be returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique credit identifiers (in the form
″merchantNumber:orderNumber:creditNumber″)
should be returned.

0: The complete objects will be returned.

RETURNATMOST Specifies the maximum number of objects or unique
credit identifiers to return for this call. This enables
the application to control the amount of data
returned by a given query call. Integer in ASCII
characters. 32-bit positive integer.

WITHORDERS 1: PSORDER object should be located and returned
with the Credit objects.

0: Only Credit objects will be returned.

Search modifiers for QueryCredits command

Optional search modifiers Multiple
allowed?

Value

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

BRAND Y Brand of customer’s payment method.
ASCII character string.

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

Chapter 6. WebSphere Commerce Payments command reference 85

Search modifiers for QueryCredits command

Optional search modifiers Multiple
allowed?

Value

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

CREDITNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must be
exactly 3 characters long and should
include leading zeroes if necessary.

MAXAMOUNT N Maximum credit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MINAMOUNT N Minimum credit amount. A Currency value
must also be specified. A 32-bit positive
integer in ASCII characters.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the credit. To be
included in the query result. This value is
specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

ORDERNUMBER Y Integer in ASCII characters. Must be from 1
to 9999999999.

PAYMENTTYPE Y ASCII character string. Specifies the
payment cassette or protocol. Value has a
maximum length of 10 characters.

REFERENCENUMBER Y Merchant-assigned reference number for
this credit. ASCII character string.

STATE Y An ASCII character string containing one of
the following values:

v ″credit_reset″

v ″credit_refunded″

v ″credit_closed″

v ″credit_declined″

v ″credit_void″

v ″credit_pending″

86 Payments Programming Guide and Reference

QueryEventListeners
The QUERYEVENTLISTENERS command returns a collection of Event Listener
objects.

Required keyword for QueryEventListeners command

Required keyword Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION N ASCII character string
″QueryEventListeners.″

Optional operational parameters for QueryEventListeners command

Optional keywords Value

DTDPATH Path to the locally-stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the DTDPath
must be from 1 to 254 bytes.

Search modifiers for QueryEventListeners command

Optional search
modifiers

Multiple
allowed?

Value

CASSETTENAME Y ASCII character string, 1 to 64 bytes.

EVENTTYPE Y Integer in ASCII characters. Value must be from 1 to
3:

v 1 = state change event

v 2 = cassette event

v 3 = network management event

LISTENERURL Y ASCII character string that identifies where the
events show (for example,
http://www.merchant.com/webapp/PaymentManager
/eventReceiver888). The port number must be
specified through the WebSphere Commerce
Configuration Manager. No parameter limitations.

MERCHANTNUMBER Y Integer in ASCII characters. Value must be from 1 to
999999999.

QueryMerchants
The QUERYMERCHANTS command returns a collection of Merchant objects.

Required keywords and operational parameters for QueryMerchants command

Required keywords Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

Chapter 6. WebSphere Commerce Payments command reference 87

Required keywords and operational parameters for QueryMerchants command

Required keywords Multiple
allowed?

Value

OPERATION N ASCII character string ″QueryMerchants.″

Optional operational parameter for QueryMerchants command.

Optional operational parameter Value

DTDPATH ASCII character string. Path to the locally-stored
DTD. The value of this parameter will be used in the
XML document to specify the location of the external
DTD. If this parameter is not specified, the complete
DTD will be returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

Search modifier for QueryMerchants command

Optional search modifier Multiple
allowed?

Value

MERCHANTNUMBER Y The merchant number. If no merchant
number is specified, PSMerchant elements
will be returned for all merchants defined
to the WebSphere Commerce Payments.
Integer in ASCII characters. Must be from 1
to 999999999.

QueryOrders
The QUERYORDERS command returns a collection of PSOrder objects or order
numbers.

Required keywords and operational parameters for QueryOrders command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION ASCII character string ″QueryOrders.″

Optional operational parameters for QueryOrders command.

Optional operational parameters Value

DTDPATH ASCII character string. Path to the locally-stored
DTD. The value of this parameter will be used in the
XML document to specify the location of the external
DTD. If this parameter is not specified, the complete
DTD will be returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
order numbers and merchant numbers should be
returned.

0: Complete objects will be returned.

88 Payments Programming Guide and Reference

Optional operational parameters for QueryOrders command.

Optional operational parameters Value

RETURNATMOST Specifies the maximum number of objects or order
numbers to return for this call. Enables the
application to control the amount of data returned by
a given query call. A 32-bit positive integer in ASCII
characters.

WITHCREDITS 1: All related PSCredit objects should be located and
kept with the Order objects.

0: Credits will not be returned.

WITHPAYMENTS 1: All related PSPayment objects should be located
and kept with the Order objects.

0: Payments will not be returned.

Search modifiers for QueryOrders command

Optional search modifiers Multiple
allowed?

Value

ACCOUNTNUMBER Y Merchant’s account with its financial
institution. Integer in ASCII characters.
Must be from 1 to 999999999.

APPROVESALLOWED N Supported values are:

1: Approve command is allowed for this
order

0: Approve command is not allowed for
this order

BRAND Y Brand of customer’s payment method.
ASCII character string

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the order. To
be included in the query result. This
value is specified in ASCII decimal digits
as the number of milliseconds since
midnight (00:00:00:000 on a 24 hour
clock), 01 January 1970.

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the order. To
be included in the query result. This
value is specified in ASCII decimal digits
as the number of milliseconds since
midnight (00:00:00:000 on a 24 hour
clock), 01 January 1970.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must
be exactly 3 characters long and should
include leading zeroes if necessary.

MAXAMOUNT N Maximum order amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

Chapter 6. WebSphere Commerce Payments command reference 89

Search modifiers for QueryOrders command

Optional search modifiers Multiple
allowed?

Value

MAXUNAPPROVEDAMOUNT N Maximum order amount that has yet to
be approved. A Currency value must also
be specified. A 32-bit positive integer in
ASCII characters.

MERCHANTNUMBER Y Merchant number. Integer must be in
ASCII characters. Value must be from 1
to 999999999.

MINAMOUNT N Minimum order amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MINUNAPPROVEDAMOUNT N Minimum order amount that has yet to
be approved. A Currency value must also
be specified. A 32-bit positive integer in
ASCII characters.

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the order. To
be included in the query result. This
value is specified in ASCII decimal digits
as the number of milliseconds since
midnight (00:00:00:000 on a 24 hour
clock), 01 January 1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the order. To
be included in the query result. This
value is specified in ASCII decimal digits
as the number of milliseconds since
midnight (00:00:00:000 on a 24 hour
clock), 01 January 1970.

ORDERDATA1 N Auxiliary data supplied by the user,
specified as an ASCII character string
between 1 and 254 bytes in length.

ORDERNUMBER Y Integer in ASCII characters. Must be
from 1 to 99999999.

PAYMENTTYPE Y Payment type. Identifies the payment
cassette or protocol. Integer in ASCII
characters. Maximum length is 10 bytes

STATE Y An ASCII character string containing one
of the following values:

v ″order_requested″

v ″order_ordered″

v ″order_refundable″

v ″order_rejected″

v ″order_pending″

TRANSACTIONID N Transaction identifier supplied by the
user, specified as an ASCII character
string from 1 to 128 bytes in length.

90 Payments Programming Guide and Reference

QueryPayments
The QUERYPAYMENTS command returns a collection of WebSphere Commerce
Payments Payment objects or unique payment identifiers (in the form
″orderNumber: paymentNumber″).

Required keywords and operational parameters for QueryPayments command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION ASCII character string ″QueryPayments.″

Search modifiers for QueryPayments command

Optional search modifiers Multiple
allowed?

Value

BATCHNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

BRAND Y Brand of customer’s payment method.
ASCII character string.

CREATEBEGINTIME N A date and time to be used as the lower
limit of the create time of the payment. To
be included in the query result. This value
is specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

CREATEENDTIME N A date and time to be used as the upper
limit of the create time of the payment. To
be included in the query result. This value
is specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

CURRENCY N The ISO 4217 currency code for amount
values. Integer in ASCII characters. Must be
exactly 3 characters long and should
include leading zeroes if necessary.

MAXAPPROVEAMOUNT N Maximum approved amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MAXDEPOSITAMOUNT N Maximum deposit amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MERCHANTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

MINAPPROVEAMOUNT N Minimum approved amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

MINDEPOSITAMOUNT N Minimum deposit amount. A Currency
value must also be specified. A 32-bit
positive integer in ASCII characters.

Chapter 6. WebSphere Commerce Payments command reference 91

Search modifiers for QueryPayments command

Optional search modifiers Multiple
allowed?

Value

MODIFYBEGINTIME N A date and time to be used as the lower
limit of the modify time of the payment. To
be included in the query result. This value
is specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

MODIFYENDTIME N A date and time to be used as the upper
limit of the modify time of the payment. To
be included in the query result. This value
is specified in ASCII decimal digits as the
number of milliseconds since midnight
(00:00:00:000 on a 24 hour clock), 01 January
1970.

ORDERNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTNUMBER Y Integer in ASCII characters. Must be from 1
to 999999999.

PAYMENTTYPE Y Integer in ASCII characters. Identifies the
payment cassette or protocol. Maximum
length is 10 bytes.

REFERENCENUMBER Y Merchant-assigned reference number for
this payment. ASCII character string.

STATE Y An ASCII character string containing one of
the following values:

v ″payment_reset″

v ″payment_approved″

v ″payment_deposited″

v ″payment_closed″

v ″payment_declined″

v ″payment_void″

v ″payment_pending″

Optional operational parameters for QueryPayments command.

Optional operational parameters Value

DTDPATH ASCII character string. Path to the locally-stored
DTD. The value of this parameter will be used in the
XML document to specify the location of the external
DTD. If this parameter is not specified, the complete
DTD will be returned as an internal DTD. The length
of the DTDPath must be from 1 to 254 bytes.

KEYSONLY 1: Instead of returning the actual objects, only a list of
unique payment identifiers (in the form
″merchantNumber: orderNumber: paymentNumber″)
should be returned.

0: The complete objects will be returned.

92 Payments Programming Guide and Reference

Optional operational parameters for QueryPayments command.

Optional operational parameters Value

RETURNATMOST Specifies the maximum number of objects or unique
payment identifiers to return for this call. This
enables the application to control the amount of data
returned by a given query call. A 32-bit positive
integer in ASCII characters.

WITHORDERS 1: PSOrder object should be located and returned
with the payment objects.

0: Order will not be returned.

QueryPaymentServer
The QUERYPAYMENTSERVER command returns the Payment Server object.

Required keywords and operational parameter for QueryPaymentServer command

Required keyword Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION N ASCII character string
″QueryPaymentServer.″

Optional operational parameter for QueryPaymentServer command

Optional operational parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter used in the XML document to specify the
location of the external DTD. If this parameter is not
specified, the complete DTD is returned as an
internal DTD. The length of the DTDPath must be
from 1 to 254 bytes.

QueryPaySystems
The QUERYPAYSYSTEMS command returns a collection of Payment System
objects.

Required keywords and operational parameters for QueryPaySystems command

Required keyword Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and 5.5.x)

OPERATION N ASCII character string ″QueryPaySystems.″

Chapter 6. WebSphere Commerce Payments command reference 93

Optional operational parameter for QueryPaySystems command

Optional operational parameter Value

DTDPATH Path to the locally-stored DTD. The value of this
parameter will be used in the XML document to
specify the location of the external DTD. If this
parameter is not specified, the complete DTD will be
returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Search modifiers for QueryPaySystems command

Optional search modifiers Multiple
allowed?

Value

CASSETTENAME Y The cassette name. ASCII character string.
Maximum length is 64 bytes.

MERCHANTNUMBER Y The merchant number. Integer in ASCII
characters. Must be from 1 to 999999999.

QueryUsers
The QUERYUSERS command returns a collection of User objects.

Optional parameters
MerchantNumber

Performing QUERYUSERS on MerchantNumber returns all users
associated with that merchant.

Filter The QUERYUSERS command enables administrators to query users by
specifying a user filter. The filter is used by the WCSRealm class to identify
a subset of the whole user registry. The WCSRealm allows the filter to
specify the character substrings of the username. For example, calling
QUERYUSERS and passing a filter of Smi would result in a list of users
including Smith, Smitty and Jones-Smittinger. Note that the WCSRealm
treats the user filter as case sensitive. The filter parameter specifies a filter
to screen the users being returned. For more information, refer to “Valid
combination of parameters” on page 95.

The WCSRealm filters out all non-administrative users by default. This
filter is an additional filter for the class of administrative users in
WebSphere Commerce.

Note that when the Merchant Administrator requires additional userids, they must
be created and assigned by the Payments Administrator.

The following table details the command syntax for the QUERYUSERS command:

Table 4. Optional keywords for QueryUsers command

Optional keywords Multiple
allowed?

Value

ETAPIVERSION N ″3″ (Indicates WebSphere Commerce
Payments–or predecessor product–API
version: Version 2.1.x, 2.2.x, 3.1.x, and
5.5.x)

94 Payments Programming Guide and Reference

Table 4. Optional keywords for QueryUsers command (continued)

Optional keywords Multiple
allowed?

Value

MERCHANTNUMBER Y String form of numeric merchant
number.

OPERATION N ASCII character string ″QueryUsers.″

ROLE N The value assigned to each WebSphere
Commerce Payments role. For
designated values, see Table 5 below.

USER N Maximum length is 80 bytes. This is the
user name.

RETURNATMOST N Integer in ASCII characters. 32–bit
positive integer. The maximum number
of users to be returned is 10000.

FILTER N UTF-8 character string with a maximum
length of 128 bytes.

Table 5. Role Values and Specifications

Value Meaning Merchant-specific role?

0 Payments Administrator N

1 Merchant Administrator Y

2 Supervisor Y

3 Clerk Y

Valid combination of parameters
The following table illustrates all parameter combinations for the QUERYUSERS
command. It also maps who can issue commands for the parameter combinations
and what results will be returned.

Note that in most cases, WebSphere Commerce Payments does not check for
duplicate parameters. If more than one instance of a parameter is specified, then
the last instance will be used.

Chapter 6. WebSphere Commerce Payments command reference 95

Table 6. Valid parameter combinations for QueryUsers

Parameter combinations Valid? Who* can issue? Return unauthorized users

No parameters specified Yes PA Yes

MERCHANTNUMBER Yes PA/MA No

ROLE Yes PA No

USER Yes All Yes

MERCHANTNUMBER + ROLE Yes PA/MA No

MERCHANTNUMBER + USER Yes All No

ROLE + USER Yes All No

MERCHANTNUMBER + ROLE + USER Yes All No

FILTER Yes PA Yes

FILTER + MERCHANTNUMBER Yes PA/MA No

FILTER + ROLE Yes PA No

FILTER + MERCHANTNUMBER +
ROLE

Yes PA/MA No

FILTER + USER Yes, but filter will be
ignored

All Yes

FILTER + MERCHANTNUMBER +
USER

Yes, but filter will be
ignored

All No

FILTER + ROLE + USER Yes, but filter will be
ignored

All No

FILTER + MERCHANTNUMBER +
USER + ROLE

Yes, but filter will be
ignored

All No

*PA = Payments Administrator, MA = Merchant Administrator

Parameter combinations
Some key points about QUERYUSERS parameter combinations:
v When the Username is specified, the filter will be ignored.
v To return the unauthorized users, you can use only one of the following

methods:
1. Use the filter without the Username
2. Do not specify any parameters
3. Query with Username only

Valid Though a parameter combination may be defined in the QUERYUSERS
parameter table as being valid, certain queries may still be invalid. For
example, even though a Merchant Administrator can issue a query with
Role and Username parameters, the query will be allowed only when the
username specified is the Merchant Administrator’s username (that is,
when the Merchant Administrator is querying himself). For more details on
access control for the QUERYUSERS command, see “Access control details”
on page 97.

Return unauthorized users
The Return unauthorized users column indicates whether the specified
parameter combination can return users who are in the realm, but are not
authorized to use WebSphere Commerce Payments. This allows Payments
Administrators to query a single user and assign that user WebSphere
Commerce Payments access. Note that all calls to QUERYUSERS can return
users who are authorized.

96 Payments Programming Guide and Reference

Note that a realm may choose not to return all the matching users in the realm,
especially if the filter is very unrestrictive. In these cases, the above methods will
set the User objectCount to the total number of matching realm users. This, in turn,
will indicate to the QUERYUSERS caller that the results are not complete and that
a more restrictive search filter should be applied.

Access control details
Whether a query is allowed is dependent on the role of the query issuer. For
instance:

Payments Administrator
The Payments Administrator can issue a query with any combination of
the parameters.

Merchant Administrator

A Merchant Administrator can only query users who:
v are associated with a merchant number (or numbers) that is managed by

the Merchant Administrator

In addition, the Merchant Administrator needs to adhere to the following
requirements in his query request:
v At least one MerchantNumber needs to be specified, and all of the

merchant numbers specified should belong to merchants associated with
the Merchant Administrator. There is one exception where the merchant
number is not required: the Merchant Administrator queries himself.

v If the Role parameter is specified, it should not contain the role of the
Payments Administrator.

Supervisors and Clerks
For all other roles, the user can query himself. In this case, if the filter is
specified, the filter will be ignored.

ReceivePayment
The RECEIVEPAYMENT command is used for order creation when there is
electronic wallet participation. If successful, the order object is moved to Requested
state. Subsequent wallet communication will complete the order and move it to
Ordered state.

When creating an order, you may want to approve or deposit funds automatically.
Once wallet communication is done and the order is in Ordered state, the
APPROVEFLAG and DEPOSITFLAG keywords indicate that a Payment object
should be automatically deposited and approved. Refer to the appropriate table
below for additional keywords that are used if APPROVEFLAG or DEPOSITFLAG
are specified.

Table 7. Required keywords for ReceivePayment command

Required keywords Value

AMOUNT Must be 32-bit positive integer in ASCII characters.

CURRENCY Integer in ASCII characters. See Appendix B, Currency Codes,
for a list of ISO currency codes.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Chapter 6. WebSphere Commerce Payments command reference 97

Table 7. Required keywords for ReceivePayment command (continued)

Required keywords Value

OPERATION ASCII character string ″ReceivePayment.″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

PAYMENTTYPE ASCII character string. Specifies the payment cassette or
protocol being used; for example, OfflineCard.

Table 8. Optional keywords for ReceivePayment command

Optional keywords Value

AMOUNTEXP10 Integer in ASCII characters. Indicates the number of decimal
places to shift. For more information on this keyword, refer to
“Using the AmountExp10 keyword” on page 54.

APPROVEFLAG Integer in ASCII characters. Indicates whether the approvals
should be attempted automatically. Default is 0. Supported
values are:

0 - Indicates transaction should not be approved.

1 - Indicates transaction should be approved automatically.

2 - Indicates transaction should be approved asynchronously.

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this pbarameter is not specified, the
complete DTD is returned as an internal DTD. The length of
the DTDPath must be from 1 to 254 bytes.

ORDERDATA1 Auxiliary data supplied by the user, specified as an ASCII
character string between 1 and 254 bytes in length.

ORDERDATA2 Auxiliary data supplied by the user, specified as a UTF-8
string from 1 to 254 bytes in length.

ORDERDATA3 Auxiliary data supplied by the user, specified as a UTF-8
string between 1 and 254 bytes in length.

ORDERDATA4 Auxiliary data supplied by the user, specified as a binary
string between 1 and 254 bytes in length.

ORDERDATA5 Auxiliary data supplied by the user, specified as a binary
string with an arbitrary length.

ORDERURL URL containing order details.

TRANSACTIONID Transaction identifier supplied by the user, specified as an
ASCII character string between 1 and 128 bytes in length.

The following tables list the required and optional keywords for
APPROVEFLAG=1 or 2.

Table 9. Required keywords if APPROVEFLAG is set to 1 or 2

Required keywords Value

PAYMENTAMOUNT A 32–bit positive integer in ASCII characters.

PAYMENTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

98 Payments Programming Guide and Reference

Table 10. Optional keywords if APPROVEFLAG is set to 1 or 2.

Optional keywords Value

DEPOSITFLAG Boolean value in ASCII characters. Indicates whether the
deposit should be attempted automatically. This flag is only
valid if APPROVE=1 (order is automatically approved).
Supported values are:

0 - Funds should not be automatically deposited

1 - Funds should be automatically deposited.

If DEPOSITFLAG=1, then the following keyword is optional:

Table 11. Optional keyword if DEPOSITFLAG is set to 1

Optional keywords Value

BATCHNUMBER Identifies the batch under which this payment will be
processed. Must be from 1 to 999999999.

Refund
A REFUND command is used to create a Credit object and is used when the
merchant wants to return monies to the cardholder. The REFUND command is
legal when the specified order is in Refundable state.

If successful, a Credit object will be created in Refunded or Closed state. If
unsuccessful, a Credit object will be in Declined state.

Table 12. Required keywords for Refund command

Required keywords Value

AMOUNT Must be a 32-bit positive integer in ASCII characters.

CREDITNUMBER Integer in ASCII characters. Must be from 1 to 999999999.
Indicates the number assigned to this credit.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″Refund.″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Table 13. Optional keywords for Refund command

Optional keywords Value

BATCHNUMBER Optional for implicit batch. A numeric string of up to nine
characters. Identifies the batch under which this payment will
be processed. Must be from 1 to 999999999.

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
external DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

Chapter 6. WebSphere Commerce Payments command reference 99

RefundReversal
A REFUNDREVERSAL command is used to void existing Credit objects. This
command operates on Credit objects in Refunded state. A successful
REFUNDREVERSAL call will result in the Credit object moving to Void State. If
unsuccessful, the Credit object remains in Refunded state.

Table 14. Required keywords for RefundReversal command

Required keywords Value

CREDITNUMBER Integer in ASCII characters. Must be from 1 to 999999999.
Indicates the number assigned to this credit.

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

MERCHANTNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

OPERATION ASCII character string ″RefundReversal.″

ORDERNUMBER Integer in ASCII characters. Must be from 1 to 999999999.

Table 15. Optional keywords for RefundReversal command

Optional keywords Value

DTDPATH Path to the locally stored DTD. The value of this parameter is
used in the XML document to specify the location of the
existing DTD. If this parameter is not specified, the complete
DTD is returned as an internal DTD. The length of the
DTDPath must be from 1 to 254 bytes.

SetUserAccessRights
The SETUSERACCESSRIGHTS command is used to set, change, or remove a user’s
access rights. However, this command will not create or remove users from the
WCSRealm you are using to authenticate users. Before using the
SetUserAccessRights command, make sure the user has been added to the
WCSRealm. For more information about how to add users in WebSphere
Commerce, or access management, refer to the WebSphere Commerce Fundamentals
Guide or the WebSphere Commerce online help.

adding user access
If you want to add a user’s access rights, first add that particular user to
the WCSRealm and then issue the SetUserAccessRights command.

removing user access
If you want to remove the user’s access rights, issue the
SetUserAccessRights command first to remove the user’s access rights and
then remove the user from the WCSRealm.

Table 16. Required keywords for SetUserAccessRights command

Required keywords Value

ETAPIVERSION ″3″ (Indicates WebSphere Commerce Payments–or
predecessor product–API version: Version 2.1.x, 2.2.x, 3.1.x,
and 5.5.x)

100 Payments Programming Guide and Reference

Table 16. Required keywords for SetUserAccessRights command (continued)

Required keywords Value

MERCHANTNUMBER String form of numeric merchant number. This keyword is
required if any of the roles specified is merchant specific.
Merchant number must be from 1 to 999999999. For users
other than the Payments Administrator, multiple
keyword-value pairs can be specified.

OPERATION ASCII character string ″SetUserAccessRights.″

ROLE String form of numeric value.

USER ASCII character string with a maximum length of 40 bytes.
(Note that a user may not update himself. That is to say, user
″admin″ may not call SETUSERACCESSRIGHTS with the
user parameter set to ″admin″.)

To set or change a user’s access rights, specify the role and the merchant number(s)
on the command. To set or change a user’s access rights such that the user has a
role with multiple merchants, you must repeat the keyword-value pairs of the
merchant number multiple times. The merchant number(s) must be specified if any
role given is merchant-specific (See Table 5 on page 95) and must not be specified if
the role given is non-merchant-specific.

Notes:

1. If the Role parameter is not specified, this command can be used to remove a
user’s access rights. In which case, the WebSphere Commerce Payments will
ignore the merchant numbers (even though they are specified in the command).

2. A user may not update himself. That is to say, user ″admin″ may not call
SETUSERACCESSRIGHTS with the user parameter set to ″admin″.

Access control rules for Merchant Administrators
Only the Payments Administrator and the Merchant Administrator can assign or
change a user’s permission (or role). The Payments Administrator can assign or
change any user’s access rights and can assign or change a user’s role to whatever
he wants that user’s role to be, including the role of Payments Administrator.
Whereas the Merchant Administrator can assign or remove a user as a Merchant
Administrator, Supervisor, or Clerk, he cannot assign or change a user’s
permissions to that of Payments Administrator. Further, the Merchant
Administrator can assign and change permissions only under the conditions
outlined in “Assigning a user’s access permissions” on page 14.

Chapter 6. WebSphere Commerce Payments command reference 101

102 Payments Programming Guide and Reference

Chapter 7. WebSphere Commerce Payments data

This chapter focuses on WebSphere Commerce Payments framework payment and
administration objects and states. An object is a collection of data maintained by
WebSphere Commerce Payments which represents a real-world entity. Each object
is defined, and tables are provided to indicate field names, syntax and
descriptions. The state of an object provides information on legal actions for that
particular object. Query commands can be used to retrieve the current state of an
object. Additional tables list the possible states of a particular object, along with a
description of what that state means and which commands are legal for that state.

WebSphere Commerce Payments payment objects
WebSphere Commerce Payments defines the following framework objects for all
electronic payments, regardless of payment protocol:
v Order
v Payment
v Credit
v Batch

WebSphere Commerce Payments uses the terms order, payment, and credit to
represent payment data for all electronic payment. An Order is an object that is
created as a result of a data flow between a buyer and a merchant, while the buyer
is placing an order for merchandise or services. Transactions flow between the
merchant and the financial institution during the Order life cycle. These
transactions can be broken into two broad categories: payments (monies transferred
to the merchant from the consumer) and credits (monies returned to the buyer, such
as when merchandise is defective). As processing on an Order continues, Payment
and Credit objects are created, modified, and destroyed.

Another type of object used by the WebSphere Commerce Payments is a batch
object. A batch represents multiple transactions processed as a group, such as the
deposit of all payments at the end of a business day. Batch objects in the
WebSphere Commerce Payments keep track of the collections of transactions. For
instance, if a financial institution tells the merchant to close out the week’s
transactions, the merchant will close the current batch and open a new one. Batch
objects for these two batches will reflect the new status of the batches.

Order, Payment, Credit, and Batch objects each have an associated state. The state
of an object determines what actions are permitted for the object. The state of an
object is determined by the action, or command, that was last performed on it.

Each WebSphere Commerce Payments framework object is defined by its
attributes, or fields. In the sections that follow, object tables display field names,
field syntax, and field descriptions for each framework object. In addition, object
state tables display the states an object can assume and field descriptions for those
states.

Order
An Order represents all the instructions and information needed from the buyer
(payer) in order for the merchant (payee) to collect money. The merchant may

© Copyright IBM Corp. 1997, 2003 103

collect that money all at once, or over a period of time, but never needs to go back
to the buyer for additional information. The required information is all there in the
Order. The WebSphere Commerce Payments Order object describes the data
included in the order. Each Order can have zero or more payments associated with
it. The attributes for the Order object are:

Table 17. PSOrderObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order.

merchantOriginated 0 or 1 (Boolean) Value is 1, (true) if the Order was created using AcceptPayment.
Value is 0, (false) if the Order was created using
ReceivePayment.

amount Integer Identifies the Order amount in the smallest denomination of the
particular currency used to place the Order. When combined
with AmountExp10, this field specifies the amount of the full
Order in the specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal
point to reflect the currency. For example, if the amount is 2325,
the currency code is for U.S. dollars, and AmountExp10 is -2,
the transaction amount in U.S. dollars is $23.25.

currency Integer ISO code for currency. For example, 840 is the numeric code for
a U.S. dollar, and 392 is the numeric code for a Japanese yen.

paymentType Character string Identifies the payment cassette or protocol used to place the
Order (for example, OfflineCard).

timeStampCreated Date The time that this Order entry was created. The number of
milliseconds since midnight January 1, 1970 GMT.

timeStampModified Date The time that this Order entry was last modified. The number of
milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Order.

v order_requested

v order_ordered

v order_refundable

v order_rejected

v order_pending

v order_canceled

v order_closed

approvesAllowed 0 or 1 (Boolean) Flag indicating if approve commands are legal on this Order.

unapprovedAmount Integer Amount of the Order minus the approved amount of all
Payments for that Order.

numberOfPayments Integer The number of payments associated with this Order.

numberOfCredits Integer The number of credits associated with this order.

brand Character string For credit cards: the payment card brand used to place this
Order (for example, VISA or MasterCard).

orderURL URL A merchant-defined URL often used to point to information
about the Order in the merchant’s business system.

merchantAccount Numeric token, 1 to 9
digits long

The number of the Account used to process this Order.

Assigned prior to the Order entering Ordered state.

104 Payments Programming Guide and Reference

Table 17. PSOrderObject Attributes (continued)

Field name Syntax Description

transactionId Character string, 1 to 128
ASCII characters long

Customer’s transaction identifier. This value will only be present
if a non-null TRANSACTIONID value was specified on the
AcceptPayment or ReceivePayment command.

orderData1 Character string, 1 to 254
ASCII characters long

This value will only be present if a non-null ORDERDATA1
value was specified on the AcceptPayment or ReceivePayment
command.

orderData2 UTF-8 string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA2
value was specified on the AcceptPayment or ReceivePayment
command.

orderData3 UTF-8 string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA3
value was specified on the AcceptPayment or ReceivePayment
command.

orderData4 Binary string, 1 to 254
bytes long

This value will only be present if a non-null ORDERDATA4
value was specified on the AcceptPayment or ReceivePayment
command.

orderData5 Binary string of an
arbitrary length

This value will only be present if a non-null ORDERDATA5
value was specified on the AcceptPayment or ReceivePayment
command.

Note: A numeric token is defined as a numeric string that is one to nine digits in
length.

Order states
The state of an object determines what actions are legal for the object. The state of
an object is determined by the action, or command, that was last performed on it
(for example, a Payment that was approved, moves into Approved state).

Orders are in one of the following states:

State Description

Requested A preliminary state where the buyer has not yet provided
all of the information necessary to complete the Order.
Legal commands for this state:

v CancelOrder

Chapter 7. WebSphere Commerce Payments data 105

State Description

Ordered Indicates consumer/merchant server/WebSphere
Commerce Payments order message flow completed
successfully. WebSphere Commerce Payments can now
perform commands on Payments. Legal commands for this
state:

v CloseOrder, if the order has any payments or credits
associated with it, they all must be in closed state before
CloseOrder is allowed; if an Order has no payments or
credits associated with it, then CloseOrder is not valid.

v CancelOrder, if one or the other is true:

– The order has no Payments or Credits associated with
it, OR

– All Payments and Credits are in either Reset, Void,
ApprovalExpired or Declined state.

v Approve

v ApproveReversal

v Deposit

v DepositReversal

Refundable WebSphere Commerce Payments can now perform
commands on Payments and Credits. The point at which
an Order moves from Ordered to Refundable state
depends on the payment method. Legal commands for this
state:

v CloseOrder, if the order has any payments or credits
associated with it, they all must be in closed state before
CloseOrder is allowed; if an Order has no payments or
credits associated with it, then CloseOrder is not valid.

v Approve

v ApproveReversal

v Deposit

v DepositReversal

v Refund

v RefundReversal

Rejected Indicates that a problem occurred during the
consumer-merchant purchase flows. Legal commands for
this state:

v CancelOrder

Pending An Order is in Pending state when WebSphere Commerce
Payments is performing a command on the Order. No
commands are legal for Orders in this state.

Canceled This Order has been canceled. Legal commands for this
state:

v CancelOrder with the DELETEORDER flag enabled (this
removes the Order from the database).

Closed This Order has been closed. Legal commands for this state:

v CloseOrder

v CancelOrder with the DELETEORDER flag enabled
(thisl removes the Order from the database).

106 Payments Programming Guide and Reference

Payments
The Payment object represents a request by the merchant to the financial institution
to approve all or part of an Order.

In many cases, all the money authorized for collection by the Order will be
collected in a single payment. Some payment systems may allow the money
authorized in one Order (that is, one set of payment instructions) to be collected in
multiple payments, depending on the business model. There can be zero or more
Payments per Order. The attributes for the Payment object are:

Table 18. PSPaymentObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order. This field matches the orderNumber in the Orders table.

paymentNumber Numeric token, 1 to 9
digits long

A unique identifier for a particular Payment within an Order.

paymentType Character string Identifies the payment cassette or protocol used to place the
order (for example, VisaNet or OfflineCard).

approvedAmount Integer Amount of the Order that has been approved for Payment.

amount Integer Identifies the Payment amount in the smallest denomination of
the particular currency used to place the order. When combined
with AmountExp10, this field specifies the amount of the
Payment in the specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal
point to reflect the currency. For example, if the amount is 2325,
the currency code is for U.S. dollars, and AmountExp10 is -2,
the transaction amount in U.S. dollars is $23.25.

currency Integer The currency used to make this Payment. ISO code for currency.
For example, 840 is the numeric code for a U.S. dollar, and 392
is the numeric code for a Japanese yen.

timeStampCreated Date The time that this Payment entry was created. The number of
milliseconds since midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Payment entry was last modified. The
number of milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Payment:

v payment_reset

v payment_approved

v payment_deposited

v payment_pending

v payment_declined

v payment_void

v payment_closed

v payment_approvalexpired

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

referenceNumber Character string Plain text identifier used by the financial institution to identify a
Payment.

Chapter 7. WebSphere Commerce Payments data 107

Table 18. PSPaymentObject Attributes (continued)

Field name Syntax Description

depositAmount Integer The amount deposited for this Payment (can differ from
approved amount).

Assigned when deposited.

merchantAccount Numeric token, 1 to 9
digits long

A number that identifies the Account used to process this Order.

order IDREF XML element representing the order associated with this
payment.

approveTime Date The last time that this Payment entry was approved.

approvalExpiry Date The time that a Payment approval expires. A null value implies
no expiration.

Payment states
Payments are in one of the following states:

State Description Valid commands

Reset A Payment enters Reset state
when a Payment has been created,
but has not yet been processed.

No valid commands exist for
Payments in this state, since the
Approve command has not yet
completed.

Approved A Payment enters Approved state
when an approve command is
successful. For credit cards,
Approved state means that the
Payment has been authorized.

v ApproveReversal

v Deposit

Deposited A Payment enters Deposited state
when a deposit, or auto-deposit,
command is successful. For credit
card payment types, Deposited
state means that the Payment has
been captured.

DepositReversal

Closed A Payment in Deposited state
moves into Closed state when the
Batch associated with the Payment
closes. When a Payment is in
Closed state, the financial
transaction is complete; monies are
deposited, and the Payment
cannot be modified.

No valid commands exist for
Payments in this state.

Declined A Payment enters Declined state
when an approve command is
rejected for financial reasons.

Approve

Void A Payment enters Void state when
an ApproveReversal command for
an amount of zero is successful.

Approve

Pending A command is currently being
performed on this Payment.

No valid commands exist for
Payments in this state.

108 Payments Programming Guide and Reference

ApprovalExpired The Payment moves from an
Approved state to the
ApprovalExpired state after the
specified approval time has
elapsed or the cassette has
detected that the Payment
authorization has expired. This is
an optional state which may not
be supported by a cassette.

ApproveReversal

Split payments
Suppose a customer contacts an online catalog store and orders $80 of
merchandise. The merchant checks the inventory and finds that only $60 worth of
merchandise is in stock and can be shipped. The merchant would like to collect
$60 now and the remaining $20 when the rest of the order is filled. WebSphere
Commerce Payments is designed to support payment systems in which customers
provide payment information once (for the entire $80) and the merchant collects
the funds over time ($60 now and $20 later). This is referred to as split payments.

AVS common codes
If the cassette you are using supports WebSphere Commerce Payments common
AVS codes, then you can also query the commonAVSCode parameters to
determine the AVS result in a cassette-independent way.

Mapping of common AVS result codes to cassette result codes follows.

Common
AVS code

PM constant name Description

4 AVS_OTHER_RESPONSE This constant maps the address
information unavailable, system
unavailable (possibly due to timeout),
card type not supported, and
transaction ineligible AVS return
codes. Some other system-related
response was received from the credit
card processor.

3 AVS_NO_MATCH Neither the street address nor the
postal code matches.

2 AVS_POSTALCODE_MATCH The 5–digit or 9–digit postal code
matches, but the street address does
not.

1 AVS_STREETADDRESS_MATCH The street address matches, but the
postal code does not.

0 AVS_COMPLETE_MATCH This constant maps both the AVS
5–digit and 9–digit postal code and
street addresses. Both are exact
matches.

Credits
The WebSphere Commerce Payments command that creates the Credit object is
called Refund. The Credit object identifies one credit made against the amount of
money identified in one Order (that is, the payment agreement) object. There can
be zero or more Credits per Order. The attributes for the Credit object are:

Chapter 7. WebSphere Commerce Payments data 109

Table 19. PSCreditObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

orderNumber Numeric token, 1 to 9
digits long

A number assigned by the merchant that uniquely identifies the
Order. This field matches the orderNumber in the Orders table.

creditNumber Numeric token, 1 to 9
digits long

A unique identifier for a particular Credit within an Order.

paymentType Character string Identifies the payment cassette or protocol used to place the
order (for example, VisaNet or OfflineCard).

amount Integer Identifies the Credit amount in the smallest denomination of the
particular currency used to place the order. When combined
with AmountExp10, this field specifies the amount of the Credit
in the specified currency.

amountExp10 Integer Indicates the number of decimal places to shift the decimal
point to reflect the currency. For example, if the amount is 2325,
the currency code is for U.S. dollars, and AmountExp10 is -2,
the transaction amount in U.S. dollars is $23.25.

currency Integer The currency used to issue this Credit. ISO code for currency.
For example, 840 is the numeric code for a U.S. dollar, and 392
is the numeric code for a Japanese yen.

timeStampCreated Date The time that this Credit entry was created. The number of
milliseconds since midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Credit entry was last modified. The number
of milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Credit:

v credit_reset

v credit_refunded

v credit_pending

v credit_declined

v credit_void

v credit_closed

For more information on Credit states, see “Credit states”.

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

referenceNumber Character string Plain text identifier used by the financial institution to identify a
Payment.

merchantAccount Numeric token, 1 to 9
digits long

The number of the Account used to process this Order.

Credit states
Credits are in one of the following states:

State Description

Reset A Credit enters Reset state when a Credit has been created,
but has not yet been processed. No commands are legal for
Credits in this state.

110 Payments Programming Guide and Reference

State Description

Refunded A Credit enters Refunded state when a refund command is
successful. Legal commands for this state:

v RefundReversal

Closed A Credit in Refunded state moves into Closed state when
the Batch associated with the Credit closes. When a Credit
is in Closed state, the financial transaction is complete;
monies are refunded, and the Credit cannot be modified.
No commands are legal for Credits in Closed state.

Declined A Credit enters Declined state when a refund command is
rejected for financial reasons. Legal commands for this
state:

v Refund

Void A Credit enters Void state when a RefundReversal
command for an amount of zero is successful. Legal
commands for this state:

v Refund

Pending A command is currently being performed on this Credit.
No commands are legal for Credits in this state.

Batches
A Batch is a collection of financial transactions (Payments and Credits) that are
processed as a unit by a financial institution. A Batch is associated with an Account
and a merchant. An Account can have zero or more Batches. The attributes for the
Batch object are:

Table 20. PSBatchObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

The number of the merchant that owns the Batch.

merchantAccount Numeric token, 1 to 9
digits long

The account number associated with the Batch.

batchNumber Numeric token, 1 to 9
digits long

The number that identifies the Batch.

Assigned when the Payment is deposited.

purgeAllowed 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to purge this batch.
If the value is 1, (yes), the merchant can purge this batch using
the BatchPurge command. If the value is 0, (no), the merchant
cannot purge this batch.

forceAllowed 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to issue a
BatchClose command with the Force option set. If the value is 1,
(yes), the merchant can issue the command.

paymentType Character string Identifies the payment cassette or protocol used to place the
Order (for example, VisaNet or OfflineCard).

merchantControl 0 or 1 (Boolean) Flag indicating if it is legal for the merchant to control this
batch. If the value is 1, (true), the merchant is responsible for
settling this Batch. (The merchant settles the Batch by explicitly
closing the Batch using the BatchClose command.) If the value is
0, (false), the merchant does nothing to settle this Batch.

Chapter 7. WebSphere Commerce Payments data 111

Table 20. PSBatchObject Attributes (continued)

Field name Syntax Description

timeStampOpened Date The time that this Batch was opened (either by the merchant or
the financial institution). The number of milliseconds since
midnight, January 1, 1970 GMT.

timeStampClosed Date The time that this Batch was closed (either by the merchant or
the financial institution). The number of milliseconds since
midnight, January 1, 1970 GMT.

timeStampModified Date The time that this Batch was last modified. The number of
milliseconds since midnight, January 1, 1970 GMT.

state Character string The state of the Batch:

v batch_opening

v batch_open

v batch_closing

v batch_closed

For more information on Batch states, see “Batch states”.

batchStatus Character string The balance status of this Batch:

v batch_not_ yet_ balanced: balancing has not yet been
performed on this Batch.

v batch_balanced: the Batch has been balanced, and everything
is in agreement.

v batch_out_ of_ balance: the Batch has been balanced, and
everything does not agree.

Batch states
Batches are in one of the following states:

State Description

Opening The Batch is currently being opened. No commands are
legal on a Batch in Opening state.

Open Payments and Credits can be added to a Batch in Open
state. Legal commands for this state:

v CloseBatch, only if merchantControl is true.

Closing Batch is currently being settled. No commands are legal for
Batches in this state.

Closed A batch in Closed state has been settled. Legal commands
for this state:

v DeleteBatch

WebSphere Commerce Payments About objects
WebSphere Commerce Payments defines the following About objects:
v Payment Server About
v Cassette About

Each WebSphere Commerce Payments About object is defined by its attributes, or
fields. In the sections that follow, object tables display field names, field syntax,
and field descriptions for each About object.

112 Payments Programming Guide and Reference

Payment Server About
The Payment Server About object contains the version of the WebSphere
Commerce Payments. The Payment Server attributes are:

Field name Syntax Description

version Character string The WebSphere Commerce
Payments version.

userName Character string The name of the user running the
About command.

Cassette About
The Cassette About object contains version information on a cassette. The Payment
Server attributes are:

Field name Syntax Description

cassette Character string The cassette payment system name.

version Character string The cassette version.

WebSphere Commerce Payments administration objects
WebSphere Commerce Payments defines the following framework objects for
Payments administration:
v Payment Server
v Cassette
v Merchant
v Payment System
v Account
v Event Listener
v User

Each WebSphere Commerce Payments Administration object is defined by its
attributes, or fields. In the sections that follow, object tables display field names,
field syntax, and field descriptions for each Administration object.

Payment Server
The Payment Server object describes the state of WebSphere Commerce Payments.
The Payment Server attributes are:

Table 21. PSPaymentServer Object Attributes

Field name Syntax Description

paymentServerHostname Character string The hostname of the computer where WebSphere
Commerce Payments is installed.

realmName Character string The name of the realm currently being used by
WebSphere Commerce Payments.

numberOfOrderCommands Integer The number of order commands made on WebSphere
Commerce Payments since the last time it was
restarted.

Chapter 7. WebSphere Commerce Payments data 113

Table 21. PSPaymentServer Object Attributes (continued)

Field name Syntax Description

numberOfPaymentCommands Integer The number of payment commands made on
WebSphere Commerce Payments since the last time it
was restarted.

numberOfAdminCommands Integer The number of administration commands made on
WebSphere Commerce Payments since the last time it
was restarted.

numberOfQueryCommands Integer The number of query commands made on WebSphere
Commerce Payments since the last time it was
restarted.

changesPending Boolean, XML 0 or 1 Flag indicating whether or not changes have been
applied to WebSphere Commerce Payments, where
0=false and 1=true. These changes will not take effect
until WebSphere Commerce Payments is restarted.

enabled Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is enabled or not (that is, whether it is
writeable), where 0=false and 1=true.

active Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is active or not (that is, whether it is ready
for use), where 0=false and 1=true.

valid Boolean, XML 0 or 1 Flag indicating whether WebSphere Commerce
Payments is valid or not (that is, whether it is
configured correctly), where 0=false and 1=true.

paymentServerMsgs Character string A comma-separated list of message codes generated
by WebSphere Commerce Payments that identify
error, warning, or information messages related to the
merchant’s Payment settings.

Cassette
The Cassette object describes the state of a cassette that is installed in the
WebSphere Commerce Payments. The attributes of a Cassette object are:

Table 22. PSCassetteObject Attributes

Field name Syntax Description

cassette Character string The name of the cassette (for example, VisaNet or
OfflineCard).

companyPkgName Character string The name of the company that developed the cassette
(used to identify the cassette’s Java package name).

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been
applied to the cassette, where 0=false and 1=true.
These changes will not take effect until the cassette is
restarted.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not
(that is, whether the cassette is writeable), where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not
(that is, whether the cassette is ready for use), where
0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not
(that is, whether the cassette is configured correctly),
where 0=false and 1=true.

114 Payments Programming Guide and Reference

Table 22. PSCassetteObject Attributes (continued)

Field name Syntax Description

cassetteMsgs Character string A comma-separated list of message codes generated
by the cassette that identify error, warning, or
information messages related to the cassette to the
XDM client application.

paymentServerMsgs Character string A comma-separated list of message codes generated
WebSphere Commerce Payments that identify error,
warning, or information messages related to the
cassette.

Merchant
The Merchant object describes the state of a merchant who is defined to use
WebSphere Commerce Payments. The attributes of the Merchant are:

Table 23. PSMerchantObject Attributes

Field name Syntax Description

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant that created the Order.

merchantName Character string The merchant name. This is an optional field that provides
meaningful display information in the WebSphere Commerce
Payments user interface.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the merchant is re-enabled.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments, that identify error, warning, or
information messages related to the merchant.

Payment System
The Payment System object describes the settings that a merchant has made for a
cassette. The attributes of the cassette settings are:

Table 24. PSMerchantCassetteSettingsObject Attributes

Field name Syntax Description

cassette Character string The name of the cassette (for example, VisaNet or OfflineCard).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted for this merchant.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not (that is,
whether the cassette is writeable), where 0=false and 1=true.

Chapter 7. WebSphere Commerce Payments data 115

Table 24. PSMerchantCassetteSettingsObject Attributes (continued)

Field name Syntax Description

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not (that is,
whether the cassette is ready for use), where 0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not (that is,
whether the cassette is configured correctly), where 0=false and
1=true.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the payment system.

Account
The merchant Account object describes the state of an account that a merchant
holds with a financial institution. The attributes of an account are:

Table 25. PSMerchantAccountObject Attributes

Field name Syntax Description

cassette Character string The name of the cassette (for example, VisaNet or
OfflineCard).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

merchantAccountNumber Numeric token, 1 to 9
digits long

A number that identifies the account. This number is
created locally (that is, by the hosting service provider or
by the merchant administrator) and is for tracking
purposes.

merchantAccountName Character string The account name. This is an optional field that provides
meaningful, display information in the WebSphere
Commerce Payments user interface.

financialInstName Character string The financial institution name. This is an optional field
that provides meaningful, display information in the
WebSphere Commerce Payments user interface.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been
applied to the cassette, where 0=false and 1=true. These
changes will not take effect until the account is restarted.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not,
where 0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not,
where 0=false and 1=true.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true.

cassetteMsgs Character string A comma-separated list of message codes generated by
the cassette that identify error, warning, or information
messages related to the account or the XDM client
application.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error,
warning, or information messages related to the account.

apApproveFlag Numeric Token, 1 to 9
digits long

Approve flag for AcceptPayment

116 Payments Programming Guide and Reference

Table 25. PSMerchantAccountObject Attributes (continued)

Field name Syntax Description

apDepositFlag 0 or 1 (Boolean) 0=false and 1=true. Deposit flag for AcceptPayment.
Should only be specified when apApproveFlag is defined
and not set to 0.

rpApproveFlag Numeric Token, 1 to 9
digits long

Approve flag for ReceivePayment

rpDepositFlag 0 or 1 (Boolean) 0=false and 1=true. Deposit flag for ReceivePayment.
Should only be specified when rpApproveFlag is defined
and not set to 0.

approvalExpiration Numeric token, 1 to 9
digits long

Value indicating the number of days from the time a
payment is approved until the payment approval expires.

Event Listener
The Event Listener object describes the state of registered WebSphere Commerce
Payments events. The attributes of an Event Listener are:

Table 26. PSEventListenerObject Attributes

Field name Syntax Description

eventType Character string The type of event being monitored.

listenerURL Character string The URL defined for an event type. The WebSphere Commerce
Payments event notification model provides for messages to be
sent to the listener URL defined for a specific event type.
Multiple URLs can be defined for a single event type.

timeRegistered Date The time that the merchant registered an event type. The
number of milliseconds since midnight, January 1, 1970 GMT.

socksHost Character string The hostname of the socks server receiving event notification
from WebSphere Commerce Payments. The value is null if not
using socks. The default is null.

socksPort Character string The port of the socks server receiving event notification from
WebSphere Commerce Payments. The value is null if not using
socks. The default is null.

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant.

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
cassette, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted. Not used.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true.

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true. Not used.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true. Not used

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the event type.

User
The User object describes the state of users defined for the WebSphere Commerce
Payments. The attributes of a User are:

Chapter 7. WebSphere Commerce Payments data 117

Table 27. PSUserObject Attributes

Field name Syntax Description

userName Character string The name of the user.

configuration Character string The user configuration.

roleIDs Character string. The role ID defined for the user (that is, clerk, supervisor,
merchant administrator, or WebSphere Commerce Payments
administrator).

merchantNumber Numeric token, 1 to 9
digits long

A number that identifies the merchant. This value is set for all
roles other than WebSphere Commerce Payments administrator.
Note that the result of the QueryUsers command may return a
user with access rights to multiple merchants. In this case,
WebSphere Commerce Payments will return the merchant
number as a list of merchant numbers with the following
syntax: m1, m2, m3, . . .

changesPending 0 or 1 (Boolean) Flag indicating whether or not changes have been applied to the
User, where 0=false and 1=true. These changes will not take
effect until the cassette is restarted for the merchant. Not used.

enabled 0 or 1 (Boolean) Flag indicating whether the cassette is enabled or not, where
0=false and 1=true (enabled).

active 0 or 1 (Boolean) Flag indicating whether the cassette is active or not, where
0=false and 1=true. Not used.

valid 0 or 1 (Boolean) Flag indicating whether the cassette is valid or not, where
0=false and 1=true. Not used.

paymentServerMsgs Character string A comma-separated list of message codes generated by
WebSphere Commerce Payments that identify error, warning, or
information messages related to the user.

objectCount The number of real, matched objects.

118 Payments Programming Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2003 119

120 Payments Programming Guide and Reference

Appendix A. WebSphere Commerce Payments return codes

The return codes include both primary return codes and secondary return codes.
v Primary return codes (PRCs) describe the basic response of WebSphere

Commerce Payments. The primary return code is returned on each command.
v Secondary return codes (SRCs) provide additional information. WebSphere

Commerce Payments defines two types of generic SRCs: a set that is common to
all the PRCs, and a set that is specific to a particular PRC.
The SRC is returned in the optional secondaryrc structure passed on each
command.

Protocol cassette writers may also extend the set with protocol-specific codes. Refer
to the appropriate cassette supplement for information regarding these codes.

Primary return codes
The following table shows the primary return codes (PRCs) for WebSphere
Commerce Payments. Those PRCs that have specific secondary return codes (SRCs)
are listed in this table; SRCs that span multiple PRCs are in “Secondary return
codes (generic)” on page 123.

Table 28. Primary Return Codes (PRCs)

Primary return code Value Description

PRC_OPERATION_SUCCESS 0 Operation completed successfully. A
non-zero secondary return code (SRC)
may be provided for additional
information.

PRC_OPERATION_PENDING 1 The API call has not yet completed and
is pending on the availability of
WebSphere Commerce Payments
entities. The SRC indicates resources
upon which the operation is pending.

PRC_UNDEFINED_OBJECT 2 A specified object was not found. The
object is indicated by the SRC.

PRC_PARAMETER_NOT_FOUND 3 A required parameter was not found.
The parameter is indicated by the SRC.

PRC_PARAMETER_TOO_SHORT 4 A required parameter was too short.
The parameter is indicated by the SRC.

PRC_PARAMETER_TOO_LONG 5 A required parameter was too long. The
parameter is indicated by the SRC.

PRC_PARAMETER_FORMAT_ERROR 6 A required parameter was formatted
incorrectly. The parameter is indicated
by the SRC.

PRC_PARAMETER_VALUE_ERROR 7 A required parameter had an incorrect
value. The parameter is indicated by
the SRC.

PRC_DUPLICATE_OBJECT 8 A duplicate object exists. As indicated
by the SRC, a payment with this
payment number already exists.

© Copyright IBM Corp. 1997, 2003 121

Table 28. Primary Return Codes (PRCs) (continued)

Primary return code Value Description

PRC_PARAMETER_MISMATCH 9 A parameter mismatch occurred. The
parameter is indicated by the SRC.

PRC_INPUT_ERROR 10 There was an error parsing the input
stream. The command or one of its
parameters has an invalid length.

PRC_VERB_NOT_VALID_IN_PRESENT_STATE 11 An object is not in the correct state for
this action. The particular object is
indicated by the SRC.

PRC_COMMUNICATION_ERROR 12 A communication error occurred in
WebSphere Commerce Payments.

PRC_INTERNAL_ETILL_ERROR 13 WebSphere Commerce Payments
experienced an unexpected internal
error.

PRC_DATABASE_ERROR 14 A database communications error
occurred.

PRC_CASSETTE_ERROR 15 A cassette-specific error occurred. Refer
to cassette-supplementary information
for documentation.

PRC_UNSUPPORTED_API_VERSION 17 The API version used by the
application program is newer than that
supported by WebSphere Commerce
Payments.

PRC_OBSOLETE_API_VERSION 18 The API version used by the
application is no longer supported by
WebSphere Commerce Payments.
Upgrade the application program to use
the newer function which replaces the
obsoleted function or feature.

PRC_AUTOAPPROVE_FAILED 19 Auto approve in ReceivePayment or
AcceptPayment failed.

PRC_AUTODEPOSIT_FAILED 20 Auto deposit in ReceivePayment or
AcceptPayment failed

PRC_CASSETTE_NOTRUNNING 21 The cassette is not running.

PRC_CASSETTE_NOTVALID 22 The cassette is not valid.

PRC_UNSUPPORTED_IN_SYSPLEX 23 The operation is not supported in
sysplex environment.

PRC_PARAMETER_NULL_VALUE 24 The parameter has a null value.

PRC_XML_ERROR 30 The XML document is not correct.

PRC_COREQUISITE_PARAMETER_NOT_FOUND 31 The parameter must be specified when
another parameter is specified.

PRC_INVALID_PARAMETER_COMBINATION 32 The combination of the parameters
specified in a API command is not
allowed.

PRC_BATCH_ERROR 33 An error related with the Batch
operation occurred.

PRC_FINANCIAL_FAILURE 34 The operation failed for financial
reasons.

122 Payments Programming Guide and Reference

Table 28. Primary Return Codes (PRCs) (continued)

Primary return code Value Description

PRC_SERVLET_INIT_ERROR 50 An error occurred when initializing the
servlet.

PRC_AUTHENTICATION_ERROR 51 An error occurred during the user
authentication.

PRC_AUTHORIZATION_ERROR 52 An error occurred during the user
authorization.

PRC_UNHANDLED_EXCEPTION 53 An unhandled (such as null pointer)
exception occurred.

PRC_DUPLICATE_PARAMETER_VALUE_NOT_ALLOWED 54 The parameter can not be specified
multiple times in this API command.

PRC_COMMAND_NOT_SUPPORTED 55 The command name is not recognized
as a valid $til; command.

PRC_CRYPTO_ERROR 56 Error related with
encryption/decryption key.

PRC_NOT_ACTIVE 57 An administration object is not active.

PRC_PARAMETER_NOT_ALLOWED 58 The parameter should not be specified.

PRC_DELETE_ERROR 59 The object could not be deleted.

PRC_WEBSPHERE 60 A WebSphere/WebServer related error
occurred.

PRC_SUPPORTED_IN_SYSPLEX_ADMIN_ONLY 61 The request is supported in Sysplex
mode only on the WebSphere
Commerce Payments designated as the
Sysplex Administrator.

PRC_REALM 62 A realm-related error occurred.

Secondary return codes (generic)
Table 29. Generic Secondary Return Codes (SRCs)

Secondary return code Value Description

RC_NONE 0 No additional information available.

RC_INITIALIZATION_MESSAGE 1 An initialization message is included in
the return data buffer. This buffer must
be freed by the caller of this routine.

RC_INPUT_ERROR_TOO_LONG 2 Input stream exceeds maximum length.

RC_INPUT_ERROR_UNKNOWN_COMMAND 3 Unknown command.

RC_UNEXPECTED 4 An unexpected error has occurred.

RC_COMMUNICATION_ERROR_INPUT 5 WebSphere Commerce Payments
received an exception when reading
data from the merchant server.

RC_API_INITIALIZE_FAILURE 6 API initialization failed.

RC_MERCHANTNUMBER 110 Response refers to the merchant
number parameter.

RC_ORDERNUMBER 111 Response refers to the order number
parameter.

RC_PAYMENTNUMBER 112 Response refers to the
PAYMENTNUMBER parameter.

Appendix A. WebSphere Commerce Payments return codes 123

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CREDITNUMBER 113 Response refers to the
CREDITNUMBER parameter.

RC_BATCHNUMBER 114 Response refers to the
BATCHNUMBER parameter. (Note: In
previous versions this return code
referenced the BATCHID parameter.)

RC_ACCOUNTNUMBER 115 Response refers to the
ACCOUNTNUMBER parameter.

RC_PAYMENTTYPE 116 Response refers to the PAYMENTTYPE
parameter.

RC_AMOUNT 117 Response refers to the AMOUNT
parameter.

RC_AMOUNTEXP10 118 Response refers to the AMOUNTEXP10
parameter.

RC_CURRENCY 119 Response refers to the CURRENCY
parameter.

RC_OD 120 Response refers to the order
description parameter.

RC_CHARSET 121 Response refers to the character set
parameter.

RC_SUCCESSURL 122 Response refers to the success URL
parameter.

RC_FAILURL 123 Response refers to the failure URL
parameter.

RC_CANCELURL 124 Response refers to the cancel URL
parameter.

RC_APPROVEFLAG 125 Response refers to the approve flag
parameter.

RC_PAYMENTAMOUNT 126 Response refers to the payment amount
parameter.

RC_SPLITFLAG 127 Response refers to the splits allowed
parameter.

RC_DEPOSITFLAG 128 Response refers to the deposit flag
parameter.

RC_PROTOCOLDATA 129 Response refers to the protocol data
parameter.

RC_ORDERURLS 130 Response refers to the order URL
parameter.

RC_SERVICEURL 131 Response refers to the service URL
parameter.

RC_CASSETTECOMMAND 132 Response refers to the cassette
command parameter.

RC_USERNAME 133 Response refers to the user parameter.

RC_EVENTTYPE 134 Response refers to the event type
parameter.

RC_WITHCREDITS 135 Response refers to the withCredits
parameter.

124 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CREATEBEGINTIME 136 Response refers to the creation begin
time parameter.

RC_CREATEENDTIME 137 Response refers to the creation end
time parameter.

RC_MINAMOUNT 138 Response refers to the minimum
amount parameter.

RC_MAXAMOUNT 139 Response refers to the maximum
amount parameter.

RC_RETURNATMOST 140 Response refers to the ″return at most″
parameter.

RC_KEYSONLY 141 Response refers to the keys only
parameter.

RC_DTDPATH 143 Response refers to the dtd path
parameter.

RC_REFERENCENUMBER 144 Response refers to the reference
number parameter.

RC_WITHORDERS 145 Response refers to the withOrders
parameter.

RC_MESSAGES 146 Response refers to the messages key.

RC_OPENBEGINTIME 147 Response refers to the batch open
beginning time parameter.

RC_OPENENDTIME 148 Response refers to the batch open
ending time parameter.

RC_CLOSEBEGINTIME 149 Response refers to the batch close
beginning time parameter.

RC_CLOSEENDTIME 150 Response refers to the batch close
ending time parameter.

RC_STATUS 151 Response refers to the status parameter.

RC_CLOSEALLOWED 153 Response refers to the close allowed
parameter.

RC_WITHPAYMENTS 154 Response refers to the withPayments
parameter.

RC_TIMEREGISTERED 155 Response refers to the time registered
parameter.

RC_MINAPPROVEAMOUNT 156 Response refers to the minimum
approve amount parameter.

RC_MAXAPPROVEAMOUNT 157 Response refers to the maximum
approve amount parameter.

RC_MINDEPOSITAMOUNT 158 Response refers to the minimum
deposit amount parameter.

RC_MAXDEPOSITAMOUNT 159 Response refers to the maximum
deposit amount parameter.

RC_ORDERURL 160 Response refers to the order URL
parameter.

RC_MODIFYBEGINTIME 161 Response refers to the modification
beginning time parameter.

Appendix A. WebSphere Commerce Payments return codes 125

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_MODIFYENDTIME 162 Response refers to the modification
ending time parameter.

RC_DELETEORDER 165 Response refers to the delete order
parameter.

RC_MINUNAPPROVEDAMOUNT 166 Response refers to the minimum
un-approved amount parameter.

RC_MAXUNAPPROVEDAMOUNT 167 Response refers to the maximum
un-approved amount parameter.

RC_APPROVESALLOWED 168 Response refers to the approve allowed
parameter.

RC_PURGEALLOWED 169 Response refers to the
PURGEALLOWED parameter.

RC_MAXBATCHSIZE 170 Response refers to the
$MAXBATCHSIZE parameter.

RC_CHECK_CASSETTE_STATUS 171 Inspect cassette-specific data for further
information.

RC_FORCE 172 Response refers to the FORCE
parameter. May be returned in
response to the BATCHCLOSE
command. Indicates that the error
described by the primary return code
refers to the boolean parameter
FORCE.

RC_AP_APPROVEFLAG 173 Response refers to the acceptPayment
approve flag parameter.

RC_AP_DEPOSITFLAG 174 Response refers to the acceptPayment
deposit flag parameter.

RC_RP_APPROVEFLAG 175 Response refers to the receivePayment
approve flag parameter.

RC_RP_DEPOSITFLAG 176 Response refers to the receivePayment
deposit flag parameter.

RC_APPROVALEXPIRATION 177 Response refers to the
ApprovalExpiration parameter.

RC_MERCHANTPAYSYS 202 Response refers to merchant payment
system.

RC_ACCOUNT 203 Response refers to an account.

RC_ORDER 204 Response refers to an order entity.

RC_PAYMENT 205 Response refers to a payment entity.

RC_CREDIT 206 Response refers to a credit entity.

RC_BATCH 207 Response refers to a batch entity.

RC_BRAND 208 Response refers to a brand.

RC_STATE 209 Response refers to the state.

RC_MULTIPLE_BATCHES 211 Response refers to batch objects.

RC_AUTOMATIC_CREATION 212 An error occurred during automatic
batch open

126 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_BATCH_EMPTY 213 The batch is empty. An attempt was
made to close a batch that does not
contain any payments or credits. It is
up to the cassette to decide whether or
not this is an error condition.

RC_COMMTYPE 215 Response refers to the communication
type.

RC_PAYMENTGROUPNAME 216 Response refers to the payment group
name.

RC_ADMINHOSTNAME 217 Response refers to the admin host
name.

RC_NDHOSTNAME 218 Response refers to the Net.Dispatcher
host name.

RC_PLEXNAME 219 Response refers to the sysplex name.

RC_UNKNOWN_ETILL_HOST 301 The specified WebSphere Commerce
Payments host is not valid.

RC_HOSTNAME_NOT_VALID 303 The WebSphere Commerce Payments
hostname parameter is in error.

RC_HOST_IP_ADDRESS_UNAVAILABLE 306 Could not locate host IP address.

RC_SOCKET_STARTUP_FAILURE 307 Could not initialize socket library.

RC_HANDLE_REQUIRED 308 A PaymentServerHandle is required for
this API.

RC_COMMUNICATION_ERROR 309 A communication error occurred.

RC_RESERVED_BITS_SET_IN_FLAGS 310 Bits that are reserved for future use are
non-zero. They must be zero.

RC_TIME_PERIOD_INVALID 311 The value specified on the TimePeriod
is invalid.

RC_PROTOCOL_DATA_KEYWORD_INVALID 312 The keyword in the protocol data is
not valid.

RC_AMOUNT_RANGE_INVALID 313 The amount range is not valid.

RC_SOCKET_CREATION_FAILED 320 Could not open a socket to
communicate with the WebSphere
Commerce Payments. TCP/IP socket
resources may be depleted.

RC_CONNECTION_TO_PAYMENT_SERVER_FAILED 321 Could not open a network connection
to the WebSphere Commerce Payments
using port and address specified earlier
on an etInitializeAPI() call.

RC_SEND_OF_DATA_ON_SOCKET_FAILED 322 Could not send data on network
connection with WebSphere Commerce
Payments. WebSphere Commerce
Payments may have closed the
connection.

RC_RECEIVE_OF_DATA_ON_SOCKET_FAILED 323 Could not receive data on network
connection with WebSphere Commerce
Payments. WebSphere Commerce
Payments may have closed the
connection.

Appendix A. WebSphere Commerce Payments return codes 127

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_ERROR_CHECKING_FOR_READ_DATA 324 Could not check for data ready to read
on network connection with
WebSphere Commerce Payments.
WebSphere Commerce Payments may
have closed the connection.

RC_SOCKET_CLOSE_FAILED 325 Failed to close the socket.

RC_ENCODING_EXCEPTION 400 An encoding error occurred.

RC_UNSUPPORTED_DOCUMENT_TYPE 401 The XML document type is not
supported.

RC_EMPTY_DOCUMENT 402 The document is empty.

RC_MISSING_ORDER_COLLECTION 403 The order collection is missing.

RC_DOCUMENT_TOO_LARGE 404 The XML document generated by an
XDM query was too large. Refine the
search criteria and re-attempt the
query.

RC_SERVLET_INIT_EXCEPTION 500 An error occurred during the servlet
initialization.

RC_CANNOT_FIND_PROPERTY_FILE 501 The property file can not be located.

RC_ERROR_LOADING_PROPERTY_FILE 502 An error occurred while loading the
property file.

RC_ERROR_JDBCDRIVER_NAME 503 Response refers to the JDBC driver
name.

RC_ERROR_JDBCURL 504 Response refers to the JDBC URL.

RC_ERROR_DBOWNER 505 Response refers to the database owner.

RC_ERROR_DBUSERID 506 Response refers to the database user id.

RC_ERROR_DBPASSWORD 507 Response refers to the database
password.

RC_ERROR_HOSTNAME 509 Response refers to the host name.

RC_ERROR_PSENGINE_PORTNUMBER 510 Response refers to the WebSphere
Commerce Payments engine port
number.

RC_ERROR_LOADING_JDBCDRIVER 511 An error occurred while loading JDBC
driver.

RC_ERROR_CONNECTING_DATABASE_OR_EXEC_SQL 512 An error occurred while either
connecting to the database or executing
the SQL statement.

RC_ERROR_INIT_ERROR_LOG 513 An error occurred while initializing the
error log.

RC_ERROR_LOADING_CASSETTE 514 An error occurred while loading the
cassette.

RC_ERROR_ROOT_PASSWORD 515 The root password is not valid.

RC_ERROR_MAXDBCONNECTIONS 516 Response refers to the maximum
number of database connections.

RC_ERROR_MINSENSITIVEACCESSROLE 517 Response refers to the minimum role
allowed to view sensitive financial
data.

RC_NEW_PASSWORD 518 Parameter refers to the new password.

128 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_DATA_SOURCE 519 Parameter refers to the data source
name.

RC_OPERATION 530 Response refers to the Operation
parameter.

RC_ETAPIVERSION 531 Response refers to the etApiVersion
parameter.

RC_AUTHENTICATED_USER_NOT_GIVEN 553 No authenticated user was given for
the WebSphere Commerce Payments
command.

RC_USER_NOT_AUTHORIZED 554 The specified user is not authorized to
perform the requested operation.

RC_ERROR_PROTECTION_REALM_NOT_SPECIFIED 555 There is no name specified for the
ProtectedRealm setting in the
PaymentServlet.properties file.

RC_SPECIFIED_REALM_UNKNOWN 556 The realm specified in the
PaymentServlet.properties file is
unknown.

RC_REALMCLASS 557 Response refers to the eTill.RealmClass
property.

RC_PAYSERVER_ADMIN 600 Response refers to the WebSphere
Commerce Payments administration
entity.

RC_CASSETTE_ADMIN 601 Response refers to a cassette
administration entity.

RC_MERCHANT_ADMIN 602 Response refers to a merchant
administration entity.

RC_PAYMENTSYSTEM_ADMIN 603 Response refers to a payment system
administration entity.

RC_ACCOUNT_ADMIN 604 Response refers to an account
administration entity.

RC_ETILLHOSTNAME 611 Response refers to the
ETILLHOSTNAME parameter.

RC_CASSETTENAME 615 Response refers to the
CASSETTENAME parameter.

RC_MERCHANTTITLE 616 Response refers to the
MERCHANTTITLE parameter.

RC_ACCOUNTTITLE 617 Response refers to the
ACCOUNTTITLE parameter.

RC_FINANCIALINSTITUTION 618 Response refers to the
FINANCIALINSTITUTION parameter.

RC_OBJECTNAME 619 Response refers to the OBJECTNAME
parameter.

RC_ENABLED 620 Response refers to the ENABLED
parameter.

RC_EVENT_LISTENER 621 Response refers to the
EVENTLISTENER object.

RC_LISTENERURL 622 Response refers to the LISTENERURL
parameter.

Appendix A. WebSphere Commerce Payments return codes 129

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_SOCKSPORT 623 Response refers to the SOCKSPORT
parameter.

RC_ROLE 624 Response refers to the user role
parameter.

RC_USER 625 Response refers to the user object.

RC_USER_NOT_ENABLED 626 Response refers to the user (the user is
not enabled).

RC_USER_MISCONFIGURED 627 Response refers to the User object (the
user has rights to WebSphere
Commerce Payments. The user is
misconfigured).

RC_KEY_TAMPERED 628 Encryption key has been altered.

RC_KEY_NOT_EXIST 629 Encryption key did not exist for the
specified component.

RC_SOCKSHOST 630 Response refers to the SOCKSHOST
parameter.

RC_ENCRYPT_ENCRYPTION_KEY_FAILED 631 Failed to encrypt encryption key.

RC_DECRYPT_ENCRYPTION_KEY_FAILED 632 Failed to decrypt encryption key.

RC_ENCRYPTION_KEY_TYPE_NOT_SUPPORTED 633 The encryption key type is not
supported.

RC_VALIDATE_ENCRYPTION_KEY_FAILED 634 Failed to validate encryption key.

RC_GENERATE_ENCRYPTION_KEY_FAILED 635 Failed to generate encryption key.

RC_NOT_ACL_OWNER 636 The user is not the ACL owner.

RC_BAD_REALM 637 A realm error has occurred.

RC_NO_SUCH_ACL 638 The ACL is not defined.

RC_LAST_ACL_OWNER 639 The user is the last owner of the ACL.

RC_NO_SUCH_USER 640 The user is not defined in the
WebSphere realm.

RC_FILTER 642 Response refers to the FILTER
parameter.

RC_TRANSACTIONID 643 Response refers to the
TRANSACTIONID parameter.

RC_ORDERDATA1 644 Response refers to the ORDERDATA1
parameter.

RC_ORDERDATA2 645 Response refers to the ORDERDATA2
parameter.

RC_ORDERDATA3 646 Response refers to the ORDERDATA3
parameter.

RC_ORDERDATA4 647 Response refers to the ORDERDATA4
parameter.

RC_ORDERDATA5 648 Response refers to the ORDERDATA5
parameter.

RC_SERVICE_POOL 649 Response refers to the service thread
pool size wpm.spoolsize.

130 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_INVALID_CHANGEPASSWORD_STATE 650 It is only valid to change the PM
password immediately after the
WebSphere Commerce Payments
Application Server is started.

RC_ASYNCHAPPDELAY 651 Response refers to the
wpm.AsynApproveDelayTimeInSecs
parameter.

RC_APPEXPDELAY 652 Response refers to the
wpm.ApprovalExpirationDelayTimeIn
Mins parameter.

RC_PROTOCOL_POOL 653 Response refers to the protocol thread
pool size wpm.ppoolsize.

RC_CASSETTE_PCARD_SHIPPINGAMOUNT 900 Response refers to purchase card data’s
shipping amount parameter.

RC_CASSETTE_PCARD_DUTYAMOUNT 901 Response refers to purchase card data’s
duty amount parameter.

RC_CASSETTE_PCARD_DUTYREFERENCE 902 Response refers to purchase card data’s
duty reference parameter.

RC_CASSETTE_PCARD_NATIONALTAXAMOUNT 903 Response refers to purchase card data’s
national tax amount parameter.

RC_CASSETTE_PCARD_NATIONALTAXRATE 904 Response refers to purchase card data’s
national tax rate parameter.

RC_CASSETTE_PCARD_LOCALTAXAMOUNT 905 Response refers to purchase card data’s
local tax amount parameter.

RC_CASSETTE_PCARD_OTHERTAXAMOUNT 906 Response refers to purchase card data’s
other tax amount parameter.

RC_CASSETTE_PCARD_TOTALTAXAMOUNT 907 Response refers to purchase card data’s
total tax amount parameter.

RC_CASSETTE_PCARD_MERCHANTTAXID 908 Response refers to purchase card data’s
merchant tax id parameter.

RC_CASSETTE_PCARD_ALTERNATETAXID 909 Response refers to purchase card data’s
alternate tax id parameter.

RC_CASSETTE_PCARD_TAXEXEMPTINDICATOR 910 Response refers to purchase card data’s
tax exempt indicator parameter.

RC_CASSETTE_PCARD_MERCHANTDUTYTARIFFREFERENCE 911 Response refers to purchase card data’s
merchant duty tariff reference
parameter.

RC_CASSETTE_PCARD_CUSTOMERDUTYTARIFFREFERENCE 912 Response refers to purchase card data’s
customer duty tariff reference
parameter.

RC_CASSETTE_PCARD_SUMMARYCOMMODITYCODE 913 Response refers to purchase card data’s
summary commodity code parameter.

RC_CASSETTE_PCARD_MERCHANTTYPE 914 Response refers to purchase card data’s
merchant type parameter.

RC_CASSETTE_PCARD_MERCHANTCOUNTRYCODE 915 Response refers to purchase card data’s
merchant country code parameter.

RC_CASSETTE_PCARD_MERCHANTCITYCODE 916 Response refers to purchase card data’s
merchant city code parameter.

Appendix A. WebSphere Commerce Payments return codes 131

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CASSETTE_PCARD_MERCHANTSTATEPROVINCE 917 Response refers to purchase card data’s
merchant state province parameter.

RC_CASSETTE_PCARD_MERCHANTPOSTALCODE 918 Response refers to purchase card data’s
merchant postal code parameter.

RC_CASSETTE_PCARD_MERCHANTLOCATIONID 919 Response refers to purchase card data’s
merchant location id parameter.

RC_CASSETTE_PCARD_MERCHANTNAME 920 Response refers to purchase card data’s
merchant name parameter.

RC_CASSETTE_PCARD_SHIPFROMCOUNTRYCODE 921 Response refers to purchase card data’s
ship from country code parameter.

RC_CASSETTE_PCARD_SHIPFROMCITYCODE 922 Response refers to purchase card data’s
ship from city code parameter.

RC_CASSETTE_PCARD_SHIPFROMSTATEPROVINCE 923 Response refers to purchase card data’s
ship from state province parameter.

RC_CASSETTE_PCARD_SHIPFROMPOSTALCODE 924 Response refers to purchase card data’s
ship from postal code parameter.

RC_CASSETTE_PCARD_SHIPFROMLOCATIONID 925 Response refers to purchase card data’s
ship from location id parameter.

RC_CASSETTE_PCARD_SHIPTOCOUNTRYCODE 926 Response refers to purchase card data’s
ship to country code parameter.

RC_CASSETTE_PCARD_SHIPTOCITYCODE 927 Response refers to purchase card data’s
ship to city code parameter.

RC_CASSETTE_PCARD_SHIPTOSTATEPROVINCE 928 Response refers to purchase card data’s
ship to state province parameter.

RC_CASSETTE_PCARD_SHIPTOPOSTALCODE 929 Response refers to purchase card data’s
ship to postal code parameter.

RC_CASSETTE_PCARD_SHIPTOLOCATIONID 930 Response refers to purchase card data’s
ship to location id parameter.

RC_CASSETTE_PCARD_MERCHANTORDERNUMBER 931 Response refers to purchase card data’s
merchant order number parameter.

RC_CASSETTE_PCARD_CUSTOMERREFERENCENUMBER 932 Response refers to purchase card data’s
customer reference number parameter.

RC_CASSETTE_PCARD_ORDERSUMMARY 933 Response refers to purchase card data’s
order summary parameter.

RC_CASSETTE_PCARD_CUSTOMERSERVICEPHONE 934 Response refers to purchase card data’s
customer service phone parameter.

RC_CASSETTE_PCARD_DISCOUNTAMOUNT 935 Response refers to purchase card data’s
discount amount parameter.

RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXRATE 936 Response refers to purchase card data’s
shipping national tax rate parameter.

RC_CASSETTE_PCARD_SHIPPINGNATIONALTAXAMOUNT 937 Response refers to purchase card data’s
shipping national tax amount
parameter.

RC_CASSETTE_PCARD_NATIONALTAXINVOICEREFERENCE 938 Response refers to purchase card data’s
national tax invoice reference
parameter.

132 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CASSETTE_PCARD_PRINTCUSTOMERSERVICEPHONE
NUMBER

939 Response refers to purchase card data’s
print customer service phone number
parameter.

RC_CASSETTE_ITEM_COMMODITYCODE 940 Response refers to line item data’s
commodity code parameter.

RC_CASSETTE_ITEM_PRODUCTCODE 941 Response refers to line item data’s
product code parameter.

RC_CASSETTE_ITEM_DESCRIPTOR 942 Response refers to line item data’s
descriptor parameter.

RC_CASSETTE_ITEM_QUANTITY 943 Response refers to line item data’s
quantity parameter.

RC_CASSETTE_ITEM_SKU 944 Response refers to line item data’s SKU
parameter.

RC_CASSETTE_ITEM_UNITCOST 945 Response refers to line item data’s unit
cost parameter.

RC_CASSETTE_ITEM_UNITOFMEASURE 946 Response refers to line item data’s unit
of measure parameter.

RC_CASSETTE_ITEM_NETCOST 947 Response refers to line item data’s net
cost parameter.

RC_CASSETTE_ITEM_DISCOUNTAMOUNT 948 Response refers to line item data’s
discount amount parameter.

RC_CASSETTE_ITEM_DISCOUNTINDICATOR 949 Response refers to line item data’s
discount indicator parameter.

RC_CASSETTE_ITEM_NATIONALTAXAMOUNT 950 Response refers to line item data’s
national tax amount parameter.

RC_CASSETTE_ITEM_NATIONALTAXRATE 951 Response refers to line item data’s
national tax rate parameter.

RC_CASSETTE_ITEM_NATIONALTAXTYPE 952 Response refers to line item data’s
national tax type parameter.

RC_CASSETTE_ITEM_LOCALTAXAMOUNT 953 Response refers to line item data’s local
tax amount parameter.

RC_CASSETTE_ITEM_LOCALTAXRATE 954 Response refers to line item data’s local
tax rate parameter.

RC_CASSETTE_ITEM_OTHERTAXAMOUNT 955 Response refers to line item data’s
other tax amount parameter.

RC_CASSETTE_ITEM_TOTALCOST 956 Response refers to line item data’s total
cost parameter.

RC_CASSETTE_FUNCTION_NOT_SUPPORTED 1000 The cassette does not support this
command.

RC_CASSETTE_UNSPECIFIED_ERROR 1001 The cassette does not support this
command.

RC_CASSETTE_BATCH_ID 1002 Batch ID was either (1) specified when
prohibited or (2) not specified when
required.

RC_CASSETTE_REFUND_AMOUNT_NOT_ZERO 1003 The cassette allows only complete
refund reversals (that is, the amount
must be zero).

Appendix A. WebSphere Commerce Payments return codes 133

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CASSETTE_OPERATION_FAILED 1004 The operation experienced financial
failure.

RC_CASSETTE_ENCRYPTION_ERROR 1008 An encryption error occurred while the
cassette was composing or processing a
protocol message.

RC_CASSETTE_DECRYPTION_ERROR 1009 A decryption error occurred while the
cassette was composing or processing a
protocol message.

RC_CASSETTE_IMPLICIT_BATCHES_ONLY 1010 A BATCHOPEN or BATCHCLOSE
command but the financial processor
associated with the account controls
batch processing.

RC_CASSETTE_BATCH_CURRENCY 1011 The currency for all transactions in a
batch must be the same.

RC_CASSETTE_BATCH_AMOUNTEXP10 1012 The amount exponent for all
transactions in a batch must be the
same.

RC_CASSETTE_BRAND 1014 Response refers to the brand parameter
(specified in protocol data).

RC_CASSETTE_PAN 1015 Response refers to the PAN parameter
(specified in protocol data).

RC_CASSETTE_EXPIRY 1016 Response refers to the expiry
parameter (specified in protocol data).

RC_CASSETTE_DEPOSIT_AMOUNT_NOT_ZERO 1017 This account only allows complete
deposit reversals (that is, the amount
must be zero).

RC_CASSETTE_COMMUNICATION_ERROR 1018 A communication error occurred
between the cassette and an entity with
which it communicates.

RC_CASSETTE_INTERMEDIATE_RESPONSE_NULL 1019 The cassette received a unexpected
NULL response from an entity with
which it communicates.

RC_CASSETTE_INTERMEDIATE_RESPONSE_UNEXPECTED 1020 The cassette received a unexpected
response from an entity with which it
communicates.

RC_CASSETTE_BATCH_ERROR 1021 A batch-related error occurred.

RC_CASSETTE_BATCH_BALANCE_ERROR 1022 The totals for this batch calculated by
WebSphere Commerce Payments and
the financial institution did not match.

RC_CASSETTE_APPROVE_NO_DEPOSIT 1040 While processing an APPROVE with
automatic deposit, the cassette
successfully completed the approval,
but could not successfully complete the
deposit.

RC_CASSETTE_DECLINED 1041 The financial institution declined the
request for an unknown reason.

RC_CASSETTE_DECLINED_EXPIRY 1042 The financial institution declined the
request due to the expiry value.

134 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CASSETTE_DECLINED_INSTRUMENT 1043 The financial institution declined the
request due to a problem with the
purchase instrument (the credit card,
check or whatever instrument is used
by this cassette’s payment protocol).

RC_CASSETTE_AVSDATA 1051 Response refers to the group of AVS
parameters (specified in protocol data).

RC_CASSETTE_AVS_COUNTRYCODE 1052 Response refers to the AVS country
code parameter (specified in protocol
data).

RC_CASSETTE_AVS_STREETADDRESS 1053 Response refers to the AVS street
address parameter (specified in
protocol data).

RC_CASSETTE_AVS_CITY 1054 Response refers to the AVS city
parameter (specified in protocol data).

RC_CASSETTE_AVS_STATEPROVINCE 1055 Response refers to the AVS
state/province parameter (specified in
protocol data).

RC_CASSETTE_AVS_POSTALCODE 1056 Response refers to the AVS postal code
parameter (specified in protocol data).

RC_CASSETTE_AVS_LOCATIONID 1057 Response refers to the AVS location id
parameter (specified in protocol data).

RC_CASSETTE_CARDHOLDERNAME 1058 Response refers to the cardholder name
parameter (specified in protocol data).

RC_CASSETTE_MAXBATCHSIZE 1059 Response refers to the maximum batch
size parameter (specified in protocol
data).

RC_CASSETTE_CURRENCY 1060 Response refers to the currency
parameter (specified in protocol data).

RC_CASSETTE_HUMAN_INTERVENTION_REQUIRED 1061 The operation failed completely or
partially. Human intervention is
required to resolve the failure.

RC_CASSETTE_DECLINED_APPROVAL_EXPIRED 1062 The approval for the payment has
expired. You must obtain a new
approval for the payment amount
before you can successfully deposit. If
the cassette supports ApproveReversal,
then use it to obtain the new approval
for the existing payment. Otherwise,
use Approve to create a new approved
payment which you can subsequently
deposit.

RC_CASSETTE_AMOUNT_WOULD_EXCEED_ORDER_AMOUNT 1063 Approval of the specified amount
would cause the cumulative amount of
all payments exceed the original order
amount.

RC_CASSETTE_VERSION 1064 Cassette version specified in the
database table exceeds the maximum
length.

RC_CASSETTE_CARDVERIFYCODE 1065 Response refers to the specified card
verification code.

Appendix A. WebSphere Commerce Payments return codes 135

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_CASSETTE_AUTHCODE 1066 Response refers to the specified
authorization code.

RC_CASSETTE_DECLINECODE 1067 Response refers to the specified decline
code.

RC_REALM_INIT_ERROR 1068 The defined realm could not be
initialized.

RC_REALM_OPERATION_ERROR 1069 An error occurred while using the
defined realm.

RC_CASSETTE_SHIPPINGDATA 1071 Response refers to the group of
shipping address parameters (specified
in protocol data).

RC_CASSETTE_SHIP_COUNTRYCODE 1072 Response refers to the shipping country
code parameter (specified in protocol
data).

RC_CASSETTE_SHIP_STREETADDRESS 1073 Response refers to the shipping street
address parameter (specified in
protocol data).

RC_CASSETTE_SHIP_CITY 1074 Response refers to the shipping city
parameter (specified in protocol data).

RC_CASSETTE_SHIP_STATEPROVINCE 1075 Response refers to the shipping
state/province parameter (specified in
protocol data).

RC_CASSETTE_SHIP_POSTALCODE 1076 Response refers to the shipping postal
code parameter (specified in protocol
data).

RC_CASSETTE_BILLINGDATA 1081 Response refers to the group of billing
address parameters (specified in
protocol data).

RC_CASSETTE_BILL_COUNTRYCODE 1082 Response refers to the billing country
code parameter (specified in protocol
data).

RC_CASSETTE_BILL_STREETADDRESS 1083 Response refers to the billing street
address parameter (specified in
protocol data).

RC_CASSETTE_BILL_CITY 1084 Response refers to the billing city
parameter (specified in protocol data).

RC_CASSETTE_BILL_STATEPROVINCE 1085 Response refers to the billing
state/province parameter (specified in
protocol data).

RC_CASSETTE_BILL_POSTALCODE 1086 Response refers to the billing postal
code parameter (specified in protocol
data).

RC_ACCEPTPAYMENTAUTOAPPROVE 1087 Response refers to the approve flag on
the merchant account on
AcceptPayment.

RC_ACCEPTPAYMENTAUTODEPOSIT 1088 Response refers to the deposit flag on
the merchant account on
AcceptPayment.

136 Payments Programming Guide and Reference

Table 29. Generic Secondary Return Codes (SRCs) (continued)

Secondary return code Value Description

RC_RECEIVEPAYMENTAUTOAPPROVE 1089 Response refers to the approve flag on
the merchant account on
ReceivePayment.

RC_RECEIVEPAYMENTAUTODEPOSIT 1090 Response refers to the deposit flag on
the merchant account on
ReceivePayment.

RC_CASSETTE_COUNTRYCODE 1092 Response refers to the country code
parameter (specified in protocol data).

RC_CASSETTE_STREETADDRESS 1093 Response refers to the street address
parameter (specified in protocol data).

RC_CASSETTE_CITY 1094 Response refers to the city parameter
(specified in protocol data).

RC_CASSETTE_STATEPROVINCE 1095 Response refers to the state or province
parameter (specified in protocol data).

RC_CASSETTE_POSTALCODE 1096 Response refers to the postal (zip) code
parameter (specified in protocol data).

RC_CASSETTE_AVSCODE 1097 Response refers to the AVS code
parameter (specified in protocol data).

RC_CASSETTE_AUTHCODE_AND_DECLINEREASON 1098 Conflicting protocol data was specified
with this API command.

RC_CASSETTE_BATCHCLOSETIME 1099 Response refers to the batch close time
parameter (specified in protocol data).

RC_CASSETTE_METHOD 1100 Response refers to the payment method
parameter (specified in protocol data).

RC_CASSETTE_FIBATCHID 1101 Response refers to the financial
institution batch identification
parameter (specified in protocol data).

RC_CASSETTE_AUXILIARY1 1102 Response refers to the first auxiliary
text parameter (specified in protocol
data).

RC_CASSETTE_AUXILIARY2 1103 Response refers to the second auxiliary
text parameter (specified in protocol
data).

RC_CASSETTE_DECLINEREASON 1104 Response refers to the specified
authorization reason.

RC_CASSETTE_BUYERNAME 1105 Response refers to the Buyer Name.

RC_CASSETTE_STREETADDRESS2 1106 Response refers to the Street Address,
Line 2.

RC_CASSETTE_PHONENUMBER 1107 Response refers to the phone number.

RC_CASSETTE_EMAILADDRESS 1108 Response refers to the email address.

RC_CASSETTE_CHECKROUTINGNUMBER 1109 Response refers to the check routing
number.

RC_CASSETTE_CHECKINGACCOUNTNUMBER 1110 Response refers to the checking account
number.

Appendix A. WebSphere Commerce Payments return codes 137

138 Payments Programming Guide and Reference

Appendix B. ISO currency codes

A list of ISO 4217 currency codes follows. Use these values with the CURRENCY
parameter.

Country/region Code alpha Code numeric Exponent
conversions

Currency

Afganistan AFA 004 -2 Afghanistan
Afghani

Albania ALL 008 -2 Albanian Lek

Algeria DZD 012 -2 Algerian
Dinar

American Samoa USD 840 -2 US Dollar

Andorra ESP, FRF, ADP 724, 250, 020 0, -2, 0 Spanish
Peseta, French
Franc,
Andorran
Peseta

Angola AOA 973 -2 Kwanza

Anguilla XCD 951 -2 East
Caribbean
Dollar

Antigua and Barbuda XCD 951 -2 East
Caribbean
Dollar

Argentina ARS 032 -2 Argentine
Peso

Armenia AMD 051 -2 Armenian
Dram

Aruba AWG 533 -2 Aruban
Guilder

Australia AUD 036 -2 Australian
Dollar

Austria ATS 040 -2 Austrian
Schilling

Azerbaijan AZM 031 -2 Azerbaijanian
Manat

Bahamas BSD 044 -2 Bahamian
Dollar

Bahrain BHD 048 -3 Bahraini Dinar

Bangladesh BDT 050 -2 Bangladeshi
Taka

Barbados BBD 052 -2 Barbados
Dollar

Belarus BYB, RYR 112, 974 0 Belarussian
Ruble,
Belarussian
Ruble

© Copyright IBM Corp. 1997, 2003 139

Country/region Code alpha Code numeric Exponent
conversions

Currency

Belgium BEF 056 0 Belgian Franc

Belize BZD 084 -2 Belize Dollar

Benin XOF 952 0 CFA Franc
(BCEAO)

Bermuda BMD 060 -2 Bermuda
Dollar

Bhutan INR, BTN 356, 064 -2, -2 Indian Rupee,
Ngultrum

Bolivia BOB, BOV 068, 984 -2, -2 Boliviano,
Mvdol

Bosnia & Herzegovina BAM 977 -2 Convertible
Marks

Botswana BWP 072 -2 Pula

Bouvet Island NOK 578 -2 Norwegian
Krone

Brazil BRL 986 -2 Brazil Real

British Indian Ocean
Territory

USD 840 -2 US Dollar

Brunei Darrusslam BND 096 -2 Brunei Dollar

Bulgaria BGL, BGN 100, 975 -2, -2 Lev, Bulgarian
Lev

Burkina Faso XOF 952 0 CFA Franc
BCEAO

Burundi BIF 108 0 Burundi Franc

Cambodia KHR 116 -2 Cambodian
Riel

Cameroon XAF 950 0 CFA Franc
(BEAC)

Canada CAD 124 -2 Canadian
Dollar

Cape Verde CVE 132 -2 Cape Verde
Escudo

Cayman Islands KYD 136 -2 Cayman
Islands Dollar

Central African Republic XAF 950 0 CFA Franc
(BEAC)

Chad XAF 950 0 CFA Franc
(BEAC)

Chile CLP, CLF 152, 990 0, 0 Chilean Peso,
Unidates de
fomento

China CNY 156 -2 Yuan
Renminbi

China
(Hong Kong S.A.R.)

HKD 344 -2 Hong Kong
Dollar

140 Payments Programming Guide and Reference

Country/region Code alpha Code numeric Exponent
conversions

Currency

China
(Macau S.A.R.)

MOP 446 -2 Pataca

Christmas Island AUD 036 -2 Australian
Dollar

Cocos (Keeling) Islands AUD 036 -2 Australian
Dollar

Colombia COP 170 -2 Colombian
Peso

Comoros KMF 174 0 Comoro Franc

Congo XAF 950 0 CFA Franc
(BEAC)

Congo, Democratic
Republic of

CDF 976 -2 Franc
Congolais

Cook Islands NZD 554 -2 New Zealand
Dollar

Costa Rica CRC 188 -2 Costa Rican
Colon

Côte D’Ivoire XOF 952 0 CFA Franc
(BCEAO)

Croatia HRK 191 -2 Croatian Kuna

Cuba CUP 192 -2 Cuban Peso

Cyprus CYP 196 -2 Cyprus Pound

Czech Republic CZK 203 -2 Czech Koruna

Denmark DKK 208 -2 Danish Krone

Djibouti DJF 262 0 Djibouti Franc

Dominica XCD 951 -2 East
Caribbean
Dollar

Dominican Republic DOP 214 -2 Dominican
Peso

East Timor TPE, IDE 626, 360 0, -2 Timor Escudo,
Rupiah

Ecuador ECS, ECV 218, 983 -2, -2 Sucre, Unidad
de Valor
Constante
(UVC)

Egypt EGP 818 -2 Egyptian
Pound

El Salvador SVC 222 -2 El Salvador
Colon

Equatorial Guinea XAF 950 0 CFA Franc
(BEAC)

Eritrea ERN 232 -2 Nafka

Estonia EEK 233 -2 Kroon

Ethiopia ETB 230 -2 Ethiopian Birr

Faroe Islands DKK 208 -2 Danish Krone

Appendix B. ISO currency codes 141

Country/region Code alpha Code numeric Exponent
conversions

Currency

European Union (ECU) XEU 954 -2 euro

European Union (Euro) EUR 978 -2 European
Currency Unit

Falkland Islands FKP 238 -2 Falkland
Islands Pound

Fiji FJD 242 -2 Fiji Dollar

Finland FIM 246 -2 Finnish
Markka

France FRF 250 -2 French Franc

French Guiana FRF 250 -2 French Franc

French Polynesia XPF 953 0 CFP Franc

French Southern
Territories

XPF 953 0 CFP Franc

Gabon XAF 950 0 CFA Franc
(BEAC)

Gambia GMD 270 -2 Dalasi

Georgia GEL 981 -2 Lari

Germany DEM 276 -2 Deutsche
Mark

Ghana GHC 288 -2 Ghana Cedi

Gibraltar GIP 292 -2 Gibraltar
Pound

Greece GRD 300 0 Drachma

Greenland DKK 208 -2 Danish Krone

Granada XCD 951 -2 East
Caribbean
Dollar

Guadaloupe FRF 250 -2 French Franc

Guam USD 840 -2 US Dollar

Guatemala GTQ 320 -2 Guatemalan
Quetzal

Guinea GNF 324 0 Guinea Franc

Guinea-Bissau GWP, XOF 624, 952 -2, 0 Guinea-Bissau
Peso, CFA
Franc
(BCEAO)

Guyana GYD 328 -2 Guyana Dollar

Haiti HTG, USD 332, 840 -2, -2 Haiti Gourde,
US Dollar

Heard Island and
McDonald Islands

AUD 036 -2 Australian
Dollar

Holy See (Vatican City
State)

ITL 380 0 Italian Lira

Honduras HNL 340 -2 Honduran
Lempira

142 Payments Programming Guide and Reference

Country/region Code alpha Code numeric Exponent
conversions

Currency

Hungary HUF 348 -2 Forint

Iceland ISK 352 -2 Iceland Krona

India INR 356 -2 Indian Rupee

Indonesia IDR 360 -2 Indonesian
Rupiah

International Monetary
Fund

XDR 960 N.A. SDR

Iran IRR 364 -2 Iranian Rial

Iraq IQD 368 -3 Iraqi Dinar

Ireland IEP 372 -2 Irish Pound

Israel ILS 376 -2 New Israeli
Sheqel

Italy ITL 380 0 Italian Lira

Jamaica JMD 388 -2 Jamaican
Dollar

Japan JPY 392 0 Yen

Jordan JOD 400 -3 Jordanian
Dinar

Kazakhstan KZT 398 -2 Kazakhstan
Tenge

Kenya KES 404 -2 Kenyan
Shilling

Kiribati AUD 036 -2 Australian
Dollar

Korea, Democratic
People’s Republic of

KPW 408 -2 North Korean
Won

Korea, Republic of KRW 410 0 South Korean
Won

Kuwait KWD 414 -3 Kuwaiti Dinar

Kyrgyzstan KGS 417 -2 Kyrgyzstan
Som

Lao People’s Democratic
Republic

LAK 418 -2 Laos Kip

Latvia LVL 428 -2 Latvian Lats

Lebanon LBP 422 -2 Lebanese
Pound

Lesotho ZAR, LSL 710, 426 -2, -2 Rand, Loti

Liberia LRD 430 -2 Liberian
Dollar

Libyan Arab Jamahirya LYD 434 -3 Libyan Dinar

Liechtenstein CHF 756 -2 Swiss Franc

Lithuania LTL 440 -2 Lithuanian
Litas

Luxembourg LUF 442 0 Luxembourg
Franc

Appendix B. ISO currency codes 143

Country/region Code alpha Code numeric Exponent
conversions

Currency

Macedonia (Former Yug.
Rep.)

MKD 807 -2 Macedonian
Denar

Madagascar MGF 450 0 Malagasy
Franc

Malawi MWK 454 -2 Kwacha

Malaysia MYR 458 -2 Malaysian
Ringgit

Maldives MVR 462 -2 Maldives
Rufiyaa

Mali XOF 952 0 CFA Franc
BCEAO

Malta MTL 470 -2 Maltese Lira

Marshall Islands USD 840 -2 US Dollar

Martinique FRF 250 -2 French Franc

Mauritania MRO 478 -2 Mauritanian
Ouguiya

Mauritius MUR 480 -2 Mauritius
Rupee

Mexico MXN, MXV 484, 979 -2, -2 Mexican Peso,
Mexican
Unidad de
Inversion
(UDI)

Micronesia USD 840 -2 US Dollar

Moldova, Republic of MDL 498 -2 Moldovan Leu

Monaco FRF 250 -2 French Franc

Mongolia MNT 496 -2 Mongolian
Tugrik

Montserrat XCD 951 -2 East
Caribbean
Dollar

Morocco MAD 504 -2 Moroccan
Dirham

Mozambique MZM 508 -2 Mozambique
Metical

Myanmar MMK 104 -2 Myanmar
Kyat

Namibia ZAR, NAD 710, 516 -2, -2 Rand,
Namibia
Dollar

Nauru AUD 036 -2 Australian
Dollar

Nepal NPR 524 -2 Nepalese
Rupee

Netherlands Antilles ANG 532 -2 Netherlands
Antillian
Guilder

144 Payments Programming Guide and Reference

Country/region Code alpha Code numeric Exponent
conversions

Currency

Netherlands NLG 528 -2 Netherlands
Gulder

New Caledonia XPF 953 0 CFP Franc

New Zealand NZD 554 -2 New Zealand
Dollar

Nicaragua NIO 558 -2 Nicaraguan
Cordoba Oro

Niger XOF 952 0 CFA Franc
BCEAO

Nigeria NGN 566 -2 Nigerian
Naira

Niue NZD 554 -2 New Zealand
Dollar

Norfolk Island AUD 036 -2 Australian
Dollar

Northern Mariana Islands USD 840 -2 US Dollar

Norway NOK 578 -2 Norwegian
Krone

Oman OMR 512 -3 Rial Omani

Pakistan PKR 586 -2 Pakistan
Rupee

Palau USD 840 -2 US Dollar

Panama PAB, USD 590, 840 -2, -2 Balboa, US
Dollar

Papua New Guinea PGK 598 -2 Papua New
Guinea Kina

Paraguay PYG 600 0 Paraguay
Guarani

Peru PEN 604 -2 Peru Nuevo
Sol

Philippines PHP 608 -2 Philippine
Peso

Pitcairn NZD 554 -2 New Zealand
Dollar

Poland PLN 985 -2 Poland Zloty

Portugal PTE 620 0 Portuguese
Escudo

Puerto Rico USD 840 -2 US Dollar

Qatar QAR 634 -2 Qatari Rial

Reunion FRF 250 -2 French Franc

Romania ROL 642 -2 Romanian Leu

Russian Federation RUR, RUB 810, 643 -2, -2 Russian Ruble,
Russian Ruble

Rwanda RWF 646 0 Rwanda Franc

Appendix B. ISO currency codes 145

Country/region Code alpha Code numeric Exponent
conversions

Currency

Saint Kitts and Nevis XCD 951 -2 East
Caribbean
Dollar

Saint Lucia FRF 951 -2 East
Caribbean
Dollar

Saint Pierre and Miquelon XCD 250 -2 French Franc

Saint Vincent and the
Grenadines

XCD 951 -2 East
Caribbean
Dollar

Saint Helena SHP 654 -2 St. Helena
Pound

Samoa WST 882 -2 Tala

San Marino ITL 380 0 Italian Lira

Sao Tome and Principe STD 678 -2 Sao Tome and
Principe
Dobra

Saudi Arabia SAR 682 -2 Saudi Riyal

Senegal XOF 952 0 CFA Franc
BCEAO

Seychelles SCR 690 -2 Seychelles
Rupee

Sierra Leone SLL 694 -2 Sierra Leone
Leone

Singapore SGD 702 -2 Singapore
Dollar

Slovakia SKK 703 -2 Slovak Koruna

Slovenia SIT 705 -2 Slovenia Tolar

Solomon Island SBD 090 -2 Solomon
Islands Dollar

Somalia SOS 706 -2 Somalia
Shilling

South Africa ZAR 710 -2 South African
Rand

Spain ESP 724 0 Spanish Peseta

Sri Lanka LKR 144 -2 Sri Lanka
Rupee

Sudan SDP 736 -2 Sudanese
Dinar

Suriname SRG 740 -2 Suriname
Guilder

Svalbard and Jan Mayen NOK 578 -2 Norwegian
Krone

Swaziland SZL 748 -2 Swaziland
Lilangeni

Sweden SEK 752 -2 Swedish
Krona

146 Payments Programming Guide and Reference

Country/region Code alpha Code numeric Exponent
conversions

Currency

Switzerland CHF 756 -2 Swiss Franc

Syrian Arab Republic SYP 760 -2 Syrian Pound

Taiwan TWD 901 -2 New Taiwan
Dollar

Tajikistan TJR 762 0 Tajik Ruble

Tanzania, United
Republic of

TZS 834 -2 Tanzanian
Shilling

Thailand THB 764 -2 Thai Baht

Togo XOF 952 0 CFA Franc
BCEAO

Tokelau NZD 554 -2 New Zealand
Dollar

Tonga TOP 776 -2 Tonga Pa’anga

Trinidad and Tobago TTD 780 -2 Trinidad and
Tobago Dollar

Tunisia TND 788 -3 Tunisian Dinar

Turkey TRL 792 0 Turkish Lira

Turkmenistan TMM 795 -2 Manat

Turks and Caicos Islands USD 840 -2 US Dollar

Tuvalu AUD 036 -2 AUD

Uganda UGX 800 2 Ugandan
Shilling

Ukraine UAH 980 -2 Hryvnia

United Arab Emirates AED 784 -2 UAE Dirham

United Kingdom GBP 826 -2 Pound Sterling

United States of America USD, USS,
USN

840, 998, 997 -2, -2, -2 US Dollar,
(Same day)
(Next day)

United States Minor
Outlying Islands

USD 840 -2 US Dollar

Uruguay UYU 858 -2 Peso
Uruguayo

Uzbekistan UZS 860 -2 Uzbekistan
Sum

Vanuatu VUV 548 0 Vanuatu Vatu

Venezuela VEB 862 -2 Venezuela
Bolivar

Viet Nam VND 704 -2 Viet Nam
Dong

Virgin Islands (British) USD 840 -2 US Dollar

Virgin Islands (US) USD 840 -2 US Dollar

Wallis and Futuna XPF 953 0 CFP Franc

Western Sahara MAD 504 -2 Moroccan
Dirham

Appendix B. ISO currency codes 147

Country/region Code alpha Code numeric Exponent
conversions

Currency

Yemen YER 886 -2 Yemeni Rial

Yugoslavia YUN 891 -2 Yugoslavian
Dinar

Zaire ZRN 180 -2 Unknown

Zambia ZMK 894 -2 Zambia
Kwacha

Zimbabwe ZWD 716 -2 Zimbabwe
Dollar

148 Payments Programming Guide and Reference

Appendix C. Obtaining requests for comments

Requests for comments (RFCs) are documents that present new protocols and
establish standards for the Internet protocol suite. Hardcopies of all RFCs are
available from the Network Information Center (NIC), either individually or on a
subscription basis. You can obtain these documents from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

You can access RFCs from this URL:

http://www.cis.ohio-state.edu/hypertext/information/rfc.html

© Copyright IBM Corp. 1997, 2003 149

150 Payments Programming Guide and Reference

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1997, 2003 151

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department TL3B/Building 503
PO Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v AS/400
v DB2
v IBM
v IBM Payment Server
v iSeries
v pSeries
v OS/400
v WebSphere
v zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows NT, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, other countries, or both.

SET Secure Electronic Transaction, Secure Electronic Transaction, SET, and the SET
Secure Electronic Transaction design mark are trademarks and service marks
owned by SET Secure Electronic Transaction LLC.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

152 Payments Programming Guide and Reference

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 153

154 Payments Programming Guide and Reference

Glossary

This glossary defines technical terms used in the
documentation of WebSphere Commerce
Payments. The most current IBM Dictionary of
Computing is available on the World Wide Web
at http://www.ibm.com/ibm/terminology/
goc/gocmain.htm.

A
account. An account is a relationship between the
merchant and the financial institution which processes
transactions for that merchant. There can be multiple
accounts for each payment cassette.

acquirer. In e-commerce, the financial institution (or
an agent of the financial institution) that receives from
the merchant the financial data relating to a transaction
and authorizes the transaction

Address Verification Service (AVS). Within IBM
e-commerce, a credit and debit card scheme used by
merchants to authenticate the cardholder. The merchant
requests the cardholder’s address and uses AVS to
confirm that the cardholder is who he says he is.

applet. An application program, written in the Java
programming language, that can be retrieved from a
Web server and executed by a Web browser. A
reference to an applet appears in the markup for a Web
page, in the same way that a reference to a graphics file
appears; a browser retrieves an applet in the same way
that it retrieves a graphics file. For security reasons, an
applet’s access rights are limited in two ways: the
applet cannot access the file system of the client upon
which it is executing, and the applet’s communication
across the network is limited to the server from which
it was downloaded. Contrast with servlet.

approve. Within IBM e-commerce, a WebSphere
Commerce Payments verb. A merchant issues this verb
to create a Payment object. For cassettes that implement
credit card protocols, this verb will likely map to
authorization (see authorize). Other cassettes may
implement the approval process differently.

authentication. (1) In computer security, verification
that a message has not been altered or damaged. (2) In
computer security, verification of the identity of a user
or the user’s eligibility to access an object. (3) The
process of identifying an individual, usually based on a
user ID and password. In security systems,
authentication is distinct from authorization.
Authentication merely ensures that the individual is
who she claims to be; it does not define the access
rights of the individual.

authorization. (1) The process by which a properly
appointed person or persons grants permission to
perform some action on behalf of an organization. This
process assesses transaction risk, confirms that a given
transaction does not raise the account holder debt
above the account credit limit, and reserves the
specified amount of credit. (When a merchant obtains
authorization, payment for the authorized amount is
guaranteed provided that the merchant followed the
rules associated with the authorization process.) (2) In
computer security, the right granted to a user to
communicate with or make use of a computer
system. (T) (3) An access right. (4) The process of
granting a user either complete or restricted access to
an object, resource, or function.

authorization reversal. A transaction sent when a
previous authorization needs to be canceled (that is, a
full reversal performed) or decreased (that is, a partial
reversal performed). A full reversal will be used when
the transaction cannot be completed, such as when the
cardholder cancels the order or the merchant discovers
that goods are no longer available, as when
discontinued. A partial reversal will be used when the
authorization was for the entire order and some of the
goods cannot be shipped, resulting in a split shipment.

authorize. In the credit card world, a merchant is
guaranteed that cardholder funds are available to cover
a transaction by first authorizing the transaction. The
cardholder’s issuer (that is, the bank that issued the
card) guarantees payment.

B
balance. Within IBM e-commerce, an attribute of a
WebSphere Commerce Payments Batch object. Indicates
whether the merchant and financial institution agreed
on the contents of the batch when it was closed.

balanced. Within IBM e-commerce, an attribute of a
WebSphere Commerce Payments Batch object. The
batch has been successfully balanced. All totals agree.

balance status. Within IBM e-commerce, an attribute
of a WebSphere Commerce Payments Batch object. The
balance status of a batch can be balanced or out of
balance.

batch. (1) A collection of payment transactions, such
as captures, credits, capture reversals, and credit
reversals, processed as a group. A batch is submitted as
a single unit to the Acquirer’s financial system.
Business guidelines regarding the use of batch
processing are developed by credit acquiring
institutions. Merchants also establish policies that align

© Copyright IBM Corp. 1997, 2003 155

with these guidelines. (2) Within IBM e-commerce, one
of the fundamental WebSphere Commerce Payments
objects is the Batch. A Batch is an object with which
Payment and Credit objects are associated. Transfer of
funds is to occur when the batch is closed. (3) A group
of records or data processing jobs brought together for
processing or transmission.

batch number. The number that identifies the batch.
The number WebSphere Commerce Payments assigns
to the batch when the payment is deposited.

brand. Within IBM e-commerce, the Cassette object for
all of the WebSphere Commerce Payments cassettes (for
example, Cassette for VisaNet and Cassette for
Paymentech). Each financial transaction for a
WebSphere Commerce Payments cassette is associated
with a particular brand (for example, MasterCard or
VISA). Each account with a financial institution can be
configured to support one or more brands.

C
capture. The process by which the Acquirer receives
payment from the customer’s financial institution and
remits the payment. A capture is the guarantee that the
funds are available and that the transfer will take place.

card processor. An agent for an Acquirer to whom
merchants send their transaction requests. The card
processor provides much of the administrative and
organizational infrastructure by which merchants
process their transactions.

cardholder. In e-commerce, a person who has a valid
payment card account and uses software that supports
e-commerce.

cassette. (1) In e-commerce, a software component
consisting of a collection of Java classes and interfaces
that can be easily installed into other software
components involved in e-commerce to extend the
function of these components. (2) In IBM e-commerce, a
WebSphere Commerce Payments concept. The
WebSphere Commerce Payments provides a framework
that can support many different forms of payment.
WebSphere Commerce Payments cassettes are written
by IBM or third-party vendors to support different
payment protocols (such as, VisaNet and
BankServACH) within the WebSphere Commerce
Payments framework. Thus, WebSphere Commerce
Payments is an extensible product that can support
additional protocols.

certificate. (1) In computer security, a digital
document that binds a public key to the identity of the
certificate owner, thereby enabling the certificate owner
to be authenticated. A certificate authority (CA) issues a
certificate. (2) In SETCo., a certificate that has been
digitally signed by a trusted authority (usually the

cardholder financial institution) to identify the user of
the public key. SET defines the following certificate
types:

v signature

v key encipherment

v certificate signature

v CRL signature

CGI program. A program that runs on a Web server
and uses the common gateway interface (CGI) to
perform tasks that are not usually done by the server,
such as database access and form processing. The
OS/400® operating system supports compiled CGI
programs that are written in ILE C, ILE RPG, and ILE
COBOL languages.

Clerk. In IBM e-commerce, this is a WebSphere
Commerce Payments concept. WebSphere Commerce
Payments has four different access rights. A clerk is
defined on a per-merchant basis and has the lowest
level of access.

client. (1) A functional unit that receives shared
services from a server. For example, a personal
computer requesting HTML documents from a Web
server is a client of that server. (2) A computer system
or process that requests a service of another computer
system or process that is typically referred to as a
server. Multiple clients may share access to a common
server.

closed. An order moves into closed state when its
associated payment, or payments, moves from
deposited state into closed state (that is, when the batch
associated with the payment closes). When an order is
in closed state, the financial transaction is complete;
monies are deposited, and the order cannot be
modified. No commands are permitted for orders in
this state.

commerce service provider (CSP). An Internet service
provider that hosts merchant shopping sites and
processes payments for the merchants.

constructor. In programming languages, a method that
has the same name as a class and is used to create and
initialize objects of that class.

credit. A transaction sent when the merchant needs to
return money to the cardholder (via the Acquirer and
the Issuer) following a valid capture message, such as
when goods have been returned or were defective.

D
decryption. In computer security, the process of
transforming encoded text or ciphertext into plain text.

document type definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with

156 Payments Programming Guide and Reference

elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation may be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. See document type definition.

E
EAR file. An Enterprise Archive file represents a J2EE
application that can be deployed in a WebSphere
application server. EAR files are standard Java archive
files and have the file extension .ear.

e-commerce. (1) The exchange of goods and services
for payment between the cardholder and merchant
when some or all of the transaction is performed via
electronic communication. (2) The subset of e-business
that involves the exchange of money for goods or
services purchased over an electronic medium such as
the Internet.

encryption. (1) In computer security, the process of
transforming data into an unintelligible form in such a
way that the original data either cannot be obtained or
can be obtained only by using a decryption process. (2)
The conversion of data into a form that cannot be
easily understood so as to prevent unauthorized access,
especially during transmission.

event. (1) A representation of a change that occurs to a
part. The change enables other interested parts to
receive notification when something about the part
changes. For example, a push button generates an
event by signalling that it has been clicked, which may
cause another part to display a window. (2) Any
significant change in the state of a system resource,
network resource, or network application. An event can
be generated for a problem, for the resolution of a
problem, or for the successful completion of a task.

event listener. In IBM e-commerce, a computer
program that waits to be informed of events of interest
and acts upon them.

expiry. (1) The certificate expiration date assigned
when the certificate was obtained. Certificates are
specific to payment types. (2) Specifies the card
expiration date. An expiry value is required for SET
protocol. The value is specified as a string and is used
on the payment initiation message. For example, 199911
is an expiry value.

F
financial institution. (1) An establishment responsible
for facilitating customer-initiated transactions or
transmissions of funds for the extension of credit or the
custody, loan, exchange, or issuance of money, such as

a bank or its designate. (2) Within IBM e-commerce,
banks, building societies, and credit unions are
examples of financial institutions. An institution that
provides financial services.

financial network. Within IBM e-commerce, the
aggregate of card processors, acquirers, card issuers,
and other institutions through which payment card
transaction processing is traditionally performed.

firewall. A functional unit that protects and controls
the connection of one network to other networks. The
firewall (a) prevents unwanted or unauthorized
communication traffic from entering the protected
network and (b) allows only selected communication
traffic to leave the protected network.

force. Within IBM e-commerce, a WebSphere
Commerce Payments verb. An attempt to settle a batch.
If the reconciliation step fails, the batch is still not
closed on WebSphere Commerce Payments (although it
may be out of balance or not closed at the financial
institution).

fully qualified domain name (FQDN). In the Internet
suite of protocols, the name of a host system that
includes all of the subnames of the domain name. An
example of a fully qualified domain name is
mycomputer.city.company.com. See host name.

G
gateway. A functional unit that connects a local data
network to another network

H
host. To provide the software and services for
managing a Web site.

host name. In the Internet suite of protocols, the name
given to a computer. Sometimes, host name is used to
mean fully qualified domain name; other times, it is
used to mean the most specific subname of a fully
qualified domain name. For example, if
mycomputer.city.company.com is the fully qualified
domain name, either of the following may be
considered the host name:

v mycomputer.city.company.com

v mycomputer

HTML. See Hypertext Markup Language.

HTTP. See Hypertext Transfer Protocol.

Hypertext Markup Language (HTML). A markup
language that conforms to the SGML standard and was
designed primarily to support the online display of
textual and graphical information that includes
hypertext links.

Glossary 157

Hypertext Transfer Protocol (HTTP). In the Internet
suite of protocols, the protocol that is used to transfer
and display hypertext documents on the Web.

I
installment payments. A type of payment transaction
negotiated between the merchant and the cardholder
which permits the merchant to process multiple
authorizations.

integrity. In computer security, assurance that the
information that arrives at a destination is the same as
the information that was sent.

internet. (1) In TCP/IP, a collection of interconnected
networks that functions as a single, large network. (2)
A collection of interconnected networks that use the
Internet suite of protocols. The internet that allows
universal access is referred to as the Internet (with a
capital “I”). An internet that provides restricted access
(for example, to a particular enterprise or organization)
is frequently called an intranet, whether or not it also
connects to the public Internet.

IP address. The unique 32-bit address that specifies
the location of each device or workstation on the
Internet. For example, 9.67.97.103 is an IP address.

issuer. (1) The financial institution or its agent that
issues the unique primary account number (PAN) to
the cardholder for the payment card brand. (2) In
e-commerce, a financial institution that issues payment
cards to individuals. An issuer can act as its own
certificate authority (CA) or can contract with a third
party for the service.

J
J2EE application. Any deployable unit of J2EE
functionality. This can be a single module or a group of
modules packaged into an .ear file with a J2EE
application deployment descriptor.

Java. An object-oriented programming language for
portable interpretive code that supports interaction
among remote objects. Java was developed and
specified by Sun Microsystems, Incorporated.

Java Database Connectivity (JDBC). An application
programming interface (API) that has the same
characteristics as Open Database Connectivity (ODBC)
but is specifically designed for use by Java database
applications. Also, for databases that do not have a
JDBC driver, JDBC includes a JDBC to ODBC bridge,
which is a mechanism for converting JDBC to ODBC; it
presents the JDBC API to Java database applications
and converts this to ODBC. JDBC was developed by
Sun Microsystems, Inc. and various partners and
vendors.

Java Virtual Machine (JVM). A software
implementation of a central processing unit (CPU) that
runs compiled Java code (applets and applications).

K
key. In computer security, a sequence of symbols that
is used with a cryptographic algorithm for encrypting
or decrypting data. See private key and public key.

key ring. In computer security, a file that contains
public keys, private keys, trusted roots, and certificates.

L
leased line. A phone line leased from a phone
company by the customer, which connects the customer
terminal to a dedicated port on the network.

LUHN formula. An industry standard used by many
credit card companies as a rudimentary prevention of
credit card fraud.

M
merchant. A seller of goods, services, and/or other
information who accepts payment for these items
electronically. The merchant may also provide electronic
selling services and/or electronic delivery of items for
sale. The merchant supervises the overall store
objectives and management, in addition to tracking the
store sales.

merchant bank. An Acquiring Financial institution. A
merchant bank acquires merchant business by
supplying the merchant with the means to accept credit
cards for payment. The financial institution charges the
merchant a fee for providing these services.

merchant chargeback. Within IBM e-commerce, when
fraud occurs and a merchant is liable for funds not
obtained, a financial institution may issue a merchant
chargeback, reclaiming funds previously credited to a
merchant’s account.

merchant server. (1) A Merchant Server component is
a product run by an online merchant to process
payment card transactions and authorizations. It
communicates with the Cardholder Wallet, Payment
Gateway, and Certificate Authority components. (2) In
e-commerce, a Web server that offers cataloged
shopping.

N
number of credits. A credit is a transaction sent when
the merchant needs to return money to the cardholder
(via the Acquirer and the Issuer) following a valid
capture message, such as when goods have been
returned or were defective. Credits can be for up to the

158 Payments Programming Guide and Reference

total amount of all payments associated with an Order.
There can be zero or more Credits per Order.

number of payments. A payment is a request by the
merchant to the financial institution to approve all or
part of an order. In many cases, all the money
authorized for collection by the order will be collected
in a single payment. Some payment systems may allow
the money authorized in one order (that is, one set of
payment instructions) to be collected in multiple
payments, depending on the business model. There can
be zero or more payments per order.

O
online catalog. General term for a collection of catalog
groups or catalog entries available for display and
purchase at an online store.

order. In WebSphere Commerce Payments, an order
represents all the instructions and information needed
from the consumer (payer) in order for the merchant
(payee) to collect money.

order amount. The amount of the order.

order fulfillment. Within IBM e-commerce, merchant
systems responsible for shipping or distributing orders
for which payment has been received. It is believed
that an order fulfillment system would query
WebSphere Commerce Payments to determine what
goods are to be shipped.

order search. Search for a single order or group of
orders, based on a defined set of characteristics.

out of balance. An unsuccessful attempt was made to
balance a batch. All totals do not agree.

P
payment. A payment is a request by the merchant to
the financial institution to approve all or part of an
order. In many cases, all the money authorized for
collection by the order will be collected in a single
payment. Some payment systems may allow the money
authorized in one order (that is, one set of payment
instructions) to be collected in multiple payments,
depending on the business model.

payment amount. The total payment amount
deposited by the merchant for this order.

payment card. (1) A term used to collectively refer to
credit cards, debit cards, charge cards, and bank cards
issued by a financial institution and which reflects a
relationship between the cardholder and the financial
institution. (2) In e-commerce, a credit card, debit card,
or charge card (a) that is issued by a financial
institution and shows a relationship between the

cardholder and the financial institution and (b) for
which a certificate can be issued from an authenticated
certificate authority.

payment cassette. A cassette that implements an
electronic payment protocol.

payment gateway. (1) A payment gateway component
is a product run by an acquirer or a designated third
party that processes merchant authorization and
payment messages (including payment instructions
from cardholders) and interfaces with private financial
networks. (2) In e-commerce, the entity that handles
transactions between a merchant and an acquirer.

payment server. In e-commerce, the electronic
equivalent of a cash register that organizes and accepts
payment for the goods and services selected for
purchase. A payment server uses other components,
such as a payment gateway and a payment
management system, to complete the financial
transactions.

port. In the Internet suite of protocols, a specific
logical connector between the Transmission Control
Protocol (TCP) or the User Datagram Protocol (UDP)
and a higher-level protocol or application. See
well-known port.

port number. In the Internet suite of protocols, the
identifier for a logical connector between an application
entity and the transport service.

primary account number (PAN). The assigned
number that identifies the card issuer and cardholder.
This account number is composed of an issuer
identification number, an individual account number
identification, and an accompanying check digit, as
defined by ISO 7812–1985.

protocol. The meanings of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

private key. (1) In secure communication, an
algorithmic pattern used to encrypt messages that only
the corresponding public key can decrypt. The private
key is also used to decrypt messages that were
encrypted by the corresponding public key. The private
key is kept on the user’s system and is protected by a
password (2) In computer security, a key that is known
only to its owner.

public key. (1) n secure communication, an
algorithmic pattern used to decrypt messages that were
encrypted by the corresponding private key. A public
key is also used to encrypt messages that can be
decrypted only by the corresponding private key. Users
broadcast their public keys to everyone with whom
they must exchange encrypted messages. (2) In
computer security, a key that is made available to
everyone.

Glossary 159

purge. Within IBM e-commerce, a WebSphere
Commerce Payments verb. To remove all associated
Payments and Credits from a Batch object, treating it as
if it has just been created.

R
realm. In the WebSphere family of products, a
database of users, groups, and access control lists. A
user must be defined in a realm to access any resource
belonging to that realm.

recurring payments. A type of payment transaction
initiated by the cardholder that permits the merchant to
process multiple authorizations. There are two kinds of
recurring payments:

1. Multiple payments for a fixed amount

2. Repeated billings

refund. Identifies the Credit amount in the smallest
denomination of the particular currency used to place
the Order.

S
sale. In the credit card world, a sale occurs when a
transaction is authorized and marked for capture all at
once rather than using a two-step process.

sale selected. Selects the orders that you want to
approve and move the associated payment directly into
deposited state. The sale function automatically
performs an approve and a deposit on your payment.

Secure Electronic Transaction. See SET Secure
Electronic Transaction.

Secure Sockets Layer (SSL). A security protocol that
allows the client to authenticate the server and all data
and requests to be encrypted. The URL of a secure
server protected by SSL begins with HTTPS (rather
than HTTP).

server. (1) A functional unit that provides services to
one or more clients over a network. (2) A computer
that provides shared services to other computers over a
network; for example, a file server, a print server, or a
mail server.

servlet. An application program, written in the Java
programming language, that is executed on a Web
server. A reference to a servlet appears in the markup
for a Web page, in the same way that a reference to a
graphics file appears. The Web server executes the
servlet and sends the results of the execution (if there
are any) to the Web browser. Contrast with applet.

SET. See SET Secure Electronic Transaction.

SET Secure Electronic Transaction™. An industry
standard developed for secure credit card and debit
card payments over open networks such as the
Internet.

settle. Within IBM e-commerce, a WebSphere
Commerce Payments verb. An attempt to close a Batch
object and transfer funds. As part of the settling
procedure, there may be some reconciliation or
balancing steps (depending on the cassette and
financial institution policy) to ensure that the merchant
and financial institution agree on the funds being
transferred. If the reconciliation step fails, the batch
may remain in an open state.

settle batches. Settle batches is used to submit batches
(payments and refunds) for processing by a payment
processor. You can choose to settle one Batch, or
multiple Batches.

socket. An endpoint provided by the transport service
of a network for communication between processes or
application programs.

socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

socks port. The port on which the Socks server is
listening.

socks server. A proxy server that provides a secure
one-way connection through a firewall to server
applications in a nonsecure network. The server
applications in the secure network must be compatible
with the socket interface.

SSL. See Secure Sockets Layer.

Supervisor. Can perform all payment processing
functions for the merchant.

T
thread. A stream of computer instructions that is in
control of a process. A multi-threaded process begins
with one stream of instructions (one thread) and may
later create other instruction streams to perform tasks.

thread pool. The threads that are being used by or are
available to a computer program.

U
uniform resource locator (URL). The address of a file
on the Internet. The URL contains the name of the
protocol, the fully qualified domain name, and the path
and file location.

URL. See uniform resource locator.

160 Payments Programming Guide and Reference

V
void payment. Within IBM e-commerce, a verb
meaning to nullify or cancel a payment operation.

W
wallet. Software that enables a user to make approved
payments to authenticated merchants over public
networks and to manage payment card accounts and
purchases.

WAR file. A Web Archive (WAR) file is a Java archive
file used to store one or more of the following: servlets;
JavaServer Pages (JSP) files; utility classes; static
documents (such as HTML files, images and sound);
client-side applets, beans and classes; descriptive
meta-information. Its standard file extension is .war.
WAR files are used to package Web modules.

Web browser. (1) Within IBM e-commerce, software
running on the cardholder processing system that
provides an interface to public data networks. (2) A
client program that initiates requests to a Web server
and displays the information that the server returns.

Web page. Any document that can be accessed by a
uniform resource locator (URL) on the World Wide
Web.

Web server. A server on the Web that serves requests
for HTTP documents. The Web server controls the flow
of transactions to and from WebSphere Commerce. It
protects the confidentiality of customer transactions
and ensures that the user’s identity is securely
transmitted to the WebSphere Commerce Server. The
Web server implements the Secure Sockets Layer (SSL)
protocol to achieve this level of security.

Web site. A Web server that is managed by a single
entity (an organization or an individual) and contains
information in hypertext for its users, often including
hypertext links to other Web sites. Each Web site has a
home page. In a uniform resource locator (URL), the
Web site is indicated by the fully qualified domain
name. For example, in the URL
http://www.as400.ibm.com/icswg.html , the Web site
for IBM AS/400 is indicated by www.as400.ibm.com ,
which is the fully qualified domain name.

WebSphere. Pertaining to a family of IBM software
products that provide a development and deployment
environment for basic Web publishing and for
transaction-intensive, enterprise-scale e-business
applications.

well-known port. In the Internet suite of protocols,
one of a set of preassigned protocol port numbers that
address specific functions used by transport-level
protocols such as the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). The File

Transfer Protocol (FTP) and the Simple Mail Transfer
Protocol (SMTP), for example, use well-known port
numbers.

X
XML. A standard metalanguage for defining markup
languages that was derived from and is a subset of
SGML. XML omits the more complex and less-used
parts of SGML and makes it much easier to write
applications to handle document types, to author and
manage structured information, and to transmit and
share structured information across diverse computing
systems. XML is defined by the World Wide Web
Consortium (W3C).

Glossary 161

162 Payments Programming Guide and Reference

Index

Special characters
(CAL), Java Client API Library 37
(Document Type Definition), DTD 11

A
About command 52
AcceptPayment command 52
access control, role-based 14
Account object

attributes 116
Address Verification Service 22
AmountExp10 keyword 54
AMOUNTEXP10 parameter 55
Approve command 55
ApproveReversal command 56
authentication information 13
AVS 22
AVS common codes 109
AVS result codes

mapping to common AVS codes 109
mapping to CyberCash cassette 109
mapping to SET cassette 109

B
batch 103
Batch

account association 111
attributes 111

batch states 112
batch, defined 3
BatchClose command 57
BatchOpen command 57
BatchPurge command 58
building profiles 27
buy page information 25
buyer, defined 3

C
CAL 37

required files 42
CAL program

format 42
CancelOrder command 59
capabilities of role 16
cashier

errors 23
exceptions 23
trace 23

Cashier
introduction 19

cashier object, creating 29
cashier profiles, writing 23
cashier, defined 3
Cassette object 114
Cassette-specific event 45
CassetteControl command 60

cassettes, defined 3
character sets 11
character, Unicode 11
checkPayment 30
class, PaymentServerClient 41
class, PSObject 37
classes, Client 37
Client API Library 37
Client API Library (CAL) 37
Client classes 37
Close Method 41
CloseOrder command 60
codes, currency 54
codes, primary return 11, 121
codes, secondary return 11

types 121
collection 51
CollectPayment 25, 29
Command 25

required value 51
commands

About 52
AcceptPayment 52
Approve 55
ApproveReversal 56
BatchClose 57
BatchOpen 57
BatchPurge 58
CancelOrder 59
CassetteControl 60
CloseOrder 60
CreateAccount 61
CreateMerchant 63
CreateMerchantCassetteObject 63
CreateMerEventListener 64
CreatePaySystem 65
CreateSNMEventListener 66
CreateSystemCassetteObject 66
DeleteAccount 67
DeleteBatch 68
DeleteMerchant 68
DeleteMerchantCassetteObject 69
DeleteMerEventListener 69
DeletePaySystem 70
DeleteSNMEventListener 71
DeleteSystemCassetteObject 71
Deposit 72
DepositReversal 72
ModifyAccount 73
ModifyCassette 75
ModifyMerchant 76
ModifyMerchantCassetteObject 76
ModifyMerEventListener 77
ModifyPayServer 78
ModifyPaySystem 78
ModifySNMEventListener 79
ModifySystemCassetteObject 80
ModifyUserStatus 80
QueryAccounts 81
QueryBatches 82
QueryCassette 84

commands (continued)
QueryCredits 85
QueryEventListeners 87
QueryMerchants 87
QueryOrders 88
QueryPayment 91
QueryPaymentServer 93
QueryPaySystems 93
QueryUsers 94
ReceivePayment 97
Refund 99
RefundReversal 100
SetUserAccessRights 100

commands, Query 11
commands, WebSphere Commerce

Payments 9
CreateAccount command 61
CreateMerchant command 63
CreateMerchantCassetteObject

command 63
CreateMerEventListener 64
CreatePaySystem command 65
CreateSNMEventListener command 66
CreateSystemCassetteObject

command 66
creation, order

required keywords 54
credit 103
Credit object

attributes 109
credit, defined 3
Credits

states 110
criteria, search 51
currencies, ISO 54
currency codes 54
currency codes, ISO 139

D
DeleteAccount command 67
DeleteBatch command 68
DeleteMerchant command 68
DeleteMerchantCassetteObject

command 69
DeleteMerEventListener command 69
DeletePaySystem command 70
DeleteSNMEventListener command 71
DeleteSystemCassetteObject

command 71
Deposit command 72
DepositReversal command 72
documents, XML 11
DTD (Document Type Definition) 11

E
encoding, URL

rules 10
escape sequence 10

© Copyright IBM Corp. 1997, 2003 163

event
contents 45

Event Listener object
attributes 117

event listener, defined 3
event listeners

types 47
Event ListenerURL 47
Event Notification

Event ListenerURL parameter 47
event notification service 45

event types 45
EventType 45
extensions

writing 31

F
financial queries 51
framework objects 103
framework, defined 3

H
HTTP Body

encoding 10
format rules 10

HTTP header
additional header fields 10
calculated values 9
required field values 9

HTTP POST messages 9
HTTP POST requests 51

I
information, authentication 13
instances, multiple 51
integration 19

designing 20
writing 27

ISO currencies 54
ISO currency codes 139
issue command method 40
issueCommand 30

J
JAVA Client API Library 37
Java Client API Library, (CAL) 37

K
keyCollection 51
keyword-value pairs 9

L
leading zeros 51
locales 10

M
Merchant listeners 47

Merchant object
attributes 115

merchant program
written for CAL 42

merchant software, defined 4
merchant, defined 3
messages, HTTP POST 9
modifiers, search 51
ModifyAccount command 73
ModifyCassette command 75
ModifyMerchant command 76
ModifyMerchantCassetteObject

command 76
ModifyMerEventListener command 77
ModifyPayServer command 78
ModifyPaySystem command 78
ModifySNMEventListener command 79
ModifySystemCassetteObject

command 80
ModifyUserStatus command 80
multiple instances 51

N
name-value pairs

guidelines 51
Network management event 45
non-merchant listeners 47
Notices 151

O
object

how defined 103
state 105

object, Account
attributes 116

object, Cassette 114
object, Credit

attributes 109
object, Event Listener

attributes 117
object, Merchant

attributes 115
object, Order

attributes 104
object, Payment

attributes 107
object, Payment System

attributes 115
object, user

attributes 117
ObjectID 45
objects, framework 103
objects, payment 103
operational parameters 51
order 103
order creation

required keywords 54
Order life cycle 103
Order object

attributes 104
order, defined 4

P
pairs, keyword-value 9
pairs, name-value

guidelines 51
parameter, RETURNATMOST 51
parameters, operational 51
payment 103
payment initiation message 97
Payment object

attributes 107
payment objects 103
Payment System object

attributes 115
payment, defined 4
Payments

states 108
payments, split 109
PaymentServerClient

arguments 38
subclasses 38

PaymentServerClient class 41
PaymentServerResponse 41
PaymentServerSSLClient 38
permissions, role 15
polling loop 45
POST messages, HTTP 9
PRCs 121
primary return codes 11, 121
profiles, building 27
profiles, cashier, writing 23
program, CAL

format 42
program, merchant

written for CAL 42
PSObject class 37

Q
queries, financial 51
query commands

rules 51
Query commands 11
QueryAccounts command 81
QueryBatches command 82
QueryCassette command 84
QueryCredits command 85
QueryEventListeners command 87
QueryMerchants command 87
QueryOrders command 88
QueryPayment command 91
QueryPaymentServer command 93
QueryPaySystems command 93
QueryUsers command 94

R
ReceivePayment command 97
Refund command 99
RefundReversal command 100
relative object states 11
requests for comments, RFCs

URL access 149
requests, HTTP POST 51
requests, WebSphere Commerce

Payments 9
response class 37

164 Payments Programming Guide and Reference

result codes, AVS 109
return codes

location of 121
new structure for Version 1.2 121
overview 121
primary 121
secondary 123

return codes, primary 11, 121
return codes, secondary 11, 121
RETURNATMOST parameter 51
RFCs, requests for comments

URL access 149
role capabilities 16
role permissions 15
role, user’s 14

S
search criteria 51
search modifiers 51
secondary return codes 11, 121
SET

initiating a transaction 97
SetUserAccessRights command 100
socksHost 38
socksPort 38
Split Payments 109
SRCs 123
SSL connections 11
State change event 45
states, batch 112
states, relative object 11

T
terminology vi
terms, WebSphere Commerce

Payments 3
Timestamp 45
trace, cashier 23
trademarks 152

U
Unicode character 11
URL encoding

rules 10
user object

attributes 117
user’s role 14
userids, creating 94

W
WebSphere Commerce Payments

terms 3
WebSphere Commerce Payments About

object 112
WebSphere Commerce Payments

Administration object 113
WebSphere Commerce Payments

commands 9
example 9

WebSphere Commerce Payments
requests 9

writing cashier profiles 23
writing extensions 31
writing your integration 27

X
XML documents 11

Z
zeros, leading 51

Index 165

166 Payments Programming Guide and Reference

����

Printed in U.S.A.

	Contents
	About this book
	Conventions used in this book
	Terminology used in this book
	Additional information
	WebSphere Commerce
	Using the online help
	Locating the printable documentation
	Viewing the WebSphere Commerce Web site for product information
	Other WebSphere Commerce Payments documentation and Web sites

	WebSphere Application Server
	DB2 Universal Database

	Part 1. Introduction
	Chapter 1. WebSphere Commerce Payments concepts
	Understanding WebSphere Commerce Payments terms
	What's new for release 5.5

	Part 2. Programming guide
	Chapter 2. WebSphere Commerce Payments commands
	WebSphere Commerce Payments requests
	The HTTP body
	Character set issues

	Communication
	WebSphere Commerce Payments responses
	Formatting commands
	AcceptPayment
	QueryOrders with Payments

	WebSphere Commerce Payments command security
	Users
	Role-based access control
	Assigning a user's access permissions

	Role permissions table

	Chapter 3. Cashier
	Introduction to the Cashier
	Cashier profiles
	Designing your integration
	Managing Cashier profiles
	Mapping merchant numbers
	Mapping order numbers
	Designing profiles
	WebSphere Commerce Payments configuration
	Profile parameter sources
	Buy page information
	Publish profile interface

	AVS
	Trace
	Error log

	Writing cashier profiles
	Basic profile structure
	WebSphere Commerce Payments configuration in profiles
	Select statements
	CollectPayment
	Command
	Buy page information
	Parameters
	Constant parameters
	Variable parameters
	Database parameters
	Extension parameters

	Writing your integration
	Building profiles
	WebSphere Commerce Payments configuration
	Parameters and SelectStatements
	Buy page information

	Including necessary files
	Creating a Cashier object
	CollectPayment
	Creating orders in the WebSphere Commerce Payments – issueCommand()
	Checking the status of an order – checkPayment()
	Using BuyPageInformation
	Tracing
	Exceptions
	Writing extensions

	SampleCheckout application
	Overview
	Requirements
	Configuration
	SampleCheckout profiles
	Buy page information
	Profile environment variables

	Chapter 4. Client API library (CAL)
	CAL public classes
	Creating a PaymentServerClient
	Preparing the iSeries for SSL support when using CAL
	Issuing WebSphere Commerce Payments commands
	Specifying additional information in the HTTP Header

	Processing responses from WebSphere Commerce Payments
	Process returned objects

	Closing the PaymentServerClient
	Sample CAL program
	Installing files required by CAL
	For machines that don't have WebSphere Commerce Payments installed

	Chapter 5. Event notification
	Event types and contents
	State change event
	Cassette-specific event
	Network management event

	Registering events
	Event ListenerURL parameter

	Part 3. Programming reference
	Chapter 6. WebSphere Commerce Payments command reference
	Query commands
	About
	AcceptPayment
	Using the AmountExp10 keyword

	Approve
	ApproveReversal
	BatchClose
	BatchOpen
	BatchPurge
	CancelOrder
	CassetteControl
	CloseOrder
	CreateAccount
	CreateMerchant
	CreateMerchantCassetteObject
	CreateMerEventListener
	CreatePaySystem
	CreateSNMEventListener
	CreateSystemCassetteObject
	DeleteAccount
	DeleteBatch
	DeleteMerchant
	DeleteMerchantCassetteObject
	DeleteMerEventListener
	DeletePaySystem
	DeleteSNMEventListener
	DeleteSystemCassetteObject
	Deposit
	DepositReversal
	ModifyAccount
	ModifyCassette
	ModifyMerchant
	ModifyMerchantCassetteObject
	ModifyMerEventListener
	ModifyPayServer
	ModifyPaySystem
	ModifySNMEventListener
	ModifySystemCassetteObject
	ModifyUserStatus
	QueryAccounts
	QueryBatches
	QueryCassette
	QueryCredits
	QueryEventListeners
	QueryMerchants
	QueryOrders
	QueryPayments
	QueryPaymentServer
	QueryPaySystems
	QueryUsers
	Optional parameters
	Valid combination of parameters
	Access control details

	ReceivePayment
	Refund
	RefundReversal
	SetUserAccessRights
	Access control rules for Merchant Administrators

	Chapter 7. WebSphere Commerce Payments data
	WebSphere Commerce Payments payment objects
	Order
	Order states
	Payments
	Payment states
	Split payments
	AVS common codes
	Credits
	Credit states
	Batches
	Batch states

	WebSphere Commerce Payments About objects
	Payment Server About
	Cassette About

	WebSphere Commerce Payments administration objects
	Payment Server
	Cassette
	Merchant
	Payment System
	Account
	Event Listener
	User

	Part 4. Appendixes
	Appendix A. WebSphere Commerce Payments return codes
	Primary return codes
	Secondary return codes (generic)

	Appendix B. ISO currency codes
	Appendix C. Obtaining requests for comments
	Appendix D. Notices
	Trademarks

	Glossary
	Index

