
IBM WebSphere Commerce

Programmer’s Guide

Version 5.4

GC09-4951-02

���

IBM WebSphere Commerce

Programmer’s Guide

Version 5.4

GC09-4951-02

���

Note:
Before using this information and the product it supports, be sure to read the information in the Notices
section.

Second Edition (June 2002, Revision 1 released in September 2002)

This edition applies to the following products:
v IBM WebSphere Commerce Business Edition for Windows NT and Windows 2000, Version 5.4

v IBM WebSphere Commerce Business Edition for AIX, Version 5.4

v IBM WebSphere Commerce Business Edition for Solaris Operating Environment Software, Version 5.4

v IBMWebSphere Commerce Business Edition for the IBM Eserver iSeries 400, Version 5.4

v IBM WebSphere Commerce Business Edition for Linux, Version 5.4

v IBM WebSphere Commerce Business Edition for Linux for IBM Eserver zSeries and S/390, Version 5.4

v IBM WebSphere Commerce Studio, Business Developer Edition for Windows NT and Windows 2000, Version 5.4

v IBM WebSphere Commerce Professional Edition for Windows NT and Windows 2000, Version 5.4

v IBM WebSphere Commerce Professional Edition for AIX, Version 5.4

v IBM WebSphere Commerce Professional Edition for Solaris Operating Environment Software, Version 5.4

v IBMWebSphere Commerce Professional Edition for the IBM Eserver iSeries 400, Version 5.4

v IBM WebSphere Commerce Professional Edition for Linux, Version 5.4

v IBM WebSphere Commerce Professional Edition for Linux for IBM Eserver zSeries and S/390, Version 5.4

v IBM WebSphere Commerce Studio, Professional Developer Edition for Windows NT and Windows 2000, Version
5.4

and to all subsequent releases and modifications of the above listed products, until otherwise indicated in new
editions. Make sure you are using the correct edition for the level of the product. (The program number for
WebSphere Commerce and WebSphere Commerce Studio is 5724-A18.)

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send comments about this publication by one of the following methods:
1. Electronically to following e-mail address:

torrcf@ca.ibm.com

2. By mail to the following address:

IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, L6G 1C7
Canada

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Before you begin

The IBM® WebSphere® Commerce Programmer’s Guide provides information
about the WebSphere Commerce architecture and programming model. In
particular, it provides details on the following topics:
v Component interactions
v Design patterns
v Persistent object model
v Access control
v Error handling and messages
v Command implementation
v Development tools
v Deployment of customized code

In addition, this book includes the following tutorials:

Creating new business logic
This tutorial demonstrates how to create new commands, data beans
and enterprise beans following the WebSphere Commerce
programming model. It also demonstrates how to integrate the logic
into an existing store and deploy the code to a target WebSphere
Commerce Server.

Modifying and extending existing business logic
This tutorial is divided into two sections. The first section
demonstrates how to add new logic to an existing controller
command. The second section demonstrates how to modify an
existing task command and WebSphere Commerce entity bean. It also
demonstrates how to integrate the modifications into an existing store
and deploy the code to a target WebSphere Commerce Server.

Conventions used in this book

This book uses the following highlighting conventions:

Boldface type indicates commands or graphical user interface (GUI) controls
such as names of fields, buttons, or menu choices.

Monospaced type indicates examples of text you enter exactly as shown, as
well as directory paths.

© Copyright IBM Corp. 2000, 2002 iii

Italic type is used for emphasis and variables for which you substitute your
own values.

This icon marks a Tip — additional information that can help you
complete a task.

Windows indicates information that is specific to WebSphere Commerce for
Windows NT® and Windows® 2000.

AIX indicates information that is specific to WebSphere Commerce for
AIX®.

Solaris indicates information that is specific to WebSphere Commerce for
Solaris™ Operating Environment software.

400 indicates information specific to WebSphere Commerce for the IBM
Eserver™ iSeries™ 400® (formerly called AS/400®)

Linux indicates information specific to the following products:
v WebSphere Commerce Business Edition for Linux.
v WebSphere Commerce Professional Edition for Linux.
v WebSphere Commerce Business Edition for Linux for IBM Eserver zSeries™

and S/390®.

DB2 indicates information specific to DB2® Universal Database

Oracle indicates information specific to Oracle®.

Professional indicates information specific to WebSphere Commerce Professional
Edition.

Business indicates information specific to WebSphere Commerce Business
Edition.

Knowledge requirements

This book should be read by Store Developers that need to understand how to
customize a WebSphere Commerce application. Store Developers that are
performing programmatic extensions should have knowledge in the following
areas:

iv Programmer’s Guide

v Java™

v Enterprise JavaBeans (EJB) component architecture
v JavaServer Pages technology
v HTML
v Database technology
v VisualAge® for Java, Enterprise Edition, Version 3.5

What’s new in this book

In support of the WebSphere Commerce Business Edition for Linux for IBM
eServer zSeries and S/390 product, this book was updated in September 2002
to include the following highlighting convention:

Linux indicates information specific to the following products:
v WebSphere Commerce Business Edition for Linux.
v WebSphere Commerce Professional Edition for Linux.
v WebSphere Commerce Business Edition for Linux for IBM Eserver zSeries

and S/390.

Where to find more information

This book may be updated in the future. Check the following WebSphere
Commerce Web sites for updates:

Business

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

Professional

http://www.ibm.com/software/webservers/commerce/wc_pe/lit-tech-general.html

Updates may include new information, additional or updated tutorials, and
sample code related to the tutorials.

Before you begin v

vi Programmer’s Guide

Contents

Before you begin iii
Conventions used in this book iii
Knowledge requirements iv
What’s new in this book v
Where to find more information v

Part 1. Concepts and architecture . 1

Chapter 1. Overview 3
WebSphere Commerce software components . 3
WebSphere Commerce application architecture 4
WebSphere Commerce run-time architecture . 6

Servlet engine 8
Adapter manager 8
Protocol listeners 8
Adapters 9
Web controller 10
Commands 11
WebSphere Commerce entity beans . . . 12
Data beans 13
Data bean manager 13
JavaServer Pages templates 13
Instance_name.xml configuration file . . . 13

Summary for a request 13
Key differences between customization in
previous releases 15

Part 2. Programming model . . . 17

Chapter 2. Design patterns 19
Model-View-Controller design pattern . . . 19
Command design pattern 20

Command framework. 21
Command factory 23
Command flow 24
Command registration framework . . . 26

Display design pattern 36
JSP templates and data beans 36
Types of data beans 37
Invoking controller commands from within
a JSP template 40
Lazy fetch data retrieval 41

Setting JSP attributes - overview 41
Required property settings 43

Chapter 3. Persistent object model . . . 45
Implementation of WebSphere Commerce
entity beans 45

WebSphere Commerce entity beans -
overview 45
Deployment descriptors for WebSphere
Commerce enterprise beans 47
Extending the WebSphere Commerce
object model 48
Object life cycles 72
Transactions 73
Other considerations for entity beans . . 73

Using entity beans 77
Database considerations 78

Database schema object naming
considerations 78
Database column datatype considerations 80
Datatype differences between databases . . 82

Chapter 4. Access control. 85
Understanding access control 85

Overview of resource protection in
WebSphere Application Server 85
Introduction to WebSphere Commerce
access control policies 87
Types of access control 96
Access control interactions 98
Protectable interface 101
Groupable interface 101
Finding more information about access
control 102

Implementing access control 102
Identifying protectable resources 102
Implementing access control in enterprise
beans 103
Implementing access control in data
beans 104
Implementing access control in controller
commands 106
Implementing access control policies in
views 108

Chapter 5. Error handling and messages 111
Command error handling 111

Types of exceptions 111

© Copyright IBM Corp. 2000, 2002 vii

Error message properties files 112
Exception handling flow 112
Exception handling in customized code 114
Creating messages 116
Execution flow tracing 119

JSP template error handling 121

Chapter 6. Command implementation . . 123
New commands - introduction 123
Packaging customized code 126
Command context 127
New controller commands 128

isGeneric method 129
isRetriable method 129
setRequestProperties method 130
validateParameters method 130
getResources method 130
performExecute method. 130
Long-running controller commands . . . 131

Formatting of input properties to view
commands 132

Flattening input parameters into a query
string for HttpRedirectView 133
Handling a limited length redirect URL 133
Setting attributes in the
HttpServletRequest object for
HttpForwardView. 134

Database commits and rollbacks for
controller commands. 135

Example of transaction scope with a
controller command 136

New task commands. 138
Customization of existing commands . . . 139

Customizing existing controller
commands 139
Customizing existing task commands . . 143

Data bean customization 145

Chapter 7. Trading agreements and
business policies (Business Edition) . . 147
Introduction 147
Business policy objects and commands. . . 148
ToolTech sample contract data 150

CONTRACT table sample data 150
TERMCOND table sample data 151
POLICYTC table sample data 151
POLICY table sample data 152
TRADEPOSCN table sample data . . . 152
SHIPMODE table sample data 152

Extending the existing contract model . . . 152

Creating a new business policy 153
Creating a new business policy type . . 153
Writing the new business policy
command 155
Registering the new business policy and
business policy command 157

Relating a terms and conditions object to a
new business policy 158

Creating new terms and conditions . . . 159
Invoking the new business policy 173
Creating a contract 174
Contract customization scenarios. 174

Rebate scenario 175

Part 3. Development environment 183

Chapter 8. Development tools and
deployment 185
Development environment 185
WebSphere Commerce Studio 186
Features and functions of VisualAge for Java 186
WebSphere Commerce code repository . . . 187
Code deployment 187

Information about EJB deployed code . . 188
Deployment of new commands and data
beans 189
Deployment of new entity beans 190
Deployment of extensions to existing
commands and data beans 192
Deployment of modified WebSphere
Commerce public entity beans 192
Deployment of new data beans for use in
Commerce Studio 194
Deployment of customized public entity
beans for use in Commerce Studio . . . 195

Log files 195
Test payment method 196

Using a remote Payment Manager . . . 197

Part 4. Tutorials 199

Chapter 9. Tutorial: Creating new
business logic 201
Tutorial environment. 201
Tutorial code deployment steps 201
Preparing the sample project 202
Writing commands 204

Write a controller command 204
Modify MyNewControllerCmd 209

viii Programmer’s Guide

Creating a new entity bean 237
Creating the new database table 237
Creating the BonusBean entity bean. . . 238

(Optional) Using the Debugger in VisualAge
for Java 261

Adding the breakpoint to your code . . 261
Verifying the values of variables 262
Removing the breakpoint 262

Integrating MyNewControllerCmd with the
sample store in the WebSphere Test
Environment 263
(Optional) Deploying new business logic to a
remote WebSphere Commerce Server . . . 264

Create the JAR file for the new command
logic 264
Creating the JAR file for the new EJB
group 265
Creating the implementation JAR file for
the new enterprise bean. 266
Copy the JSP files to the target
WebSphere Commerce Server 267
Copy the JAR files to the target
WebSphere Commerce Server 267
Running the EJB deploy tool 268
Modify transaction isolation level for the
Bonus bean 269
Updating the target database 270
Loading the access control policies for the
new resources 272
Exporting the current enterprise
application from WebSphere Application
Server. 276
Exporting XML configuration information
for the enterprise application 276
Assembling the new EJB group into the
enterprise application 278
Importing the new enterprise application
into WebSphere Application Server . . . 281
Test MyNewControllerCmd 282

Chapter 10. Modifying and extending
existing business logic 285
Extending an existing controller command 285

Creating the new package for
OrderProcessCmdBonusImpl 286
Creating the OrderProcessCmdBonusImpl
class 286
Adding fields and methods to
OrderProcessCmdBonusImpl 286

Modifying the command registry to use
OrderProcessCmdBonusImpl 290
Modifying the confirmation.jsp template 291
Testing OrderProcessCmdBonusImpl within
the WebSphere Test Environment . . . 292
(Optional) Deploying the customized
business logic to a remote WebSphere
Commerce Server 292

Modifying an existing entity bean and
extending an existing task command . . . 296

Adding a new bonusPoint field to the
User entity bean 300
Creating and populating the BONUS
table 300
Updating the schema and table mapping 303
Generating the deployed code and access
bean 305
Testing the modification using the test
client 306
Creating the
GetNewProductContractUnitPriceCmd
interface 306
Creating the
GetNewContractUnitPriceCmdImpl
implementation class. 308
Creating the NewProductDataBean data
bean 311
Adding the new bonus price to the
product display template 313
Testing the enterprise bean extension . . 314
(Optional) Deploying the customized
business logic to a remote WebSphere
Commerce Server 316

Part 5. Appendixes 331

Appendix A. Starting and stopping the
WebSphere Test Environment 333
Starting and stopping the persistent name
server 333
Starting and stopping the EJB server . . . 334
Starting and stopping the servlet engine . . 334

Appendix B. Deployment details 335
Mapping to the integrated file system
(iSeries) 335
JAR files for customized commands and
data beans 335
Creating JAR files for new entity beans . . 337

Contents ix

Creating the EJB 1.1 Export JAR file. . . 337
Creating the implementation JAR file . . 338

Creating JAR files for customized WebSphere
Commerce entity beans 339

Creating the EJB 1.1 Export JAR file. . . 340
Creating the client JAR file. 341

Storing assets on the target WebSphere
Commerce Server 342
Updating the target database 345
Generating deployed code 346
Modifying transaction isolation level of
entity beans. 349
Exporting the current WebSphere Commerce
enterprise application 350
Exporting configuration information for
enterprise beans 351
Assembling new enterprise beans into an
enterprise application 357

Assembling modified enterprise beans into
an enterprise application 361
Stopping and removing an enterprise
application 366
Importing an enterprise application 366
Starting an enterprise application 368

Appendix C. Tips for VisualAge for Java 369
Changing properties for the servlet engine in
the WebSphere Test Environment 369
Resolving persistent name server problems 370
Deleting compiled JSP files. 370

Notices 371
Trademarks and service marks 374

Index 375

x Programmer’s Guide

Part 1. Concepts and architecture

© Copyright IBM Corp. 2000, 2002 1

2 Programmer’s Guide

Chapter 1. Overview

WebSphere Commerce software components

Before examining how the WebSphere Commerce Server functions, it is useful
to look at the larger picture of software components that relate to the
customization process. The following diagram shows a simplified view of
these software products:

The Web server is the first point of contact for incoming HTTP requests for
your e-commerce application. In order to interface efficiently with the
WebSphere Application Server, it uses the WebSphere Application Server
plug-in.

The WebSphere Commerce Server runs within the WebSphere Application
Server, allowing it to take advantage of many of the features of the
application server. The database server holds most of your application’s data,
including product and shopper data. In general, extensions to your
application are made by modifying or extending the code for the WebSphere
Commerce Server. In addition, you may have a need to store data that falls
outside of the realm of the WebSphere Commerce database schema within
your database.

Developers use two main tools to create customized business logic:
WebSphere Commerce Studio and VisualAge for Java, Enterprise Edition.

WebSphere
Commerce Studio

WebSphere
Commerce Server

WebSphere
Application Server

WebSphere
Application Server
Plug-in

Web server

VisualAge for Java,
Enterprise Edition

Database server

Figure 1.

© Copyright IBM Corp. 2000, 2002 3

WebSphere Commerce Studio is used to create and manage store front assets
(for example, JSP templates). VisualAge for Java, Enterprise Edition is used to
create new business logic, in Java, that either extends existing functionality or
that creates completely new functions. If your application requires extensions
to the database schema, database developers should use their preferred
database development tools to create the new tables.

WebSphere Commerce application architecture

Now that you have seen how the various software components related to
customization fit together, it is important to understand the application
architecture. This will help you to understand which parts are foundation
layers and which parts you can modify. The following diagram shows the
various layers that comprise the application architecture:

Each layer of the application architecture is described below:

Database
WebSphere Commerce uses a database schema designed specifically
for e-commerce applications and their data requirements. The
following are examples of tables in this schema:
v User
v Order

Models

Business processes

Controls and views

Business components

Business objects

Database

Figure 2.

4 Programmer’s Guide

v Product

Business objects

Business objects represent entities within the commerce domain and
encapsulate the data-centric logic required to extract or interpret
information contained within the database. These entities comply with
the Enterprise JavaBeans specification.

These entity beans act as an interface between the commerce
application and the database. In addition, the entity beans are easier
to comprehend than complex relationships between columns in
database tables.

Business components
Business components are units of business logic. They perform
coarse-grained procedural business logic. The logic is implemented
using the WebSphere Commerce model of controller commands and
task commands. An example of this type of component is the
OrderProcess controller command. This particular command
encapsulates all of the business logic required to process a typical
order. The e-commerce application calls the OrderProcess command,
which in turn, calls several task commands to perform individual
units of work. For example, individual task commands ensure that
enough inventory is available to meet the requirements of the order,
process the payment, update the status of the order and when the
process has completed, decrement the inventory by the appropriate
amount.

Controls and views
A Web controller determines the appropriate controller command
implementation and view to be used. Implementations can be store
specific.
Views display the results of commands and user actions. They are
implemented using JSP templates. Examples of views include
ProductDisplay (returns a product page showing relevant information
for the shopper’s selected product) and OrderPrepare (presents the
shopper with a form to submit appropriate order information).

Business processes
Sets of business components and views together create workflow and
siteflow processes that are known as business processes. Examples of
business processes include:

User registration
This business process includes the business components (for
example, the UserRegistrationAdd command that creates a
registration record for a new user) and views related to all
steps involved in the process of registering users.

Chapter 1. Overview 5

Catalog navigation
This business process includes the business components (for
example, the StoreCatalogDisplay and CategoryDisplay
commands that respectively show the catalogs for a store and
the categories within a catalog) and views related to all steps
involved in the process of navigating through a catalog.

Models
When gathered together, the lower layers of the diagram make up
e-commerce business models. One example of an e-commerce business
model is the business-to-consumer model that is used by the
InFashion sample store. Another example is the business-to-business
model that is used by the ToolTech sample store.

WebSphere Commerce run-time architecture

The previous section introduced the application architecture, which depicts
the various layers in the WebSphere Commerce application, from a business
application point-of-view. This section describes how the run-time architecture
is implemented.

The major components of the WebSphere Commerce run-time architecture are:
v Servlet engine
v Protocol listeners
v Adapter manager
v Adapters
v Web controller
v Commands
v Entity beans
v Data beans
v Data bean manager
v Display pages
v XML files

The interactions between WebSphere Commerce components is shown in the
following diagram. More detail on each component can be found in
subsequent sections.

6 Programmer’s Guide

Task
command

Task
command

Task
command

Controller
command

View
command

Program
adapter

Scheduler
adapter

Adapter manager

Command registry

PVC
adapter

Browser
adapter

Adapter
framework

Protocol listenersServlet engine

Thread

Thread

HTTP request servlet

instance_name.xml

MQ listener

Data bean
command

Database

JSP template

Data
bean

Web controller

Data bean
manager Entities

Figure 3.

Chapter 1. Overview 7

Servlet engine
The servlet engine is the part of the WebSphere Application Server run-time
environment that acts as a request dispatcher for inbound URL requests. The
servlet engine manages a pool of threads to handle requests. Each inbound
request is executed on a separate thread.

Previous versions of WebSphere Commerce used a C++ application server that
implemented its own task dispatcher for URL requests by maintaining a
pre-allocated set of system processes. This old model, which used system
processes, was more resource intensive than the new model that uses Java
threads. By exploiting the servlet engine, the new WebSphere Commerce
run-time architecture provides a more scalable commerce solution.

Adapter manager
The adapter manager determines which adapter is capable of handling the
request and then forwards the request to that adapter.

Protocol listeners
WebSphere Commerce commands can be invoked from various devices.
Examples of devices that can invoke commands include:
v Typical Internet browsers
v Mobile phones using Internet browsers
v Business-to-business applications sending XML messages using MQSeries®

v Procurement systems sending requests using XML over HTTP
v The WebSphere Commerce scheduler that executes a background job

Devices can use a variety of communication protocols. A protocol listener is a
run-time component that receives inbound requests from transports and then
dispatches the requests to the appropriate adapters, based upon the protocol
used. The protocol listeners include:
v Request servlet
v MQSeries listener

When the request servlet receives a URL request from the servlet engine, it
passes the request to the adapter manager. The adapter manager then queries
the adapter types to determine which adapter can process the request. Once
the specific adapter is determined, the request is passed to the adapter.

When the request servlet is initialized, it reads the instance_name.xml
configuration file. One of the configuration blocks in the XML file defines all
of the adapters. The init() method of the request servlet initializes all defined
adapters.

8 Programmer’s Guide

The MQSeries listener receives XML-based MQSeries messages from remote
programs and dispatches the requests to the non-HTTP adapter manager.

The Job Scheduler does not require a protocol listener.

Adapters
WebSphere Commerce adapters are device-specific components that perform
processing functions before passing a request to the Web controller. Examples
of processing tasks performed by an adapter include:
v Instructing the Web controller to process the request in a manner specific to

the type of device. For example, a pervasive computing (PvC) device
adapter can instruct the Web controller to ignore HTTPS checking in the
original request.

v Transforming the message format of the inbound request into a set of
properties that WebSphere Commerce commands can parse.

v Providing device-specific session persistence.

The following diagram shows the implementation class hierarchy for the
WebSphere Commerce adapter framework.

As displayed in the preceding diagram, all adapters implement the
DeviceFormatAdapter interface. The following are the adapters that are used
by the WebSphere Commerce run-time environment:

Interface

Class ClassClass

implements implements implements

extends extends

Class Class

Figure 4.

Chapter 1. Overview 9

Program adapter
The program adapter provides support for remote programs invoking
WebSphere Commerce commands. The program adapter receives
requests and uses a message mapper to convert the request into a
CommandProperty object. After the conversion, the program adapter
uses the CommandProperty object and executes the request.

Scheduler adapter
The scheduler adapter provides support for WebSphere Commerce
commands that are run as background jobs.

HTTP browser adapter
The HTTP browser adapter provides support for requests to invoke
WebSphere Commerce commands that are received from HTTP
browsers.

HTTP PvC adapter
This is an abstract adapter class that can be used to develop specific
PvC device adapters. For example, if you needed to develop an
adapter for a particular cellular phone application, you would extend
from this adapter.

If required, the adapter framework can be extended in the following two
ways:
v Create an adapter for a specific PvC device (for example, create an

HttpIModePVCAdapterImpl class to provide support for i-mode devices).
An adapter of this type must extend the AbstractHttpAdapterImpl class.

v Create a new adapter that connects to a new protocol listener. This new
adapter must implement the DeviceFormatAdapter interface.

Web controller
The WebSphere Commerce Web controller is an application container that
follows a design pattern similar to that of an EJB container. This container
simplifies the role of commands, by providing such services as session
management (based upon the session persistence established by the adapter),
transaction control, access control and authentication.

The Web controller also plays a role in enforcing the programming model for
the commerce application. For example, the programming model defines the
types of commands that an application should write. Each type of command
serves a specific purpose. Business logic must be implemented in controller
commands and view logic must be implemented in view commands. The Web
controller expects the controller command to return a view name. If a view
name is not returned, an exception is thrown.

For HTTP requests, the Web controller performs the following tasks:

10 Programmer’s Guide

v Begins the transaction using the UserTransaction interface from the
javax.transaction package.

v Gets session data from the adapter.
v Determines whether the user must be logged on before invoking the

command. If required, it redirects the user’s browser to a logon URL.
v Checks if secure HTTPS is required for the URL. If it is required but the

current request is not using HTTPS, it redirects the Web browser to an
HTTPS URL.

v Invokes the controller command and passes it the command context and
input properties objects.

v If a transaction rollback exception occurs and the controller command can
be retried, it retries the controller command.

v A controller command normally returns a view name when there is a view
command to be sent back to the client. The Web controller invokes the view
command for the corresponding view. There are a number of ways to form
a response view. These include redirecting to a different URL, forwarding to
a JSP template or writing an HTML document to the response object.

v Saves the session data.
v Commits the session data.
v Commits the current transaction if it is successful.
v Rolls back the current transaction in case of failure (depending upon

circumstances).

Commands
WebSphere Commerce commands are beans that contain the programming
logic associated with handling a particular request.

There are four main types of WebSphere Commerce commands:

Controller command
A controller command encapsulates the logic related to a particular
business process. Examples of controller commands include the
OrderProcessCmd command for order processing and the
UserRegistrationAddCmd command for creating new registered users.
In general, a controller command contains the control statements (for
example, if, then, else) and invokes task commands to perform
individual tasks in the business process. Upon completion, a controller
command returns a view name. The Web controller then determines
the appropriate implementation class for the view command and
executes the view command.

Task command
A task command implements a specific unit of application logic. In
general, a controller command and a set of task commands together

Chapter 1. Overview 11

implement the application logic for a URL request. A task command is
executed in the same container as the controller command.

Data bean command
A data bean command is invoked by a JSP template when a data bean
is instantiated. The primary function of a data bean command is to
populate the data bean with data.

View command
A view command composes a view as a response to a client request.
There are three types of view commands:

Redirect view command
This view command sends the view using a redirect protocol,
such as the URL redirect. A controller command should return
a view command in this view type to return a view using a
redirect protocol. When a redirect protocol is used, it changes
the URL stacks in the browser. When a reload key is entered,
the redirected URL executes instead of the original URL.

Direct view command
This view command sends the response view directly to the
client.

Forward view command
This view command forwards the view request to another
Web component, such as a JSP template.

There are three ways in which a view command can be invoked:
v A controller command specifies a view command name when the

request has successfully completed.
v A client requests a view directly.
v A command detects an error and an error task must be executed to

process the error. The command throws an exception with a view
command name. When the exception propagates to the Web
controller, it executes the error view command and returns the
response to the client.

WebSphere Commerce entity beans
Entity beans are the persistent, transactional commerce objects provided by
WebSphere Commerce. If you are familiar with the commerce domain, entity
beans represent WebSphere Commerce data in an intuitive way. That is, rather
than having to understand the whole the database schema, you can access
data from an entity bean which more closely models concepts and objects in
the commerce domain. You can extend existing entity beans. In addition, for
your own application-specific business requirements, you can deploy entirely
new entity beans.

12 Programmer’s Guide

Entity beans are implemented according to the Enterprise JavaBeans (EJB)
component model.

For more information about entity beans, refer to “Implementation of
WebSphere Commerce entity beans” on page 45.

Data beans
Data beans are Java beans that are primarily used by Web designers. Most
commonly, they provide access to a WebSphere Commerce entity. A Web
designer can place these beans on a JSP template, allowing dynamic
information to be populated on the page at display time. The Web designer
need only understand what data the bean can provide and what data the
bean requires as input. Consistent with the theme of separating display from
business logic, there is no need for the Web designer to understand how the
bean works.

Data bean manager
When a WebSphere Commerce data bean is inserted into a JSP template using
WebSphere Studio Page Designer, a line of code is generated that populates
the data bean, at run time, by invoking the data bean manager.

The following is a sample of code from Page Designer:
com.ibm.commerce.beans.DataBeanManager.activate(data_bean, request)

JavaServer Pages templates
JSP templates are specialized servlets that are typically used for display
purposes. Upon completion of a URL request, the Web controller invokes a
view command that invokes a JSP template. A client can also invoke a JSP
template directly from the browser without an associated command. In this
case, the URL for the JSP template must include the request servlet in its path,
so that all of the data beans required by a JSP template can be activated
within a single transaction. The request servlet can forward a URL request to
a JSP template and execute the JSP template within a single transaction.

The data bean manager rejects any URL for a JSP template that does not
include the request servlet in its path. For more information about protection
of JSP templates and other resources, refer to Chapter 4, “Access control” on
page 85.

Instance_name.xml configuration file
The Instance_name.xml configuration file sets configuration information for
the instance. It is read when the request servlet is initialized.

Summary for a request

This section provides a summary of the interaction flow between components
when forming a response to a request.

Chapter 1. Overview 13

A description of each of the steps follows the diagram.

The following information corresponds to the preceding diagram.
1. The request is directed to the servlet engine by the WebSphere

Application Server plug-in.
2. The request is executed in its own thread. The servlet engine dispatches

the request to a protocol listener. The protocol listener can be the HTTP
request servlet or the MQ Listener.

3. The protocol listener passes the request to the adapter manager.

Task
command

Task
command

Task
command

Controller
commandView

command

Data bean
command

JSP template

Access
bean

Data
bean

Data bean
manager

Access
bean

Entities

Database

Adapter manager

Command registry

Adapter

Web controller

Servlet engine

Request
Thread

Protocol listener21

6

3

4

8b11

13

8a 8c

extends

12

14

10 79

5

Figure 5.

14 Programmer’s Guide

4. The adapter manger determines which adapter is capable of handling the
request and then forwards the request to the appropriate adapter. For
example, if the request came from an Internet browser, the adapter
manager forwards the request to the HTTP browser adapter.

5. The adapter passes the request to the Web controller.
6. The Web controller determines which command to invoke, by querying

the command registry.
7. Assuming that the request requires the use of a controller command, the

Web controller invokes the appropriate controller command.
8. Once a controller command begins execution, there are a few possible

paths:
a. The controller command can access the database using an access bean

and its corresponding entity bean.
b. The controller command can invoke one or more task commands.

Then task commands can access the database, using access beans and
their corresponding entity beans (shown in 8(c)).

9. Upon completion, the controller command returns a view name to the
Web controller.

10. The Web controller looks up the view name in the VIEWREG table. It
invokes the view command implementation that is registered for the
device type of the requester.

11. The view command forwards the request to a JSP template.
12. Within the JSP template, a data bean is required to retrieve dynamic

information from the database. The data bean manager activates the data
bean.

13. The data bean manager invokes a data bean command, if required.
14. The access bean from which the data bean is extended accesses the

database using its corresponding entity bean.

Key differences between customization in previous releases

Beginning with WebSphere Commerce Suite Version 5.1, the WebSphere
Commerce Server has been written entirely in Java. Therefore, you must use
Java to customize functionality. This is very different from the model that had
been used in WebSphere Commerce Suite, Version 4.1 (and earlier versions of
Net.Commerce™) in which C++ and Net.Data® macros were used for
customization.

Chapter 1. Overview 15

The following table summarizes the major changes.

Version 4.1 (and earlier
versions) in C++

Version 5.1 (and later
versions) in Java

Application models Commands Controller commands

Tasks Task commands

Overridable functions Task commands

View tasks View commands

Error tasks View commands

Display models Net.Data macros JSP templates, data beans,
data bean commands, and
view commands

Persistence models Net.Data and ODBC Entity beans

URL dispatcher WebSphere Commerce C++
URL dispatcher

WebSphere servlet engine

Task models System processes Java threads

Command adapter None Web controller and
adapters

This publication does not describe the migration process. For more
information about migration, refer to the WebSphere Commerce Migration Guide.

16 Programmer’s Guide

Part 2. Programming model

© Copyright IBM Corp. 2000, 2002 17

18 Programmer’s Guide

Chapter 2. Design patterns

A variety of design patterns and mechanisms are used to develop the
WebSphere Commerce framework. WebSphere Commerce provides a
high-level design pattern to which each WebSphere Commerce application
should adhere. The following design patterns are discussed in this chapter:
v The model-view-controller design pattern
v The command design pattern
v The display design pattern

Model-View-Controller design pattern

The model-view-controller (MVC) design pattern specifies that an application
consist of a data model, presentation information and control information. The
pattern requires that each of these be separated into different objects.

The model (for example, the data information) contains only the pure
application data; it contains no logic describing how to present the data to a
user.

The view (for example, the presentation information) presents the model’s data
to the user. The view knows how to access the model’s data, but it does not
know what this data means or what the user can do to manipulate it.

Finally, the controller (for example, the control information) exists between the
view and the model. It listens to events triggered by the view (or another
external source) and executes the appropriate reaction to these events. In most
cases, the reaction is to call a method on the model. Since the view and the
model are connected through a notification mechanism, the result of this
action is then automatically reflected in the view.

Most applications today follow this pattern, many with slight variations. For
example, some applications combine the view and the controller into one class
because they are already very tightly coupled. All of the variations strongly
encourage separation of data and its presentation. This not only makes the
structure of an application simpler, it also enables code reuse.

Since there are many publications describing the pattern, as well as numerous
samples, this document does not describe the pattern in great detail.

© Copyright IBM Corp. 2000, 2002 19

The following diagram shows how the MVC design pattern applies to
WebSphere Commerce.

Command design pattern

The WebSphere Commerce Server accepts requests from browser-based
thin-client applications, as well as from other remote applications. For
example, a request may come from a remote procurement system, or from
another commerce server.

Task
command

Task
command

Task
command

Controller
command

View
command

Entities

JSP template

Data
bean

Web
controller

invokes

Model

Controller

URL

View

data retrieval
& update

data retrieval
& update

data retrieval

Database

data retrieval
& update

forwards

invokes

invokes

Figure 6.

20 Programmer’s Guide

All requests, in their variety of formats, are translated into a common format
by the adapters that make up the adapter framework. Once the requests are in
this common format, they can be understood by WebSphere Commerce
commands.

Commands are beans that perform business logic. They represent procedural
logic either in the form of high-level process logic or discrete business logic
tasks. A process-based command acts as a controller that spans multiple
entities and other commands, while a task command performs a specific task
and may only access a single object.

Command framework
Command beans follow a specific design pattern. Every command includes
both an interface class (for example, CategoryDisplayCmd) and an
implementation class (for example, CategoryDisplayCmdImpl). From a caller’s
perspective, the invocation logic involves setting input properties, invoking an
execute() method, and retrieving output properties.

From the perspective of the command implementer, commands follow the
WebSphere command framework, which implements the standard command
design pattern allowing a level of indirection between the caller and the
implementation. The key mechanisms enabled within this level of indirection
include:
1. The ability to invoke an access control policy manager that determines if

the user is allowed to invoke the command.
2. The ability to execute a different command implementation for different

stores, based upon the store identifier.
3. The ability to execute a different view implementation based upon the

device type of the requester.

The following diagram shows a conceptual overview of the interfaces for the
four main types of commands:

Chapter 2. Design patterns 21

Controller command

A controller command encapsulates the logic related to a particular
business process. Examples of controller commands include the
OrderProcessCmd command for order processing and the
UserRegistrationAddCmd command for creating new registered users.
In general, a controller command contains the control statements (for
example, if, then, else) and invokes task commands to perform
individual tasks in the business process. Upon completion, a controller
command returns a view name. The Web controller then determines
the appropriate implementation class for the view task and executes
the view task.

While a controller command is a targetable command, only the local
target is supported.

Task command

A task command implements a specific unit of application logic. In
general, a controller command and a set of task commands together

Command

Targetable
command ECCommand

Targetable
command

Controller
command

View command Task command
Data bean
command

Redirect
view command

Forward
view command

Direct
view command

Http redirect
view command

Http forward
view command

Http direct
view command

Figure 7.

22 Programmer’s Guide

implement the application logic for a URL request. A task command is
executed in the same container as the controller command.

Data bean command

A data bean command is invoked by a JSP page when a data bean is
instantiated. The primary function of a data bean command is to
populate the fields of the data bean.

While a data bean command is a targetable command, only the local
target is supported.

View command
A view command composes a view as a response to a client request.
There are three ways in which a view command can be invoked:
v A controller command specifies a view command name on

successful completion of the request.
v A client can request a view directly.
v A controller or task command detects an error and decides that an

error task must be executed to process the error and throws an
exception with a view command name. When the exception
propagates to the Web controller, it executes the view command
and returns the response to the client.

There are three types of view commands:

Redirect view command

This view command sends the view using a redirect protocol,
such as the URL redirect. A controller command should return
a view command of this view type when a redirect protocol is
required. When a redirect protocol is used, it changes the URL
stacks in the browser. When a reload key is entered, the
redirected URL executes instead of the original URL.

Direct view command

This view command sends the response view directly to the
client.

Forward view command

This view command forwards the view request to another
Web component, such as a JSP template.

Command factory
In order to create new command objects, the caller of the command uses the
command factory. The command factory is a bean that is used to instantiate
commands. It is based on the factory design pattern, which defers
instantiation of an object away from the invoking class, to the factory class
that understands which implementation class to instantiate.

Chapter 2. Design patterns 23

The factory provides a smart way to instantiate new objects. In this case, the
command factory provides a way to determine the correct implementation
class when creating a new command object, based upon the individual store.
The command interface name and the particular store identifier are passed
into the new command object, upon instantiation.

There are two ways for the implementation class of a command to be
specified. A default implementation class can be specified directly in the code
for the command interface, using the defaultCommandClassName variable. For
example, the following code exists in the CategoryDisplayCmd interface:
String defaultCommandClassName =

"com.ibm.commerce.catalog.commands.CategoryDisplayCmdImpl"

The second way to specify the implementation class is to use the WebSphere
Commerce command registry. The command registry should always be used
when the implementation class varies from one store to another. More
information about the command registry can be found on page 26.

In the case where a default implementation class is specified in the code for
the interface and a different implementation class is specified in the command
registry, the command registry takes precedence.

The syntax for using the command factory is as follows:
cmd = CommandFactory.createCommand(interfaceName, commandContext.getStoreId())

where interfaceName is the interface name for the new command bean and
the getStoreId method determines the store for which the command is to be
used.

Note: The syntax for using the command factory to create business policy
commands is different from the preceding code snippet. For more
information about using the command factory to create business policy
commands, refer to “Invoking the new business policy” on page 173.

Command flow
This section provides an overview of the logical flow between commands and
the WebSphere Commerce database. The following diagram and descriptions
depict this flow.

24 Programmer’s Guide

When the Web controller receives a request, it determines whether the request
requires the invocation of a controller command or a view command. In either
case, the Web controller also determines the implementation class for the
command, and then invokes it.

First examine the left side of the diagram. Since controller commands
encapsulate the logic for a business process, they frequently invoke individual
task commands to perform specific units of work in the business process.

Web controller

Task command

Access
bean

Entity
bean

Entity
bean

View command

JSP template

Access
bean

Data
bean

extends

invokes

invokes

invokes invokes

invokes

invokes

reads/
writes data

reads/
writes data

invokes

returns view name

Controller
command

WebSphere
Commerce database

Figure 8.

Chapter 2. Design patterns 25

Access beans are invoked when information in the database must be retrieved
or updated. Either a task or controller command can invoke access beans.
Requests then flow from access beans to entity beans that can read from, and
write to, the WebSphere Commerce database.

Now examine the right side of the diagram. A view command is invoked by
the Web controller, either when a controller command has completed
processing and it returns the name of a view command to invoke, or when an
error occurs and an error view must be displayed.

View commands typically invoke a JSP template to display the response to the
client. Within the JSP template, data beans are used to populate dynamic
information onto the page. Data beans are activated by the data bean
manager. The data bean (which extends from an access bean) invokes its
corresponding entity bean. When accessed indirectly from a JSP template, an
entity bean typically retrieves information from the database (rather than
writing information to the database).

Command registration framework
WebSphere Commerce controller and task commands are registered in the
command registry. The following three tables comprise the command registry:
v URLREG
v CMDREG
v VIEWREG

Note: Business This section does not apply to the registration of business
policy commands. For information about registering new business
policy commands, refer to “Registering the new business policy and
business policy command” on page 157.

URLREG table
The URLREG table maps URIs (Universal Resource Indicator) to controller
command interfaces. URIs provide a simple and extensible mechanism for
resource identification. A URI is a relatively short string of characters used to
identify an abstract or physical resource. In WebSphere Commerce, the URI
contains only command information. In the following URL, the URI section is
shown in bold:
http://hostname/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&catalogId=catalog_Id&langId=-1

While there is a one-to-one mapping between a URI and an interface name,
each store can specify whether HTTPS or AUTHENTICATION is required for
the command. For each inbound URL request, the Web controller looks up the

26 Programmer’s Guide

interface name for the controller command and then uses that name to
determine the correct implementation class, as registered in the CMDREG
table.

The following table describes information contained in the URLREG database
table.

Column name Description Comments

URL URI name For example MyNewCommand or
ProductDisplay

STOREENT_ID Store entity identifier This can be set to 0 to use the
command for all stores, or to
a unique store identifier to
indicate that the command is
used only for a particular
store.

INTERFACENAME Controller command interface
name

For example
com.ibm.commerce.catalog.
commands.GetProductDisplay.
TemplateCmd

HTTPS Secure HTTP required for this
URL request

Use 1 when HTTPS is
required and 0 when it is not.

DESCRIPTION Description of URI For example, This command is
used for testing purposes.

AUTHENTICATED User log on is required for
this URL request

Use 1 when authentication is
required and 0 when it is not.

INTERNAL Indicates whether or not the
command is internal to
WebSphere Commerce

Use 1 when the command is
internal and 0 when it is
external.

When the Web controller receives a URL request, it retrieves the interface
name for the requested controller command and uses it to look up the
implementation class name from the CMDREG table. It also determines if
HTTPS is required for the URL request by checking the HTTPS column in the
URLREG table.

Only commands that are invoked by way of URL requests need to be
registered in the URLREG table. Therefore, only controller commands must be
registered here, not task or view commands.

The following SQL statement creates an entry for MyNewControllerCommand
which is used by a particular store (whose store identifier is 5):

Chapter 2. Design patterns 27

insert into URLREG (URL, STOREENT_ID, INTERFACENAME, HTTPS,
DESCRIPTION, AUTHENTICATED) values (’MyNewControllerCommand’,
5,’com.ibm.commerce.commands.MyNewControllerCommand’,0,
’This is a test command.’,null)

The generic syntax for the insert statement is as follows:
insert into table_name (column_name1,column_name2, ... ,column_namen)
values (column1_value,column2_value,...,columnn_value)

String values should be enclosed in single quotes.

CMDREG table
CMDREG is the command registration table. This table provides a mechanism
for mapping the command interface to its implementation class. Multiple
implementations of an interface allow for command customization on a per
store basis.

Only controller commands and task commands are registered in the CMDREG
table. View commands are registered in the VIEWREG table.

The following describes information contained in the CMDREG database
table.

Column name Description Comments

STOREENT_ID Store entity identifier This can be set to 0 to use the
command for all stores, or to
a unique store identifier to
indicate that the command is
used only for a particular
store.

INTERFACENAME Command interface name This defines the interface; use
the same name as you did in
the URLREG table.

DESCRIPTION Description of this command For example, This command is
used for testing purposes.

CLASSNAME Command implementation
class name

Typically the interface name
with ″Impl″ appended to end.

PROPERTIES Default name-value pairs set
as input properties to the
command

Format is same as URL query
string. For example
″parm1=val1&parm2=val2″

LASTUPDATE Last update on this command
entry

TARGET Command target name. This
is where the command is
actually executed.

Only local target is supported.

28 Programmer’s Guide

In general, when you create a new controller or task command, you should
create corresponding entry in the CMDREG table. For example, the following
SQL statement creates an entry for MyNewCommand which is used by a
particular store (whose store identifier is 5):
insert into CMDREG (STOREENT_ID, INTERFACENAME, DESCRIPTION, CLASSNAME,
PROPERTIES, LASTUPDATE, TARGET) values
(5,’com.ibm.commerce.catalog.commands.MyNewCommand’, ’This is a test
command’, ’com.ibm.commerce.catalog.commands.MyNewCommandImpl’,
’myDefaulParm1=myDefaultVal1’, ’0000-12-01’, ’Local’)

The generic syntax for the insert statement is as follows:
insert into table_name (column_name1,column_name2, ... ,column_namen)
values (column1_value,column2_value,...,columnn_value)

String values should be enclosed in single quotes.

If the command you are writing always uses the same implementation class,
you do not necessarily have to register the command in the CMDREG table.
In this case, you can use the defaultCommandClassName attribute in the
interface to specify the implementation class. For example, in the code for the
interface, you would include the following:
String defaultCommandClassName =

"com.ibm.commerce.command.MyNewCommandImpl"

If you specify the implementation class in this manner, you cannot pass
default properties to the implementation class and the same implementation
class must be used for all stores.

Example of a registered controller command
Consider a scenario in which your site has two stores: StoreA and StoreB.
Each store has different security requirements for the MyUrl controller
command as well as different implementations of the command. This section
shows how the command registry is used to enable this customization.

The following table shows the entries for StoreA and StoreB in the URLREG
table:

Column name Entry for StoreA Entry for StoreB

URL MyUrl MyUrl

STOREENT_ID 11 22

INTERFACENAME com.ibm.commerce.
mycommands.myUrl

com.ibm.commerce.
mycommands.myUrl

HTTPS 1 1

Chapter 2. Design patterns 29

Column name Entry for StoreA Entry for StoreB

DESCRIPTION Example entry in the
URLREG table.

Example entry in the URLREG
table.

AUTHENTICATED 1 0

INTERNAL null null

Note: The spaces in values for INTERFACENAME are for display purposes
only. Each value is actually one continuous string.

Based upon entries in the URLREG table, the Web controller determines that
the interface name for the MyURL URI is
com.ibm.commerce.mycommands.MyUrl. It also determines that StoreA
requires the command to be executed using both HTTPS and authentication,
but StoreB requires HTTPS only. The values for HTTPS and authentication are
used by the Web controller, not by the interface.

The following diagram shows this flow:

The following table shows the entries in the CMDREG table. Only columns
required for the purpose of this example are displayed:

Column name Entry for StoreA Entry for StoreB

STOREENT_ID 11 22

INTERFACENAME com.ibm.commerce.
mycommands.myUrl

com.ibm.commerce.
mycommands.myUrl

URI

MyUrl

Interface

com.ibm.commerce.mycommands.MyUrl
used for

StoreA
StoreB

Figure 9.

30 Programmer’s Guide

Column name Entry for StoreA Entry for StoreB

CLASSNAME com.ibm.commerce.
mycommands.
myUrlStoreAImpl

com.ibm.commerce.
mycommands.myUrlStoreBImpl

Note: The spaces in values for INTERFACENAME and CLASSNAME are for
display purposes only. Each value is actually one continuous string.

Based upon entries in the CMDREG table, the Web controller determines that
for StoreA, the implementation class for the
com.ibm.commerce.mycommands.MyUrl interface is
com.ibm.commerce.mycommands.MyUrlStoreAImpl. It also determines for
StoreB, the implementation class for the same interface is
com.ibm.commerce.mycommands.MyUrlStoreBImpl. The following diagram
shows this flow:

URI

Implementation class

Implementation class

Interface

used for
StoreA
StoreB

StoreA

StoreB

Figure 10.

Chapter 2. Design patterns 31

VIEWREG table
The VIEWREG table allows registration of device-specific view command
implementations. Using this table, multiple implementations of a view can be
registered. The command framework is then capable of returning different
views to various clients.

When a view command name is returned from a controller command or
specified in an exception, the Web controller determines the view command
class from the VIEWREG table. Multiple view command names can be
mapped to the same implementation class.

Column name Description Comments

VIEWNAME View name For example, AddressForm

DEVICEFMT_ID Device type identifier Available options include:

v BROWSER (default value)

v I_MODE

v E-mail

v MQXML

v MQNC

STOREENT_ID Store entity identifier This can be set to 0 to use the
command for all stores, or to
a unique store identifier to
indicate that the command is
used only for a particular
store.

INTERFACENAME View command interface
name

Default options are
ForwardView, DirectView and
RedirectView.

CLASSNAME View command
implementation class name

Can use the default
implementation.

PROPERTIES Default name-value pairs set
as input properties to the
command

If the same page is always
displayed, set the JSP file
name in this property
(docname=jsp_name.jsp).
If the same JSP template is
used for all stores, set
storeDir=no to prevent a
store specific directory from
being used.
If a generic user can invoke
the command, set
isGeneric=true.

DESCRIPTION Description of this command

32 Programmer’s Guide

Column name Description Comments

HTTPS Secure HTTP required for this
URL request

Use 1 when HTTPS is
required and 0 when it is not.

LASTUPDATE Last update on this entry

INTERNAL Indicates whether or not the
command is internal to
WebSphere Commerce

Use 1 when the command is
internal and 0 when it is
external.

When you create a new view command, you may need to create a
corresponding entry in the VIEWREG table. If one of the following conditions
is met, the view command must be registered in the VIEWREG table:
v The view command is executed under access control
v There are multiple implementations of the view command
v Properties are set in the PROPERTIES column

Registered view commands can either be accessed through the command
registry using the view name, or directly by using the actual display file
name. Views that are not registered in the VIEWREG table can only be
accessed when a client uses the actual display file name.

Consider the example of a view named MyView, with the VIEWREG entry as
follows:

Column name Entry

VIEWNAME MyView

DEVICEFMT_ID BROWSER

STOREENT_ID 0

INTERFACENAME com.ibm.commerce.commands.ForwardViewCommand

CLASSNAME com.ibm.commerce.commands.HTTPForwardViewCommandImp

PROPERTIES docname=MyView.jsp

DESCRIPTION An example for calling a JSP template using either the
view name or directly from a URL.

HTTPS 0

LASTUPDATE 2000–11–30

INTERNAL 0

Since MyView is a registered view, a client can access the view either by using
the command name, or by substituting the actual display file name for the
command name. Using the view name, a sample URL is:

Chapter 2. Design patterns 33

http://hostname.com/webapp/wcs/stores/servlet/MyView

and using the file name, a sample URL is:
http://hostname.com/webapp/wcs/stores/servlet/MyView.jsp

If there is a possibility that a client will invoke a registered view directly
(using the display file name), you must register the command using the same
name for the view as the actual display file name, as shown in this example
(MyView and MyView.jsp).

A view that is not registered in the table can only be invoked using the
display file name. Therefore, if there is an unregistered view that uses the file
MyUnregisteredView.jsp, the URL to access this view is as follows:
http://hostname.com/webapp/wcs/stores/servlet/MyUnregisteredView.jsp

The following example SQL statement creates an entry for
MyNewViewCommand which is used by one particular store:
insert into VIEWREG (VIEWNAME, DEVICEFMT_ID, STOREENT_ID,
INTERFACENAME, CLASSNAME, PROPERTIES, DESCRIPTION,HTTPS, LASTUPDATE,
INTERNAL) values (’MyNewViewCommand’, ’BROWSER’, 5,
’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commmerce.command.HttpForwardViewCommandImpl’,
’docname=MyNewViewCommand.jsp’, ’A test view command.’, 0,
’0000-12-01’, 0)

The following table provides another sample VIEWREG table with key
information:

COMMAND -
NAME

DEVICE -
FMT_ID

INTERFACE
- NAME

CLASSNAME PROPERTIES

ProductDisplayView BROWSER Forward
View
Command

HttpForwardView
CommandImpl

InterestItemAddView BROWSER Redirect
View
Command

HttpRedirectView
CommandImpl

docname
=item.jsp

InterestItemDeleteViewBROWSER Redirect
View
Command

HttpRedirectView
CommandImpl

docname
=item.jsp

GenericApplication
Error

BROWSER Redirect
View
Command

HttpRedirectView
CommandImpl

docname
=usererr.jsp

GenericSystemError BROWSER Redirect
View
Command

HttpRedirectView
CommandImpl

docname
=syserr.jsp

34 Programmer’s Guide

COMMAND -
NAME

DEVICE -
FMT_ID

INTERFACE
- NAME

CLASSNAME PROPERTIES

Logon BROWSER Forward
View
Command

HttpForwardView
CommandImpl

docname=
logon.jsp &
storeDir=no

Note: Any spaces in the values for COMMANDNAME, INTERFACENAME,
CLASSNAME and PROPERTIES are for display purposes only. Each
value is actually one continuous string. The hyphens in the column
names are also for display purposes.

The preceding table illustrates the following scenarios:
v The ProductDisplayView view name is returned to the Web controller by a

controller command (ProductDisplay in this case). The Web controller
determines the view command interface and class names using the
ProductDisplayView view command name and its device identifier. A view
command can have different implementation classes for different stores and
device identifiers. The interface name, however, should remain the same,
since it defines the view command type.

v The InterestItemAdd and InterestItemDelete commands return the
InterestItemAddView and InterestItemDeleteView view names to the Web
controller, respectively. Both commands require redirect views, therefore, the
view command interface name for both views is the
RedirectViewCommand. There is a common JSP template registered for
both views. The Web controller fetches the properties (docname=item.jsp)
and passes them to the view command (HttpRedirectViewCommandImpl).

v If a controller or task command throws an ECApplication exception for a
bad user parameter, the following may occur:
– If there is a view specified within the controller command that should be

called in the case of an application exception, the entry for that view is
retrieved from the VIEWREG table and processed accordingly.

– If a view is not specified, the GenericApplicationError command is called
and the JSP template registered in the database is displayed. Using the
preceding table as an example, this would result in the display of the
usererr.jsp template.

v If a controller or task command throws an ECSystem exception for a system
exception, the following may occur:
– If there is a view specified within the controller command that should be

called in the case of a system exception, the entry for that view is
retrieved from the VIEWREG table and processed accordingly.

Chapter 2. Design patterns 35

– If a view is not specified, the GenericSystemError command is called and
the JSP template registered in the database is displayed. Using the
preceding table as an example, this would result in the display of the
syserr.jsp template.

v Browser clients can invoke the logon page by entering the logon URL. Since
the storeDir property is set to “no”, store-specific information is not
included in the path for the JSP template. Hence, the same logon page is
displayed for customers at all stores.

Display design pattern

Display pages return a response to a client. Typically, display pages are
implemented as JSP templates (the recommended method), however, they can
be written directly as servlets.

In order to support multiple device types, a URL access to a view command
should use the view name, not the name of the actual JSP file.

The main rationale behind this level of indirection is that the JSP template
represents a view. The ability to select the appropriate view (for example,
based on locale, device type, or other data in the request context) is highly
desirable, especially since a single request often has multiple possible views.
Consider the example of two shoppers requesting the home page of a store,
one shopper using a typical Web browser and the other using a cellular
phone. Clearly, the same home page should not be displayed to each shopper.
It is the Web controller’s responsibility to accept the request, then based upon
information in the command registration framework, determine the view that
each shopper receives.

JSP templates and data beans
A data bean is a Java bean that is used within a JSP template to provide
dynamic content. A data bean normally provides a simple representation of a
WebSphere Commerce entity bean. The data bean encapsulates properties that
can be retrieved from or set within the entity bean. As such, the data been
simplifies the task of incorporating dynamic data into JSP templates.

A data bean has a BeanInfo class that defines the properties that can be used
on the display page. The BeanInfo class also enables the use of data beans in
multicultural sites by providing property names in all supported languages of
WebSphere Commerce.

A data bean is activated by the following call:
com.ibm.commerce.beans.DataBeanManager.activate(DataBean, HTTPServletRequest)

36 Programmer’s Guide

WebSphere Studio Page Designer generates the preceding line of code
automatically when a WebSphere Commerce data bean is inserted into a JSP
template.

Store developers should consider properties of the store and multicultural
enablement issues when developing JSP templates. For more information on
multicultural enablement, refer to the WebSphere Commerce online help.

JSP templates and data beans security consideration
A particular coding practice for the use of JSP templates and data beans
minimizes the chance for malicious users to access your database in an
unauthorized manner. Insert, select, update and delete parts of SQL
statements should be created at development time. Use parameter inserts to
gather run-time input information.

An example of using a parameter insert to collect run-time input information
follows:
select * from Order where owner =?

In contrast, you should avoid using input strings as a way to compose the
SQL statement. An example of using an input string follows:
select * from Order where owner = “input_string”

Types of data beans
A data bean is a Java bean that is mainly used to provide dynamic data in JSP
templates. There are two types of data beans: smart data beans and command
data beans.

A smart data bean uses a lazy fetch method to retrieve its own data. This type
of data bean can provide better performance in situations where not all data
from the access bean is required, since it retrieves data only as required. Smart
data beans that require access to the database should extend from the access
bean for the corresponding entity bean and implement the
com.ibm.commerce.SmartDataBean interface. For example, the ProductData
data bean extends the ProductAccessBean access bean, which corresponds to
the Product entity bean.

Some smart data beans do not require database access. For example, the
PropertyResource smart data bean retrieves data from a resource bundle,
rather than the database. When database access is not required, the smart data
bean should extend the SmartDataBeanImpl class.

A command data bean relies on a command to retrieve its data and is a more
lightweight data bean. The command retrieves all attributes for the data bean
at once, regardless of whether the JSP template requires them. As a result, for
JSP templates that use only a selection of attributes from the data bean, a

Chapter 2. Design patterns 37

command data bean may be costly in terms of performance time. For JSP
templates that require most or all attributes, the command data bean is very
convenient.

Command data beans can also extend from their corresponding access beans
and implement the com.ibm.commerce.CommandDataBean interface.

Data bean interfaces
Data beans implement one or all of the following Java interfaces:
v com.ibm.commerce.SmartDataBean.
v com.ibm.commerce.CommandDataBean
v com.ibm.commerce.InputDataBean (optional)

Each Java interface describes the source of data from which a data bean is
populated. By implementing multiple interfaces, the data bean can access data
from a variety of sources. More information about each of the interfaces is
provided below.

SmartDataBean interface: A data bean implementing the SmartDataBean
interface can retrieve its own data, without an associated data bean command.
A smart data bean usually extends from the access bean of a corresponding
entity bean. When a smart data bean is activated, the data bean manager
invokes the data bean’s populate method. Using the populate method, the
data bean can retrieve all attributes, except attributes from associated objects.
For example, if the data bean extends from an access bean class for an entity
bean, the data bean invokes the refreshCopyHelper method. All the attributes
from the corresponding entity bean are populated into the smart data bean
automatically. However, if the entity bean has associated objects, the attributes
from those objects are not retrieved. The main advantages of using smart data
beans are:
v Implementation is simple and there is no need to write a data bean

command.
v When new fields are added to the entity bean, changes in the data bean are

not required. After the entity bean has been modified, the access bean must
be regenerated (using the tools in VisualAge for Java). As soon as the access
been has been regenerated, all the new attributes are automatically available
to the smart data bean.

v Entity beans often contain attributes representing associated objects. For
performance reasons, the smart data bean does not automatically retrieve
these attributes. Instead, it is preferable to delay retrieval of these attributes
until they are required, as shown in the following diagram:

38 Programmer’s Guide

For more information about implementing a lazy fetch retrieval, refer to
“Lazy fetch data retrieval” on page 41.

CommandDataBean interface: A data bean implementing the
CommandDataBean interface retrieves data from a data bean command. A
data bean of this type is a lightweight object; it relies on a data bean
command to populate its data. The data bean must implement the
getCommandInterfaceName() method (as defined by the
com.ibm.commerce.CommandDataBean interface) which returns the interface
name of the data bean command.

InputDataBean interface: A data bean implementing the InputDataBean
interface retrieves data from the URL parameters or attributes set by the view
command.

Attributes defined in this interface can be used as primary key fields to fetch
additional data. When a JSP template is invoked, the generated JSP servlet
code populates all the attributes that match the URL parameters, and then

Smart data bean Access bean

Entity bean B

A1
A2
get B (using

lazy fetch)

get A1
get A2

B1
B2

get B
automatic
retrieval of
A1 and A2

Table A
Table B
(associated)

Key BKey B B1B1 B2B2

Foreign key relationship

Entity bean A

A1
A2

B

Figure 11.

Chapter 2. Design patterns 39

activates the data bean by passing the data bean to the data bean manager.
The data bean manager then invokes the data bean’s setRequestProperties()
method (as defined by the com.ibm.commerce.InputDataBean interface) to
pass all the attributes set by the view command. It should be noted that
WebSphere Studio generates the following code for each data bean that is
inserted into pages using Page Designer:
com.ibm.commerce.beans.DataBeanManager.activate(DataBean, HTTPServletRequest);

BeanInfo class
A data bean is not complete without a BeanInfo class that implements the
java.lang.Object.BeanInfo interface. The BeanInfo class is used to provide
explicit information about the methods and properties of the data bean. It can
be used to hide public run-time methods in the data bean implementation
class from the Web designer, or to set the appropriate display string for each
of the data bean’s attributes.

For more information on implementing a BeanInfo class, refer to the
JavaBeans specification from Sun Microsystems.

Data bean activation
Data beans can be activated using either the activate or silentActivate
methods that are found in the com.ibm.commerce.beans.DataBeanManager
class. The activate method is a full activation method in which the activation
event is only successful if all attributes are available. If even one attribute is
unavailable, an exception is thrown for the whole activation process.

The silentActivate method does not throw exceptions when individual
attributes are unavailable.

Invoking controller commands from within a JSP template
Although invoking controller commands from with a JSP template is not
consistent with separating logic from display, you may encounter a situation
in which this is required. If so, the ControllerCommandInvokerDataBean can be
used for this purpose.

Using this data bean, you can specify the interface name of the command to
be invoked, or you can directly set the command name to be invoked. You
can also set the request properties for the command.

When this data bean is activated by the data bean manager, the controller
command is executed and the response properties are available to the JSP
template.

Once the controller command has executed, you can execute the view.

40 Programmer’s Guide

Lazy fetch data retrieval
When a data bean is activated, it can be populated by a data bean command
or by the data bean’s populate() method. The attributes that are retrieved
come from the data bean’s corresponding entity bean. An entity bean may
also have associated objects, which themselves, have a number of attributes.

If, upon activation, the attributes from all the associated objects were
automatically retrieved, a performance problem may be encountered.
Performance may degrade as the number of associated objects increase.

Consider a product data bean that contains a large number of cross-sell,
up-sell or accessory products (associated objects). It is possible to populate all
associated objects as soon as the product data bean is activated. However,
populating in this manner may require multiple database queries. If not all
attributes are required by the page, multiple database queries may be
inefficient.

In general, not all attributes are required for a page, therefore, a better design
pattern is to perform a lazy fetch as illustrated below:
getCrossSellProducts () {

if (crossSellDataBeans == null)
crossSellDataBeans= getCrossSellDataBeans();

return crossSellDataBean;
}

Setting JSP attributes - overview

The WebSphere Commerce program model promotes the MVC design pattern.
As such, the presentation for the result of a URL request is separated from
controller and task commands. These commands are device independent.
They implement business logic and produce data to be returned to the client,
without having information about the client. Conversely, a view command is
device specific.

While the controller and task commands do not directly compose the view,
they do pass information to the view. It is important to understand how
information is passed to the view. The following diagram demonstrates how
properties are passed between the Web controller, command registry,
controller command, and view command:

Chapter 2. Design patterns 41

The preceding diagram shows the following interactions:
v The Web controller merges the input properties from the URL parameters

(CCPu) and the entry in the CMDREG table for the controller command
(CCPd). This creates CCPi.

v The Web controller passes the merged properties (CCPi) to the controller
command and executes the controller command.

HTTP
Web controller

Controller
command

HTTP
forward view
command

JSP
template

URL: http://hostname.com/NewCommand?storeID=1&....

CCPu: storeID=1&...

CCPi = merge(CCPd, CCPu)

setInputProperties(CCPi)

execute()

execute()

CCPo = getOutputProperties()

CCPov = getViewInputProperties()

VPi = merge(VPd, CCPo, CCPov)

setInputProperties(VPi) VPi

INTERFACENAME

CMREG

com.ibm.xxx. NewCommand

PROPERTIES

parm1=1&parm2=2

CCPd: parm1=1&parm2=2

INTERFACENAME

VIEWREG
PROPERTIES

com.ibm.xxx.NewView docName=NewView.jsp

VPd: docName=NewView.jsp

Figure 12.

42 Programmer’s Guide

v The controller command sets output properties, as CCPo. These are the
output properties produced by the command itself. One of the output
properties, viewCommandName, is set to the desired view command name.
These properties are retrieved by the Web controller using a get method.

v The controller command sets another set of output properties, as CCPov. By
default, these are set to the original merged input properties (CCPi). It is
possible to customize these properties. For example, it may not be necessary
to pass all input parameters to the view command.

v The Web controller merges the three sets of properties, CCPo, CCPov, and
VPd (the properties that are registered in the VIEWREG table) into the
input properties for the view command (VPi).

v The Web controller sets the merged properties, VPi, and executes the view
command.

v The view command sets the attributes to the JSP template from the input
properties.

When writing new commands, you do not have explicitly perform the merge
of properties. The abstract command classes include a mergeProperties
method. For more information about this method, refer to the “Reference”
section of the WebSphere Commerce online help.

Required property settings
A controller command must set the following properties for each type of view
command. If the properties are not set by the command, they must be defined
in the VIEWREG table.
v If using the ForwardView command, set docname = view_file_name where

view_file_name is the name of the display template. For example, docname
= productDisplay.jsp.

v If using the DirectView command, do one of the following:
– Set textDocument = xxx where xxx is a java.io.InputStream object that

contains the document in text form
– Set rawDocument = yyy where yyy is a java.io.InputStream object that

contains the document in binary form

When using the DirectView command, it is optional to set contentType =
ttt where tttis the document content type

v If using the RedirectView command, set url = uuu where uuu is the redirect
URL.

Chapter 2. Design patterns 43

44 Programmer’s Guide

Chapter 3. Persistent object model

WebSphere Commerce deals with a large amount of persistent data. There are
more than 520 tables defined in the current database schema. Even with this
extensive schema, you may need to extend or customize the database schema
for your particular business needs.

WebSphere Commerce uses entity beans that are based on the Enterprise
JavaBeans (EJBs) component architecture as the persistent object layer. These
entity beans represent WebSphere Commerce data in a manner that models
concepts and objects in the commerce domain. This persistence layer provides
an extensible framework.

VisualAge for Java, Enterprise Edition provides sophisticated EJB tooling and
a unit test environment that supports development for this framework.

Implementation of WebSphere Commerce entity beans

WebSphere Commerce entity beans - overview
As mentioned previously, the persistence layer within the WebSphere
Commerce architecture is implemented according to the EJB component
architecture. The EJB architecture defines two types of enterprise beans: entity
beans and session beans. Entity beans are further divided into
container-managed persistence (CMP) beans and bean-managed persistence
(BMP) beans.

Most of the WebSphere Commerce entity beans are CMP entity beans. A small
number of stateless session beans are used to handle intensive database
operations, such as performing a sum of all the rows in a particular column.
One advantage of using CMP entity beans is that developers can utilize the
EJB tools provided in VisualAge for Java, Enterprise Edition. These tools allow
developers to define Java objects and their database table mappings. The tools
automatically generate the required persisters for the entity beans. Persisters
are Java objects that persist Java fields to the database and populate Java
fields with data from the database.

VisualAge for Java provides two extensions to the current EJB specifications:
EJB inheritance and association. EJB inheritance allows an enterprise bean to
inherit properties, methods, and method-level control descriptor attributes
from another enterprise bean that resides in the same group. An association is
a relationship that exists between two CMP entity beans.

© Copyright IBM Corp. 2000, 2002 45

Some of the WebSphere Commerce entity beans exploit the EJB inheritance
feature. The WebSphere Commerce entity beans do not use the associations
feature provided by VisualAge for Java. When developing your own entity
beans, it is recommended that you do not use VisualAge for Java’s association
feature. This recommendation is made in order to minimize complexity in the
object model. Rather than using the association feature provided by VisualAge
for Java, an object relationship between enterprise beans can be established by
adding explicit getter methods in the enterprise beans.

WebSphere Commerce provides two sets of enterprise beans: private and
public. Private enterprise beans are used by the WebSphere Commerce
run-time environment and tools. You must not use or modify these beans.

Public enterprise beans, on the other hand, are used by commerce
applications, and can be both used and extended. These public enterprise
beans are organized into the following EJB groups:
v WCSActrlEJBGroup
v WCSApproval
v WCSAuction
v WCSCatalog
v WCSCommon
v WCSContract
v WCSCoupon
v WCSFulfillment
v WCSInventory
v WCSMessageExtensions
v WCSOrder
v WCSOrderManagement
v WCSOrderStatus
v WCSPayment
v WCSPVCDevices
v WCSTaxation
v WCSUserTraffic
v WCSUser
v WCSUTF

Some of the EJB groups listed above contain session beans. In order to
simplify migration in the future, you should not modify a session bean class.
If required, you can create a new session bean in a new EJB group. For more
information on creating new session beans, refer to “Writing new session
beans” on page 71.

46 Programmer’s Guide

Deployment descriptors for WebSphere Commerce enterprise beans
A deployment descriptor is a special class that is serialized and that contains
run-time settings for an enterprise bean. The deployment descriptors for
WebSphere Commerce enterprise beans are set in a particular way, and should
not be modified.

When creating new enterprise beans (entity or session beans), set the
deployment descriptors within the EJB Development Environment (of
VisualAge for Java) by right-clicking the bean and selecting Properties.
Deployment descriptors for new enterprise beans should follow the same
convention as those for the WebSphere Commerce enterprise beans. In
particular, ensure you set the attributes as follows:

Attribute Value

Transaction Attribute TX_REQUIRED

Isolation Level TRANSACTION_READ_COMMITTED

Run-As Mode SYSTEM_IDENTITY or CLIENT_IDENTITY

Reentrant Ensure this is not selected.

An enterprise bean often contains methods that only read information from
the database, but never perform database updates. These methods are known
as read-only methods. All read-only methods should be explicitly marked as
such (right-click the method and select EJB Method Attributes > Read-only
Method). If read-only methods are not marked in this manner, the EJB
container unnecessarily attempts to update the database at the end of a
transaction and causes a transaction rollback error in the read-only
transaction. This causes performance problems.

Isolation levels
The transaction isolation level used for the WebSphere Commerce enterprise
beans inside of VisualAge for Java is TRANSACTION_READ_COMMITTED. Note that
there is a difference between the implementation of this isolation level for the
JDBC driver for DB2 and the JDBC driver for Oracle. As such the transaction
isolation level that is used when deploying to the WebSphere Application
Server environment varies depending on which database is being used.

The isolation level used for DB2 databases when operating outside of the
WebSphere Test Environment is TRANSACTION_REPEATABLE_READ. The isolation
level used for Oracle databases when operating outside of the WebSphere Test
Environment is TRANSACTION_READ_COMMITTED.

If you are deploying to a DB2 database, you do not need to manually change
the transaction isolation level, it is changed during the step in deployment
when you issue the modifyIsolationLevel command.

Chapter 3. Persistent object model 47

The following table presents a mapping of the DB2 and Oracle transaction
isolation levels to their corresponding JDBC transaction isolation level.

JDBC DB2 Oracle

Read Uncommitted Uncommitted Read Read Uncommitted

Read Committed Cursor Stability (Not applicable)

Repeatable Read Read Stability Read Committed

Serializable Repeatable Read Serializable

None (Not applicable) (Not applicable)

For the Cursor Stability transaction isolation level in DB2, only rows which
have been updated during the given transaction will be locked exclusively. If
no column of a given row is updated, even though it is part of the result set
which got returned from a SQL statement, the row lock of that particular row
will be released once the cursor has moved off into another row. In some
situations, such as updating inventory, this may not be a desired behavior.
Therefore, by changing the transaction isolation level to Read Stability in DB2,
with a slight tradeoff in concurrency, data integrity can be greatly improved.

In the case of Oracle where only the Read Committed transaction isolation
level, or JDBC Repeatable Read equivalent, is available, the actual
implementation is done in a way which achieves the behavior most similar to
the Repeatable Read transaction isolation level in DB2.

Extending the WebSphere Commerce object model
The WebSphere Commerce object model can be extended in the following
ways:
v Extend the WebSphere Commerce’s public enterprise beans
v Write a new entity bean
v Write a new stateless session bean

Details about how to perform these extensions are contained in the following
sections.

Object model extension methodologies
Application requirements may lead to you extend the existing WebSphere
Commerce object model. One example of such a requirement is adding
additional attributes to your application. This can be accomplished by one of
the following ways:

Without modifying an existing WebSphere Commerce public entity bean
Create a new database table, then create a new entity bean for that
table. Add fields and methods to the entity bean to manipulate the
new attribute, as required. Generate deployed code and an access

48 Programmer’s Guide

bean for the new entity bean. When the application requires the new
attribute, it instantiates an access bean object and uses its methods to
retrieve, set or manipulate the attribute.

By modifying an existing WebSphere Commerce public entity bean
Create a new database table, and create a table join between the new
table and the existing table that corresponds to the existing enterprise
bean that you are modifying. Create new fields in the existing
WebSphere Commerce public entity bean and map the fields to their
corresponding columns in the new table, using a secondary table map.
Add any methods required. Regenerate the deployed code and access
bean for the existing entity bean. The new attributes are available
when the application instantiates the access bean object.

There are trade-offs between these two approaches. In general, the trade-offs
relate to performance and effort for code maintenance.

Extension example: Consider an example in which your application requires
you to capture the type of home that a customer has. You create a table called
USERRES that contains the customer’s ID and type of residence, where
residence type (resType) may be a freehold home, a condominium or an
apartment. This type of information is demographic information, and as such,
is related to the existing Commerce Suite USERDEMO table. In examining the
WebSphere Commerce code repository, you find that the WCSUser EJB group
contains a ″Demographics″ enterprise bean. This bean has the getters and
setters for demographic information stored in the USERDEMO table.

To perform your customization, there are two options. You can either create a
new entity bean that interacts with the USERRES table, or you can add a new
field (plus appropriate getter and setter methods) to the Demographics bean.

Using the first approach (creating entirely new code), you create a new
Userres entity bean and map its fields to the columns of the USERRES table.
When the application requires the customer’s residence type, it must
instantiate a Userres access bean object and retrieve the data. If the application
requires other demographic information at the same time, it must also
instantiate a Demographics access bean object and retrieve any other required
attributes. Any parts of application logic that attempt to retrieve a complete
set of demographic information for a customer must be modified to
instantiate the new access bean as well as the original one. The following
diagram displays this approach to extending the object model:

Chapter 3. Persistent object model 49

From a display template perspective, a data bean must be able to access the
new attribute, so that the information is available to JSP templates. In order to
present a unified view to the Web developer creating the JSP templates, you
should create a new data bean that extends the access bean for the original,
existing entity bean. The data bean should also use delegation to populate the
attributes from the new access bean. The following diagram displays this data
bean implementation scenario:

Using the second approach (modifying existing code), you add a new field to
the Demographics entity bean and create a secondary table map between the

Demographics
entity bean

Userres
entity bean

USERDEMO table

USERRES table

Figure 13.

DemographicsAccessBean

DemographicsAccessBean
• Inherits attributes from its superclass
• Must instantiate the UserresAccessBean
and populate the resType field

UserresAccessBean

extends

Figure 14.

50 Programmer’s Guide

new field and the appropriate column in the USERRES table. When the
application requires the customer’s residence type, it instantiates a
Demographics access bean object and retrieves the residence type. If the
application requires any other demographic information about the customer, it
is available in the same call to the bean. The following diagram displays this
approach to for enterprise bean modification:

From a display template perspective, the new attribute (resType) is
automatically available in the data bean, as soon as the
DemographicsAccessBean is regenerated.

Note that when you are extending the object model, you must not add new
columns to existing WebSphere Commerce database tables. You must create a
new table for the new attribute. If you do attempt to add new columns to
existing tables, the new attribute will be lost when you migrate to future
releases of WebSphere Commerce.

Performance and code maintenance implications: The second approach has
better run-time performance. This is a result of the fact that getting or setting
the new attribute only requires the instantiation of a single entity bean and a
single fetch is used to retrieve all required attributes.

Due to the fact that the second approach modifies existing WebSphere
Commerce code, a migration issue arises when a new WebSphere Commerce
code repository is released. You must merge your customized code with the
new code, but when importing the new repository of code, the mapping

Modified Demographics
entity bean with new
CMP field for resType

USERDEMO table USERRES table

foreign key

get and set
attributes

Figure 15.

Chapter 3. Persistent object model 51

information between the fields you added to the enterprise bean and the new
table is not preserved. As a result, when migrating to a new release of the
WebSphere Commerce code repository, the following steps must be
performed:
1. Version your customized EJB code.
2. Import the new version of WebSphere Commerce code.
3. Using the tools in VisualAge for Java, compare the customized version of

code to the new release of WebSphere Commerce code. Merge your
customized code back into your workspace.

4. Manually remap any attributes you added to WebSphere Commerce
public enterprise beans to the appropriate columns in your database.

5. Regenerate deployed code and access beans for the enterprise beans you
modified in step 4.

In order to make this migration simpler, it is important to fully document
your object model extensions at development time.

You may select to use a mix of the two approaches when making many
extensions to the object model. You can use the first approach for areas of the
system that are less susceptible to a degradation in performance and use the
second approach were performance is an issue. In this manner, you can
minimize effort for future migration, while still maintaining good system
performance levels.

Recommended use of session beans
One of the strengths of WebSphere Commerce stems from its ability to take
advantage of container-managed persistence (CMP) entity beans. CMP entity
beans are distributed, persistent, transactional, server-side Java components
that can be generated by the tooling provided within VisualAge for Java. In
many cases, CMP entity beans are an extremely good choice for object
persistence and they can be made to work at least as efficiently or even more
efficiently than other object-to-relational mapping options. For these reasons,
WebSphere Commerce has implemented core commerce objects using CMP
entity beans.

There are, however, some situations in which it is recommended to use a
session bean JDBC helper. These situations include the following:
v A case where a query returns a large result set. This is referred to as the

large result set case.
v A case where a query retrieves data from several tables. This is referred to

as the aggregrate entity case.
v A case where a SQL statement performs a database intensive operation.

This is referred to as the arbitrary SQL case.

More details are provided in the following sections.

52 Programmer’s Guide

Note that if the session bean is being used as a JDBC wrapper to retrieve
information from the database, it becomes more difficult to implement
resource-level access control. When a session bean is used in this manner, the
developer of the session bean must add the appropriate “where” clauses to the
“select” statement in order to prevent unauthorized users from accessing
resources.

Large result set case: There are cases where a query returns a large result set
and the data retrieved are mainly for read or display purpose. In this case, it
is better use a stateless session bean and within that session bean, create a
finder method that performs the same functions as a finder method in an
entity bean. That is, the finder method in the stateless session bean should do
the following:
v Perform a SQL select statement
v For each row that is fetched, instantiate an access bean
v For each column retrieved, set the corresponding attributes in the access

bean

When the access bean is returned, the command is unaware of whether the
access bean was returned by a finder method in a session bean or from a
finder method in an entity bean. As a result, using a finder method in a
session bean does not cause any change to the programming model. Only the
calling command is aware of whether it is invoking a finder method in a
session bean or in an entity bean. It is transparent to all other parts of the
programming model.

Aggregate entity case: In this case, one view combines parts of several
objects and a single display page is populated with pieces of information that
come from several database tables. For example, consider the concept of “My
Account”. This may consist of information from table of customer information
(for example, the customer name, age and customer ID) and information from
an address table (for example, an address made up of a street and city).

It is possible to construct a simple SQL statement to retrieve all of the
information from the various tables by performing a SQL join. This can be
referred to as performing a “deep fetch”. The following is an example of a
SQL select statement for the “My Account” example, where the CUSTOMER
table is T1 and the ADDRESS table is T2:
select T1.NAME, T1.AGE, T2.STREET, T2.CITY

from CUSTOMER T1, ADDRESS T2
where (T1.ID=? and T1.ID=T2.ID)

The EJB tooling in VisualAge for Java does not support this notion of a deep
fetch. Instead, it does a lazy fetch that results in a SQL select for each
associated object. This is not the preferred method for retrieving this type of
information.

Chapter 3. Persistent object model 53

In order to perform a deep fetch, it is recommended that you use a session
bean. In that session bean, create a finder method to retrieve the required
information. The finder method should do the following:
v Perform a SQL select statement for the deep fetch
v Instantiate an access bean for each row in the main table as well as for each

associated object.
v For each column fetched and for each associated object fetched, set the

corresponding attribute in the access bean.

Note that an access bean does not cache a getter method that throws an
exception. In this case, you should create a simple wrapper class for the access
bean using the following pattern:
public class CustomerAccessBeanCopy extends CustomerAccessBean {

private AddressAccessBean address=null;

/* The following method overrides the getAddress method in
the CustomerAccessBean.

*/
public AddressAccessBean getAddress() {

if (address == null)
address = super.getAddress();

return address;
}

/* The following method sets the address to the copy. */

public void _setAddress(AddressAccessBean aBean) {
address = aBean;
}

}

Continuing the CUSTOMER and ADDRESS example, the session bean finder
method would instantiate a CustomerAccessBean for each row in the
CUSTOMER table and an AddressAccessBean for each corresponding row in
the ADDRESS table. Then, for each column in the ADDRESS table, it sets the
attributes in the AddressAccessBean (street and city). For each column in the
ADDRESS table, it sets the attributes in the CustomerAccessBean (name, age
and address). This is shown in the following diagram.

CustomerAccessBean AddressAccessBean
• Name
• Age
• Address

• Street
• City

_setAddress

Figure 16.

54 Programmer’s Guide

Arbitrary SQL case: In this case, there is a set of arbitrary SQL statements
that perform database intensive operations. For example, the operation to sum
all the rows in a table would be considered a database intensive operation. It
is possible that not all of the selected rows correspond to an entity bean in the
persistent model.

An example that could result in the creation of an arbitrary SQL statement is a
when a customer tries to browse through a very large set of data. For
example, if the customer wanted to examine all of the fasteners in an online
hardware store, or all of the dresses in an online clothing store. This creates a
very large result set, but out of this result set, it is most likely that only a few
fields from each row are required. That is, the customer may only initially be
presented with a summary showing the item name, picture and price.

In this case, create a session bean helper method. This session bean helper
method either performs a read or a write operation. When performing a read
operation, it returns a read-only value object that is used for display purposes.

With proper data modelling, the number of cases of arbitrary SQL statements
can usually be minimized.

Extending public entity beans
This section describes the design pattern of the WebSphere Commerce public
entity beans. This design pattern enables you to make extensions such as
adding new persistent fields, new business methods, or new finder methods.

The following diagram shows the implementation classes of the Catalog entity
bean.

Chapter 3. Persistent object model 55

The preceding diagram also applies to other entity beans because they are
structured in a similar fashion and follow the same naming convention. To
apply the diagram to another entity bean, substitute the entity bean’s name
for “Catalog”. For example, the InterestItemBean class extends the
InterestItemBeanImpl class and the InterestItem interface extends the
InterestItemBase interface.

The diagram shows that the implementation class or interface for the public
enterprise beans has been separated into two parts, using Java inheritance.
The superclass or interface contains the WebSphere Commerce implementation
code. All of these superclasses and interfaces are defined in separate packages
and projects from the child classes and interfaces.

With the exception of the bean_nameBeanFinderHelperBase and the
bean_nameBeanFinderObjectImpl classes, the WebSphere Commerce code
repository contains binary code for all of these superclasses and interfaces.
The source code for the bean_nameBeanFinderHelperBase and the

CatalogBeanFinderHelperBaseCatalogHomeBase

Enterprise Beans Implementation

CatalogBeanFinderHelper

Catalog

CatalogHome

CatalogBean

Enterprise Beans

CatalogBeanFinderObject

CatalogBeanImpl CatalogBase CatalogBeanFinderObjectImpl

Figure 17.

56 Programmer’s Guide

bean_nameBeanFinderObjectImpl classes is included, so that you can see how
the SQL statement for each finder is defined. You should not modify these
classes, in any way.

To examine the source code for CatalogBeanFinderHelperBase and
CatalogBeanFinderObjectImpl, open the com.ibm.commerce.catalog.objsrc
package. Other packages use a similar naming convention.

Modifications can be made to the child classes and interfaces.

If you add new finder methods to the public enterprise beans, you must
follow a particular naming convention for the methods. Name the new
methods findXa_description where a_description is a description of your
choice. Some examples of names are findXByOwnerId and findXByOrderStatus.
Using this naming convention avoids the risk of name collision (duplicate
names) with WebSphere Commerce finder methods.

One way to modify an existing WebSphere Commerce public entity bean is to
add additional fields. In this case, after adding the new fields, you must
examine each finder method in the bean. If the where clause portion of the
finder methods contain any database aliases (for example, T1. or T2.), the
aliases must be removed.

Creating a new CMP enterprise bean
When you have a new attribute that needs to be added to the WebSphere
Commerce object model, you can create a new database table with a column
for the required attribute. You must then also include this attribute in an
enterprise bean, so that WebSphere Commerce commands can access the
information.

One way to integrate the new attribute into the WebSphere Commerce object
model is to create a new CMP enterprise bean. In this bean, you would then
create a field that corresponds to the attribute in the new database table.

To create a new CMP enterprise bean, you must perform the following steps
in VisualAge for Java:
1. Ensure that your workspace owner is set to WCS Developer.
2. Create a new EJB group for the bean.
3. Create the new CMP enterprise bean, using the Create Enterprise Bean

SmartGuide tool.
4. For each column in the corresponding database table, add a new CMP

field to the bean.
5. If required, create a pair of getter and setter methods for each of the CMP

fields created.

Chapter 3. Persistent object model 57

6. If required, define the FinderHelper fields in the FinderHelper interface
and add the new FinderHelper method.

7. Create a new ejbCreate method, if required, and promote the ejbCreate
method to the home interface of the enterprise bean. This step is required
if the new enterprise bean must create new entries in its corresponding
database table.

8. Map the fields in the enterprise bean to the columns in the database table.
9. Generate the access bean and deployed code for the enterprise bean.

More detail on each of these steps is contained in the following sections.

Note: If your new enterprise bean is to be protected by the WebSphere
Commerce access control system, refer to Chapter 4, “Access control”
on page 85 for further details. Access control can be added after you
create your bean.

Suppose that you have a new table called USERRES that specifies some
information about the type of residence a user has. This table contains three
columns: a USERID column, a HOME column that specifies the type of home
and a ROOMS column that specifies the number of bedrooms in the residence.

Creating a new EJB group: When creating new entity beans, you must create
them in an EJB group that is separate from the WebSphere Commerce EJB
groups. When working with enterprise beans in VisualAge for Java, you must
switch to the EJB tab in the workspace. Then, from the EJB menu, you can
select Add > EJB Group to launch the Add EJB Group SmartGuide.

There are two important items that you must specify when creating the EJB
group: the project in which EJB code is stored and the name of the EJB group.

The EJB project is viewable from the Projects tab in the workspace. When
creating a new EJB group, you must specify a project that is separate from the
WebSphere Commerce projects. For example, you might select to have your
EJB group use the MyCustomEJB project. This project need not exist before
you create the group, since VisualAge for Java can automatically create it for
you. This project should only be used for EJB code; it should not be used for
any command or data bean code. This separation of types of code is required
for deployment purposes. By separating your own customized code from the
WebSphere Commerce code, you will minimize the impact of migrating to
future releases.

For the names of both the project and the EJB group, ensure that you follow
any appropriate naming conventions for your application.

58 Programmer’s Guide

Creating the new CMP enterprise bean: To create your new CMP enterprise
bean, you can use the Create Enterprise Bean SmartGuide tool. To launch the
tool, right-click on the EJB group to which you will add the new bean and
select Add > Enterprise Bean.

Select to create a new enterprise bean and specify a name for the bean. The
WebSphere Commerce naming convention for enterprise beans is name the
bean using the same name as the table to which the bean corresponds. For
example, if your new database table is named USERRES, the enterprise bean
should be named UserRes.

The Project field is automatically populated with the name of your project.
You must specify a package name within the project in which code should be
stored. An example of code to be stored in the package is the code for the
access bean that you create for the enterprise bean. Again, when naming the
package, ensure that you follow any appropriate naming conventions for your
application. An example package name is com.mycompany.mycustombeans.

In the bean class, VisualAge for Java creates the private field called
EntityContext. WebSphere Commerce provides its own entity context field in
the ECEntityBean and your new entity bean should use that field, rather than
the generated field in your own class. As such, you should remove the
generated EntityContext from your new entity bean.

Your new enterprise bean must contain a serialVersionUID field. If you use
the SmartGuide to create your new bean, VisualAge for Java generates this
field for you. If you do not use the tool to create your bean, you must add
this field.

In the Superclass field, you must specify the
com.ibm.commerce.base.objects.ECEntityBean class. The following example of
code demonstrates the functions provided by the superclass:
public class myEJB extends com.ibm.commerce.base.objects.ECEntityBean {

public void ejbLoad()throws java.rmi.RemoteException {
super.ejbLoad();--the super method will add EJB trace
--your logic --

}
public void ejbStore()throws java.rmi.RemoteException {

super.ejbStore();--the super method will add EJB trace
--your logic --

}
}

You should also remove any ejbCreate() and ejbPostCreate() methods that take
no arguments. Leaving these methods in the entity bean can cause run-time
errors.

Chapter 3. Persistent object model 59

For each column of your database table, you must create a new CMP field in
the bean (you must click Next in the SmartGuide to see the Add CMP fields
to the bean option). For each field, specify a field name and the data type for
the field. For any column that either the primary key or part of the primary
key, enable the Key Field checkbox. For all other columns, enable the Promote
getter and setter methods to the remote interface checkbox.

Once all fields have been filled in, click Finish and VisualAge for Java creates
the new CMP enterprise bean.

Creating new FinderHelper fields in the Bean_NameFinderHelper interface:
The Bean_NameFinderHelper interface contains SQL search clauses that
correspond to all FinderHelper methods other than the findByPrimaryKey
method.

A new enterprise bean uses findXByArgName (where ArgName is the name of an
argument) methods defined in the bean’s FinderHelper interface along with
FinderHelper methods to compose SQL queries. Use the “findXBy” naming
convention for your field name to ensure that your field names are always
unique from WebSphere Commerce field names.

To create the new FinderHelper fields in your bean, you must select the
Bean_Name_FinderHelper interface and modify the source code to establish
how select statements should be formed. An example follows:
public interface UserResFinderHelper {
public static final String findXByHomeAndRoomsWhereClause = "(T1.HOME = ?

and T1.ROOMS = ?)";
}

The home interface would then require a method called findXByHomeAndRooms
that takes input parameters for each of HOME and ROOMS that populate the
values represented by the ? characters. This type of query construction is
referred to as a parameter insert.

If the input parameters were ″detached″ and ″3″, the generated SQL statement
would be
select * from USERRES where HOME=detached and ROOMS=3

For security reasons, when creating FinderHelper methods for a new entity
bean, you should use parameter inserts. The reason for this recommendation
is that it protects the query from being altered by users. An alternative
approach would be to use a construct similar to the following:
public static final String

findXByOwnerIdWhereClause = “ (T1.OWNERID = input_string) ”;

60 Programmer’s Guide

where input_string is a string value passed in from a URL. This is not
desirable, since a malicious user could enter a value such as “‘123’ OR 1=1”
which changes the SQL statement. If a user can change the SQL statement,
they may be able to make unauthorized access to data. Therefore, the
recommended approach is to use parameter inserts.

If you cannot use a parameter insert and therefore, have to use an input string
to compose the SQL statement, you must enforce parameter checking on the
input string to ensure that the input parameter is not a malicious attempt to
access data.

Creating new FinderHelper methods in the Bean_NameHome interface: For
each FinderHelper field that you have specified in the Bean_NameFinderHelper
interface, you must create a FinderHelper method in the home interface of the
bean. The name of the FinderHelper methods must match the FinderHelper
field name exactly, except ″WhereClause″ is dropped. That is, with the
example field name of findXByHomeAndRoomsWhereClause, the corresponding
method name is findXByHomeAndRooms.

To create the new FinderHelper methods, do the following:
1. Right-click the Bean_NameHome interface, and select Add > Method.

The Create Method SmartGuide opens.
2. Select Create a new method and click Next.
3. In the Method Name field, enter a name for the FinderHelper method.

This name of the FinderHelper methods must match the FinderHelper
field name exactly, except the ″WhereClause″ part is dropped. For
example, enter findXByHomeAndRooms.

4. In the Return type field, enter one of the following:
v If the FinderHelper method uses the primary key to query the database

and the method should return a unique record, specify the EJB object as
the return type. For example, enter UserRes.

v If the FinderHelper method returns a result set instead of a unique
record, specify the return type as java.util.Enumeration.

5. Click the Add button beside What parameters should this method have?
to add the appropriate parameters. For example, you might add argHome
of type String to hold the residence type and argRooms of type byte to
hold the number of rooms.

6. When you have completed adding all parameters, click Next.
7. Click the Add button beside What exceptions may this method throw?

and add the following exceptions:
v java.rmi.RemoteException

v javax.ejb.FinderException

Chapter 3. Persistent object model 61

Note: The preceding list of exceptions shows the minimum set of
exceptions that your method should throw. Depending upon your
own code, you may need to specify other exceptions.

8. Click Finish.

Creating a new ejbCreate method: When the enterprise bean is created, the
ejbCreate method is automatically generated. This method is then promoted to
the remote interface, so that it is available in the access bean. The default
ejbCreate method only contains parameters that are either the primary key, or
part of the primary key. This means, only those values get instantiated upon
instantiation.

If your enterprise bean contains fields that are not part of the primary key
and are non-nullable fields, you must create a new ejbCreate method in which
you specifically instantiate those fields. By doing so, each time a new record is
created, all non-nullable fields will be populated with the appropriate data.

To create a new ejbCreate method, do the following:
1. In the Types pane, expand the Bean_NameBean class. For example, select

UserResBean.
2. Click the existing ejbCreate method to view the source code. (Note, this

may be ejbCreate(String), ejbCreate(String, int) or it may take some other
input parameters, depending upon the primary key of your enterprise
bean.)

3. You must modify the source code so that each CMP field is included as an
input parameter to the method, and so each CMP field is instantiated with
the appropriate value. In the UserRes example where the UserId is the
primary key, the source code initially appears as:
public void ejbCreate(int argUserId)

throws javax.ejb.CreateException, java.rmi.RemoteExeption {
_initLinks();
userId = argUserId;

}

But, you may want to ensure that both the number of rooms and type of
home are initialized. In this case, you would change the code to the
following:
public void ejbCreate(int argUserId, String argHome, byte Rooms)

throws javax.ejb.CreateException, java.rmi.RemoteExeption {
_initLinks();
// All CMP fields should be initialized here
userId = argUserId;
home = argHome;
rooms = argRooms;

}

62 Programmer’s Guide

Note: If you want to use a system generated primary key, refer to
“Primary keys” on page 75 for details.

4. Save the modified method. When you save code, VisualAge for Java
creates a new ejbCreate method that takes the new parameters. The
original ejbCreate method remains.

5. Delete the original ejbCreate method (the one with no arguments).
6. Right-click the new ejbCreate method and select Add > EJB Home

Interface.
7. Create a corresponding ejbPostCreate method. (This method does not need

to be added to the home interface.)

Mapping the database table to the new enterprise bean: Once you have
created the new enterprise bean, you must create a mapping between the
CMP fields in the bean and the columns in the database table. This mapping
is called a schema. VisualAge for Java provides tooling to simplify this task.

To create the schema, do the following:
1. From the EJB menu, select Open To > Database Schemas. The Schema

Browser opens.
2. From the Schemas menu, select Import / Export Schema > Import

Schema from Database.
3. Enter a name for the new schema and click OK.
4. In the Database connection window, enter the information as follows:

Attribute DB2 value Oracle value

Connection
Type

COM.ibm.db2.jdbc.app.
DB2Driver

Oracle.jdbc.driver.
OracleDriver

Data Source jdbc:db2:wc_database_name jdbc:oracle:thin@hostname:
port:Oracle_SID

User Name wc_db_user_name wc_db_user_name

Password wc_db_password wc_db_password

with values replaced as follows:

v DB2 wc_database_name is the name of your WebSphere Commerce
database

v Oracle hostname is the Oracle server host name.

v Oracle port is the port number of the Oracle database.

v Oracle Oracle_SID is the Oracle instance ID.
v wc_db_user_name is the user name for the database.
v wc_db_password is the database password.

Chapter 3. Persistent object model 63

5. From the Qualifiers list, select your database qualifier (this may be your
database user name).

6. Click Build Table List.
7. Select your_new_table (from the generated list and click OK to generate

the schema.
8. After the schema is generated, click your_new_table in the Schema pane.
9. Highlight, then double-click your_new_table in the Table pane.

The Table Editor window opens.
10. Remove any information in the Qualifier field. This makes your

enterprise bean portable to other machines.
11. From the Schemas menu, select Save Schema. Enter the appropriate

project, package and class names.

Next you must create the schema map. The schema map is a mapping
between database columns and fields in the enterprise bean.

To create the schema map, do the following:
1. From the EJB menu, select Open To > Schema Maps.

The Datastore Map window opens.
2. Enter the name of the map. Refer to “Database schema object naming

considerations” on page 78 for recommendations about naming the new
map.

3. Select your EJB group and schema. Refer to “Database schema object
naming considerations” on page 78 for recommendations about naming
the new schema.

4. In the Datastore Maps pane, select your map.
5. In the Persistent classes pane, select your class.
6. From the Table Maps menu, select New Table Map > Add Table Map

with No Inheritance.
7. From the Table drop-down list, select your table and click OK.
8. In the Table Maps panel, highlight then right-click your table map and

select Edit Property Maps.
The Property Map Editor opens.

9. For each of the class attributes (the CMP fields in the bean) you must
specify the map type and the database column to which it should be
mapped. For example, you would map the UserId class attribute using a
map type of ″Simple″ to the USERID column in the database table.

10. After all fields have been mapped to their corresponding database
column you must save the schema map. From the Database Map menu,
select Save Datastore Map. Enter the appropriate project, package and
class names for saving the map. Click Finish.

64 Programmer’s Guide

Creating the access bean and generating deployed code: An access bean
acts as a wrapper for the enterprise bean that simplifies how other
components interact with the enterprise bean. You must create an access bean
for your new enterprise bean.

When generating deployed code, the tools in VisualAge for Java analyze the
bean to ensure that the rules specified in the Sun Microsystems EJB
specifications, as well as the rules specific to the EJB server, are met.

To create an access bean for your new enterprise bean, do the following:
1. In the Enterprise Beans pane, right-click your new enterprise bean and

select Add > Access Bean. (You may have to expand the EJB group that
contains your new bean first, in order to view the bean.)
The Create Access Bean SmartGuide opens.

2. In the EJB Group, Enterprise bean and Access bean name fields, specify
the appropriate EJB group, bean name, and access bean name.

3. Select Copy Helper for an Entity Bean for the Access Bean Type and
click Next.

4. From the Select home method for zero argument constructor drop-down
list, select findByPrimaryKey.

5. From the Converter drop-down list, select WCSStringConverter for the
initial properties and click Next.

6. In the Select and Customize Bean Properties for Copy Helper window,
select the WCSStringConverter for each field.

7. Click Finish.

To generate the deployed code, do the following:
1. In the Enterprise Beans pane, right-click your new enterprise bean and

select Generate Deployed Code.

Note that the deployed code that is generated using this tool complies with
the EJB 1.0 specification and is only used when running your enterprise bean
within VisualAge for Java. At a later stage when you deploy your enterprise
bean to a WebSphere Commerce application running within WebSphere
Application Server V4.0, you are required to generate a JAR file containing
deployed code that complies with the EJB 1.1 specifications. For more
information about creating this EJB 1.1 Export JAR file, refer to “Information
about EJB deployed code” on page 188 and “Generating deployed code” on
page 346.

Using the test client to test the enterprise bean: VisualAge for Java provides
a test client that can be used to test enterprise beans. To use the test client to
test your new bean, do the following:
1. Start the EJB server that contains the enterprise bean you are testing.

Chapter 3. Persistent object model 65

2. Right-click the enterprise bean and select Run Test Client.
The EJB Test Client and EJB Lookup windows open.

3. In the JNDI Name field, enter the JNDI name of the enterprise bean and
click Lookup.

4. Right-click the findByPrimaryKey method that has the arguments filled in
and select Invoke.

Coding Practices: The following enterprise bean coding practices should be
observed:
v Do not use either the BLOB or CLOB datatype.
v No CMP field of the LONG datatype (also known as LONG VARCHAR)

should be either the first or last member in the CMP field list for the
enterprise bean. To verify the list, check the EJSJDBCPersister._hydrate()
method and see if either the first or last element in the list if of type LONG
VARCHAR. If the first field is of this type, do the following:
1. Unset the first field. Call this fieldA.
2. Unset another field that is not of the type LONG VARCHAR. Call this

fieldB.
3. Reset fieldA.
4. Reset fieldB.
5. Open the Schema Map Browser and edit the table map to reflect these

changes. Save the map.
6. Regenerate deployed code.

v Enterprise bean code should not reference anything outside of the
enterprise bean packages. For example, you should not reference commands
or data beans in the enterprise bean code

v To enable access control for your enterprise bean, add the
com.ibm.commerce.security.Protectable interface and/or the
com.ibm.commerce.security.Groupable interface to the enterprise bean’s
remote interface. After adding these interfaces, regenerate the bean’s
deployed code and access bean. You must also create an access helper class
object in the objsrc package.

Creating a simple data bean
A data bean is a bean that is used in JSP templates to retrieve information
from the enterprise bean. A simple data bean extends its corresponding access
bean and implements the SmartDataBean interface. Most code for the data
bean is automatically generated by VisualAge for Java.

To create a simple data bean, you must perform the following steps:
1. Create a project and package to store the data bean code.
2. Create a data bean that extends the corresponding access bean and

implements the appropriate data bean interface.

66 Programmer’s Guide

3. Create the set methods for the data bean.
4. Create the get methods for the data bean.

Creating the project and package for data bean code: Creating a project and
package creates a place in which your data bean code can be stored.

To create a new project, do the following:
1. Select the Projects tab.
2. From the Selected menu, select Add > Project.

The Add Project SmartGuide opens.
3. Ensure that Create a new project named is selected and enter a name for

your new project. For example, enter My Data Beans.
4. Click Finish.

To create a new package, do the following:
1. Right-click the project that you created for your data bean code and select

Add > Package. For example, right-click My Data Beans and select Add >
Package.
The Add Package SmartGuide opens.

2. Ensure that Create a new package named is selected and enter a suitable
name for your data bean package. For example, enter
com.mycompany.mydatabeans.

3. Click Finish.

Creating a data bean: A data bean is a Java bean that is used within a JSP
template to provide dynamic content to the page. It normally provides a
simple representation (indirectly) of an entity bean by extending an access
bean. The data bean encapsulates properties that can be retrieved from or set
within the entity bean.

To create a data bean, do the following:
1. Right-click the package into which you will store the data bean and select

Add > Class.
The Create Class SmartGuide opens.

2. The project and package name fields are already populated.
3. Ensure that Create a new class is selected and click Next.
4. In the Class Name field, enter a name for your new data bean. For

example, to create a data bean that extends the UserResAccessBean, enter
UserResDataBean.

5. To specify the superclass, click Browse, then in the pattern field, enter the
name of the corresponding access bean. For example, enter
UserResAccessBean and click OK.

6. Click Next.

Chapter 3. Persistent object model 67

7. To specify the interfaces that the data bean should implement, click Add.
In the Interface window, do the following:
a. In the Pattern field, enter com.ibm.commerce.beans.SmartDataBean then

click Add.
b. In the Pattern field, enter com.ibm.commerce.beans.InputDataBean then

click Add.
c. Click Close.

8. Click Finish.

Adding required fields to the data bean: This section describes how to add
required fields to your new data bean.

To add the iCommandContext field, do the following:
1. Right-click the new data bean (for example, UserResDataBean) and select

Add > Field.
The Create Field SmartGuide opens.

2. In the Field name field, enter iCommandContext.
3. Click Browse to add the field type and enter

com.ibm.commerce.command.CommandContext. Click OK.
4. For the access modifiers, select Protected.
5. Click Finish.

To add the iRequestProperties field, do the following:
1. Right-click the new data bean (for example, UserResDataBean) and select

Add > Field.
The Create Field SmartGuide opens.

2. In the Field name field, enter iRequestProperties.
3. Click Browse to add the field type and enter

com.ibm.commerce.datatype.TypedProperty. Click OK.
4. For the access modifiers, select Protected.
5. Click Finish.

Modifying the data bean’s set methods: After you have created your data
bean, you must modify code in some of the generated set methods.

To update the set methods, do the following:
1. Expand your new data bean to view its fields and methods.
2. Select the setCommandContext(CommandContext) method to view its source

code.
The Source pane displays source code as follows:

68 Programmer’s Guide

public void setCommandContext(com.ibm.commerce.comand.CommandContext arg1)
{
}

3. Modify the source code so the method appears as follows:
public void setCommandContext(com.ibm.commerce.comand.CommandContext arg1)
{

iCommandContext = arg1;
}

Save your work (Ctrl+S).
4. Select the setRequestProperties(TypedProperty) method to view its source

code.
The Source pane displays the source code as follows:
public void setRequestProperties(
com.ibm.commerce.datatype.TypedProperty arg1)

throws Exception
{
}

5. You may want to modify the source code to populate the primary key of
the corresponding access bean. The recommended way to do this is to use
the data bean manager to indirectly set this value. This indirect method is
designed to ensure that a primary key value taken from the URL
properties will not override the primary key, if it has previously been set.
To have your setRequestProperties method follow this model, code it in a
fashion that is similar to the following code snippet. Note that in the
following example, the primary key is the user id. This may be different,
depending upon the situation (as such, the following code may not
immediately compile in your application).
public void setRequestProperties(

com.ibm.commerce.datatype.TypedProperty arg1)
throws Exception
{

iRequestProperties = arg1;
try {

if (// check for nulls
getDataBeanKeyUserId() == null)
{

super.setInitKey_UserId(aUserId);
}

} catch (com.ibm.commerce.exception.ParameterNotFoundException e)
{
}

}

There are two other ways in which the primary key for the access bean can be
set. It can be done externally from the data bean, for example in the JSP
template. In this case, before activating the data bean in the JSP template,

Chapter 3. Persistent object model 69

explicitly call the data bean’s set method for the primary key. For example,
the JSP could include code similar to the following (where db is the data bean
object):
db.setInitKey_UserId(/*input parameter*/)
db.activate();

Alternatively, the primary key can be set in a direct way. That is, the JSP
template only contains the db.activate method and then the data bean
manager explicitly sets the primary key in the access bean. For example, the
code for the setRequestProperties method of the data bean would appear
similar to the following:
public void setRequestProperties(

com.ibm.commerce.datatype.TypedProperty arg1)
throws Exception

{
iRequestProperties = arg1;
try

{
super.setInitKey_UserId(aUserId);

}
} catch (com.ibm.commerce.exception.ParameterNotFoundException e)

{
}

}

Note that the recommended procedure for setting the primary key is the
indirect method, shown in step 5.

Modifying the data bean’s get methods: After you have created your data
bean, you must modify code in some of the generated get methods.

To update the get methods, do the following:
1. Expand your new data bean to view its fields and methods.
2. Select the getCommandContext() method to view its source code.

The Source pane displays source code as follows:
public com.ibm.commerce.comand.CommandContext getCommandContext ()
{

return null;
}

3. Modify the source code so the method appears as follows:
public com.ibm.commerce.comand.CommandContext getCommandContext ()
{

return iCommandContext;
}

Save your work (Ctrl+S).
4. Select the getRequestProperties() method to view its source code.

The Source pane displays the source code as follows:

70 Programmer’s Guide

public com.ibm.commerce.datatype.TypedProperty setRequestProperties()
{

return null;
}

5. Modify the source code so that it appears as follows:
public com.ibm.commerce.datatype.TypedProperty setRequestProperties()
{

return iRequestProperties;
}

Save your work (Ctrl+S).

Modify the populate() method: You must modify the populate method, by
doing the following:
1. Expand your new data bean to view its fields and methods.
2. Select the populate() method to view its source code.

The Source pane displays source code as follows:
public void populate () throws Exception {}

3. Modify the source code so the method appears as follows:
public void populate () throws Exception {

super.refreshCopyHelper();
}

Save your work (Ctrl+S).

Writing new session beans
When creating new session beans, you must create the session bean in an EJB
group that is separate from the WebSphere Commerce EJB groups. Store this
new EJB group in a new project that is separate from the WebSphere
Commerce projects. For example, you might create the MyCustomBeans EJB
group within the com.mycompany.mycustomcode package. By separating your
own customized code from the WebSphere Commerce code, you will
minimize the impact of migrating to future releases.

Your new session bean should extend the
com.ibm.commerce.base.helpers.BaseJDBCHelper class. The superclass
provides methods that allow you to obtain a JDBC connection object from the
data source object used by the commerce server, so that the session bean
participates in the same transaction as the other entity beans. The following is
an example of code to demonstrate the functions provided by the superclass:
public class mySessionBean extends com.ibm.commerce.base.helpers.BaseJDBCHelper

implements SessionBean {

public Object myMethod () throws javax.naming.NamingException,
java.rmi.RemoteException, SQLException {

///

Chapter 3. Persistent object model 71

// -- your logic, such as initialization -- //
///

try {
// get a connection from the WebSphere Commerce data source
makeConnection();
PreparedStatement stmt = getPreparedStatement(

"your sql string");
//
// -- your logic such as set parameter into the prepared //
// statement -- //
//
ResultSet rs = executeQuery(stmt, false);

///
// -- your logic to process the result set -- //
//

}
finally {

// return the connection to the WebSphere Commerce data source
closeConnection();

}

///
// -- your logic to return the result --- //
//

}

}

In the preceding code example, the executeQuery method takes two input
parameters. The first is a prepared statement and the second is a boolean flag
related to a cache flush operation. Set this flag to true if you need the
container to flush all entity objects for the current transaction from the cache
before executing the query. This would be required if you have performed
updates on some entity objects and you need the query to search through
these updated objects. If the flag were set to false those entity object updates
would not be written to the database until the end of the transaction.

You should limit the use of this flush operation and generally set the flag to
false, except in those cases where it is really required. The flush operation is
a resource intensive operation.

Object life cycles
The enterprise beans in the object model include both independent and
dependent objects. An independent object has its own life cycle, controlled
directly by the create or remove requests of the business logic invoking the
object. A dependent object has a life cycle that is attached to another object,
known as the owner object (which may also in turn be a dependent object, but

72 Programmer’s Guide

further up the association hierarchy, an independent object exists). When the
owner object is deleted, all dependent objects are also deleted. The actual
deletes are controlled by cascading delete specifications within the database.

For example, given a user object that returns an address book object and a list
of order objects, if the user object is deleted, its address book object is also
deleted (since the book is owned by the user), and so are all the address
objects within the book (since the addresses are owned by the book).
However, the order objects are not deleted because the owner of orders is a
store object, not the user object.

A specific design pattern is used for the creation of dependent objects. The
create method of a dependent object must supply a reference to its owner
object; therefore, the owner object must exist before the dependent object can
be created.

Transactions
The Enterprise JavaBeans V1.0 architecture specifies three alternative
commit-time options with respect to the instance state. They are described as
options A, B, and C in the specification document. For complete details on
these options, refer to Sun Microystem’s Enterprise JavaBean’s V1.0
specification document.

Although the WebSphere Application Server implements options A and C,
option A assumes that the database is not shared.

In option C, the enterprise bean container does not cache a “ready” instance
between transactions. As soon as a transaction has completed, the instance is
returned to the pool of available instances. WebSphere Commerce uses option
C because the database is shared across multiple WebSphere Commerce
applications. In this implementation, the container loads persistent data for
entity beans at the start of each transaction and the entity beans are only
cached for the duration of the transaction. The container activates multiple
instances of an entity bean, one for each transaction in which the entity is
being accessed. Transaction synchronization is performed by the database.

The transaction attribute of each enterprise bean is set to TX_REQUIRED. Since
the Web controller starts a transaction before executing a command that
accesses an enterprise bean (through its corresponding access bean), the
business methods of the enterprise bean are invoked within the context of this
transaction.

Other considerations for entity beans

Find for Update
A situation in which multiple applications can access the same row in a
database for the purpose of updating the row, is known as a concurrent update.

Chapter 3. Persistent object model 73

There are situations in which concurrent updates may be allowed, and other
situations where they are definitely not desired.

If the database update is an overwrite, where the new value has no relation to
the current value in the database, concurrent updates may be allowed. If
concurrent update is allowed and multiple applications attempt to update the
same row in a database, the last attempt is the one that gets updated in the
database.

If the database update depends upon the current value in the database, a
concurrent update is not desired. For example, if an application is updating
product inventory, only one application should be allowed to update the
inventory at a time.

Factors that affect whether or not concurrent update is permitted include
database locks and enterprise bean isolation levels.

In order to prevent a second application from concurrently updating a row,
the first application accessing the row must fetch the row using the “find for
update” option. When the “for update” option is used, a write lock (also
known as an exclusive lock) is applied to the row. With this write lock applied
to the row, any application that attempts to access the row using the “find for
update” is blocked.

If your application permits concurrent updates, it can just fetch the data,
without locking the row.

Consider the OrderProcess scenario in which UpdateInventory needs to find
all the products included in an order and update the inventory accordingly.
Since the same products may be included in many other orders, find for update
should be used, and it should be used as early as possible within a
transaction scope to reduce the possibility of deadlocks. Therefore, the
UpdateInventory algorithm may be represented by the following pseudo code:
UpdateInventory
find all the order items in the order
for each order item
fetch its inventory using “find for update”
...

In the long-running Business-to-Business scenario, where an order may have
many items, find for update should be used as early as possible. The logic
may become the following:

74 Programmer’s Guide

find for update the inventory of all the products in an order
for each product
if (total quantity ordered for that product < inventory)

deduct quantity from inventory
else

error

Flush remote method
Since WebSphere Application Server does not write changes made on the
entity beans to the database until the transaction commit time, the database
may get temporarily out of synchronization with the data cached in the entity
bean’s container.

A flush remote method is provided (in the
com.ibm.commerce.base.helpers.BaseJDBCHelper class) that writes all the
committed changes made in all transactions (that is, it takes information from
the enterprise bean cache) and updates the database. This remote method can
be called by a command. Use this method, only when absolutely required,
since it is expensive in terms of overhead resources, and therefore, has a
negative impact on performance.

Consider a logon command that has the following piece of code:
UserAccessBean uab = ...;
uab.setRegisteredTimestamp(currentTimestamp);
uab.commitCopyHelper();

Before the transaction has been committed, the REGISTEREDSTAMP in the
USER table will not have been updated with the current time stamp. The
update only occurs at transaction commit time. The flush method has to be
used so that any direct JDBC query (in the same transaction), for example,
select from user where registeredstamp ... returns the user with the specified
registration time stamp.

Securing enterprise beans
If you are using the WebSphere Application Server for securing enterprise
beans, you must assign the methods of any new enterprise beans to the
WCSMethodGroup security method group, using the WebSphere Application
Server Administrator’s Console. Perform this step when deploying the new
enterprise beans. Additionally, if you modify existing WebSphere Commerce
entity beans, you must assign the methods of all of the entity beans in the
affected EJB group to the WCSMethodGroup security method group. For a
description of the deployment process for customized code, refer to “Code
deployment” on page 187.

Primary keys
A primary key is a unique key that is part of the definition of a table. It can
be used to distinguish one record from others. All records must have a

Chapter 3. Persistent object model 75

primary key. When you create a new record in a table, you may need to
generate a unique primary key for the record.

In the WebSphere Commerce programming model, the persistence layer
includes entity beans that interact with the database. As such, database
records may be created when an entity bean is instantiated. Therefore, the
ejbCreate method for the instantiation of an entity bean may need to include
logic to generate a primary key for new records.

When an application requires information from the database, it indirectly uses
the entity beans by instantiating the bean’s corresponding access bean and
then getting or setting various fields. An access bean is instantiated for a
particular record in a database (for example, for a particular user profile) and
it uses the primary key to select the correct information from the database.

The following sections describe how to create a unique primary key and how
to select by primary key.

Creating primary keys: The ejbCreate method is used to instantiate new
instances of an entity bean. This method is automatically generated but the
generated method only includes logic to initialize primary keys to a static
value.

You may need to ensure that the primary key is a new, unique value. In this
case, you may have an ejbCreate method similar to the following code
snippet:
Public void ejbCreate(int argMyOtherValue)

throws javax.ejb.CreateException,
java.rmi.RemoteException {

//Initialize CMP fields
MyKeyValue = com.ibm.commerce.key.ECKeyManager.

singleton().getNextKey("table_name");
MyOtherValue = argMyOtherValue;

}

In the preceding code snippet, the getNextKey method generates a unique
integer for the primary key. The table_name input parameter for the method
must be an exact match to the TABLENAME value that is defined in the
KEYS table. Be certain to match the characters and case exactly.

In addition to including the preceding code in your ejbCreate method, you
must also create an entry in the KEYS table. The following is an example SQL
statement to make the entry in the KEYS table:
insert into KEYS (TABLENAME, COUNTER, KEYS_ID)

values ("table_name", 0, 1)

76 Programmer’s Guide

Note that with the preceding SQL statement default values for the other
columns in the KEYS table are accepted. The value for COUNTER indicates
the value at which the count should start. The value for KEYS_ID should be
any positive value.

If your primary key is defined as a long datatype (BIGINT for DB2 or
NUMBER for Oracle), use the getNextKeyAsLong method.

Selecting by primary key: Within an access bean, you must select the
appropriate database record by using the primary key. The following code
snip demonstrates how to perform this select. It also includes additional logic,
that is explained later.
UserProfileAccessBean abUserProfile = new UserProfileAccessBean();
abUserProfile.setInitKey_UserId(getUserId().toString());
abUserProfile.refreshCopyHelper();

The first line in the preceding code snippet instantiates a new
UserProfileAccessBean that is called ″abUserProfile″. The second line sets the
primary key in the access bean. The setInitKey_xxx (where xxx is the
primary key field name) naming convention is used by VisualAge for Java to
name the set methods for primary keys. When instantiating an access bean,
you should ensure that all fields set by a setInitKey_xxx method are initialized
before using the refreshCopyHelper method. The order in which the
setInitKey_xxx methods are called is not important.

After all setInitKey_xxx methods have been called, you have initialized all
required fields and can use the refreshCopyHelper method to retrieve
information from the database.

If you update values in the local cache of the access bean, you must also
include a commitCopyHelper call to update the database with the updated
information. For example, if after retrieving data using the refreshCopyHelper
method you update a customer’s name (by setting the name value) you must
then call abUserProfile.commitCopyHelper() to update the database with the
new information.

Using entity beans

A program that uses enterprise beans must deal with the Java Naming and
Directory Interface (JNDI) as well as the home and remote interfaces of
enterprise beans. To simplify the programming model, an access bean for each
enterprise bean is generated. When creating your own enterprise beans, use
the tooling in VisualAge for Java to generate this access bean.

Chapter 3. Persistent object model 77

WebSphere Commerce commands interact with access beans rather than
directly with the entity beans. As the diagram illustrates, using the access
bean provides the following advantages:
v A simpler programming interface. The access bean behaves like a Java bean

and hides all the enterprise bean specific programming interfaces, like
JNDI, home and remote interfaces from the clients.

v At run time the access bean caches the enterprise bean home object because
look ups to the home object are expensive, in terms of time and resource
usage.

v The access bean implements a copyHelper object that reduces the number
of calls to the enterprise bean when commands get and set enterprise bean
attributes. Therefore, only a single call to the enterprise bean is required,
when reading or writing multiple enterprise bean attributes.

The following diagram displays the interaction between commands, access
beans, entity beans and the database.

Database considerations

As you customize your e-commerce application, you may create new database
tables. When creating these tables, it is recommended that you follow a set of
conventions, so that your tables are created in a manner consistent with the
WebSphere Commerce tables.

Database schema object naming considerations
Subsequent sections provide guidance for the naming of database schema
objects.

Naming conventions for tables and views
The following list provides guidance for the naming of new tables and views:
v In order to avoid name collision (duplicate names) with WebSphere

Commerce tables and views in future releases, the first character in the
table or view name should be X. For example, XMYTABLE.

Access
bean

Entity
bean

x
y
z

x
y
z

Controller
command

Database

get x
get y
get z

get(x,y,z)
set(x,y,z)

Figure 18.

78 Programmer’s Guide

v The table or view name should be no more than 10 characters in length. If
the desired name exceeds this limit, shorten the length by removing vowels
from the end of the name, until only 10 characters remain.

v The table or view name should not contain any special characters, such as
“_”, “+”, “$”, “%”, or blank spaces.

v Do not use database reserved words as a table or view name.
v View names should end with VW.
v The table and view names should be singular nouns.

Naming conventions for columns
The following list provides guidance for the naming of columns in new tables:
v In order to avoid name collision (duplicate names) with columns in

WebSphere Commerce tables in future releases, the first character in the
column name should be X. For example, XMYCOLUMN.

v The column name should be no more than 18 characters in length. If the
desired name exceeds this limit, shorten the length by removing vowels
from the end of the name, until there are only 18 characters.

v Columns names (other than foreign keys) should not contain any special
characters, such as “_”, “+”, “$”, “%”, or blank spaces.

v Do not use database reserved words as a column name.
v Combined words may be used as column names using the active voice

combination. For example, COMBINERESULT.
v The generated primary key columns should be named as table_id. For

example, the primary key for the USERS table is USERS_ID.
v The generated foreign key column names should not be changed.
v If reserving any columns for future customization, they should be named

fieldx where x is a numeric digit starting from 1.

Naming conventions for indexes
The following list provides guidance for the naming of indexes in new tables:
v The index name should be no more than 18 characters in length.
v The index name should not contain blank spaces.
v The index name should not contain any database reserved words.
v A non-unique index should be named as I_tablex where table is the name

of the table and x is a number, beginning at 1. For example, a non-unique
index for the USERS table is I_USERS1.

v A unique index should be named as UI_tablex where table is the name of
the table and x is a number, beginning at 1. For example, a unique index
for the USERS table is UI_USERS1.

v The total size of the index should be no larger than 254 bytes.
v The index name must be unique across the whole database schema.

Chapter 3. Persistent object model 79

Naming conventions for primary keys
The following list provides guidance for the naming of primary keys for new
tables:
v The primary key name should be no more than 18 characters in length.
v The primary key name should not contain blank spaces.
v The primary key name should not contain any database reserved words.
v The primary key should be named as P_table where table is the name of

the table. For example, the primary key for the USERS table is P_USERS.
v The primary key name must be unique across the whole database schema.

Naming conventions for foreign keys
The following list provides guidance for the naming of foreign keys for new
tables:
v The foreign key name should be no more than 18 characters in length.
v The foreign key name should not contain blank spaces.
v The foreign key name should not contain any database reserved words.
v The foreign key should be named as F_table where table is the name of

the table. For example, the foreign key for the USERS table is F_USERS1.
v The foreign key name must be unique across the whole database schema.

Naming conventions for database triggers
The following list provides guidance for the naming of database triggers:
v The database trigger name should be no more than 18 characters in length.
v The database trigger name should not contain blank spaces.
v The database trigger name should not contain any database reserved words.
v The database trigger should be named as T_table where table is the name

of the table. For example, the database trigger name for the USERS table is
T_USERS1.

v The database trigger name must be unique across the whole database
schema.

Database column datatype considerations
This section introduces column datatypes that can be used when creating new
tables. The descriptions of the various datatypes use DB2 terminology.
“Datatype differences between databases” on page 82 describes the differences
if you are using a different database.

BIGINT
This is a 64-bit signed integer that has a range from
-9223372036854775807 to 9223372036854775807. Contrast this to
INTEGER, which is only half the size of BIGINT.

INTEGER

80 Programmer’s Guide

This is a 32-bit signed integer that has a range from -2147483647 to
2147483647. In general, INTEGER should be the default finite numeric
datatype, instead of BIGINT. Unless there is a strong business reason
for using BIGINT, for performance reasons it is better to use INTEGER
as the numeric data type. A common user of the BIGINT datatype is a
system generated key.

The use of either SMALLINT or SHORT datatypes is strongly
discouraged because these data types are mapped to a non-object Java
data type and these non-object data types will cause problems in
some enterprise bean object instantiations.

TIMESTAMP
This is a is a seven-part value (year, month, day, hour, minute, second,
and microsecond) that designates a date and time, except that the time
includes a fractional specification of microseconds. The internal
representation of a timestamp is a string of 10 bytes, each of which
consists of 2 packed decimal digits. The first 4 bytes represent the
date, the next 3 bytes the time, and the last 3 bytes the microseconds.

CHAR
This is a fixed-length character string of length INTEGER, which may
range from 1 to 254 characters. If the length specification is omitted, a
length of 1 character is assumed. Since CHAR is a fixed length
database column, any unused trailing character spaces are changed
into white spaces. Unless for performance reasons, it is not
recommended to use CHAR datatype because CHAR is not flexible
and length cannot be changed at a later time. As a rule of thumb, if
your string column is less then 64 characters in length and is regularly
retrieved or updated, use CHAR instead for better performance.

VARCHAR
This is a variable-length character string of maximum length integer,
which may range from 1 to 32672. However, unlike CHAR where the
column data is stored along with the table, VARCHAR is internally
represented as a reference pointer inside a database page. Therefore,
length of a VARCHAR column can be changed at any time after
creation.

LONG VARCHAR
This is the variable-length character string that can be used if
VARCHAR cannot be created within the same database page. LONG
VARCHAR is very similar to VARCHAR except that it can span
multiple database pages. Restrict the use of the LONG VARCHAR
datatype to only those cases when it is absolutely required because
LONG VARCHAR objects are typically expensive in terms of
performance.

CLOB This another variable-length character string that can be used if the

Chapter 3. Persistent object model 81

length of the column needs to exceed the 32KB limit of LONG
VARCHAR. The length of a CLOB object can reach 1 GB without
modifying the database configuration. Text data that is stored as
CLOB is converted appropriately when moving among different
systems.

BLOB This is a variable-length binary character string that stores
unstructured data in the database. BLOB objects can store up to 4 GB
of binary data. In general, you should avoid using BLOB as a column
datatype, unless it is absolutely necessary. In terms of performance, a
BLOB object is considered to be one of the most expensive objects in
any database.

DECIMAL(20,5)
This datatype is specially defined to be used for most fixed decimal
point numbers, such as currency units. For other floating point
decimal numbers, FLOAT can be used instead.

Datatype differences between databases
The following table lists the datatypes used in the WebSphere Commerce
database schema and shows the corresponding datatypes for different
database implementations.

JDBC Object Windows

AIX

Solaris

Linux

DB2

Windows

AIX

Solaris

Oracle®

400

DB2

Hashtable BLOB() BLOB BLOB()

Timestamp TIMESTAMP DATE TIMESTAMP

Integer INTEGER INTEGER INTEGER

BigDecimal DECIMAL(,) DECIMAL(,) DECIMAL(,)

Long BIGINT NUMBER BIGINT

Double FLOAT NUMBER FLOAT

String CHAR() VARCHAR2() GRAPHIC()
CCSID 13488

byte[] CHAR() for bit
data

RAW() CHAR() for bit data

String VARCHAR() VARCHAR2() VARGRAPHIC()
CCSID 13488

82 Programmer’s Guide

JDBC Object Windows

AIX

Solaris

Linux

DB2

Windows

AIX

Solaris

Oracle®

400

DB2

String LONG VARCHAR VARCHAR2()
(See note
following table
for more details.)

VARGRAPHIC(4000)
ALLOCATE()
CCSID 13488

byte[] LONG VARCHAR
for bit data

LONG RAW VARCHAR(8000)
ALLOCATE() for bit data

String CLOB() CLOB() DBCLOB() CCSID 13488

Note:

As a result of inconsistent rates of success for when the Oracle JDBC
driver handles information that is of the LONG data type, it is
recommended that you avoid using the LONG data type whenever
possible. The most commonly reported error in this situation is the
“Stream has already been closed” error.

If you must use this datatype, you can only have one column per
database table that uses the LONG type. In addition, when constructing
a select statement, do not put the LONG column as either the first or
last element in the select. Another workaround for operations under a
heavy load is to avoid mapping this particular column to a CMP field
in an entity bean. Instead, use a session bean to perform retrieves and
updates on this column.

Chapter 3. Persistent object model 83

84 Programmer’s Guide

Chapter 4. Access control

Understanding access control

The access control model of a WebSphere Commerce application has three
primary concepts: users, actions and resources. Users are the people that use
the system. Resources are the entities that are maintained in or by the
application. For example, resources may be products, documents, or orders.
User profiles that represent people are also resources. Actions are the activities
that users can perform on the resources. Access control is the component of
the e-commerce application that determines whether a given user can perform
a given action on a given resource.

In a WebSphere Commerce application, there are two main levels of access
control. The first level of access control is performed by the WebSphere
Application Server. In this respect, WebSphere Commerce uses WebSphere
Application Server to protect enterprise beans and servlets. The second level
of access control is the fine-grained access control system of WebSphere
Commerce.

The WebSphere Commerce access control framework uses access control
policies to determine if a given user is permitted to perform a given action on
a given resource. This access control framework provides fine-grained access
control. It works in conjunction with, but does not replace the access control
provided by the WebSphere Application Server.

Overview of resource protection in WebSphere Application Server
The following WebSphere Commerce resources are protected under access
control by WebSphere Application Server:
v Entity beans

These beans model objects in an e-commerce application. They are
distributed objects that can be accessed by remote clients.

v JSP templates
WebSphere Commerce uses JSP templates for display pages. Each JSP
template can contain one or more data beans that retrieve data from entity
beans. Clients can request JSP pages by composing a URL request.

v Controller and view commands
Clients can request controller and view commands by composing URL
requests. In addition, one display page may contain a link to another by
using the JSP file name or the view name, as registered in the VIEWREG
table.

© Copyright IBM Corp. 2000, 2002 85

The WebSphere Commerce Server is typically configured to use the following
Web paths:
v /webapp/wcs/stores/servlet/*

This is used for requests to the request servlet.
v /webapp/wcs/stores/*.jsp

This is used for requests to the JSP servlet.

The following diagram shows the route that requests could potentially follow
to access WebSphere Commerce resources, for the preceding Web path
configuration.

All the legitimate requests should be directed to the request servlet, which
then directs them to the Web controller. The Web controller implements access
control for controller commands and views. The Web paths shown above do,
however, make it possible for malicious users to directly access JSP templates
(path 1) and entity beans (path 2). In order to prevent these malicious attacks
from being successful, they must be rejected at run time.

Controller
command

View
command

Entities

Request servlet
or

Web controller

JSP template

Data
bean

WebSphere
Commerce
access control

Path 1

Path 2CORBA client

Servlet
engine

Figure 19.

86 Programmer’s Guide

Direct access to the JSP templates and entity beans can be prevented by using
one of the following approaches:

WebSphere Application Server security
WebSphere Application Server provides a security feature. Using this
approach, all enterprise bean methods and JSP templates are
configured to be invoked by the System Identity only. To access these
WebSphere Commerce resources, a URL request must be routed to the
request servlet that sets the System Identity to the current thread,
before passing it to the Web controller. The Web controller then
ensures that the caller has the required authorization before passing
the request to the corresponding controller command or view. Any
attempts to directly access JSP templates and entity beans (that is,
without using the Web controller) are rejected by the WebSphere
Application Server security component.

For information about configuring WebSphere Application Server to
secure WebSphere Commerce resources, refer to the WebSphere
Commerce Installation Guide. For information about security within
WebSphere Application Server, refer to the System Administration
topic in the WebSphere Application Server documentation.

For information about configuring WebSphere Application Server
security for methods in customized enterprise beans, refer to
“Assembling new enterprise beans into an enterprise application” on
page 357 and “Assembling modified enterprise beans into an
enterprise application” on page 361.

Firewall protection
When a WebSphere Commerce Server runs behind the firewall,
Internet clients are not able to directly access the entity beans. Using
this approach, protection for JSP templates is provided by the data
bean that is included in the page. The data bean is activated by the
data bean manager. The data bean manager detects if the JSP template
was forwarded by a view command. If it was not forwarded by a
view command an exception is thrown and the request for the JSP
template is rejected.

Introduction to WebSphere Commerce access control policies
The WebSphere Commerce access control model is based upon the
enforcement of access control policies. Access control policies allow access
control rules to be externalized from business logic code, thereby removing
the need to hard code access control statements into code. For example, you
do not need to include code similar to the following:
if (user.isAdministrator())

then {}

Chapter 4. Access control 87

Access control policies are enforced by the access control policy manager. In
general, when a user attempts to access a protected resource, the access
control policy manager first determines what access control policies are
applicable for that protected resource, and then, based upon the applicable
access control policies, it determines if the user is allowed to access the
requested resources.

An access control policy is a 4-tuple policy that is stored in the ACPOLICY
table. Each access control policy takes the following form:
AccessControlPolicy [UserGroup, ActionGroup, ResourceGroup, Relationship]

The elements in the 4-tuple access control policy specify that a user belonging
to a specific user group is permitted to perform actions in the specified action
group on resources belonging to the specified resource group, as long as the
user satisfies the conditions specified in the relationship or relationship group,
with respect to the resource in question. For example, [AllUsers, UpdateDoc,
doc, creator] specifies that all users can update a document, if they are the
creator of the document.

The user group is a specific type of member group that is defined in the
MBRGRP database table. A user group must be associated with member
group type of -2. The value of -2 represents an access group and is defined in
the MBRGRPTYPE table. The association between the user group and member
group type is stored in the MBRGRPUSG table.

The membership of a user into a particular user group may be stated
explicitly or implicitly. An explicit specification occurs if the MBRGRPMBR
table states that the user belongs to a particular member group. An implicit
specification occurs if the user satisfies a condition (for example, all users that
fulfill the role of Product Manager) that is stated in the MBRGRPCOND table.
There may also be combined conditions (for example, all users that fulfill the
role of Product Manager and that have been in the role for at least 6 months)
or explicit exclusions.

Most conditions to include a user in a user group are based upon the user
fulfilling a particular role. For example, there could be an access control policy
that allows all users that fulfill the Product Manager role, to perform catalog
management operations. In this case, any user that has been assigned the
Product Manager role in the MBRROLE table is then implicitly included in the
user group.

For more details about the member group subsystem, refer to the WebSphere
Commerce online help.

The ActionGroup element comes from the ACACTGRP table. An action group
refers to an explicitly specified group of actions. The listing of actions is

88 Programmer’s Guide

stored in the ACACTION table and the relationship of each action to its action
group (or groups) is stored in the ACACTACTGP table. An example of an
action group is the ″OrderWriteCommands″ action group. This action group
includes the following actions that are used to update orders:
v com.ibm.commerce.order.commands.OrderDeleteCmd
v com.ibm.commerce.order.commands.OrderCancelCmd
v com.ibm.commerce.order.commands.OrderProfileUpateCmd
v com.ibm.commerce.order.commands.OrderUnlockCmd
v com.ibm.commerce.order.commands.OrderScheduleCmd
v com.ibm.commerce.order.commands.ScheduledOrderCancelCmd
v com.ibm.commerce.order.commands.ScheduledOrderProcessCmd
v com.ibm.commerce.order.commands.OrderItemAddCmd
v com.ibm.commerce.order.commands.OrderItemDeleteCmd
v com.ibm.commerce.order.commands.OrderItemUpdateCmd
v com.ibm.commerce.order.commands.PayResetPMCmd

A resource group is a mechanism to group together particular types of
resources. Membership of a resource in a resource group can be specified in
one of two ways:
v Using the conditions column in the ACRESGRP table
v Using the ACRESGPRES table

In most cases, it is sufficient to use the ACRESGPRES table for associating
resources to resource groups. Using this method, resources are defined in the
ACRESCGRY table using their Java class name. Then, these resources are
associated with the appropriate resource groups (ACRESGRP table) using the
ACRESGPRES association table. In cases where the Java class name alone is
not sufficient to define the members of a resource group (for example, if you
need to further restrict the objects of this class based on an attribute of the
resource), the resource group can be defined entirely using the conditions
column of the ACRESGRP table. Note that in order to perform this grouping
of resources based on an attribute, the resource must also implement the
Groupable interface.

The following diagram shows an example resource grouping specification. In
this example resource group 10023 includes all the resources that are
associated with it in the ACRESGPRES table. Resource group 10070 is defined
using the conditions field column in the ACRESGRP table. This resource
group includes instances of the Order remote interface, that also have status =
″Z″ (specifying a shared requisition list).

Chapter 4. Access control 89

Note: Details about the XML information for the Conditions column of the
ACRESGRP table are found in the WebSphere Commerce Access Control
Guide.

The MEMBER_ID column of the ACACTGRP, ACRESGRP, and
ACRELGRP tables should have a value of -2001 (Root Organization).

ACRESGRP

ACRESGRPES ACRESCGRY

AcResGrp_Id

AcResCgry_Id ResClassname

GrpName Conditions

10023

10023

10023

10023

10023

10023

10246 10246

10247

10248

10249

10250

com.ibm.commerce.contract.
commands.ContractCreateCmd

com.ibm.commerce.contract.
commands.ContractCreateCmd

com.ibm.commerce.contract.
commands.ContractCreateCmd

com.ibm.commerce.contract.
commands.ContractCreateCmd

com.ibm.commerce.contract.
commands.ContractCreateCmd

10247

10248

10249

10250

10070

AccountRepresentatives
CmdResourceGroup

SharedRequisitionList
ResourceGroup

null

<profile>
<andListCondition>
<simpleCondition>
<variable name="Status"/>
<operator name="="/>
<value data="Z"/>

</simpleCondition>
<simpleCondition>
<variable name="classname"/>
<operator name="="/>
<value data="com.ibm.commerce.order.
objects.Order"/>

</simpleCondition>
</andListCondition>

</profile>

AcResGrp_Id AcResCgry_Id

Figure 20.

90 Programmer’s Guide

The access control policy can optionally include either a Relationship or
RelationshipGroup element as its fourth element.

If your access control policy uses a Relationship element, this comes from the
ACRELATION table. If, on the other hand, it includes a RelationshipGroup
element, that comes from the ACRELGRP table. Note that neither need be
included, but if you include one, you cannot include the other. A
RelationshipGroup specification from the ACRELGRP table takes precedence
over the Relationship information from the ACRELATION table.

The ACRELATION table specifies the types of relationships that exist between
users and resources. Some examples of types of relationships include creator,
submitter, and owner. An example of the use of the relationship element is to
use it to ensure that the creator of an order can always update the order.

The ACRELGRP table specifies the types of relationship groups that can be
associated with particular resources. A relationship group is a grouping of one
or more relationship chains. A relationship chain is a series of one more
relationships. An example of a relationship group is to specify that a user
must be the creator of the resource and also belong to the buying
organizational entity that is referenced in the resource.

The relationship group (or relationship) specification is an optional part of the
access control policy. It is commonly used if you have created your own
commands and these commands are not restricted to certain roles. In these
cases, you might want to enforce a relationship between the user and the
resource. Typically, if commands are to be restricted to certain roles, it is
accomplished through the UserGroup element of the access control policy
rather than by using the Relationship element.

Another important concept related to access control policies is the concept of
an access control policy owner. An access control policy owner is the
organizational entity that owns the access control policy. Knowing the owner
of an access control policy is important because an access control policy can
only be applied to resources that are owned by the access control policy
owner.

For each resource in question, the access control policy manager applies access
control policies that are owned by the owning organizational entity or by its
ancestor organizational entities in the member hierarchy, until either a policy
is found that grants permission or until all policies have been checked and
none grant permission.

Consider the following diagram showing a member hierarchy.

Chapter 4. Access control 91

For the resource “OrderA”, any access control policy that is owned by the
Seller or Root organization can be applied. If the access control policy
manager finds one policy owned by either of these organizations that grants
the user permission (based upon the four elements in the access control
policy) it immediately stops searching through the access control policies.
However, if it does not find any access control policies owned by those
organizations that grant the user permission to perform the action on the
protected resources, then access is denied.

Relationship groups
A relationship group allows you to specify multiple relationships. A
relationship can be directly between a user and the resource in question, or it
can be a chain of relationships that indirectly relate the user to the resource.

Note: For the following sections related to relationship groups, it is important
to recognize that the only organizations available in WebSphere
Commerce Professional Edition are the RootOrganization, the
DefaultOrganization, and the SellerOrganization. Examples that refer to
other organizations only apply to WebSphere Commerce Business
Edition.

Comparing relationships to relationship groups: Access control policies can
specify that a user must fulfill a particular relationship with respect to the
resource being accessed, or they can specify that a user must fulfill the
conditions specified in a relationship group.

Default (-2000)

StoreA

OrderA

Root (-2001)

Seller (-2002)

Figure 21.

92 Programmer’s Guide

In most cases, specifying a relationship should satisfy the access control
requirements for your application. If, however, the policy is such that you
must specify a relationship that is not directly between the user and the
resource, but that is actually a series of relationships between the user and the
resource, you must then use a relationship group.

For example, if you must specify an association between a user and a buying
organization where the relationship requires that the user is playing a
particular role for that organization or that the user is a member of the buying
organization, then you must use a relationship group and a chain of
relationships.

If you merely need to enforce an association that is directly between the user
and the resource in question, you can use a simple relationship. For example,
this would be the case if you need to enforce that the user must be the creator
of the resource.

If you combine multiple simple relationships, for example, the user must be
the creator or the submitter, then this becomes a chain of relationships and
you must use a relationship group. This combination of simple relationships
may occur when using either WebSphere Commerce Professional Edition or
WebSphere Commerce Business Edition.

General information about relationship groups: A relationship chain is a
series of one more relationships. The length of a relationship chain is
determined by the number of relationships that it contains. This can be
determined by examining the number of <parameter name=“aName”
value=“aValue” /> elements in the XML representation of the relationship
chain.

Only the last <parameter name=“Relationship” value=“aValue” /> element
must be handled by the fulfills() method of the resource. The rest are handled
internally by the access control policy manager.

When a relationship chain has a length of 2, the first <parameter name=“aName”
value=“aValue” /> element is between a user and an organizational entity.
The last <parameter name=“aName” value=“aValue” /> element is between an
organizational entity and the resource.

If you need to define relationship groups, you must do so by defining the
relationship group information in an XML file. You can modify the
defaultAccessControlPolicies.xml file, or create your own XML file. For
more information about creating these XML-based information, refer to the
WebSphere Commerce Access Control Guide.

Chapter 4. Access control 93

The following sections show examples of different types of relationship
groups.

Relationship groups composed of a single relationship chain: Business As part of
an access control policy, you may be required to enforce that a user must
belong to the organizational entity that is the BuyingOrganizationalEntity of
the resource. This requires the creation of a relationship group that is
composed of one relationship chain that has a length two. The relationship
chain is said to be of length ″two″ because it consists of two separate
relationships. The first relationship is between the user and its parent
organizational entity. The user is the ″child″ in that relationship. For the
second relationship, the access control policy manager checks if the parent
organizational entity fulfills the BuyingOrganizationalEntity relationship with
the resource. In other words, it returns ″true″ if it is the buying organizational
entity of the resource.

The following XML snip is taken from the defaultAccessControlPolicies.xml
file and shows how to define this type of relationship group:
<RelationGroup Name="MemberOf->BuyerOrganizationalEntity"

OwnerID="RootOrganization">
<RelationCondition><![CDATA[

<profile>
<openCondition name="RELATIONSHIP_CHAIN">

<parameter name="HIERARCHY" value="child"/>
<parameter name="RELATIONSHIP" value="BuyingOrganizationalEntity"/>

</openCondition>
</profile>

]]></RelationCondition>
</RelationGroup>

Business Another example would be to enforce that the user must have the
role of Account Representative for the organizational entity that is the buying
organizational entity of the resource in question. Again, this uses a
relationship group that is composed of one relationship chain of length two.
The first part of the chain will find all of the organizational entities for which
the user has the Account Representative role. Then for this set of
organizational entities, the access control policy manager checks if at least one
of them fulfills the BuyingOrganizationalEntity relationship with the resource.
In other words, it returns true if one of them is the buying organizational
entity of the resource.

The following XML snip is taken from the defaultAccessControlPolicies.xml
file and shows how to define this type of relationship group:
<RelationGroup Name="AccountRep->BuyerOrganizationalEntity"

OwnerID="RootOrganization">
<RelationCondition><![CDATA[

<profile>

94 Programmer’s Guide

<openCondition name="RELATIONSHIP_CHAIN">
<parameter name="ROLE" value="Account Representative"/>
<parameter name="RELATIONSHIP" value="BuyingOrganizationalEntity"/>

</openCondition>
</profile>

]]></RelationCondition>
</RelationGroup>

Relationship groups composed of multiple relationship chains: It is possible to
compose a relationship group so that it contains multiple relationship chains.
When doing so, you must specify whether the user must satisfy all of the
relationship chains, meaning it is an AND scenario, or the user must satisfy at
least one of the relationship chains, meaning it is an OR scenario.

Business To demonstrate this type of relationship, the following XML snip is
used to enforce that a user must be the creator of the resource and the user
must also belong to the BuyingOrganizationalEntity specified in the resource.
The first chain, that specifies the user must be the creator of the resource is of
length one. The second chain that specifies that the user must belong to the
BuyingOrganizationalEntity specified in the resource is of length two.
<RelationGroup Name="Creator_And_MemberOf->BuyerOrganizationalEntity"

OwnerID="RootOrganization">
<RelationCondition><![CDATA[
<profile>
<andListCondition>
<openCondition name="RELATIONSHIP_CHAIN">
<parameter name="RELATIONSHIP" value="creator" />
</openCondition>
<openCondition name="RELATIONSHIP_CHAIN">
<parameter name="HIERARCHY" value="child"/>
<parameter name="RELATIONSHIP" value="BuyingOrganizationalEntity"/>
</openCondition>
</andListCondition>
</profile>
]]></RelationCondition>
</RelationGroup>

If, instead of the AND scenario, you require the user to satisfy either of the
two relationship chains, the <andListCondition> tag should be changed to the
<orListCondition> tag.

Professional Business To demonstrate a relationship group that can be used in
WebSphere Commerce Professional Edition (as well as WebSphere Commerce
Business Edition), consider a relationship group that is used to enforce that
the user must be either the creator or the submitter of the resource. This is
shown in the following XML snip.
<RelationGroup Name="Creator_Or_Submitter"

OwnerID="RootOrganization">
<RelationCondition><![CDATA [

Chapter 4. Access control 95

<profile>
<orListCondition>

<openCondition name="RELATIONSHIP_CHAIN">
<parameter name="RELATIONSHIP"value="creator"/>

</openCondition>
<openCondition name="RELATIONSHIP_CHAIN">

<parameter name="RELATIONSHIP"value="submitter"/>
</openCondition>

</orListCondition>
</profile>
]]></RelationCondition>

</RelationGroup>

Types of access control
There are two types of access control, both of which are policy-based:
command-level access control and resource-level access control.

Command-level (also known as “role-based”) access control uses a broad type
of policy. You can specify that all users of a particular role can execute certain
types of commands. For example, you can specify that users with the Account
Representative role can execute any command in the
AccountRepresentativesCmdResourceGroup resource group. Or, as depicted in
the following diagram, another example policy is to specify that all store
administrators can perform any action specified in the
ExecuteCommandAction Group on any resource that is specified by the
StoreAdminCmdResourceGrp.

Note: The XML information for the Conditions column of the
MBRGRPCOND table is generated when you use the Administration
Console to set up your access groups. For information about using the
Administration Console to set up access groups, refer to the WebSphere
Commerce online help.

96 Programmer’s Guide

A command-level access control policy always has the
ExecuteCommandActionGroup as the action group for controller commands. For
views, the resource group is always ViewCommandResourceGroup.

All controller commands must be protected by command-level access control.
In addition, any view that can be called directly, or that can be launched by a
redirect from another command (in contrast to being launched by forwarding
to the view) must be protected by command-level access control.

Command-level access control does not consider the resource that the
command would act upon. It merely determines if the user is allowed to

ACPOLICY

MBRGRP

ACACTGRP

ACRESGRP

MBRGRPCOND

PolicyName

MbrGrpName

GroupName

GrpName

Conditions

Member_Id MbrGrp_Id

MbrGrp_Id

AcActGrp_Id

AcResGrp_Id

MbrGrp_Id

AcActGrp_id AcResGrp_Id AcRelGrp_Id

StoreAdministrators
ExecuteStoreAdmin
CmdResourceGroup

StoreAdministrators

ExecuteCommandActionGroup

StoreAdminCmdResourceGroup

<profile>
<simpleCondition>
<variable name="role"/>
<operator name="="/>
<value data="Store Administrator"/>

</simpleCondition>
</profile>

-2001 -8

-8

10052

10018

-8

10052 10018 null

Figure 22.

Chapter 4. Access control 97

execute the particular command. If the user is allowed to execute the
command, a subsequent resource-level access control policy could be applied
to determine if the user can access the resource in question.

Consider when a store administrator attempts to perform an administrative
task. The first level of access control checking would be to determine if this
user is allowed to execute the particular store administration command. Once
it has been determined that the user is in fact permitted to do this (because
store administrators are allowed to execute commands in the
storeAdminCmds group), a resource-level access control policy may be
invoked. This policy may state that store administrators are only permitted to
perform administrative tasks for stores that are owned by the organization for
which the user is a store administrator.

To summarize, in command-level access control the “resource” is the
command itself and the “action” is merely to execute the command (in other
words, to instantiate the command object). The access control check
determines if the user is permitted to execute the command. By contrast, in
resource-level access control the “resource” is any protectable resource that the
command or bean accesses and the “action” is the command itself.

Access control interactions
This section presents the interaction diagram showing how access control
works in the WebSphere Commerce access control policy framework.

98 Programmer’s Guide

The preceding diagram shows actions that are performed by the access control
policy manager. The access control policy manager is the access control
component that determines whether or not the current user is allowed to
execute the specified action on the specified resource. It determines this by
searching through the policies owned by the resource’s owner and its ancestor
organizations. If at least one policy grants access, then permission is granted.

The following list describes the actions from the preceding interaction
diagram. They are ordered from the top of the diagram to the bottom.
1. isAllowed()

The run-time components determine if the user has command level
access for either the controller command or view.

2. getOwner()
The access control policy manager determines the owner of the

RunTime
Framework

PolicyManager Command Resource

isAllowed(User,Action,Resource) : Command level

isAllowed(User,Action,Resource) : Resource level

validateParameters()

getResources()

performExecute()

getOwner()

getOwner()

getApplicablePolicies()

fulfills(Member, Relationship)

getApplicablePolicies()

Figure 23.

Chapter 4. Access control 99

command-level resource. The default implementation returns the member
identifier (memberId) of the owner of the store (storeId) that is in the
command context. If there is no store identifier in the command context,
then the root organization (-2001) is returned.

3. getApplicablePolicies()
The access control policy manager finds and processes the applicable
policies, based on the specified user, action and resource.

4. validateParameters()
Initial parameter checking and resolving.

5. getResources()
Returns an access vector that is a vector of resource-action pairs.
If nothing is returned, resource-level access control checking is not
performed. If there are resources that should be protected an access
vector (consisting of resource-action pairs) should be returned.
Each resource is an instance of a protectable object (an object that
implements the com.ibm.commerce.security.Protectable interface). In
many cases, the resource is an access bean.
An access bean may not implement the
com.ibm.commerce.security.Protectable interface, however, the access
control check can still occur as long as the corresponding enterprise bean
is protected, according to the information included in “Implementing
access control in enterprise beans” on page 103.
The action is a string representing the operation to be performed on the
resource. In most cases, the action is the interface name of the command.

6. isAllowed()
The run-time components determine if the user has resource level access
to all of the resource-action pairs specified by getResources().

7. getOwner()
The resource returns the memberId of its owner. This determines which
policies apply. Only policies that are owned by the resource owner and
its ancestor organizations apply.

8. getApplicablePolicies()
The access control policy manager searches for applicable policies and
then applies them. If at least one policy per resource-action pair that
grants the user permission to access the resource is found, then access is
granted, otherwise access it is denied.

9. fulfills()
If an applicable policy has a relationship group specified, a check is done
on the resource to see if the member satisfies the specified relationship or
relationships, with respect to the resource.

10. performExecute()
The business logic of the command.

100 Programmer’s Guide

Protectable interface
A key factor for having a resource protected by the WebSphere Commerce
access control policies, is that the resource must implement the
com.ibm.commerce.security.Protectable interface. This interface is most
commonly used with enterprise beans and data beans, but only those
particular beans that require protection need to implement the interface.

With the Protectable interface, a resource must provide two key methods:
getOwner(), and fulfills(Long member, String relationship).

Access control policies are owned by organizations or organizational entities.
The getOwner method returns the memberId of the owner of the protectable
resource. After the access control policy manager determines the owner of the
resource, it also gets the memberId of each of the ancestors for the owner in
the member hierarchy. All access control policies that belong to the owner
from the original getOwner request as well as all access control policies that
belong to any of the owner’s ancestors are then applied.

Access control policies that apply to the specified owner, as well as access
control policies that apply to any of the owner’s higher level ancestors in the
membership hierarchy, are applied.

The fulfills method only returns true if the given member satisfies the
required relationship with respect to the resource. Typically the member is a
single user, however it can also be an organization. It would be an
organization if you are using a relationship group in the access control policy.

Groupable interface
The application of an access control policy is specific to a group of resources.
Resource groupings can be made based upon attributes such as the class
name, the state of an order or the storeId value.

If a resource is going to be grouped by an attribute other than its class name
for the purpose of applying access control policies, it must implement the
com.ibm.commerce.grouping.Groupable interface.

The following code snippet represents the Groupable interface:
Groupable interface {
Object getGroupingAttributeValue (String attributeName, GroupContext context)
}

For example, to implement a policy that only applies to orders that are in the
pending state (status = P (pending)), the remote interface of the Order entity
bean implements the Groupable interface and the value for attributeName is
set to “status”.

Chapter 4. Access control 101

Usage of the Groupable interface is rare.

Finding more information about access control
For more information about the WebSphere Commerce access control model,
refer to the WebSphere Commerce Access Control Guide. This guide provides a
detailed overview of access control and describes how to use the
Administration Console to create or modify policies, action groups, and
resource groups.

Implementing access control

This section describes how to implement access control in customized code.

Identifying protectable resources
In general, enterprise beans and data beans are resources that you may want
to protect. However, not all enterprise beans and data beans should be
protected. Within the existing WebSphere Commerce application, resources
that require protection already implement the protectable interface. The
question of what to protect comes into play when you create new enterprise
beans and data beans. Deciding which resources to protect depends upon
your application.

If a command returns an enterprise bean in the getResources method, then
the enterprise bean must be protected because the access control policy
manager will call the getOwner method on the enterprise bean. The fulfills
method will also be called if a relationship is specified in the corresponding
resource-level access control policy.

If you were to implement the protectable interface (and therefore, put the
resource under protection) for all of your own enterprise beans and data
beans, your application could require many policies. As the number of
policies increases, performance may degrade and policy management becomes
more challenging.

A theoretical distinction is made between primary resources and dependent
resource. A primary resource can exist upon its own. A dependent resource exists
only when its related primary resource exists. For example, in the
out-of-the-box WebSphere Commerce application code, the Order entity bean
is a protectable resource, but the OrderItem entity bean is not. The reason for
this is that the existence of an OrderItem depends upon an Order -- the Order
is the primary resource and the OrderItem is a dependent resource. If a user
should have access to an Order, it should also have access to the items in the
order.

102 Programmer’s Guide

Similarly, the User entity bean is a protectable resource, but the Address entity
bean is not. In this case, the existence of the address depends on the user, so
anything that has access to the user, should also have access to the address.

Primary resources should be protected, but dependent resources often do not
require protection. If a user is allowed to access a primary resource, it makes
sense that, by default, the user should also be allowed to access its dependent
resources.

Implementing access control in enterprise beans
If you create new enterprise beans that require protection by access control
policies, you must do the following:
1. Create a new enterprise bean, ensuring that it extends from

com.ibm.commerce.base.objects.ECEntityBean.
2. Ensure that the remote interface of the bean extends the

com.ibm.commerce.security.Protectable interface.
3. If resources with which the bean interacts are grouped by an attribute

other than the resource’s Java class name, the remote interface of the bean
must also extend the com.ibm.commerce.grouping.Groupable interface.

4. The enterprise bean class contains default implementations for the
following methods:
v getOwner

v fulfills

v getGroupingAttributeValue

Override any methods that you need. At a minimum, you must override
the getOwner method.
The default implementations of these methods are shown in the following
code snippets.
**
public Long getOwner() throws Exception, java.rmi.RemoteException
{

return null;
}
**

**
public boolean fulfills(Long member, String relationship)

throws Exception, java.rmi.RemoteException
{

return false;
}
**

**
public Object getGroupingAttributeValue(String attributeName,

GroupingContext context) throws Exception, java.rmi.RemoteException
{

Chapter 4. Access control 103

return null;
}
**

The following are sample implementations of these methods based on the
OrderBean bean:

public Long getOwner() throws Exception, java.rmi.RemoteException
{

com.ibm.commerce.common.objects.StoreEntityAccessBean storeEntAB = new
com.ibm.commerce.common.objects.StoreEntityAccessBean();
storeEntAB.setInitKey_storeEntityId(getStoreEntityId().toString());
return storeEntAB.getMemberIdInEJBType();

}

public boolean fulfills(Long member, String relationship)

throws Exception, java.rmi.RemoteException
{

if (relationship.equalsIgnoreCase("creator"))
{

return member.equals(getMemberId());
}
else if (relationship.equalsIgnoreCase (

com.ibm.commerce.base.helpers.EJBConstants.
SAME_ORGANIZATIONAL_ENTITY_AS_CREATOR_RELATION)) {

com.ibm.commerce.user.objects.UserAccessBean creator = new
com.ibm.commerce.user.objects.UserAccessBean();

creator.setInitKey_MemberId(getMemberId().toString());
com.ibm.commerce.user.objects.UserAccessBean ab = new

com.ibm.commerce.user.objects.UserAccessBean();
ab.setInitKey_MemberId(member.toString());
if (ab.getParentMemberId().equals(creator.getParentMemberId()))

return true;
}

return false;
}

public Object getGroupingAttributeValue(String attributeName,

GroupingContext context) throws Exception
{

if (attributeName.equalsIgnoreCase("Status"))
return getStatus();

return null;
}

5. Create (or recreate) the enterprise bean’s access bean and generated code.

Implementing access control in data beans
If a data bean is to be protected, it can either be directly, or indirectly
protected by access control policies. If a data bean is directly protected, then
there exists an access control policy that applies to that particular data bean. If

104 Programmer’s Guide

a data bean is indirectly protected, it delegates protection to another data
bean, for which an access control policy exists.

If you create a new data bean that is to be directly protected by an access
control policy, the data bean must do the following:
1. Implement the com.ibm.commerce.security.Protectable interface. As such,

the bean must provide an implementation of the getOwner() and
fulfills(Long member, String relationship) methods. These should be
implemented on the remote interface of the bean.
When a data bean implements the Protectable interface, the data bean
manager calls the isAllowed method to determine if the user has the
appropriate access control privileges, according to the current access
control policy. The isAllowed method is described by the following code
snippet:
IsAllowed(Context, "Display", protectable_databean);

2. If resources that the bean interacts with are grouped by an attribute other
than the resource’s Java class name, the bean must implement the
com.ibm.commerce.grouping.Groupable interface.

3. Implement the com.ibm.commerce.security.Delegator interface. This
interface is described by the following code snippet:
Interface Delegator {
Protectable getDelegate();
}

Note: In order to be directly protected, the getDelegate method should
return the data bean itself (that is, the data bean delegates to itself
for the purpose of access control).

The distinction between which data beans should be protected directly versus
which should be protected indirectly is similar to the distinction between
primary and dependent resources. If the data bean object can exist on its own,
it should be directly protected. If the existence of data bean depends upon the
existence of another data bean, then it should delegate to the other data bean
for protection.

An example of a data bean that would be directly protected is the Order data
bean. An example of a data bean that would be indirectly protected is the
OrderItem data bean.

If you create a new data bean that is to be indirectly protected by an access
control policy, the data bean must do the following:
1. Implement the com.ibm.commerce.security.Delegator interface. This

interface is described by the following code snippet:

Chapter 4. Access control 105

Interface Delegator {
Protectable getDelegate();
}

Note: The data bean returned by getDelegate must implement the
Protectable interface.

If a data bean does not implement the Delegator interface, it is populated
without the protection of access control policies.

Implementing access control in controller commands
When creating a new controller command, the implementation class for the
new command should extend the
com.ibm.commerce.commands.ControllerCommandImpl class and its interface
should extend the com.ibm.commerce.command.ControllerCommand interface.

For command level policies for controller commands, the interface name of
the command is specified as a resource. In order for a resource to be
protected, it must implement the Protectable interface. According to the
WebSphere Commerce programming model, this is accomplished by having
the command’s interface extend from
com.ibm.commerce.command.ControllerCommand interface, and the command’s
implementation extend from
com.ibm.commerce.commands.ControllerCommandImpl. The ControllerCommand
interface extends com.ibm.commerce.command.AccCommand interface, which in
turn extends Protectable. The AccCommand interface is the minimum interface
that a command should implement in order to be protected by command level
access control.

If the command accesses resources that should be protected, create a private
instance variable of type AccessVector to hold the resources. Then override
the getResources method since the default implementation of this method is
to return a null value and therefore, no resource checking occurs.

In the new getResources method, you should return an array of resources or
of resource-action pairs upon which the command can act. When an action is
not explicitly specified, the action defaults to the interface name of the
command being executed.

Additionally, it is recommended that the method determines if it must
instantiate the resource or if it can use the existing instance variable holding
the reference to the resource. Checking to see if the resource object already
exists can help to improve system performance. You can then use the same
getResources method, if required, in the performExecute method of the new
controller command.

The following is an example of the getResources method:

106 Programmer’s Guide

private AccessVector resources = null;

public AccessVector getResources() throws ECException {

if (resources == null) {
OrderAccessBean orderAB = new OrderAccessBean();
orderAB.setInitKey_orderId(getOrderId().toString());
resouces = new AccessVector(orderAB);
}

return resources;
}

As an example, consider the OrderItemUpdate command. The getResources
method of this command returns the Order and User protectable objects. Since
the action is not specified, it defaults to the interface for the OrderItemUpdate
command.

Multiple resources may be returned by the getResources method. When this
occurs, a policy that gives the user access to all of the specified resources
must be found if the action is to be carried out. If a user had access to two
out of three resources, the action may not proceed (three out of three would
be required).

If you need to perform additional parameter checking or resolving of
parameters in the controller command, you can use the validateParameters()
method. This is optional.

Additional resource level checking
It is not always possible to determine all of the resources that need to be
protected, at the time the getResources method of the controller command is
called.

If necessary, a task command can also implement a getResources method to
return a list of resources, upon which the command can act.

Another way to invoke resource level checking is to make direct calls to the
access control policy manager, using the checkIsAllowed(Object resource,
String action) method. This method is available to any class that extends
from the com.ibm.commerce.command.AbstractECTargetableCommand class. For
example, the following classes extend from the AbstractECTargetableCommand
class:
v com.ibm.commerce.command.ControllerCommandImpl

v com.ibm.commerce.command.DataBeanCommandImpl

The checkIsAllowed method is also available to classes that extend the
com.ibm.commerce.command.AbstractECCommand class. For example, the
following class extends from the AbstractECCommand class:
v com.ibm.commerce.command.TaskCommandImpl

Chapter 4. Access control 107

The following shows the signature of the checkIsAllowed method:
void checkIsAllowed(Object resource, String action)

throws ECException

This method throws an ECApplicationException if the current user is not
allowed to perform the specified action on the specified resource. If access is
granted, then the method simply returns.

Access control for “create” commands
Since the getResources method is called before the performExecute method in
a command, a different approach must be taken for access control for
resources that are not yet created. For example, if you have a WidgetAddCmd,
the getResources method cannot return the resource that is about to be
created. In this case, the getResources method should return the creator of the
resources. For example, a command is created by a command factory, an order
is created within a store, and a user is created within an organization.

Default implementations for command-level access control
For command-level access control, the default implementation of the
getOwner() method returns the memberId of the store owner, if the storeId is
specified. If the storeId is not specified, the memberId of the root organization
is returned (memberId = -2001).

The default implementation of the getResources() method returns null.

The default implementation of the validateParameters() does nothing.

Implementing access control policies in views
Resource-level access control for views is performed by the data bean
manager. The data bean manager is invoked in the following cases:
1. When the JSP template includes the <useBean> tag and the data bean is not

in the attribute list.
2. When the JSP template includes the following activate method:

DataBeanManager.activate(xyzDatabean, request);

Note: Any data bean that is to be protected (either directly or indirectly) must
implement the Delegator interface. Any data bean that is to be directly
protected will delegate to itself, and thus must also implement the
Protectable interface. Data beans that are indirectly protected should
delegate to a data bean that implements the Protectable interface.

While it is not recommended, a bypass of the access control checks occurs in
the following cases:
1. If the JSP template makes direct calls to access beans, rather than using

data beans.

108 Programmer’s Guide

2. If the JSP template invokes the data bean’s populate() method directly.

If the results of a controller command are to be forwarded to a view (using
the ForwardViewCommand), then command-level access control is not
performed on the views. Furthermore, if the controller command puts the
populated data beans (that are used in the view) on the attribute list of the
response property and then forwards to a view, the JSP template can access
the data without going through the data bean manager. This does require that
the <useBean> tags are used in the JSP template. This can be a way to make a
JSP template more efficient, since it can bypass any redundant resource-level
access control checks on resources (data beans) to which the user has already
been granted access via the controller command.

Chapter 4. Access control 109

110 Programmer’s Guide

Chapter 5. Error handling and messages

Command error handling

WebSphere Commerce uses a well-defined command error handling
framework that is simple to use in customized code. By design, the
framework handles errors in a manner that supports multicultural stores. The
following sections describe the types of exceptions that a command can throw,
how the exceptions are handled, how message text is stored and used, how
the exceptions are logged, and how to use the provided framework in your
own commands.

Types of exceptions
A command can throw one of the following exceptions:

ECApplicationException
This exception is thrown if the error is related to the user. For
example, when a user enters an invalid parameter, an
ECApplicationException is thrown. When this exception is thrown, the
Web controller does not retry the command, even if it is specified as a
retriable command.

ECSystemException
This exception is thrown if a run-time exception or a WebSphere
Commerce configuration error is detected. Examples of this type of
exception include null-pointer exceptions and transaction rollback
exceptions. When this type of exception is thrown, the Web controller
retries the command if the command is retriable and the exception
was caused by either a database deadlock or database rollback.

Both of the above listed exceptions are classes that extend from the
ECException class, which is found in the com.ibm.commerce.exception
package.

In order to throw one of these exceptions, the following information must be
specified:
v Error view name

The Web controller looks up this name in the VIEWREG table.
v ECMessage object

This value corresponds to the message text contained within a properties
file.

v Error parameters
These name-value pairs are used to substitute information into the error
message. For example, a message may contain a parameter to hold the

© Copyright IBM Corp. 2000, 2002 111

name of the method which threw the exception. This parameter is set when
the exception is thrown, then when the error message is logged, the log file
contains the actual method name.

v Error data
These are optional attributes that can be made available to the JSP template
through the error data bean.

Exception handling is tightly integrated with the logging system. When an
exception is thrown, it is automatically logged.

Error message properties files
In order to simplify the maintenance of error messages and to support
multilingual stores, the text for error messages is stored in properties files.
WebSphere Commerce message text is stored in the
ecServerMessages_XX_XX.properties file, where _XX_XX is the locale indicator
(for example, _en_US).

The command context returns an identifier to indicate the language used by
the client. When a message is required, the Web controller determines which
properties file to use based upon the language identifier.

There are two types of messages defined in the
ecServerMessagesXX_XX.properties file: user messages and system messages.
User messages are displayed to customers in their browsers. Both system and
user messages are captured automatically in the message log.

When an error is thrown, one of the required parameters is a message object.
For ECSystemExceptions, the message object must contain two keys, one for
the system message and one for the user message. For
ECApplicationExceptions, the message object contains the key for the user
message (system messages are not used).

All system messages are predefined. You cannot create your own system
messages. Therefore, when customized code throws an ECSystemException, it
must specify a message key for one of the predefined system messages.
Customized user messages can be created. New user messages must be stored
in a separate properties file.

Exception handling flow
The following diagram shows the flow of information when an exception is
caught. A description of each step follows.

112 Programmer’s Guide

1. The Web controller invokes a controller command.
2. The command throws an exception that is caught by the Web controller.

This can be either an ECApplicationException, or an ECSystemException.
The exception object contains the following information:
v Error view name
v ECMessage object
v Error parameters
v (optional) Error data

3. The Web controller determines the error view name from the VIEWREG
table and invokes the specified error view command. When invoking the
command, the Web controller composes a set of properties from the
ECException object and sets it to the view command using the view
command’s setInputProperties method.

4. The view command invokes an error JSP template (Error.jsp in this case)
and the name-value pairs are passed to the JSP template.

Web
controller

Controller
command

Error view
command

Error
data bean

Message helper
Resource
bundles

1. execute()

3. setInputProperties(NVPs)
execute()

2. ECApplicationException
or

ECSystemException

6.

4. Name-value pairs (NVPs)

5. (error_code, NVPs) 7. message

Error.jsp

Figure 24.

Chapter 5. Error handling and messages 113

5. The ErrorDataBean passes the error parameters to the message helper
object.

6. The message helper object gets the required message (using the message
object and the error parameters) from the appropriate properties file.

7. The error data bean returns the message to the JSP template.

Exception handling in customized code
When creating new commands, it is important to include appropriate
exception handling. You can take advantage of the error handling and
messaging framework provided in WebSphere Commerce, by specifying the
required information when catching an exception.

Writing your own exception handling logic, involves the following steps:
1. Catching the exceptions in your command that require special processing.
2. Constructing either an ECApplicationException or ECSystemException,

based upon the type of exception caught.
3. If the ECApplicationException uses a new message, defining the message

in a new properties file.

Catching and constructing exceptions
To illustrate the first two steps, the following code snippet shows an example
of catching a system exception within a command:
try {
// your business logic
}
catch(FinderException e) {

throw new ECSystemException (ECMessage._ERR_FINDER_EXCEPTION,
className, methodName, new Object [] {e.toString()}, e);

}

The preceding _ERR_FINDER_EXCEPTION ECMessage object is defined as
follows:
public static final ECMessage _ERR_FINDER_EXCEPTION =
new ECMessage (ECMessageSeverity.ERROR, ECMessageType.SYSTEM,

ECMessageKey._ERR_FINDER_EXCEPTION);

The _ERR_FINDER_EXCEPTION message text is defined within the
ecServerMessages_xx_XX.properties file (where _xx_XX is a locale indicator
such as _en_US), as follows:
_ERR_FINDER_EXCEPTION =

The following Finder Exception occurred during processing: "{0}".

When catching a system exception, there is a predefined set of messages that
can be used. These are described in the following table:

114 Programmer’s Guide

Message Object Description

_ERR_FINDER_EXCEPTION Thrown when an error is returned from an
EJB finder method call.

_ERR_REMOTE_EXCEPTION Thrown when an error is returned from an
EJB remote method call.

_ERR_CREATE_EXCEPTION Thrown when an error occurs creating an EJB
instance.

_ERR_NAMING_EXCEPTION Thrown when an error is returned from the
name server.

_ERR_GENERIC Thrown when an unexpected system error
occurs. For example, a null pointer exception.

When catching an application exception, you can either use an existing
message that is specified in the appropriate
ecServerMessages_xx_xx.properties file, or create a new message that is
stored in a new properties file. As specified previously, you must not modify
any of the ecServerMessages_xx_XX.properties files.

The following code snippet shows an example of catching an application
exception within a command:
try {
// your business logic

}
// catch some new type of application exception
catch(//your new exception)
{

throw new ECApplicationException (MyMessages._ERR_CUSTOMER_INVALID,
className, methodName, errorTaskName, someNVPs);

}

The preceding _ERR_CUSTOMER_INVALID ECMessage object is defined as
follows:
public static final ECMessage _ERR_CUSTOMER_INVALID =

new ECMessage (ECMessageSeverity.ERROR, ECMessageType.USER,
MyMessagesKey._ERR_CUSTOMER_INVALID, "ecCustomerMessages");

When constructing new user messages, you should assign them with
a type of USER, as follows:

ECMessageType.USER

The text for the _ERR_CUSTOMER_INVALID message is contained in the
ecCustomerMessages.properties file. This file must reside in a directory that is
in the class path. The text is defined as follows:
_ERR_CUSTOMER_INVALID = Invalid ID "{0}"

Chapter 5. Error handling and messages 115

Creating messages
If your command throws an ECApplicationException that uses a new
message, you must create this new message. Creating a new message involves
the following steps:
1. Creating a new class that contains the message keys.
2. Creating a new class that contains the ECMessage objects.
3. Creating a resource bundle.
4. Unit testing the message.

Details about each step are found in the following sections.

Creating a class for message keys
The first step in creating new user messages is to create a class that contains
the new message keys. A message key is a unique indicator that is used by
the logging service to locate the corresponding message text in a resource
bundle. This new class must be created within your own package and stored
in a project separate from the WebSphere Commerce projects.

Consider an example, called MyNewMessages, in which you create a new class,
called MyMessageKeys that contains the _ERR_CUSTOMER and
_ERR_CUSTOMER_INVALID_ID message keys and you put this class in the
com.mycompany.messages package. In this case, the class definition appears as
follows:
public class MyMessageKeys
{

public static String _ERR_CUSTOMER="_ERR_CUSTOMER";
public static String _ERR_CUSTOMER_INVALID_ID="_ERR_CUSTOMER_INVALID_ID";

}

Providing String wrappers for message keys allows the compiler to check
their validity.

Creating a class for ECMessage objects
Within the same package that you created the class for your message keys,
create another class that contains the ECMessage objects. The ECMessage class
defines the structure of a message object. It is used to retrieve and persist
locale-sensitive text messages.

The message object has the following attributes: severity, type, key, resource
bundle and associated resource bundle. There are several constructor methods
for this class. Refer to the “Reference” section of the WebSphere Commerce
online help for complete details.

Following the MyNewMessages example, create a new class called MyMessages
within the com.mycompany.messages package, as follows:

116 Programmer’s Guide

import com.ibm.commerce.ras.*;

public class MyMessages
{

static String myResourceBundle = "ecCustomerMessages";

public static ECMessage _ERR_CUSTOMER = new ECMessage
(ECMessageSeverity.ERROR,ECMessageType.USER,

MyMessageKeys._ERR_CUSTOMER, myResourceBundle);
public static ECMessage _ERR_CUSTOMER_INVALID_ID = new ECMessage

(ECMessageSeverity.ERROR, ECMessageType.USER,
MyMessageKeys._ERR_CUSTOMER_INVALID_ID,
myResourceBundle);

}

In the preceding code snippet, the import statement is required for the
creation of the ECMessage object. The object MyMessage._ERR_CUSTOMER is
a user message of severity ERROR. The MyMessageKeys._ERR_CUSTOMER is
used by the WebSphere Commerce logging service to find the message text
contained in the ecCustomerMessages properties file.

Creating a user message resource bundle
You must create a new resource bundle, in which the message keys with
corresponding message text are stored. This resource bundle can be
implemented either as a Java object, or as a properties file. It is recommended
that you use properties files, since they are easier to translate and maintain.
Properties files are used for WebSphere Commerce messages.

To continue the MyNewMessages example, create a text file by the name of
ecCustomerMessages.properties. If the messages are to be used by a single
store servlet, place this file in the following directory:
drive:\WebSphere\AppServer\installedApps\WC_EnterpriseApp_instanceName.ear\

wcstores.war\WEB-INF\classes

If the messages are to be used by a single tools servlet, place this file in the
following directory:
drive:\WebSphere\AppServer\installedApps\WC_EnterpriseApp_instanceName.ear\

wctools.war\WEB-INF\classes

If the messages are used globaly by any servlet in the enterprise application,
place the file in the following directory:
drive:\WebSphere\AppServer\installedApps\WC_EnterpriseApp_instanceName.ear\

properties

Since the properties file contains pairs of message keys and the corresponding
message text, the ecCustomerMessages.properties file contains the following
lines:

Chapter 5. Error handling and messages 117

_ERR_CUSTOMER_MESSAGE = The customer message "{0}".
_ERR_CUSTOMER_INVALID_ID = Invalid ID "{0}".

Unit testing a message
Once the classes containing the message keys, the classes containing
ECMessage objects, and the resource bundle have been created, you should
unit test your new messages.

In order to test the new messages described in the preceding sections, do the
following:
1. Create a new class for testing purposes. In this case, create

MyTestingClass.
2. Add the following import statement to the class

import com.ibm.commerce.ras.*;

3. Add a main() method to the class.
4. Examine the following code snippet. Modify it according to your own

requirements (for example, ensure that the directory path points to a valid
configuration file on your system) and insert it into the main() method
// the fileName String variable should point
// to a valid WebSphere Commerce configuration file:

String fileName = "E:\\WebSphere\\CommerceServer\\instances
\\demo\\xml\\demo.xml";

LogConfiguration config = LogConfiguration.getUniqueInstance ();
config.initialize (fileName, "testClone");

ECMessageLog.out (MyMessage._ERR_CUSTOMER,
"MyTestingClass", "main", "Hello");

The first three lines of code initialize the WebSphere Commerce logging
service. The last line of code instructs ECMessageLog to print out the
message MyMessage._ERR_CUSTOMER. MyTestingClass and main are part
of the log trace format. The Hello string is placed into the {0} placeholder
of the message defined in ecCustomerMessages.properties file.

5. Run the class. In the log file, the message trace appears similar to the
following:
==============
TimeStamp: 2000-11-29 16:41:42.5
Thread ID: <main>
Class: MyTestingClass
Method: main
Severity: 1
Message Text: The customer message "Hello".

You can run a similar test to see the second message.

118 Programmer’s Guide

Execution flow tracing
WebSphere Commerce includes the ECTrace class that is used to trace the
execution flow of components running in the WebSphere Commerce Server.
The ECTrace class is part of the com.ibm.commerce.ras package.

When creating new business logic, you can insert a trace within your code to
trace a method for debugging purposes. Information from the trace is
captured in the trace log. You can specify an entry and exit point for the trace.
In addition, you can specify that specific data be traced between those two
points.

In order to use tracing, it must be enabled for the component in which you
would like to run the trace. To enable tracing for a particular component, you
can use either the Administration Console or the Configuration Manager.

When tracing customized code, you must use the EXTERN component. In the
Configuration Manager, this is called External.

To set the entry point for a trace within your code, use the following syntax:
ECTrace.entry (ECTraceIdentifiers.COMPONENT_EXTERN, myClassName, myMethodName);

where myClassName is the string representation of the class that contains the
traced method. Since this string can be used to trace file parsing, it should
contain the fully qualified class name. If the method being traced is static,
then an example declaration of myClassName is
String myClassName = "com.mycompany.agrouping.MyTracedClass";

If the method being traced is not static, then an example declaration of
myClassName is
String myClassName = this.getClass().getName();

To set the trace point to trace data within a method, use the following syntax:
ECTrace.trace (ECTraceIdentifiers.COMPONENT_EXTERN, myClassName,

myMethodName, myText);

where myText is the text to appear in the trace log.

To set the exit point for a trace within your code, use the following syntax:
ECTrace.exit (ECTraceIdentifiers.COMPONENT_EXTERN, myClassName,

myMethodName);

If you need to trace the object returned from the method being traced, then
set the exit point as follows:
ECTrace.exit (ECTraceIdentifiers.COMPONENT_EXTERN, myClassName,

myMethodName, returnedObject);

Chapter 5. Error handling and messages 119

where returnedObject represents the Java object returned by the method.

Consider an example in which you need to trace the performExecute method
of a new controller command called MyNewControllerCmd. The following
code snippet shows how to use the ECTrace methods within your
performExecute method.
public void performExecute() throws ECException {

ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN,
this.getClass().getName(), "performExecute");

super.performExecute();

///
// Some of your business logic //
///

ECTrace.trace(ECTraceIdentifiers.COMPONENT_EXTERN,
this.getClass().getName(), "performExecute",
"My code is great!");

///
// Some more business logic //
///

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN,
this.getClass().getName(), "performExecute");

}

When the preceding performExecute method is called, the trace log file
captures the following information:
==============
TimeStamp: 2000-12-05 17:32:00.257
Thread ID: <P=502832:O=0:CT>
Component: EXTERN
Class: com.mycompany.agrouping.MyNewControllerCmd
Method: performExecute
Trace: ENTRY POINT
==============
TimeStamp: 2000-12-05 17:32:00.257
Thread ID: <P=502832:O=0:CT>
Component: EXTERN
Class: com.mycompany.agrouping.MyNewControllerCmd
Method: performExecute
Trace: My code is great!
==============
TimeStamp: 2000-12-05 17:32:00.258
Thread ID: <P=502832:O=0:CT>

120 Programmer’s Guide

Component: EXTERN
Class: com.mycompany.agrouping.MyNewControllerCmd
Method: performExecute
Trace: EXIT POINT

It is recommended that tracing be used only on major functions. Tracing is not
enabled for multiple languages, since it is intended to be used by Store
Developers. This is in contrast to messages, which are enabled for multiple
languages because system messages are used for administration purposes and
user messages are displayed to customers.

JSP template error handling

Error handling for JSP templates can be performed in various ways:
v Error handling from within the page

For JSP files that require more intricate error handling and recovery, the file
can be written to directly handle errors from the data bean. The JSP file can
either catch exceptions thrown by the data bean or it can check for error
codes set within each data bean, depending on how the data bean was
activated. The JSP file can then take an appropriate recovery action based
on the error received. Note that a JSP file can use any combination of the
following error handling scopes.

v Error JSP at the page level
A JSP file can also specify its own default error JSP template from an
exception occurring within itself through the JSP error tag. This enables a
JSP program to specify its own handling of an error. A JSP file which does
not specify a JSP error tag will have an error fall through to the application
level JSP error template. In the page level error JSP, it must call the JSP
helper class (com.ibm.server.JSPHelper) to rollback the current transaction.

v Error JSP at the application level
An application under WebSphere can specify a default error JSP template
when an exception from within any of its servlets or JSP files occur. The
application level error JSP template can be used as a mall level or store
level (for a single store model) error handler. In the application level error
JSP template, a call must be made to the servlet helper class to roll back the
current transaction. This is because the Web controller will not be in the
execution path to roll back the transaction. Whenever possible, you should
rely on the preceding two types of JSP error handling. Use the application
level error handling strategy only when required.

Chapter 5. Error handling and messages 121

122 Programmer’s Guide

Chapter 6. Command implementation

This section provides information about how to write new controller, task,
and data bean commands. It also describes how to extend existing controller,
task, and data bean commands.

Note: Business This chapter does not describe business policy commands. For
information about business policy commands, refer to Chapter 7,
“Trading agreements and business policies (Business Edition)” on page
147.

New commands - introduction

The WebSphere Commerce programming model defines four types of
commands: controller, task, view and data bean commands. When creating
new business logic for your e-commerce application, it is expected that you
may need to create new controller, task and data bean commands. You should
not need to create new view commands. More information on view
commands is found later in this section.

New commands must implement their corresponding interface (which in turn
should extend from an existing interface). To simplify command writing,
WebSphere Commerce includes an abstract implementation class for each type
of command. New commands should extend from these classes.

As an overview, the following table provides information about which
implementation class a new command should extend from, and which
interface it should implement:

Command
type

Example command
name

Extends from Implements
example interface

Controller
command

MyControllerCmdImpl com.ibm.commerce.
command.
ControllerCommandImpl

MyControllerCmd

Task
command

MyTaskCmdImpl com.ibm.commerce.
command.
TaskCommandImpl

MyTaskCmd

Data bean
command

MyDataBeanCmdImpl com.ibm.commerce.
command.
DataBeanCommandImpl

MyDataBean

© Copyright IBM Corp. 2000, 2002 123

Note: Any spaces in names of implementation classes are for presentation
purposes only.

The following diagram illustrates the relationship between the interface and
implementation class of a new controller command with the existing abstract
implementation class and interface. The abstract class and interface are both
found in the com.ibm.commerce.command package.

The following diagram illustrates the relationship between the interface and
implementation class of a new task command with the existing abstract
implementation class and interface. The abstract class and interface are both
found in the com.ibm.commerce.command package.

Implementation Classes

New controller command

Interfaces

ControllerCommandImpl

MyControllerCmdImpl

ControllerCommand

extends extends

MyControllerCmdimplements

Figure 25.

124 Programmer’s Guide

The following diagram illustrates the relationship between the interface and
implementation class of a new data bean command with the existing abstract
implementation class and interface. The abstract class and interface are both
found in the com.ibm.commerce.command package.

A view command has two main functions: to format a response and to send
the response to the client. A number of generic view commands are provided
that send the response to clients, using different protocols. The formatting
function is typically handled by the view command invoking a JSP template.

Implementation Classes

New task command

Interfaces

TaskCommandImpl

MyTaskCmdImpl

TaskCommand

MyTaskCmdimplements

extends extends

Figure 26.

Implementation Classes

New data bean command

Interfaces

DataBeanCommandImpl

MyDataBeanCmdImpl

DataBeanCommand

MyDataBeanCmd

extends extends

implements

Figure 27.

Chapter 6. Command implementation 125

For example, the RedirectViewCommand view command directs the client to
a URL to get the response (the response is then formatted by a specified JSP
template). The ForwardViewCommand view command forwards the request
to the JSP template for formatting and the page is displayed to the client.

Using this view command model, you can create new views (the response to
the client) by creating new JSP templates. The JSP template should, however,
be invoked by one of the existing view commands.

Packaging customized code

When creating customized code, you must follow a particular code
organization structure. In general, customized code is maintained in packages
and projects that are separate from those included with WebSphere
Commerce.

When creating new commands, you must place them in a package named
appropriately for your business requirements. That is, if the commands apply
to a particular store, package them in a package that is unique to the store. If
they apply to more than one store, package them accordingly. For example,
you might have the following packages:
v com.bigbusiness.storeA.commands

v com.bigbusiness.storeB.commands

v com.bigbusiness.commands

The preceding packaging structure allows for differentiation between business
logic at a store level. In addition, these packages should be stored in a project
that is separate from the WebSphere Commerce projects. For example, the
preceding packages may be placed in a project called BigBusinessCustomCode.

When creating new data beans, they must be kept in a package that is
separate from command logic, however, this package can be kept within the
project that stores the command packages. From the preceding example, you
would then place the com.bigbusiness.databeans package within the
BigBusinessCustomCode project.

When creating new entity beans, they must be stored in a unique project.
Therefore, you might have the BigBusinessCustomEntityBeans project that
contains the com.bigbusiness.objects package.

This packaging strategy is required for code deployment purposes.

126 Programmer’s Guide

Command context

Command context is a handle to the Web controller. Commands can obtain
information from the Web controller using the command context. Examples of
available information include the user’s ID, the user object, the language
identifier, and the store identifier.

When writing a command, you have access to the command context by
calling the getCommandContext() method of the command’s superclass. The
command context is set to the controller command when the command is
invoked by the Web controller. A controller command should propagate the
command context to any task or controller commands that are invoked during
processing. A command can get the following key information from the
command context:

getUserId() and getUser()
Gets the current user ID or user object. The user ID for the current
session is saved in a session context. The session context can be
persisted in one of two ways: using the WebSphere Commerce cookie
or a WebSphere Application Server persistent session object. The
command context hides the complexity of session management from a
command.

getStoreId(), getStore(), and getStore(storeId)
Gets the store associated with the current request. The Web controller
returns the store ID in the URL. If the store ID is not specified in the
URL, it can be retrieved from the session object that is saved from the
previous request. The WebSphere Commerce run-time environment
maintains a set of objects that are frequently accessed. For example, it
maintains the set of store objects. A command should always get the
store object from the command context to take advantage of the object
cache in the Web controller. You can get the current store by calling
the getStore() method or get a specific store object by calling the
getStore(storeId) method from the command context.

getLanguageId()
Returns the language ID that should be used for the current request.
The Web controller implements a Globalization Framework. The
concept behind this framework is to determine a language that is
preferred by the user and supported by the store. If the URL contains
a language ID, the Web controller determines if this language is
supported by the store, if so, this is the language ID that gets returned
by getLanguageId() method. If no language ID were included in the
URL, then the Web controller goes through a decision tree to
determine if there is a language ID (that is supported by the store) in
the current session object, or in the user’s registered preferences, or
lastly it will return the default language ID for the store.

Chapter 6. Command implementation 127

getCurrency()
Returns the currency to be used for the current request. Since currency
is part of the Globalization Framework, logic behind this method is
similar to the getLanguageId() method.

getCurrentTradingAgreements() and
getTradingAgreement(tradingAgreementId)

Returns the set of trading agreements that are used for the current
session. This set may be all of the trading agreements to which the
user is entitled, or it can be a subset that was defined by the
ContractSetInSession command. A command should always get the
trading agreement object from the command context to take
advantage of the object cache in the Web controller. You can get the
current trading agreement by calling the
getCurrentTradingAgreements() method or get a specific trading
agreement object by calling the
getTradingAgreement(tradingAgreementId) method from the
command context.

The command context should be used as a read-only object. You should not
call its setter methods. The setter methods are reserved for use by the
WebSphere Commerce run-time environment and they may be deprecated in
future releases.

For complete details on the command context API (application programming
interface), refer to the “Reference” section of the WebSphere Commerce online
help.

New controller commands

As previously stated, a new controller command should extend from the
abstract controller command class
(com.ibm.commerce.command.ControllerCommandImpl). When writing a new
controller command, you should override the following methods from the
abstract class:
v isGeneric()
v isRetriable()
v setRequestProperties(com.ibm.commerce.datatype.TypedProperty reqParms)
v validateParameters()
v getResources()
v performExecute()

More information on each of the preceding methods is found in the following
sections.

128 Programmer’s Guide

isGeneric method
In the standard WebSphere Commerce implementation there are multiple
types of users. These include generic, guest, and registered users. Within the
grouping of registered users there are customers and administrators.

The generic user has a common user ID that is used across the entire system.
This common user ID supports general browsing on the site in a manner that
minimizes system resource usage. It is more efficient to use this common user
ID for general browsing, since the Web controller does not need to retrieve a
user object for commands that can be invoked by the generic user.

The isGeneric method returns a boolean value which specifies whether or not
the command can be invoked by the generic user. The isGeneric method of a
controller command’s superclass sets the value to false (meaning that the
invoker must be either a registered user or a guest user). If your new
controller command can be invoked by generic users, override this method to
return true.

You should override this method to return true if your new command does
not fetch or create resources associated with a user. An example of a
command that can be invoked by a generic user is the ProductDisplay
command. It is sensible to allow any user to be able to view products. An
example of a command for which a user must be either a guest or registered
user (and hence, isGeneric returns false) is the OrderItemAdd command.

When isGeneric returns a value of true, the Web controller does not create a
new user object for the current session. As such, commands that can be
invoked by the generic user run faster, since the Web controller does not need
to retrieve a user object.

The syntax for using this method to enable generic users to invoke a
command is as follows:
public boolean isGeneric()
{

return true;
}

isRetriable method
The isRetriable method returns a boolean value which specifies whether or
not the command can be retried on a transaction rollback exception. The
isRetriable method of the new controller command’s superclass returns a
value of false. You should override this method and return a value of true, if
your command can be retried on a transaction rollback exception.

An example of a command that should not be retried in the case of a
transaction exception is the OrderProcess command. This command invokes

Chapter 6. Command implementation 129

the third party payment authorization process. It cannot be retried, since that
authorization cannot be reversed. An example of a command that can be
retried is the ProductDisplay command.

The syntax for enabling the command to be retried in the case of a transaction
rollback exception is as follows:
public boolean isRetriable()
{

return true;
}

setRequestProperties method
The setRequestProperties method is invoked by the Web controller to pass all
input properties to the controller command. The controller command must
parse the input properties and set each individual property explicitly within
this method. This explicit setting of properties by the controller command
itself promotes the concept of type safe properties.

The syntax for using this method is as follows:
public void setRequestProperties(

com.ibm.commerce.datatype.TypedProperty reqParms)
{

// parse the input properties and explicitly set each parameter

}

validateParameters method
The validateParameters method is used to do initial parameter checking and
any necessary resolution of parameters. For example, it could be used to
resolve orderId=*. This method is called before both the getResources and
performExecute methods. Refer to “Access control interactions” on page 98 for
more details about this sequence.

getResources method
This method is used to implement resource-level access control. It returns a
vector of resource-action pairs upon which the command intends to act. If
nothing is returned, no resource-level access control is performed. For more
information about access control, refer to Chapter 4, “Access control” on page
85.

performExecute method
The performExecute method contains the business logic for your command. It
should invoke the performExecute method of the command’s superclass
before any new business logic is executed. At the end, it must return a view
name.

130 Programmer’s Guide

The following shows example syntax for the performExecute method in a new
controller command. In this case, the response uses a redirect view command,
it could, however, use a forward view command or direct view command:
public void performExecute() throws ECException
{

super.performExecute();

///
// your business logic //
///

// Create a new TypedProperty for response properties.
TypedProperty rspProp = new TypedProperty();

// set response properties
rspProp.put(ECConstants.EC_VIEWTASKNAME, "MyView");
///
// The following line is optional. The VIEWREG //
// table can specify the redirect URL. //
///

rspProp.put(ECConstants.EC_REDIRECTURL, MyURL);

//
// If you are using a forward view, you can set the //
// response properties as follows: //
// TypedProperty rspProp = new TypedProperty(); //
// rspProp.put(ECConstants.EC_VIEWTASKNAME, "MyView"); //
// rspProp.put(ECConstants.EC_DOCPATHNAME, "MyJSP.jsp"); //
// //
// Again, it is optional to explicitly set the name of the JSP template.//
// The VIEWREG table can specify the JSP template. //
//

setResponseProperties(rspProp);
}

If you specify the redirect URL within the performExecute method and an
entry exists in the VIEWREG table, the value specified in the code takes
precedence over the value in the VIEWREG table. The same order of
precedence holds true for specification of a JSP template within code.

Long-running controller commands
If a controller command takes a long time to execute, you can split the
command into two commands. The first command, which is executed as the
result of a URL request, simply adds the second command to the Scheduler,
so that it runs as a background job. This is illustrated in the following
diagram:

Chapter 6. Command implementation 131

The flow shown in the preceding diagram is as follows:
1. ControllerCommand1 is executed as a result of a URL request.
2. ControllerCommand1 adds a job to the Scheduler. The job is

ControllerCommand2. ControllerCommand1 returns a view, immediately
after adding the job to the Scheduler.

3. The Scheduler executes ControllerCommand2 as a background job.

In this scenario, the client typically polls the result from
ControllerCommand2. ControllerCommand2 should write the job state to the
database.

Formatting of input properties to view commands

When a controller command completes, it returns the name of a view that
should be executed. This view may require that several input properties get
passed to it. There can be three sources for these input parameters, as
described in the following list:
v Default properties that are stored in the PROPERTIES column of the

CMDREG table
v Default properties from the PROPERTIES column of the VIEWREG table
v Input properties from the URL

For more information about how these properties are merged and set in the
attributes for the JSP template, refer to “Setting JSP attributes - overview” on
page 41. This section describes how the input properties to a view command
may be formatted.

For redirect view commands, two topics are examined:
v Flattening a query string to support URL redirection
v Dealing with a limit on the length of the redirect URL

ControllerCommand1

ControllerCommand2

Scheduler

AddJob(ControllerCommand2)

execute

Figure 28.

132 Programmer’s Guide

For forward view commands, the topic of enumeration of input parameters
and setting them as attributes in the HttpServletRequestObject is examined.

Flattening input parameters into a query string for HttpRedirectView
All input parameters that are passed to a redirect view command are flattened
into a query string for URL redirection. For example, suppose that the input
to the redirect view command contains the following properties:
URL = "MyView?p1=v1&p2=v2";
ip1 = "iv1"; // input to orginal controller command
ip2 = "iv2" ; // input to original controller command
op1 = "ov1";
op2 = "ov2";

Based upon the preceding input parameters, the final URL is
MyView?p1=v1&p2=v2&ip1=iv1&ip2=iv2&op1=ov1&op2=ov2

Note that if the command is to use SSL, then the parameters are encrypted
and the final URL appears as
MyView?krypto=encrypted_value_of“p1=v1&p2=v2&ip1=iv1&ip2=iv2&op1=ov1&op2=ov2”

Handling a limited length redirect URL
By default, all input parameters to the controller command are propagated to
the redirect view command. If there is a limit on the number of characters in
the redirect URL, this may cause a problem. An example of when the length
may be limited is if the client is using the Internet Explorer browser. For this
browser, the URL cannot exceed 2083 bytes. If the URL does exceed this limit,
the URL gets truncated. As such, you can encounter a problem if there are a
large number of input parameters, or if you are using encryption, because an
encryption string is typically two to three times longer than an unencrypted
string.

There are two approaches for handling a limited length redirect URL:
1. Override the getViewInputProperties method in the controller command to

return only the sets of parameters that are required to be passed to the
redirect view command.

2. Use a specified special character in the URL parameters to indicate which
parameters can be removed from the input parameter string.

To demonstrate each of the preceding approaches, consider the following set
of input parameters to the controller command:
URL="MyView";
// All of the following are inputs to the original controller command.
ip1="ipv1";
ip2="ipv2";
ip3="ipv3";
iq1="iqv1";

Chapter 6. Command implementation 133

iq2="iqv2";
ir1="ipr1";
ir2="ipr2";
is="isv";

If you are overriding the getViewInputProperties method, the new method
can be written so that only the following parameters are passed to the view
command:
ir2="ipr2";
is="isv";

Using the second approach, the view command can be invoked using special
parameters to indicate that certain input parameters should be removed. For
example, you can achieve the same result by specifying the following as the
URL parameter:
URL="MyView?ip*=&iq*=&ir1="

This URL parameter instructs the WebSphere Commerce run-time framework
of the following:
v The ip*= specification means that all parameters whose names start with ip

should be removed.
v The iq*= specification means that all parameters whose names start with iq

should be removed.
v The ir1= specification means that the ir1 parameter should be removed.

Setting attributes in the HttpServletRequest object for HttpForwardView
The default HttpForwardViewCommandImpl enumerates all of the
parameters passed to the command and sets them as attributes in the
HttpServletRequest object.

For example, suppose that the requestProperties object passed to the forward
view command contains the following parameters:
p1="pv1";
p2="pv2";
p3=pv3; // pv3 is an object

Then the following attributes are passed to the JSP template using the
request.setAttribute() method.
request.setAttribute("p1", "pv1");
request.setAttribute("p2", "pv2");
request.setAttribute("p1", pv1);
request.setAttribute("RequestProperties", requestProperties);
request.setAttribute("CommandContext", commandContext);

134 Programmer’s Guide

where requestProperties is the TypedProperty object that is passed to the
command, commandContext is the command context object that is passed to the
command, and p1, p2, and p3 are parameters defined in the requestProperties
object.

Database commits and rollbacks for controller commands

Throughout the execution of a controller command, data is often created or
updated. In many cases, the database must be updated with the new
information at the end of the transaction. The transaction is managed by the
Web controller.

The Web controller marks the beginning of the transaction before calling the
controller command. When the execution of the controller command is
complete, the controller command returns a view name to the Web controller.
The Web controller is responsible for marking the end of the transaction. The
actual point at which the transaction ends (before or after invoking the view)
is dependent upon the type of view used.

There are three types of view commands:
v Forward view command
v Redirect view command
v Direct view command

The Web controller determines the view command to be used for the view, by
looking up the view name in the VIEWREG table.

If the entry in the VIEWREG table specifies the use of the
ForwardViewCommand, then the Web controller forwards the results of the
controller command to the corresponding ForwardViewCommand
implementation class (also specified in the VIEWREG). The view command
executes within the context of the current transaction. In this case, the
database commit or rollback does not occur until the view command
completes.

If the entry in the VIEWREG table specifies the use of the
RedirectViewCommand, then the Web controller forwards the results of the
controller command to the corresponding RedirectViewCommand
implementation class. The view command then operates outside of the scope
of the current transaction and the database commit or rollback occurs before
the redirected view command is called.

If the entry in the VIEWREG table specifies the use of the
DirectViewCommand, then the Web controller forwards the results of the
controller command to the corresponding DirectViewCommand

Chapter 6. Command implementation 135

implementation class. The view command executes within the context of the
current transaction. In this case, the database commit or rollback does not
occur until the view command completes. (Note that ForwardViewCommand
and DirectViewCommand are similar. The ForwardViewCommand forwards
the results to a JSP template. In contrast, the DirectViewCommand receives
the results as input stream and passes them on as an output stream. It uses
either the getRawDocument method that treats the data as bytes, or the
getTextDocument that treats the data as text.)

In the cases where the view command executes under the same transaction
scope as the controller command, an error in the view command causes a
rollback of the entire transaction. This may or may not be the desired
outcome, depending upon your business logic.

Example of transaction scope with a controller command
To illustrate the differences in transaction scope for a controller command,
depending upon the type of view command used, consider the following
examples.

Case 1: Executing the view within the scope of the controller command
transaction
Suppose that you have created a new controller command called
YourControllerCmdA. The command’s performExecute method would then
include the following:
.
.
// Create a new TypedProperty object for output.
TypedProperty rspProp = new TypedProperty();

//////////////////////
// Business logic //
//////////////////////

// Return the view
rspProp.put(ECConstants.EC_VIEWTASKNAME, "YourView");
SetResponseProperties(rspProp);

In the preceding code snippet, the controller command returns “YourView” as
the view. YourView is registered in the VIEWREG table. The following is an
example insert statement to register YourView.
insert into VIEWREG (ViewName, DeviceFmt_id, storeEnt_id, interfacename,
classname, properties)

values (’YourView’, -1, XX,’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,’docname=YourView.jsp’);

where XX is the store identifier. Since the view uses the
com.ibm.commerce.command.HttpForwardViewCommandImpl implementation class,
the Web controller uses the generic forward view command.

136 Programmer’s Guide

Based upon the preceding command registration, the Web controller launches
the YourView.jsp file within the scope of the controller command transaction.
If an error occurs in YourView.jsp, the transaction fails and a database
rollback occurs. As a result, the entire controller command fails.

Case 2: Executing the view outside of the scope of the controller
command transaction
Suppose that you would prefer to have information committed to the
database, even in the case when an error may occur in the view. In order to
have the view execute outside the scope of the controller command’s
transaction, the view must be executed as a redirect.

To execute the view as a redirect, the performExecute method of the controller
command returns the view in the following manner:
.
.
// Create a new TypedProperty object for output.
TypedProperty rspProp = new TypedProperty();

//////////////////////
// Business logic //
//////////////////////

// Return the view
rspProp.put(ECConstants.EC_VIEWTASKNAME, EC_GENERIC_REDIRECTVIEW);
rspProp.put(EC_Constants.EC_REDIRECTURL, "YourView2");

The following example SQL statement supports the redirect strategy:
insert into VIEWREG (ViewName, DeviceFmt_id, storeEnt_id, interfacename,
classname, properties)

values (’YourView2’, -1, XX,’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,’docname=YourView2.jsp’);

where XX is the store identifier.

Since the command passes the EC_GENERIC_REDIRECTVIEW value as a response
property parameter, the Web controller uses the generic redirect view
command. The generic redirect view is registered in the VIEWREG table with
the following information:
v ViewName = RedirectView
v DeviceFmt_Id = -1
v InterfaceName = com.ibm.commerce.command.RedirectViewCommand
v ClassName =

com.ibm.commerce.command.HttpRedirectViewCommandImpl

Chapter 6. Command implementation 137

The Web controller invokes the generic redirect view command, which takes
the redirect URL as an input property. The response is the redirected to the
redirect URL. After the redirect occurs, the YourView2 is invoked. This is
implemented as a generic forward view.

New task commands

A new task command should extend from the abstract task command class
(com.ibm.commerce.command.TaskCommandImpl) and implement an
interface that extends the com.ibm.commerce.TaskCommand interface. As
shown in the diagram on page 125, the new task command should be defined
as follows:
public class MyTaskCmdImpl extends com.ibm.commerce.command.TaskCommandImpl

implements MyTaskCmd {

}

All the input and output properties for the task command must be defined in
the command interface, for example MyTaskCmd. The caller programs to the
task command interface, rather than the task command implementation class.
This enables you to have multiple implementations of the task command (one
for each store), without the caller being concerned about which
implementation class to call.

All the methods defined in the interface must be implemented in the
implementation class. Since the command context should be set by the caller
(a controller command), the task command does not need to set the command
context. The task command can, however, obtain information from the Web
controller by using the command context.

In addition to implementing the methods defined in the task command
interface, you should override the performExecute method from the
com.ibm.commerce.command.TaskCommandImpl class.

The performExecute method contains the business logic for the particular unit
of work that the task command performs. It should invoke the
performExecute method of the task command’s superclass, before performing
any business logic. The following code snippet shows an example
performExecute method for a task command.
public void performExecute() throws ECException
{

super.performExecute();

// Include your business logic here.

138 Programmer’s Guide

// Set output properties so the controller command
// can retrieve the result from this task command.

}

The run-time framework calls the getResources method of the controller
command to determine which protectable resources the command will access.
It may be the case that a task command is executed during the scope of a
controller command and it attempts to access resources that were not returned
by the getResources method of the controller command. If this is the case, the
task command itself can implement a getResources method to ensure that
access control is provided for protectable resources.

Note that by default, getResources returns null for a task command and
resource-level access control checking is not performed. Therefore, you must
override this if the task command accesses protectable resources.

Customization of existing commands

This section describes the various ways in which you can customize existing
controller, task and data bean commands.

Customizing existing controller commands
A controller command encapsulates the business logic for a business process.
Individual units of work within the business process may be performed by
task commands. As such, there are several ways in which a controller
command can be customized, some of which involve customizing task
commands.

When customizing a controller command, you can accomplish the following:
v Add additional processing and logic to an existing controller command.

This can be added before existing business logic, after existing logic, or both
before and after.

v Replace one or more task commands. This allows you to modify how a
particular step in the business process is performed.

v Replace the view called by the controller command.

The following sections provide details on how to make the preceding
modifications.

Adding new business logic to a controller command
Suppose there is an existing WebSphere Commerce controller command,
called ExistingControllerCmd. Following the WebSphere Commerce naming
conventions, this controller command would have an interface class named
ExistingControllerCmd and an implementation class named
ExistingControllerCmdImpl. Now assume that a business requirement arises
and you must add new business logic to this existing command. One portion

Chapter 6. Command implementation 139

of the logic must be executed before the existing command logic and another
portion must be executed after the existing command logic.

The first step in adding the new business logic is to create a new
implementation class that extends the original implementation class. In this
example, you would create a new ModifiedControllerCmdImpl class that
extends the ExistingControllerCmdImpl class. The new implementation class
should implement the original interface (ExistingControllerCmd).

In the new implementation class you must create a new performExecute
method to override the performExecute of the existing command. Within the
new performExecute method, there are two ways in which you can insert
your new business logic: you can either include the code directly in the
controller command, or you can create a new task command to perform the
new business logic. If you create a new task command then you must
instantiate the new task command object from within the controller command.

The following code snippet demonstrates how to add new business logic to
the beginning and end of an existing controller command by including the
logic directly in the controller command:
public class ModifiedControllerCmdImpl extends ExistingControllerCmdImpl

implements ExistingControllerCmd
{

public void performExecute ()
throws com.ibm.commerce.exception.ECException
{

/* Insert new business logic that must be
executed before the original command.

*/

// Execute the original command logic.
super.performExecute();

/* Insert new business logic that must be
executed after the original command.

*/
}

}

The following code snippet demonstrates how to add new business logic to
the beginning of an existing controller command by instantiating a new task
command from within the controller command. In addition, you would also
create the new task command interface and implementation class and register
the task command in the command registry.
// Import the package with the CommandFactory
import com.ibm.commerce.command.*;

public class ModifiedControllerCmdImpl extends ExistingControllerCmdImpl

140 Programmer’s Guide

implements ExistingControllerCmd
{

public void performExecute ()
throws com.ibm.commerce.exception.ECException
{

MyNewTaskCmd cmd = null;
cmd = (MyNewTaskCmd) CommandFactory.createCommand(

"com.mycompany.mycommands.MyNewTaskCommand",
getStoreId());

/*
Set task command’s input parameters, call its
execute method and retrieve output
parameters, as required.
*/

super.performExecute();
}

}

Regardless of whether you include the new business logic in the controller
command, or create a task command to perform the logic, you must also
update the CMDREG table in the WebSphere Commerce command registry to
associate the new controller command implementation class with the existing
controller command interface. The following SQL statement shows an example
update:
update CMDREG
set CLASSNAME=’ModifiedControllerCmdImpl’
where INTERFACENAME=’ExistingControllerCmd’

Replacing task commands called by a controller command
A controller command often calls several task commands that perform
individual tasks. Collectively, these tasks make up the business process
represented by the controller command. You may need to change the way in
which a particular step in the process is performed, rather than adding new
business logic to the beginning or end of the controller command. In this case,
you must replace the instantiation of the task command that you wish to
override, with the instantiation of a new task command that performs the task
in your desired manner.

As a result of the design of the WebSphere Commerce programming model,
you do not need to create a new controller command implementation class to
replace the task command. The controller command instantiates the task
command by calling the command factory’s createCommand method. The
command factory uses the task command’s interface name and then
determines the correct implementation class, based upon the command
registry. As such, to replace the task command that gets instantiated, you
must create a new task command implementation class and then update the
command registry so that the original task command interface name is

Chapter 6. Command implementation 141

associated with the new task command implementation class. Refer to
“Customizing existing task commands” on page 143 for more information.

Replacing the view called by a controller command
To replace the view that is called by a controller command, you create a new
implementation class for the controller command. For example, create a new
ModifiedControllerCmdImpl that extends ExistingControllerCmdImpl and
implements the ExistingControllerCmd interface.

Within the ModifiedControllerCmdImpl class, override the performExecute
method. In the new performExecute method, call super.performExecute to
ensure that all command processing occurs. After the command logic is
executed, you can use the response properties to override the view called. The
following code snippet displays how to override the view when the view is
executed as a redirect:
// Import the packages containing TypedProperty, and ECConstants.
import com.ibm.commerce.datatype.*;
import com.ibm.commerce.server.*;

public class ModifiedControllerCmdImplImpl extends ExistingControllerCmdImpl
implements ExistingControllerCmd
{

public void performExecute ()
throws com.ibm.commerce.exception.ECException
{

// Execute the original command logic.
super.performExecute();

// Create a new TypedProperty for response properties.
TypedProperty rspProp = new TypedProperty();

// set response properties
rspProp.put(ECConstants.EC_VIEWTASKNAME, "MyView");
///
// The following line is optional. The VIEWREG //
// table can specify the redirect URL. //
///

rspProp.put(ECConstants.EC_REDIRECTURL, MyURL);

setResponseProperties(rspProp);

}
}

The following code snippet displays how to override the view when the view
is executed as a forward view:
// Import the packages containing TypedProperty, and ECConstants.
import com.ibm.commerce.datatype.*;
import com.ibm.commerce.server.*;

142 Programmer’s Guide

public class ModifiedControllerCmdImplImpl extends ExistingControllerCmdImpl
implements ExistingControllerCmd
{

public void performExecute ()
throws com.ibm.commerce.exception.ECException
{

// Execute the original command logic.
super.performExecute();

// Create a new TypedProperty for response properties.
TypedProperty rspProp = new TypedProperty();

// set response properties
rspProp.put(ECConstants.EC_VIEWTASKNAME, "MyView");

///
// It is optional to explicitly set the name //
// of the JSP template. The VIEWREG table can //
// specify the JSP template. //
//

rspProp.put(ECConstants.EC_DOCPATHNAME, "MyJSP.jsp");

setResponseProperties(rspProp);

}
}

To determine which view is used by an existing controller command, refer to
the Reference section of the WebSphere Commerce online help.

Customizing existing task commands
There are two standard ways to modify existing WebSphere Commerce task
commands. With these methods of modification, you can accomplish the
following:
v Add additional processing and logic to an existing task command. This can

be added before existing business logic, after existing logic, or both before
and after.

v Completely replace the existing business logic with your own business
logic.

To accomplish the above modifications, you actually create a new task
command implementation class. More detail is provided in the following
sections.

Adding new business logic to a task command
Suppose there is an existing WebSphere Commerce task command, called
ExistingTaskCmd. Following the WebSphere Commerce naming conventions,
this task command would have an interface class named ExistingTaskCmd and

Chapter 6. Command implementation 143

an implementation class named ExistingTaskCmdImpl. Now assume that a
business requirement arises and you must add new business logic to this
existing command. One portion of the logic must be executed before the
existing command logic and another portion must be executed after the
existing command logic.

The first step in adding the new business logic is to create a new
implementation class that extends the original implementation class. In this
example, you would create a new ModifiedTaskCmdImpl class that extends the
ExistingTaskCmdImpl class. The new implementation class should implement
the original interface (ExistingTaskCmd).

Within the new command, you override the existing performExecute method
and include the new logic before and after calling the super.performExecute
method.

The following pseudo-code demonstrates how to add new business logic to an
existing task command:
public class ModifiedTaskCmdImpl extends ExistingTaskCmdImpl

implements ExistingTaskCmd {

/* Insert new business logic that must be
executed before the original command.

*/

// Execute the original command logic.
super.performExecute();

/* Insert new business logic that must be
executed after the original command.

*/
}

You must also update the CMDREG table to associate the new
implementation class with the existing interface. The following SQL statement
shows an example update:
update CMDREG
set CLASSNAME=’ModifiedTaskCmdImpl’
where INTERFACENAME=’ExistingTaskCmd’

Replacing business logic of an existing task command
To replace the business logic of an existing task command, you must create a
new implementation class for the task command. This new implementation
class must extend from the existing task command but it should not
implement the existing interface. Additionally, in the new implementation
class, do not call the performExecute method of the superclass.

144 Programmer’s Guide

While extending from the exact command that you are replacing may seem
counterintuitive, the reason for taking this approach is related to support for
future versions of WebSphere Commerce. This approach shields your code
from changes that may be made to command interfaces in future versions of
WebSphere Commerce.

As an example, suppose you wanted to replace the business logic of the
OrderNotifyCmdImpl task command. In this case, you would create a new task
command called CustomizedOrderNotifyCmdImpl. This command extends
OrderNotifyCmdImpl. In the new CustomizedOrderNotifyCmdImpl, you create
the new business logic, but do not call the performExecute method from the
superclass. If a future version of WebSphere Commerce then introduces a new
method, called newMethod in the interface, the corresponding version of the
OrderNotifyCmdImpl command will include a default implementation of the
newMethod method. Then, since your new command extends from
OrderNotifyCmdImpl, the compiler will find the default implementation of this
new method in the OrderNotifyCmdImpl command and your new command is
shielded from the interface change.

Refer to the Reference section of the WebSphere Commerce online help to
ensure that the new implementation class provides the same external behavior
as the existing class.

Data bean customization

A data bean normally extends an access bean. The access bean, which can be
generated by VisualAge for Java, provides a simple way to access information
from an entity bean. When modifications are made to an entity bean (for
example, adding a new field, a new business method or a new finder), the
update is reflected in the access bean as soon as the access bean is
regenerated. Since the data bean extends the access bean, it automatically
inherits the new attributes. As a result of this relationship, no coding is
required to enable the data bean to use new attributes from the entity bean.

If you need to add new attributes to a data bean that are not derived from an
entity bean, you can extend the existing data bean using Java inheritance. For
example, if you want to add a new field to the OrderDataBean, define
MyOrderDataBean as follows:
public class MyOrderDataBean extends OrderDataBean
{

public String myNewField () {
// implement the new field here
}

}

Chapter 6. Command implementation 145

The new data bean must also have a BeanInfo class. A sample of the
declaration for this class follows:
public class MyOrderDataBeanInfo extends java.beans.SimpleBeanInfo
{

}

VisualAge for Java provides a tool that allows you to generate this BeanInfo
class.

146 Programmer’s Guide

Chapter 7. Trading agreements and business policies
(Business Edition)

This chapter only applies to WebSphere Commerce Business Edition.

Introduction

One of the key elements of B2B (business-to-business) commerce is
relationship management. A trading agreement is used to manage a business
relationship between a buyer and a seller organization. The trading agreement
model used by WebSphere Commerce Business Edition supports various types
of trading agreements, such as Contract and RFQ (request for quote).

The main element of a trading agreement is a set of terms and conditions.
Each term and condition defines a specific business rule to be used during
trading. Using WebSphere Commerce Business Edition, a set of terms and
conditions can be negotiated using an RFQ online process, or negotiated
offline and then captured using the business relationship management
interfaces in the WebSphere Commerce Accelerator.

There are several ways to model a term and condition:
v A term and condition that selects one of the predefined business policies,

such as a Price list and a Return policy. Or it can select a business policy
that you have created. One term and condition object can also refer to
multiple business policy objects.

v A term and condition that applies a specific adjustment to the business
policy, such as an adjustment to the standard pricing.

v A term and condition that defines a set of parameters that govern a
business process. For example, it could specify that a particular fulfillment
center is to be used by a specific contract.

A contract is made up of a set of terms and conditions. This is shown in the
following diagram.

© Copyright IBM Corp. 2000, 2002 147

From the preceding diagram, note the following:
v The term “adjustment” refers to a modification to the business policy. As an

example, it can be used to apply a discount to the result of a business
policy such that a 10% discount gets applied to the standard price. It can
also be used to influence the business policy with a set of parameters.

v As an example, the TermCondition object A may represent a shipping term
and condition object. In this case, the business policy A may represent a
shipping mode business policy and the business object A represents the
shipping mode “A3” of shipping carrier XYZ.

v An another example, the TermCondition object B may represent a price
term and condition object that applies a 50% discount of the price defined
by business policy B. In this case, business policy B is a price policy and
business object B is a trading position container that defines the trading
position for the master category.

This chapter provides guidelines for programmers on how to create new
business policies and new terms and conditions.

The ToolTech sample store demonstrates a shipping term and condition object
and a price term and condition object in its business flow. For more
information about the contract data that supports these examples, refer to
“ToolTech sample contract data” on page 150.

Business policy objects and commands

A business policy object contains the following information:

Terms and conditions Business policies

Contract

refers
and applies
adjustment to

refers to
Business
object A

Business
object B

refers to

refers to

Business
policy B

Business
policy A

TermCondition
object B

TermCondition
object C

parameterA
parameterB

TermCondition
object A

Figure 29.

148 Programmer’s Guide

v Policy ID
This is the primary key for the business policy object.

v Policy type
This defines the business policy type. Price and ProductSet are examples of
policy types.

v Policy name
Each business policy must have a unique name.

v Store entity
The store or store group in which the business policy is deployed.

v Properties
A set of default properties that can be passed to the business policy
command. The commands associated with the business policy object are
stored in the BusinessPolicyCmd table.

v Effective period
The period for which the business policy object is effective.

v Business policy command
Zero or more business policy commands that implement the business
policy. A business policy command is typically invoked by a business
process that can be either a task command or a controller command. For
example, the getContractPrice() command gets the price term and
condition. This price term and condition refers to a particular price policy
command and this price policy command is used used to calculate the
price.

Multiple business policy commands can be associated with a single business
policy object. Each business policy command must implement the same
interface defined by the business policy type object. The structure of a new
business policy command is depicted in the following diagram:

Chapter 7. Trading agreements and business policies (Business Edition) 149

As shown in the preceding diagram, in order to create a new business policy
command, you create a new implementation class that extends the WebSphere
Commerce BusinessPolicyCmdImpl implementation class. You also create a
new interface that extends the BusinessPolicyCmd interface.

ToolTech sample contract data

This section provides an introduction to some of the contract data that is used
in the ToolTech sample store.

The sample data in the following sections is organized by database table. Only
the relevant rows and columns are displayed. Also note that when the sample
is installed any unique identifiers (such as CONTRACT_ID) may have
different values than what is shown here.

CONTRACT table sample data
The following table shows relevant sample data from the ToolTech
CONTRACT database table. Note that for display purposes, the database
column headings are showin the first column and the row of sample data
from the table is shown in the second column.

Column name Sample data

CONTRACT_ID 10007

MAJORVERSION 1

MINORVERSION 0

Implementation classes

New business policy command

Interfaces

BusinessPolicyCommandImpl

MyNewBusinessPolicyCommandImpl

BusinessPolicyCommand

extends extends

MyNewBusinessPolicyCommand

implements

Figure 30.

150 Programmer’s Guide

Column name Sample data

NAME ToolTechContractNumber 4567

MEMBER_ID -2001

ORIGIN 0

STATE 3

USAGE 1

MARKFORDELETE 0

TERMCOND table sample data
The following table shows relevant sample data from the ToolTech
TERMCOND database table. Note that for display purposes, the database
column headings are shown the first column and the rows of sample data
from the table are shown in the second and third columns.

Column name Sample data row 1 Sample data row 2

TERMCOND_ID 10025 10030

TCSUBTYPE_ID PriceTCPriceListWith
SelectiveAdjustment

ShippingTCShippingMode

TRADING_ID 10007 10007

STRINGFILED1 ProductSet2

INTEGERFIELD2 10002

INTEGERFIELD3 1

BIGINTFIELD1 10051

FLOATFIELD1 -50.0

SEQUENCE 1 6

POLICYTC table sample data
The following table shows relevant sample data from the ToolTech POLICYTC
database table. This table establishishes the relationship between a policy and
a terms and conditions object.

Column name

POLICY_ID TERMCOND_ID

Sample data row 1 10053 10025

Sample data row 2 10056 10030

Chapter 7. Trading agreements and business policies (Business Edition) 151

POLICY table sample data
The following table shows relevant sample data from the ToolTech POLICY
database table.

Column name Sample data row 1 Sample data row 2

POLICY_ID 10053 10056

POLICYNAME MasterCatalogPriceList A3

POLICYTYPE_ID Price ShippingMode

STOREENT_ID 10051 10051

PROPERTIES name=ToolTech&
member_id=-2001

shippingMode=A3

STARTTIME null null

ENDTIME null null

TRADEPOSCN table sample data
The following table shows relevant sample data from the ToolTech
TRADEPOSCN database table.

Column name

READEPOSCN_ID MEMBER_ID NAME TYPE

Sample data
row

10051 -2001 ToolTech S

SHIPMODE table sample data
The following table shows relevant sample data from the ToolTech
SHIPMODE database table.

Column name

SHIPMODE_ID STOREENTITY_ID CODE CARRIER

Sample data
row

10053 10051 A3 XYZ
Carrier

Extending the existing contract model

A contract can be made up of one or more terms and conditions objects, each
of which refers to a policy. As such, the subsequent sections describe the steps
necessary for creating a new business policy and integrating this into your
business flow.

As a brief overview, the following are the high-level steps for performing this
task:

152 Programmer’s Guide

1. Creating a new business policy.
The following tasks are related to creating a new business policy
command:
a. Create a new business policy type (if required).

Several business policy types are provided, but if the standard types
do not suit your business requirements, create a new business policy
type.

b. Creating a new business policy command.
c. Register the new business policy and business policy command.

2. Relate a terms and conditions object to the new business policy
This can be done by relating an existing terms and conditions object to the
new business policy, or by creating a new terms and condition object. If
you create a new terms and conditions object, then you must perform the
following steps:
a. Register the new term and condition in the database
b. Register the new term and condition in the contract DTD (document

type definition)
c. Creating a new CMP enterprise bean for the term and condition
d. Updating the WebSphere Commerce Accelerator to reflect the new term

and condition
3. Invoking the new business policy during the business flow.

Creating a new business policy

Creating a new business policy typically involves registering a unique
business policy in the database, as well as creating a new business policy
command.

Creating a new business policy command involves the following high-level
steps:
1. Creating a new business policy type (if required).
2. Writing the new business policy command.
3. Registering the new business policy and business policy command in the

database.

Each of the preceding steps is described in more detail in the subsequent
sections.

Creating a new business policy type
This section describes how to create a new business policy type. A business
policy type indicates the realm of the transaction to which a policy applies.
Examples of business policy types include:
v Price

Chapter 7. Trading agreements and business policies (Business Edition) 153

v ProductSet
v ShippingMode
v ShippingCharge
v Payment
v ReturnCharge
v ReturnApproval
v ReturnPayment
v InvoiceFormat

If the existing business policy types do not satisfy your business requirements,
you should create a new business policy type. Creating the new business
policy type consists of defining and registering the business policy type.

When defining and registering a new policy type, you must update the
following database tables:
v POLICYTYPE
v PLCYTYCMIF
v PLCYTYPDSC

The POLICYTYPE table specifies the type of business policy that you are
creating. It contains a single column, POLICYTYPE_ID, that is the primary
key. An example value is Price. If you create a new business policy type,
ensure that you specify a unique POLICYTYPE_ID.

The PLCYTYCMIF table is the business policy type to command interface
relationship specification table. That is, for each business policy type, it
specifies the Java command interface for the business policy object. While
there can be zero or more business policy commands that implement a
business policy, each of the business policy commands must implement the
interface specified here.

The PLCYTYPDSC table specifies a description of the business policy type. It
includes a language identifier of the description and the description of the
business policy type.

To create a new business policy type, create an entry in each of these tables
for the new business policy type. The following SQL statements provides an
example:
insert into POLICYTYPE (POLICYTYPE_ID) values (’MyNewPolicyType’);
insert into PLCYTYCMIF (POLICYTYPE_ID, BUSINESSCMDIF)

values (’MyNewPolicyType’,
’com.mycompany.mybusinesspolicycommands.MyNewPolicy’);

154 Programmer’s Guide

insert into PLCYTYPDSC (POLICYTYPE_ID, LANGUAGE_ID, DESCRIPTION)
values (’MyNewPolicyType’, -1,
’My new policy type for example purposes.’);

As the final step of creating the new business policy type, you may code one
or more new business policy type interfaces. These interfaces are then
implemented by any business policy command that falls under the realm of
this business policy type. For example, in the ToolTech sample store, Price is
defined as a business policy type. As such, there are the
com.ibm.commerce.price.commands.ResolvePriceListsCmd and
com.ibm.commerce.price.commands.RetrievePricesCmd interfaces that are
implemented by all price-related business policy commands.

If you will not have a business policy command that performs operations on
the new business policy type, then you are not required to create a new
interface. This is rare, and in most cases when creating a new business policy
type, you must create a new business policy type interface as well.

When you create a business policy type interface, the new interface must
extend the com.ibm.commerce.command.BusinessPolicyCommand interface.

Writing the new business policy command
To create a new business policy command, you must create a new command
that implements the interface of the business policy type to which the
command relates. The new command must also extend
com.ibm.commerce.command.BusinessPolicyCommandImpl implementation class.
This is very similar to creating a new controller or task command.

There are two different approaches by which you can pass input properties to
a business policy command. The first way is to have default input properties
specified in the PROPERTIES column of the POLICY table. For more
information about this table, refer to the following section.

The second approach is to create a new field in the command for each of the
input properties. For each field, create a new pair of getter and setter
methods.

Setting requestProperties in business policy commands
There are two ways in which requestProperties are set in a business policy
command object. The first way uses the PROPERTIES column of the POLICY
table to set the default properties. This is accomplished by the
setRequestProperties method. The second way to set properties is to have the
command (controller or task) that calls the business policy command explicitly
set other required properties.

Chapter 7. Trading agreements and business policies (Business Edition) 155

When creating a new business policy command, you should override the
default setRequestProperties method to include the logic to explicitly set each
of the parameters that are included in the requestProperties object.

Consider an example of a new business policy command that has an interface
name of MyNewBusinessPolicyCmd and implementation class name of
MyNewBusinessPolicyCmdImpl.

Assume that the entry in the POLICY table for this new business policy
command includes the following values in the PROPERTIES column:
v defaultProperty1=apple
v defaultProperty2=orange
v defaultProperty3=banana

The interface for this new business policy command is defined as follows:
public interface MyNewBusinessPolicyCmd extends

com.ibm.commerce.command.BusinessPolicyCmd {
java.lang.String defaultCommandClassName =

’com.mycompany.mycommands.MyNewBusinessPolicyCmdImpl’;
public void setProperty1();
public void setProperty2();

}

The implementation class for this new business policy command is defined as
follows:
public class MyNewBusinessPolicyCmdImpl extends

com.ibm.commerce.command.BusinessPolicyCmdImpl
implements com.mycompany.mycommands.MyNewBusinessPolicyCmd {

// Establish default properties that are stored in the POLICY table

private java.lang.String defaultProperty1;
private java.lang.String defaultProperty2;
private java.lang.String defaultProperty3;

// Begin to establish properties that must be set
// by the calling command.

// *** property1 ***
private java.lang.String property1;
public java.lang.String getProperty1() {

return property1;
}

public void setProperty1(java.lang.String newProperty1) {
property1 = newProperty1;

}

// *** property2 ***
private java.lang.String property2;
public java.lang.String getProperty2() {

return property2;

156 Programmer’s Guide

}
public void setProperty1(java.lang.String newProperty2) {

property2 = newProperty2;
}

// End establishing properties that must be set
// by the calling command.

/* Upon instantiation the business policy command sets all
default properties from the POLICY table into the
requestProperties object. The calling command
is responsible for setting any other required properties.

*/

public void setRequestProperties(com.ibm.commerce.datatype.TypedProperty
requestProperties) {
// Get the default properties defined in the POLICY table
setDefaultProperty1(requestProperties.get("defaultProperty1"));
setDefaultProperty2(requestProperties.get("defaultProperty2"));
setDefaultProperty3(requestProperties.get("defaultProperty3"));
}

}

The command that calls the new business policy command could be defined
in a manner similar to the following:
public class MyCallerCommandImpl

extends com.ibm.commerce.command.TaskCommandImpl
implements com.mycompany.mycommands.MyCallerCommand {

/* Include all elements and processing required for the
task command.

*/

// Determine the policy ID and setPolicyId

// Call the business policy command.

cmd = (MyNewBusinessPolicyCmd) CommandFactory
createPolicyCommand(policyId);

// Set required properties

cmd.setProperty1("Fruit salad");
cmd.setProperty2("Favorite food");

cmd.execute();
}

Registering the new business policy and business policy command
After you have created the new business policy command, you must register
both the business policy and the business policy command in the database.

Chapter 7. Trading agreements and business policies (Business Edition) 157

Business policies are registered in the POLICY table. This table contains the
following columns:
v POLICY_ID

The primary key. This is the policy identifier.
v POLICYNAME

A unique policy name.
v POLICYTYPE_ID

The policy type identifier. This is the foreign key to the POLICYTYPE table.
v STOREENT_ID

The store or store group to which the policy applies.
v PROPERTIES

Default properties that can be set to the business policy command.
Specified as name-value pairs, for example, parm1=val1&parm2=val2.

v STARTDATE
The starting date (specified as a timestamp) of the policy. If NULL, the
starting date is immediate.

v ENDDATE
The ending date (specified as a timestamp) of the policy. If NULL, there is
no end date.

Once the new policy is registered in the POLICY table, you must register a
relationship between the policy and the business policy command that
implements the business policy. The POLICYCMD table is used for this
purpose. The POLICYCMD table contains the following columns:
v POLICY_ID

Foreign key reference to the POLICY table.
v BUSINESSCMDCLASS

The business policy command that implements the policy.
v PROPERTIES

Default properties that can be set to the business policy command.
Specified as name-value pairs, for example, parm1=val1&parm2=val2.

Relating a terms and conditions object to a new business policy

In the WebSphere Commerce contracts and policies framework, terms and
conditions (also referred to as terms) provide a way to describe an agreement
between a buyer and a seller. Terms and conditions can be used in various
types of trading agreements, such as contract and RFQ (request for quotation).
Terms and conditions objects usually refer to business policies with an
optional adjustment. For example, a price terms and conditions object is
created by choosing one of the price policy objects. In the price term, an
account manager can make adjustments to the store standard price, such as:
v A percentage discount over the standard price list

158 Programmer’s Guide

v A percentage discount on a specified set of the products

Each of the adjustments is specified as a term and condition.

When you create a new business policy, there must be at least one terms and
conditions object that refers to this business policy, if the policy is to be used
in a contract. You can either relate an existing term and condition object to the
new business policy (this is done by capturing the relationship between the
existing terms and conditions object and the new business policy in the
B2BTrading.dtd file), or you can create a new terms and conditions object that
is related to the new business policy.

Creating new terms and conditions
Within the WebSphere Commerce architecture, new terms and conditions
objects are created by performing the following steps:
1. Updating the database schema to include the new term and condition.
2. Updating the B2BTrading.dtd file to reflect the new term and condition.
3. Creating a new enterprise bean for the term and condition.
4. Updating WebSphere Commerce Accelerator to reflect the new term and

condition, or using the contract load command to create a new contract
using the new term and condition.

In the following sections, the example of MyTC is the new term and condition
object.

Registering the new term and condition in the database
When you are creating a new terms and condition object, you must update
the database schema to include this object. The database tables that must be
updated are TCTYPE and TCSUBTYPE.

The following SQL statement shows an example of how to update the schema:
insert into TCTYPE (TCTYPE_ID) values (’MyTC’);
insert into TCSUBTYPE (TCSUBTYPE_ID, TCTYPE_ID, ACCESSBEANNAME,

DEPLOYCOMMAND)
values (’MySubTC, ’MyTC ’,

’com.ibm.commerce.contract.objects.MySubTCAccessBean’,
’packagename.MySubTCDeployCmd’);

Register the new term and condition in the contract document type
definition
The B2BTrading.dtd is the document type definition (DTD) file that specifies
the various terms and conditions that can be used within business policies. To
make the new term and condition available in contracts, you must update this
file to include the new term and condition.

Chapter 7. Trading agreements and business policies (Business Edition) 159

When you have created a new term and condition, you must add the new
term and condition to the TermCondition definition and create a new element
that describes the term and condition.

To update the B2BTrading.dtd file, do the following:
1. Navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\xml\trading

v AIX /usr/WebSphere/CommerceServer/xml/trading

v Solaris /opt/WebSphere/CommerceServer/xml/trading

v Linux /opt/WebSphere/CommerceServer/xml/trading

v 400 /QIBM/ProdData/WebCommerce/xml/trading

2. Open the B2BTrading.dtd file.
3. Update the TermCondition definition with the new term and condition.

For example, the update is shown in bold in the following TermCondition
definition:
<!ELEMENT TermCondition (TermConditionDescription?,Participant*,
CreateTime?,UpdateTime?,(PriceTC|ProductSetTC|ShippingTC|FulfillmentTC|
PaymentTC|ReturnTC|InvoiceTC|RightToBuyTC|ObligationToBuyTC|
PurchaseOrderTC|OrderApprovalTC|DisplayCustomizationTC|
OrderTC|MyTC))>

Note that the line breaks are for display purposes only.
4. Now add the new element to the B2BTrading.dtd file. For example, the

following shows the update to add the MyTC element, which refers to a
business policy and has two required attributes.
<!ELEMENT MyTC (MySubTC)>
<!ELEMENT MySubTC (PolicyReference)>
<!ATTLIST MySubTC

attr1 CDATA #REQUIRED
attr2 CDATA #REQUIRED

>

5. Save the file.

Creating a new CMP enterprise bean for the term and condition
You must create a new CMP enterprise bean for the term and condition object.
The bean is created for the term and condition subtype.

Note that typically when creating new enterprise beans, you would place the
beans into your own EJB group, rather than including them into one of the
EJB groups that contain WebSphere Commerce entity beans. In this case
however, since all new entity beans for terms and conditions must inherit
from the WebSphere Commerce TermCondition bean, you must place your
new term and condition beans into the WCS Contract EJB group.

160 Programmer’s Guide

To create the new CMP enterprise bean for the term and condition object, do
the following in VisualAge for Java:
1. Use a wizard to create the new enterprise bean by doing the following:

a. In the VisualAge for Java Workbench, select the EJB tab.
b. Highlight, then right-click on the WCS Contract EJB group and select

Add > Enterprise Bean with Inheritance.
The Create Enterprise Bean with Inheritance SmartGuide opens.

c. In the SmartGuide, enter information appropriate for your bean. For
example, the following table shows example values.

Attribute Value

Bean name MySubTC

Inherit from TermCondition

Package com.ibm.commerce.contract.objects

Bean class MySubTCBean

Remote interface MySubTC

Home interface MySubTCHome

d. Click Add for adding CMP fields to the bean and create new fields for
the bean, as required. For this example, two new CMP fields are
created using the following information:

Attibute Value

Field name attr1

Field type String

Access with getter and setter methods enable

Promote getter and setter methods to
remote interface

enable

Attibute Value

Field name attr2

Field type Integer

Access with getter and setter methods enable

Promote getter and setter methods to
remote interface

enable

e. Click Finish.
2. The next step is to map the fields from the new bean to columns in the

TERMCOND table. To create this mapping information, do the following:

Chapter 7. Trading agreements and business policies (Business Edition) 161

a. From the EJB menu, select Open To > Schema Maps.
The Map Browser opens.

b. In the Datastore Maps panel of the maps browser, double-click WCS
Contract.

c. In the Persistent Classes panel, double-click TermCondition then select
MySubTC.

d. From the Table Maps menu, select New Table Map > Add Single
Inheritance Table Map.
The Single Inheritance Table Map Editor opens.

e. In the Discriminator value field, enter the TCSUBTYPE_ID value. For
example, in this case enter ‘MySubTC’ (include the quotes) and click
OK.

f. Ensure that MySubTC is still selected in the Persistent Classes panel. In
the Table Maps panel, highlight and right-click the TERMCOND table.
Select Edit Property Maps.
The Property Maps Editor opens.

g. In the Property Maps Editor, set the attributes as follows:

Class Attribute Map Type Table Column

attr1 Simple STRINGFIELD2

attr2 Simple INTEGERFIELD1

and click OK.
h. From the Datastore Maps menu, select Save Datastore Map. Enter the

following information when saving the map:

Attribute Value

Project IBM WCS Enterprise Beans

Package WCSContract EJB Reserved

Class Name WCSContractMap

Click Finish and then close the Map Browser.
3. In the new enterprise bean (that is, in MySubTCBean) create a new

ejbCreate(java.lang.Long argTradingId, org.w3c.dom.Element
argElement) method, as follows:
public void ejbCreate(java.lang.Long argTradingId,

org.w3c.dom.Element argElement)
throws javax.ejb.CreateException, javax.ejb.FinderException,
java.rmi.RemoteException, javax.naming.NamingException,
javax.ejb.RemoveException {
_initLinks();

162 Programmer’s Guide

super.ejbCreate (argTradingId, argElement);
this.attr1= null;
this.attr2= null;

}

4. Create a new ejbPostCreate(java.lang.Long argTradingId,
org.w3c.dom.Element argElement) methos, as follows:
public void ejbPostCreate(java.lang.Long argTradingId,

org.w3c.dom.Element argElement)
throws javax.ejb.CreateException, javax.ejb.FinderException,
java.rmi.RemoteException, javax.naming.NamingException,
javax.ejb.RemoveException
{
parseXMLElement(argElement);
}

5. Override the parseXMLElement(org.w3c.dom.Element argElement) method
in MySubTCBean, as follows:
public void parseXMLElement(org.w3c.dom.Element argElement) throws

javax.ejb.CreateException,
javax.ejb.FinderException,
java.rmi.RemoteException,
javax.naming.NamingException,
javax.ejb.RemoveException
{

super.parseXMLElement(argElement);

if (argElement == null)
return;

String nodeName = argElement.getNodeName();
if (nodeName.equals("TCCopy"))

return;

// get element "MyTC"
Element eMyTC = ContractUtil.getElementByTag(argElement,"MyTC");

// get element "MySubTC" from element "MyTC"
Element eMySubTC = ContractUtil.getElementByTag(eMyTC ,"MySubTC");
this.attr1 = eMySubTC .getAttribute("attr1").trim();
this.attr2 = new Integer (eMySubTC .getAttribute("attr2").trim());

// get element "PolicyReference" from "MySubTC"
Element ePolicyReference = ContractUtil.getElementByTag(eMySubTC,

"PolicyReference");
parseElementPolicyReference(ePolicyReference);

}

6. Override the createNewVersion(Long argNewTradingId) method in
MySubTCBean, as follows:
public Long createNewVersion(Long argNewTradingId) throws

javax.ejb.CreateException,
javax.ejb.FinderException,
java.rmi.RemoteException,

Chapter 7. Trading agreements and business policies (Business Edition) 163

javax.naming.NamingException,
javax.ejb.RemoveException,
org.xml.sax.SAXException,
java.io.IOException

{

// Contract a seqElement since tcSequence can not be null
Element seqElement = ContractUtil.getSeqElementFromTCSequence(

this.tcSequence);
MySubTCAccessBean newTC = new MySubTCAccessBean(argNewTradingId,

seqElement);

Long newTCId = newTC.getReferenceNumberInEJBType();
newTC.setInitKey_referenceNumber(newTCId.toString());
newTC.setMandatoryFlag(this.mandatoryFlag);
newTC.setChangeableFlag(this.changeableFlag);
// set columns for this specific TC
newTC.setAttr1(this.attr1);
newTC.setAttr2(this.attr2);
newTC.commitCopyHelper();

return newTCId;
}

7. Override the getXMLString() method in MySubTCBean, as follows:
public String getXMLString() throws

javax.ejb.CreateException,
javax.ejb.FinderException,
java.rmi.RemoteException,
javax.naming.NamingException
{

String xmlTC = " <MyTC>" +
"%XML_POLICYREFERENCE%" +
" <MySubTC attr1=\"" + this.attr1 +
"\" attr2=\"" + this.attr2.toString() + "\"/>"
" ’>" +
" <MYTC></MYTC>" ;

String xmlPolicy = getXMLStringForElementPolicyReference(
"ProductSet") ;

xmlTC = ContractUtil.replace(xmlTC, "%XML_POLICYREFERENCE%",
xmlPolicy);

return xmlTC;
}

8. Override the markForDelete() method in MySubTCBean, as follows:
public void markForDelete() throws

javax.ejb.CreateException,
javax.ejb.FinderException,
java.rmi.RemoteException,
javax.naming.NamingException

164 Programmer’s Guide

{
// code: remove entries from associated tables which
// cannot be deleted though delete cascade

}

9. Ensure that the ejbCreate method has been added to the home interface
and that all other modified methods have been added to the remote
interface.

10. The next step is to create an access bean for the MySubTC entity bean by
doing the following:
a. Right-click the MySubTC entity bean and select Add > Access Bean.

The Create Access Bean SmartGuide opens.
b. Ensure the following information is entered:

Table 1.

Attribute Value

EJB Group WCSContract

Enterprise Bean MySubTC

Access Bean Name MySubTCAccessBean

Access Bean Type Copy Helper for an Entity Bean

and click Next.
c. From the Select home method for zero argument constructor

drop-down list, select findByPrimaryKey(TermConditionKey)

d. For initKey_referenceNumber (in the Initial Properties column), set
Converter to com.ibm.commerce.base.objects.WCStringConverter and
click Next.

e. For all new fields that have been added, ensure that CopyHelper is
selected and set the converter value for each to
com.ibm.commerce.base.objects.WCStringConverter. Click Finish.
After the code generation is complete, you can view the new code by
switching to the Projects tab, expanding the IBM WCS Enterprise
Beans project and then expanding the
com.ibm.commerce.contract.objects package.

11. Back on the EJB tab, right-click the MySubTC enterprise bean and select
Generate Deployed Code.

12. You must also regenerate the deployed code for the parent bean (the
TermCondition bean) and all of the sibling beans (all of the other beans
in the WCS Contract EJB group that contain “TC” in their names). Note
that if you had added a new field or modified the remote interface of the
existing TermCondition bean, then you would have to regenerate the
access beans for itself and all of its child beans as well.
To regenerate the deployed code, do the following:

Chapter 7. Trading agreements and business policies (Business Edition) 165

a. Highlight the TermCondition bean and all other beans that contain
“TC” in their names (for example, DisplayCustomizationTC,
FulfillmentTC, and InvoiceTC are a few of the sibling beans).

b. With all of these beans highlighted, right-click and select Generate
Deployed Code.

13. The next step is to override methods that are in the ValidateContractCmd
task command. In this command, there are three methods that you may
want to override to support the new term and condition object. They are:
v validateTCType()

This method checks what type of term can be in a contract. For
example, the InvoiceTC belongs to account and therefore, it cannot
appear in a contract.

v validateTCOccurrence()
This method checks the occurrence of the terms. For example, in the
default implementation of this method, a contract has to have at least
one PriceTC.

v otherValidateCheck()
The default implementation of this method is empty. You can add any
additional validation that does not fall into the first two methods.

14. If the term and condition must be deployed, you must create a new
deployment command and register this command in the database. If
required, do the following:
a. In this example, the new deployment command interface is called

MySubTCDeployedCmd and the implementation class is called
MySubTCDeployedCmdImpl. In addition, the command is packaged in
the packagename package. To register this command, issue the
following SQL command:
insert into CMDREG (STOREENT_ID, INTERFACENAME, CLASSNAME, TARGET)
values (0, ’packagename.MySubTCDeployCmd’,
’packagename.MySubTCDeployCmdImpl’, ’Local’);

b. In the packagename package, create the new MySubTCDeployedCmd
interface. This interface must extend the
com.ibm.commerce.contract.commands.DeployTCCmd command
interface. The following describes the new command interface:
public interface MySubTCDeployCmd extends

com.ibm.commerce.contract.commands.DeployTCCmd
{

// customized code
}

There is a protected parameter abTC and a method called
getTargetStoreId() in DeployTCCmd. The value of abTC is
MySubTCAccessBean and the getTargetStoreId() method returns the
identifier of the store to which the contract is being deployed.

166 Programmer’s Guide

c. In the same package, create the MySubTCDeployCmdImpl implementation
class. This implementation class must extend
com.ibm.commerce.contract.commands.DeployTCCmdImpl. The following
describes the new command implementation class:
public class MySubTCDeployCmdImpl

extends com.ibm.commerce.contract.commands.DeployTCCmdImpl
implements MySubTCDeployCmd
{

// customer code
}

Updating the WebSphere Commerce Accelerator to use a new term and
condition
Once you have created new terms and conditions, you can update the
WebSphere Commerce Accelerator so that it can be used to create new
contracts that include those new terms and conditions. Updating the
WebSphere Commerce Accelerator for this purpose includes the following
steps:
1. Creating a new JavaScript file for the new terms and conditions. For the

purpose of the example in this section, this file is referred to as
Extensions.js.

2. Creating a new JSP template that includes an HTML section in which a
user can enter required information for the new terms and conditions. For
the purpose of the example in this section, this file is referred to as
ContractMyTC.jsp.

3. Creating a new data bean for the new terms and conditions. For the
purpose of the example in this section, this file is referred to as
MyTCDataBean.

4. Registering the new view in the VIEWREG table.
5. Updating the ContractRB_locale.properties file to include the new

resources.
6. Editing the ContractNotebook.xml file to include the new page.

Each of these steps is described in more detail in the following sections.

Creating the new JavaScript file: The first step to updating the WebSphere
Commerce Accelerator to use new terms and conditions is to create a new
JavaScript file for them. For reference, you can refer to the following sample
file:

v Windows drive:\WebSphere\CommerceServer\samples\contract\
Extensions.js

v Windows drive:\WebSphere\CommerceServerDev\samples\contract\
Extensions.js

v AIX /usr/WebSphere/CommerceServer/samples/contract/Extensions.js

Chapter 7. Trading agreements and business policies (Business Edition) 167

v Solaris /opt/WebSphere/CommerceServer/samples/contract/Extensions.js

v Linux /opt/WebSphere/CommerceServer/samples/contract/Extensions.js

v 400 /QIBM/ProdData/WebCommerce/samples/contract/Extensions.js

In order to use this sample file, copy it to the following directory:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wctools.war\
javascript\tools\contract

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/
javascript/tools/contract

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/
javascript/tools/contract

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/
javascript/tools/contract

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
wctools.war/javascript/tools/contract

In this new file, you must create a JavaScript object to store the data for the
new term and condition. This is shown in the following code snip:
function ContractMyTCModel() {

this.tcReferenceNumber = "";
this.policyReferenceNumber = "";

this.attr1 = "";
this.attr2 = "";

this.policyList = new Array();
this.selectedPolicyIndex = "0";

}

You should also create a new JavaScript object to submit the new term and
condition. This must be done in a manner consistent with the extensions that
you made to the B2BTrading.dtd file. This is shown in the following code
snip:
function submitMyTC(termsAndConditions) {

var tcModel = get("ContractMyTCModel");

168 Programmer’s Guide

if (tcModel != null) {

var myTC = new Object();
myTC.MyTC = new Object();
myTC.MyTC.MySubTC = new Object();
myTC.MyTC.MySubTC.attr1 = tcModel.attr1;
myTC.MyTC.MySubTC.attr2 = tcModel.attr2;

myTC.MyTC.PolicyReference = new Object();
myTC.MyTC.PolicyReference.policyName =

tcModel.policyList[tcModel.selectedPolicyIndex].policyName;
myTC.MyTC.PolicyReference.policyType = "ProductSet";
myTC.MyTC.PolicyReference.storeIdentity =

tcModel.policyList[tcModel.selectedPolicyIndex].storeIdentity;
myTC.MyTC.PolicyReference.Member =

tcModel.policyList[tcModel.selectedPolicyIndex].member;

if (tcModel.tcReferenceNumber != "") {
// Change the term and condition
myTC.action = "update";
myTC.referenceNumber = tcModel.tcReferenceNumber;

}
else {

// Create a new term and condition
myTC.action = "new";

}

termsAndConditions[termsAndConditions.length] = myTC;
}

return true;
}

Creating the new JSP template: The next step is to create a new JSP
template that includes an HTML section in which the user can enter
information required by the new term and condition. For reference, you can
refer to the following sample file:

v Windows drive:\WebSphere\CommerceServer\samples\contract\
ContractMyTC.jsp

v Windows drive:\WebSphere\CommerceServerDev\samples\contract\
ContractMyTC.jsp

v AIX /usr/WebSphere/CommerceServer/samples/contract/
ContractMyTC.jsp

v Solaris /opt/WebSphere/CommerceServer/samples/contract/
ContractMyTC.jsp

v Linux /opt/WebSphere/CommerceServer/samples/contract/
ContractMyTC.jsp

Chapter 7. Trading agreements and business policies (Business Edition) 169

v 400 /QIBM/ProdData/WebCommerce/samples/contract/
ContractMyTC.jsp

In order to use this sample file, copy it to the following directory:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wctools.war\tools\contract

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/tools/contract

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/tools/contract

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wctools.war/tools/contract

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
wctools.war/tools/contract

The following code snip shows an example HTML section of a JSP template
that can be used for MyTC.
<!--
///////////////////////////////////////
// HTML SECTION
///////////////////////////////////////
-->

<BODY onLoad="onLoad()" class="content">

<H1>
<%= contractsRB.get("MyTCHeading") %>
</H1>

<FORM NAME="MyTCForm">

<%= contractsRB.get("MyTCAttr1Label") %>

<INPUT type=text name=Attr1 value="" size=10 maxlength=10>

<%= contractsRB.get("MyTCAttr2Label") %>

<INPUT type=text name=Attr2 value="" size=10 maxlength=10>

<%= contractsRB.get("MyTCPolicyLabel") %>

170 Programmer’s Guide

<SELECT NAME="PolicyList" SIZE="1">
</SELECT>

</FORM>

Creating the new data bean: In this step, you create a new data bean that
loads the necessary data from the MySubTC access bean. The relevant sections
of code are shown in the following code snip:
public class MyTCDataBean extends MySubTCAccessBean

implements SmartDataBean, Delegator {
private java.lang.Long contractId;
private boolean hasMyTC = false;
private CommandContext iCommandContext;

/**
* MyTCDataBean default constructor.
*/
public MyTCDataBean() {
}
/**
* MyTCDataBean constructor.
*/
public MyTCDataBean(Long newContractId) {
contractId = newContractId;
}

/*
* populate the attributes from TermConditionAccessBean
*/
public void populate() throws Exception {

Enumeration myTCEnum = new TermConditionAccessBean().
findByTradingAndTCSubType(contractId, "MySubTC");

if (myTCEnum != null) {
// assume a contract only has one MyTC for this example

setEJBRef(((TermConditionAccessBean)
myTCEnum.nextElement()).getEJBRef());

refreshCopyHelper();
hasMyTC = true;

}

}

Registering the new view in the VIEWREG table: You must register your
newly created view in the VIEWREG table. The following is an example SQL
statement to register the new view.
insert into VIEWREG(VIEWNAME,DEVICEFMT_ID,STOREENT_ID, INTERFACENAME,

CLASSNAME, PROPERTIES, HTTPS, INTERNAL)
values (’ContractMyTCPanelView’, -1, 0,

Chapter 7. Trading agreements and business policies (Business Edition) 171

’com.ibm.commerce.tools.command.ToolsForwardViewCommand’,
’com.ibm.commerce.tools.command.ToolsForwardViewCommandImpl’,
’docname=tools/contract/ContractMyTC.jsp’, 1, 1)

Updating the ContractRB_locale.properties file: You must update the
following properties file with information specific to the new term and
condition:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\properties\
com\ibm\commerce\tools\contract\properties\
ContractRB_locale.properties

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/properties/
com/ibm/commerce/tools/contract/properties/
ContractRB_locale.properties

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/properties/
com/ibm/commerce/tools/contract/properties/
ContractRB_locale.properties

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/properties/
com/ibm/commerce/tools/contract/properties/
ContractRB_locale.properties

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
properties/com/ibm/commerce/tools/contract/properties/
ContractRB_locale.properties

The following is an example of the information that you would add to the
file.
MyTCHeading=My TC
attr1Empty=Attribute One must be entered.
attr2Empty=Attribute Two must be entered.
attr1TooLong=Attribute One is too long.
attr2TooLong=Attribute Two is too long.
MyTCAttr1Label=Attribute One (required)
MyTCAttr2Label=Attribute Two (required)
MyTCPolicyLabel=Policy

Editing the ContractNotebook.xml file: The last step for including new terms
and conditions in the WebSphere Commerce Accelerator is to update the
following file to include the new page.

v Windows drive:\WebSphere\CommerceServer\xml\tools\contract\
ContractNotebook.xml

172 Programmer’s Guide

v AIX /usr/WebSphere/CommerceServer/xml/tools/contract/
ContractNotebook.xml

v Solaris /opt/WebSphere/CommerceServer/xml/tools/contract/
ContractNotebook.xml

v Linux /opt/WebSphere/CommerceServer/xml/tools/contract/
ContractNotebook.xml

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/
xml/tools/contract/ContractNotebook.xml

The following is an example snip of code that is used to include the new page
in this example.
<panel name="MyTCHeading"

url="ContractMyTCPanelView"
parameters="contractId,accountId"
helpKey="MC.contract.MyTCPanel.Help" />

Importing the new contract using the new term and condition
As an alternative to updating the WebSphere Commerce tools to use a new
term and condition , you can use the contract import command (refer to the
WebSphere Commerce online help for information about this command) to
import a new contract that includes this new term and condition. After
importing, the relevant section in the Contract.xml file appears as follows:
<TermCondition>

<MyTC>
<MySubTC attr1="adc" attr2="123" />

<PolicyReference policyName = "Product Set 1"
policyType = "ProductSet"
storeIdentity = "StoreGroup1" >

<Member>
<User distinguishName = "uid=wcsadmin,o=Root Organization"/>

</Member>
</PolicyReference>

</MyTC>
</TermCondition>

Invoking the new business policy

Once you have created a new business policy and this business policy has
been associated with at least one terms and conditions object, you can must
update your application logic to invoke the new business policy commands.

Business policy commands are invoked from within controller and task
commands.

The command factory is used to invoke business policy commands. There are
two create methods that can be used to invoke business policy commands.

Chapter 7. Trading agreements and business policies (Business Edition) 173

The first is used to invoke a business policy command when there is only one
business policy command associated with the business policy. This is shown
in the following code snippet:
CommandFactory createBusinessPolicyCommand(Long policyId);

The second method is used to invoke a business policy command when there
is more than one business policy command associated with the business
policy. This is shown in the following code snippet:
CommandFactory createBusinessPolicyCommand(Long policyId, String cmdIfName);

In the preceding example, cmdIfName is used to specify the interface name of
the business policy command to be created.

The command factory looks up the policy object in the POLICYCMD table to
determine the command that implements this policy. It also fetches any
default properties from the table and sets them as requestProperties in the
business policy command.

The following code snippet shows an example of invoking a refund policy:
RefundPolicyCmd cmd;

///
// Get the refund policy id from the refundTC object //
// and use it to create the policy command. //
///

cmd = (RefundPolicyCmd) CommandFactory
createPolicyCommand (refundTC.getRefundPolicy);

cmd.execute()

Creating a contract

The next step to fully integrate the extenstion to the contract model into your
business process is to create a contract that includes the terms and condition
which refers to the new business policy. A contract can be created using the
WebSphere Commerce Accelerator or by using one of the contract URL
commands (ContractImportApprovedVersion and
ContractImportDraftVersion). For more information about creating contracts,
refer to the WebSphere Commerce online help.

Contract customization scenarios

This section provides an overview of the steps involved for the following
contract customization scenario:
v Enabling a rebate

174 Programmer’s Guide

Rebate scenario
In this example scenario, a flat rate rebate is created. Since the ToolTech
sample store includes neither a term and condition nor a policy type that
matches the rebate scenario, these must be created. Additionally, a new
business policy must be created, as well as a database table to store the rebate
codes.

Implementing this rebate scenario includes the following high-level steps:
1. Creating the XREBATECODE database table and a corresponding

XRebateCodeBean entity bean that is used to access information from this
table.

2. Creating a new 5DollarRebate business policy by performing the following
sub-tasks:
a. Create the corresponding new business policy type. This defines the

interface (RebatePolicyCmd) that the new business policy command
will implement.

b. Create the new CalculateRebateCmdImpl business policy command.
c. Register the new business policy command and business policy type in

the database.
3. Create a new term and condition (RebateTC) for the rebate by performing

the following sub-tasks:
a. Register the RebateTC term and condition in the database.
b. Update the B2BTrading.dtd file to reflect the new RebateTC.
c. Create a new enterprise bean for the RebateTC.
d. Update the WebSphere Commerce Accelerator to reflect the new

RebateTC.
4. Create a new contract that uses the RebateTC.
5. Integrating the new business policy into the shopping flow.

Each of these steps is described in more detail in subsequent sections.

Step 1: Creating the new table and enterprise bean
Since the existing database schema does not include the specification of a
rebate amount and code, a new table must be created. In general, when a new
table is created, a new entity bean is also created that is used to when
accessing information contained in this table.

For the purpose of this example, assume that the following XREBATECODE
database table is created.

Chapter 7. Trading agreements and business policies (Business Edition) 175

Table 2. XREBATECODE database table

Column name

REBATECODE_ID AMOUNT CURRENCY

Sample data 201 5 CAD

202 10 CAD

Additionally, a new CMP entity bean (XRebateCodeBean) would be created.
For detailed information about creating this bean, refer to “Creating a new
CMP enterprise bean” on page 57.

Step 2: Creating the “5DollarRebate” business policy
In order to create this new business policy, you must perform the following
steps:
1. Create the new business policy type interface. This is the RebatePolicyCmd

interface that the CalculateRebateCmdImpl will implement
2. Create the new CalculateRebateCmdImpl business policy command.
3. Register the new business policy and business policy command in the

database.

Creating the “Rebate” business policy type: Since there is not an existing
business policy type that corresponds to rebates, a new one must be created.
Creating a new business policy type involves defining and registering a policy
type in the database. The following tables must be updated:
v POLICYTYPE
v PLCYTYCMIF
v PLCYTYPDSC

For this scenario, to create the new REBATE policy type, the following SQL
statements would be used:
insert into POLICYTYPE (POLICYTYPE_ID) values (’Rebate’);
insert into PLCYTYCMIF (POLICYTYPE_ID, BUSINESSCMDIF)

values (’Rebate’,
’com.mycompany.mybusinesspolicycommands.RebatePolicyCmd’);

insert into PLCYTYPDSC (POLICYTYPE_ID, LANGUAGE_ID, DESCRIPTION)
values (’Rebate’, -1,
’Rebate policy type.’);

As a result, the following table shows the relevant columns of the
PLCYTYCMIF table that shows the relationship between the policy type and
the business policy command to which it is related.

176 Programmer’s Guide

Table 3. Updates made to the PLCYTYCMIF table

Column name

POLICYTYPE_ID BUSINESSCMDIF

Sample data Rebate com.mycompany.mybusinesspolicycommands.
RebatePolicyCmd

You must also code the new RebatePolicyCmd interface. This interface must
extend the com.ibm.commerce.command.BusinessPolicyCommand interface. As
suggested by the previous table, package this interface into your own
package.

Creating the CalculateRebateCmdImpl business policy command: To create
the new business policy command, you must create a new command called
CalculateRebateCmdImpl that extends the
com.ibm.commerce.command.BusinessPolicyCommandImpl implementation class.
This command should implement the RebatePolicyCmd interface created in the
previous step.

Note that in this example, the interface name and the command name are
dissimilar. These names were chosen to intentionally show that there may be
many business policy commands that implement the rebate type of business
policy. Each implementation (that is, each business policy command) would
then implement the rebate in a unique manner.

The logic of the command depends upon the particular implementation of
how the customer is to pick up the goods. Additionally, this
CalculateRebateCmdImpl should be invoked by a separate controller or task
command in your application.

Registering the new business policy and new business policy command:
The new business policy must be registered in the database. You must also
register the relationship between the new business policy and the new
business policy command.

To register this information, you can use the
com.ibm.commerce.contract.commands.PolicyAddCmd command. The following
shows an example usage of the PolicyAdd command for this scenario:
http://localhost:8080/webapp/wcs/stores/servlet/PolicyAdd?

type=Rebate&name=5DollarRebate&plcyStoreId=-1
&cmd_1=com.mycompany.mybusinesspolicycommands.CalculateRebateCmdImpl
&startDate=2002-05-08%2000:00:00&endDate=2003-05-09%2000:00:00
&commonProps=rebatecode_id%3D501&URL=aRedirectURL

Note that URL reserved characters must be replaced by their ASCII codes for
input properties. As such, the typical = (equals) symbol is replaced with

Chapter 7. Trading agreements and business policies (Business Edition) 177

“%3D”, the & (ampersand) is replaced by “%26”, and the space character is
replaced by “%20”. The date format used in the preceding example is
yyyy-mm-dd hh:mm:ss, with ASCII code replacing URL reserved characters.

The following tables show the relevent columns of the affected database
tables, after performing the updates.

Table 4. Updates made to the POLICY table

Column name

POLICY
_ID

POLICY
NAME

POLICYTYPE
_ID

STOREENT
_ID

PROPERTIES

Sample
data

301 5Dollar
Rebate

Rebate -1 rebatecode_id=
201

Note that it is also presumed that the start date and end date values are set to
null.

Table 5. Updates made to the POLICYCMD table

Column name

POLICY _ID BUSINESS CMDCLASS PROPERTIES

Sample
data

301 com.mycompany.
mybusinesspolicycommands.
CalculateRebateCmdImpl

null

As a result, you now have a new business policy called “5DollarRebate” that
is related to the CalculateRebateCmd business policy command.

Step 3: Creating the “RebateTC” term and condition
Creating the “RebateTC” term and condition requires that the following steps
be performed:
1. Register the RebateTC term and condition in the database.
2. Update the B2BTrading.dtd file to reflect the new RebateTC.
3. Create a new enterprise bean for the RebateTC.
4. Update the WebSphere Commerce Accelerator to reflect the new RebateTC.

Registering the“RebateTC” term and condition in the database: When you
are creating a new terms and condition object, you must update the database
schema to include this object. The database tables that must be updated are
TCTYPE and TCSUBTYPE.

The following SQL statement shows an example of how to register the
RebateTC in the database:

178 Programmer’s Guide

insert into TCTYPE (TCTYPE_ID) values (’RebateTC’);
insert into TCSUBTYPE (TCSUBTYPE_ID, TCTYPE_ID, ACCESSBEANNAME,

DEPLOYCOMMAND)
values (’RebateTC, ’RebateTC ’,

’com.ibm.commerce.contract.objects.RebateTCAccessBean’,
null);

The following tables show an extract of the relevant columns in the TCTYPE
and TCSUBTYPE tables.

Table 6. Updates made to the TCTYPE table

Column name

TCTYPE_ID

Sample data RebateTC

Table 7. Updates made to the TCSUBTYPE table

Column name

TCSUBTYPE
_ID

TCTYPE _ID ACCESSBEAN NAME DEPLOY
COMMAND

Sample
data

RebateTC RebateTC com.ibm.commerce.
contract.objects.
RebateTCAccessBean

null

Updating the B2BTrading.dtd file to reflect the new RebateTC: To make the
new term and condition available in contracts, you must update
B2BTrading.dtd file to include the new term and condition. When updating
this file, you must add the new term and condition to the TermCondition
definition and then create a new element that describes the term and
condition.

The text in bold shows an example of how to add the new RebateTC to the
TermCondition definition:
<!ELEMENT TermCondition (TermConditionDescription?,Participant*,
CreateTime?,UpdateTime?,(PriceTC|ProductSetTC|ShippingTC|FulfillmentTC|
PaymentTC|ReturnTC|InvoiceTC|RightToBuyTC|ObligationToBuyTC|
PurchaseOrderTC|OrderApprovalTC|DisplayCustomizationTC|
OrderTC|RebateTC))>

Note that the line breaks are for display purposes only.

You must then add a new stanza that describes this term and condition to the
file. The following shows an example for the RebateTC:
<!ELEMENT RebateTC (PolicyReference?)>

Chapter 7. Trading agreements and business policies (Business Edition) 179

Creating a new enterprise bean for the RebateTC: You must create a new
enterprise bean for the new RebateTC. This new bean should inherit from the
WebSphere Commerce TermCondition bean.

A new enterprise bean for a term and condition is typically named after the
subtype. Note that in this case, the term and condition subtype is the same as
the term and condition type, and as such, the name of the bean is the same as
the term and condition type.

The following table shows some of the general information about the new
bean that must be created. For more details about the bean, including which
methods to override, refer to “Creating a new CMP enterprise bean for the
term and condition” on page 160.

Table 8.

Attribute Value

Bean name RebateTC

Inherit from TermCondition

Package com.ibm.commerce.contract.objects

Bean class RebateTCBean

Remote interface RebateTC

Home interface RebateTCHome

Updating the WebSphere Commerce Accelerator to include the RebateTC:
Once you have created new terms and conditions, you can update the
WebSphere Commerce Accelerator so that it can be used to create new
contracts that include those new terms and conditions. For information about
how to update this tool, refer to “Updating the WebSphere Commerce
Accelerator to use a new term and condition” on page 167.

Step 4: Creating a new contract
You must create a new contract that includes the “RebateTC” term and
condition and that refers to the “5DollarRebate” business policy. You can use
either the WebSphere Commerce Accelerator or XML to create a new contract.
Each of these methods for creating new contracts are described in the
WebSphere Commerce online help.

The following tables show the updates to the relevant columns of the
TERMCOND and POLICYTC database tables, after the contract has been
created.

180 Programmer’s Guide

Table 9. Updates made to the TERMCOND table

Column name

TRADING
_ID

TERMCOND
_ID

TCSUBTYPE _ID

Sample
data

25 901 RebateTC

Table 10. Updates made to the POLICYTC table

Column name

POLICY _ID TERMCOND_ID

Sample data 301 901

Step 5: Integrating the new business policy into the shopping flow
In this scenario, it is presumed that a new page is added to the store that
allow customers to log on and claim their rebates. When the customer would
click to claim the rebate, a command that invokes the new RebatePolicyCmd
interface should be invoked. For example, there could be a new
ClaimRebateCmd controller command that invokes the RebatePolicyCmd. The
correct business policy is then found and (in this case) the “5DollarRebate”
business policy is applied.

Chapter 7. Trading agreements and business policies (Business Edition) 181

182 Programmer’s Guide

Part 3. Development environment

© Copyright IBM Corp. 2000, 2002 183

184 Programmer’s Guide

Chapter 8. Development tools and deployment

This chapter introduces the main development tools used for customizing a
WebSphere Commerce application. It describes the process for deploying
customized code from VisualAge for Java to a WebSphere Commerce Server. It
also describes how to deploy code to Commerce Studio, so that you can take
advantage of the customized code when developing JSP templates.

Development environment

The recommended development package for creating customized code to be
used with WebSphere Commerce Business Edition is the WebSphere
Commerce Studio, Business Developer Edition product. The recommended
development package for creating customized code to be used with
WebSphere Commerce Professional Edition is the WebSphere Commerce
Studio Professional Developer Edition product. Both of these packages include
all the tools you require to create customized code and perform Web
development tasks.

Both the WebSphere Commerce Studio Business Developer Edition and the
WebSphere Commerce Studio Professional Developer Edition provide the
option of including a sample WebSphere Commerce store that is used in the
WebSphere Test Environment component of VisualAge for Java. This
simplifies the configuration of the development environment, since a
developer is not required to use the tools of WebSphere Commerce to create a
store and then move the store assets over to the development environment.

Another key component to the development environment is the repository of
WebSphere Commerce code. This repository must be imported into the
VisualAge for Java workspace, after the product installation is complete.
Subsequent to importing this repository, the developer must perform some
configuration steps related to the WebSphere Test Environment.

After all installation and configuration tasks are complete, the developer has a
stand-alone development machine, on which customized WebSphere
Commerce code can be created and tested. The developer is not required to
install WebSphere Commerce on the development machine.

© Copyright IBM Corp. 2000, 2002 185

WebSphere Commerce Studio

WebSphere Commerce Studio Business Developer Edition and WebSphere
Commerce Studio Professional Developer Edition both include VisualAge for
Java, Enterprise Edition, Version 4.0. This edition of VisualAge for Java
includes features such as robust tooling for developing and debugging
advanced JSP templates that assist with developing store-front assets. It also
includes enhanced integration with WebSphere Studio to allow the quick
addition of content to these JSP templates, increasing productivity for
programmers and Web developers. For the development of back-office
application code, it includes support for Enterprise JavaBeans technology and
connectivity features to support integration to other systems, such as CICS®

TS, MQSeries, SAP R/3 and more. In addition, the integrated WebSphere Test
Environment of VisualAge for Java, Enterprise Edition, allows developers to
run WebSphere Commerce functions, without ever exiting VisualAge for Java.
This means that testing of customized WebSphere Commerce code can occur
without deploying the code to a WebSphere Commerce Server.

Note: The WebSphere Test Environment component of VisualAge for Java,
Enterprise Edition, Version 4.0 runs applications within WebSphere
Application Server V3.5.4. Note that both WebSphere Commerce
Business Edition and WebSphere Commerce Professional Edition use
WebSphere Application Server V4.0. The result of this difference in
versions is that before deploying new or modified enterprise beans to a
WebSphere Commerce instance running within WebSphere Application
Server V4.0, you must generate deployed code outside of VisualAge for
Java using the EJBDeploy tool that is shipped with WebSphere
Application Server V4.0. In fact, this deployed code must be generated
on a machine that has WebSphere Application Server V4.0 installed.
Refer to “Information about EJB deployed code” on page 188 for more
details.

In order to complete the tutorials described in Part 4, “Tutorials” on page 199,
you must install either WebSphere Commerce Studio Business Developer
Edition or WebSphere Commerce Studio Professional Developer Edition. Refer
to the either the WebSphere Commerce Studio Business Developer Edition
Installation Guide or the WebSphere Commerce Studio Professional Developer
Edition Installation Guide for more information about installing Commerce
Studio and configuring VisualAge for Java.

Features and functions of VisualAge for Java

This Programmer’s Guide is not intended to teach you how to use VisualAge
for Java. With respect to that product, it generally shows how to perform a
task in VisualAge for Java more as a way of accomplishing a programming
task for creating an e-commerce application for WebSphere Commerce. As

186 Programmer’s Guide

such, if you are a new user of VisualAge for Java, you will start to learn how
to perform some tasks in VisualAge for Java by performing the tutorials
contained in this book. You must however, refer to VisualAge for Java
documentation, tutorials and courses in order to become proficient in using
this tool.

For example, the (Optional) Using the Debugger in VisualAge for Java tutorial
topic provides a quick introduction to how you can use the Debugger to view
the value of variables in a task command during code execution. The
Debugger component of VisualAge for Java is a robust tool for debugging,
and as such, you should refer to the VisualAge for Java documentation for
complete details about its features and how to use them.

WebSphere Commerce code repository

In order to create customized code for a WebSphere Commerce application,
you must import a repository of WebSphere Commerce code into the
VisualAge for Java workspace. The repository is available on the WebSphere
Commerce Business Edition Disk 2 CD and the WebSphere Commerce
Professional Edition Disk 2 CD. The current repository (current at the time of
publication) is called WC_54.dat.

Code deployment

When customizing your e-commerce application, you may do any of the
following:
v Create new commands, data beans or entity beans
v Extend existing WebSphere Commerce entity beans
v Modify the logic of existing commands or data beans

When developing code within VisualAge for Java, you can test your code
within the WebSphere Test Environment. At some point, you must deploy
your code to a WebSphere Commerce Server outside of the development
environment.

In the following sections, target WebSphere Commerce Server refers to the
WebSphere Commerce Server to which you are deploying the customized
code. In some testing scenarios, you may deploy to a WebSphere Commerce
Server that is running on the same machine as VisualAge for Java. In other
situations, the target WebSphere Commerce Server is on another machine, and
may even be running on a different platform.

Chapter 8. Development tools and deployment 187

The following sections describe the high-level steps for deploying the various
types of customized code. Use them to understand the steps involved in the
deployment process and refer to Appendix B, “Deployment details” on
page 335 for step-by-step instructions.

In addition to the following sections that describe deployment of customized
code, if you have created new access control policies in your development
environment, the same access control policies must be created on the target
WebSphere Commerce Server. Refer to “Loading the access control policies for
the new resources” on page 272 in the tutorials for an example of this
procedure.

Information about EJB deployed code
It is important to recognize that the WebSphere Test Environment component
of VisualAge for Java V4.0 uses WebSphere Application Server V3.5.4. In this
version of WebSphere Application Server, enterprise beans are supported at
the level of the Enterprise JavaBeans (EJB) V1.0 specification. As such, in order
to run any enterprise beans within the WebSphere Test Environment, you use
the tools of VisualAge for Java to generate deployed code for your enterprise
beans that complies with the EJB V1.0 specification.

In contrast, both the WebSphere Commerce Business Edition and the
WebSphere Commerce Professional Edition use WebSphere Application Server
V4.0. WebSphere Application Server V4.0 supports the EJB V1.1 specification.
As such, the deployed code for enterprise beans running within the
WebSphere Test Environment is different than the deployed code for
enterprise beans running within WebSphere Application Server V4.0.

The impact to development and deployment is as follows:
v To test enterprise beans within the WebSphere Test Environment, use the

tools of VisualAge for Java to generate the deployed code that meets the
requirements of the WebSphere Application Server V3.5.4 used in the
WebSphere Test Environment. This code is generated by right-clicking the
enterprise bean and selecting Generate Deployed Code. Note that this does
not create a JAR file.

v To deploy enterprise beans to a WebSphere Application Server V4.0, you
must do the following:
1. Use the tools of VisualAge for Java to export the enterprise beans to

what this document refers to as an EJB 1.1 Export JAR file. This JAR file
packages the code into a format that is used by the EJBDeploy tool. This
file is created by right-clicking the EJB group that contains the enterprise
bean to be deployed and selecting Export > EJB 1.1 JAR. Note that
when creating this JAR file, you must select the appropriate database
type for the machine to which you will deploy your code.

188 Programmer’s Guide

2. Transfer this EJB 1.1 Export JAR file to a target server running
WebSphere Application Server V4.0.

3. On the target server, run the EJBDeploy tool with the EJB 1.1 Export
JAR file as input to create a new JAR file of deployed code that
complies to the Enterprise JavaBeans V1.1 specification.

There are other steps involved in the deployment of enterprise beans. For
more information refer to “Deployment of new entity beans” on page 190 and
“Deployment of modified WebSphere Commerce public entity beans” on page
192. For more information about using the EJBDeploy tool, refer to
“Generating deployed code” on page 346.

Deployment of new commands and data beans
When creating new commands and data beans, you should place them in a
package that is named appropriately for your application. For example, you
could create a new package by the name of com.mycompany.mycommands in
which you keep your new commands. This package must be stored within a
project that is separate from the WebSphere Commerce projects (IBM WC
Commerce Server and IBM WC Enterprise Beans). For example, you could
create a new project called My Project. Careful organization of code is
required, to ensure that deployment is successful.

With all of your new commands and data beans stored in your own project,
deployment consists of the following high-level steps:
1. Using the development machine, create a JAR file for the project. From the

Project page in VisualAge for Java, use the tools to export the project to a
JAR file. Name the JAR file appropriately for your code, for example,
CustomCommands.jar. In addition, you must rejar the JAR file using tools
outside of VisualAge for Java to ensure that all required naming
information is included for deployment to WebSphere Application Server.
Refer to “JAR files for customized commands and data beans” on page 335
for more information.

2. Copy the JAR file, JSP templates and any other store assets into the
appropriate directory on the target WebSphere Commerce Server. Refer to
“Storing assets on the target WebSphere Commerce Server” on page 342
for more information.

3. Register the new command in the command registry on the target
WebSphere Commerce Server. Refer to “Command registration
framework” on page 26 for more information.

4. Stop and restart the WebSphere Commerce enterprise application, using
the WebSphere Application Server Administrator’s Console. Refer to the
appropriate WebSphere Commerce Installation Guide for more information
about starting and stopping this application.

Chapter 8. Development tools and deployment 189

Deployment of new entity beans
When creating new entity beans, you must create them in an EJB group that is
separate from the EJB groups that contain the WebSphere Commerce entity
beans. You must also use your own project and ensure that this project does
not contain the code for any commands or data beans. For example, you
could create a new EJB group called MyEntityBeans and a project by the name
of MyEntityBeansProject. If the project contains code other than the code for
new entity beans, deployment may not be successful.

Once you are satisfied with the way your entity bean functions within the
WebSphere Test Environment, you must deploy it. The following information
provides an overview of the deployment steps:
1. Using the development machine, create a new EJB 1.1 Export JAR file for

your new EJB group. From the EJB page in VisualAge for Java, right-click
the new EJB group and select to export the code to an EJB 1.1 JAR file.
Name the file appropriately for your code, for example,
MyEntityBeans_DT.jar. Refer to “Creating JAR files for new entity beans”
on page 337 for more information.

2. Create a new implementation JAR file for the new EJB project. To create
this JAR file, select the Project page, then right-click the new EJB project
and select to export the code to a JAR file. Name the file appropriately for
your code, for example, MyEntityBeansImpl.jar. In addition, you must
rejar the implementation JAR file using tools outside of VisualAge for Java
to ensure that all required naming information is included for deployment
to WebSphere Application Server. Refer to “Creating JAR files for new
entity beans” on page 337 for more information.

3. Copy the JAR files into the appropriate directory on the target WebSphere
Commerce Server. Refer to “Storing assets on the target WebSphere
Commerce Server” on page 342 for more information.

4. On the target WebSphere Commerce Server, use the EJB Deploy Tool
provided by WebSphere Application Server to generate the deployed code
for the new enterprise beans. This tool takes the JAR file created in step 1
as input and it creates the corresponding JAR file containing the deployed
code for all enterprise beans in your EJB group. Refer to “Generating
deployed code” on page 346 for more information.

5. On the target WebSphere Commerce Server, modify the transaction
isolation level of the enterprise beans that are contained in the JAR file of
deployed code. Use the modifyIsolationLevel command line utility
provided by WebSphere Commerce to set the transaction isolation level to
the appropriate level for your database type. Refer to “Modifying
transaction isolation level of entity beans” on page 349 for more
information.

6. On the target WebSphere Commerce Server, load the access control policies
for any new resources that you have created. Use the WebSphere

190 Programmer’s Guide

Commerce acpload and acpnlsload commands to load the policy
information. Refer to the “Loading the access control policies for the new
resources” on page 272 section in the Chapter 9, “Tutorial: Creating new
business logic” tutorial for an example of loading access control policies
for new resources.

7. On the target WebSphere Commerce Server, export the current WebSphere
Commerce enterprise application from WebSphere Application Server.
After the export has completed, an .ear file is created that contains the
entire application. To export the current application, open the WebSphere
Application Server Administration Console, select the WebSphere
Commerce enterprise application and then select the export option. Upon
completion, a WC_Enterprise_App_instanceName.ear file is created. Refer to
“Exporting the current WebSphere Commerce enterprise application” on
page 350 for more information.

8. On the target WebSphere Commerce Server, export the configuration
information for the enterprise beans that are contained in the current
WebSphere Commerce enterprise application running within WebSphere
Application Server. This information is exported to an XML file by using
the -export option of the XMLConfig command line utility that is provided
by WebSphere Application Server. The generated XML file (referred to here
as the OutputFile.xml file) contains a stanza of configuration information
for each enterprise bean contained in the enterprise application. You must
then add a new stanza to this file for each new enterprise bean that you
are deploying. Refer to “Exporting configuration information for enterprise
beans” on page 351 for more information.

9. Add the your new enterprise bean or beans into your enterprise
application using the Application Assembly Tool provided by WebSphere
Application Server. Using this tool, you can open the
WC_Enterprise_App_instanceName.ear for the current application and then
import any new enterprise beans into the application. You also set the
class path for the new enterprise bean or beans to include any dependent
JAR files and add the implementation JAR file as a file to the application.
Finally, you use this tool to configure WebSphere Application Server
security for methods that are contained in your enteprise bean or beans.
After these steps are complete, save the application and a new .ear file is
created for your enterprise application. Refer to “Assembling new
enterprise beans into an enterprise application” on page 357 for more
information.

10. Import the new enterprise application into WebSphere Application Server.
This step is comprised of the following three subtasks:
a. Using the WebSphere Application Server Administration Console,

stop and remove the original WebSphere Commerce enterprise
application. Refer to “Stopping and removing an enterprise
application” on page 366 for more information.

Chapter 8. Development tools and deployment 191

b. Using the -import option of the XMLConfig command line utility to
import the new enterprise application into WebSphere Application
Server. Refer to “Importing an enterprise application” on page 366 for
more information.

c. Using the WebSphere Application Server Administration Console,
refresh the view to display the new enterprise application and then
start the new application. Refer to “Starting an enterprise application”
on page 368 for more information.

Deployment of extensions to existing commands and data beans
The method for extending existing commands depends upon the type of
modification required. The methods for extension are explained in
“Customization of existing commands” on page 139. In general, modification
of existing logic involves creating a new class that inherits from the class that
requires customization. Override methods of the superclass as required, to
replace or modify logic.

When customizing data beans, you also create a new class that extends an
existing data bean. Within the new class, make the required modifications.

When creating these new classes, ensure that they are stored within one of
your own packages, which is itself stored within one of your own projects.

Since extensions are effectively handled by subclassing, deployment for
extensions to commands and data beans is the same as deployment for new
commands and data beans. For more information, refer to “Deployment of
new commands and data beans” on page 189.

Deployment of modified WebSphere Commerce public entity beans
When you modify a WebSphere Commerce public enterprise bean you modify
WebSphere Commerce code. The deployment technique for customized entity
beans is, therefore, slightly different than that used for new entity beans. The
following provides an overview of the deployment steps:
1. Create an EJB 1.1 Export JAR file for the WebSphere Commerce EJB group

that contains the modified entity bean. With the EJB tab in the VisualAge
for Java Workbench selected, select the appropriate EJB group and then
select to export that group to an EJB 1.1 Export JAR file. When naming the
JAR file, you can use the Cust_EJBGroupName-ejb_DT.jar naming
convention where EJBGroupName is the name of the EJB group that has
been modidfied and the _DT suffix is appended to the end of the name of
the JAR file. For example, when naming the JAR file for the WCSUser EJB
group, you could name the file as Cust_WCSUser-ejb_DT.jar. Note that the
_DT suffix is simply used as a reminder that you must later pass this JAR
file to the EJBDeploy Tool to generate the deployed code for the beans
contained in the EJB group. Refer to “Creating JAR files for customized
WebSphere Commerce entity beans” on page 339 for more information.

192 Programmer’s Guide

2. Create a new client JAR file that contains the client code for all of the
WebSphere Commerce EJB groups. With all of the WebSphere Commerce
EJB groups selected (all names begin with WCS), select to export to a client
JAR file. Refer to “Creating JAR files for customized WebSphere
Commerce entity beans” on page 339 for more information.

3. Copy the JAR files into the appropriate directory on the target WebSphere
Commerce Server. Refer to “Storing assets on the target WebSphere
Commerce Server” on page 342 for more information.

4. On the target WebSphere Commerce Server, use the EJBDeploy Tool
provided by WebSphere Application Server to generate the deployed code
for the enterprise beans contained in the EJB group that you are
deploying. This tool takes the JAR file created in step 1 as input and it
creates the corresponding JAR file containing the deployed code for all
enterprise beans in your EJB group. Refer to “Generating deployed code”
on page 346 for more information.

5. On the target WebSphere Commerce Server, modify the transaction
isolation level of the enterprise beans that are contained in the JAR file of
deployed code. Use the modifyIsolationLevel command line utility
provided by WebSphere Commerce to set the transaction isolation level to
the appropriate level for your database type. Refer to “Modifying
transaction isolation level of entity beans” on page 349 for more
information.

6. On the target WebSphere Commerce Server, export the current WebSphere
Commerce enterprise application from WebSphere Application Server.
After the export has completed, an .ear file is created that contains the
entire application. To export the current application, open the WebSphere
Application Server Administration Console, select the WebSphere
Commerce enterprise application and then select the export option. Upon
completion, a WC_Enterprise_App_instanceName.ear file is created. Refer to
“Exporting the current WebSphere Commerce enterprise application” on
page 350 for more information.

7. On the target WebSphere Commerce Server, export the configuration
information for the enterprise beans that are contained in the current
WebSphere Commerce enterprise application running within WebSphere
Application Server. This information is exported to an XML file by using
the -export option of the XMLConfig command line utility that is provided
by WebSphere Application Server. The generated XML file (referred to here
as the OutputFile.xml file) contains a stanza of configuration information
for each enterprise bean contained in the enterprise application. Refer to
“Exporting configuration information for enterprise beans” on page 351 for
more information. Within this file, you must modify the stanza describing
the enterprise bean that you have modified to point to your new
Cust_EJBGroupName-ejb.jar file.

Chapter 8. Development tools and deployment 193

8. On the target WebSphere Commerce Server, use the Application Assembly
Tool to integrate the modified EJB group into the enterprise applicacation.
Using this tool, you open the .ear file for the current application. Once it
is open, you perform the following tasks:
a. Make note of the class path information for the original version of the

EJB group that you have modified. For example, if you have modified
the User bean in the WCSUser EJB group, then you copy the class path
information for the WCSUser group into a text file.

b. Delete the original version of the EJB group that you have modified
(for example, delete the WCSUser group).

c. Import the new version of the EJB group that you have modified.
d. Apply the original class path information to the EJB group that you

just imported.
e. Configure WebSphere Application Server security for the methods

contained in all of the enterprise beans in the modified EJB group.
f. Save the application into a new .ear

Refer to “Assembling modified enterprise beans into an enterprise
application” on page 361 for more information.

9. Import the new enterprise application into WebSphere Application Server.
This step is comprised of the following three subtasks:
a. Using the WebSphere Application Server Administration Console, stop

and remove the original WebSphere Commerce enterprise application.
Refer to “Stopping and removing an enterprise application” on
page 366 for more information.

b. Using the -import option of the XMLConfig command line utility to
import the new enterprise application into WebSphere Application
Server. Refer to “Importing an enterprise application” on page 366 for
more information.

c. Using the WebSphere Application Server Administration Console,
refresh the view to display the new enterprise application and then
start the new application. Refer to “Starting an enterprise application”
on page 368 for more information.

Deployment of new data beans for use in Commerce Studio
If you are using Commerce Studio for developing your JSP templates, you
must deploy your new data beans to Commerce Studio. In particular, you
must create a JAR file for the data beans.

Create this JAR file by right-clicking your package of data beans and selecting
to export them to a JAR file. In the options, select to include the following:
v class

v resource

194 Programmer’s Guide

v beans

In addition, select Select referenced types and resources to include the
commands and resources that are required by the data beans.

Once you have exported the JAR file, you must update the class path for
Commerce Studio to include this JAR file.

When you need to modify an existing WebSphere Commerce data
bean, you must create a new data bean that extends the data bean
which requires customization. Therefore, you are in effect creating a
new data bean and deployment is as described in this section.

Deployment of customized public entity beans for use in Commerce
Studio

If you modify any of the public entity beans and use Commerce Studio for
JSP template development, you must create a new client JAR file for all of the
public entity beans and modify the class path for Commerce Studio to include
the new JAR file name before the original JAR file name. Commerce Studio
uses the client JAR file when data beans are used in the Page Designer tool.

To create this JAR file, use the tools in VisualAge for Java. From the EJB page
in VisualAge for Java, select all of the WebSphere Commerce EJB groups (not
just the ones you modified) and select to export them to a client JAR file.
After the export has completed, ensure that you specify this new JAR file at
the beginning of the class path for Commerce Studio.

Log files

Throughout the stages of product installation, code development and code
deployment, log files are generated. This section lists some of the log files that
you might consult, throughout these stages.

Commerce Studio log files
Commerce Studio builds log files during the installation process. To
access these logs, open the following file:
C:\Winnt\WCStudioInstall.log

Logs for Commerce Studio configuration for the WebSphere Test
Environment

A number of configuration steps for the WebSphere Test Environment
are performed during the installation of WebSphere Commerce Studio,
if you select that you want to do back-end development tasks. For
example, if you select to include a sample store that runs within the
WebSphere Test Environment component of VisualAge for Java, logs
files related to the mass load process and database creation are
created. To access these logs, navigate to the following directory:

Chapter 8. Development tools and deployment 195

drive:\WebSphere\CommerceServerDev\instances\instance_name\logs

Log files from running WebSphere Commerce components within the
WebSphere Test Environment

When running a store, or testing an individual component within the
WebSphere Test Environment, a trace file and message file may be
generated. The default location for these files is in the following
directory:
drive:\WebSphere\CommerceServerDev\instances\instance_name\logs

Logs from running modifyIsolationLevel command
When deploying enterprise beans, you use the modifyIsolationLevel
command to modify the transaction isolation level of each enterprise
bean in the JAR file. The log files generated are stored in the log file
that you specify when running the command. Refer to “Modifying
transaction isolation level of entity beans” on page 349 for more
information.

Logging within VisualAge for Java
When running code within the WebSphere Test Environment, the
Console window runs as an active log. In addition, you can modify
the level of tracing for an EJB server to increase the amount of
information that can be found within the Console window. This
information is specified as the trace level, within the properties of the
EJB server.

Test payment method

The InFashion sample store running within the WebSphere Test Environment
uses a test payment method by default. This test payment method has been
included so that you can complete the shopping flow within WebSphere Test
Environment, without requiring a call out to a remote Payment Manager.
Orders placed using this payment method have a status of ‘M’ (indicating that
payment has been initiated and is awaiting processing).

This test payment method only lets you complete a purchase, it does not
enable orders submitted with this payment method to be available for further
processing. As such, the test payment method should only be used within the
WebSphere Test Environment.

The implementation classes for payment related commands are types of
business policy commands. As such, the selection of which implementation
class to use is governed by a business policy. By default, the InFashion sample
store running with the WebSphere Test Environment includes a business
policy (TestPaymentMethod policy) that uses the following implementations
of payment related commands:
v com.ibm.commerce.payment.commands.DoPaymentTestCmdImpl

196 Programmer’s Guide

v com.ibm.commerce.payment.commands.CheckPaymentAcceptTestCmdImpl

v com.ibm.commerce.payment.commands.DoCancelTestCmdImpl

v com.ibm.commerce.payment.commands.DoDepositTestCmdImpl

v com.ibm.commerce.payment.commands.DoRefundTestCmdImpl

It must be stressed that these commands are provided for testing the checkout
process only. While the preceding suite of commands is provided for
completeness purposes, the DoDepositTestCmdImpl is a command stub that
throws an exception if it is called. Do not attempt to use any order
management functions with these orders. If you require the ability to test
these other functions, you can configure your WebSphere Test Environment to
use a remote Payment Manager.

It is very important that when you deploy your code to the target WebSphere
Commerce Server, you should not copy the business policy related to the test
payment method from your development to target machine. Additionally, you
should not register the commands related to the test payment method on the
target WebSphere Commerce Server.

Refer to the “Configuring VisualAge for Java” chapter in the WebSphere
Commerce Business Edition Installation Guide or in the WebSphere Commerce
Professional Edition Installation Guide for information about disabling the test
payment method.

Using a remote Payment Manager
If your development work includes working with orders once they have been
placed, for example, making a modification to a step in the order management
process, you must configure the store running in the WebSphere Test
Environment to use a remote Payment Manager. Refer to the WebSphere
Commerce Studio, Business Developer Edition Installation Guide for the detailed
configuration steps. That document also provides information about removing
orders placed with the test payment method from your database.

Chapter 8. Development tools and deployment 197

198 Programmer’s Guide

Part 4. Tutorials

This section contains tutorials to help you get familiar with customizing your
e-commerce application. The following tutorials are provided:
v Creating new business logic

This tutorial demonstrates the development process for creating new
business logic. It includes the following sub-tasks:
– Preparing the sample project
– Writing new commands
– Creating a new data bean and getting properties from request
– Using entity beans
– Creating a new enterprise bean

v Updating existing business logic
This tutorial shows the development process for updating existing
WebSphere Commerce business logic. It includes the following sub-tasks:
– Extending an existing WebSphere Commerce controller command
– Modifying an existing WebSphere Commerce public entity bean
– Creating a new task command that extends an existing WebSphere

Commerce task command.

The tutorials contain sections of code that need to be entered into
VisualAge for Java. It is recommended that you obtain a PDF version
of this document from the following Web sites:

Business

http://www.ibm.com/software/webservers/commerce/wc_be
/lit-tech-general.html

Professional

http://www.ibm.com/software/webservers/commerce/wc_pe
/lit-tech-general.html

You can cut and paste the code snips from the PDF version of the
Programmer’s Guide.

© Copyright IBM Corp. 2000, 2002 199

200 Programmer’s Guide

Chapter 9. Tutorial: Creating new business logic

Tutorial environment

The tutorials contained in this book require that you have either WebSphere
Commerce Business Edition V5.4 or WebSphere Commerce Professional
Edition V5.4 installed. In addition, when you install the product you must
select to install the following options:
v Develop store-front assets using WebSphere Studio

v Develop store backend logic using VisualAge for Java

v Create database

v Include sample store

Follow the instructions contained in the either the WebSphere Commerce Studio,
Business Developer Edition Installation Guide or the WebSphere Commerce Studio
Professional Developer Edition Installation Guidefor complete installation and
configuration information.

Before starting the tutorials, you must be able to run the sample store within
the WebSphere Test Environment and complete a purchase in the store.

Tutorial code deployment steps

The tutorials contained in this book include optional steps that describe how
to deploy the customized code to a target WebSphere Commerce Server. It is
presumed that the target WebSphere Commerce Server is running on either
Windows NT or Windows 2000 on a machine that is separate from your
development environment. Note that if you are using WebSphere Commerce
Studio Business Developer Edition as your development environment, you
should deploy to WebSphere Commerce Business Edition. If you are using
WebSphere Commerce Studio Professional Developer Edition as your
development environment, you should deploy to WebSphere Commerce
Professional Edition.

In addition, on the target WebSphere Commerce Server you must have
published a store based on the InFashion sample store. Within that store, you
must be able to complete a purchase. You can use either a remote or local
Payment Manager for your payment processing.

If you are deploying to a target WebSphere Commerce Server that is either on
the same machine as your development environment, or that is running on a
different operating system, refer to Chapter 8, “Development tools and

© Copyright IBM Corp. 2000, 2002 201

deployment” on page 185 and to Appendix B, “Deployment details” on page
335 for the appropriate deployment information.

Preparing the sample project

In this section, you import the WC_SAMPLE_54.dat repository that contains the
starting point for the “Creating new business logic” tutorial.

To prepare your environment, do the following:
1. Ensure that you are using the WC_54.dat repository of WebSphere

Commerce code. This is available on either the WebSphere Commerce
Business Edition V5.4 Disk 2 CD or the WebSphere Commerce Professional
Edition V5.4 Disk 2 CD.

2. Import the sample project to your workspace, by doing the following
a. Insert the following CD into the CD drive on your development

machine:

v Business WebSphere Commerce Business Edition, V5.4 Disk 2

v Professional WebSphere Commerce Professional Edition, V5.4 Disk 2
b. Open VisualAge for Java.
c. From the File menu, select Import

The Import SmartGuide opens.
d. Select to import a Repository and click Next.
e. In the Import from another repository window, do the following:

1) Select Local repository.
2) In the Repository name field, enter

CD_drive:\repository\samples\programguide\WC_SAMPLE_54.dat
where CD_drive is the CD drive.

3) Select Projects and click Details. Select the_WCSamples project.
Select the WC Sample 5.4 version and click OK.

4) Ensure that Add most recent project edition to workspace is
selected.

5) Click Finish to begin importing.
Importing the project may take several minutes.

3. Ensure that the workspace owner is set to WCS Developer, by doing the
following:
a. From the Workspace menu, select Change Workspace Owner.
b. Select WCS Developer and click OK.

4. Copy the JSP templates for the exercises into the appropriate directory, so
they can be used in the WebSphere Test Environment. To copy these files,
do the following:

202 Programmer’s Guide

a. Locate the Sample.jsp and Sample_All.jsp files in the following
directory
CD_drive:\repository\samples\programguide\

where CD_drive is the CD drive into the following directory:
b. Copy these two files into the following directory:

vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test Environment
\hosts\default_host\default_app\web

where vaj_drive is the drive onto which you installed VisualAge for
Java.

5. Copy the access control policy files into the appropriate directory. These
files are used to load new access control policies for the new resources that
you create during the tutorials. To copy these files, do the following:
a. Switch to the following directory:

CD_drive:\repository\samples\programguide\

b. Locate the following files in that directory:
v SampleCmdACPolicy.xml

This XML file contains the access control policy that is used when
you create a new controller command.

v SampleACPolicy.xml
This XML file contains the access control policy that is used when
you create a new enterprise bean.

v SampleACPolicy_locale.xml
where locale is the language identifier.This XML file contains the
access control policy description.

c. Copy the preceding files into the following directory:
drive:\WebSphere\CommerceServerDev\xml\policies\xml
where drive is the drive on which you installed WebSphere Commerce
Studio.

6. Test your environment to ensure that you are ready to start the tutorials,
by doing the following:
a. Start the persistent name server, as described on page 333.
b. Start the EJB server, as described on page 334.
c. Start the servlet engine, as described on page 334
d. Open a browser and enter the following URL:

http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?
storeId=store_ID&catalogId=catalog_Id&langId=-1

where store_ID is the identifier for your sample store (10001 is an
example value) and catalog_Id is the identifier for your sample store’s
catalog (10001 is an example value).

Chapter 9. Tutorial: Creating new business logic 203

When the home page of the sample store is displayed, select a product
and purchase it. You must be able to reach the “Order confirmation”
page in the shopping flow.

To verify the storeId value for your store, you can refer to the
STOREENT table.

e. Close all browsers and stop the WebSphere Test Environment.

You are now ready to begin the tutorials.

Writing commands

Write a controller command
This section shows you how to write a new controller command. Upon
completion of this exercise, you will have a new command, called
MyNewControllerCmd. This command is used by all stores and each store uses
the same implementation of the command.

There are three basic steps when creating a new controller command:
1. Register the command in the command registry framework.
2. Create the interface for the command.
3. Create the implementation class for the command.

For more information about commands, refer to “Command design pattern”
on page 20.

Before starting this tutorial
You should have already completed the steps in “Preparing the sample
project” on page 202.

To write your new command, do the following:
1. The first step in writing a controller command is to establish a name for

your command. In this example, the command is called
MyNewControllerCmd.

2. The command must be registered in the command registry framework.
The registration process for the new controller command involves creating
an entry in the URLREG table.

DB2 If you are using a DB2 database, do the following to register
your command:
a. Open the DB2 Command Center (Start > Programs >IBM DB2 >

Command Center).

204 Programmer’s Guide

b. From the Tools menu, select Tools Settings.
c. Select the Use statement termination character checkbox and ensure

the character specified is a semicolon (;)
d. With the Script tab selected, create the required entry in the URLREG

table, by entering the following information in the script window:
connect to your_database_name;
insert into URLREG (URL, STOREENT_ID, INTERFACENAME, HTTPS,

DESCRIPTION, AUTHENTICATED) values (’MyNewControllerCmd’,0,
’com.ibm.commerce.sample.commands.MyNewControllerCmd’,0,
’This is a new controller command for test/education purposes.’,
null)

where your_database_name is the name of your database and click the
Execute icon.
This command is used by all merchants (indicated by the 0 value for
STOREENT_ID).

Oracle If you are using an Oracle database, do the following to register
your command:
a. Open the Oracle SQL Plus command window (Start > Programs >

Oracle > Application Development > SQL Plus).
b. In the User Name field, enter your Oracle user name.
c. In the Password field, enter your Oracle password.
d. In the Host String field, enter your connect string.
e. In the SQL Plus window, enter the following to create the required

entry in the URLREG table:
insert into URLREG (URL, STOREENT_ID, INTERFACENAME, HTTPS,

DESCRIPTION, AUTHENTICATED) values (’MyNewControllerCmd’,0,
’com.ibm.commerce.sample.commands.MyNewControllerCmd’,0,
’This is a new controller command for test/education purposes.’,
null);

and press Enter to run the SQL statement.
f. Enter the following to commit your database changes:

commit;

and press Enter to run the SQL statement.

Note: For simplicity in this exercise, the new command has only one
implementation class, therefore the same implementation class is
used by all stores. This implementation class is specified directly in
code for the interface. As such, there is no need to register the
mapping between the interface and the implementation class in the

Chapter 9. Tutorial: Creating new business logic 205

CMDREG table. Outside of a tutorial environment, you should
register the controller command in the CMDREG table, as well as
the URLREG table.

3. Controller commands must return a view. The new controller command
that you will create returns the SampleViewTask view. You must register
the SampleViewTask view in the VIEWREG table.

DB2 If you are using a DB2 database, do the following to register the
view:
a. Create an entry in the VIEWREG table, by entering the following in the

script window (note you may need to clear the previous SQL statement
from the window first):
insert into VIEWREG (VIEWNAME, DEVICEFMT_ID, STOREENT_ID, INTERFACENAME,

CLASSNAME, PROPERTIES, DESCRIPTION, HTTPS, LASTUPDATE)
values (’SampleViewTask’,-1, 0,

’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,
’docname=Sample.jsp’,’This is a sample view for the
Bonus Point exercise’, 0, null)

and click the Execute icon.

Oracle If you are using an Oracle database, do the following to register
your view in the database:
a. In the SQL Plus window, enter the following SQL statement:

insert into VIEWREG (VIEWNAME, DEVICEFMT_ID, STOREENT_ID, INTERFACENAME,
CLASSNAME, PROPERTIES, DESCRIPTION, HTTPS, LASTUPDATE)

values (’SampleViewTask’,-1, 0,
’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,
’docname=Sample.jsp’,’This is a sample view for the
Bonus Point exercise’, 0, null);

and press Enter to run the SQL statement.
b. Enter the following to commit your database changes:

commit;

and press Enter to run the SQL statement.
4. In the VisualAge for Java Workbench window, expand the _WCSamples

project.
5. Expand the com.ibm.commerce.sample.commands package, right-click the

MyNewControllerCmd interface, and select Add > Field.
The Create Field SmartGuide opens.

6. Create a field that specifies the default implementation class for the
interface, by doing the following:
a. In the Field Name field, enter defaultCommandClassName.

206 Programmer’s Guide

b. From the Field Type drop-down list, select String.
c. In the Initial Value field, enter

"com.ibm.commerce.sample.commands.MyNewControllerCmdImpl".
(Ensure that you include the double-quotation marks.)

d. Click Finish.
The code for the new field is generated.

At any point in this tutorial when you override a field or method
that exists in the superclass, a warning indicating that the new field
or method will hide an inherited field or method may be displayed.
If so, click Yes to continue.

7. Expand the MyNewControllerCmdImpl class and select its
performExecute method to view its source code.

8. In the source code for the performExecute method, uncomment Section 1
and Section 5. Section 1 introduces the following code into the method:
// Create a new TypedProperties for output.

TypedProperty rspProp = new TypedProperty();

Section 5 introduces the following code into the method:
// see how controller command call a JSP

rspProp.put(ECConstants.EC_VIEWTASKNAME, "SampleViewTask");
setResponseProperties(rspProp);

Save your work (Ctrl + S). The preceding code snippet sets the view name
to be returned by the controller command.

9. Command-level access control must be specified for this new controller
command. In this case, command-level access control policy will specify
that all users are allowed to execute the command. This policy is specified
in the SampleCmdACPolicy.xml file. To load the new access control policy,
do the following:
a. At a command prompt, switch to the following directory:

drive:\WebSphere\CommerceServerDev\bin

b. You must issue the acpload command, which has the following form:
acpload db_name db_user db_password inputXMLFile

where
v db_name is the name of your database
v db_user is your database user name
v db_password is your database password
v inputXMLFile is the name of the XML file containing the policy.

For example, you may issue the following command:

Chapter 9. Tutorial: Creating new business logic 207

acpload VAJ_Demo user password SampleCmdACPolicy.xml

10. Add the new _WCSamples project to the class path for the servlet engine,
by doing the following:
a. From the Workspace menu, select Tools > WebSphere Test

Environment.
The WebSphere Test Environment Control Center opens.

b. Click Servlet Engine and then Edit Class Path
In the Servlet Engine Class Path window, click Select All, then OK.

11. Test your new command, by doing the following:
a. Start the persistent name server, as described on page 333.
b. Start the EJB server, as described on page 334.
c. Start the servlet engine, as described on page 334
d. Open a browser and enter the following URL:

http://localhost:8080/webapp/wcs/stores/servlet/
MyNewControllerCmd

After a few minutes the browser displays a page that shows “Sample
JSP”, as shown below:

12. Create a version of your code in its current state. This allows you to
restore your code to this state at any point in time. To create the version,
do the following:

Figure 31.

208 Programmer’s Guide

a. Select the com.ibm.commerce.sample.commands and
com.ibm.commerce.sample.databeans packages (hold the Ctrl key
while highlighting to select multiple packages), right-click and select
Manage > Create Open Edition.

b. Right-click the _WCSamples project and select Manage > Create
Open Edition.

c. Right-click the _WCSamples project again and select Manage >
Version.
The Versioning Selected Items window opens.

d. Select the One Name radio button, enter mySample 1.2 Completed and
click OK.

You have now added a new command and tested it (briefly) in the integrated
testing environment.

Modify MyNewControllerCmd
In the previous section, you created MyNewControllerCmd. In this exercise,
you examine the contents of your new command more closely to develop a
better understanding of how to write your own, customized controller
command.

Begin by examining the structure of the code that you have created. The
MyNewControllerCmd interface extends the ControllerCommand interface. It
also defines the implementation class to use as a default. This class is used
when the command is either not registered in the CMDREG table, or when an
implementation class is not specified in that table.

You also created the MyNewControllerCmdImpl class. The implementation
class is the class that will eventually contain the business logic (or call out to
task commands to perform individual business tasks) that you want to
implement. Your implementation class contains the following methods:

Methods in
MyNewControllerCmdImpl

Description

MyNewControllerCmdImpl() The constructor method.

validateParameters() Used for server-side validation of the
command’s input parameters.

isGeneric() Determines whether or not a generic user can
call the command.

isRetriable() Determines whether or not the command will
be retried after a database rollback.

performExecute() Contains the business logic for your command.

Chapter 9. Tutorial: Creating new business logic 209

The following sections show more details about how to update your new
controller command.

Pass variables to the JSP template
In this section, you modify MyNewControllerCmd to pass variables to the JSP
template. In order to display the variables, you must use a new data bean,
called DataBeanSampleBean. To enable the display of variables in your JSP
template, do the following:
1. In the VisualAge for Java Workbench window, expand the _WCSamples

project.
2. Expand the com.ibm.commerce.sample.commands package, then the

MyNewControllerCmdImpl class and select its performExecute method.
3. In the source code for the performExecute method, uncomment Section 2.

This introduces the following code into the method:
// see how controller command pass in variables to JSP

// Add additional parameters in controller command
// to rspProp for response
//
rspProp.put("ControllerParm1", "Hello world");
rspProp.put("ControllerParm2", "Have a nice day!");

The above code snippet creates two new parameters that are put into the
properties to be passed to the JSP template. Save your work (Ctrl + S).

4. The DataBeanSampleBean data bean is used by the JSP template to display
the variables. The bean has been created for you, but you need to modify
the source code as follows:
a. Expand the com.ibm.commerce.sample.databeans package.
b. Expand the DataBeanSampleBean class and then select the

setRequestProperties method, to view its source code.
c. In the source code for the setRequestProperties method, uncomment

Section 1. This introduces the following code into the method:
// copy input TypedProperties to local

requestProperties = aParam;

Save your work. The preceding code snippet copies the values from
aParam (defined in the super class) locally. This is used to get
properties from the request object.

5. Update the Sample.jsp file to use the new data bean and display the
variables, by doing the following:
a. Using a text editor, open the Sample.jsp and Sample_All.jsp files.

These files are located in the following directory:
vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host \default_app\web

210 Programmer’s Guide

b. Copy Section 1 of the code from Sample_All.jsp into Sample.jsp
between the <!-- SECTION 1 --> and <!-- END OF SECTION 1 -->
markers. This introduces the following code to the JSP template:
<!-- SECTION 1 -->
<%
DataBeanSampleBean testBean = new DataBeanSampleBean ();
com.ibm.commerce.beans.DataBeanManager.activate (testBean, request);
%>
<!-- END OF SECTION 1 -->

This section of code instantiates the data bean.
c. Copy Section 2 from Sample_All.jsp into Sample.jsp between the <!--

SECTION 2 --> and <!-- END OF SECTION 2 --> markers. This
introduces the following code into the JSP template:
<!-- SECTION 2 -->
<%
TypedProperty prop = testBean.getRequestProperties();

out.print("List of name value pairs in TypedProperties
object<P>");

// convert from request Properties to query string
for (Enumeration pns = prop.keys(); pns.hasMoreElements();) {

String paramName = (String) pns.nextElement();
// do not add the url parameter to the query string
Object val = prop.get(paramName,null);
if (val != null) {

if (val.getClass().isArray()) {
// flatten the array
String[] oarray = (String[]) val;
int len = java.lang.reflect.Array.getLength(val);
for (int i = 0; i < len; i++) {
out.print(paramName + "[" + i + "]=" + oarray[i] + "
");
}

} else {
// assume that it is a String
out.print(paramName + "=" + val.toString() + "
");
}

}
}
%>
<P>
<!-- END OF SECTION 2 -->

Save this file.
This section of code uses the getRequestProperties method of the
testBean data bean object. It cycles through the properties and displays
them in the browser.

6. Test the modifications to verify that variables are displayed in the JSP
template, by doing the following:

Chapter 9. Tutorial: Creating new business logic 211

a. Ensure that the WebSphere Test Environment is running.
b. In a browser, enter the following URL:

http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd

The Sample JSP file is displayed, showing properties of the controller
command. The output appears as follows:

7. Create a version of your code in its current state. Name the version
mySample 1.3 Completed. If you require details on versioning code, refer to
step 12 on page 208.

Figure 32.

212 Programmer’s Guide

Modify the validateParameters Method
The validateParameters method that is currently in your new command is
actually just a command stub. It consists of the following code:
public void validateParameters() throws ECException {

}

In this section, you will add your own customized parameter checking to
your command and then pass the parameters to the JSP template.

When modifying the validateParameters method, you add new fields to the
class that are used for the parameters.

Creating new fields: When adding new fields to an existing interface or
class, you can use the Create Fields SmartGuide in VisualAge for Java. This
section describes the generic steps for creating a new field. Use this
information in the following sections of the tutorial, when you must add new
fields to interfaces and classes.

To create a new field, do the following:
1. Right-click the interface or class to which you are adding the new field

and select Add > Field.
The Create Field SmartGuide opens.

2. In the Field Name field, enter the name of the new field.
3. To specify the field type, do one of the following:

v From the Field Type drop-down list, select the field type.
v If the required field type is not specified in the list, click Browse. In the

Pattern field, enter the name (or partial name) of the field type and click
OK.

Note: In the tutorials, whenever the field type of String is specified, that
is from the java.lang package.

4. In the Initial Value field, enter the field’s initial value. For initial values
that are strings, be sure to enclose the value in double-quotes (“ ”).

5. For the Access Modifiers value, select the appropriate radio button
(public, protected, none, or private), if required.

6. Select the Access with getter and setter methods check box if you would
to have getter and setter methods generated for the field. If you select this,
you must also specify properties for the getter and setter methods, as
follows:
v For the getter method, select one of the public, protected, private, or

none radio buttons.
v For the setter method, select one of the public, protected, private, or

none radio buttons.

Chapter 9. Tutorial: Creating new business logic 213

7. Click Finish.

To modify the validateParameters method, do the following:
1. You must create two new fields in the MyNewControllerCommandImpl

class. The first is used for input strings, and the second is used for input
integers. To create these fields, do the following:
a. Expand the com.ibm.commerce.sample.commands package.
b. Select the MyNewControllerCmdImpl class.
c. Add a field to the class, using the following values. For detailed steps

on how to create a new field, refer to “Creating new fields” on
page 213.

Attribute Name Value

Field Name inputString

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

d. Create another field for input integers, using the following values:

Attribute Name Value

Field Name inputInteger

Field Type Integer
Note: Click Browse and enter Integer. Do
not select int.

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

2. Select the performExecute method in the MyNewControllerCmdImpl class.
3. In the source code of the performExecute method, uncomment Section 3 to

introduce the following code into the method:

214 Programmer’s Guide

// see how controller command pass in input variables to JSP

rspProp.put("ControllerInput1", getInputString());
rspProp.put("ControllerInput2", getInputInteger().toString());

This code passes variables from the controller command to the data bean.
Save your work.

4. Select the validateParameters method in the MyNewControllerCmdImpl
class.

5. Uncomment Section 1 in the validateParameters source code, to introduce
the following code into the method:
// uncomment to check parameters

TypedProperty prop = getRequestProperties();

// retrieve required parameters
//
try {

setInputString(prop.getString("input1"));
} catch (ParameterNotFoundException e) {

throw new ECApplicationException(
ECMessage._ERR_CMD_MISSING_PARAM,
"MyControllerCmdImpl","validateParameters",
ECMessageHelper.generateMsgParms(e.getParamName()));

}

// retrieve optional Integer
// set input2 = 0 if no input value
//
setInputInteger(prop.getInteger("input2", 0));

Save your work.
The preceding code snippet checks the two input parameters. The try
block determines if the first parameter is there, if it is not, an exception is
thrown. Since the second parameter is optional, this code will set the value
for the parameter to 0 if the parameter is either missing or the wrong type.

6. Test the command by doing the following:
a. Ensure that the persistent name server, EJB server and servlet engine

are running.
b. In your browser, by entering the following URLs:

v Case 1: Missing parameter:
Enter
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd

Since no parameters are passed to the command a generic
application error is shown to indicate that a parameter is missing.
The result is shown in the following screen shot:

Chapter 9. Tutorial: Creating new business logic 215

Note: If a “Page not found” error is displayed, your servlet engine
may have stopped. Check the WebSphere Test Environment
Control Center for details. If the Sample JSP page is displayed

Figure 33.

216 Programmer’s Guide

instead of the Generic Application Error page, you may need
to stop and restart the servlet engine, or reload the page in
your browser.

v Case 2: First parameter valid, second parameter missing:
Enter
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc

The result of this command is that the Sample JSP page is displayed
despite the fact that the second parameter was omitted. The
following screen shot displays this result. An explanation of why an
error was not returned follows the screen shot.

Chapter 9. Tutorial: Creating new business logic 217

An error was not returned because of the manner in which the
getInteger method was used. Specifically, the
setInputInteger(prop.getInteger("input2", 0)) line of code sets a
default value of 0 for input2. This default value is used when the
parameter is either missing or it is the wrong type. In order to force

Figure 34.

218 Programmer’s Guide

type checking on this parameter, change the code to
setInputInteger(prop.getInteger("input2")) and enter the URL
again (be sure to refresh your browser). A generic application error
page should be shown.

Note: If you test the setInputInteger(prop.getInteger("input2"))
modification in your code, switch it back to
setInputInteger(prop.getInteger("input2", 0)) before
continuing with the next test case.

v Case 3: First parameter valid, second parameter invalid:
Enter
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=abc

The result of this command is that the Sample JSP page is displayed
and the value for the second parameter (an integer) is set to the
default value of 0. This is a result of the getInteger method used, as
described in the preceding test case. The result is shown in the
following screen shot:

Chapter 9. Tutorial: Creating new business logic 219

v Case 4: Two valid parameters:
Enter
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=1000

Figure 35.

220 Programmer’s Guide

The result of this command is that the Sample JSP page is displayed
and both input values are displayed as entered. The result is shown
in the following screen shot:

Figure 36.

Chapter 9. Tutorial: Creating new business logic 221

7. Create a version of your code in its current state. Name the version
mySample 1.4 Completed. If you require detailed information on how to
version the code, refer to step 12 on page 208.

Create a task command
A controller command typically represents a business process or complex
function. For example, all of the business logic related to processing orders is
encapsulated in the OrderProcessCmd controller command. A business
process can often be divided up into smaller, specific tasks. For example,
within the OrderProcessCmd controller command, there are several task
commands that get called to perform individual units of work. One of these
task commands called within by the OrderProcessCmd controller command is
CalculateOrderTaxTotalCmd.

MyNewControllerCmdImpl does not currently call any task commands. This
exercise has two sections. In the first section, you create the new task
command. In the second section, you modify the performExecute method of
your controller command to call the task command.

The following code snippet shows the current performExecute method from
the MyNewControllerCmdImpl class, with all comments removed:
public void performExecute() throws ECException {

super.performExecute();

TypedProperty rspProp = new TypedProperty();
rspProp.put("ControllerParm1", "Hello world");
rspProp.put("ControllerParm2", "Have a nice day!");

rspProp.put("ControllerInput1", getInputString());
rspProp.put("ControllerInput2", getInputInteger().toString());

rspProp.put(ECConstants.EC_VIEWTASKNAME, "SampleViewTask");
setResponseProperties(rspProp);

}

Write the Task Command Code: This section shows you how to write a new
task command. Creating a completely new task command involves creating an
interface and an implementation class. When creating a task command, the
interface should extend com.ibm.commerce.commands.TaskCommand. The
implementation class should extend
com.ibm.commerce.command.TaskCommandImpl.

Upon completion of this exercise, you will have a new command, called
MyNewTaskCmd. This command is used by all stores and each store uses the
same implementation of the command.

222 Programmer’s Guide

In this part of the tutorial, you add fields and methods to the interface of the
new task command. You have previously created new fields for the
MyNewControllerCmdImpl class. Try creating the fields for this interface on
your own, but if you need more details, refer to “Creating new fields” on
page 213.

Creating methods: This section describes the generic steps for adding methods
to existing classes and interfaces. Read the instructions here and refer back to
them when the tutorial requires you to create new methods.

To create a new method, do the following:
1. Right-click the class or interface to which you are adding the method and

select Add > Method.
The Create Method SmartGuide opens.

2. Ensure that Create a new method is selected and click Next.
3. In the Method Name field, enter the name for the new method.
4. Specify the method’s return type by doing one of the following:

v From the Return Type drop-down list, select the appropriate return
type. For example, select String.

v If the return type is not in the list, click Browse. Then in the Pattern
field, enter the return type and click OK.

Note: In the tutorials, whenever String is specified as the return type, this
is from the java.lang package.

5. If the method takes parameters, click Add. In the Parameters window,
specify the parameter name and any other required information and click
Add. After all parameters have been added, click Close.

6. Click Next.
The Attributes window opens.

7. If the method throws exceptions, click Add in the Attributes window. In
the Pattern field, enter the name of the exception, then click Add. After all
exceptions have been added, click Close.

8. Click Finish.
The code for the method is generated.

To create MyNewTaskCmd command, do the following:
1. Expand the com.ibm.commerce.sample.commands package.
2. Right-click the MyNewTaskCmd interface and select Add > Field.
3. Using the Create Field Smart Guide, create a field that specifies the default

implementation class to be used by the interface. Use the values in the
following table. If you need further details on creating a field, refer back to
“Creating new fields” on page 213.

Chapter 9. Tutorial: Creating new business logic 223

Attribute Name Value

Field Name defaultCommandClassName

Field Type String

Initial Value “com.ibm.commerce.sample.commands.MyNewTaskCmdImpl”

When the code for the field is generated, it appears as follows:
java.lang.String defaultCommandClassName =

"com.ibm.commerce.sample.commands.MyNewTaskCmdImpl";

Since the same implementation class is used for the entire site and no
default properties are passed to the command, you can specify the
default implementation right in the code. If you have a command
that either has multiple implementations, or has default properties
(which are stored in the CMDREG table), you must register the
command in the CMDREG table to create the mapping between the
interface and implementation class.

4. Add new methods to the MyNewTaskCmd interface, by doing the
following:
a. Right-click the MyNewTaskCmd interface and select Add > Method.

Using the Create Method SmartGuide, create new methods using the
values specified in the following steps. If you require detailed
information for creating the methods, refer to “Creating methods” on
page 223.

b. Create a new method that retrieves a customer’s balance of bonus
points, using the following values:

Attribute Name Value

Method Name getOldBonusPoint

Return Type String

Parameters none

Exceptions none

Note: An error may be displayed indicating that the inherited abstract
method just created is not implemented in the
MyNewTaskCmdImpl implementation class. This is corrected in
a subsequent step.

c. Create a new method that retrieves the user ID output from the task
command. When creating this method, use the following values:

Attribute Name Value

Method Name getTask_output_userId

224 Programmer’s Guide

Attribute Name Value

Return Type String

Parameters none

Exceptions none

d. Create a new method that retrieves an output value from the task
command. When creating this method, use the following values:

Attribute Name Value

Method Name getTask_output1

Return Type String

Parameters none

Exceptions none

e. Create a new method that sets the first input value to the task
command. When creating this method, use the following values:

Attribute Name Value

Method Name setTask_input1

Return Type void

Parameter Name newTask_input1

Reference Type String

Exceptions none

f. Create a new method that sets the second input value to the task
command. When creating this method, use the following values:

Attribute Name Value

Method Name setTask_input2

Return Type void

Parameter Name newTask_input2

Primitive Type int

Exceptions none

5. Add new fields to the MyNewTaskCmdImpl class, by doing the following:
a. Right-click the MyNewTaskCmdImpl class and select Add > Field.

Using the Create Field SmartGuide, create new fields using the values
specified in the following steps. If you require additional information
about creating new fields, refer to “Creating new fields” on page 213.

Chapter 9. Tutorial: Creating new business logic 225

b. Create a new field in the implementation class, using the following
values:

Attribute Name Value

Field Name task_input1

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

c. Create a new field in the implementation class, using the following
values:

Attribute Name Value

Field Name task_input2

Field Type int

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

d. Create a new field in the implementation class, using the following
values:

Attribute Name Value

Field Name task_output_userId

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

226 Programmer’s Guide

e. Create a new field in the implementation class, using the following
values:

Attribute Name Value

Field Name oldBonusPoint

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

f. Create a new field in the implementation class, using the following
values:

Attribute Name Value

Field Name task_output1

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

6. Select the performExecute method of the MyNewTaskCmdImpl class to
view its source code.

7. In the source code, uncomment Section 1 to introduce the following code
into the method:
// modify the task_input1 and see it in the NVP list

setTask_output1("Hello ! " + getTask_input1());

Save your work.
The preceding section of code makes the new attributes available as
output from the command.

Chapter 9. Tutorial: Creating new business logic 227

Call the Task Command: Once you have created your task command, you
need to call the command from within your controller command. The
following steps describe how to modify your controller command in this
manner.
1. In the Workbench, select the performExecute method of your

MyNewControllerCmdImpl class.
2. In the Source pane, uncomment Section 4 to call the task command. This

introduces the following code into the method:
// see how controller command call a task command

MyNewTaskCmd cmd = null;
try {

cmd = (MyNewTaskCmd) CommandFactory.createCommand(
"com.ibm.commerce.sample.commands.MyNewTaskCmd",
getStoreId());

// Set input parameters to task command
cmd.setTask_input1(getInputString());
cmd.setTask_input2(getInputInteger().intValue());
// This is required for all commands
cmd.setCommandContext(getCommandContext());
// Invoke the command’s performExecute method
cmd.execute();
// retrieve output parameter from task command

rspProp.put("task_output1", cmd.getTask_output1());

if (cmd.getTask_output_userId() != null) {
rspProp.put("task_output_userId",
cmd.getTask_output_userId());

}

if (cmd.getOldBonusPoint() != null) {
rspProp.put("task_output_oldBonusPoint",
cmd.getOldBonusPoint());

}

} catch (ECException ex) {
// throw the exception as is
throw (ECException) ex;

}

Save your work.
The preceding code snippet creates a new task command using the
command factory. It then sets the command context, invokes the perform
execute of the task command and retrieves output parameters from the
task command.

3. Test the command by entering the URL for your controller command, as
follows:
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=abc&input2=1000

228 Programmer’s Guide

The Sample JSP displays the list of name value pairs in the request object,
including the task output values. It should appear as follows:

4. Create a version of your code in its current state. Name the version
mySample 1.5 Completed. If you require more details on how to version
your code, refer to step 12 on page 208.

Validate a user ID
The next step is to modify the task command to use the
UserRegistryAccessBean for the purpose of validating whether or not the

Figure 37.

Chapter 9. Tutorial: Creating new business logic 229

value entered by the user is that of a registered user. In addition to modifying
the task command, you must also modify the DataBeanSampleBean.

Modify MyNewTaskCmdImpl for user ID validation: You must modify the
performExecute method in the MyNewTaskCmdImpl class so that it will
validate the user’s ID, by using the UserRegistryAccessBean. To add this new
functionality to performExecute method, do the following:
1. In the Workbench, select the performExecute method of your

MyNewTaskCmdImpl class.
2. In the source pane, uncomment Section 2 of the performExecute method.

This introduces the following code into the method:
// use UserRegistryAccessBean to check member reference number

String refNum;

UserRegistryAccessBean rrb = new UserRegistryAccessBean();

try {
rrb = rrb.findByUserLogonId(getTask_input1());
refNum = rrb.getUserId();

} catch (javax.ejb.FinderException e) {

return;

} catch (javax.naming.NamingException e) {
throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (java.rmi.RemoteException e) {
throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (javax.ejb.CreateException e) {
throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,
this.getClass().getName(), "performExecute");

}

setTask_output_userId(refNum);

Save your work.

Modify the DataBeanSampleBean: You must modify the
DataBeanSampleBean to use your predefined input parameters. To modify this
bean, do the following:
1. In the Workbench, expand the com.ibm.commerce.sample.databeans

package.
2. Add new fields to the data bean, by doing the following:

a. Right-click the DataBeanSampleBean class and select Add > Field.
Using the Create Field SmartGuide, create new fields using the values

230 Programmer’s Guide

specified in the following steps. If you require additional information
about creating fields, refer to “Creating new fields” on page 213.

b. Add a new field to the data bean, using the following values:

Attribute Name Value

Field Name input1

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

c. Add a new field to the data bean, using the following values:

Attribute Name Value

Field Name input2

Field Type int

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

d. Add a new field to the data bean, using the following values:

Attribute Name Value

Field Name task_output_userId

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

Chapter 9. Tutorial: Creating new business logic 231

3. Select the populate method of the DataBeanSampleBean class to view its
source code.

4. In the source code, uncomment Section 1A and Section 1B. This introduces
the following code into the method:
//// Section 1A //////////
// set additional data fields

try {
setInput1(getRequestProperties().getString("input1"));
setInput2(getRequestProperties().getIntValue("input2", 0));
setTask_output_userId(getRequestProperties().getString

("task_output_userId"));

//// End of Section 1A /////

//// Section 2 ////////////
/*
// instantiate databean to BonusAccessBean
setTask_output_oldBonusPoint(getRequestProperties().getString(

"task_output_oldBonusPoint"));
*/
//// End of Section 2 ////

//// Section 1A ///////////
// instantiate databean to BonusAccessBean and
// set additional data fields

}
catch (ParameterNotFoundException e){}

//// End of Section 1B ////

Save your work.
The preceding code snippet gets data field values from the controller
command, using the getRequestProperties method.

Modify the Sample.jsp for user ID validation: The current JSP template
must be modified in order to perform user ID validation. To modify the
Sample.jsp file, do the following:
1. Open the Sample.jsp and Sample_All.jsp files in a text editor.
2. Copy Section 3 of the code from Sample_All.jsp into Sample.jsp between

the <!-- SECTION 3 --> and <!-- END OF SECTION 3 --> markers. The
following code is introduced into the JSP template
<!-- SECTION 3 -->

Your first input is < <%=testBean.getInput1()%> >

<%
String userId = testBean.getTask_output_userId();

if (userId == null) {

232 Programmer’s Guide

%>

 This is not a registered user id.

<%

} else {

%>

 ’lt; <%=testBean.getInput1()%> > is a registed user id.
 The member reference number of this user is <%=userId%>.

<%

}

%>

Your second input is < <%=testBean.getInput2()%> > <P>

<!-- END OF SECTION 3 -->

Save the Sample.jsp file.
3. Open a browser and enter the following URL:

http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?
input1=abc&input2=1000

The browser should show the Sample JSP file indicating that the value for
input1 is not a valid user ID, as shown in the following screen shot:

Chapter 9. Tutorial: Creating new business logic 233

4. To see the result when the value for input1 is a valid user ID, enter the
following URL:

Figure 38.

234 Programmer’s Guide

http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?
input1=wcsadmin&input2=1000

This is shown in the following screen shot:

Chapter 9. Tutorial: Creating new business logic 235

5. Create a version of your code in its current state. Name the version
mySample 1.6 Completed. If you require detailed information on how to
version your code, refer to step 12 on page 208.

Figure 39.

236 Programmer’s Guide

Creating a new entity bean

This section describes how to use VisualAge for Java to create a new entity
bean. In this example scenario, you have a business requirement to include a
tally of bonus points for each user in the commerce application. The
WebSphere Commerce database schema does not contain this information, so
you need to create a new database table to hold this information. In
accordance with the WebSphere Commerce programming model, once the
database table is created, you must create an entity bean (which is an
enterprise bean) to access the data.

In this example you will use a VisualAge for Java SmartGuide to create this
entity bean.

Creating the new database table
In preparation for creating the entity bean, you must first create the new
database table. The table to be created is called Bonus.

DB2 If you are using a DB2 database, do the following to create the table:
1. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center) and click the Scripting tab.
2. In the Script window, enter the following:

connect to your_database_name;
CREATE TABLE Bonus (MEMBERID BIGINT NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade)

where your_database_name is the name of your database. Click the Execute
icon.
The Bonus table is now created.

Note: You must issue the following command before creating the Bonus
table, if anyone has previously run this example using this database:
drop table Bonus

Oracle If you are using an Oracle database, do the following to create the
table:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. In the SQL Plus window, enter the following SQL statement:

Chapter 9. Tutorial: Creating new business logic 237

CREATE TABLE Bonus (MEMBERID NUMBER NOT NULL,
BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade);

and press Enter to run the SQL statement. The BONUS table is now
created.

Note: You must issue the following command before creating the Bonus
table, if anyone has previously run this example using this database:
drop table Bonus;

6. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Creating the BonusBean entity bean
Once the database has been created, you are ready to begin creating the new
entity bean. The next steps use VisualAge for Java. To create the new entity
bean, do the following:
1. Create an EJB group. An EJB group is a logical group that allows you to

organize your enterprise beans. You can perform global operations on an
EJB group that iterates on all of the enterprise beans residing in that
group. For example, if you select an EJB group to export to an EJB JAR
file, all of the enterprise beans in the group are exported.
In this tutorial, you create an EJB group to organize all enterprise beans
related to your Bonus table customization.
To create your EJB group, do the following:
a. In the Workbench, click the EJB tab.
b. From the EJB menu, select Add > EJB Group.

The Add EJB Group SmartGuide opens.
c. In the Project field, enter _WCSamplesEntityBeansProject.

Note: Entity bean code must be stored within its own project, for
deployment purposes.

d. In the Create a new EJB group named field, enter
WCSSamplesEntityBeans and click Finish.

2. Create your new entity bean.
To create your new entity bean, do the following:
a. In the Enterprise Beans pane, Right-click the WCSSamplesEntityBeans

EJB group and select Add > Enterprise Bean.
The Create Enterprise Bean SmartGuide opens.

238 Programmer’s Guide

b. Enter the following information

Attribute Value

Bean Name Bonus
Note: The naming convention is to call the entity bean by
the same name as the table to which it accesses.

Bean Type Entity bean with container-managed persistence (CMP)
fields

Create a new bean class enable

Project _WCSamplesEntityBeansProject

Package com.ibm.commerce.sample.objects

Class Name BonusBean

Superclass com.ibm.commerce.base.objects.ECEntityBean

and click Next.
c. Click the Add button beside the Add CMP fields to the bean text box

to add a field for the MEMBERID column in the BONUS table.
The Create CMP Fields SmartGuide opens.

d. Enter the following information:

Attribute Value

Field Name memberId

Field Type Long
Note: You you must use the Long data type,
not long.

Key Field enable

and click Finish.
e. Click Add again to add a field for the BONUSPOINT column in the

BONUS table.
f. Create another field with the following information:

Attribute Value

Field Name bonusPoint

Field Type Integer
Note: You you must use the Integer data type,
not int.

Access with getter and setter
methods

enable

Promote getter and setter methods
to remote interface

enable

Chapter 9. Tutorial: Creating new business logic 239

then click Finish in the Create CMP Field window.
g. Protect this enterprise bean using access control, by doing the

following:
1) Click Add beside Which interfaces should the remote interface

extend?.
2) Enter com.ibm.commerce.security.Protectable in the Pattern field

and click Add. Click Close to close the window.
h. Click Finish again.

The Bonus entity is created as an enterprise bean.
3. Set the isolation level of the entity bean, by doing the following:

a. Right-click the Bonus bean and select Properties.
b. From the Isolation Level drop-down list, select

TRANSACTION_READ_COMMITTED and click OK.
4. When you create a new enterprise bean VisualAge for Java generates an

EntityContext field as well as corresponding getEntityContext() and
setEntityContext(EntityContext) methods in the bean. Following the
WebSphere Commerce programming model, your new bean extends the
com.ibm.commerce.base.objects.ECEntityBean class and ECEntityBean
provides its own implementation of this field and these methods. Since
you should not override EntityContext, getEntityContext and
setEntityContext, you must now delete the generated field and methods
from your bean.
To delete the generated EntityContext field and its getter and setter
methods, do the following:
a. In the Types pane, select the BonusBean class.

The Members pane displays the fields and methods for this class.

Note: If the Types pane is not visible, click the C/I icon
(class/interface) in the Properties pane. The Types pane then
opens.

b. In the Members pane, do the following:
1) Right-click the entityContext field and select Delete.
2) Right-click the getEntityContext() method and select Delete.
3) Right-click the setEntityContext(EntityContext) method and select

Delete.
c. Save your work (Ctrl+S).

5. Add a new getMemberId method to the enterprise bean, by doing the
following:
a. Right-click the BonusBean class and select Add > Method.

The Create Method SmartGuide opens.

240 Programmer’s Guide

b. Create the new method using the values specified in the following
table. If you require more detailed information about creating a new
method, refer to “Creating methods” on page 223.

Table 11.

Attribute Name Value

Method Name getMemberId

Return Type Long

Parameters none

Exceptions none

c. When the new method is generated, view the source code.
d. By default, the method contains the following code:

return null;

Change this code to
return memberId;

e. Add the new method to the remote interface by right-clicking the
getMemberId method and selecting Add to > EJB Remote Interface.

6. Add new FinderHelper fields in BonusBeanFinderHelper.
This interface contains a search clause that corresponds to a FinderHelper
method that is created in the next step. To add the FinderHelper fields, do
the following:
a. In the Types pane, click the BonusBeanFinderHelper interface.
b. Modify the code in the Source pane so it appears as follows:

public interface BonusBeanFinderHelper {
public static final String

findByMemberIdWhereClause = " (MEMBERID = ?) ";
}

Note: The syntax of the “WhereClause” is very important; it must
match the method name used for the FinderHelper method. In
this case the “findByMemberId” in findByMemberIdWhereClause
matches exactly with the name of the method you create in the
next step (findByMemberId).

7. Add new FinderHelper methods in the BonusHome interface.
To add new FinderHelper methods, do the following:
a. In the Types pane, right-click the BonusHome interface and select Add

> Method.
The Create Method SmartGuide opens.

b. Select Create a new method and click Next.
c. In the Method Name field, enter findByMemberId.

Chapter 9. Tutorial: Creating new business logic 241

d. In the ReturnType field, enter Bonus.
e. Click Add next to What parameters should this method have?

The Parameters window opens.
f. In the Name field, enter argMemberId.
g. Select Reference Types and enter Long. Click Add then Close.
h. Click Next.
i. Click Add next to the What exceptions may this method throw? field,

enter RemoteException in the Pattern field and click Add. This adds the
java.rmi.RemoteException exception in the Attributes window. (The
Attributes window may be positioned behind the Exceptions window.)

j. In the Pattern field of the Exceptions window, enter FinderException,
click Add, and then click Close. The javax.ejb.FinderException
exception is listed in the Attributes window.

k. Click Finish.
8. Add a new ejbCreate method to the EJB. This method is promoted to the

home interface, so that it is available in a generated access bean. To create
this method, do the following:
a. Select the BonusBean class in the Types pane.
b. Click ejbCreate(Long) in the Members pane.
c. Modify the code so that it matches the following:

public void ejbCreate(java.lang.Long argMemberId,
Integer argBonusPoint)
throws javax.ejb.CreateException, java.rmi.RemoteException {

_initLinks();
// All CMP fields should be initialized here.
memberId=argMemberId;

bonusPoint=argBonusPoint;
}

d. Save the code and VisualAge for Java creates a new method, called
ejbCreate(Long, Integer) in the Members pane.

e. Right-click the original ejbCreate(Long) method and select Delete.
9. Add the new method to the home interface. This will make the method

available in the access bean class. To do this, do the following:
a. Right-click the ejbCreate(Long, Integer) method in the BonusBean

class and select Add To > EJB Home Interface.
10. Update the getOwner method, by doing the following:

a. Select the BonusBean class in the Types pane.
b. Click the getOwner() method in the Members pane.

Note: If you have selected to view the inherited methods, you will
see two getOwner() methods. One is inherited from the

242 Programmer’s Guide

ECEntityBean class. This is not the one that you should select
in this step. Ensure that you select the getOwner method that is
specific to the BonusBean class.

c. The source code for the getOwner method appears as follows:
public Long getOwner()

throws Exception, java.rmi.RemoteException
{

return null;
}

You must change the value that the method returns. The portion of
code that you should change is shown in bold in the following:
public Long getOwner()

throws Exception, java.rmi.RemoteException
{

return getMemberId();
}

Save your work.
d. Click the fulfills(Long, String) method in the Members pane.

Note: If you have selected to view the inherited methods, you will
see two fulfills(Long, String) methods. One is inherited from
the ECEntityBean class. This is not the one that you should
select in this step. Ensure that you select the fulfills(Long,
String) method that is specific to the BonusBean class.

e. The source code for the fulfills(Long, String) method appears as
follows:
public boolean fulfills(Long member, String relationship)

throws Exception, java.rmi.RemoteException
{

return false;
}

You must specify the relationship that the user must fulfill. To do this,
you must change the portion of code shown in bold in the following:
public boolean fulfills(Long member, String relationship)

throws Exception, java.rmi.RemoteException
{

if (relationship.equalsIgnoreCase("creator"))
{

return member.equals(getMemberId());
}
return false;

}

Save your work.

Chapter 9. Tutorial: Creating new business logic 243

11. Map the BONUS database table to the BonusBean. The first step in
mapping the database schema to the BonusBean entity involves using the
tools in VisualAge for Java to create the database schema. Do the
following to create the schema:
a. In the Workspace window, from the EJB menu, select Open To >

Database Schemas.
b. From the Schemas menu, select Import/Export Schema > Import

Schema from Database.
The Information required window opens.

c. In the Schema Name field, enter WCSSamples, and click OK.
The Database Connection Info window opens.

d. Fill in the following information:

Attribute DB2 DB2 value Oracle Oracle value

Connection Type COM.ibm.db2.jdbc.app.
DB2Driver

Oracle.jdbc.driver.
OracleDriver

Data Source jdbc:db2:wcs_db_name jdbc:oracle:thin:@hostname:
port:SID

User Name wcs_db_user_name wcs_db_user_name

Password wcs_db_password wcs_db_password

with values replaced as follows:

v DB2 wcs_database_name is the name of your WebSphere
Commerce database

v Oracle hostname is the Oracle host name

v Oracle port is the port number of the Oracle database (for
example, 1521).

v wcs_db_user_name is the user name for the database.
v wcs_db_password is the database password.

Click OK.
The Select Tables window opens.

e. From the Qualifiers list, select your database qualifier (this may be
your database user name or your machine name) and click Build
Table List. A list of the available database tables is loaded.

f. Select Bonus from the Tables panel and click OK. Wait a few
moments.

g. In the Schema Browser, click the newly added table to see that both
columns from the table appear.

h. Right-click the Bonus table and select Edit Table.
The Table Editor opens.

244 Programmer’s Guide

i. Remove any entries from the Qualifier field. It is good practice to
remove the qualifier information so that the code can be deployed to
other machines using a different database.

j. Oracle Modify the column data types, as follows:
1) Select the MEMBERID column, then click Edit. From the Type

drop-down list, select BIGINT and click OK.
2) Select the BONUSPOINT column, then click Edit. From the Type

drop-down list, select INTEGER and click OK.
k. Click OK to exit the Table Editor.
l. From the Schemas menu, select Save Schema.

The Save Schema window opens.
m. Enter the following information:

Attribute Value

Project _WCSamplesEntityBeansProject

Package com.ibm.commerce.sample.objects

Class Name WCSSamplesSchema

then click Finish and close the Schema Browser.
12. Once the schema has been created, you can create the schema map. To

create this map between the BONUS table and the BonusBean entity, do
the following:
a. From the EJB menu, select Open To > Schema Maps. The Map

Browser opens.
b. In the Map Browser, from the Datastore Maps menu, select New EJB

Group Map.
The New Datastore Map window opens.

c. Fill in the following information:

Attribute Value

Name WCS Samples

EJB Group WCSSamplesEntityBeans

Schema WCSSamples

and click OK.
d. In the Datastore Maps panel, click WCS Samples.
e. In the Persistent Classes panel, click Bonus.
f. From the Table Maps menu, select New Table Map > Add Table Map

with No Inheritance.
g. From the Table drop-down list, select Bonus and click OK.

Chapter 9. Tutorial: Creating new business logic 245

h. In the Table Maps panel, select Bonus then right-click it and select
Edit Property Maps.
The Property Map Editor opens.

i. Set the attributes as follows:

Class Attribute Map Type Table Column

memberId Simple MEMBERID

bonusPoint Simple BONUSPOINT

and click OK.
j. From the Datastore Maps menu, select Save Datastore Map.

The Save Datastore Map opens.
k. Enter the following information:

Attribute Value

Project _WCSamplesEntityBeansProject

Package com.ibm.commerce.sample.objects

Class Name WCSSamplesMap

then click Finish and close the Map Browser.
13. Once the BonusBean entity has been created and the schema is correctly

mapped, you must create an access bean for the entity bean. This access
bean makes it simpler for applications to access information contained in
the Bonus entity bean. The tools in VisualAge for Java are used to
generate this access bean, based upon the entity that you have already
created (in particular, only methods that have been promoted to the
remote interface will be used by the access bean). To create the access
bean for your Bonus entity bean, do the following:
a. In the Workbench, with the EJB tab selected, right-click the Bonus

enterprise bean and select Add > Access Bean.
The Create Access Bean SmartGuide window opens (this may take a
moment).

b. Ensure the following information is entered:

Attribute Value

EJB Group WCSSamplesEntityBeans

Enterprise Bean Bonus

Access Bean Name BonusAccessBean

Access Bean Type Copy Helper for an Entity Bean

and click Next.

246 Programmer’s Guide

c. From the Select home method for zero argument constructor
drop-down list, select findByMemberId(Long).

d. For init_argMemberId, (in the Initial Properties column), set
Converter to com.ibm.commerce.base.objects.WCSStringConverter
and click Next.

e. For bonusPoint, ensure that CopyHelper is selected, set the Converter
value to com.ibm.commerce.base.objects.WCSStringConverter, and
click Finish.

Note: You do not need to make any modifications for the memberId
field.

f. Click OK when the “Code Generation Complete” message is
displayed.

You can view the newly generated code by switching to the Projects tab,
expanding the _WCSamplesEntityBeansProject project and then
expanding com.ibm.commerce.sample.objects. A new class called
BonusAccessBean is displayed inside the package.

14. The next step is to generate deployed code.
The code generation utility analyzes the beans to ensure that Sun
Microsystems’ EJB specifications are met and it ensures that rules specific
to the EJB server are followed. In addition, for each selected enterprise
bean, the code-generation tool generates the home and EJBObject
(remote) implementations and implementation classes for the home and
remote interfaces, as well as the JDBC persister and finder classes for
CMP beans. It also generates the Java ORB, stubs, and tie classes required
for RMI access over IIOP, as well as stubs for the home and remote
interfaces.
If you selected an EJB group containing a CMP enterprise bean, or if you
selected an individual CMP enterprise bean, the following items are also
generated:
v A create table string that is generated into the persister class.
v A Persister implementation that maps to and from the table

To generate the deployed code, do the following:
a. With the EJB tab selected, in the Enterprise Beans panel, right-click

the Bonus enterprise bean and select Generate Deployed Code. The
generation of code takes a few minutes.

15. Before testing the Bonus enterprise bean, you must create a new EJB
server that contains all of the WebSphere Commerce EJB groups and plus
the new WCSSamplesEntityBeans EJB group. These groups must be
running on the same server in order for transaction scope to be
maintained. Once you have created the new server, you must start it.
To create and start the new EJB server, do the following:
a. Ensure that all of the EJB groups are collapsed.

Chapter 9. Tutorial: Creating new business logic 247

b. In the Enterprise Beans pane, select all of the WebSphere Commerce
EJB groups and your new EJB group (that is, select all EJB groups
beginning with WCS).

c. With these EJB groups selected, right-click and select Add To > Server
Configuration.
The EJB Server Configuration window opens (this may take a
moment).

d. Right-click the newly created EJB Server {for example EJB Server
(server2)}, select Properties and fill in the following:

Attribute DB2 DB2 value Oracle Oracle value

Data Source WebSphere Commerce DB2
DataSource instance_name

WebSphere Commerce Oracle
DataSource instance_name

Connection Type <DataSource> <DataSource>

User Name wcs_db_user_name wcs_db_user_name

Password wcs_db_password wcs_db_password

Transaction timeout 1200 1200

Transaction inactivity
timeout

600000 600000

and click OK.

Note: The value for Data Source must match the value for the data
source that is specified in the instance_name.xml file.

Depending upon the hardware of your development machine (for
example, processor speed) you may need to increase the values for
the Transaction Timeout and Transaction Inactivity EJB server
properties.

e. If you have the WebSphere Test Environment running, stop it as well
as the persistent name server and other EJB server, as described in
Appendix A, “Starting and stopping the WebSphere Test
Environment” on page 333.

f. Start the persistent name server, as described in “Starting and
stopping the persistent name server” on page 333.

g. Start the new EJB server, as described in “Starting and stopping the
EJB server” on page 334.

16. Once the EJB server has been started, you can start the test client. Using
the test client, you create a new record in the database. To start the test
client and create this record, do the following:
a. With the EJB tab selected, right-click the Bonus enterprise bean and

select Run test client.

248 Programmer’s Guide

b. In the EJB Lookup window, click Lookup.
The Bonus window opens.

c. Click create(Long, Integer). In the Details pane, fill in the following:

Attribute Value

Long –1000

Integer 100

and click the Invoke icon in the EJB Test Client window.

Note: The first attribute must match the memberId for any registered
user. You can determine the memberId’s by looking in the
USERS table.

17. Verify that the database record was created correctly, by directly querying
the database.

DB2 If you are using a DB2 database, do the following:
a. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center)
b. Select the Interactive tab.
c. Enter connect to wcs_database_name and click the Execute icon.
d. Enter SELECT * FROM Bonus and click the Execute icon.

The following values should be returned

Column Value

MEMBERID -1000

BONUSPOINT 100

The record shown above was created by your EJB test client.

Oracle If you are using an Oracle database, do the following:
a. Open the Oracle SQL Plus command window (Start > Programs >

Oracle - OraHome81> Application Development > SQL Plus).
b. In the User Name field, enter your Oracle user name.
c. In the Password field, enter you Oracle password.
d. In the Host String field, enter your connect string.
e. In the SQL Plus window, enter the following:

select * from BONUS;

and click Enter to run the SQL statement.
The following values should be returned

Chapter 9. Tutorial: Creating new business logic 249

Column Value

MEMBERID -1000

BONUSPOINT 100

18. Use the test client to verify that the Bonus enterprise bean can
successfully access the database record, by doing the following:
a. In the Bonus window, select the Home tab.
b. In the Methods panel, click findByMemberId(Long).
c. In the Long field, enter –1000 and click the Invoke icon.
d. With the Remote tab selected, expand Methods, click getBonusPoint

and then click the Invoke icon.
The Details panel shows an integer result of 100.

e. Close the Bonus and EJB Test Client windows.

Integrate the Bonus entity bean with MyNewControllerCmd
In the previous section, you tested the new Bonus entity bean using the test
client that was generated within VisualAge for Java. In this section, you
integrate the Bonus entity bean with the MyNewControllerCmd logic. Once
the Java code is updated, the Sample.jsp template is updated to create an
interface that allows updates to a shopper’s balance of bonus points.

Integrating the Bonus entity bean involves the following high-level steps:
1. Modify the performExecute method of the MyNewTaskCmdImpl class to

calculate the new bonus points and save the points to the BONUS table.
2. Add a getResources method to the MyNewControllerCmdImpl class to

return a list of resources that the command uses. This method is included
for access control purposes.

3. Create a new access control policy for the new resources.
4. Modify DataBeanSampleBean to extend from the access bean for the Bonus

entity bean. By having the data bean extend from the access bean, all
attributes from the access bean are inherited by the data bean.

5. Modify methods in the DataBeanSampleBean.
6. Modify the class path for the servlet engine in the WebSphere Test

Environment to include the new _WCSamplesEntityBeansProject.
7. Modify the Sample.jsp template to allow users to enter bonus points and

display results.

Modify MyNewTaskCmdImpl for bonus point calculation:
MyNewTaskCmdImpl is used as the point of integration for the Bonus entity
bean and MyNewControllerCmd (since MyNewControllerCmd invokes
MyNewTaskCmd).

250 Programmer’s Guide

To modify MyNewTaskCmdImpl to perform the bonus point calculation, do
the following:
1. In the VisualAge for Java Workbench window, expand the _WCSamples

project.
2. Expand the com.ibm.commerce.sample.commands package, then select

the MyNewTaskCmdImpl class to view its source code.
3. Uncomment the following import statement:

import com.ibm.commerce.sample.objects.*;

Save your work (Ctrl + S).
4. Select the performExecute method of the MyNewTaskCmdImpl class.
5. In the source code for the performExecute method uncomment Section 3.

This introduces the following code into the method:

// use BonusAccessBean to update new bonus point

String newBonusPoint = null;
BonusAccessBean bb = new BonusAccessBean();
try {

if (refNum != null) {
bb.setInit_argMemberId(refNum);
bb.refreshCopyHelper();
oldBonusPoint = bb.getBonusPoint();

}
} catch (javax.ejb.FinderException e) {

try {
bb = new BonusAccessBean(new Long(refNum),new Integer(0));
oldBonusPoint = "0";

} catch (javax.ejb.CreateException ec) {
throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(), "performExecute");
} catch (javax.naming.NamingException ec) {

throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (java.rmi.RemoteException ec) {
throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,

this.getClass().getName(), "performExecute");
}

} catch (javax.naming.NamingException e) {
throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(), "performExecute");
} catch (java.rmi.RemoteException e) {

throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (javax.ejb.CreateException e) {
throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(), "performExecute");
}

try {

Chapter 9. Tutorial: Creating new business logic 251

if (oldBonusPoint != null) {
int newBP = Integer.parseInt(oldBonusPoint) + getTask_input2();
newBonusPoint = Integer.toString(newBP);
bb.setBonusPoint(newBonusPoint) ;
newBonusPoint=bb.getBonusPoint();
bb.commitCopyHelper();

}
} catch (javax.ejb.FinderException e) {

throw new ECSystemException(ECMessage._ERR_FINDER_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (javax.naming.NamingException e) {
throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,

this.getClass().getName(), "performExecute");
} catch (java.rmi.RemoteException e) {

throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,
this.getClass().getName(), "performExecute");

} catch (javax.ejb.CreateException e) {
throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,

this.getClass().getName(), "performExecute");
}

Save your work.

Add getResources method to MyNewControllerCmdImpl class: In this
section, you add a new getResources method to the
MyNewControllerCmdImpl class. This method returns a list of resouces that
the command uses during processing. This method is required for resource
level access control.

To add the getResources method, do the following:
1. With the Projects tab selected, expand the _WCSamples project.
2. Expand the com.ibm.commerce.sample.commands package.
3. Select the MyNewControllerCmdImpl class to view its source code.
4. In the source code, uncomment the access control section. This section

appears as shown in the following code snippet:
public AccessVector getResources() throws ECException{

// use UserRegistryAccessBean to check member reference number

String refNum;
String methodName="getResources";

com.ibm.commerce.user.objects.UserRegistryAccessBean rrb =
new com.ibm.commerce.user.objects.UserRegistryAccessBean();

try {
rrb = rrb.findByUserLogonId(getInputString());
refNum = rrb.getUserId();

}
catch (javax.ejb.FinderException e) {

252 Programmer’s Guide

throw new ECSystemException(ECMessage._ERR_BAD_USER_NAME,
this.getClass().getName(),methodName);

}
catch (javax.naming.NamingException e) {

throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,
this.getClass().getName(), methodName);

}
catch (java.rmi.RemoteException e) {

throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,
this.getClass().getName(), methodName);

}
catch (javax.ejb.CreateException e) {

throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,
this.getClass().getName(), methodName);

}

//find the Bonus bean for this user
String newBonusPoint = null;
com.ibm.commerce.sample.objects.BonusAccessBean bb =

new com.ibm.commerce.sample.objects.BonusAccessBean();
try {

if (refNum != null) {
bb.setInit_argMemberId(refNum);
bb.refreshCopyHelper();

}
}

catch (javax.ejb.FinderException e) {

// The user doesn’t have a Bonus object so return the container that
// will hold the bonus object when it’s created

return new AccessVector(rrb);

}
catch (javax.naming.NamingException e) {

throw new ECSystemException(ECMessage._ERR_NAMING_EXCEPTION,
this.getClass().getName(), methodName);

}

catch (java.rmi.RemoteException e) {
throw new ECSystemException(ECMessage._ERR_REMOTE_EXCEPTION,
this.getClass().getName(), methodName);

}

catch (javax.ejb.CreateException e) {
throw new ECSystemException(ECMessage._ERR_CREATE_EXCEPTION,
this.getClass().getName(), methodName);

}

Chapter 9. Tutorial: Creating new business logic 253

return new AccessVector(bb);

}

Save your work. (Ctrl+S).

Once you save the preceding section of code, VisualAge for Java
separates the fields and accessors out of this particular view. Notice
that they now appear under the MyNewControllerCmdImpl class
and the method is marked with an M.

Note: For simplicity in this tutorial, the resource objects are created in this
getResources method. In a real application, it is preferable to create the
resource objects in the validateParameters method and save them as
instance variables. As such, the objects could then be reused by the
getResources and performExecute methods.

Setting up the access control policy for the new resource: A sample access
control policy is provided. This policy creates the following access control
objects:

An action
The action that is created is
com.ibm.commerce.sample.commands.MyNewControllerCmd

An action group
The action group that is created is MyNewControllerCmdActionGroup.
This action group contains only one action;
com.ibm.commerce.sample.commands.MyNewControllerCmd

A resource category
The resource category that is created is
com.ibm.commerce.sample.objects.BonusResourceCategory. This
resource category is for the Bonus entity bean.

A resource group
The resource group that is created is BonusResourceGroup. This
resource group only contains the preceding resource category.

A policy
The policy that is created is AllUsersUpdateBonusResourceGroup. This
policy allows users to perform the MyNewControllerCmd action on
the Bonus bean only if the user is the “owner” of the bonus object.
For example, if the user is logged on as the wcsadmin user, the user
can only modify the bonus points for wcsadmin.

Setting up the AllUsersUpdateBonusResourceGroup policy involves the
following steps:

254 Programmer’s Guide

1. Loading the SampleACPolicy.xml file using the acpload command.
2. Loading the SampleACPolicy_locale.xml description using the acpnlsload

command.
3. Refreshing the policy registry. Note that this step is only required if the

servlet engine is running at the time the access control policy is loaded.

To set up the AllUsersUpdateBonusResourceGroup policy, do the following:
1. At a command prompt, switch to the following directory:

drive:\WebSphere\CommerceServerDev\bin

2. To load the SampleACPolicy.xml file, you must issue the acpload
command, which has the following form:
acpload db_name db_user db_password inputXMLFile

where
v db_name is the name of your database
v db_user is your database user name
v db_password is your database password
v inputXMLFile is the name of the XML file containing the policy

For example, you may issue the following command:
acpload VAJ_Demo user password SampleACPolicy.xml

3. To load the policy description, you must issue the acpnlsload command,
which has the following form:
acpnlsload db_name db_user db_password inputXMLFile

For example, you may issue the following command:
acpnlsload VAJ_Demo user password SampleACPolicy_en_US.xml

4. If the servlet engine for the WebSphere Test Environment is currently
running, stop and then restart it to refresh the policy registry.

Modify DataBeanSampleBean for bonus points: In this section you modify
the DataBeanSampleBean to extend the BonusAccessBean, by doing the
following:
1. In the Workbench, expand the com.ibm.commerce.sample.databeans

package.
2. Add a new field to the data bean, by doing the following:

a. Right-click the DataBeanSampleBean class and select Add > Field.
Using the Create Field SmartGuide, create new fields as described in
the following steps. If you require additional information about
creating fields, refer to “Creating new fields” on page 213.

Chapter 9. Tutorial: Creating new business logic 255

b. Add a new field to the data bean, using the following values:

Attribute Name Value

Field Name task_output_oldBonusPoint

Field Type String

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

Click Finish.
3. Click the DataBeanSampleBean class to view its source code. In the

source code, uncomment the following import statement:
import com.ibm.commerce.sample.objects.*;

Save your work.
4. Still within the source code for the DataBeanSampleBean class, uncomment

Section 1 and comment out Section 2. This changes the bean to extend
from the BonusAccessBean. After making these modifications, the code
appears as follows:
/// Section 1 //

// Extend the databean to BonusAccessBean

public class DataBeanSampleBean
extends com.ibm.commerce.sample.objects.BonusAccessBean
implements SmartDataBean {

//

/// Section 2 ///
/*
// Extend the databean to BonusAccessBean

public class DataBeanSampleBean implements SmartDataBean {
*/

//
//

Save your work.
5. Select the setTask_output_userId(String) method to view its source code.

Locate the following line of code:

256 Programmer’s Guide

public void setTask_output_userId(java.lang.String newTask_output_userId) {
task_output_userId = newTask_output_userId;

After the preceding line, enter the following code to instantiate the new
BonusAccessBean:
///////////////////////////////////////
// Section A : instantiate BonusAccessBean

if (task_output_userId != null)
this.setInit_argMemberId(newTask_output_userId);

///////////////////////////////////////

Save your work.
6. Select the populate() method to view its source code. Uncomment Section

2 to instantiate the BonusAccessBean. This introduces the following code
into the method:
setTask_output_oldBonusPoint(getRequestProperties().getString(

"task_output_oldBonusPoint"));

Modify the class path: Before you can test the modified command in the
WebSphere Test Environment, you must modify a class path to include the
new project that was created for the new Bonus entity bean. To modify this
class path, do the following:
1. From the Workspace menu in VisualAge for Java, select Tools >

WebSphere Test Environment.
The WebSphere Test Environment Control Center opens.

2. Click Servlet Engine.
3. If the Servlet Engine is running, click Stop Servlet Engine and then Edit

Class Path.
4. Click Select All and then click OK.

Modify the Sample.jsp template for bonus points: To modify the display
template, do the following:
1. Open Sample.jsp and Sample_All.jsp files in a text editor.
2. Copy Section 4 of the code from Sample_All.jsp into Sample.jsp between

the <!-- SECTION 4 --> and <!-- END OF SECTION 4 --> markers. The
following code is introduced into the JSP template

<!-- SECTION 4 -->

<h1>
Bonus Administration
</h1>

<%
if (userId != null) {

Chapter 9. Tutorial: Creating new business logic 257

%>

 The bonus point before update is
<%=testBean.getTask_output_oldBonusPoint()%>

 The bonus point after update is
<%=testBean.getBonusPoint()%>

<%
}
%>

Input to command:<P>

<FORM NAME=Bonus ACTION="MyNewControllerCmd">
<TABLE>

<TR>
<TD>

Logon ID
</TD>
<TD>

<input type=text name=input1
value=’<%=testBean.getInput1()%>’>

</TD>
</TR>
<TR>

<TD>
Bonus Point

</TD>
<TD>

<input type=text name=input2>
</TD>

</TR>
<TR>

<TD COLSPAN=2>
<input type=submit>

</TD>
</TR>

</TABLE>
</FORM>

<!-- END OF SECTION 4 -->

Save the Sample.jsp file.
3. Since the new Bonus bean is protected under access control and users can

only execute the MyNewControllerCmd action on a bean that they own,
the user must log in. As such, you will use the login feature in your
sample store to allow the user to log in. This requires you to copy the
Sample.jsp file into the store’s directory structure, since once you log into

258 Programmer’s Guide

the store, the Web controller will search for the Sample.jsp file in the
store’s directory. Copy the Sample.jsp file from:
vaj_drive:\VAJava\Ide\project_resources\IBM WebSphere Test
Environment \hosts\default_host\default_app\web
to
vaj_drive:\VAJava\Ide\project_resources\IBM WebSphere Test
Environment \hosts\default_host\default_app\web\store_directory.

Note: For the sample store, the value for store_directory is InFashion.
4. Ensure the WebSphere Test Environment is running (refer to Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333).
5. Log in as the wcsadmin user, by doing the following:

v Enter the following URL in a browser:
http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&catalogId=catalog_Id&langId=-1

v Click the Register link.
The Register or Login page is displayed.

v In the E-mail address field, enter wcsadmin.
v In the Password field, enter the password for the wcsadmin user and

then click Login.

Note: The original password was wcsadmin, but this was changed when
the contractPublish command was executed as part of the
installation process. This step is described in the following
document:

– Business WebSphere Commerce Studio Business Developer Edition
Installation Guide

– Professional WebSphere Commerce Studio Professional Developer
Edition Installation Guide

6. After the login is complete, enter the following URL in the same browser:
http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?

input1=wcsadmin&input2=1000

You are presented with a page that contains all of the previous output
parameters as well as a new form that allows you to update the bonus
point balance for a user. The page displayed is similar to the following
screen shot:

Chapter 9. Tutorial: Creating new business logic 259

Figure 40.

260 Programmer’s Guide

7. Create a version of your code in its current state. Name the version
mySample 1.7 Completed. When versioning the code, be sure to select both
of your projects. If you require detailed information about versioning your
code, refer to step 12 on page 208.

(Optional) Using the Debugger in VisualAge for Java

This section shows you how to add a breakpoint into your code and launch
the Debugger component of VisualAge for Java. This is included to introduce
the Debugger. For details about this powerful feature, refer to the online help
for VisualAge for Java.

This section is optional, because it does not introduce any new code that is
required for the tutorial. Instead, you create a breakpoint, verify the values of
some variables at the breakpoint and then remove the breakpoint.

Adding the breakpoint to your code
To add the breakpoint to your code, do the following:
1. Ensure that the use of breakpoints is enabled in your workspace, by

doing the following:
a. From the Window menu, select Debug. Ensure that Global Enable

Breakpoints is selected.
2. Select the Projects tab.
3. Expand the _WCSamples project.
4. Expand the com.ibm.commerce.sample.commands package.
5. Expand the MyNewTaskCmdImpl class.
6. Select the performExecute method, to view its source code.
7. In the Source pane, place your cursor (and click) at the beginning of the

following line of code:
setTask_output1("Hello ! " + getTask_input1());

Leave your cursor in this position.
8. From the Edit menu, select Breakpoint.
9. In the Configuring: Breakpoint #1 window, select In Selected Thread and

click OK.
10. Ensure the WebSphere Test Environment is running (refer to Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333).
11. Log in as the wcsadmin user, by doing the following:

v Enter the following URL in a browser:
http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&catalogId=catalog_Id&langId=-1

v Click the Register link.
The Register or Login page is displayed.

Chapter 9. Tutorial: Creating new business logic 261

v In the E-mail address field, enter wcsadmin.
v In the Password field, enter the password for the wcsadmin user and

then click Login.
12. After the login process is complete, enter the following URL:

http://localhost:8080/webapp/wcs/stores/servlet/MyNewControllerCmd?
input1=wcsadmin&input2=1000

13. The Debugger window opens when the breakpoint in the code is
reached.

Verifying the values of variables
This section shows how to verify the values of the task_input1 and
task_output1 variables at various points during execution of the command.

When the Debugger opens because of the breakpoint in the performExecute
method of the MyNewTaskCmdImpl, switch to that window and do the
following:
1. In the Variable pane, expand this.
2. Click task_input1.

In the Value pane, the value for this variable at this point during execution
is displayed. It should display wcsadmin.

To verify that the value of the task_output1 variable gets set as expected you
must have the Debugger continue executing the performExecute method to
reach the point in the code where that variable gets set. This can be done as
follows:
1. Use the Step over function to move step by step through the code. This

can be done in one of the following ways:
v From the Selected menu, select Step Over.
v Click F6.
v Click the Step Over icon.

For the purpose of this example, click F6 four times. This executes the
code that sets the task_output1 variable.

2. In the Variable pane, click task_output1.
In the Value pane, the value for this variable at this point during execution
is displayed. It should display Hello ! wcsadmin.

3. You can finish executing the command by clicking the Resume icon.

Removing the breakpoint
To remove the breakpoint from your code, do the following:
1. Switch back to the Workbench window.
2. Ensure that you can view the source code for the performExecute method

of the MyNewTaskCmdImpl class.

262 Programmer’s Guide

3. In the Source pane, navigate to the ollowing line of code:
setTask_output1("Hello ! " + getTask_input1());

Notice that in the left margin of the pane, there is a blue dot to mark the
breakpoint.

4. Double-click the blue dot to remove the breakpoint.

The breakpoint is now removed from your code.

Integrating MyNewControllerCmd with the sample store in the WebSphere Test
Environment

In this section, you add a link to the home page for the sample store that
invokes MyNewControllerCmd. To perform this integration step, do the
following:
1. In a text editor, open the sidebar.jsp file. This file is located in the

following directory:
vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test
Environment
\hosts\default_host\default_app\web\store_directory\include
where vaj_drive is the drive on which you installed VisualAge for Java
and store_directory is the name of the directory for the sample store.

2. Add another row with a link to MyNewControllerCmd into the table by
inserting the following code before the final </table> tag:
<tr>
<td>

MyNewControllerCmd
</td>
</tr>

Save your work.
3. Ensure the WebSphere Test Environment is running.
4. Test the integration by entering the following URL in a browser:

http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?
storeId=store_Id&catalogId=catalog_Id&langId=-1

Click the Register link.
The Register or Login page is displayed.

5. In the E-mail address field, enter wcsadmin.
6. In the Password field, enter the password for the wcsadmin user and then

click Login.
7. After the user is logged on, click the MyNewControllerCmd link in the

side navigation pane. The Sample JSP is displayed.

Chapter 9. Tutorial: Creating new business logic 263

Note: If the side navigation pane does not display the new link, the
sidebar.jsp may be cached. Remove it from the cache and reload the
page. Refer also to Appendix C, “Tips for VisualAge for Java” on
page 369 for information about deleting compiled JSP files. You may
need to restart your servlet engine after deleting compiled JSP files.

(Optional) Deploying new business logic to a remote WebSphere Commerce
Server

This section describes how to deploy your new business logic into a store
running on a remote WebSphere Commerce Server. You must have created a
store (based upon the InFashion sample store) on the remote WebSphere
Commerce Server before starting these deployment steps.

The deployment process includes steps that are performed on the
development machine, as well as steps that are performed on the target
WebSphere Commerce Server.

Create the JAR file for the new command logic
You must create a JAR file that contains the new command and data bean
logic. To create this JAR file, do the following:
1. Stop the WebSphere Test Environment, as described in Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333.
2. With the Projects tab selected, select the _WCSamples project.
3. With the project highlighted, right-click and select Export.

The Export SmartGuide opens.
4. Select Jar file and click Next.

5. In the Jar file field, enter the following:
drive:\WebSphere\CommerceServerDev\mytemp\wcssamples_1.jar
where drive is the drive on which Commerce Studio is installed.

6. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
7. Click Finish.
8. If prompted, confirm the creation of the new directory.

264 Programmer’s Guide

Since the JAR file created does not contain complete package naming
information, you must use another packaging utility (outside of VisualAge for
Java) to repackage the JAR file. To repackage this file, do the following:
1. In a command window, navigate to the following directory:

drive:\WebSphere\CommerceServerDev\mytemp

2. Enter mkdir temp1.
3. Enter cd temp1.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../wcssamples_1.jar

6. Enter jar cvf ../wcssamples.jar * (note that the _1 is removed from the
name).

Creating the JAR file for the new EJB group
You must create a JAR file for your new EJB group. To create this file, do the
following:
1. With the EJB tab selected, right-click the WCSSamplesEntityBeans EJB

group and select Export > EJB 1.1 JAR.
The Export to an EJB 1.1 JAR File SmartGuide opens.

2. In the JAR file field, enter
drive:\WebSphere\CommerceServerDev\mytemp\sampleEntityBeans_DT.jar

3. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

Target database DB2 If you are deploying to a DB2 database,
select DB2 for NT, V7.1.

Oracle If you are deploying to an Oracle
database, select Oracle, V8.

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
4. Click Finish.

Chapter 9. Tutorial: Creating new business logic 265

The JAR file is created.

The JAR file has been named with the “_DT” suffix as a reminder
that you must run this JAR file through the EJB Deploy Tool
provided by WebSphere Application Server before deploying it into
your WebSphere Commerce application.

Creating the implementation JAR file for the new enterprise bean
You must create a JAR file containing the implementation code for the Bonus
enterprise bean. To create this file, do the following:
1. With the project tab selected, right-click the

_WCSSamplesEntityBeansProject and select Export.
The Export SmartGuide opens.

2. Select Jar file and click Next.

3. In the JAR file field, enter
drive:\WebSphere\CommerceServerDev\mytemp\sampleImpl_1.jar

4. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
5. Click Finish.

The JAR file is created. Close VisualAge for Java.

Since the JAR file created does not contain complete package naming
information, you must use another packaging utility (outside of VisualAge for
Java) to repackage the JAR file. To repackage this file, do the following:
1. In a command window, navigate to the following directory:

drive:\WebSphere\CommerceServerDev\mytemp

2. Enter mkdir temp2.
3. Enter cd temp2.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../sampleImpl_1.jar

266 Programmer’s Guide

6. Enter jar cvf ../sampleImpl.jar * (note that the _1 is removed from the
name).

Copy the JSP files to the target WebSphere Commerce Server
You must copy the Sample.jsp and the updated sidebar.jsp files into the
correct directories for the store to which you are deploying the code.

Before you copy the updated JSP templates onto the target
WebSphere Commerce Server, you may want to make backup copies
of the original JSP templates on that machine. That is, rename the
existing file to sidebar.jsp.bak.

To copy these files, do the following:
1. On the development machine, navigate to the following directory:

vaj_drive:\VAJava\Ide\project_resources\IBM WebSphere Test
Environment \hosts\default_host\default_app\web\store_directory
where vaj_drive is the drive on which you installed VisualAge for Java
and store_directory is the name of the directory for the store.
Copy the Sample.jsp.

2. Paste the Sample.jsp into the following directory on the target WebSphere
Commerce Server:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instance_name.ear\
wcstores.war\store_directory

where drive is the drive on which WebSphere Commerce is installed,
store_directory is the directory name for the store, and instance_name is
the name of your WebSphere Commerce instance.

3. On the development machine, navigate to the following directory:
vaj_drive:\VAJava\Ide\project_resources\IBM WebSphere Test
Environment
\hosts\default_host\default_app\web\store_directory\include
Copy the sidebar.jsp

4. Paste the sidebar.jsp into the following directory on the target
WebSphere Commerce Server:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instance_name.ear\
wcstores.war\store_directory\include

Copy the JAR files to the target WebSphere Commerce Server
You must copy the JAR files from the development machine into the
appropriate directory on the target WebSphere Commerce Server.

Additionally, there are two further processing steps that must be performed
on the JAR file containing the new EJB group. First, you must run the EJB

Chapter 9. Tutorial: Creating new business logic 267

Deploy Tool from WebSphere Application Server against the file. Then, you
must run the modifyIsolationLevel command against the file. As a result, in
this step of copying the JAR files onto the target WebSphere Commerce
Server, this particular JAR file gets stored in a temporary directory to await
those further steps.

To copy these files, do the following:
1. On the development machine, navigate to the following directory:

drive:\WebSphere\CommerceServerDev\mytemp and locate the following
files:
v wcssamples.jar

v sampleImpl.jar

v sampleEntityBeans_DT.jar

where drive is the drive onto which you installed WebSphere Commerce
Studio, Business Developer Edition.

Each of the preceding files must be copied into a particular directory on
the target WebSphere Commerce Server. Read the following steps carefully
to ensure that each file is stored in the correct location.

2. Copy the wcssamples.jar file into the following directory on the target
WebSphere Commerce Server:
drive:\WebSphere\AppServer\InstalledApps\
WC_Enterprise_App_instance_name.ear\wcstores.war\WEB-INF\lib

where drive is the drive onto which you installed WebSphere Commerce
Business Edition and instance_name is the name of your instance (for
example, demo).

3. Create a temporary library directory into which you will place the JAR
file. That is, create the following diretory:
drive:\WebSphere\CommerceServer\temp\lib

4. Copy the sampleImpl.jar file into the following directory the target
WebSphere Commerce Server:
drive:\WebSphere\CommerceServer\temp\lib

5. Copy the sampleEntityBeans_DT.jar file into the following directory on
the target WebSphere Commerce Server:
drive:\WebSphere\CommerceServer\temp

Running the EJB deploy tool
Before you can successfully run your enterprise beans on either a test or
production server, you need to generate deployment code for the enterprise
beans. The Deployment Tool for Enterprise JavaBeans (also referred to as the

268 Programmer’s Guide

EJB Deploy Tool) that is provided by WebSphere Application Server, provides
a command-line interface that you can use to generate enterprise bean
deployment code.

To run this tool, do the following:
1. At a command prompt, navigate to the following directory:

drive:\WebSphere\CommerceServer\temp

2. Temporarily add the tool to the system path by entering the following
command:
PATH=drive:\WebSphere\AppServer\deploytool;%PATH%

3. Enter the ejbdeploy command as follows:
ejbdeploy EJBGroupJARFile WorkingDir OutputJARFile -nowarn -keep -35 -cp

ClassPathOfDepJARFiles

where:
v EJBGroupJARFile is the fully qualified name the JAR file of the

enterprise beans for which you want to generate deployed code. In this
case, this is
drive:\WebSphere\CommerceServer\temp\sampleEntityBeans_DT.jar.

v WorkingDir is name of the directory where temporary files that are
required for code generation are stored.

v OutputJARFile is the fully qualified name of the output JAR file. In this
case, enter
drive:\WebSphere\CommerceServer\temp\sampleEntityBeans.jar.

v -nowarn is an optional parameter to suppress warning and information
messages.

v -keep is an optional parameter to retain the working directory after the
ejbdeploy command has run.

v -35 is a mandatory parameter that will use the same top-down mapping
rules for CMP entity beans that are used in the EJB Deploy Tool that
was provided with the WebSphere Application Server, Version 3.5.

v -cp ClassPathOfDepJARFiles is the class path of any dependent JAR
files. In this case, enter
“drive:\WebSphere\CommerceServer\temp\lib\sampleImpl.jar;
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instanceName.ear\lib\wcsejbimpl.jar”

Note: You must enclose the class path value in quotation marks (“”).

Modify transaction isolation level for the Bonus bean
In this step you use the modifyIsolationLevel command to modify the
transaction isolation level of the Bonus bean. This tool also sets the isolation
level of the bean to the required level for your specific type of database.

Chapter 9. Tutorial: Creating new business logic 269

To run the modifyIsolationLevel command, do the following:
1. On the target WebSphere Commerce Server, open a command window.
2. Switch to the following directory:

drive:\WebSphere\CommerceServer\bin

3. You must issue the modifyIsolationLevel command which has the
following general syntax:
modifyIsolationLevel -jarFile jar_file_name.jar

-logFile log_file_name -dbType db_type

where
v jar_file_name.jar is the name of the JAR file that contains the

customized code
v log_file_name is the fully qualified file name where information should

be logged
v db_type is the type of database you are using. Enter either DB2 or

ORACLE

The following is an example of the modifyIsolationLevel command with
all values specified:
modifyIsolationLevel -jarFile

D:\WebSphere\CommerceServer\temp\sampleEntityBeans.jar
-logFile D:\WebSphere\CommerceServer\instances\demo\logs\output.log
-dbType DB2

The command has run successfully if no exceptions are displayed in the
command window. After completion, note that the timestamp on your
deployed JAR file has changed.

Note: The parameter names are case sensitive. That is, jarFile is not the same
as jarfile. Ensure that you enter the parameter names correctly.

Updating the target database
Since you are deploying the new business logic to a target WebSphere
Commerce Server that uses a different database than that which is used by the
WebSphere Test Environment, you must update the target database to reflect
the changes that were made to the command registry and to create the
BONUS table.

DB2 If you are using a DB2 database, do the following to update your
target database:
1. Open the DB2 Command Center (Start > Programs >IBM DB2 >

Command Center).
2. From the Tools menu, select Tools Settings.

270 Programmer’s Guide

3. Select the Use statement termination character checkbox and ensure the
character specified is a semicolon (;)

4. With the Script tab selected, create the required entry in the URLREG
table, by entering the following information in the script window:
connect to your_database_name;
insert into URLREG (URL, STOREENT_ID, INTERFACENAME, HTTPS,

DESCRIPTION, AUTHENTICATED) values (’MyNewControllerCmd’,0,
’com.ibm.commerce.sample.commands.MyNewControllerCmd’,0,
’This is a new controller command for test/education purposes.’,
null)

where your_database_name is the name of your database and click the
Execute icon.
This command is used by all merchants (indicated by the 0 value for
STOREENT_ID).

5. Create an entry in the VIEWREG table, by entering the following in the
script window:
insert into VIEWREG (VIEWNAME, DEVICEFMT_ID, STOREENT_ID, INTERFACENAME,

CLASSNAME, PROPERTIES, DESCRIPTION, HTTPS, LASTUPDATE) values
(’SampleViewTask’,-1, 0, ’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,
’docname=Sample.jsp’,’This is a sample view for the Bonus Point
exercise’, 0, null)

and click the Execute icon.
6. Create the BONUS table by entering the following in the script window:

CREATE TABLE Bonus (MEMBERID BIGINT NOT NULL,
BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade)

Click the Execute icon.

The preceding steps register MyNewControllerCmd and SampleViewTask in
the command registry, as well as create the BONUS table.

Oracle If you are using an Oracle database, do the following to update your
target database:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter you Oracle password.
4. In the Host String field, enter your connect string.
5. Create the required entry in the URLREG table, by entering the following

information in the SQL Plus window:

Chapter 9. Tutorial: Creating new business logic 271

insert into URLREG (URL, STOREENT_ID, INTERFACENAME, HTTPS,
DESCRIPTION, AUTHENTICATED) values (’MyNewControllerCmd’,0,
’com.ibm.commerce.sample.commands.MyNewControllerCmd’,0,
’This is a new controller command for test/education purposes.’,
null);

and press Enter to run the SQL statement.
6. Create an entry in the VIEWREG table, by entering the following in the

SQL Plus window:
insert into VIEWREG (VIEWNAME, DEVICEFMT_ID, STOREENT_ID, INTERFACENAME,

CLASSNAME, PROPERTIES, DESCRIPTION, HTTPS, LASTUPDATE) values
(’SampleViewTask’,-1, 0, ’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,
’docname=Sample.jsp’,’This is a sample view for the Bonus Point
exercise’, 0, null);

and press Enter to run the SQL statement.
7. Create the BONUS table by entering the following in the SQL Plus

window:
CREATE TABLE Bonus (MEMBERID NUMBER NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade);

and press Enter to run the SQL statement.
8. Enter the following to commit your database changes:

commit;

and press Enter to run the SQL statement.

Loading the access control policies for the new resources
In the tutorial, you created a new enterprise bean (the Bonus bean) that is a
protectable resource. As such, there is an access control policy related to this
resource. You also created a new controller command that can be executed by
all users. While working on the development machine, you loaded the access
control policy information onto that machine. You must now load the same
accress control policy information onto the target WebSphere Commerce
Server.

To set up the access control policies, do the following:
1. Insert the following CD into your CD drive:

v Business WebSphere Commerce Business Edition, V5.4 Disk 2 CD

v Professional WebSphere Commerce Professional Edition, V5.4 Disk 2 CD
2. Switch to the following directory:

CD_drive:\repository\samples\programguide\

272 Programmer’s Guide

3. Locate the following files in that directory:
v SampleCmdACPolicy.xml

This XML file contains the access control policy that is used by the new
controller command.

v SampleACPolicy.xml
This XML file contains the access control policy that is used when you
create a new enterprise bean.

v SampleACPolicy_locale.xml
where locale is the language identifier. This XML file contains the
access control policy description.

4. Copy the preceding three files into the following directory:
drive:\WebSphere\CommerceServer\xml\policies\xml

5. To load the SampleCmdACPolicy.xml file, use a command prompt to switch
to the following directory:
drive:\WebSphere\CommerceServer\bin
You must issue the acpload command, which has the following form:
acpload db_name db_user db_password inputXMLFile

where
v db_name is the name of your database
v db_user is your database user name
v db_password is your database password
v inputXMLFile is the name of the XML file containing the policy.

For example, you may issue the following command:
acpload mall user password SampleCmdACPolicy.xml

6. Load the SampleACPolicy.xml file, by issuing the acpload command
specifying the SampleACPolicy.xml file as the input file. For example, you
may issue the following command:
acpload mall user password SampleACPolicy.xml

7. To load the policy description, you must issue the acpnlsload command,
which has the following form:
acpnlsload db_name db_user db_password inputXMLFile

For example, you may issue the following command:
acpnlsload mall user password SampleACPolicy_en_US.xml

Note that normally a registry refresh would be required in order for the
policy to take effect. In this case, you are not required to perform this step
since you will be stopping and restarting the WebSphere Commerce Server
application in WebSphere Application Server, as part of the deployment steps
for the enterprise bean. If this were not the case, you could use the
Administration console in WebSphere Commerce to update the registry. For

Chapter 9. Tutorial: Creating new business logic 273

more information about the Administration console, refer to the WebSphere
Commerce online help.

274 Programmer’s Guide

400 If you were deploying to a WebSphere Commerce instance
running on an iSeries machine, you use different commands to load
access control policy information. Use the LODWCSAC command instead
of the acpload command and the LODWCSACD command instead of the
acpnlsload command.

The syntax for the LODWCSAC command is:

LODWCSAC DATABASE(dbName) SCHEMA(schemaName)
PASSWD(instancePassword) INSTROOT(’instanceRoot’)
INFILE(’inputFile’)

where

v dbName is the name of their relational database as defined in the
WRKRDBDIRE command.

v schemaName is the name of the database schema for the instance
(this is the same name as the instance name).

v instancePassword is the instance password.

v instanceRoot is the instance root. As example instance root is

/QIBM/UserData/WebCommerce/instances/instanceName

v inputFile is the fully-qualified name of the input XML file that
has the access policies

The syntax for the LODWCSACD command is:

LODWCSACD DATABASE(dbName) SCHEMA(schemaName)
PASSWD(instancePassword) INSTROOT(’instanceRoot’)
INFILE(’inputFile’)

You can store the XML files for your access control policies in the
following directory:

/QIBM/UserData/WebCommerce/instances/instanceName

Additionally, within the XML files for your access control policies,
you must use the full path to the access control DTD. The DTDs for
access control policies are stored in
the/QIBM/ProdData/WebCommerce/xml/policies/dtd directory.

As an example, if you deploy the access control policies for the
tutorials to an Websphere Commerce instance running on an iSeries
machine, you must modify the DTD specification in the XML files for
the access control policies for the tutorials from:

<!DOCTYPE Policies SYSTEM “../dtd/accesscontrolpolicies.dtd”>

to

<!DOCTYPE Policies SYSTEM “/QIBM/ProdData/WebCommerce/
xml/policies/dtd/accesscontrolpolicies.dtd”>

Chapter 9. Tutorial: Creating new business logic 275

For more information about the WebSphere Commerce access control model,
refer to the WebSphere Commerce Access Control Guide.

Exporting the current enterprise application from WebSphere Application
Server

In this step, you export the current enterprise application from WebSphere
Application Server so that you can open it in the Application Assembly Tool.

To export the current enterprise application, do the following:
1. Create a directory into which the current enterprise application will be

exported. Note that you do not call this a “temp” directory because you
should not risk having the file deleted during routine system maintenance,
until you are certain that you are satisfied with the way the customized
code behaves once it has been deployed. To create this directory, do the
following at a command prompt:
a. Navigate to the following directory:

drive:\WebSphere\CommerceServer\

b. Enter the following commnad:
mkdir working

This creates the drive:\WebSphere\CommerceServer\working directory.
2. Open the WebSphere Application Server Administration Console.
3. Expand WebSphere Administrative Domain.
4. Expand Enterprise Applications.
5. Right-click your WebSphere Commerce application. For example,

right-click the demo application and select Export Application.
6. In the Export directory field, enter

drive:\WebSphere\CommerceServer\working.
This exports the whole application, including all resources into the
WC_Enterprise_App_instanceName.ear file (where instanceName is the
name of your WebSphere Commerce instance).

7. Click OK. Exporting the application may take several minutes.

Exporting XML configuration information for the enterprise application
You must also export the XML configuration information for the enterprise
application. To export this information, you use the XMLConfig command line
utility provided by WebSphere Application Server.

To export this configuration information, do the following:
1. Copy the was.export.app.xml file from the following directory:

drive:\WebSphere\CommerceServer\xml\config

into the following directory:

276 Programmer’s Guide

drive:\WebSphere\CommerceServer\working

2. Open the was.export.app.xml file in a text editor. In this file replace all
occurances of $Enterprise_Application_Name$ with
WebSphere Commerce Enterprise Application - instanceName

where instanceName is the name of your WebSphere Commerce instance
(for example, demo). Save this file.

Note: The value that you are inserting must match the information for
your instance that is displayed in the WebSphere Advanced
Administration Console.

3. At a command prompt, navigate to the following directory:
drive:\WebSphere\CommerceServer\working

4. Invoke the XMLConfig tool to perform a partial export by entering the
following command:
xmlConfig -export OutputFile.xml -partial was.export.app.xml

-adminNodeName wasHostName

where wasHostName is the name of the node in the WebSphere Application
Server that contains your current enterprise application. Additionally,
OutputFile.xml is the name of the file that is created as a result of running
this command and was.export.app.xml is file that you modified in step 2.

After you have exported the information about the enterprise beans that are
in the current enterprise application, you must add a new stanza to the XML
file that describes the Bonus bean.

To add the new stanza that describes the Bonus bean, do the following:
1. Navigate to the following directory:

drive:\WebSphere\CommerceServer\working

2. Open the OutputFile.xml file in a text editor.
3. Locate the <ear-file-name> tag and replace the value with the following:

drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

4. You must also add in a new stanza for the Bonus bean, as shown in the
following sample:
<ejb-module name="WCSSamplesEntityBeans">

<jar-file>sampleEntityBeans.jar</jar-file>
<module-install-info>

<application-server-full-name>/NodeHome:$hostName$/EJBServerHome:
WebSphere Commerce Server - demo/</application-server-full-name>

</module-install-info>
<ejb-module-binding>

<data-source>
<jndi-name>jdbc/WebSphere Commerce DB2 DataSource demo</jndi-name>

Chapter 9. Tutorial: Creating new business logic 277

<default-user>user</default-user>
<default-password>password</default-password>

</data-source>
<enterprise-bean-binding name="Bonus_Binding">

<jndi-name>democom/ibm/commerce/sample/objects/Bonus</jndi-name>
</enterprise-bean-binding>

</ejb-module-binding>
</ejb-module>

where
v user is your database user name.
v password is the password for your database user.

Notes:

a. The line breaks in the preceding example are for display purposes only.
b. Ensure that the $hostName$ value matches the current admininstration

node server name. In addition, ensure that there is no carriage return
character in this line.

c. The <application-server-full-name> specification cannot span more
than one line.

d. If you are using an Oracle database, you must modify the datasource
information. Change the following line taken from the preceding code
snip:
<jndi-name>jdbc/WebSphere Commerce DB2 DataSource demo</jndi-name>

to the following:
<jndi-name>jdbc/WebSphere Commerce Oracle DataSource demo</jndi-name>

e. When you are deploying your own applications (for example, outside
of this tutorial, ensure that the JNDI name for your enterprise beans
that is specified in the XML file matches the JNDI name that is used in
VisualAge for Java but has the WebSphere Commerce instance name
prepended.

5. Save the OutputFile.xml file.

Assembling the new EJB group into the enterprise application
In this step, you open your enterprise application in the application assembler
tool. Once it is open inside that tool, you can do the following to add the new
Bonus bean to the enterprise application:
1. Import the new Bonus bean. The JAR file for the new EJB group is stored

within the EJB Module section of the enterprise application.
2. Set the class path for the Bonus bean to include the implementation JAR

file.
3. Add the implementation JAR file to the application. This JAR file is stored

within the Files section of the enterprise application.

278 Programmer’s Guide

4. Set up WebSphere Application Server security for methods contained in
the Bonus bean.

To assemble the new EJB group into the enterprise application, do the
following:
1. Backup the current enterprise application, by doing the following:

a. At a command prompt, navigate to the following directory:
drive:\WebSphere\CommerceServer\working

b. Enter the following command:
copy WC_Enterprise_App_instanceName.ear

WC_Enterprise_App_instanceName.ear.bak

2. Open the WebSphere Application Server administrative console.
3. From the File menu, select Tools > Application Assembly Tool.
4. If a Welcome window opens, select Cancel to close that window.
5. Open the enterprise application upon which you are going to work by

doing the following:
a. From the File menu, select Open.
b. In the File name field, enter:

drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

and click Open. Wait for the application to open before continuing to
the next steps. This takes several minutes.

6. Right-click EJB Modules and select Import.
7. In the File name field, enter

drive:\WebSphere\CommerceServer\temp\sampleEntityBeans.jar

and click Open. In the Confirm Values window, click OK.
8. Once the sampleEntityBeans.jar file is imported, scroll to the

WCSSamplesEntityBeans EJB group and select this group.
Information about this group is shown in the pane on the right.

9. In the classpath field for the new enterprise bean, enter any dependent
JAR files. In this case, enter
lib/sampleImpl.jar lib\wcsejbimpl.jar

10. Click Apply.
11. Add the sampleImpl.jar file to the application, by doing the following:

a. Right-click the Files node for the enterprise application and select
Add Files. Files node for the enterprise application is located near the
bottom of the hierarchical tree. Note that there are other Files nodes
for components within the enterprise application, but you must select
the Files node for the whole application.)

Chapter 9. Tutorial: Creating new business logic 279

b. In the Add Files window, click Browse.
c. Navigate to the drive:\WebSphere\CommerceServer\temp.
d. With this directory highlighted, click Select.
e. Return to the Add Files window. Notice that the contents of the

drive:\WebSphere\CommerceServer\temp directory are displayed.
Highlight the lib directory.
The contents of the lib directory are displayed in the pane on the
right.

f. In the pane on the right, select the sampleImpl.jar file and click Add.
The file is then shown in the Selected Files pane.

g. Click OK.
12. Configure security for the Bonus bean, by doing the following:

a. With the EJB Modules node expanded, locate and expand the
WCSSamplesEntityBeans node.

b. Expand Entity Beans.
c. Expand Bonus

d. Click Method Extensions, then in the pane on the right do the
following:
1) Click the Advanced tab.
2) Ensure that Security identity is selected.
3) For each method, ensure that Use identity of EJB server is

selected.
4) Click Apply (if you have made any modifications).

e. In the left navigation pane, right-click Security Roles under the
WCSamplesEntityBeans EJB group and select New, then do the
following:
1) In the Name field, enter WCSecurityRole and click Apply. Note, if

this role exists already, you do not need to perform this step.
f. In the left navigation pane, right-click Method Permissions under the

WCSamplesEntityBeans EJB group and select New, then do the
following:
1) In the Method Permission Name field, enter WCMethodPermission

2) In the Methods selection area, click Add.
The Add Methods window opens.

3) Expand sampleEntityBeans.jar, then Bonus and then expand each
of the Home and Remote lists of methods.

4) Hold the Shift key and select all of the home methods and click
OK.

5) Repeat the method selection process to add the remote methods as
well (if there are any remote methods).

280 Programmer’s Guide

6) In the Roles selection area, click Add, select the WCSecurityRole
and click OK.

7) Click Apply for each update.
13. From the File menu, select Save.
14. Close the Application Assembler Tool.

After this step has completed, you have created a new enterprise application
that contains all of the previous logic as well as your new business logic. This
is all contained in the newly modified WC_Enterprise_App_instanceName.ear
file.

Importing the new enterprise application into WebSphere Application
Server

The following are the high-level steps involved in importing the new
enterprise application into WebSphere Application Server:
1. Stopping the enterprise application that is currently running in WebSphere

Application Server and then removing it. These steps are performed in the
WebSphere Application Server Administator’s Console.

2. Importing the new application, using the XMLConfig command line utility.
3. Refreshing the WebSphere Application Server Administator’s Console and

then starting the new enterprise application.

Each of these steps is described in more detail in the following sections.

Stopping and removing the current enterprise application
To stop and remove your current enterprise application from WebSphere
Application Server, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain.
3. Expand Nodes.
4. Expand nodeName (where nodeName is the name of your node).
5. Expand Application Servers.
6. Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Server - instanceName and select
Stop.

7. Expand Enterprise Applications.
8. Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Enterprise Application - demo
application and select Stop.

9. Right-click your WebSphere Commerce application. For example,
right-click the WebSphere Commerce Enterprise Application - demo
application and select Remove.

Chapter 9. Tutorial: Creating new business logic 281

10. When prompted to indicate if the application should be exported, select
No.

Importing the new enterprise application using XMLConfig
To import the new enterprise application using the XMLConfig command line
utility, do the following:
1. Navigate to the following directory:

drive:\WebSphere\CommerceServer\working

2. At the command prompt, enter the following command to import the
enterprise application into WebSphere Application Server:
xmlConfig -import OutputFile.xml -adminNodeName was_hostname

where was_hostname is the name of the node of the WebSphere Application
Server containing the current application.

Note: 400 If you were deploying to a WebSphere Commerce instance
running on iSeries, you would have to perform an additional step to
modify directory permissions after you have imported the application.
Refer to “Importing an enterprise application” on page 366 for details
on how to modify these permissions.

Starting the new enterprise application
After you have imported the new enterprise application using the XMLConfig
command line utility, you can use the WebSphere Application Server
Administrator’s Console to perform a refresh and then start the new
application.

To refresh the console and start the new application, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain

3. Highlight Nodes.
4. Click the Refresh selected subtree icon.
5. Start your WebSphere Commerce application by doing the following:

v Expand Application Servers.
v Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Server - instanceName and select
Start.

Test MyNewControllerCmd
The next step is to test the new logic in your store running in the WebSphere
Application Server environment. To test MyNewControllerCmd, do the
following:
1. Test the integration by entering the following URL in a browser:

282 Programmer’s Guide

http://hostname/webapp/wcs/stores/servlet/StoreCatalogDisplay?
storeId=store_Id&catalogId=catalog_Id&langId=-1

where store_Id is the identifier for your store and catalog_Id is the
identifier for your store’s catalog.

2. Click the Register link.
The Register or Login page is displayed.

3. In the E-mail address field, enter wcsadmin.
4. In the Password field, enter the password for the wcsadmin ID used by

this site and then click Login.
5. After the user is logged on, click the MyNewControllerCmd link in the

side navigation pane. The Sample JSP is displayed.

If the updated sidebar.jsp file does not appear, do the following to clear
your cache:
1. Delete the cached files from the following directory:

drive:\WebSphere\CommerceServer\instances\instanceName\cache

2. Delete any relevent cached files from the following directories:
drive:\WebSphere\AppServer\temp\hostName\
WebSphere_Commerce_Server_instanceName\
WebSphere_Commerce_Enterprise_Application_-_instanceName\
wcstores.war\storeName

drive:\WebSphere\AppServer\temp\hostName\
WebSphere_Commerce_Server_instanceName\
WebSphere_Commerce_Enterprise_Application_-_instanceName\
wcstores.war

3. Clear your browser’s cache.

If the JSP page compilation takes too long, the page may not be displayed. In
this case, reload the page.

Chapter 9. Tutorial: Creating new business logic 283

284 Programmer’s Guide

Chapter 10. Modifying and extending existing business
logic

The following tutorials show how to extend or modify existing WebSphere
Commerce business logic.

Extending an existing controller command

In this section, you extend the existing OrderProcess controller command so
that the total bonus points that have been accumulated on the purchase are
displayed on the order confirmation page.

Note: The goal of this tutorial is to show the process of modifying an existing
controller command. It is not designed to show the best way to modify
the order process step in the shopping flow. In fact, WebSphere
Commerce provides the ExtOrderProcess task command that can be
used to modify the order process step in the shopping flow.

Before starting this tutorial
You should have already completed the steps in Chapter 9, “Tutorial:
Creating new business logic” on page 201.

The following list summarizes the steps involved in extending the
OrderProcess command:
1. Creating a new package in which the customized code is stored. Recall

that all customized code (for commands and data beans) must be stored in
projects and packages that are separate from the WebSphere Commerce
code.

2. Creating a new OrderProcessCmdBonusImpl class that extends the existing
OrderProcessCmdImpl command.

3. Adding fields and methods to the OrderProcessCmdBonusImpl class.
4. Modifying the command registry to use the OrderProcessCmdBonusImpl

class
5. Modifying the confirmation.jsp template to display the new business logic.
6. Testing the new business logic within the WebSphere Test Environment.
7. (Optional) Deploying the new business logic to a store on a remote

WebSphere Commerce Server.

© Copyright IBM Corp. 2000, 2002 285

Creating the new package for OrderProcessCmdBonusImpl
To create the new package in which the OrderProcessCmdBonusImpl command
is stored, do the following:
1. In the VisualAge for Java Workbench window, ensure that you have the

Projects tab selected.
2. Right-click the _WCSamples project and select Add > Package.

The Add Package SmartGuide opens.
3. Ensure that the Create a new package named radio button is enabled and

enter com.ibm.commerce.sample.order.
4. Click Finish.

Creating the OrderProcessCmdBonusImpl class
To create the new OrderProcessCmdBonusImpl class, do the following:
1. Right-click the com.ibm.commerce.sample.order package and select Add >

Class.
The Create Class SmartGuide opens.

2. Ensure that the Create a new class radio button is selected.
3. In the Class name field, enter OrderProcessCmdBonusImpl.
4. To specify the superclass, click Browse, then in the Pattern field, enter

com.ibm.commerce.order.commands.OrderProcessCmdImpl and click OK.
5. Click Next.
6. To specify the packages that should be imported, click Add Package. In

the Pattern field, enter the following packages:
v com.ibm.commerce.datatype and click Add

v com.ibm.commerce.exception and click Add

v com.ibm.commerce.order.commands and click Add

v com.ibm.commerce.order.objects and click Add

v com.ibm.commerce.ras and click Add

v com.ibm.commerce.server and click Add

v com.ibm.commerce.sample.objects and click Add

v javax.ejb and click Add

v java.io and click Add

v java.math and click Add, then Close.
7. To specify the interfaces that the class should implement, click Add. In the

Pattern field, enter the following interface:
v OrderProcessCmd and click Add, then Close.

8. Click Finish.

Adding fields and methods to OrderProcessCmdBonusImpl
You must add two fields and a performExecute method to the class.

286 Programmer’s Guide

To add the theOrder field to the OrderProcessCmdBonusImpl class, do the
following:
1. Right-click the OrderProcessCmdBonusImpl class and select Add > Field.

The Create Field SmartGuide opens.
2. Add a field to the class using the following attributes. For detailed steps

on how to create a new field, refer to “Creating new fields” on page 213

Attribute Name Value

Field Name theOrder

Field Type OrderAccessBean

Initial Value Leave blank.

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

and click Finish.

To add the bonusPercentAmount field to the OrderProcessCmdBonusImpl class,
do the following:
1. Right-click the OrderProcessCmdBonusImpl class and select Add > Field

again.
2. Add a field to the class using the following attributes. For detailed steps

on how to create a new field, refer to “Creating new fields” on page 213

Attribute Name Value

Field Name bonusPercentAmount

Field Type double

Initial Value 1000

Access Modifiers private

Other Modifiers Leave all unchecked.

Access with getter and setter methods checked

Getter public

Setter public

and click Finish.

To add the performExecute method to the OrderProcessCmdBonusImpl class, do
the following:

Chapter 10. Modifying and extending existing business logic 287

1. Right-click the OrderProcessCmdBonusImpl class and select Add > Method.
The Create Method SmartGuide opens.

2. Ensure that the Create a new method radio button is selected and click
Next.

3. In the Method Name field, enter performExecute.
4. From the Return Type drop-down list, select void. Click Next.
5. To specify the exception that the method may throw, click Add. In the

Pattern field, enter ECException, click Add, and then Close.
6. Click Finish.

The method is generated and source code for the method is displayed.
7. You must modify the source code. Locate the following line in the source

code of the performExecute method:
public void performExecute() throws

com.ibm.commerce.exception.ECException {

After the preceding line, enter the following code:

You can cut and paste this code from the PDF version of the
Programmer’s Guide. It is recommended that you initially copy the
code in the Scrapbook window in VisualAge for Java (refer to the
VisualAge for Java online help for more information) and inspect the
code to ensure no characters were lost or modified during the cut
and paste operation. Then, after validating the code, copy it into the
target location. Note that copying the text into another editor may
cause some characters to be modified.

final String methodName = "performExecute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_ORDER,

this.getClass().toString(), methodName);

// do all order processing as normal
super.performExecute();

// *** updating Bonus Point Information ***

// fetch order info
theOrder = new OrderAccessBean();
theOrder.setInitKey_orderId(getOrderRn().toString());

int bonusPt; // bonus points for this order
int bonusTotal; // total bonus points
BigDecimal subtotal; // subtotal
BigDecimal bonusdeter; // bonus determinant
BigDecimal ans;

// determine bonus points = subtotal * bonus determinant
try {

subtotal = theOrder.getTotalProductPriceInEJBType();
bonusdeter = new BigDecimal(bonusPercentAmount);

288 Programmer’s Guide

ans = subtotal.multiply(bonusdeter);
bonusPt = Math.round(ans.floatValue());

System.out.println("subtotal is: " + subtotal +
" bonus deter is: " + bonusdeter + " ans is: " + ans);

System.out.println("Bonus Percent amount = " +
bonusPercentAmount);

System.out.println("Bonus calculated is: "+ bonusPt);
}

// Various Exceptions
catch (Exception ex) {
throw new ECSystemException(ECMessage._ERR_GENERIC,

this.getClass().toString(),methodName,
ECMessageHelper.generateMsgParms(ex.getMessage()), ex);

}

// *** Updating bonus points in BONUS table using bean
// created in previous example ***

BonusAccessBean bonusBean = new BonusAccessBean();
bonusBean.setInit_argMemberId(

getCommandContext().getUserId().toString());
try {

//new bonus value = this order bonus points + Old Bonus Points
bonusTotal = bonusPt + Integer.parseInt(bonusBean.getBonusPoint());
bonusBean.setBonusPoint(String.valueOf(bonusTotal));
bonusBean.commitCopyHelper();

System.out.println("In try, BonusTotal calculated is: "+
bonusTotal);

}

// Various exceptions
catch (FinderException e) // user does not have points setup yet
{

// create a row in table bonus
bonusTotal = bonusPt;

try {
BonusAccessBean bonusBeanNew = new

BonusAccessBean(getCommandContext().getUserId(),
new Integer(bonusTotal));

System.out.println("In catch, BonusTotal calculated is: "+
bonusTotal);

}
catch (Exception ex) {

throw new ECSystemException(ECMessage._ERR_GENERIC,
this.getClass().toString(), methodName,
ECMessageHelper.generateMsgParms(ex.getMessage()), ex);

}

Chapter 10. Modifying and extending existing business logic 289

}
catch (Exception ex) {

throw new ECSystemException(ECMessage._ERR_GENERIC,
this.getClass().toString(), methodName,
ECMessageHelper.generateMsgParms(ex.getMessage()), ex);

}

// *** setting view details ***

// Fetch setResponse properties and add bonus parameters
// needed by the JSP page
TypedProperty resp = getResponseProperties();
resp.put("bonus", new Integer(bonusPt).toString());
setResponseProperties(resp);
ECTrace.exit(ECTraceIdentifiers.COMPONENT_ORDER,

this.getClass().toString(), methodName);

8. Save your work.

Modifying the command registry to use OrderProcessCmdBonusImpl
In this example, you want to use the new implementation class for order
processing whenever order processing is required. In order for this to happen,
you must update the command registry to associate the original OrderProcess
interface with the new OrderProcessCmdBonusImpl implementation class.

DB2 If you are using a DB2 database, do the following to update the
command registry:
1. Open the DB2 Command Center (Start > Programs >IBM DB2 >

Command Center).
2. With the Script tab selected, create the required entry in the CMDREG

table, by entering the following information in the script window:
connect to your_database_name;
update CMDREG
set CLASSNAME=’com.ibm.commerce.sample.order.OrderProcessCmdBonusImpl’
WHERE INTERFACENAME=’com.ibm.commerce.order.commands.OrderProcessCmd’
and storeent_Id=0;

where your_database_name is the name of your database and click the
Execute icon
This command is used by all merchants (indicated by the 0 value for
STOREENT_ID).

Oracle If you are using an Oracle database, do the following to update the
command registry:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.

290 Programmer’s Guide

4. In the Host String field, enter your connect string.
5. Create the required entry in the URLREG table, by entering the following

information in the SQL Plus window:
update CMDREG
set CLASSNAME=’com.ibm.commerce.sample.order.OrderProcessCmdBonusImpl’
WHERE INTERFACENAME=’com.ibm.commerce.order.commands.OrderProcessCmd’
and storeent_Id=0;

Press Enter to run the SQL statement.
This command is used by all merchants (indicated by the 0 value for
STOREENT_ID)

6. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Modifying the confirmation.jsp template
You must modify the confirmation.jsp template to display the new business
logic that you have added to the order process business process. To modify
the display template, do the following:
1. Navigate to the following directory:

vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web\store_directory.

2. Make a copy of the confirmation.jsp and call it confirmation.jsp.bak
3. Open the confirmation.jsp in a text editor.
4. After the existing import statements, add the following:

<%@ page import="com.ibm.commerce.datatype.*" %>

5. Immediately after the following line in the JSP template:
String orderRn = jhelper.getParameter("orderId");

add the following:
String bonus = ((TypedProperty)request.getAttribute(

ECConstants.EC_REQUESTPROPERTIES)).getString("bonus");

6. Locate the following section in the JSP template:
<tr>
<td align="left" valign="middle">
<%=infashiontext.getString("GRAND_TOTAL")%>

</td>
<td align="right" valign="middle">
<%=orderBean.getGrandTotal() %></td>

and then add the following:
</tr>
<tr>
<td align="left" valign="middle">

Chapter 10. Modifying and extending existing business logic 291

Bonus Points</td>
<td align="right" valign="middle">
<%=bonus %></td>

7. Save your work.

Testing OrderProcessCmdBonusImpl within the WebSphere Test Environment
You can now use the WebSphere Test Environment to test your new business
logic. To test the OrderProcessCmdBonusImpl command, do the following:
1. Start the WebSphere Test Environment, as described in Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333.
2. Open a browser and enter the URL for your store. For example, enter the

following URL:
http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=10001&catalogId=10001&langId=-1

3. Select and purchase a product.
4. After you have purchased a product, the order confirmation displays the

number of bonus points that were earned on the order.

(Optional) Deploying the customized business logic to a remote
WebSphere Commerce Server

After you have completed testing your business logic in the WebSphere Test
Environment and are satisfied with your code, you can deploy the code to a
store on a remote WebSphere Commerce Server. In this tutorial, the
customizations include the following:
v The new OrderProcessCmdBonusImpl class.
v The updated confirmation.jsp template file.
v The updated command registry.

As such, code deployment includes the following steps:
1. Creating a JAR file for the command logic, using the tools in VisualAge for

Java.
2. Copying the JAR file and JSP template to the appropriate directories on

the target WebSphere Commerce Server.
3. Updating the command registry on the target WebSphere Commerce

Server.

Notes about the test payment method
The sample store running within the WebSphere Test Environment by default
uses a test payment method. This test payment method is used so that you
can complete the shopping flow within WebSphere Test Environment, without
requiring a call out to a Payment Manager. This test payment method only
lets you complete a purchase, it does not enable orders submitted with this

292 Programmer’s Guide

payment method to be available for further processing. As such, the test
payment method should only be used within the WebSphere Test
Environment.

Ensure that you can complete a purchase in the store to which you are
deploying this customized code. Payment processing can be done using either
a local or remote Payment Manager.

For more information about the test payment method, refer to “Test payment
method” on page 196.

Creating the JAR file for the command logic
You must package the command logic into a JAR file in order for it to be
deployed to the target WebSphere Commerce Server. Since the
OrderProcessCmdBonusImpl is stored in the _WCSamples project, you create a
JAR file for that project.

To create the JAR file, do the following:
1. Stop the WebSphere Test Environment, as described in Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333.
2. Right-click the _WCSamples project and select Export.

The Export SmartGuide opens.
3. Select Jar file and click Next.

4. In the Jar file field, enter the following:
drive:\WebSphere\CommerceServerDev\mytemp_b\wcssamplesb_1.jar
where drive is the drive on which Commerce Studio is installed.

5. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
6. Click Finish.

Since the JAR file created does not contain complete package naming
information, you must use another packaging utility (outside of VisualAge for
Java) to repackage the JAR file. To repackage this file, do the following:

Chapter 10. Modifying and extending existing business logic 293

1. In a command window, navigate to the following directory:
drive:\WebSphere\CommerceServerDev\mytemp_b

2. Enter mkdir temp1.
3. Enter cd temp1.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../wcssamplesb_1.jar

6. Enter jar cvf ../wcssamplesb.jar *

Storing assets on the target WebSphere Commerce Server
The JAR file for the command logic and the modified confirmation.jsp
template must be placed in the appropriate directories on the target
WebSphere Commerce Server.

To store the JAR file in the appropriate directory on a remote WebSphere
Commerce Server, do the following:
1. On the development machine, open a command window and navigate to

the following directory:
drive:\WebSphere\CommerceServerDev\mytemp_b
and locate the wcssamplesb.jar file.

2. Copy this file into the following directory on the target WebSphere
Commerce Server:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instanceName.ear\wcstores.war\WEB-INF\lib

To store the confirmation.jsp template in the appropriate directory on the
target WebSphere Commerce Server, do the following:
1. On the development machine, navigate to the following directory:

vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web\store_directory

2. Copy the confirmation.jsp template to the following directory, on the
target WebSphere Commerce Server:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instanceName.ear\wcstores.war\storeDir

Updating the command registry
If you are deploying the OrderProcessCmdBonusImpl command to a target
WebSphere Commerce Server that uses a different database than the
WebSphere Test Environment, you must update the target database to reflect
the changes that you made to the command registry.

DB2 If you are using a DB2 database, do the following to update the
database of the target WebSphere Commerce Server:

294 Programmer’s Guide

1. Open the DB2 Command Center (Start > Programs >IBM DB2 >
Command Center).

2. With the Script tab selected, create the required entry in the CMDREG
table, by entering the following information in the script window:
connect to your_target_database_name;
update CMDREG
set CLASSNAME=’com.ibm.commerce.sample.order.OrderProcessCmdBonusImpl’
WHERE INTERFACENAME=’com.ibm.commerce.order.commands.OrderProcessCmd’
and storeent_Id=0

where your_target_database_name is the name of your database and click
the Execute icon

Oracle If you are using an Oracle database, do the following to update the
command registry:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. Create the required entry in the CMDREG table, by entering the following

information in the SQL Plus window:
update CMDREG
set CLASSNAME=’com.ibm.commerce.sample.order.OrderProcessCmdBonusImpl’
WHERE INTERFACENAME=’com.ibm.commerce.order.commands.OrderProcessCmd’
and storeent_Id=0;

Click Enter to run the SQL statement.
This command is used by all merchants (indicated by the 0 value for
STOREENT_ID)

6. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Restarting your enterprise application in WebSphere Application Server
After you have added the command logic to your enterprise application by
placing the file assets into the appropriate directories and updating the
command registry, you must stop and restart your enterprise application in
order for the change to take effect.

To stop and restart your enterprise application, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain.

Chapter 10. Modifying and extending existing business logic 295

3. Expand Nodes.
4. Expand nodeName (where nodeName is the name of your node).
5. Expand Application Servers.
6. Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Server - demo application and select
Stop.

7. Right-click your WebSphere Commerce application. For example,
right-click the WebSphere Commerce Server - demo application and select
Start.

Testing your new logic in InFashion running in the WebSphere
Application Server
You can now verify your new business logic in the InFashion store running in
the WebSphere Application Server.

To perform this final verification, do the following:
1. After the WebSphere Commerce Server instance has started, open a

browser and enter the URL for your store’s home page. For example, enter
the following URL:
http://hostname/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&catalogId=catalog_Id&langId=-1

where store_Id is the identifier for your store and catalog_Id is the
identifier for your store’s catalog.

2. Select and purchase a product.
3. After you have purchased a product, the order confirmation displays the

number of bonus points that were earned on the order.

Modifying an existing entity bean and extending an existing task command

Note: The goal of this tutorial is to show the process used to modify existing
entity beans and extend existing task commands. It is not designed to
show the best way to modify product pricing. For information about
discounting prices, refer to the WebSphere Commerce Calculation
Framework Guide.

In Chapter 9, “Tutorial: Creating new business logic”, an entirely new set of
business logic was created. This included the creation of a new controller
command, a new JSP template, a new database table, a new enterprise bean
for accessing the table, a corresponding access bean, as well as a data access
bean. All of this logic fit together to create a simplified bonus points
application in which a user’s balance of bonus points can be updated using a
JSP template that is launched by the new controller command.

296 Programmer’s Guide

The manner in which the BONUS table is used in Chapter 9, “Tutorial:
Creating new business logic” is depicted in the following diagram:

In the next tutorial, the BONUS table is used in a different manner.
Specifically, the User entity bean is customized in a manner such that it
appears to applications that the BONUSPOINT column of the BONUS table is
actually a column in the USERS table. When a new record is created in the
USERS table, a corresponding record is automatically inserted into the
BONUS table.

In order to create this table join, a new CMP field must be added to the User
entity bean. This CMP field maps to the BONUSPOINT column in the BONUS
table using the Secondary Table Map feature in the VisualAge for Java Map
Browser.

To integrate the modified User entity bean into the shopping flow, a new price
for products is created. This new price takes the shopper’s current balance of
bonus points into consideration. You create the new price by extending the
GetProductContractUnitPriceCmd task command. When extending this
command, you create a new interface that extends the
GetProductContractUnitPriceCmd interface. The new interface adds an
additional attribute (for the bonus price). You also create a new
implementation class that extends the GetContractUnitPriceCmdImpl
implementation class. This new implementation class is called

get and set
attributes

Use of BONUS table in the ‘Creating new business logic” tutorial

Bonus
entity bean

BONUS table Sample.jsp

Bonus
access bean

DataBeanSampleBean

memberId bonusPoint

extendsget and set
attributes

Figure 41.

Chapter 10. Modifying and extending existing business logic 297

“GetNewContractUnitPriceCmdImpl”. The new implementation class calls the
performExecute method of its super class and then adds the business logic to
determine the new bonus price.

The following diagram shows how the BONUS table is used in the next
tutorial.

This tutorial includes the following steps:
1. Add a new CMP field to the User entity bean.
2. Create and populate the BONUS table.
3. Update the WCSUser database schema and table mapping to include the

new BONUS table.
4. Create the foreign key relationship between the BONUS and USER tables.
5. Create the BONUS table map.
6. Generate the deployed code and access bean for the User entity bean.
7. Use the test client for preliminary testing of the updated entity bean.
8. Create a new task command interface and implementation class. The new

task command extends GetBaseUnitProductPriceCmd. The most important

Use of BONUS table in the ‘Customize the user entity bean” tutorial

BONUS tableUsers table

ProductDisplay.jsp

Bonus
access bean

NewProductDataBean

memberId bonusPoint

Modified User entity
bean with new CMP
field for bonusPoint

foreign key

get and set
attributes

get and set
attributes

extends

Figure 42.

298 Programmer’s Guide

new feature in this command is the logic in the performExecute() method
of the implementation class. This method calculates a new bonus price for
the product. This bonus price is created such that the price is reduced by
the shopper’s bonus point balance, up to a maximum reduction of 20% of
the calculated price. The following table shows examples of this price
reduction formula in use:

Calculated price Bonus point
balance

Maximum
deduction (20% of
calculated price)

New bonus price

$1000 100 $200 $900
Since the bonus
point balance is less
than the maximum
deduction, the list
price is reduced by
the bonus points.

$1000 300 $200 $800
Since the bonus
point balance
exceeds the
maximum
deduction, the list
price is reduced by
the maximum
deduction of $200.

9. Create the NewProductDataBean that extends ProductDataBean. Add a new
method to this bean so that the new bonus price can easily be used in a
product display page.

10. Update the product display JSP template for the InFashion store to show
the bonus price.

11. Test the business logic in the InFashion store running within the
WebSphere Test Environment.

12. (Optional) Deploy the updated business logic to a remote WebSphere
Commerce Server and test it outside of the WebSphere Test Environment.

Before starting this tutorial
If you have not completed Chapter 9, “Tutorial: Creating new business
logic” on page 201, you must perform the steps described in “Preparing
the sample project” on page 202 before starting this tutorial.

Chapter 10. Modifying and extending existing business logic 299

Adding a new bonusPoint field to the User entity bean
In this section, you use the VisualAge for Java’s EJB tools to add the new
CMP field to the entity bean. The new field is called bonusPoint and is
eventually be mapped to the BONUSPOINT column of the BONUS table.

To add the new CMP field to the User entity bean, do the following:
1. If they are running, stop the servlet engine, the EJB server, and the

persistent name server, as described in Appendix A, “Starting and
stopping the WebSphere Test Environment” on page 333.

2. In the Workbench, click the EJB tab.
3. Expand the WCSUser EJB group.
4. Right-click the User bean and select Add > CMP Field.

The Create CMP Field SmartGuide opens.
5. Create a new CMP field with the following properties:

Property Value

Field Name bonusPoint

Field Type int

Initial Value 0

Access with getter
and setter methods

enable

Promote getter and
setter methods to
remote interface

enable

Getter public

Setter public

and click Finish.

The bonusPoint field is displayed in the Properties pane. There may be some
warnings displayed, but these are fixed when you regenerate the entity bean’s
code.

Creating and populating the BONUS table
A database table that records a user’s bonus points is used in this tutorial.

If you completed Chapter 9, “Tutorial: Creating new business logic” on
page 201, you are already familiar with this table. In this case, you must
update the table to add a row for each user in the USERS table. If you did not
complete Chapter 9, “Tutorial: Creating new business logic” on page 201, you
must create and populate the table. Instructions for each of these scenarios is
provided.

300 Programmer’s Guide

DB2 If you are using a DB2 database and need to update the BONUS
table, do the following:
1. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center) and click the Script tab.
2. In the Command field, enter

connect to your_database_name

where your_database_name is the name of your database and click the
Execute icon.

3. In the Command field, enter the following, then click the Execute icon:
INSERT INTO BONUS
(SELECT USERS_ID, 0
FROM USERS
WHERE USERS_ID NOT IN (SELECT MEMBERID FROM BONUS))

The BONUS table has now been updated.

DB2 If you are using a DB2 database and need to create and populate the
BONUS table, do the following:
1. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center) and click the Script tab.
2. In the Command field, enter

connect to your_database_name

where your_database_name is the name of your database and click the
Execute icon.

3. In the Command field, enter the following, then click the Execute icon:
CREATE TABLE BONUS (MEMBERID BIGINT NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade)

The BONUS table has now been created.
4. To populate the table, enter the following in the Command field, then click

the Execute icon:
insert into BONUS (select USERS_ID, 0 from USERS)

5. Close the DB2 Command Center.

Oracle If you are using an Oracle database, and need to update the BONUS
table, do the following:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).

Chapter 10. Modifying and extending existing business logic 301

2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. Update the BONUS table, by entering the following information in the

SQL Plus window:
INSERT INTO BONUS
(SELECT USERS_ID, 0
FROM USERS
WHERE USERS_ID NOT IN (SELECT MEMBERID FROM BONUS));

Click Enter to run the SQL statement.
The BONUS table has now been updated.

6. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Oracle If you are using an Oracle database, and need to create and populate
the BONUS table, do the following:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. Create the BONUS table, by entering the following information in the SQL

Plus window:
CREATE TABLE Bonus (MEMBERID NUMBER NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade);

Click Enter to run the SQL statement.
The BONUS table has now been created.

6. Populate the BONUS table, by entering the following:
insert into BONUS (select USERS_ID, 0 from USERS);

7. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

302 Programmer’s Guide

Updating the schema and table mapping
In the following sections, you update the WCSUser schema with the new
BONUS table, create the foreign key relationship for the new table, and create
a table map between the fields of the User entity bean and the columns of the
BONUS table.

Creating the BONUS table schema
To create the table schema, do the following:
1. Right-click the User entity bean and select Open To > Database

Schemas.
The Schema Browser window opens.

2. From the Schemas list, select WCS User.
3. From the Tables menu, select New Table.

The Table Editor opens.
4. In the Name field, enter BONUS.
5. Leave the Qualifier and Physical name fields blank.
6. In the Table Columns section, click New. The Column Editor opens.

Create a column, as follows:

Attribute Value

Name memberId

Physical name Leave this field blank.

Type BIGINT

Type Details VapConverter

Allow nulls unchecked

and click OK.
7. Select memberId in the Table columns list and click >> to use this

column as the primary key.
8. Create another column (click New again) as follows:

Attribute Value

Name bonusPoint

Physical name Leave this field blank.

Type INTEGER

Type Details VapConverter

Allow nulls checked

and click OK.

Chapter 10. Modifying and extending existing business logic 303

9. Click OK in the Table Editor.
After a few moments, BONUS is listed in the Tables list of the Schema
Browser window.

10. For verification, click BONUS in the Tables list and ensure that its two
columns are displayed in the Columns list.

Creating the foreign key relationship
In this section, you establish the foreign key relationship between the BONUS
and USERS tables.

To create the foreign key relationship, do the following:
1. In the Schema Browser window, click the WCS User schema.

The tables and foreign key relationships for this schema are displayed.
2. From the Foreign Keys menu, select New Foreign Key Relationship.

The Foreign Key Relationship Editor opens.
3. In the Name field, F_User_Bonus.
4. Ensure that the Constraint exists in Database checkbox is checked.
5. From the Primary key table drop-down list, select USERS
6. From the Foreign key table drop-down list, select BONUS
7. Click in the empty field under the Foreign Key heading, so that a

drop-down list is displayed. From this list, select memberId and click OK.
F_User_Bonus is displayed in the list of foreign key relationships.

8. From the Schemas menu, select Save Schema, and then click Finish.
9. Close the Schema Browser.

Creating the BONUS table map
In this section, you create the mapping between the BONUSPOINT column in the
BONUS table and the bonusPoint field in the User entity bean.

To create the BONUS table map, do the following:
1. Ensure that you have the Workbench open with the EJB tab selected.
2. From the EJB menu, select Open To > Schema Maps.

The Map Browser opens.
3. From the Datastore Maps list, select WCS User.
4. In the Persistent Classes list, do the following:

a. Double-click Member.
b. Select User (Note that User is only displayed below Member after

you expand Member in step 4a.)
5. From the Table Maps menu, select New Table Map > Add Secondary

Table Map.
The Secondary Table Map window opens.

6. From the Table drop-down list, select BONUS.

304 Programmer’s Guide

7. From the Foreign key relationship drop-down list, select F_User_Bonus
and click OK.
After a few moments, the BONUS (secondary) map is displayed in the
Table Maps list.

8. Highlight, then right-click the BONUS (secondary) table map and select
Edit Property Maps.
The Property Map Editor opens.

9. Scroll down to the row displaying the bonusPoint class attribute. Select
bonusPoint.

10. Click in the corresponding entry in the Map Type column and select
Simple from the drop-down list.

11. Click in the corresponding entry in the Table Column column and select
bonusPoint from the drop-down list.

12. Leave all other fields unchanged and click OK.
The new property map is generated, and after a few moments
(a) bonusPoint (bonusPoint)

is displayed in the Property Maps column of the Map Browser.
13. Right-click the WCS User datastore map, select Save Datastore Map,

then click Finish.
14. Close the Map Browser.

At this point, the User bean contains errors indicating that some abstract
classes are not implemented. These errors are fixed when deployed code is
generated.

Generating the deployed code and access bean
Since you have modified the code for the User entity bean, you must
regenerate its deployed code, as well as its access bean. The tools in
VisualAge for Java make this code generation step very simple.

To perform this step, do the following:
1. Ensure that you have the Workbench open with the EJB tab selected.
2. Expand the WCSUser EJB group.
3. Right-click the User bean and select Generate Deployed Code.

If a message window questioning whether or not to create an edition of
the package is displayed, click Yes.
Code generation takes a few minutes.

4. Once the deployed code has been generated, right-click the User bean
again and select Add > Access Bean. The Create Access Bean SmartGuide
opens.

5. Accept the default values on the Select Access Bean Properties page and
click Next.

Chapter 10. Modifying and extending existing business logic 305

6. Accept the default values on the Define Zero Argument Constructor page
and click Next.

7. On the Select and Customize Bean Properties for Copy Helper page, scroll
down to bonusPoint in the Enterprise Bean column. Check Copy Helper
for the bean and set the converter to
com.ibm.commerce.base.objects.WCSStringConverter.

8. Click Finish.
9. Click OK when the “Code generation completed” message is displayed.

Testing the modification using the test client
A test client can be used to test the newly customized User entity bean. To
start the test client and test the entity bean, do the following:
1. Start the persistent name server, as described in “Starting and stopping

the persistent name server” on page 333.
2. Start the EJB server that has the WCSUser EJB group on it, as described

in “Starting and stopping the EJB server” on page 334.
3. In the Enterprise Beans pane, expand the WCSUser EJB group.

Right-click the User entity bean and select Run Test Client.
4. In the EJB Lookup window, click Lookup.
5. From the list of methods, select findByPrimaryKey(MemberKey).
6. In the Details pane, click <null>, then enter -1000 in the argument box,

and click the Invoke icon in the EJB Test Client window.
Note that the value entered here must match a value in the USERS_ID
column of the USERS table.
When the execution of this method is complete, information for the user
with the ID of -1000 is displayed in a tree view in the Methods pane.
Within this view, there is a node called methods.

7. Expand the Methods node.
8. Click getBonusPoint(), then the Invoke icon.

This method retrieves the customer’s balance of bonus points. The
current balance of bonus points is returned.

9. Click setBonusPoint(int), input 100 in the Details pane and then click the
Invoke icon.

10. Click getBonusPoint(), then the Invoke icon.
A value of 100 is returned. This shows that the database has been
successfully updated by the User enterprise bean.

11. Close the User and EJB Test Client windows.

Creating the GetNewProductContractUnitPriceCmd interface
As part of this customization exercise, you create new business logic to
calculate a discounted price, based upon the customer’s balance of bonus

306 Programmer’s Guide

points. This calculation is performed by a new task command. In this section,
you create the interface for this new task command.

To create the interface for your new task command, do the following:
1. In the Workbench, with Projects tab selected, expand the _WCSamples

project.
2. Right-click the com.ibm.commerce.sample.commands package and select

Add > Interface.
3. Ensure that Create a new interface is selected and in the Interface name

field, enter GetNewProductContractUnitPriceCmd.
4. Select the interface that should be extended by clicking Add, then in the

Pattern field, enter
com.ibm.commerce.price.commands.GetProductContractUnitPriceCmd, click
Add, then Close.

5. Click Next.
6. To add the appropriate import statements, click Add Package, and then do

the following:
a. In the Pattern field, enter com.ibm.commerce.price.utils and click

Add.
b. In the Pattern field, enter com.ibm.commerce.exception and click Add.
c. Click Close.

7. Ensure that Make the interface public is selected.
8. Click Finish.

The source code for the new interface is displayed in the Source pane.
9. Create a method signature for the getBonusPrice() method, by doing the

following:
a. Right-click the GetNewProductContractUnitPriceCmd interface, and

select Add > Method.
The Create Method SmartGuide opens.

b. Ensure that Create a new method is selected and click Next.
c. In the Method Name field, enter getBonusPrice.
d. To select the method’s return type, click Browse. In the Pattern field,

enter MonetaryAmount and click OK, then click Next.
e. To select the exception that the method may throw, click Add. In the

Pattern field, enter ECSystemException and click Add, then Close.
f. Click Finish.

10. Add a new field to the interface that specifies the default implementation
class for the command, by doing the following:
a. Right-click the GetNewProductContractUnitPriceCmd interface, and

select Add > Field.
The Create Field SmartGuide opens.

Chapter 10. Modifying and extending existing business logic 307

b. In the Field Name field, enter defaultCommandClassName.
c. From the Field Type drop-down list, select String.
d. In the Initial Value field, enter

“com.ibm.commerce.sample.commands.
GetNewContractUnitPriceCmdImpl”

and click Finish.

Notes:

1) You must include the double quotation marks when entering this
value.

2) If a warning message indicating that a field in the superclass will
be hidden by the creation of this new field, click Yes to proceed.

11. Add a new field to the interface that specifies the name of the command,
by doing the following:
a. Right-click the GetNewProductContractUnitPriceCmd interface, and

select Add > Field.
The Create Field SmartGuide opens.

b. In the Field Name field, enter NAME.
c. From the Field Type drop-down list, select String.
d. In the Initial Value field, enter

“com.ibm.commerce.sample.commands.
GetNewProductContractUnitPriceCmd”

and click Finish.

Creating the GetNewContractUnitPriceCmdImpl implementation class
You must create the implementation class for the new task command. This
implementation class implements your newly created interface and contains
the business logic for the task command.

To create the GetNewContractUnitPriceCmdImpl implementation class, do the
following:
1. In the Workbench, with Projects tab selected, expand the _WCSamples

project.
2. Right-click the com.ibm.commerce.sample.commands package and select

Add > Class.
The Create Class SmartGuide opens.

3. Ensure that Create a new class is selected and create the class as follows:
a. In the Class name field, enter GetNewContractUnitPriceCmdImpl.
b. To specify the superclass, click Browse, then in the Pattern field, enter

com.ibm.commerce.price.commands.GetContractUnitPriceCmdImpl, and
click OK.

308 Programmer’s Guide

c. Click Next.
d. To specify the packages that should be imported, click Add Package. In

the Pattern field, enter the following packages:
v com.ibm.commerce.command and click Add

v com.ibm.commerce.exception and click Add

v com.ibm.commerce.price.commands and click Add

v com.ibm.commerce.price.utils and click Add

v com.ibm.commerce.ras and click Add

v com.ibm.commerce.server and click Add

v java.math and click Add, then Close.
e. To specify the interfaces that the class should implement, click Add. In

the Pattern field, enter the following interfaces:
v GetContractSpecialPriceCmd and click Add.
v GetContractUnitPriceCmd and click Add.
v GetProductContractUnitPriceCmd and click Add.
v GetNewProductContractUnitPriceCmd and click Add, then Close.

f. Click Finish.
4. Right-click the GetNewContractUnitPriceCmdImpl class and select Add >

Field. The Create Field SmartGuide opens. Enter information as follows:
a. In the Field Name field, enter bonusPrice.
b. To select the field type, click Browse. In the Pattern field, enter

MonetaryAmount and click OK.
c. Click Finish.

5. Add a new performExecute() method to the class. This method does the
following:
v calls the performExecute() method of the superclass

(GetContractUnitPriceCmdImpl)
v sets the thisClass and methodName values to be used by the exception

handling mechanism
v instantiates a StoreAccessBean
v instantiates a UserAccessBean
v gets the original product price
v calculates the maximum applicable discount
v calculates the new bonus price (this price is of the type double)
v gets the currency type for the store
v rounds off the bonus price and stores it as a monetary amount in the

correct currency

Chapter 10. Modifying and extending existing business logic 309

To add this method, right-click the GetNewContractUnitPriceCmdImpl
class and select Add > Method. The Create Method SmartGuide opens.
Enter information as follows:
a. Ensure that Create a new method is selected and click Next.
b. In the Method Name field, enter performExecute.
c. From the Return Type drop-down list, select void and click Next.
d. To select the exception that the method may throw, click Add. In the

Pattern field, enter ECException and click Add, then Close.
e. Click Finish.
f. After this line in the source code:

public void performExecute()
throws com.ibm.commerce.exception.ECException

{

add the following code:

You can cut and paste this code from the PDF version of the
Programmer’s Guide. It is recommended that you initially copy the
code in the Scrapbook window in VisualAge for Java (refer to the
VisualAge for Java online help for more information) and inspect the
code to ensure no characters were lost during the cut and paste
operation. Then, after validating the code, copy it into the target
location. Note that copying the text into another editor may cause
some characters to be modified.

super.performExecute();

// Get and set this class name and method
// for use when exceptions occur.
final String thisClass =

GetContractUnitPriceCmdImpl.class.getName();
final String methodName = "performExecute";

//get the store access bean
Integer storeId = getStoreId();
com.ibm.commerce.common.objects.StoreAccessBean storeAB =

getCommandContext().getStore(storeId);

//get the user access bean
com.ibm.commerce.user.objects.UserAccessBean bonusAB =

new com.ibm.commerce.user.objects.UserAccessBean();

// get the calculated price from the GetContractUnitPriceCmdImpl
MonetaryAmount priceOrg = super.getPrice();
double dblPriceOrg = priceOrg.getValue().doubleValue();

//calculate the maximum bonus that can apply to this product
double dblBonusPrice; // = dblPriceOrg;
double dblMaxBonusPoint = 0;

310 Programmer’s Guide

try {
bonusAB.setInitKey_MemberId(super.getUserId().toString());
bonusAB.refreshCopyHelper();
double dblMaxDed = dblPriceOrg * 0.2;
dblMaxBonusPoint =

(new java.math.BigDecimal(
bonusAB.getBonusPoint()).doubleValue());

if (dblMaxBonusPoint > dblMaxDed) dblMaxBonusPoint = dblMaxDed;
} catch (javax.ejb.CreateException ex) {
throw new ECSystemException(

ECMessage._ERR_CREATE_EXCEPTION, thisClass, methodName, ex);
} catch (javax.ejb.FinderException ex) {

} catch (javax.naming.NamingException ex) {
throw new ECSystemException(

ECMessage._ERR_GENERIC, thisClass, methodName, ex);
} catch (java.rmi.RemoteException ex) {
throw new ECSystemException(

ECMessage._ERR_REMOTE_EXCEPTION, thisClass, methodName, ex);
}

//apply the maximum applicable bonus to this product price
dblBonusPrice = dblPriceOrg - dblMaxBonusPoint ;

//get the currency of this store
CommandContext context = getCommandContext();
String requestedCurrency = Helper.getCurrency(context, storeAB);

//round off and return the bonus price in MonetoryAmount type
bonusPrice = new MonetaryAmount(

new BigDecimal(dblBonusPrice), requestedCurrency);
CurrencyManager.getInstance().roundCustomized(bonusPrice, storeAB);

Save your work.
6. Select the getBonusPrice() method in the

GetNewContractUnitPriceCmdImpl class to view its source code. In the
source code, change
return null;

to
return bonusPrice;

Save your work.

Creating the NewProductDataBean data bean
The getCalculatedBonusPrice() method must be added to the existing
WebSphere Commerce ProductDataBean. Since you must not actually modify
the code for the ProductDataBean, you must create a new data bean that
extends the ProductDataBean and then add the method to the new data bean.

Chapter 10. Modifying and extending existing business logic 311

To create the new data bean, do the following:
1. In the Workbench, with the Projects tab selected, expand the _WCSamples

project.
2. Right-click the com.ibm.commerce.sample.databeans package and select

Add > Class. The Create Class SmartGuide opens. Enter information as
follows:
a. In the Class name field, enter NewProductDataBean.
b. To specify the superclass, click Browse, then in the Pattern field enter

com.ibm.commerce.catalog.beans.ProductDataBean. Click OK, then
Next.

c. Add the appropriate import statements to the class by clicking Add
Package, then do the following:
v Enter com.ibm.commerce.beans and click Add.
v Enter com.ibm.commerce.catalog.objects and click Add.
v Enter com.ibm.commerce.command and click Add.
v Enter com.ibm.commerce.datatype and click Add.
v Enter com.ibm.commerce.exception and click Add.
v Enter com.ibm.commerce.price.beans and click Add.
v Enter com.ibm.commerce.ras and click Add.
v Enter com.ibm.commerce.sample.commands and click Add.
v Enter com.ibm.commerce.server and click Add.
v Enter java.util and click Add, then Close.

d. Click Finish.
3. Right-click the NewProductDataBean class and select Add > Method.

The Add Method SmartGuide opens.
4. Ensure that Create new method is selected and click Next.
5. In the Method Name field, enter getCalculatedBonusPrice.
6. To select the return type, click Browse. In the Pattern field, enter

PriceDataBean, click OK, then Next.
7. To select the exception that the method may throw, click Add. In the

Pattern field, enter ECSystemException and click Add, then Close.
8. Click Finish.
9. In the source code, replace return null; with the following:

PriceDataBean ibnPrice = null;
try {

GetNewProductContractUnitPriceCmd comm =
(GetNewProductContractUnitPriceCmd) CommandFactory.createCommand
(GetNewProductContractUnitPriceCmd.NAME,

getCommandContext().getStoreId());

ECTrace.trace(ECTraceIdentifiers.COMPONENT_CATALOG,

312 Programmer’s Guide

this.getClass().getName(), "getCalculatedBonusPrice",
"Getting Price for CatalogEntry: " + getProductID());

comm.setCatEntryId(new Long(getProductID()));
comm.setCommandContext(getCommandContext());
comm.execute();
ibnPrice = new PriceDataBean(comm.getBonusPrice(),

getCommandContext().getStore(),
getCommandContext().getLanguageId());

} catch (Exception e) {
throw new ECSystemException(ECMessage._ERR_RETRIEVE_PRICE,

this.getClass().getName(), "getCalculatedBonusPrice",e);
}

return ibnPrice;

Save your work.

Adding the new bonus price to the product display template
The next step is to add the new bonus price to the product display template,
so that shoppers will be able to see the customized price. Once you have
updated the display template, the new discounted price is displayed.

The sample store uses the ProductDisplay.jsp template for displaying
products. Therefore, you must update this template with information to
display the new price.

To update the display template, do the following:
1. Navigate to the following directory:

vaj_drive:\VAJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web\store_name

2. Make a copy of the ProductDisplay.jsp file and name it
ProductDisplay.jsp.bak.

3. Open ProductDisplay.jsp in a text editor.
4. After the <%@ page import=“com.ibm.commerce.common.beans.*” %>, add

the following import statements:
<%@ page import=“com.ibm.commerce.sample.commands.*” %>
<%@ page import=“com.ibm.commerce.sample.databeans.*” %>

5. Replace all occurrences of ProductDataBean with NewProductDataBean.
6. Locate the following line:

<%=product.getCalculatedContractPrice()%>

After this line, insert the following line to retrieve and display the bonus
price for the product

Chapter 10. Modifying and extending existing business logic 313

<%=product.getCalculatedBonusPrice()%>
Bonus Price

7. Save this file.

Note: If you cut and paste sections into the display template from the PDF
version of the WebSphere Commerce Programmer’s Guide, ensure that no
characters are modified during that process.

Testing the enterprise bean extension
In this section, you can test the extension that you have made to the
enterprise bean, by viewing a product in the InFashion sample store. The new
bonus price is displayed.

Note, for the simplicity of this sample, the bonus price is viewable to all
shoppers (registered or guest shoppers). For shoppers that have no bonus
points, the bonus price is the same as the regular price.

To test the enterprise bean extension and see the bonus price displayed, do
the following:
1. Verify that the _WCSamples project is included in the path for the Servlet

Engine, by doing the following:
a. From the Workspace menu in VisualAge for Java, select Tools >

WebSphere Test Environment.
The WebSphere Test Environment Control Center opens.

b. Click Servlet Engine.
c. If the Servlet Engine is running, click Stop Servlet Engine and then

Edit Class Path.
d. If _WCSamples is not already selected, select it now and click OK.

2. Start the WebSphere Test Environment as described in Appendix A,
“Starting and stopping the WebSphere Test Environment” on page 333. The
persistent name server and EJB server may already be running, in this
case, you need only start the servlet engine.

3. Open a browser and enter the following URL
http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?

storeId=store_Id&catalogId=catalog_Id&langId=-1

4. Click the Register link under the Services heading and then click Register
under the New Customer heading.
Register a new customer using the e-mail address of wctester@wc and a
password of wctester1. Fill in other fields with test values and click
Submit. Leave the browser open.

5. DB2 Open the DB2 Command Center and do the following:
a. Click the Interactive tab

314 Programmer’s Guide

b. In the Command field, do the following:
1) Enter

connect to your_database_name

where your_database_name is the name of your WebSphere
Commerce database and click the Execute icon.

2) Enter select users_id from userreg where logonid =
’wctester@wc’and click the Execute icon.

c. The Query Results tab displays the entry for the customer you
registered in step 4. Make note of the customer’s USERS_ID value here:

d. Update the newly registered customer’s balance of bonus points. Click
the Interactive tab and in the Command field, enter the following:
update BONUS set BONUSPOINT = 1000 where MEMBERID = users_id

where users_id is the value from step 5c. Click the Execute icon.

6. Oracle Update the test user’s bonus points balance, by doing the
following:
a. Open the Oracle SQL Plus command window (Start > Programs >

Oracle > Application Development > SQL Plus).
b. In the User Name field, enter your Oracle user name.
c. In the Password field, enter your Oracle password.
d. In the Host String field, enter your connect string.
e. Enter select users_id from userreg where logonid = ’wctester@wc’;

f. The entry for the customer you registered in step 4 is displayed. Make
note of the customer’s USERS_ID value here: ______________

g. Update the newly registered customer’s balance of bonus points by
entering the following:
update BONUS set BONUSPOINT = 1000 where MEMBERID = users_id;

where users_id is the value from step 6f.
h. Enter the following to commit your database changes:

commit;

and press Enter to run the SQL statement.
7. In the browser, click the Men’s link to view the Men’s fashions section of

the store.
8. Click the link for the featured special to view the product page. The page

displays the regular price, and the discounted price based upon the
customer’s balance of bonus points.

Chapter 10. Modifying and extending existing business logic 315

Note: If a stack trace is displayed instead of the bonus price, you may
need to disable caching. This can be done by setting the
CacheDaemon component value to false in the instance_name.xml
file, as shown below:
<component compClassName=

"com.ibm.commerce.cache.daemon.CacheDaemonComponent"
enable="false"
name="CacheDaemon" />

After changing the value in the instance_name.xml file, you must
stop and restart the servlet engine in the WebSphere Test
Environment.

(Optional) Deploying the customized business logic to a remote
WebSphere Commerce Server

This section describes how to deploy the modified entity bean and new task
command to store that is running outside of the WebSphere Test Environment.

Deployment involves creating JAR files for the WebSphere Commerce public
enterprise beans and the command and data bean logic, placing the JAR files
in the appropriate directories on the target server, stopping the WebSphere
Commerce instance, modifying class paths, deploying the enterprise beans
using the XMLConfig utility and restarting the instance.

Creating the JAR file for the new price command
You must create a JAR file for the _WCSamples project so the new task
command gets deployed. To create this JAR file, do the following on the
development machine:
1. Stop the WebSphere Test Environment, as described in Appendix A,

“Starting and stopping the WebSphere Test Environment” on page 333.
2. With the Projects tab selected, select the _WCSamples project.
3. With the project highlighted, right-click and select Export.

The Export SmartGuide opens.
4. Select Jar file and click Next.

5. In the Jar file field, enter the following:
drive:\WebSphere\CommerceServerDev\mytemp_c\wcssamplesc_1.jar
where drive is the drive on which WebSphere Commerce is installed.

6. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

316 Programmer’s Guide

Attribute Value

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
7. Click Finish.

Since the JAR file created does not contain complete package naming
information, you must use another packaging utility (outside of VisualAge for
Java) to repackage the JAR file. To repackage this file, do the following:
1. In a command window, navigate to the following

directory:drive:\WebSphere\CommerceServerDev\mytemp_c
2. Enter mkdir temp3.
3. Enter cd temp3.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../wcssamplesc_1.jar.
6. Enter jar cvf ../wcssamplesc.jar * (note that the _1 is removed from

the name).

Creating a JAR file for the WCSUser EJB group
You must create an EJB 1.1 Export JAR file containing for the EJB group that
contains the modified enterprise bean. As such, you must select the following
group when creating the JAR file:
v WCSUser

To create the JAR file for the WCSUser EJB group, do the following:
1. With the EJB tab selected, highlight the WCSUser EJB group.
2. Right-click the WCSUser EJB group and select Export > EJB 1.1 JAR.

The Export to an EJB 1.1 JAR File SmartGuide opens.
3. In the JAR file field, enter

drive:\WebSphere\CommerceServerDev\mytemp_c\
CustomizedWCSUserDeployed_DT.jar

4. Select attributes as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

Chapter 10. Modifying and extending existing business logic 317

Attribute Value

Target database DB2 If you are deploying to a DB2 database,
select DB2 for NT, V7.1.

Oracle If you are deploying to an Oracle
database, select Oracle, V8.

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
5. Click Finish.

The JAR file is created.

The JAR file has been named with the “_DT” suffix as a reminder
that you must run this JAR file through the EJB Deploy Tool
provided by WebSphere Application Server before deploying it into
your WebSphere Commerce application.

Creating the wcsejsclient.jar file
To create the client JAR file, do the following:
1. With the EJB tab selected, highlight the all of the WebSphere Commerce

EJB groups (the name begin with WCS). With all of these groups
highlighted, right-click and select Export > Client JAR.
The Export SmartGuide opens.

2. In the JAR file field, enter
drive:\WebSphere\CommerceServerDev\mytemp_c\wcsejsclient.jar

3. Select attributes as follows:

Attribute Value

beans Checked

class Checked

java Unchecked

resource Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
4. Click Finish.

The JAR file is created.

318 Programmer’s Guide

Copying the updated JSP template to the target store directory
In “Adding the new bonus price to the product display template” on
page 313, you updated the display template to reflect the newly created price.
In this step you copy the updated JSP template from the WebSphere Test
Environment directory structure into the directory used by the store when
running outside of the WebSphere Test Environment.
1. On the development machine, navigate to the following directory:

vaj_drive:\VAJava\Ide\project_resources\IBM WebSphere Test
Environment \hosts\default_host\default_app\web\store_directory
where vaj_drive is the drive on which you installed VisualAge for Java
and store_directory is the name of the directory for the sample store.
Copy the ProductDisplay.jsp file.

2. Paste the ProductDisplay.jsp file into the following directory:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instance_name.ear\
wcstores.war\store_directory

where drive is the drive on which WebSphere Commerce is installed,
store_directory is the directory name for the store, and instance_name is
the name of your WebSphere Commerce instance.

Copy the JAR files to the target WebSphere Commerce Server
You must copy the JAR files from the development machine into the
appropriate directory on the target WebSphere Commerce Server. To copy
these files, do the following:
1. On the development machine, navigate to the following directory:

drive:\WebSphere\CommerceServerDev\mytemp_c
and locate the following files:
v wcssamplesc.jar

v CustomizedWCSUserDeployed_DT.jar

v wcsejsclient.jar

where drive is the drive onto which you installed WebSphere Commerce
Studio, Business Developer Edition.

Each of the preceding files must be copied into a particular directory on
the target WebSphere Commerce Server. Read the following steps carefully
to ensure that each file is stored in the correct location.

2. Copy the wcssamplesc.jar file into the following directory on the target
WebSphere Commerce Server:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instance_name.ear\
wcstores.war\WEB-INF\lib

Chapter 10. Modifying and extending existing business logic 319

where drive is the drive onto which you installed WebSphere Commerce
Business Edition and instance_name is the name of your instance (for
example, demo).

3. Copy the wcsejsclient.jar file into the following directory the target
WebSphere Commerce Server:
drive:\WebSphere\CommerceServer\temp\lib

4. Copy the CustomizedWCSUserDeployed_DT.jar file into the following
directory on the target WebSphere Commerce Server:
drive:\WebSphere\CommerceServer\temp

Running the EJB deploy tool
You must run the EJB deploy tool against the JAR file containing the new EJB
group. This tool is included with WebSphere Application Server.

To run this tool, do the following:
1. At a command prompt, navigate to the following directory:

drive:\WebSphere\CommerceServer\temp

2. Temporarily add the tool to the system path by entering the following
command:
PATH=drive:\WebSphere\AppServer\deploytool;%PATH%

3. Enter the ejbdeploy command as follows:
ejbdeploy EJBGroupJARFile WorkingDir OutputJARFile -nowarn -keep -35 -cp

ClassPathOfDepJARFiles

where:
v EJBGroupJARFile is the name the JAR file for your EJB group. In this

case, this is CustomizedWCSUserDeployed_DT.jar.
v WorkingDir is the working directory.
v OutputJARFile is the name of the output JAR file. In this case, enter

CustomizedWCSUserDeployed.jar.
v -nowarn is an optional parameter to suppress warning and information

messages.
v -keep is an optional parameter to retain the working directory after the

ejbdeploy command has run.
v -35 is a mandatory parameter that will use the same top-down mapping

rules for CMP entity beans that are used in the EJB Deploy Tool that
was provided with the WebSphere Application Server, Version 3.5.

v -cp ClassPathOfDepJARFiles is the class path of any dependent JAR
files. When you have modified an existing WebSphere Commerce
enterprise bean you must include the wcsejsclient.jar,
wcsejbimpl.jar, and xml4j.jar files in the class path of dependent JAR
files. As such, enter the following:

320 Programmer’s Guide

“drive:\WebSphere\CommerceServer\temp\lib\wcsejsclient.jar;
drive:\WebSphere\AppServer\InstalledApps\
WC_Enterprise_App_instanceName.ear\lib\wcsejbimpl.jar;
drive:\WebSphere\AppServer\InstalledApps\
WC_Enterprise_App_instanceName.ear\lib\xml4j.jar;”

Modify transaction isolation level for the entity beans
In this step you use the modifyIsolationLevel command to modify the
transaction isolation level of the entity beans to the required level for your
specific type of database.

To run the modifyIsolationLevel command, do the following:
1. On the target WebSphere Commerce Server, use a command prompt to

navigate to the following directory:
drive:\WebSphere\CommerceServer\bin

2. You must issue the modifyIsolationLevel command which has the
following general syntax:
modifyIsolationLevel -jarFile jar_file_name.jar

-logFile log_file_name -dbType db_type

where
v jar_file_name.jar is the name of the JAR file that contains the

customized code
v log_file_name is the fully qualified file name where information should

be logged
v db_type is the type of database you are using. Enter either DB2 or

ORACLE

The following is an example of the modifyIsolationLevel command with
all values specified:
modifyIsolationLevel -jarFile

D:\WebSphere\CommerceServer\temp\CustomizedWCSUserDeployed.jar
-logFile D:\WebSphere\CommerceServer\instances\demo\logs\output.log
-dbType DB2

Note: The parameter names are case sensitive. That is, jarFile is not the
same as jarfile. Ensure that you enter the parameter names correctly.

The command has run successfully if no exceptions are displayed in the
command window. After completion, note that the timestamp on your
deployed JAR file has changed.

Updating the target database
If you are deploying to a target WebSphere Commerce Server that uses a
different database than the one used by the WebSphere Test Environment, you
must update the target database, as follows:

Chapter 10. Modifying and extending existing business logic 321

v If you completed Chapter 9, “Tutorial: Creating new business logic” on
page 201, you must update the table to add a row for each user in the
USERS table.

v If you did not complete Chapter 9, “Tutorial: Creating new business logic”
on page 201, you must create and populate the table.

If you did not complete Chapter 9, “Tutorial: Creating new business logic” on
page 201, you must create and populate the table. Instructions for each of
these scenarios is provided.

DB2 If you are using a DB2 database and need to update the BONUS
table, do the following:
1. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center) and click the Script tab.
2. In the Script field, enter

connect to your_database_name

where your_database_name is the name of your database and click the
Execute icon.

3. In the Script field, enter the following, then click the Execute icon:
INSERT INTO BONUS
(SELECT USERS_ID, 0
FROM USERS
WHERE USERS_ID NOT IN (SELECT MEMBERID FROM BONUS))

The BONUS table has now been updated.

DB2 If you are using a DB2 database and need to create and populate the
BONUS table, do the following:
1. Open the DB2 Command Center (Start > Programs > IBM DB2 >

Command Center) and click the Script tab.
2. In the Script field, enter

connect to your_database_name

where your_database_name is the name of your database and click the
Execute icon.

3. In the Script field, enter the following, then click the Execute icon:
CREATE TABLE BONUS (MEMBERID BIGINT NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade)

The BONUS table has now been created.

322 Programmer’s Guide

4. To populate the table, enter the following in the Script field, then click the
Execute icon:
insert into BONUS (select USERS_ID, 0 from USERS)

5. Close the DB2 Command Center.

Oracle If you are using an Oracle database, and need to update the BONUS
table, do the following:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. Update the BONUS table, by entering the following information in the

SQL Plus window:
INSERT INTO BONUS
(SELECT USERS_ID, 0
FROM USERS
WHERE USERS_ID NOT IN (SELECT MEMBERID FROM BONUS));

Click Enter to run the SQL statement.
The BONUS table has now been updated.

6. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Oracle If you are using an Oracle database, and need to create and populate
the BONUS table, do the following:
1. Open the Oracle SQL Plus command window (Start > Programs > Oracle

> Application Development > SQL Plus).
2. In the User Name field, enter your Oracle user name.
3. In the Password field, enter your Oracle password.
4. In the Host String field, enter your connect string.
5. Create the BONUS table, by entering the following information in the SQL

Plus window:
CREATE TABLE Bonus (MEMBERID NUMBER NOT NULL,

BONUSPOINT INTEGER NOT NULL, constraint p_memberid primary key (MEMBERID),
constraint f_memberid foreign key (MEMBERID)
references users (users_id) on delete cascade);

Click Enter to run the SQL statement.
The BONUS table has now been created.

Chapter 10. Modifying and extending existing business logic 323

6. Populate the BONUS table, by entering the following:
insert into BONUS (select USERS_ID, 0 from USERS);

7. Enter the following to commit your database changes:
commit;

and press Enter to run the SQL statement.

Exporting the current enterprise application from WebSphere Application
Server
In this step, you export the current enterprise application from WebSphere
Application Server so that you can later open it in the Application Assembly
Tool.

To export the current enterprise application from WebSphere Application
Server, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain.
3. Expand Enterprise Application.
4. Right-click your WebSphere Commerce application. For example, expand

the demo application and select Export Application.
5. In the Export directory field, enter

drive:\WebSphere\CommerceServer\working.
This exports the whole application, including all resources into the
WC_Enterprise_App_instanceName.ear file (where instanceName is the
name of your WebSphere Commerce instance).

Note: If you already have an existing
WC_Enterprise_App_instanceName.ear file, you can rename the old
file or overwrite it.

Exporting XML configuration information for the enterprise application
You must also export the XML configuration information for the enterprise
application. To export this information, you use the XMLConfig command line
utility provided by WebSphere Application Server.

To export this configuration information, do the following:
1. At a command prompt, navigate to the following directory:

drive:\WebSphere\CommerceServer\working

2. Invoke the XMLConfig tool to perform a partial export by entering the
following command:
xmlConfig -export OutputFileB.xml -partial was.export.app.xml

-adminNodeName wasHostName

324 Programmer’s Guide

where wasHostName is the name of the node in the WebSphere Application
Server that contains your current enterprise application. Additionally,
OutputFileB.xml is the name of the file that is created as a result of
running this command.

After you have exported the information about the enterprise beans in the
current enterprise application, you must update the OutputFileB.xml file so
that it points to the JAR file that contains the code for the modified User bean.

To update the OutputFileB.xml file, do the following:
1. Navigate to the following directory:

drive:\WebSphere\CommerceServer\working

2. Open the OutputFileB.xml file in a text editor.
3. Locate the <ear-file-name> tag and replace the value with the following:

drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

4. Locate the <ejb-module> stanza for the WCSUser EJB group and change
the value contained in the <jar-file> tags to
CustomizedWCSUserDeployed.jar

5. Save the OutputFileB.xml file.

Assembling the modified EJB group into the enterprise application
In this step, you open your enterprise application in the application assembler
tool. Once it is open inside that tool, you can do the following to include the
modified User bean to the enterprise application:
1. Make a copy of the class path for the existing version of the WCSUser EJB

group.
2. Remove the existing version of the WCSUser EJB group.
3. Import the new version of the WCSUser EJB group. The JAR file for the

new EJB group is stored within the EJB Module section of the enterprise
application.

4. Set the class path for the WCSUser EJB group.

To assemble the new EJB group into the enterprise application, do the
following:
1. Backup the current enterprise application, by doing the following:

a. At a command prompt, navigate to the following directory:
drive:\WebSphere\CommerceServer\working

b. Enter the following command:
copy WC_Enterprise_App_instanceName.ear

WC_Enterprise_App_instanceName.ear.bak2

2. Open the WebSphere Application Server Administration Console.

Chapter 10. Modifying and extending existing business logic 325

3. From the Tools menu, select Application Assembly Tool. (If a Welcome
window opens, select Cancel to access the console.)

4. Open the enterprise application upon which you are going to work, by
doing the following:
a. From the File menu, select Open.
b. In the File name field, enter:

drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

and click Open. Wait for the application to open before continuing to
the next steps. This takes several minutes.

5. Click EJB Modules. The pane on the right displays the EJB modules in
the enterprise application.

6. Click the WCSUser EJB module.
7. Click the General tab to view the class path information for the existing

WCSUser EJB module. Copy this existing class path information into a
text file (for example, WCSUser_path.txt).

8. Right-click the WCSUser EJB module and select Delete.
9. Right-click EJB Modules and select Import.

10. In the File name field, enter
drive:\WebSphere\CommerceServer\temp\CustomizedWCSUserDeployed.jar

and click Open. In the Confirm Values window, click OK.
11. Once the CustomizedWCSUserDeployed.jar file is imported, scroll to the

WCSUser EJB group and select this group.
Information about this group is shown in the pane on the right.

12. Open the text file containing the class path information for the previous
version of the WCSUser EJB group. Select and copy the class path.

13. In the classpath field for the new WCSUser EJB group paste this class
path information.

14. Click Apply.
15. From the File menu, select Close.
16. Wait for the file to close, then from the File menu, select Open and

reopen the drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear file.

17. Configure security for the User bean, by doing the following:
a. With the EJB Modules node expanded, locate and expand the

WCSUser node.
b. Expand Entity Beans.
c. Expand User

326 Programmer’s Guide

d. Click Method Extensions, then in the pane on the right do the
following:
1) Click the Advanced tab.
2) Ensure that Security identity is selected.
3) For each method, ensure that Use identity of EJB server is

selected.
4) Click Apply (if you have made any modifications).

e. In the left navigation pane, right-click Security Roles under the
WCSUser EJB group and select New, then do the following:
1) In the Name field, enter WCSecurityRole and click Apply. Note, if

this role exists already, you do not need to perform this step.
f. In the left navigation pane, right-click Method Permissions under the

WCSUser EJB group and select New, then do the following:
1) In the Method Permission Name field, enter WCMethodPermission

2) In the Methods selection area, click Add.
The Add Methods window opens.

3) Expand CustomizedWCSUserDeployed.jar and select all of the
enterprise beans (hold the Shift key while selecting). Click OK. All
enterprise beans are then displayed under the Enterprise bean
column and All methods is displayed under the Types column.

4) In the Roles selection area, click Add, select the WCSecurityRole
and click OK.

5) Click Apply, then click OK.
18. From the File menu, select Save.
19. Close the Application Assembler Tool.

After this step has completed, you have created a new enterprise application
that contains all of the previous logic as well as your new business logic. This
is all contained in the newly modified WC_Enterprise_App_instanceName.ear
file.

Importing the new enterprise application into WebSphere Application
Server
The following are the high-level steps involved in importing the new
enterprise application into WebSphere Application Server:
1. Stopping the enterprise application that is currently running in WebSphere

Application Server and then removing it. These steps are performed in the
WebSphere Application Server Administration Console.

2. Importing the new application, using the XMLConfig command line utility.
3. Refreshing the WebSphere Application Server Administator’s Console and

then starting the new enterprise application.

Each of these steps is described in more detail in the following sections.

Chapter 10. Modifying and extending existing business logic 327

Stopping and removing the current enterprise application: To stop and
remove your current enterprise application from WebSphere Application
Server, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain.
3. Expand Nodes.
4. Expand nodeName (where nodeName is the name of your node).
5. Expand Application Servers.
6. Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Server - instanceName and select
Stop.

7. Expand Enterprise Applications.
8. Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Enterprise Server - demo
application and select Stop.

9. Right-click your WebSphere Commerce application. For example,
right-click the WebSphere Commerce Enterprise Server - demo
application and select Remove.

10. When prompted to indicate if the application should be exported, select
No.

Importing the new enterprise application using XMLConfig: To import the
new enterprise application by using the XMLConfig command line utility, do
the following:
1. Navigate to the following directory:

drive:\WebSphere\CommerceServer\working

2. At the command prompt, enter the following command to import the
enterprise application into WebSphere Application Server:
xmlConfig -import OutputFileB.xml -adminNodeName was_hostname

where was_hostname is the name of the node of the WebSphere Application
Server containing the current application.

Note: 400 If you were deploying to a WebSphere Commerce instance
running on iSeries, you would have to perform an additional step to
modify directory permissions after you have imported the application.
Refer to “Importing an enterprise application” on page 366 for details
on how to modify these permissions.

Starting the new enterprise application: After you have imported the new
enterprise application using the XMLConfig command line utility, you can use

328 Programmer’s Guide

the WebSphere Application Server Administrator’s Console to perform a
refresh and then start the new application.

To refresh the console and start the new application, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain

3. Highlight Nodes.
4. Click the Refresh selected subtree icon.
5. Start your WebSphere Commerce application by doing the following:

v Expand Application Servers.
v Right-click your WebSphere Commerce application. For example,

right-click the WebSphere Commerce Server - instanceName and select
Start.

Testing the new code in the target store
To test the modified entity bean and new task command in the store running
in WebSphere Application Server, do the following:
1. Open a browser and enter the following URL:

http://hostname/webapp/wcs/stores/servlet/StoreCatalogDisplay?
storeId=store_Id&catalogId=catalog_Id&langId=-1

where store_Id is the identifier for your store and catalog_Id is the
identifier for your store’s catalog.

Note: If you receive an Error 500, you may need to restart WebSphere
Application Server in order to refresh your enterprise application.

2. Click the Register link under the Services heading and then click Register
under the New Customer heading.
Register a new customer using the e-mail address of wctester@wc and a
password of wctester1. Fill in other fields with test values and click
Submit. Leave the browser open.

3. DB2 Open the DB2 Command Center and do the following:
a. Click the Interactive tab
b. In the Command field, do the following:

1) Enter
connect to your_database_name

where your_database_name is the name of your WebSphere
Commerce database and click the Execute icon.

2) Enter select users_id from USERREG where LOGONID =
’wctester@wc’ and click the Execute icon.

Chapter 10. Modifying and extending existing business logic 329

c. The Query Results tab displays the entry for the customer you
registered in step 2. Make note of the customer’s USERS_ID value here:

d. Update the newly registered customer’s balance of bonus points. Click
the Interactive tab and in the Command field, enter the following:
update BONUS set BONUSPOINT = 1000 where MEMBERID = users_id

where users_id is the value from step 3c. Click the Execute icon.

4. Oracle Update the test user’s bonus points balance, by doing the
following:
a. Open the Oracle SQL Plus command window (Start > Programs >

Oracle > Application Development > SQL Plus).
b. In the User Name field, enter your Oracle user name.
c. In the Password field, enter your Oracle password.
d. In the Host String field, enter your connect string.
e. Enter select users_id from USERREG where LOGONID = ’wctester@wc’;

to determine the user’s ID.
f. The entry for the customer you registered in step 2 is displayed. Make

note of the customer’s USERS_ID value here: ______________
g. Update the newly registered customer’s balance of bonus points by

entering the following:
update BONUS set BONUSPOINT = 1000 where MEMBERID = users_id;

where users_id is the value from step 4f.
h. Enter the following to commit your database changes:

commit;

and press Enter to run the SQL statement.
5. In the browser, click the Men’s fashions link to view the Men’s fashions

section of the store.
6. Click the link for the featured special to view the product page. The page

displays the regular price, and the discounted price based upon the
customer’s balance of bonus points.

330 Programmer’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 2000, 2002 331

332 Programmer’s Guide

Appendix A. Starting and stopping the WebSphere Test
Environment

This section describes the steps involved to start the WebSphere Test
Environment within VisualAge for Java. In general, starting this environment
requires you to perform the following steps:
1. Start the persistent name server.
2. Start the EJB server.
3. Start the Servlet engine.

Each of these steps is described in the subsequent sections.

To stop the test environment, reverse the order of steps.

Note: In order to use all of the features of the WebSphere Test Environment,
you should ensure that the WebSphere Application Server is not
running, before starting the WebSphere Test Environment. For
information on stopping the WebSphere Application Server, refer to the
WebSphere Commerce Installation Guide.

Starting and stopping the persistent name server

The persistent name server receives lookup requests from clients for enterprise
beans. All enterprise beans are registered with the persistent name server.

To start or stop the persistent name server, do the following:
1. From the Workspace menu in VisualAge for Java, select Tools >

WebSphere Test Environment.
The WebSphere Test Environment Control Center opens.

2. Click Persistent Name Server and then click one of the following:
v Start Name Server.

Wait for the “Server open for business” message in the Console window.
Starting this server may take several minutes.

v Stop Name Server.

© Copyright IBM Corp. 2000, 2002 333

Starting and stopping the EJB server

The EJB server is a high-level process or application that provides a run-time
environment to support the execution of server applications that use
enterprise beans.

To start or stop the EJB server, do the following:
1. Open the EJB server configuration window (click the EJB tab, then from

the EJB menu, select Open To > Server Configuration).
2. Right-click the EJB server that you want to start or stop (for example, EJB

Server {Server 1}) and do one of the following:
v Select Start Server

Wait for the “Server open for business” message in the Console window
(you may need to select EJB Server in the Console to view the status for
this server). Starting this may take 10 or 15 minutes, depending upon
your computer.

v Select Stop Server

The Console is the standard input and output device for Java
programs in the IDE. To see output for a particular program, first
select the program in the All Programs pane, then its output is
displayed in the Output pane.

Starting and stopping the servlet engine

The servlet engine integrates the Web server and WebSphere Application
Server functionality to create an environment for testing purposes.

To start or stop the servlet engine, do the following
1. From the Workspace menu in VisualAge for Java, select Tools >

WebSphere Test Environment.
The WebSphere Test Environment Control Center opens.

2. Click Servlet Engine and then one of the following:
v Start Servlet Engine.

When the Servlet Engine has started, the console displays the
***Servlet Engine is started *** message.

v Stop Servlet Engine.

334 Programmer’s Guide

Appendix B. Deployment details

After you have created customized code in VisualAge for Java and have
tested it within the WebSphere Test Environment, you must deploy it to a
WebSphere Commerce instance running outside of the WebSphere Test
Environment. This WebSphere Commerce instance can run locally on your
development machine, or it can be on another machine (using the same, or a
different operating system).

This appendix describes the steps required for deployment of customized
code to a WebSphere Commerce instance running outside of the WebSphere
Test Environment. You should refer to “Code deployment” on page 187 to
gain an understanding of the high-level steps of the deployment process and
then refer to this appendix for the details.

Mapping to the integrated file system (iSeries)

400 This section only applies if your target WebSphere Commerce Server
is running on the iSeries platform.

If your target WebSphere Commerce Server is running on the iSeries platform,
then you must map a local drive on your development machine to the
Integrated File System (IFS) on your iSeries server. In subsequent sections in
this document, iSeries_drive is used to refer to this local drive that is
mapped to the IFS. Additionally, drive is used to a local drive on your
development machine (one that has not been mapped to the IFS).

JAR files for customized commands and data beans

Customized command and data bean code must be stored in a project that is
separate from WebSphere Commerce code. When you have completed testing
within the WebSphere Test Environment, you must create a JAR file for the
project that contains the customized command and data bean code, and then
place the JAR file in the appropriate directory on the target WebSphere
Commerce Server.

To create a JAR file for customized commands and data beans, do the
following:
1. In the Workbench in VisualAge for Java, select the Project tab.
2. Right-click the project that contains your customized command and data

bean code and select Export.
The Export SmartGuide opens.

© Copyright IBM Corp. 2000, 2002 335

3. Select Jar file and click Next.
4. In the Jar file field, enter the following:

drive:\WebSphere\CommerceServerDev\temp_directory\
jar_file_name_1.jar
where drive:\WebSphere\CommerceServerDev\temp_directory\ is a
temporary directory that has enough free space for your JAR file and
jar_file_name_1.jar is the name of your JAR file with _1 appended.

5. Select the attributes for the JAR file, as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
6. Click Finish.

Since the implementation JAR file created does not contain complete package
naming information, you must use another packaging utility (outside of
VisualAge for Java) to repackage the JAR file. To repackage this file, do the
following:
1. In a command window, navigate to the directory where you stored

jar_file_name_1.jar in the preceding steps.
2. Enter mkdir temp1.
3. Enter cd temp1.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../jar_file_name_1.jar.
6. Enter jar cvf ../jar_file_name.jar * (note that the _1 is removed from

the name).
7. Switch to the drive:\WebSphere\CommerceDev\temp_directory directory.
8. If you are deploying to a local WebSphere Commerce instance, copy

jar_file_name.jar to the following directory:
drive:\WebSphere\AppServer\installedApps\

WC_Enterprise_App_instanceName.ear\wcstores.war\WEB-INF\lib

336 Programmer’s Guide

directory. Otherwise, leave the JAR file in the temporary directory until
you need to transfer all file assets to the target WebSphere Commerce
Server.

Creating JAR files for new entity beans

When you create new entity beans, you must store the code in a project that is
separate from all WebSphere Commerce code. In addition, it must be separate
from any of your customized command and data bean code. A new entity
bean must be created in an EJB group that is separate from the EJB groups
that contain the WebSphere Commerce public entity beans.

Deploying new entity beans involves creating two JAR files. The first JAR file
is the EJB 1.1 Export JAR, and it is created using tools that are available when
the EJB tab selected. The second JAR file contains the implementation code for
the entity bean, and is created from the project that contains the entity bean
code. This second JAR file is created using tools that are available when the
Projects tab selected in the VisualAge for Java Workbench.

Creating the EJB 1.1 Export JAR file
To create the EJB 1.1Export JAR file for new entity beans, do the following:
1. In the Workbench in VisualAge for Java, select the EJB tab.
2. Right-click the EJB group that contains your customized entity bean code

and select Export > EJB 1.1 JAR.
The Export to an EJB 1.1 JAR file SmartGuide opens.

3. In the Jar file field, enter the following:
drive:\WebSphere\CommerceServerDev\temp_directory\jarFileName_DT.jar
where drive:\WebSphere\CommerceServerDev\temp_directory is a
temporary directory that has enough free space for your JAR file and
jarFileName_DT.jar is the name of your JAR file with the suffix of _DT
added on.

The JAR file has been named with the “_DT” suffix as a reminder
that you must run this JAR file through the EJB Deploy Tool
provided by WebSphere Application Server before deploying it into
your WebSphere Commerce application.

4. Select the attributes for the JAR file, as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

Appendix B. Deployment details 337

Attribute Value

Target database DB2 If you are deploying to a DB2 database,
select one of the following:

v Windows AIX Solaris

Linux

DB2 for NT, V7.1

v 400 DB2 for AS/400, V4

Oracle If you are deploying to an Oracle
database, select Oracle, V8

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
5. Click Finish.

The JAR file is created.

Creating the implementation JAR file
To create the implementation JAR file for new entity beans, do the following:
1. In the Workbench in VisualAge for Java, select the Project tab.
2. Right-click the project that contains your customized entity bean code and

select Export.
The Export SmartGuide opens.

3. Select Jar file and click Next.
4. In the Jar file field, enter the following:

drive:\WebSphere\CommerceServerDev\temp_directory\jarFileName_1.jar
where drive:\WebSphere\CommerceServerDev\temp_directory is a
temporary directory that has enough free space for your JAR file and
jarFileName_1.jar is the name of your JAR file with _1 appended.

5. Select the attributes for the JAR file, as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

beans Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.

338 Programmer’s Guide

6. Click Finish.

Since the implementation JAR file created does not contain complete package
naming information, you must use another packaging utility (outside of
VisualAge for Java) to repackage the JAR file. To repackage this file, do the
following:
1. In a command window, navigate to the directory where you stored

jarFileName_1.jar in the preceding steps.
2. Enter mkdir temp1.
3. Enter cd temp1.
4. Set the path as follows:

set PATH=%PATH%;drive:\WebSphere\WebSphereStudio4\bin;
where drive is the drive on which WebSphere Studio is installed.

5. Enter jar xvf ../jarFileName_1.jar.
6. Enter jar cvf ../jarFileName.jar * (note that the _1 is removed from

the name).
7. Switch to the drive:\WebSphere\CommerceServerDev\temp_directory

directory.
8. If you are deploying to a local WebSphere Commerce instance, copy

jarFileName_1.jar to the following directory:
drive:\WebSphere\CommerceServer\temp\lib
Otherwise, leave the JAR file in the temporary directory until you need to
transfer all file assets to the target WebSphere Commerce Server.

Creating JAR files for customized WebSphere Commerce entity beans

You are permitted to extend any of the public WebSphere Commerce entity
beans. These beans are found in the following EJB groups:
v WCSActrlEJBGroup
v WCSApproval
v WCSAuction
v WCSCatalog
v WCSCommon
v WCSContract
v WCSCoupon
v WCSFulfillment
v WCSInventory
v WCSMessageExtensions
v WCSOrder
v WCSOrderManagement
v WCSOrderStatus

Appendix B. Deployment details 339

v WCSPayment
v WCSPVCDevices
v WCSTaxation
v WCSUserTraffic
v WCSUser
v WCSUTF

If you extend any of the public WebSphere Commerce entity beans, you must
create an EJB 1.1 Export JAR file for the EJB group that contains the modified
WebSphere Commerce public entity bean.

Creating the EJB 1.1 Export JAR file
To create the EJB 1.1 Export JAR file for the EJB group that contains the
modified entity bean, do the following:
1. In the Workbench in VisualAge for Java, select the EJB tab.
2. Right-click the EJB group that contains your customized entity bean code

and select Export > EJB 1.1 JAR.
The Export to an EJB 1.1 JAR file SmartGuide opens.

3. In the Jar file field, enter the following:
drive:\WebSphere\CommerceServerDev\temp_directory\
Cust_EJBGroupName-ejb_DT.jar
where drive:\WebSphere\CommerceServerDev\temp_directory is a
temporary directory that has enough free space for your JAR file and
Cust_EJBGroupName-ejb_DT.jar is the name of your JAR file with the suffix
of _DT added on.

The JAR file has been named with the “_DT” suffix as a reminder
that you must run this JAR file through the EJB Deploy Tool
provided by WebSphere Application Server before deploying it into
your WebSphere Commerce application.

4. Select the attributes for the JAR file, as follows:

Attribute Value

class Checked

java Unchecked

resource Checked

340 Programmer’s Guide

Attribute Value

Target database DB2 If you are deploying to a DB2 database,
select one of the following:

v Windows AIX Solaris

Linux

DB2 for NT, V7.1

v 400 DB2 for AS/400, V4

Oracle If you are deploying to an Oracle
database, select Oracle, V8

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
5. Click Finish.

Creating the client JAR file
To create the client JAR file, do the following:
1. With the EJB tab selected, highlight the all of the WebSphere Commerce

EJB groups (the name begin with WCS). With all of these groups
highlighted, right-click and select Export > Client JAR.
The Export SmartGuide opens.

2. In the JAR file field, enter the following:
drive:\WebSphere\CommerceServerDev\temp_directory\wcsejsclient.jar

3. Select attributes as follows:

Attribute Value

beans Checked

class Checked

java Unchecked

resource Checked

Include debug attributes in
.class file

Checked

Accept the default values for other attributes.
4. Click Finish.

The JAR file is created.

Appendix B. Deployment details 341

Storing assets on the target WebSphere Commerce Server

Assets related to your customized code must be copied to the target
WebSphere Commerce Server. These assets include JAR files for customized
commands, data beans and entity beans. You may also have new JSP
templates and graphics that support the customization.

AIX Solaris Linux You should perform all of the deployment steps
on the target WebSphere Commerce Server using the user that was created
when the steps in the “Running the postinstall script” section of the WebSphere
Commerce Installation Guide were performed. By default, that is the wasuser. In
addition, ensure that your file assets (for example, JAR files) and directories
into which these assets are placed have read, write and execute file
permissions granted for this user.

400 Ensure that the authorities for the
/QIBM/UserData/WebCommerce/instances/instanceName and
/QIBM/UserData/WebCommerce/instances/instanceName/working directories
include the user QEJB. Add this user to both directories, setting the Data
Authority to *RWX.

The following table summarizes the standard directories in which assets are
stored on a target WebSphere Commerce Server that is running Windows NT
or Windows 2000.

Table 12.

Asset Type Directory location on target WebSphere Commerce Server

JAR files for
command and
databean logic

drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\WEB-
INF\lib

EJB 1.1 Export JAR
created using
VisualAge for Java

drive:\WebSphere\CommerceServer\temp
Note: This file is then passed as an input to the EJBDeploy
tool to generate deployed code that can be used in WebSphere
Application Server V4.0.

JAR file of EJB client
code

drive:\WebSphere\CommerceServer\temp\lib
Note: This file is only used in the class path for the EJBDeploy
tool.

JAR file of EJB
implementation code

drive:\WebSphere\CommerceServer\temp\lib
Note: This file is then added into the enterprise application as
a file asset.

JSP templates drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\storeDir

342 Programmer’s Guide

Table 12. (continued)

Asset Type Directory location on target WebSphere Commerce Server

Images drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\storeDir\
images

To store assets on the target WebSphere Commerce Server, do the following:
1. Locate the JAR files for your command and data bean code. These should

be in one of the following directories on the development machine:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\WEB-INF\lib

v Windows drive:\WebSphere\CommerceServerDev\temp_directory

2. Copy the JAR files for your command and data bean code one of the
following directories on the target WebSphere Commerce Server:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\WEB-INF\lib

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/WEB-INF/lib

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/WEB-INF/lib

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/WEB-INF/lib

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
wcstores.war/WEB-INF/lib

3. Locate the EJB 1.1 Export JAR files for any new EJB groups as well as
any modified WebSphere Commerce entity beans in the following
directory on the development machine:

Windows drive:\WebSphere\CommerceServerDev\temp_directory

4. Copy the EJB 1.1 Export JAR files into one of the following directories on
the target WebSphere Commerce Server:

v Windows drive:\WebSphere\CommerceServer\temp

v AIX /usr/WebSphere/CommerceServer/temp

v Solaris /opt/WebSphere/CommerceServer/temp

v Linux /opt/WebSphere/CommerceServer/temp

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/temp

Appendix B. Deployment details 343

5. If you have created new enterprise beans, locate the implementation JAR
file for these beans in the following directory on the development
machine:

Windows drive:\WebSphere\CommerceServerDev\temp_directory

6. Copy the implementation JAR file for your new enterprise beans into the
following directory on the target WebSphere Commerce Server:

v Windows drive:\WebSphere\CommerceServer\temp\lib

v AIX /usr/WebSphere/CommerceServer/temp/lib

v Solaris /opt/WebSphere/CommerceServer/temp/lib

v Linux /opt/WebSphere/CommerceServer/temp/lib

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/
temp/lib

7. If you have modified existing WebSphere Commerce entity beans, locate
the client JAR file in the following directory on the development
machine:

Windows drive:\WebSphere\CommerceServerDev\temp_directory

8. Copy the client JAR file to one of the following directories on the target
WebSphere Commerce Server:

v Windows drive:\WebSphere\CommerceServer\temp\lib

v AIX /usr/WebSphere/CommerceServer/temp/lib

v Solaris /opt/WebSphere/CommerceServer/temp/lib

v Linux /opt/WebSphere/CommerceServer/temp/lib

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/
temp/lib

9. Copy any JSP templates into the following directories on the target
WebSphere Commerce Server:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\store_directory

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/store_directory

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/store_directory

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/store_directory

344 Programmer’s Guide

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
wcstores.war/store_directory

where store_directory is the directory for your store.
10. Copy any images into the following directories on the target WebSphere

Commerce Server:

v Windows drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\wcstores.war\
store_directory\images

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/
store_directory/images

v Solaris /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/wcstores.war/
store_directory/images

v Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_instanceName.ear/
wcstores.war/store_directory/images

v 400 /QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear/
wcstores.war/store_directory/images

where store_directory is the directory for your store.

Updating the target database

When your target WebSphere Commerce Server uses a different database than
your development machine, you must perform all updates that were done to
the development database on the database that is used by the target
WebSphere Commerce Server. This includes any updates for the registration of
new or modified commnads, additional tables that have been created and the
creation of access control policies for any new resources that have been
created.

For information about loading access control policies (including command
syntax for various platforms and directory permission requirements), refer to
the WebSphere Commerce Access Control Guide.

400 You are reponsible for having a utility for running SQL statements.
One way to do this is to use Client Access Express V5R1 (full installation). To
open this utility, do the following:
1. Open the Operations Navigator.

Appendix B. Deployment details 345

2. After the operations navigator opens, you are required to sign onto a
particular system. Ensure that you select the target iSeries machine and
use the WebSphere Commerce instance user profile and password. This
ensures that the WebSphere Commerce instance user profile owns all new
tables that are created.

3. Click on your system in the panel on the left, then right-click on
DATABASE and select Run SQL Scripts from the drop-down list.
The Run SQL Scripts window opens. Using this window, you can cut and
paste in SQL statements or open a SQL script. You can set your default
schema by using the Connection/JDBC setup options.

Generating deployed code

This section describes how to use the EJB Deploy Tool to generate the
deployed code for the enterprise beans contained in the EJB 1.1 Export JAR
file. This tool is provided by WebSphere Application Server.

To generate the deployed code, do the following:
1. At a command prompt on the target WebSphere Commerce Server,

navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\temp

v AIX /usr/WebSphere/CommerceServer/temp

v Solaris /opt/WebSphere/CommerceServer/temp

v Linux /opt/WebSphere/CommerceServer/temp

2. 400 At a command prompt on the target WebSphere Commerce
Server, enter the following commands:
STRQSH
cd /QIBM/UserData/WebCommerce/instances/instanceName/temp

3. Temporarily add the tool to the system path by entering the following
command:

v Windows PATH=drive:\WebSphere\AppServer\deploytool;%PATH%

v AIX PATH=/usr/WebSphere/AppServer/deploytool:$PATH

v Solaris PATH=/opt/WebSphere/AppServer/deploytool:$PATH

v Linux PATH=/opt/WebSphere/AppServer/deploytool:$PATH

v 400 PATH=/QIBM/ProdData/WebASAdv4/bin:$PATH

CP=ClassPathOfDepJARFiles

where ClassPathOfDepJARFiles is the class path of any dependent JAR
files. Note that if you have modified an existing WebSphere Commerce

346 Programmer’s Guide

enterprise bean you must include the wcsejsclient.jar,
wcsejbimpl.jar, and xml4j.jar files in the class path of dependent JAR
files. As such, the following provides an example class path for a case
where an existing WebSphere Commerce enterprise bean has been
modified:
CP=/QIBM/UserData/WebCommerce/instances/instanceName/temp/lib/
wcsejsclient.jar:
/QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/installedApps/
WC_Enterprise_App_instanceName.ear/lib/wcsejbimpl.jar:
/QIBM/UserData/WebASAdv4/WAS_AdminInstanceName/installedApps/
WC_Enterprise_App_instanceName.ear/lib/xml4j.jar

Note: The line breaks in the preceding class path example are for
display purposes only. You should enter class path information
on a single line.

4. Solaris Linux In order to avoid exceding the character limit in the
command line interface, a script is used to invoke the ejbdeploy
command. Do the following to create this script and invoke the command:
a. Navigate to the following directory:

/opt/WebSphere/AppServer/bin

b. Create a new file and name it appropriately for the script. For example,
name the file myejbd.sh.

c. Include the following information in the myejbd.sh file:
#!/bin/sh
./ejbdeploy.sh EJBGroupJARFile WorkingDir OutputJARFile
-nowarn -keep -35 -cp ClassPathOfDepJARFiles

where the variables have the same definitions as those in step 5(note,
that you do not perform that step). The following is an example of
what to include in the script file, with values for the variables
included:
#!/bin/sh
./ejbdeploy.sh
/opt/WebSphere/CommerceServer/temp/CustomizedWCSUserDeployed_DT.jar
. /opt/WebSphere/CommerceServer/temp/CustomizedWCSUserDeployed.jar
-nowarn -keep -35 -cp "/opt/WebSphere/CommerceServer/temp/lib/
wcsejsclient.jar:/opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_demo.ear/lib/wcsejbimpl.jar:/opt/WebSphere/
AppServer/installedApps/WC_Enterprise_App_demo.ear/lib/xml4j.jar"

Note: All line breaks after the ./ejbdeploy.sh command are for
display purposes only. You should not have breaks after the
./ejbdeploy.sh command in your file.

Save the script and make it executable.
d. Invoke the script by entering the following:

./myejbd.sh

Appendix B. Deployment details 347

5. Windows AIX 400 Enter the ejbdeploy command as follows:
Windows 400

ejbdeploy EJBGroupJARFile_DT WorkingDir OutputJARFile -nowarn -keep -35 -cp
ClassPathOfDepJARFiles

AIX

/usr/WebSphere/AppServer/bin/ejbdeploy.sh EJBGroupJARFile_DT WorkingDir
OutputJARFile -nowarn -keep -35
-cp ClassPathOfDepJARFiles

where:
v EJBGroupJARFile_DT is the name the JAR file for your EJB group. For

example, if you modified a bean in the WCSUser EJB group, an example
usage on a Windows-based platform is
drive:\WebSphere\CommerceServer\temp\CustomizedWCSUser_DT.jar

400 An example usage for the iSeries platform is
/QIBM/UserData/WebCommerce/instances/instanceName/temp/
CustomizedWCSUser_DT.jar

v WorkingDir the name of the directory where temporary files that are
required for code generation are stored.

v OutputJARFile is the fully qualified name of the output JAR file. For
example, you might enter CustomizedWCSUserDeployed.jar.

v -nowarn is an optional parameter to suppress warning and information
messages.

v -keep is an optional parameter to retain the working directory after the
ejbdeploy command has run.

v -35 is a mandatory parameter that will use the same top-down mapping
rules for CMP entity beans that are used in the EJB Deploy Tool that
was provided with the WebSphere Application Server, Version 3.5.

v -cp ClassPathOfDepJARFiles is the class path of any dependent JAR
files. When you have modified an existing WebSphere Commerce
enterprise bean you must include the wcsejsclient.jar,
wcsejbimpl.jar, and xml4j.jar files in the class path of dependent JAR
files. As such, the following provides an example class path for a case
where an existing WebSphere Commerce enterprise bean has been
modified:
“drive:\WebSphere\CommerceServer\temp\lib\wcsejsclient.jar;
drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear \lib\wcsejbimpl.jar;
drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_instanceName.ear\lib\xml4j.jar;”

348 Programmer’s Guide

Note: 400 For the class path values, enter -cp $CP where CP has
been previously defined with the appropriate class path entries.
Additionally, the quotation marks are not required.

Modifying transaction isolation level of entity beans

This section describes how to use the modifyIsolationLevel command line
utilty to set the transaction isolation level of your entity beans to the
appropriate level for your database type.

To run the modifyIsolationLevel command, do the following:
1. On the target WebSphere Commerce Server, use a command prompt to

navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\bin

v AIX /usr/WebSphere/CommerceServer/bin

v Solaris /opt/WebSphere/CommerceServer/bin

v Linux /opt/WebSphere/CommerceServer/bin

2. 400 Enter the following commands:
STRQSH
cd /QIBM/ProdData/WebCommerce/bin

3. You must issue the modifyIsolationLevel command, which has the
following general syntax:

Windows AIX 400

modifyIsolationLevel -jarFile jar_file_name.jar
-logFile log_file_name -dbType db_type

Solaris Linux

./modifyIsolationLevel.sh -jarFile jar_file_name.jar
-logFile log_file_name -dbType db_type

where
v jar_file_name.jar is the name of the JAR file that contains the

customized code
v log_file_name is the fully qualified file name where information should

be logged
v db_type is the type of database you are using. Enter either DB2 or

ORACLE

The following is an example of the modifyIsolationLevel command with
all values specified for usage on a Windows platform:

Appendix B. Deployment details 349

modifyIsolationLevel -jarFile
D:\WebSphere\CommerceServer\temp\CustomizedWCSUserDeployed.jar
-logFile D:\WebSphere\CommerceServer\instances\demo\logs\output.log
-dbType DB2

400 The following is an example of the modifyIsolationLevel
command with all values specified for usage on the iSeries:
modifyIsolationLevel -jarFile

/QIBM/UserData/WebCommerce/instances/instanceName/temp/
CustomizedWCSUserDeployed.jar -logFile /QIBM/UserData/WebCommerce/
instances/instanceName/logs/output.log -dbType DB2

Note that in the preceding examples, the line breaks are for display
purposes only.

Note: The parameter names are case sensitive. That is, jarFile is not the
same as jarfile. Ensure that you enter the parameter names correctly.

The command has run successfully if no exceptions are displayed in the
command window. After completion, note that the timestamp on your
deployed JAR file has changed.

Exporting the current WebSphere Commerce enterprise application

This section describes how to use the WebSphere Application Server
Administration Console to export the current WebSphere Commerce
enterprise application.

To export the current enterprise application from the WebSphere Application
Server, do the following:
1. Ensure that you have the following directory on the target WebSphere

Commerce Server:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/working

If you do not already have this directory, create it now.

Note: AIX Solaris Linux Ensure that the permission for the
/working directory is set to the user that was created when the steps
in the “Running the postinstall script” section of the WebSphere
Commerce Installation Guide were performed.

350 Programmer’s Guide

400 Ensure that the authorities for the
/QIBM/UserData/WebCommerce/instances/instanceName and
/QIBM/UserData/WebCommerce/instances/instanceName/working
directories include the user QEJB. Add this user to both directories,
setting the Data Authority to *RWX.

2. Open the WebSphere Application Server Administration Console.
3. Expand WebSphere Administrative Domain.
4. Expand Enterprise Application.
5. Right-click your WebSphere Commerce application. For example, expand

the demo application and select Export Application.
6. In the Export directory field, enter the following:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/working

This exports the whole application, including all resources into the
WC_Enterprise_App_instanceName.ear file (where instanceName is the
name of your WebSphere Commerce instance).

Exporting configuration information for enterprise beans

This section describes how to use the -export option of the XMLConfig
command line utility to export the configuration information for the
enterprise beans that are contained in the existing enterprise application.

After the information for the beans in the existing application has been
exported, you must manually add information for any new beans that you are
adding to the application.

To export this configuration information, do the following:
1. Copy the was.export.app.xml file from the following directory on the

target WebSphere Commerce Server:

v Windows drive:\WebSphere\CommerceServer\xml\config

v AIX /usr/WebSphere/CommerceServer/xml/config

v Solaris /opt/WebSphere/CommerceServer/xml/config

v Linux /opt/WebSphere/CommerceServer/xml/config

v 400 /QIBM/ProdData/WebCommerce/xml/config

Appendix B. Deployment details 351

into the following directory on the target WebSphere Commerce Server:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/working
where
– instanceName is the name of your WebSphere Commerce instance.

2. Windows AIX Solaris Linux Open the was.export.app.xml file in
a text editor. In this file replace all occurances of
$Enterprise_Application_Name$ with
WebSphere Commerce Enterprise Application - instanceName

where instanceName is the name of your WebSphere Commerce instance
(for example, demo). Save this file.

Note: The value that you are inserting must match the information for
your instance that is displayed in the WebSphere Application Server
Administration Console.

3. 400 Open the was.export.app.xml file in a text editor. In this file
replace all occurances of $Enterprise_Application_Name$ with
instanceName - WebSphere Commerce Enterprise Application

where instanceName is the name of your WebSphere Commerce instance
(for example, demo). Save this file.

Note: The value that you are inserting must match the information for
your instance that is displayed in the WebSphere Application Server
Administration Console.

4. Windows AIX Solaris Linux At a command prompt, navigate to
the following directory:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

5. 400 At a command prompt, enter the following:

352 Programmer’s Guide

STRQSH
PATH=/QIBM/ProdData/WebASAdv4/bin:$PATH
cd /QIBM/UserData/WebCommerce/instances/instanceName/working

6. Windows AIX Solaris Linux Invoke the XMLConfig tool to
perform a partial export by entering the following command:

Windows

xmlConfig -export OutputFile.xml -partial was.export.app.xml
-adminNodeName wasHostName

AIX

/usr/WebSphere/AppServer/bin/XMLConfig.sh -export OutputFile.xml
-partial was.export.app.xml -adminNodeName wasHostName
-nameServiceHost wasHostName -nameServicePort wasAdminPort

Solaris Linux

/opt/WebSphere/AppServer/bin/XMLConfig.sh -export OutputFile.xml
-partial was.export.app.xml -adminNodeName wasHostName
-nameServiceHost wasHostName -nameServicePort wasAdminPort

where
v wasHostName is the name of the node in the WebSphere Application

Server that contains your current enterprise application.
v OutputFile.xml is the name of the file that is created as a result of

running this command and was.export.app.xml is file that you modified
in step 2.

v wasAdminPort is the WebSphere Application Server administration port.

7. 400 Invoke the XMLConfig tool to perform a partial export by
entering the following command:
xmlConfig -export OutputFile.xml -partial was.export.app.xml
-adminNodeName wasHostName -nameServiceHost wasHostName
-nameServicePort wasAdminPort -instance wasInstanceName

where
v wasHostName is the name of the node in the WebSphere Application

Server that contains your current enterprise application.

Note: The value for wasHostName is case-sensitive and must match the
value that is in the TCP/IP configuration. (Use a command-line
processor to access CFGTCP, option 12 to verify host name.)

v OutputFile.xml is the name of the file that is created as a result of
running this command and was.export.app.xml is file that you modified
in step 3.

Appendix B. Deployment details 353

v wasAdminPort is the WebSphere Application Server administration port.
v wasInstanceName is the WebSphere Application Server instance name.

After you have exported the configuration information for each of the beans
contained in the current enterprise application, you must add in a new stanza
that describes each enterprise bean that you will add to your application. For
example, if you had a new entity bean called “Bonus”, you must add a stanza
that describes this Bonus bean. In addition, you must replace a variable in the
configuration file to specify the exact name of the .ear file for your enterprise
application.

To make these updates to the OutputFile.xml file, do the following:
1. Navigate to the following directory on the target WebSphere Commerce

Server:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

v 400 /QIBM/UserData/WebCommerce/instances/
instanceName/working

2. Open the OutputFile.xml file in a text editor.
3. Locate the <ear-file-name> tag and replace the value with the following:

v Windows drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

v AIX /usr/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Solaris /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Linux /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v 400 /QIBM/UserData/WebCommerce/instances/instanceName/
working/WC_Enterprise_App_instanceName.ear

4. You must also add in a new stanza for the each new bean that you are
adding to the enterprise application. The following example shows how to
add a new bean, called “Bonus”.

Windows AIX Solaris Linux

<ejb-module name="yourEJBGroup">
<jar-file>yourDeployedJarFile.jar</jar-file>
<module-install-info>

354 Programmer’s Guide

<application-server-full-name>/NodeHome:$hostName$/EJBServerHome:
WebSphere Commerce Server - instanceName/

</application-server-full-name>
</module-install-info>
<ejb-module-binding>

<data-source>
<jndi-name>jdbc/WebSphere Commerce DB2 DataSource instanceName

</jndi-name>
<default-user>user</default-user>
<default-password>password</default-password>

</data-source>
<enterprise-bean-binding name="BeanBindingName">

<jndi-name>instanceNameJNDINameOfBean</jndi-name>
</enterprise-bean-binding>

</ejb-module-binding>
</ejb-module>

400

<ejb-module name="yourEJBGroup">
<jar-file>yourDeployedJarFile.jar</jar-file>
<module-install-info>

<application-server-full-name>/NodeHome:$hostName$/EJBServerHome:
instanceName - WebSphere Commerce Server/

</application-server-full-name>
</module-install-info>
<ejb-module-binding>

<data-source>
<jndi-name>jdbc/instanceName WebSphere Commerce DB2 DataSource

</jndi-name>
<default-user>user</default-user>
<default-password>password</default-password>

</data-source>
<enterprise-bean-binding name="BeanBindingName">

<jndi-name>instanceNameJNDINameOfBean</jndi-name>
</enterprise-bean-binding>

</ejb-module-binding>
</ejb-module>

where
v yourEJBGroup is the name of the EJB group that contains the bean that

you are adding to the enterprise application.
v yourDeployedJarFile is the name of the JAR file that contains the

deployed code for your EJB group.
v instanceName is the name of your WebSphere Commerce instance to

which you are deploying the code.
v user is your database user name.
v password is the password for your database user.
v BeanBindingName is the binding name for your enterprise bean. For

example, for bean named Bonus, this is Bonus_Binding.

Appendix B. Deployment details 355

v instanceNameJNDINameOfBean is the JNDI name of the enterprise bean
with the WebSphere Commerce instance prepended. This JNDI name
must exactly match that of the enterprise bean. An example value is
democom/ibm/commerce/sample/objects/Bonus. In this example, “demo” is
the instance name and “com/ibm/commerce/sample/objects/Bonus” is the
JNDI name of the enterprise bean. This value must be entered on a
single line.
You can verify the JNDI name using either VisualAge for Java or the
Application Assembly Tool.
To verify the JNDI name using VisualAge for Java, do the following:
a. Right-click the bean and select Properties.

The JNDI name is displayed.

The JNDI name can be verified using the Application Assembly Tool,
however, this requires that you have already assembled the new
enterprise bean into the enterprise application. The Application
Assembly Tool is accessed from the Tools menu in the WebSphere
Application Server Administration Console.

To verify the JNDI name using the Application Assembly Tool, do the
following:
a. Open the .ear file that contains the bean.
b. Expand the EJB module that contains the bean.
c. Select the bean.
d. Click the Bindings tab.

The JNDI name is displayed.

Note that using either of these methods shows the JNDI name, you
must still prepend the name of the WebSphere Commerce instance when
adding the information to the XML file.

Notes:

a. The line breaks in the preceding stanzas are for display purposes only.
b. Ensure that the $hostName$ value matches the current admininstration

node server name. In addition, ensure that there is no carriage return
character in this line.

c. The <application-server-full-name> specification cannot span more
than one line.

d. If you are using an Oracle database, you must modify the datasource
information. Change the following line taken from the preceding code
snip:
<jndi-name>jdbc/WebSphere Commerce DB2 DataSource instanceName

</jndi-name>

to the following:

356 Programmer’s Guide

<jndi-name>jdbc/WebSphere Commerce Oracle DataSource instanceName
</jndi-name>

5. If you are deploying modified WebSphere Commerce entity beans, you
must update the stanzas for those beans to reflect the names of JAR files
that contain the deployed code for the modified beans.

6. Save the OutputFile.xml file.

Assembling new enterprise beans into an enterprise application

This section describes how to use the Application Assembly Tool to assemble
new enterprise beans into an existing enterprise application.

400 Since the Application Assembly Tool runs on the Windows platform,
you must reference the drive that you have mapped to your iSeries IFS when
prompted for fully-qualified path names. This is referred to as the
iSeries_drive.

AIX Solaris Linux It is advisable to increase the memory
heap size value in the assembly.sh file to avoid running out of
memory when saving new or modified .ear files.

This file is located in the following directory:

v AIX /usr/WebSphere/AppServer/bin

v Solaris /opt/WebSphere/AppServer/bin

v Linux /opt/WebSphere/AppServer/bin

To increase the memory heap size, modify the following line:

$JAVA_HOME/jre/bin/java

so that it appears as follows:

$JAVA_HOME/jre/bin/java -mx512M

In this step, you open the .ear file your enterprise application that was
created in section Exporting the current WebSphere Commerce enterprise
application in the application assembler tool. Once it is open inside that tool,
perform the following tasks to add the new entity bean to the enterprise
application:
1. Import the EJB group containing the new entity bean. The JAR file for the

new EJB group will be stored within the EJB Module section of the
enterprise application.

2. Set the class path for the new entity bean to include the implementation
JAR file.

Appendix B. Deployment details 357

3. Add the implementation JAR file to the application. This JAR file will be
stored within the Files section of the enterprise application.

4. Set up WebSphere Application Server security for methods contained in
the new entity bean.

To assemble the new EJB group into the enterprise application, do the
following:

1. Windows AIX Solaris Linux Backup the current enterprise
application, by doing the following on the target WebSphere Commerce
Server:
a. At a command prompt, navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

b. Make a copy of the existing WC_Enterprise_App_instanceName.ear file
and name it WC_Enterprise_App_instanceName.ear.bak.

2. 400 Backup the current enterprise application, by doing the
following:
a. At a command prompt, enter the following:

STRQSH
cd /QIBM/UserData/WebCommerce/instances/instanceName/working
cp WC_Enterprise_App_instanceName.ear
WC_Enterprise_App_instanceName.ear.bak

b. To avoid unnecessarily long waiting times caused by the transfer of
data between your local client machine and the iSeries machine
running WebSphere Application Server, create the following directory
on your local client machine and then copy the
WC_Enterprise_App_instanceName.ear file to this directory:
drive:\WebSphere\CommerceServer\working
where drive is a local drive.

Note: If the drive:\WebSphere\CommerceServer\working directory
does not exist on your local machine, create it now.

3. Open the WebSphere Application Server Administration Console.
4. From the Tools menu, select Application Assembly Tool.
5. If a Welcome window opens, select Cancel to close that window.
6. Open the enterprise application upon which you are going to work, by

doing the following:
a. From the File menu, select Open.

358 Programmer’s Guide

b. In the File name field, enter:

v Windows drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

v AIX /usr/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Solaris /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Linux /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v 400 drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

and click Open. Wait for the application to open before continuing to
the next steps. This takes several minutes.

7. Right-click EJB Modules and select Import.
8. In the File name field, enter the following:

v Windows drive:\WebSphere\CommerceServer\temp\
yourDeployedJarFile.jar

v AIX /usr/WebSphere/CommerceServer/temp/
yourDeployedJarFile.jar

v Solaris /opt/WebSphere/CommerceServer/temp/
yourDeployedJarFile.jar

v Linux /opt/WebSphere/CommerceServer/temp/
yourDeployedJarFile.jar

v 400 iSeries_drive:\QIBM\UserData\WebCommerce\instances\
instanceName\temp\yourDeployedJarFile.jar

where
v yourDeployedJarFile is the name of the JAR file containing the

deployed code for your EJB group
v iSeries_drive is the local drive that is mapped to the iSeries IFS.

Click Open, then in the Confirm Values window, click OK.
9. Once the yourDeployedJarFile.jar file is imported, scroll to the

yourEJBGroup EJB group (where yourEJBGroup is the name of your EJB
group) and select this group.
Information about this group is shown in the pane on the right.

10. In the classpath field for the new enterprise bean, enter any dependent
JAR files. For example, you might enter the corresponding

Appendix B. Deployment details 359

implementation JAR file and the implementation JAR file for the
WebSphere Commerce entity beans, as shown below:
lib/yourImplJarFile.jar lib/wcsejbimpl.jar

11. Click Apply.
12. Add the implementation JAR file for your EJB group to the application,

by doing the following:
a. Right-click the Files node for your enterprise application and select

Add Files. (The Files node for the enterprise application is located
near the bottom of the hierarchical tree. Note that there are other Files
nodes for components within the enterprise application, but you must
select the Files node for the whole application.)

b. In the Add Files window, click Browse.
c. Navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\temp

v AIX /usr/WebSphere/CommerceServer/temp

v Solaris /opt/WebSphere/CommerceServer/temp

v Linux /opt/WebSphere/CommerceServer/temp

v 400 iSeries_drive:\QIBM\UserData\WebCommerce\instances\
instanceName\temp

d. With this directory highlighted, click Select.
e. Return to the Add Files window. Notice that the contents of the

temporary directory are displayed. Highlight the lib directory.
The contents of the lib directory are displayed in the pane on the
right.

f. In the pane on the right, select the yourImplJarFile file and click Add.
The file is then shown in the Selected Files pane.

g. Click OK.
13. Configure security for your entity bean, by doing the following:

a. With the EJB Modules node expanded, locate and expand the
YourEJBGroup node.

b. Expand Entity Beans.
c. Expand yourEntityBean where yourEntityBean is the name of your

entity bean.
d. Click Method Extensions, then in the pane on the right do the

following:
1) Click the Advanced tab.
2) Ensure that Security identity is selected.
3) For each method, ensure that Use identity of EJB server is

selected.

360 Programmer’s Guide

4) Click Apply (if you have made any modifications).
e. In the left navigation pane, right-click Security Roles under the

YourEJBGroup EJB group and select New, then do the following:
1) In the Name field, enter WCSecurityRole and click Apply. Note, if

this role exists already, you do not need to perform this step.
f. In the left naigation pane, right-click Method Permissions under the

YourEJBGroup EJB group and select New, then do the following:
1) In the Method Permission Name field, enter WCMethodPermission

2) In the Methods selection area, click Add.
The Add Methods window opens.

3) Expand yourDeployedJarFile.jar, then Bonus and then expand each
of the Home and Remote lists of methods.

4) Hold the Shift key and select all of the home methods and click
OK.

5) Repeat the method selection process to add the remote methods as
well (if remote methods exist).

6) In the Roles selection area, click Add, select the WCSecurityRole
and click OK.

7) Click Apply.
14. From the File menu, select Save.
15. Close the Application Assembly Tool.

16. 400 Copy the newly modified WC_Enterprise_App_instanceName.ear
file from the local machine to the iSeries machine running WebSphere
Application Server. That is, copy the file from the following directory:
drive:\WebSphere\CommerceServer\working

into the following directory:
iSeries_drive:\QIBM\UserData\WebCommerce\instances\instanceName\working

where iSeries_drive is the drive letter that you have mapped to your
iSeries IFS.

After this step has completed, you have created a new enterprise application
that contains all of the previous logic as well as your new business logic. This
is all contained in the newly modified WC_Enterprise_App_instanceName.ear
file.

Assembling modified enterprise beans into an enterprise application

This section describes how to use the Application Assembly Tool to assemble
modified WebSphere Commerce enterprise beans into an enterprise
application.

Appendix B. Deployment details 361

In this step, you open your enterprise application in the application assembler
tool. Once it is open inside that tool, you can do the following to include a
modified WebSphere Commerce enterprise bean to the enterprise application:
1. Make a copy of the class path for the existing version of the EJB group

that you have modified.
2. Remove the existing version of the EJB group that you have modified.
3. Import the new version of the EJB group that you have modified. The JAR

file for the new EJB group is stored within the EJB Module section of the
enterprise application.

4. Set the class path for the modified EJB group.
5. Set up WebSphere Application Server security for methods contained in

the modfied entity bean.

AIX Solaris Linux It is advisable to increase the memory
heap size value in the assembly.sh file to avoid running out of
memory when saving new or modified .ear files.

This file is located in the following directory:

v AIX /usr/WebSphere/AppServer/bin

v Solaris /opt/WebSphere/AppServer/bin

v Linux /opt/WebSphere/AppServer/bin

To increase the memory heap size, modify the following line:

$JAVA_HOME/jre/bin/java

so that it appears as follows:

$JAVA_HOME/jre/bin/java -mx512M

To assemble the modified EJB group into the enterprise application, do the
following:

1. Windows AIX Solaris Linux Backup the current enterprise
application, by doing the following on the target WebSphere Commerce
Server:
a. At a command prompt, navigate to the following directory:

v Windows drive:\WebSphere\CommerceServer\working

v AIX /usr/WebSphere/CommerceServer/working

v Solaris /opt/WebSphere/CommerceServer/working

v Linux /opt/WebSphere/CommerceServer/working

362 Programmer’s Guide

b. Make a copy of the existing WC_Enterprise_App_instanceName.ear file
and name it WC_Enterprise_App_instanceName.ear.bak.

2. 400 Backup the current enterprise application, by doing the
following:
a. At a command prompt, enter the following:

STRQSH
cd /QIBM/UserData/WebCommerce/instances/instanceName/working
cp WC_Enterprise_App_instanceName.ear
WC_Enterprise_App_instanceName.ear.bak

b. To avoid unnecessarily long waiting times caused by the transfer of
data between your local client machine and the iSeries machine
running WebSphere Application Server, create the following directory
on your local client machine and then copy the
WC_Enterprise_App_instanceName.ear file to this directory:
drive:\WebSphere\CommerceServer\working
where drive is a local drive.

Note: If the drive:\WebSphere\CommerceServer\working directory
does not exist on your local machine, create it now.

3. Open the WebSphere Application Server Administration Console.
4. From the Tools menu, select Application Assembly Tool.
5. Open the enterprise application upon which you are going to work by

doing the following:
a. From the File menu, select Open.
b. In the File name field, enter:

v Windows drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

v AIX /usr/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Solaris /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v Linux /opt/WebSphere/CommerceServer/working/
WC_Enterprise_App_instanceName.ear

v 400 drive:\WebSphere\CommerceServer\working\
WC_Enterprise_App_instanceName.ear

and click Open. Wait for the application to open before continuing to
the next steps. This takes several minutes.

6. Click EJB Modules. The pane on the right displays the EJB modules in
the enterprise application.

Appendix B. Deployment details 363

7. Click the EJB module for the EJB group that you have modified. For
example, if you have modified a bean in the WCSUser EJB group, you
would click WCSUser.

8. Click the General tab to view the class path information. Copy this
existing class path information into a text file (for example,
WCSUser_path.txt).

9. Right-click the EJB module and select Delete.
10. Right-click EJB Modules and select Import.
11. In the File name field, enter the following:

v Windows drive:\WebSphere\CommerceServer\temp\
Cust_EJBGroupName-ejb.jar

v AIX /usr/WebSphere/CommerceServer/temp/Cust_EJBGroupName-
ejb.jar

v Solaris /opt/WebSphere/CommerceServer/temp/Cust_EJBGroupName-
ejb.jar

v Linux /opt/WebSphere/CommerceServer/temp/Cust_EJBGroupName-
ejb.jar

v 400 iSeries_drive:\QIBM\UserData\WebCommerce\instances\
instanceName\temp\Cust_EJBGroupName-ejb.jar

and click Open. In the Confirm Values window, click OK.
12. Once the EJBGroupJARFile.jar file is imported, scroll to the modified EJB

group and select this group.
Information about this group is shown in the pane on the right.

13. Open the text file containing the class path information for the previous
version of the EJB group. Select and copy the class path.

14. In the Classpath field for the modified EJB group paste in this class path
information.

15. Click Apply.
16. From the File menu, select Close.
17. Wait for the file to close, then from the File menu, select Open and

reopen the WC_Enterprise_App_instanceName.ear file.
18. Configure security for the modified bean, by doing the following:

a. With the EJB Modules node expanded, locate and expand the node
for the modified EJB group.

b. Expand Entity Beans.
c. Expand the modified EJB group.
d. Click Method Extensions, then in the pane on the right do the

following:

364 Programmer’s Guide

1) Click the Advanced tab.
2) Ensure that Security identity is selected.
3) For each method, ensure that Use identity of EJB server is

selected.
4) Click Apply (if you have made any modifications).

e. In the left navigation pane, right-click Security Roles under the
modified EJB group and select New, then do the following:
1) In the Name field, enter WCSecurityRole and click Apply. Note, if

this role exists already, you do not need to perform this step.
f. In the left navigation pane, right-click Method Permissions under the

modified EJB group and select New, then do the following:
1) In the Method Permission Name field, enter WCMethodPermission

2) In the Methods selection area, click Add.
The Add Methods window opens.

3) Expand the modifiedEJBGroup and select all of the enterprise beans
(hold the Shift key while selecting). Click OK. All enterprise beans
are then displayed under the Enterprise bean column and all
methods are shown under the Types column.

4) In the Roles selection area, click Add, select the WCSecurityRole
and click OK.

5) Click Apply.
19. From the File menu, select Save.
20. Close the Application Assembly Tool.

21. 400 Copy the newly modified WC_Enterprise_App_instanceName.ear
file from the local machine to the iSeries machine running WebSphere
Application Server. That is, copy the file from the following directory:
drive:\WebSphere\CommerceServer\working

into the following directory:
iSeries_drive:\QIBM\UserData\WebCommerce\instances\instanceName\working

where iSeries_drive is the drive letter that you have mapped to your
iSeries IFS.

After this step has completed, you have created a new enterprise application
that contains all of the previous logic as well as your new business logic. This
is all contained in the newly modified WC_Enterprise_App_instanceName.ear
file.

Appendix B. Deployment details 365

Stopping and removing an enterprise application

This section describes how to use the WebSphere Application Server
Administration Console to stop an enterprise application that is currently
running and then remove it.

To stop and them remove your enterprise application, do the following:
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain.
3. Expand Nodes.
4. Expand nodeName (where nodeName is the name of your node).
5. Expand Application Servers.

6. Windows AIX Solaris Linux Right-click your WebSphere
Commerce application server. For example, right-click the WebSphere
Commerce Server - nodeName and select Stop.

7. 400 Right-click your WebSphere Commerce application server. For
example, right-click the instanceName - WebSphere Commerce Server
and select Stop.

8. Expand Enterprise Applications.

9. Windows AIX Solaris Linux Right-click your WebSphere
Commerce application. For example, right-click the WebSphere
Commerce Enterprise Application - instanceName application and select
Stop.

10. 400 Right-click your WebSphere Commerce application. For
example, right-click the instanceName - WebSphere Commerce
Enterprise Application application and select Stop.

11. Right-click your WebSphere Commerce application. For example,
right-click the WebSphere Commerce Enterprise Application -
instanceName (or instanceName - WebSphere Commerce Enterprise
Application for iSeries) application and select Remove.

12. When prompted to indicate if the application should be exported, select
No.

13. When prompted to indicate if the application should be removed, select
Yes.

Importing an enterprise application

This section describes how to use the XMLConfig command line utility to
import an enterprise application.

To import the new enterprise application, do the following:

366 Programmer’s Guide

1. Windows AIX Solaris Linux Invoke the XMLConfig tool to
import the enterprise application into WebSphere Application Server by
entering the following command:

Windows

xmlConfig -import OutputFile.xml -adminNodeName wasHostName

AIX

/usr/WebSphere/AppServer/bin/XMLConfig.sh -import OutputFile.xml
-adminNodeName wasHostName
-nameServiceHost wasHostName -nameServicePort wasAdminPort

Solaris Linux

/opt/WebSphere/AppServer/bin/XMLConfig.sh -import OutputFile.xml
-adminNodeName wasHostName
-nameServiceHost wasHostName -nameServicePort wasAdminPort

where
v wasHostName is the name of the node in the WebSphere Application

Server that contains your current enterprise application.
v OutputFile.xml is the XML file that describes all of your enterprise

beans.
v wasAdminPort is the WebSphere Application Server administration port.

2. 400 Invoke the XMLConfig tool to import the enterprise application
into WebSphere Application Server by entering the following command:
STRQSH
PATH=/QIBM/ProdData/WebASAdv4/bin:$PATH
xmlConfig -import
/QIBM/UserData/WebCommerce/instances/instanceName/working/OutputFile.xml
-adminNodeName wasHostName
-nameServiceHost wasHostName -nameServicePort wasAdminPort
-instance wasInstanceName

where
v OutputFile.xml is the fully-qualfied name of the XML file that describes

all of your enterprise beans.
v wasHostName is the name of the node in the WebSphere Application

Server that contains your current enterprise application.

Note: 400 The value for wasHostName is case-sensitive and must
match the value that is in the TCP/IP configuration. (Use a
command-line processor to access CFGTCP, option 12 to verify
host name.)

v wasAdminPort is the WebSphere Application Server administration port.

Appendix B. Deployment details 367

v wasInstanceName is the WebSphere Application Server instance name.

400 While attempting to run the XMLConfig -import
command, you may receive the following error message:“Cannot
expand the ear file under
/QIBM/UserData/WebAsAdv4/wasInstanceName/
installedApps/WC_Enterprise_App_instanceName.ear”. If you recieve
this message, remove or rename the preceding directory and run the
command again.

3. 400 After you have imported the enterprise application, you must
run a script to modify directory permissions. To run this script, do the
following:
v At a command prompt, enter the following:

STRSQH
cd /QIBM/ProdData/WebCommerce/bin
changeAuthority wasAdminInstanceName instanceName

where
– wasAdminInstanceName is the name of your WebSphere Application

Server administration instance.
– instanceName is the name of your WebSphere Commerce instance.

Starting an enterprise application

This section describes how to use the WebSphere Application Server
Administration Console to refresh the view and then start an enterprise
application.
1. Open the WebSphere Application Server Administration Console.
2. Expand WebSphere Administrative Domain, then Nodes, then nodeName

3. Highlight the nodeName node.
4. Click the Refresh selected subtree icon.
5. Start your WebSphere Commerce application by doing the following:

v Expand Application Servers.

v Windows AIX Solaris Linux Right-click your WebSphere
Commerce application. For example, right-click the WebSphere
Commerce Server - instanceName and select Start.

v 400 Right-click your WebSphere Commerce application. For
example, right-click the instanceName - WebSphere Commerce Server
application and select Start.

368 Programmer’s Guide

Appendix C. Tips for VisualAge for Java

This section describes some tips that relate to troubleshooting, performance
improvements and simplification within the development environment.

Changing properties for the servlet engine in the WebSphere Test Environment

The properties for the servlet engine in the WebSphere Test Environment are
controlled by the default.servlet_engine properties file. Within this file, you
can modify the document root for the Web server and you can change the
port used by the WebSphere Test Environment.

You may want to change the port, in a case where the WebSphere Test
Environment has ceased to function and rebooting is not an option. To change
the port, do the following:
1. Open the VAJ_install_path\IDE\ProjectResources\IBM WebSphere Test

Environment\properties\default.servlet_engine file in a text editor.
2. In the <transport> stanza, change the 8080 value in the following line to

an available port.
<arg name="port" value="8080"/>

3. Change the 8080 value in the following lines to the same port specified
above.
<hostname-binding hostname="localhost:8080" servlethost="default_host"/>

<hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>

4. Save file.
5. Open the WebSphere Test Environment Control Center and start the

Servlet Engine.

By default, the document root for the WebSphere Test Environment is
VAJ_install_path\IDE\ProjectResources\IBM WebSphere Test
Environment\hosts\default_host \default_app\web. To change this to another
directory, do the following:
1.

Open the WebSphere Test Environment Control Center and stop the
Servlet Engine.

2. Open the VAJ_install_path\IDE\ProjectResources\IBM WebSphere Test
Environment\properties\default.servlet_engine file in a text editor.

3. In the <websphere-webgroup name="default_app"> stanza, change the
<document-root>$approot$/web</document-root> to the following:
<document-root>your_document_root</document-root>

© Copyright IBM Corp. 2000, 2002 369

where your_document_root is the desired document root.
4. Change the 8080 value in the following lines to the same port specified

above.
<hostname-binding hostname="localhost:8080" servlethost="default_host"/>

<hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>

5. Save file.
6. Open the WebSphere Test Environment Control Center and start the

Servlet Engine.

Resolving persistent name server problems

If you experience problems with your persistent name server, you may need
to drop and recreate the persistent name server database. Refer to the
Commerce Studio Installation Guide for details on creating this database.

Alternatively, if a message indicating that the port is currently in use, ensure
that you do not have WebSphere Application Server running.

Deleting compiled JSP files

VisualAge for Java maintains a project folder in which compiled JSP files are
stored, for performance reasons. There may be times when you need to delete
compiled JSP files. For example, if you remove a data bean from a JSP file,
you may experience errors the next time you call the JSP file. In this case, you
can delete the compiled JSP file.

To delete compiled JSP files, do the following:
1. In VisualAge for Java, select the Project tab.
2. Scroll down to the JSP Page Compile Generate Code project.
3. Select either the whole project (if you need to delete many compiled JSP

files) or expand the project and delete only those that must be recompiled.

370 Programmer’s Guide

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 2000, 2002 371

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Ltd.
Office of the Lab Director
8200 Warden Avenue, Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM

372 Programmer’s Guide

products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

©Copyright International Business Machines Corporation 2000, 2002. Portions
of this code are derived from IBM Corp. Sample Programs. ©Copyright IBM
Corp. 2000, 2002. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Notices 373

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, or other countries, or
both:

400 iSeries
AIX MQSeries
AS/400 Net.Commerce
CICS Net.Data
DB2 S/390
Eserver VisualAge
IBM WebSphere

zSeries

Windows and Windows NT are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Oracle is a registered trademark of Oracle Corporation in the United States,
other countries, or both.

Solaris, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc.in the United States, other
countries, or both.

Other company, product and service names may be the trademarks or service
marks of others.

374 Programmer’s Guide

Index

A
access control 85

command-leval 96
Groupable interface 101
policies 87
Protectable interface 101
protecting resources 102
resource-leval 96

adapters 9
application architecture 4

C
CMDREG 28
code repository 187
command design pattern 20
command flow 24
command registry 26
commands

command context 127
customize existing 139
factory 23
framework 21
implementation 123
interfaces 22
registration 26
types 11
writing new business policy

commands 153
writing new controller

commands 128
writing new task

commands 138
controller command invoker data

bean 40
controller commands

customize existing 139
long-running 131
writing new 128

customized code
deployment 187
packaging 126

D
data beans

activating 40
BeanInfo 40
customize existing 145
description 13
interfaces 38

data beans (continued)
command data bean 39
input data bean 39
smart data bean 38

types 37
database commits 135
database considerations

datatype 80
naming 78

database locks 73
deployment descriptors 47
deployment of

modified commands and data
beans 192

modified entity beans 192
new commands and data

beans 189
new entity beans 190

design patterns 19
command 20
display 36
model-view-controller 19

development environment 185
differences from Version 4.1 15
display design pattern 36

E
EJB deployed code 188
entity beans

cache 75
deployment descriptors 47
description 12
extending 48
overview 45
transactions 73
using 77

error handling 111
command 111
exception types 111
flow 112
in custom code 114
JSP 121
trace 119

F
flushRemote method 75

J
JSP templates 13

setting attributes 41

M
messages

creating messages 116
properties files 112

model-view-controller design
pattern 19

modifyIsolationLevel command 349

O
object life cycles 72
object model extension

methodologies 48

P
packaging customized code 126
persistence 45
protocol listeners 8

R
relationship groups 92
run-time architecture 6

S
servlet engine 8
session beans

recommended use 52
writing new 71

software components 3

T
task commands

customize existing 143
writing new 138

terms and conditions 159
tracing execution flow 119
trading agreements 147
transaction isolation levels 47
transaction scope 135

U
URLREG 26

V
view commands

format input properties to 132
required properties 43

VIEWREG 32

W
Web controller 10

© Copyright IBM Corp. 2000, 2002 375

376 Programmer’s Guide

����

Part Number: CT1JYNA

Printed in U.S.A.

GC09-4951-02

(1
P)

P/
N:

CT
1J
YN
A

	Before you begin
	Conventions used in this book
	Knowledge requirements
	What's new in this book
	Where to find more information

	Contents
	Part 1. Concepts and architecture
	Chapter 1. Overview
	WebSphere Commerce software components
	WebSphere Commerce application architecture
	WebSphere Commerce run-time architecture
	Servlet engine
	Adapter manager
	Protocol listeners
	Adapters
	Web controller
	Commands
	WebSphere Commerce entity beans
	Data beans
	Data bean manager
	JavaServer Pages templates
	Instance_name.xml configuration file

	Summary for a request
	Key differences between customization in previous releases

	Part 2. Programming model
	Chapter 2. Design patterns
	Model-View-Controller design pattern
	Command design pattern
	Command framework
	Command factory
	Command flow
	Command registration framework
	URLREG table
	CMDREG table
	Example of a registered controller command
	VIEWREG table

	Display design pattern
	JSP templates and data beans
	JSP templates and data beans security consideration

	Types of data beans
	Data bean interfaces
	BeanInfo class
	Data bean activation

	Invoking controller commands from within a JSP template
	Lazy fetch data retrieval

	Setting JSP attributes - overview
	Required property settings

	Chapter 3. Persistent object model
	Implementation of WebSphere Commerce entity beans
	WebSphere Commerce entity beans - overview
	Deployment descriptors for WebSphere Commerce enterprise beans
	Isolation levels

	Extending the WebSphere Commerce object model
	Object model extension methodologies
	Recommended use of session beans
	Extending public entity beans
	Creating a new CMP enterprise bean
	Creating a simple data bean
	Writing new session beans

	Object life cycles
	Transactions
	Other considerations for entity beans
	Find for Update
	Flush remote method
	Securing enterprise beans
	Primary keys

	Using entity beans
	Database considerations
	Database schema object naming considerations
	Naming conventions for tables and views
	Naming conventions for columns
	Naming conventions for indexes
	Naming conventions for primary keys
	Naming conventions for foreign keys
	Naming conventions for database triggers

	Database column datatype considerations
	Datatype differences between databases

	Chapter 4. Access control
	Understanding access control
	Overview of resource protection in WebSphere Application Server
	Introduction to WebSphere Commerce access control policies
	Relationship groups

	Types of access control
	Access control interactions
	Protectable interface
	Groupable interface
	Finding more information about access control

	Implementing access control
	Identifying protectable resources
	Implementing access control in enterprise beans
	Implementing access control in data beans
	Implementing access control in controller commands
	Additional resource level checking
	Access control for “create” commands
	Default implementations for command-level access control

	Implementing access control policies in views

	Chapter 5. Error handling and messages
	Command error handling
	Types of exceptions
	Error message properties files
	Exception handling flow
	Exception handling in customized code
	Catching and constructing exceptions

	Creating messages
	Creating a class for message keys
	Creating a class for ECMessage objects
	Creating a user message resource bundle
	Unit testing a message

	Execution flow tracing

	JSP template error handling

	Chapter 6. Command implementation
	New commands - introduction
	Packaging customized code
	Command context
	New controller commands
	isGeneric method
	isRetriable method
	setRequestProperties method
	validateParameters method
	getResources method
	performExecute method
	Long-running controller commands

	Formatting of input properties to view commands
	Flattening input parameters into a query string for HttpRedirectView
	Handling a limited length redirect URL
	Setting attributes in the HttpServletRequest object for HttpForwardView

	Database commits and rollbacks for controller commands
	Example of transaction scope with a controller command
	Case 1: Executing the view within the scope of the controller command transaction
	Case 2: Executing the view outside of the scope of the controller command transaction

	New task commands
	Customization of existing commands
	Customizing existing controller commands
	Adding new business logic to a controller command
	Replacing task commands called by a controller command
	Replacing the view called by a controller command

	Customizing existing task commands
	Adding new business logic to a task command
	Replacing business logic of an existing task command

	Data bean customization

	Chapter 7. Trading agreements and business policies (Business Edition)
	Introduction
	Business policy objects and commands
	ToolTech sample contract data
	CONTRACT table sample data
	TERMCOND table sample data
	POLICYTC table sample data
	POLICY table sample data
	TRADEPOSCN table sample data
	SHIPMODE table sample data

	Extending the existing contract model
	Creating a new business policy
	Creating a new business policy type
	Writing the new business policy command
	Setting requestProperties in business policy commands

	Registering the new business policy and business policy command

	Relating a terms and conditions object to a new business policy
	Creating new terms and conditions
	Registering the new term and condition in the database
	Register the new term and condition in the contract document type definition
	Creating a new CMP enterprise bean for the term and condition
	Updating the WebSphere Commerce Accelerator to use a new term and condition
	Importing the new contract using the new term and condition

	Invoking the new business policy
	Creating a contract
	Contract customization scenarios
	Rebate scenario
	Step 1: Creating the new table and enterprise bean
	Step 2: Creating the “5DollarRebate” business policy
	Step 3: Creating the “RebateTC” term and condition
	Step 4: Creating a new contract
	Step 5: Integrating the new business policy into the shopping flow

	Part 3. Development environment
	Chapter 8. Development tools and deployment
	Development environment
	WebSphere Commerce Studio
	Features and functions of VisualAge for Java
	WebSphere Commerce code repository
	Code deployment
	Information about EJB deployed code
	Deployment of new commands and data beans
	Deployment of new entity beans
	Deployment of extensions to existing commands and data beans
	Deployment of modified WebSphere Commerce public entity beans
	Deployment of new data beans for use in Commerce Studio
	Deployment of customized public entity beans for use in Commerce Studio

	Log files
	Test payment method
	Using a remote Payment Manager

	Part 4. Tutorials
	Chapter 9. Tutorial: Creating new business logic
	Tutorial environment
	Tutorial code deployment steps
	Preparing the sample project
	Writing commands
	Write a controller command
	Modify MyNewControllerCmd
	Pass variables to the JSP template
	Modify the validateParameters Method
	Create a task command
	Validate a user ID

	Creating a new entity bean
	Creating the new database table
	Creating the BonusBean entity bean
	Integrate the Bonus entity bean with MyNewControllerCmd

	(Optional) Using the Debugger in VisualAge for Java
	Adding the breakpoint to your code
	Verifying the values of variables
	Removing the breakpoint

	Integrating MyNewControllerCmd with the sample store in the WebSphere Test Environment
	(Optional) Deploying new business logic to a remote WebSphere Commerce Server
	Create the JAR file for the new command logic
	Creating the JAR file for the new EJB group
	Creating the implementation JAR file for the new enterprise bean
	Copy the JSP files to the target WebSphere Commerce Server
	Copy the JAR files to the target WebSphere Commerce Server
	Running the EJB deploy tool
	Modify transaction isolation level for the Bonus bean
	Updating the target database
	Loading the access control policies for the new resources
	Exporting the current enterprise application from WebSphere Application Server
	Exporting XML configuration information for the enterprise application
	Assembling the new EJB group into the enterprise application
	Importing the new enterprise application into WebSphere Application Server
	Stopping and removing the current enterprise application
	Importing the new enterprise application using XMLConfig
	Starting the new enterprise application

	Test MyNewControllerCmd

	Chapter 10. Modifying and extending existing business logic
	Extending an existing controller command
	Creating the new package for OrderProcessCmdBonusImpl
	Creating the OrderProcessCmdBonusImpl class
	Adding fields and methods to OrderProcessCmdBonusImpl
	Modifying the command registry to use OrderProcessCmdBonusImpl
	Modifying the confirmation.jsp template
	Testing OrderProcessCmdBonusImpl within the WebSphere Test Environment
	(Optional) Deploying the customized business logic to a remote WebSphere Commerce Server
	Notes about the test payment method
	Creating the JAR file for the command logic
	Storing assets on the target WebSphere Commerce Server
	Updating the command registry
	Restarting your enterprise application in WebSphere Application Server
	Testing your new logic in InFashion running in the WebSphere Application Server

	Modifying an existing entity bean and extending an existing task command
	Adding a new bonusPoint field to the User entity bean
	Creating and populating the BONUS table
	Updating the schema and table mapping
	Creating the BONUS table schema
	Creating the foreign key relationship
	Creating the BONUS table map

	Generating the deployed code and access bean
	Testing the modification using the test client
	Creating the GetNewProductContractUnitPriceCmd interface
	Creating the GetNewContractUnitPriceCmdImpl implementation class
	Creating the NewProductDataBean data bean
	Adding the new bonus price to the product display template
	Testing the enterprise bean extension
	(Optional) Deploying the customized business logic to a remote WebSphere Commerce Server
	Creating the JAR file for the new price command
	Creating a JAR file for the WCSUser EJB group
	Creating the wcsejsclient.jar file
	Copying the updated JSP template to the target store directory
	Copy the JAR files to the target WebSphere Commerce Server
	Running the EJB deploy tool
	Modify transaction isolation level for the entity beans
	Updating the target database
	Exporting the current enterprise application from WebSphere Application Server
	Exporting XML configuration information for the enterprise application
	Assembling the modified EJB group into the enterprise application
	Importing the new enterprise application into WebSphere Application Server
	Testing the new code in the target store

	Part 5. Appendixes
	Appendix A. Starting and stopping the WebSphere Test Environment
	Starting and stopping the persistent name server
	Starting and stopping the EJB server
	Starting and stopping the servlet engine

	Appendix B. Deployment details
	Mapping to the integrated file system (iSeries)
	JAR files for customized commands and data beans
	Creating JAR files for new entity beans
	Creating the EJB 1.1 Export JAR file
	Creating the implementation JAR file

	Creating JAR files for customized WebSphere Commerce entity beans
	Creating the EJB 1.1 Export JAR file
	Creating the client JAR file

	Storing assets on the target WebSphere Commerce Server
	Updating the target database
	Generating deployed code
	Modifying transaction isolation level of entity beans
	Exporting the current WebSphere Commerce enterprise application
	Exporting configuration information for enterprise beans
	Assembling new enterprise beans into an enterprise application
	Assembling modified enterprise beans into an enterprise application
	Stopping and removing an enterprise application
	Importing an enterprise application
	Starting an enterprise application

	Appendix C. Tips for VisualAge for Java
	Changing properties for the servlet engine in the WebSphere Test Environment
	Resolving persistent name server problems
	Deleting compiled JSP files

	Notices
	Trademarks and service marks

	Index

