
Generator
A Powerful New Vision of ProgrammingTM

VisualAge®

The IBM VisualAge Generator Newsletter

Volume 3, Number 1
December 1997

Contents

Industry Speaks About
IBM’s VisualAge Family 2

A Customer Success Story 3

VisualAge Generator V3.0—
MSLs to ENVY 4

Everything You Had with
MSLs and More! 8

Interoperability—Passing
Data to 3GL Programs 13

TriviaGen 16

E-mail—One More Time! 16

A Question from Us to You 19

2

VisualAge Generator Version 3.0 Availability
by Sandra Johnson, VisualAge Generator Product Manager

VisualAge Generator Version 3.0 is
currently available in English and
will be available in translated
languages on December 31, 1997.
The product development team has
worked very hard to make the
Windows NT development environ-
ment available to you, our existing
and potential customers. And, as
usual, we have tried to provide you
with articles in this issue of the
newsletter that will help you get
started with VisualAge Generator
Version 3.0.

1997 has been an exciting year as
we have seen our VisualAge
Generator customer base double

since 1996. We are delighted that
you are our customers and hope
that you continue to find useful
information in our newsletters. We
continue to solicit your input for the
newsletter. We want to provide you
with information that is most helpful
to you. To do this, we need to know
what topics are of most interest to
you. So please use the Comment
Form in this newsletter to provide
us with questions you want us to
repond to or topics for which you
want us to provide helpful hints or
tips. Also, if you have helpful hints
or tips that you would like to share
with other VisualAge Generator
users, you can write an article to be

published in the newsletter. You
can fax the article to (919) 254-
0206 or send it by e-mail to
gators@us.ibm.com.

When you send articles to IBM, you
grant IBM a nonexclusive right to
use or distribute the information in
any way it believes appropriate
without incurring any obligation to
you. In addition, keep in mind that
all submissions might not be
published.

We ‘re looking forward to 1998!

M. Blechar of the Gartner Group, a leading information
technology research and analysis firm, reported in Gartner
Group’s “Application Development and Management Strate-
gies Research Note” dated July 16, 1997, “In 2000, the list of
leading enterprising AD tool vendors with the best cross-
category support will include IBM, Oracle, and Microsoft® with
its alliance partners (0.9 portability).”

The VisualAge family is in the leadership category of 3 out of
4 categories—including “E-CASE and Traditional Mainframe
Generators” where VisualAge® Generator was listed as one of
the leaders.

Please contact the Gartner Group for the report.

Industry Speaks About IBM’s VisualAge Family

3

In late 1996, Danka Office Imaging
acquired Kodak’s facilities manage-
ment business, sales, and market-
ing and equipment service opera-
tions. Timeliness of customer
deliveries is critical to the
company’s image and success.
Danka OI is better positioned to
fulfill its promises and to reduce
costly inventory overhead. The
reason: a set of advanced client/
server applications built to stream-
line the order fulfillment process
and to minimize inventory.

The IS group faced many chal-
lenges including the need to:

• Reduce the cost structure of
maintaining applications

• Pragmatically migrate from a
legacy environment to a client/
server environment

• Significantly reduce the cycle
time to deliver solutions

• Effectively develop new IS skills
while leveraging people’s strong
knowledge of the business

The solution chosen to address
these challenges was to make the
transition to client/server using an
object-based development tool. The
tool was VisualAge Generator.

Jim Cantin, formerly a Systems
Architect at Kodak’s Information
Services, headed a group that
started with order entry and then
added a suite of Lotus Notes
applications to support order
management. “Like many compa-
nies, Kodak had years of equity
invested in legacy code,” says
Cantin. “What is particularly unique
about our approach is that we used
an object-based tool to create
client/server applications, while
retaining our mainframe IMS
application logic and data struc-
tures wherever possible.”
Using VisualAge Generator, the first
client/server application went from
concept to production in just six
weeks. The client/server application

A Customer Success Story
by Rusty Edmister, VisualAge Generator Sales and Technical Sales Support

is used by customer service spe-
cialists to dynamically schedule
product manufacturing, transporta-
tion, delivery, and installation, all
based on the customer’s preferred
date. It has a Windows graphical
user interface that taps into IMS
applications via MQSeries
middleware.

“The strength of VisualAge
Generator’s visual programming
really lends itself to speeding up the
development process and increas-
ing the quality,” says Cantin. “We
estimate developer productivity
increased 20-30 percent initially,
and we expect it to continue to rise.
Even more important, we’re able to
sit down with our users for the first
time and design applications
together. And, we don’t have to
throw away the prototype—we just
keep adding to it to get the final
product. With the VisualAge Gen-
erator environment, everything you
need is within one environment,
including the middleware,” he adds.
“There’s a client piece and a host
piece, and VisualAge Generator
handles the conversation for you.
That means our developers can
focus on writing the application
without having to be concerned
about writing to the communication
layers of the execution platform.
And our users don’t know how
we’ve tied it together. They just
know it does what they want it to
do. Involving users early on short-
ens the cycle time and training
required. And—most important—
the users are happy with the end
results they see.”

The next step was to introduce
Lotus Notes to simplify the flow of
information even further. With a
customized Lotus Notes suite of
applications, users now have a
simple but powerful front-end
interface to monitor and manage
the workflow associated with open
orders for customers. The schedul-
ing application looks and functions
like a calendar. “That metaphor

makes it intuitive and easy for users
to learn and become productive,”
says Cantin.

As an order moves through the
order fulfillment cycle, updates on
its status are sent to a VisualAge
Generator host-based application
on the mainframe and then to Lotus
Notes via MQSeries. “It’s a chang-
ing view of your data that is up-
dated constantly because it is
linked to the back-end data,” adds
Cantin.

Danka’s customers have been
impacted as well. In the first six
months, customer satisfaction has
increased six percent within the
processes supported by these
applications. Danka has seen a 12
percent increase in customer
satisfaction related to improved
delivery dates.

At the same time, Danka OI contin-
ues to rely on VisualAge Generator
to develop new client/server
applications. “We started with 42
users and now have 120 people on
the system following the merger. I
see no reason why this won’t scale
up to any number of users,” states
Cantin. What’s more, the cost of
migration to the object-based
environment has long been recov-
ered. Significant gains have been
made that wouldn’t have been
possible in a traditional program-
ming environment. “We wouldn’t
even have been able to propose
these client/server solutions,
especially the Lotus Notes inter-
face, without VisualAge Generator,”
adds Cantin. “There’s a lot of
excitement in IS because we’re
accomplishing business objectives
while enhancing our careers. We’re
developing skills that are highly
valued by the customer today and
that will help improve our competi-
tive position tomorrow.”

4

VisualAge Generator V3.0�MSLs to ENVY
by Jeri Petersen, VisualAge Generator Consulting Services

This article is the first of two articles
that describes the new VisualAge
Generator V3.0 library management
system (ENVY) and the library
management system (MSLs) used
in previous releases of VisualAge
Generator. The second article
follows this article. Both articles
describe, from a slightly different
angle, the new concepts and
terminology in V3.0 and provide
insight on how to prepare for the
move from MSLs to the new library
management system.

In both Cross Systen Product
(CSP) and previous releases of
VisualAge Generator, code was
written in small pieces called
members. Members were stored in
Member Specification Libraries
(MSLs). In VisualAge Generator
V3.0, the code must be stored in
ENVY, a library management
system. If you plan to use the code
from CSP and previous releases of
VisualAge Generator, you must
migrate this code from the MSLs
into ENVY. This article provides an
insight to VisualAge Generator
V3.0, and how it differs from
previous releases of VisualAge
Generator and CSP, and what you
can do to start preparing for these
changes. The following are cov-
ered:

• ENVY Characteristics

• Comparison of MSLs and
ENVY

• The Migration Assistance Tool

ENVY Characteristics
Using the ENVY library manager to
store information is a major change
for VisualAge Generator V3.0.
There are new terms that are
important for the ENVY environ-
ment. Because ENVY was originally
developed for use with Smalltalk,
some explanations of the terms
include Smalltalk information to help
relate the terminology to Smalltalk.
The new terms are:

VAGen part class

Each 4GL member type (all
member types except
GUIs) becomes a VAGen
part class. A VAGen part
class is an extension of a
class in Smalltalk. The
VAGen part classes appear
in the VAGen Parts pane of
the VisualAge Organizer
window. The VAGen parts
classes created for the
member types are prefixed
by VAGen (for example,
VAGen Records).

There are 5 additional
VAGen part classes that
are used to contain control
information that was stored
outside the MSL in previous
releases of VisualAge
Generator. These VAGen
part classes are for linkage
table, resource association,
generation options, bind,
and linkage editor informa-
tion that is required during
test and generation.

VAGen part

Each 4GL member is now
stored as a VAGen part. A
VAGen part is associated
with a Smalltalk method in
an extension of its VAGen
part class. The VAGen
parts appear in the VAGen
Parts pane of the
VisualAge Organizer
window and in the VAGen
Parts Browser window.

View

Each GUI is now stored as
a view, which is a visual
part. A view is a class in
Smalltalk. The views
appear in the VAGen Parts
pane of the VisualAge
Organizer window. Views
do not appear on the
VisualAge Generator
Parts Browser in ENVY.

Program

The application member
type has been changed to
program to distinguish it
from an ENVY application.

ENVY application

An ENVY application is a
group of classes and
methods that are closely
related in function. An
ENVY application can
include VAGen part classes
and VAGen parts. An ENVY
application is also called an
application.

Configuration Map

A configuration map is a
group of application edi-
tions that should be loaded
together into a developer’s
image.

The following ENVY concepts are
new for VisualAge Generator V3.0:

 Functional organization

ENVY enables you to group
parts into aplications.
These applications can
(and should) be organized
by function.

Ownership

Each configuration map
and each application have
an assigned manager who
is responsible for the
integrity of the code that is
placed in the configuration
map or application.

Each part (class) or VAGen
part class has an assigned
owner who is responsible
for the integrity of the code
that is placed in the class.
For 4GL parts, this means
that the owner of the class
VAGenRecords within
application XYZ is respon-
sible for the integrity of all
record definitions stored as

5

part of application XYZ.
Because each GUI be-
comes a separate view
(visual part), each GUI
within application XYZ can
have a different owner.
Fourth-generation language
(4GL) parts used within the
GUI become VAGen parts.

Note: In previous releases
of VisualAge Generator, the
closest concept to owner-
ship was write-protecting
the staging, test, or produc-
tion MSLs and only giving a
team leader the authority to
advance into the MSLs.

Edition

Each change that is made
to a 4GL VAGen part
results in a new edition of
the VAGen part being
stored in the ENVY library.
Editions of parts, applica-
tions, and configuration
maps are also stored in the
ENVY library.

Version

Editions can be frozen to
prevent further changes to
that level of code. The
frozen edition is called a
version. After a part,
application, or configuration
map is versioned, the only
way to make changes is to
open a new edition.

 Image

An image is the developer’s
current view of the ENVY
library. It contains the
version or edition of the
configuration maps, appli-
cations, and parts that the
developer wants to work on.
Only one copy of a VAGen
part can be loaded into the
image at one time.

Comparison of MSLs
and ENVY
The following sections provide
information on what is different in
the use of MSLs and ENVY.

Member Types
In releases prior to VisualAge
Generator V3.0, there was one
member type for each type of code
that could be written: application,
GUI (for VisualAge Generator only),
record, table, data item, map group,
map, process, statement group,
and PSB (Program Specification
Block).

For VisualAge Generator V3.0,
each 4GL member type is a VAGen
part class that is indicated by the
prefix VAGen (for example,
VAGenRecords). For GUIs, there is
no corresponding VAGen part
class, because each GUI becomes
a separate view.

Storing Members and Other
Information
In releases prior to VisualAge
Generator V3.0, an MSL was an
OS/2 directory and each member
was a file within the directory. In
CSP, an MSL was a VSAM file and
each member was stored as
records within the file.

Control information was needed for
test and generation. Depending on
the version of CSP and VisualAge
Generator, this information in-
cluded: resource association
information, generation options,
linkage table, bind commands, and
linkage editor control statements.
For CSP, the resource association
information and some generation
options were stored in the MSL; the
other control information was stored
outside the MSL. For previous
releases of VisualAge Generator,
all the control information was

stored outside the MSL. For
VisualAge Generator V3.0, all
information is stored in the ENVY
library. Each 4GL member be-
comes a VAGen part and is associ-
ated with a Smalltalk method.
Each GUI becomes a view or visual
part and is a Smalltalk class.

Resource association files, genera-
tion options, linkage tables, bind
command files, and linkage editor
control statement files all become
new VAGen part classes in ENVY
and the files become VAGen parts.
Thus, all the data required for test
and generation is contained in a
single library management system.

MSL Concatenation
In releases prior to VisualAge
Generator V3.0, MSLs could be
concatenated. When MSLs were
concatenated, for test and genera-
tion, only the first found member
with a given name was used. For
viewing, members from MSLs other
than where the first found member
was located could be referenced. If
changes were made to a member in
the MSL concatenation sequence,
the changed member was stored in
the read/write MSL (the first MSL in
the concatenation sequence).

For VisualAge Generator V3.0,
there is no concept similar to MSL
concatenation. All editions and
versions are available in the ENVY
library. However, only one edition or
version of a part can be loaded at a
time. Browsers are available to
compare editions and versions
within the ENVY library before
loading them into your image to
determine which one is the required
level of code. Configuration maps
can also be used to group code for
a particular level. For example, you
might have a configuration map for
production that indicates the
version of each application that is in
production.

6

Functional Organization
In CSP, and previous releases of
VisualAge Generator, members
were grouped together into MSLs.
Generally, an MSL contained all the
members for a particular sub-
system. Because the MSL was the
only method for grouping members
by function, the functions tended to
be quite large. In CSP, the number
of MSLs in a concatenation se-
quence was limited to 6. This also
contributed to having a large
number of members in each MSL.

With VisualAge Generator V3.0, the
configuration map and the ENVY
application provide a two-level
capability for grouping parts. The
configuration map is the higher level
of organization and more closely
resembles an MSL in terms of the
number of parts. ENVY applications
enable you to organize your parts
into smaller groups than was
reasonable to do with MSLs. This
provides more capabilities in terms
of controlling access to the parts,
finding a part, and limiting the
number of parts displayed in the
VAGen Parts Browser .

Member Associations
In releases prior to VisualAge
Generator V3.0, members could
have associates—other members
that were referenced within the
member. For example, the associ-
ates for an application included
referenced map groups, maps,
records, tables, PSBs, processes,
statement groups, and their associ-
ates. Any global data item refer-
enced directly or indirectly was
included. For example, a data item
used as a called parameter was
included as an associate of the
application. Only maps that were
actually used by the application
were included in the associates.
The associates for a GUI included
referenced records, tables, pro-
cesses, statement groups, or
embedded GUIs, and their associ-
ates. (An external GUI and its
associates were not included.) For
a specific member (for example,
application XYZ), the only associa-
tions that could be detected were

those that existed in the current MSL concatenation sequence, using the
first found members.

For VisualAge Generator V3.0, the same associations between 4GL
VAGen parts still exist.
For a view, the following are associates:

• 4GL parts—records, tables, processes, and statement groups and
their associates

• For any embedded view, its associates. However, the embedded view
itself is not included as an associate.

Thus, the associates of a view in VisualAge Generator V3.0 are the same
as they were for a GUI in VisualAge Generator V2.2, except that the
embedded view itself is no longer an associate.

The only associations that can be detected are the ones that exist within
the current image.

The Migration Assistance Tool
The Migration Assistance Tool is designed to assist in migrating MSLs to
the ENVY library.

Note: Although the Migration Assistance Tool can help determine when
members are not found, it cannot locate missing members. Similarly, the
Migration Assistance Tool can help determine when duplicates of a given
member exist, but it cannot make the determination as to which is the
correct or current level of the member.

The Migration Assistance Tool works as shown in the above figure. The
figure shows a sample MSL concatenation for multiple subsystems.

You can run the Migration Assistance Tool from either OS/2 or Windows
NT.

The Migration Assistance Tool enables you to build an MSL directory
structure from the external source format that corresponds to an MSL.
This step is required if you are migrating from CSP or moving to the
Windows NT development environment.

After the MSL directory structure(s) are created, you can select parts
(members) from an MSL or MSL concatenation, group them into an
application or series of applications, and move them to a “sandbox”. When
you move a part to the sandbox, its associates also move. For a GUI, its
referenced embedded GUIs and external GUIs and their associates are
moved. The applications in the sandbox are in the current image, but are
not in the ENVY library yet. This enables you to manipulate the applica-
tions and to rearrange the VAGen parts within the applications until you
are satisfied with the grouping. Only one version of a part can be in the

7

sandbox at one time. Each part can
only be in one ENVY application
within the sandbox. After you are
satisfied with your organizational
structure for the applications, you
can commit the applications to the
ENVY library. Committing the
applications creates an edition of
the applications in the ENVY library,
creates any needed VAGen part
classes for the 4GL member types,
creates views for GUIs, and creates
the VAGen parts for the 4GL
members.

After the applications are in ENVY,
you can use any of the ENVY
library management functions, such
as:

• Versioning and releasing the
VAGen part classes and parts

• Versioning and releasing the
applications

• Creating configuration maps

• Dividing applications into
subapplications

• Assigning a class owner or
application manager

You can start the Migration Assis-
tance Tool from the VisualAge
Organizer window by selecting
Tools and then VAGen MSL
Migration . The Part List window
appears. These windows are shown
below.

Refer to the VisualAge Generator
Migrating MSLs to ENVY (SH23-
0252) document for more informa-
tion.

The VisualAge Organizer window

The Part List window

8

Everything You Had with MSLs and More!
by Henry Jicha, VisualAge Generator Consulting Services

In VisualAge Generator V3.0, the
transition from MSLs to a library
control and versioning system will
seem formidable at first, but a
closer look reveals that the
changes to VisualAge Generator
really offer increased control and
flexibility. In addition, it provides
functionality that is comparable to
or exceeds that provided with
MSLs. The key is to understand
how the new terminology and
concepts relate to traditional MSL-
based development concepts and
tasks. Once you understand the
concepts and tasks, the planning
process for migration from previous
MSL-based versions of Cross
Systems Product (CSP), previous
releases of VisualAge Generator,
and VisualAge Generator V3.0
capabilities becomes clearer and
easier.

The purpose of this article (along
with the article on page 4) is to
review VisualAge Generator V3.0
and explain how the new concepts
relate to existing MSL and product
functionality. This should assist you
in the planning and use of the new
environment.

What�s Changed?
One of the major changes in
VisualAge Generator V3.0 is in the
terminology—for example, the
renaming of applications (.app
parts) to programs. This makes
sense, because this is the truest
mapping of what these components
really are in the development
environment. In general, an applica-
tion is a group of one or more

programs that together perform a
function. This corresponds to
VisualAge Generator’s new defini-
tion of application: a group of parts
that are functionally related, and
that can be versioned and con-
trolled during development as a
unit. The exception to this is
applications made up of common
parts. These will be discussed later.
Note that this new definition of
application will be used throughout
the rest of this article. Components
referred to as applications in prior
releases of VisualAge Generator
will be called programs.

Another change is MSL members
are now referred to as parts. This
emphasizes the object-based
modular programming approach
and the assembly-from-parts
paradigm inherent in previous
releases of VisualAge Generator
and its predecessor, CSP.

Prior to VisualAge Generator V3.0,
related application code, generally
comprising one or more user
application systems, was commonly
kept in a single MSL. Common
parts and commonly shared MSLs
will be discussed later. The MSL
library management system pro-
vided a logical grouping of function-
ally related parts and a limited
means of control, so that when the
application system was put into
production, or a new release was
put into production, the MSL could
be either copied or exported to
preserve the exact source code
associated with the executable
object or ALF contents.

Code Storage
in Applications
In VisualAge Generator V3.0, the
approach is to put this code into
one, or usually into multiple applica-
tions, since MSLs were not gener-
ally as granular as applications are
in the new ENVY library manage-
ment system used by VisualAge
Generator V3.0. This library man-
agement system provides the same
logical grouping of related code. As
a rule of thumb, an application
should have no more than 500
parts, and should be made up of
code that will only be addressed by
one developer at a time. Although
multiple developers working on a
single application is fully supported,
it can require additional change
coordination.

Accessing Code
In the ENVY library management
system used by VisualAge Genera-
tor V3.0, the code is organized into
applications. To access this code,
the developer loads the desired
application into the image owned by
the developer from the repository.
This makes the source accessible
to the developer for change or
enhancement.

The Image
In VisualAge Generator V3.0, the
image is the working set of ALL the
code that a developer has current
access to. The image includes the
application code being developed
by VisualAge Generator V3.0 as
well as the code that makes up

9

VisualAge Generator itself. This
image is loaded every time
VisualAge Generator is started. The
initial image shipped with the
VisualAge Generator is made up of
all the Smalltalk classes that
comprise VisualAge Generator and
VisualAge Smalltalk. Applications
can then be loaded and unloaded to
enable development on the applica-
tions code. Additionally, parts that
were developed by third parties,
such as those available through the
Object Connection program, can be
added to the image, enhancing the
capabilities of the VisualAge
Generator. Prior to VisualAge
Generator V3.0, VisualAge Genera-
tor functionality was fixed, since the
image was not explicitly referenced
or accessible. All application code
was stored and accessed outside
the image in MSLs.

One of the most important produc-
tivity benefits of CSP and previous
releases of VisualAge Generator
was the ability to reuse parts and
definitions. The parts and defini-
tions were commonly kept in shared
common MSLs. This meant that
there could be parts that were used
in more than one application. In
VisualAge Generator V3.0, applica-
tions can be used not only for
functional groupings of code, but
also as storehouses of common
code elements such as record or
data item definitions, or common
processes or statement groups.
This replaces the shared common
MSLs in the repository.

Versioning
A major enhancement of VisualAge
Generator V3.0 is the ability to
create versions of stored applica-
tions. A version is a copy of the
application source that has been
frozen by the application manager,
and cannot be changed. This
enables the application to be moved
to test and production, knowing that

additional changes have not been
made to the source. It also allevi-
ates the process of exporting,
promoting, or copying the code.
Best of all, creating a new version
does not overlay previous versions
or working copies of the code in the
library. You can always refer back
to the previous versions or working
copies, which will be saved indefi-
nitely. Versioning also means that a
complete change history is main-
tained for the code. To go back to a
previous version, load the previous
version from the code repository
into the developer’s image.

Versioning is also done at a more
granular level within applications to
assist with development manage-
ment and control. This capability
enables developers to freeze the
code at various points during
development and control the
visibility of the changes to other
developers. Additionally, VisualAge
Generator V3.0 provides facilities
that compare the different versions
of the code (by highlighting
changed areas). This is particularly
useful in parallel development, or if
an emergency fix needs to be
integrated with an ongoing develop-
ment effort.

Configuration Maps
Previously, applications could be
loaded one at a time. This provided
access to code for development.
However, for a large subsystem
with multiple sets of common parts
this could be a long and tedious
process. VisualAge Generator V3.0
library manager addresses this
process with configuration maps.
Configuration maps consist of
related groupings of applications
that can be loaded together at
appropriate controlled release
levels. Once a configuration map is
defined, the developer needs to
load only the configuration map, not

the individual applications. Configu-
ration maps also provide the vehicle
for loading the image with the
appropriate applications during LAN
generation.

A better way to look at configuration
maps is as replacements for MSL
concatenations previously used by
developers. MSL concatenations
were usually created by the project
leads and reflected the source code
management strategy for the
project, as well as the granularity of
code management. Likewise,
configuration maps are generally
created, managed, and maintained
by project leads, who are desig-
nated as the configuration map
managers. These configuration
maps reflect the scope of the
project components, and the code
management strategy. Configura-
tion maps are also versioned by
configuration map managers. This
enables the configuration map
manager to ensure consistency
between the releases of the appli-
cations in a configuration map. To
further ensure consistency, it is
recommended that an application
appear in only one configuration
map.

You can set up a configuration map
where it requires other configuration
maps. This is particularly useful
with reusable code. The applica-
tions with shared definitions can all
be put into one configuration map,
and then this configuration map can
be included in the configuration
maps of multiple subsystems that
use these parts in development.
This ensures that an application
only appear in one configuration
map as well. Applications loaded
because they are part of a required
configuration map are still viewed
as only existing in the primary (the
required) configuration map, and
are therefore in only one configura-
tion map.

10

VisualAge Generator V3.0 library
management system enables the
storage of several versions of the
same code in the code repository
by version number. However, if you
are loading applications from a
configuration map, there must be a
means of identifying the correct
versions of the applications to load
automatically. This is done via the
release process. Each application
has a manager that determines
when a version is created. The
application manager or the configu-
ration map manager, then has the
ability to release this code to the
configuration map. When code is
released, the released version is
the one used when the configura-
tion map is loaded. This provides a
new level of control unavailable in
normal MSL concatenations. With
MSLs, a whole new concatenation
had to be created every time a new
version of code was included, while
preserving the old one.

Editions
If the code in a version is frozen,
then how does a developer perform
development on existing code?
After loading the correct version of
the desired application, the devel-
oper creates an edition of the
component that needs work. An
edition is a working copy of the
code that can be modified. An
edition is created automatically for a
developer whenever a save is done
on new or changed code. A save
does not overlay the existing code.
Instead, each time changes are
saved, a new edition is created in
the code repository. Each edition
has a date and timestamp for
identification. This means that
developers can retrace their steps,
or backtrack if they introduce an
unwanted behavior. Prior to
VisualAge Generator V3.0, once a
developer saved changes in a read/
write MSL, any previous copy of the
member in the MSL was lost.

Code Control
Within VisualAge Generator V3.0
applications, there is another layer
of code control. This layer groups
all VisualAge Generator parts of the
same type (for example record
parts) in an application for control.
This grouping is called a class.
Each GUI is also a class, and is
controlled at the class level. Each
class has an owner. When a
developer is satisfied with the
changes made to one of the groups
of VisualAge Generator parts, the
developer can version the class.
This freezes the changes, and
enables the developer to easily
reload the class and all its parts at
this level. The owner then deter-
mines what developer versions to
release to the application. By
deciding what versions to release,
and when to release them to the
application, the class owner con-
trols the quality of the code that
goes into the application. This can
also prevent conflicting changes to
an application in the case of
multiple parallel-development
efforts on a single class. It offers
considerably more control than
collision detection, as offered with
MSLs in previous releases of
VisualAge Generator.

Code Control Strategies
Because versions of applications
are fixed, and the application
manager controls creation of
versions and editions of applica-
tions, multiple strategies can be
used for development of code in an
application without the need for
constant application manager
intervention. One option is that the
application manager open an
edition of the application, so that
code can be changed in this edition.
This strategy enables developers to
share code changes in the compo-
nents they own across the develop-
ment team without further interven-

tion of the application manager.
This is done by having the class
owner release changed code into
the open application edition after
the code developer creates an
appropriate version of the applica-
tion edition. If an open edition is not
created, then VisualAge Generator
V3.0 enables the creation of a
scratch edition of an application by
each developer. This scratch
edition is visible only to the devel-
oper, and cannot be versioned or
released. However, it enables the
developer to do code development
and create new versions of code in
the application. Periodically, the
application manager opens an
edition. At this point, the code
versions created in the scratch
editions can be loaded into the
application edition, and released by
the class owner(s) to prepare to
version the entire application.

This article is not a full review of all
of the functions available in
VisualAge Generator V3.0. It
focuses on features that provide
functions analogous to those used
in MSL-based development. There
are many more subtleties, many of
which result from the new open
access to the true object nature of
VisualAge Generator. Careful
review of these subtleties can help
in your migration to the VisualAge
Generator V3.0.

11

Planning the Migration
How then does one prepare for the
migration to VisualAge Generator
V3.0? The first step is the gathering
of information such as:

• The inventory of MSLs

• The user application systems

• The user application systems
components

• The parts

This must be done so that a plan
for mapping to VisualAge Generator
V3.0 applications and configuration
maps can be developed. Note any
situations where duplicate names
exist either for the same member in
different MSLs in a concatenation
(which can be addressed during
migration), or in different member
types which have a common name
(for example, a record and data
item with the same name). In
VisualAge Generator V3.0, all
names in the image, regardless of
part type, must be unique. If the
duplicate names for different
member types are used at the
same time in development, then
code modifications are required to
change the names and resolve the
changes in embedded references.
Note that while this means that
there can be no duplicate names in
an application, it does not mean
that different applications cannot
have copies of the same member
(as with different MSLs), or dupli-
cate member names for different
member types. This is acceptable,
though not good practice, so long
as there is no need to load the two
applications simultaneously.

When inventorying your parts, it is
important to remember the method-
ology you use to move code from
development to production, and the

scope of the components that are
promoted. These will be important
factors in determining how to define
configuration maps. A good rule of
thumb is that a configuration map
should reflect a piece of code that
would be put into production.
Applications can then be created
within this configuration map, but
keep in mind the size guidelines for
an application. If production
changes are extremely granular, it
might be appropriate to have at
least an application for each unit
that can be put into production for
version control. Configuration maps
can also specify a developer
responsibilities, enabling the
loading of only that developer’s
code. These developer-based
configuration maps can then
become required configuration
maps in a configuration map that is
based on a functional breakdown of
the application code library.

If production changes are extremely
infrequent, and are extremely
comprehensive, VisualAge Genera-
tor provides several options. In
addition to configuration maps and
applications, you can divide the
applications into subapplications.
Subapplications are applications
that are grouped logically under a
single master application, but are
not delivered individually. For
example, ledger update is always
updated as a whole, but consists of
marketing ledger update, accounts
receivable ledger update, and
accounts payable ledger update,
each of which is small enough to
meet the size guidelines for an
application. These might be good
candidates for subapplications. One
disadvantage of subapplications is
that they are not directly supported
by the MSL Migration Tool provided
with VisualAge Generator V3.0.

Just as every application and
configuration map must have a
manager in VisualAge Generator
V3.0, every class within an applica-
tion (every GUI), and each type of
VisualAge Generator part in an
application must also have an
owner. These owners can vary from
application to application. While
developers can version definitions
at the class level, the owner is
responsible for releasing the
classes that they own into applica-
tions.

In CSP and earlier releases of
VisualAge Generator, many shops
might have had informal ownership
based on shop standards, but it
was not strictly enforced. To
prepare for the new ownership
environment, it is important to:

• Create an organization chart

• Outline the responsibilities of
each role

• Review roles and responsibili-
ties in promotion of code from
development to production

• Set audit points in this process

• Define any separation of duties
requirements

This information should be sufficient
for an initial plan for designating
owners of various pieces of code
within the organization, with appro-
priate spans of control and respon-
sibility. If you have different devel-
opers for maintenance and new
development on the same
system(s), it might be difficult to
determine ownership. Careful
consideration will have to be given
to those who really should own the
code for versioning and release
purposes. One option is to have two
separate code repositories, one for
maintenance and another for new
development with a coordination
strategy.

12

Once these plans have been developed and validated
by walkthroughs of different development scenarios,
you can begin to implement your plan. Application lists
and dependencies can assist in determining how to
stage moving systems, subsystems, or single applica-
tions from your present MSL-based environment into
VisualAge Generator V3.0. Again, it is recommended
that you move related groups together in manageable
pieces. Ensure that you have sufficient staff to migrate
and maintain normal operations as well as adequate
change control to manage the code in your old system
and your new VisualAge Generator V3.0 system while
in transition.

For information to assist you in planning the physical
migration of your code to match your plan, refer to the
VisualAge Generator Guide to Migrating MSLs to
ENVY (SH23-0252) document. This document provides
guidance and scenarios for implementing your
VisualAge Generator V3.0 environment, based on how
your existing MSLs are set up. It is recommended that
you obtain additional education on the technical
infrastructure of VisualAge Generator V3.0 and its code
repository. Other sources available are the redbook
VisualAge Generator System Development Guide
(SG24-4230) and the VisualAge Generator Consulting
Services group.

The VisualAge Generator Consulting Services exper-
tise can facilitate the planning and execution of your
migration, and provide the leverage of skills acquired
across a wide variety of customer situations, many of
them like yours. Consultants also offer an impartial
outside view that can help you through difficult issues
of determining ownership, or defining application
boundaries for mapping into the new code. Whether or
not you use consultants, ensure that you have and use
all the resources necessary to do the migration. It is
recommended that you initially migrate a small seg-
ment of your applications, then validate your plan. The
experience you gain from this process can then be
used to modify your strategy for the rest of the migra-
tion.

Conclusion
In conclusion, the migration of your code into the
VisualAge Generator V3.0 code repository from MSLs
is a manageable process. Although it will take some
time to understand VisualAge Generator V3.0 develop-
ment environment, terminology, and new functionality,
the development process used with MSLs can be
updated and moved to VisualAge Generator V3.0 with
enhancements to provide more functionality and control
than was previously available.

A special thanks to Jeri Petersen for her assistance
with this article.

13

Occasionally, you need to call a non-VisualAge Gen-
erator program and pass information via parameters.
VisualAge Generator supports many different data
types and some of them do not map directly to data
types found in the workstation environments (OS/2,
Windows NT, AIX, HP). This article discusses each of
the VisualAge Generator data types in the context of
the workstation environments and shows how to pass
them to 3GL programs written in C/C++, COBOL, and
PL/I.

This is the first in a series of articles that will cover the
interoperability between VisualAge Generator and
programs written in 3GL languages. Follow-on articles
will cover 3GL programs calling VisualAge Generator,
VisualAge Generator calling 3GL programs, advanced
debugging, and conversion between the various
workstation file formats supported by VisualAge
Generator.

Data Types
The following data types are supported by VisualAge
Generator:

BIN

The BIN data type contains numeric data
stored in a binary format. For the best perfor-
mance, compatibility, and interoperability,
numeric data should be stored in binary format.

CHA

The CHA data type contains ASCII alphabetic,
numeric, or national characters. The maximum
length for a CHA data item is 32767 bytes.

DBCS

The DBCS data type contains double-byte
characters. DBCS (Double Byte Character Set)
data requires 2 bytes for each character. DBCS
is required for languages such as Chinese,
Korean, and Japanese. These languages have
so many characters in their language, they
cannot be represented in 1 byte. They require
special terminals and printers that are DBCS
capable.

HEX

The HEX data type contains hexadecimal
characters. Each byte of data is represented by
two hexadecimal digits.

Interoperability�Passing Data to 3GL Programs
by Chuck Proffer, Chris Biega, and Rob Swofford, VisualAge Generator Development

MIX

The MIX data type contains both single-byte
and double-byte characters.

NUM

The NUM data type contains numeric data
stored in zoned decimal format. The sign of the
number is stored in the upper half of the last
byte. A positive sign is represented by the
hexadecimal digit 3 and a negative sign is
represented by the hexadecimal digit 7. The
NUM data type is supported for compatibility
with previous versions of VisualAge Generator.
For the best performance, compatibility, and
interoperability, numeric data should be stored
in binary format.

NUMC

The NUMC data type is identical to the NUM
data type in ASCII. The NUMC data type is
supported for compatibility with previous
versions of VisualAge Generator. For the best
performance, compatibility, and interoperability,
numeric data should be stored in binary format.

PACF

The PACF data type contains numeric data
stored in packed decimal format. Packed
decimal data contains 2 digits in each byte.
The sign of the number is stored in the lower
half of the last byte. A positive sign is repre-
sented by the hexadecimal F and a negative
sign is represented by the hexadecimal D. A
hexadecimal B is also accepted as a negative
sign by some products. The PACF data type is
supported for compatibility with previous
versions of VisualAge Generator. For the best
performance, compatibility, and interoperability,
numeric data should be stored in binary format.

PACK

The PACK data type also contains numeric
data stored in packed decimal format with the
sign of the number stored in the lower half of
the last byte. A positive sign is represented by
the hexadecimal C and a negative sign is
represented by the hexadecimal D. A hexadeci-
mal B is also accepted as a negative sign by
some products. For the best performance,
compatibility, and interoperability, numeric data
should be stored in binary format.

14

Data Type Comparison
The following shows the data type comparison for 3GL programs written in C/C++, COBOL, and PL/I:

VisualAge Generator C/C++ COBOL PL/I

BIN(2 byte) SHORT PIC S9(4) COMP-5 fixed bin(15)
BIN(4 byte) LONG PIC S9(9) COMP-5 fixed bin(31)
CHA CHAR PIC X(?) CHAR
DBCS CHAR PIC G(?) usage display-1 graphic(?)
HEX CHAR PIC X(?) CHAR
MIX CHAR PIC X(?) CHAR
NUM CHAR PIC S9 usage display CHAR
NUMC CHAR PIC S9 usage display CHAR
PACF CHAR PIC S9 comp-3 fixed decimal
PACK CHAR PIC S9 comp-3 fixed decimal

Examples
The following examples show how to define each of the data types in C/C++, COBOL, and PL/I. Parameters can
be passed either as separate data items or combined and passed as a record. The examples assume that the
VisualAge Generator program is passing a working storage record defined as follows:

Name Type Length Decimals Bytes

BIN2ITEM Bin 4 0 2
BIN4ITEM Bin 9 0 4
CHAITEM Char 8 0 8
HEXITEM Hex 8 0 4
NUMITEM Num 8 0 4
NUMCITEM Numc 8 0 4
PACKITEM Pack 5 0 3
PACFITEM Pacf 5 0 3

Examples using C/C++
In C or C++, the record is defined using the struct type
declaration. Note the use of the _Packed keyword. If
the structure is not packed, the compiler will align each
element of the structure according to its data type and
add pad bytes as necessary. Since the VisualAge
Generator records are byte aligned, a misalignment will
occur and garbage data will be received by the C/C++
program. Also note that C++ does not support the
_Packed keyword. Therefore, the #pragma pack must
be used:

_Packed typedef struct

{

 short bin2Item;

 long bin4Item;

 char chaItem[8];

 char hexItem[4];

 char numItem[8];

 char numcItem[8];

 char packItem[3];

 char pacfItem[3];

} passed_rec;

Examples using COBOL
To align the record data on a byte boundary in COBOL,
add the SYNCHRONIZED clause to the main level of
the record being passed. If the SYNCHRONIZED
clause is not specified, the compiler aligns each
element of the structure according to its data type and
add pad bytes as necessary. Since VisualAge Genera-
tor records are byte aligned, a misalignment occurs if
the SYNCHRONIZED clause is not specified.

01 passed-rec SYNCHRONIZED.

10 bin2item PIC S9(4) usage comp-5.

10 bin4item PIC S9(9) usage comp-5.

10 chaitem PIC X(8).

10 hexitem PIC X(4).

10 numitem PIC S9(8) usage display.

10 numcitem PIC S9(8) usage display.

10 packitem PIC S9(5) usage comp-3.

10 pacfitem PIC S9(5) usage comp-3.

15

Examples using PL/I
To align the record data on a byte
boundary in PLI, add the unaligned
attribute to the main level of the
record being passed. If the un-
aligned attribute is not specified, the
compiler will align each element of
the structure according to its data
type and add pad bytes as neces-
sary. Since VisualAge Generator
records are byte aligned, a mis-
alignment occurs if the unaligned
attribute is not specified.

dcl 1 passed_rec unaligned
BYADDR,

 2 bin2item fixed bin(15),

 2 bin4item fixed bin(31),

 2 chaitem char(8),

 2 hexitem char(4),

 2 numitem char(8),

 2 numcitem char(8),

 2 packitem fixed decimal(5),

 2 pacfitem fixed decimal(5);

VisualAge Generator supports a variety of client and server system
combinations via a number of communication protocols and
middleware. One of the most widely used middleware vehicle is the
CICS Client External Call Interface (ECI) used to call CICS servers. In
past releases of VisualAge Generator, there was little control of errors
when using the CICS client middleware. A return code of 7650 in
EZERT8 was often returned from a call, but the code could represent
so many situations. For example, a return code of -3 from CICS client
indicates that the CICS server system is unavailable. In this case, a
user might decide to make a call to another CICS system as opposed
to ending the application.

VisualAge Generator V3.0 provides additional messages for the most
common errors encountered when using the CICS client middleware,
thus giving the user more control of the application. The new mes-
sages are as follows:

CSO7651E An error was encountered calling program %1 using
the CICS ECI. Return code: -3 (ECI_ERR_NO_CICS).
CICS system identifier: %2.

CSO7652E An error was encountered calling program %1 using
the CICS ECI. Return code: -4
(ECI_ERR_CICS_DIED). CICS system identifier: %2.

CSO7653E An error was encountered calling program %1 using
the CICS ECI. Return code: -6
(ECI_ERR_RESPONSE_TIMEOUT). CICS system
identifier: %2.

CSO7654E An error was encountered calling program %1 using
the CICS ECI. Return code: -7
(ECI_ERR_TRANSACTION_ABEND). CICS system
identifier: %2. Abend code: %3.

CSO7655E An error was encountered calling program %1 using
the CICS ECI. Return code: -22
(ECI_ERR_UNKNOWN_SERVER). CICS system
identifier: %2.

CSO7656E An error was encountered calling program %1 using
the CICS ECI. Return code: -27
(ECI_ERR_SECURITY_ERROR). CICS system
identifier: %2.

CSO7657E An error was encountered calling program %1 using
the CICS ECI. Return code: -28
(ECI_ERR_MAX_SYSTEMS). CICS system identifier:
%2.

Message CSO7650E is still used for all other error conditions. These
messages can also be found in the VisualAge Generator Messages
and Codes Reference document (GH23-6597).

Want More Control? You�ve Got It!
by Sharon Thompson, VisualAge Generator Development

16

VisualAge Generator is enjoying great success around
the world. Let’s see if you can answer the questions
below. Answers to these questions are on page 19.

1) VisualAge Generator is installed in 42 of the states
in the U.S. Can you name the eight states in which
there are no VisualAge Generator customers?

2) Can you name the southernmost country in the
world in which there is a VisualAge Generator
customer?

3) In what countries, completely or partially located
south of the equator, can you find a VisualAge
Generator customer?

4) One of VisualAge Generator’s newest customers
is a bank with over 25,000 branch offices. In what
country is this customer located?

5) VisualAge Generator is installed in 51 countries
around the globe. On which continent is there no
VisualAge Generator customer?

6) Government accounts make up a very large part
of the VisualAge Generator customer base. Of the
51 countries in which VisualAge Generator is
installed, how many have an organization using
this product?

7) VisualAge Generator is a “hot” product in the Asian
countries (east of Pakistan and west of Hawaii).
Based on the number of installed customers at the
time this newsletter was written, what are the top
three Asian countries with the largest number of
installed customers?

8) There are hundreds of companies, educational
institutions, and government organizations using
VisualAge Generator in Europe. Which European
country has the largest number of installed cus-
tomers?

TriviaGen E-mail�One More Time!
In this extremely fast-paced world, having a way to
contact you immediately can be beneficial. There
are things that come up from time to time about
VisualAge Generator that we would like to pass on
to you. Product updates, changes, teleconference
schedules, news, and customer experiences are
but a few categories of information that can help
you do your job better and save your company
money.

This newsletter is one way we communicate better,
but it is published only three times a year. If you
would like us to send you information as it happens,
send your name, your company name, and your e-
mail address to Rusty Edmister at

edmister@us.ibm.com .

17

Please check any appropriate boxes:

I’d like to receive future issues of this newsletter. (You need to check this item only if
you have not already responded.)

I’d like more information about Version 3.0.

I’m interested in writing an article to include in The VisualAge Generator Newsletter.
Subject:__

I’m interested in participating in an AD users’ group meeting.

I’m interested in participating in a VisualAge Generator users’ group meeting.

Comment Form

I have a question I’d like to submit for the Question & Answer
section of this newsletter:

Any comments you’d like to share with us about VisualAge
Generator or about this newsletter? (Include your comments or
concerns about VisualAge Generator’s future directions here.)

Name Title
Company Name
Street Address/P.O. Box
City State/Province
ZIP/Postal Code Country
Phone No. FAX No.

Fold, tape, and mail this page - no postage is required. Or FAX it to (919) 254-0206.

Are we putting the type of information you want to see in the
newsletter? If not, what would you like to see in the newsletter?

18

Cut or
Fold Along
Line

Cut or
Fold Along
Line

®

Fold and TapePlease do not staple

Fold and TapePlease do not staple

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Fold and Tape

Fold and Tape

G242-0315-07

G242-0315-07

International Business Machines
The VisualAge Generator Newsletter
Newsletter Editor
T22/062/J125
P.O. Box 12195
RTP, NC 27709-2195
USA

19

A Question from Us to You
Do you have questions on how to attach individual parts on your windows/forms/
dialogs, etc. so that they look consistent and size appropriately? If so, use the
Comment Form in this newsletter to send us your questions. Then, in future
issues of the newsletter we will provide you with articles on how to perform the
various tasks.

Acronyms
3GL third-generation language
4GL fourth-generation language
AIX Advanced Interactive Executive
API Application Programming Interface
AS/400 Application System/400
CAE/2 Client Application Enabler/2
CASE Computer-aided Software

Engineering
CICS Customer Information Control

System
CICS OS2 Customer Information Control

System Operating System/2
CPU central processing unit
CSP Cross System Product
DB2 Database 2
DBCS double-byte character set
DBMS database management system
DCE distributed computing environment
GUI graphical user interface
IBM International Business Machines
IMS Information Management System
LAN Local Area Network
MSL member specifications library
MVS Multiple Virtual Storage
NT Notes
OS/2 Operating System/2
OS/400 Operating System/400
RAD rapid application development
SQL Structured Query Language
TCP/IP Transmission Control Protocol/

Internet Protocol
VM Virtual Machine
VSE Virtual Storage Extended
WWW World Wide Web

The VisualAge Generator web address
is:

www.software.ibm.com/ad/visgen

For IBM’s predecessor 4GL, Cross
System Product, the web address is:

www.software.ibm.com/ad/visgen/csp

VisualAge Generator
Web Pages

TriviaGen Answers (Questions are on page 16)

1) Delaware, Idaho, Maine, New Hampshire,
Nevada, South Dakota, Vermont, and Wyoming

2) Chile
3) Argentina, Australia, Brazil, Chile, New Zealand,

and South Africa
4) People’s Republic of China
5) Antarctica
6) 32
7) Taiwan, Japan, and Korea (in that order)
8) Germany

The VisualAge Generator Newsletter
This newsletter is published by the IBM Software Solutions Division, Research Triangle Park Development Laboratory.
Letters to the editor are welcome. Please address correspondence to:

The VisualAge Generator Newsletter
Managing Editor
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA
FAX: (919) 254-0206

© Copyright International Business Machines Corporation 1997. All rights reserved. Printed in U.S.A.

The following terms used in this publication are trademarks or service marks of the IBM Corporation in the United States or
other countries or both: AIX, AS/400, CICS, CICS OS2, COBOL, Database 2, DB2, DB2/2, DB2/6000, IBM, IMS, MQSeries,
MVS, VM, VSE, Operating System/2, OS/2, OS/400, VisualAge, and VisualGen.

The following terms and phrases used in this publication are trademarks or service marks of other companies:

Lotus Notes is a trademark or registered trademarks of Lotus Development Corporation.

ENVY is a trademark of Object Technology International, Inc.

HP is a trademark of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

IBM has made reasonable efforts to ensure the accuracy of the information contained in this publication. However, this
publication is presented "as is" and IBM makes no warranties of any kind with respect to the contents hereof, the products
listed herein, or the completeness or accuracy of this publication. Customer experiences may be different from those described
here. IBM does not warrant any non-IBM programs or products which are described in this newsletter. These articles are for
information only, and you should contact the stated company with your questions.

The VisualAge Generator Newsletter
IBM Corporation
Dept. T22/062
P.O. Box 12195
3039 Cornwallis Road
RTP, NC 27709-2195
USA

