
Generator
A Powerful New Vision of ProgrammingTM

VisualAge®

The IBM VisualAge Generator Newsletter

Volume 3, Number 3
August 1998

Contents

VisualAge Generator Version 3.1 2

Nikon Optical Develops a New
Sales/Logistics System with
VisualAge Generator 3

Building Visual Basic and
PowerBuilder Clients 4

Oracle Support in Version 3.1 9

Making It Easier to Find and
Display Parts 11

Understanding Garbage
Collection 13

Enforcing VAGen Part Naming
Conventions 14

Changing the Edit Policy of a
CDV Column 16

Math Function Words and
Floating Point Arithmetic 21

Dare to Develop with a RAD
Methodology 24

ASRA Abends Happen! 26

Object Connection—Partners
in Development 30

Year 2000 Support—Fact and
Fiction 31

2

Welcome to another issue of the
VisualAge Generator Newsletter!
You’ll find this issue packed with
information to get you started using
the recently shipped VisualAge
Generator V3.1, as well as other
hints and tips.

Worldwide use of VisualAge
Generator technology continues to
rapidly grow, providing users with
powerful visual development tools
to build applications that satisfy the
most demanding enterprise applica-
tion scenarios. This month’s issue
highlights one such customer’s
experience.

VisualAge Generator V3.1 contin-
ues an exciting tradition of deliver-
ing advanced capability for high-
end application development,
helping you build, deploy, and
multi-tier client/server applications
across a diverse group of platforms
(Windows NT, Windows 95,
Windows 3.11, OS/2, OS/400,
AIX, HP-UX, VSE, VM, and
OS/390(MVS)).

The following are V3.1 features at a
glance:

• Java Gateway capability has
been added for the MVS and
AIX platforms. Your Java
clients can directly invoke
VisualAge Generator server
programs in CICS on OS/390
(MVS) and VisualAge Genera-
tor server programs on AIX.

• Oracle database support adds
relational database middleware
options when designing applica-
tions. VisualAge Generator
server programs can access
Oracle V7 databases natively
(directly) on Windows NT, AIX,
HP-UX, and OS/2.

VisualAge Generator Version 3.1
by Barry Stevenson, Manager, VisualAge Generator Development

• Non-VisualAge Generator
clients, such as Java or Visual
Basic, can call the Interactive
Test Facility for VisualAge
Generator server programs,
providing a single-system
environment for debugging
during application development

• Built-in functions for handling
mathematical operations, such
as floating point arithmetic,
exponentiation, and logarithms

• ODBC support on the HP-UX
platform. This enables
VisualAge Generator server
programs to access non-IBM
relational databases

• Various usability and perfor-
mance improvements, which
include performance improve-
ments for MVS batch programs
accessing VSAM data

• VM shared saved segments
support. VisualAge Generator
server runtime components, as
well as generated COBOL
application programs, can be
loaded into VM shared saved
segments, reducing working set
sizes and virtual storage
requirements

With the collaborative effort be-
tween IBM VisualAge Generator
Development and Planetworks, you
can create Visual Basic or
PowerBuilder GUIs capable of
calling VisualAge Generator
transaction server programs. In this
issue of the newsletter, you’ll find
an excellent article outlining the
setup associated with this powerful
new enhancement.

Commercial software development
around the VisualAge product
family continues to drive new
choices and expanded capabilities
for our VisualAge Generator
customers. We are pleased that
this partnership continues to
accelerate tool development for
VisualAge products with regard to
reusable software components.

Given the never-ending Year 2000
discussion in the news, this month’s
issue features an article that
outlines VisualAge Generator,
VisualGen, and CSP considerations
in light of this pressing issue.

Inherent within VisualAge
Generator technology is the con-
cept of rapid application develop-
ment. Given the interest on this
topic, we thought you’d appreciate
some discussion on how best to
use this significant paradigm in
software development. And finally,
there are some great articles on
VAGen parts management,
Smalltalk garbage collection,
changing CDV edit behavior, and
CICS debugging (ASRA abends).

Send us your comments and
thoughts for future articles or, better
yet, submit an article on a topic of
interest based on your experiences.
Echoing previous authors of this
space, we encourage you to write
an article to publish in the newslet-
ter (see the Comment Form for
details). We are anxious to get your
feedback as you experience the
VisualAge Generator “powerful new
vision of programming.”

3

Nikon Optical is a retailer of eye-
glass lenses and frames. Since
1987, Nikon has increased its
revenues to 20 billion yen. The
company saw further opportunities
ahead if it could fine-tune its sales
and logistics processes. So, Nikon
Optical asked IBM Global Services
to provide a complete end-to-end
solution, including the development
of a new sales/logistics system
using VisualAge Generator.

Nikon Optical had used distributed
systems in the past, but felt they
would need a new system to
support the amount of change
needed. In addition, system mainte-
nance costs would remain high in
the old environment. Nikon Optical
chose a complete, integrated client/
server solution from IBM, including
everything from developing new
systems to outsourcing systems
maintenance.

An Open Solution Cuts
Costs and Improves
Customer Service
Using VisualAge Generator, Nikon
Optical created a system called the
NEWTON. This system consists of
a number of applications, including
the following:

• Order entry
• Shipping
• Order request
• Stock management
• Billing and collections
• Accounting
• Product planning support
• Database inquiries

The NEWTON went hand in hand
with an effort to streamline Nikon
Optical’s business processes.
Nikon Optical constructed a new,
centralized business centre model

Nikon Optical Develops a New Sales/Logistics System
with VisualAge Generator
by Sue Royer, VisualAge Generator Sales and Technical Sales Support

for ordering and shipping. All orders
through this business centre are
now processed using the NEWTON
system. The addition of bar-coding
technology for order picking in the
business centre has likewise
increased the speed and quality of
order fulfillment.

To support the ordering and ship-
ping business centre, Nikon Optical
also redeveloped the infrastructure
of the platform that connected to
the order-entry system for glasses
retailers and large sellers. In
addition, to reduce systems mainte-
nance, Nikon Optical centralized
the server function on IBM RS/6000
SP. The result is a powerful, open
solution that fully addresses Nikon
Optical objectives.

“For example, we’ve decreased our
space requirements for inventory
and increased the efficiency of our
business processes. Previously,
when we received the order or
inquiry from the customer, we had
to find the memos or ask the
person who is savvy with it. Now it
is totally different. The new system
enables us to give the correct
answer to our customers quickly,
since we are able to find the
accurate data anytime, anywhere,”
says the Nikon Optical official.

A Simple, Powerful
Interface Increases User
Productivity
One of the main challenges in
building the NEWTON was to
create an effective graphical user
interface (GUI) for order entry. The
goal was to enable users to enter a
customer order with the minimum
number of keystrokes. In addition,
for order-entry applications, user
response time had to be within one

to three seconds, each calling a
server program. To achieve both
these goals using VisualAge
Generator, the SI team had made
an effort to tune the GUI, transfer-
ring data from client to server and
server applications.

VisualAge Generator is a worksta-
tion-based visual programming
environment for rapidly developing
high-quality enterprise applications.
It enabled the team of about 30 IBM
VisualAge developers to complete
the GUI, which included some 350
modules and an AIX/CICS applica-
tion with over 1,000 modules, all in
just months. The entire sales/
logistics system and the newly
reengineered business processes
were in operation by October 1997.

VisualAge Generator
Rapidly Develops
High-Quality Enter-
prise Applications
“Before this new system was
implemented, our order-entry
process required a product expert,”
says the Nikon Optical official. “The
new system, with its functions for
easy input, enables even an
inexperienced user to enter the
order. In addition, we can now use
the data more effectively to support
our marketing activities.”

He adds, “For the future, we plan to
extend the system to the new
network computing area. This will
help us maximize our business
opportunities by enabling real-time
order processing for a wide variety
of customers via the Internet.”

 A Customer Success Story

4

VisualAge Generator and Interspace by Planetworks
have teamed up to provide an exciting and powerful
new offering for enterprise customers. Using the
Interspace development framework and middleware,
developers can create Visual Basic or PowerBuilder
GUIs that call VisualAge Generator’s robust, scalable,
transaction server programs to access enterpise data.

In this article, we describe how to build a Visual Basic
client for the VisualAge Generator sample server
program STFLIST using Interspace. The article as-
sumes you are already familiar with the material in
Chapter 15 of the Client/Server Communications Guide
for VisualAge Generator Version 3.1.

Source code for the sample files can be obtained from
the VisualAge Generator ftp site at URL:

ftp://ps.software.ibm.com/ps/products/visualagegen/
info/v3.1

Sample files are:

 STFLIST.cat

Service and service interface defined by
Interspace

 STFLIST.esf

STFLIST service code ESF file generated by
Interspace

 STFAPP.esf

STFAPP ESF file modified from STFLIST
example

 STFLIST.bas

STFLIST wrapper for Visual Basic program
generated by Interspace

 STFLISTM.bas

A Visual Basic program to initialize the project

 STFPROJ.vbp

Visual Basic project properties

 STFLOGIN

A Visual Basic userid/password authentication
form

 STFGUI

A Visual Basic GUI form

Building Visual Basic and PowerBuilder Clients
by Roger Newton and Paul Hoffman, VisualAge Generator Development

Defining the Server Program
Interface
Developing an Interspace-enabled client begins with
Interspace’s Service Interface Painter. This tool is used
to define the data passed between the client and
server, to perform test calls to the server, and to
generate the objects that call the server program. We
used the Interspace Painter to define a service inter-
face for the sample program, STFLIST, which is
shipped with VisualAge Generator Developer.

The steps we followed were:

1. Define the fields used in the service interface.
Fields are equivalent to VisualAge Generator data
items. The fields we defined are located in the
STFLIST.cat file.

Note that numbers were defined using type short
or integer for integers or decimal for numbers with
decimal places.

2. Define the service and service interface. The
service is the equivalent of a VisualAge Generator
server (remote called batch) program. The service
interface is defined as a set of request data flowing
to the server, and reply data returned from the
server.

5

In Interspace 5.1, you must define the request
data and reply data exactly the same for calling
VisualAge Generator servers. If repeating data is
defined in the interface, the equivalent of an array
in VisualAge Generator, you must also define and
use Interspace control fields. These fields should
be defined only to the request header and should
be defined as the first three fields in the header.
The service we defined was named STFLIST. The
interface is as follows:

4. Import the the external source format file into the
VisualAge Generator library and code the remain-
der of the server program using VisualAge
Generator Developer. We took most of the code
from the existing STFLIST sample program and
reworked it to work with the Interspace-generated
parameter record. The modified source code is in
file STFAPP.ESF.

Test the Server Program
After you define the service interface for the VisualAge
Generator server program, you can test the service
using the Test function of the Interspace Service
Painter as described in the Client/Server Communica-
tions Guide.

Building Visual Basic GUIs
After the service interface and server program were
tested to our satisfaction, we followed the following
steps to build the Visual Basic GUI.

 1. Generate the Visual Basic wrapper module for the
STFLIST service

 2. Copy STFLIST module in a Visual Basic project

 3. Add modules to the project

 4. Build the forms for the GUI

 5. Test the Visual Basic program

Generating Visual Basic Functions
that Call the Server
Interspace uses the service definitions and the service
call template to generate the appropriate Visual Basic
structures and functions. The generated code contains
functions that invoke Interspace functions for moving
data back and forth between Visual Basic structures
and middleware communication buffers. The generated
code is written to a Visual Basic file with a “.BAS”
extension and a filename equal to the service name.

The vbsync.tpl template should be used when generat-
ing the service for a VisualAge Generator called server
program, since these are synchronous calls. The
generator generates several Visual Basic structures
and functions that include the name of the service.

 3. Use the Generate function from the Service Inter-
face Painter to generate External Source Format for
the program and parameter record member for
VisualAge Generator. Notice that Interspace 5.1
generates a single parameter record in the ESF
representing both the request data and reply data,
rather than two different records as stated in the
Client/Server Communications Guide. Interspace
uses the term “service code” to refer to the ESF
file. You can see the generated service code in file
STFLIST.ESF.

6

Predefined Interspace Functions
The most important function of these generated
functions is called receive_<service>_sync, where
“<service>” is the service name. This function invokes
other predefined and generated functions to interface
with the Interspace middleware services. These
predefined and generated functions make up what is
called the GUI-Enabling Layer (GEL), which is the top
layer. These predefined functions are contained in
DCIGEL.BAS. The Distributed Processing Layer
(DPL), the middle layer, contains functions that provide
additional middleware services. These functions are
contained in dcidpl.dll and are declared in
DCIDPL.BAS.

Developing A Visual Basic GUI for
the STFLIST Server Program
Before a Visual Basic GUI can call a VisualAge Gen-
erator server program using the Interspace function,
the Interspace environment must be initialized. The
function dcifx_init(), which initializes the environment,
along with other predefined functions, are contained in
DCIGEL.BAS, as mentioned above. When terminating
the GUI, the Interspace environment should be cleaned
up by using the dcifx_exit() function. The sample code
shows you where these functions and other Interspace
functions should be coded in your Visual Basic applica-
tion.

Visual Basic Modules
The steps for developing a Visual Basic application are
as follows:

1. Add the modules (DCIGEL.BAS and
DCIDPL.BAS) containing the predefined
Interspace functions to the Visual Basic project.

2. For each service (server program) that will be
called by the GUI, add the module that was
generated from Interspace to the Visual Basic
project. For our example, the generated module,
STFLIST.BAS, was added to the Visual Basic
project.

Adding a Main Subroutine
We created another Visual Basic module called
STFLISTM.BAS to keep from modifying the
Interspace-generated modules in the event that the
service interface changes and the service has to be
regenerated. In the STFLISTM.BAS module, we
defined a Main subroutine for our Visual Basic GUI and
additional variables. The script for the Main subroutine
is the first code to be executed and is used to control
the initial flow of the GUI.

Included in the additional variables section is a copy of
all the service interface parameters for each service
call. These are the actual parameters that should be
used when making the function calls. The naming
convention we adopted for naming the variables was to
remove the underscore from the original name. For
instance, STFLIST_request_data was defined with the
name STFLISTrequestdata.

 Public STFLISTrequestdata As FLIST_request_data

 Public STFLISTreplydata As STFLIST_reply_data

 Public STFLISTrequestmsg As STFLIST_request_msg

 Public STFLISTreplymsg As STFLIST_reply_msg

 Public pword$ �user password

 Public user$ �user name

 Public retcode% �global error code

 Public NumofButtons% �used for the dcifx_show_error

 Public Const DistributedEnvironment = �VISGEN� �environment you are connecting to

 Public Const AppToConnectTo = �STFLIST� �the app connecting to

 Public Const Title = �Interspace Reported Error� �used for the dcifx_show_error

 Public Sub Main()

 STFGUI.Show

 stfLogIn.Show 1

 End Sub

7

Private Sub getListCmd_Click()
 'Initialization section
 Dim stfname As String * 15
 Dim STFListEntry As String * 50

 'Use STARTING_ID entered by the user
 STFLISTrequestmsg.header.starting_id = starting_id.Text

 'Allocate space in memory for the following arrays
 ReDim STFLISTrequestmsg.data(1) 'very important
 ReDim STFLISTreplymsg.data(1) 'very important

 getListCmd.Enabled = False 'Disable until successful server call

 'The parameters are messages:
 '1.STFLISTrequestmsg - data flowing to the server program
 '2.STFLISTreplymsg - data being returned from the server program
 ' In VB terms: A user defined type. These two were defined in the STFLIST.BAS file.
 ' Their definition is based on the repository file for this service.
 ' The STFLIST.BAS file was generated using the Interspace painter.

 retcode = receive_STFLIST_sync(STFLISTrequestmsg, STFLISTreplymsg)

 'You always use error handling with an Interspace enabled application
 ' The dcifx_show_error provides information about the error.

 If retcode <> 0 Then 'zero is Interspace success value
 If retcode = -1 Then
 Call dcifx_show_error(NumofButtons, Title) 'Displays Interspace provided error msg
 retcode = 0
 End If
 End If

 getListCmd.Enabled = True 'Call to server was successful
 stfListBox.Clear 'Clear the list box before populating again

 Select Case STFLISTreplymsg.row_count 'using this user defined type to see
 'how many rows were returned by the service

 Case Is > 0 'At least one row was returned
 For i = 1 To STFLISTreplymsg.row_count 'Number of rows read from the database
 stfname = Format(STFLISTreplymsg.data(i).NAME_WS, "@@@@@@@@@@@@@@@")
 STFListEntry = Format(Str(STFLISTreplymsg.data(i).STAFFIDX_WS), "@@@@@") + "| " + stfname +
 "| " + Format(Str(STFLISTreplymsg.data(i).SALARY_WS), "@@@@@") + "| " +
 Format(Str(STFLISTreplymsg.data(i).COMM_WS), "@@@@@") + "|"
 stfListBox.AddItem STFListEntry, (i - 1)
 Next i

 Case Is = 0 'No entries found
 End Select

End Sub

Coding the Visual Basic Forms
The Visual Basic GUI created for our server program contains two forms: a login form (STFLOGIN.frm) and the
main form (STFGUI.frm), which controls the interaction with user.

The function, dcifx_init(), which initializes the Interspace environment, is included in the login form
(STFLOGIN.frm).

8

Testing the Visual Basic Program
Visual Basic provides robust test facilities for running
and debugging the Visual Basic program. Use these
facilities to set breakpoints and watch points as you are
testing and debugging your program.

You have flexibility in how you test your client and
server programs together. You can test the Visual
Basic program calling the server program in the
VisualAge Generator Test Facility. If you are satisfied
with the server program, generate the server program,
and test it with Visual Basic calling the generated
server program. Once the complete client/server
application has been thoroughly tested, the Visual
Basic program can be compiled into an executable
(EXE).

Deploying The Visual Basic
Application
After an executable has been created for your Visual
Basic application and is ready to be distributed to the
end-users, it is important that all the necessary files are
distributed with the executable and that the middleware
runtime components are properly installed on each
machine. When distributing the Interspace-enabled
Visual Basic application for VisualAge Generator
middleware, ensure that all the files in the Interspace
runtime subdirectory (x:\ispace\runtime) are distributed
to the client machine. This directory should contain the
Interspace runtime DLL, DCIDPL.DLL, and the DIL
DLL for VisualAge Generator, VGENDIL.DLL.

In addition, you need to distribute the latest version of
the Visual Basic runtime DLL. Currently, these DLLs
are vb40016.dll and vb40032.dll, depending on
whether your application is 16 or 32 bit. If your applica-
tion uses any OCX objects, you also need to distribute
the runtime DLLs for these objects.

The runtime DLLs for Interspace, Visual Basic, and
OCX (if it’s used) should be located in a directory that
is defined in the DOS Path of the client’s machine. In
addition, the Interspace control file, ISPACE.INI, and
the repository file containing the service definitions
should be copied to the same location.

To complete the setup, you need to install and properly
configure VisualAge Generator runtime services and
the underlying middleware (CICS Client, Client
Access/400, and so on). Refer to the product installa-
tion guide for information on the installation and
configuration of these products.

You also need a runtime linkage table on the client to
specify the location of the server to the PowerServer
middleware.

Moving the Server Program to Other
Platforms
Our example put the server program on an MVS CICS
system. To put the server program on any of the other
VisualAge Generator server platforms (for example,
IMS, VSE CICS, OS/400, or AIX), regenerate the
server program for the new environment and modify
the linkage table on the client system to point to
the new server. No change is required in the server
application code or to the GUI client program.

Using A Different GUI Development
Tool
The same server program can be used with
PowerBuilder, Java, and ActiveX clients. Use
Interspace to generate PowerBuilder DataWindow
objects, Java classes, or ActiveX controls that encap-
sulate the call to the server program, then use the
appropriate GUI development tool for the type of
object generated. No change is required to the server
program.

Summary
The Interspace and VisualAge Generator integrated
solution provides customers with a development
framework for developing distributed applications using
popular UI tools like Visual Basic and PowerBuilder,
where the customer prefer these tools.

General Notes
To use the new Callable Test Facility feature intro-
duced in VisualAge Generator V3.1, fixpak1 should be
applied to your image.

Interspace 5.1 includes the VisualAge Generator
support. We recommend that you pick up the latest
fixes for this support. For more information on the
Interspace product, visit the Planetworks web site at:

 www.planetw.com.

9

Do you need to access Oracle
databases from your VisualAge
Generator server application? In
previous versions of VisualAge
Generator, you might have ac-
cessed Oracle using ODBC or
DataJoiner. In Version 3.1 of IBM’s
VisualAge Generator Server, you
can directly access Oracle data-
bases without the overhead of
ODBC or DataJoiner. Oracle
support is available for C++ pro-
grams generated for AIX, HP-UX,
and Windows NT. Look for support
for OS/2 in a future fixpak.

Defining and Testing
Your Programs
Oracle databases are not directly
accessible from the VisualAge
Generator Definition Facility or Test
Facility, so the ODBC interface
must be used when defining and
testing your programs. For more
information on using the ODBC
interface, refer to the VisualAge
Generator Design Guide.

Generating Your
Programs
After testing your programs, you
can generate them to directly
access Oracle databases at
runtime. When generating your
SQL programs, you must specify
the database management system
you want to use: DB2, Oracle, or
ODBC. If you are using the
HPTCMD GENERATE batch
command, the /DBMS generation
option is used to specify the data-
base management system you
want to use. If you are generating
from the user interface, the data-
base management system is
specified in the generation options
under the Validation tab. If you do
not specify a DBMS generation
option, the default is DB2.

Oracle Support in Version 3.1
by Chuck Proffer and Roger Newton, VisualAge Generator Development, and Susan Lafera, VisualAge
Generator Information Development

Running Your Programs
When running VisualAge Generator programs that access Oracle data-
bases, the same environment variables are used to specify the database
name as are used when accessing DB2 or ODBC; EZERSQLDB and
FCWDBNAME_<progname>. EZERSQLDB enables you to globally
specify the database name for all programs and
FCWDBNAME_<progname> enables you to specify the database name
for a specific program.

Special Considerations
If you are writing new VisualAge Generator programs, you should use
VisualAge Generator’s Retrieve SQL function to create the SQL row
record. This will ensure that the SQL row record data item definitions
match the columns in the Oracle table. Alternatively, you can define
the SQL row record by specifying the SQL column data types using the
DB2 native SQL data codes. Refer to the VisualAge Generator
Programmer’s Reference for the SQL data codes.

If you are migrating existing VisualAge Generator programs that were
written for DB2, there are a couple of areas of consideration. The first is
data type differences between DB2 and Oracle. The following table shows
the Oracle data type and the equivalent DB2 data type.

Oracle Data Type DB2 Data Type

CHAR(n), n <= 254 CHAR(n)

CHAR(255) VARCHAR(255)

VARCHAR2(n), n <= 2000 VARCHAR(n)

LONG, up to 32700 bytes LONG VARCHAR

NUMBER(p,s), p <= 4 and s = 0 SMALLINT

NUMBER(p,s), 4 < p <= 9 and s = 0 INTEGER

NUMBER(p,s), p <= 31 and 0 <= s <= p DECIMAL

FLOAT(p) FLOAT

RAW(n), n <= 254 CHAR(n) FOR BIT DATA

RAW(255) VARCHAR(255) FOR BIT DATA

LONG RAW, up to 32700 bytes LONG VARCHAR FOR BIT DATA

DATE TIMESTAMP

Be aware that when you use the DATE data type, there are differences
between DB2 and Oracle. In Oracle, the DATE data type contains both
date and time information. The corresponding VisualAge Generator data
item must be defined as character and must be at least 19 bytes to accom-
modate the returned data. You can use the VisualAge Generator string
functions to separate the date and time information. The default date
format is specified by the Oracle Server initialization parameter
NLS_DATE_FORMAT and contains a string such as ‘DD-MON-YY’. This
default can be changed on the server or overridden on the client by
specifying the desired format with the following environment variables:
NLS_LANG and NLS_DATE_FORMAT.

10

Another area requiring consideration
is functions. If your SQL statements
contain functions, you might need to
modify the SQL statements if the
corresponding function is not
available in Oracle. All of the DB2
column functions (AVG, COUNT,
MAX, MIN, and SUM) are supported
by Oracle; however, only a limited
set of the DB2 scalar functions are
available in Oracle.

In Conclusion
The VisualAge Generator product
continues to respond to its
customers by adding new function-
ality. With the addition of Oracle
support, you can now access your
Oracle databases directly with
improved performance.

11

In FixPak 1 of VisualAge Generator Version 3.1,
several enhancements were made to make it easier to
find and work with VAGen Parts . First, there are
enhancements to the References utility. The utility now
offers two means of searching parts, as well as more
control over which parts are searched. You can either
search for references to a part of a given name and
type, or you can search parts for an arbitrary text
string. For example, you can use the text search to
find all parts that use a particular EZE word. The text
search actually searches the part’s ESF for the text
string. Knowing this, you can find all programs that
allow implicit data items by searching for the string
“implicit = Y”.

Additionally, the References utility was enhanced to
enable greater control in specifying which parts to
search. You can indicate which parts are to be
searched by specifying a part name pattern and a set
of part types. This enables you to narrow and speed up
your search. Also, with FixPak 1, you can search parts
that are not loaded in your image. The last two options
in the search scope drop-down list are Selected
applications and Selected configuration maps . If
you choose either of these, a prompter displays
enabling you to select multiple application or configura-
tion map editions. The editions you select can be
loaded in the image, but the editions don’t have to be
loaded. If you search selected configuration maps, all
applications and subapplications within the maps are
searched.

Making It Easier to Find and Display Parts
by Jay Cagle, VisualAge Generator Development

The References utility is available from the VAGen
Parts menu of the VisualAge Organizer window, and
from the Parts menu of the VAGen Parts Browser .
The search example in the following References
window locates all Maps in the image that use
EZEMSG.

Also in FixPak 1 of Version 3.1, are enhancements to
the VisualAge Organizer and VAGen Parts Browser ,
which enables you to view and filter by part subtype.
Four VAGen part types have subtypes: processes,
programs, records, and tables. The subtypes are the
process option, the program type, the record type
(organization), and the table type. You can toggle
which columns are displayed in the VisualAge
Organizer by selecting columns from the VAGen
Parts->View cascade menu. If you choose, the
subtype is displayed in a column by itself. In the
VAGen Parts Browser , columns are configured using
the Reorder Columns window, which you can display
by selecting Reorder Columns from the Parts menu.
You can choose a column that displays the type only or
a column that displays both type and subtype. Select
Save as Defaults from the View menu to make your
column choices the default for the VAGen Parts
Browser .

12

In both the VisualAge Organizer and VAGen Parts
Browser , if the subtype is displayed and you sort the
list by type, the list is sorted by type, subtype, then part
name. If the subtype is not displayed and you sort by
type, the list is sorted by type only, then by name.
Displaying the subtype, and sorting by type when
subtype is displayed, will be slower than not displaying
the subtype or sorting by something other than type.
As an alternative, in the VAGen Parts Browser , you
can display the type and subtype in the status bar
instead of in a column. Select Reorder Status Bar
Text from the View menu to configure the status bar
information.

The VAGen Parts Browser also filters by subtype.
From the Parts Filter window, you can expand the
process, program, record, and table types to display
their subtypes. When the types are expanded, you can
select only the subtypes you want displayed. If a type
is not expanded, all its subtypes are displayed.

Another minor enhancement has been made to the
VAGen Parts Browser, in which the status bar now
displays the number of parts currently selected and the
total number of parts in the list.

The following figure shows the Parts Filter window
with the record type expanded and the SQL row and
working storage subtypes selected. The VAGen Parts
Browser window behind the Parts Filter window
shows the resulting list, configured to display the type
and subtype.

13

“Garbage Collection” refers to the Smalltalk process of
the virtual machine periodically identifying
unreferenced objects and deallocating their memory.
It is important to understand that just destroying an
object does not make that object eligible for garbage
collection. Instead, you must ensure that the object is
no longer referenced by any other object in order for
the system to reclaim the storage allocated by the
destroyed object. GUI classes are objects that are
frequently destroyed and not garbage collected. This
usually occurs when the GUI class was previously
stored in an ordered collection and not removed
during the destroy processing. However, instances of
destroyed GUI classes can remain in storage when
another GUI class contains a variable part that
references the destroyed object. To ensure that the
GUI class is deallocated, the class should be removed
from the Order Collection prior to being destroyed, and
variables that point to the class should be modified to
point to another class object.

Using VisualAge Generator 3.0, it is easy to determine
the status of the instances of GUI classes throughout
the Smalltalk environment. All you need to do is
execute some Smalltalk code. But before you start
examining the current state of your Smalltalk environ-
ment, you should first understand the class hierarchy
of the GUI classes defined in the system. By default,
when a new GUI class is defined, the class is speci-
fied as a subclass of the VisualAge Smalltalk class
AbtAppBldrView. An examination of this class will
show all of your defined GUI classes as subclasses of
AbtAppBldrView. You should also notice that there are
additional classes defined as subclasses of
AbtAppBldrView. These subclasses are most likely
provided with VisualAge Smalltalk or VisualAge
Generator. Since we are not interested in seeing any
instances of these subclasses, the logic used to
evaluate all subclasses of AbtAppBldrView should be
smart enough to ignore these classes. This should
be easy enough to write since these classes will have
names that begin with common prefixes.

The following example stores all of the Non-VisualAge
subclass instances of the class AbtAppBldrView into
an ordered collection. Each element in the ordered
collection will be an array that contains all of the
instances of a specific GUI class. This ordered
collection can then be inspected to see what GUI
classes have instances in the system. To execute the
code and inspect the output, select the code in a work
space area and choose execute from the context
menu.

Understanding Garbage Collection
by Jim Eberwein, VisualAge Generator Development

| allguis nonVAInstances a1 |

System globalGarbageCollect.

allguis := OrderedCollection new.

nonVAInstances := OrderedCollection new.

allguis := AbtAppBldrView allSubclasses.

allguis do: [:element |

 ((((element name) asString)
indexOfSubCollection: �Abt� startingAt:
1) = 1)

 ifFalse: [((((element name) asString)
indexOfSubCollection: �Hpt� startingAt:
1) = 1)

 ifFalse: [(((a1 := element basicAllInstances)
size) = 0) ifFalse: [nonVAInstances add:
a1]]]].

nonVAInstances inspect.

Upon completion of the above logic, an
OrderedCollection Inspector is displayed. You should
be able to verify that each element is an array that
contains the number of instances for a particular
non-VisualAge Smalltalk or VisualAge Generator
subclass of AbtAppBldrView that exists in your virtual
machine. By examining each element in these arrays,
you can determine if an instance has been destroyed
but, for some reason, is not available for garbage
collection. Each instance in the array has the attribute
abtIsDestroyed. If this value is “true”, then the instance
has been destroyed, but still is referenced by another
object. This is true because the example code per-
formed a system garbage collection, which frees the
memory for any destroyed objects that no longer has
any references to them.

An understanding of the relationship between the
process of an object being destroyed and garbage
collection should help developers better manage the
virtual memory requirements of their application suite.
This article hopefully addresses this relationship.
Adventurous developers can use the above code as a
springboard in developing tools that they can incorpo-
rate into their applications to help determine the state of
their system during runtime.

14

In VisualAge Generator Version 3.0
FixPak 4, a set of Smalltalk APIs
were introduced that enable users
to enforce their own naming con-
ventions for VAGen parts. This
article describes those APIs and
provides sample code showing how
to use them. Also introduced in
FixPak 4 is a set of APIs for a
number of VAGen Part utilities.
These APIs enable users to create
new and customized part utilities.
The utility APIs will not be covered
by this article; however, all of the
VAGen Smalltalk APIs are docu-
mented in the VisualAge Generator
Programmer’s Reference in the
Appendix. The online version of the
manual was updated with FixPak 4.

To create your own custom naming
conventions, you must create a
Smalltalk method that performs the
name validation. This method is
called before a VAGen Part is
created, but after the part name has
already passed the standard
VAGen naming conventions. The
method must take three arguments:
part name, part type, and ENVY
application. It must return a boolean
value; true indicates the part name
is valid.

The ENVY application will be nil if it
is not known when the part name is
validated. For example, this can
happen when adding a main
process to a program. The process
name is validated at this time, but
the application for the process is
not known until the process is
actually created. Due to this situa-
tion, if you use the Envy application
in your validation routine you
should first check whether it is nil.

The following code shows a sample
validation method, and another
method used by the validation
method.

Enforcing VAGen Part Naming Conventions
by Jay Cagle, VisualAge Generator Development

 validate: partName type: partType app: app

 �Validate the part name has the following format: XX##T##

 �XX� must be the same two characters as the application

 the part is being created in. �##� are any two digits. �T�

 is a single character indicating the part type.�

 �Length must be at least 7�

 partName size < 7 ifTrue: [^false].

 �First two characters must be letters.�

 ((partName at: 1) isLetter and: [(partName at: 2) isLetter])
 ifFalse: [^false].

 �Third, fourth, sixth, and seventh characters must be digits.�

 ((partName at: 3) isDigit

and: [(partName at: 4) isDigit

 and: [(partName at: 6) isDigit

 and: [(partName at: 7) isDigit]]])

 ifFalse: [^false].

 �Fifth character must correspond to part type.�

 (partName at: 5) = (self characterFor: partType)

 ifFalse: [^false].

 �First two characters must be same as application.�

 app isNil

 ifFalse: [

 (partName copyFrom: 1 to: 2) = (app name copyFrom: 1 to: 2)

 ifFalse: [^false]].

 ^true

 characterFor: partType

 �Given a part type, return a single character which

 represents the type:�

 ^(Dictionary new

 at: PartTypeProgram put: $A;

 at: PartTypeProcess put: $P;

 at: PartTypeStatementGroup put: $S;

 at: PartTypeMapGroup put: $G;

 at: PartTypeMap put: $M;

 at: PartTypeRecord put: $R;

 at: PartTypeTable put: $T;

 at: PartTypePsb put: $B;

 at: PartTypeDataItem put: $I;

 yourself)

 at: partType

15

Once you have written your valida-
tion method, you must register it so
it will be called. The
HptPartValidationHandler class
provides two registration methods:
one for adding a validation routine,
and another for removing it. Assum-
ing you created the sample meth-
ods above as class methods in a
class called VAGenTools, you
would register the method using
the following code:

 HptPartValidationHandler
 addCallbackFor: VAGenTools
 selector: #validate:type:app:

To remove the validation routine,
you would do:

 HptPartValidationHandler
 removeCallbackFor: VAGenTools

If you place the class containing the
validation methods into a utility
application, you can set it up so that
when the application is loaded into
an image the validation routine will
be registered. Do this by performing
addCallbackFor:selector: in the
loaded class method of the applica-
tion class. The loaded method of an
application class is automatically
called when the application is
loaded into an image. Likewise,
perform the removeCallbackFor:
method in the removing class
method of the application class.
The removing method is called
when the application is unloaded
from an image.

Naming conventions can help you
manage systems with a large
number of parts. With these APIs
and a little Smalltalk code, it is now
easy to enforce your VAGen part
naming conventions.

16

This article is in response to customers interested in how to change the edit behavior of a Container Details View
(CDV) cell. Two examples of this are the VisualAge Generator Version 3.0 Record Editor and the properties
table view of any visual parts. This article describes one of many ways to change the edit policy of a CDV
column and achieve the same effects as shown in the two examples below. With the power of Smalltalk, you will
see that this is a fairly easy task. This example shows you how to apply the following edit policies:

• Combo box

• Radio box

• Prompter

• Toggle button

• Spin button

The following GUI is used as an example:

Changing the Edit Policy of a CDV Column
by Guy Slade, VisualAge Generator Development, and Thatcher Robinson, VisualAge Generator Consulting
Services

REC1 is a working storage record with the following definition:

17

S1 in the previous GUI is a Statement Group and is executed when the aboutToMapWidget event occurs. It
primes the record REC1 with data.

The aboutToMapWidget event also triggers a Smalltalk method called setColEditPolicies. This piece of script
contains most of what we are about to discuss.

The setColEditPolicies Method
This method contains the following Smalltalk script:

setColEditPolicies

 �Since the edit policies for all cells with a particular column are going to be the same we can set
them up before showing the UI�

 � Set a Combo Box edit policy on the first column �

 (self subpartNamed: �Title Drop Down�) editPolicy:

((EwComboBoxEditPolicy on: (self subpartNamed: �Cell Edit Policy Examples�)

parentingWidget) items: #(�Mr� �Mrs�); �value: � �).

 � Set a Radio Button edit policy on the second column �

(self subpartNamed: �Title Radio Button�) editPolicy:

((AbtEwObjectRadioBoxEditPolicy on:

(self subpartNamed: �Cell Edit Policy Examples�) parentingWidget)

items: #(�Mr� �Mrs�)).

 � Set a Prompter edit policy on the third column �

(self subpartNamed: �File Prompter�) editPolicy:

((AbtEwObjectPrompterEditPolicy on:

(self subpartNamed: �Cell Edit Policy Examples�) parentingWidget)

editable: true;

prompter:(self subpartNamed: �File Selection Prompter1�) ;

buttonLabelString: �Select�;

buttonAlignment: XmALIGNMENTEND).

� Set a Toggle Button (tick box) edit policy on the four column �

(self subpartNamed: �Married Tick Box�) editPolicy:

((EwToggleButtonEditPolicy on:

(self subpartNamed: �Cell Edit Policy Examples�) parentingWidget)

labelString: �Married?�).

�Set a Spin Button edit policy on the fifth column �

(self subpartNamed: �Spin Button�) editPolicy:

((EwxSpinButtonEditPolicy on:

(self subpartNamed: �Cell Edit Policy Examples�) parentingWidget)

increment: 10;

minimum: 0;

maximum: 300;

itemType: XmSBNUMERIC;

value: 20).

As you can see, this method is changing the edit policy for each of the five CDV columns. Let’s examine in detail
the code that changes the first column.

18

� Set a Combo Box edit policy on the first column �

(self subpartNamed: �Title Drop Down�) editPolicy:

((EwComboBoxEditPolicy on: (self subpartNamed: �Cell Edit Policy Examples�)

parentingWidget)

items: #(�Mr� �Mrs�);

value: � �).

The code “(self subpartNamed: ‘Title Drop Down’)” above identifies the CDV column on which we are changing
the edit policy. In this case, we have renamed the first column of the CDV from its default to “Title Drop Down.”

The code “items: #(‘Mr’ ‘Mrs’);” is specifying an Ordered Collection of strings that we want to show in the drop
down list. In this example, we have hard coded the Ordered Collection. The code “value: ‘ ‘ ” specifies the value
to show as selected in the drop down. You will see that we override this later on, so it doesn’t matter what you
assign at this point. However, It is important to note that the value clause must be set here (even though it is
overridden later). If you want the user to be able to type in a value other than the ones displayed in the
drop-down list, you must also add the following line of code:

 �editable: true;�

The second column is set to use a radio button widget. In this example, the column will display two radio buttons,
one for ‘Mr’ and one for ‘Mrs’.

The third column is the prompter example. When the user selects a cell in column 3, the current value is dis-
played in a text box on the left-hand side of the cell and a button is displayed on the right-hand side. If the user
clicks the button, the specified prompter window displays. Let’s take a closer look at this code.

� Set a Prompter edit policy on the third column �

(self subpartNamed: �File Prompter�) editPolicy:

((AbtEwObjectPrompterEditPolicy on: (self subpartNamed: �Cell Edit Policy

Examples�) parentingWidget)

editable: true;

prompter:(self subpartNamed: �File Selection Prompter1�) ;

buttonLabelString: �Select�;

buttonAlignment: XmALIGNMENTEND).

The code “editable: true;” enables the user to type a new value into the cell rather than having to press the
prompter button. The code “prompter:(self subpartNamed: ‘File Selection Prompter1’) ;” specifies the prompter
part we want to display. In this case, we dropped a File Selection Prompter onto the free-form surface and named
it File Selection Prompter1.

The fourth column is set to use a toggle button widget. In the example, when you click on the cell, the text ‘Mar-
ried?’ is shown beside the toggle button.

The fifth column in this example shows how to have a spin button appear when editing the cell. The parameters in
this example are pretty clear. Note that the edit policy is called EwxSpinButtonEditPolicy. This edit policy is not
loaded into your image by default. To get this edit policy, you must load the application EwExamples.

To get a better understanding of the methods being used above, take a look at the edit policy classes. Open a
Hierarchy Browers on the class EwEditPolicy (From the System Transcript —> Tools —> Browse Hierar-
chy ...). By using this browser, you can investigate the various methods we have used above.

To recap, the setColEditPolicies method sets the edit policies of each CDV column to something other than the
default. Now let’s take a look at how we prime the new widget with the value held in the working storage record so
that it appears when the CDV cell is selected. Each CDV column has the following connection:

19

aboutToBeginEdit: (event) <—> beginEditCellX.

X represents either A,B,C,D, or E, depending on what column was selected. The following is the code in the
method beginEditCellA: (a cell in the first CDV column)

beginEditCellA: callData

� Set the initial value that gets displayed in the Combo Box �

(self subpartNamed: �Title Drop Down�) editPolicy value: callData value.

The callData parameter is automatically generated by the aboutToBeginEdit: event. One of the values held in
callData is the value currently displayed in the CDV cell. This method passes the callData value through to the
new edit Policy widget. If we don’t pass this value, a blank is displayed as the initial value in the cell.

Below is the code for the methods beginEditCallB:, beginEditCellC:, and beginEditCellE:. As you can see, the
code for the methods are basically the same as above.

beginEditCellB:callData

� Set the initial radio button �

(self subpartNamed: �Title Radio Button�) editPolicy value: callData value.

beginEditCellC: callData

� Set the initial value that gets displayed �

(self subpartNamed: �File Prompter�) editPolicy value: callData value.

beginEditCellE: callData

� Set the initial value that gets displayed in the Drop Down list �

(self subpartNamed: �Spin Button�) editPolicy value: callData value.

The method beginEditCellD: is different, though. The data item in the record that corresponds to the fourth CDV
column contains the string value ‘TRUE’ or ‘FALSE’. This CDV column has a toggle button policy. To set the
toggle button on or off, we have to use a Boolean value. The beginEditCellD: method needs to convert the TRUE/
FALSE string into a Boolean value.

beginEditCellD: callData

| initial |

� Decode the value held in the record to a true or false Boolean that dictates whether the

toggle box is selected or not �

callData value = �TRUE� ifTrue: [initial := true] ifFalse: [initial := false].

(self subpartNamed:�Married Tick Box�) editPolicy set: initial.

The last piece to this puzzle are the two extra connections from the fourth and fifth CDV columns. The connec-
tions are AboutToEndEdit(event) <—> endEditCellD: (and E). Again, the aboutToEndEdit event automatically
generates the callData parameter that is accepted by the endEditCellD: (and E) method. Let’s take a look at the
endEditCellD: method first.

endEditCellD: callData

� Decode the boolean value held in the toggle box to a string representation held in the record �

callData newValue = true

ifTrue: [callData newValue: �TRUE�]

ifFalse: [callData newValue: �FALSE�]

20

This method is doing the opposite of the beginEditCellD: method. It is taking the TRUE/FALSE Boolean value and
converting it to a TRUE/FALSE string value, then passing that value back to the CDV cell (and hence the working
storage record).

Finally, let’s look at the endEditCellE: method.

endEditCellE: callData
 callData newValue: callData newValue asString.

This is a strange one. Without going into any detail, this method is overcoming a limitation of a converter method
that runs somewhere between the cell edit, finishing, and the new value arriving in the CDV cell. This converter
must have the new value in a string format and the endEditCellE: method is doing just that.

It is also possible to have a single CDV cell displaying different edit policies. As an example, we can make the
edit policy dependent on the cell value: for example, if the cell contains the value ‘A’, a drop-down edit policy is
used; and if the cell contains the value ‘B’, a radio button edit policy is used. Rather than just setting the initial
value in the beginEditCellX: method, what you can do is have some logic that tests the current value and sets the
edit policy of the cell accordingly. This will have the additional overhead of setting the edit policy of the column
each time the user clicks on a cell in that column, but give the flexibility of multiple edit policies in the same CDV
column.

The Great Lakes Area VisualAge Generator User-
Group meeting was held in Research Triangle Park,
North Carolina, on July 16 & 17! Over 40 companies
were represented and more than 100 people from
organizations either using VisualAge Generator or
thinking of using VisualAge Generator heard presen-
tations from VisualAge Generator developers and
managers, IBM Business Partners, and other cus-
tomers.

Attendees were also invited to vote for new additions
to be included in future releases of the product by
investing a mythical $200 and choosing from func-
tions in a shopping list of possible future functions.
This was a survey conducted by the RTP Lab to
ensure that the future product delivers what its
current and future users need and expect.

by Rusty Edmister, VisualAge Generator Sales Support

Great Lakes Area User-Group Meeting Held in RTP

Networking among attendees was the rule at breaks,
before and after the day-and-a-half session, and
during the picnic, which featured eastern North
Carolina barbecue on Thursday evening. Also at the
picnic, attendees were served cake commemorating
VisualAge Generator’s 4th birthday!

Steve Gilkerson, representing Highlights for Children
and the Great Lakes Area User-Group, spoke to the
audience about organizing a national VisualAge
Generator User’s Group. Plans for such a group were
incomplete at the conclusion of the meeting. But as
information becomes available, we will be providing it
to you in future editions of this newsletter as well as
on the VisualAge Generator web page at:

 www.software.ibm.com/ad/visgen

21

In VisualAge Generator Version 3.1, new special
function words enable you to use the mathematical
functions in the C runtime library from VisualAge
Generator programs. Since the C functions operate on
double precision floating point numbers, the new
function words also support basic floating point arith-
metic operations and conversion between VisualAge
Generator numeric data types and floating point format.

Coding Math Function Calls

To invoke a math function, code the function name
followed by the function arguments and an optional
(REPLY option. For example:

EZEMAX NUMERICITEM1, NUMERICITEM2,
RESULT (REPLY ;

All the arguments are numeric data items.
The term “numeric data item” refers to any of the
following:

• Any data item with the type NUM, NUMC, PACK,
PACF, or BIN

• A 4-byte HEX item. The item is assumed to be a
single precision, 4-byte floating point number
native to the runtime environment. The number is
precise to a maximum of 6 digits.

• An 8-byte HEX item. The item is assumed to be a
double precision, 4-byte floating point number
native to the runtime environment. The number is
precise to a maximum of 15 digits.

The (REPLY option indicates how exception conditions
are handled by the function. If the (REPLY option is
specified, exception codes are returned in EZERT8. If
not, the program ends with an error message when an
exception is detected.

Math function exception codes are:

8 Domain error; argument is not in a valid range
to be operated on by the function.

12 Range error; intermediate or final result cannot
be represented as a double precision floating
point number, or with the precision of the result
parameter.

16 C math function exception.

Math Function Words and Floating Point Arithmetic
by Paul Hoffman, VisualAge Generator Development

Floating Point Math Functions

The following math functions are floating point func-
tions. All input parameters are converted to double
floating point numbers in the format appropriate for the
machine on which the program is running.

EZESIN NUMERICITEM, RESULT ;

Return RESULT = sine of NUMERICITEM.

EZECOS NUMERICITEM, RESULT :

Return RESULT = cosine of NUMERICITEM.

EZETAN NUMERICITEM, RESULT ;

Return RESULT = tangent of NUMERICITEM.

EZEASIN NUMERICITEM, RESULT ;

Return RESULT = arcsine of NUMERICITEM
in the range -pi/2 to +pi/2. Domain error if
NUMERICITEM not in range of -1 to 1.

 EZEACOS NUMERICITEM, RESULT ;

Return RESULT = arccosine of
NUMERICITEM in the range 0. pi. Domain
error if NUMERICITEM not in range of -1 to 1.

EZEATAN NUMERICITEM, RESULT ;

Return RESULT = arctangent of
NUMERICITEM in the range -pi/2, +pi/2.

EZEATAN2 NUMERICITEM, NUMERICITEM2,
RESULT ;

Return RESULT = theta component of the
polar coordinate (r, theta) corresponding to the
rectangular coordinate (NUMERICITEM1,
NUMERICITEM2). The result is in the range -pi
to pi.

EZESINH NUMERICITEM, RESULT ;

Return RESULT = hyperbolic sine of
NUMERICITEM.

EZECOSH NUMERICITEM, RESULT ;

Return RESULT = hyperbolic cosine of
NUMERICITEM.

EZETANH NUMERICITEM, RESULT ;

Return RESULT = hyperbolic tangent of
NUMERICITEM.

22

EZEEXP NUMERICITEM, RESULT ;

Exonential function. Return RESULT = e to the
power NUMERICITEM.

EZELOG NUMERICITEM, RESULT ;

Return RESULT = natural logarithm of
NUMERICITEM. Domain exception if
NUMERICITEM <= 0.

EZELOG10 NUMERICITEM, RESULT ;

Return RESULT = base 10 logarithm of
NUMERICITEM. Domain exception if
NUMERICITEM <= 0.

EZEPOW NUMERICITEM1, NUMERICITEM2,
RESULT ;

Return RESULT = NUMERICITEM1 to the
NUMERICITEM2 power. Domain exception if
NUMERICITEM1 = 0 and NUMERICITEM2
<= 0, or if NUMERICITEM1 < 0 and
NUMERICITEM2 is not an integer.

EZESQRT NUMERICITEM, RESULT ;

Return RESULT = square root of
NUMERICITEM, NUMERICITEM => 0.

EZELDEXP NUMERICITEM1, N, RESULT ;

Return RESULT = NUMERICITEM1 *(2 to the
power of N). N is a 4-byte BIN integer item.

EZEFREXP NUMERICITEM1, N, RESULT ;

Splits NUMERICITEM into a normalized
fraction in the range 1/2 to 1, which is returned
in RESULT, and a power of 2, which is stored
in N. If NUMERICITEM is zero, both returned
values are zero. N is a 4-byte BIN integer item.

EZEMODF NUMERICITEM1, NUMERICITEM2,
RESULT ;

Splits NUMERICITEM into integral and frac-
tional parts, each with the same sign as
NUMERICITEM1. It returns the fractional part
in RESULT, and the integral part in
NUMERICITEM2.

Floating Point Arithmetic Functions

The following math function words can be used to
convert between VisualAge Generator numeric data
types and floating point numbers and to perform
arithmetic operations with floating point numbers.
The double floating point result is converted with
rounding to the format of the result parameter.

EZEFLSET NUMERICITEM, RESULT ;

Set RESULT to the value of NUMERICITEM.

EZEFLADD NUMERICITEM1, NUMERICITEM2,
RESULT ;

Add NUMERICITEM to NUMERICITEM2 and
return the sum in r.

EZEFLSUB NUMERICITEM1, NUMERICITEM2,
RESULT ;

Subtract NUMERICITEM2 from
NUMERICITEM and return the difference in r.

EZEFLMUL NUMERICITEM, NUMERICITEM2,
RESULT ;

Multiply NUMERICITEM by NUMERICITEM2
and return the product in r.

EZEFLDIV NUMERICITEM1, NUMERICITEM2,
RESULT ;

Divide NUMERICITEM by NUMERICITEM2
and return the quotient in r. Domain exception
if NUMERICITEM2 is 0.

EZEFLMOD NUMERICITEM1, NUMERICITEM2,
RESULT ;

Return RESULT = floating point remainder of
NUMERICITEM NUMERICITEM2, with the
same sign as NUMERICITEM. Domain excep-
tion if NUMERICITEM2 is 0.

18-Digit Functions

The following math functions do not require conversion
of parameters to double floating point numbers and
operate with a full 18 digits of precision. The result is
converted with rounding to the format of the result
parameter.

EZENCMPR NUMERICITEM1, NUMERICITEM2, N,
RESULT ;

Compare NUMERICITEM to NUMERICITEM2
and return n, where n is 1(NUMERICITEM >
NUMERICITEM2, 0(NUMERICITEM =
NUMERICITEM2, or -1(NUMERICITEM <
NUMERICITEM2. N is a 4-byte BIN integer
item.

EZEMIN NUMERICITEM1, NUMERICITEM2,
RESULT ;

Return RESULT , minimum of NUMERICITEM
and NUMERICITEM2.

EZEMAX NUMERICITEM1, NUMERICITEM2,
RESULT ;

Return RESULT , maximum of NUMERICITEM
and NUMERICITEM2.

23

EZEROUND NUMERICITEM1, N, RESULT ;

Round NUMERICITEM to the Nth power of 10
and return the result in r. N is a 4-byte BIN
integer item.

EZECEIL NUMERICITEM, RESULT ;

Return RESULT = smallest integer not less
than NUMERICITEM

EZEFLOOR NUMERICITEM, RESULT ;

Return RESULT = largest integer not greater
than NUMERICITEM

EZEABS NUMERICITEM, RESULT ;

Return RESULT = absolute value of
NUMERICITEM.

Query functions

The following functions enable a program to determine
the precision and length of math function parameters.

EZEPRCSN NUMERICITEM, N, RESULT ;

Return the maximum precision (N) in decimal
digits for a numeric data item of this type. For
floating point numbers (4-byte or 8-byte HEX
item), the precision is the maximum number of
decimal digits that can be represented in the
number for the system on which the program is
running. N is a 4-byte BIN integer item.

EZEBYTES PARAMETER, BYTES RESULT

Return length in BYTES of PARAMETER;
BYTES is a 4-byte BIN integer item.

Acronyms
3GL third-generation language
4GL fourth-generation language

24

It would be unthinkable to build a
skyscraper without a means of
prioritizing the work and making
sure that dependencies are satis-
fied for each successive step. For
example, a skyscraper would
require extensive rework if the steel
were to be erected before the
foundation work was properly
completed. This also shows how
important it is to be sure that the
most efficient, and thereby least
expensive path is taken when
moving towards one’s goal. In
software development, this path to
success is called a methodology.

Rapid Application Development
(RAD) is a methodology designed
to get the maximum amount of
function implemented in the short-
est possible time. This means that
in today’s rapidly changing world, a
system can be implemented before
the requirements change, and it
becomes obsolete. Using traditional
waterfall approaches, only 3
percent of projects lasting three
years or more are successfully
implemented!

RAD relies on two things for
success. The first is infrastructure,
and the second is iterative, incre-
mental development, which in-
cludes prototyping. VisualAge
Generator is ideally suited to this
powerful approach. VisualAge
Generator offers extensive screen
painting/template-based application
generation techniques, as well as
interactive testing capabilities. You
can use these facilities for design
prototyping and subsequent user
functional validation during the
incremental development process.

Dare to Develop with a RAD Methodology!
by Henry Jicha, VisualAge Generator Consulting Services

Infrastructure
For RAD to be most effective,
there must be a strong infrastruc-
ture in place at the start of the
project. Infrastructure elements
include naming conventions, data
definitions, screen standards, and a
robust architectural model. Several
means can be found for achieving
this infrastructure. The easiest is
relying on the infrastructure already
in place. This is particularly appli-
cable to projects that add function
to existing systems. With existing
systems, a stable set of data
definitions are usually already in
place to support production. Like-
wise, screen standards and naming
conventions have generally been
established by precedent within
existing systems, and will need to
be followed for consistency with the
existing infrastructure.

Another way to build an infrastruc-
ture, particularly in new application
areas, is through the use of tem-
plate-based development. Using
templates, VisualAge Generator
can build nearly complete applica-
tions using only the data definitions.
Here, flexibility in the screen and
architecture is traded for the ability
to absorb changes in the data
model. If the data model changes,
all you need to do is re-create the
application using the new data
definitions with the templates. The
application architecture is provided
by the templates, as are the screen
standards. An additional advantage
of the new template technology in
VisualAge Generator Version 3.0 is
its ability to provide a high level of
flexibility along with the ability to
absorb change in the data defini-
tions that underly the application.
This is achieved by allowing screen
layout modifications to be pre-
served during regeneration of the
application through the use of
templates if the data definitions
change. Additional flexibility is
provided to modify the templates to

achieve new architectures or
conventions to suit specific require-
ments. You can extend this to
include existing manually coded
infrastructure in new applications
through reverse engineering of
existing applications into templates
that can then be used to create new
application functions.

Data is the most critical infrastruc-
ture component. Changes in data
can be accommodated with tem-
plate-based development to avoid
expensive human rework. However,
if custom screens or GUIs are
required, stable data definitions are
needed before extensive applica-
tion definition work begins. Then,
using a consistent architectural
model facilitates incremental
development in an orderly fashion.
This avoids rework to make compo-
nents developed in the future
connect with those developed
previously. Naming conventions
also contribute to this by assuring
that developed parts can be easily
located and reused where possible.
In addition, naming conventions
help prevent duplicate development
of the same functions.

Incremental
Development
A cube can be used as a model to
look at the dimensions of the
application complexity. Each
dimension of the cube represents a
different metric. On the face of the
cube, the horizontal metric is
application breadth, which can be
measured in terms of different
functions or functional areas of the
application. The vertical dimension
on the face is the depth of function-
ality in each functional area. The
last dimension, depth, is then the
robustness of the application,
starting with prototyping, and
finishing with full error handling for
all possible scenarios.
When developing applications, it is
often useful to break up the effort

25

based on the cube model. For
example, different groups can be
assigned to different application
areas so that parallel efforts are
possible without dilution of subject
area knowledge. With the appropri-
ate infrastructure in place, these
efforts can later be easily com-
bined.

Likewise, the cube is useful for
looking at iterative development
techniques for code creation. The
robustness dimension is divided
into three tiers: 1) screen interaction
and prototype, 2) logic development
and validation, and 3) error handling
and recovery, help, and online
documentation. This allows an
iterative development process to be
implemented based on incremental
development of these functional
layers.

First, define screens and user
interface elements, along with basic
navigation. You can then have the
user review this using ITF capabili-
ties to validate the specifications.
By doing this, expensive coding of
functions that do not meet the user
needs is avoided, and you have an
opportunity to fine-tune require-
ments early on with the advantage
of real screens to help visualize the
functionality. This becomes the first
round of the iteration.

You can now proceed to code the
application logic. You now have a
good specification of the flow and
the requirements have been
validated. Reusable logic parts can
also be identified and coded as
parts to be included in the overall
coding effort.

Templates can also be modified (if
desired), or used directly to create
a working application that performs
all of the functions described in the
user requirements. You can again
have the user validate this, and
make the necessary adjustments.
The advantage with templates like
these in VisualAge Generator is
that much of the additional coding
for error handling and help and the

like does not need to be done, eliminating rework if the specifications are
adjusted based on the user evaluation of the system’s functionality.

Finally, when the functional model has been approved, and the second
phase of iteration is completed, error handling, help, and additional func-
tions can be coded with the assurance that this work is not being wasted
on a function that will not survive in the final product.

Summary
In summary, RAD offers a practical approach to development that you can
adapt to a variety of circumstances. With proper planning and guidance,
RAD can address the creation of enhancements to existing applications, or
new development in areas that have never been automated. Be aware,
however, that the implementation of methodologies such as RAD is not
trivial, and often involves significant cultural changes in an organization
that take the time and effort to make it happen. Implementation of a RAD
tool like VisualAge Generator can greatly facilitate this process, but it is not
the total solution.

Proper use of the cube model allows for easy decomposition of a project
into manageable parts by functional areas, functions within the areas, and
levels of implementation of the functions. This can be useful in developing
a project plan. Additionally, the cube model can be used as a guide to
help develop techniques to implement an iterative development approach.
The iterative approach assists user acceptance, and provides for multiple
signoffs of specifications at points in the development cycle designed to
maximize development efficiency. Additionally, the three-phase iterative
approach maximizes use of the VisualAge Generator strengths in
prototyping and interactive testing capabilities. When coupled with a strong
infrastructure based on data, standards, and/or templates to guide devel-
opment, the productivity results can be extraordinary!

26

Sometimes developing applications can be mind-
boggling—you never know how they’ll turn out!

ASRA Abends Happen!
by Theresa Smit, Heather Albright, and Mark Evans, VisualAge Generator Consulting Services

Figure 1

Figure 2

Whether the application is a TUI or a GUI calling a
CICS server, an ASRA abend might occur.

The presentation might be displayed or formatted
differently from Figure 1, but you still need to gather the
same type of information from various resources. You
need to gather the following information:

• What statement in the generated COBOL program
was executing when the ABEND occurred?

• What VisualAge Generator script statement
generated the COBOL statement?

• What are the data elements, values, and types
involved in the failing statement?

This article discusses three ways to get information
about the ASRAs:

• The VisualAge Generator error log temporary
storage queue.

• The CICS execution debug facility (CEDF).

• The Interactive Test Facility

VisualAge Generator keeps a temporary storage
queue called ELAD. You can use the CICS transaction,
CEBR, to view the temporary storage queue contents.
To view the queue, do the following:

1. Enter GET ELAD on the command line.

2. Press PF5 to display the contents at the bottom of
the queue where you will find a message contain-
ing the name of the application and the process
where the ASRA occurred.

 3. Use PF9 to scroll right to show the rest of the
message as shown in Figure 2.

In the Figure 2 example, VisualAge Generator Host
Services has detected the abend in process PA99PNN
of Program PA00. The information log remains until
CICS is recycled or you purge the queue by typing
PURGE on the command line.

The application name in the log will always be correct,
but there are times that the failure actually occurs in a
statement group whose name is not specified. Use the
information in the log as a starting source.

If you have any of the commercially available COBOL
debuggers and your VisualAge Generator generated
source code, it will be much easier to find the abending
statement. However, if the CICS Execution Debugging
Facility is all you have, start it by entering CEDF on the
command line. If you are debugging a Client/Server
called application, you need to determine the terminal
ID or connection ID that the called transaction is using.
To do this, do the following:

 1. Enter CEMT I CONN at the ready prompt on the
host.

2. Append this ID to the debugging facility transac-

27

 tion ID (that is, CEDF term/conn-id).

3. Once the message ‘THIS TERMINAL: EDF MODE
ON’ displays, press the Clear key and re-create
the call to the server, or enter the transaction ID
for the TUI transaction. The CICS Execution
Debugging Facility then takes over to display each
CICS command before and after its execution.

The initial program entry screen displays the
starting contents for the COMMAREA. This is
especially valuable to client/server programs since
this is where the data contents are passed. You
can press PF2 to see the storage address where
the complete COMMAREA data is stored.

4. Press PF5, “Display Working Storage,” to get to
the address and view the data passed, then
overlay the beginning of the working storage
address with the address of the COMMAREA and
press Enter to view the contents.

condition and begin trapping each CICS
command or set another more specific stop
condition.

Remember, PF5 displays the program’s working
storage contents. In the generated COBOL
program, each record definition generates a
header that contains a character field initialized
with the record name. So as you are paging
through the working storage, you can easily spot
the records. You can even change the data in
working storage to affect the subsequent execution
path.

5. Once you get the ASRA (see Figure 3), make a
note of the Program name and Offset address of
the program’s abending instruction.

Figure 3

To get to the ASRA quicker, press PF4 to suppress
the intermediate displays. You can also control
what CICS command the debugging facility stops
on by pressing PF9.

Note: CEDF also stops when an abnormal re-
sponse is encountered (to continue to suppress
displays, press PF4), and also on program and
task termination (respond with YES to continue,
then press Enter to continue debugging).

To minimize the number of debugging screens,
suppress them by:

• Using PF9 to specify CICS Stop conditions,
rather than specify a specific stop command,
specify NO for both normal and abnormal
termination.

• Specify RECEIVE as the CICS stop condition.
Once you have responded to the map prompt
just prior to the ASRA, remove the stop

Figure 4

 6. Refer back to the compiler listing to find the
COBOL statement at the ASRA offset. Note that
you must have compiled the program with the
OFFSET compile option.

 Ensure that the compiler listing that you are
viewing matches the version in which the Abend
occurred. To validate this, press PF5 to display the
working storage, the compile date and time is
located in the character mapping on the right of
the screen. If you are unsure, recompile the
program, new copy it into CICS, and repeat the
CEDF tasks to get the new offset.

 7. To locate the offending instruction:

 a. Go to the bottom of the compiler listing

 b. Search backwards for the word ‘verb’ (F verb
prev).

There will be three sets of three columns that
contain the COBOL statement number, the
program offset, and the COBOL verb in the
statement (scroll right to see the third set).

28

 c. Browse forward through the columns (order is
left, then right) until you find the offset closest
to being less than or equal to the Abend offset
as shown in the circled area in Figure 4. The
offset usually falls between two COBOL
statements, since multiple Assembler state-
ments are generated for each COBOL state-
ment. The program offset column lists the first
statement.

 d. Record the COBOL statement number (the
number in the first column).

 e. Search backwards for this statement number.
(You may have to repeat the search for large
listings.)

If you generated the program with Comment Level
= 4 [/COMMENTLEVEL(Statements)], the VAGen
Script statements will appear as comments
preceding the COBOL statements that they
generated.

Figure 5

8. Note the VisualAge Generator Script statement
and number. Then scroll up in the listing until the
process name block is displayed (as shown in
Figure 6).

Now that you have identified the process and the
statement where the abend occurred, you will
need to determine why the abend occurred.

Figure 6

The most likely cause is a numeric field that does
not contain numeric data. How can this happen,
you ask? The table at the bottom of the page
provides some of the possibilities and corrections.

Cause Correction

1. Uninitialized numeric field. Use the /INITREC and /INITADDWS generation
options or set the record empty at the beginning of the
program.

2. Numeric field contains spaces, from parent This can be resolved with the /SPZERO generation
field that was a character field and had option or moving 0 to field, if spaces are present.
spaces moved to it or a lower-level character
field was initialized to spaces.

3. Numeric field contains non-numeric data not Test a higher level character field for numeric before
spaces, from field that is used for numeric usage in IF, MOVE, or calculation.
and character data.

29

Note that using the /INITREC and /INITADDWS
generation options causes a slight performance
degradation. The /SPZERO generation option will
have an even greater impact on performance. Be
selective when using these generation options in
applications.

9. Run the program using the Interactive Test
Facility (ITF) and observe the contents of the
data fields to determine their values. Set
breakpoints on the data and process, and
watchpoints on the field(s).

Figure 8

10. Double-click on the process name in the Execution
Stack to open the Process Editor . You can then
change the code to check a new character field
(that is a parent of the numeric field) for NUMERIC
before the numeric compare. Doing this causes
the comparison not to execute if the field contains
nonnumeric data.

Figure 9

Figure 9 shows that in retesting the program in the
ITF, the compare to 0 does not execute. Now the
program should not fail on this statement once it
has been regenerated, compiled, linked, and new-
copied to CICS!

Figure 7

In Figure 7, you can see that MAPEMPID is not
valid because MAPEMPID character parent field is
set to ‘TROTTA’. This is why a data exception
occurs when the numeric field MAPEMPID is
compared to 0.

30

The Object Connection Program is designed to encour-
age commercial software developers to explore the
business of building software components with
VisualAge-enabled and reusable software
componentry.

In addition to component development, the Object
Connection Program supports software solution
providers building VisualAge-complementary tools and
end-user applications.

The program provides members with valuable benefits
including:

• Loaned VisualAge development licenses
• Technical support for development and enabling

with waived fees
• Product listings in the VisualAge Resource Catalog
• Free setup for Internet electronic sales and

delivery

IBM also expands the VisualAge Object Connection
support program for software solution providers to
include VisualAge Generator. Through this program,
commercial software developers can obtain IBM’s top
of-the-line VisualAge application development tools for
use in the development of their software products.
They also get technical support and several “go to

Object Connection—Partners in Development
by Greg Nash, Relationship Manager, Object Connection Program

market” programs, including advertising and access to
an electronic delivery channel. There is no charge for
membership.

This program is part of IBM’s larger Solution Developer
Program, designed to make all of IBM’s product brand
technologies easily accessible to the commercial
software development community. Together, IBM and
the Object Connection members provide a broader and
richer set of application development tool solutions
than any other development tool provider. To register
for the Solution Developer and VisualAge Object
Connection Programs, visit the program home page at:

http://www.developer.ibm.com

To e-mail us, send your e-mail to:

objconn@us.ibm.com

You can contact us by phone at:

1-800-627-8363 (U.S. and Canada)

1-770-835-9902 (Worldwide)

Our Fax number is:

1-919-254-0472

31

Year 2000 Support—Fact and Fiction
by Lisa Lasher, VisualAge Generator Development and Sue Royer, VisualAge Generator Sales Support

There has been a lot of confusion
concerning Year 2000 support and
the CSP and VisualAge Generator
products. This article will try to set
the record straight.

What Does Year 2000
Ready Mean?
According to IBM’s Year 2000
Product Readiness database, “Year
2000 ready means that a product,
when used in accordance with its
associated documentation, is
capable of correctly processing,
providing, or receiving date data
within and between the 20th and
21st centuries...”

This is a rather broad definition that
can easily be misinterpreted as it
relates to CSP and VisualAge
Generator.

First, the definition does not require
products to support a 4-digit year
format. It just says that, within its
documented functionality, a product
must behave correctly through the
21st century. This is an important
point to understand in regard to
CSP 3.3. CSP 3.3 is clearly docu-
mented as supporting only 2-digit
years; however, it will handle the
turn of the century correctly, so it is
listed as Year 2000 Ready. Earlier

releases of CSP will not accept 00
as a valid year, so they are marked
as Not Ready.

Second, the definition does not
guarantee that your generated
applications are automatically Year
2000 ready. If your applications
always use 4-digit year formats,
then they are probably Year 2000
ready. But if your applications ever
use 2-digit formats, then you will
need to assess them to determine if
they need to be modified. The
considerations are the same as if
you were coding in a 3GL: date
fields will need to be expanded or
you will need to add code to
interpret them correctly. For more
information, refer to the white paper
“VisualAge Generator, CSP, and
the Year 2000" by Allan DeLoach
at:

http://www.software.ibm.com/year2000

In a Nutshell
The table at the bottom of the page
summarizes the Year 2000 readi-
ness of the CSP and VisualAge
Generator products. Each row in
the table refers to the entire product
family for that release. For ex-
ample, CSP V4.1 includes
CSP/370AD 4.1, CSP/370RS 4.1,
CSP/2AD 1.2, and CSP/2RS 2.1.

Year 2000 Accepts 00 4-digit
Product Ready as Year Year Format APARs End of Support

CSP V3.2.2 and earlier No No No Not Supported

CSP V3.3 Yes Yes No PN87466 (required) 12/31/98

CSP V4.1 Yes Yes Yes PN91531(optional) 01/31/2001 or later

VisualGen V1.0, V1.1 Yes Yes Yes Not Supported

VisualAge Generator V2.0 Yes Yes Yes PN91532 (optional) Not Supported

VisualAge Generator V2.2 Yes Yes Yes PQ00211 (optional) 01/31/2001 or later

VisualAge Generator V3.0, V3.1 Yes Yes Yes 01/31/2001 or later

What Are the APARs
For?
In the table below, several APARs
are listed as either optional or
required. CSP/AE 3.3 requires the
specified APAR in order to process
00 as a valid year. You must install
this APAR to make the product
Year 2000 ready. The optional
APARs in the table correct a
usability problem with the MSL
member list in CSP/2AD 4.1 and
VisualAge Generator Developer
2.x. The MSL member list uses a
2-digit year format for the
timestamp. Without the APAR, the
year will show as 100, 101, etc.,
instead of 00, 01, etc. The APARs
are marked as optional because the
product still interprets the dates
correctly, including during a sort.

End Of Support ?!?
Another area of confusion has been
over the end of support dates. You
might have seen two different dates
published, and you may also be
worried that the date is too early for
you. Early last year IBM made a
statement of corporate policy that
all products that are Year 2000
ready will remain in support until
May 2000.

32

VisualAge Generator
Web Pages

The VisualAge Generator web address
is:

www.software.ibm.com/ad/visgen

For IBM’s predecessor 4GL, Cross
System Product, the web address is:

www.software.ibm.com/ad/visgen/csp

In keeping with this policy, CSP and
VisualAge Generator published this
end-of-support date. Since then, as
we have learned more about the
magnitude of the Year 2000 prob-
lem, IBM has revised its policy, and
has committed to keep these
products in support through Janu-
ary 2001. We are in the process of
updating this information for CSP
and VisualAge Generator, but you
might still see references to the
earlier date.

If you don’t think you will be ready
to migrate to a newer version of
VisualAge Generator even by 2001,
there’s no need to panic. CSP 4.1
and VisualAge Generator will
remain in support at least through
January 2001. The actual date for
end of support will be determined
by a number of factors, including
customer usage and the stability of
the product. It is IBM’s policy to
announce withdrawal from support
at least one year in advance. The
only product for which we have
made such an announcement is
CSP 3.3, as indicated in the table
above.

What About COBOL?
Many people have wondered
whether VisualAge Generator
requires a Year 2000 ready version
of COBOL, such as LE COBOL.
The answer is no. VisualAge
Generator uses a windowing
technique to determine the 4-digit
year for system dates, so it does
not require any Year 2000 capabili-
ties in the compiler. So you can still
use older versions of COBOL, such
as COBOL II. Conversely, with
COBOL II going out of support,
people have wondered whether
older versions of CSP and
VisualAge Generator will work with
newer versions of COBOL. The
answer to that question is yes; you
can upgrade your version of CO-
BOL without needing to recompile
your generated applications.

For More Information...
Visit the IBM Year 2000 home page
for more information about Year
2000 readiness at:

 http://www.software.ibm.com

This site includes a wealth of
information, including the Year 2000
Product Readiness database.
Under the Tools link, you can go
directly to the white paper referred
to above, as well as to the
ESFSCAN tool, which can help you
analyze your applications for Year
2000 readiness.

33

Please check any appropriate boxes:

I’d like to receive future issues of this newsletter. (You need to check this item only if
you have not already responded.)

I’d like more information about Version 3.1.

I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:__

I’m interested in participating in an AD users’ group meeting.

I’m interested in participating in a VisualAge Generator users’ group meeting.

Comment Form

I have a question I’d like to submit for the Question & Answer sec-
tion of this newsletter:

Any comments you’d like to share with us about VisualAge
Generator or about this newsletter? (Include your comments or
concerns about VisualAge Generator’s future directions here.)

Name Title
Company Name
Street Address/P.O. Box
City State/Province
ZIP/Postal Code Country
Phone No. FAX No.

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Are we putting the type of information you want to see in the
newsletter? If not, what would you like to see in the newsletter?

34

Cut or
Fold Along
Line

Cut or
Fold Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-09

G242-0315-09

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
TF6B/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

35

A Question From Us To You

Do you have questions? If so, use the Comment Form in this newsletter to send
us your questions. Then, in future issues of the newsletter we will provide you
with articles in response to your questions.

Acronyms
3GL third-generation language
4GL fourth-generation language
AIX Advanced Interactive Executive
API Application Programming Interface
AS/400 Application System/400
CAE/2 Client Application Enabler/2
CASE Computer-aided Software

Engineering
CICS Customer Information Control

System
CICS OS2 Customer Information Control

System Operating System/2
CPU central processing unit
CSP Cross System Product
DB2 Database 2
DBCS double-byte character set
DBMS database management system
DCE distributed computing environment
GUI graphical user interface
IBM International Business Machines
IMS Information Management System
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Notes
OS/2 Operating System/2
OS/400 Operating System/400
RAD rapid application development
SQL Structured Query Language
TCP/IP Transmission Control Protocol/

Internet Protocol
VM Virtual Machine
VSE Virtual Storage Extended
WWW World Wide Web

The VisualAge Generator Newsletter
This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1998. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DataJoiner, DB2, DB2/2, DB2/6000, IBM, IMS,
MQSeries, MVS, VM, VSE, Operating System/2, OS/2, OS/400, RISC System/6000, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Lotus Notes is a trademark or registered trademarks of Lotus Development Corporation.

Java and JavaBeans are trademarks of Sun Microsystems, Inc.

Oracle is a trademark of Oracle Corporation.

PowerBuilder is a trademark of Sybase, Incorporated.

Planetworks and Interspace are trademarks of Planetworks L.L.C.

Nikon is a trademark of Nikon Corporation.

ENVY is a trademark of Object Technology International, Inc..

HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, the Windows 95 logo, Visual Basic, and ActiveX are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks of others.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those described
here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These articles are for
information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. TF6B/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

