
Generator
A Powerful New Vision of ProgrammingTM

VisualAge®

The IBM VisualAge Generator Newsletter

Volume 2, Number 3
August 1997

Contents

VisualAge Generator Cele-
brates Another Birthday 2

Happy 3rd Birthday,
VisualAge Generator! 2

VisualAge Generator
Customer Wins Major Award 3

A Customer Success Story 3

Get Ready for Version 3.0! 4

Tracking Down Those Bugs 5

Generating JavaBeans
Wrappers 11

Quarterly Teleconferences—
We Want You! 18

E-mail Anyone?? 20

Questions and Answers 23

Formerly the VisualGen Newsletter

2

VisualAge Generator Celebrates Another Birthday!
by Sandra Johnson, VisualAge Generator Product Manager

Today, the development team is
focused on delivering the Windows
NT developer product. We have
entered our final test stage, and we
are excited about the new “look and
feel” of the product. We are eager
to hear what you think about it.

Let us hear from you soon!

descriptions of what other custom-
ers are doing to improve productiv-
ity and reduce costs in their compa-
nies. For example, this issue talks
about the award-winning application
developed by the State of Califor-
nia, some steps you can start
taking to prepare for Version 3.0 of
VisualAge Generator, generating
JavaBeans wrapper classes for
calling VisualAge Generator server
applications, and additional tech-
niques you can use for VisualAge
Generator problem diagnosis.

In June, the development and sales
support teams for VisualAge
Generator celebrated the product’s
3rd birthday. It has been a great
growth year for the VisualAge
Generator customer base. Addition-
ally, our first international user
group meeting was held in Orlando,
and the third EMEA user group
meeting was held in London.

In this issue of the newsletter, we
continue to bring you articles that
provide hints and tips, insight into
the future of the product, and

As the VisualAge Generator team in
Research Triangle Park (RTP)
celebrates the third birthday of
VisualAge Generator, we’d like to
stop and thank each of you who
uses the product for your part in
that success. It is obvious that any
success the product enjoys is
directly attributable to its customers
around the world!!! Thank you very
much for your business now and in
the future.

VisualAge Generator is installed in
over 800 businesses, educational
institutions, and government
organizations all over the world.
Those businesses range from very
small companies with one applica-
tion developer to very large compa-
nies with development shops made
up of hundreds of programmers.
The educational institutions range
from local school systems to very
large universities, while government
users extend from small local
governmental bodies to large
federal and national organizations.

In the 800+ user organizations,
there are thousands of developers
using VisualAge Generator on a
daily basis to create applications
that range from traditional green-
screen applications to the most
sophisticated client/server applica-
tions in the market today. Many of
these users are now investigating
how to put those applications on the
internet using the function shipped
in Fixpack 5.

VisualAge Generator is a worldwide
product with “homes” in 51 coun-
tries on every continent except
Antarctica. In North America, it is
being used in 38 of the 50 states, in
3 of the Canadian provinces, and in
Mexico. It is used in virtually every
industry such as banking, distribu-
tion, insurance, manufacturing,
retail, transportation, and utilities
(and every industry in-between)!

It is the belief of everyone on the
VisualAge Generator team in RTP,
NC, that the product is only getting
started. With Version 3.0, which will
become generally available soon,
development on Windows NT will
become a reality, bringing a whole
new set of prospective users into
the VisualAge Generator world. Add
to that the power that interoper-
ability with VisualAge Smalltalk
brings to Version 3.0, and the future
of the product appears to be
unlimited.

However, success is built on
success. The VisualAge Generator
team recognizes daily how impor-
tant our current customer popula-
tion is to the success we hope to
build tomorrow. Thank you again for
your confidence in this product as
shown by your initial acquisition and
the work that you have done with it
since. Please stay tuned—your
investment is getting better and
better!

Happy 3rd Birthday, VisualAge Generator!

3

VisualAge Generator Customer Wins Major Award!
The State of California, Department of Health Ser-
vices won first place in an international competition
co-sponsored by SOFTBANK COMDEX, the Object
Management Group (OMG), and Information Week
magazine. The State of California developed an
Integrated State Information System (ISIS)
application using VisualAge Generator and
TeamConnection. The application won in the cat-
egory, “Best Use of Object-Oriented Technology

Within An Enterprise or Large Systems Environment.”
This object application award was announced at the
Object World West conference in San Francisco on
July 28.

Congratulations to the State of California!!!

You can find more information on this award-winning
application in the story below.

A Customer Success Story
by Rusty Edmister, VisualAge Generator Sales and Technical Sales Support

templates, we’ve reduced that time
to 3 to 4 days, largely due to code
reuse. That’s a sevenfold productiv-
ity improvement!”

According to Virga, the goal is to
continue to use the VisualAge
toolkit to maximize efficiencies in
ISIS and future development
projects. Developers are now
exploring how to move selected
ISIS functions to a client/server
platform, using VisualAge Genera-
tor. “The beauty of our new toolkit is
that we’ve been able to create
industrial-strength applications
without being locked onto one
platform environment. I don’t
believe any other programming
languages around offer this capabil-
ity.”

(This article was excerpted from an
application brief entitled, “Less
paper, more services. New object-
based application helps State of
California improve services, cut
costs.” A copy of the full text may
be ordered from IBM using publica-
tion order number GC09-2466.)

was developed using a template-
driven, object-based approach.
Developers using OS/2-based PC
workstations used tools from IBM’s
VisualAge family of products,
particularly VisualAge Generator
and TeamConnection. This ap-
proach enabled the developers to
respond more quickly to changing
requirements and to produce
higher-quality code. Internal re-
sponse times on the MVS host
server have dropped from 2 to 5
seconds to subseconds, while the
number of transactions during a
normal 10-hour day has grown to
over one million with VisualAge-
generated code. In addition, devel-
opers have downloaded 90 percent
of application development activity
to the workstation, resulting in
major productivity improvements
and savings. Mike Virga, Staff
Programmer and Analyst, and WIC
ISIS Application Design Project
Leader says, “We estimate that
we’re saving close to $150,000
(U.S.) per year by moving to our
VisualAge development platform.
And, where it would take three to
four weeks to build, test and
implement a standard data entry
application in our older COBOL
environment, with the VisualAge

Every month in the State of Califor-
nia, more than 1.2 million women
and children from low-income
families receive nutrition, education,
and assistance through a federally-
sponsored nutrition program. The
Supplemental Nutrition Program for
Women, Infants, and Children, also
known as WIC, has proven effec-
tive under the direction of the State
Department of Health Services.
Every food dollar spent saves an
estimated $3.50 in future medical
costs.

Not so effective was the paper-
based process in place until re-
cently. Documents and other
paperwork often took up to two-
thirds of a client’s scheduled
appointment time. Now, however,
thanks to a combination of process
re-engineering, new technology,
and application development
techniques, administrative time has
been slashed in half. Even more
important, WIC clients benefit from
a whole new level of service.

The key to this new level of person-
alized service is a new, object-
based 4GL application called the
Integrated State Information
System (ISIS). The ISIS application

4

Web News

were never advanced to the
production MSL. Running
validation is one way to check
that all required members still
exist.

• Put procedures in place to
prevent creating new,
unintentioned duplicates and to
avoid losing members.

• Consider assigning one devel-
oper as the owner of a group of
functionally-related applications.
This process will help deter-
mine how your current applica-
tions are grouped into ENVY
applications. Make the groups
small enough so that very few
developers are working on the
same group of applications at
the same time. If you already
have a database administrator
responsible for maintaining SQL
row record definitions and their
associated global data items,
this is a first step in assigning
ownership.

• If you develop GUIs:

– GUI application names must
start with a letter (A–Z) and
the remaining characters
must be alphanumeric (A–Z,
0–9). National and special
characters are not permitted.
With VisualAge Generator
Version 3.0, the restriction will
be enforced. Therefore,
ensure that your GUIs adhere
to these restrictions.

– Do not make connections
between attributes that have
different data types unless
either the source or target is
a VisualAge Generator data
part or a tear-off from a data
part. For example, do not
connect a string to something
that expects a Boolean data
type. With Version 3.0, the
only supported connections
between objects of different
data types require one of the

Are you ready for VisualAge Gen-
erator Version 3.0? This article lists
some things you can do now to get
ready for this new release.

• Avoid duplicate member names
except for controlled situations
such as:

– A member is in the process of
being changed so it exists in
the production MSL and the
changed version of the
member exists in one of your
test MSLs.

– You are using templates,
members are changed to
include business logic, and
your MSLs are structured so
that there is a separate
business logic MSL.

– You have intentional dupli-
cates between subsystems.
For example, you might have
a common MSL that contains
a message handling program
that uses a VisualAge Gen-
erator message table. Each
subsystem has its own MSL
and uses its own version of
the message table with the
contents set as required for
the subsystem.

• Eliminate unintended duplicates
that have occurred over time.
The following might have
occurred:

– A member was accidentally
copied into an incorrect MSL
and never deleted.

– Developers ignored naming
conventions and named two
unrelated members in differ-
ent subsystems with the
same name.

• Make sure that you have not
lost members over time. This
could happen if generation for
your production system was
done from a developer’s read/
write MSL and the members

by Jeri Petersen, IBM VisualAge Generator Consulting Services

objects to be a VisualAge
Generator data part or a tear-
off from a data part.

– The Container Details part
was introduced in VisualAge
Generator Version 2.2. The
Container Details part was
intended to replace the visual
table part. With Version 3.0,
the visual table part will still
work for existing GUIs.
However, it will no longer
appear on the parts palette.
Therefore, you might want to
do any new development
using the Container Details
part.

If you are just starting to use
VisualAge Generator, you should
also do the following to prepare for
Version 3.0.

• Structure your MSLs for system
test, acceptance test, and
production so that the only
members at the system test
and acceptance test level are
members that have changed
from the next level of test and
production. Do not have a
complete (stand-alone) set of
members at each level of test.
See Planning for VisualAge
Generator (SH23-0226-00) for
a description of a good way to
implement an MSL structure.

• Establish and enforce naming
conventions to help you relate
the various members of an
application. See Planning for
VisualAge Generator for a
description of a naming conven-
tion that helps to tie together
application-unique members.

Get Ready for Version 3.0!

5

Tracking Down Those Bugs

Once you have obtained the trace
in TSCRIPT.LOG, you can com-
pare it to a trace of the GUI events
that you can obtain when using the
TRACE function of the test facility.
You should ensure that the GUI
events are executing in the same
order in both traces.

TSCRIPT.LOG Contents
The TSCRIPT.LOG file has the
following three sections:

• Loading Applications
• Event History
• Event Profile

The Loading Applications section of
the TSCRIPT.LOG file lists the GUI
programs that are loaded, the date
and time the programs were
created, and the VisualAge runtime
image in which the program is
loaded.

The Event History section lists all of
the events that have occurred in the
system. This section is comparable
to the trace that is produced via the
test facility.

The Event Profile section gives a
thorough breakdown of the time it
takes to run each event in the
system. Instead of listing the events
in chronological order, the events
are listed according to the amount
of time it takes to complete the
event. The events with the longer
elapsed time are listed first. The
elapsed time is the time it took to
run the event in milliseconds. Also
listed in the event entry is the
number of times the event oc-
curred, its correlating entry in the
event history section, and the depth
of connections from where the
event was triggered.

The entry reading “Time to first”
event should be ignored. This event
measurement is not meaningful, as
it usually involves the time between
the user turning on profiling until the
GUI started running. This means

that there is user think time in-
volved that could explain large
variances in the times recorded.

A more interesting and significant
time measurement is how long it
takes to load and open the GUI. To
obtain this information in the
TSCRIPT.LOG file, you must issue
the EZE2RUN BENCH ON com-
mand or set the environment
variable EZERBENCH=1. When
you use the BENCH option, the
“Loading Applications” section
shows a breakdown of the loading
time for the GUI and the time in
milliseconds for each load. Also
listed are the events that trigger
calls to the 4GL VisualAge Genera-
tor components that are available to
the GUI. The entries are indicated
by either the event-to-action
connection or the label associated
with the push button that triggered
the event.

Walkbacks
Walkbacks are stack-dumps that
contain pertinent information when
a Smalltalk error occurs and the
EZERDEBUG and
EZERRUN_DEBUG commands are
issued, depending on whether the
error occurs in the runtime or the
development environments. To
debug a runtime error, set the
environment variable
EZERRUN_DEBUG=1. Likewise,
set the environment variable
EZERDEBUG=1 to debug a
VisualAge Generator Developer
error. The walkback dump is written
to the WALKBACK.LOG file. This
file is appended to after each
Smalltalk error, so it is important
that you review the appropriate
stack-dump when debugging a
problem. When possible, delete the
existing WALKBACK.LOG file prior
to re-creating a problem. The stack-
dumps are separated by two blank
lines and a heading line that
indicates the time and date the
walkback occurred (for example,

by Chuck Proffer and Jim Eberwein, VisualAge Generator Development

VisualAge Generator provides a
robust test facility that enables
programmers to diagnose coding
errors in application logic prior to
incorporating the applications into
an enterprise production system.
Using the test facility, developers
are more productive in developing
high-quality applications. Although
the test facility does an excellent
job of emulating the production
system, problems not detected in
the development environment might
occur after the applications are
ported to the execution platform. At
this time, application developers
need to rely on other diagnostic
tools to determine the cause of the
problem. VisualAge Generator
provides additional tools to assist
developers with problem diagnosis.
This article provides insight to some
of these diagnostic tools.

Tracing Connections
The connections defined in GUI
clients can be traced while the
client applications run. This enables
the developers to determine what
connections are being triggered
during run time. You can start the
connection trace in GUI runtime by
issuing the EZE2RUN PROFILE
ON command and issue EZE2RUN
PROFILE OFF to end the trace.
The output is written to the
TSCRIPT.LOG file pointed to by
the EZERTEMP environment
variable. Note that you must start
DEBUG before any output is
written to TSCRIPT.LOG. To start
DEBUG, enter the EZE2RUN
DEBUG ON command or set the
environment variable
EZERRUN_DEBUG=1. Stop
tracing prior to viewing the trace.
You might not be able to read the
contents of the TSCRIPT.LOG file
while the GUI runtime is running,
since the file is locked. Either stop
the runtime by issuing the
EZE2RUN KILL command or use
the OS/2 EPM editor to view the
file.

6

Walkback at 11:17:16 AM on
01-08-97). Thus, if the file contains
multiple dumps, scan the file from
the bottom up until you find the
beginning of the last dump con-
tained in the file.

When reviewing a specific stack
dump, search for the last indication
that an error has occurred. This is
noted either by the keyword “Error:”
or by the last line in the dump that
matches the message reported on
the first line in the dump; for exam-
ple, “(ExCLDTIndexOutOfRange)
Index out of range.” The lines that
follow explain the Smalltalk error
and specific objects that were
involved. At this point, you should
review the dump to see what GUI
connection triggered the Smalltalk
error. Note that not all walkbacks
are produced via an invalid connec-
tion. In these cases, the cause is
most likely due to an error in the
VisualAge Generator product. If this
is the case, the WALKBACK.LOG
file might provide insight to the
VisualAge Generator development
team.

For additional information regarding
either the TSCRIPT.LOG or
WALKBACK.LOG file, refer to the
Advanced GUI Development Guide,
Learning to Walk, Run, Fly!!!
redbook, SG24-4238.

The Communications
Middleware Trace
Facility
VisualAge Generator supports a
wide range of communication
services that provide the
middleware support in the client/
server environment. Very often,
errors are detected when attempt-
ing to implement a client/server
paradigm using VisualAge Genera-
tor for the first time. Developers or
system administrators can use the
tracing facilities provided by the
VisualAge Generator Communica-
tions Middleware to diagnose these
problems they are experiencing.

Controlling Trace Output
The following environment variables control what information is traced and
the name of the trace file.

CSOTROUT
This environment variable specifies the name of the trace output file. If the
variable is not specified, the default name is CSOTRACE.OUT.

CSOTROPT
This environment variable specifies the trace options. If CSOTROPT is not
specified or is set to 0, the trace is not produced; however, any messages
produced as the result of an error during run time are still logged to the
trace output file. The trace options are:

• 0–turn off trace

• 2–trace client/server events

The following sample trace output was produced with the option
CSOTROPT=2:
<Jul 17 11:26:05>�>CMINIT

<Jul 17 11:26:05><�CMINIT

<Jul 17 11:26:05>�>CMCALL

<Jul 17 11:26:05> ++CMCALL

<Jul 17 11:26:05> Calling application ELACVP5

<Jul 17 11:26:05> ++++readFromLinkTbl

<Jul 17 11:26:05> ====0.054545 s

<Jul 17 11:26:05> ++++loadAndInitDriver

<Jul 17 11:26:06> ====0.160220 s

<Jul 17 11:26:06> ++++CMDV_INIT

<Jul 17 11:26:06> ====0.007162 s

<Jul 17 11:26:06> �>DCE:CMDV_CALL

<Jul 17 11:26:06> ++++DCE:CMDV_CALL

<Jul 17 11:26:06> ++++++DCE:CreateParmBlock

<Jul 17 11:26:06> ======0.005037 s

<Jul 17 11:26:06> Using binding handle: 546ddf54-ce97-11cf-9269-
 08005afc355d@

<Jul 17 11:26:06> Passing 7 bytes of data

<Jul 17 11:26:06> ++++++DCE:RPCCall

<Jul 17 11:26:06> ======0.120231 s

<Jul 17 11:26:06> ====0.701094 s

<Jul 17 11:26:06> <�DCE:CMDV_CALL

<Jul 17 11:26:06> ==0.986634 s

<Jul 17 11:26:06><�CMCALL

<Jul 17 11:26:07>�>CMCLOSE

<Jul 17 11:26:07><�CMCLOSE

The sample trace was generated from an OS/2 VisualAge Generator client
calling the VisualAge Generator sample application ELACVP5 on AIX,
using DCE communications. The trace shows each of the major events
that occurs in the communications middleware along with timing informa-
tion. The contents of each trace varies depending on the communications
protocol being used and whether the applications use DB2.

7

CSO_DUMP_DATA
When this environment variable is
set to 1, the VisualAge Generator
Communications Middleware
produces trace entries that docu-
ment the linkage table parameters
used for the server call, entries that
describe the parameters being
passed, and the values of these
parameters. The descriptor and
value information is documented
prior to and after the call to the
server. This information is written to
the file CSODUMP.OUT.

CSO_DUMP_CONV
When this environment variable is
set to 1, the VisualAge Generator
Communications Middleware
produces trace entries that describe
the parameters being passed and
their values prior to and after the
middleware support converts the
data. The conversion table used is
also documented in the trace. This
information is written to the file
CSODUMP.OUT.

Parameter Descriptors
The parameter descriptor is a
variable length structure that
defines the format of the parameter
data. The descriptor is used when
moving the parameter data to the
transmission buffer and in convert-
ing the data format from the client
format to server format or vice
versa.

The structure of the descriptor is
made up of various substructures.
Four of these substructures are
documented in the VisualAge
Generator Supplement (SH23-
0242) document. Other descriptor
substructures can be included in
the descriptor. When interpreting
the descriptor information for a
parameter and mapping it to the
parameter data, the understanding
of these four substructures should
be sufficient. However, other
substructures can be included in
the parameter descriptor. You
should understand the length of
these substructures, so you can

successfully interpret the values of the documented substructures. The
following table documents the different control fields associated with each
substructure and the number of bytes that follow the control field in each
substructure. Control fields associated with the low-level data items in the
passed parameter have been omitted from the table. They are docu-
mented in the Supplement document, under the CMITEM parameter
descriptor.

Value Description Followed by

'F3' Max parameter size 4 byte binary length field
'F4' Returned data length 2 byte binary length field
'F5' DLI segment data length 2 byte offset into buffer of

field containing length of the
segment. The length of the
segment is from this offset. It
is followed by descriptor for
the field.

'F6' Map record indicator Nothing
'F7' SQL record indicator Nothing
'F8' Obsolete, ignored by the 2 byte Max field size

conversion routine.
'F9' Internal data length 2 byte offset into buffer

followed by descriptor for
field.

'FA' External data length 2 byte length field
'FB' Number of occurrences 2 byte offset of NUMOCCUR

field indicator field in buffer
and descriptor for field.

'FC' Variably occurring structure Number of fields and max
number of occurs.

'FD' Occurring structure Number of fields and max
number of occurs.

'FE' Record name 18 character record name
'FF' End of parameter list Nothing

Descriptor Example
If the following record definition is used as a parameter:

NAME LEVEL OCCURS TYPE BYTES

* 5 1 Char 629
CHARITEM1 10 1 Char 8
BINITEM1 10 1 Bin 2
NUMITEM1 10 1 Num 4
ARRAY1 10 20 Char 30
STRUCTURE1 10 1 Char 10
CHARITEM2 15 1 Char 5
HEXITEM1 15 1 Hex 3
* 15 1 Char 2

8

You should expect to see the
following descriptor in the trace:

Description #0

f3,75,2,0,0,fe,52,36,35,38,
32,8,0,0,0,0,0,0,0,0,0,0,0,
0,2,8,0,1,2,0,6,9,0,fd,1,0,
14, 0, 2, 1e, 0, 2, 5, 0,
2,3,0,2,2,0,ff,

The x'f3' indicates the beginning of
the parameter descriptor, for
example, the CMPARMLEN. The
next four bytes indicate that the
parameter has a length of 629
bytes. The next byte (x'fe') maps to
the name of the record. This is
shown in the next 18 bytes of the
descriptor. After the name informa-
tion, the following sequence needs
to be interpreted:

2,8,0,1,2,0,6,9,0,fd,1,0,14,0,2,
1e,0,2,5,0,4,3,0,2,2,0,ff,

Here is where we will rely on the
information in the Supplement
document to analyze these hex
values.

• The 2,8,0 indicates a Char data
item with length 8 bytes.

• The 1,2,0 indicates a Bin data
item with length 2 bytes.

• The 6,9,0 indicates a Num data
item with length 9 bytes.

• The fd,1,0,14,0 indicates an
array of 20 items that is not
substructured.

• The 2,1e,0 indicates a Char
data item with length 30 bytes.

Since the previous descriptor
data indicated an array of that
contained one descriptor, we
know that the array has 20
occurrences of 30-byte charac-
ter data.

• The 2,5,0 indicates a Char data
item with length 5 bytes. Note
that the descriptor does not
have information concerning the
STRUCTURE1 data item.

• The 4,3,0 maps to a Hex data
item with length 3 bytes.

• The 2,2,0 maps to a Char data
item with 2 bytes.

• The ff indicates the end of the
descriptor.

Debugging C++
Applications
VisualAge Generator C++
Workgroup Services provides a
trace facility that logs error and
trace information. Error information
is automatically logged to the trace
file. Trace information is controlled
by the FCWTROPT environment
variable. The capability to add
customized trace statements to the
application so that specific sections
of the application logic can be
traced and the contents of data
items can be displayed in the trace
file are also provided.

Controlling Trace Output
The following environment variables
control what information is traced
and the name of the trace file.
Custom trace statements that are
added to the application are not
affected by the FCWTROPT
environment variable. The trace
statements must be removed from
the application to stop the trace
output. In the native environments
(non-CICS), the environment
variables can be set in the
config.sys file (on OS/2), your
profile (on AIX), the Control Panel
(on Windows NT), or be specified

on the command line prior to
running FCWRUN. In the CICS
environments (CICS for AIX, CICS
for NT), the trace statements must
be specified in the CICS environ-
ment file and CICS must be re-
started.

FCWTROUT
This environment variable specifies
the name of the trace output file. If
the variable is not specified, the
default name is FCWTRACE.OUT.

FCWTROPT
This environment variable specifies
the trace options. If FCWTROPT is
not specified or is set to 0, the trace
is not produced. However, any
VisualAge Generator Workgroup
Services messages produced as
the result of an error during run time
are still logged to the trace output
file. The trace options are:

• 0–turn off trace

• 1–trace entry or exit from the
application, process, or state-
ment group

• 2–trace CALL, XFER, or DXFR
statements

• 4–trace SQL I/O

• 8–trace file I/O

• 16–trace system events

Multiple trace options can be turned
on by adding the appropriate values
together. To turn on all options,
specify FCWTROPT=31.

9

The following sample trace output was produced with FCWTROPT=31:

(00957)<17:45:46> -> CSO::CMINIT() rc = 0
(00957)<17:45:46>Starting RunUnit
(00957)<17:45:46>Using RSC name, fcw.rsc
(00957)<17:45:46>Found EZERNLS environment variable, name=ENU

EMPLOYE (00957)<17:45:47> -> EMPLOYE::MAIN
EMPLOYE (00957)<17:45:49> -> (SQL::DFTCONN) Database = (SAMPLE) rc = 0
EMPLOYE (00957)<17:45:49> User = () Password = (XXXXXXXX) UOW = (D1E)
EMPLOYE (00957)<17:45:49> -> INIT
EMPLOYE (00957)<17:45:49> <- INIT
EMPLOYE (00957)<17:45:49> -> STEPVU
EMPLOYE (00957)<17:45:49> -> Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:49> -> (SQL::COMMIT) rc = 0
EMPLOYE (00957)<17:45:53> <- Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:53> -> PROCSCN
EMPLOYE (00957)<17:45:53> -> (SQL::SETINQ) Handle = 9
EMPLOYE (00957)<17:45:53> rc = 0
EMPLOYE (00957)<17:45:53> -> GETNEXT
EMPLOYE (00957)<17:45:53> -> (SQL::SCAN) Handle = 9
EMPLOYE (00957)<17:45:53> rc = 0
EMPLOYE (00957)<17:45:53> <- GETNEXT
EMPLOYE (00957)<17:45:53> -> MSGSETU
EMPLOYE (00957)<17:45:53> <- MSGSETU
EMPLOYE (00957)<17:45:53> -> SHOWREC
EMPLOYE (00957)<17:45:53> -> Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:54> <- Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:54> <- SHOWREC
EMPLOYE (00957)<17:45:54> -> GETNEXT
EMPLOYE (00957)<17:45:54> -> (SQL::SCAN) Handle = 9
EMPLOYE (00957)<17:45:54> rc = 0
EMPLOYE (00957)<17:45:54> <- GETNEXT
EMPLOYE (00957)<17:45:54> -> MSGSETU
EMPLOYE (00957)<17:45:54> <- MSGSETU
EMPLOYE (00957)<17:45:54> -> SHOWREC
EMPLOYE (00957)<17:45:54> -> Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:56> <- Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:56> <- SHOWREC
EMPLOYE (00957)<17:45:56> -> GETNEXT
EMPLOYE (00957)<17:45:56> -> (SQL::SCAN) Handle = 9
EMPLOYE (00957)<17:45:56> rc = 0
EMPLOYE (00957)<17:45:56> <- GETNEXT
EMPLOYE (00957)<17:45:56> -> MSGSETU
EMPLOYE (00957)<17:45:56> <- MSGSETU
EMPLOYE (00957)<17:45:56> -> SHOWREC
EMPLOYE (00957)<17:45:56> -> Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:57> <- Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:57> <- SHOWREC
EMPLOYE (00957)<17:45:57> -> GETNEXT
EMPLOYE (00957)<17:45:57> -> (SQL::SCAN) Handle = 9
EMPLOYE (00957)<17:45:57> rc = 0
EMPLOYE (00957)<17:45:57> <- GETNEXT
EMPLOYE (00957)<17:45:57> -> MSGSETU
EMPLOYE (00957)<17:45:57> <- MSGSETU
EMPLOYE (00957)<17:45:57> -> SHOWREC
EMPLOYE (00957)<17:45:57> -> Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:58> <- Converse EMPMAP.EMP001
EMPLOYE (00957)<17:45:58> <- SHOWREC
EMPLOYE (00957)<17:45:58> -> CLOSSQL
EMPLOYE (00957)<17:45:58> -> (SQL::CLOSE) Handle = 9
EMPLOYE (00957)<17:45:58> rc = 0
EMPLOYE (00957)<17:45:58> <- CLOSSQL
EMPLOYE (00957)<17:45:58> <- PROCSCN
EMPLOYE (00957)<17:45:58> <- STEPVU
EMPLOYE (00957)<17:45:58> <-
EMPLOYE::MAIN

(00957)<17:45:58>Ending RunUnit
(00957)<17:45:58> -> (SQL::COMMIT) rc = 0
(00957)<17:45:59> -> CSO::CMCONCT(DISC) rc = 0
(00957)<17:45:59> -> CSO::CMCLOSE() rc = 0

10

This sample trace was generated by the VisualAge Generator sample application EMPLOYE running on OS/2.
Each line in the trace will contain the name of the application, the process ID (obtained from the operating sys-
tem), the current time, and a description of the occurring event.

Adding Trace Statements to the Application
If the trace information provided by Workgroup Services is not sufficient to diagnose the problem, you can add
custom trace statements to the application. The process consists of editing the C++ source file, adding the trace
statements, and repreparing the application. The trace statements use the following syntax:

Trace() << �string enclosed in quotes� << VAG_Data_Item << endT;

The output operator (<<) is used to direct a value to the trace file. Successive output operators can be concat-
enated. The manipulator endT acts as a new line character, causing any output that follows to be directed to the
next line. The following trace statement would cause the string “Hello World!” to be written to the trace file.

Trace() << �Hello World!� << endT;

The value of a data item can also be written to the trace
file. The C++ source file must be examined and the
generated name of the data item must be specified in the
trace statement. All of the VisualAge Generator data types
can be traced. The following example shows a section of
code extracted from a VisualAge Generator C++ applica-
tion and the trace statements used to display the values of
the data items:

DATAWS_.BIN_ITEM_ = 99;

DATAWS_.CHA_ITEM_ = �ABC�;

DATAWS_.HEX_ITEM_ = �0D0A�;

DATAWS_.NUM_ITEM_ = 99;

DATAWS_.NUMC_ITEM_ = 99;

DATAWS_.PACF_ITEM_ = 99;

DATAWS_.PACK_ITEM_ = 99;

Trace() << �BIN_ITEM: � << DATAWS_.BIN_ITEM_ << endT;

Trace() << �CHA_ITEM: � << DATAWS_.CHA_ITEM_ << endT;

Trace() << �HEX_ITEM: � << DATAWS_.HEX_ITEM_ << endT;

Trace() << �NUM_ITEM: � << DATAWS_.NUM_ITEM_ << endT;

Trace() << �NUMC_ITEM: � << DATAWS_.NUMC_ITEM_ << endT;

Trace() << �PACF_ITEM: � << DATAWS_.PACF_ITEM_ << endT;

Trace() << �PACK_ITEM: � << DATAWS_.PACK_ITEM_ << endT;

The following lines would be written to the trace file after
executing the above trace statements:

TSTDATA (01675)<09:54:08>BIN_ITEM: 99

TSTDATA (01675)<09:54:08>CHA_ITEM: ABC

TSTDATA (01675)<09:54:08>HEX_ITEM: 0D0A

TSTDATA (01675)<09:54:08>NUM_ITEM: 99

TSTDATA (01675)<09:54:08>NUMC_ITEM: 99

TSTDATA (01675)<09:54:08>PACF_ITEM: 99

TSTDATA (01675)<09:54:08>PACK_ITEM: 99

Debugging COBOL Applications
VisualAge Generator COBOL applications can be
generated to provide tracing of the 4GL statements
and SQL calls (except SQLEXEC processes). To
enable the source level tracing, the application must
be generated with the /TRACE generation option.
The /TRACE option can be specified with the
following parameters:

• SQLERR—Trace only SQL error codes returned
in the SQLCA.

• SQLIO—Trace both the data and SQL error
codes in the SQLCA.

• STMT—Trace the VisualAge Generator 4GL
statements coded in the application.

Note that multiple parameters can be included with
the /TRACE option. The parameters need to be
separated by commas.

To activate the trace at runtime, run the ELAZ
transaction in the CICS and IMS/VS environments
or specify the ELATRACE DD in the Batch, TSO,
and IBM BMP environments. Note that the trace
function is not supported in the OS/400 environ-
ment.

The output from the trace is stored in different
locations based upon the runtime platform. Refer to
the appropriate Running Applications on OS/2, AIX,
and Windows document for information concerning
printing the trace output.

11

Generating JavaBeans Wrappers
by Paul Hoffman, VisualAge Generator Development

VisualAge Generator generates
JavaBeans wrapper classes for
calling VisualAge Generator server
(remote called batch) applications.
The generated classes represent:

• Server applications
• Record parameters
• Record array rows

The wrappers help you (the Java
developer) by performing the
following functions on the server
call:

• Extended unit of work control
for calls to CICS and OS/400
servers

• Data marshalling and format
conversion between:

– Objects and record structures

– Unicode and ASCII or
EBCDIC code pages

– Floating point and decimal or
packed decimal numbers

You can use the classes to build
Java applications and applets.
When building Java applications,
the server wrapper calls the
VisualAge Generator
POWERserver API from the system
on which the application is running.
When building Java applets, the
wrapper runs on a Web client and
uses Java Remote Method Invoca-
tion to request that the
POWERserver API be called from
the Web server by the VisualAge
Generator UnitOfWorkServer object
you started on the Web server.

This article describes how to get
started and provides some ex-
amples of how you code the
JavaBeans wrappers. For a com-
plete description, see the VisualAge
Generator Developing Client/Server
Applications (SH23-0230) docu-
ment. If you are using VisualAge
Generator Version 3 or if you have
installed VisualAge Generator
Version 2.2 FixPak 5 or later, see
the FixPak readme file for informa-
tion on Java support.

Getting Started
To generate JavaBeans wrapper classes for calling a server (remote called
batch application), VisualAge Generator needs, as input, the application
member and the members defined in the called parameter list. All param-
eter types are supported, except for maps and SQL row records. As an
option, you specify /SYSTEM=JAVAWRAPPER as the target runtime
system. Other options you can specify include:

• /MSL=
• /LINKAGE=
• /GENOUT=
• /NLS=

An example of a batch generation command for generating Java wrappers
for application STAFFMN follows:

eze2gen generate staffmn /msl=staff /system=javawrapper
 /genout=f:\vgout /nls=enu /linkage=f:\link\staff.lnk

Linkage table options: The linkage table entry for the called batch applica-
tion defines how the application should be called using the PowerServer
API. You can specify that the linkage table options are generated into the
server wrapper by indicating REMOTEBIND=GENERATION. Or you can
specify that only the application name and linkage table name are gener-
ated into the server application by specifying REMOTEBIND=RUNTIME.

Conversion Tables (CONTABLE Option): Java applications use Unicode
16-bit character encoding at runtime. Java specific conversion tables
support conversion of the Unicode text to the appropriate ASCII or
EBCDIC code page used on the server system. See the readme file
provided with the product for a list of the conversion tables.

After generation, each generated class is in a file with the name:

classname.java

where classname is the class name derived from the VisualAge Generator
name for the object. The generated classes are assigned to package:

serverP

where server is the class name derived from the server application name.

You can use the Javadoc tool to build a classname.html file from the Java
file. The HTML file describes the public interfaces for the class.

JavaBeans For Servers
A JavaBeans class generated for calling a server application includes:

• Private instance variables for each parameter.

• Get and set methods for each parameter.

• An execute method for calling the server application using the class
instance variables as parameters.

12

• A call method for calling the server with an argument defined corre-
sponding to each parameter in the application called parameter list.

• The addPropertyChangeListener and removePropertyChangeListener
methods that enable signaling of other beans when parameter values
are changed by a set method or on return from a server call. These
methods are inherited from the Server class.

You can use the server as a JavaBean by using the set methods to set
parameter values prior to calling the server, the execute method to call the
server, and the set methods to retrieve the returned parameter values after
calling the server. The listener methods enable another bean to be notified
when whenever the data values are changed.
You can also treat the server call as a function call, passing the param-
eters as arguments on the call method. If you use the call method, then
you must use the get methods to retrieve the values returned for item
parameters, since Java primitive parameters are always passed by value.

JavaBeans For Record Parameters
 A JavaBeans class generated for a record includes the following:

• Public instance variables, such as the following:

– Java primitives for each low-level item that is not within a
substructured array.

– Java primitive arrays for item arrays

– An object array for each substructured array item

• The get and set methods for each instance variable, enabling the
record class to be used as a JavaBean.

• The addPropertyChangeListener and removePropertyChangeListener
methods enable signaling of other beans when parameter values are
changed by a set method or on return from a server call. These
methods are inherited from the Record class.
Always use the set methods to change values of Record variables if
other beans are listening.

• Non-public methods for marshalling record data on a server call
occurring structure in the record.

JavaBeans For Record Array Rows
A JavaBeans class generated for a multiple occurring substructure in a

parameter record includes the following:

• Public instance variables defined as Java primitives for each low-level
item in the substructure.

• The get and set methods for each instance variable, allowing the class
to be used as a JavaBean.

• The addPropertyChangeListener and removePropertyChangeListener
methods enable signaling of other beans when parameter values are
changed by a set method or on return from a server call. These
methods are inherited from the RecordArrayRow class.

 Always use the set methods to change values of RecordRow Array
variables if other beans are listening.

• Non-public methods for marshalling record data on a server call.

VisualAge Generator
Java Package

A Java package, ibm.cso, is
shipped with VisualAge Genera-
tor runtime for OS/2, Windows
NT, and Windows 95. cso is the
three-character identifier for
VisualAge Generator
POWERserver API middleware.
The classes in the package are
used with the generated
JavaBeans to communicate with
VisualAge Generator server
applications.

To make the ibm.cso package
accessible to Java, make sure
the Java classpath environment
variable includes the
subdirectory vgbase\java in the
directory list, where vgbase is
the base directory for the
VisualAge Generator product.

The ibm.cso package includes
the following class definitions.
For descriptions of these
classes, see the csojava.html
file provided with the product.

ibm.cso.UnitOfWork
ibm.cso.AppletUnitOfWork
ibm.cso.ApplicationUnitOfWork
ibm.cso.UnitOfWorkServerImpl
ibm.cso.CSOException
ibm.cso.CSOCallOptions
ibm.cso.Server
ibm.cso.Record
ibm.cso.RecordArrayRow
ibm.cso.Wrapper
ibm.cso.CSOConstants
ibm.cso.CSOConversionTable
ibm.cso.PowerServer
ibm.cso.CSOSession
ibm.cso.CSOSessionState
ibm.cso.Trace

13

Examples

How to Call Server Wrappers From Applications
An ApplicationUnitOfWork object establishes a communication session with the VisualAge Generator
POWERserver API for the purpose of calling VisualAge Generator server applications via the POWERserver API.

To call a server application named STAFFMN from a Java application, generate a Java wrapper class for the
server application using VisualAge Generator (the Java class name will be Staffmn). Then code the following in
the Java application:

{
try
{
// Initialization

ApplicationUnitOfWork auow = new ApplicationUnitOfWork();
Staffmn staffmn = new Staffmn(auow);

// Processing
.
.
staffmn.call(.....
.
.

// Commit (use only if linkage table specifies client unit of work)
 auow.commit();

.

.
}
catch (ibm.cso.CSOException error)
{
String explanation = error.getMessage();

.

.
// Rollback (use only if linkage table specifies client unit of work)
 auow.rollback();

.

.
}
// Explicitly close the PowerServer unit of work when the application
// ends. Do not rely on garbage collection, which may leave the
// session hanging for a long period of time.
//
if (auow != null)
{
try
{
auow.close();
}
catch (ibm.cso.CSOException error)
{

String explanation = error.getMessage();

.

.

}

}

Multiple server applications can be called from the same ApplicationUnitOfWork.

14

How to Call Server Wrappers From Applets
An AppletUnitOfWork object establishes communication with a UnitOfWorkServer object on a Web server using
the Java 1.1 remote method invocation (RMI) for the purpose of calling VisualAge Generator server applications
via the UnitOfWorkServer object. To call a server application named STAFFMN from an applet, generate a Java
wrapper class for the applet using VisualAge Generator (the Java class name will be Staffmn). Then code the
following in the applet. Multiple server applications can be called from the same AppletUnitOfWork object.
AppletUnitOfWork auow ;
Staffmn staffmn ;

public void init()
{
try

{
// Initialization
 auow = new AppletUnitOfWork(this) ;
// or
// auow = new AppletUnitOfWork(hostname) ;

staffmn = new Staffmn(auow);
}
catch (ibm.cso.CSOException error)
{
String explanation = error.getMessage();

.

.
}

}
public boolean action(Event event, Object arg)

{
.
.

// Handle action requiring server call
try
{
 // Processing

 .
 .
staffmn.call(.....
.
.

// Commit (use only if linkage table specifies client unit of work)
 auow.commit();

.

.
}
catch (ibm.cso.CSOException error)
{
String explanation = error.getMessage();

.

.
// Rollback (use only if linkage table specifies client unit of work) auow.rollback();

.

.
}

.

.
// Handling request to terminate applet
//
// Explicitly close the PowerServer unit of work when the application
// ends. Do not rely on garbage collection, which may leave the
// session hanging for a long period of time.
//
if (auow != null)

{
try
 {
 auow.close();
 }
catch (ibm.cso.CSOException error)
 {
 String explanation = error.getMessage();
 .
 .
 }
}

15

How to Run Applets From a Browser
To run an applet, you need to reference the applet in an HTML file you download from your Web browser. The
text of a minimal HTML file (named Staffmn.html) for running an applet follows:

<APPLET code=�StaffmnApplet.class� width=400 height=400>

</APPLET>

Your browser must be capable of running Java 1.1 applets to work with VisualAge Generator classes. To run your
applet from a Java SDK applet view, enter the following command:

appletviewer http://hostname/hostalias/Staffmn.html

where hostname is the network identifier of your Web server system and hostalias is the alias by which the
directory on which Staffmn.html resides is known to the server.

How to Start a UnitOfWorkServer Object on Your Web Server
To start the UnitOfWorkServer object, your Java Web server system must be at Java Version 1.1 or higher. The
UnitOfWorkServer object provided with VisualAge Generator registers as a server with the Java Remote Method
Invocation registry for the purpose of calling the POWERserver API on behalf of Java applets.

To start the JAVA Remote Method Invocation registry on the host system, enter the following:

start rmiregistry

To start a UnitOfWorkServer object for handling calls from applets to VisualAge Generator server applications,
enter the following:

java -Djava.rmi.server.codebase=http://hostname/CSOServer/ ibm.cso.UnitOfWorkServerImpl event_level

timeout_int

Where:

• hostname = name of your internet host server system

• event_level = level of event report. Controls the reporting of events handled by the UnitOfWorkServer object.
The events are written using the Java System.out.println method, and by default go to the window from which
the server was started.

– 0 = no reporting

– 1 = report errors (default value)

– 2 = report all activity

• timeout_interval = interval for automatic closing of inactive sessions in minutes. 0 = no closing. Default is 60
minutes.

• report_interval = server session report interval in minutes. 0 = no report. Default is 5 minutes.

Java Names
The names of classes, methods, and objects in the generated class definitions are derived from VisualAge
Generator member names according to the following algorithm:

• Convert VisualAge Generator name to lowercase.

• Delete any dashes (-) or underscores (_) and change the character that follows the dash or underscore back
to uppercase.

16

• When the converted name is used as class name or within a method name, translate the first character back
to uppercase.

• Package name for generated objects is the server class name with a P appended to it. DBCS names are not
supported.

The following table shows an example of the derivation of Java wrapper names from VisualAge Generator
member names.

VisualAge VisualAge Java Java Java Java Java
Generator Generator Class Name Object Name Package Name Get Method Set Method
Member Type Name Name Name

Server STAFFMN Staffmn staffmn StaffmnP N/A N/A
called batch)
application name

Record name STAFF-MAINT StaffMaint staffMaint StaffmnP getStaffMaint setStaffMaint
for record
parameter

Level-77 item BUTTON-PRESSED N/A buttonPressed N/A getButtonPressed setButtonPressed
parameter

Name of STAFF-DATA in
substructured, STAFF-MAINT StaffMaint_StaffData staffData StaffmnP getStaffData setStaffData
multiply occurring
item in record

Low level item in ROWS-FETCHED N/A rowsFetched N/A getRowsFetched setRowsFetched
record or record
array

Data Type Mapping
The following table shows the Java data types derived from VisualAge Generator data item definitions.

VisualAge Length Length Decimals Java Maximum
Generator in chars in bytes Data Type precision
Data Type or digits in Java

CHA 1-32767 1-32767 N/A String N/A
MIX 1-32767 1-32767 N/A String N/A
DBCS 1-16383 1-32767 N/A String N/A
HEX 2-75534 -32767 N/A Byte[] N/A
BIN 1-4 2 0 Short 4
BIN 5-9 4 0 Int 9
BIN 10-18 8 0 Long 18
BIN 1-4 2 > 0 Float 4
BIN 5-9 4 > 0 Double 15
BIN 10-18 8 > 0 Double 5
NUM, NUMC 1-4 1-4 0 Short 4
NUM, NUMC 5-9 5-9 0 Int 9
NUM, NUMC 10-18 10-18 0 Long 18
NUM, NUMC 1-6 -6 > 0 Float 6
NUM, NUMC 7-18 7-18 > 0 Double 15
PACK, PACF 1-3 1-2 0 Short 4
PACK, PACF 4-9 3-5 0 Int 9
PACK, PACF 0-18 6-10 0 Long 18
PACK, PACF 1-5 1-3 0 Float 6
PACK, PACF 7-18 4-10 0 Double 15

17

Data Format Conversion
Considerations

Numeric Conversion Considerations
VisualAge Generator to Java:

 • 16-18 digit numbers with decimal places are
precise to a maximum of 15 digits.

Java to VisualAge Generator:

• Java floating point numbers that have more preci-
sion than the corresponding VisualAge Generator
item are rounded when converted to VisualAge
Generator numbers.

• If a Java number is greater than the maximum for
the corresponding VisualAge Generator data item,
an exception is raised. The exception may be a
java.lang.ArithmeticException or an
ibm.cso.CSOException, message CSOE7953,
depending on whether the error is detected during
marshalling or numeric format conversion.

The calling method must ensure that numeric values
are within the range that can be processed by the
VisualAge Generator server application.

Character String Conversion Considerations
VisualAge Generator to Java:

• Trailing blanks are truncated when a VisualAge
Generator character item is converted to a Java
character string.

Java to VisualAge Generator:

• Java Unicode characters that do not have a corre-
sponding character in the target code page are
mapped to the SUB character for the code page.
No exception is raised.

• Java strings are padded with blanks if shorter than
the VisualAge Generator data item, and truncated
to VisualAge Generator item length if longer than
the VisualAge Generator data item. No exception is
raised.

Tracing and Debugging Options
To trace server calls from Java applications, set CSO
trace options from the window in which the application
is started. To trace server calls from Java applets, set
CSO trace options from the window in which the
VisualAge Generator Java server is started.

Tracing Errors
To trace errors, use the following:

SET CSOTROPT=1 SET
CSOTROUT=trace_file_name

The default trace file name is CSOTRACE.OUT in the
directory from which the server or application was
started. For applets, trace is also written to the
UnitOfWorkServerImpl window.

Tracing Service Calls
To trace all service calls to the PowerServer API, use
the following:

SET CSORROPT=2 SET
CSOTROUT=trace_file_name

The default trace file name is CSOTRACE.OUT in the
directory from which the server or application was
started. For applets, trace is also written to the
UnitOfWorkServerImpl window.

Tracing Parameter Contents
To trace contents of parameters before and after
server calls, use one of the following:

SET CSO_DUMP_DATA=server_appl_name

to trace calls to a specific application, or:

SET CSO_DUMP_DATA=ALL

to trace calls to all applications. Parameter contents
are written to file CSODUMP.OUT in the directory from
which the server or application was started.

Exception Handling
The server wrapper raises a CSOException when an
error is encountered during a call. The catching routine
can retrieve the VisualAge Generator middleware CSO
error message by calling the
CSOException.getMessage() method.

18

Quarterly Teleconferences�We Want You!
By Rusty Edmister, VisualAge Generator Sales and Technical Sales and Support

Communication is critical to our business. We some-
times hear that we communicate better with our
prospects than we do with our current customers. To
correct this perception, we plan to host a quarterly
communication session via teleconference for our
worldwide customers. During this 60-minute call, we
will discuss a subject of common interest followed by
a question and answer session. As we developed this
idea, we investigated the cost of doing such an
international teleconference. As you might imagine, it
is very expensive for participants who have no toll-free
capability. (In the U.S. and Canada, we are able to
provide a special number for which there is no
charge.) With this in mind, we would like to proceed
with the following plan.

Our first teleconference call will take place on October
15 at the time indicated in the following table. We will
provide calling numbers for every geography, recog-
nizing that participation outside the U.S. and Canada
might be extremely low because the cost may be
prohibitive. We will record the calls and make them

available at no charge to anyone who might want a
copy. You will find instructions later in this article on how
to receive a copy of the calls on cassette tape.
The subject of the first teleconference is VisualAge
Generator Version 3.0. The first 45 minutes will be
devoted to a presentation on the content of Version 3.0
followed by 15 minutes of questions and answers.

If you are outside the United States and Canada, your
telephone service provider will charge you for the call. In
the U.S. and Canada, we will provide a toll-free number
for your use. If the time of the call for your part of the
world is not convenient for you, you are welcome to join
one of the other calling times. To help us get an esti-
mate of callers that will participate in each of the three
calling times, please register in advance by calling 1-
800-723-7880 (U.S./Canada) or 402-220-5249 (Interna-
tional). The recording will ask for your name, the name
of your company, and the call in which you will partici-
pate. Remember, North America calls are toll-free and
the PASSCODE for the call (for everyone) is VERSION
3.

Geographic region Date Call in Time Number to Call

Asia October 15 11:00 AM - 12:00 PM 212-547-0192 (International)
(Tokyo time) 888-790-3159 (North America)

Europe/Middle East/Africa October 15 1:00 PM 630-395-0449 (International)
(Greenwich time) 888-455-9647 (North America)

North/South America October 15 11:30 AM 212-547-0176 (International)
(New York time) 800-369-2042 (North America)

If You Cannot Attend the Teleconference
The recorded calls will be available for you to listen to
via the telephone through October 17. To hear the
recording, call 1-888-839-1160 (U.S./Canada) or
402-220-2274 (International). The PASSCODE to hear
the recording is 1527. This passcode is the same for
everyone.

We will also record the calls on a cassette tape for
those of you who cannot participate in person or via the
telephone recording. You can get a copy of the audio
tape and presentation materials by sending a request
to Rusty Edmister at edmister@us.ibm.com or by
sending Rusty a fax at 919-254-4820. Be sure to
include your name and shipping address with your
request.

If the response to this first teleconference is good, we
will schedule future calls. We will continue to work to

find a less expensive way for these calls. The topics for
future teleconferences will include those of greatest
interest to our participants. The topic for the call in
January will be ENVY, the new library management
system in VisualAge Generator V3.0. To help us plan
for these calls, please fill in the following form and
either fax it to Rusty Edmister at 919-254-4820 or mail
it to him at:

Rusty Edmister
IBM Corporation - VisualAge Generator Sales
 Support
T9EA/002/EBC113
3039 Cornwallis Road
Research Triangle Park, NC 27709
USA

19

Teleconference Form

(Please fax this form to Rusty Edmister at 919-254-4820 if you plan to participate in some or all of our customer
teleconferences)

My name is ____________________________________

I represent __
(company or organization name)

Future teleconference topics that I would like to see scheduled (please list in order of importance or interest to
you - most important listed first):

My e-mail address is: __

My telephone # is: __

My fax # is : __

20

Have you visited the Web page recently?
We have redesigned the web page and
will use it as a main source to communi-
cate with current, future, and prospective
customers. See the new design to the
right. The VisualAge Generator web
address is:

www.software.ibm.com/ad/visgen

For IBM’s predecessor 4GL, Cross
System Product, the web address is:

www.software.ibm.com/ad/visgen/csp

VisualAge Generator
Web Pages

Acronyms
4GL fourth-generation language
AIX Advanced Interactive Executive
API Application Programming Interface
AS/400 Application System/400
CAE/2 Client Application Enabler/2
CASE Computer-aided Software Engineering
CICS Customer Information Control System
CICS OS2 Customer Information Control System Operating System/2
CPU central processing unit
CSP Cross System Product
DB2 Database 2
DDL data definition language
DBMS database management system
DCE distributed computing environment
EMEA Europe/Middle East/Africa
GUI graphical user interface
IBM International Business Machine
IMS Information Management System
ITSO International Technical Support Organization
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Notes
OS/2 Operating System/2
OS/400 Operating System/400
RAD rapid application development
SQL Structured Query Language
TCP/IP Transmission Control Protocol/Internet Protocol
VM Virtual Machine
VSE Virtual Storage Extended
WWW World Wide Web

E-mail Anyone??
In this extremely fast-paced world,
having a way to contact you
immediately can be beneficial.
There are things that come up
from time to time about VisualAge
Generator that we would like to
pass on to you. Product updates,
changes, teleconference schedules,
news, and customer experiences
are but a few categories of informa-
tion that can help you do your job
better and save you company
money.

This newsletter is one way we
communicate better, but it is
published only three times a year.
If you would like us to send you
information as it happens, send
your name, your company name,
and your e-mail address to Rusty
Edmister at

edmister@us.ibm.com .

The Great Lakes VisualAge
Generator user group will meet
on September 24 and 25, 1997
in Cincinnati, Ohio. For details,
contact Rich Kelmer
(RKELMER@us.ibm.com
or 937-225-6513).

Great Lakes
User Group Meeting

21

Please check any appropriate boxes:

I’d like to receive future issues of this newsletter. (You need to check this item only if
you have not already responded.)

I’d like more information about Version 2.2.

I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:__

I’m interested in participating in an AD users’ group meeting.

I’m interested in participating in a VisualAge Generator users’ group meeting.

Comment Form

I have a question I’d like to submit for the Question & Answer sec-
tion of this newsletter:

Any comments you’d like to share with us about VisualAge
Generator or about this newsletter? (Include your comments or
concerns about VisualAge Generator’s future directions here.)

Name Title
Company Name
Street Address/P.O. Box
City State/Province
ZIP/Postal Code Country
Phone No. FAX No.

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Are we putting the type of information you want to see in the
newsletter? If not, what would you like to see in the newsletter?

22

Cut or
Fold Along
Line

Cut or
Fold Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-06

G242-0315-06

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
T22/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

23

Questions & Answers
Question: Where can I find information on the World Wide Web about the impact of MSLs to ENVY library

management system?

Answer: Our plan is to have information on the impact of MSLs to ENVY migration in the next issue of the
newsletter, which will also go on the Web.

Question: With the closer relationship between VisualAge Generator and VisualAge, will it be possible to
“migrate” components developed in VisualAge Generator to VisualAge and vice versa? Also, will
there be restrictions on which VisualAge product can be used (for example, VisualAge for
COBOL, C++, Java, and so on)?

Answer: The next release of VisualAge Generator will provide complete interoperability with VisualAge
Smalltalk. What this means is that as a VisualAge Generator developer, you will have the full
VisualAge Smalltalk environment available to you for developing GUI Client applications as part
of client/server systems. Because VisualAge Generator’s visual programming environment was
derived from VisualAge Smalltalk’s, VisualAge Generator developers will find themselves in a
familiar environment as they use visual programming to create applications. As a result,
VisualAge Generator’s GUI capabilities are greatly extended. For example, client database
access to IBM and Oracle databases is now available via VisualAge Smalltalk’s database parts.
VisualAge Smalltalk Web and Lotus Notes parts are just a few of the examples that enable the
extension of the traditional client/server application into new territory. There are also over 1000
third-party parts that are now available to the VisualAge Generator developer with useful parts
like Business Graphics. To complete this capability, VisualAge Generator parts (Programs,
Statement Groups, Records, and so on) can be used within a VisualAge Smalltalk GUI, and can
interoperate with VisualAge Smalltalk Parts. Now, GUI business logic can be developed in
Smalltalk or VisualAge Generator’s familiar 4GL. The choice is yours. Of course, VisualAge
Generator’s enterprise server capability remains a cornerstone of robust client/server systems.

VisualAge Generator - VisualAge Smalltalk interoperability is more than just interoperable parts.
An integrated development environment brings it all together by providing seamless develop-
ment, test, and code management of the entire client/server application system from one devel-
opment tool. Components developed in earlier versions of VisualAge Generator will be fully
migratable to the next release. As a clarification, VisualAge Generator 4GL code is not converted
to Smalltalk; it remains in its familiar format. Also, GUI applications developed in VisualAge
Smalltalk can be brought into the next version of VisualAge Generator and used in VisualAge
Generator development.

One last note: in VisualAge Generator 2.2, we introduced the ability to create a Java bean that
would, in essence, call a VisualAge Generator server by wrapping VisualAge Generator’s
middleware. We will bring this function forward in the next release. In this way, a Java client can
interact with a VisualAge Generator server, adding yet another dimension to VisualAge
Generator’s network computing capabilities.

The VisualAge Generator Newsletter
This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1997. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DB2, DB2/2, DB2/6000, IBM, IMS, MVS, VM,
VSE, Operating System/2, OS/2, OS/400, POWERserver, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Java and JavaBeans are trademarks or registered trademarks of Sun Microsystems, Inc..

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those described
here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These articles are for
information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

