
IBM WebSphere Studio Application Developer
Integration Edition V4.1

The J2EE Connector Architecture (JCA)
Tool Plug-in

���

First Edition (February 2002)

IBM welcomes your comments. You can send your comments by any one of the following methods:
1. Electronically to either the following e-mail address. Be sure to include your entire network address if you wish

a reply.

torrcf@ca.ibm.com

2. By mail to the following address:

IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. Introduction 1

Chapter 2. Metadata Support 3
WSDL 3

WSDL Document Architecture 3
WSDL and J2EE Connector Architecture - A
Natural Fit 4
A Java API for WSDL Documents - JSR 110 . . . 4

Connector Binding 4
A Connector WSDL Sample 5
How the Connector Binding Extends WSDL . . . 5
connector:binding. 6
connector:operation 6
connector:address. 6

Format Binding 6
format:typeMapping 6

Create an EIS-specific Connector Binding 7

Chapter 3. Web Service Invocation
Framework (WSIF) 9
Client Programming Model 9
Architecture 9
WSIF and JCA 10
Create WSIF extensions for your JCA connector . . 11

Chapter 4. Format Handling. 13
FormatHandler 13
FormatHandler Generator 14
Create the FormatHandler Generator for your EIS 15

Chapter 5. Import Service. 17

Interface 17
Implementation 21
Create the Import Service for your EIS 21

Chapter 6. Packaging - Putting it all
together 23
jca_tool_plugin.xml 23
Putting it into the RAR 23

Chapter 7. Rendering the Tool Plug-in 25
Generic Description. 25
Sample: How a user works with it. 25

With Import Service 25
Without Import Service 28

Chapter 8. Sample: The tool-enabled
MyEIS connector, Step by Step... . . . 31
MyEIS Connector 31
Create the MyEIS specific Connector Binding . . . 31
Create the WSIF extensions for MyEIS Connector. . 33
Create the FormatHandler Generator for MyEIS . . 34
Create the Import Service for MyEIS 35
Packaging the MyEIS Connector together with the
Tool Extensions 36
Developing with the MyEIS Connector 36

Notices 41
Programming interface information 43
Trademarks and service marks 43

© Copyright IBM Corp. 2002 iii

iv

Chapter 1. Introduction

Written by Michael Beisiegel, Piotr Przybylski and Hesham Fahmy - IBM Toronto Lab

This document describes an extension to the J2EE Connector Architecture (JCA)
that allows EISs to provide plug-in components for tool environments.

JCA version 1.0 provides a connector run-time architecture that receives a lot of
support by the industry. It makes the J2EE platform a very attractive environment
for doing business and enterprise application integration.

One of the most important extensions for the next version of the connector
architecture is to make EISs pluggable into tool environments.

This document defines the form of metadata that EISs need to provide, explains
how a tool environment interacts with an EIS to get this information, and shows
how the EIS provides code generation contributions.

It also covers CCI extensions that take the metadata support into account for doing
EIS service invocations.

The goal of these extensions is to be independent of a particular vendor IDE. They
do not provide a user interface, nor do they mandate a certain tool task flow. They
are provided as plug-ins, so that a particular vendor IDE can render them in the
most natural way.

© Copyright IBM Corp. 2002 1

2

Chapter 2. Metadata Support

Metadata support is important from two perspectives. First, tools want to be able
to discover meta information about the functions offered by an EIS. The tools then
aid a developer in building components (for example, Java(TM) bean, EJB, flows,
and others) that use these functions. Run times either drive a connector through
code generated by the tools from the metadata, or they are engines that drive a
connector by interpreting the metadata.

Most developers today would agree that XML should be used for capturing the
metadata about the functions offered by an EIS. The specific *ML dialect should
also be selected with the right view of the future, that is, provide EISs with a
growth path into the world of Web services.

The following sections describe how to use the Web Services Description Language
(WSDL) with extensions as the perfect solution for EIS metadata support.

WSDL
Web Services Description Language (WSDL) is a W3C note in the moment
(http://www.w3.org/TR/2001/NOTE-wsdl-20010315). WSDL has received a lot of
momentum since its publication, and is already supported by various tool vendors.

WSDL Document Architecture
The following picture shows the WSDL document architecture. Shown at the top
are the sections that allow you to describe a service interface in an abstract way.
WSDL prefers to use XML Schema as its canonical type system.

The sections at the bottom allow you describe how and where to access the
concrete service that implements the abstract interface.

Looking at the W in WSDL may let you think that the language is for describing
Web Services only, but this is not true. The inventors equipped the language with a
smart extensibility mechanism, which allows you to describe any kind of service,
be it a Web Service or be it some legacy EIS service (function).

The important thing to recognize is that describing the abstract interface in XML,
especially the types in XML Schema, doe not mean that you actually use XML in
your interaction with a service; the bindings are what make the difference.

© Copyright IBM Corp. 2002 3

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

WSDL and J2EE Connector Architecture - A Natural Fit
WSDL provides a standard way for describing which services are offered by a
specific EIS instance, and how you access them. The J2EE Connector Architecture
provides a standard client programming model for accessing EIS services.

If you look at the WSDL information that is relevant for the single execution of an
operation you end up with a very natural fit between the two:

A Java API for WSDL Documents - JSR 110
Runtimes and Tools need an easy way of dealing with WSDL documents. This is
what JSR 110 (http://www.jcp.org/jsr/detail/110.jsp) is about. It provides a
standard set of APIs for representing and manipulating services described by
WSDL documents. These APIs define a way to construct and manipulate models of
service descriptions
(http://oss.software.ibm.com/developerworks/projects/wsdl4j).

Connector Binding
To invoke an operation via a connector we have to be able to capture meta
information about the following aspects:
v The connection properties to be set on a ManagedConnectionFactory
v The interaction properties to be set on an InteractionSpec
v The Record, i.e. their structure and the specific way that they have to be

formatted
v The operation, i.e. which InteractionSpec, input Record, and output Record

belong together
v That the operation is offered by a specific endpoint

4

http://www.jcp.org/jsr/detail/110.jsp
http://oss.software.ibm.com/developerworks/projects/wsdl4j

ManagedConnectionFactory is about location of the operation, i.e. which endpoint
provides it. The requirement for the Connector Binding is to provide a port
extension to capture this information.

The InteractionSpec is about specifying the operation in the way, as it is
understood by the endpoint. The requirement for the Connector Binding is to
provide an operation binding extension to capture this information.

For Records you need to know their structure and the way that they have to be
formatted so that an endpoint is able to interpret them. The structure is taken care
of by the XML Schema from which you can derive an in Java space representation
(see later). It is the format aspect that imposes a requirement on the Connector
Binding. It has to provide a format binding extension to capture the specific
formatting information (see format binding section).

WSDL already takes care of the last two bullets.

A Connector WSDL Sample

How the Connector Binding Extends WSDL
<definitions >

<binding ...>
<connector:binding />

format:typeMapping encoding=“...” style=“...”>
<format:typeMap

typeName=“...”
formatType=“...” /> *

Chapter 2. Metadata Support 5

</format:typeMapping>
<operation >

<connector:operation functionName=“name”...
interaction attributes ... />

<input>
...

</input>
<output>

...
</output>
<fault>*

...
</fault>

</operation>
</binding>

<port >
<connector:address hostName=“uri” portNumber=“...”

...connection attributes ... />
</port>

</definitions>

connector:binding
The purpose of the connector binding is to signify that the binding is bound to a
J2EE Connector Architecture based connector.

connector is the short name for the namespace that identifies the particular
connector, e.g.

<cics:binding />

connector:operation
The connector operation contains the InteractionSpec attributes that are necessary
to execute the operation on the EIS side, e.g.

<cics:operation functionName=“GETCUST” />

connector:address
The connector address contains the ManagedConnectionFactory attributes that are
necessary to configure the connection factory, e.g.

<cics:address connectionURL=“...” serverName=“...” />

Format Binding

format:typeMapping
The format typemapping identifies the style and encoding of the native types. The
typemapping contains format typemaps which associate the logical format (i.e.
XML Schema) with the native format.

The native format is identified by a format type identifier.

Here a sample where the native format type is described by COBOL:
<format:typeMapping encoding=“COBOL” style=“COBOL” >

<format:typeMap typename=“Customer”
formatType=“/CustomerInfo.ccp:CUSTINF”/>

</format:typeMapping>

6

Create an EIS-specific Connector Binding
To create an EIS-specific connector binding using the WSDL extensions
implementation, you would follow the general directions discussed previously and
see the sample at the end of this article.

Chapter 2. Metadata Support 7

8

Chapter 3. Web Service Invocation Framework (WSIF)

Having a standard way for describing the services that reside in an EIS using
WSDL allows to simplify the client programming model from where we are today
with JCA CCI.

The Web Service Invocation Framework (WSIF) represents this simplification. It is a
WSDL based service invocation runtime, that allows you to invoke any kind of
service, e.g. SOAP, JCA,

For more information on WSIF see:
v http://www-106.ibm.com/developerworks/library/ws-wsif.html
v http://www-106.ibm.com/developerworks/webservices/library/ws-

wsif2/index.html

Client Programming Model
The client programming model for WSIF follows the pattern that was established
for the usage of resources in J2EE. Note that the setup of the port factory is shown
inline, it would normally be looked up in JNDI to which it would have been
configured at deployment time.
WSIFPortFactory portFactory = new WSIFDynamicPortFactory(

“...CustomerInfo1.wsdl”,
<service ns>, “CustomerInfoService”,
<portType ns>, “CustomerInfoPortType”);

WSIFPort port = portFactory.getPort();
WSIFOperation operation = port.createOperation(“getCustomerInfo”);

WSIFMessage inputMessage = operation.createInputMessage();
WSIFMessage outputMessage = operation.createOutputMessage();

CustomerInfo input = new CustomerInfo();
input.setCustomerNumber(“44444”);
inputMessage. setObjectPart (“InputRecordPart”, input);

operation.execute(inputMessage, outputMessage, null);

CustomerInfo output =
CustomerInfo)outputMessage.getObjectPart(“OutputRecordPart”);

System.out.println(output.getCustomerNumber());
System.out.println(output.getFirstName());
System.out.println(output.getLastName());

port.close();

In order to get an intuitive user experience the model terminology is also carried
though in the runtime interfaces. The nice thing is that the client programming
model doesn’t contain any binding specifics anymore. So you can change the
binding of the service without impacting the service client.

Architecture
The first thing that you need in setting up for a service invocation is a port. Ports
get factored from port factories (i.e. implementations of the WSIFPortFactory
interface). WSIF ships with a base port factory implementation called
WSIFDynamicPortFactory. On creation this factory gets configured with the WSDL
document, the service name, and the portType name from which you want to
access an operation.

© Copyright IBM Corp. 2002 9

http://www-106.ibm.com/developerworks/library/ws-wsif.html
http://www-106.ibm.com/developerworks/webservices/library/ws-wsif2/index.html
http://www-106.ibm.com/developerworks/webservices/library/ws-wsif2/index.html

There is another aspect that the factory gets configured with which are binding
specific dynamic providers (i.e. implementations of the WSIFDynamicProvider
interface). These dynamic providers are the actual factories of the binding specific
ports (i.e. implementations of the WSIFPort interface)

As a client you don’t know with which actual port implementation you are dealing
with, all you know is that it is a WSIFPort . From it you create the specific
operation that you want to invoke, and drive the execution of it.

WSIF and JCA
Enabling a JCA connector for WSIF is very straightforward. The element that you
have to implement is a dynamic provider, and depending on your native format a
specific message implementation.

In general you don’t have to provide a specific port and operation implementation,
we provide a generic one that is build with the assumption that the connector
implements the JCA CCI.

10

If your connectors native format is stream based then you can use the provided
JCAStreamableMessage as your message implementation. This class extends a class
named JCAMessage. If you have to create a specific message implementation you
should extend JCAMessage.

Create WSIF extensions for your JCA connector
To create WSIF extentions for your JCA connector, follow these steps:
1. Create a dynamic provider.
2. Optionally, create your own message implementation extending JCAMessage.
3. Optionally, create your own port and operation implementation.

See the sample at the end of the article to add these extensions.

Chapter 3. Web Service Invocation Framework (WSIF) 11

12

Chapter 4. Format Handling

Format handling is about marshalling the Java representation of a data structure
described by XML Schema to/from its binding dependent native format.
Separating Java representation and format handling enables late binding, and
prevents the service client logic from using objects that are binding specific.

FormatHandler
On service invocation messages (input, output, fault) get exchanged with the
provider of the service. Messages consist out of parts that are typed. In order for
the provider to understand them the invocation runtime has to transform them
into the providers native format.

Looking at the WSDL you see that a binding section defines type mappings that
map the XML Schema types to respective native types. So given the meta
information from the WSDL you can generate two runtime elements. One is a
bean as the Java representation of the structure described by XML Schema. The
other is a FormatHandler which gets generated based on the defined format
typemapping.

In order for a message implementation to produce its native format it uses the
format handlers for its respective part types. The message is a generic
implementation for a particular provider. Now how does the message know which
format handler to use for its parts. A runtime message knows about the meta
information of the concrete message it was factored for. So it knows what type its
parts have. These types have qualified names (i.e. namespace and localname). We
defined a rule on how to construct the name of the required format handler.

The rule for constructing the name of the format handler looks as follows:

<fliped xsd typenamespace>.<binding shortname>.<format encoding+style>.
<xsd typelocalname>“FormatHandler”

© Copyright IBM Corp. 2002 13

The JCAUtil class provides you with a set of utility methods that you can use in
your message implementation as well as in the implementation of the format
handler generator.

To illustrate the power of separating Java representation from marshalling (in
contrast to what we have today with Records in JCA), the following picture shows
the same bean bound in three different ways, namely COBOL, XML, and Java
serialization.

Besides being able to handle a bean derived from the XSD Schema type, the format
handler also has to support instance of the XSD Schema type in form of a
JDOMSource or SAXSource. This allows for direct usage of XML in your service
invocation if required.

FormatHandler Generator
To support your native formats you have to provide format handler generators
with your plug-in. Each format handler generator generates format handlers for a
specific encoding and style.

14

Note that the architecture also allows for dynamic format handling which will be
supported at a later point in time.

Create the FormatHandler Generator for your EIS
To create the FormatHandler generator for your EIS, follow these steps:
1. Create a format handler generator.
2. It will generate format handlers accordingly that will implement the

WSIFFormatHandler interface.
3. The name must be based on the rule defined previously.
4. The generator handles the following parts: Bean, JDOMSource, SAXSource.

See the sample to learn how to create the FormatHandler generator.

Chapter 4. Format Handling 15

16

Chapter 5. Import Service

Many EIS’s have very rich metadata support describing the services they offer.
EIS’s provide programmatic access to this meta information. Not only is the form
that the metadata is in proprietary, also the access to it is different for each EIS.

The EIS import service is the solution to this problem, it provides a standard
interface for accessing the meta information, and it delivers it in form of WSDL.
You implement the import service with your EIS connector.

Interface
The Import interface consists of two operations getPortTypes, and getDefinition.

The getPortTypes operation allows you to get an overview about the interfaces and
operations the EIS offers. The operation returns an array of portTypes, the number
of portTypes returned can be controlled via the queryString input argument
(supporting the queryString is optional).

Note, if your EIS doesn’t have the notion of interfaces you can just return one
portType containing all the operations your EIS offers.

The getDefinition operation allows you to retrieve the complete service definition
for a chosen portType selection. Besides selecting the portType, the portType
selection allows to subset the portType by identifying the operations that you are
interested in. The operation returns the WSDL definition, and an array of XML
Schema sources for the case the portType uses XML Schema complex types.

Import.wsdl file

© Copyright IBM Corp. 2002 17

<?xml version=“1.0” encoding=“UTF-8”?>
<definitions name=“ImportRemoteInterface”

targetNamespace=“http://importservice.jca.ibm.com/”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:tns=“http://importservice.jca.ibm.com/”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
<import location=“Import.xsd”

namespace=“http://importservice.jca.ibm.com/”/>
<message name=“getDefinitionRequest”>

<part name=“portTypeSelection” type=“tns:PortTypeSelection”/>
</message>
<message name=“getDefinitionResponse”>

<part name=“result” type=“tns:ImportDefinition”/>
</message>
<message name=“getPortTypesRequest”>

<part name=“queryString” type=“xsd:string”/>
</message>
<message name=“getPortTypesResponse”>

<part name=“result” type=“tns:PortTypeArray”/>
</message>
<portType name=“Import”>

<operation name=“getDefinition”
parameterOrder=“portTypeSelection”>

<input message=“tns:getDefinitionRequest”
name=“getDefinitionRequest”/>

<output message=“tns:getDefinitionResponse”
name=“getDefinitionResponse”/>

</operation>
<operation name=“getPortTypes” parameterOrder=“queryString”>

<input message=“tns:getPortTypesRequest”
name=“getPortTypesRequest”/>

<output message=“tns:getPortTypesResponse”
name=“getPortTypesResponse”/>

</operation>
</portType>

</definitions>

Import.xsd

<?xml version=“1.0” encoding=“UTF-8”?>
<schema attributeFormDefault=“qualified” elementFormDefault=“qualified”

targetNamespace=“http://importservice.jca.ibm.com/”
xmlns=“http://www.w3.org/2001/XMLSchema”
xmlns:soapenc=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”
xmlns:xsd1=“http://importservice.jca.ibm.com/”

xmlns:xsd2=“http://xml.apache.org/xml-soap”>
<import namespace=“http://xml.apache.org/xml-soap”

schemaLocation=“http://xml.apache.org/xml-soap”/>
<import namespace=“http://schemas.xmlsoap.org/wsdl/”

schemaLocation=“http://schemas.xmlsoap.org/wsdl/”/>
<import namespace=“http://schemas.xmlsoap.org/soap/encoding/”

schemaLocation=“http://schemas.xmlsoap.org/soap/encoding/”/>
<complexType name=“ImportDefinition”>

<all>

18

http://importservice.jca.ibm.com/
http://schemas.xmlsoap.org/wsdl/
http://importservice.jca.ibm.com/
http://importservice.jca.ibm.com/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://importservice.jca.ibm.com/
http://xml.apache.org/xml-soap
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/encoding/

<element name=“importXSDs” type=“xsd1:ArrayOfImportXSD”/>
<element name=“definition” type=“xsd1:javax.wsdl.Definition”/>

</all>
</complexType>
<complexType name=“ImportXSD”>

<all>
<element name=“location” type=“string”/>
<element name=“namespace” type=“string”/>
<element name=“source” type=“string”/>

</all>
</complexType>
<complexType name=“ArrayOfImportXSD”>

<complexContent>
<restriction base=“soapenc:Array”>

<sequence/>
<attribute ref=“soapenc:arrayType”

wsdl:arrayType=“xsd1:ImportXSD[]”/>
</restriction>

</complexContent>
</complexType>
<complexType name=“javax.wsdl.Definition”>

<all>
<element name=“imports” type=“xsd2:Map”/>
<element name=“bindings” type=“xsd2:Map”/>
<element name=“namespaces” type=“xsd2:Map”/>
<element name=“documentBase” type=“xsd1:java.net.URL”/>
<element name=“documentationElement” type=“xsd1:anyElement”/>
<element name=“portTypes” type=“xsd2:Map”/>
<element name=“QName” type=“xsd1:javax.wsdl.QName”/>
<element name=“messages” type=“xsd2:Map”/>
<element name=“extensionRegistry”

type=“xsd1:javax.wsdl.extensions.ExtensionRegistry”/>
<element name=“targetNamespace” type=“string”/>
<element name=“services” type=“xsd2:Map”/>
<element name=“extensibilityElements”

type=“xsd1:java.util.List”/>
<element name=“typesElement” type=“xsd1:anyElement”/>

</all>
</complexType>
<complexType name=“java.net.URL”>

<all>
<element name=“ref” type=“string”/>
<element name=“port” type=“int”/>
<element name=“file” type=“string”/>
<element name=“authority” type=“string”/>
<element name=“content”/>
<element name=“query” type=“string”/>
<element name=“URLStreamHandlerFactory”

type=“xsd1:java.net.URLStreamHandlerFactory”/>
<element name=“userInfo” type=“string”/>
<element name=“protocol” type=“string”/>
<element name=“host” type=“string”/>
<element name=“path” type=“string”/>
</all>

</complexType>
<complexType name=“java.net.URLStreamHandlerFactory”>

Chapter 5. Import Service 19

<all/>
</complexType>
<complexType name=“anyElement”>

<sequence>
<any processContents=“skip”/>

</sequence>
</complexType>
<complexType name=“javax.wsdl.QName”>

<all>
<element name=“localPart” type=“string”/>
<element name=“namespaceURI” type=“string”/>

</all>
</complexType>
<complexType name=“javax.wsdl.extensions.ExtensionRegistry”>

<all/>
</complexType>
<complexType name=“java.util.List”>

<all>
<element name=“empty” type=“boolean”/>

</all>
</complexType>
<complexType name=“PortTypeSelection”>

<all>
<element name=“operationSelection”

type=“xsd1:ArrayOfOperationSelection”/>
<element name=“portTypeQName”

type=“xsd1:javax.wsdl.QName”/>
</all>

</complexType>
<complexType name=“OperationSelection”>

<all>
<element name=“operationName” type=“string”/>
<element name=“inputName” type=“string”/>
<element name=“outputName” type=“string”/>

</all>
</complexType>
<complexType name=“ArrayOfOperationSelection”>

<complexContent>
<restriction base=“soapenc:Array”>

<sequence/>
<attribute ref=“soapenc:arrayType”

wsdl:arrayType=“xsd1:OperationSelection[]”/>
</restriction>

</complexContent>
</complexType>
<complexType name=“PortTypeArray”>

<all>
<element name=“portTypes”

type=“xsd1:ArrayOfJavax.wsdl.PortType”/>
</all>

</complexType>
<complexType name=“javax.wsdl.PortType”>

<all>
<element name=“QName” type=“xsd1:javax.wsdl.QName”/>
<element name=“operations”

type=“xsd1:java.util.List”/>

20

<element name=“documentationElement”
type=“xsd1:anyElement”/>

<element name=“undefined” type=“boolean”/>
</all>

</complexType>
<complexType name=“ArrayOfJavax.wsdl.PortType”>

<complexContent>
<restriction base=“soapenc:Array”>

<sequence/>
<attribute ref=“soapenc:arrayType”

wsdl:arrayType=“xsd1:javax.wsdl.PortType[]”/>
</restriction>

</complexContent>
</complexType>

</schema>

Implementation
You implement the Import Service with your EIS connector; this includes
providing your connectors respective import service WSDL binding definition.

The way that this service is implemented is dependent on your EIS. In the case of
a tailorable EIS the implementation would do a live access to the EIS’s metadata
repository. In the case of a non-tailorable EIS the definitions could be shipped as
part of the RAR and your import service implementation would access them from
there.

Create the Import Service for your EIS
To create the import service for your EIS, follow these steps:
1. Create the import service WSDL binding definition.
2. Implement the service with your connector.

See the sample to learn how to create the import service.

Chapter 5. Import Service 21

22

Chapter 6. Packaging - Putting it all together

This chapter shows you how you package up your tool extensions in your
connector RAR. You declare the things provided to the tool environment by means
of a XML file.

jca_tool_plugin.xml
<jca_tool_plugin tns = “http://schemas.xmlsoap.org/wsdl/myeis/” name = “MyEIS”>

<Description>MyEIS</Description>
<version>0.0.1</version>
<wsdl_extensions>

<address classname = “com.ibm.wsdl.extensions.jca.myeis.MyEISAddress” />
<binding classname = “com.ibm.wsdl.extensions.jca.myeis.MyEISBinding” />
<operation classname = “com.ibm.wsdl.extensions.jca.myeis.MyEISOperation” />
<extension_registry

classname = “com.ibm.wsdl.extensions.jca.myeis.MyEISExtensionRegistry”/>
</wsdl_extensions>
<wsif_extensions

classname = “com.ibm.wsif.providers.jca.myeis.WSIFDynamicProvider_MyEIS” />
<import>

<service wsdlfile = “com/ibm/jca/importservice/myeis/ImportMyEIS.wsdl”
servicename = “ImportService” />

</import>
<formathandler>

< generator encoding =“myeis” style= “myeis”
classname = “com.ibm.jca.myeis.formathandler.MyEISFormatHandlerGenerator” />

</formathandler>
</jca_tool_plugin >

Putting it into the RAR
The XML file along with a jar of the tool extenision implementation classes has to
be packaged into the resource adapters archive file (RAR).

The following shows where to place them in the RAR:
v /META-INF/ra.xml
v /META-INF/jca_tool_plugin.xml
v /howto.html
v /images/icon.jpg
v /ra.jar
v /cci.jar
v /jca_tool_plugin.jar
v /win.dll
v /solaris.so

© Copyright IBM Corp. 2002 23

24

Chapter 7. Rendering the Tool Plug-in

This section describes how a tool environment can use connectors that support
the tool plug-in. First we layout a very generic description, and then we show how
the connectors supporting the plug-in can be used in WebSphere(R) Studio
Application Developer Integration Edition.

Generic Description
The following is a generic description of the tool task flow for a tool plug-in with
and without import service support.

With Import Service

v Ask for connection properties.
v Call the getPortTypes method of the importing service.
v Present portTypes, and allow for selection.
v Call getDefinition method of importing service passing the selection.
v Add returned WSDL definition to your work environment.

Without Import Service

v Ask for connection properties.
v Ask for portType name.
v Create WSDL definition in your work environment.
v Open the WSDL definition with an editing tool.
v Add operations with their binding to the portType:

– use existing messages
– import new messages by importing existing language structures

v Add format typemapping to the binding:
– specify encoding and style
– specify format typemaps

Sample: How a user works with it

With Import Service
MyEIS is a connector that supports the importing service. In the service provider
browser you select MyEIS if you want to create a service definition for it.

© Copyright IBM Corp. 2002 25

Next you are asked for the connection properties to access the EIS. After setting the
properties press Continue

Next you click the List Port Types button to query for available portTypes offered
by the EIS system. You can use the entry field to specify a query string to restrict
the list of portTypes returned. The List Port Types button invokes the getPortTypes
method of the MyEIS import service.

26

The list of returned portTypes is displayed and you can select the specific
portType, or Operations in the same portType, you want to import. After you
made the selection, the Add Service button will launch the Add Service Wizard.
The Finish button of this wizard triggers the getDefinition method of the
importing service. The returned definition will be added to the workspace.

You can repeat the sequence of selecting a portType and adding its definition
multiple times.

Chapter 7. Rendering the Tool Plug-in 27

Without Import Service
This is a sample for a connector that doesn’t support the importing service, here
shown on the CICS(R) ECI connector. Select CICS ECI if you want to create a
service definition for a CICS ECI service.

Next you are asked for the connection properties to access CICS. After setting the
properties, click Add Service. This gets you into the Add Service wizard, where

28

you specify the namespace and the name of the portType that you want to create.
Pressing Finish will create a service definition with an empty portType.

For the created service definition the editor will be opened, it allows you to
interactively add the operations and their bindings to the portType as well as the
format typemapping. Clicking New in the operation section takes you to the New
Operation Binding wizard.

Chapter 7. Rendering the Tool Plug-in 29

30

Chapter 8. Sample: The tool-enabled MyEIS connector, Step
by Step...

This sample will walk you through the steps of developing a tool extensions to
enable your J2EE Connector Architecture Resource Adapter for the tool
environment. The complete source code for the MyEIS connector and its
JCA_Tool_Plugin support is included in the “myeis.jar” file, shipped as part of the
“myeis.rar” in the following directory:

<install directory>/eclipse/plugins/com.ibm.etools.ctc.binding.eis/runtime

MyEIS Connector
The connector provided as a sample contains the minimal set of classes necessary
to execute the interaction with the MyEIS back-end system. It is not meant to
provide a sample implementation of the JCA Resource Adapter but only shows the
skeleton classes necessary to support Resource Adapter’s pluggability into the
tools, import and sample services. The Connector consists of the following classes,
implementing J2EE Connector Architecture interfaces, in the com.ibm.jca.myeis
package:
v MyEISConnection - client view of the managed connection (connection handle)
v MyEISConnectionFactory - factory of connection handles
v MyEISInteraction - object providing methods to execute interactions with EIS
v MyEISInteractionSpec - object encapsulating properties of a specific interaction
v MyEISManagedConnection - physical connection to the backend system. The

implementation of this class illustrates two different possibilities of retrieving the
list of PortTypes and Definition by the Resource Adapter. The first method is to
ship the service (wsdl) files representing available services and definitions with
the Resource Adapter. This method would be appropriate for the connector to
the EIS with the infrequently changing (for example only between EIS releases)
services available. In the sample implementation, the shipped wsdl files are
accessed in the com.ibm.myeis.repository.Repository class implementation. The
second method to get the services available is by querying the EIS
(com.ibm.myeis.MyEIS class in the sample). In that case the Resource Adapter
would connect to and query the EIS for available services. The tooling does not
make any assumptions about which method is used. The sample connector
illustrates support for both methods, switchable through the property on the
Managed Connection Factory.

v MyEISManagedConnectionFactory - the factory of physical connections to the
EIS system

Create the MyEIS specific Connector Binding
To enable capturing of the meta information characterizing the details of the
interactions with the EIS in the wsdl model, the Resource Adapter provides
Connector Bindings. These bindings consist of the following:
v extensibility elements for the Binding, Operation and Port
v binding serializer
v binding deserializer

© Copyright IBM Corp. 2002 31

v ExtensionRegistry used to register the serializer and deserializer with the
runtime and tools.

The sample connector implements Connector Bindings in the
com.ibm.wsdl.extensions.jca.myeis package. The Binding extensibility element is
used as a tag (has no properties) and defines the binding type. The extensibility
element for the Operation captures the meta information describing a single
interaction with the EIS system. The properties of this extensibility element
correspond to the properties of the Resource Adapter’s InteractionSpec. The Port
extensibility element represents the endpoint (address) where the service is
available. It contains properties corresponding to the properties of the
ManagedConnectionFactory. To implement Extensibility Element, create class
implementing the javax.wsdl.extensions.ExtensibilityElement and
java.io.Serializable interfaces and add appropriate properties from InteractionSpec
to the Operation extensibility element and from Managed Connection Factory to
Port extensibility element. Next, you need to select the namespace for your
bindings. The sample connector uses the following namespace URI:
http://schemas.xmlsoap.org/wsdl/myeis/ with the standard prefix, followed by
the connector specific last segment. The element names are left to the implementor,
however the ones used in the sample connector (MyEISBinding, MyEISAddress,
MyEISOperation) make the wsdl files easier to read. The next step is to provide a
serializer and deserializer for your bindings. This is necessary since the wsdl file
reader and writer cannot handle arbitrary extensibility elements. The serializer
writes the xml format of your extensibility elements, for example Operation, the
deserializer reads in and parses xml, creating from it instances of these elements.
For example to serialize MyEISOperation object from the sample connector, you
need to create the following xml fragment:

<myeis:operation functionName=“CUSTOMERINFO_getAddress” />

with the following code:
if (extension instanceof MyEISOperation) {

MyEISOperation operation = (MyEISOperation) extension;
pw.print(“ <” + TPrefix + “:operation”);

if (operation.getFunctionName() != null) {
DOMUtils.printAttribute(“functionName” ,
operation.getFunctionName(), pw);

}

To deserialize the xml fragment, use the following:
if (MyEISBindingConstants.Q_ELEM_OPERATION.equals(elementType)) {

MyEISOperation operation = new MyEISOperation();

String functionName = DOMUtils.getAttribute(el, “functionName”);
if (functionName != null) {

operation.setFunctionName(functionName);
}
return operation;

The last component that you need to provide with your bindings is the Extension
Registry. Its purpose is to provide convenient way to register serializer and
deserializer for your extensibility elements with tools and runtime. The class
implements the javax.wsdl.extensions.ExtensionRegistry interface and registers
serializer/deserializer for each element in its constructor using the following code:

MyEISBindingSerializer ser = new MyEISBindingSerializer();

32

http://schemas.xmlsoap.org/wsdl/myeis/

// operation
this .registerSerializer(javax.wsdl.BindingOperation.class,

MyEISOperation. class , ser);
this .registerDeserializer(javax.wsdl.BindingOperation.class,

MyEISBindingConstants.Q_ELEM_OPERATION, ser);

Create the WSIF extensions for MyEIS Connector
The WSIF requires that every binding to be executed has to provide the set of
supporting classes implementing binding runtime. JCA Tool Plug-in provides
elements of the runtime and delegates to the specific connector only these elements
that cannot be handled in a generic manner i.e. elements corresponding to the
extensibility elements provided by the connector, Address and Operation.

The JCA Tool Plug-in implements JCAMessage, JCAPort and JCAOperation and
requires the resource adapter to provide WSIFDynamicProvider and
WSIFDynamicProviderJCAExtensions implementations.

The WSIF uses WSIFDynamicProvider to create a dynamic port corresponding to
the endpoint at which the service is accessible. This, in turn, corresponds to the
creation of the Connection to the EIS. The resource adapter implements the
WSIFDynamicProvider and WSIFDynamicProviderJCAExtensions interfaces. In its
createDynamicWSIFPort method, it creates the WSIFPort_JCA (part of the JCA Tool
Plug-in run time) initialized with the active javax.resource.cci.Connection. The
resource adapter creates the connection either using JNDI lookup or directly using
Managed Connection Factory. The name used for the lookup is built from the
service namespace URI, service name and port name. The JCA Tool Plug-in run
time provides a class (com.ibm.wsif.jca.util.JCAUtil) with a set of utility methods
that should be used to construct names (for example, JNDI lookup name, Format
Handler class name). In the required implementation of the createOperation
method the resource adapter creates JCAOperation and initializes is with the
instance of Connection and InteractionSpec as shown below:

BindingOperation bindingOperationModel =
aBinding.getBindingOperation(aOperationName, aInputName, aOutputName);

ExtensibilityElement bindingOperationModelExtension =
(ExtensibilityElement) bindingOperationModel.getExtensibilityElements().get(0);

if
(bindingOperationModelExtension == null) {

throw new WSIFException(“missing bindingOperation extension”);
}
if (!(bindingOperationModelExtension instanceof MyEISOperation)){

throw new WSIFException(“invalid extensibility element”);
}

MyEISOperation operationModelExtension = (MyEISOperation)
bindingOperationModelExtension;

MyEISInteractionSpec interactionSpec = new MyEISInteractionSpec();

interactionSpec.setFunctionName(operationModelExtension.getFunctionName());

operation = new JCAOperation(aDefinition, aBinding, aOperationName, aInputName,
aOutputName, aConnection, interactionSpec, this);

Optionally, the Resource Adapter can provide implementation of the Message
creation methods to be able to create customized messages. The default
implementation uses the Streamable interface to exchange input and output data
with the Connector.

Chapter 8. Sample: The tool-enabled MyEIS connector, Step by Step... 33

Create the FormatHandler Generator for MyEIS
The connector provides the format handler generator by implementing
com.ibm.jca.formathandler.FormatHandlerGenerator interface. During connector
deployment into the tools, the format handler generator is registered, based on the
encoding and style it specifies in the xml file. When the service definition is
deployed and the helper classes need to be generated, the encoding and style are
used to lookup the format handler generator and invoke it from tooling. The
generate method is passed the following arguments:
v generationPackage - the fully qualified package that the generator should use to

generate its classes in. This name follows the naming convention described
earlier in the document.

v beanClass - the fully qualified name of the Java bean class that represents the
XSD type (or element) for which a format handler is being generated.

v aDefinition - the WSDL definition from which the XSD type is derived.
v aBinding - the WSDL binding element that contains the type mapping for the

XSD type that is being used.
v anEncoding - the encoding attribute off the TypeMapping element associated

with the format handler to be generated.
v aStyle - the style attribute off the TypeMapping element associated with the

format handler to be generated
v xsdQname - the QName of the XSD element (or type) for which the format

handler is being generated.
v elementType - the type of element represented by the xsdQname parameter. This

is either CustomFormatHandlerGenerator.XSD_TYPE or
CustomFormatHandlerGenerator.XSD_ELEMENT

The format handler generator returns a HashTable that contains a set of
java.io.InputStreams. Each input stream contains the generated code for a
particular class generated by the format handler generator. The number of input
streams returned depends on the number of classes that are generated by the
format handler generator. The keys of the HashTable must be the name of each
class (unqualified) that is represented by its corresponding InputStream value. The
class name keys are unqualified because they must all be in the generationPackage
that is passed in as an input parameter.

The arguments to the generate method may contain sufficient information to
generate the specific format handler i.e. the xsd type of the part and assumed
encoding and style since these were used to locate and invoke the generator. In
some cases, additional information may be required. In this case, the
TypeMappings from the passed bindings can be used:

TypeMapping typeMapping = null ;
Iterator iterator = aBinding.getExtensibilityElements().iterator();
while (iterator.hasNext()){

Object element = iterator.next();
if (element instanceof TypeMapping){

typeMapping = (TypeMapping)element;
break ;

}
}

When the type mappings are used, the generator should verify that type mapping
has an encoding, and optionally a style it supports e.g.

34

if (!typeMapping.getEncoding().equals(“myeis”))
return null ;

Finally, the generator could retrieve from the format binding the formatType string
corresponding to the xsd (type or element) for which the format handler is being
generated:

String formatType = null ;
iterator = typeMapping.getMaps().iterator();
while (iterator.hasNext()){

TypeMap typeMap = (TypeMap)iterator.next();
if (typeMap.getTypeName().equals(xsdQname)){

formatType = typeMap.getFormatType();
break ;

}
}

The formatType is a string and tools do not make any assumption about it
contents. It is a specific value understood by the generator. In the sample
generator, the native format for all types is Java serialization and therefore the
formatType string is empty.

The sample generator: com.ibm.jca.myeis.formathandler.
MyEISFormatHandlerGenerator does not use typeMaps since the native format it
generates is a simple Java serialization and therefore formatTypes in the wsdl files
are empty.

In addition to handling the associate part as a Java bean, the format handler
should have a capability to read and write the native format to and from the
SAXSource and JDOMSource. This allows the invoker of the service to pass or
retrieve the data as XML. The sample format handler generator shows one of the
possible methods to convert a native format, in its case a Java bean, to the source
format.

Create the Import Service for MyEIS
The resource adapter supporting the import service is required to provide, in
addition to the implementation described in the section “MyEIS Connector” section
above, the following: a service file with the bindings for the Import interface from
the JCA Tool Plug-in and a set of format handlers for the conversion to native
format during execution of the import service. The sample connector binding file is
as follows:

<binding name=“ImportMyEISBinding” type=“importservice:Import”>
<myeis:binding/>
<operation name=“getDefinition”>

<myeis:operation functionName=“IMPORT_DEFINITION”/>
<input name=“getDefinitionRequest”/>
<output name=“getDefinitionResponse”/>

</operation>
<operation name=“getPortTypes”>

<myeis:operation functionName=“IMPORT_PORTTYPES”/>
<input name=“getPortTypesRequest”/>
<output name=“getPortTypesResponse”/>

</operation>
</binding>
<service name=“ImportService”>

<port binding=“tns:ImportMyEISBinding” name=“ImportMyEISPort”>
<myeis:address repositoryLocation=“remote”/>

</port>
</service>

Chapter 8. Sample: The tool-enabled MyEIS connector, Step by Step... 35

It contains all the information needed to execute import service, for example
function names (in the operation binding) and the repository location (in the port
binding). The user will be able to edit these values if necessary, for example if the
port binding contains the location of the target EIS system.

The format handlers necessary to execute the import service are no different than
any other format handlers generated by the Resource Adapter and the format
handler generator can be used to create them. The sample connector provides all
the elements needed for the import service in the com.ibm.jca.importservice.myeis
package.

Packaging the MyEIS Connector together with the Tool Extensions
The sample MyEIS Connector is packaged into myeis.rar, a resource adapter
archive file. It contains the “META-INF/jca_tool_plugin.xml” file, “ra.xml” and one
jar with the connector runtime and tool extensions. The rar file can contain more
than one jar file so for example when the tool extensions are added to the existing
connector, they could be packaged in the separate jar.

Developing with the MyEIS Connector
The following section demonstrates how the ’CustomerInfo’ portType can be
imported from the MyEIS connector, and a proxy class be created for this service.
1. First create a service project and go to the service provider browser.
2. Select the MyEIS connector.

3. Input the connection properties for the EIS system you want to import from
and select Continue.

36

4. Click List Port Types to show the list of portTypes offered by MyEIS.
5. Select the CustomerInfo portType and then click Add Service.
6. In the wizard select the WSDL file properties you want to import to and then

click Finish.

7. The imported WSDL document or documents should appear in your
workspace along with the corresponding XSD files.

Chapter 8. Sample: The tool-enabled MyEIS connector, Step by Step... 37

8. Select the CustomerInfoMyEIS.wsdl file, and choose the Proxy icon on the
toolbar.

9. In the Proxy wizard, select the properties for the Java code that you want to
generate (such as the package names, the Class name, and so on).

10. Select the generation style (Command Bean or Client Stub).

38

11. Select the operations that you want to include in the generated proxy.

12. Click Finish and the generated code, along with necessary helper classes, will
be added to your workspace:

Chapter 8. Sample: The tool-enabled MyEIS connector, Step by Step... 39

40

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
Documentation in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this Documentation. The furnishing of this Documentation does not
give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002 41

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this Documentation and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. 2000, 2002. All rights reserved.

42

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, or other countries, or both:
v AFS
v DB2
v DB2 Extenders
v DB2 Universal Database
v CICS
v IBM
v IMS
v OS/390
v OS/400
v VisualAge
v WebSphere
v WorkPad

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

UNIX is a registered trademark of The Open Group

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices 43

	Contents
	Chapter 1. Introduction
	Chapter 2. Metadata Support
	WSDL
	WSDL Document Architecture
	WSDL and J2EE Connector Architecture - A Natural Fit
	A Java API for WSDL Documents - JSR 110

	Connector Binding
	A Connector WSDL Sample
	How the Connector Binding Extends WSDL
	connector:binding
	connector:operation
	connector:address

	Format Binding
	format:typeMapping

	Create an EIS-specific Connector Binding

	Chapter 3. Web Service Invocation Framework (WSIF)
	Client Programming Model
	Architecture
	WSIF and JCA
	Create WSIF extensions for your JCA connector

	Chapter 4. Format Handling
	FormatHandler
	FormatHandler Generator
	Create the FormatHandler Generator for your EIS

	Chapter 5. Import Service
	Interface
	Implementation
	Create the Import Service for your EIS

	Chapter 6. Packaging - Putting it all together
	jca_tool_plugin.xml
	Putting it into the RAR

	Chapter 7. Rendering the Tool Plug-in
	Generic Description
	Sample: How a user works with it
	With Import Service
	Without Import Service

	Chapter 8. Sample: The tool-enabled MyEIS connector, Step by Step...
	MyEIS Connector
	Create the MyEIS specific Connector Binding
	Create the WSIF extensions for MyEIS Connector
	Create the FormatHandler Generator for MyEIS
	Create the Import Service for MyEIS
	Packaging the MyEIS Connector together with the Tool Extensions
	Developing with the MyEIS Connector

	Notices
	Programming interface information
	Trademarks and service marks

