
Generator
A Powerful New Vision of Programming

VisualAge®

TM

The IBM VisualAge Generator Newsletter

Volume 2, Number 2
April 1997

Contents

With a Little Help from Your
Friends 2

Year 2000! Help Is On the
Way 3

Rapid Application Develop-
ment Using VisualAge
Generator Templates 5

Java and VisualAge
Generator 9

Optimizing Data
Transmission 13

Displaying 4-digit Year
Values in Windows 17

Try Our One-Stop
Shopping Spot 18

Configuring DCE Servers 19

Questions and Answers 23

Formerly the VisualGen Newsletter

2

Web News

With a Little Help From Your Friends
by Rich Hagopian, Manager, VisualAge Generator GUI Development

Corrections

The goal of this newsletter is to
share ideas and techniques that we
believe will help you get the most
out of VisualAge Generator. The
need to achieve even higher levels
of productivity continues to drive
each of us. Year-2000 support, e-
commerce, network computing, and
an increasing demand for rapid
development of applications are just
a few of the many challenges faced
by the professional developer.

I am happy to say that this issue is
full of information to help you
address some of these challenges.
Topics range from Java enablement
to Year-2000 support. You will also
find exciting announcements about
products and services, such as the
VisualAge Generator Templates
feature and the VisualAge Genera-
tor Consulting Services, which is
designed to assist the VisualAge
Generator developer in achieving
new levels of productivity.
VisualAge Generator Templates is

a new orderable feature of
VisualAge Generator Version
2.2. It is designed to automate
the repetitive coding required to
perform non-business logic
functions that are commonly
required by all systems. Take a
look at the “Rapid Application
Development Using VisualAge
Generator Templates” article on
page 5 to see how you can use
this new feature to more rapidly
deliver applications. I think you
will agree that this represents
an exciting step forward for
VisualAge Generator as a rapid
development tool.

The “VisualAge Generator
Consulting Services” article
describes the establishment of
the VisualAge Generator
Consulting Services organiza-
tion. The group, housed with
the VisualAge Generator
development team, is available

to assist current and prospective
VisualAge Generator and Cross
System Product customers in areas
ranging from the setup of the develop-
ment environment to the deployment
of enterprise client/server systems.

A little help from your friends, a
services organization dedicated to
VisualAge Generator services, and
VisualAge Generator Templates, all
aimed at providing you with the
solutions you need to meet today’s
and tomorrow’s application develop-
ment challenges.

1. The previous issue of the newsletter
stated that the support expiration date for
V2.2 was 12/31/97. The support date has
been extended; the new support expira-
tion date is 12/31/98.

2. We stated in the previous issue of the
newsletter that Sri Lanka was the smallest
country in the world. This was incorrect,
and we apologize to anyone we might
have offended.

3

Year 2000! Help Is On the Way
by Allan DeLoach, Application Development Sales

As we are all aware, the year 2000
will soon be here, bringing with it a
unique challenge for many com-
puter programs— recognizing and
representing dates in two different
centuries.

There are three aspects to the Year
2000 support with the VisualAge
Generator and CSP products:

• Dates associated with mem-
bers created and edited within
VisualAge Generator or CSP

• Built-in date-related functions
invoked by user coding that
manipulate date values

• Date data manipulated by
applications developed with
VisualAge Generator or CSP
but not dependent on specific
VisualAge Generator or CSP
functions

Of the three, the latter one, applica-
tion-specific date data, is the area
that will require the most time and
effort to ensure that it works cor-
rectly with dates beyond 1999.

This article provides a brief over-
view of the challenges associated
with supporting 4-digit years in
VisualAge Generator and CSP
applications. You can find more
details in the white paper,
VisualAge Generator, CSP, and the
Year 2000, plus a scanning tool
(ESFSCAN). Copies of the white
paper and the date scanning tool
are available from the IBM Year
2000 web site:

http://software.ibm.com/year2000

Your IBM sales representative can
also obtain copies of the white
paper and the tool from the
MKTTOOLS disk (ADVGYR2K
PACKAGE). VisualAge Generator
and CSP 4.1 are considered by

IBM to be Year-2000 ready, pro-
vided you have the most current
maintenance level. CSP 3.3 is
Year-2000 tolerant in that it ex-
ecutes correctly on systems after
1999, provided you have the most
current maintenance level. Refer to
documentation APAR II09591 for
the latest maintenance require-
ments for CSP 3.3 and Year-2000
support.

Member Dates
In VisualAge Generator, CSP 4.1,
and CSP 3.3 member dates shown
in a member list are displayed
using a 2-digit year format. The
earliest date that a member was
created is 1980, so from context
you can tell which year a member
was last saved.

In VisualAge Generator, when
members are displayed in date
sequence, members created after
1999 are displayed in the correct
sequence even though only the last
two digits of the year are displayed.

Date Functions
VisualAge Generator and CSP 4.1
provide EZE words that return the
current date with both 2-digit and 4-
digit year formats. CSP 3.3 date
function EZE words only support
2-digit year date formats.

VisualAge Generator and CSP 4.1
provide map edit date masks for
both 2-digit and 4-digit year for-
mats. CSP 3.3 map date edit masks
only support 2-digit year formats.

There are no plans to add 4-digit
year current date EZE words or
map date edit masks to CSP 3.3.
Installations with CSP 3.3 should
give serious consideration to
migrating to VisualAge Generator to
gain current date functions and
map date edit mask support for
4-digit year formats.

Identifying 2-digit
Year Exposures
To identify the potential exposures
caused by using 2-digit year dates,
you first need to locate all refer-
ences to all date-related data items.
Locating date-related data items is
itself a major part of any Year-2000
effort.

The two ways to search VisualAge
Generator and CSP members for
date data item references are:

• Using the where used utility

• Exporting members and
scanning the export file

The where used utility enables you
to search the members in a mem-
ber list for references to a particular
member (that is, a data item). When
invoked, the utility displays a list of
all members containing references
to the item.

You cannot use the where used
utility to search for EZE words (for
example, EZEDTE), and you can
only search for one member name
at a time. These and other restric-
tions limit the where used
utility usefulness for broad
searches for date references in
members. Because of this scanning
task, an export file might be a more
useful approach. A sample ESF
scanning tool (ESFSCAN) is
available from the IBM Year-2000
web page:

http://software.ibm.com/year2000

Again, your IBM sales representa-
tive can also obtain copies from the
MKTTOOLS disk (ADVGYR2K
PACKAGE).

4

Reformatting
Year-Date
Notation
There are three fundamental
approaches to handle Year-2000
dates within your installation and
applications:

• Conversion to full 4-digit year
format

This solution requires changes
to both data and the programs
by converting all references
and uses of 2-digit year format
(YY) to 4-digit year format
(YYYY). This is considered to
be the only complete, perma-
nent, and obvious solution.

• Windowing techniques

This is a 2-digit solution that
externalizes either 2-digit or
4-digit year formats. This
approach only require changes
to programs, not to data.
However, it cannot be used if
dates outside of a 100 year
range must be maintained.

• 2-Digit encoding/compression
techniques

• This is a 2-digit solution that
externalized either 2-digit or
4-digit year formats. It requires
changes to both your data and
your programs, but it does not
increase the size of external
files. It also requires that you
convert, simultaneously, all
applications that reference or
use the encoded date fields.

A full discusion and examples of
these approaches can be found in
the VisualAge Generator, CSP, and
Year 2000 white paper.

The techniques you adopt to handle
Year-2000 dates within your
installation is determined by many
factors. If files containing 2-digit
year date fields are shared between

VisualAge Generator or CSP
applications and programs written
in other languages, you must
consider the capabilities of all the
languages used to process the files
when evaluating solutions.

The solutions and techniques that
you can use to correct Year-2000
exposures are not technically
difficult. However, you will likely find
that most, if not all, programs and
files in your installation will have to
be examined and perhaps
changed. Thus, the major challenge
in a Year-2000 project is the project
management.

Testing
By nature, Year-2000 exposures
are time-sensitive and time-driven.
Basic Year-2000 testing requires
that you set the system date and
time so that Year-2000 problems
are found. Changing the system
date to permit testing CSP applica-
tions can be difficult and usually
requires running a separate copy of
the host operating system as a VM
guest or LPAR. However,
VisualAge Generator can provide a
safe Year-2000 test environment
because you can change a
workstation’s system date to future
dates and not affect other
users, systems, and files. For this
reason, you should consider
migrating CSP applications to
VisualAge Generator as part of
your Year-2000 conversion effort.

Summary
VisualAge Generator is considered
by IBM to be Year-2000 ready;
VisualAge Generator provides both
2-digit and 4-digit year format
functions. Applications developed in
VisualAge Generator can be tested
in isolation on a workstation for
Year-2000 exposures.

CSP 4.1 is considered by IBM to be
Year-2000 ready. CSP 4.1 provides
both 2-digit and 4-digit year format
functions. However, testing CSP
4.1 applications for Year-2000

exposures might be difficult be-
cause it is dependent on the host
operating system environment and
files.

CSP 3.3 is considered by IBM to be
only Year-2000 tolerant. While CSP
3.3 will execute after the year 1999,
it does not include any support for
4-digit year format functions. In
addition, testing CSP 3.3 applica-
tions for Year-2000 exposures
might be difficult because it is
dependent on the host operating
system environment and files. If
you are currently running CSP 3.3,
you should seriously consider
migrating to VisualAge Generator
as part of your Year-2000 effort.

5

Despite an abundance of disci-
plines, technologies, and tools
devised to ease the production of
business application software,
development managers continue to
be faced with increasing backlogs.
Software development remains
largely a manual, craftwork-like
process rather than an automated,
rigorous and predictable engineer-
ing discipline. Application frame-
works and template technologies
relieve programmers of coding
repetitive sequences of instructions
necessary to perform application
functions that are not specific to the
business problem, but are com-
monly required by all systems.

VisualAge Generator is evolving in
this direction to provide an auto-
mated software production work-
bench. This evolution begins with
VisualAge Generator Templates
V2.2.

VisualAge Gen-
erator Templates
VisualAge Generator Templates is
a new feature of VisualAge Genera-
tor that provides programming with
true Rapid Application Develop-
ment methodology and data-driven
automated code generation, which
when combined with the flexibility,
scalability, and portability of the
base product, constitutes IBM’s
premier high-productivity solution.

Using a windowed graphical
interface, the application developer
can build a fully functional database
manipulation application in a matter
of minutes. The typical develop-
ment effort consists of creating
instances of the VisualAge Genera-
tor Templates Information Model by
specifying what data (tables/views
and columns) the application will
manipulate, and how the data

Rapid Application Development Using
VisualAge Generator Templates

presents itself to the user. VisualAge Generator Templates automatically
generates all the VisualAge Generator source code components neces-
sary to do the following:

• Access and manipulate database (Create, Read, Update, Delete)
• Present the data to the end-user
• Manage navigation among multiple windows
• Manage multi-user data access concurrency
• Manage paging when data result set is larger than page size
• Manage error conditions
• Provide window and field level online help

The generated source is well structured, consistent, and error free. It also
includes hooks to easily add specific business logic using VisualAge
Generator. Additions to the generated components are preserved, thus
providing the ability to maintain the functional specifications at the Informa-
tion Model level.

The VisualAge Generator Templates feature is architected to be fully open
to enable any degree of customization of the generated code. An open API
combined with the interactive specification facilities provides for easy
extensions of the base Information Model. This enables developers to
incorporate and automatically enforce site standards in the generated
systems, and to further extend the already rich base functionality.

Using VisualAge Generator Templates, software developers can deliver
robust, high quality, and fully functional systems in a fraction of the time
required by manual VisualAge Generator coding. The automatically
generated application infrastructure easily makes up 70 to 80 percent of
the code required for the final application. This enables the developers to
focus on the remaining 20-30 percent business logic specific code.

The following figure shows VisualAge Generator Templates’ components
and identifies the four steps of application development.

by Stefano Sergi, Application Development Sales and Technical Support

6

VisualAge Generator Templates has the following three components:

• An Information Model

The Information Model shown in the following figure is the heart of
VisualAge Generator Templates. The Information Model provides the
methodology to specify a database application at a logical level
through a set of entities. Persistent data is represented by Relational
Tables and relative Data Element entities. The application view of the
data is represented by Business Object entities. Each business object
manages a set of data elements from one or more relational tables.
The application interface through which business objects are pre-
sented to users is represented by the Window entities. Each window
can contain one or more business objects and each business object
can appear to the end-user as a list or individually in detail.

• A Generation Engine

The Generation Engine is the
facility that transforms the
Information Model specifica-
tions into VisualAge Generator
applications including client and
server components. Default
layout of the GUIs are pro-
duced by the Generation
Engine to rapidly obtain correct
presentations. Modifications
and addition of business logic
can be performed using
VisualAge Generator, and the
default layout is preserved if
subsequent modifications of the
logical specification are made
in VisualAge Generator Tem-
plates.

The Generation Engine can be
invoked from the Development
Workbench. At the end of this
generation step, the VisualAge
Generator MSL is directly
populated with the generated
source components from the
VisualAge Generator Templates
Development Workbench.

The Generation Engine is a
VisualAge for Smalltalk open
framework. Using VisualAge for
Smalltalk, the Generation
Engine can be extended to
customize the existing genera-
tor functions or even to create
new additional generators. This
powerful architectural charac-
teristic is usually exploited by
specialized users (power users
as shown in the next figure) to
set up the Model infrastructure
to establish corporate stan-
dards and occasionally to fulfill
new code generation require-
ments.

Customizing a VisualAge
Generator Templates generator
is creating a Smalltalk class
that inherits from the class of
the standard generator that
needs customization and
redefinition of the standard
methods whose behavior
needs to be modified.

• A Development Workbench

This is the windowed graphical environment the programmer uses to
create instances of the Information Model entities relative to a specific
business application.

The Development Workbench is also equipped with a facility to
automatically generate Relational Tables and Data Elements instances
from existing databases.

An important aspect of the VisualAge Generator Templates architec-
ture is the separation of functional specifications from technological
specifications. For example, during the creation of a new instance of
the Business Object entity, the functional specification is the defini-
tion of the tables and data elements that the Business Object work
with. The technological specifications are used to select presenta-
tion choices such as the number of fields shown in a notebook page,
or whether popup menus should be used to enable user actions
instead of push buttons or action bar choices.

This separation enables you to define technological specifications at
the entity level, so that the definition of all instances of that entity only
requires the specification of functional level information, further
enhancing programmers productivity.

7

• Define an Author Business Object.

This function consists of selecting what fields the Business Object
contains and the tables the fields belong to. A simple notebook inter-
face guides us through the selection of the relational tables and data
elements contained in this Business Object. For example, included in
the Author Business Object might be some data elements from the
Authors relational table and some data elements from the Country
relational table.

We can also define an extraction criteria, which is used by VisualAge
Generator Templates to generate the code that retrieves the list of
authors to display.

A separate notebook tab (parameters) enables us to override the
default technological specifications associated with all Business
Objects, which we might have previously specified at the entity level.

For example, we can display the Business Object detail information
organized into a notebook, instead of the default which would display them
in a window. We can change the default labels that allow the user to page
through the list, and we can limit the list view to the first two data elements
contained in the Business Object instead of showing a list with as many
columns as there are data elements. The following figure shows a typical
dialog used to define a VisualAge Generator Templates Business Object
definition.

Creating a new VisualAge
Generator Templates generator
is writing a Smalltalk class that
inherits directly from the
superclass of all VisualAge
Generator Templates genera-
tors and then defining the class
behavior using a specialized
VisualAge Generator Templates
Smalltalk API.

A Walk Through
VisualAge Gen-
erator Templates
An example will help to clarify the
VisualAge Generator Templates
concepts and facilities. Let’s say for
instance, we want to define a
simple application that displays a
list of book authors, add new
authors, retrieve and display detail
information for specific authors,
update the information, or delete
authors. To have VisualAge Gen-
erator Templates generate all the
code to perform these functions, we
need to do the following:

• Define all the Relational Tables
and Data Elements

We can accomplish this func-
tion automatically if the tables
are already defined in the
relational database. We can
invoke the VisualAge Generator
Templates utility from the
VisualAge Generator Tem-
plates Main Window (as
shown in the following figure),
retrieve all of the tables infor-
mation from the database
catalog and create equivalent
instances of the VisualAge
Generator Templates entities
Relational Table and Data
Element.

8

• Generate and populate an MSL

From the VisualAge Generator
Templates main window, we
can invoke the Generation
Engine for the first window that
the application displays to the
end-user, and a propagation
option instructs VisualAge
Generator Templates to also
generate all dependent Win-
dows and Business Object
instances.

Once the user is notified that
generation completed success-
fully, an action bar choice
enables the user to trigger the
import of the generated source
in a designated MSL.

Without hand-coding a single
line of code, 2 Applications, 10
Records, 9 GUIs, 28 Pro-
cesses, and 23 Statement
Groups were just tested.

Conclusion
The addition of VisualAge Genera-
tor Templates to the VisualAge
Generator product significantly
reduces the amount of hand-crafted
code required to deliver database
business applications.

VisualAge Generator Templates will
help application developers deliver
systems that are:

• Adherent to corporate stan-
dards

• Robust and fully functional

• In record time

• Higher quality

Thus, facilitating the transition of
software production from craft to
the industrial engineering discipline.

• Define the Windows

We can have the choice of showing the list and detail views of the
Author Business Object through one or more windows. If we choose to
use a single window, we simply define a new Window instance. Using
the familiar notebook interface, we can specify that the single window
contains the Business Object Author in list form, and we can specify
the Business Object Author again in detail form. If we choose to use
two windows, we can define two new instances of the Window entity.
The first one containing the Author Business Object in list form, the
second one containing the Author Business Object in detail form. We
can also specify navigation information from one window to another.
The following figure shows a typical dialog used to define a VisualAge
Generator Templates Window.

9

If you are wondering when
VisualAge Generator will add Java
support, then wonder no longer. We
have some exciting things coming
your way.

Have You Ever Wished
Upon a Star?

• Are you intrigued by a thin
Java client, but need a rapid
application development (RAD)
solution to develop your
enterprise server applications?

• Have you ever wanted to
leverage the power you get
from a proven object-oriented
(OO) fourth-generation lan-
guage (4GL) in your emerging
Java world?

• Would you like to rapidly
develop server applications for
MVS, VM, VSE, AIX, Windows
NT or OS/2 and then generate
a Java Bean for it and all its
client to server communication
code?

• Would it help you leverage
Java if you could “quick-form” a
Java Bean representation of
your VisualAge Generator
server applications from within
VisualAge for Java?

• Have you ever thought of using
intelligent templates to manu-
facture applications, combining
Java clients and VisualAge
Generator servers?

• Would you like the flexibility to
combine any vendor’s Java
development tools with a Java
function for IBM’s VisualAge
Generator?

Java and VisualAge Generator
by Michael Rhoads, Manager, World Wide Application Development Solutions

Hold onto Your Seat—
Java Support is Just
Around the Corner!
VisualAge Generator will soon have
new functions that will provide Java
support capability. You will be able
to combine VisualAge Generator’s
proven OO-4GL client/server rapid
application development (RAD)
capability with the new Java
generation functions.

Let’s take a look at Network Com-
puting, the value of a Java support
solution, and the applications you
will build with this new function.
Then we will take a look under the
hood at how this really works, when
this new function is available, and
what to look forward to.

Keep Your Hat On—It’s
Network Computing
Gone Wild!
Network computing will become the
dominant topology of our age. It has
already captured our imagination
and is quickly transforming the
world we live in. Today’s systems
are being linked together or trans-
formed in ways never imagined
before! Tomorrow’s systems will
include new and existing systems
connecting customers, suppliers,
and partners in new and exciting
ways.

As we transition from browsing to
business, the things we will do on
the internet will go far beyond
spinning heads, wild web sites, and
big chat rooms. As real business
moves to the web en masse,
everyday practical tasks will be

accomplished on the web. We will
buy and sell products of all kinds.
Banking, entertainment, education,
and all sorts of other activities will
become commonplace on the web.
We will log-on and expect to be
able to do things instantaneously!

Imagine one billion people all
having access to the internet. We
can quickly see that the supporting
applications will need to be:

• Scalable
• Reliable
• Secure

These traits are the pillars of much
of the world’s server applications
today. They have been addressed
through optimized code, transaction
monitors, and optimized databases.
Our network-enabled world will
need to combine these server traits
with the emerging client topology.
The defining client access medium
will be the browser and Java
technology, which plays a key role.

Tie Down Your Tent—
Java Support Gives You
New Capabilities!!
VisualAge Generator’s new Java
function is opening all sorts of new
opportunities. You can build your
server applications once, along with
all the communication middleware
using VisualAge Generator. Then
through VisualAge Generator, you
can automatically generate the
Java Bean representation or
wrapper for this server application.
Then, you can connect or consume
this Java Bean from any of a
number of Java client development
environments.

10

New Application Types
From an application perspective,
this means you can instantly bring
the scalability, reliability, and
security of VisualAge Generator’s
proven server development capabil-
ity to the portable web-enabled
world of Java applets and applica-
tions.

For instance, you can build new
web-enabled banking applications
that leverage a browser-based Java
client connected to new or updated
banking transactions on the server.
These new transactions run in an
existing, high-performance, reliable,
and secure infrastructure.

It’s a marriage between two key
technologies (Java and VisualAge
Generator) to make enterprise
oriented internet-enabled business
applications a reality today!

Productive Develop-
ment Environment
You and your programming teams
also benefit from the marriage of
Java and VisualAge Generator
technologies. With VisualAge
Generator you will be using award-
winning visual programming
technology and an OO-4GL to
rapidly develop AND functionally
test the server application entirely
from the desktop. You can use
state-of-the-art business object
frameworks or templates to improve
your productivity and quality even
more (see VisualAge Generator
Templates article in this Newsletter
issue).

VisualAge Generator gives you
ultimate flexibility in your deploy-
ment choices. For example, you
can first build your server applica-
tion and deploy on AIX. Later, you
can scale-up to MVS or down to
Windows NT without changing your
logic. Or, you can first deploy using
an IMS/TM transaction monitor for
MVS and later change to CICS on
the same or different system, again

without changing your logic. The OO-4GL provides you with a level of
abstraction, which shields you from the complexities of the execution
environment.

As shown in the figure below, you can develop and connect to a whole
range of server platforms.

Once you have completed your iterative build and test of the server
applications, VisusalAge Generator can automatically generate the
associated Java Bean. This bean wrappers the server logic and communi-
cation code. You can then use a product like VisualAge for Java to build
your client logic. You can even “quick-form” the Java Bean from within
VisualAge for Java to visually code the client connections. Now that’s
productivity.

This Car’s Ready to Roar—Let’s See What’s Under
the Hood
Let’s take a closer look at how we are making this work...

We use the VisualAge Generator server interface definition as input, then
we automatically generate Java Bean classes that “wrapper” calls to
server transactions. Standard Java 1.1 Beans are created and, therefore,
they can be consumed by any Java 1.1 compliant catcher application. Just
use these beans and connect them directly to your Java client applets or
applications using tools like VisualAge for Java, or some other vendor’s
Java development environment.

11

The wrapper classes handle all aspects of communicating with the enter-
prise server, including marshalling data from objects to server record and
database structures, converting data between Java and host formats, and
controlling commit/rollback for extended units of work for multiple server
calls within a transaction.

Communication with server systems use a middle-tier Java server running
on NT, AIX, or OS/2. The Java applet communicates with the middle tier
server using Java remote method interface classes; the middle tier server
communicates with the VisualAge Generator server transaction via the
VisualAge Generator POWERserver middleware. You don’t need to do
any coding for the middle tier. This is generated for you.

As shown in the figure below, the Java interface layer handles the mar-
shalling and converting of data as well as commit/rollbacks of server calls
within transactions. The layers above represent the communications you
get with VisualAge Generator today.

Our current product is VisualAge
Generator 2.2. We expect to make
our Java support function available
in VisualAge Generator in June of
this year!!!

In a recent issue of this newsletter,
we described how you could build
new CICS or AS/400 server appli-
cations with VisualAge Generator
and very quickly deploy the user
interface on the Web. This ap-
proach used our Gateway technolo-
gies (CICS Internet Gateway or
AS/400 Gateway) to capture the
data streams and convert them to
HTML.

Now we are proud to bring you this
update on our Java client access
support. It’s coming to you in the
“Web Years”!

Hold On to the Reins—
There’s More Java and
Web Support to Come
While the upcoming level of Java
support will provide significant
benefits to you, your staff, and your
end-users, it is not the end of our
planned Java and Web support.
The Network Computing initiative is
a revolution. VisualAge Generator
is in a unique position to be able to
add new Web function in ways that
bring real business value to you
and the industry.

Other VisualAge Generator Web
support functions under develop-
ment or research include Java
applet authoring and web page
authoring functions. We are also
working on possible Java client
extension to VisualAge Generator
Templates. And down the road, we
are considering extensions to our
Java generation capabilities.

Put Your Seatbelt On—Java Support Capability is
Coming Fast!!
The VisualAge Generator Java function will be released real soon. Within
our development labs we are measuring ourselves in “Web-Years”. Three
calendar months is considered one “Web-Year”. This Web-Year timing is a
means of reminding us how quickly new web-enabled technology is
coming to the market.

12

We are working in “Web Years”.
Very soon you will see our new
VisualAge Generator Java support.
This capability extends your web
support beyond the data stream
HTML conversion of our Gateway
technologies. A few short “Web
Years” later you will see additional
VisualAge Generator Java and
Web support functions rolling out.

This Car’s Racing
Down the Track—And
You’re the Winner!
It’s truly an exciting time to be in our
industry. Network Computing is
sweeping through our landscape.
It’s bringing a lot of changes, but it’s
opening great new possibilities.

By combining robust state-of-the-art
OO-4GL approaches with leading-
edge web technology, you will be
able to make the promise of real
business on the Web for the
masses a reality.

VisualAge Generator and its Java
Web support will help you harness
the productive power you need to
WIN!

 VisualAge Generator Events Update
• The third Great Lakes Area VisualAge Generator

Users Group meeting was held in Columbus, Ohio the
week of March 24.

• The third annual Germany VisualAge Generator Users
Group meeting was held in Essen, Germany in March.

• The first Hungarian VisualAge Generator hands-on
workshop was held in Budapest in March.

• In California, VisualAge Generator was recently
demonstrated at the Gartner Show and Expo, Soft-
ware Developers Conference, and CICS Technical
Conference.

• Several VisualAge Generator business partner up-
date sessions were held in February, including ses-
sions in Italy, Australia, and Korea.

• VisualAge Generator is demonstrated at the IBM
VisualAge Forum Seminars. The first show was held
in Phoenix, Arizona earlier this year. This Forum is
being held in cities throughout the world.

• VisualAge Generator Update was held at the Integral
Users Group conference in Tulsa in February.

13

Optimizing Data Transmission
by Jim Eberwein and Alex Akilov, VisualAge Generator Development; Judy Hansen, ConAgra
Trading and Processing; and Ted Borawski, Software Marketing

With the onset of client/server technology, application
developers are faced with a wide range of develop-
ment tools that promise to make their job easier.
Although these tools may make it easier to develop
applications, the developers must realize that good
programming practices are still required to produce
applications that will not place a burden on the enter-
prise network. This article documents two programming
practices that you can use to develop VisualAge
Generator applications.

Client/Server Design
Philosophy
In the enterprise client/server environment, both logic
and data is distributed in various locations across the
network. Due to this system architecture, runtime
performance is affected by factors such as bandwidth
and network transmission times. Client/Server applica-
tion programmers must recognize this, and therefore
design their systems in a manner that minimizes the
amount of data that is sent across the network when
client and server programs communicate with one
another.

By minimizing the amount of data transmitted across
the network, the application system improves the
overall response time of the system. VisualAge Gen-
erator allows application programmers to develop
various techniques that adhere to this programming
philosophy. Two such techniques available to the
programmers are packeting and null suppression.

Packeting
Packeting is a technique that is used in conjunction
with the Container Details (CDV) object defined in a
VisualAge Generator GUI client. The CDV is an object
that displays data in a tabular format. The general way
to build is to require all of the CDV contents to be
retrieved prior to the CDV displaying the data.

Packeting removes this restriction, and instead only
requires a portion of the data to be displayed. As you
scroll through the CDV contents, additional requests for
data are issued from the CDV to logic member parts
defined in the GUI client. This allows large amounts of
data to be viewed only when needed instead of getting
it all up front.

CDV Example
An example of how to use the CDV object follows:

1. Open a new GUI definition. The window of this
GUI contains the CDV.

2. From the Lists category, select a Container Details
object and place it in the window part.

The CDV now appears in the window.

3. From the Logic Member Parts category, select a
Statement Group Member Part object and drop it
on the GUI’s free-form surface. Name the object
CDVINIT.

The statement group initializes the CDV for
packeting.

4. Connect the AboutToOpenWidget event of the
window to the execute event of CDVINIT.

This initializes CDV.

5. Connect the hasExecuted event CDVINIT to the
packetEnabled attribute of the CDV.

An incomplete connection appears.

6. Double-click on the incomplete connection and set
the connections value parameter.

The Constant Value Parameter Settings window
shows a Value check box. Verify this is checked to
complete the setting.

7. From the Logic Member Parts category, select a
Statement Group Member Part object and drop it
on the GUI’s free-form surface. Name the object
CDVPAGE.

The statement group executes when the CDV
requests data.

8. Tear off the packetattribute of the CDV.

This gives you access to the start and ending rows
that are currently being displayed in the CDV, plus
access to the entire contents of the CDV’s data
rows.

9. Connect the packetRequested event of the CDV to
the execute action of CDVPAGE.

The statement group executes when the CDV
requests new data to be displayed.

10. From the Data Member Parts category, select a
Record Member Part object and drop two objects
on the GUI’s free-form surface. Name the objects
CDVRCD1 and CDVRCD2

14

11. Double-click on the CDVRCD1 working storage
record and define the following structure:

 Name Level Occurs Type Bytes

 ROWSEND 10 1 Bin 2

 NEWSTART 10 1 Bin 2

 NEWEND 10 1 Bin 2

 ROWS 10 500 Char 20

 ROWNUM 15 1 Bin 2

 COL2 15 1 Char 10

 COL3 15 1 Char 8

12. Double-click on the CDVRCD2 working storage
record and define the following structure:

 Name Level Occurs Type Bytes

 INDEX 10 1 Bin 2

 END 10 1 Bin 2

 COUNT 10 1 Bin 2

 I 10 1 Bin 2

 TOTALROWS 10 1 Bin 2

 PAGESIZE 10 1 Bin 2

 ROWS 10 50 Char 20

 ROWNUM 15 1 Bin 2

 COL2 15 1 Char 10

 COL3 15 1 Char 8

13. Connect the ROWS attribute of the CDVRCD2
record to the items attribute of the CDV.

14. Select the CDV and, from its context menu,
choose the option Initialize Columns Based On
Connections to #items.

This initializes the CDV to display columns
ROWNUM, COL2, and COL3

15. Delete the connection ROWS of CDVRCD2 to
items of the CDV.

This connection is no longer necessary.

16. Connect the startRow attribute of the packet object
to the NEWSTART data attribute of the CDVRCD1
record.

Each request for a new set of rows automatically
assigns the starting row of the current page.

17. Connect the endRow attribute of the packet object
to the NEWEND data attribute of the CDVRECD1
record.

Each request for a new set of rows automatically
assigns the ending row of the current page.

18. Tear off the ROWS attribute of the CDVRCD1
record.

19. Connect the has executed event of CDVPAGE to
the getFieldsStartingAt To action of the ROWS
tear-off attribute.

NEWSTART and NEWEND is used as the indexes
into the array.

20. Connect the NEWSTART data attribute of
CDVRCD1 to the firstIndex parameter of the event
to action connection.

21. Connect the .NEWEND data attribute of
CDVRCD1 to the lastIndex parameter of the event
to action connection.

22. Connect the dataRows attribute of the packet
object to the result parameter of the event to
action connection.

This completes this connection.

23. Connect the PAGESIZE data attribute of
CDVRCD2 to the packetSize attribute of the CDV.

A packet request occurs when you scroll past the
page size.

24. Connect the TOTALROWS data attribute of
CDVRCD2 to the totalRows attribute of the CDV.

This displays the maximum number of rows that
the CDV can manage.

25. Edit the CDVINIT statement group and add the
following logic.

TOTALROWS = 500;
PAGESIZE = 50;

26. Edit the CDVPAGE statement group and add the
following logic.

/* Check to see if the rows */

/* have already been retrieved. */

/* If not, then make call to */

/* server. */

IF NEWSTART > ROWSEND

 OR NEWEND > ROWSEND;

 INDEX = ROWSEND + 1;

 CALL CDVAPP CDVRCD2 (REPLY;

 MOVEA CDVRCD2.ROWS TO DVRCD1.ROWS(INDEX);

 ROWSEND = INDEX + COUNT - 1;

END;

27. Save the GUI definition andname it CDVGUI.

15

In this next example, the server application CDVAPP
hard codes the values that are assigned to the array. In
actual business applications, the server application
needs logic to perform database input/output. The
server should be coded to determine if previous calls
have been made and, if so, then retrieve the next row
following the last row retrieved on the previous call.

1. Open a new APPL definition.

2. Add record CDVRCD2 as a called parameter.

3. Define the application as a Called Batch

4. Use the Save as option and name the application
CDVAPP.

5. Add a main process called CDVPRC1. The
process type is EXECUTE.

6. Define the following logic in CDVPRC1:

 I = INDEX;

 COUNT = 1;

 END = INDEX + PAGESIZE - 1;

 IF END > TOTALROWS;

 END = TOTALROWS;

 END;

 WHILE I <= END;

 MOVE I TO ROWNUM(COUNT);

 MOVE ‘ABC’ TO COL2(COUNT);

 COUNT = COUNT + 1;

 I = I + 1;

 END;

 COUNT = COUNT - 1;

Summary of the CDV Example
You are now at the point where the client and server
programs are ready to be tested. A brief summary of
the application design follows.

Prior to the client GUI opening, the CDVINIT initializes
the CDV, setting the total number of rows that CDV can
manage and the maximum number of rows that are
returned on a packet request. After the window opens,
the CDV issues a request for data. This triggers the
execution of the CDVPAGE statement group. The
CDVPAGE statement group must determine if a call
should be made to the server application to retrieve
additional rows, or if the rows the CDV is trying to
display are already stored in the CDV’s packet. After
CDVPAGE executes, the correct index into the CDV is
shown. The index is determined by looking at the
NEWSTART and NEWEND variables.

If the total rows size is set too small, you can modify
the GUI definition to store the packet in an ordered
collection. Additional logic then needs to be coded that
can determine what packet should be currently shown
in the CDV.

Null Compression
This technique is a little known feature within CICS.
This feature compresses the trailing null values (X'00')
from the end of the CICS Communications Area
(COMMAREA), which greatly reduces the amount of
data transmitted on the network, thereby improving
response time. CICS compresses the null values from
the COMMAREA by starting at the end and working
backwards until the first non-null value is found.

CICS/OS2 checks one character at a time while the
host checks blocks of 256 characters at a time. If you
do not pad with nulls, the entire COMMAREA (up to
32,763 bytes) is transmitted. This is unnecessary and
affects the overall response time of the transaction and
potentially the entire network, depending on bandwidth,
line speed, and current network traffic.

VisualAge Generator can utilize the null compression
feature of CICS but requires up-front design work of
the COMMAREA. Proper record definition, initialization,
and placement of records within the CALL statement
provide the framework necessary to take advantage of
this null compression feature.

Several alternatives to this technique have been
investigated by VisualAge Generator customer
ConAgra Trading and Processing.

Record Definition
To initialize the records with binary zeros, the record
definition needs to be substructured so that either the
highest-level data item or lowest-level data item has a
HEX data type. This data item then needs to be
initialized via either a MOVE or the SET RECORD
EMPTY statement. Note that depending upon how the
record is structured, the correct initialization statement
must be used.

16

The SET RECORD EMPTY statement initializes the
data item based on the data type of the lowest level.
Thus, use the SET RECORD EMPTY statement when
the HEX data items are used in the lowest level, and
use the MOVE statement when the HEX data item
encompasses the entire record structure. The follow-
ing two examples illustrate the definitions of these
structures:

Record XXX

Name Level Occurs Type Bytes

Field1 05 1 Char 20

* 10 1 Hex 20

Field2 05 1 Char 25

* 10 Hex 25

DataRows 05 10 Char 50

* 10 1 Hex 50

Record YYY

Name Level Occurs Type Bytes

HEX-AREA 05 1 Hex 95

Field1 10 1 Char 20

Field2 10 1 Char 25

DataRows 10 10 Char 50

It is recommended that you place the occurs items at
the end of the record structure.

Other factors
Programmers must also understand that additional
logic must be coded on the server application when
the XXX record structure is used. The EBCDIC/ASCII
conversion provided with VisualAge Generator will not
occur since the lowest data type of each level is HEX.
To ensure that the data is converted correctly,
the server application needs logic that moves the
contents of XXX to another record with similar data
structure, except it omits the HEX data items. This
new record is then passed as a parameter to the
VisualAge Generator routine ELACONV. This call
should be made when the server application starts
and when the server application stops.

In addition to the definition of the record structure and
the initialization of the record, placement of the record
in the server’s called parameter list is crucial. If
multiple parameters are passed, then the last param-
eter specified should be the one most likely to contain
the binary zeros.

Simple test cases developed by ConAgra Trading and
Processing showed an 80% reduction in the
COMMAREA length when the above design practices
were implemented.

Summary
Successful implementation of a client/server application
system is not guaranteed by using the most popular
development tools. Instead, application developers
must continue to practice good programming tech-
niques. This article has introduced two such techniques,
which help reduce the amount of data transmitted
across the network. Both techniques can be imple-
mented using VisualAge Generator.

17

Displaying 4-digit Year Values in Windows
by Alex Akilov, VisualAge Generator Development

This article describes one way to
customize VisualAge Generator to
display a 4-digit year value when
running in the Windows environ-
ment.

There are several layers and
transformations that a date value
goes through from the database to
the GUI screen and back.

A field is declared in the database
as DATE type. Because VisualAge
Generator has no DATE type, you
must use either a CHAR data item
or a NUM data item to represent the
value. These data items must have
a standard size (6 bytes, 8 bytes, or
10 bytes). VisualAge Generator
attempts to perform a transforma-
tion on the value so that the value is
interpreted properly. This transfor-
mation is controlled by the setting in

the environment variable,
EZERSQLDATE.

The value must then be taken from
the data item and put into a field on
the GUI screen. The field has a
data type declaration that can be
used to control how the value is
presented. The value that the field
will actually hold onto is a DATE
object that always has a 4-digit
value. You can tell the text field (in
the customized settings) whether to
show all year digits or not. You can
also control the order to display the
day/year/month components of the
DATE object by using the settings
of the text field.

The format of the DATE in the data
item has no implication on how the
DATE should be displayed. A
transformation is performed based

on the specifications of how the text
field wants to display the DATE and
how the value in the data item
should be interpreted. The latter is
controlled by either the environment
variable EZERGRGL_XXX (where
XXX is the NLS suffix, for example,
ENU) or EZERGRGS_XXX (if the
size of the data item was too small
to hold the 4-digits).

In conclusion, how you display
4 digits has nothing to do with what
is actually returned in the data item
and eventually stored in the data-
base. But what is important is that
you set the environment variables
as recommended in this article and
make sure that your VisualAge
Generator data item is declared to
be large enough to contain a 4-digit
year value.

The VisualAge Generator
Web Page

There are over 700 VisualAge
Generator customers throughout
50 countries and 38 states in the
U.S.

Fact
A VisualAge Generator

Visit our Web site to get the lastest product
information and customer briefs:

http://www.software.ibm.com/software/ad/visgen

18

Try Our One-Stop Shopping Spot
by Heather Albright and John Berry, VisualAge Generator Consulting Services

The IBM Software Solutions
Division development laboratory
has established the VisualAge
Generator Consulting Services
organization. This organization
provides a variety of services to
VisualAge Generator and Cross
System Product (CSP) current and
prospective customers. The group
is located in the Research Triangle
Park facility in North Carolina and is
prepared to offer services world-
wide.

The consulting team consists of a
core group of knowledgeable IBM
professionals with links to a net-
work of other IBM service providers
and external business partners.
These professionals have an
extensive technical knowledge of
VisualAge Generator and are
knowledgeable in how to apply the
solution in multiple customer
environments.

To effectively prepare your environ-
ment for the VisualAge Generator
solution, the consulting team is
prepared to perform the
following services:

• Set up and establish the local
area network (LAN) infrastruc-
ture

• Install the VisualAge Generator
Developer and prerequisite
products

• Install the VisualAge Generator
runtime environment

• Demonstrate the use of
VisualAge Generator from
application development to
execution (Proof of Concept
(POC))

• Migrate existing Cross System
Product (CSP) applications to
the VisualAge Generator
environment

• Provide specialized education

• Provide mentoring service for
developers as they increase
their expertise

• Design and develop specific
client, server, or stand-alone
applications using either a
graphical user interface (GUI)
or text user interface (TUI)

• Integrate VisualAge Generator
with the TeamConnection
library management system
and Data Atlas for database
definition

You can reduce your cost and
overall development cycle time by
utilizing these services to acceler-
ate your transition to the VisualAge
Generator products. Taking advan-
tage of these services gives you
access to an extensive technical
skill base. You can use this skill
base to either help you build and
grow your own internal skills or to
avoid the need to hire and train new
personnel.

For more information regarding
VisualAge Generator Consulting
Services, you can contact your
local marketing representative or
contact John S. Berry at
(919) 254-6745 or
jsberry@carvm3.vnet.ibm.com.

The establishment of the VisualAge
Generator Consulting Services
group augments other services
organizations provided by the
Software Solutions Division: for
example, the VisualAge Solutions
Group, which provides services for
VisualAge Smalltalk; and the
TeamConnection Consulting
Services, which provides services
for TeamConnection and DataAtlas
products. For information on

For information regarding
TeamConnection and DataAtlas
services, contact John Senegal at
(919) 245-0045 or
jsenegal@vnet.ibm.com.

VisualAge Smalltalk services,
contact Greg Bonadies at (919)
254-1116 or vsg@us.ibm.com.

19

Configuring DCE Servers
by John Snyder and Kristine Heaton, VisualAge Generator Development

Configuring distributed computing
environment (DCE) servers can be
complicated, but this article pro-
vides some suggestions to simplify
the process and maximize system
performance. This article covers
the following:

• Pros and cons of using
VisualAge Generator’s
middleware and DCE

• Insight into how DCE works

• A process walk-through for
deciding how many servers you
need and what to put on the
servers

A Comparison of
the Middleware
and DCE
Both VisualAge Generator
middleware (DNA) and VisualAge
Generator DCE use a constantly
running catcher program to monitor
requests. The most important
difference is that the VisualAge
Generator middleware produces a
new system process to handle
each request, and VisualAge
Generator middleware can handle
many requests simultaneously. The
VisualAge Generator DCE catcher
does not require as much overhead
as the middleware catcher to start
the called application, but DCE can
only handle one request at a time.
The DCE catcher maintains a
queue of up to 8 requests while
processing, but all requests re-
ceived when the queue is full are
rejected.

DCE Highlights
Well, you are probably wondering,
“why use the DCE protocol if the
DCE servers single-thread all
requests and will only queue 8
requests while one request is

running?” By starting multiple DCE
servers, DCE randomly assigns
one server from all servers avail-
able that accept requests for a
called application. DCE does not
query for available servers each
time a call is made from the client.
DCE clients cache location informa-
tion to eliminate the overhead of
sending a request to the DCE cell
directory service server each time.
This means that once a client
locates a server that handles a
particular called application, the
client continues to call that server to
handle the request. As long as all
the servers are started and their
location is known by the clients
prior to making a request, the
distribution of calls to each server
should be distributed evenly.

Deciding How
Many Servers
How many servers you need and
the best way to separate the
applications serviced by each of the
servers depends on a number of
conditions. The critical factors
affecting configuration are:

• The time required by each
called application to process a
request

• The number of clients making
calls to the DCE servers

• The frequency of calls to each
application

• The response time criteria for
the clients

A Sample Process
1. Start one VisualAge Generator

DCE server with all called
applications listed. Ensure that
any applications requiring
secure DCE calls are listed in
the SECURE section. Set
CSOTROPT=2.

2. Start a client and make calls to
each of the called applications
using actual amounts of data
that you normally send to a
client. You might want to make
multiple calls to each applica-
tion to ensure that you get a
representative sampling of the
time it takes to process each of
the called applications.

3. Examine the server’s
CSOTRACE.OUT file and
determine how long it takes to
process each called applica-
tion. You can view the
CSOTRACE.OUT file on the
client machine to see the effect
of adding in the network
transport times.

4. Divide the called applications
into two groups: applications
called frequently, and applica-
tions called infrequently.
Establish a required response
time for each of the applica-
tions. Keep in mind that unless
clients have their own dedi-
cated DCE servers, there
might be a short wait for each
request.

5. Separate the two groups of
applications again with respect
to processing time. Place each
of the applications in one of
four categories:

• Frequently called applica-
tions—short duration

 • Frequently called applica-
tions—long duration

 • Seldom-called applica-
tions—short duration

 • Seldom-called applica-
tions—long duration

20

6. Address each of the categories
as follows:

 • Frequently called applica-
tions—short duration.
Bundle these applications
together onto a couple of
servers. The number of
servers depends on how
many clients there are and
the number of concurrent
requests outstanding at any
one time. The more of
these servers available, the
better the response time.

We recommend starting out
with 1 server per 5 clients.

• Frequently called, long-
duration applications need
to have more available
servers to keep the
response time down. These
applications should not be
mixed with the short
duration applications
because that could cause a
short duration application to
wait for a long duration
application to complete.

We recommend 1 server
per 3 clients.

• Seldom-called,short-
duration applications
should be bundled together
onto one server. Because
these applications are not
called often, multiple
concurrent requests for
them should be rare.

We recommend 1 server
per 50 clients.

• Seldom-called, long-
duration applications
should be bundled together
onto a few servers. Multiple
concurrent calls are more
likely to occur in this
category than in the
seldom- called, short-
duration application cat-
egory because these
applications have longer-
running processing times.

We recommend 1 server
per 25-30 clients.

Remember, the more servers that
you have waiting to receive re-
quests, the better performance
should be.

The following are some rules for
splitting the applications across
multiple DCE servers:

• Each DCE server MUST have
its own DCE principal.

• All servers that advertise in the
same server ID and location
combination must be running
the same set of applications. If
they are not, you will send
requests to DCE servers for
applications that they do not
support.

• Duplicate DCE servers can run
on either the same machine or
different machines.

In the previous example, there are
four sets of DCE configuration files:
one for each of the four categories.
All the configuration files used by
servers for a particular category
would be identical except for the
DCE principal name.

When you plan your servers, give
some thought to security. Security
for the called applications is done at
the DCE server level. If you have
one or more applications that
require special security, you should
put them on a separate server.
Then use the considerations listed
above to determine how to config-
ure the secure server.

Acronyms
 4GL fourth-generation language

AIX Advanced Interactive Executive
API Application Programming Interface
AS/400 Application Systems/400
CAE/2 Client Application Enabler/2
CASE Computer-aided Software Engineering
CICS Customer Information Control System
CICS OS2 Customer Information Control Operating System/2
CPU Central Processing Unit
CSP Cross System Product
DB2 Database 2
DDL data definition language
DBMS database management systems
DCE distributed computing environment
EMEA Europe/Middle East/Africa
GUI graphical user interface
IBM International Business Machine
IMS Information Management System
ITSO International Technical Support Organization
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Notes
OS/2 Operating System/2
OS/400 Operating System/400
RAD rapid application development
TCP/IP Transmission Control Protocol/Internet Protocol
VM Virtual Machine
VSE Virtual Storage Extended
WWW World Wide Web

21

Please check any appropriate boxes:

I’d like to receive future issues of this newsletter. (You need to check this item only if
you have not already responded.)

I’d like more information about Version 2.2.

I’d like to participate in a Beta program for the next release of VisualAge Generator.

I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:__

I’m interested in participating in an AD users’ group meeting.

I’m interested in participating in a VisualAge Generator users’ group meeting.

I have a question I’d like to submit for the Question & Answer
section of this newsletter:

Any comments you’d like to share with us about VisualAge
Generator or about this newsletter? (Include your comments or
concerns about VisualAge Generator’s future directions here.)

Name Title
Company Name
Street Address/P.O. Box
City State/Province
ZIP/Postal Code Country
Phone No. FAX No.

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Comment Form

Are we putting the type information you want to see in the news-
letter? If not, what would you like to see in the newsletter?

22

Cut or
Fold Along
Line

Cut or
Fold Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-05

G242-0315-05

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
T22/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

23

Question: Can I use the COMMDATA parameter format (parameters passed in the CICS COMMAREA)
when calling a generated application from a non-VisualAge Generator application in the CICS

environment?

Answer: Yes, you can. To have the called application receive parameter data in the COMMAREA, specify
the following linkage table entry when generating the application:

 :calllink applname=application-name linktype=cicslink parmform=commdata

Use a CICS Link in the calling program to call the generated application. The length of the
COMMAREA that is passed must match exactly the total length of the parameters declared in the
called parameter list for the generated application.

 Questions & Answers

The VisualAge Generator Newsletter
This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1997. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DB2, DB2/2, DB2/6000, IBM, IMS, MVS, VM,
VSE, Operating System/2, OS/2, OS/400, POWERserver, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

• Java (Sun Microsystems, Inc.)

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those described
here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These articles are for
information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

