
VisualAge Generator Templates Standard Functions

User’s Guide
Version 4.5

SH23-0269-01

IBM

VisualAge Generator Templates Standard Functions

User’s Guide
Version 4.5

SH23-0269-01

IBM

Note

Before using this document, read the general information under “Notices” on page vii.

First Edition (August 2000)

This edition applies to the following licensed programs:
v VisualAge Generator Templates Version 4.5

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM SWS - Paris Laboratory
1, place Jean-Baptiste Clément
93881 Noisy-le-Grand CEDEX
France.

You can fax comments to +33 1 49 31 57 91 (provisional)

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii

Trademarks ix

About this Document xi
Conventions Used in this Book xi

Style conventions xi
Symbols xi

Other VAGTemplates Documentation . . . xii

Part 1. VAGTemplates Overview . . 1

Chapter 1. Introduction 3
General Presentation 3
Objectives and Use Context 5

Part 2. The VAGTemplates
Workbench 7

Chapter 2. The Workbench 9
General Functions 9

Accessing the Workbench 9
Defining a Workspace 10
Importing a Relational Database 10
Browsing Instances 11
Creating, Modifying or Deleting
Instances 11
Accessing the Generation Tools 12

The VAGTemplates Workbench 12
Presentation of the Browser 12
File Menu 15
Workspace Menu 15
Entity Menu 36
Instance Menu 37
View Menu 45
Tools Menu 46
Options Menu 49
Help Menu 49

How to Use VAGTemplates On-Line Help 50

Chapter 3. Information Model Entities and
their Editors 51
Introduction 51

The Information Model Entities 52
The Definition Editor 52
The Default generation Parameters editor
and the Generation Parameters Editor . . 53
Editor General Characteristics 54

Business Object 56
What is a Business Object? 56
Default Generation Parameters 57
How to Define a Business Object . . . 67
How to Specify the Business Object
Parameters 74
How to Specify the Business Object
Extensions 75

Data Element 76
What is a Data Element? 76
Default Generation Parameters 76
How to Define a Data Element 79
How to Specify the Data Element
Parameters 84
How to Specify the Data Element
Extensions 85

Interface Unit 85
What is an Interface Unit? 85
Default Generation Parameters 86
How to Define an Interface Unit 89
How to Specify the Interface Unit
Parameters 92
How to Specify the Interface Unit
Extensions 93

Relational Table 94
What is a Relational Table? 94
Default Generation Parameters 94
How to Define a Relational Table . . . 96
How to Specify the Relational Table
Parameters 101
How to Specify the Relational Table
Extensions 102

Value Style 102
What is a Value Style? 102
How to Define a Value Style 102
How to Specify the Value Style
Extensions 106

© Copyright IBM Corp. 1997, 2000 iii

Part 3. Standard Use of
VAGTemplates 107

Chapter 4. Exploring VAGTemplates Basic
Functions 111
Presenting a List and a Detail in the Same
Window (GUI) or Map (TUI) 112

Creating an Interface Unit Presenting a
List and a Detail 114
Defining the Interface Unit 114
Setting the Interface Unit Generation
Parameters 116
Modifying the Business Object 116
TUI Only: Modifying the Presentation of
the Business Object 117
TUI Only: Modifying the MainMenu
Interface Unit 117
Generating your Application 117
Enhancing the GUI Client Application 118
Testing your Application 119

Presenting a List and Detail in Two
Different Windows (GUI) or Maps (TUI) . 122

Creating an Interface Unit Presenting
the List 124
GUI Only: Modifying the Detail
Interface Unit 126
GUI Only: Modifying the Business
Object’s Behavior 126
TUI Only: Modifying the MainMenu
Interface Unit 126
Generating your Application 127
Testing your Application 127

Generating On-Line Help (VAGTemplates
on Smalltalk Example) 128

Generating On-Line Help for the GUI
Client Application 128
Generating On-Line Help for the TUI
Application 129
Testing On-Line Help 129
Enhancing the GUI On-Line Help (IPF
file) 131
Enhancing the GUI On-Line Help (RTF
file) 135
Enhancing the TUI On-Line Help . . . 138

Using Foreign Keys to Provide a Help List 139
Help List Principles 139
Help List Specification 140
Testing your Help List 142

Chapter 5. Standard Functions and
Layouts of Generated Applications . . . 145
Standard Functions 146

Management of Persistent Data 147
Error Handling in GUI Client
applications 153
Error Handling in TUI Applications . . 156
Management of the Navigation 157
On-Line Help 160
Edition Functions (GUI) 165
Prompt on close 167
Windows Menu 167
BiDi Applications 168

Standard Layouts of GUI Client
applications 169

Fields 169
Detail Business Objects 181
List Business Objects 191
Windows 196

Standard Layouts of TUI Applications . . 199
Maps 199
Fields 212
Detail Business Objects 217
List Business Objects 221

Chapter 6. Application Generation and
Enhancement 225
Standard Generation 225

List of Available Generators 225
Instance Only / Instance Generation
Option 226
With associates/Cascaded Generation
Option 231
With Associates and Predefined Beans /
Cascaded Generation With Predefined
Parts Option 232
Application Storage 232

Enhancements and Re-generation 233
Traceability Information 234
How the Generators Use the Traceability
Information 235
What Generator Do You Use When
Re-generating 237

Generated Architecture and Principles . . 240
Introduction 240
Generated Components Naming Policy 241
Predefined Beans/Parts 244
Server Architecture 244
Client Architecture 247

Overview of Generated Code 253

iv VisualAge Generator Templates Standard Functions: User’s Guide

Servers and their Hooks 253
Clients 265

Components Generated by Entities . . . 286
Components Generated from a Data
Element 286
Components Generated from a Business
Object 287
Components Generated from a
Relational Table 302
Components Generated from an
Interface Unit 306
Components Generated From a
Workspace: Predefined Beans/Parts . . 312

Application Enhancement: Public Interface
of GUI Generated Components 324

Resource Object Bean/Part Interface . . 324
Business Object Bean/Part Interface . . 325
List Manager Bean/Part Interface . . . 327

Part 4. Appendixes 329

Glossary 331

Index 333

Contents v

vi VisualAge Generator Templates Standard Functions: User’s Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk NY
10504–1785, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1997, 2000 vii

viii VisualAge Generator Templates Standard Functions: User’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

DB2
IBM
OS/2
VisualAge

The following terms are trademarks of other companies:

Microsoft, Windows, VisualBasic, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

© Copyright IBM Corp. 1997, 2000 ix

x VisualAge Generator Templates Standard Functions: User’s Guide

About this Document

The abbreviated name of VisualAge Generator Templates is VAGTemplates.

This document is divided into three parts:
v Part 1 gives an overview of VAGTemplates.
v Part 2, The VAGTemplates Workbench describes the general functions of the

Workbench and the entity editors.

v Part 3, Standard Use of VAGTemplates shows you how to modify the GUI and
TUI end user interface you built following the steps described in the Getting
Started Part in the Introducing VisualAge Generator Templates book or how to
implement additional functionalities to the sample application. It also
describes the generated application’s functions, behavior and components.

This part is of interest for all developers using VAGTemplates.
v The VisualAge Generator Templates Complete User’s Guide includes a

fourth part that is of particular interest for developers in charge of adapting
the VAGTemplates product. It describes the generation technology and
provides examples of generator customization and creation.

In this document, we assume that you are already familiar with either the
VisualAge for Java or VisualAge Smalltalk Enterprise environments.

Conventions Used in this Book

We call ″Customizer″ the developer in charge of creating new generators or
customizing the standard VAGTemplates Generators.

Style conventions
v References to other parts of the documentation or other VAGTemplates

manuals are written in italic: ’For more information, refer to Introducing
VAGTemplates ’.

v Names and values of attributes and parameters are written in italic type.
v Names of classes are written in bold type.
v Italic type is also occasionally used for emphasis of words.
v New terms are shown in bold the first time they are used. Their definitions

appear in the glossary. The terms also appear in the documentation index.

Symbols
The symbols used in this documentation are :

© Copyright IBM Corp. 1997, 2000 xi

Note
note, remark

″″″ reference to another part of the documentation, or another manual

TIP
tip or helpful hint

!!! proceed with caution (risky or irreversible action, etc.)

VAGT
action to be carried out in VAGTemplates or paragraph specific to
VAGTemplates

JAVA
action to be carried out in VisualAge for Java or paragraph specific to
VisualAge for Java

VAST
action to be carried out in VisualAge Smalltalk Enterprise or paragraph
specific to VisualAge Smalltalk Enterprise

VAG
action to be carried out in VisualAge Generator or paragraph specific to
VisualAge Generator

Other VAGTemplates Documentation

v Introducing VisualAge Generator Templates: This book provides an overview of
VAGTemplates objectives and the functions it offers. If you are new to
VAGTemplates, we suggest that you read this book first in order to get an
overall idea of the product.

v VisualAge Generator Templates Customizer on Java — Reference Guide: This
document is a reference to the API of the VAGTemplates on Java
components:
– the Information Model API;
– the Generation Framework API;
– the generators API;
– the APIs used when building VisualAge Generator parts and VisualAge

for Java beans.
v VisualAge Generator Templates Customizer on Smalltalk — Reference Guide: This

document is a reference to the API of the VAGTemplates on Smalltalk
components:
– the Information Model API;
– the Generation Framework API;
– the generators API;

xii VisualAge Generator Templates Standard Functions: User’s Guide

– the APIs used when building VisualAge Generator and VisualAge
Smalltalk Enterprise parts.

About this Document xiii

xiv VisualAge Generator Templates Standard Functions: User’s Guide

Part 1. VAGTemplates Overview

© Copyright IBM Corp. 1997, 2000 1

2 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 1. Introduction

General Presentation 3 Objectives and Use Context 5

General Presentation

VAGTemplates is a Rapid Architected Application Development add-on
feature of VisualAge Generator.

VAGTemplates automates the development of business applications by
generating application components from existing database definitions.

These definitions populate the VAGTemplates Information Model which
allows you to formalize high-level specifications via its dedicated entities.

The integration of VisualAge Generator and VAGTemplates enables you to
easily and rapidly produce a complete operational client / server application:
v VAGTemplates enables you to build GUI client components in either a

VisualAge for Java or VisualAge Smalltalk Enterprise environment,
v VAGTemplates enables you to build both server and TUI client components.

Note: Instances of the Information Model entities and the VisualAge
Generator application components are stored in the VisualAge Library.
This central library includes advanced team development facilities such
as version control, multi-user support and release management.

The generated components may be easily enhanced by adding specific
business logic using VisualAge Generator. Additions to the generated
components are preserved, thus providing the ability to maintain the
functional specifications at the VAGTemplates Information Model level.

VAGTemplates consists of the following main components:
v a Workbench;
v an Information Model;
v generators.
1. The VAGTemplates Workbench is a multi-windowed graphical interface

through which you can import a relational database, model your
application, edit your application specifications via the editors of the
Information Model entities, and activate the generation. If required, you
can modify the automatically built layouts or add business logic code
using the VisualAge for Java or VisualAge Smalltalk Enterprise integrated
development environment.

© Copyright IBM Corp. 1997, 2000 3

The VAGTemplates Workbench is an integrated feature of the VisualAge
for Java or VisualAge Smalltalk Enterprise workstation. You open the
VAGTemplates Workbench via a specific menu in the VisualAge for Java
Workbench or VisualAge Smalltalk Enterprise Organizer. This menu also
enables you to migrate V3.0 or V3.1 specifications into V4.0 specifications.

2. The VAGTemplates Information Model provides you with a number of
entities for specifying business applications at a logical level, i.e.
independently from the physical structure of the database. This set of
reusable entities provides a general formalism allowing you to describe
your application in a consistent, non-redundant and systematic manner.
Using the import function, VAGTemplates allows you to automatically
integrate an existing relational database from the catalogs. The import
creates instances of the Information Model entities representing relational
tables and elementary data; the specification task consists of assembling
application data into business objects according to your application needs.
VAGTemplates supports DB2 and Oracle 7 database management systems.

3. The VAGTemplates generators convert the application specifications into
fully operational VisualAge Generator Graphical User Interface (GUI), Web
applications or Textual User Interface (TUI) client/server applications.
The VAGTemplates’ automatic layout function provides your applications
with well-designed presentations very quickly. You only have to specify a
few presentation parameters and then let the VAGTemplates’ automatic
layout function create template layouts for the graphic components or
maps being generated.
The VAGTemplates reverse engineering function automatically builds a
generator from an application that you have developed manually using
the VisualAge workstation.

VAGTemplates ensures that prototyping does not simply produce
″throw-away″ components but that any code generated during prototyping
remains part of the application as it develops.

4 VisualAge Generator Templates Standard Functions: User’s Guide

Objectives and Use Context

The objective of this book is to give you a complete understanding of the
development concepts used in the VAGTemplates GUI/TUI application
specification and generation facility.
1. The first part of this document presents the VAGTemplates Workbench

and its tools.

Figure 1. VAGTEMPLATES OVERVIEW

Chapter 1. Introduction 5

2. The second part describes the standard use of the Workbench.
v It shows you how you can modify the behavior and look of the sample

application you built in the Introducing VisualAge Generator Templates
book.

v “Chapter 5. Standard Functions and Layouts of Generated Applications”
on page 145 gives you an illustrated documentation on the functions

and behavior of the generated applications.
v “Chapter 6. Application Generation and Enhancement” on page 225

explains the generation principle and provides a description of the
generated components and their role within the generated application.

We have chosen not to dissociate the GUI, Web and TUI functions provided
by VAGTemplates as the product itself is built on reusability. The functional
aspect of the Information Model is common to GUI, Web, and TUI
applications. The parameterizing aspect takes into account the specificity of
the GUIs and TUIs and that of the Web applications, when needed.

6 VisualAge Generator Templates Standard Functions: User’s Guide

Part 2. The VAGTemplates Workbench

Chapter 2. The Workbench 9
General Functions 9

Accessing the Workbench 9
Starting the Browser 9
Closing the Browser 10

Defining a Workspace 10
Importing a Relational Database 10
Browsing Instances 11
Creating, Modifying or Deleting
Instances 11
Accessing the Generation Tools 12

The VAGTemplates Workbench 12
Presentation of the Browser 12
File Menu 15

File menu / Exit VisualAge Templates
choice 15

Workspace Menu 15
Workspace menu / Open... choice . . 15
Workspace menu / Close choice . . . 15
Workspace menu / Load choice . . . 16
Workspace menu / Editions choice . . 16
Workspace menu / Move... choice . . 16
Workspace menu / Copy ... choice . . 16
Workspace menu / Delete ... choice . . 16
Workspace menu / Generate choice . . 16
Workspace menu / Definition choice 20

Entity Menu 36
Entity menu / Default Generation
Parameters choice 36
Entity menu / Show Duplicate
Generation Parameters choice 37

Instance Menu 37
Instance menu / New ... choice . . . 37
Instance menu / Definition choice . . 38
Instance menu / Generation
Parameters choice 38
Instance menu / Load choice 38
Instance menu / Editions choice . . . 39
Instance menu / References ... choice 39
Instance menu / Associates choice . . 39
Instance menu / Referenced
Workspaces choice. 39
Instance menu / Copy Generation
Parameters from... choice 39

Instance menu / Set Generation
Parameters to Default choice 40
Instance menu / Move ... choice . . . 40
Instance menu / Copy choice 40
Instance menu / Delete choice. . . . 40
Instance menu / Create Business
Object from RT ... choice 40
Instance menu / Create Interface Unit
from BO... choice 41
Instance menu / Generate choice . . . 41

View Menu 45
View menu / Refresh Now choice . . 45
View menu / Select All choice. . . . 45
View menu / Deselect All choice . . . 45
View menu / Sort by choice 45
View menu / Reorder Columns choice 45
View menu / Reorder Status Bar Text
choice 45

Tools Menu 46
Tools menu / Import from Database
choice 46
Tools menu / Show Duplicate
Instances choice 49

Options Menu 49
Options menu / Save Settings as
Default choice 49

Help Menu 49
Help menu / Help Index choice . . . 49
Help menu / General Help choice . . 49
Help menu / Using Help choice . . . 49
Help menu / Product Information
choice 49

How to Use VAGTemplates On-Line Help 50

Chapter 3. Information Model Entities and
their Editors 51
Introduction 51

The Information Model Entities 52
The Definition Editor 52
The Default generation Parameters editor
and the Generation Parameters Editor . . 53
Editor General Characteristics 54

Navigation within an Editor 54
Push Buttons 55
Pop-up Menus 56

© Copyright IBM Corp. 1997, 2000 7

Editor Extensions Panels 56
Business Object 56

What is a Business Object? 56
Default Generation Parameters 57

Default Generation Parameters Editor 57
How to Define a Business Object . . . 67

Definition Editor 68
How to Specify the Business Object
Parameters 74

Generation Parameters Editor 75
How to Specify the Business Object
Extensions 75

Data Element 76
What is a Data Element? 76
Default Generation Parameters 76

Default Generation Parameters Editor 77
How to Define a Data Element 79

Definition Editor 80
How to Specify the Data Element
Parameters 84

Generation Parameters Editor 84
How to Specify the Data Element
Extensions 85

Interface Unit 85
What is an Interface Unit? 85
Default Generation Parameters 86

Default Generation Parameters Editor 86
How to Define an Interface Unit 89

Definition Editor 89
How to Specify the Interface Unit
Parameters 92

Generation Parameters Editor 93
How to Specify the Interface Unit
Extensions 93

Relational Table 94
What is a Relational Table? 94
Default Generation Parameters 94

Default Generation Parameters Editor 94
How to Define a Relational Table . . . 96

Definition Editor 96
How to Specify the Relational Table
Parameters 101

Generation Parameters Editor . . . 101
How to Specify the Relational Table
Extensions 102

Value Style 102
What is a Value Style? 102
How to Define a Value Style 102

Definition Editor 103

How to Specify the Value Style
Extensions 106

8 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 2. The Workbench

General Functions

VAGTemplates is a feature of VisualAge Generator 4.0. Once VAGTemplates is
loaded into your VisualAge for Java or VisualAge Smalltalk Enterprise image,
the VAGTemplates Workbench is integrated to the corresponding VisualAge
workstation.
v You can access the VAGTemplates on Java functions via the Workspace

menu from the VisualAge for Java Workbench.
– The Open VAGTemplates Browser choice opens the VAGTemplates

Browser.
– The VAGT Import/Export function is documented in the VisualAge

Generator Migration Guide.
v You can access the VAGTemplates on Smalltalk functions via the VAGT

tools submenu from the VisualAge Smalltalk Enterprise Tools menu.
– The Open VAGTemplates Browser choice opens the VAGTemplates

Browser.
– The VAGT Import/Export function is documented in the VisualAge

Generator Migration Guide.

The Workbench allows you:
v to view existing entity instances;
v to create, modify or delete entity instances;
v to activate the generation tools.

Accessing the Workbench

Starting the Browser
For VAGTemplates on Java, you access VAGTemplates by selecting the Open
VAGTemplates Browser choice from the Workspace menu in the VisualAge
for Java Workbench.

For VAGTemplates on Smalltalk, you access VAGTemplates via the Open
VAGTemplates Browser choice from the VAGT tools submenu in the
VisualAge Smalltalk Enterprise Organizer Tools menu.

The first time you start VAGTemplates, the Select workspace window
automatically opens and prompts you to choose between three options by
checking the corresponding radio-buttons:
v Create a new workspace

© Copyright IBM Corp. 1997, 2000 9

You need to specify a name for the Workspace and the package/application
where it will be stored, then click OK to open the VAGTemplates Browser.

v Open an existing workspace

You need to select a Workspace in the list and click OK to open the
VAGTemplates Browser.

v Do not open a workspace (edit functional properties only)

You just need to click OK to open the VAGTemplates Workbench. Selecting
this option prevents you from accessing the entity Generation Parameters
editors. You can only edit the functional description of your application
using the entity Definition editors.

Note: Uncheck the Show this window at startup option if you do not want the
Select workspace window to open the next time you start VAGTemplates.

Closing the Browser
To close the Browser, double-click on the system menu. A confirmation
message appears. When you confirm the close request, the Browser closes
along with all the editor panels that may still be open.

Defining a Workspace
Defining a Workspace is required:
v to import a relational database into VAGTemplates

For more information, see “Importing a Relational Database”.
v to define the generation parameters you need to generate your application

A Workspace gathers the following generation parameters:
– Generation options shared by all entities to be generated from the

Workspace, for example the naming policy of the generated components
– Default generation parameters specified for each entity
– Default generation parameters specified for each instance
– Parameter extensions that can be defined as shared by all Workspaces or

specific to a given Workspace

For more information on how to define a Workspace, refer to “Workspace
Menu” on page 15.

Importing a Relational Database
The import function allows you to use the description of one or several
relational database to build your application. To import a relational database
into VAGTemplates, a Workspace must be defined: a database import is
always made in relation to one Workspace. The import of the relational
database into VAGTemplates automatically creates instances of both the
Relational Table and Data Element entities.

10 VisualAge Generator Templates Standard Functions: User’s Guide

In addition, some information is automatically imported in the current
Workspace as generation parameters. For example, the Data Element Label
input field is automatically filled in with the corresponding information from
the database.

The Relational Table and Data Element entities are described in “Chapter 3.
Information Model Entities and their Editors” on page 51.

Caution: You can import two databases in the same Workspace, but keep in
mind that if two tables have the same name the second imported
table will override the first one. No standard function allows access
to more than one database in the same generated application.

Browsing Instances
The Instances area displays all the existing instances for one or more entities
selected in the Entities area. For each instance in the list, the following
information can be displayed:
v the icon representing the entity
v the instance name

The instance name is a character string that designates one and only one
instance among all other instances of the entity.

v the instance loaded edition
v the instance display name
v the instance target package (VAGTemplates on Java) or the instance target

application (VAGTemplates on Smalltalk)
v the instance Definition package/application
v the instance Generation Parameters package/application
v the instance target name
v the instance long target name

Note:

You can select one or more instances in the list of instances.

Creating, Modifying or Deleting Instances
You will use the Browser to create new entity instances, define and update
their contents or delete them:
v Creating an instance: you assign it a name, and a package or application

where it will be stored;
v Defining and updating the contents of an instance: after creating the instance,

you can define its functional characteristics and generation parameters. To
do so you will respectively access the Definition editor and the Generation
Parameters editor that are specific to each instance entity type:

Chapter 2. The Workbench 11

– Business Object editor;
– Data Element editor;
– Interface Unit editor;
– Relational Table editor;
– Value Style editor.

v Deleting an instance: a deletion removes all the descriptions of the instance.

These editors are described in “Chapter 3. Information Model Entities and
their Editors” on page 51.

Accessing the Generation Tools
The Workbench allows you to generate entity instances.

You can generate your instance with the entity specific generator or you can
generate the instance and all the instances to which it is linked.

The generation is described in “Part 3. Standard Use of VAGTemplates” on
page 107, “Chapter 6. Application Generation and Enhancement” on page 225
and you may practice with the examples given in “Chapter 4. Exploring
VAGTemplates Basic Functions” on page 111.

The VAGTemplates Workbench

When we come to describing the specification fields, the settings and
parameters that only apply to GUI client applications are highlighted with
this GUI sign; those that only apply to TUI applications with the TUI sign.
No sign means that the settings and parameters are common to both TUI and
GUI client applications.

Presentation of the Browser

The Browser is composed of the following elements:
1. The title bar.

12 VisualAge Generator Templates Standard Functions: User’s Guide

The Browser title bar displays the ″VAG Templates Browser″ label followed
by the name of the current Workspace in brackets.

2. The menu bar.
It is described in detail in the following sections.

3. The action bar.
The action bar is the set of buttons placed below the menu bar. It displays
icons representing frequently performed actions. The icons have hover
help to display action names.

4. The Entities area.
The Entities area displays the list of the Information Model entities you
manipulate when developing an application. They are described in detail
in “Chapter 3. Information Model Entities and their Editors” on page 51.
These entities are:
v Business Object
v Data Element
v Interface Unit
v Relational Table
v Value Style

When you select one or more entities in the list, the instances that are
defined for these entities are displayed in the Instances area.

5. The Instances area.
The Instances area displays the list of all the instances that are defined for
the selected entities. Once you select an instance, you can consult or
update its description via the Definition or Generation Parameters editors,
and generate it.

Note: You can also select several instances at the same time by using the
Shift and Ctrl keys and selecting instances with your mouse. You
can then open all at once the Definition editors or the Generation
Parameters editors for the selected instances.

The small square symbol on the bottom rigth of an instance icon indicates
that generation parameters have been redefined for this instance in the
current Workspace.

The Browser as well as all VAGTemplates editors have the following
properties:
v they have a system menu;
v they can be moved by dragging their title bar or selecting the Move choice

from the system menu;

Chapter 2. The Workbench 13

v they can be reduced to an icon via the Minimize button or the Reduce choice
from the System menu;

v they can be maximized via the Maximize button or the Maximize choice
from the System menu ;

v they can be resized via the zoom button or the Resize choice from the
System menu.

You can activate pop-up menus anywhere in the Browser.

Select an entity and right click in the Entities area. A pop-up menu is
displayed offering the following choices:
v Default Generation Parameters

TIP: See also the Entity menu in “Entity Menu” on page 36.

Select an instance and right click in the Instances area. A pop-up menu is
displayed offering the following choices:
v New...

v Definition

v Generation Parameters

v Load

>Previous Edition

>Another Edition

v Editions

v References

v Associates

v Referenced Workspaces

v Copy Generation Parameters from...

v Set Generation Parameters to Default

v Move...

v Copy...

v Delete

v Create Business Object from RT...

v Create Interface Unit from BO...

v Generate...

TIP: These choices can also be activated from the Instance menu of the
menu bar, as described in “Instance Menu” on page 37.

14 VisualAge Generator Templates Standard Functions: User’s Guide

File Menu
The File menu allows you to close VAGTemplates Workbench.

Table 1. File Menu
Exit VisualAge Templates...

File menu / Exit VisualAge Templates choice
Allows you to exit the VAGTemplates Workbench.

Workspace Menu
The Workspace menu allows you to choose the Workspace that you want to
access, to define various parameters for this Workspace and to save your
settings.

Table 2. Workspace Menu
Open
Close
Load
> Previous edition
> Another edition
Editions...
Move...
Copy...
Delete...
Generate
Definition

Workspace menu / Open... choice
Opens the Open workspace window which enables you to create a Workspace
or select an existing Workspace from the list box.
v To create a Workspace

1. select the Create a new workspace radio-button
2. enter a name for the Workspace in the edit field
3. specify a package or an application to store your Workspace: select an

existing package or application in the combo box or enter a new name
4. click OK to create the package/application and open the Workspace.

v To open an existing Workspace
1. select the Open an existing workspace radio-button
2. select a Workspace in the list
3. click OK to open the Workspace.

Workspace menu / Close choice
This choice enables you to close the current Workspace.

Chapter 2. The Workbench 15

Workspace menu / Load choice
This choice enables you to load an edition of a Workspace.

Previous Edition: This choice enables you to load the previous edition of the
selected Workspace.

Another Edition: This choice enables you to load another edition of the
selected Workspace. You must select a Workspace in the list that is displayed.

Workspace menu / Editions choice
This choice displays the list of the selected Workspace’s editions.

Workspace menu / Move... choice
This choice enables you to move the current Workspace into another package
or application. When selecting the instance you wish to move, a window with
a multi-line edit appears displaying the available packages or applications
where the selected Workspace instance can be moved.

Workspace menu / Copy ... choice
Opens the Copy Workspace window that enables you to save the contents of
the current Workspace into another Workspace.

The New workspace name field allows you to enter the new name of the
Workspace.

The Existing workspace names list allows you to select an existing Workspace to
save your current Workspace as the selected one, and therefore replace the
specifications of the latter with those of the current one.

The Select package/application combo box allows you to select a package or an
application in which to store the new Workspace or to enter a new package or
application name.

Workspace menu / Delete ... choice
Opens the Delete Workspace(s) window allowing you to select the Workspace
you want to delete from the list. Click OK to delete the selected Workspace.

Workspace menu / Generate choice

VAGTemplates on Java: The Generate choice opens the Generate (instance)
window that enables you to generate the application components for the
selected Workspace.

Select available generator(s): This area lists the generators available for the
selected entity instances. At least one generator must be selected in the list.

16 VisualAge Generator Templates Standard Functions: User’s Guide

Instance(s) to be generated: This area displays the current Workspace
instance.

Store Options:

Description of the options: The Store Options area allows you to specify a
store option for the builders instantiated by the generation process.

Note: A builder is a Java class instance produced by the generation process.
These classes model VisualAge for Java components, manages the store
and load processes of the generated components into the VisualAge for
Java Library and manages traceability information. Each instantiated
builder, once stored, will correspond to one component in the
VisualAge for Java Library.

Normal
This option stores the new specifications, preserve the RAD specifications
and those that have been added using the VisualAge for Java
environment.

Overwrite
This option is identical to the Normal option, but additionally forces the
storage of RAD specifications.

Reset
This option is identical to the Overwrite option, but deletes the
specifications added by the user.

Customize
When this mode is checked, the builders are instantiated but not
immediately stored as Java components. When all builders are generated,
the Customize Generation window opens so that you can customize some
storage parameters for the Java components to be produced from these
builders.

Customize Generation window: This window contains a table in which each
row corresponds to one generated builder. The builder table can be
customized by:
v reordering the columns by drag and drop
v showing/hiding a column by right clicking once on a column header
v resizing a column
v sorting the table using any column as sort criterion

– To sort a column in increasing alphabetical order, left click on a column
header.

– To sort a column in decreasing alphabetical order, press the Shift key and
left click on a column header.

Chapter 2. The Workbench 17

For each builder, the following information can be displayed in the
corresponding columns:
v The first column contains check boxes allowing you to confirm whether you

want the builder to be stored. These check boxes are designated below as
the store management fields. A builder will be stored only if the
corresponding store management field is checked.

v The Type column displays the builder type.
v The Name column displays the builder name.
v The Store Option column allows you to modify the store option. Left click

on the cell corresponding to the builder, then select a store option in the
combo box.

v The Trace Category column allows you to modify the trace category of
generated builder. Left click on the cell corresponding to the builder, then
select a trace category in the combo box.

v The Context column displays the name of the target project or package
where the generated builder will be stored.
– If the generated builder is a project, it will directly be stored in the

VisualAge for Java Library. The Context column is empty.
– A package is stored in a project. The Context column displays the target

project name.
– A class is stored in a package. The Context column displays the target

package name.

The table also contains two hidden columns. To view them, rigth click in the
table and select Show all columns from the pop-up menu.
v The VAGT name column displays the name of the VAGTemplates instance

from which the builder has been generated.
v The VAGT type column displays the type of this instance.

Customize Generation window Pop-Up menu: The Customize Generation window
provides a pop-up menu which allows you to handle several builders at the
same time, show all columns and restore the initial display of the builder
table if it has been customized.

Note: To add a builder to the selection, press Ctrl key and right click on the
row you want to add.

Mark
This choice allows you to check at once the store management fields of a set
of selected builders. These builders will be stored as Java components in
the VisualAge for Java Library.

18 VisualAge Generator Templates Standard Functions: User’s Guide

Unmark
This choice allows you to uncheck at once the store management fields of a
set of selected builders. These builders will not be stored.

Store Option
This choice opens the Store Options dialog allowing you to modify at once
the store options for a set of builders. Check the radio-button
corresponding to the desired option, then click OK. This option is applied
to all builders you selected.

Trace Category
This choice opens the Trace Category dialog allowing you to modify at
once the trace categories for a set of builders. Check the radio-button
corresponding to the desired trace category, then click OK. This trace
category is applied to all builders you selected.

Mark all
This choice allows you to check the store management fields of all
generated builders in order to store them.

Unmark all
This choice allows you to uncheck the store management fields of all
generated builders in order not to store them.

Show all columns
This choice allows you to view all the columns of the builder table.

Reset
This choice allows you to restore the initial display of the table column.

Other Functionalities: You can get help from the Customize Generation window
by clicking on the Help push-button.

The OK button closes the Customize Generation window and triggers the
storage of the generated builders.

Generation Scope: The Instance only option which allows you to generate the
Workspace components, that is the predefined beans, is automatically selected.
The With associates and With associates and predefined beans options are not
available for a Workspace instance generation.

Note: If you use a generator more often than the others, you can select the
Save as default check box, which will keep your generator selected for
the next time you generate.

Client & Server:

Visuals
Generates the visual part of the application.

Chapter 2. The Workbench 19

Client
Generates the client part of the application.

Server
Generates the server part of the application.

For details on the generation, refer to “Part 3. Standard Use of VAGTemplates”
on page 107, “Chapter 6. Application Generation and Enhancement” on
page 225, “Standard Generation” on page 225; for information on the
predefined beans, refer to “Generated Architecture and Principles” on
page 240, “Components Generated From a Workspace: Predefined
Beans/Parts” on page 312 in the same chapter.

VAGTemplates on Smalltalk: The Generate choice opens the Generate
(instance) window that enables you to generate the application components for
the selected Workspace.

The instance generation option which allows you to generate the Workspace
components, that is the predefined parts, is automatically selected. The
cascaded generation and cascaded generation with predefined parts options are not
available for a Workspace instance generation.

Select the Override existing parts check box so that the generated parts override
the parts previously generated.

If you use a generator more often than the others, you can select the Save as
default check box, which will keep your generator selected for the next time
you generate.

For details on the generation, refer to “Part 3. Standard Use of VAGTemplates”
on page 107, “Chapter 6. Application Generation and Enhancement” on
page 225, “Standard Generation” on page 225; for information on the
predefined parts, refer to “Generated Architecture and Principles” on
page 240, “Components Generated From a Workspace: Predefined
Beans/Parts” on page 312 in the same chapter.

Workspace menu / Definition choice
Opens the Workspace editor allowing you to customize the current Workspace
and define generation parameters.

General Panel: The settings in the General panel enable you to define
generation preferences and take particular target tool’s requirements into
account.

Package/Application:

20 VisualAge Generator Templates Standard Functions: User’s Guide

Package/Application
This area indicates the name of the package or application where all the
specifications are stored.
Default value: The package or application where the Workspace is stored.

Names:

Display name
The field allows you to enter a display name for the Workspace. The
display name is used in the list of called instances in help panels.

Common Parameters:

Target name
This field allows you to enter a character string that will be used as the
prefix of the generated predefined beans/parts.
Default value: name of the Workspace truncated to
5 characters

You will find a description of the predefined beans/parts in “Part 3.
Standard Use of VAGTemplates” on page 107, chapter “Chapter 6.
Application Generation and Enhancement” on page 225, “Generated
Architecture and Principles” on page 240, “Components Generated From
a Workspace: Predefined Beans/Parts” on page 312.

Long target name
This field allows you to enter a character string (64 max.) that will be
used as prefix of the generated Java and Smalltalk classes.
Default value: name of the Workspace

Generation Parameters:

Generation directory
This field is used to specify the directory where all the generated help
files will be stored.
Default value: c:\VAGT\build

DBMS
Select a DBMS in the dropdown list.

Target Packages/Applications Panel: This panel allows you to specify the
project (VAGTemplates on Java only) and the packages/applications where
the components generated from the Workspace will be stored.

Target Packages/Applications:

JAVA Target project
This field is used to specify the name of the project that includes all the
target packages associated with the Workspace.

Chapter 2. The Workbench 21

Visual package/application
This field is used to indicate the package/application where the generated
visual components will be stored.

Logic package/application
This field is used to indicate the package/application where the generated
logic components will be stored.

Services package/application
This field is used to indicate the package/application where the generated
service components will be stored.

Client Panel: This panel groups the parameters that define the general
layout of the generated application’s user interface.

User Interface:

Normal color
This drop-down list enables you to specify the color of fields that are in a
valid state.
Default value: light yellow

Error color
This drop-down list enables you to specify the color of the fields in error.
Default value: red

Read only color
This drop-down list allows you to specify the color of read-only fields.
Default value: grey

Note: Some colors cannot be displayed in TUI applications: light yellow is
changed into yellow in the final application, and grey into the
standard color of the system where the application runs.

Horizontal orientation

The Horizontal orientation area enables you to define the orientation of the
user interface. You can choose between left to right and right to left. You
can define the horizontal orientation for a Workspace or for a Data
Element.
Default value: left to right

GUI Panel: This panel groups the parameters that manage GUI client
application behavior.

Layout Setup:

Horizontal margin

22 VisualAge Generator Templates Standard Functions: User’s Guide

This drop-down list allows you to specify the horizontal space between
the generated components in a layout.
Default value: medium

Vertical margin
The drop-down list allows you to specify the vertical space between the
generated components in a layout.
Default value: medium

Label to value horizontal gap

This drop-down list allows you to specify the horizontal space between
the labels and their values when presented horizontally.
Default value: medium

Label to value vertical gap

This drop-down list allows you to specify the vertical space between the
labels and their values when presented vertically.
Default value: medium

Letter width
This drop-down list allows you to specify the character reference width.
Default value: average

Fields selected on focus

This checkbox enables you to specify whether the contents of a field are
selected when the field gets the focus.
Default value: checked

Screen resolution
This field allows you to specify the resolution of the screen where the
generated application will run.
Default value: 1024 x 768

Help Management:

General Help File

This field is used to specify the name of the file where the generated
on-line help will be stored. The extension (.IPF, .RTF, or .HPJ) will be
added automatically according to the target environment (OS/2 or
Microsoft Windows).
Default value: HELP

Update Policy:

Update GUI policy

Chapter 2. The Workbench 23

This drop-down list enables you to choose whether to provide your
generated applications with two actions (create/update) - one creating rows
and one updating rows - or with a single action (save) that handles both
create and update functions.
Default value: create/update

Web Panel:

Application Pattern:

Web application pattern
This parameter allows to choose between two ways of transferring data
to/from the browser.
Default value: Xfer

For more details, see “Web Client” on page 247.

TUI Panel:

Error Management:

Max navigation stack number

This spin edit enables you to specify the maximum number of navigation
paths that are memorized. These paths are used to know the location of
each map in the navigation tree. When the maximum number is reached,
the navigation stack is re-initialized and the navigation paths and
parameters are lost.

The navigation paths are used by the application to navigate from error messages
to the maps where errors have been detected, for example.
Default value: 50

Messages per page

This spin edit enables you to specify the maximum number of error
messages that will be displayed on each ″page″ in the error message map.
To see the following messages, the end user can scroll down the list with
the arrow keys.
Default value: 4

Note: This parameter is relevant if the Messages display attribute is set to
specific map (see below).

Messages display

This spin edit allows you to specify if error messages are displayed on a
separate map in a scrollable list (specific map), or on one line at the bottom

24 VisualAge Generator Templates Standard Functions: User’s Guide

of the current map (current map). In the latter case, the total number of
error messages is displayed; the end user will have to trigger an action to
reach the following messages.
Default value: specific map

For information on error message management, refer to “Part 3. Standard
Use of VAGTemplates” on page 107, “Chapter 6. Application Generation
and Enhancement” on page 225, “Components Generated From a
Workspace: Predefined Beans/Parts” on page 312.

User Interface:

Update TUI policy
This drop-down list enables you to specify whether updates are taken into
account when the end user explicitly requests them by performing an
action (explicit), or by pressing ENTER (implicit).
Default value: explicit

Standard TUI device

This drop-down list enables you to specify the output display device
(printer, touch-sensitive screen, etc.). This affects the number of rows and
columns that are available in the map.
Default value: 3278-2

Note: The parameter values are the IBM values (see your IBM
documentation).

Entry default value

This drop-down list enables you to specify the character that will mark
the fields where values can be entered.
Default value: underscore

Display popup
This checkbox enables you to specify whether help panels, help lists,
value table lists and messages are laid out in a frame displayed within the
current map.
Default value: checked

Function Keys Panel: This panel groups the parameters that allow you to
customize the ergonomics of function keys and action codes in TUI
applications.

Display Policies:

Display function keys

Chapter 2. The Workbench 25

This checkbox enables you to specify whether the function keys will be
displayed on the generated map or not. In the latter case, the function
keys can still be used.
Default value: checked

Display actions

This checkbox enables you to specify whether the actions will be
displayed on the generated map or not. In the latter case, the actions can
still be used.
Default value: checked

Function Keys:

Help
These fields allow you to select the function key that will be used to call
the on-line help, and to assign a label to it.
Default value: 01 HELP

Exit
These fields allow you to select the function key that will be used to exit
the current map and return to the previous one, and to assign a label to it.
Default value: 03 EXIT

Lookup
These fields allow you to select the function key that will be used to
display help lists, and to assign a label to it.
Default value: 04 LOOKUP

Cancel
These fields allow you to select the function key that will be used to
cancel an action and return to the parent map, and to assign a label to it.
Default value: 12 CANCEL

Left
These fields allow you to select the function key that will be used to
navigate towards the left map, and to assign a label to it.
Default value: 05 LEFT

Right
These fields allow you to select the function key that will be used to
navigate towards the right map, and to assign a label to it.
Default value: 06 RIGHT

Previous page
The fields allow you to select the function key that will be used to
navigate upwards to the previous page in a list, and to assign a label to it.
Default value: 07 PREV

26 VisualAge Generator Templates Standard Functions: User’s Guide

Next page
These fields allow you to select the function key that will be used to
navigate downwards to the next page in a list, and to assign a label to it.
Default value: 08 NEXT

Top
These fields allow you to select the function key that will be used to reach
the first data in a list, and to assign a label to it.
Default value: 17 TOP

Refresh
These fields allow you to select the function key that will be used to
retrieve the data as it was before the last action was triggered, and to
assign a label to it.
Default value: 09 UNDO

Create
These fields allow you to select the function key that will be used to
create a new row in the database, and to assign a label to it.
Default value: 13 INSERT

Note: This parameter is ignored if the Update policy parameter is set to
implicit.

Read
The fields allow you to select the function key that will be used to access
data, and to assign a label to it.
Default value: 14 SELECT

Update
These fields allow you to select the function key that will be used to
update data, and to assign a label to it.
Default value: 15 UPDATE

Note: This parameter is ignored if the Update policy parameter is set to
implicit.

Delete
These fields allow you to select the function key that will be used to
delete data, and to assign a label to it.
Default value: 16 DELETE

Previous message
These fields allow you to select the function key that will be used to reach
the previous error messages in the current map, and to assign it a label.
Default value: 10 MSG -

Chapter 2. The Workbench 27

Note: This parameter is relevant when the Message display parameter is set
to current map; otherwise it is ignored.

Next message
These fields allow you to select the function key that will be used to reach
the next error messages in the current map, and to assign a label to it.
Default value: 11 MSG +

Note: This parameter is relevant when the Message display parameter is set
to current map; otherwise it is ignored.

For information on these actions, refer to “Part 3. Standard Use of
VAGTemplates” on page 107, “Chapter 5. Standard Functions and Layouts
of Generated Applications” on page 145, “Standard Functions” on
page 146.

Colors Panel: This panel groups the parameters that manage the ergonomics
of TUI applications.

TUI Colors:

Function key label color

This drop-down list allows you to specify the color of the function key
labels.
Default value: turquoise

Title color
This drop-down list allows you to specify the color of the map titles.
Default value: white

Error message color

This drop-down list allows you to specify the color of the error messages.
Default value: red

Warning message color

This drop-down list allows you to specify the color of the warning
messages.
Default value: pink

Information message color

This drop-down list allows you to specify the color of the information
messages.
Default value: yellow

Help text color
This drop-down list allows you to specify the color of the help texts.

28 VisualAge Generator Templates Standard Functions: User’s Guide

Default value: white

Server Panel:

Server:

Common Area
This drop-down list allows you to specify whether or not you want the
communication Record and its associated Table to be generated.
Default value: record and table

For information on the communication Record, refer to “Part 3. Standard
Use of VAGTemplates” on page 107, “Chapter 6. Application Generation
and Enhancement” on page 225, “Generated Architecture and Principles”
on page 240, “Components Generated From a Workspace: Predefined

Beans/Parts” on page 312, “GUI and TUI Components” on page 313.

Server layers
This drop-down list allows you to specify the type of client/server
architecture you want for the generated application: two-tier, the
architecture is based on a client and a server; three-tier, the architecture is
based on a client, an umbrella server and as many atomic servers as
actions.
Default value: two-tier

Null managed
This checkbox enables you to specify whether the null value will be
globally managed for all the fields in the application or only for the fields
that accept the null value in the database.
Default value: checked

Internal Formats:

Decimal separator

This field enables you to specify the character that will be used to
separate the integer part from the decimal part of an integer when the
value is stored in the database.
Default value: . (period)

Date Format
This drop-down list allows you to choose whether the internal format for
storing dates in the database is dmy (<Day> <Month> <Year>), mdy
(<Month> <Day> <Year>), or ymd (<Year> <Month> <Day>).
Default value: ymd

Chapter 2. The Workbench 29

Caution: For VAGTemplates on Smalltalk, make sure that the value you
choose here is compatible with the date and time format
parameters in the VisualAge Smalltalk Enterprise abt.ini file.

Extractions Panel: This panel groups parameters that allow you to adapt the
generation to VisualAge Generator requirements.

Alphanumeric Extractions:

SQL High value
This field allows you to specify the SQL high value that will be used
when extracting alphanumeric or numeric values using the ″less than″ or
″greater than″ extraction operator.
Default value: Z

SQL Low value
This field allows you to specify the SQL low value that will be used when
extracting alphanumeric or numeric values using the ″less than″ or
″greater than″ extraction operator.
Default value: <no default value

The push-button on the right enables you to retrieve from the Database the
SQL high values and the SQL low values of the alphanumeric extractions
corresponding to the current configuration of the database in use.

This push-button first opens the Settings dialog box. Once you closed this
dialog box, the Extraction Results window opens up and prompts you to
confirm that you want the Workspace alphanumeric extractions to be updated.

Date Extractions:

SQL High value
This field allows you to specify the SQL high value that will be used
when extracting dates using the ″less than″ or ″greater than″ extraction
operator.
Default value: 12-31-2999

SQL Low value
This field allows you to specify the SQL low value that will be used when
extracting dates using the ″less than″ or ″greater than″ extraction operator.
Default value: 01-01-1901

Timestamp Extractions:

SQL High value
This field allows you to specify the SQL high value that will be used
when extracting timestamps using the ″less than″ or ″greater than″
extraction operator.

30 VisualAge Generator Templates Standard Functions: User’s Guide

Default value: 2999-12-31-00.00.00.000000

SQL Low value
This field allows you to specify the SQL low value that will be used when
extracting timestamps using the ″less than″ or ″greater than″ extraction
operator.
Default value: 1901-01-01-00.00.00.000000

DBCS Extractions: This area groups parameters that enable you to adapt the
generation to DBCS configuration.

SQL high value
This field allows you to specify the SQL high value that will be used
when extracting DBCS values using the ″less than″ or ″greater than″
extraction operator.
Default value: <no default value>

SQL low value
This field allows you to specify the SQL low value that will be used when
extracting DBCS values using the ″less than″ or ″greater than″ extraction
operator.
Default value: <no default value>

Error Management Panel:

Server Error Management:

Max number of messages

This spin edit allows you to specify the maximum number of stored error
messages to be displayed in the error window (GUI) or map (TUI).
Default value: 10

Max number of variables

This spin edit allows you to specify the maximum number of variables
that can be used to build the error messages.
Default value: 3

Max size of variables

This spin edit allows you to specify the maximum size that a variable can
have in the error message.
Default value: 30

For example, if you want to include Data Element names in your error messages,
you should set this parameter to 30 since Data Element names can be up to 30
characters long.

Chapter 2. The Workbench 31

Client/Server Control Panel: This panel groups the parameters that define
the controls implemented in the generated application.

Client/Server Control:

Control location
This drop-down list allows you to specify whether the checks are
managed by the Client, the Server, or both by the Client and Server.
Default value: client and server

For example, assuming that you specified a check by value table on a Data
Element, if this parameter is set to client, the check will be performed on the
client only; the end user will be able to enter any value that is not in the value
table. If you set this parameter to server or client and server, the check will be
performed on the server and only the values that are defined in the value table
will be authorized.

Depending on this parameter value, the controls are generated as follows:

GUI Generation WEB/TUI Generation

Client Server Client Server

Controls on value type and
format

Controls on client Controls on client (numeric
data)

Controls on value presence for
required field

Controls on
client

Database Controls on
client

Database

Controls on value in defined
interval or value table

Controls on
client

Controls on
server

Controls on
client

Controls on
server

Note: When the Control location parameter is set to Server or Client and
server, the controls on the value presence are implemented by both
the generated servers and the database.

See also “Error Handling in GUI Client applications” on page 153 and
“Error Handling in TUI Applications” on page 156.

LUW mode
This drop-down list allows you to specify whether the commit is managed
by the Client or by the Server.
Default value: server

Note: The commit is only performed when the end user navigates from
one map group to the other, not among the maps of the same map
group.

32 VisualAge Generator Templates Standard Functions: User’s Guide

For example, let us assume that the Staff Business Object displayed on two maps
because it is too large to be displayed on one. If the end user modifies the value of
the Name field in map 1 and triggers the update action, the modification will not
be taken into account in the database, even when he/she moves to the second map.
Whereas if he/she returns to the main menu of the application, the modification is
stored in the database.

Client business logic style
This drop-down list allows you to specify whether the generators have to
generate the Business Objects with VisualAge Generator records or not. It
enables you to cutomize the generated parts.
Default value: default

Information messages

This drop-down list enables you to handle information messages that will
be displayed within the interface in an optional information bar.You can
raise messages, that will not stop the execution of the current action, and
will be displayed within the interface in an optional information bar.
v Raising a message on the server

There is a dedicated section in the XX-ERROR-LST Record:
Applicative-Information contains info-code and 3 info-variables.
The code is similar to the one used in the errors, translated according to
the MSGTBL table. Control-information is a flag indicating whether a
message has been raised or not. Messages can be raised in the hooks of
the server. Messages are caught on the client. They are displayed in the
optional information bar.

v Raising a message on the client

If the value of this parameter is set to bar with standard messages, the
message from the server will be displayed in an information bar. If no
message has been raised by the server during an action, the client will
raise a message indicating that the action has succeeded. This message
is reset when another action starts. If you specify the parameter with
the value no standard messages, the client will never raise any message.
And the information bar is not displayed at the bottom of the windows.
However, the API to raise, propagate and translate messages is still
present and can be used.

Default value: bar with standard messages

Naming Rules Panel: This panel groups parameters that manage the naming
rules for the generated parts.

Naming Policy: The identifier first and type first radio-buttons allow you to
specify whether you want the names of the generated parts to begin with the
identifier or with the type of the instance.
Default value: identifier first

Chapter 2. The Workbench 33

Source Entities:

Workspace
This field allows you to specify a mnemonic that will be used to name the
parts that are generated from a Workspace instance.
Default value: S

Interface unit
This field allows you to specify a mnemonic that will be used to name the
parts generated from an Interface Unit instance.
Default value: W

Business object
This field allows you to specify a mnemonic that will be used to name the
parts generated from a Business Object instance.
Default value: O

Relational table
This field allows you to specify a mnemonic that will be used to name the
parts generated from a Relational Table instance.
Default value: T

Data element
This field allows you to specify a mnemonic that will be used to name the
parts generated from a Data Element instance.
Default value: E

Part Types: These fields allow you to specify a letter that will be used to
build the names of the generated parts, in addition to the identifier of the part
and the Information Model mnemonic. It indicates the type of the generated
part.

Program
This field allows you to specify a mnemonic that will be used to name a
generated Program part.
Default value: A

Function
This field allows you to specify a mnemonic that will be used to name a
generated Function.
Default value: F

Record
This field allows you to specify a mnemonic that will be used to name a
generated Record part.
Default value: R

34 VisualAge Generator Templates Standard Functions: User’s Guide

Data Item
This field allows you to specify a mnemonic that will be used to name a
generated Data-Item part.
Default value: D

Table
This field allows you to specify a mnemonic that will be used to name a
generated Table part.
Default value: T

TUI Map
The field allows you to specify a mnemonic that will be used to name a
generated Map part.
Default value: M

TUI Map group
The field allows you to specify a mnemonic that will be used to name a
generated Map Group part.
Default value: B

For information on generated parts and generated part naming, refer to
“Part 3. Standard Use of VAGTemplates” on page 107, “Chapter 6.
Application Generation and Enhancement” on page 225, “Generated
Architecture and Principles” on page 240, “Introduction” on page 240,
“Generated Components Naming Policy” on page 241.

TUI PSB
This field allows you to specify a mnemonic that will be used to name a
generated Program Specification Block part.
Default value: Z

Obsolete Part Types:

Smalltalk only Process
This field allows you to specify a mnemonic that will be used to name a
generated Process part.
Default value: P

Smalltalk only Statement Group
This field allows you to specify a mnemonic that will be used to name a
generated StatementGroup part.
Default value: S

Smalltalk only GUI Application1

This field allows you to specify a mnemonic that will be used to name a
generated GUI Application part.
Default value: G

Chapter 2. The Workbench 35

Entity Menu
The Entity menu allows you to define default parameters for every type of
entity. These default parameters will be used to pre-fill the instance
parameter specifications. This menu also allows you to extend the
Information Model entities according to your specific needs.

Table 3. Entity Menu
Default Generation Parameters
> Shared
> Non Shared
Show Duplicate Generation Parameters

Entity menu / Default Generation Parameters choice
Displays the Default Generation Parameters editor specific to the entity you
selected in the Entities area. This window enables you to set default values for
all parameters of the entity’s instances.

If you change the default values of the parameters here, at entity level, they
will be the default parameters for all the entity’s instances, except for those
that you may have previously redefined, at instance level.

To apply the entity default parameters to redefined instances, select the
instance(s), then select the Set Generation Parameters to Default from the
Instance menu.

Note: The values you specify for an entity are specific to the Workspace; they
do not apply to the same entity used in another Workspace.

TIP: Selecting this choice is the same as right clicking in the Entities area once
the entity is selected and selecting the Default Generation Parameters
choice from the pop-up menu.

Note: There is no default parameter for the Value Style entity.

To know the default parameters of each entity in the Workbench, refer to
chapter “Chapter 3. Information Model Entities and their Editors” on page 51,
the subchapter specific to the entity you are interested in, “Default
Generation Parameters” on page 57.

1. This parameter ensures retrieval of legacy applications developed with the V2.2 Refresh and lesser versions. When
generating an application with the 4GL oriented generators, the GUI Application part is converted into a Smalltalk
visual part.

36 VisualAge Generator Templates Standard Functions: User’s Guide

Entity menu / Show Duplicate Generation Parameters choice
Displays the duplicate instances according to the Target name, Long target name
and Fastpath (Interface Unit only) parameters.

Instance Menu
The Instance menu allows you to manipulate all the entity instances:
creating new instances, updating or deleting existing instances, filtering
through the displayed instances, managing editions, and generating
completed instances.

Table 4. Instance Menu
New ...
Definition
Generation Parameters
Load
> Previous edition
> Another edition
Editions...
References...
Associates
Referenced Workspaces
> Tree View
> Detail List View
Copy Generation Parameters from ...
Set Generation Parameters to Default
Move
Copy
Delete
Create Business Object from RT ...
Create Interface Unit from BO ...
Generate

Instance menu / New ... choice
Opens the New VAGT Instance window allowing you to create a new instance
of any entity type.

TIP: Selecting this option is the same as right clicking in the Instances area,
and selecting the New... choice from the pop-up menu.

The Instance name field is used to specify a name for the new entity instance.

The Instance type area allows you to select the entity type of the instance to be
created.

The Package/Application combo box is used to select or specify a package or an
application where the new instance will be stored.

Chapter 2. The Workbench 37

Note: The Workspace package/application is always selected by default.

If you select the Open now check box, the instance will be saved and its
Definition editor will open immediately after saving.

Instance menu / Definition choice
Opens the instance Definition editor allowing you to edit the functional
description of the selected entity instance.

TIP: Selecting this option is the same as right clicking in the Instances area
once the entity instance is selected, and selecting Definition. It is also the
same as double-clicking on the instance you want to describe.

For more information, refer to chapter “Chapter 3. Information Model Entities
and their Editors” on page 51, subchapter specific to the instance you selected,
section How to define a ... (For example, if you selected an instance of Business
Object, refer to “Chapter 3. Information Model Entities and their Editors” on
page 51, “Business Object” on page 56, “How to Define a Business Object”
on page 67.

Instance menu / Generation Parameters choice
Opens the instance Generation Parameters editor allowing you to specify the
generation parameters of the selected entity instance.

TIP: Selecting this option is the same as right clicking in the Instances area
once the entity instance is selected, and selecting Generation Parameters.

For more information, refer to chapter “Chapter 3. Information Model Entities
and their Editors” on page 51, subchapter specific to the instance you selected,
section How to define a ... (For example, if you selected an instance of Business
Object, refer to “Chapter 3. Information Model Entities and their Editors” on
page 51, “Business Object” on page 56, “How to Define a Business Object”
on page 67.

Instance menu / Load choice
This choice allows you to load an edition of the selected instance.

Previous Edition: This choice allows you to load the previous edition of the
selected instance.

TIP: Selecting this choice is the same as right clicking in the Instances area
after selecting an instance, and selecting the Load > Previous Edition
choice from the pop-up menu.

Another Edition: This choice allows you to load another edition of the
selected instance. You must select an edition in the list that is displayed.

38 VisualAge Generator Templates Standard Functions: User’s Guide

TIP: Selecting this choice is the same as right clicking in the Instances area
after selecting an instance, and selecting the Load > Another Edition
choice from the pop-up menu.

Instance menu / Editions choice
This choice displays the list of the selected instance’s editions.

TIP: Selecting this choice is the same as right clicking in the Instances area
after selecting an instance, and selecting the Editions... choice.

Instance menu / References ... choice
This choice opens the References window, allowing you to search for the
instances that calls the selected instance.

Select one entity or more among the displayed entities to set your search
scope.

Checking the Filter option will limit the search to the packages/applications
you selected in the VAGTemplates Browser.

Instance menu / Associates choice

Tree View: This choice opens the Associates Tree View window that shows the
instances called by the selected instance.

Detail List View: This choice opens the Associates Detail List View window
that displays the list of instances called by the selected instances.

For each called instance, the following information is displayed in the list
area: the icon associated with the corresponding entity, the instance name and
display name, the target logic package/application and target ID associated
with the instance and the instance current edition.

Instance menu / Referenced Workspaces choice

Instance menu / Copy Generation Parameters from... choice
Opens the Copy Instance Parameters from... window which allows you to copy
the current instance’s parameters defined in another Workspace to the current
instance in the current Workspace.

Select the Workspace in which the parameters you want to copy are defined
and click OK.

For example: Let’s assume that you have imported a database in the MyApplication
Workspace. The import initialized the name of the STAFF Table in the Generation
Parameters window of the Relational Table. If you generate a Business Object using
the STAFF table columns from the MyNewApplication Workspace, there will be

Chapter 2. The Workbench 39

errors at the generation because the name of the table is not defined in the parameters
of the STAFF table in the MyNewApplication Workspace. You cannot enter the
name of the table since the Table name field is read-only and initialized by the
import. However, if you copy the STAFF table parameters from the MyApplication
Workspace to the STAFF table in the MyNewApplication Workspace there will be
no problems generating or executing the application.

Instance menu / Set Generation Parameters to Default choice
This choice automatically sets the generation parameters to the entity’s default
values for the selected instance(s).

Instance menu / Move ... choice
Opens the Move Instances window allowing you to move an instance
definition or generation parameters or both to an available
package/application.

Check the Move Definition option or the Move Generation Parameters option or
both.

In the Select parameter workspaces list, select a Workspace in which you want to
move the instance generation parameters.

Instance menu / Copy choice
Opens the Copy Instances window that allows you to save the contents of the
opened instance into another instance.

The New instance name field allows you to enter the new name of the instance.

The Existing instance names list allows you to select existing instances to save
your current instance as the selected one, and therefore replace the
specifications of the latter with those of the current instance.

By default, the instance is copied to the current package/application.

Instance menu / Delete choice
Opens a confirmation box requiring you to confirm the deletion of the
selected entity instance(s).

Instance menu / Create Business Object from RT ... choice
Opens a dialog allowing you to create a Business Object from the selected
Relational Table.

To create a Business Object from a given Relational Table:
1. Select a Relational Table in the list from the VAGTemplates Browser.
2. Select the Create Business Object from RT ... choice from the Instance

menu.

40 VisualAge Generator Templates Standard Functions: User’s Guide

3. In the dialog that opens up, enter a name for the new Business Object.
4. Select a package/application in the list, then click OK.

You can also select more than one Relational Tables from the VAGTemplates
Browser. In this case, a Business Object is created for each selected Relational
Table. The dialog box remains open until the last Business Object
corresponding to the last Relational Table selected is created. The names of the
selected Relational Table instances are automatically displayed one after
another. For each of them, enter a name for the Business Object to be created.

Instance menu / Create Interface Unit from BO... choice
Opens a dialog allowing you to create an Interface Unit from the selected
Business Object.

To create an Interface Unit from a Business Object:
1. Select a Business Object in the list from the VAGTemplates Browser.
2. Select the Create Interface Unit from BO ... choice from the Instance

menu.
3. In the dialog that opens up, enter a name for the new Interface Unit.
4. Select a package/application in the list, then click OK.

You can also select more than one Business Objects from the VAGTemplates
Browser. In this case, an Interafec Unit is created for each selected Business
Object. The dialog box remains open until the last Interface Unit
corresponding to the last Business Object selected is created. The names of the
selected Business Object instances are automatically displayed one after
another. For each of them, enter a name for the Interface Unit to be created.

Instance menu / Generate choice

VAGTemplates on Java: The Generate choice opens the Generate (instance(s))
window that enables you to generate the application components for the
selected instances.

Select available generator(s): This area lists the generators available for the
selected entity instances. At least one generator must be selected in the list.

Instance(s) to be generated: This area displays the instances you selected
from the Browser.

Store Options:

Description of the options: The Store Options area allows you to specify a
store option for the builders instantiated by the generation process.

Chapter 2. The Workbench 41

Note: A builder is a Java class instance produced by the generation process.
These classes model VisualAge for Java components, manages the store
and load processes of the generated components into the VisualAge for
Java Library and manages traceability information. Each instantiated
builder, once stored, will correspond to one component in the
VisualAge for Java Library.

Normal
This option stores the new specifications, preserve the RAD specifications
and those that have been added using the VisualAge for Java
environment.

Overwrite
This option is identical to the Normal option, but additionally forces the
storage of RAD specifications.

Reset
This option is identical to the Overwrite option, but delete the
specifications added by the user.

Customize
When this mode is checked, the builders are instantiated but not
immediately stored as Java components. When all builders are generated,
the Customize Generation window opens so that you can customize some
storage parameters for the Java components to be produced from these
builders.

Customize Generation window: This window contains a table in which each
row corresponds to one generated builder. The builder table can be
customized by:
v reordering the columns by drag and drop
v showing/hiding a column by right clicking once on a column header
v resizing a column
v sorting the table using any column as sort criterion

– To sort a column in increasing alphabetical order, left click on a column
header.

– To sort a column in decreasing alphabetical order, press the Shift key and
left click on a column header.

For each builder, the following information can be displayed in the
corresponding columns:
v The first column contains check boxes allowing you to confirm whether you

want the builder to be stored. These check boxes are designated below as
the store management fields. A builder will be stored only if the
corresponding store management field is checked.

v The Type column displays the builder type.

42 VisualAge Generator Templates Standard Functions: User’s Guide

v The Name column displays the builder name.
v The Store Option column allows you to modify the store option. Left click

on the cell corresponding to the builder, then select a store option in the
combo box.

v The Trace Category column allows you to modify the trace category of
generated builder. Left click on the cell corresponding to the builder, then
select a trace category in the combo box.

v The Context column displays the name of the target project or package
where the generated builder will be stored.
– If the generated builder is a project, it will directly be stored in the

VisualAge for Java Library. The Context column is empty.
– A package is stored in a project. The Context column displays the target

project name.
– A class is stored in a package. The Context column displays the target

package name.

The table also contains two hidden columns. To view them, rigth click in the
table and select Show all columns from the pop-up menu.
v The VAGT name column displays the name of the VAGTemplates instance

from which the builder has been generated.
v The VAGT type column displays the type of this instance.

Customize Generation window Pop-Up menu: The Customize Generation window
provides a pop-up menu which allows you to handle several builders at the
same time, show all columns and restore the initial display of the builder
table if it has been customized.

Note: To add a builder to the selection, press Ctrl key and right click on the
row you want to add.

Mark
This choice allows you to check at once the store management fields of a set
of selected builders. These builders will be stored as Java components in
the VisualAge for Java Library.

Unmark
This choice allows you to uncheck at once the store management fields of a
set of selected builders. These builders will not be stored.

Store Option
This choice opens the Store Options dialog allowing you to modify at once
the store options for a set of builders. Check the radio-button
corresponding to the desired option, then click OK. This option is applied
to all builders you selected.

Chapter 2. The Workbench 43

Trace Category
This choice opens the Trace Category dialog allowing you to modify at
once the trace categories for a set of builders. Check the radio-button
corresponding to the desired trace category, then click OK. This trace
category is applied to all builders you selected.

Mark all
This choice allows you to check the store management fields of all
generated builders in order to store them.

Unmark all
This choice allows you to uncheck the store management fields of all
generated builders in order not to store them.

Show all columns
This choice allows you to view all the columns of the builder table.

Reset
This choice allows you to restore the initial display of the table column.

Other Functionalities: You can get help from the Customize Generation window
by clicking on the Help push-button.

The OK button closes the Customize Generation window and triggers the
storage of the generated builders.

Generation Scope:

Instance only
This option only generates the selected instance(s).

With associates
This option successively generates the selected instance(s) and all the
instances it calls.

With associates and predefined beans
This option successively generates the selected instance(s), all the
instances it calls and the predefined beans.

Client & Server:

Visuals
Generates the visual part of the application.

Client
Generates the client part of the application.

Server
Generates the server part of the application.

44 VisualAge Generator Templates Standard Functions: User’s Guide

For details on the generation, refer to “Part 3. Standard Use of VAGTemplates”
on page 107, “Chapter 6. Application Generation and Enhancement” on
page 225, “Standard Generation” on page 225; for information on the
predefined beans, refer to “Generated Architecture and Principles” on
page 240, “Components Generated From a Workspace: Predefined
Beans/Parts” on page 312 in the same chapter.

View Menu

Table 5. View Menu
Refresh Now
Select All
Deselect All
Sort by
> Sort by Instance Name
>Sort by Display Name
> Sort by Target Package/Application
>Sort by Target ID
>Sort by Edition
Reorder Columns...
Reorder Status Bar Text...

View menu / Refresh Now choice
Refreshes the content of the Instances area in the Browser.

View menu / Select All choice
Allows you to select all the instances from the Browser Instances area.

View menu / Deselect All choice
Allows you to deselect all the instances from the Browser Instances area.

View menu / Sort by choice
Allows you to sort the instances displayed in the Browser Instances area
according to the following criteria:
v Sort by Instance Name
v Sort by Display Name
v Sort by Target Package/Application
v Sort by Target ID
v Sort by Edition

View menu / Reorder Columns choice
Opens a window allowing you to reorder the columns of the Instances area.

View menu / Reorder Status Bar Text choice
Opens a window allowing you to reorder the data displayed in the status bar.

Chapter 2. The Workbench 45

Tools Menu
The Tools menu allows you to activate the import of a database schema into
VAGTemplates, to create Relational Table instances and to create Data
Element instances. For VAGTemplates on Java only, it also allows you to
enable the Show Duplicate Instances choice.

Table 6. Tools Menu

Import from Database...

Show Duplicate Instances

Tools menu / Import from Database choice
Opens the Import from Database window allowing you to import a relational
database into the current Workspace.
v Settings area

Database name
By default, this Database name field is filled in with the database name
specified in the VisualAge Generator Preferences (see the VisualAge for
Java or VisualAge Smalltalk Enterprise documentation).

To modify the database name displayed, click on the Change... push
button. The Settings window opens. All the fields in the window are
pre-filled with the VisualAge Generator Preferences settings.

Userid
You can modify the default value by entering a new user ID in the
edit field. The user ID is necessary to connect to the database you
want to import.

Password
You can modify the default value by entering a new password in
the edit field. The password is necessary to connect to the database
you want to import.

DBMS
You can modify the default DBMS (Database Management System)
using this drop-down list which allows you to select among all the
available Database management systems. The drop-down list also
allow you to choose to import the database via IXF FILE (NT or
MVS) instead of using CLI access.

IXF is a format used by DB2 to import/export information from a
relational database. To use the IXF FILE import, create a directory
(by default: MdlROOT) in a DB2 command window session, and
put the files required for the import. To do so, follow these
commands:
– DB2 commands for a DB2/NT or OS2 database:

46 VisualAge Generator Templates Standard Functions: User’s Guide

DB2 CONNECT TO %1 USER %2 USING %3
DB2 EXPORT TO SYSTABLES OF IXF SELECT*FROM
SYSIBM.SYSTABLES
DB2 EXPORT TO SYSCOLUMNS OF IXF SELECT*FROM
SYSIBM.SYSCOLUMNS
DB2 EXPORT TO SYSVIEWS OF IXF SELECT*FROM
SYSIBM.SYSVIEWS
DB2 EXPORT TO SYSVIEWDEPS OF IXF SELECT*FROM
SYSIBM.SYSVIEWDEP
DB2 EXPORT TO SYSRELS OF IXF SELECT*FROM
SYSIBM.SYSRELS
DB2CONNECT RESET

– DB2 commands for a DB2/MVS database:
DB2 CONNECT TO %1 USER %2 USING %3
DB2 EXPORT TO SYSTABLES OF IXF SELECT*FROM
SYSIBM.SYSTABLES
DB2 EXPORT TO SYSCOLUMNS OF IXF SELECT*FROM
SYSIBM.SYSCOLUMNS
DB2 EXPORT TO SYSVIEWS OF IXF SELECT*FROM
SYSIBM.SYSVIEWS
DB2 EXPORT TO SYSVIEWDEPS OF IXF SELECT*FROM
SYSIBM.SYSVIEWDEP
DB2 EXPORT TO SYSRELS OF IXF SELECT DISTINCT*FROM
SYSIBM.SYSRELS T1 , SYSIBM.SYSFOREIGNKEYS T2 WHERE
T2 RELNAME = T1.RELNAME AND T2 TBNAME = T1
TBNAME AND T2 CREATOR = T1 CREATOR
DB2 CONNECT RESET

Catalog
For Oracle DBMS, the Catalog push button opens the ODBC
database manager allowing you to catalog an Oracle database.

Database name
This drop-down list allows you to modify the name of the database
that will be imported into your Workspace.

Default
The Default push button allows you to either save the values
specified in the Settings window for further import processes or to
retrieve the VisualAge Generator default values.

Target Package/Application
This combo box allows you to select an application in which the
Relational Table and Data Element instances that will be created by the

Chapter 2. The Workbench 47

import will be stored. You can also enter a new package/application
name in the field, creating thus a new package/application as you start
the import.

v Search Criteria area

By default, the import facility imports all the tables and views in the
database. The Search Criteria area allows you to select only the tables that
you wish to import.
– The Qualifiers edit box allows you to choose the SQL qualifier for the

tables you want to import.
For example, if some tables in the database have your user Id as a qualifier and
others have that of another user, you can use this field to select only the tables
with your user Id qualifier.

– The Names edit box allows you to extract Tables according to their
names.

– The Tables and Views check boxes allow you to import only Tables, only
Views or Tables and Views.

v Build List push button

When you clicked on Build List once having specified your search criteria,
the Available tables area is filled with tables and/or views matching these
criteria that have been extracted from the database.

v Selected tables

Select the tables you want to import in your Workspace and click the >>
push-button. These tables will pass to the Selected tables list. These are the
tables that will be imported. Click OK to trigger the import.

v Reuse data elements

This check box allows you to specify whether you want the import function
to create one Data Element for each unique column in the database or if
you want one Data Element for every column in the database. Identical
columns that appear in more than one table will have a Data Element
instance created for each column. These Data Element instances will be
created with unique names (NAME and NAME1 for example).

Note to ORACLE users:

The first columns lists the ORACLE numeric formats
and the second lists the corresponding formats
imported into VAGTemplates.

ORACLE (precision, scale) VAGT (capacity, precision)

NUMBER FLOAT

NUMBER (p) p>0 NUMERIC (p, 0)

NUMBER (p, s) p>=s s>0 NUMERIC (p-s, s)

48 VisualAge Generator Templates Standard Functions: User’s Guide

NUMBER (p, s) s<0 NUMERIC (p, 0)

NUMBER (p, s) p<s NUMERIC (0, s)

Tools menu / Show Duplicate Instances choice
This choice opens a window that displays the duplicate instances according to
given filters.
v In the Packages or Applications list, select one or more packages/applications.
v In the Entities and Parameters list, select one or more items.
v You can then delete the instances you want among the duplicate instances

that are displayed in the Instances and Workspaces area, pressing the Delete
selected push-button.

Options Menu

Table 7. Options Menu
Save Settings as Default

Options menu / Save Settings as Default choice
Saves the current work context for the next work sessions, such as the
Workspace used, the columns displayed in the Workbench and their order, etc.

Help Menu

Table 8. Help Menu
Help index
General help
Using help
Product information

Help menu / Help Index choice
Displays an index of Help topics.

Help menu / General Help choice
Displays general help about the active Definition editor or Generation
Parameters editor.

For more information, see topic “How to Use VAGTemplates On-Line Help”
on page 50.

Help menu / Using Help choice
Displays a window explaining how to use the Help facility.

Help menu / Product Information choice
Displays a window with VAGTemplates product information.

Chapter 2. The Workbench 49

How to Use VAGTemplates On-Line Help

You can get help at three different levels:
v Help is available for each entity Definition editor and Generation

Parameters editor:
– Interface Unit editors,
– Business Object editors,
– Data Element editors,
– Value Style editors,
– Relational Table editors.

v Help is available for each panel within an editor.
v From each of these editor panels, you can get help on fields.
1. To get general help on any Definition editor or Generation Parameters

editor follow this procedure:
v Left click anywhere in the editor’s panel,
v Press F1, or click the Help push button in the editor.

A help window opens describing the active panel and presenting a list
of hypertext items corresponding to the different panels of this
particular editor.

2. To get help on the contents of a panel in any editor:
v From the editor general help window, click on the corresponding

hypertext item.
v Or, left click anywhere in the panel outside a field and press F1.

A second help window opens describing the active panel and presenting
a list of hypertext items corresponding to the fields contained in the
editor’s panel.

3. To get help on a field:
v From the panel help, click on the corresponding hypertext item.
v Or left click in the field, then press F1.

To close the on-line help facility, use the combination of ’Alt+F4’.

50 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 3. Information Model Entities and their Editors

Introduction

This chapter presents the Information Model entities and describes the
different editors you will use to define the entity instances. To define these
instances, you have to specify two types of information: the instance
generation parameters and the instance logical or functional description.
v The generation parameters

An instance generation parameters can be defined:
1. at entity level using the entity Default Generation Parameters editor.

These parameters will be the default parameters for all the entity
instances within the Workspace in which the parameters are defined.

2. at instance level using the instance Generation Parameters editor. This
editor is used to modify the default parameters specified at entity level
if necessary and also to define parameters that are specific to a
particular instance and that cannot be defined at entity level.

Note: These editors are not available for the Value Style entity whose
instances are not used as generation input.

v The logical description

The instance logical properties are defined using the instance Definition
editor.

In each subchapter dedicated to a specific entity, we describe in the following
order:
1. the generation parameters that are found in the Default Generation

Parameters editor.
See the Default Generation Parameters section corresponding to the entity.

2. the functional properties that are found in the Definition editor.
See the section entitled How to Define a... (Entity Name) corresponding to
the entity.

3. if any, the additional generation parameters that are specific to a particular
instance, and as such definable in the instance Generation Parameters
editor only.
See the section entitled How to specify the... (Entity Name) Parameters
corresponding to the entity.

Note: When we come to describing the specification fields, the settings and
parameters that only apply to GUI client applications are highlighted

© Copyright IBM Corp. 1997, 2000 51

with this GUI sign; those that only apply to TUI applications with the
TUI sign. No sign means that the settings and parameters are common
to both TUI and GUI client applications.

The Information Model Entities
The definition of business applications with VAGTemplates is based on an
Information Model. The Information Model has two aspects:
v it is an inventory of all the elements (entities and their attributes, links

between entities, etc.) you will use to design your application.
v it defines the hierarchical organization and the structure of the elements

required to design your application.

This model-driven approach lets you define your applications in an
exhaustive, non-redundant, and systematic way, regardless of the platform for
which the developed applications will be generated.

The Information Model comprises the following entities:
v Business Object

v Data Element

v Interface Unit

v Relational Table

v Value Style

For information on these entities, refer to the subchapters that deal with each
entity in this chapter.

The Definition Editor
The Definition editor is used to describe the functional characteristics of an
entity instance.

To open the Definition editor for an entity instance:
v From the VAGTemplates Browser, double click on an instance in the

Instances area.
v Or, left click on the instance to select it, then right click on it and select

Definition from the pop-up menu.

The Definition editor includes several panels allowing you to enter the
instance logical specifications, which do not vary from one generation to the
other.

For example, if you have created a STAFF Business Object to present the information
related to a staff member, this Business Object always maps to the STAFF Table. This
is the kind of specification you do using the Definition editor.

52 VisualAge Generator Templates Standard Functions: User’s Guide

The Default generation Parameters editor and the Generation Parameters
Editor

Both editors are used to define the generation parameters for entity instances.

The Default Generation Parameters editor is used to define the generation
parameters that are common to all the entity instances within a particular
Workspace.

Note: The parameters you specify within a Workspace apply to all the
instances defined in this Workspace, they do not apply to the same
instance used in another Workspace.

To open an entity Default Generation Parameters editor:
v From the VAGTemplates Browser, select an entity in the Entities area, and

from the Entity menu, choose Default Generation Parameters.
v Or select an entity, right click on it and choose Default Generation

Parameters from the popu-up menu.

The Generation Parameters editor allows you to redefine a selected instance’s
default parameters set at entity level at initialization of the Workspace or the
default parameters you set using the Default Generation Parameters choice
from the Entity menu.

To open the Generation Parameters editor for an entity instance:
v From the VAGTemplates Browser, left click on the instance to select it, then

right click on it and select Generation Parameters from the pop-up menu.

The Default Generation Parameters editor and the Generation Parameters
editor include several panels that allow you to define instance generation
parameters.

Each panel in the Default Generation Parameters editor and its corresponding
panel in the Generation Parameters editor contain exactly the same fields
except the General panel. The General panel in the Generation Parameters
editor contains additional fields that are specific to a particular instance:
typically, an instance Target name and Help panel ID fields.

When you open the Generation Parameters editor the fields displayed in the
different panels are already filled in with the default parameters that have
been set at entity level. This is a way of standardizing and quickly developing
all the instances of your application.

In the Generation Parameters editor panels, a Redefined checkbox is associated
with each parameter, indicating if the parameter value is the default one or
not. When you modify default values, Redefined is automatically checked. You

Chapter 3. Information Model Entities and their Editors 53

can manually uncheck it, thus changing the current value to the default one
(defined on the entity level), or check it even when the value is the default
one, thus protecting the value against a change on the entity level.

Specifications entered in this editor panels may be changed according to each
of your generation needs.

For example, the number of lines in a list presenting the STAFF Business Object can
vary from one generation to the next: the list can have 5, 8, 15, ... lines. This is the
kind of specifications you can enter using the Generation Parameters editor.

Editor General Characteristics
All the editors used to specify entity instances have a number of common
characteristics and behaviors.

Navigation within an Editor
As seen before, three types of editors are available to define the generation
parameters as well as the functional properties for the instances used in your
application:
v the Default Generation Parameters editor
v the Generation Parameters editor
v the Definition editor

From an instance Definition editor, a dedicated push-button allows you to
switch quickly to the instance Generation Parameters editor. The same
navigation function is available from an instance Generation Parameters editor
to the corresponding Definition editor.

For each type of editor, two parts can be identified as in the example below.

54 VisualAge Generator Templates Standard Functions: User’s Guide

v The left part called the tree view displays a list of items that correspond to
the titles of the different panels making up the editor. To navigate from one
panel to another, just left click on one of these items. Some items have
sub-items; to access the corresponding panels, you have first to click on the
+ sign to display the sub-items.

v The right part makes up what we call an editor panel. The top part of each
panel displays the panel title.

Push Buttons
There are four push buttons in each editor:
v the OK push button closes the editor and saves all the specifications you

entered.
v the Cancel push button closes the editor and none of the specifications you

entered are saved.
v the Reset push button clears the current specifications you entered and

retrieves the last saved specifications.

Figure 2. Business Object Default Generation Parameters Editor

Chapter 3. Information Model Entities and their Editors 55

v the Help push button opens the help panel that describes the current editor.

Pop-up Menus
You can activate pop-up menus by right clicking in an editor. Depending on
the instance you are specifying, these pop-up menus will contain some of the
following choices:
v Add - All editors - this choice adds an item to an updatable list.
v Remove - All editors - this choice removes an item from an updatable list.
v Open <entity> - Interface Unit, Business Object and Relational Table editors

- when you select an entity that is called by the entity you are specifying
(Interface Unit, Business Object or Relational Table), this choice opens its
Definition editor allowing you to consult or edit the instance functional
description.
For example, you are specifying a Business Object instance that calls a particular
Relational Table. When you select this Relational Table in the Business Object
Definition editor, this choice opens the Definition editor of the Relational Table.

v Add volatile - Business Object Definition editor - use this choice when you
want to add a field for displaying non-constant data in a Business Object.

Editor Extensions Panels
Restricted to use of customized generators involving Information Model
extensions.

Business Object

What is a Business Object?
A Business Object is an object via which consultation and update of constant
data can be performed. The Business Object groups a set of fields to match the
needs for a specific application to access, present, and manipulate constant
data. The Business Object’s fields represent Data Element calls that map to the
columns of one or more Relational Tables.

For example, if the application requires a detail presenting the name of a staff member,
his/her job, and his/her salary, Name, Job, and Salary would be three fields of the
corresponding Business Object.

A Business Object can also present non-constant data by using volatile fields.

The Business Object maps to Relational Tables. Among these, the first table
mapped is designated as the Business Object’s primary table. Only the
primary table’s fields can be updated; the fields of the other tables are
read-only.

56 VisualAge Generator Templates Standard Functions: User’s Guide

Default Generation Parameters
The Default Generation Parameters choice from the Entity menu opens the
Default Generation Parameters editor that allows you to define several
parameters at entity level that will be default parameters for all the entity
instances defined within a Workspace. When defining an instance, you only
have to set the remaining parameters. You can of course modify these default
parameters as you wish at instance level.

Default Generation Parameters Editor

General Panel:

GUI Only Parameters:

Layout Suffix
This field allows you to enter a 2 characters suffix that will be used for
the creation of a Business Object layout at generation time.

For example, if you want to generate several detail layouts for the same Business
Object instance, you should change this suffix each time you generate a new
layout. No default value

Zoom on double click

This drop-down list allows you to specify the generation of the zoom in
function from a list in a window to a detail in the same window (within
interface unit or zoom off).

Default value: within interface unit

Table Parameters:

Update secondary tables
When this option is checked, all the tables referenced by the Business
Object can potentially be modified. When unchecked, only the primary
table referenced by the Business Object can potentially be modified.

Default value: unchecked

Target Packages/Applications Panel: This panel allows you to specify the
project (VAGTemplates on Java only) and the packages/applications where
the components generated from the Business Object will be stored.

Target Packages/Applications:

JAVA Target project
This field is used to specify the name of the project that includes all the
target packages associated with the Business Object.

Chapter 3. Information Model Entities and their Editors 57

Visual package/application
This field is used to indicate the package/application where the visual
components generated from the Business Object will be stored.

Logic package/application
This field is used to indicate the package/application where the logic
components generated from the Business Object will be stored.

Services package/application
This field is used to indicate the package/application where the service
components generated from the Business Object will be stored.

Detail View Panel: This panel groups parameters that manage the
presentation of the details and of the fields in a detail.

For information on the presentations provided by the following parameters,
refer to “Part 3. Standard Use of VAGTemplates” on page 107, “Chapter 5.
Standard Functions and Layouts of Generated Applications” on page 145,
“Standard Layouts of GUI Client applications” on page 169 and “Standard
Layouts of TUI Applications” on page 199.

Common Parameters:

Display
This drop-down list allows you to choose the graphical aspect you want
for the detail Business Object. You can choose among form, form with
border, notebook2, Windows notebook, PM notebook.

Default value: form

Label
This field allows you to assign a label to the detail Business Object.
No default value

Note: This parameter is relevant when the Display parameter is set to
groupbox; otherwise it is ignored.

Number of columns

This spin-edit allows you to specify how many columns the fields will be
placed in.
Default value: 2

Number of lines
This spin-edit allows you to specify how many lines the fields will be
placed on.

2. The notebook parameter is used to ensure ascending compatibility with applications developed with previous
versions of the product. Use one of the two other notebook values instead. The notebook parameter is equal to PM
notebook.

58 VisualAge Generator Templates Standard Functions: User’s Guide

Default value: 8

GUI Only Parameters:

Notebook field location

This drop-down list allows you to specify whether you want the number
of lines and columns fixed for each notebook page (fixed number of lines
and columns), or the number of fields (fixed number of fields).
Default value: fixed number of lines and columns

Note: This parameter is relevant when the Display parameter is set to
notebook; otherwise it is ignored.

Number of fields per page

This spin-edit allows you to define how may fields will be presented in
each page of the notebook. Anytime fields do not fit in the page because
of their presentation (fields too long, for example) a page is added to the
notebook.
Default value: 10

Note: This parameter is relevant when the Display parameter is set to
notebook and the Notebook field location parameter is set to fixed
number of fields; otherwise it is ignored.

Detail Field Panel:

Detail Field:

Alignment
This drop-down list allows you to define a common alignment for the
fields and their labels.
Default value: left aligned labels / left aligned values

Note: If you have specified right-to-left for horizontal orientation in the
Data Element, values will be:
Default value: right aligned labels / right aligned values
Other values: left aligned labels / right aligned values
right aligned joined labels

Layout
This drop-down list allows you to specify the order in which the fields
will be arranged. You can choose between a vertical arrangement, where
the fields are positioned from top to bottom then from left to right, or a
horizontal arrangement where the fields are positioned from left to right
then from top to bottom.
Default value: top to bottom

Chapter 3. Information Model Entities and their Editors 59

Note: If you have specified right-to-left in the horizontal orientation
arrangement, fields are positioned from right to left then from top to
bottom. For the vertical arrangement, fields are positioned from top
to bottom then from right to left.

GUI Label and value display

This drop-down list allows you to specify whether the label will be
located above the value (vertical) or beside it (horizontal).
Default value: horizontal

Note: With right to left orientation, the label will be positioned on the
right and the value on the left.

Sizing
This drop-down list allows you to specify the size of the fields’
presentations according to their contents. You can choose between adjusted
(the size of the field is adjusted to the contents), or equalized (the size of
the field is equalized with the size of the largest field).
Default value: adjusted

Note: The size of the field presentations never varies with the size of the
Business Object layout.

Detail Actions and Labels Panel: This panel groups the parameters that
manage the presentation of the actions available in a detail Business Object.
These parameters only apply to GUI client applications.

For information on the function of these actions, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and Layouts
of Generated Applications” on page 145, “Standard Functions” on page 146,
“Management of Persistent Data” on page 147; for information on the layout
of these actions, refer to “Standard Layouts of GUI Client applications” on
page 169, “Detail Business Objects” on page 181 in the same chapter.

Detail Actions:

GUI Display
This drop-down list allows you to specify the layout of actions: menu, push
buttons, pop-up menu, menu and popup menu or menu and push buttons.
Default value: menu

GUI Sizing
This drop-down list allows you to specify the size of the action
presentations according to the size of their labels. The size of the
presentation can be adjusted to the length of the label, or equalized</ ph> to
the length of the largest action label.
Default value: adjusted

60 VisualAge Generator Templates Standard Functions: User’s Guide

Note: The size of the presentations never varies with the size of the
Business Object layout.

This parameter is relevant when the value of the Display parameter is set
to push button; otherwise it is ignored.

GUI Position

This drop-down list allows you to specify whether the push buttons are
located in the layout from left to right (left) or from right to left (right).
Default value: left

Note: With the right to left orientation, the alignment of push buttons is
right oriented:

Default value: right

GUI CRUD Activation Control

This check box allows you to specify a control on when the create, read,
update and delete actions are active. If you check this option, the action
menus or push buttons are enabled when the Business Object’s logical key
is present; when the key is not present they are disabled. Otherwise, the
action menus or push buttons are always enabled.
Default value: true

Labels:

GUI Check label
This field allows you to specify the label of the action that checks the
Business Object fields.
Default value: Check

GUI New label
This field allows you to specify the label of the action that initializes fields
in a detail.
Default value: New

GUI Create label
This field allows you to specify the label of the action that creates a
database row.
Default value: Create

Note: This parameter is disabled when the Update GUI policy parameter is
set to save.

GUI Read label
This field allows you to specify the action that reads database rows.
Default value: Read

Chapter 3. Information Model Entities and their Editors 61

GUI Save label
This field allows you to specify the label of the action that saves database
rows.
Default value: Save

Note: This parameter is disabled when the Update GUI policy parameter is
set to create/update.

GUI Update label
This field allows you to specify the label of the action that updates a
database row.
Default value: Update

Note: This parameter is disabled when the Update GUI policy parameter is
set to save.

GUI Delete label
This field allows you to specify the label of the action that deletes a
database row.
Default value: Delete

GUI Show message label

This field allows you to specify the label of the action that opens the
window displaying error messages.
Default value: Messages

Note: This action is not provided in the standard generated applications.

GUI Menu label
This field allows you to specify the label of the menu bar item which
contains the detail actions menu choices (Update, Delete...)

List View Panel: This panel groups the parameters that manage the
presentation of the list Business Object and the presentation of the fields in
the list.

For information on the presentations provided by the following parameters,
refer to “Part 3. Standard Use of VAGTemplates” on page 107, “Chapter 5.
Standard Functions and Layouts of Generated Applications” on page 145,
“Standard Layouts of GUI Client applications” on page 169 and “Standard
Layouts of TUI Applications” on page 199.

Common Parameters:

Number of rows to fetch

This spin edit allows you to define how many rows will be fetched from
the database and stored in memory. If the number of data rows is greater

62 VisualAge Generator Templates Standard Functions: User’s Guide

than the size of the list (GUI), the end user will have to scroll the list to
view the following rows. When all the data in memory have been
displayed, the end user will have to activate a new database access.
Default value: 20

GUI Display
This drop-down list allows you to define the graphical presentation of the
list. You can choose among form, form with border and groupbox.
Default value: form

Label
This field allows you to specify a label for the list.
No default value

Note: This parameter is relevant when the Display parameter is set to
groupbox.

List prefilled
This check box allows you to define whether you want the lists to be
pre-filled when the window opens or not. In the latter case, the end user
will have to activate an action to fill the list.
Default value: false

GUI Only Parameters:

GUI Page display
This drop-down list allows you to specify whether the list displays all the
pages read in the database (display all read pages) or only the page being
read (display current page). In the latter case, the end user will have to
trigger an action to view the pages that have already been read.
Default value: Display current page

Note: This parameter is available when the Page display parameter is set
to Display all read pages.

GUI Paging policy
This drop-down list allows you to specify whether the paging in a list is
performed by actions (explicit paging) or using only the scroll bar
(auto-scrolling).
Default value: explicit paging

Note: This parameter is available when the Page display parameter is set
to display all read pages.

GUI Extraction criteria displayed

This check box allows you to define whether you want the extract criteria
to be laid out or not. In the latter case, the extract criterion fields will be
laid out only in the list container as the other fields are.

Chapter 3. Information Model Entities and their Editors 63

Default value: false

TUI Only Parameters:

TUI List pages stack number

This spin edit allows you to specify the maximum number of the read
pages’ keys that must be stored, which condition the navigation
possibilities.

For example, if you set the parameter to 5, the end user will be able to re-view
only the last five pages with which he/she has been working.

Note: The ″keys″ here are only pointers that reference a row in each page.
They are used to retrieve where each page begins and ends.

Default value: 30

List Container Panel:

Common Parameters:

Number of lines

This spin edit allows you to specify the number of lines in the list, which
condition the number of rows displayed simultaneously on screen. If the
number of data rows is greater than the size of the list (GUI), the end user
will have to scroll the list to view the following rows.
Default value: 5

Caution: When you define TUI applications, the number of lines that you
specify must not be greater than the maximum number of lines
that can be displayed on screen (size of the 3270 screen minus
header, trailer, and lines dedicated to displaying actions codes);
otherwise there will be warnings at generation time.

GUI Only Parameters:

GUI Number of columns

This spin edit allows you to specify the number of columns in the list.
Default value: 8

NOTE: In the generated application, if the number of columns is too large
for the width of the window a scroll bar will be generated to
allow the end user to scroll the list to see the columns that are not
displayed.

64 VisualAge Generator Templates Standard Functions: User’s Guide

Actions and Labels Panel: This panel groups parameters that manage the
presentation of the actions available in a list Business Object. These
parameters apply to GUI client applications.

For information on the function of these actions, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and Layouts
of Generated Applications” on page 145, “Standard Functions” on page 146,
“Management of Persistent Data” on page 147; for information on the layout
of these actions, refer to “Standard Layouts of GUI Client applications” on
page 169, “List Business Objects” on page 191 in the same chapter.

List Actions:

GUI Display
This drop-down list allows you to specify the layout of actions: menu, push
buttons, pop-up menu, menu and popup menu or menu and push buttons.
Default value: menu

GUI Sizing
This drop-down list allows you to specify the size of the action
presentations according to the size of their labels. The size of the
presentation can be adjusted to the length of the label, or equalized</ ph> to
the length of the largest action label.
Default value: adjusted

Note: The size of the presentations never varies with the size of the
Business Object layout.

This parameter is relevant when the value of the Display parameter is set
to push button; otherwise it is ignored.

GUI Position
This drop-down list allows you to specify whether the push buttons are
located in the layout from left to right (left) or from right to left (right).
Default value: left

Note: With the right to left orientation, the alignment of push buttons is
right oriented:

Default value: right

List Labels:

GUI Top label
This field allows you to specify the label of the action that reads the first
rows in the database.
Default value: Top

Chapter 3. Information Model Entities and their Editors 65

GUI Refresh label
This field allows you to specify the label of the action that refreshes the
list with the last saved data.
Default value: Refresh

GUI Extract label
This field allows you to specify the label of the action that reads the rows
that match the extract criteria.
Default value: Extract

For information on extract criteria, refer to topic “Entity Menu” on
page 36.

GUI Forward label
This field allows you to specify the label of the action that reads the next
rows in the database.
Default value: Next

GUI Backward label
This field allows you to specify the label of the action that reads the
previous rows in the database.
Default value: Previous

GUI Submit label
This field allows you to specify the label of the action that saves the
transactions that the end user performed on updatable list lines.
Default value: Submit

Note: This parameter is relevant when the value of the Layout type
parameter (Interface Unit Definition editor) is set to updatable list;
otherwise it is ignored.

GUI Menu label

This field allows you to specify the label of the menu bar item which
contains the list actions menu choices (Top, Extract...).

Foreign Key Help List Panel:

Foreign Key Help List:

Help list for all foreign keys

This check box allows you to define whether you want a help list
generated for all the foreign keys of the primary table or not.
Default value: checked

66 VisualAge Generator Templates Standard Functions: User’s Guide

A help list is a list of values available for a field that are offered to the
end user as an input aid. Help lists are only available on fields that are
foreign keys of the primary table.

A foreign key is a field or a set of fields, used to identify or access
particular rows in a table. Foreign key values must correspond with
primary key values in the primary table.

Help list prefilled

This check box allows you to define whether you want the help lists to be
pre-filled when the window opens or not. In the latter case, the end user
will have to trigger an action on the help list to view its contents.
Default value: unchecked

Help list page display

This drop-down list allows you to define whether the help list displays all
the pages read in the database (display all read pages) or only the page
being read (display current page). In the latter case, the end user will have
to trigger an action to view the pages that have already been read.
Default value: display current page

GUI Help list size
This spin-edit allows you to specify the size of the help lists, i.e. how
many values can be viewed without having to scroll the help list.
Default value: 4

Optimization Panel:

Service Level:

Service level
These radio-buttons allow you to choose to generate only the Business
Object layouts you will need for each of your generated applications:
detail and updatable list, detail and read-only list, detail only, updatable list
only, read-only list only.
Default value: detail and updatable list

How to Define a Business Object
Use the Business Object Definition editor to define a Business Object.

To create a new Business Object instance and open its Definition editor:
1. Select the Business Object entity, select New... from the Instance menu,
2. Enter the name of the instance, making the first 5 characters significant.
3. In the Package/Application combo box, select a package or an application

where the instance functional description will be stored,
4. Select the Open now check box,

Chapter 3. Information Model Entities and their Editors 67

5. Click OK.

To open the Definition editor of an already existing instance of Business
Object:
1. Select the Business Object entity,
2. Select the instance to edit,
3. Select Definition from the Instance menu.

Definition Editor
This editor groups the specification fields that manage the logical description
of the Business Object.

General Panel:

Package/Application:

Package/Application

This field indicates the package or the application where the the
functional description of the Business Object instance is stored.

Names:

Default use name

This field allows you to enter the default name that is to be automatically
proposed when this instance is used by another instance in the
Workbench. It appears in the Business Objects list when you add a
Business Object call to an Interface Unit.
Value: an alphanumeric string of 1 to 32 characters.

Display name
This field allows you to enter a display name. It will be displayed, in the
generated application, in the list of Business Objects in the window (GUI)
or the map (TUI) help panel where it is called.
Value: an alphanumeric string of 1 to 64 characters.

Descriptions Panel:

Descriptions:

Textual description

This multi-line edit allows you to enter a comment corresponding to the
instance.
Value: an alphanumeric string of 1 to 1023 characters.

68 VisualAge Generator Templates Standard Functions: User’s Guide

TIP: This field is not used in generating in the final application. You can
use it to communicate technical information about the instance to
other developers.

GUI On line help description

This multi-line edit allows you to enter a help text that will appear when
the end user requests help on the Business Object instance.
Value: an alphanumeric string of 1 to 1023 characters.

For information on generated on-line help, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and
Layouts of Generated Applications” on page 145, “Standard Functions” on
page 146, “On-Line Help” on page 160On-Line Help.

Tables and Fields Panel: This panel groups the specification fields that
define the Relational Tables mapped by the Business Object, and the Data
Elements called in the Business Object.

Tables: This list allows you to specify the tables that you want mapped by
the Business Object. By doing this, you can then define the Data Elements that
you want presented in the Business Object.

Table
The Table column displays the name of the Relational Tables. The first
table mapped is called the primary table and is the first appearing in the
Tables list. The other tables are called secondary tables. The fields of the
Business Object mapping to the primary table can be updated; the fields
mapping to secondary tables are read-only.

If you right click in this column, a pop-up menu displays.
v Select the Add choice to select a table and add it to the list.

To do this, you can also click on the Add Table... push-button.
v Select the Remove choice to remove the selected table from the list.
v Select the Open Table choice to open the Definition editor of the

Relational Table allowing you to consult or edit its functional
description.

Mapping
The Mapping column displays the default use name of the Relational
Table. By default it is its name. You can modify it by clicking on it and
typing a new default use name.

Columns:

Chapter 3. Information Model Entities and their Editors 69

Column
This column displays all the columns of the table selected in the Tables list.
You can select one or more columns of a Table and transfer it to the Fields
list by clicking the >> button.

Note: You cannot transfer the secondary table’s column that is a primary
key if the linked primary table’s column has already been called as
a Business Object’s field.

Key
The Key column indicates which of the columns are primary or foreign
keys.

Fields: This list presents all the fields making up the Business Object. You fill
it by transferring columns from the mapped tables (click >>) or by adding
non constant fields.

Data Element
The Data Element column displays the Data Element used by the field.

Field Name
The Field Name column displays the default use name of the Data Element
if it exists, otherwise the name of the column. You can modify the default
use name here by clicking on it and typing the new name.

To add a non constant field, right click in the Fields list area and select the
Add volatile choice or click on the Add Volatile push-button. The Add Volatile
Fields window opens up. Select a field in the list, then click OK.

Note: If you check the Filter option, the instances in the Add Volatile Fields
window are displayed according to the filter you set using the Set
Filter or the Quick Filters choices from the VAGTemplates Browser
View menu.

You can also add to the list, a non constant field that is not defined yet. In the
Add Volatile Fields window, click on the New Data Element push-button. The
New VAGT Instance window opens up, allowing you to create a Data Element.
As the creation finishes, the New VAGT Instance window closes. Select the new
Data Element in the Add Volatile Fields window to add it to the list.

Key and Criteria Panel: This panel groups the specification fields that define
the Business Object’s logical key as well as extraction and search criteria.

Fields: This list reflects the fields you selected in the Tables and Fields panel
(see above). It allows you to select the field that you want to be used as
logical key, extraction criteria and sort criteria. To do so, select a field in the
list and click the >> push button corresponding to the Logical Key, Extraction
Criteria, and/or Sort Criteria list.

70 VisualAge Generator Templates Standard Functions: User’s Guide

Logical Key:

Field Name
This list presents the field(s) of the Business Object used as logical key.
You select one or several fields from the Fields list and transfer them to
the Logical key list by clicking the corresponding >> button.

The logical key of a Business Object is the key field used when the end
user performs an elementary action (create, read, update, delete) on the
data from the primary table.

For example, let’s assume you specified the Name field as the Business Object’s
logical key. When the end user wants to create a new Staff member, the create
action processing will check if the row already exists in the database by checking
whether the name that the end user entered corresponds to an existing name.

TUI: The logical key is also used to identify the maps of one map group
when a Business Object is displayed on several maps. This is the
case when the Business Object’s width is greater than that of a map.

Note: The field defined as logical key cannot be left empty by the end
user; a value is always required.

Extraction Criteria: This list presents the field(s) of the Business Object used
as extraction criteria. You select one or several fields in the Fields list and
transfer them to the Extraction Criteria list by clicking the corresponding >>
button.

Extract Field
The Extract Field column displays the field used as extract criterion,
according to which the end user will be able to extract data.

Retrieve Policy
The Retrieve Policy drop—down list allows you to specify a comparison
operator that will condition the field extraction.

For example, if you want to allow the end user to extract staff members
according to their names, you will define the Name field as extract field and
specify the match comparison operator. The end user searching for a name will
type it in the corresponding field and the rows where the name matches the typed
name will be extracted and displayed to the end user.

Sort Criteria: This list presents the field(s) of the Business Object used as sort
criteria. You select one or more fields and transfer them to the Sort Criteria list
by clicking the corresponding >> button.

Sort Field
The Sort Field column displays the field used as sort criterion, according to
which the end user will be able to sort data.

Chapter 3. Information Model Entities and their Editors 71

Sort Direction
The Sort direction drop-down list allows you to specify an order (ascending
or descending) that will condition the sort of data.

Field Attributes Panel: This panel groups the specification fields that define
links between a Business Object’s fields and a Relational Table’s columns.

Fields:

Field Name
This column displays the name of the fields presented in a Business
Object. This name corresponds to the default use name you specified for
the Data Element.

Table
This column indicates, for each field of the Business Object, the name of
the Relational Table to which it maps.

Note: If a field is volatile - if it does not map to any table column- this
column displays ″no mapping″.

Required
This drop-down list allows you to specify, for each field of the Business
Object if:
v it is required: The end user must always enter a value. The field is

initialized empty when possible.
For example, the Name field is alphanumeric and it is the logical key of the
Business Object. To trigger an action, the end user must enter a name in the
field. However, when opening the application, the field can be initialized empty.

v it is optional: the end user does not need necessarily to enter a value.
The field is initialized with its default value when it has one, otherwise
it is initialized empty.

v it is required with default: in the generated user interface, the field must
always be filled in. It is initialized with a default value: with the null
value for numeric, date, time, timestamp Data Element for which no
default value has been defined, with the default value of the Data
Element otherwise.

Note: For an alphanumeric Data Element, the field’s default value is an
empty string if no value has been defined for the Data Element.

Access Level
This drop-down list allows you to specify, for each field of the Business
Object, whether it is accessed anytime an action is activated (always), or
only when the Business Object is presented as a detail (on details only).
This parameter is used to optimize access times.

72 VisualAge Generator Templates Standard Functions: User’s Guide

NOTE:: The value specified for the Access Level parameter must be
consistent with the value of the Laid Out parameter.

Laid Out
This drop-down list allows you to specify, for each field of the Business
Object, whether the field is presented in the list and in the detail (always),
or in neither case (never), only when the Business Object is presented as a
detail (on details only) or only when the Business Object is presented as a
list (on list only).

Updatable
This column indicates, for each field of the Business Object, whether it can
be updated or not.

SQL Join Conditions Panel: This panel groups the specification fields that
allow you to define join conditions between the primary and secondary tables
to which the Business Object maps. The bottom part of the panel varies
according to the type of WHERE clause you choose in the Type area.

Note: Several join conditions can be created using the same source column
and target column provided that their source tables and/or target
tables are different.

Type: The Type area radio-buttons allow you to choose whether the join
condition is expressed as a standard WHERE clause or as a customized WHERE
clause.

A WHERE clause is the expression in SQL language of the links that join one
column of a source table and one or more columns of a target table.

The VAGTemplates Workbench provides a default initialization of a join
condition:
v when you request it explicitly using the Compute push-button which enables

you to automatically compute a join condition from the first two tables
mapped.

v when you exit the Business Object Definition editor, if at least two tables
have been mapped and no condition has been defined.

The following fields are displayed if you have checked the standard WHERE
clause radio-button.

Source Table: This drop-down list allows you to select the source table of the
join condition.

Source Columns: This multi-line list allows you to select the source table’s
column that is the source of the join condition.

Chapter 3. Information Model Entities and their Editors 73

Target Table: This drop-down list allows you to select the target table of the
join condition.

Target Columns: This multi-line list allows you to select the target table’s
column that is the target of the join condition.

Add Join Field: This push button allows you to set the join condition when
you have selected one source field and one target field in the Source Columns
and the Target Columns lists. The condition is then added to the list below.
v The Source field column displays the identifier of the source of the join

condition.
v The Target field column displays the identifier of the target of the join

condition.

The following multi-line edit box is displayed if you have checked the
cutomized WHERE clause radio-button.

Enter a join condition: This multi-line edit box allows you to write complex
join conditions in SQL language. For example, you can create a join condition
between more than two tables, or a join having less than or greater than
condition between tables.

To write a complex join condition in this panel, you must write the
WHERE-clause part of an SQL statement with the VisualAge Generator
syntax, otherwise it will not be recognized in VisualAge Generator.

For example: We want to write a join condition between the ORG and the STAFF
tables, where the Manager column of STAFF corresponds to the ID column of ORG.
This simple condition can typically be defined as a standard WHERE clause. If we
wanted to write it as a customized WHERE clause, the syntax would be:
T1. MANAGER = T2. ID 3

The corresponding standard SQL clause, as you would write in DB2 is:
(...)
FROM STAFF, ORG
WHERE MANAGER = ID

The Compute push-button enables you to automatically compute a join
condition from the first two tables mapped.

How to Specify the Business Object Parameters
To specify the generation parameters for a Business Object, open its
Generation Parameters editor from the instance Definition editor clicking on

3. T1. and T2. are the VisualAge Generator aliases for the first and the second tables called respectively in the join
condition.

74 VisualAge Generator Templates Standard Functions: User’s Guide

the Generation Parameters push-button, or from the VAGTemplates Browser
(Instance menu or pop-up menu, Generation Parameters choice).

Generation Parameters Editor
The editor panels are already filled in with the default parameters set at
initialization of the Workspace or the default parameters you set for the
Business Object entity using the Default Generation Parameters choice from
the Entity menu.

If you need to modify the parameters for a specific Business Object instance,
you can change them here.

Note: We will not document all the parameters here but only those
parameters that cannot be specified using the Default Generation
Parameters choice from the Entity menu. For a detailed description of
the Business Object parameters, refer to “Default Generation
Parameters” on page 57.

General Panel:

Package/Application
This field indicates the package or the application where the generation
parameters defined for the Business Object instance will be stored.

Target name
This parameter is filled in with the instance name. It is used to build the
name of the components generated from this instance. If this name
exceeds 5 characters, it will be truncated. Therefore you should enter a
target name beginning with 5 significant characters so that it is
differentiated from all other target names of the same entity.

Long target name
This field allows you to enter a character string (64 max.) that will be
used as prefix of the generated Java and Smalltalk classes.
Default value: instance name

GUI Help panel ID

This parameter is filled in with the default identifier for the panel that
will display help on the Business Object instance. This identifier will be
used, in the final GUI client application, to call the help panel
corresponding to the Business Object on which the end user requests help.
The values of the Business Object panel identifiers can range from 5,000 to
9,999.

How to Specify the Business Object Extensions
Restricted to use of customized generators involving Information Model
extensions.

Chapter 3. Information Model Entities and their Editors 75

Data Element

What is a Data Element?
A Data Element represents an information element stored in a Relational
Table column or manipulated as a Business Object field. Its description
includes a type, a length, labels, on-line help text for end-users, value checks,
etc.

VAGTemplates manages five types of Data Element:
v Alphanumeric: a character string-type data;
v Numeric: an integer or decimal, signed or unsigned numeric value;
v Date: a date value with year, month, and day;
v Time: a time value with hours, minutes, and seconds;
v Timestamp: a concatenated date and time value used to manage versioning.

Data Element instances are automatically created by the import of the
database.

For example, if you import a database that manipulates data such as dates of birth or
names, VAGTemplates will create Data Element instances such as BIRTHDATE (date
type) and DEPTNAME (alphanumeric type).

Depending on the import option you chose, VAGTemplates will either create
one Data Element instance per column of the database tables or reuse the
same instance whenever identical columns are common to several tables.

During the import, VAGTemplates automatically fills in some of the Data
Element input fields with information from the database, like the value type
and the format. Labels are also filled in by VAGTemplates. You can then
complete the description of the imported Data Elements. If a field is already
filled in, information coming from a new import will not overwrite the
content of the field.

When creating new Data Elements, the minimum fields to be described are
the Value type and the Size fields.

Default Generation Parameters
VAGTemplates includes a facility that enables you to redefine the default
parameters at initialization of the Workspace.

The Default Generation Parameters choice from the Entity menu allows you
to define several parameters at entity level that will be default parameters for
all the entity instances within a Workspace. When defining an instance, you
will only have to set the remaining parameters. You can of course modify
these default parameters as you wish at instance level.

76 VisualAge Generator Templates Standard Functions: User’s Guide

You can specify the following parameters by selecting the Default Generation
Parameters choice from the Entity menu.

Default Generation Parameters Editor

General Panel:

Common Parameters:

SQL type
This drop-down list allows you to define the fine type of the Data
Element. This fine type describes data more precisely. It is required by
VisualAge Generator. The possible values correspond to the data types
managed by VisualAge Generator (for information, refer to your
VisualAge Generator documentation).
Default value: character

Target Packages/Applications Panel: This panel allows you to specify the
project (VAGTemplates on Java only) and the packages/applications where
the components generated from the Data Element will be stored.

Target Packages/Applications:

JAVA Target project
This field is used to specify the name of the project that includes all the
target packages associated with the Data Element.

Visual package/application
This field is used to indicate the package/application where the visual
components generated from the Data Element will be stored.

Logic package/application
This field is used to indicate the package/application where the logic
components generated from the Data Element will be stored.

Services package/application
This field is used to indicate the package/application where the service
components generated from the Data Element will be stored.

Labels Panel:

Labels:

Default label
This field allows you to specify a default label for the field that presents
the Data Element in the generated application.

The default label is a label displayed next to the field in the generated
application. It helps the end user identify the nature of the displayed data.
Default value: <no default value>

Chapter 3. Information Model Entities and their Editors 77

Column label
This field allows you to specify a label for the field that presents the Data
Element in a list column.
Default value: <no default value>

Note: If you do not specify a default value, the display name will be used
as the field’s label, or the Data Element’s name if the display name
is not defined. If you do not specify a column label, the default
value or the display name will be used as the field’s label, or the
instance name if neither are defined.

Display Panel:

Common Parameters:

Comment display
This drop-down list allows you to choose if you want the native value of
the Data Element displayed - that is the value itself - or the textual value
of the Data Element - that is the comment associated with the value.
Default value: native

Note: This parameter is enabled when you specify a value display that
supports textual values, i.e. combos, drop-down lists and column
lists.

GUI Only Parameters:

Value display
This drop-down list allows you to choose the graphical presentation you
want for the Data Elements. You can choose among the following
presentations:
v horizontal radio button, vertical radio button,

v drop-down list,

v combo, dropped down combo,

v horizontal scale, vertical scale,

v static,

v edit, read-only edit, multi-line edit, read-only multi-line edit, formatted edit,

v password.
Default value: edit

For more details on the presentations produced by these values, refer to
“Part 3. Standard Use of VAGTemplates” on page 107, “Chapter 5.
Standard Functions and Layouts of Generated Applications” on
page 145, “Standard Layouts of GUI Client applications” on page 169,
“Fields” on page 169.

78 VisualAge Generator Templates Standard Functions: User’s Guide

Pattern
This field allows you to define a data input mask in formatted edit boxes.

For example, if the end user has to input product reference numbers, you can
specify a formatted edit for this field and define a pattern such as
a999″-″9999″-″a. The end user will be allowed to enter data that respect this
format: 1 character, 3 digits, four digits, 1 character.

For information on the valid characters recognized by VisualAge
Generator for coding an input mask in formatted edits, refer to your
VisualAge Generator documentation.

Note: This parameter is enabled if the display parameter is set to formatted
edit.

Max display size
This spin-edit allows you to determine a maximum width for the fields in
your layouts regardless of the logical size of the Data Element. You can
therefore optimize the number of fields in one layout.

If you set the Max display size parameter to 5, all the fields using this Data
Element will be displayed in a 5-character long edit box, for example. To see the
end of a data field value, the end-user will have to scroll the field with the right
arrow key. Default value: 99999

Note: If the logical size of the Data Element (size parameter for
alphanumeric Data Elements, or capacity and precision parameters
for numeric Data Elements) is smaller than the maximum display
size, the latter is ignored and the presentation adjusts to the logical
size.

Horizontal Orientation

The Horizontal orientation drop-down list allows you to define the
orientation of the graphic interface, with two possible values: left-to-right
and right-to-left.

You can define the horizontal orientation for a Workspace or for a Data
Element.
Default value: left to right

How to Define a Data Element
Use the Data Element Definition editor to update the definition of a Data
Element pre-filled during the import or to define a Data Element that you
created.

To create a new Data Element instance and open its Definition editor:
1. Select the Data Element entity, select New... from the Instance menu,
2. Enter the name of the instance, making the first 5 characters significant,

Chapter 3. Information Model Entities and their Editors 79

3. In the Package/Application combo box, select a package or an application
where the instance functional description will be stored,

4. Select the Open now check box,
5. Click OK.

To open the Definition editor of an already existing instance of Data Element:
1. Select the Data Element entity,
2. Select the instance to edit,
3. Select Definition from the Instance menu.

Definition Editor
This editor groups the specification fields that manage the logical description
of a Data Element instance.

General Panel:

Package/Application:

Package/Application

This field indicates the package or application where the functional
description of the Data Element instance is stored.

Names:

Default use name
This field allows you to enter the default name which will be
automatically proposed when this instance is used by another instance. It
appears in the Fields list in the Tables and Fields panel when you add a
field to a Business Object, for example.
Value: an alphanumeric string of 1 to 32 characters.

Display name
This field allows you to enter a display name. It will appear, in the
generated applications, in the list of Data Elements in the Business Object
help panel if this Data Element is called in a Business Object.
Value: an alphanumeric string of 1 to 64 characters.

Note: The display name will be used as the field’s label in the generated
application if you do not specify a default label.

For information on default labels, refer to the description of the 77.

Type: The Type area varies according to the type of the Data Element, that is
the value set for the Value type field.

80 VisualAge Generator Templates Standard Functions: User’s Guide

Value type
All Data Elements — This drop-down list allows you to specify whether
the value is an alphanumeric, a numeric, a date, a time or a timestamp value.
Default value: alphanumeric

TUI: In TUI applications, the fields can only be numeric or alphanumeric.
The other formats are considered alphanumeric in VisualAge
Generator.

Size
For alphanumeric Data Elements — The Size spin edit allows you to define
the length (in number of characters) of the Data Element.
Default value: 1

Case control
For alphanumeric Data Elements — The Case control drop-down list allows
you to specify whether the values that the end user enters in this field
will be changed into uppercase (uppercase), lowercase (lowercase) or left as
inputted (none).
Default value: none

TUI: Only the none and uppercase values are taken into account. Lowercase
is considered none.

Capacity
For numeric Data Elements — The Capacity spin edit allows you to define
the number of digits allowed before the decimal point.
Default value: 1
Value:0 to 99 999 999 999

Precision
For numeric Data Elements — The Precision spin edit allows you to define
the number of digits allowed after the decimal point.
Default value: 0
Value:0 to 99 999 999 999

Value style
For all Data Elements but alphanumeric ones — This drop-down list allows
you to attach an instance of the Value Style entity to the Data Element.

Note: This parameter is disabled if no Value Style instance has been
defined (for information, refer to “Value Style” on page 102).

Descriptions Panel:

Descriptions:

Textual description

Chapter 3. Information Model Entities and their Editors 81

This multi-line edit allows you to enter a short description of the instance.
Value: an alphanumeric string of 1 to 1023 characters.

TIP: This field is not used in generating in the final application. You can
use it to communicate technical information about the instance to
other developers.

On line help description

This multi-line edit allows you to enter a text that will appear when the
end user requests help on a field using this Data Element instance.
Value: an alphanumeric string of 1 to 1023 characters.

For information on generated on-line help, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and
Layouts of Generated Applications” on page 145, “Standard Functions” on
page 146, “On-Line Help” on page 160.

Default Value Panel:

Default Value:

Default value mode

This drop-down list allows you to initialize a default value for the Data
Element or no default value (none). The default value can be a constant
value or a system value (system date, time or timestamp).

If a default value is specified for a field in the imported database, the
default value mode parameter is set accordingly.
Default value: none

Note: The default value that will be used for a field in the generated
application depends on its type:
v The Data Element is alphanumeric:

– The default value mode is set to none; the field’s default value
is an empty string.

– The default value mode is set to constant; the field’s default
value is the default value you specified when customizing the
Data Element.

– The system value is irrelevant for alphanumeric fields.
v The Data Element is numeric:

– The system value is irrelevant for numeric fields.
– The default value mode is set to constant; the field’s default

value is the default value you specified when customizing the
Data Element.

82 VisualAge Generator Templates Standard Functions: User’s Guide

– The default value mode is set to none; the field’s default value
is an empty string.

v The Data Element is date, time, or timestamp:
– The default value mode is set to none; the field’s default value

is an empty string.
– The default value mode is set to constant; the field’s default

value is the default value you specified when customizing the
Data Element.

– The default value mode is set to system; the field’s default
value is the system date, time or timestamp.

Value
The Value field allows you to enter a value that will be used as the default
value at initialization of a new field in the generated application.

Note: A default value is required for numeric, date, time and timestamp
Data Elements.

Note: This parameter depends on the value specified for the Default value
mode parameter. It is ignored if the Default value mode parameter is
set to none or system.

Comment
The Comment field allows you to enter a comment that describes the
value.

Check Type Panel: The panel contains only the Check type field when the
value specified for this field is no check or customized check.

It additionally contains the Value Table area if the value specified for the Check
type field is value table or the Interval area if the value specified for the Check
type field is interval.

Check type

This drop-down list allows you to specify whether the value is checked by
an interval, a value table, a customized check or if no check is defined on the
value.

If you specify a customized check, at generation time, insertion points are
created in the generated parts for you to insert specific code to implement
your customized check (see “Part 3. Standard Use of VAGTemplates” on
page 107, “Chapter 6. Application Generation and Enhancement” on
page 225, “Generated Architecture and Principles” on page 240, “Hook
on the Client Side of an Application” on page 262).
Default value: no check

Chapter 3. Information Model Entities and their Editors 83

Value Table: This area allows you to customize the value table.

To add a value or a comment, right click in the corresponding column and
select Add from the pop-up menu.

To remove a value or a comment, right click in the corresponding column and
select Remove from the pop-up menu.

Value
This column allows you to enter the authorized values.

Comment
This column allows you to enter comment for each authorized value.

Interval: This area is used to cutomize the interval.

Type
The Type drop-down list allows you to define whether the interval
includes its bounds or not.
Default value: closed-closed

Minimum
The Minimum field allows you to enter the minimum value of the interval.
Default value: <no value> (alphanumeric value type)
0.0 (numeric value type)
<current system date> (date value type)
<current system time> (time value type)
<current system timestamp> (timestamp value type)

Maximum
The Maximum field allows you to enter the maximum value of the
interval.
Default value: <no value> (alphanumeric value type)
0.0 (numeric value type)
<current system date> (date value type)
<current system time> (time value type)
<current system timestamp> (timestamp value type)

How to Specify the Data Element Parameters
To specify the generation parameters for a Data Element, open its Generation
Parameters editor from the instance Definition editor clicking on the
Generation Parameters push-button, or from the VAGTemplates Browser
(Instance menu or pop-up menu, Generation Parameters choice).

Generation Parameters Editor
The Generation Parameters editor panels are already filled in with the default
parameters that were set at initialization of the Workspace, or that you set for
the Data Element entity using the Default Generation Parameters choice from
the Entity menu.

84 VisualAge Generator Templates Standard Functions: User’s Guide

However, if you need to modify the parameters for a specific Data Element,
you can change them here.

Note: We will not document all the parameters here but only those
parameters that cannot be specified using the Default Generation
Parameters choice from the Entity menu. For a detailed description of
the Data Element parameters, refer to “Default Generation
Parameters” on page 76.

General Panel:

Package/Application
This field indicates the package or the application where the generation
parameters of the Data Element instance will be stored.

Target name
This parameter is filled in with the instance name. It is used to build the
name of the components generated from this instance. If this name
exceeds 10 characters, it will be truncated. Therefore you should enter a
target name beginning with 10 significant characters so that it is
differentiated from all other target names.

Long target name
This field allows you to enter a character string (64 max.) that will be
used as prefix of the generated Java and Smalltalk classes.
Default value: instance name

GUI Help panel ID

The parameter is filled in with the default identifier of the panel that will
display help on the Data Element instance. This identifier will be used in
the final GUI client application to call the help panel corresponding to the
field on which the end user requests help. The values of the Data Element
panel identifiers can range from 10,000 to 30,000.

How to Specify the Data Element Extensions
Restricted to use of customized generators involving Information Model
extensions.

Interface Unit

What is an Interface Unit?
An Interface Unit is the interface that presents Business Objects and specifies
whether they are used as details or as lists.
v A detail Business Object is used to represent one row from one (or more)

table.
v A list Business Object is used to represent many rows from one (or more)

table.

Chapter 3. Information Model Entities and their Editors 85

The Interface Unit is also used to define navigation between Interface Units.

In the generated GUI client applications, the Interface Unit will produce a
graphical window; in the generated TUI applications, it will produce a 3270
screen.

To define an Interface Unit you have to:
v create an Interface Unit,
v indicate which Business Objects the Interface Unit contains, and indicate if

it is used as a detail or as a list for each Business Object,
v indicate which other Interface Unit(s) your Interface Unit can display.

Default Generation Parameters
VAGTemplates includes a facility that enables you to redefine the default
parameters set at initialization of the Workspace.

The Default Generation Parameters choice from the Entity menu allows you
to define several parameters at entity level that will be default parameters for
all the entity instances. When defining an instance, you only have to set the
remaining parameters. You can of course modify these default parameters as
you wish at instance level.

Default Generation Parameters Editor
For information on the presentations produced by the following parameters,
refer to “Part 3. Standard Use of VAGTemplates” on page 107, “Chapter 5.
Standard Functions and Layouts of Generated Applications” on page 145,
“Standard Layouts of GUI Client applications” on page 169, “Windows” on
page 196.

General Panel:

Common Parameters:

Title
This field allows you to specify a title for the generated window (GUI) or
map (TUI).

Note: If you do not specify a title, the Interface Unit name will be used as
the generated window (GUI) or map (TUI) title.

TUI Only Parameters:

Fastpath
This field allows you to specify a code for the generated map that the end
user can use to reach it directly from another map. In the generated
application, this code will appear in the root map next to the title of the
child map and on top of the current map.

86 VisualAge Generator Templates Standard Functions: User’s Guide

Default value: <first six characters of the Interface Unit's name>

Caution: Be careful not to give the same fastpath to different maps.

Target Packages/Applications Panel: This panel allows you to specify the
project (VAGTemplates on Java only) and the packages/applications where
the components generated from the Interface Unit will be stored.

Target Packages/Applications:

JAVA Target project
This field is used to specify the name of the project that includes all the
target packages associated with the Interface Unit.

Visual package/application
This field is used to indicate the package/application where the visual
components generated from the Interface Unit will be stored.

Logic package/application
This field is used to indicate the package/application where the logic
components generated from the Interface Unit will be stored.

Services package/application
This field is used to indicate the package/application where the service
components generated from the Interface Unit will be stored.

GUI Window Panel:

GUI Window: This area groups the parameters that define the presentation
of a GUI Interface Unit and the layout of the Business Objects called in this
Interface Unit.

Interface unit display

This drop-down list allows you to define the graphical aspect of the
generated window: notebook2, Windows notebook, PM notebook or normal.
Default value: normal

Business object layout
This drop-down list allows you to define the arrangement of the Business
Object layouts in the generated window.

You can choose between a vertical arrangement where the Business
Objects are positioned from top to bottom then from left to right, or a
horizontal arrangement where the Business Objects are positioned from
left to right then from top to bottom.
Default value: top to bottom

NOTE: With right to left orientation, you can choose between a vertical
arrangement where the Business Objects are positioned from top to

Chapter 3. Information Model Entities and their Editors 87

bottom then from right to left, or a horizontal arrangement where
the Business Objects are positioned from right to left then from top
to bottom.

Minimize button
If this option is checked, it will be possible to minimize the generated
window.
Default value: true

Maximize button
If this option is checked, it will be possible to maximize the generated
window.
Default value: true

Resize button
If this option is checked, it will be possible to resize the generated
window.
Default value: true

Menu Titles Panel: This panel groups the parameters that define the labels
of menus that depend on the Interface Unit.

Menu Titles:

Menu label
This field allows you to specify the menu label that the end user selects to
display the target Interface Unit.

Windows menu title

This field allows you to specify a title for the menu item from which the
end user will display open windows.
Default value: Windows

Navigation menu title

This field allows you to specify a title for the menu item that the end user
will use to display target windows.
Default value: Navigation

Help menu title
This field allows you to specify a title for the menu item from which the
end user will call on-line help.
Default value: Help

Edit menu title
This field allows you to specify a title for the menu item from which the
end user will activate Copy, Cut and Paste actions on input areas.
Default value: Edit

88 VisualAge Generator Templates Standard Functions: User’s Guide

Edit Menu Panel: This panel groups the parameters that define the Edit
menu actions’ labels.

Edit Menu:

Cut label
This field allows you to specify a title for the menu option from which the
end user will activate a cut action.
Default value: Cut

Copy label
This field allows you to specify a title for the menu option from which the
end user will trigger a copy action.
Default value: Copy

Paste label
This field allows you to define the title of the menu option from which
the end user will trigger a paste action.
Default value: Paste

How to Define an Interface Unit
Use the Interface Unit Definition editor to define an Interface Unit.

To create a new instance of Interface Unit and open its Definition editor:
1. Select the Interface Unit entity, select New... from the Instance menu,
2. Enter the name of the instance, making the first 5 characters significant,
3. In the Package/Application combo box, select a package or an application

where the instance functional description will be stored,
4. Select the Open now check box,
5. Click OK.

To open the Definition editor of an already existing Interface Unit instance:
1. Select the Interface Unit entity,
2. Select the instance to edit,
3. Select Definition from the Instance menu.

Definition Editor
This editor groups the specification fields that manage the logical description
of the Interface Unit.

General Panel:

Package/Application:

Package/Application

Chapter 3. Information Model Entities and their Editors 89

This field indicates the package or the application where the Interface
Unit instance functional description is stored.

Names:

Default use name

This field allows you to enter the default name that is to be automatically
proposed when this instance is used by another instance. It appears when
you add this Interface Unit to another Interface Unit’s list of Target
Interface Units.
Value: an alphanumeric string of 1 to 32 characters.

Display name
This field allows you to enter a display name. It will be displayed, in the
generated application, in the list of target windows (GUI) or maps (TUI)
in the help panel of the parent window or map.
Value: an alphanumeric string of 1 to 64 characters.

Type:

Type
These radio buttons allow you to specify whether the generated window
(GUI) or map (TUI) will be the entry point of the generated application
from which the end user will navigate (root) or a standard window or
map (simple).
Default value: simple.

Descriptions Panel:

Descriptions:

Textual description

This multi-line edit allows you to enter a comment on the instance.
Value: an alphanumeric string of 1 to 1023 characters.

TIP: This field is not used when generating the final application. You can
use it to communicate technical information about the instance to
other developers.

On line help description

This multi-line edit allows you to enter a help text that will appear when
the end user requests help on the Interface Unit instance.

For information on generated on-line help, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and
Layouts of Generated Applications” on page 145, “Standard Functions” on
page 146, “On-Line Help” on page 160.

90 VisualAge Generator Templates Standard Functions: User’s Guide

Business Objects Panel: This panel allows you to define the Business Objects
called by the Interface Unit and their presentation, and to specify Target
Interface Units.

Business Objects:

Business Object
This column allows you to add the Business Object instance(s) called in
the Interface Unit.

Layout Type
This column indicates whether a Business Object is used as a detail, as a
list, or as an updatable list.

Component Name
This column indicates the name of the Business Object used in the
Interface Unit. It corresponds to the default use name you specified when
defining the Business Object. You can modify it here by clicking on it and
typing the new name.

For example, if you use the same Business Object twice in an Interface Unit, you
can assign a different name to each use.

To add a Business Object to the list of Business Objects, right click in the
Business Objects list area and select Add from the pop-up menu or click on the
Add... push-button. In the Add Business Objects window, select the Business
Object you want to add from the drop-down list then click OK.

Note: If you check the Filter option, the instances in the Add Business Objects
window are displayed according to the packages/applications you
selected in the VAGTemplates Browser.

You can also add to the list, a Business Object that is not defined yet. In the
Add Business Objects window, click on the New Business Object push-button.
The New VAGT Instance window opens up, allowing you to create a Business
Object. As the creation finishes, the New VAGT Instance window closes. Select
the new Business Object in the Add Business Objects window to add it to the
Business Objects list.

To remove a Business Object from the list, select the Business Object, right
click in the Business Objects list area and select Remove from the pop-up menu
or click on the Remove push-button.

To view the description of an Business Object, right click on its name in the
column and select the Open Business Object choice from the pop-up menu.

Target Interface Units Panel:

Chapter 3. Information Model Entities and their Editors 91

Target Interface Units:

Interface Unit
This column allows you to add the Interface Unit instances that are called
by the current Interface Unit. This defines the navigation from one
generated window (GUI) or map (TUI) to the next.

Note: The current Interface Unit instance cannot be specified as target
Interface Unit of itself.

Component Name
This column indicates the default use name of the Interface Unit. It
corresponds to the default use name you specified when defining the
Interface Unit. You can modify it here by clicking on it and typing the
new use name.

To add an Interface Unit in the list of Interface Units, right click in the
Interface Units list area and select Add from the pop-up menu or click on the
Add... push-button. In the Add Interface Units window, select the Interface Unit
you want to add from the drop-down list and select OK.

Note: If you check the Filter option, the instances in the Add Interface Units
window are displayed according to the packages/applications you
selected in the VAGTemplates Browser.

You can also add to the list, an Interface Unit that is not defined yet. In the
Add Interface Units window, click on the New Interface Unit push-button. The
New VAGT Instance window opens up, allowing you to create an Interface
Unit. As the creation finishes, the New VAGT Instance window closes. Select
the new Interface Unit in the Add Interface Units window to add it to the
Interface Units list.

To remove an Interface Unit from the list, select the Interface Unit, right click
in the Interface Units list area and select Remove from the pop-up menu or
click on the Remove push-button.

To view the description of a target Interface Unit, right click on its name in
the column and select the Open Interface Unit choice.

How to Specify the Interface Unit Parameters
To specify the generation parameters for an Interface Unit, open its
Generation Parameters editor from the instance Definition editor clicking on
the Generation Parameters push-button, or from the VAGTemplates Browser
(Instance menu or pop-up menu, Generation Parameters choice).

92 VisualAge Generator Templates Standard Functions: User’s Guide

Generation Parameters Editor
The Generation Parameters editor panels are already filled in with the default
parameters set at initialization of the Workspace or the default parameters you
set for the Interface Unit entity using the Default Generation Parameters
choice from the Entity menu.

If you need to modify the parameters for a specific Interface Unit, you can
change them here.

Note: We will not document all the parameters here but only those
parameters that cannot be specified using the Default Generation
Parameters choice from the Entity menu. For a detailed description of
all Interface Unit parameters, refer to “Default Generation Parameters”
on page 86.

General Panel:

Package/Application
This field indicates the package or the application where the generation
parameters defined for the Interface Unit instance will be stored.

Target name
This parameter is filled in with the instance name. It is used to build the
name of the components generated from this instance. If this name
exceeds 5 characters, it will be truncated. Therefore you should enter a
target name beginning with 5 significant characters so that it is
differentiated from all other target names.

Long target name
This field allows you to enter a character string (64 max.) that will be
used as prefix of the generated Java and Smalltalk classes.
Default value: instance name

GUI Help panel ID

This parameter is filled in with the default identifier for the panel that
will display help on the Interface Unit instance. This identifier will be
used, in the final application, to call the help panel corresponding to the
GUI window on which the end user requests help. The values of the
Interface Unit panel identifiers can range from 2,000 to 4,999.

How to Specify the Interface Unit Extensions
Restricted to use of customized generators involving Information Model
extensions.

Chapter 3. Information Model Entities and their Editors 93

Relational Table

What is a Relational Table?
A Relational Table is either a Table, comprising a list of columns, or a View,
comprising several columns extracted from one or more Tables.

Relational Table instances are automatically created by the import function.
You cannot create Relational Table instances in the Workbench.

The created Relational Table instances have the same structure as the
imported database tables from which they originated. You can consult their
definition and update the description of the Data Element instances called in
the table’s columns.

The Relational Table entity is also used to generate help lists in the final
application.

For information on help lists, refer to “Part 3. Standard Use of VAGTemplates”
on page 107, “Chapter 5. Standard Functions and Layouts of Generated
Applications” on page 145, “Standard Functions” on page 146, “Management
of Persistent Data” on page 147, “Actions Available for Help Lists” on
page 151.

Default Generation Parameters
VAGTemplates includes a facility that enables you to redefine the default
parameters set at initialization of the Workspace.

The Default Generation Parameters choice from the Entity menu allows you
to define several parameters at entity level that will be default parameters for
all the entity instances within a Workspace. When defining an instance, you
only have to set the remaining parameters. You can of course modify these
default parameters as you wish at instance level.

Default Generation Parameters Editor

General Panel:

Common Parameters:

Concurrency management

This drop-down list allows you to specify a control on the concurrent
accesses to a database. Values can be:
v column: the consistency check is based on the value you specified for

the Concurrency management column parameter in the Relational Table
Definition.

94 VisualAge Generator Templates Standard Functions: User’s Guide

v read: the update is performed only if all read fields are identical with
those in the database, whatever value you specified for the Concurrency
management column parameter.

v none: no concurrency management. The value specified in the
Concurrency management column parameter in the Relational Table
Definition is then not taken into account.

Default value: column

SQL Qualified
This check box allows you to specify whether you want the generated
table names to be prefixed with a qualifier code or not. The SQL Qualifier
must not be empty if isSqlQualifier is set to true for a table.
Default value: unchecked

Note: The qualifier and the name are defined in the database.

Table qualifier
This field allows you to specify the qualifier code that prefixes the table
name in the database.
Default value: Table qualifier in the database

Note: This parameter is enabled when the SQL Qualified parameter is
checked.

Target Packages/Applications Panel: This panel allows you to specify the
project (VAGTemplates on Java only) and the packages/applications where
the components generated from the Relational Table will be stored.

Target Packages/Applications:

JAVA Target project
This field is used to specify the name of the project that includes all the
target packages associated with the Relational Table.

Visual package/application
This field is used to indicate the package/application where the visual
components generated from the Relational Table will be stored.

Logic package/application
This field is used to indicate the package/application where the logic
components generated from the Relational Table will be stored.

Services package/application
This field is used to indicate the package/application where the service
components generated from the Relational Table will be stored.

Foreign Key Help List Panel:

Foreign Key Help List:

Chapter 3. Information Model Entities and their Editors 95

Number of rows to fetch

This spin edit allows you to define how many rows per page the help list
generated from the table will display.
Default value: 20

GUI Top label
This field allows you to specify the label of the menu item or push button
that triggers an action to reach the top of the help list.
Default value: Top

GUI Forward label
This field allows you to specify the label of the menu item or push button
that triggers an action to reach the next page of the help list.
Default value: Forward

GUI Backward label
This field allows you to specify the label of the menu item or push button
that triggers an action to reach the previous page of the help list.
Default value: Backward

How to Define a Relational Table
Use the Relational Table Definition editor to define a Relational Table. To open
the Definition editor of a Relational Table instance:
1. Select the Relational Table entity,
2. Select the instance to edit,
3. Select Definition from the Instance menu.

Definition Editor
This editor groups the specification fields that manage the logical description
of the Relational Table.

General Panel:

Package/Application:

Package/Application

This field indicates the application where the Relational Table instance
functional description is stored.

Names:

Default use name

This field allows you to enter the default name that is to be automatically
proposed when this instance is used by another instance. It appears when
you add this Interface Unit to another Interface Unit’s list of Target
Interface Units.

96 VisualAge Generator Templates Standard Functions: User’s Guide

Value: an alphanumeric string of 1 to 32 characters.

Display name
This field allows you to enter a display name. It will appear, in the
generated application, in the list of target windows (GUI) or maps (TUI)
in the help panel of the parent window or map.
Value: an alphanumeric string of 1 to 64 characters.

Note: This field is not use by the standard generators.

Table name
The Table name field display the table’s name according to its generated
code.

Type:

Table type
The Type field indicates whether the instance is a table or a view.

Descriptions Panel:

Textual description

This multi-line edit allows you to enter a short description of the instance.
Value: an alphanumeric string of 1 to 1023 characters.

TIP: This field is not used in generating in the final application. You can
use it to communicate technical information about the instance to
other developers.

On-line help description

This multi-line edit cannot be inputted because no specific on-line help
will be generated for Relational Table instances.

For information on generated on-line help, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and
Layouts of Generated Applications” on page 145, “Standard Functions” on
page 146, “On-Line Help” on page 160.

Columns Panel: This panel groups the specification fields that define the
Relational Table composition.

Chapter 3. Information Model Entities and their Editors 97

Columns: The Columns list allows you to visualize the columns of the
imported relational table.

Identifier
The Identifier column displays the identifiers of the table’s column.

Column Name
The Column Name column displays the name of the columns according to
its generated code.

Data Element
The Data Element column displays the Data Elements called by the table’s
columns.

Null Control
The Null Control column displays the value defined in the Data Element.
Values can be: null, not null and not null with default.

Updatable
This column indicates whether the Data Element can be updated or not.

Table Panel: This panel is available when the Relational Table type is table. If
the Relational Table type is view, you find the View panel instead.

Concurrency Management Column:

98 VisualAge Generator Templates Standard Functions: User’s Guide

Column
The Column drop-down list allows you to specify the column that will be
used to manage concurrent accesses to the database. The column selected
as concurrency column must not be mapped in the Business Object.

Keys:

Keys
The Keys list allows you to visualize the keys of the imported Relational
Table.

When the table has a primary key, the ’primary’ label appears in the list. If
you click on this label, the Data Element that is the table’s primary key
will be highlighted in the Columns list.

When the table has foreign keys, the name of the foreign key appears in
the list.

When you right click in the Keys list area, a popup menu opens up,
allowing you to add a primary or a secondary key, or to remove the
selected key.

Note:

1. When you create a key, the corresponding link is automatically created
and displayed in the Links area. By default, the link source key is the
key you have just created.

2. When you remove a key, all the links that have this key as source key
are automatically deleted. You can select several keys to remove them
all at once.

Columns:

Identifier
The Identifier column displays the identifiers of the table’s columns.

Data Element
The Data Element column displays the Data Elements called by the table’s
columns.

When you right click in the Columns list area, a popup menu opens up,
allowing you to add or to remove a column to/from the key selected in the
Keys list area.
v To remove one or more columns, just select them in the list, then select the

Remove from Key choice from the popup menu.
v To add a column:

1. Select one or more columns.
2. From the popup menu, select the Add to Key choice. The Key - Add

Columns window opens up.

Chapter 3. Information Model Entities and their Editors 99

3. Select the columns you want in the list of the Table’s columns, then
press OK.

Links: The Links list allows you to visualize the links that exist between the
imported relational tables. The values here stem from the database import.

Identifier
The Identifier column lists the identifiers of the links.

Source key
The Source key column lists the name of the link’s source key.

Target table
The Target table column lists the name of the link’s target table.

Update rule
The Update rule column lists the rules that manage the update of the link’s
source and target.

Delete rule
The Delete rule column lists the rules that manage the deletion of the link’s
source and target.

Note: The relational link is always defined at the primary table level (the
primary table being the table where the foreign key is defined). No
source table is indicated as the source of the link because it is always a
foreign key of the primary table. No target key is indicated as the target
of the link because it is always the primary key of the secondary table.

If you right click in the Links list area, a popup menu opens up, allowing you
to add or remove a link, or to open the selected Target Table.

Note: When you create a link, the source key column is automatically filled in
with the last key displayed in the Keys list.

View Panel: This panel is available when the Relational Table type is view. If
the Relational Table type is table, you find the Table panel instead.

CRUD Properties: The CRUD Properties check boxes allow you to specify
whether the fields in the table columns can be modified (Insertable), updated
(Updatable) or deleted (Deletable).

Mapping: The Mapping list allows you to visualize the tables that are linked
to compose the view.

Mapper
The Mapper column lists the identifier of the current view’s column.

Mapped table
The Mapped table column lists the identifier of the linked table.

100 VisualAge Generator Templates Standard Functions: User’s Guide

Mapped column
The Mapped column column lists the identifier of the linked table’s column.

Join Condition: The Join condition multi-line edit describes the join condition
that links the tables to make up a view. This join condition is expressed as an
SQL standard WHERE clause.

For information on join conditions, refer to topic “How to Define a Business
Object” on page 67.

How to Specify the Relational Table Parameters
To specify the generation parameters for a Relational Table, open its
Generation Parameters editor from the instance Definition editor clicking on
the Generation Parameters push-button, or from the VAGTemplates Browser
(Instance menu or pop-up menu, Generation Parameters choice).

Generation Parameters Editor
The editor panels are already filled in with the default parameters set at
initialization of the Workspace or the default parameters you set for the
Relational Table entity using the Default Generation Parameters choice from
the Entity menu. If you need to modify the parameters for a specific
Relational Table, you can change them here.

Note: We will not document all the parameters here but only those
parameters that cannot be specified using the Default Generation
Parameters choice from the Entity menu. For a detailed description of
the other Relational Table parameters, see topic “Default Generation
Parameters” on page 94.

General Panel:

Package/Application
This field indicates the package or the application where the generation
parameters defined for the Relational Table instance will be stored.

Target name
The parameter is filled in with the instance name. It is used to build the
name of the components generated from this instance. If this name
exceeds 5 characters, it will be truncated. Therefore you should enter a
target name beginning with 5 significant characters so that it is
differentiated from all other target names.

Long target name
This field allows you to enter a character string (64 max.) that will be
used as prefix of the generated Java and Smalltalk classes.
Default value: instance name

Foreign Key Help List Panel:

Chapter 3. Information Model Entities and their Editors 101

Additional help field name
The parameter indicates the name of a field that should be taken into
account when generating help list service.

For Standard Generators, when you specify the name of a column in this
parameter, the help list server and client parts will take into account this
field. It will be read in the database and handled on the client side (new
entry in the WPage record (list data), new getter, etc.). This parameter
should be used when you do not wish to display the keys corresponding
to the foreign key, but a comment from another column. The generated
parts will contain the access for this field. You will then be able to
customize your layouts in order to display this extra field as you wish.

How to Specify the Relational Table Extensions
Restricted to use of customized generators involving Information Model
extensions.

Value Style

What is a Value Style?
A Value Style is a set of characteristics defining a presentation style for a
numeric, a date, a time, or a timestamp value. It holds the display and input
characteristics that such values can have in the generated applications. These
characteristics can be shared by several Data Elements regardless of their
logical descriptions, like the capacity and the precision for numeric Data
Elements.

The same Value Style allows you to standardize the presentation of several
Data Elements of the same type. VAGTemplates manages four types of Value
Styles (Numeric, Date, Time, Timestamp), one for each type of Data Element
likely to have a Value Style.

For example, you can define an instance of Value Style associating the $ sign to
numeric values, and another instance associating the £ sign to numeric values. All
the values of a Data Element instance calling the former Value Style will be presented
with a $ sign, whereas all the values of a Data Element instance calling the latter
Value Style will be presented with a £ sign.

How to Define a Value Style
To create a new instance of Value Style and open its Definition editor:
1. Select the Value Style entity, select New... from the Instance menu,
2. In the Package/Application combo box, select a package or an application

where the instance functional description will be stored,
3. Enter the name of the instance, making the first 5 characters significant,
4. Select the Open now check box,

102 VisualAge Generator Templates Standard Functions: User’s Guide

5. Click OK.

To open the editor of an already existing instance of Value Style:
1. Select the Value Style entity,
2. Select the instance to edit,
3. Select Definition from the Instance menu.

Note: As it is not possible to specify generation parameters for the Value
Style entity or instances, the Default Generation Parameters and
Generation Parameters editors are not available for this entity.

Definition Editor
This editor groups the specification fields that manage the logical description
of the Value Style.

General Panel:

Package/Application:

Package/Application
This field indicates the package or application where the Value Style
instance functional description is stored.

Names:

Default use name
This field allows you to enter the default name which will be
automatically proposed when this instance is used by another instance.
Value: an alphanumeric string of 1 to 32 characters.

Display name
This field allows you to enter a display name for the Value Style.
Value: an alphanumeric string of 1 to 64 characters.

Note: This field is not use by the standard generators.

Type:

Value type
The Type drop-down list allows you to specify whether the value style is
defined for numeric, date, time or timestamp values.

Descriptions Panel:

Textual description

This multi-line edit allows you to enter a comment corresponding to the
instance.

Chapter 3. Information Model Entities and their Editors 103

Value: an alphanumeric string of 1 to 1023 characters.

TIP: This field is not used in generating in the final application. You can
use it to communicate technical information about the instance to
other developers.

On line help description

The multi-line edit field cannot be input as no specific On-line Help will
be generated for Value Style instances.

For information on generated on-line help, refer to “Part 3. Standard Use
of VAGTemplates” on page 107, “Chapter 5. Standard Functions and
Layouts of Generated Applications” on page 145, “Standard Functions” on
page 146, “On-Line Help” on page 160.

Value Style Panel: This panel groups the specification fields that define the
Value Style type. The panel varies according to the value specified for the
Value type field from the General panel.
1. The Value type is numeric. The Value Style panel displays the following

parameters:
v GUI The Decimal separator drop-down list allows you to specify either a

period or a comma to separate the integer part from the decimal part in
a decimal number.
Default value:. (period)

v GUI The Thousand separator drop-down list allows you to specify either
a comma, a period, a blank character [space] or no character [none] to
indicate the thousands in a number.
Default value:, (comma)

v GUI The Positive sign field allows you to specify what sign will indicate
that a number is positive.
No default value

v GUI The Negative sign field allows you to specify what sign will
indicate that a number is negative.
No default value

v The Sign position drop-down list allows you to choose whether the sign
is to the left or to the right of the value, or if no sign is displayed.
Default value:left

v GUI The Unit field allows you to specify what symbol will indicate the
units of the displayed data.
No default value

v GUI The Unit position drop-down list allows you to choose whether the
units is to the left, or to the right of the value.
Default value:right

104 VisualAge Generator Templates Standard Functions: User’s Guide

v GUI The Unit and sign alignment drop-down list allows you to choose
whether the sign and units both stick to the value (no separation), or if
only the units is separated from the value (units separation), or if sign
and units are both separated from the value (units and sign separation).
Default value:unit and sign separation

2. The Value Style type is date. The Value Style panel displays the following
parameters:
v The Mask drop-down list allows you to specify the order in which day,

month and year must be presented. You can choose between dmy
(<Day> <Month> <Year>), mdy (<Month> <Day> <Year>), ymd (<Year>
<Month> <Day>).
Default value:mdy

v The Separator field allows you to indicate what character separates the
different elements of the date.
No default value

v The Year style field allows you to determine whether the year includes
the century (full) or not (short).
Default value:full

For example, if you choose the mdy mask, - as separator and the full year style,
the dates will be displayed as follows: ″11-24-1997″.

3. The Value Style is a time. The Value Style panel opens presenting the
following choices:
v GUI The Mask drop-down list allows you to specify the presentation of

dates. You can choose between full time (<Hours> <minutes> <seconds>)
or no seconds (<Hours> <minutes>).
Default value:full time

v GUI The Cycle radio buttons allow you to determine whether the time
cycle will be military (24 hours) or AM/PM (12 hours). In the latter case,
the time is followed by text indicating the half day (e.g. ″AM″ or ″PM″).
The presentation of this text depends on the Am string and Pm string
parameters (see below).
Default value:military

v GUI The Separator field allows you to indicate what character separates
the different elements of the time.
No default value

v GUI The Am string field allows you to specify the characters that will
indicate the half day before midday (ante meridian).
Default value:AM

Note: This parameter is available if you choose AM/PM for the Cycle
parameter.

Chapter 3. Information Model Entities and their Editors 105

v GUI The Pm string field allows you to specify the characters that will
indicate the half day after midday (post meridian).
Default value: PM

Note: This parameter is relevant if you choose AM/PM for the Cycle
parameter.

For example, if you choose the no seconds mask, the AM/PM cycle, the colon
as separator, and AM and PM as half day indicators, the times will be
displayed as follows: ″10:45 AM″.

v

TUI: By default VisualAge Generator presents the time values according
to the standards in the language and country for which it is
installed.

For example, if VisualAge Generator is installed for France, it will display
times as: 18:35:20.

4. GUI The Value Style type is timestamp. The Value Style panel displays the
following parameters:
v Date identifier

The Date identifier drop-down list allows you to choose the date Value
Style that is to be concatenated with a time Value Style to form the
timestamp.

v Date Style

The Mask, Separator and Year style fields in the Date Style area are
read-only.

v The Separator field allows you to specify the character that will separate
the date from the time.
No default value

v Time Identifier

The Time Identifier drop-down list allows you to choose the time Value
Style that is to be concatenated with a date Value Style to form the
timestamp. The characteristics of the chosen time Value Style are
read-only.

v Time Style

The fields contained in the Time Style area are read-only.

How to Specify the Value Style Extensions
Restricted to use of customized generators involving Information Model
extensions.

106 VisualAge Generator Templates Standard Functions: User’s Guide

Part 3. Standard Use of VAGTemplates

Chapter 4. Exploring VAGTemplates Basic
Functions 111
Presenting a List and a Detail in the Same
Window (GUI) or Map (TUI) 112

Creating an Interface Unit Presenting a
List and a Detail 114
Defining the Interface Unit 114

Definition Editor 114
Setting the Interface Unit Generation
Parameters 116

Generation Parameters Editor . . . 116
Modifying the Business Object 116

Definition Editor 116
Generation Parameters Editor . . . 116

TUI Only: Modifying the Presentation of
the Business Object 117
TUI Only: Modifying the MainMenu
Interface Unit 117
Generating your Application 117

Generating your GUI Client
Application 118
Generating your TUI Application . . 118

Enhancing the GUI Client Application 118
Testing your Application 119

Testing the GUI Client Application 119
Testing the TUI application 121

Presenting a List and Detail in Two
Different Windows (GUI) or Maps (TUI) . 122

Creating an Interface Unit Presenting
the List 124

Definition Editor 124
Generation Parameters Editor . . . 125

GUI Only: Modifying the Detail
Interface Unit 126
GUI Only: Modifying the Business
Object’s Behavior 126
TUI Only: Modifying the MainMenu
Interface Unit 126
Generating your Application 127
Testing your Application 127

Testing the GUI Client Application 127
Testing the TUI Application 127

Generating On-Line Help (VAGTemplates
on Smalltalk Example) 128

Generating On-Line Help for the GUI
Client Application 128
Generating On-Line Help for the TUI
Application 129
Testing On-Line Help 129

Testing On-Line Help for the GUI
Client Application 129
Testing On-Line Help for the TUI
Application 130

Enhancing the GUI On-Line Help (IPF
file) 131
Enhancing the GUI On-Line Help (RTF
file) 135
Enhancing the TUI On-Line Help . . . 138

Using Foreign Keys to Provide a Help List 139
Help List Principles 139

Help Lists in GUI Client Applications 139
Help Lists in TUI Applications . . . 139

Help List Specification 140
Testing your Help List 142

Testing the Help List of the GUI
Client Application 142
Testing the Help List of the TUI
Application 143

Chapter 5. Standard Functions and
Layouts of Generated Applications . . . 145
Standard Functions 146

Management of Persistent Data 147
Actions Available for Detail Business
Objects 147
Actions Available for List Business
Objects 148
Actions Available for Help Lists . . 151
Automatic Zoom in (GUI) 152
Data Transfer between TUI Maps . . 152

Error Handling in GUI Client
applications 153

Unitary Check: Errors in Input Fields 153
Global Check: Field Consistency . . 154
Server Check: Access Errors 155

Error Handling in TUI Applications . . 156
Unitary Check: Format Errors in
Input Fields 156
Global Check: Access Errors 156

© Copyright IBM Corp. 1997, 2000 107

Management of the Navigation 157
Navigating Throughout a GUI Client
application 157
Navigating Throughout a TUI
Application 158

On-Line Help 160
GUI On-Line Help 160
TUI On-Line Help 163

Edition Functions (GUI) 165
VAGTemplates on Java:
Implementation Principle 166

Prompt on close 167
VAGTemplates on Java:
Implemention Principle 167

Windows Menu 167
VAGTemplates on Java:
Implementation Principle 167

BiDi Applications 168
VAGTemplates on Java:
Implementation Principle 169

Standard Layouts of GUI Client
applications 169

Fields 169
Default Layout 169
Layout Parameters 169
Input Mask 177

Detail Business Objects 181
Default Layout 181
Layout Parameters 183
Help Lists 190

List Business Objects 191
Default Layout 192
Layout Parameters 193
Extraction Criteria Layout 195

Windows 196
Default Layout 196
Layout Parameters 197

Standard Layouts of TUI Applications . . 199
Maps 199

Root Map Default Layout 199
Simple Map Default Layout 201
Application Error Map Default
Layout 203
Management of Messages 204
Help Map Default Layout 204
Help List Map Default Layout . . . 204
Layout Parameters 205
Help List, Help Map, Error Map
Presentation 211

Fields 212

Default Layout 212
Layout Parameters 212
Field Size and Presentation 214

Detail Business Objects 217
Default Layout 217
Layout Parameters 218
Help Lists 220

List Business Objects 221
Default Layout 221
Layout Parameters 222

Chapter 6. Application Generation and
Enhancement 225
Standard Generation 225

List of Available Generators 225
VAGTemplates on Smalltalk 3.1
Generators 225
VAGTemplates on Smalltalk 4.0
Generators 226
VAGTemplates on Java Generators 226

Instance Only / Instance Generation
Option 226

Business Object Generation 227
Data Element Generation 228
Interface Unit Generation 228
Relational Table Generation 229
Workspace Generation 229
VAGTemplates on Smalltalk: Help
Generation 230

With associates/Cascaded Generation
Option 231
With Associates and Predefined Beans /
Cascaded Generation With Predefined
Parts Option 232
Application Storage 232

Specification Storage 233
Generated Components Storage . . . 233
VAGTemplates on Smalltalk:
Generated Help Files Storage . . . 233

Enhancements and Re-generation 233
Traceability Information 234

Traceability Categories 234
Generated Part Documentation . . . 235
VAGTemplates on Java: Traceability
in Comments 235

How the Generators Use the Traceability
Information 235
What Generator Do You Use When
Re-generating 237

VAGTemplates on Java 237

108 VisualAge Generator Templates Standard Functions: User’s Guide

VAGTemplates on Smalltalk 238
Generated Architecture and Principles . . 240

Introduction 240
Generated Components Naming Policy 241

Long Name Structures 242
VisualAge for Java/VisualAge
Smalltalk Enterprise Components
Naming 243

Predefined Beans/Parts 244
Server Architecture 244

Server types 245
Generated Servers by Entity Type . . 246

Client Architecture 247
Web Client 247
GUI Client 248
TUI Client 253

Overview of Generated Code 253
Servers and their Hooks 253

Hooks 253
Server Common Functions 263
Two- or Three-Tier Layers 264
Generation of Atomic Detail Servers 264
Generation of Help List Servers. . . 264

Clients 265
Web Client 265
GUI Client 267
TUI Client 286

Components Generated by Entities . . . 286
Components Generated from a Data
Element 286

GUI and TUI Components 286
GUI Components: Java/Smalltalk
Class 287

Components Generated from a Business
Object 287

WEB Components 287
GUI and TUI Components 287
GUI Components. 292
TUI Component: Additional Server
Program 301

Components Generated from a
Relational Table 302

GUI and TUI components 302
GUI components: Non-Visual
components 304

Components Generated from an
Interface Unit 306

WEB Components 306
GUI Components. 308
TUI Parts 309

Components Generated From a
Workspace: Predefined Beans/Parts . . 312

GUI and TUI Components 313
GUI Components. 317
TUI Components 321

Application Enhancement: Public Interface
of GUI Generated Components 324

Resource Object Bean/Part Interface . . 324
API for Managing Detail Data . . . 324
API for Managing List Data 325
API for Managing Upatable List Data 325

Business Object Bean/Part Interface . . 325
List Manager Bean/Part Interface . . . 327

API for Managing List Data 327
Additional API for Managing
Updatable List Data 327

Part 3. Standard Use of VAGTemplates 109

110 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 4. Exploring VAGTemplates Basic Functions

The development cycle of an application with VAGTemplates is comprised of
4 steps as presented in the Introducing VAGTemplates book:
1. Import of a database structure into VAGTemplates: VAGTemplates

creates pre-filled instances of the Information Model entities.
2. Specification of the application with the VAGTemplates Workbench:you

create, delete, and/or update instances of the Information Model entities
to prepare the generation of your application, and specify the functional
aspects of each instance.

3. Generation of the application with VAGTemplates:the process converts
application specifications into VisualAge for Java or VisualAge Smalltalk
Enterprise and VisualAge Generator operational components, and OS/2 or
Windows help files.

4. Customize the generated application if required with the VisualAge
Generator workstation.

In this chapter, you will learn how to handle the standard VAGTemplates
functions and you will create operational GUI client and TUI applications
using the VAGTemplates standard generators.

For these examples, we use the same ORG and STAFF tables we imported
from the DB2 SAMPLE database. Before developing the examples presented in
this chapter, make sure that you have completed the steps described in the
Introcucing VAGTemplates book. The development environment is also
VAGTemplates on Smalltalk.

Note to VAGTemplates on Java users: Before beginning to work with
VAGTemplates, you must first create
and project and a package to store
your specifications.

VAGTemplates focuses on re-using components. In the Workbench, most of
the specification fields are common to GUIs and TUIs. The description of a
GUI client and a TUI application is similar when creating simple applications.

Note: When we come to describing the development processes that are
specific to developing GUI client or TUI applications, the procedures
that only apply to GUI clients are highlighted with this GUI sign; those
that only apply to TUI applications with the TUI sign. No sign means
that they are common to both GUI client and TUI applications.

© Copyright IBM Corp. 1997, 2000 111

Presenting a List and a Detail in the Same Window (GUI) or Map (TUI)

In this subchapter you will learn how to create an Interface Unit that uses the
same Business Object twice, once as a list and once as a detail. The generated
window (GUI) and map (TUI) will allow the end user to visualize a list of
staff members, and the details of the selected staff member.

GUI
When the end user double-clicks on a staff member row in the list, the
detail will display more information concerning the selected staff member.

TUI
When the end user enters in the access parameter area the id of a staff
member appearing in the list, the detail will display more information
concerning the selected staff member.

This behavior is called a zoom in (GUI) or a data transfer (TUI), and it is a
standard function provided by VAGTemplates.

With this example, you will also learn how to use extract criteria.

For information on the automatic zoom in function, refer to topic “Automatic
Zoom in (GUI)” on page 152, refer to “Data Transfer between TUI Maps” on
page 152.

In the Introducing VAGTemplates book, you did the following:
v you imported the SAMPLE tables
v created the Sample Business Object.

In this chapter, you will re-use this Business Object.

Caution: Before you continue, make sure that you have completed the
example presented in the Introducing VAGTemplates book.

TIP: In this second example, several specifications and generated parts will
override what has been done previously in the Introducing VAGTemplates
book. In order to be able to re-load the corresponding specifications and
the generated application, you can version the applications created in the
first example - MdmExample1App, MyVAGTEntitiesApp,
MyWorkspacePartsApp.

The completed window will look like this:

112 VisualAge Generator Templates Standard Functions: User’s Guide

The completed map will look like this:

Chapter 4. Exploring VAGTemplates Basic Functions 113

Creating an Interface Unit Presenting a List and a Detail
To create the Interface Unit:
1. Select the Interface Unit entity from the list of entities,
2. Select New... from the Instance drop-down menu (or right click and select

New... from the pop-up menu).
The New VAGT Instance window opens.

3. Enter ListAndDetail in the Instance name field, and specify an application in
the Application combo box.
For this sample application, enter MdmExample2App. The new Interface
Unit’s functional specifications will be stored in a separate application.

4. Check the Open now check box to open the Interface Unit Definition editor
once the Interface Unit is created.

5. Click OK.

You can now define the logical specifications of the Interface Unit.

Defining the Interface Unit

Definition Editor
The Interface Unit Definition editor allows you to specify the functional
description of your Interface Unit.

General Panel:

1. In the Default use name field type ListAndDetail.
2. In the Display name field type List and Detail.

Descriptions Panel:

114 VisualAge Generator Templates Standard Functions: User’s Guide

v In the Textual Description field type Interface Unit calling list and detail BO.
v In the On line help description field type:

– If you are developing a GUI client application, enter: This window presents
Staff members in a list. To see detailed information about one staff member,
double-click on a row in the list. The detail fills in with the corresponding
information.

– If you are developing a TUI application, enter: This map presents staff
members in a list. To see detailed information about one staff member, enter
his/her Id number in the access parameter area, and press enter. The detail fills
in with the corresponding information.

– GUI Select the root radio-button from the Type area to indicate that the
Interface Unit is the first in the application, and that it is not called by
any other Interface Unit.

– TUI Do not modify the selected radio-button from the Type area as we
will create another Interface Unit that calls this one. The Detail Interface
Unit is a simple Interface Unit

Business Objects Panel: You need to use the Sample Business Object first as
a list then as a detail.
1. To call the list BusinesObject in the Interface Unit, right click on the

Business Object list area.
2. Select Add from the pop-up menu or click on the Add push button, then

select Sample in the Add Business Objects window.
3. Click OK.
4. By default, the presentation type for the Business Object is detail. You need

to change it to a list presentation. To do so, click on the detail cell, in the
Layout type column. Select list.

5. To call the detail Business Object in the Interface Unit, right click on the
Business Object list area.

6. Select Add from the pop-up menu or click on the Add push button, then
select Sample in the Add Business Objects window.

7. Click OK.
8. Because the Business Object is used twice, you need to differentiate these

two uses. In the Component Name column, enter Samplelist in the cell
corresponding to the first use of the Business Object, then enter
SampleDetail in the cell corresponding to the second use of your Business
Object..

TIP: If you called the wrong Business Object, you can remove it from the list.
Select it in the list, right click and select Remove from the pop-up menu
or click on the Remove push button.

You do not have to specify any target Interface Unit.

Chapter 4. Exploring VAGTemplates Basic Functions 115

Setting the Interface Unit Generation Parameters

Generation Parameters Editor
The Generation Parameters editor allows you to specify the generation
parameters for your Interface Unit.

General Panel:

1. In the Title field type Staff List and Detail.
2. TUI In the Fastpath field type LSTDET

Modifying the Business Object

Definition Editor
In our final application we only want the Id Number, Name and Dept fields
to be generated in the list. We do not want to modify the detail Business
Object.
1. Select the Business Object entity from the list of entities,
2. Double-click on the Sample Business Object from the list of instances.

TIP: You can also open this Business Object from the ListAndDetail
Interface Unit Definition editor by right-clicking on the Sample
Business Object in the Business Objects list (Business Objects panel) and
selecting Open Business Object from the pop-up menu.

3. From the tree view, select Field Attributes. In the Fied Attributes panel, click
in the Laid out column of the Job Data Element and select on detail only in
the drop-down list.
This field will only appear in the detail, not in the list.

4. Repeat step 3 for the Years, Salary, Deptname and Location Data Elements.

Generation Parameters Editor
Your Business Object is defined with an extract criterion: Location. All the
database data will be in the list if the end user does not filter these data using
an extract criterion.

To make the extract criteria and the Extract action available:
1. From the editor tree view, click on List View.
2. In the List View panel, check the Extraction criteria displayed parameter.
3. OK.

In the Optimization panel, set the Service level parameter to detail and read-only
list.

Only the parts required for the detail and the read-only list will be generated.

116 VisualAge Generator Templates Standard Functions: User’s Guide

TUI Only: Modifying the Presentation of the Business Object
Because we want to have the same Business Object used twice in the same
map, we need to adjust the number of lines in the list and the number of lines
in the detail in order to have the whole information at a glance, without
changing the map.
1. From the editor tree view, select Detail View.
2. In the Detail View panel, select 5 in the Number of lines spin edit.

The Business Object fields in the detail will be placed on five lines; the
remaining fields will be placed in the following ″column″.

3. From the editor tree view, select List Container. In the List Container panel,
select 4 in the Number of lines spin edit.
The list will only present 4 rows at a time.

4. Click OK.

TUI Only: Modifying the MainMenu Interface Unit
Because we defined a new Interface Unit, we need to call it in the MainMenu
Interface Unit we created in the first example (see the Introducing
VAGTemplates book).
1. Double-click on the MainMenu Interface Unit in the list of Interface Unit

instances.
The Definition editor opens.

2. From the editor tree view, select Target Interface Units. In the Target Interface
Units panel, right click on the Interface Unit column, then select Add from
the pop-up menu, or click on the Add push button.

3. Select ListAndDetail in the Add Interface Units window.
4. Click OK.

TUI: Before you generate make sure that the Control location parameter
(Workspace editor) is set to server, otherwise errors will be detected at
execution time.

Generating your Application
Before generating, you can specify a new application where the new
generated parts will be stored.

To do so:
1. Select the Interface Unit entity in the list of entities.
2. Select the Default Parameters choice from the Entity menu.
3. Change the value of the Target Application parameter.
4. Click OK.

Do the same for the Business Object, and the Data Element entities.

Chapter 4. Exploring VAGTemplates Basic Functions 117

Generating your GUI Client Application
To generate your GUI client application, follow these steps:
1. Select the ListAndDetail Interface Unit from the list of Interface Unit

instances.
2. Select Generate... from the Instance drop-down menu.
3. Select the GUI Interface Unit - Smalltalk orientedgenerator from the list of

generators,
4. Select the cascaded generation radio-button.

All the instances you have just defined will be generated from the
Interface Unit as they are directly or indirectly called by the Interface Unit.

Note: You do not need to choose cascaded generation with predefined parts
since we have already generated the predefined parts when we
generated the Detail Interface Unit in the example presented in the
Introducing VAGTemplates book.

5. Click OK.

Generating your TUI Application
To generate your TUI application, follow these steps:
1. Select the MainMenu Interface Unit from the list of Interface Unit instances.
2. Select Generate... from the Instance drop-down menu.
3. Select the TUI Interface Unit Logic generator from the list of generators.
4. Select the cascaded generation radio-button.

All the instances you have just defined will be generated from the
Interface Unit since they are called directly or indirectly by the Interface
Unit.

Note: You do not need to choose cascaded generation with predefined parts
since we have already generated the predefined parts when we
generated the Detail Interface Unit in the example presented in the
Introducing VAGTemplates book.

5. Click OK.

Enhancing the GUI Client Application
The menu bar of the generated Staff List and Detail window has SampleList
and SampleDetail drop-down menus. SampleList presents the actions
available for the list Business Object and SampleDetail presents the actions
available for the detail Business Object. These menu choices can also be
displayed as push-buttons or via pop-up menus. You can change these
presentations by modifying the value of the Display parameter from the Detail
Action and Labels panel of the Business Object Generation Parameters editor.

118 VisualAge Generator Templates Standard Functions: User’s Guide

Testing your Application

Testing the GUI Client Application
You need to execute the ListInterfaceUnitView visual part (see the test
procedure in the second part of the Introducing VAGTemplates book).

To test the zoom in function
1. Select Top from the List drop-down menu to fill the list.
2. Double-click on the row with staff member Daniels;

The detail displays the corresponding data.

TIP: A parameter in the Workbench specifies that the list must be filled at the
window opening without activating the Top action: List prefilled
parameter in the List View panel of the Business Object Generation
Parameters editor.

To test the extract function

1. Enter New York in the Location field.
2. Select Extract from the List drop-down menu.

Only the staff members located in New York are extracted from the database.

Chapter 4. Exploring VAGTemplates Basic Functions 119

120 VisualAge Generator Templates Standard Functions: User’s Guide

Testing the TUI application
You need to execute the MAINMAM Program (see the test procedure in the
second part of the Introducing VAGTemplates book.)
1. Type B in the Selection area to open the List and Detail map.

The list is pre-filled with all the database data.
2. To test the data transfer function, that is see the detail of a particular row

in the list, type the Id of staff member Daniels in the access parameter area
as follows: /240, and press enter.
The corresponding information is displayed in the detail.

TIP: If the list were an updatable list, you could modify the Daniels row,
and trigger the Update action; the detail would be automatically
refreshed with the modified data. To change the presentation to
updatable list, modify the value of the Layout type column in the
Interface Unit Definition editor, Business Objects panel.

3. To test the extract function, enter New York in the access parameter area
and press enter.
Only the staff members located in New York are extracted from the
database and displayed in the list.

You can also use the extract criteria and the id in the same command line to
extract data and display them in the list while seeing the detail of a staff
member corresponding to the extract criteria.

For example, enter New York/160 in the access parameter area and press enter.

Only the staff members located in New York are extracted from the database
and displayed in the list, while the information on staff member Molinare is
displayed in the detail.

Chapter 4. Exploring VAGTemplates Basic Functions 121

TIP: You can also select data using the extract criteria and the logical key
directly from the Main Menu, which opens the List and Detail map and
displays the requested data.

Presenting a List and Detail in Two Different Windows (GUI) or Maps (TUI)

In this subchapter you will learn how to create two windows (GUI) or maps
(TUI) presenting the same Business Object. In the first one the Business Object
is presented as a list and in the second as a detail. When selecting an item in
the list, the second window (GUI) or map (TUI) opens and displays the
details of the selected item.

In the previous examples, you did the following:
v imported the DB2 SAMPLE database,
v created the Sample Business Object,
v created the Detail Interface Unit,
v TUI created the Main Menu Interface Unit.

In this chapter, you will need to use these elements again.

Caution: Before you continue, make sure that you have completed the
example presented in “Presenting a List and a Detail in the Same
Window (GUI) or Map (TUI)” on page 112.

TIP: In this third example, several specifications and generated parts will
override what has been done previously. In order to be able to re-load

122 VisualAge Generator Templates Standard Functions: User’s Guide

the corresponding specifications and the generated application, you can
version the applications created in the second example.

The completed GUI client application will look like this:

The completed TUI application will look like this:

Chapter 4. Exploring VAGTemplates Basic Functions 123

Creating an Interface Unit Presenting the List
Create the List Interface Unit.

To do so, follow the procedure as in “Creating an Interface Unit Presenting a
List and a Detail” on page 114.

Definition Editor

General Panel:

1. In the Default use name field type List.

124 VisualAge Generator Templates Standard Functions: User’s Guide

2. In the Display name field type List.
3. GUI Select the root radio-button from the Type area to indicate that the

Interface Unit is the first in the application, and that it is not called by any
other Interface Unit.

4. TUI Do not modify the selected radio-button from the Type area as we
will create another Interface Unit that calls this one. The List Interface Unit
is a simple Interface Unit.

5. TUI In the Fastpath field type LIST.

Descriptions Panel:

1. In the Textual Description field type Interface Unit used to show Staff list.
2. In the On line help description field:
v If you are developing a GUI client application enter: This window

presents a list of staff members.

v If you are developing a TUI application enter: This map presents a list of
staff members.

Business Objects Panel:

1. To indicate which Business Object is called in the Interface Unit, right click
on the Business Object column in the Business Objects panel,

2. Select Add from the pop-up menu or click on the Add push button,
3. Select Sample in the Add Business Objects window,
4. Click OK.
5. By default, the presentation type for the Business Object is detail. You

need to change it to a list presentation. To do so, select list from the Layout
Typecolumn.

Target Interface Units Panel:

1. To indicate which Interface Unit is called by this Interface Unit, right click
on the Interface Unit column in the Target Interface Units panel,

2. Select Add from the pop-up menu or click on the Add push button,
3. Select Detail in the Add Interface Units window,
4. Click OK.

Generation Parameters Editor

General Panel:

1. Enter a name in the Target name field.
This target name is used to build the name of the components generated
from the Sample Business Object. If this name exceeds 5 characters, it will
be truncated. Therefore, you should enter a target name with 5 significant
characters if the instance name is longer than 5 characters.

Chapter 4. Exploring VAGTemplates Basic Functions 125

In order to distinguish the components generated from the ListAndDetail
Interface Unit (the default target name is Lista) and those generated from
the List Interface Unit (the default target name is List) you can modify the
target name of the List Interface Unit here.

2. In the Title field type Staff List.

For more information on the naming policy of the generated components,
refer to topic “Generated Components Naming Policy” on page 241.

GUI Only: Modifying the Detail Interface Unit
In the first example presented in the Introducing VAGTemplates book, the Detail
Interface Unit was defined as a root Interface Unit. Now that this Interface
Unit is called by the List Interface Unit, we must modify the corresponding
parameter.
1. Open the Detail Interface Unit Definition editor.

TIP: You can open this editor directly from the List Interface Unit
Definition editor by right-clicking on the Detail Interface Unit in the
Target Interface Units panel and selecting Open Interface Unit from
the pop-up menu.

2. Select the simple radio-button from the Type area.

GUI Only: Modifying the Business Object’s Behavior
In the previous generated application, when we opened the List window, we
had to activate the Top action to fill in the list. To make the list fill at window
opening, follow these steps:
1. Open the Business Object Generation Parameters editor.
2. From the editor tree view, select List View.
3. In the List View panel, check the List prefilled parameter.
4. Click OK.

TUI Only: Modifying the MainMenu Interface Unit
Because we have defined a new Interface Unit, we need to call it in the
MainMenu Interface Unit.
1. Double-click on the MainMenu Interface Unit in the list of Interface Unit

instances.
The Interface Unit Definition editor opens.

2. From the editor tree view, select Target Interface Units. Right click on the
Interface Unit column, then select Add from the pop-up menu, or click on
the Add push button.

3. Select List in the Add Interface Units drop-down list.
4. Click OK.

126 VisualAge Generator Templates Standard Functions: User’s Guide

TUI: Before you generate make sure that the Control location parameter
(Workspace editor) is set to server, otherwise errors will be detected at
execution time.

Note: We do not need to modify the presentation of the Sample Business
Object’s fields in the list since we re-use the Sample Business Object
instance we defined in the second example. In that example, we have
specified the only fields that we want to appear in the detail (see
“Modifying the Business Object” on page 116).

Generating your Application
Before generating, you can specify a new application where the generated
parts will be stored (see “Generating your Application” on page 117).

GUI: To generate your application, follow the procedure as in “Generating
your GUI Client Application” on page 118.

TUI: To generate your application, follow the procedure as in “Generating
your TUI Application” on page 118.

Testing your Application

Testing the GUI Client Application
Execute the ListInterfaceUnitView visual part (see the procedure described in
the second part of the Introducing VAGTemplates book). The List window opens
and the list is pre-filled with data.

To open the detail displaying the detail of a selected row in the list,
double-click on the line with staff member Daniels.

The Detail window opens and displays the requested information.

Testing the TUI Application
Execute the MAINMAM Program (see the procedure described in the second
part of the Introducing VAGTemplates book), and open the List map. The list is
pre-filled with data.

To open the map displaying the detail of a selected row, in the list, type 1 (the
action code for the Detail map) in front of staff member Daniels row and press
enter.

The Detail map opens and displays the requested information.

Chapter 4. Exploring VAGTemplates Basic Functions 127

Generating On-Line Help (VAGTemplates on Smalltalk Example)

Reminder: For the current version of VAGTemplates, the help generators are
available for the Smalltalk version of the product only.

The on-line help generation is a standard function provided by
VAGTemplates. It is organized hierarchically: from the Interface Unit help to
the called Interface Unit and Business Object help, to the called Data Element
help.

For more information on generated on-line help, refer to topic “On-Line
Help” on page 160.

In the present example, we will generate on-line help for the ListAndDetail
application and we will re-use the ListAndDetail Interface Unit and the
MainMenu Interface Unit (TUI) we defined in the second example (see
“Presenting a List and a Detail in the Same Window (GUI) or Map (TUI)”
on page 112)

To generate an operational on-line help, we need to enter the help text in the
On-line help description field (Definitioneditor, Descriptions panel of each entity).
This text will be used by the help generators to fill the help panels.

In the previous examples, when creating the Detail, the ListAndDetail, the
List, and the MainMenu Interface Units, the Sample Business Objects and the
Data Elements it calls, we filled in this field.

Now we only need to generate the on-line help.

Generating On-Line Help for the GUI Client Application
Generating the on-line help will create one file in IPF format and one in RTF
and in HPJ format, which are the help formats used in the OS/2 and
Windows environments respectively.

To generate the on-line help for the GUI client application, follow these steps:
1. Select the ListAndDetail Interface Unit from the list of Interface Unit

instances,
2. Select Generate... in the Instance drop-down menu.
3. Select the GUI Interface Unit Help generator from the list of generators,
4. Select the cascaded generation radio-button.

The help panels of all the instances you have defined will be generated
from the ListAndDetail Interface Unit since they are directly or indirectly
called by this Interface Unit.

5. Click OK.

128 VisualAge Generator Templates Standard Functions: User’s Guide

The generation produces a Help.IPF file, which is the default name for the
help file. This file is the source file for the OS/2 help facility.
It also produces a Help.RTF and a Help.HPJ file, which are the source files
for the Windows Help facility.

Note: By default these files are stored in the Build subdirectory under the
VAGTemplates root directory (Generation parameter, Workspace
editor).

6. In order for the on-line help to be used in the final application, you need
to compile the source file to obtain an operational help file named
Help.HLP (for information on the OS/2 help compiler, refer to your IBM
documentation, for information on the Windows help compiler, refer to
your Microsoft documentation).

7. Copy the resulting file in the Help subdirectory of your VisualAge
Smalltalk Enterprise root directory.

Generating On-Line Help for the TUI Application
Generating on-line help will generate a VisualAge Generator table part
containing on-line help.

To generate on-line help for the TUI application, follow these steps:
1. Select the MainMenu Interface Unit from the list of Interface Unit

instances,
2. In the Instance drop-down menu, select Generate...,

3. Select the TUI Interface Unit Help generator from the list of generators.
4. Select the cascaded generation radio-button.

The help panels of all the instances you have defined will be generated
from the MainMenu Interface Unit as they are directly or indirectly called
by the Interface Unit.

5. Click OK.

Testing On-Line Help

Testing On-Line Help for the GUI Client Application
Execute the ListInterfaceUnitView visual part (see the procedure described in
the second part of the Introducing VAGTemplates book.

To get general help for the window, follow these steps:
1. Press F1 or click the Help menu.

The help panel presenting the help for the List and Details window opens.
This panel also provides a hypertext link to the Sample Business Object’s
help panel.

2. Double-click on Sample.

Chapter 4. Exploring VAGTemplates Basic Functions 129

The help panel presenting the help for the Sample Business Object opens.
This panel also provides a hypertext link to the field help panels.

3. Double-click on IdNo.

The help panel presenting the help for the IdNo field opens.

To get help directly for a particular field, follow these steps:
1. Click in a field.
2. Press F01 or click the Help menu.

The help panel presenting the help on the field opens.

Testing On-Line Help for the TUI Application
Execute the MAINMAM Program (see the procedure described in the second
part of the Introducing VAGTemplates book).
1. When the Main Menu map opens, press the F01 key.

A pop-up help displays the on-line help for the Main Menu map.
2. Type B in the Selection area to open the List and Detail map.
3. Press the F01 key.

130 VisualAge Generator Templates Standard Functions: User’s Guide

A pop-up help displays the on-line help for the List and Detail map, for
the Sample Business Object used as a list, for the fields in the list, and
then for the Sample Business Object used as a detail and for its fields.

TIP: The presentation of the on-line help in a pop-up map is the default
presentation. You can modify it by changing the default value of the
Popup policy parameter (Workspace editor, Parameters tab - page 6).

Enhancing the GUI On-Line Help (IPF file)
In our application, the same Sample Business Object is called twice with two
different presentations in the same map. Therefore, the standard generated
help displays the same help text twice, once for the list, once for the detail,
and presents all the fields called in the Business Object twice whereas the list
only presents three of them.

If you want to modify this behavior, you need to modify the IPF file.

For information on IPF file tags, refer to your IBM documentation.
1. Open the file and modify it as shown below for example.

Note: Deleted code appears struck through, added text appears
underlined, modified text appears in bold type. Our explanation
comments are in double quotes.

:userdoc.
:h1 name=1 res=1 global.Interface Units
:font facename=Helvetica size=16x10.
:ul.
:li.
:link reftype=hd res=4963.

Chapter 4. Exploring VAGTemplates Basic Functions 131

Staff list and details
:elink.
:eul.
:h1 name=4963 res=4963 global.Staff list and detail
:font facename=Helvetica size=16x10.
:p.
This window presents the staff members in a list. To see
detailed information about one staff member, double-click on a
row in the list. The detail fills in with the corresponding
information&..
:ul.
:li.
:link reftype=hd res=9543. "This number is the
identifier of the Sample Business Object help panel as defined in VAGTemplates"
Sample list
:elink.
:li.
:link reftype=hd res=9544. "This number is the identifier of
the Sample detail help panel"
Sample detail
:elink.
:eul.

:h1 name=9543 res=9543 global.Sample list
:font facename=Helvetica size=16x10.
:p.
This Business Object is used to consult
information about a staff member&..
Select Top from the SampleList menu to fill
in the list&.. Double-click on a row
to fill in the detail with the corresponding data&..
:ul.
:li.
:link reftype=hd res=19378.
IdNo
:elink.
:li.
:link reftype=hd res=29231.
Name
:elink.
:li.
:link reftype=hd res=15875.
Dept
:elink.
:link reftype=hd res=27013.
"We delete the extra items from the list of hypertext links"
Job
:elink.
:li.
:link reftype=hd res=26469.
YEARS
:elink.
:li.
:link reftype=hd res=25653.
Salary
:elink.

132 VisualAge Generator Templates Standard Functions: User’s Guide

:li.
:link reftype=hd res=29439.
Deptname
:elink.

:li.
:link reftype=hd res=12953.
Location
:elink.

:eul.
:h1 name=27013 res=27013 global.Job

:font facename=Helvetica size=16x10.
:p.
Enter a string value with 5 characters maximum
:h1 name=29231 res=29231 global.Name
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 9 characters maximum
:h1 name=19378 res=19378 global.IdNo
:font facename=Helvetica size=16x10.
:p.
Enter an integer value different from 0
:h1 name=15875 res=15875 global.Dept
:font facename=Helvetica size=16x10.
:p.
Enter an integer value
:h1 name=26469 res=26469 global.Years
"We delete the references to the help panels of the fields
that are not in the list
:font facename=Helvetica size=16x10.
:p.
Enter an integer value
:h1 name=29439 res=29439 global.Deptname
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 14 characters maximum
:h1 name=25653 res=25653 global.Salary
:font facename=Helvetica size=16x10.
:p.
Enter a decimal value (7,2)
:h1 name=12953 res=12953 global.Location
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 13 characters maximum
:h1 name=9544 res=9544 global.Sample
detail "We insert the help for the detail Business Object"
:font facename=Helvetica size=16x10.
:p.
This Business Object is used to consult,
modify, or delete information about a staff member&.. Enter the Id of
the staff member you want to see in the ID Number field and select Read from
the SampleDetail menu, or double-click on a row in the list.&..

:ul.
:li.
:link reftype=hd res=19378.

Chapter 4. Exploring VAGTemplates Basic Functions 133

IdNo
:elink.
:li.
:link reftype=hd res=29231.
Name
:elink.
:li.
:link reftype=hd res=15875.
Dept
:elink.
:li.
:link reftype=hd res=27013.
Job
:elink.
:li.
:link reftype=hd res=26469.
Years
:elink.
:li.
:link reftype=hd res=25653.
Salary
:elink.
:li.
:link reftype=hd res=29439.
Deptname
:elink.
:li.
:link reftype=hd res=12953.
Location
:elink.
:eul.
:h1 name=27013 res=27013 global.Job
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 5 characters maximum
:h1 name=29231 res=29231 global.Name
:font facename=Helvetica size=16x10.
:p.

Enter a string value with 9 characters maximum
:h1 name=19378 res=19378 global.IdNo
:font facename=Helvetica size=16x10.
:p.
Enter an integer value different from 0
:h1 name=15875 res=15875 global.Dept
:font facename=Helvetica size=16x10.
:p.
Enter an integer value
:h1 name=26469 res=26469 global.years
:font facename=Helvetica size=16x10.
:p.
Enter an integer value
:h1 name=29439 res=29439 global.Deptname
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 14 characters maximum

134 VisualAge Generator Templates Standard Functions: User’s Guide

:h1 name=25653 res=25653 global.Salary
:font facename=Helvetica size=16x10.
:p.
Enter a decimal value (7,2)
:h1 name=12953 res=12953 global.Location
:font facename=Helvetica size=16x10.
:p.
Enter a string value with 13 characters maximum
:euserdoc.

2. Compile the IPF file.
3. Copy the resulting file in the Help subdirectory of your VisualAge

Smalltalk Enterprise root directory.
4. Test your on-line help again.

Enhancing the GUI On-Line Help (RTF file)
In our application, the same Sample Business Object is called twice with two
different presentations in the same map. Therefore, the standard generated
help displays the same help text twice, once for the list, once for the detail,
and presents all the fields called in the Business Object twice whereas the list
only presents three of them.

If you want to modify this behavior, you need to modify the RTF and HPJ
files.

For information on RTF files tagging, refer to your Microsoft documentation.
1. Open the RTF file and modify it as shown below for example.

Note: Deleted code appears struck through, added text appears
underlined, modified text appears in bold type. Our explanation
comments are in double quotes.

{\rtf1
{\fonttbl \deff1
{\f0\froman Times New Roman;}{\f1\fdecor Courier New;}{\f2\fswiss Arial;}{\f3\fswiss
Arial;}}
#{\footnote 1}
\par\tab {\uldb \f3 \fs20 Staff List and Detail}{\v \f3 \fs20 4963}
\page
#{\footnote 4963}
\par \f3 \fs20 This window presents the staff members in a list. To view
the details of a staff member, double-click in the corresponding row in the
list. The detail fills in with the requested information.
\par\tab {\uldb \f3 \fs20 Sample}{\v \f3 \fs20 5622}
"This number is the identifier panel as defined in VAGTemplates"
\page of the Sample Business Object help
#{\footnote 5622}
\keepn\f2\fs20 Sample List
"We insert an unscrollable title for the help panel"
\par\pard \f3 \fs20 This
Business Object is used to consult, modify, or delete information about a
staff member. Select Top from the SampleList menu to fill in the list. Double-click
on a row to fill in the detail with the corresponding data.

\par \f3 \fs20
\par\tab {\uldb \f3 \fs20 Id no}{\v \f3 \fs20 19378}
\par\tab {\uldb \f3 \fs20 Name}{\v \f3 \fs20 29231}

Chapter 4. Exploring VAGTemplates Basic Functions 135

\par\tab {\uldb \f3 \fs20 Job}{\v \f3 \fs20 27013}
"We delete the extra items from the list of hypertext links
\par\tab {\uldb \f3 \fs20 Years}{\v \f3 \fs20 26469}
\par\tab {\uldb \f3 \fs20 Salary}{\v \f3 \fs20 25653}
\par\tab {\uldb \f3 \fs20 Dept}{\v \f3 \fs20 15875}
\par\tab {\uldb \f3 \fs20 DeptName}{\v \f3 \fs20 29439}
\par\tab {\uldb \f3 \fs20 Location1}{\v \f3 \fs20 12953}
\page
#{\footnote 27013}tab;
"We delete the references to the help
panels of the fields that are not in the list"
\par \f3 \fs20
Enter a string value with 5 characters maximum
\page
#{\footnote 29231}
\keepn\f2\fs20 Name
" We insert an unscrollable title
for the help panel"
\par\pard \fs20 Enter a string value with 9
characters maximum
\page
#{\footnote 19378}
\keepn\f2\fs20 Id Number
\par\pard \\f3 \fs20 Enter an integer value
different from 0
\page
#{\footnote 15875}
\keepn\f2\fs20 Department Number
\par\pard \\f3 \fs20 Enter an integer value
\page
#{\footnote 26469}
\par \f3 \fs20 Enter an integer value
\page
#{\footnote 29439}
\par \f3 \fs20 Enter a string value with 14 characters maximum
\page
#{\footnote 25653}
\par \f3 \fs20 Enter a decimal value with a 7-digit capacity
and a 2-digit precision
\page
#{\footnote 12953}
\par \f3 \fs20 Enter a string value with 13 characters maximum
\page

#{\footnote 5623} "We insert the help for the detail
Business Object"
\keepn\f2\fs20 Sample Detail
" We insert an unscrollable title for the help panel"
\par\pard \f3 \fs20
This Business Object is used to consult,
modify, or delete information about a staff member.
Select Top from the SampleList menu to fill in the list.
Double-click on a row to fill in the detail with the
corresponding data.
\par \f3 \fs20

136 VisualAge Generator Templates Standard Functions: User’s Guide

\par\tab {\uldb \f3 \fs20 Id no}{\v \f3 \fs20 19378}
\par\tab {\uldb \f3 \fs20 Name}{\v \f3 \fs20 29231}
\par\tab {\uldb \f3 \fs20 Job}{\v \f3 \fs20 27013}
\par\tab {\uldb \f3 \fs20 Years}{\v \f3 \fs20 26469}
\par\tab {\uldb \f3 \fs20 Salary}{\v \f3 \fs20 25653}
\par\tab {\uldb \f3 \fs20 Dept}{\v \f3 \fs20 15875}
\par\tab {\uldb \f3 \fs20 DeptName}{\v \f3 \fs20
29439}
\par\tab {\uldb \f3 \fs20 Location1}{\v \f3 \fs20
12953}
\page
#{\footnote 27013}
\keepn\f2\fs20 Job " We insert
an unscrollable title for the help panel"
\par\pard \f3 \fs20 Enter a string value with 5
characters maximum
\page
#{\footnote 29231}
\keepn\f2\fs20 Name
\par\pard\f3 \fs20 Enter a string value with 9 characters
maximum
\page
#{\footnote 19378}
\keepn\f2\fs20 Id Number
\par\pard\f3 \fs20 Enter an integer value different
from 0
\page
#{\footnote 15875}
\keepn\f2\fs20 Department Number
\par\pard\f3 \fs20 Enter an integer value
\page
#{\footnote 26469}
\keepn\f2\fs20 Years
\par\pard\f3 \fs20 Enter an integer value
\page
#{\footnote 29439}
\keepn\f2\fs20 Department Name
\par\pard\\fs20 Enter a string value with 14 characters
maximum
\page

(RTF file modifications cont’d)

#{\footnote 25653}
\keepn\f2\fs20 Salary
\par\pard\f3 \fs20 Enter a decimal value with a
7-digit capacity and a 2-digit precision
\page
#{\footnote 12953}
\keepn\f2\fs20 Location
\par\pard\fs20 Enter a string value with 13 characters
maximum
\page
}

Chapter 4. Exploring VAGTemplates Basic Functions 137

2. Modify the HPJ file as shown below to add a title to the help window and
to add the new help panel number for the detail Business Object.
[WINDOWS] "We add a title to the help window"
Main="Help for MyApplication"
[FILES] "This is the call to the help file"
HELP.RTF
[MAP] "These are the calls to the help panels.
These panel Ids are defined in the VAGTemplates Workbench"
4963 4963
5622 5622
5623 5623 "We add the panel
Id for the new detail Business Object's panel"
27013 27013
29231 29231
19378 19378
15875 15875
26469 26469
29439 29439
25653 25653
12953 12953

3. Compile the HPJ file.
4. Copy the resulting file in the Help subdirectory of your VisualAge

Smalltalk Enterprise root directory.
5. Test your on-line help again.

Enhancing the TUI On-Line Help
In our application, the same Sample Business Object is called twice with two
different presentations in the same map. Therefore, the standard generated
help displays the same help text twice, once for the list, once for the detail,
and presents all the fields called in the Business Object twice whereas the list
only presents three of them.

VAG: If you want to modify this behavior, you need to do it using the
VisualAge Generator workstation.

The TUI on-line help text and items are stored in a Table Part. You only need
to modify the text and the items in this table.
1. Select the ListaTH Table Part from the VAGen parts list in the

MyVAGTWorkspaceEntitiesApp.
The table description opens presenting three DataItems:
v the type of the VAGTemplates instances for which help will be

displayed (W for Interface Unit, O for Business Object, E for Data
Element);

v the identifier of the instance;
v the help text you wrote using the VAGTemplates Workbench.

2. Select Table contents... from the Define menu.

138 VisualAge Generator Templates Standard Functions: User’s Guide

The contents of the previous DataItems are displayed.
3. Modify the help text in the HELP-TEXT Data-Items.

For example, select the first Sample occurrence and type Sample List in the
edit box. The change is taken into account when you click on another cell.

4. Delete the extra items that appear in the help panel of the list Business
Object.
Select the lines from JOB1 to LOCATION1 - skip DEPT- below the List
item (hold down left mouse button and drag).

5. Press Del or select Delete from the Edit menu.
6. Test your on-line help again.

Using Foreign Keys to Provide a Help List

In this subchapter, you will learn how to develop a window (GUI) or a map
(TUI) presenting the details of a staff member and using a help list.

Help List Principles
In the applications developed with VAGTemplates, you can provide the end
user with a function called help list.

Note: You can only use the help list function if the imported database
contains tables with foreign keys.

Help Lists in GUI Client Applications
A help list opens when the end user clicks the combo box button. In this help
list, the end user can select a value by clicking on it. The list closes and
replaces the current value with the selected value.

If the end user knows the first character of the value he/she is looking for,
he/she can type it in. The first item that begins with this character is then
selected (normal list box operation).

Help Lists in TUI Applications
A help list panel opens when the end user presses the Lookup key after
positioning the cursor in a field that offers help lists. Such fields are marked
with an asterisk (*). In this help list, the end user can select a value by typing
a selection code in front of the value. The help list closes and replaces the
current value of the field with the selected value.

Chapter 4. Exploring VAGTemplates Basic Functions 139

Help List Specification

Caution: The DB2 SAMPLE database we used so far does not contain any
keys. For this example, you need to duplicate the SAMPLE database
to create a SAMPLE2 database. Then, in SAMPLE2, you need to
create a primary key for the ORG table - DEPTNUMB - and a
foreign key - DEPTSTOR - between the ORG table (DEPTNUMB
column) and the STAFF table (DEPT column).

For assistance, see the IBM DB2 Documentation.

To do this example, create a new Workspace and import the SAMPLE2
database in this new Workspace. And re-do the first example (topic detailed in
the second part of the Introducing VAGTemplates book).

The GUI client application will look like this:

140 VisualAge Generator Templates Standard Functions: User’s Guide

The TUI application will look like this:

Chapter 4. Exploring VAGTemplates Basic Functions 141

Testing your Help List

Testing the Help List of the GUI Client Application
Execute the DetaiInterfaceUnitView visual part (see the procedure described
in the second part of the Introducing VAGTemplates book).

Once the Staff Detail window opens:
1. In the Id field, type 10.
2. Select Read from the Sample drop-down menu.
3. Click the Top push-button at the bottom of the window to fill in the help

list.

TIP: A parameter in the Workbench triggers the filling of the help list at
the window opening: Help list prefilled parameter, Business Object
editor.

4. Click on the Department Number field combo-box.
The help list displays all the department numbers that the ORG table
contains.

5. Click on one of the values in the help list.
The current value is replaced with the selected one.

Note: If you try to enter a value that is not in the help list, the background
color of the fireld turns red to indicate that you made an error. If you
open the error message window, by selecting Check from the Sample
menu, the following message is displayed ″Invalid value for foreign key″

142 VisualAge Generator Templates Standard Functions: User’s Guide

TIP: In this example, all the department numbers in the ORG table can be
displayed in the help list. However, when the number of values is too
big, the end user can move a page forward (with the Forward
push-button) and a page backward (with the Backward push-button) in
this list.

Testing the Help List of the TUI Application

VAST: Execute the MainMAM Program (see the procedure described in the
second part of the Introducing VAGTemplates book).

Once the Staff Detail map opens:
1. Type 240 in the access parameter area and press enter to fill in the

detail.
2. Position the cursor in the Department Number field and press the

F04 function key.
A pop-up map appears and displays all the department numbers
that the ORG table contains.

3. Type a selection code in front of a value to select it, and press
enter.
The current value is replaced with the selected one.

Note: If you try to enter a value that is not in the help list, the background
color of the field turns red to indicate that you made an error and an
error message is displayed at the bottom of the map: ″Invalid value for
foreign key″

TIP: In this example, all the department numbers in the ORG table can be
displayed in the help list. However, when the number of values is too
big, the end user can move a page forward (with the F08 function key)
and a page backward (with the function key) in this list.

Chapter 4. Exploring VAGTemplates Basic Functions 143

144 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 5. Standard Functions and Layouts of Generated
Applications

GUI: The generated GUI client applications are window dialogs which allow
the end user to navigate from one window to the other by following the
links that make up the window tree. The windows present data in
details or lists. There are various actions for managing data in details or
in lists, as well as navigation actions. The generated GUI client
application also includes error management, on-line help and help lists
on foreign keys.

TUI: The generated TUI applications are map dialogs. The end user can
navigate through the application by following the links that make up the
map tree or by using a fastpath to reach any application main map
directly, wherever it is located in the map tree. The navigation between
maps can integrate access parameters. The generated maps can be
menus that provide access to other maps, details and/or lists. The
generated TUI applications are provided with various actions to access
data, as well as error management, on-line help and help lists on foreign
keys.

This chapter offers you a preview on the functions that VAGTemplates
generates for your applications and the graphical presentations available
according to the parameters you specified (or did not specify) with the
Workbench.

Note: Paragraphs that only apply to GUI client applications are signaled with
this GUI mark; paragraphs that only apply to TUI applications are
signaled with this TUI mark.

When you can modify the default generation parameters in the
VAGTemplates Workbench, this VAGT mark precedes the explanation
paragraph.

Paragraphs that only apply to Java client applications are signaled with
this JAVA mark; paragraphs that only apply to Smalltalk applications
are signaled with this SMTK mark.

When you can modify your application using the VisualAge Generator
workstation only, after the generation, this VAG mark precedes the
explanation paragraph.

© Copyright IBM Corp. 1997, 2000 145

Servers: The standard generators provided by VAGTemplates generate source
code to implement the functional processing identified in the
Information Model definitions. The standard generators support the
implementation of the following types of systems:
v GUI client/server application system
v TUI application system
v Web application system

All these different system types generated by VAGTemplates rely on
the same server programs. This means that you can generate GUI
clients and TUI applications that will share the same server
programs. If you specify the required business logic at the server
level, it will apply to all the clients generated with VAGTemplates.

Three types of server are generated for each Business Object:
v Detail
v List
v Updatable list

Two additional server types are generated when required:
v Non I/O check server
v Foreign key lookup server

For more details on servers, refer to “Server Architecture” on
page 244.

Standard Functions

The VAGTemplates RAD (Rapid Application Development) generators provide
the generated applications with standard functions and layouts.

The generated applications’ standard functions are the following:
v management of persistent data (creations, updates, etc.),
v error handling,
v management of the navigation,
v on-line help,

Note: For VAGTemplates on Java, the principle and methodology for
implementing GUI on-line help is presented.

v edition functions (GUI),

146 VisualAge Generator Templates Standard Functions: User’s Guide

Note: For VAGTemplates on Java, the principle and methodology for
implementing each edition function in the VisualAge for Java
environment is detailed.

v prompt on close,

Note: For VAGTemplates on Java, the principle and methodology for
implementing this function is presented.

v Windows menu,

Note: For VAGTemplates on Java, the principle and methodology for
implementing this menu is presented.

v Bi-directional ability.

Note: For VAGTemplates on Java, the principle and methodology for
implementing this function is presented.

The following window, generated with VAGTempaltes on Java and modified
in this target environment, is an example showing some of these standard
functions.

Management of Persistent Data
In VAGTemplates, persistent data, i.e. data stored in a database, and
non-persistent data are presented through Business Objects. VAGTemplates
generates various actions helping the end user to manage persistent data.

TUI: These actions are available through function keys or action codes. By
default, the elementary actions are triggered by action codes - I, Insert,
D, Delete, U, Update - but they are also defined in the Information
Model as action keys. If you prefer to use the function keys instead, you
can set the VisualAge Generator PFEQUATE setting correspondingly or
modify the values of the function keys in the action code table (see
“Action Code Table” on page 311).

Actions Available for Detail Business Objects
VAGTemplates provides your generated applications with the following
default services for accessing the database:
v creating rows;
v reading a row in the database, using one or more fields as extract criteria;
v updating rows;
v deleting rows;
v checking input values.

GUI: VAGTemplates allows you to choose between two update policies:

Chapter 5. Standard Functions and Layouts of Generated Applications 147

v Two actions manage the creation and the update of rows on the
server: the Create and Update actions.

v One action manages the creation and update of rows at a time on the
server: the Save action. All creations and updates are sent to the
server when this action is activated. To insert an empty detail, the
New action is added; the Save action updates it on the server.

These update policies are set via the Update GUI policy parameter, Workspace
Definition editor, GUI panel.

The connections between actions in the menu and the server that accesses the
database, and the associated processing are automatically created at
generation time. These connections are customizable after the generation and
are RAD.

TUI: VAGTemplates allows you to choose between two update policies:
v Rows are created and updated on the server when the end user

triggers an action (explicit creation and update).
v Rows are created and updated on the server when the end user

presses enter (implicit creation and update).

These update policies are set via the Update TUI policy parameter, Workspace
Definition editor, TUI panel.

For information on action layouts in GUI client applications, refer to
“Actions” on page 189.

For information on action layouts in TUI applications, refer to “Function Keys
and Actions” on page 208.

Actions Available for List Business Objects
VAGTemplates allows generation of read-only lists and updatable lists.

Actions Available for Read-Only Lists: VAGTemplates provides read-only
lists with default paging services for the massive consultation of data
extracted according to specified extract criteria, that is to say either in native or
textual value.

For information on how to specify extract criteria, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 3. Information Model Entities
and their Editors” on page 51, “Business Object” on page 56, “How to Define
a Business Object” on page 67.

Note: In this documentation, the word selection means the set of data
verifying the extract criteria, memory page the selection available

148 VisualAge Generator Templates Standard Functions: User’s Guide

without a new database access, and graphical page the number of data
displayed simultaneously on screen, in the list.

Paging services allow the end user to:
v display the current memory page of a selection,
v refresh the current memory page of a selection
v display the memory page preceding the current page of a selection,
v display the memory page following the current page of a selection,
v define a new selection.

VAGT: A parameter in the Workbench allows you to specify the size of the
memory page: Number of rows to fetch parameter, Business Object
Generation Parameters editor, List View panel.

TUI: If the memory page and the graphical page are not the same size in TUI
applications, the smaller size between the two is taken into account. The
end user will trigger an action to access the next data from the database.

GUI: VAGTemplates allows you to choose among three paging policies:
1. The list displays only the current page of a selection (Page display

parameter, set to display current page, Business Object Generation
Parameters editor, List View panel).
The action initiates another database access when the last data in the
memory page is reached. This changes the contents of the memory
page accordingly.
The generated actions are Top, to reach the first data in the database,
Next, to reach the next page of a selection, Previous, to reach the
previous page of a selection, Refresh, to refresh the page displayed,
Extract, to define a new selection.
When the memory page is greater than the graphical page, the end
user moves forwards and backwards throughout the memory page,
using the vertical scroll bar, without a new database access.

2. All the pages read in the database are displayed in the list (Page
display parameter, set to display all read pages, Business Object
Generation Parameters editor, List View panel).
v The paging is requested explicitly (Paging policy parameter, set to

explicit paging, Business Object editor).
The action initiates another database access when the last data in
the memory page is reached. This changes the contents of the
memory page accordingly.
The generated paging actions are Top, to reach the first data in the
database, Next, to reach the next page of a selection, Extract to d

Chapter 5. Standard Functions and Layouts of Generated Applications 149

efine a new selection. The end user uses the scroll bar to move
forwards and backwards throughout the read pages.
When the memory page is greater than the graphical page, the
end user moves forwards and backwards throughout the memory
page, using the vertical scroll bar, without a new database access.

v The paging services are requested by the scroll bar (Paging policy
parameter, set to auto-scrolling, Business Object Generation
Parameters editor, List View panel).
The end user activates the generated Top action to reach the first
data read from the database, and the Extract action to define a
new selection. He/she uses the vertical scroll bar to page
backwards and forwards in the list.
Actually, the first memory page is displayed in the list; when the
last data in the memory page is reached with the scroll bar, a new
database access is triggered but invisible to the end user: he/she
only scrolls the list.

For information on action layouts in GUI client applications, refer to topic
“Actions” on page 195.

For information on action layouts in TUI applications, refer to topic “Function
Keys and Actions” on page 208.

Actions Available for Updatable Lists: VAGTemplates provides updatable
lists with default paging services (see “Actions Available for Read-Only
Lists” on page 148) and services for the creation, deletion or modification of
rows. The requested actions are stored then sent together at the same time.

Note: The auto-scrolling function is not available for updatable lists.

In this documentation, the term movement means a creation, an update or a
deletion. The term list of movements is the set of movements passed to the
server at the same time.

The size of the list of movements and the maximum number of movements
passed during one client-server exchange are limited to the number of rows
read in the database at the same time (Number of rows to fetch parameter,
Business Object Generation Parameters editor, List View panel).

The available movements are implemented as actions that allow:
v the creation of a row: a blank row is added after the selected row (New

action) and created on the server (Create action);
v the update of a row: the selected row’s fields are edited (Update action).

150 VisualAge Generator Templates Standard Functions: User’s Guide

Note: The end user can only modify the key of a row added with the New
action. Once the row is created on the server its key is read-only.

v the deletion of a row: the selected row is removed from the list (Delete
action) then the deletion is sent to the server (Update action).

When a Top action is selected on a foreign key, a combo box is edited with
several values from the database, these values being either native or textual.
You can easier input or select a value.

When the updatable list displays only the current page, the Next and Previous
paging actions submit the non-committed movements to the server; the
Refresh action cancels the non-committed movements.

When the updatable list displays all the read pages, the paging actions have
no consequences on the commit.

For information on action layouts in GUI client applications, refer to topic
“Actions” on page 195.

For information on action layouts in TUI applications, refer to topic “Function
Keys and Actions” on page 208.

Actions Available for Help Lists
A help list is a list of values available for a field that are offered to the end
user as an input aid. These values are retrieved from the primary key of the
BusinessObect’s target table linked to the mono-field foreign key of a Business
Object’s primary table. The end user can choose among the values in the list.
This helps prevent input errors.

The available actions are paging actions allowing the end user to go to the top
of the list, to move forwards and backwards in the list, and to refresh or
extract data in the help list (VAGTemplates does not provide these two latter
actions in standard applications).

GUI: VAGTemplates allows you to specify two behaviors for help lists:
v all the pages read in the database are stored and displayed in the

help list. In this case, the Top action fills the help list with the first
data in the database; the Next action reads the next data in the
database and memorizes it. To see the previous read page, the end
user uses the scroll bar. The Previous action is not generated.

v only the current read page is displayed. In this case, the Top action
fills the help list with the first data in the database; The Next and
Previous actions access the next and previous data pages.

Chapter 5. Standard Functions and Layouts of Generated Applications 151

This behavior depends on the value set for the Help list page display parameter,
Business Object Generation Parameters editor, Foreign Key Help List panel.

Note: Help lists are provided for details and updatable lists, they are not
provided for lists.

TUI: The fields for which a help list is provided are signaled with an asterisk
(*).

For information on help lists’ action layout in GUI client applications, refer to
“Help List Action Layout” on page 191.

For information on help list’s action layout in TUI applications, refer to
“Function Keys and Actions” on page 208.

Automatic Zoom in (GUI)
VAGTemplates provides your GUI client applications with a function for
automatically zooming in on a particular row in a list and presenting the
corresponding data in a detail. This function is generated when you call the
same Business Object twice in a window: once as a list, once as a detail. When
the end user double-clicks on a row in the list, the detail is refreshed with the
corresponding data.

In Java/Smalltalk applications, the same behavior is generated when a
Business Object is called once as a list and once as a detail in two windows
that have a parent-to-child link.

A practical example of intra-window zoom in is provided in “Presenting a
List and a Detail in the Same Window (GUI) or Map (TUI)” on page 112. A
practical example of inter-window zoom in is provided in “Presenting a List
and Detail in Two Different Windows (GUI) or Maps (TUI)” on page 122.

Data Transfer between TUI Maps
VAGTemplates provides your TUI applications with a function for
automatically transferring the information of a selected row in a list to a detail
in another map. This function is generated when a list calls a detail as child
map. The end user only has to enter the action code of the detail in the action
field of the selected row and press enter; the detail map opens displaying the
corresponding data.

An example of data transfer is given in “Presenting a List and Detail in Two
Different Windows (GUI) or Maps (TUI)” on page 122.

Another standard function allows transfer of updates from an updatable list
to a detail called in the same map. For example, if the detail displays

152 VisualAge Generator Templates Standard Functions: User’s Guide

information on a staff member that is also displayed in the list, and if the end
user updates the data in the list, the detail is automatically refreshed with the
updated data.

An example of data update transfer is given in “Presenting a List and a
Detail in the Same Window (GUI) or Map (TUI)” on page 112.

Error Handling in GUI Client applications
The following subchapter describes generated Standard Error Handling
functions and provide a GUI for error management.

By default, the generated GUI client applications provide three check levels:
v unitary checks handling errors in input fields;
v global checks handling error in field consistency,
v server checks handling errors during a server access.

These checks are conditioned by the value of the Control location parameter,
Workspace Definition editor, Client/Server Control panel.

Unitary Check: Errors in Input Fields
v Check

If the Control location parameter is set to client or client and server, user input
validation is automatically performed by the client, at input time, on each
field losing the focus, according to the following Data Element
specifications:
– format and type: check whether or not the value input for a numeric field

is a numeric value;
– requirement: check whether or not the required field is empty;
– defined interval or value table check: check whether or not an input value

appears in a value table.

If the Control location parameter is set to server only the format and type
controls are made by the client.

v Feedback

When an error is detected, the field in error background color turns red
(default error color). When the focus is back in the field, to correct the error,
the field’s color changes back to normal.

VAGT: A parameter in the Workbench allows you to modify the color of
fields in error: Error color parameter, Workspace Definition editor,
Client panel.

For information on how to specify a Data Element’s type and format, refer to
Part 1, “Part 2. The VAGTemplates Workbench” on page 7, “Chapter 3.

Chapter 5. Standard Functions and Layouts of Generated Applications 153

Information Model Entities and their Editors” on page 51, “Data Element” on
page 76 , “How to Define a Data Element” on page 79.

Global Check: Field Consistency
v Check

If the Control location parameter is set to client or client and server, the global
check is performed any time an update or a create action is triggered or
when the end user requests it by triggering the Check action.

Note: The Check action performs a series of comparative unitary checks on all
Business Object fields within all the Business Object’s layouts.

For example, if the Mr radio button is selected, and the value input in the Sex field is
F, the global check will detect the error.

This action is originated from the Business Object part (see “Business Object
Bean/Part” on page 293)

The global check consists of the following check sequence:
v performing a series of comparative unitary checks, via the ErrorHandling

part (see “Unitary Check: Errors in Input Fields” on page 153), calling
possible inter-field checks.
VAGTemplates provides your generated application with empty parts - the
-CHK-HOOK Function (TUI) called by the server and the additionalChecks
method (GUI) called by the client - that let you implement inter-field
checking. You can add error checking code in these hooks. By default, these
hooks are called by this global check, even if they are empty.

If the Control location parameter is set to client, only the format is checked.

This global check originates from the Business Object part (see “Business
Object Bean/Part” on page 293)
v Feedback

If an error is detected, the background color of fields in error turns red
(default error color) and an error message window opens displaying the list
of the associated error messages.
Each message consists of:
– a short sentence describing the nature of the error,

For example, ″YEARS: value is not in value table″

– an ″OK″ push-button, which closes the window,
– a ″Help″ push-button, which calls the on-line help for the window

calling the Business Object on which the action was performed, if you
implement this behavior in the final application.

154 VisualAge Generator Templates Standard Functions: User’s Guide

When the focus is back in the field, to correct the error, the field’s color
changes back to normal

VAGT: You can parameterize the fields in error background colors in the
Workbench: Error color parameter, Workspace Definition editor, Client
panel.

Server Check: Access Errors
The server detects errors on persistent data that result from the activation of
an erroneous create or update action (creation of an existing row, for
example).

If the Control location parameter is set to server or client and server, the server
checks are the following:
v checking whether or not required fields are empty;
v checking whether or not fields accept the NULL value;
v checking whether or not inputted values appear in the defined value table,

for example.
v calling possible additional checks.

VAGTemplates provides your generated application with empty parts, called
hooks, that let you implement additional checks (see “Hooks” on page 253).
You can add error checking code in these hooks. By default, these hooks are
called by this server check, even if they are empty.

If the Control location parameter is not set to server nor client and server, only
the required and NULL fields are checked.
v Feedback

When the end user activates an update action, the server automatically
checks whether the action can be fulfilled. If an error is detected, the user is
informed whether he/she can correct the error (in case of an application
error), or not (in case of a system error).
– Activating an action causes an application error:

- the background color of fields in error turns red (default error color),
- an error message window opens displaying the list of the associated

error messages. Each message consists of:
v a short sentence describing the nature of the error;
v an ″OK″ push-button, which closes the window,
v In the generated components you can add a ″Help″ push-button,

which calls the on-line help for the window that calls the Business
Object in which the action was performed, if you implement this
behavior in the generated application.

Chapter 5. Standard Functions and Layouts of Generated Applications 155

– Activating an action causes a system error. A window opens presenting
technical data on the error that the end user can then report to the
system administrator.

VAGT: You can parameterize the erroneous field’s color in the Workbench:
Error color parameter, Workspace definition editor, Client panel.

Error Handling in TUI Applications
The following subchapter describes generated Standard Error Handling
functions that provide a TUI for error management.

By default, the generated TUI applications provide two check levels:
v unitary checks handling format errors in numeric input fields;
v global checks handling errors during a server access.

These checks are implemented if the value of the Control location parameter is
set to server.

Unitary Check: Format Errors in Input Fields
v Check

User input validation is automatically performed, at input time, on each
numeric field, according to the format and the type specified for the Data
Element in the Workbench. The end user is not allowed to enter values
other than numeric values in num eric fields.
– format and type: non-numeric values cannot be entered in numeric fields;
– requirement: check whether or not the required field is empty;
– defined interval or value table check: check whether or not an input value

appears in a value table.
v Feedback

When an error is detected, the fields in error background color turns red
and an error map is displayed explaining the error.

For information on how to specify a Data Element’s type and format, refer to
Part 1, “Part 2. The VAGTemplates Workbench” on page 7, “Chapter 3.
Information Model Entities and their Editors” on page 51, “Data Element” on
page 76, “How to Define a Data Element” on page 79.

Global Check: Access Errors
Errors on persistent data can result from the input of invalid data or the
activation of an erroneous creation action (creation of an existing row, for
example). The check on invalid data is performed on all fields when the end
user activates an elementary action.
v Feedback

156 VisualAge Generator Templates Standard Functions: User’s Guide

The check invalid creation action is performed when the action is activated.
The control automatically checks whether the action can be fulfilled or not.
If an error is detected, the user is informed whether he/she can correct the
error (in case of an application error), or not (in case of a system error).
– Activating an action causes an application error.

The color of the fields in error turns red (default color), and an error
message map opens displaying the list of the associated error messages.
Each message consists of a short sentence describing the nature of the
error, ″Row not found - Check key field″, for example.
A Workspace parameter allows you to specify the presentation of error
messages in the trailer of the current map (Messages display parameter,
Workspace Definition editor, TUI panel). In this case, the first message is
displayed, along with the total number of messages and its range among
them. The end user can scroll the following error messages using the
appropriate function key. When the errors are corrected, he/she can
press enter to validate the input. The server will check it anew.

– Activating an action causes a system error.
The application exits the current map and opens the system error map
that presents technical data on the error that the end user can report to
the system team.

VAGT: You can parameterize the fields in error background color in the
Workbench: Error color parameter, Workspace Definition editor, Client
panel.

Management of the Navigation

Navigating Throughout a GUI Client application
By default, VAGTemplates generates navigation actions within your
application. These actions are calls to child windows and make up a window
dialog.

A window dialog is initialized by a window, defined as a root window. This
window is the entry point to the final application.

The navigation possibilities from a window are the following:
v upward navigation by closing the window;
v downward navigation by opening child windows using the Navigation menu.
v backward and forward navigation to the open windows by using the Windows

menu.

VAGT: A parameter in the Workbench allows you to modify the default
Navigation menu title: Navigation menu title parameter, Interface Unit
Generation Parameters editor, Menu Titles panel. A parameter in the

Chapter 5. Standard Functions and Layouts of Generated Applications 157

Workbench allows you to modify the default Windows menu title:
Windows menu title parameter, Interface Unit Generation Parameters
editor, Menu Titles panel.

The default labels of the items in the Windows menu are the titles of the open
windows.

If there are more than 9 open windows, click on the More choice to view the
whole list of open windows.

Navigating Throughout a TUI Application
By default, VAGTemplates generates navigation actions within your
application. These actions are calls to child maps and make up a navigation
tree. In addition, the TUI application allows the end user to move directly to
any application main map using its fastpath, which is a kind of map
identifier, whatever its location in the navigation tree.

The navigation tree is initialized by a root map, which contains the calls to its
child map, but no parent map. This map is the entry point to the final
application.

The root map is often used as a menu that allows access to any child map,
using a fastpath, and to select data in the child map’s Business Object(s),
using access parameters.

Navigation Possibilities: The navigation possibilities from a map are the
following:
v upward navigation by pressing the Cancel (F12) function key, which opens

the previous map, or the Exit (F03) function key, which opens the last menu
in the navigation tr ee.

v downward navigation by calling up the child maps using their associated
selection codes or function keys, or by calling up any map in the
application using its fastpath.

v horizontal navigation by calling up the linked maps within the map set using
the Left (F05) and Right (F06) function keys.

158 VisualAge Generator Templates Standard Functions: User’s Guide

Note: Parameters in the Workbench allow you to modify the function keys’
codes and labels (Workspace Definition editor, Function Keys panel).

Access Parameters and Extract Criteria: You can use access parameters to
directly access a map which displays only the data you want to view.

For example, you can access directly from the main menu: the list of the staff
members that work in Washington, if the Location field is defined as extract criteria,
the detail of the staff member no. 360, if the Id Number field is the Business Object
key.You only have to enter Washington/360 in the fastpath line of the application
menu.

Chapter 5. Standard Functions and Layouts of Generated Applications 159

Access parameters can be key fields and/or extract criteria. Key fields are
indicated for both details and lists; these fields are required. Extract criteria
are indicated only for lists as they are usually used to extract data from lists;
these fi elds are not required, that is why they are indicated between brackets.
When extract criteria and key fields are defined for a Business Object, they are
always separated with a slash (/).

Note: The end user must type a slash to access data according to the extract
criteria and the key. If the end user wants to access data according to
two extract criteria, he/she must enter the extract criteria separated
with a comma as follows:

ARENT,WASHINGTON

On-Line Help
VAGTemplates provides your applications with an on-line help function
provided that you have entered the corresponding functional documentation
in the Workbench (On-line help description field, all Definition editors of all
Information Model entities except the Value Style).

GUI On-Line Help
Each window in the generated application includes a Help menu with the
standard Help menu items (Help index, Using help, Product information).
This help menu also offers one particular item, General Help, providing three
levels of help: direct help for the current window, then help for Business
Objects, and then again for input fields.

160 VisualAge Generator Templates Standard Functions: User’s Guide

TIP: The on-line help for a current window or field can also be activated by
pressing the F1 key.

Help for Windows: By clicking on the Help menu or pressing F1 on a
window with the focus, the end user opens a help panel. (The panel also
opens by clicking the Help push-button in an error message window if you
implement this behavior in the generated application.)

The current window help panel includes:

Figure 3. GUI On-Line Help Architecture

Chapter 5. Standard Functions and Layouts of Generated Applications 161

v a title, which is the display name that you specified in the Display name
field when defining the Interface Unit;

v a functional documentation section, which displays the documentation you
previously entered in the On-line help description field when defining the
Interface Unit;

v a list area, displaying the display names of the Business Objects called in
the window. From there, the end user can call the help panel of the selected
Business Object.

TIP: By default, the list area includes all the Business Objects called in the
current window. If you have not provided help for some of the
Business Objects, you can remove items from the list directly in the
help file (.IPF or .RTF and .HPJ).

Help for Business Objects: The end user activates the help for Business
Objects by selecting one of the items from the list area, in the window help
panel. (The panel also opens by clicking the Help push-button in an error
message window if you implement this behavior in the generated
application.)

The Business Object help panel includes:
v a title, which is the display name that you specified in the Display name

field when defining the Business Object;
v a functional documentation section, which displays the documentation you

previously entered in the On-line help description field when defining the
Business Object;

v a list area, presenting the display names of the fields called in the Business
Object. From there, the end user can call the help panel for the selected
Data Element.

TIP: By default, the list area includes all the Data Element called in the
current window. If you have not provided help for some of the Data
Elements, you can remove items from the list directly in the help file
(.IPF or .RTF and .HPJ).

Help for Fields: By pressing F1 on a field with the focus, in a window, the
end user opens a help panel about the focused field. The panel also opens
when selecting the corresponding item in the Business Object help panel (or
clicking the Help push-button in an error message window if you implement
this behavior in the generated application).

The field help panel includes:
v a title, which is the display name that you specified in the Display name

field when defining the field;

162 VisualAge Generator Templates Standard Functions: User’s Guide

v a documentation section, displaying the documentation you entered in the
On-line help description field while defining your Data Element.
An example of on-line help generation and customization is given in
“Generating On-Line Help (VAGTemplates on Smalltalk Example)” on
page 128.

For information on how to define an entity, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 3. Information Model Entities
and their Editors” on page 51.

VAGTemplates on Java: Implementation Principle: Two types of help are
available on request in the generated application:
v help on field (selected field)
v help on window (selected window)

To be aware of a request, all the generated windows must be listening to the
KeyEvents. When a request is emitted, it is transferred to the
MdlCommonServices class which is in charge of the actual action on the
browser. At this stage, if the request fails (because no help is available, or the
system cannot retrieve a browser to display the help, or for an unknown
reason), a message box opens to indicate what has happened. A request to the
MdlCommonServices class is made using a JFrame (the window from which
the request has been made) and a Resource Bundle from where the selected
component can be retrieved and the associated page the browser must
display.

The help(JFrame, String) method must be defined in
theMdlCommonServices class.

The following components must be defined for every window:
v the helpResourceBundle field
v the processKeyEvent(KeyEvent) method
v the help() method
v the connection between the help menu item and the help() method

TUI On-Line Help

Caution: In order that the end user gets on-line help in the final application,
you must also generate the application with the TUI help generator.

The TUI applications are provided with on-line help for each map, which is
activated by pressing the F01 key. This on-line help provides three levels of
help: direct help for the current map, then help for Business Objects, and then
again for input fields.

Chapter 5. Standard Functions and Layouts of Generated Applications 163

VAGT: A parameter in the Workbench allows you to modify the default key’s
code and label: Help parameter, Workspace Definition editor, Function
Keys panel.

The on-line help is presented by default as a pop-up map that opens at the
bottom of the current map. A parameter in the Workbench allows you to
display the on-line help on the full screen in a separate map: Display popup
parameter, Workspace definition editor, TUI panel.

Help for Maps: To get help for the current map, the end user must position
the cursor anywhere in the map, except on fields and on action codes, and
then press F01.

The current map’s help panel includes:
v the display name that you specified in the Display name field when defining

the Interface Unit;
v a functional documentation section, which displays the documentation you

previously entered in the On-line help description field when defining the
Interface Unit;

v the display name(s) of the Business Object(s) called in the map, and
its(their) functional documentation;

v the display names of the fields called in the Business Object(s), and their
functional documentation.

TIP: By default, the help panel presents the documentation of all the
Business Objects called in the current map. If you have not provided
help for some of the Business Objects, you can remove their
documentation directly in the Table where the help texts are stored.

Help for Business Objects: To get help directly on the Business Object, the
end user must position the cursor in an action code and press F01.

Figure 4. TUI On-Line Help Architecture

164 VisualAge Generator Templates Standard Functions: User’s Guide

The Business Object’s help map includes:
v the display name that you specified in the Display name field when defining

the Business Object;
v a functional documentation section, which displays the documentation you

previously entered in the On-line help description field when defining your
Business Object;

v the display names of the fields called in the Business Object(s), and their
functional documentation.

TIP: By default, the help panel presents the documentation of all the Data
Elements called in the current map. If you have not provided help for
some of the Data Elements, you can remove their documentation
directly in the Table where the help texts are stored.

Help for Fields: By pressing F01 on a field with the focus, in a map, the end
user opens a help panel about the focused field.

The field’s help panel includes:
v the display name that you specified in the Display name field when defining

the Data Element;
v a documentation section, displaying the documentation you entered in the

On-line help description field while defining the Data Element.

Note: The end user can request help on updatable fields only.

An example of on-line help generation and customization is given in
“Generating On-Line Help (VAGTemplates on Smalltalk Example)” on
page 128.

For information on how to define an entity, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 3. Information Model Entities
and their Editors” on page 51.

Edition Functions (GUI)
The VAGTemplates generated GUI client applications provide standard Copy,
Cut and Paste functions that can be activated via the Copy/Cut/Paste choices
in an Edit menu or via keyboard shortcuts (shift+del, ctrl+ins, shift+ins).

The text selected by the end user is placed in the clipboard, and may be
pasted in another input field.

VAGT: A parameter in the Workbench allows you to modify the label of the
Edit menu and edition actions: Edit menu title, Copy label, Cut label,
and Paste label parameters, Interface Unit GenerationParameters editor,
Edit Menu panel.

Chapter 5. Standard Functions and Layouts of Generated Applications 165

VAGTemplates on Java: Implementation Principle
The following methods must be implemented and associated with their
corresponding function:
v the copy() method

public void copy() {
/* copy */
Component c = this.getFocusOwner();
if (c instanceof JTextComponent) {
JTextComponent text = (JTextComponent) c;
// JTextFields can't save the selection on loosing focus
if (text.getSelectedText() == null) {
text.selectAll();
}
text.copy();
}
}

v the cut() method
public void cut() {
/* cut */
Component c = this.getFocusOwner();
if (c instanceof JTextComponent) {
JTextComponent text = (JTextComponent) c;
// JTextFields can't save the selection on loosing focus
if (text.getSelectedText() == null) {
text.selectAll();
}
text.cut();
}
}

v the paste() method
public void paste() {
/* paste */
Component c = this.getFocusOwner();
if (c instanceof JTextComponent) {
((JTextComponent) c).paste();
}
}

When the Edit menu is selected, the calculateEditActionAvailability() method
is called to enable/disable the paste menu. This method is thus called on the
menu event.
public void calculateEditActionsAvailability() {

// Enable Paste action according to Clipboard
Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();
Transferable content = clipboard.getContents(this);

// Check if the clipboard is empty
if (content == null) {
getPasteJMenuItem().setEnabled(false);

166 VisualAge Generator Templates Standard Functions: User’s Guide

} else {
getPasteJMenuItem().setEnabled(true);
}
}

Prompt on close
If a window contains a detail that displays a persistent Business Object
instance that has been modified by the user, then a prompt pops up when the
window is being closed, asking if you want to really exit or not.

VAGTemplates on Java: Implemention Principle
All the VAGTemplates generated windows are children of the JFrame class.
Therefore they emit all the window’s events (on opening, closing, ...) that can
be intercepted through the processWindowEvent(WindowEvent) method . The
idea is to redefine this method, check if the window is closing through the
event and prompt the user if necessary.

Note:

Only the detail updates are handled by this system.

The message displayed in the prompt from the
CONFIRM_ON_EXIT_MESSAGE static field defined in the
MdlCommonServices class.

Windows Menu
This menu is generated for every window and displays the list of all the open
windows.

When you select a window item in the list, the corresponding window is
shown.

When you close a window, the Windows menu from all the open window is
automatically updated.

VAGTemplates on Java: Implementation Principle
Every window is responsible for its registration/unregistration in the
MdlWindowsRegistry.

Each time a window is subjected to an open request, it self-registers
(registerWindow()>> addWindow() in the MdlWindowsRegistry). During a
close request, the windows self-unregisters (unregisterWindow() >>
removeWindow() in the MdlWindowsRegistry). If these two actions are
performed at the same time, the MdlWindowsRegistry windows attribute
emits an property change event, listened by all the active windows. They
immediately change their Windows menu list content, using the common
method updateMenu() in the MdlWindowsRegistry according to the

Chapter 5. Standard Functions and Layouts of Generated Applications 167

windows attribute. Thanks to the ActionListener defined for the
MdlWindowsRegistry , when the user selects a menu item in the Windows
menu list , the system retrieves the selected window and show it, using the
showSelectedView(int) method. Remark:

Note: The MdlWindowsRegistry is a singleton, instantiated once when the
first window is executed.

The following components must be defined for every window:
v the getWindowsRegistry() method to retrieve a singleton of the

MdlWindowsRegistry class.
v the register/unregisterWindow() methods.
v the updateWindowsMenu() method.
v the show[Window]View() method (because of the Garbage Collector).
v the ProcessWindowEvent(WindowEvent) method.
v the WindowsRegistry.windows(propertyChangeEvent) connection to call

the updateWindowMenu() method.

The following components must be defined for the MdlWindowsRegistry
class:
v the ActionEvent listener to listen to actions on menu items.
v the actionPerformed(ActionEvent) method.
v the addWindow(JFrame) method.
v the removeWindow(JFrame) method.
v the isWindowRegistered(JFrame) method.
v the updateMenu(JMenu) method.
v the showSelectedView(int) method.

BiDi Applications
The applications generated by VAGTemplates have bi-directional ability:
v The text components allow the user to enter either arabic (from right to left)

or latin (from left to right) characters.
v The visual components can be laid-out from left to right or from right to

left.

To select the orientation of the generated components, the VAGTemplates
Workbench provides the following two BiDi parameters:
v the horizontal orientation in the Workspace Definition editor
v the horizontal orientation in the Data Element Generation Parameters editor

The first parameter is used to define the global orientation layout of the visual
components. The second is used for data edition and display.

168 VisualAge Generator Templates Standard Functions: User’s Guide

VAGTemplates on Java: Implementation Principle
The VAGTemplates on Java generators set the Swing property
java.awt.ComponentOrientation to LEFT_TO_RIGHT or RIGHT_TO_LEFT
and layout the visual components according to the values specified for the
Information Model BiDi parameters.

Note: The ComponentOrientation Swing property exists only in Java 2 (since
JDK 1.2). This JDK is not stabilized in VisualAge for Java; that explanes
that some visual components (e.g. JTable, JFrame) are not reversed.

Standard Layouts of GUI Client applications

The VAGTemplates RAD generators know a set of layouts for Data Elements,
Business Objects, Interface Units and actions. They use the VAGTemplates
default parameters to generate a default layout for each entity instance that
you define. However, you can modify these parameters in the Workbench to
customize the provided layouts.

This subchapter presents:
v the default layout generated with the default VAGTemplates parameters,
v the parameters you can modify to customize these layouts.

Fields

Default Layout
The fields’ layout is linked to the check implemented on the Data Elements
they present. By default, VAGTemplates assumes that a Data Element is not
subjected to a check. The generated default presentation for fields is thus an
edit box.

Layout Parameters
If you want other graphical presentations for your fields, you need to specify
the corresponding parameters in the Workbench when defining your Data
Element. When you implemented checks on the Data Element, only some of
the presentations are available.

We indicate in the paragraphs below the presentations that are dedicated to
certain check types. This does not imply that each check type is limited to
these presentations; for example, you could have an edit box for a field
controlled by an interval.

Fields Controlled by a Value Table:

VAGT: Check type parameter, value table value, Data Element Definition editor,
Check Type panel.

Chapter 5. Standard Functions and Layouts of Generated Applications 169

The fields that are controlled by a value table can provide the end user with a
help list displaying the contents of the value table.

Radio-button
A radio-button allows the end user to choose an exclusive value. There is
one radio button per value in the value table. Radio buttons can be
presented vertically or horizontally.

The text displayed with the radio buttons corresponds to the comments
documenting the values you define in the value table.

VAGT: Value display parameter, horizontal radio button, or vertical radio
button values, Data Element Generation Parameters editor, Display
panel.

Drop-down list
A drop-down list represents the list of values available for a field. It
comprises a read-only edit box and a list. The contents of the edit box
changes when the end user selects a value in the list. The list part appears
when the end user clicks on the arrow button of the edit box.

VAGT: Value display parameter, drop-down list value, Data Element
Generation Parameters editor, Display panel.

170 VisualAge Generator Templates Standard Functions: User’s Guide

A drop-down list can present the value of the field, it is termed native
drop-down list, or the comment of the value, thus termed textual drop-down
list.

VAGT: Comment display parameter, native or textual values, Data Element
Generation Parameters editor, Display panel.

Drop-down combo

A drop-down combo represents the list of values available for a field. It
comprises an input edit box and a list. The end user can input a value in
the edit box or select an item in the list by clicking on it.

The drop-down combo can be folded, i.e. the list part only appears when
the end user clicks on the arrow button of the edit box, or unfolded.

VAGT: Value display parameter, combo, or dropped-down combo values, Data
Element Generation Parameters editor, Display panel.

Chapter 5. Standard Functions and Layouts of Generated Applications 171

A drop-down combo can present the value of the field, it is termed native
drop-down combo, or the comment of the value, thus termed textual
dropped-down combo.

VAGT: Comment display parameter, native or textual values, Data Element
Generation Parameters editor, Display panel.

Fields Controlled by an Interval:

VAGT: Check type parameter, interval value, Data Element Definition editor,
Check Type panel.

The fields that are controlled by an interval can provide the end user with an
input aid; the interval of authorized values defined for the field can be
displayed.

Scale
A scale is used to display the interval of values available for a numeric
field. It enables the end user to move rapidly in a large interval.

A scale can be horizontal or vertical.

172 VisualAge Generator Templates Standard Functions: User’s Guide

VAGT: Value display parameter, vertical scale, or horizontal scale values,
Data Element Generation Parameters editor, Display panel.

Scales only display current values.

Other Fields:

VAGT: Check type parameter, no check value, Data Element Definition editor,
Check Type panel.

These other fields do not offer a real input aid. However, an implicit check is
activated according to the nature and/or the format of the field.

Edit
An edit can display information that was specified by an application or
input by the end user.

A read-only edit displays information specified by an application but does
not accept end user inputs. However, its contents can be selected and
copied to the clipboard for further re-use.

VAGT: Value display parameter, edit, or read-only edit values, Data Element
Generation Parameters editor, Display panel.

Multi-line edit
A multi-line edit is useful for displaying a large amount of textual

Chapter 5. Standard Functions and Layouts of Generated Applications 173

information. The multi-line edit provides the end user with edition
functions, such as insert mode, cut, copy, and paste.

The multi-line edit can be read-only.

VAGT: Value display parameter, multi-line edit, or read-only multi-line edit
values, Data Element Generation Parameters editor, Display panel.

By default, the multi-line edit contains 4 lines, but you can modify it (List
size parameter, Business Object editor).

Formatted edit (VAGTemplates on Smalltalk only)
A formatted edit is an alphanumeric or numeric input field that guides
the end user’s input via an edit mask.

VAGT: Value display parameter, formatted edit value, Data Element
Generation Parameters editor, Display panel.

The edit mask is implemented by a regular expression made of particular
characters that symbolize the input pattern. Enter the regular expression
in the Pattern parameter, Data Element Generation Parameters editor,
Display panel.

The valid characters for alphanumeric field edit mask are:
v B, for a blank character
v 9, for a number
v text between double quotes, for literals
v A, for a letter

174 VisualAge Generator Templates Standard Functions: User’s Guide

v X, for any character
For example, a field displaying invoice references could have the following edit
mask: A″-″9999″-″99″-″9999 The authorized end user input could be:
E-1997-07-0124

The valid characters for a numeric field edit mask are:
v B, for a blank character
v 9, for a number
v text between double quotes, for literal values
v C, for currency
v D, for decimal separator
v T, for thousands separator
v S, for sign

For example, for a field displaying dividends the regular expression could be:
S999T999D99C The authorized end user input could be: + 120,547.15$

TIP: If the presentation of the numeric Data Element is defined by a
Value Style, the value of the Unit and sign alignment parameter is
used to define whether the unit and the sign are floating or not.

Note to VAGTemplates on Smalltalk users: The currency, decimal
separator and thousands
separator symbols are
fixed by VisualAge
Smalltalk Enterprise.

Password
A password field allows the end user to enter his/her confidential
password, whose characters appear as asterisks (*).

VAGT: Value display parameter, password value, Data Data Element
Generation Parameters editor, Display panel.

Static
A static displays the value of a field. It is read-only.

Chapter 5. Standard Functions and Layouts of Generated Applications 175

VAGT: Value display parameter, static value, Data Element Generation
Parameters editor, Display panel.

Note: The above graphical presentations display the values of the fields,
not their possible associated comments.

Presentation Label:

Note: A presentation label is a character string that can be displayed next to
the graphical presentation of the Data Element. It helps the end user
identify the nature of the displayed data.

Two types of presentation labels are available:
v line label: This label is displayed with the graphical presentation of a Data

Element, when a single occurrence of it is provided in a Business Object
detail layout.

VAGT: Default label parameter, Data Element Generation Parameters editor,
Labels panel.

v column label: This label is displayed with the graphical presentation of a
Data Element, when several occurrences of it are provided , as in a
container in Business Object list layouts. The column label can only be
defined on one line.

VAGT: Column label parameter, Data Element Generation Parameters editor,
Labels panel.

Field Layout Width:

VAGT: Max display size parameter, Data Element Generation Parameters
editor, Display panel.

You can specify a maximum width for displaying fields in your layouts.

The maximum width will be the smaller size of the logical size of the
displayed data - maximum number of characters for alphanumeric data,

176 VisualAge Generator Templates Standard Functions: User’s Guide

capacity and precision for numeric data, etc. (see “Input Mask”) - and the
size specified in the Max display size parameter.

For example, if you set the size of alphanumeric fields to 10 characters and the Max
display size parameter to 5, the displayed field will be 5-characters long. To see the
rest of the text, the end user can move the cursor to the end of the text in the field.

Input Mask
According to the type you specify for your Data Element - alphanumeric,
numeric, date, time, timestamp - in the Workbench, end user input will be
guided in some way, thanks to inherent input checks.

Alphanumeric Fields: The field accepts any character string. Checks apply to
the following:

Size
The field does not accept additional characters when the maximum size is
reached.

VAGT: Size parameter, Data Element Definition editor, General panel.

Letter case
Depending on whether you selected uppercase, lowercase, or none, the
control modifies the input according to the letter case you specified,
whatever the case used by the end user.

VAGT: Case control parameter, Data Element definition editor, General
panel.

By default, the size of the field is one character; no case control is applied.

Numeric Fields: The field only accepts integer or decimal, signed or unsigned
values. Checks apply to the following:

Decimal separator

You can specify a character - ″.″ (period) or ″,″ (comma) - as the decimal
separator. If the end user omits to type the separator or types a wrong
separator, it is corrected according to your parameter. The default
separator is ″.″ (period).

VAGT: Decimal separator setting, Value Style Definition editor, Value Style
panel.

Thousands separator

You can specify a character - ″,″ (comma), ″.″ (period), or ″ ″ (blank
character)- as the thousands separator, or or no separator. If the end user

Chapter 5. Standard Functions and Layouts of Generated Applications 177

omits to type the separator or ty pes a wrong separator, it is corrected
according to your parameter. The default separator is ″,″ (comma).

VAGT: Thousands separator setting, Value Style Definition editor, Value
Style panel..

Positive sign
You can specify a character as the positive (plus) sign. If the end user
omits to type the sign or types a wrong sign, it is corrected according to
your parameter. The default positive sign is ″ ″ (blank character).

VAGT: Positive sign setting, Value Style Definition editor, Value Style
panel.

Negative sign
You can specify a character as the negative (minus) sign. If the end user
omits to type the sign or types a wrong sign, it is corrected according to
your parameter. The default negative sign is ″-″ (minus sign).

VAGT: Negative sign setting, Value Style Definition editor, Value Style
panel.

Sign position
You can specify whether or not a sign will be displayed, and where it will
be positioned relatively to the value. If the end user’s input does not
correspond to your specification, it is corrected according to your
parameter. The default value is no sign.

VAGT: Sign position setting, Value Style Definition editor, Value Style
panel.

Unit
You can specify where the units will be positioned relative to the value. If
the end user’s input does not correspond to your specification, it is
corrected according to your parameter.

VAGT: Units settings, Value Style Definition editor, Value Style panel.

Unit position
You can specify whether or not units will be displayed, and where they
will be positioned relative to the value. If the end user’s input does not
correspond to your specification, it is corrected according to your
parameter. The default value is right.

VAGT: Unit position parameter, Value Style Definition editor, Value Style
panel.

Unit and sign alignment

178 VisualAge Generator Templates Standard Functions: User’s Guide

You can specify where the units and the sign will be positioned relative to
the value. If the end user’s input does not correspond to your
specification, it is corrected according to your parameter. The default
value is unit and sign separation.

VAGT: Unit and sign alignment setting, Value Style Definition editor, Value
Style panel.

Note: Checks jointly apply to the capacity - number of digits before the
decimal separator - and to the precision - number of digits after the
decimal separator -you defined for numeric values.

For example, if the capacity equals 5 and the precision 2, the integer part of the value
cannot exceed 5 digits and the decimal part 2 digits.

Date Fields: The field only accepts date values. Checks apply to the
following:

Mask
The end user is required to type day, month and year values according to
the order you specified - dmy, mdy, ymd. The default value is mdy.

VAGT: Mask setting, Value Style Definition editor, Value Style panel.

Separator
You can specify any character as a separator for days, months and years.
If the end user omits to type the separator or types a wrong separator, it
is automatically corrected according to your parameter.

VAGT: Separator setting, Value Style Definition editor, Value Style panel.

Year style
According to the style you specified - short or full - the date value will be
displayed with 2 or 4 characters, the century characters being added by
VisualAge Smalltalk Enterprise. The default value is full.

VAGT: Year style setting, Value Style Definition editor, Value Style panel.

Note: A default value is required for date fields.

Caution: Make sure the values you specify for these parameters are
compatible with the date and time format parameters in the

Chapter 5. Standard Functions and Layouts of Generated Applications 179

VisualAge Smalltalk Enterprise hpt.ini file. VAGTemplates uses a
VisualAge Generator method that uses parameters defined in
this file.

VAGT: The Date Format parameter (Workspace Definition editor, Server
panel) is responsible for hard-coding the date in the 4GL code. It
ensures consistency between the end user’s input and the internal
date format required by VisualAge Generator. For VAGtemplates
on Java, it is also responsible for retrieving data for Java clients.

Time Fields: The field only accepts time values. Checks apply to the
following:

Mask
According to the mask you specified - full time, no seconds - the time value
will or will not present the seconds. The default value is full time.

VAGT: Mask setting, Value Style Definition editor, Value Style panel.

Cycle
According to the cycle you specified - military, AM/PM - the end user is or
is not allowed to type hours above 12. The default value is military.

VAGT: Cycle setting, Value Style Definition editor, Value Style panel.

Separator
You can specify any character as a separator for hours, minutes and
seconds. If the end user omits to type the separator or types a wrong
separator, it is automatically corrected according to your parameter.

VAGT: Separator setting, Value Style Definition editor, Value Style panel.

AM string
The field will display the characters you specified for morning times in
AM/PM cycle - AM, am, A, a. The default value is AM.

VAGT: Am string setting, Value Style Definition editor, Value Style panel.

PM string
The field will display the characters you specified for evening times in
AM/PM cycle - PM, pm, P, p. The default value is PM.

180 VisualAge Generator Templates Standard Functions: User’s Guide

VAGT: Pm string setting, Value Style Definition editor, Value Style panel.

Note: A default value is required for time fields.

Timestamp Fields:

VAGT: Time style and Separator settings, Value Style Definition editor, Value
Style panel.

Caution: The timestamp type is not recognized in VisualAge Generator,
which considers it alphanumeric. Therefore, no check is insured at
the end user’s input.

The timestamp type is the concatenation of a date type and a time type.

You only have to specify the date and time styles you want associated to
build your timestamp type, and a character for separating date and time
values.

Note: A default value is required for timestamp fields.

For more information on how errors in input fields are handled, refer to
“Unitary Check: Errors in Input Fields” on page 153.

To Display or Not To Display:

VAGT: Display parameter, Business Object Definition editor, Field Attributes
panel.

By default, all the Data Elements called by a Business Object appear in the
final application. However, the Display column allows you to choose the
Business Object layouts for each Data Element:
v in the lists and the details (always value)
v neither in lists nor in details (never value)
v in details but not in lists (on detail only value)
v in lists but not in details (on list only value)

Detail Business Objects
Business Objects can appear as details or lists. In a detail, each individual
field (except extract fields) can have a different layout. In a list, the layout
affects all the fields presented in the list.

Default Layout
A Business Object appearing as a detail represents the columns from the
relational table(s) that it calls as independent graphical fields.

Chapter 5. Standard Functions and Layouts of Generated Applications 181

The default Business Object detail layout generated with VAGTemplates
comprises:
v a [label, value] pair, for each Data Element it calls,
v elementary actions (create, read, update, delete, check).

Fields - labels and values - are arranged across the Business Object layout in
the order in which they were specified in the Business Object, and grouped
into a form with no frame.

Fields labels and values are horizontally aligned, the label being on the left of
the value, and arranged from top to bottom then from left to right, on 8 rows.

The size of the fields is fixed, i.e. it does not vary with the size of the Business
Object layout, and adjusted to its contents; the size of the labels is always
fixed and adjusted.

Actions appear as standard menu items and the menu title corresponds to the
Business Object identifier. They are labeled: Create, Read, Update, Delete,
Check, New, Save.

Note: Actions are specified at the Business Object level and one action
corresponds to one Business Object at a time.

For example, if two detail Business Objects are presented in the same window, the
Update action will appear twice.

Figure 5. Default Business Object Detail Layout

182 VisualAge Generator Templates Standard Functions: User’s Guide

By default, all the Table’s fields mapped by a Business Object appear
automatically in the Business Object layout, but you can choose not to layout
some of them (see “To Display or Not To Display” on page 181).

Layout Parameters
Anytime the default layout does not fit your particular needs, you can set
several parameters to specify other graphical presentations. We describe, in
the below subchapters, the sizing and arrangement modes available for the
Business Object detail layout.

For information on how to specify Business Object parameters, refer to Part 1,
“Part 2. The VAGTemplates Workbench” on page 7, “Chapter 3. Information
Model Entities and their Editors” on page 51, “Business Object” on page 56,
“How to Define a Business Object” on page 67.

Note: In this documentation we call a line several horizontally aligned
[label+value] pairs, and a column one of these pairs.

Detail Sizing: The size of the detail is always deduced from its contents (see
the paragraphs below).

Presentation:

VAGT: Display parameter, Business Object Generation Parameters editor,
Detail View panel.

Form with or without a border

Fields are grouped together in a limited area. This area can be either
framed or not framed.

Groupbox
Fields are grouped together in a labeled frame.

Chapter 5. Standard Functions and Layouts of Generated Applications 183

VAGT: You can specify the label of the frame in the Workbench: Label
parameter, Business Object Generation Parameters editor, Detail
View panel.

The above presentations allow you to specify the number of lines or
columns available for displaying the fields, whether you choose a vertical
arrangement or an horizontal arrangement respectively for the fields (see
“Arrangement” on page 187.

Notebook
This presentation consists of one or more pages, identified with tabs.

184 VisualAge Generator Templates Standard Functions: User’s Guide

This presentation allows you to choose the distribution of the fields on the
page(s).

You can choose between a notebook, Windows notebook, and PM notebook.

You can specify:
v the number of lines and the number of columns available for displaying

the fields on each page - Number of columns, Number of lines parameters,
Business Object Generation parameters editor, Detail View panel.

v the number of fields per page and the number of lines or the number of
columns (whether you chose a vertical arrangement or a horizontal
arrangement respectively for the fields - see “Arrangement” on page 187)
- Number of fields per page, Number of columns, Number of lines
parameters, Business Object Generation Parameters editor, Detail View
panel.

Note: The maximum number of lines or columns that can be displayed
on a notebook page depends on the number and the presentation of
the fields (edit, combo box, etc.). If the number of fields is too big, a
new page is added to the notebook.

Chapter 5. Standard Functions and Layouts of Generated Applications 185

VAST: If you want to add a label to the notebook tabs, you must do it in
the generated application.

Alignment:

VAGT: Alignment parameter, Business Object Generation parameters editor,
Detail Field panel.

Labels are all the same height.

Horizontal alignment

Left aligned labels / left aligned values.

Right aligned labels / left aligned values.

186 VisualAge Generator Templates Standard Functions: User’s Guide

Left aligned joined labels and values.

VAST: If you prefer viewing your fields sprinkled across the Business Object
layout, you will have to change the arrangement after the generation.

Arrangement:

VAGT: Layout parameter, top to bottom or left to right values, Business Object
Generation parameters editor, Detail Field panel.

The fields - labels+values - can be placed:
v from top to bottom, then from left to right (vertical arrangement),
v from left to right, then from top to bottom (horizontal arrangement).

You can also choose the number of columns for the horizontal arrangement,
and the number of lines for the vertical arrangement (Number of lines and
Number of columns parameters, Business Object Generation parameters editor,
Detail View panel).

Note: In vertical arrangement mode, horizontal alignments are respected.
Vertical spacing between [field+label] pairs is fixed. Therefore, vertical
alignment is not guaranteed.

Chapter 5. Standard Functions and Layouts of Generated Applications 187

Sizing:

VAGT: Sizing parameter, Business Object Generation parameters editor, Detail
Field panel.

The size of the labels is always fixed and adjusted.

Adjusted
The size of the fields is adjusted to the contents. It does not vary with the
size of the Business Object layout.

Equalized
The size of the fields is initialized to the size of the contents, then
equalized with the size of the largest field in the lines or the columns.

Label and Value Display:

VAGT: Label and value display, Business Object Generation parameters editor,
Detail Field panel.

You have various possibilities for presenting field labels and values in the
Business Object:

No label
The value in the field comes with no label.

188 VisualAge Generator Templates Standard Functions: User’s Guide

Vertical

The label appears above the value; both are left aligned.

Horizontal

The label appears to the left of the value; both are aligned on top.

Lists Sizing:

VAGT: Help list size parameter, Business Object Generation parameters editor,
Foreign Key Help List panel.

You can set the number of lines in help lists. This number ranges from 1 to 20
lines. By default, lists have 4 lines.

Actions:

Chapter 5. Standard Functions and Layouts of Generated Applications 189

VAGT: Display parameter, Business Object Generation Parameters editor,
Actions and Labels panel.

VAGTemplates provide the generated applications with default management
actions (create, read, update, delete, check).

For information on the generated standard actions, refer to topic “Actions
Available for Detail Business Objects” on page 147.

These elementary actions can appear as follows:

Push-button
Push-buttons are placed at the bottom of the layout. They are aligned and
adjusted. (See “Arrangement” on page 187.)

VAGT: Display parameter, push-button value, Business Object Generation
Parameters editor, Actions and Labels panel.

A parameter in the Workbench allows you to specify whether you want
the push-buttons aligned on the left of the window, on the right or
centered in the window: Position parameter, Business Object Generation
Parameters editor, Actions and Labels panel.

Menu items
Actions can appear as menu items in a menu, or in a pop-up menu.

VAGT: Display parameter, menu and pop-up menu values, Business Object
Generation Parameters editor, Actions and Labels panel.

VAGT: Parameters in the Workbench enable you to modify the default labels
assigned to these actions: Check label, New label, Create label, Read label,
Save label, Update label, Delete label, Show message label and Menu label
parameters, Business Object Generation Parameters editor, Actions and
Labels panel.

Help Lists
Help lists are provided for the mono-field foreign keys of a Business Object’s
primary table, i.e. the first table mapped by the Business Object’s fields.

A foreign key is a field or a set of fields, used to identify or access particular
rows in a table, whose values must correspond to one value in the primary
key of the joined Table.

Help List Layout:

VAGT: Help list for all foreign keys parameter, Business Object Generation
Parameters editor, Foreign Key Help List panel.

190 VisualAge Generator Templates Standard Functions: User’s Guide

You can choose whether or not to provide help lists. If you check this option,
a help list appearing as a combo box will be provided for all the mono-field
foreign keys of the Business Object. This help list will be filled in with the
values of the secondary tables’ primary keys. Actions will also be available
(see “Help List Action Layout”). If the option is unchecked, foreign keys will
not appear as help lists but like the other fields.

Help List Action Layout: Help list paging actions are presented as
push-buttons at the bottom of the Detail. The push-buttons corresponding to
different foreign keys are located on separate lines. Their default labels are
Top, Forward, Backward.

VAGT: Parameters let you modify the default label of help list actions: Top
label, Forward label, Backward label parameters, Relational Table
Generation Parameters editor, Foreign Key Help List panel.

For more information on help list paging actions, refer to topic “Actions
Available for Help Lists” on page 151.

Note: The refresh and extract actions are not generated by VAGTemplates.

VAST: If you want to modify the layout of help list actions, you must do so
after the generation.

Filling Help Lists:

VAGT: Help list prefilled parameter, Business Object Generation Parameters
editor, Foreign Key Help List panel.

This parameter allows you to specify whether the help list will be filled with
data or empty at window opening. If the parameter is unchecked, the end
user will have to trigger the Top action to fill the help list with data.

A parameter allows you to specify whether the help list displays only the
current page, or all the read pages: Help list page display parameter, Business
Object Generation Parameters editor, Foreign Key Help List panel. In the first
case, the end user will have to activate an action to page forwards and
backwards throughout the help list. In the latter case, he/she can page
backwards and forwards throughout the read pages with the scroll bar.

List Business Objects
A Business Object appearing as a list is used to represent the Business Object’s
fields as the columns of a unique table-type graphical component, called a
container. The list can be read-only or updatable (Layout type parameter,
Interface Unit Definition editor, Business Objects panel).

Chapter 5. Standard Functions and Layouts of Generated Applications 191

Default Layout
The default Business Object list layout generated with VAGTemplates
comprises:
v a container, whose columns correspond to the fields of the Business Object,
v elementary actions.

The container is presented in a form with no frame. Its size is fixed, with 5
lines and 8 columns. It is laid out with a vertical scrollbar.

Each column comes with a heading and is adjusted to the maximum size of
its largest label or field. Column headings are aligned on the top and on the
left.

Actions are generated standard menu items and the menu title corresponds to
the Business Object’s identifier. The default action labels are: Top, Forward,
Backward , Refresh, Extract, and Submit (updatable lists).

Note: Actions are specified at the Business Object level and one action
corresponds to one Business Object at a time.

For example, if two list Business Objects are presented in the same window, the
Refresh action will appear twice.

Figure 6. Default Business Object List Layout

192 VisualAge Generator Templates Standard Functions: User’s Guide

All the Table fields mapped by a Business Object appear automatically in the
Business Object layout, but you can choose to not layout some of them (see
“To Display or Not To Display” on page 181).

Layout Parameters
Anytime the default layout does not fit your particular needs, you can set
several parameters to specify other graphical presentations. The available
sizing and arrangement modes for the Business Object list layout are stated in
the following subchapters.

Presentation:

VAGT: Display parameter, Business Object Generation Parameters editor, List
View panel.

Form with or without a border

The container is presented within a limited area. The layout can either
have a frame or not.

Groupbox
The container is framed in a labeled frame.

Chapter 5. Standard Functions and Layouts of Generated Applications 193

VAGT: You can specify the label of the frame in the Workbench: Label
parameter, Business Object Generation Parameters editor, List View
panel.

Sizing:

Number of columns

You can specify the maximum number of columns presented in the
container. If there are more columns than the display possibility of the
container, a horizontal scrollbar is provided.

VAGT: Number of columns parameter, Business Object Generation
Parameters editor, List Container panel.

Number of lines
You can specify the number of lines you want to view in the container.
This will condition the size of the graphical page.

VAGT: Number of lines parameter, Business Object Generation Parameters
editor, List Container panel.

Filling the container:

VAGT: List prefilled parameter, Business Object Generation Parameters editor,
List View panel.

This parameter allows you to specify whether or not the container will be
filled with data at window opening.

If the parameter is unchecked, the end user will have to trigger the Top action
to fill the container with data.

A parameter allows you to specify whether the list displays only the current
page, or all the read pages, and whether paging is done by activating actions
or using the scroll bar (see “Actions Available for Read-Only Lists” on
page 148).

194 VisualAge Generator Templates Standard Functions: User’s Guide

Actions:

VAGT: Display parameter, Business Object Generation Parameters editor,
Action and Labels panel.

VAGTemplates provides the generated read-only list with default paging
actions (display the first page, move back and forth to other pages, etc.), and
updatable lists with default paging and data management actions (creation,
update, deletion).

For information on standard generated actions refer to “Actions Available for
List Business Objects” on page 148.

These elementary actions can appear as follows:

Push-button
Push-buttons are placed at the bottom of the layout. They are aligned and
adjusted. (See “Sizing” on page 188, for explanations on this presentation).

VAGT: Display parameter, pushbutton value, Business Object Generation
Parameters editor, Action and Labels panel.

A parameter in the Workbench allows you to specify whether you want
the push-buttons aligned on the left of the window, on the right or
centered in the window: Position, Business Object Generation Parameters
editor, Action and Labels panel.

Menu item
Actions can appear as menu items in a menu, or in a popup menu.

VAGT: Display parameter, menu and popup menu values, Business Object
Generation Parameters editor, Action and Labels panel.

VAGT: Parameters in the Workbench allow you to modify the default labels
assigned to these actions: Top label, Refresh label, Extract label, Forward
label, Backward label, Submit label, Menu label, for updatable lists,
Business Object Generation Parameters editor, Action and Labels panel.

Extraction Criteria Layout

VAGT: Extraction criteria displayed parameter, Business Object Generation
Parameters editor, List View panel.

You can choose whether or not to provide extract criteria. If the parameter is
checked, all extraction criteria will be displayed outside the container. Each

Chapter 5. Standard Functions and Layouts of Generated Applications 195

extraction criterion appears as an edit box, on a separate line. If the option is
unchecked, the extraction criteria appear as the other fields.

In the above window, the Location field is used as an extraction criteria. It
appears outside the container and allows the end user to enter a location and
to retrieve the staff members that work at this location.

Windows
The generated window has two functions:
v visualizing and grouping Business Objects: application data are visualized in

windows through the use of Business Objects, presented in details or lists,
and manipulated via several actions.

v defining a window dialog via its own integration in a navigation tree: each
window knows its child windows. Downward navigation is made possible
by calling child windows, and upward navigation by closing the child
windows. The Windows menu allows navigation between the open
windows.

Default Layout
The default window layout generated with VAGTemplates comprises:
v zero, one, or more Business Object(s),
v navigation and standard actions.

196 VisualAge Generator Templates Standard Functions: User’s Guide

The generated window is a standard window that comprises a title bar, a
system menu, minimize and maximize buttons, resize handles, and a menu
bar. The size of the window layout is adjusted to the contents. Its coordinates
cannot be parameterized.

Business Object layouts are arranged from top to bottom then from left to
right, and are centered in the layout.

Navigation actions appear as standard menu items and the menu title is
Navigation. Each navigation action is labeled with the child window titles.

Edition actions appear as standard menu items under the Edit menu title. The
edition actions’ labels are: Copy, Cut, Paste. Help functions appear as
standard menu items under the Help menu title.

Layout Parameters
Anytime the default layout is not suited to your particular needs, you can set
several parameters to specify other graphical presentations. The available
sizing and arrangement modes for the window layout are stated in the
following paragraphs.

For information on how to define a window, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 3. Information Model Entities
and their Editors” on page 51, “Interface Unit” on page 85, “How to Define
an Interface Unit” on page 89.

Presentation:

VAGT: Interface unit display parameter, Interface Unit Generation Parameters
editor, GUI Window panel.

normal
The window has a title bar, a system menu, minimize and maximize
buttons, resize handles, and a menu bar. The Business Object layouts are
displayed together.

notebook
The window has a title bar, a system menu, minimize and maximize
buttons, resize handles, and a menu bar. It presents one or more pages
identified with tabs. Each Business Object layout is presented on a
different page.

You can choose between notebook, Windows notebook, and PM notebook.

VAST: If you want to add a label to the notebook tabs, you need to do it after
the generation.

Title:

Chapter 5. Standard Functions and Layouts of Generated Applications 197

VAGT: Title parameter, Interface Unit Generation Parameters editor, General
panel.

This parameter allows you to specify the title of the window, which appears
in the title bar.

Sizing:

VAGT: Maximize, Minimize, Resize parameters, Interface Unit Generation
Parameters editor, GUI Window panel.

These parameters allow you to provide the generated window with:
v the possibility to maximize the window layout;
v the possibility to minimize the window layout;
v the possibility to resize the window layout.

Business Object Arrangement:

VAGT: Business Object layout parameter, top to bottom and left to right values,
Interface Unit Generation Parameters editor, GUI Window panel.

Business Objects layouts can be arranged:
v from top to bottom, then from left to right (vertical arrangement),
v from left to right, then from top to bottom (horizontal arrangement).

They are aligned on top and on the left whatever the arrangement is.

Business Object Sizing Modes: Business Object layouts’ size and position are
fixed, i.e. they do not vary with the size of the window layout.

Actions: VAGTemplates provides the generated window with navigation,
standard edition and help actions.

These actions are laid out as menu items in the window’s menu bar. Their
default labels are: Navigation, Windows, Edit, and Help.

VAGT: The Menu Titles panel from the Interface Unit Generation Parameters
editor enables you to modify the default labels assigned to the
following:

v Navigation menu: Navigation menu title parameter
v Windows menu: Windows menu title parameter
v Edit menu: Edit menu title parameter

198 VisualAge Generator Templates Standard Functions: User’s Guide

The Edit Menu panel from the Interface Unit Generation Parameters editor
allows you to modify the edit actions default labels: Cut label, Copy label, Paste
label.

For information on standard generated actions refer to “Management of
Persistent Data” on page 147, “Navigating Throughout a GUI Client
application” on page 157, “GUI On-Line Help” on page 160, and “Edition
Functions (GUI)” on page 165.

Standard Layouts of TUI Applications

The VAGTemplates RAD generators provide a standard design for fields,
Business Objects, maps and actions. They use the VAGTemplates default
parameters to generate a default layout for each entity instance that you
define. However, you can modify these parameters in the Workbench to
customize the provided layouts.

This subchapter presents:
v the default presentations produced with the default VAGTemplates

parameters, that is the generated layout if you do not modify any
parameter in the Workbench;

v the parameters you can modify to customize these layouts.

Maps
VAGTemplates allows you to generate two types of maps: root maps and
simple maps (Type parameter, Interface Unit Definition editor, General panel).
VAGTemplates also generates error maps and help maps.

Root maps are often used as application main menus. They do not call any
Business Object. They contain a list of child map calls and their access
parameters (extract criteria and/or primary keys). The root map is the entry
point of the application.

Simple maps can contain from 0 to n Business Objects with no layout
constraints. They offer actions for manipulating Business Object data and
actions for navigating from one map to the other. They also present system
information such as the system type, the user id, etc.

Note: The default map size is 24 lines by 80 columns. This size is defined by
the default device specified for the application (Standard TUI device
parameter, Workspace definition editor).

Root Map Default Layout
By default, the root map is generated with:
v a header presenting system information,

Chapter 5. Standard Functions and Layouts of Generated Applications 199

v a body presenting the list of child maps and their access parameters,
v a trailer presenting the function keys and various messages.

The read-only field color is green; the field in error color is red; the input field
color is yellow; the title color is white, and the function keys label is
turquoise. The input fields are signaled with underscores.

Default Root Map Header: The header starts on the first line of the screen
and comprises three lines (line 1 to 3 of 24):
v Line 1: This line displays the type of the system that runs the application,

the name of the application, which is actually the name of your
VAGTemplates Workspace, and the fastpath of the root map.

v Line 2: This line displays the user id, the title of the map, the current date
and time.

v Line 3: This line is a blank separation line.

VAST: If you want to modify the presentation of the header, you must
modify the corresponding generated Map part.

Default Root Map Body: The map’s body starts on line 4 of the screen and
ends on line 21. It displays the list of the child maps towards which the end
user can navigate, indicating for each map:
v its selection code;
v its fastpath;

200 VisualAge Generator Templates Standard Functions: User’s Guide

v its title;
v the access parameters that are available for the map, i.e. the primary key(s)

of the Business Object(s) it calls, and the extract criteria that are defined for
the Business Object(s) displayed between brackets;

v a blank separation line;
v the Selection field where the end user enters the selection code of the map

he/she wants to open;
v a blank separation line;
v the Fastpath field where the end user enters the fastpath of the map he/she

wants to open, and the field where he/she can enter the access parameters
of the map;

v a blank separation line.

Note: If the number of lines to display the list of called maps is bigger than
the available number of line in the map body, the list will be truncated
and only the first lines that fit in the map will be displayed. In this
case, you should define several menu maps.

Default Root Map Trailer: The trailer starts on line 22 of the screen and
comprises three lines (line 22 to 24 of 24):
v Line 22: This line is a blank separation line.
v Lines 23-24: These lines display the action labels and function keys.

VAST: If you want to modify the presentation of the trailer, you must modify
the corresponding generated Map part.

Simple Map Default Layout
By default, the simple map is generated with:
v a header presenting system information,
v a body presenting the Business Object(s) it calls and the available actions

for the Business Object(s),
v a trailer presenting the function keys.

Chapter 5. Standard Functions and Layouts of Generated Applications 201

The read-only field color is green; the field in error color is red; the input field
color is yellow; the title color is white, and the function key label color is
turquoise. The input fields are signaled with underscores.

Caution: A map cannot display two Business Object layouts of the same type.
For example, two list layouts of the same Business Object cause the
generation to be aborted.

Note: When a map displays an updatable list and a detail Business Object,
the generated actions are available for both Business Objects. If the map
displays a read-only list and a detail Business Object, as in the example
above, the generated actions are only a vailable for the detail Business
Object.

Default Simple Map Header: The header starts on the first line of the screen
and comprises four lines (line 1 to 4 of 24):
v Line 1: This line displays the type of the system that runs the application,

the name of the application, which is actually the name of your
VAGTemplates Workspace, and the fastpath of the root map.

v Line 2: This line displays the user id, the title of the map, the current date
and time.

v Line 3: This line is a blank separation line.
v Line 4: This line displays the available actions for the Business Object(s).

202 VisualAge Generator Templates Standard Functions: User’s Guide

VAST: If you want to modify the presentation of the header, you must
modify the corresponding generated Map part.

Default Simple Map Body: The map body starts on line 4 of the screen and
ends on line 21. It displays the Business Objects called by the map, separated
by a blank line. Business Objects are laid out from top to bottom then from
left to right.

For updatable Business Objects, a line displays the Action field where the end
user can enter the action code.

Line 20 displays the Fastpath field where the end user enters the fastpath of
the map he/she wants to open, and the field where he/she can enter the
access parameters of the map.

Note: If the width of a Business Object is too big to display it on a single
map, it is spread on several maps. The end user can scroll horizontally
the various maps using the F05 (Left) and F06 (Right) function keys. In
this case, the logical key of the Business Object, the available actions
and the function keys are repeated on each map.

If the number of lines of the Business Object is greater than the available
number of lines in the map (24 lines minus header and trailer), the Business
Object cannot be generated; an error occurs.

In a map displaying several Business Objects, if the Business Object has too
many lines to be displayed entirely on the map, it will be displayed on a new
map. The end user can reach it by using the F05 (Left) and F06 (Right)
function keys.

When the whole map is displayed on several maps, the current map number
is displayed at the end of the fastpath line.

Default Simple Map Trailer: The trailer starts on line 22 of the screen and
comprises three lines (line 22 to 24 of 24):

Line 22: This line is a blank separation line.

Lines 23-24: These lines display the action labels and function keys.

VAST: If you want to modify the presentation of the trailer, you must modify
the corresponding generated Map part.

Application Error Map Default Layout
By default, the application error map is a pop-up map displayed above the
current map. It comprises 8 lines:

Chapter 5. Standard Functions and Layouts of Generated Applications 203

v 1 line displaying the map title: ERROR LIST
v 4 lines displaying the list of the messages;
v 1 line displaying the function keys available for the map.

The title color is white; the error message color is red; the warning message
color is pink, the information message color is pink; the read-only field color
is green; the function key label color is turquoise.

VAST: For information on error management, refer to “Error Handling in
TUI Applications” on page 156.

Management of Messages
You can now raise messages that will not stop the execution of the current
action. These messages will be displayed within the interface in an optional
bar.
v Raising a message on the server:

The xxERROR-LST record has a flag, CONTROL-INFORMATION, which
indicates whether a message has been raised or not. Also,
applicative-information contains info-code and 3 info-variables. The code is
similar to the one used in the errors.
Messages can be raised in the hooks of the server.
They are raised by the client and received by the server. A server message
has priority.

v Raising a message on the client:

Help Map Default Layout
By default, the help map is a pop-up map displayed on top of the current
map. It comprises 16 lines displaying:
v the help text;
v the function keys available for the map.

The help text color is white; the read-only field color is green; the function
key label color is turquoise.

VAST: For information on on-line help, refer to “TUI On-Line Help” on
page 163.

Help List Map Default Layout
By default, the help list map is a pop-up map displayed on top of the current
map. It comprises 8 lines displaying:
v the title of the help list, for example ORG HELP LIST PANEL;
v the list of available values;
v the function keys available for the map.

204 VisualAge Generator Templates Standard Functions: User’s Guide

The text color is white; the read-only field color is green; the function key
label color is turquoise.

VAST: For information on help lists, refer to topic “Actions Available for
Help Lists” on page 151, and “Help Lists” on page 220.

Layout Parameters
We describe in the paragraphs below the parameters that allow you to modify
the default colors, the default title and fastpath of the map and the
presentation of actions, help maps, help lists, message maps.

Colors: Several parameters allow you to modify the color of the texts
displayed in the various maps:

Input fields
You can specify the default color of input fields. Such fields appear in root
and simple maps and in help lists. The default color is yellow.

VAGT: Normal color parameter, Workspace Definition editor, Client panel.

Read-only fields
You can specify the color of read-only fields. Labels appearing in the
header of the root and simple maps, function key codes appearing on all
maps, fields’ labels appearing in the body of the simple maps and in the
help lists are read-only. The default color is green.

VAGT: Readonly color parameter, Workspace Definition editor, Client panel.

Fields in error
You can specify the color of input fields when an error has been detected
in them. The default color is red.

VAGT: Error color parameter, Workspace Definition editor, Client panel.

Function key labels

You can specify the color of the function key labels that appear on all
maps. The default color is turquoise.

VAGT: Function key label color parameter, Workspace Definition editor,
Colors panel.

Titles
You can specify the color of the map titles that appear on the simple
maps, on the message maps, and on the root map in the header and in
the list of called maps. The default color is white.

VAGT: Title color parameter, Workspace Definition editor, Colors panel.

Chapter 5. Standard Functions and Layouts of Generated Applications 205

Help text
You can specify the color of the help text that appear on the help maps
and on the help list maps. The default color is white.

VAGT: Help text color parameter, Workspace Definition editor, Colors
panel.

Error messages
You can specify the color of the error messages that appear on the
message maps, or at the bottom of the root and simple maps. The default
color is red.

VAGT: Error message color parameter, Workspace Definition editor, Colors
panel.

Information messages

You can specify the color of the information messages that appear on the
message maps, or at the bottom of the root and simple maps. The default
color is pink.

VAGT: Information message color parameter, Workspace Definition editor,
Colors panel.

Warning messages

You can specify the color of the warning messages that appear on the
message maps. The default color is pink.

VAGT: Warning message color parameter, Workspace Definition editor,
Colors panel.

TIP: In the standard generated TUI applications, there is no distinction
between error messages, information messages and warning messages;
they are all considered error messages. Therefore the Information message
color and Warning message color are ignored. If you want to specify an
error gravity, you can customize the generators so that they use the
error-gravity Data-Item from the WERROR-LIST Record (see “Error Data
Records” on page 315).

Note: Some colors cannot be displayed in TUI applications. If you specify one
of these colors, the color applied in the generated application will be
the nearest available color of the system where the application runs. For
example, if you specify grey, the nearest color could be green on your
system.

Title:

206 VisualAge Generator Templates Standard Functions: User’s Guide

VAGT: Title parameter, Interface Unit Generation Parameters editor, General
panel.

This parameter allows you to specify the title of the map, which appears in
the header and in the main menu map.

Fastpath:

VAGT: Fastpath parameter, nterface Unit Generation Parameters editor, General
panel.

This parameter allows you to specify the fastpath that will allow the end user
to directly access the map by simply entering its fastpath in the Faspath field.

Size of Application Error Maps: You can modify the size of the application
message maps by specifying the number of messages you want displayed on
a page at a time. By default, 4 messages are displayed at a time.

VAGT: Messages per page parameter, Workspace Definition editor, TUI panel.

VAST: If you want to modify the size of the help maps, you must do it on the
corresponding generated Map part.

Size of Map Headers: You can modify the size of the simple map header by
displaying the action codes or not.

VAGT: Display actions parameter, Workspace Definition editor, Function Keys
panel.

Therefore, the header will have three lines if you choose not to display the
action codes (option checked).
#SYST:|OS2CICS # |MYAPPLICATION # #FASTPATH:|LSTDET#
#USER:|PC USER # |List and Detail # |05-29-1997#|18:28:59#

It will have four lines if you choose to display the action codes (parameter set
to true).
#SYST:|OS2CICS # |MYAPPLICATION # #FASTPATH:|LSTDET#
#USER:|PC USER # |List and Detail # |05-29-1997#|18:28:59#

#ACTIONS:|I|INSERT|U|UPDATE|D|DELETE| | | | #

Size of Map Trailers: You can modify the size of the root and simple map
trailers by either displaying or not displaying the function keys and the error
messages in the trailer.

Chapter 5. Standard Functions and Layouts of Generated Applications 207

VAGT: Display function keys parameter, and Messages display parameter,
Workspace Definition editor, respectively Function Keys and TUI
panels.

The trailer will have 0 lines if you choose not to display the function keys
(Function keys display policy parameter set to false), and to display the error
messages in a specific map (Messages display parameter set to specific map).

It will have 1 line if you choose to display the error messages at the bottom of
the current map (Messages display parameter set to current map) but not the
function keys (Display function keys parameter unchecked).
|(E)|INVALID ACTION | #

It will have 3 lines if you choose to display the function keys (Display function
keys checked) but not the error messages (Messages display parameter set to
specific map).
#PF01:|HELP #PF02:| #PF03:|EXIT #PF04:|LOOKUP#PF05:| #PF06:| #
#PF07:| #PF08:|NEXT #PF09:| #PF10:| #PF11:| #PF12:|CANCEL#

It will have 4 lines if you choose to display the function keys (Display function
keys parameter checked) and the error messages (Messages display parameter
set to current map).
|(E)|INVALID COMMAND | #

#PF01:|HELP #PF02:| #PF03:|EXIT #PF04:|LOOKUP#PF05:| #PF06:| #
#PF07:| #PF08:|NEXT #PF09:| #PF10:| #PF11:| #PF12:|CANCEL#

Function Keys and Actions: VAGTemplates provides your applications with
default navigation, data management and help actions that are activated using
function keys. Several parameters allow you to modify the presentation of the
function keys and their labels.

For information on standard generated actions refer to “Management of
Persistent Data” on page 147, “Navigating Throughout a TUI Application”
on page 158, and “TUI On-Line Help” on page 163.

Function key display

You can choose whether or not to display the function keys on the maps.
Even if they are not displayed, the end user can still activate them. By
default they are displayed.

VAGT: Display function keys parameter, Workspace Definition editor,
Function Keys panel.

Action codes display

208 VisualAge Generator Templates Standard Functions: User’s Guide

You can choose whether or not to display the action codes on the maps.
Even if they are not displayed, the end user can still activate them. By
default they are displayed.

VAGT: Display actions parameter, Workspace Definition editor, Function
Keys panel.

Parameters in the Workbench enable you to modify the default labels
assigned to the function keys, and the function key code associated with
an action:

Cancel action
By default, the function key that exits the current map without saving the
modifications and returns to the menu is the F12 key; its default label is
Cancel.

VAGT: Cancel parameter, Workspace Definition editor, Function Keys
panel.

Create action
By default, the function key that creates a new row in the database is the
F13 key; its default label is Create.

VAGT: Create parameter, Workspace Definition editor, Function Keys panel.

Delete action
By default, the function key that deletes a row in the database is the F16
key; its default label is Delete.

VAGT: Delete parameter, Workspace Definition editor, Function Keys panel.

Exit action
By default, the function key that exits the current map and returns to the
previous map is the F03 key; its default label is Exit.

VAGT: Exit parameter, Workspace Definition editor, Function Keys panel.

Help action
By default, the function key that opens the on-line help is the F01 key; its
default label is Help.

VAGT: Help parameter, Workspace Definition editor, Function Keys panel.

Left map action
By default, the function key that opens the next map is the F05 key; its
default label is Left.

VAGT: Left page parameter, Workspace Definition editor, Function Keys
panel.

Chapter 5. Standard Functions and Layouts of Generated Applications 209

Look up in help list action

By default, the function key that opens the help lists is the F04 key; its
default label is Lookup.

VAGT: Lookup parameter, Workspace Definition editor, Function Keys
panel.

Next list page action
By default, the function key that displays the next data in a list is the F08
key; its default label is Next.

VAGT: Next page parameter, Workspace Definition editor, Function Keys
panel.

Next message action
By default, the function key that displays the next error message at the
bottom of the current map is the F11 key; its default label is Msg +.

VAGT: Next message parameter, Workspace Definition editor, Function Keys
panel.

Previous list page action
By default, the function key that displays the previous data in a list is the
F07 key; its default label is Prev.

VAGT: Previous page parameter, Workspace Definition editor, Function
Keys panel.

Previous message action
By default, the function key that displays the previous error message at
the bottom of the current map is the F10 key; its default label is Msg -.

VAGT: Previous message parameter, Workspace Definition editor, Function
Keys panel.

Read action
By default, the function key that reads a row in the database is the F14
key; its default label is Select.

VAGT: Read parameter, Workspace Definition editor, Function Keys panel.

Refresh action
By default, the function key that displays the data as it was when last
updated is the F09 key; its default label is Undo.

VAGT: Refresh parameter, Workspace Definition editor, Function Keys
panel.

210 VisualAge Generator Templates Standard Functions: User’s Guide

Right map action
By default, the function key that opens back the previous map is the F06
key; its default label is Right.

VAGT: Right page parameter, Workspace Definition editor, Function Keys
panel.

Top list page action
By default, the function key that displays the first data in a list is the F17
key; its default label is Top.

VAGT: Top parameter, Workspace Definition editor, Function Keys panel.

Update action
By default, the function key that updates a row in the database is the F15
key; its default label is Update.

VAGT: Update parameter, Workspace Definition editor, Function Keys
panel.

VAST: VAGTemplates provides 16 function keys associated with 16 actions
(F01 and F03 to F17). By default, only the first 12 are displayed and
can be used in the generated applications; the last five function keys
that are associated with the elementary actions (create, read, update,
delete) and the Top action are not used. The elementary actions are
generated by default with particular action codes; the Top action is not
used. If you want to use the function keys from 13 to 17, you can
modify the default behavior in the generated application.

If you want to add function keys (from F18 to F24), you must add them in the
function key Table part (see “Action Code Table” on page 311).

Note: If you prefer using the function keys from 13 to 24 instead of the
function keys from 01 to 12, you can modify a method used by the
generators, the arePFKeysEquated: method from the
MdlVGApplication class (see the VAGTemplates on Smalltalk Reference
Guide, modify the PFEQUATE VisualAge Generator attribute directly.

Help List, Help Map, Error Map Presentation
By default, Help List Maps, Help Maps, and Error Maps are presented as
pop-up maps displayed within the current map.

A parameter in the Workbench allows you to present them on the full screen.
In this case, the data map is no longer visible. Pressing the F03 key (Exit)
closes the pop-up map. Selecting data in a help list map closes the pop-up
map and transfers the selected value to the data map field for which input aid
was requested.

Chapter 5. Standard Functions and Layouts of Generated Applications 211

VAGT: Display popup parameter, Workspace Definition editor, TUI panel.

Fields

Default Layout
By default, all the fields called by the Business Object are laid out in the final
application. Read-only fields are green; updatable fields are yellow; fields that
required a value are shown with underscores.

The size and the presentation of the fields is linked to the type of the Data
Element it presents.

Layout Parameters
When defining your Data Elements, you can specify various parameters to
modify the presentation of fields. The field offers a help list or not according
to the type of value check you specified for the Data Element.

Fields Controlled by a Value Table:

VAGT: Check type parameter, value table value, Data Element Definition editor,
Check Type panel.

The fields that are controlled by a value table provide the end user with a
help list displaying the contents of the value table.

These fields are shown with an asterisk (*). When the end user requests input
aid for the field, he/she presses the Lookup key (default key), and a pop-up
map is displayed presenting the possible values for the field (default
presentation). The end user can select a value in the help list.

212 VisualAge Generator Templates Standard Functions: User’s Guide

For information on modifying function key labels and associated actions, refer
to topic “Function Keys and Actions” on page 208.

For information on changing field colors, refer to topic “Colors” on page 205.

Presentation Label:

Note: A presentation label is a character string that can be displayed next to
the graphical presentation of the Data Element. It helps the end user
identify the nature of the displayed data.

Two types of presentation labels are available:
v line label: This label is displayed with the graphical presentation of a Data

Element, when a single occurrence of it appears in a Business Object detail
layout.

VAGT: Default label parameter, Data Element Generation Parameters editor,
Labels panel.

v column label: This label is displayed with the graphical presentation of a
Data Element, when several occurrences of it appear in a list Business
Object. The column label can only be defined on one line.

VAGT: Column label parameter, Data Element Generation Parameters editor,
Labels panel.

Line label Input field 1 Column label

#DEPARTMENT: |Washington# #Name#

Chapter 5. Standard Functions and Layouts of Generated Applications 213

Line label Input field 1 Column label

|Wallis # Input field 1

|Arent # Input field 2

Field Size and Presentation
According to the type - alphanumeric, numeric, date, time, timestamp - you
specify for your Data Element in the Workbench, end user input will be
guided in some way, thanks to inherent input checks.

Alphanumeric Fields: An alphanumeric field accepts any character string.

Size
The size of the field is derived from the size that you specified when
defining the Data Element it presents. The field does not accept additional
characters when the maximum size is reached.

By default, the size of the field is one character.

VAGT: Size parameter, Data Element Definition editor, General panel.

Numeric Fields: A numeric field only accepts integer or decimal, signed or
unsigned values.

Decimal separator

VisualAge Generator does not allow any customization of the decimal
separator. The default separator will be the default system separator. If the
end user enters a separator, it will be automatically reverted to the system
separator.

VAGT: Decimal separator setting, Value Style Definition editor, Value Style
panel.

Thousand separator

VisualAge Generator does not allow any customization of the thousands
separator. However, if you specify the empty string, no separator will be
generated for the numeric value, as VisualAge Generator will consider
that no separator is defined. If you specify one, whatever it may be, the
displayed separator will be the system default separator. If the end user
enters a separator, it will be automatically reverted to the system
separator.

VAGT: Thousand separator setting, Value Style Definition editor, Value Style
panel.

Positive sign
VisualAge Generator does not allow any customization of the positive

214 VisualAge Generator Templates Standard Functions: User’s Guide

(plus) sign. The default positive sign in VisualAge Generator is the blank
character. If the end user enters a sign, it will be automatically reverted to
the blank character.

VAGT: Positive sign setting, Value Style Definition editor, Value Style
panel.

Negative sign
VisualAge Generator does not allow any customization of the negative
(minus) sign. The default negative sign in VisualAge Generator is ″-″
(minus sign). If the end user enters a sign, it will be automatically
reverted to th e default sign.

VAGT: Negative sign setting, Value Style Definition editor, Value Style
panel.

Sign position
You can specify whether or not a sign will be displayed, and where it will
be positioned relative to the value. If the end user’s input does not
correspond to your specification, it is corrected according to your
parameter. The default value is no sign.

VAGT: Sign position setting, Value Style Definition editor, Value Style
panel.

Unit
VisualAge Generator does not allow any customization of the units
symbol. The default unit in VisualAge Generator are the units of the
system language in which the product is localized. If you specify no unit
in the Unit field, no units will be displayed.

VAGT: Unit setting, Value Style Definition editor, Value Style panel.

Unit position
VisualAge Generator does not allow any customization of the units
position. The default presentation in VisualAge Generator is the
presentation implied by the system language in which the product is
localized. If you specify a units position, VisualAge Generator will add
units and assign it its default presentation. If you specify no units, no
units will be displayed. The default value is no units.

VAGT: Unit position setting, Value Style Definition editor, Value Style
panel.

Unit and sign alignment

Chapter 5. Standard Functions and Layouts of Generated Applications 215

VisualAge Generator does not allow any customization of the units
position. The default presentation in VisualAge Generator is the
presentation implied by the system language in which the product is
localized.

VAGT: Unit and sign alignment setting, Value Style Definition editor, Value
Style panel.

Size
The size of the field is derived from the capacity - number of digits before
the decimal separator - and to the precision - number of digits after the
decimal separator - that you specified when defining the Data Element it
presents. The field does not accept additional characters when the
maximum size is reached.

For example, if the capacity equals 5 and the precision 2, the integer part of the
value cannot exceed 5 digits and the decimal part 2 digits.

By default, the capacity is 1 and the precision 0.

VAGT: Capacity and Precision setting, Data Element Definition editor,
General panel.

Date Fields: The field only accepts date values.

Mask
The end user is required to type day, month and year values according to
the order you specified - dmy, mdy, ymd. The default value is mdy.

VAGT: Mask setting, Value Style Definition editor, Value Style panel.

Separator
You can specify any character as a separator for days, months and years.
If the end user omits to type the separator or types a wrong separator, it
is automatically corrected according to your parameter.

VAGT: Separator setting, Value Style Definition editor, Value Style panel.

Year style
According to the style you specified - short or full - the date value will be
displayed on 2 or 4 characters, the century characters being added by
VisualAge Generator. The default value is full.

VAGT: Year style setting, Value Style Definition editor, Value Style panel.

216 VisualAge Generator Templates Standard Functions: User’s Guide

Note: A default value is required for date fields.

Caution: Make sure the values you specify for these parameters are
compatible with the date and time format parameters in the
VisualAge Smalltalk Enterprise hpt.ini file.

Time Fields: VisualAge Generator does not allow any customization of the
time presentation. The default presentation in VisualAge Generator is the
presentation implied by the system language in which the product is
localized.

Timestamp Fields: VisualAge Generator does not allow any customization of
the time presentation. The default presentation in VisualAge Generator is the
presentation implied by the system language in which the product is
localized.

Caution: The timestamp type is not recognized in VisualAge Generator,
which considers it alphanumeric. Therefore, no check is insured at
end user’s input.

For information on how errors in input fields are handled, refer to
“Management of Persistent Data” on page 147.

To Display or Not To Display:

VAGT: Display parameter, Business Object Definition editor, Field Attributes
panel.

By default, all the Data Elements called by a Business Object appear in the
final application. However, the Display column allows you to choose the
Business Object layouts for each Data Element:
v in the lists and the details (always value);
v neither in lists nor in details (never value);
v in details but not in lists (on detail only value).
v in lists but not in details (on list only value).

Detail Business Objects
Business Objects can appear as details or lists. In a detail, each individual
field (except extract fields) can have a different layout. In a list, the layout
affects all the fields presented in the list.

Default Layout
A Business Object appearing as a detail represents the Data Elements from the
relational table(s) that it calls as independent graphical components.

Chapter 5. Standard Functions and Layouts of Generated Applications 217

The default Business Object detail layout generated with VAGTemplates
comprises:
v a [label, value] pair, for each Data Element it calls,
v elementary actions (create, read, update, delete, check).

Fields - labels and values - are arranged across the Business Object layout in
the order in which they were specified in the Business Object.

Field labels and values are horizontally aligned, the label being on the left of
the value, and arranged from top to bottom on 8 lines - except the key fields
that are presented from left to right in a reserved line. Labels and values are
left-aligned.

All the Table’s fields mapped by a Business Object automatically appear in the
final application, but you can choose not to provide some of them (see “To
Display or Not To Display” on page 217).

Layout Parameters
Several parameters allow you to modify the presentation of the Business
Object detail layout.

For information on how to specify Business Object parameters, refer to Part 1,
“Part 2. The VAGTemplates Workbench” on page 7, “Chapter 3. Information
Model Entities and their Editors” on page 51, “Business Object” on page 56,
“How to Define a Business Object” on page 67.

Figure 7. Default Business Object Detail Layout

218 VisualAge Generator Templates Standard Functions: User’s Guide

Note: For the needs of this documentation we call a line several horizontally
aligned [label+value] pairs, and a column one of these pairs.

Detail Sizing: The size of the detail is limited by the size of the map.

Arrangement:

VAGT: Layout parameter, top to bottom or left to right values, Business Object
Generation Parameters editor, Detail Field panel.

The fields - labels+values - can be placed:
v from top to bottom, then from left to right (vertical arrangement),
v from left to right, then from top to bottom (horizontal arrangement).

Top to bottom presentation

You can choose the number of lines for the vertical arrangement (Number
of lines parameter, Business Object editor), but you cannot choose the
number of columns. The detail is spread on several maps if all the
columns do not fit in a single map.

If the specified number of lines is too small compared with the number of
Business Object fields to be displayed, the remaining fields are presented
in another column.

Left to right presentation

Chapter 5. Standard Functions and Layouts of Generated Applications 219

When not all the fields fit in a single map, the detail is spread over
several maps.

You cannot choose the number of columns on which to display the fields
since the layout generator optimizes the usable space to display as many
fields as possible on a single map. You can see in the above example that
the fields are not aligned but they are next to one another. The Number of
columns parameter is ignored.

Help Lists
Help lists are provided for the mono-field foreign keys of a Business Object’s
primary table, i.e. the first table mapped by the Business Object’s fields.

A foreign key is a field or a set of fields, used to identify or access particular
rows in a table, whose values must correspond to one value in the primary
key of the joined Table.

Help List Layout:

VAGT: Help lists for all foreign keys parameter, Business Object Generation
Parameters editor, Foreign Key Help List panel.

220 VisualAge Generator Templates Standard Functions: User’s Guide

You can choose whether or not to provide help lists. If the option is checked,
help lists appearing as pop-up help list maps will be provided for the
mono-field foreign keys of the Business Object. The help lists will be filled in
with the values of the secondary tables’ primary keys. Their available actions
will also be displayed (see “Actions Available for Help Lists” on page 151,
and “Function Keys and Actions” on page 208). If the option is unchecked, the
foreign keys will appear like the other fields.

Filling Help Lists:

VAGT: Help list prefilled parameter, Business Object Generation Parameters
editor, Foreign Key Help List panel.

This parameter allows you to specify whether the help list will be filled with
data or empty at window opening. If the parameter is unchecked, the end
user will have to trigger the Top action to fill the help list with data.

List Business Objects
A Business Object appearing as a list is used to represent the Business Object’s
fields as the columns of a unique table-type graphical component, called a
list. The list can be read-only or updatable (Layout type parameter, Interface
Unit Definition editor, Business Objects panel).

Default Layout
The default Business Object list layout generated with VAGTemplates
comprises:
v a list, whose columns correspond to the Business Object Data Elements,
v elementary actions (if the list is updatable).

Chapter 5. Standard Functions and Layouts of Generated Applications 221

By default, each column in the list comes with a heading and is adjusted to
the size of its largest label or field. Column headings are aligned on the top
and on the left. Numeric fields are right-aligned, alphanumeric fields are
left-aligned.

By default, all the Table’s fields mapped by a Business Object appear
automatically in the final application, but you can choose not to include some
of them (see “To Display or Not To Display” on page 217).

Layout Parameters
Several parameters allow you to modify the presentation of the Business
Object list layout.

For information on how to specify Business Object parameters, refer to Part 1,
“Part 2. The VAGTemplates Workbench” on page 7, “Chapter 3. Information
Model Entities and their Editors” on page 51, “Business Object” on page 56,
“How to Define a Business Object” on page 67.

Sizing:

Number of columns

You cannot specify the number of columns of a list since all called fields
must be displayed. If there are too many columns for the map size, the

Figure 8. Default Business Object List Layout

222 VisualAge Generator Templates Standard Functions: User’s Guide

remaining columns are displayed on another map. The Number of columns
parameter in the Business Object Generation Parameters (List Container
panel) editor is ignored.

The sum of the size of the action column (in updatable lists) and that of
the key field column, or the size of a value column must not be greater
than the length of the map lines, otherwise the generation is aborted.

Number of lines
You can specify the number of lines you want to view in the list. The
number of lines does not take the labels’ line into account; it only applies
to value fields.

If the number of lines is greater than the available lines in the map the
generation is aborted (see “Default Simple Map Body” on page 203)

VAGT: Number of lines parameter in the Business Object Generation
Parameters (List Container panel).

Filling the List:

VAGT: List prefilled parameter, Business Object Generation Parameters editor,
List View panel.

This parameter allows you to specify whether or not the list will be filled with
data at the map initialization.

If the parameter is set to false, the end user will have to trigger the Top action
to fill the list with data.

Chapter 5. Standard Functions and Layouts of Generated Applications 223

224 VisualAge Generator Templates Standard Functions: User’s Guide

Chapter 6. Application Generation and Enhancement

Standard Generation

Once you have described your application by completing the entity instance
specifications with VAGTemplates, you have to build the executable
application components by generating the instances.

When you generate an instance, you can either generate the selected instance
only (Instance only option in VAGTemplates on Java, instance generation option
in VAGTemplates on Smalltalk), or the selected instance plus all the instances
called by the selected instance (respectively With associates and cascaded
generation options). You can also cascade the generation and generate the
components that are used by all the application’s components, called
predefined parts/beans (respectively With associates and predefined beans and
cascaded generation with predefined parts options).

The generation produces operational VisualAge for Java or VisualAge
Smalltalk Enterprise components and VisualAge Generator parts (for
information, refer to “Generated Architecture and Principles” on page 240).
These components are stored in the VisualAge Library.

You can generate instances of the following entities: Data Element, Business
Object, Interface Unit, Relational Table and Workspace.

Note: The Value Style instances cannot be generated directly. Their instances
are generated by the Business Object layout generator as they affect the
presentation of the Data Elements within the Business Object’s layout.

List of Available Generators

VAGTemplates on Smalltalk 3.1 Generators
VAGTemplates 4.0 provides you with a set of generators corresponding to
VAGTemplates on Smalltalk 3.1 generators. They are available with the
current version of VAGTemplates but will become obsolete in VAGTemplates
4.1. Consequently, users who customized generators with VAGTemplates 3.1
must migrate their customized generators to the 4.0 version of VAGTemplates.

The concerned generators are the following:
v 4GL GUI generators
v Smalltalk GUI generators
v TUI generators

© Copyright IBM Corp. 1997, 2000 225

Note: The Object Oriented generators generate VisualAge Smalltalk Enterprise
parts and the additional required VisualAge Generator parts. The 4GL
Oriented generators generate only VisualAge Generator parts; they are
maintained to ensure retrieval of legacy applications developed with
VAGTemplates V2.2.

Caution: New VAGTemplates on Smalltalk developers must NOT use these
generators.

VAGTemplates on Smalltalk 4.0 Generators
VAGTemplates on Smalltalk provides you with four sets of generators:
v Smalltalk GUI generators to generate the whole GUI client application

including Business Object and Interface Unit layouts.
v Smalltalk TUI generators to generate the whole TUI application including

Business Objects and Interface Unit layouts (organized into maps and
map groups).

v Smalltalk Web generators to generate the whole Web-based application.
v Smalltalk Help GUI generators to generate online help for GUI client

applications. Help is generated into RTF and HPJ files for Windows, and
IPF files for OS/2.

Note: When installing VAGTemplates on Smalltalk, these generators are
installed by default. To use the 3.1 generators, you must load another
version of the generators applications in your VisualAge image.

VAGTemplates on Java Generators
VAGTemplates on Java provides you with three sets of generators:
v GUI generators to generate the whole GUI client application including

Business Object and Interface Unit layouts.
v TUI generators to generate the whole TUI application including Business

Objects and Interface Unit layouts (organized into maps and map groups).
v Web generators to generate the whole Web-based application.

Instance Only / Instance Generation Option

Note: The type of generation described below corresponds to the Instance only
option in VAGTemplates on Java and instance generation option in
VAGTemplates on Smalltalk.

This option allows you to generate only the selected instance. You can use it
to generate Data Element, Business Object, Interface Unit, Relational Table and
Workspace instances.

TIP: You can use this option when you only need to re-generate a few
instances that you have modified.

226 VisualAge Generator Templates Standard Functions: User’s Guide

For example, if you have already generated your application but have modified the
extract criteria for the Business Object, use Instance only/instance generation
option to re-generate only the Business Object.

Note: Some components are not re-generated to preserve enhancements you
may have made on the generated application. For information, refer to
“Enhancements and Re-generation” on page 233.

Business Object Generation
The description of a Business Object has two aspects, the logical description
(its fields, the tables it maps to, the actions available on persistent data, etc.)
and the graphical description (its layouts).

VAGTemplates on Java: In the Generate (instance) window, three check boxes
allow you to generate the visual, client and server
part of of the selected instance. You must choose at
least one option.

VAGTemplates on Smalltalk: In GUI client applications, there are two
Business Object generators: the GUI Business
Object Logic generator generates the logical
description; the GUI Business Object Layout
generator generates the graphical description.

A quick way to view your graphical layout is
to generate your Business Object instance with
the Business Object Layout generator.

Layouts are customizable components that are
not overridden by another generation. If you
modify parameters that apply to a generated
layout you must delete the generated
component before starting the re-generation,
otherwise the component will not be
re-generated or select the override existing
components option when you select a
generator. For information, refer to
“Enhancements and Re-generation” on
page 233.

The TUI Business Object generator generates the
logical description of the Business Object. The
graphical description is taken care of by the
Interface Unit layout generator.

Chapter 6. Application Generation and Enhancement 227

Data Element Generation

VAGTemplates on Java: In the Generate (instance) window, three check boxes
allow you to generate the visual, client and server
part of of the selected instance. You must choose at
least one option.

VAGTemplates on Smalltalk: Use the GUI Data Element generator to generate
a Data Element instance for a GUI client
application, and the TUI Data Element generator
to generate a Data Element instance for a TUI
application. Both generators generate the
components that correspond to the logical
description of the Data Element instance you
made in the Workbench.

Interface Unit Generation

VAGTemplates on Java: In the Generate (instance) window, three check boxes
allow you to generate the visual, client and server
part of of the selected instance. You must choose at
least one option.

VAGTemplates on Smalltalk:

Use the GUI Interface Unit generator to generate
the Interface Unit layout, the navigation and
edition actions, and the Business Object calls.
The layout of the Business Object and the
generation of data management actions are
taken care of by the GUI Business Object Logic
generator.

In TUI applications, the Interface Unit has two
aspects, a logical aspect and a graphical aspect.
There are two Interface Unit generators: the
TUI Interface Unit Logic generator, which
generates the logical description of the
Interface Unit, and the TUI Interface Unit Layout
generator, which generates the graphical
description of the Interface Unit and of the
Business Objects its calls.

Layouts are customizable components that are
not overridden by another generation. If you
modify parameters that apply to a generated

228 VisualAge Generator Templates Standard Functions: User’s Guide

layout you must delete the generated
component before starting the re-generation,
otherwise the omponent will not be
re-generated, or select the override existing
components option when you select a
generator. For information, refer to
“Enhancements and Re-generation” on
page 233.

Caution: The TUI Interface Unit Logic generator
generates the actions available for
managing persistent data. If a
Business Object is added or removed
from an Interface Unit, you will have
to re-generate it.

Relational Table Generation
If you specify a 3-tier architecture for your application, the Relational Table
generator generates atomic servers.

Note: You should only generate a Relational Table when it has a primary key.

For information on help lists, refer to “Actions Available for Help Lists” on
page 151.

For information on 3-tier architecture, refer to “Three-tier Architecture” on
page 290 , and “Three-tier Architecture” on page 304.

VAGTemplates on Java: In the Generate (instance) window, three check boxes
allow you to generate the visual, client and server
part of of the selected instance. You must choose at
least one option.

VAGTemplates on Smalltalk: Use the GUI Relational Table Generator to
generate a Relational Table instance for a GUI
client application, and the TUI Relational Table
Generator to generate a Relational Table
instance for a TUI application. Both generators
generate all the components that provides help
lits services on foreign keys.

Workspace Generation
Use the GUI Workspace generator to generate a Workspace instance for a GUI
client application, and the TUI Workspace generator to generate a Workspace

Chapter 6. Application Generation and Enhancement 229

instance for a TUI application. Both generators generate the predefined parts,
i.e. all the parts that provide error handling services and the communication
area used by the application.

In addition, the GUI Workspace generator generates the Windows menu that
allows navigation throughout the open windows in the GUI client application.

TUI: If an Interface Unit is added or removed from a Workspace, you will
have to re-generate it.

For information on predefined beans/parts, refer to “Components Generated
From a Workspace: Predefined Beans/Parts” on page 312.

For information on error handling in GUI client applications, refer to “Error
Handling in GUI Client applications” on page 153, and on error handling in
TUI applications, refer to “Error Handling in TUI Applications” on page 156.

VAGTemplates on Smalltalk: Help Generation
On-line help is always generated from an Interface Unit. An instance
generation produces the complete help for the Interface Unit, the called
Interface Units, Business Objects and Data Elements. The generation must be
activated from the root Interface Unit.

GUI: Use the GUI Interface Unit Help generator to generate on-line help for
the GUI client applications. The GUI Interface Unit Help generator
generates an IPF file (OS/2 help format) and an RTF and an HPJ file
(Windows help format) that contains the help text you entered in the
On-line help description field when defining your instances. These files
are located by default in the BUILD subdirectory of the VAGTemplates
root directory. To make this help operational you must compile theses
files and copy the resulting file in the HELP subdirectory of the
VisualAge for Java or VisualAge Smalltalk Enterprise root directory.

TUI: Use the TUI Interface Unit Help generator to generate on-line help for
TUI applications. The TUI Interface Unit Help generator generates a
VisualAge Generator Table part that contains the help text you entered
in the On-line help description field when defining your instances.

For information on the generated on-line help, refer to “On-Line Help” on
page 160.

An example of help generation is in “Generating On-Line Help
(VAGTemplates on Smalltalk Example)” on page 128.

230 VisualAge Generator Templates Standard Functions: User’s Guide

With associates/Cascaded Generation Option

Note: The type of generation described below corresponds to the With
associates option in VAGTemplates on Java and cascaded generation
option in VAGTemplates on Smalltalk.

This type of generation allows you to generate the selected instance and all
the instances it calls, in succession right down to the lowest level. The selected
instance will be generated, as will the other instances it calls, and so on. You
can use the this option to generate Business Object and Interface Unit
instances.

TIP: You can use it anytime you want to generate all the instances of an
application at once. Therefore, you do not need to worry about what
instances to generate.

For example, if you have defined an Interface Unit calling a Business Object that
calls Data Elements for which Value Styles are defined, use With associates /
cascaded generation option from the Interface Unit and all the above instances will
be generated.

Note: The option is not available for the Workspace generators since an
instance included in a Workspace is not considered a called instance.

The generation principle is the following:

The following instances are generated sequentially:
v the selected Interface Unit instance;

Chapter 6. Application Generation and Enhancement 231

v the Interface Unit instances it calls;
v the logical descriptions of the Business Object instances it calls;
v the graphical descriptions of the Business Object instances it calls;
v the Relational Tables;
v the Data Element instances used by the Business Objects;
v the Data Elements instances used by the Relational Tables.

Note: If one instance is called several times by different instances, it is
generated only once.

With Associates and Predefined Beans / Cascaded Generation With
Predefined Parts Option

Note: The type of generation described below corresponds to the With
associates and predefined beans option in VAGTemplates on Java and
cascaded generation with predefined parts option in VAGTemplates on
Smalltalk.

The predefined beans/parts are shared by all the other generated parts. You
need to generate them only once for the same Workspace. You do not need to
re-generate them except if you modify the Workspace definition in the
Workbench.

For information on the generated predefined beans/parts and other parts,
refer to “Generated Architecture and Principles” on page 240.

The use of this option from an Interface Unit generates all the components the
application needs to be operational in one generation phase. It equals the
Instance only/instance generation of a Workspace plus the With associates/cascaded
generation of an Interface Unit.

Note: This option is not available for the Workspace generators since the
Instance Only/instance generation of a Workspace generates the
predefined parts.

TIP: Use this option only the first time you generate all the instances of an
application. Then, anytime you want to re-generate these instances, use
instance generation or cascaded generation.

Application Storage
All VAGTemplates components are stored in the VisualAge Library:
v the VAGTemplates product
v the instance specifications you make with the Workbench
v the generated components.

232 VisualAge Generator Templates Standard Functions: User’s Guide

Specification Storage
By default, the instance specifications imported into VAGTemplates from an
existing database or the instance specifications you entered via the Workbench
are stored in the Java package or Smalltalk application you specified when
creating your Workspace.

Anytime you create an instance, you are asked to specify a storage
package/application.

Generated Components Storage
By default, the generated compnents are stored in the MyVAGTEntitiesApp
package/application and the generated predefined parts in the
MyVAGTWorkspaceEntitiesApp package/application. The choice of these
packages/applications is set by parameters in the Target Package/Target
Application panel of each entity’s Generation Parameters editor. You can
modify these parameters.

For more information on instance parameters, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 3. Information Model Entities
and their Editors” on page 51.

VAGTemplates on Smalltalk: Generated Help Files Storage
By default, generated help files are stored in the BUILD subdirectory of
VAGTemplates’s root directory. The choice of this directory is set by the
Generation parameter of the Workspace instance. You can modify this
parameter using the Definition choice from the Workspace menu.

To be able to use the generated help files you still have to compile the files
and copy the compiled files to the Help subdirectory of the VisualAge for
Java or VisualAge Smalltalk Enterprise root directory.

For more information on the Workspace settings, refer to Part 1, “Part 2. The
VAGTemplates Workbench” on page 7, “Chapter 2. The Workbench” on page 9,
“The VAGTemplates Workbench” on page 12, “Workspace Menu” on
page 15.

Enhancements and Re-generation

Once your application is generated, you may which to enhance some
generated components. VAGTemplates ensures persistency of your
applications by making a difference between componentsthat must be
described and maintained at the Information Model level, using the
Workbench, and componentsthat can be enhanced and maintained in the
target tool. This difference can be seen in the traceability information
generated with each component.

Chapter 6. Application Generation and Enhancement 233

In this subchapter we explain the use of the traceability information, which
governs the re-generation process and allows you to know in which
environment you can make modifications to your application and preserve
them.

Note: Before modifying generated components, make sure that VAGTemplates
cannot generate the behavior or the presentation you want (see
“Chapter 5. Standard Functions and Layouts of Generated
Applications” on page 145).

Traceability Information

Traceability Categories
VAGTemplates introduces four traceability categories for the components
generated from Information Model specifications:

RAD

v These components are developed at the Information Model level, with the
VAGTemplates Workbench. They can be enhanced and maintained at the
target tool level, with the VisualAge workstation. They are generated once
with the first generation in order to initialize the component and allow its
enhancement.
For example, generated layouts are RAD components.

HOOK

v These components are insertion points generated to let you add specific
code into the generated applications. Their existence is defined and
maintained at the Information Model level. Their implementation is
developed and maintained at the target tool level.
For example, you can specify an additional check for Business Object fields in a
Hook component: the additionalCheck method.

API

v These components are developed and maintained at the Information Model
level, with the VAGTemplates Workbench. These components can be used
by RAD and HOOK components.
For example, the methods for accessing the Business Object’s data are API
components.

INTERNAL

v These components are developed and maintained at the Information Model
level. They implement services provided by the API components . They are
likely to be modified throughout the life of the VAGTemplates product.
They must not be used by RAD parts.

The traceability category is used by the generators to know whether or not
they must re-generate a part.

234 VisualAge Generator Templates Standard Functions: User’s Guide

Generated Part Documentation
The generators include a detailed documentation in the generated
components’ code.

This documentation indicates:
v the specification category of the generated component (RAD, HOOK, API,

INTERNAL),
v the source Information Model entity form which the component has been

generated,
v the version of the source entity
v the service provided by the generated component.

This complete traceability information is generated for you to trace the part’s
origin, its status in the final application, and to know whether the part must
be modified in the target tool or with the VAGTemplates Workbench.

VAGTemplates on Java: Traceability in Comments
Traceability information is displayed in the generated components’ comments.

In the headers of the classes and interfaces, the traceability category and a
specific comment are generated.

For the methods, the traceability category and the method signature are
generated.

For classes and interfaces, three methods are generated:
v public static void mdlClassHeader ()
v public static void mdlVisualComposition ()
v public static void mdlPublicInterface ()

The code of these methods consists in a comment that shows:
v the generated fields and their traceability category
v the generated beans and connections and their their traceability category
v the generated properties, methods and events and their traceability category

How the Generators Use the Traceability Information
When you create an application with VAGTemplates, you make your
specifications using the Workbench, then you generate the specified instances.
When you generate, the generators add traceability information into the code
of each generated component.

The first time you generate, the generators will create the required
components with their traceability information in your VisualAge image.

Chapter 6. Application Generation and Enhancement 235

If you modify the specifications of an instance in the VAGTemplates
Workbench and re-generate the instance, the generators will compare the new
specifications to generate with the component in the image generated from
the old specifications to generate or not the component:
v If the component has is not found in the image, it is generated.
v If the source instance exist and the part has been generated previously, the

generators look at the traceability category:
– if the category is RAD or HOOK, the component is not re-generated; if

you had modified the component between the two generations it is not
overridden, and your modifications are preserved.

– if the category is API or INTERNAL, the component is re-generated and
overrides the previously generated component.

Therefore, if you have to modify functional aspects of your application, make
the modifications on the Information Model entities using the VAGTemplates
Workbench and re-generate the application, otherwise your modifications will
be overridden. If you want to modify graphical aspects of the application, you
can do it in the target environment.

236 VisualAge Generator Templates Standard Functions: User’s Guide

For information on RAD, HOOK, API, and INTERNAL generated
components, refer to “Generated Architecture and Principles” on page 240.

What Generator Do You Use When Re-generating
This section provides the general rules about the choice of generators and
generation option.

For information on generation options, refer to “Standard Generation” on
page 225.

VAGTemplates on Java

GUI Re-generation: Anytime you modify presentation parameters at the
Data Element level, re-generate the Business Object that calls the Data
Element checking the With associates, Visuals, Client and Server options.

Anytime you modify functional parameters at the Data Element level, like
format or checks, re-generate the Business Object that calls the Data Element
checking the With associates, Visuals, Client and Server options.

Anytime you modify presentation parameters at the Business Object level,
re-generate the Business Object checking the Instance only, and Visuals options.

Anytime you modify functional parameters at the Business Object level,
re-generate the Business Object checking the With associates, Client and Server
options.

Anytime you modify presentation parameters at the Interface Unit level,
re-generate the Interface Unit checking the Instance only, Visuals, and Client
options.

Anytime you modify functional parameters at the Interface Unit level, like the
calls to other Interface Units, re-generate the Interface Unit checking the
Instance only, Visuals, and Client options.

Anytime you modify Workspace parameters that apply to the whole
application, re-generate the INterface Unit checking the With associates and
predefined beans, Visuals, Client and Server options.

Anytime you modify parameters that only apply to the Workspace,
re-generate the Workspace checking the Visuals, Client and Server options.

Note: For a Workspace generation, the Instance only option is automatically
checked.

Chapter 6. Application Generation and Enhancement 237

TUI Re-generation: Anytime you modify parameters at the Data Element
level, like format or check, re-generate the Business Object that calls the Data
Element checking the Instance only and Client options.

Anytime you modify presentation parameters at the Business Object level,
re-generate the Interface Unit that calls the Business Object checking the
Instance only and Visuals options.

Anytime you modify functional parameters at the Business Object level, like
the mapping, re-generate the Interface Unit that calls the Business Object
checking the With associates, Client and Server options.

Anytime you modify presentation parameters at the Interface Unit level,
re-generate the Interface Unit checking the Instance only, and Visuals options.

Anytime you modify functional parameters at the Interface Unit level, like the
calls to other Interface Units, re-generate the Interface Unit checking the
Instance only, Visuals, Client and Server options.

Anytime you modify Workspace parameters that apply to the whole
application, re-generate the Interface Unit checking the With associates and
predefined beans, Visuals, Client and Server options.

Anytime you modify parameters that only apply to the Workspace,
re-generate the Workspace checking the Visuals, Client and Server options.

Note: For a Workspace generation, the Instance only option is automatically
checked.

VAGTemplates on Smalltalk

GUI Re-generation: Anytime you modify presentation parameters at the
Data Element level, re-generate the Business Object that calls the Data
Element with the GUI Business Object Layout generator and use cascaded
generation.

Anytime you modify functional parameters at the Data Element level, like
format or checks, re-generate the Business Object that calls the Data Element
with the GUI Business Object Layout generator and use cascaded generation.

Anytime you modify presentation parameters at the Business Object level,
re-generate the Business Object with the GUI Business Object Layout generator
and use instance generation.

238 VisualAge Generator Templates Standard Functions: User’s Guide

Anytime you modify functional parameters at the Business Object level,
re-generate the Business Object with the GUI Business Object Logic generator
and use cascaded generation.

Anytime you modify presentation parameters at the Interface Unit level,
re-generate the Interface Unit with the GUI Interface Unit generator and use
instance generation.

Anytime you modify functional parameters at the Interface Unit level, like the
calls to other Interface Units, re-generate the Interface Unit with the GUI
Interface Unit generator and use instance generation.

Anytime you modify Workspace parameters that apply to the whole
application, re-generate your application with the GUI Interface Unit generator
using cascaded generation with predefined parts.

Anytime you modify parameters that only apply to the Workspace,
re-generate the Workspace with the GUI Workspace generator using instance
generation.

TUI Re-generation: Anytime you modify parameters at the Data Element
level, like format or check, re-generate the Business Object that calls the Data
Element with the TUI Business Object generator and use cascaded generation.

Anytime you modify presentation parameters at the Business Object level,
re-generate the Interface Unit that calls the Business Object with the TUI
Interface Unit Layout generator and use intance generation.

Anytime you modify functional parameters at the Business Object level, like
the mapping, re-generate the Interface Unit that calls the Business Object with
the TUI Interface Unit Logic generator and use cascaded generation.

Anytime you modify presentation parameters at the Interface Unit level,
re-generate the Interface Unit with the TUI Interface Unit Layout generator and
use instance generation.

Anytime you modify functional parameters at the Interface Unit level, like the
calls to other Interface Units, re-generate the Interface Unit with the TUI
Interface Unit Logic generator and use instance generation.

Anytime you modify Workspace parameters that apply to the whole
application, re-generate your application with the TUI Interface Unit Logic
generator using cascaded generation with predefined parts.

Chapter 6. Application Generation and Enhancement 239

Anytime you modify parameters that only apply to the Workspace,
re-generate the Workspace with the TUI Workspace generator using the instance
generation.

Generated Architecture and Principles

Introduction
Applications generated with VAGTemplates are structured like nests of dolls.
The most complex components are embedded in complex components, which
are embedded in less complex components and so on. When you want to
customize your application , you only intervene on the simpler components,
that is the graphical components in a GUI client application or the lowest
level components in an application tree of a TUI application.

These components will be described more precisely in the following sections.

VAGTemplates provides two types of generators to generate these
components:
v RAD generators: They are dedicated to generating graphical components,

that is maps and map groups (TUI) and layouts and their connections
(GUI):
– TUI Maps and MapGroups: These components present the fields, the

Business Objects, and the actions. However, the graphical aspect is
closely linked with the logical aspect. For example, if you want to
remove a field from a map, you must take care to remove also the
corresponding logic (corresponding Data-Item, use of the Data-Item, etc.).

– GUI Detail Subview bean/parts: It contains the graphical parts and actions
that correspond to the Business Object’s specifications, Business Object’s
attributes that represent the Business Object’s fields, and a variable based
on the Business Object to allow the Business Object to be re-used. Each
graphical parts is connected to the attributes, and each elementary action
to the Business Object variable.

– GUI List Subview bean/parts: It contains a graphical table and graphical
actions, attributes representing the Business Object’s fields, and a
variable based on the Business Object for filling the table. The graphical
table is connected to the attributes and the actions to the variable.

– GUI View Parts: It contains graphical parts - Business Object layouts,
graphical actions - and organic parts. The RAD generators only generate
the graphical parts.

v Non-RAD generators: They are dedicated to generating functional and
organic components responsible for accessing data on the client or the
server, managing error checks, etc.:
– Programs made up of sets of related part definitions that can be

generated into an executable form;

240 VisualAge Generator Templates Standard Functions: User’s Guide

– Data-Items describing the characteristics of a single field in a record or a
table;

– Functions containing a set of processing statements, for performing I/O
operations, constituting the procedural logic of the application and used
only in server applications;

– Records, which are data structures comprising collections of Data-Items;
– Tables, which are collections of related Data-Items that can be used to edit

data, store messages and information.
– Non-visual parts,
– Java/Smalltalk classes.

Generated Components Naming Policy
The naming of the generated components follows rules so that it is easy to
determine which part has been generated from which Information Model
entity instance.

The VisualAge components names have no length constraints.

The naming of the generated VisualAge Generator parts must meet VisualAge
Generator length requirements:
v Programs and Tables are allowed 7 characters,
v Maps are allowed 8 characters,
v Map groups are allowed 6 characters,
v Tables are allowed 7 characters,

Their names are called short names.
v Functions and Records are allowed 18 characters,
v Data-Items are allowed 32 characters.

Their names are called long names.

VAGTemplates on Smalltalk: In VisualAge Generator, Map names are always
the same: HEADER, TRAILER, MAPx, etc., and
they are defined in the MdlVGTUIUsages
poolDictionary (refer to the VAGTemplates
Reference on Smalltalk Guide. The VAGTemplates’
naming policy does not apply to these parts.
However, the naming policy applies to Map
groups.

To build these components’ names, VAGTemplates combines the target name
of the instance with mnemonics. The target name is the instance name

Chapter 6. Application Generation and Enhancement 241

truncated to five characters for all entities except the Data Element whose
target name is by default the instance name truncated to 10 characters.

VAGT: Each entity (except Value Style) has a target name parameter.

The mnemonics are divided into the following categories:
v Information Model entity mnemonics: this information is used to determine

from what VAGTemplates entity the resulting component was generated;
v Component mnemonics: this information is used to determine the nature of

the resulting component itself;
v usage mnemonics: this information is used to complete the previous two

mnemonics when necessary and to differentiate various uses for the same
type of component.

VAGT: Parameters in the Workbench allow you to modify the entity
mnemonics and part mnemonics: Workspace Definition editor,
Naming Rules panel.

There are two possible concatenations of the previous mnemonics to build the
generated components’ names:
v the name begins with the target name of the instance: Naming policy

parameter, set to identifier first, Workspace Definition editor, Naming Rules
panel.

v the name begins with the part Mnemonic first: Naming policy parameter, set
to type first, Workspace Definition editor, Naming Rules panel..

1. the naming policy is identifier first, the name structure is the following:
<Instance Target Name><Entity Mnemonic><Usage Constant>
For example, when a Program part is generated from the SAMPLE Business
Object used as a detail, its name is SAMPLAU:

v SAMPL is the Business Object’s target name

v A the Program mnemonic

v U the mnemonic for a detail Business Object

2. the naming policy is type first, the name structure is the following:
<Part Mnemonic><Usage Mnemonic><Instance Target Name>
The name of the Program part previously mentioned is AUSAMPL.

Long Name Structures
The names of a Data-Item, Function and Record parts are composed of four
elements:
1. the naming policy is identifier first, the rule is:

<Instance Target Name><Part Mnemonic><Entity Mnemonic><Usage Constant>

242 VisualAge Generator Templates Standard Functions: User’s Guide

For example, the name of a predefined part, the main function in error handling
is:MYAPPPS-ERROR-MNGT

v MYAPP is the Workspace’s target name

v F the Function mnemonic

v S the Workspace mnemonic

v ERROR-MNGT the usage

2. the naming policy is type first, the name structure is the following:
<Part Mnemonic>< Entity Mnemonic><Instance Target Name><Usage
Constant>
The name of the Function part previously mentioned is PSMYAPP-ERROR-
MNGT.

The usage constants are as explicit as possible to let you easily identify the
role of the generated component. If you have a doubt, a comment is added
in the header of the generated component’s code.
For example, the usage constant -ADD-ERR means that the corresponding
Function is responsible for managing errors occurring while performing the ADD
action. The usage constant -U-MAIN means that the corresponding Function is a
Main Function for a mono-Instance Business Object (U constant from the
MdlVGMnemos poolDictionary).

Note: The usage in Records’ names distinguishes between
Working-Storage Records, prefixed with W (e.g.: -WEND-KEY), and
SQL-Row Records, prefixed with R (e.g.: -RINSTANCE).

Note: The generated Data-Item names do not include a usage constant.

For example, the name of the Data-Item generated from the DEPTNAME Data
Element will be: DEPTNAMEDE

v DEPTNAME is the Data Element’s target name

v D the Data-Item mnemonic

v E the Data Element mnemonic

VisualAge for Java/VisualAge Smalltalk Enterprise Components Naming
The names of VisualAge for Java/VisualAge Smalltalk Enterprise components
are built on the same principle:
1. the naming policy is identifier first, the rule is:

<Instance Target Name><Entity Mnemonic><Usage Constant>

For example, the name of the visual component generated for a detail Business
Object will be: SamplODetailSubview

v SAMPL is the Business Object’s target name

v O the Business Object mnemonic

Chapter 6. Application Generation and Enhancement 243

v DETAILSUBVIEW the usage

2. the naming policy is type first, the name structure is the following:
<Entity Mnemonic><Instance Target Name><Usage Constant>

The name of the Function part previously mentioned is OSamplDetailSubview.

Predefined Beans/Parts
VAGTemplates generates a number of predefined components:
v Message tables storing the labels associated with error messages
v Functions storing errors
v Communication Record and Table (GUI) for sharing data within the

application
v GUI Error windows displaying error messages
v GUI Windows menu displaying the list of open windows
v GUI Java/Smalltalk classes factoring out common services and managing

errors
v TUI Error maps displaying error messages
v TUI Navigation Record and Table, including all the applications associated

with the fastpaths
v TUI Error Program managing errors

The predefined beans/parts are all generated from the Workspace instances.
They are used by all the components in an application.

For a complete description of the public predefined beans/parts, refer to
“Components Generated From a Workspace: Predefined Beans/Parts” on
page 312.

Server Architecture
The standard generators provided by VAGTemplates generate source code to
implement the functional processing identified in the Information Model
definitions. The standard generators support the implementation of the
following types of systems:
v GUI client/server application system
v TUI application system
v Web application system

All these different system types generated by VAGTemplates rely on the same
server programs. This means that you can generate GUI clients and TUI
applications that will share the same server programs. If you specify the
required business logic at the server level, it will apply to all the clients
generated with VAGTemplates.

244 VisualAge Generator Templates Standard Functions: User’s Guide

Server types
Three types of server are generated for each Business Object:
v Detail
v List
v Updatable list

Two additional server types are generated when required:
v Non I/O check server
v Foreign key lookup server

Detail Server
The detail server provides support for the basic database actions of
Create, Read, Update and Delete (CRUD) on one row of a Business
Object. The update action is managed for the primary table of a Business
Object. A detail server is sometimes called an atomic server.

The detail server handles error management (for example, when a
database action fails) and provides hooks to insert your business logic.
Depending on your specifications, the detail server takes into account
validation of the data, concurrence management, and joins between the
tables.

List Server
The list server reads several rows of a Business Object. It answers data
queries depending on the extraction and sort criteria specified in the
Business Object.

The list server is designed to handle paging. The returned data is
extracted from the selection depending on the specified first keys of your
page. The server also answers the first set of keys of the next page to
read.

Updatable List Server
The updatable list server performs a series of CRUD actions on a set of
rows for a Business Object. The updable list server sequentially processes
each row by calling the appropriate detail server and stores any errors
that occur, if needed.

The updatable list server can be used to perform several actions in the
same logical unit of work (LUW).

Non I/O Check Server
This server, which is called only in a TUI Interface Unit, performs all the
checks that can be done without accessing the database. This includes
mandatory field checking and specialized edits for fields specified in the
Business Objects that have selected check types (interval, value table, or
customized check). Check types are specified in the Data Element
definition (see “Data Element” on page 76).

Chapter 6. Application Generation and Enhancement 245

These checks are also performed in the detail server if the Control location
parameter is set to client and server or server in the Workspace Definition
(see “Client/Server Control” on page 32).

Foreign Key Lookup Server
When a table has one or more foreign keys, then the value of the foreign
key field must match a value of a primary key in the parent table. To
support a help list function that can display a list of valid values for the
foreign key, VAGTemplates generates this server when the primary table
in a Business Object has a foreign key, and the foreign key is laid out in
the fields defined in a Business Object definition.

When used, this server is directly called from the TUI Interface Unit
program that uses a detail view for the Business Object and from the
detail resource object in the GUI client Interface Unit. The list resource
object generated from the Relational Table calls the help list server.

Generated Servers by Entity Type

Two-tier Architecture Three-tier Architecture

BusinessObject v a mono-instance server
componed of 4 processes
making CRUD actions
on the database

v a multi-instance server
reading a list of
instances in the database

v a mono-instance
umbrella server calling
the CRUD atomics
servers generated from
the primary table of the
BusinessObject or an
atomic server generated
from the Business Object
(example: a reading
atomic server if the
Business Object maps
two tables)

v a multi-instance
umbrella server

– a multi-instance
atomic server reading
a list of instances in
the database

RelationalTable an atomic server per each
CRUD action *

RelationalTable HelpList a mono-instance server composed of 4 processes making
CRUD actions on the database; the list of instances are

the primary keys of the table.

* when possible; otherwise, the server is generated at the BusinessObject level.

246 VisualAge Generator Templates Standard Functions: User’s Guide

Client Architecture

Web Client

Technical Overview: VisualAge Generator and VAGTemplates provide two
different architectures using the UI Record to build Web applications that
transfer data to/from the browser:
v Converse architecture (also used for the generated TUI applications): when

the entire page is sent to the browser, the application waits for an action to
be done (by the end-user), i.e. it is conversing, and when an action is done,
the entire page is returned to the server.

v Xfer architecture: sends an entire page to the browser, and when an action
is done, the browser sends data back to the server (submitted action, entry
data and possibly indexes). This mode — being much lighter than the
Converse one — is provided as the default option in the VAGTemplates
Information Model.

The graphic display ’Web read-only detail’ is used to display data in a detail
layout. No CRUD action is available. This page is never stored by the server.

Program Navigation: Program navigation (program A to program B) is done
by transferring program (using Xfer) with or without parameters. These
parameters, initialized by program A, are provided to program B (to prefill
key data items for example).
v ’program link’ UI Type
v whenever possible, zoom inter (List to Detail), implemented using ’link

parameters’

Error Handling: Two levels of controls are provided in the generated
applications.
v The first set of controls is located on the browser and directly linked to the

data record definitions.
v The second set of controls is located on the server. It is a reuse of what

have been implemented for TUI applications.

When the error can be linked to a data item, the message (in red) appears
under it and under all the data (in standard color) otherwise.

Display: All available parameters used to layout Data Elements are not taken
into account by the web generators.

Only the following parameters may be used:
v Updatable
v Read-only
v Read-only combo-box

Chapter 6. Application Generation and Enhancement 247

GUI Client

Architecture Principle: The GUI client architecture is described below, from
the most internal object to the most external one:
v The Resource Object encapsulates mono-access servers (detail server) and

multi-access servers (list servers). There is only one instance per Resource
Object class: the instance allowing access to physical data.

v The Business Object encapsulates data that is defined by a unique key, and
actions for managing the data.

v The List Manager holds Business Object collections and manages paging.

Note: The Business Object and the List Manager access the server through the
Resource Object.

v The detail and list subviews may display one Business Object instance or a
collection of Business Object instances and trigger actions.

v The Views organize the subviews and the navigation management between
data in the subviews.

v The View navigation organizes the management of common data within an
application, the graphical navigation, and the management of data
navigation between Views.

A couple of services are available. These services are built to be plugged to
the overall design.

Logical Components: You will find here a general description of the
architecture of the client side of the generated applications. Its goal is to
explain the architecture, the choices made and their relevance.

Business Object as One set of data: The Business Object encapsulates a data
instance. Therefore, there may be as many Business Object instances as there
are rows in the read tables.

In order to be able to manipulate the same instance in various graphical
objects, the offered API allows manipulation of the same Business Object
instance provided that the key is identical.

The main characteristic of the architecture is in the Business Object definition.

The generated Business Object is instantiated; each instance corresponds to
a table row.

Instance Uniqueness: The aim is to guarantee that the same Business
Object instance will be returned if it is being used by the application. This
mechanism is different from a cache mechanism: Instances that become
unused are not memorized.

248 VisualAge Generator Templates Standard Functions: User’s Guide

As the read instances are unique, their keys cannot be modified - because the
key defines the instance. Therefore, two Business Object states are defined:
v The persistent state means that the instance comes from the database. In

this state, instances are always unique. The Update/Delete actions are
available in the persistent state.

v The volatile state corresponds to what would be displayed in a blank
detail. The Read/Create actions are available in the volatile state. Delete is
also available for convenience.

Only persistent instances are guaranteed to be unique.

Consequences: It is essential that the instances manipulated for the same key
should be unique. However as soon as a Business Object is manipulated and
not just simple data, various constraints appear.

Example

It is not possible to modify the key of a read instance since an instance is
defined through its key. Modifying the key results in manipulating a different
instance.

The status definition imposes some constraints on graphical use. Only a
subset of actions is available depending on the status of the Business Object.
The keys can be modified only for a volatile Business Object.

List Manager: The list manager is an object that contains the data to be
displayed in a list. This data is stored as collections of Business Object’s
instances. Instances are sorted according to the sort criteria.

The list manager object also stores the necessary information to manage the
list (extraction criteria data, paging data, automatic scrolling data).

Paging: Reading a list is done by reading one page of data after another. The
list manager stores 2 collections: the full list of instances that contains all the
pages that have already been read, and the list of instances of the current read
page. It is possible to display either collection.

Autoscrolling: Lists can be scrolled without an explicit action, through smart
scroll bar widgets. This mode is called auto-scroll.

First, the list needs to know the total row that will be displayed.

Then, the list sends a request to the system to retrieve x rows, depending on
the action done on the scroll bar. To gather this amount of rows, one or more
server calls may be needed. The server may also answer more instances than
needed by the list during the request.

Chapter 6. Application Generation and Enhancement 249

The list manager is able to handle these requests. It triggers as many calls to
the server as needed and stores any extra rows that have been read. Each call
from the server updates the total number of rows of the selection. The list
manager is able to adjust itself if this number varies during the paging (rows
added or deleted in the database).

Updatable List: Updatable list management is a special case of list
management. As the list manager handles instances of Business Object, it is
possible to modify a subset of them and track the changes, in order to
consolidate them at once through a single server call.

Updatable lists offer the same functions as read-only lists and add some new
ones. The updatable lists manager is thus a subclass of the list manager.

Note: Autoscrolling cannot be available for updatable lists.

Actions: All the actions performed on an updatable list become one of the 3
following ones:
v Create a row: a volatile Business Object is inserted,
v Update a row: a persistent Business Object is changed,
v Delete a row: a persistent Business Object is removed from the list.

Each of these actions is called a movement. The number of movements is
limited, because the number of rows passed to the server is fixed.
v Creating and deleting one row cancels the movement,
v Creating and updating one row is one single create movement,
v Updating and deleting one row is one single delete movement,
v etc.

Resource Object as an Access Part: The server accesses are isolated into a
part. At run-time, there is one instance of this part per Business Object
class. This solves the problem of multiple client-server communication links;
as only one Resource Object instance is manipulated, there is only one link
per Business Object class.

Services:

Error Handling:

Introduction:

General Ergonomic Principles
The main ergonomic principle is to prevent the user from carrying out
errors: error prevention is a major objective of the generated user interface
(input help, contextual management of available actions,...).

250 VisualAge Generator Templates Standard Functions: User’s Guide

Standard Generated Errors Typology
The suggested typology is deliberately oriented towards the ″ end user’s ″
error approach and not according to the typology of the control processes
underlying error detection. For example, from the ″ developer’s ″ point of
view, there is a difference between an error of data format and an error of
contents according to a management rule (list of values, interval...). As far
as the end user is concerned, the error is always an input error: therefore,
for format or contents errors, the graphical process of the error must be
the same, with the same error message.

Errors
Feedback is given the first time the field looses focus. This feedback
includes the modification of the field background color, with selection of
the non-valid value; visual feedback remains active until the error is
corrected.

When explicitly requesting it (for example, activating a ″ Check ″ menu
item), the user can open the standard window for presenting error
messages which contains the list of messages associated with common
input errors. Each message consists of :
v the laid out label of the non-valid field,
v a short sentence describing the nature of the error (standard message

associated with an error, that can be easily customized).

Double clicking on an item in the message list positions the focus on the
erroneous field (the first field, for a multi-field data). For Notebook
presentations, double clicking also brings the page containing the
erroneous data to the foreground.

The window also contains two push-buttons, the ″ OK ″ push-button is
used to close the window without modifying its contents and the ″ Help ″
push-button is used to open the help panel associated with the selected
message line. (help is a customization).

This window, also used when errors come from action activation, is
detailed in the next section.

A system error is the only error that lets the user show the internal of the
probem, so that he could contact a system administrator. The feedback
associated with a ″ system ″ error must be very distinctive.

Messages: A message is one piece of information that is displayed to the user
but should not stop the flow of an action.

It is displayed within the interface in an optional information bar.

Chapter 6. Application Generation and Enhancement 251

Foreign Key Help List: A foreign key help list is a list of available keys from
the target table of a foreign key. Help lists services are provided, as an option,
only on single field foreign keys.

Sharing Data: An application (defined by the tree of Interface Unit from the
root interface unit.) may need to store pieces of data and make it accessible
from any place of the application. To do so, we define one instance of the
class called SharedPart, that is known by all the views of the application.

This object is made to store data that needs to be shared by several windows.
It is easy to make this object accessible by the subviews and other parts if
needed. The sharedPart is generated and created with the root interface unit.

Subviews and Views: Views and subviews are the graphical places where
data is displayed and used. They also are the place where the services are
being plugged-in.
v The subview display one or a collection of Business Object,
v The view displays one or more subview and contains the navigation

functions.

Views and subviews are able to retrieve the messages raised by the
component they embed. They can also raise their own messages.

Java GUI Client Specificity:

Release of Business Object Instances: An object has to be released when it is no
longer present in the Interface Unit. This happens in two different contexts:
v In a detail-type Interface Unit: when the displayed instance is replaced by

another,
v In a list-type Interface Unit: when the object collection is refreshed or

emptied (the latter being a particular case of refresh).

When an object has to be released, a dynamic search is performed so as to
determine whether that object is still being used or not.

The Business Object sends an event when its release is requested. This event is
received by detail-type Interface Units and List Managers. This event has a
boolean attribute. The value of this attribute is modified when the event is
being received. The Business Object is released if the boolean attribute is not
modified.

Such object release is included in the runtime. As a result, customization will
not cause any specific operation.

Smalltalk GUI Client Specificity:

252 VisualAge Generator Templates Standard Functions: User’s Guide

Instance Management: Instance management provides the unicity
mechanism on persistent Business Objects. It is a generic mechanism, handled
by class services of the InstanceManager class.

The instance management has two goals:
v To register and make available the persistent instances that are in use, so

that the actions can use these instances if needed,
v To remove the instances that are not in use anymore by the application.

TUI Client
There is an architectural structure to the programs and other 4GL parts used
to implement the TUI system, and while a TUI system is not an object
oriented system, components can still be identified. The system components
identified for a TUI system are the following:
v Main program (View): Implements processing required to present a text

user interface to the end user and manage the associated processing.
v Text maps (Subview): Text user interface parts used to present business

data.
v Business object logic: The layer of processing logic representing the business

context of a set of encapsulated physical data and database actions.
v Resource object logic: The layer of processing logic that implements server

program calls for any required list or detail database processing.
v Shared component services: Common services available to other

components, such as error management, messaging, and authorization
processing.

v Navigation: Communication and control processing implemented using
defined APIs, as required for each component.

v Server programs: Detail, list, updatable list, and help list servers to support
access to the data used in each Business Object. Servers can be
implemented to support either a two- or three-tier system layer structure.

For more information on these components, see below.

Overview of Generated Code

Servers and their Hooks

Hooks
Hooks are Functions or Methods generated by default and inserted in
particular places within Programs to let you add specific 4GL, Smalltalk or
Java treatments both on the Client and Server sides of your application.

There can be two kinds of Function hooks:

Chapter 6. Application Generation and Enhancement 253

v those that are generated empty are suffixed with -HOOK.
v COMMIT Functions are generated with default code that can be modified.

the additionalChecks method allowing to specify the inter-field checking in the generated application.

Method hooks are generated empty.

Hooks are standardly called in all applications where they are inserted, even
when they are empty. Therefore, you need not define calls to your specific
treatments.

Note: Hooks are generated for you to use and modify. They should not be
deleted.

Hooks on the Server:

Note: The examples given in this paragraph are valid for a 2-tier architecture.

For one Business Object instance, VAGTemplates generates three server
applications that correspond to the Business Object detail, list and updatable
list. You will find a number of hooks in these servers before and after every
data access Function; these hooks are all implemented as Functions.

Note: These hooks are common to GUI client and TUI applications.

Hooks Available with the Detail (mono-instance server)

v A number of hooks are available in the generated Program that corresponds
to the mono-instance use of a Business Object, i.e. the detail.
In this Program, there are five types of data access:
– select, to read a row;
– insert, to create a new row;
– update, to modify an existing row;
– delete, to delete an existing row;
– save, to save new and modified rows at the same time;

Each access is described as a sequence of Functions, which includes hooks.

For example, if the generated Business Object is SAMPLE, the resulting generated
Program is SAMPLA1 and the generated Functions are presented in the following
diagram:

254 VisualAge Generator Templates Standard Functions: User’s Guide

– Select Function Sequence

In this sequence, SAMPLFO-IO-SELECT reads data. The hooks included
in this sequence allow you to insert specific treatment before and after
the execution of the read action:
- SAMPLFO-A-SEL-HOOK is executed before (Ante) the

SAMPLFO-IO-SELECT Function and can trigger a function before the
data are read;

- SAMPLFO-P-SEL-HOOK is executed after (Post) the
SAMPLFO-IO-SELECT Function and can trigger a function after the
data are read.

– Insert Function Sequence

Chapter 6. Application Generation and Enhancement 255

In this sequence, SAMPLFO-IO-INSERT creates data. The hooks included
in this sequence allow you to insert code before and after the execution
of the creation action:
- SAMPLFO-A-INS-HOOK is executed before any other function.
- SAMPLFO-CKSRV-HOOK is executed before the standard server

checks and the SAMPLFO-IO-INSERT Function and could trigger
additional checks before the data is created;

- SAMPLFO-P-INS-HOOK is executed after the SAMPLFO-IO-INSERT
Function and could trigger a function after data is created.

– Update Function Sequence

In this sequence, SAMPLFO-IO-UPDATE updates data. The hooks
included in this sequence allow you to insert code before and after the
execution of the update action:
- SAMPLFO-A-UPD-HOOK is executed before any other function.

256 VisualAge Generator Templates Standard Functions: User’s Guide

- SAMPLFO-CKSRV-HOOK is executed before the standard server
checks and the SAMPLFO-IO-UPDATE Function and could trigger a
function before the data are updated;

- SAMPLFO-P-UPD-HOOK is executed after the SAMPLFO-IO-UPDATE
Function and could trigger a function after data is updated.

– Delete Function Sequence

In this sequence, SAMPLFO-IO-DELETE deletes data. The hooks
included in this sequence allow you to insert code before and after the
execution of the delete action:
- SAMPLFO-A-DEL-HOOK is executed before the SAMPLFO-IO-

DELETE function and could trigger a function before the data is
deleted;

- SAMPLFO-P-DEL-HOOK is executed after the SAMPLFO-IO-DELETE
function and can trigger a function after the data is deleted.

– Save Function Sequence

Chapter 6. Application Generation and Enhancement 257

The -SAVE function performs creation and update actions at the same
time. The Functions it calls are the same as those called by the

-UPDATE and the -INSERT functions.

In this sequence, SAMPLFO-IO-SAVE creates and updates data. The
hooks included in this sequence allow you to insert a code before and
after the execution of the update and insert actions:
- SAMPLFO-A-UPD-HOOK is executed before the SAMPLFO-IO-

UPDATE Function and could trigger a function before the data is
updated;

- SAMPLFO-A-INS-HOOK is executed before the standard server checks
and the SAMPLFO-IO-INSERT Function and could trigger a function
before the data is created;

- SAMPLFO-P-INS-HOOK is executed after the SAMPLFO-IO-INSERT
Function and can trigger a function after data is created.

- SAMPLFO-P-UPD-HOOK is executed after the SAMPLFO-IO-UPDATE
Function and can trigger a function after data is updated.

Hooks available In a Three-tier Architecture: Select Function Example

v

– Umbrella server

258 VisualAge Generator Templates Standard Functions: User’s Guide

The above example shows only the select function.
- SAMPLFO-A-SEL-HOOK is executed before the call to the SAMPLOS

atomic server that reads data from the database. It can trigger a
function before the data is read;

- SAMPLFO-P-SEL-HOOK is executed after the call to the SAMPLOS
atomic server that reads data from the database. It can trigger a
function after the data is read.

– Atomic server for the selection: SAMPLOS

The following atomic server is generated from the Sample Business
Object. If it were generated from a Relational Table, it would be the same
but named <Relational Table target name>TS, for example ORGTS. Its
generated functions would be name d ORGPT-IO-SELECT, for example.

In this sequence, SAMPLFO-IO-SELECT reads data from the database.
The hooks included in this sequence allow you to insert code before and
after the execution of the read action:
- SAMPLFO-A-SEL-HOOK is executed before the SAMPLFO-IO-

SELECT function and could trigger a function before the data is read;
- SAMPLFO-P-SEL-HOOK is executed after the SAMPLFO-IO-SELECT

function and can trigger a function after the data is read.

Thus, the same hooks are called on the umbrella server and on the
atomic server to allow you insert code on each server.

Hooks Available with the List (multi-instance server)

Chapter 6. Application Generation and Enhancement 259

v A number of hooks are available in the generated program that corresponds
to the multi-instance use of a Business Object, i.e. the list.
In this program, the data access consists of reading a data page. This access
is described as a sequence of functions, which include the hooks.
For example, for the generated SAMPLE Business Object, the resulting generated
program is SAMPLAN and the generated functions are presented in the following
diagram:

Read Function Sequence

v

In this sequence, the SAMPLFO-READ function reads data, the
SAMPLFO-IO-SETINQ1 function is then executed when reading the first
page, the SAMPLFO-IO-SETINQ function performs the selection for the
other pages, the SAMPLFO-IO-SCAN function reads one row, and the
SAMPLFO-STORE function stores this row in the Working Storage Record.

Note: With the SAMPLFO-IO-SETINQ1 function, the WHERE clause takes
into account the extract criteria but not the paging criteria. The
WHERE clause being simpler, the response time is shorter.

The hooks included in this sequence allow you to insert code before and
after the execution of the read action:
– SAMPLFO-A-SQ-HOOK is executed before the SAMPLFO-IO-SETINQ

function that performs global selections and could trigger a function
before the data is read, for example to modify or add extract or paging
criteria;

– SAMPLFO-P-SCN-HOOK is executed after the SAMPLFO-IO-SCAN and
SAMPLFO-STORE functions, i.e. once a row has been read and stored in

260 VisualAge Generator Templates Standard Functions: User’s Guide

the Working Storage Record. For example, it could trigger calculation of
the data stored in the Working Storage Record.

Hooks Available with the Updatable List (multi-instance server)

v The actions available for an updatable list are the same as those available
for a detail: creation, update, deletion, read. The difference is that these
actions can be triggered on several rows at the same time, whereas in a
detail, they are triggered one at a time.
Therefore, the function sequences for the multi-instance server are the same
as those for the mono-instance servers.
For example, for the generated Business Object SAMPLE, the resulting generated
program corresponding to the multi-instance use of the Business Object is
SAMPLAL

More Hooks on the Server:

v -CHK-HOOK Function. This hook allows you to implement additional
controls before a server function is activated, like inter-field checks. These
checks could allow you to indicate, with 4GL expressions, the relationships
that must exist between the fields presented by the Business Object.
Let us take the example of the Vehicle Business Object which contains the
″Average fuel consumption″ and ″Maximum fuel consumption″ fields. You
could write an inter-field check that ensures that the average fuel consumption is
strictly smaller than the maximum fuel consumption.

v -COMMIT. This hook contains default code to handle a commit or a
rollback, if needed (umbrella server and error status).
For details, see also “Commit/Rollback Processing” on page 263.

Caution: Differentiate this check from value checks you may define when
specifying your Data Elements.

TUI Only: More Hooks on the Server:

v -SEC-HOOK function. This function allows you to write security treatments.
By default, it is called by the -NAVIGATE function that manages
navigation. For example, you could use this hook to define user
authorizations to navigate to some maps and not to others.

v -N-EXT-HOOK function. It is called by the multi-instance server application
to add code to the extract criteria. You could use this hook to customize the
extract criteria used as access parameters.

v -U-EXT-HOOK function. It is called by the mono-instance server application
to add code to the extract criteria. You could use this hook to customize the
extract criteria used as access parameters.

v -INIT-HOOK function. There is one -INIT-HOOK function per generated
Interface Unit in the application. This function allows you to implement
initialization.

Chapter 6. Application Generation and Enhancement 261

Hook on the Client Side of an Application: If you specified a customized
check for a Data Element in the Workbench, you can use a hook method to
define the check.

The additionalChecks method from the Business Object bean/part allows you
to implement additional controls before a server function is activated, like
inter-field checks. These checks could allow you to indicate the relationships
that m ust exist between the fields presented by the Business Object.

Let us take the example of the Vehicle Business Object which contains the ″Average
fuel consumption″ and ″Maximum fuel consumption″ fields. You could write an
inter-field check that ensures that the average fuel consumption is strictly smaller
than the maximum fuel consumption.

Caution: Differentiate this check from value checks you may define when
specifying your Data Elements.

The additionalChecks method is called by the checkBusinessObject method
from the Business Object bean/part. Once the customize check is defined, the
additionalChecks method can call the putFocusOnField method that puts the
focus back on the erroneous field and the putFieldInError: method which
changes the field’s color. These are Business Object bean/part methods.

For information on the Business Object bean/part, refer to “Business Object
Bean/Part” on page 293)
v -N-SRV-HOOK Function. It is called after response from the multi-instance

server application and before error treatments.
v -U-SRV-HOOK Function. It is called after response from the mono-instance

server application and before error treatments.
v -CKCLI-HOOK Function. You can use this hook to implement interfield

checks on the client.
v -DEF-HOOK Function. You can use this hook to set customized values to

the -WINSTANCE Record that stores data used by the mono-instance
Business Object.

We indicate for each generated part its status in the generated application,
preceded with this VAST sign. The possible statuses are the following:
v API: functional component on which an API is offered in the final

application;
v RAD: mainly graphical components but also components on which an API

is offered in the final application;
v HOOK: insert point for specific coding in the final application;
v INTERNAL: organic component.

262 VisualAge Generator Templates Standard Functions: User’s Guide

The <> sign placed before part names denotes a prefix, which is the target
name of the source entity plus the entity mnemonic (as specified in the
Workbench).

For information, refer to “Traceability Categories” on page 234.

Server Common Functions
Each server performs specific tasks but is implemented with common
functions that apply to all server types.

Error Management: Several levels of errors are managed in the servers:
v Warning

A message is raised but the treatments are not stopped.
v Application error

Typically, this is when a business rule fails or when an action on the
database fails (as when a row already exists). Several errors can be raised.
An error causes a rollback and treatments are stopped.

v System error
This is a database or communication error that cannot be understood by the
server.

Any identified errors are stored in the common records passed as parameters.
Warning, application errors, and status flags are kept in an ERROR-LIST
record and system errors in a SYS-ERROR record.

Commit/Rollback Processing: The parameter LUW mode specified in the
Workspace determines if client or server-base LUW management will be
implemented. Server-based management is recommended.

In the generated application system, commit and rollback processing are
managed by a control indicator that is passed as a parameter to the server
program.
v To implement server-based LUW management, the LUW control indicator,

called CONTROL-COMMIT-FLAG, is set to true when calling the server
program.
This flag in the ERROR-LIST record is memorized at the server beginning
in WVAR. The commit/rollback is executed at the end of the server in a
hook suffixed with -COMMIT.

v Commit ot rollback processing is performed prior to exiting the server
program when the LUW control indicator is set to true and no errors have
been detected. If an error has been detected, a rollback is performed. Code
hooks can be used to customized this behavior.

v When a server program calls another server program (such as when an
atomic detail server is called from an umbrella server), the called (atomic)

Chapter 6. Application Generation and Enhancement 263

server does not perform commit or rollback processing. The umbrella server
sets the LUW control indicator to false before calling the atomic server.
Code hooks allow you to change this behavior.

Concurrency Management:

Two- or Three-Tier Layers
A parameter at the VAGTemplates Workspace level allows you to specify
whether you want to generate two- or three-tier servers.

Two-tier generation will produce detail and list servers. These servers are
called directly by the client. They contain business logic and database I/O in
one single VisualAge Generator program.

Three-tier generation produces umbrella servers that are directly called by the
client as well as several atomic servers, one for each type of action (list access,
CRUD actions). The umbrella server calls the appropriate atomic servers.
Business logic can be implemented on the umbrella server side or on the
atomic server side, depending on the data you need to manipulate and on the
level of reusability of your treatments.

Generation of Atomic Detail Servers
When you specify a three-tier implementation approach for the server
programs, the generation of one Business Object will produce several servers:
v Umbrella servers for detail and list processing. These servers are generated

from the Business Object entity and call several atomic detail servers.
v Atomic detail server for the list access. This server is generated from the

Business Object.
v Atomic detail servers generated from the primary table of the Business

Object. These servers handle the CRUD actions.
v Atomic detail server generated from the Business Object. These servers

handle some CRUD actions and are generated only when the atomic detail
servers generated from the primary table cannot be used for the Business
Object. For example, if a Business Object maps only part of the primary
tableÆs fields, the update atomic detail server generated from the primary
table cannot be used. A specific detail server is generated for the Business
Object.

Generation of Help List Servers
Help list services are provided in the generated application for the foreign
keys of the primary table of a Business Object. The help list displays the
available keys, read from the database, of the target table of the foreign key.

Help list servers are always implemented as atomic servers that are generated
from the Relational Table entity (the target table of the foreign key).

264 VisualAge Generator Templates Standard Functions: User’s Guide

Clients
In this section, we review how the components of each client system — Web
client, GUI client and TUI client — are structured to provide support for the
required processing.

Web Client

UI Record Definition & Content: This record contains all the items the
interface (displayed in a browser) needs to display and manipulate data and
navigate between programs.

Data in XFer
The record is displayed by an Xfer without an application name. This
means that no server keeps the record’s data.

To avoid losing input data while transferring, a ’Form’ UI Type data item
is defined, including all the data item defined in the UI Record.

Acting as a Program Link, this Form reposts all of its content in input to
the web server defined in its properties.

The standard generated web applications transfer to the same server
program using the properties of the Form when an action (except the
navigate action) is triggered.

Note: Only ’input’, ’input/output’, ’hidden″, and ’submit’ UI types values
are reposted.

Data in Converse
All the data is sent back to the server in Converse. There is no special
architecure needed for the Data-Item here.

Actions on Data
The actions are defined within the UI Record as ’Submit’ UI Type data
items. They are manipulated in the program by using their initial values
(for XFer) ot the current value of the data-item (for converse).

When an action is submitted, the ’submit value item’ is set by it. Then it
can be tested and used by the program in order to trigger the correct
action.

Buttons showing their action label are grouped by use (CRUD, List
actions, and FK actions).

CRUD actions are provided on a Detail and only Top/Next actions for a
List (other actions can be triggered by using the browser actions).

Paging in XFer
The ’Next page’ action needs to know what the next-key is in order to

Chapter 6. Application Generation and Enhancement 265

give the info to the server. So each time the program is back from the
foreign-key help list server, the value of the next-key is stored in a hidden
UI type data item.

Paging in Converse
The paging data is memorized in the Next-Key record by the server.

Foreign Key Data
As for business object Lists, only Top/Next actions are provided on
foreign key help lists.

The help list data is stored in a read-only data-item, that is displayed as a
combo-box. The current value of the foreign-key is added in the list if it is
not present in the current page.

For Xfer: As the read-only data is not passed to the server when an action
is submitted, the help list data is also stored in a hidden data-item, which
is a copy of the read-only data-item. The index of the combo-box will
allow to retrieve the selected value.

For Converse: The help list data is memorized by the server in the Wpage
record.

Program Definition: One VAGen program is generated from an instance of
Interface Unit as an entry point. The servers used by the Web applications are
the same as for all the VAGT generated applications. The program contains
the following three attributes:
v Type: ’Web Transaction’
v Message table prefix: xMSG (ENU table)
v First UI Record (based on the Interface Unit content)

Navigation: Transfer between Programs: A program transfers to another one
with ’Program Link’ UI Type data items defined in the UI Record.

Navigation between interface units and zoom is done by posting the value of
the selected key items to the first UI Record of the targeted program.

Error Handling:

Message Table
The message table is used to display error messages.

Web side controls
Each time an input field is modified, its linked control function and
definitions controls are executed. If an error occurs, a message is
constructed with the xMSGENU messages table; then the user must
correct the error before continuing.

266 VisualAge Generator Templates Standard Functions: User’s Guide

Server controls
Like TUI applications, these controls are done within the program xxxxOF
generated at the Business Object level.

System Error Management
In case of a system error, a program, generated at the Workspace level is
called. This program, using a UI record displays info about the error
encountered.

GUI Client

Java GUI Client:

Instance Manager System:

Instance Manager System Diagram:

InstanceRegister: Object managing the unicity of Business Object instances
used by the generated application.

This class is managed as a singleton (unique object). Methods dedicated to the
management of Business Object instances are instance methods.

RegisteredObject: Abstract class, linked to the InstanceRegisterclass,
implementing the recording/unrecording mechanism on the InstanceRegister.

Figure 9. Instance Manager

Chapter 6. Application Generation and Enhancement 267

Model System: You will find below a detailed description of the different
objects found in the main component of a Java client. This description starts
with VisualAge Generator parts and ends with the MMI part.

Model System Diagram:

This diagram presents the main Java classes generated from a Business Object
named ″Author″.

VisualAge Generator Parts: These objects encapsulate as Java beans the
VisualAge Generator ″parts″ and manage the Client Server communication.

ResourceObject: Technological object ensuring the link between model
objects (Business Object, List Manager) and server objects.

Figure 10. Class Hierarchy

268 VisualAge Generator Templates Standard Functions: User’s Guide

For each ResourceObject class, one and only one instance is created (Design
Pattern Singleton). In order to access the server, all instances of each type of
Business Object are channeled through this ResourceObject unique instance.

The benefit of this architecture is to reduce the communication load between
client and server components.

A ResourceObject is responsible for server access, for the conversion of
records into Busines Object.

Also, a ResourceObject detects server errors and middleware exceptions
(CSOException). If an error is detected, the RessourceObject raises an
exception (MdlException).

Hierarchy
For each type of Business Object, there are two ResourceObject
sub-classes: a ListResourceObject and a DetailResourceObject.

Chapter 6. Application Generation and Enhancement 269

AbstractResourceObject
Abstract class managing server calls and error detection.

AbstractListResourceObject
Abstract class managing list server access and implementing the
list-dedicated API used by the ListManager.

<>AbstractDetailResourceObject
Abstract class managing detail server access.

Note: <> represents the prefix of the generated classes, dependent on
instance paratemerization. In the diagram above, <> is replaced by
″Author″.

Figure 11. ResourceObject Hierarchy

270 VisualAge Generator Templates Standard Functions: User’s Guide

<>DetailResourceObject
Concrete class implementing VisualAge Generator parts related to detail
servers.

<>ListResourceObject
Concrete class implementing VisualAge Generator parts related to list
servers.

BusinessObject: Object representing a Business Object described in
VAGTemplates.

Its attributes procede from the DataFields of the Business Object and offers
services corresponding to the actions the end user may ask: creation,
modification, deletion... of the Business Object.

Each instance of BusinessObject is unique in the application, which allows the
management of modifications. In order to do this, BusinessObject inherits
from RegisteredObject which implements the registration mechanism to the
InstanceRegister.

See also InstanceRegister and ResourceObject.

Hierarchy

Chapter 6. Application Generation and Enhancement 271

RegisteredObject
See RegisteredObject above.

AbstractBusinessObject
Abstract class implementing mechanisms common to all BusinessObject
objects, including corresponding messages (action failed/succeeded). This
class includes the CRUD API (create, refresh, update, delete). The Business
Object instance API is characterized by public methods and by a
corresponding BeanInfo page, allowing to manipulate the object via
connections.

<>BusinessObject
Implements the Business Object’s specific data and associated methods.
The field types are String, Date, Long and Double. Also, within a
BusinessObject object, a reset method may be implemented and is
described below.
v Reset

– Principle

Figure 12. BusinessObject Hierarchy

272 VisualAge Generator Templates Standard Functions: User’s Guide

Applications must be able to retrieve the last memorized read of a
persistent Business Object. In a user input context, the initial data
must be saved. In a database read context, a reinitialization to null is
performed.

– Implementation
Two instance variables are generated for each field: a field
modification flag and a copy of the data.
Setters operate in two modes: a mode where the initial value is
memorized (if changed by the end-user) and a reinitialization mode
(flag and value copy set to null).
This mode toggles before and after the BusinessObject gets filled in
by the RessourceObject and is calculated by the
getMdlStoreCopyOfData() method which also takes into account the
Business Object status.

Note: The reset method is implemented in the concrete class of the
BusinessObject ; internal mechanisms are located in the parent.

– Global modification flag
A Business Object modification flag is filled in by the setters: it is
positioned to true when the setters mode toggles.

List Manager: This object manages a list of Business Objects, this list
procedes from the VisualAge Generator server list.

List management is performed in relation with the ListResourceObject.

Also linked to the InstanceRegister regarding instance management and to the
MdlTableModel regarding their graphical presentation.

AbstractListManager
Abstract class defining the set of methods allowing list operations:
readFirst, extract, readPrevious, readNext et refresh. This class also
includes error message management: data retrieved succeeded/failed.

<>ListManager
Implements getters and setters of sortCriteria and extractCriteria, also
including the method evaluating the possible actions on a list (read
next/previous page).

MdlTableModel
See MdlTableModel below.

Error System: Sub-system allowing for server and client error management.

CommonServices: Object allowing to manage services common to the whole
dialog.

Chapter 6. Application Generation and Enhancement 273

This class is managed as a singleton (unique object) shared by the whole
dialog. It centralizes errors (distributed in ErrorObject and SystemErrorObject)
and manages the call of error message boxes (for both application logic and
system errors).

This class is instantiated by each view.

ErrorHandling: Object managing error raising services.

This class is managed as an instance. It validates the Business Objects’ fields,
changes their color, etc. This class is instantiated by the DetailSubview and
implements the following event listeners:
v MdlChecksListener
v MdlDetailActionListener

Field: Object managing the Business Objects’ fields.

This class is managed as an instance. It triggers the call for validation on the
Business Objects’ fields as well as and raises focus-related events (gain, loss).

ErrorObject: Object representing an error in the application logic. This class
is managed as an instance.

SystemErrorObject: Object representing a system error and/or a CSO
exception sent by the server.

ServerErrorManager: Object allowing management of errors raised by the
servers.

This class is managed as an instance. It procedes from the VisualAge
Generator servers.

According to the type of errors (application logic, system, or CSO exception),
it creates the associated objects (ErrorObject and SystemErrorObject).

ErrorMessageTable: Hashtable type object dedicated to error message
management.

UserMessageTable: Hashtable type object dedicated to the management of
user error messages (empty by default).

ErrorView: Window presenting translated errors.

The opening of this window is controled by the CommonServices class.

274 VisualAge Generator Templates Standard Functions: User’s Guide

It allows the end-user to select an error. As a result, the focus is on the
corresponding field.

SystemErrorView: Window presenting system errors and CSO exceptions.

The opening of this window is controled by the CommonServices class.

Interface Unit System: The Interface Unit System presents the prototype
graphical components only.

All graphical windows generated with VAGTemplates use Swing components.

DetailSubview: This component represents the standard Detail view, it inherits
from the JPanel class.

This view contains an instance of BusinessObject and an instance of
ErrorHandling.

Representation of DataFields
With VAGTemplates, several types of graphical components may be
generated:
v JTextField
v JRadioButton
v JSlide

Figure 13. ErrorView

Chapter 6. Application Generation and Enhancement 275

v JComboBox

As well as a combination of Swing components in order to create:
v DroppedDownList
v DropDownList

Data Conversion
Data format and display depends on a component named MdlConverter
which belongs to the runtime.

For all types of data elements but alphanumeric ones, this component
formats data presentation according to the value types defined in
VAGTemplates (numeric, date, TimeStamp, Time). Input and display
formats are defined which control user input and data presentation.

ListSubview: Standard presentation of a Business Object list. It integrates a
ListManager instance variable and an instance of MdlTableModel.

Also includes the CommonServices instance.

MdlTableModel: This object represents the list graphical component model
(JTable), and therefore inherits from
com.sun.java.swing.table.AbstractTableModel.

It can be considered as an interface between the Business Object managed by
the ListManager and JTable graphical component.

The MdlTableModel manages the list of elements to display, the ListManager
contains the server list.

InterfaceUnitView: Jframe-type window integrating both the
BusinessObjectListSubview and BusinessObjectDetailSubview Beans. This
window implements the intra zoom.

Java client classes categories: The different classes generated in a Java client
may be divided into three categories according to their links with
VAGTemplates.

No link : not generated

Linked to the VAGTemplates Workspace : generated with ″predefined beans″

Linked to a VAGTemplates entity : always generated

Not generated: Runtime: These classes - found in the
com.ibm.mdl.runtime.vaj package - are essentially tools used by the generated
application and are entirely independent of VAGTemplates instances.

276 VisualAge Generator Templates Standard Functions: User’s Guide

v <>MdlDocument
v <>MdlComboBoxModel
v <>MdlTableMap
v <>MdlTableSorter
v <>MdlEditor
v <>MdlTableRenderer
v <>MdlClock
v <>MdlChecksEvent
v <>MdlDetailActionEvent
v <>MdlInstanceManagementEvent
v <>MdlListActionEvent
v <>MdlConverter
v <>MdlInstanceRegister
v <>MdlRegisteredObjectAbstract
v <>MdlException
v <>MdlChecksListener
v <>MdlDetailActionListener
v <>MdlInstanceManagementListener
v <>MdlListActionListener
v <>MdlRegisteredObject

Generation linked to the VAGTemplates Workspace: Classes generated once
per VAGTemplates Workspace, they mostly correspong to the parent classes
of:
v <>MdlComboBoxModel
v <>MdlTableModel
v <>MdlErrorView
v <>MdlSystemErrorView
v <>AbstractBusinessObject
v <>AbstractListManager
v <>AbstractResourceObject
v <>AbstractDetailResourceObject
v <>AbstractListResourceObject
v <>MdlCommonServices
v <>MdlDataElementsChecks
v <>MdlDetailModel
v <>MdlErrorObject
v <>MdlField

Chapter 6. Application Generation and Enhancement 277

v <>MdlServerErrorManager
v <>MdlSystemErrorObject

Note: <> represents the prefix of the generated classes, dependent on the
Workspace parameterization.

Generation linked to VAGTemplates instances: Classes directly linked to
the definition and parameterization of VAGTemplates instances. They are
sorted in two different packages:
v LogicPackage

– <>BusinessObject
– <>ListManager
– <>DetailResourceObject
– <>ListResourceObject

v VisualPackage
– <>BusinessObjectDetailSubview
– <>BusinessObjectListSubview
– <>WInterfaceUnitView

Note: <> represents the prefix of the generated classes, dependent on
instances paratemerization.

Smalltalk GUI Client:

Logical Components: This chapter offers a general description of the
architecture of the client side of the generated applications. Its goal is to
explain the architecture and also to justify the choices that are made here and
their relevance.

Business Object:

Data Storage
When an instance is persistent, the data that has been read from the
database must be returned to, and local changes made to the Business
Objects’ data can be forgotten. This function should not come with a full
copy of the Business Object’s data: that would be too costly in term of
performances. To do so, the initial piece of data is memorized only when
the user changes it through the interface (the first time). To be able to
distinguish from an original value that is nil and a copy that has not been
set yet; we need to define a flag for each field. That flag means: ’the field
has been changed since it has been read from the database, and its
original value is preserved’. This data management allows to implement
several functions:
v Cancel the changes made on a Business Object (reset),

278 VisualAge Generator Templates Standard Functions: User’s Guide

v Warn the user that changes should be committed or cancelled (message
box when a detail is closing),

v Test whether a Business Object has been locally changed or not
(isModified)

Partial Read and Update
When an instance is read in a list, it is possible to read only a few fields
in the Database and read all the fields when the data is moved to a detail.
Therefore, there are 2 ways to read a Business Object :
v The Business Object read via a detail contains all its data,
v It is possible to define the Business Object so that the list would only

read a subset of the Business Object’s data.

A Business Object that is not fully read in a list can be defined in the
Model (access level of a field). In this case, another state applies to the
persistent instance : the accessLevel.

AccessLevel can have 2 values :
v partial, which means that the Business Object has been read only

through a list. Only a subset of its fields has been read,
v complete : All the fields of the Business Object have been read.

Access Level has no meaning for a volatile Business Object. It is possible
to update and delete a partial Business Object.

List Manager: There is one instance of list manager for each list, as the
context (current page and extraction criteria setting) is different for each list
instance.

If an application contains several lists of the same Business Object, several
collections of instances will thus exist.

However, the different collections will point to the same objects, thanks to the
Business Object’s unicity mechanism.

The collections are duplicated, not the data that they contain. The actions
available with the list manager are of two kinds: Defining a selection and
paging.

Selection
One set of extraction criteria is defined for a Business Object. These
extraction criteria are used by the where clause of the select order to
define the selection. Once this selection has been defined, it is possible to
read its rows. Most of the time, the server will not be able to answer the
full selection. Then reading the selection will be done by reading one page
of its data after another.

Chapter 6. Application Generation and Enhancement 279

How does it work?
Let’s examine the SQL statement that is generated to read one page. Here
we define a list which criteria is based on empno >= X and that is sorted
by LastName.

SELECT columns INTO fields FROM EMPLOYEE T1
WHERE
/* PROCESSING EXTRACT CRITERIA
T1.EMPNO >= :EMPLORO-WBEGIN-KEY.EMPNO
AND T1.EMPNO <= :EMPLORO-WEND-KEY.EMPNO

/* PROCESSING SCROLLING
AND

(T1.LASTNAME > :EMPLORO-WNEXT-KEY.LASTNAME
OR T1.LASTNAME = :EMPLORO-WNEXT-KEY.LASTNAME
AND (T1.EMPNO > :EMPLORO-WNEXT-KEY.EMPNO
OR T1.EMPNO = :EMPLORO-WNEXT-KEY.EMPNO))

Let’s see in a schema the details:
The page (green form) is a subset of the red form. It is defined by what

defines the red form, plus a starting point that needs to be unique. This

280 VisualAge Generator Templates Standard Functions: User’s Guide

starting point must thus include the key. But the key is not enough. It
needs to take into account the order too, as a higher and equal clause is
issued. The page is defined by the combination of the key and the sort
criteria.

Note: The generators are using an API that adds the key to the sort field
if needed.

To sum-up, the extraction criteria are used to define the selection data.
The sort criteria are used to define the page data.

Resource Object: An Access Part: As the accesses are not integrated into the
Business Object, it is possible to generate a Business Object that includes more
or less 4GL language. On the one hand, a Business Object could offer a pure
Smalltalk implementation, independent from the technology that accesses the
data. On the other hand, the Business Object can be coded in 4GL language.

The coding of the Business Object is independant from the coding of the
Resource Object. We don’t have to use 4GL language in the Business Object.

Detail Access
To manage detail accesses, the Resource Object API verbs take a Business
Object as a parameter. The Business Object data are used during the
server call and updated on the return from the server. Depending on
whether the server action succeeds or fails, the Business Object is either
modified or left untouched.

List Access
To manage list accesses, the Resource Object reads from the server a
collection of Business Objects. The Resource Object API offers services for
reading a data page according to extraction and location criteria, which
locate the page in a selection.

Updatable List Access
The resource Object gets as parameters collections of movements. It calls
the server with the corresponding data. It answers a collection of Business
Objects whose movement failed.

Instance Management: The instance manager offers an API to register,
unregister a persistent object given its class and its unique key. This API is
used by all the action that has to handle persistent Business Objects.

The storage of the instances is based on Weak Collections. These particular
Smalltalk objects are able to remove (thanks to Smalltalk’s garbage collector)
any entry in the collection that is not known by any object.

Services:

Error Handling:

Chapter 6. Application Generation and Enhancement 281

Standard Errors

v Error Definition
The error is an object (class Error) that contains the following
information:
– Error code
– Gravity
– Ordered Collection of variables
– Reference to the logical field
– Etc.

The error includes a reference to the field, which makes it possible to
retrieve it and perform a feedback.

v Error Window
The error window is an object (class ErrorView) able to display one or
several errors. It means that it will accept a collection of errors,
compute them (translating the codes and variables to a text), handle the
feedback on the related graphical fields when double-clicking on a line.
The error window should be unique for the whole application, so that it
can be cleared when a new action is performed and collect one or
several errors, from one or several sources. Thus, the error window is
stored in a class attribute.

v Raising an Error
The error raising is also offered through the class API of the class
CommonServices. The same kind of mechanism applies to the system
errors. An error can be raised by an action or through a customization.

v Checks in a detail
We want to provide the fields of a detail with the following functions:
– Check on format
– Check on input in required fields
– Check on data element
– Inter-field check (once all the fields have been checked).

Error feedback varies depending on whether the end-user is inputting
or validating data: in the first case (the user types in the detail), the
field color changes, in the second case (the user asks for a check), an
error (object) is built and explains the nature of the problem.

v How to implement these behaviors ?
Using converters that may be enriched via subclassing allows
implementation of the requested checks. However, this means that it is
not possible to dissociate checks on format, checks on required fields,
and checks on data elements. Furthermore, algorithmic checks on data

282 VisualAge Generator Templates Standard Functions: User’s Guide

elements have to be implemented via the creation of a new converter
type, which implies generating a new class. Standard converters can not
be used in this case.
We’ve also seen that the result of the check is not the same during an
input or a validation: we want to control the activation of checks in
order to raise or not raise an error in case the checks fail.
A dedicated part is thus necessary.

v How does it work ?
Field control is provided at 2 levels:
– At the data-element level: The controls are described in the model at

the data-element level. A method is generated in a class dedicated to
that purpose to perform the described check. This method is a
reusable piece of code,

– At the Business Object level. Each field belongs to a business object;
the business object is thus responsible to know how to check its
fields. The default behavior of this checking is to call the
data-element method. It is thus possible to override the data-element
check or to add some Business Object specific ones for one field.

The checks are implemented on the logical layer, in a reusable way,
but are able to send feedbacks to the graphical layer.

The Error detection is implemented in a generic way. A class, called
ErrorHandling, is responsible to define the error detection and raising
policy. This part handles a collection of generic objects, the Fields, that
gives the relevant information to enforce the error policy: a pointer to
its graphical widget, whether the field is a key, whether it is read-only,
what method controls it in the Business Object, etc.

Thus, the error handling is handled by:
– The initialization of the Field objects, when the detail layout is

created,
– The creation of an instance of error handling, linked to the instance

of the detail subview and its current business object. This error
handling is initialized by the collection of fields and has a pointer to
the currently displayed business object.

A series of callbacks will trigger methods of the error handling when a
check is requested on the whole business object or any individual field.

v Other functions
The Error Handling mechanism offers an API to dynamically display as
read-only or updatable one given field.

Chapter 6. Application Generation and Enhancement 283

The error handling knows all the graphical fields (widgets) displayed in
a detail and the current displayed Business Object. We’ve seen that a
key defines a persistent Business Object.
Therefore, a persistent Business Object’s keys should not be modified
through the interface. However, a volatile one should. The error
handling is responsible for the following behavior: it protects the key
fields of a persistent Business Object and unprotects the key fields of a
volatile Business Object.

System Error
System errors are simpler than standard errors. They are defined by the
SystemError Class. Only one system error can be raised at a time. A
System error Window (SystemErrorView) is stored in a class attribute of
CommonServices and opens when the CommonServices system error API
is used.

Messages:

Raising a message on the server
Messages can be raised in the hooks of the server. They are stored in a
specific section or the error record.

Messages are caught on the client. They are displayed in the optional
information bar.

Raising a message on the client
If you specify the workspace parameter (parameter, page 2) ″information
messages″ with the value ″bar with standard messages″, the messages
from the server will be displayed in an information bar. If the server has
raised no message during an action, the client will raise a message
indicating that the action has succeeded. This message is reset when
another action starts.

If you specify ″information messages″ with the value ″no standard
messages″; the client will never raise any message. The information bar is
not displayed at the bottom of the windows. However, the API to raise,
propagate and translate messages is still present and can be used.

Foreign Key Help List:

As a Business Object
Help list services are generated as a special kind of Business Object. The
classes are named after the target table’s name. One item of a help list
comes from one instance of Business Object. The help list is handled in a
List Manager.

Additional fields
By default, help lists are built from the key of a table. It is possible,
though, to specify an additional field. This field will be read by the server,

284 VisualAge Generator Templates Standard Functions: User’s Guide

stored in the corresponding Business Object and handled by the list
manager. However, the detail subview will not display it. This needs to be
done by customizing the detail subview.

Sharing Data: This part is a place of customization, but is also used in
standard to share some pieces of data.

Window list
The sharedPart instance is accessible from every window. Therefore, it is
used to register the list of opened windows. This list is then used by each
window to build a menu. This menu displays a button for each current
opened window of the application.

Help Lists
A help list contains data from the keys of one table. It is possible that this
table would be the target of several foreign keys in several tables.
However, the list of the keys would be the same, so it makes sense to
share it.

Therefore, the help list’s data (list manager) is stored in the sharedPart.

Subviews and Views:

Detail:

Displaying a Business Object
The current instance of Business Object is stored in a variable. This
variable is never set to nil.

Several actions may answer another instance of Business Object. Then the
result of this action is stored in the Variable.

The Business Object’s public interface describes several events. It is
important to fire these events on the current instance of Business Object
and not the returned one, since, during an action, it’s the current Business
Object that is displayed and not the result one.

Error Handling
The detail is the place where the error handling is plugged. It is initialized
from the detail’s fields and knows the current instance of the Business
Object.

Help List
When the detail contains a foreign key field that is candidate for a help
list, then this field is displayed as a combo-box and the help list manager
is accessed through a variable. This variable will know the corresponding
instance of list manager stored in the shared part, through promotions.

List: A list displays the data stored in a list manager. It displays thus a
collection of Business Objects. Each list contains its instance of list manager.

Chapter 6. Application Generation and Enhancement 285

However, it is possible to share these instances. To make this customization
easy, the list manager is stored in a variable. List can display their data in 3
ways:
v By displaying one page after another,
v By displaying all the read pages,
v Through the auto-scrolling mechanism.

The first and second choice is made by displaying one collection of the list
manager or another. The third choice involves the triggering of the scrolling
mechanism on the list manager.

TUI Client
This section details the structure of the different components involved in a
TUI client.

Main Program (View):

Components Generated by Entities

Components Generated from a Data Element
The components stemming from a Data Element are generated to implement
specific checks on fields other than the global checks generated from a
Business Object. These checks need the generation of the following:
v one Data-Item,
v one function,
v GUI one Java/Smalltalk Class for all the Data Elements supporting one

Java/Smalltalk Method per Data Element.

The VisualAge Generator parts are prefixed with the target name of the Data
Element; the Java/Smalltalk class with the Workspace target name.

GUI and TUI Components

Function:

Traceability Category: INTERNAL

The generated function is responsible for managing server checks on fields.
There is one function generated per Data Element instance, provided that a
check has been specified in VAGTemplates. It takes a Data-Item as parameter.

For example, assuming you defined a numeric Data Element - DEPT - and specified
a check by value table, the DEPTPE-CTRL function will be generated to implement
the defined control on the server.

286 VisualAge Generator Templates Standard Functions: User’s Guide

Note: You can use and modify this part to define additional checks on fields,
for example. This part should not be deleted.

GUI Components: Java/Smalltalk Class

Traceability Category: API

The generated <>DataElementChecks Java/Smalltalk Class holds methods
that manage the client checks on fields defined for the Data Elements (check
by interval, check by value table). These methods are called by the Business
Object part. There is one method per Data Element.

Note: The traceability category of all the methods provided by this class is
RAD.

For information on the Business Object bean/part, refer to “Business Object
Bean/Part” on page 304.

Components Generated from a Business Object
The components generated from a Business Object’s specifications are the
following:
v WEB components,
v Functions,
v Records,
v Server Programs,
v GUI Visual components
v GUI Non-visual components.

These components are prefixed with the target name of the Business Object.

WEB Components

The UI Record UI-KEY: This record is never displayed. It is used as a
parameter for the paging in list (in case of Xfer).

GUI and TUI Components

Functions:

Traceability Category: INTERNAL

A function is generated for each action. Each function calls:
v I/O Functions for performing the corresponding action;
v Functions for managing the NULL value;
v Functions for performing global checks, like required field checks.

Chapter 6. Application Generation and Enhancement 287

Caution: Functions are generated for internal purposes only. They should not
be used or deleted. They should not be modified unless you wish to
customize SQL accesses.

Records:

Traceability Category: API

A Business Object is defined by several Records. These Records are Data
Records and are defined for one Business Object. They reflect its composition
in fields. They allow access to the Business Object fields through their own
data items.

One Record is responsible for storing one type of data.

Mono-Instance Data WINSTANCE Record

This Record is responsible for storing data used in simple accesses and the
current data selected during a multiple access.

The WINSTANCE Record is a Working-Storage Record comprising the
following Data-Items:
v INSTANCE-FIELDS, describing the Business Object instance’s structure

in data fields;
– Data-Items representing the Business Object’s fields;
– Data-Items of lower level are functional and ready to be generated

with Java wrappers.
v INSTANCE-NULL-FLAGS, describing the structure of the fields

managing the NULL value:
– N-prefixed Data-Items indicating whether the field is set to NULL

(Y) or not (N);
v INSTANCE-CONCURRENCY4, grouping the columns used for

managing concurrent accesses:
– C-prefixed Data-Items representing the fields used for managing

concurrent accesses.
v INSTANCE-ACTION-CODE, grouping the codes of the actions to be

performed on the instance: S (Select), I (Insert), U (Update), D (Delete).

Multi-Instance Data

WPAGE Record

This Record is responsible for storing read page data used in a multiple
access.

4. This Data-Item is only generated when a column has been defined for concurrency management in the Workbench.

288 VisualAge Generator Templates Standard Functions: User’s Guide

The WPAGE Record is a Working-Storage Record comprising the
following Data-Items:
v INSTANCE-FIELDS, describing the Business Object instance’s structure:

– Data-Items representing the Business Object’s fields;
v INSTANCE-NULL-FLAGS, describing the structure of the fields

managing the NULL value:
– N-prefixed fields indicating whether the field is set to NULL (Y) or

not (N);
v INSTANCE-CONCURRENCY4, grouping the columns used for

managing concurrent accesses.:
– C-prefixed Data-Items representing the fields used for managing

concurrent accesses.
v INSTANCE-ACTION-CODES, grouping the codes of the actions to be

performed on the instance:
– INSTANCE-ACTION-CODE: S (Select), I (Insert), U (Update), D

(Delete);
v CONTROL-COUNT-INSTANCES, indicating whether or not instances

in the selection must be counted.
v CONTROL-COUNTER, indicating the number of instances to calculate

the scrollbar for the auto-scrolling function.
v CONTROL-RETURNED-ROWS-NUMBER, indicating the number of

lines read in the page;

Extraction Data WBEGIN-KEY Record

This Record is responsible for storing the data selected according to
extract criteria during a multiple access.

The WBEGIN-KEY Record is a Working-Storage Record comprising the
following Data-Items:
v EXTRACT-CRITERIA, representing the fields in the extract criteria;

– Data-Items representing the Business Object’s fields used for
extracting data.

– Data-Items of lower level are functional and ready to be generated
with Java wrappers.

v GUI CONTROL-SELECTED-ROW-INDEX, indicating the index of the
selected item in the page.

Note: You are allowed to use these Records and modify their contents,
but you should not modify their structure or delete them.

Server Programs:

Traceability Category: API

Chapter 6. Application Generation and Enhancement 289

Two-tier Architecture: If you specified a 2-tier server architecture for your
application (Server layers, Workspace Definition editor, Server panel), that is
one client layer and one server layer, three server Programs are generated
from a Business Object according to its presentation as a detail, as a list, or as
an updatable list:
v a Mono-Instance Program, suffixed with 15, which allows access to the data

presented in a detail Business Object;
v a Multi-Instance Program, suffixed with N5, which allows access to the data

presented in a list Business Object.
v an Updatable Multi-Instance Program, suffixed with L5, which allows access

to the data presented in an updatable list Business Object.

Note: Not all these components are generated. Their generation depends on
the value set for the Service level parameter (Business Object Generation
Parameters editor, Optimization panel).

Actions in the server are implemented as follows:
1. Context initialization (Record initialization, error context initialization, etc)
2. Hook executed before any other function
3. SQL command
4. Error treatment
5. Hook executed after the other Functions

Note: You can use these components. They should not be modified or
deleted.

Three-tier Architecture: If you specified a 3-tier server architecture for your
application (Server layers, Workspace Definition editor, Server panel), that is
one client layer and two server layers, an umbrella server and atomic servers
are generated.
1. Detail Business Object

One umbrella server is generated per detail Business Object. The umbrella
server does not access the database. It calls atomic servers to perform the
accesses. When possible, the umbrella server calls the atomic server
generated from the Relational Table. When it is not possible, atomic
servers are generated from the Business Objects. The umbrella server calls
these atomic servers.

5. This suffix is a constant from the com.ibm.mdl.Visitors.Services.NamingServices class (VAGTemplates on Java) or
from the MdlVGMnemos poolDictionary (VAGTemplates on Smalltalk).

290 VisualAge Generator Templates Standard Functions: User’s Guide

Note: The Business Object umbrella server uses the atomic servers
generated from the Relational Table or those generated from the
Business Object, depending on several criteria (mostly the mapping)
and on the action to perform:

v If the Relational Table has a primary key, the atomic servers are
generated from the Relational Table. There is one atomic server
generated per action (create, read, update, delete, read keys, etc...).

v If the Relational Table has no primary key, the atomic servers are
generated from the Business Object. There is one atomic server
generated per action (create, read, update, delete, read keys, etc...). In
this case, the Multi-Instance Server Program is used as an atomic server.

Select action

v One atomic server for the selection is generated from the Business
Object.

Create action

v The atomic server generated from the Relational Table is always used.
The columns that are not mapped by the Business Object are initialized
to NULL.

Update action

v The atomic server generated from the Relational Table is always used if
the Business Object maps to all the Relational Table’s columns.
Otherwise, the atomic server generated from the Business Object is
used.

Delete action

v The atomic server generated from the Relational Table is always used if
the Business Object maps to the Relational Table’s primary key.
Otherwise, the atomic server from the Business Object will be used.

2. List Business Object
One umbrella server and one atomic server are generated per list Business
Object.

3.

In 3-tier architecture, actions in the server are implemented as follows:
a. Part of the context initialization is made at the umbrella server level

before calling the atomic server.
b. Hook executed before the atomic server call
c. Call to the atomic server
d. Hook executed before any other function
e. SQL access
f. Error treatment
g. Hook executed after the Functions

Chapter 6. Application Generation and Enhancement 291

h. Hook executed by the umbrella server after return from the atomic
server

Note: You can use these components. They should not be modified or
deleted.

GUI Components

Visual Components:

Traceability Category: API

There is one Visual bean/part generated per type of Business Object used:
v one Subview bean/part for the Business Object used as a detail,
v one Subview bean/part for the Business Object used as a list,
v one Subview bean/part used for the Business Object used as an updatable

list.

The Subview comprises the graphical components of the Business Object
(graphical fields, menus, push-buttons) and their connections to data, and the
menu items or push-buttons that trigger actions. It implements the filling of
the graphical fields with the data from the Business Object bean/part.

Detail Subview bean/part: The Detail Subview bean/part presents the Business
Object via connections to the Business Object’s attributes (its fields). These
attributes are accessed through a variable based on the Business Object.

The elementary actions (Create, Read, Update, Delete) are activated via
connections to the variable based on the Business Object. The Check action is
triggered via the Business Object bean/part.

The Detail Subview also present help lists (when they are generated) and
activates paging actions on this list via connections to the variable based on
the List Manager for the help list.

For information on the Business Object bean/part, refer to “Business Object
Bean/Part” on page 293. For information on the List Manager bean/part, refer
to “List Manager bean/part” on page 297.

List Subview bean/part: The List Subview bean/part contains a graphical data
container and paging actions (appearing as menus or push-buttons). This part
implements the filling of the list with the data from the List Manager
bean/part. The List Subview activates paging actions on the list via
connections to the variable based on the List Manager.

Note: You can use or modify this part. It should not be deleted.

292 VisualAge Generator Templates Standard Functions: User’s Guide

For information on the List Manager bean/part, refer to topic “List Manager
bean/part” on page 297. For information on paging actions, refer to topic
“Actions Available for List Business Objects” on page 148.

Updatable List Subview bean/part: The Updatable List Subview bean/part
contains a graphical data container and paging and elementary actions
(appearing as menus or push-buttons). This part implements the filling of the
list with the data from the List Manager bean/part. The Updatable List
Subview activates actions on the list via connections to the variable based on
the List Manager.

Note: You can use or modify this part. It should not be deleted.

For information on the Updatable List Manager bean/part, refer to topic
“Updatable List Manager bean/part” on page 300.

Non-Visual Components: According to the type of generated Business Object,
the generated beans/parts are:
v <>BusinessObject

v <>ListManager (if the Business Object is used as a list)
v <>UpdatableListManager (if the Business Object is used as an updatable

list)
v <>ResourceObject

Note: We will call these components the Business Object bean/part, the List
Manager bean/part, the Updatable List Manager bean/part, and the
Resource Object bean/part respectively.

Business Object Bean/Part:

Traceability Category: API

Introduction: There is one Business Object bean/part generated per Business
Object instance. This bean/part encapsulates the Business Object’s data and
the actions that manage the data (create, read, update, delete).

The Business Object bean/part calls the ResourceObject part to trigger the
actions.

The Business Object bean/part is responsible for performing global checks any
time a creation action is triggered. It calls the ErrorHandling part by sending
an event to perform unitary checks on fields, checks on required fields, and
possible inter-field checks.

Chapter 6. Application Generation and Enhancement 293

The Business Object bean/part inherits from a class generated at the
Workspace level: <>BusinessObjectAbstract. This class is documented in
“Abstract Business Object”.

Caution: This component should not be used, modified, or deleted.

For more information on checks, refer to topic “Error Handling in GUI Client
applications” on page 153.

For information on the Resource Object bean/part, refer to “Resource Object
bean/part” on page 301. For information on the Error Handling part, refer to
“ErrorHandling Part” on page 320.

Smalltalk Business Object Instance API:

Note: Following information relevant with Smalltalk only. Java-related
information will be available in a future edition.

Public methods and the corresponding public interface, which allows the
object to be manipulated via connections, characterize the Business Object
instance API.

Inheritance: Thanks to inheritance, processing that can be factorized (generic
processing) is defined at the ancestor level.

Abstract Business Object:

Genericity
The actions defined by the abstract Business Object are the generic ones:
These actions are the ones that do not need to manipulate the Business
Object’s fields. It is also possible to define as virtual the whole setting of
these fields, that would be implemented at the Business Object’s level.

294 VisualAge Generator Templates Standard Functions: User’s Guide

Method description - Actions_API

State before State after
(success)

Object after
(success)

State after
(failure)

Object after
(failure)

Read Volatile Persistent Same or
different

Volatile Same

Refresh Volatile /
Persistent

Persistent Same or
different

Volatile Same

Create Volatile Persistent Same Persistent Same

Update Persistent Persistent Same Persistent Same

Save Volatile /
Persistent

Persistent Same or
different

Initial State Same

Delete Volatile /
Persistent

Volatile Same Same Same

Reset Persistent Persistent Same NA NA

New
Instance

Volatile /
Persistent

Persistent Different NA NA

These actions should never answer nil.

Note: Reset is implemented at the Business Object’s level, and explained
later.

check
Performs the client checks on self. To do so, the field that has the
focus is validated and all the updatable fields are checked, through
the ErrorHandling mechanism. Errors are displayed if detected. This
action does not change the state of the Business Object.

read
self is volatile. read searches if an instance with the same key exists in
the instance dictionary. If such an instance exists, this action returns it.
Otherwise, it calls the Read action from the Resource Object. If this
action succeeds, self is stored in the instance dictionary and becomes
persistent.

refresh
self is volatile or persistent. refresh calls the Read action from the
Resource Object. If this action succeeds, self is stored in the instance
dictionary and becomes persistent. If it fails, self becomes volatile and
it removes the instance of same key stored in the instance dictionary.

The difference between read and refresh is that refresh always reads
data from the DB, even if a persistent instance already exists for that
key.

Chapter 6. Application Generation and Enhancement 295

create
self is volatile. create searches if an instance with the same key exists
in the instance dictionary. If such an instance exists, an error is raised.
Otherwise, this action calls the Create action from the Resource Object.
If this action succeeds, self is stored in the instance dictionary and
becomes persistent.

update
self is persistent. update calls the Update action of the Resource
Object.

save
self is either volatile or persistent.

If self is volatile, save calls the Create action of the Resource Object. If
this action succeeds, self is stored in the instance dictionary and
becomes persistent.

If self is persistent, this action calls the Update action of the Resource
Object.

delete
self is either persistent or volatile. delete calls the Delete action of the
Resource Object, and removes the instance corresponding to the
Business Object key from the instance dictionary. At the end, self is
volatile.

newInstance
newInstance returns a new volatile instance initialized with the
Business Object’s default values.

Method description - Hooks_API

additionalChecks
This method is called by checkBusinessObject. It is a hook that can be
redefined if needed in the Business Object class. This method is made
to write inter field checking or any additional checking needed in the
Business Object.

Method description - Message_API

mdlIsUpdated and mdlIsUpdated: aBoolean
Setter and getter for the mdlIsUpdated attribute. This attribute is
relevant only for persistent Business Objects.

Note: In V3.1, the value is set through the setters of the Business
Object and reset when the data comes from the database.

mdlState and mdlState: aSymbol
Setter and getter for the Business Object’s state (volatile or persistent).
The default value is volatile.

296 VisualAge Generator Templates Standard Functions: User’s Guide

Method description - Status_Internal (private)

isCopyDisabled and isCopyDisabled: aBoolean
These methods are used in the reset mechanism. They allow to set a
flag that says whether, when a field setter is called, a copy of the
original field should be made or not. Typically, when the database fills
the Business Object’s data, a copy is undesired. However, when the
end-user types a value in a detail, that copy is needed.

Business Object:

Reset
Reset rolls back the changes that have been made to the persistent
Business Object. After a reset, the Business Object’s field are reset to the
value that has been read from the Database.

Two instance variables are generated for each field : a flag to monitor if
the field has been changed and a copy of the data : testing if the copy’s
data is not enough, since nil is a possible value for a field.

Field setters work in two modes. These modes are available only for
persistent Business Objects.
v One mode where the original value is copied if needed (when the user

changes the contents of the Business Object). This is the regular mode.
v One mode to set the value. The copy and the flag are set to nil. This

happens when the Resource Object is filling the Business Object.

Toggling from one mode to another is made at the Resource Object level.

Due to this mechanism, it is possible to precisely know whether a
Business Object has been modified since it has been read from the DB.
This is the isModified method. Its algorithm is as follows:
v Check if the field’s flag indicates that a change has occurred. If so,

compare the value of the copy and the current field, to see if they are
the same or different.

v Exit once a change has been found.

List Manager bean/part:

Traceability Category: API

Introduction: The List Manager bean/part manipulates collections of data. It
manages the paging actions and memorizes the read pages. It calls the
Resource Object bean/part to trigger actions and retrieve data.

The same part is used to manage actions available on help lists. However, it is
generated from the Relational Table whose mono-field primary key is linked
to the foreign keys of the Business Object’s primary table.

Chapter 6. Application Generation and Enhancement 297

The List Manager bean/part inherits from a class generated at the Workspace
level: <>ListManagerAbstractThis class is documented in“Abstract List
Manager”.

For information on the Resource Object bean/part, refer to “Resource Object
bean/part” on page 301.

Note: You can use this part. It should not be modified or deleted.

Inheritance:

Note: Following information relevant with Smalltalk only. Java-related
information will be available in a future edition.

Thanks to inheritance, processing that can be factorized (generic processing) is
defined at the ancestor level.

Abstract List Manager:

Note: Following information relevant with Smalltalk only. Java-related
information will be available in a future edition.

298 VisualAge Generator Templates Standard Functions: User’s Guide

Genericity
The actions defined by the abstract List Manager are the generic ones:
These actions are the ones that do not need to manipulate the List
manager’s criteria. It is also possible to define as virtual the whole setting
of these criteria, implemented at the Business Object’s level.

Collections
The List Manager holds the Business Object’s instances in two collections :
currentPage and selection.

Selection
contains the full list of Business Objects. It is reset when the (SQL)
selection has changed. The pages are gathered in this collection when
a new page is read. When one page is refreshed, then the following
ones are removed to protect the integrity of the selection.

Current page
is built to be displayed in the lists that display only the current page.
It is a subset of the selection collection.

Method description - Actions_API

Selection
(before)

Current
page
(before)

Selection
(after)

Current
page (after)

Top N pages Page X 1 page Selection

Extract N pages Page X 1 page Selection

Next (on last page) N pages Last page N+1 pages Last page

Next (on any other page) (a) N pages Page X N pages Page X+1

Previous (b) N pages Page X N pages Page X-1

Refresh N pages Page X X pages Page X

The rules to fill current page from selection appears clearly from this
array. Therefore, we will now focus on the selection collection below and
not focus on (a) and (b).

Two actions define a selection : top and extract. Top uses a default
selection. Extract uses the current one.

extract
extract defines a new selection for the List Manager’s data. Therefore,
it resets the sort criteria data (they define which page is going to be
read) to ensure that the first page will be read. It reads a page on the
server. Then the selection collection is reset with the page contents.
The sort criteria are set with the next row’s key data.

Chapter 6. Application Generation and Enhancement 299

top
top initializes the extraction criteria to their default values and calls
extract.

next
next uses the current extraction and sort criteria to read a page and
adds this page to selection.

refresh

Note: refresh is implemented in the List Manager but is described
here, for consistency.

refresh uses the current sort criteria and retrieves the sort criteria from
the data of the first row of the current page. It reads a page on the
server. Then the selection collection is updated with this page and all
the following rows are removed: This is because there could be a gap
between this page and the next one in memory.

The List Manager bean/part also provides events to be used to indicate the
result of the actions listed above:
v refresh succeeded
v extract succeeded
v next succeeded
v previous succeeded
v top succeeded
v refresh failed
v extract failed
v next failed
v previous failed
v top failed

Updatable List Manager bean/part:

Traceability Category: API

The Updatable List Manager bean/part manipulates collections of data. It
manages paging and elementary actions and memorizes the read pages. It
calls the Resource Object bean/part to retrieve the data

The Updatable List Manager bean/part calls the Resource Object bean/part to
trigger the actions.

The Updatable List Manager bean/part inherits from a class generated at the
Workspace level: <>ListManagerAbstract.

300 VisualAge Generator Templates Standard Functions: User’s Guide

Note: You can use this part. It should not be modified or deleted.

For information on the List Manager ancestor, refer to topic
“<>ListManagerAbstract Class” on page 320. For information on the Resource
Object bean/part, refer to topic “Resource Object bean/part”.

Resource Object bean/part:

Traceability Category: API

There is one Resource Object generated for all the instances of a Business
Object in the application. The Resource Object bean/part encapsulates the
server accesses.

When the Business Object is used as a detail, the Resource Object’s API verbs
take the Business Object instance as their parameters. The Business Object’s
data is used during the server call and updated back from the server.

When the Business Object is used as a list, the Resource Object’s API verbs
take a List Manager instance as their parameters. The Resource Object creates
and initializes a collection of Business Objects with an access to the list server.
The Resource Object API allows the reading of a data page according to
extract criteria and according to the location of the page in a selection. This
information is provided by the List Manager.

For information on the various servers, refer to topic “Server Programs” on
page 289.

Note: You can use this part. It should not be modified or deleted.

TUI Component: Additional Server Program

Traceability Category: API

There is one particular server Program generated from a Business Object for
TUI applications only: the Data Control Program, suffixed with F5, which
controls the fields for which a check has been defined and provides an API
layer.

This part can implement additional checks on fields by calling the
CHK-HOOK Function.

Note: You can use this part. It should not be modified or deleted.

Chapter 6. Application Generation and Enhancement 301

Components Generated from a Relational Table
The components generated from a Relational Table’s specifications are used to
access data in help lists. These components are the following:
v Functions
v Records
v Server Programs
v GUI Java/Smalltalk Classes

These parts are the same as those generated for a list Business Object, but
they are generated from the Relational Table whose primary key is linked to
the foreign key of the Business Object’s primary table.

Atomic servers are generated from the Relational Table to manage actions
anytime it is possible (see “Three-tier Architecture” on page 290, and “Three-tier
Architecture” on page 304)

Note: These parts are prefixed with the target name of the Relational Table.

GUI and TUI components

Functions:

VG: INTERNAL

As many functions are generated as there are available actions on help lists,
structured according to their roles. Each of these Functions calls:
v I/O Functions for performing the corresponding action;
v Functions for performing global checks.

Caution: These Functions are generated for internal purpose only. They
should not be used, modified or deleted.

Records:

Traceability Category: API

The Records generated from the Relational Table are Data Records. They allow
access to the primary table’s foreign keys. The generated Records are the
following:

WINSTANCE Record

This Record is responsible for storing the current data selected in the help list.
It comprises the following Data-Items:

302 VisualAge Generator Templates Standard Functions: User’s Guide

v INSTANCE-FIELDS, describing the structure in data fields of the foreign
key:
– Data-Items representing the foreign key’s fields;

v INSTANCE-NULL-FLAGS, describing the fields managing the NULL value
in the foreign key:
– N-prefixed Data-Items indicating whether the field is set to NULL (Y) or

not (N).
v INSTANCE-ACTION-CODE, grouping the codes of the action to be

performed on the instance: S (Select), I (Insert), U (Update), D (Delete).

WPAGE Record

This Record is responsible for storing the data in the read page of the help
list. This Record comprises the following Data-Items:
v INSTANCE-FIELDS, describing the fields of the foreign key;
v INSTANCE-NULL-FLAGS, describing the fields managing the NULL value

in the foreign key:
– N-prefixed fields indicating whether the field is set to NULL (Y) or not

(N);
v INSTANCE-ACTION-CODES, grouping the codes of the actions available

on the help list:
– INSTANCE-ACTION-CODE, indicating the code of each action;

v CONTROL-RETURNED-ROWS-NUMBER, describing the fields from the
foreign key returned in the help list:

WBEGIN-KEY Record

This Record is responsible for storing the data selected from the help list. This
Record comprises the following Data-Items:
v EXTRACT-CRITERIA, representing the structure of the extract criteria;

– Data-Items representing the foreign key’s fields used for extracting data.
v CONTROL-SELECTED-ROW-INDEX, indicating the index of the selected

item in the page.

Note: You are allowed to use these Records and modify their contents. They
should not be deleted; their structures should not be modified.

Server Programs:

Traceability Category: API

Two-tier Architecture: If you specified a 2-tier server architecture for your
application (Server layers, Workspace editor), that is one client layer and one

Chapter 6. Application Generation and Enhancement 303

server layer, there is one server Program generated from a Relational Table.
This multi-instance server Program, suffixed with N5, allows access to the
help list’s data.

Three-tier Architecture: If you specified a 3-tier server architecture for your
application (Server layers, Workspace editor), that is one client layer and two
server layers, additional servers are generated.

These servers are called atomic servers. They are responsible for performing
the database accesses requested by the Business Object umbrella server. There
are as many servers generated as actions available for the Business Object
(create, read, update, delete, read keys, etc.).

For more information on the 3-tier architecture, refer to “Three-tier
Architecture” on page 290.

Note: You are allowed to use this component. It should not be modified or
deleted.

GUI components: Non-Visual components

Traceability Category: API

The Java/ Smalltalk Classes generated from the Relational Table are key
reading components. They offer services for read-only multiple accesses on
the table’s foreign keys. These services implement input aid on foreign keys in
detail Business Objects.

These Classes are the following:
v <>BusinessObject

v <>ListManager

v <>ResourceObject

Note: We will call these components respectively the Business Object bean
and Business Object bean/part , the List Manager bean/part, and the
Resource Object bean/part respectively in VAGTemplates on Java and
in VAGTemplates on Smalltalk.

Business Object Bean/Part:

Traceability Category: API

This Business Object bean/part is generated from the Relational Table whose
mono-field primary key is linked to the foreign keys of the Business Object’s
primary table. There is one Business Object bean/part generated per
Relational Table (except the primary table).

304 VisualAge Generator Templates Standard Functions: User’s Guide

This component encapsulates the foreign key data and the actions available
for these data. It calls the Resource Object bean/part to trigger the actions and
retrieve data. It also performs checks on the foreign key’s fields via the Error
Handling component.

This Business Object bean/part inherits from a class generated at the
Workspace level: <>BusinessObjectAbstract. This class is documented below.

Note: You can use this component. It should not be modified or deleted.

For information on the Business Object ancestor, refer to “GUI Components”
on page 317. For information on the Resource Object bean/part, refer to topic
“Resource Object bean/part” on page 301. For information on the Error Handling
component, refer to topic “ErrorHandling Part” on page 320.

List Manager bean/part:

Traceability Category: API

The List Manager bean/part manipulates collections of data. It manages the
paging actions and memorizes the read pages in the help list. It calls the
Resource Object bean/part to trigger actions and retrieve data.

It is generated from the Relational Table whose mono-field primary key is
linked to the foreign keys of the Business Object’s primary table.

The List Manager bean/part inherits from a class generated at the Workspace
level: <>ListManagerAbstract.

Note: You can use this component. It should not be modified or deleted.

For Information on the List Manager ancestor, refer to “<>ListManagerAbstract
Class” on page 320. For information on the Resource Object bean/part, refer to
topic “Resource Object bean/part”.

Resource Object bean/part:

Traceability Category: API

There is one Resource Object generated for each Relational Table in the
application. The Resource Object bean/part encapsulates the server accesses
that fill the help list. It creates and initializes a collection of data with an
access to the help list server. The Resource Object API allows the reading of a
data page according to extract criteria and to the location of the page in a
selection. This information is provided by the List Manager.

Chapter 6. Application Generation and Enhancement 305

It is generated from the Relational Table whose mono-field primary key is
linked to the foreign keys of the Business Object’s primary table.

Note: You can use this part. It should not be modified or deleted.

For information on the List Manager, refer to topic “List Manager bean/part” on
page 297. For information on the help list server, refer to topic “Server
Programs” on page 303.

Components Generated from an Interface Unit
The components generated from an Interface Unit’s specifications are used to
present data and manage navigation. These components are the following:
v WEB UI Records and Programs

v GUI Visual beans/parts
v GUI Non-visual beans/parts
v TUI Server Programs
v TUI Maps
v TUI MapGroups
v TUI Tables

WEB Components

The Program: A ’web transaction’ program is the backbone of a web
application. It is generated from the Interface Unit. Its suffix is E.

The program contains the following three attributes:
v Type: ’Web Transaction’,
v Message table prefix: xMSG (ENU table),
v First UI Record (based on the Interface Unit content).

It contains:
v Records & Tables used by the program,
v Functions (according to the architecture).

Its main function (ENTRY-MAIN) calls sub-functions performs the following
actions:
v Analyze the submitted action (SUB-ACTION),
v Initialize internal data (according to the submitted action) (ENTRY-INIT),
v Server access(es) (WEB-ACC),
v System Error management (DISP-SERR),
v Fill the UI Record from server data (FILL-UI),
v Display the UI Record (DISPLAY-UI).

306 VisualAge Generator Templates Standard Functions: User’s Guide

Example:

The way retrieved data is managed at the web server level varies with the
two provided transfers (Xfer and Converse).

In the case of a Converse, since all the retrieved data is kept (in memory),
they can easily be manipulated. On the contrary, the Xfer mode does not keep
much data. As a result, special items need be used to make copies of what the
application needs to continue.

How Xfer works
The function (EXECUTE) displaying the UI Record in the web browser is
defined as follows:

EZEAPP = ’ ’;
XFER EZEAPP , xxxxRW-UI-PAGE;

Where xxxxRW-UI-PAGE is the first UI Record.

Chapter 6. Application Generation and Enhancement 307

The UI Record UI-PAGE: This record is displayed in the browser by the
application.

Definition

v Record Type: ’User Interface’,
v Title (displayed in the browser),
v Submit value item (contains the submitted action).

Content

v Data displayed in the interface,
v Non-displayed data (selected list index),
v Xfer: Hidden data (nex key data, copy of the help list; etcà),
v Submit items (’none’ UI Type).

Use of the ’First UI Record’
When a program has data that may be manipulated (updated or just
displayed), we define a first UI Record in order to be able to prefill useful
data during the call of the program.

GUI Components

Visual bean/part: View bean/part:

Traceability Category: API

The View bean/part generated from an Interface Unit contains one or more
Business Object Subview beans/parts and the beans/parts of possible child
Interface Units. It manages data navigation among these Subviews and the
intrawindow zoom in function.

It also includes the root of the embedded parts’ menus, the Help and Edit
menus, the Windows menu. The Navigation menu is always generated except if
the root Interface Unit does not call child Interface Units.

The View part is prefixed with the target name of the Interface Unit.

For information in the intrawindow zoom in function, refer to topic
“Automatic Zoom in (GUI)” on page 152.

Note: You can use, modify or delete this bean/part.

Non-Visual Components: There is one Java/Smalltalk class generated from
the specifications of the root Interface Unit: <>SharedComponents.

308 VisualAge Generator Templates Standard Functions: User’s Guide

This class contains the error windows and the data that are shared by the
windows in the application, like help lists. It also manages the list of open
windows in the application (see “WindowsMenu Bean/Part” on page 318).

Note: The name of the class is prefixed with the name of the root Interface
Unit.

TUI Parts

Programs: There is one Program generated per Interface Unit whatever the
number of maps required to display the different Business Object calls. This
Program manages the whole application.

The generated Program’s structure is the following:

Functions:

Traceability Category: INTERNAL

The generation of an Interface Unit instance produces the standard VisualAge
Generator Functions used to manage map actions, data accesses, help
accesses, etc.

Caution: These parts should not be used, modified or deleted.

MapGroup:

Traceability Category: INTERNAL

Chapter 6. Application Generation and Enhancement 309

There is one MapGroup generated per Interface Unit as the MapGroup must
contain all the Maps used by a Program.

Note: You cannot create or delete a MapGroup as it is automatically created
when you define your maps, and deleted when you delete the Maps.

Map:

Traceability Category: INTERNAL

There are at least three Maps generated from an Interface Unit:
v one Header Map
v one Trailer Map
v one ″data″ Map.

If the Messages display parameter - Workspace editor - is set to specific map one
Application Error Map is generated.

If the Display popup parameter - Workspace Definition editor - is unchecked,
one Help Map is generated.

If the application includes a help list, one Help List Map is generated.

For information on these Maps’ layout, refer to “Standard Functions” on
page 146.

Application Error Map:

Traceability Category: INTERNAL

The Application Error Map is generated from the Interface Unit’s
specifications. It is filled in with the data from the WERROR-LIST Record (see
“Error Data Records” on page 315).

310 VisualAge Generator Templates Standard Functions: User’s Guide

Table: The generation of the Interface Unit produces one Table that contains
the action codes. The generation of Interface Unit with the Interface Unit Help
TUI generator produces a Table that contains the help text.

Action Code Table:

Traceability Category: Hook

The generated action code Table is suffixed with TA. This Table stores the
action keys available for each map. It comprises the following Data-Items:
v ACTION-DESCRIPTION stores the action code which can be a function key

or a character;

Chapter 6. Application Generation and Enhancement 311

v ACTION-ON-PFKEY stores the character that indicates whether the action
code is a function key (F) or a character (blank character)
– PFKEY-NUMBER stores the action code. It stores a 2-digit number if the

action code is a function key or one character if the action code is a
letter.

– ACTION-TYPE stores one character that indicates whether the action is a
navigation action (N) or an application action (A), i.e. an application that
manages data in the application;

v INTERFACE-UNIT-ACTION stores the label of the function key or action
code.

Note: The function key numbers and labels are Workspace parameters. The
other action codes are constants defined in the MdlInsert_Mnemo,
MdlSave_Mnemo, MdlUpdate_Mnemo, and MdlDelete_Mnemo
poolDictionaries.

Help Text Table:

Traceability Category: RAD

The generated help text Table is suffixed with TH. This Table stores the help
text related to each entity used in the generated Interface Unit. It comprises
the following Data-Items:
v HELP-TYPE stores the type of the Information Model entity to which each

help paragraph is related (Interface Unit, Data Element, etc.). These types
are the entity mnemonics specified in the Workspace;

v HELP-IDENTIFIER stores the identifier of the entity to which each help
paragraph is related;

v HELP-TEXT stores the help text you entered in the On-line help description
field when specifying your instances in VAGTemplates.

Note: You are allowed to use these Tables and modify their contents. They
should not be deleted; their structures should not be modified.

For information on GUI on-line help, refer to “GUI On-Line Help” on
page 160, and on TUI on-line help, refer to “TUI On-Line Help” on page 163.

For information on the available actions, refer to topic “Standard Functions”
on page 146.

Components Generated From a Workspace: Predefined Beans/Parts
The components generated from a Workspace’s specifications can be used by
all the client and server components in the same application. We call these
components Predefined beans/parts.

312 VisualAge Generator Templates Standard Functions: User’s Guide

Predefined beans/parts need to be generated once for one Workspace, with
the first generation of your application. If you re-generate your application
within the Workspace, you will not have to re-generate them. They focus on
error handling.

These parts are the following:
v Tables
v Functions
v Records
v GUI Visual beans/parts
v GUI Java/Smalltalk Classes
v GUI Non-visual beans/parts
v TUI Maps
v Web records

GUI and TUI Components

Table:

Traceability Category: Hook

There are two application error message Tables (SMSGTBL and SUSRTBL),
and four system error code tables generated (SERRCRE, SERRSEL, SERRUPD,
and SERRDEL).

Error Message Tables:

v SMSGTBL Table
This Table stores the error message associated with the SQL error message
stored in the error code tables. This Table comprises the following
Data-Items:
– ERR-MSG-CODE, describing the code of the error;
– ERR-MSG-TEXT, describing the error message associated with the

detected error.
v SUSRTBL

Table This Table is a user Table. You can use it to customize or add labels,
associated with error codes, if you need error messages in a language other
than English, for example. This user Table has the same structure as the
standard SMSGTBL Table.

Note: You can use the SMSGTBL Table and modify the error messages
directly in this Table, but you should not modify its structure or delete
it. You can use and fill the SUSRTBL Table, but you should not delete it.

Chapter 6. Application Generation and Enhancement 313

Error Codes Tables: The error code tables store the SQL error message
associated with the SQL error raised.

The SERRCRE Table stores the SQL codes emitted when a system error has
been detected during a creation action.

The SERRSEL Table stores the SQL codes emitted when a system error has
been detected during a read action.

The SERRUPD Table stores the SQL codes emitted when a system error has
been detected during an update action.

The SERRDEL Table stores the SQL codes emitted when a system error has
been detected during a delete action.

Note: The error code Tables have all the same structure. We only describe the
SERRCRE Table here.

v SERRCRE Table
This Table comprises the following Data-Items:
– SQL-CODE stores the SQL error code returned by the system;

- ERR-MSG-CODE stores the code of the error message associated with
the SQL error code.

– WITH-LOCATION indicates whether or not the error is related to a key
field and therefore whether or not the focus must be put back on this
field.

Note: The WITH-LOCATION Data-Item is not used for TUI applications.

Functions:

Traceability Category: RAD

For an application, there are six Functions related to six possible server actions
generated from a Workspace.

The generated error Functions search for the SQL error code returned by the
server in the error code Tables, and raise the corresponding error if the error
code exists in the table, otherwise they return an unknown error.

There is one Function per available action that fetches the error code in the
associated error table:
v error during the read action: SEL-ERR associated with the SERRSEL Table;
v error during the create action: ADD-ERR associated with the SERRCRE

Table;

314 VisualAge Generator Templates Standard Functions: User’s Guide

v error during the update action: UPD-ERR associated with the SERRUPD
Table;

v error during the delete action: DEL-ERR associated with the SERRDEL
Table;

v error during a SETINQ: SETINQ-ERR associated with the SERRSEL Table;
v error during a SCAN: SCAN-ERR associated with the SERRSEL Table.

Records: The Records generated from the Workspace are Data Records. One
of them is dedicated to communication between client and server components
(WCOMM), the other two are dedicated to storing errors (WERROR-LIST and
WSYS-ERROR).

Communication Record:

Traceability Category: Hook

The WCOMM Record is shared among all the server components. It is
generated with one Data-Item: CONTROL-COMMUNICATION. This Record
is empty when generated so that you can customize it.

This Record is generated if the Common area parameter is set to record and table
or record (Workspace editor). If the Common area parameter is set to record and
table a table is also generated that can be used by the Record (see
“Communication Table” on page 321).

Note: You can use this Record, you can modify and enrich it with data that
must be shared and transferred to the server. This part should not be
deleted.

Error Data Records: These Records are used by all the Business Objects in the
application. There is one Record per data type:

Application Error Data WERROR-LIST Record

This Record is responsible for storing application errors. It comprises the
following Data-Items:
v APPLICATIVE-ERRORS describes application errors;

– ERRORS stores the error structure;
- LOCATION-DATA-ELEMENT stores the name of the

Data-Element that is the source of the error;
- LOCATION-BUSINESS-OBJECT stores the name of the Business

Object in which the error has been detected;
- LOCATION-PART-TYPE stores the type of the erroneous Business

Object’s layout: D, for detail, L for list;

Chapter 6. Application Generation and Enhancement 315

- LOCATION-ROW-INDEX stores the index of the erroneous row in
a list;

- ERROR stores the error message structure;
v ERROR-CODE stores the error code;
v ERROR-GRAVITY stores the error gravity which indicates

whether the associated error message will be an error message,
a warning message or an information message (this Data-Item is
not used in the standard generated applications);

v ERROR-VARIABLE1, 2, etc. stores the variables involved in the
error (this number is a Workspace parameter: Max number of
variables, Workspace editor);

– ERRORS-NUMBER stores the number of identified errors stored (this
number is a Workspace parameter: Max number of messages,
Workspace editor);

v CONTROL-ERROR indicates whether an application error (Y) or a
system error (S), or no error (N) has been detected;

v CONTROL-BUSINESS-OBJECT stores the identifier of the current
Business Object;

v CONTROL-PART-TYPE stores the identifier of the current Business
Object layout: D, for detail, L, for list;

v CONTROL-ROW-INDEX stores the index of the current row in the
current list;

v CONTROL-SERVER-VERSION, used for checking the consistency of the
client’s version and that of the accessed server (it is empty in the
standard generated application);

Note: The contents of this Record are used to fill in the Application Error
Window (GUI) and Error Map (TUI).

System Error Data WSYS-ERROR Record

This Record is responsible for storing the system error codes. It comprises
the following Data-Items:
v SYSTEM-ERROR describes the system error structure;

– APPLICATION-NAME stores the name of the erroneous application;
– FUNCTION-NAME stores the name of the processing in progress

when the error occurred;
– ERR-SQLCODE stores the SQL code returned by the server.

Note: The contents of this Record are used to fill in the System Error
Window (GUI) and Error Map (TUI).

316 VisualAge Generator Templates Standard Functions: User’s Guide

GUI Components

Visual Components:

Traceability Category: API

There are three visual components generated: two Views representing the
Error Windows and one WindowsMenu component representing the list of
open windows.

Note: These components are prefixed with the target name of the Workspace.

Error Views: There are two Views generated for displaying the application
error messages and the system error messages.
v the ErrorView bean/part represents the Application Error Window that

displays the list of the detected application errors and their explanatory
labels. It implements the translation of errors into user error messages;

v the SystemErrorView bean/part represent the System Error Window that
displays the SQL code of the error, the function during which the error
occurred, and the application name.
Example: The following figure roughly illustrates the processing of an error in a
Data Element for which a check by interval has been specified: The end user
entered 100 in the ″Years″ field whereas the interval of authorized valu es ranges
from 0 to 60.

Chapter 6. Application Generation and Enhancement 317

When the end user clicks on the error message, in the error window, the
window containing the corresponding erroneous field opens and the focus is
set back to the erroneous field.

WindowsMenu Bean/Part: The WindowsMenu bean/part is managed by the
<>SharedComponents class (see “Non-Visual Components” on page 308. It
represents the Windows menu in the final application.

This menu displays the list of the windows that are open in the final
application, in the order in which they were opened, as menu items.

If there are more than ten open windows, the More Windows choice is added
to the Windows menu. Selecting this choice opens a window displaying the
complete list of open windows.

318 VisualAge Generator Templates Standard Functions: User’s Guide

Java/Smalltalk Classes:

Traceability Category: API

The generated Java/Smalltalk Classes offer error handling services.

Note: You can use these components. They should not be modified or
deleted.

<>Common Services: <>CommonServices

This class is responsible for memorizing the errors built from the information
included in the WERROR-LIST Record, it tests whether errors are occurring
and opens and closes the error windows.

For information on the error View beans/parts, refer to topic “Error Views” on
page 317. For information on the WERROR-LIST Record, refer to “Error Data
Records” on page 315.

<>Error: <>Error

This class describes the errors manipulated by the application. The
information it holds are used to fill the Application Error Window.

For information on the Application Error Window bean/part, refer to “Error
Views” on page 317.

<>SystemError: <>SystemError

This class describes the system errors manipulated by the application. The
information it holds are used to fill the System Error Window.

For information on the System Error Window bean/part, refer to “Error
Views” on page 317.

<>Field: <>Field

This class represents the encapsulation of a field into the detail Business
Object. It provides information about the status of the field (required, key,
etc.) and stores the name of the corresponding check method in the Business
Object bean/part. It stores the position of the field when it is presented in a
notebook to enable the feedback of a possible error to the field.

Non-Visual Components: The generated Non-Visual components are:
v the ancestors of the Business Object and the List Manager bean/part:

<>BusinessObjectAbstract and <>ListManagerAbstract

Chapter 6. Application Generation and Enhancement 319

v a component that offers error handling services: <>ErrorHandling.

Note: We call <>ErrorHandling the ErrorHandling bean/part.

<>BusinessObjectAbstract Class: This class factors out the generic methods that
are common to all Business Object instances. For example, it implements the
actions available for the detail Business Object.

This class is the parent class of the Business Object bean/part. This is why it
is documented in “Abstract Business Object” on page 294.

also, for complete information on the Business Object bean/part, refer to
“Business Object Bean/Part” on page 293.

<>ListManagerAbstract Class: This class factors out the generic methods that
are common to all List Manager instances. For example, it implements the
actions available for the list Business Object.

This class is the parent class of the List Manager bean/part. This is why it is
documented in “Abstract List Manager” on page 298.

Also, for complete information on the List Manager bean/part, refer to topic
“List Manager bean/part” on page 297.

ErrorHandling Part:

Traceability Category: INTERNAL

<>ErrorHandling

The ErrorHandling bean/part is generated along with the detail Business
Object. It implements the activation of controls and the feedback to the detail.

The ErrorHandling bean/part is initialized when a detail is being created with
the information about the Business Object’s fields.

It is dedicated to checking the input in the Business Object’s fields. It
implements unitary error checks on each field of the detail Business Object,
and global checks through sequential calls of the unitary checks. It
implements the Check action of the Business Object. It is responsible for
setting the focus back on the erroneous field, if the end user double-clicks on
an item in the Application Error Window.

Caution: You can use this component. It should not be modified or deleted.

320 VisualAge Generator Templates Standard Functions: User’s Guide

For more information on checks, refer to topic “Error Handling in GUI Client
applications” on page 153.

Communication Table:

Traceability Category: API

The Communication Table is generated if the Common area parameter is set to
record and table or table (Workspace editor). When the Common area parameter
is set to record and table, a communication Record is generated to receive data
from the Table (see “Communication Record” on page 315).

The SCOMMTBL Table is shared among all the client components. It is
generated with one Data-Item: CONTROL-COMMUNICATION. This Table is
empty when generated so that you can customize it.

Note: You can use this Table, modify and enrich it with data that must be
shared and transferred to the server. This component should not be
deleted.

TUI Components

Fastpath Table:

Traceability Category: RAD

The generated fastpath Table - SAPPLT1 Table - stores the fastpaths and the
access parameters that allow the end user to access a Map directly and
display extracted data in this map in the same transaction.

This Table comprises the following Data-Items:
v FASTPATH stores the fastpath of the Interface Unit (this fastpath is

retrieved from the Fastpath parameter in the Workspace editor);
v APPLICATION-ID stores the name of the Program generated from the

Interface Unit;
v APPLICATION-DESC stores a description of the Interface Unit, which

corresponds to the title of the Interface Unit;
v ACCESS-PARAMETERS stores the access parameters that are available for

the Interface Unit.

For information on the use of fastpaths and access parameters, refer to
“Navigating Throughout a TUI Application” on page 158.

-GLOBAL Record: This Record is used as a common area and can be
accessed by all the applications’ components to transfer data from one

Chapter 6. Application Generation and Enhancement 321

application to the other. The standard data transfer function is made possible
thanks to the -GLOBAL Record (see “Data Transfer between TUI Maps” on
page 152).

This Record comprises the following Data-Items:
v WS-NAVG-STACK stores information on the navigation stack to retrieve the

location of the current Program in the navigation;
– WS-APPLICATION-ID stores the identifier of the previous Program in

the navigation stack;
– WS-ACCESS-PARAMETERS stores the access parameters of the Program

in the navigation stack;
– WS-APPLICATION-TYPE stores the type of each Program in the

navigation stack (menu, detail, or list);

Note: There are as many occurrences of the three Data-Item above as
there are stored path, according to the Navigation stack max number
parameter (Workspace editor).

– WS-STACK-LEVEL stores the location of each Program in the navigation
stack;

v WS-CONTROL describes the structure of the system controls;
– WS-FASPATH stores the fastpath of the current Program;
– WS-CURR-APPL-ID stores the identifier of the current Program;
– WS-CURR-APPL-TYPE stores the type of the current Program (menu,

detail, or list);
– WS-USER-ID stores the user identifier;
– WS-INTERFACE-UNIT-ACTION stores the action requested in the

current Program;
– WS-NAV-FLAG stores the type of navigation requested: (N, navigation,

H, help request, L, help list request);
– WS-PFKAID stores the activated function key;
– WS-MAP-NUMBER stores the number of the current map;
– WS-MAP-MAX stores the total number of maps;
– WS-MOD-PARAMETERS indicates whether the access parameter has

been modified (Y) or not (N) - if yes, no new access is performed;
– WS-TRANSACTION-TYPE stores the type of data transfer requested: D,

DXFR, i.e. a transfer among Programs within the same transaction, or X
XFER, I.E. a transfer from one transaction to another;

– WS-MULTI-SELECT describes the structure of multi-selections;
- WS-SELECT-PARAMETERS stores the selected records;

322 VisualAge Generator Templates Standard Functions: User’s Guide

- WS-MULTI-LEVEL stores the number of selected records; the
maximum number is 20 (size of the Rows to fetch parameter, Business
Object editor);

– WS-HELP describes the structure of the on-line help;
- WS-HELP-TYPE stores the type of the on-line help (*, General help, O,

Help for Business Objects, E, help for Data Elements)
- WS-HELP-INDEX-FIRST stores the first line of the help text;
- WS-HELP-INDEX-LAST stores the last line of the help text;
- WS-HELP-INDEX-CURRENT stores the current line of the help text;
- WS-HELP-N-DISP-LINES stores the number of lines of the help text;

– WS-SOURCE describes the source of the requested action;
- WS-SOURCE-IDENTIFIER stores the identifier of the source

application;
- WS-SOURCE-FIELD stores the identifier of the source Data-Item;
- WS-SOURCE-TYPE stores the type of the source (E, Data Element, O,

Business Object, W, Interface Unit);
- WS-SOURCE-INDEX-N stores the location of the source field in the

map;
- WS-LKP-INDEX-N stores the location of the source field of a lookup

in the map;
– WS-MSG-NUMBERS stores the number of messages;

- WS-MSG-CURRENT-NUM stores the number of the current message;
- WS-MSG-NUM-SEPARATOR stores the separator in the number of

messages;
- WS-MSG-TOTAL-NUM stores the total number of messages;

v WS-USER-SPECIFIC is an empty Data-Item that you can use to define user
profiles and associate a user to a printer, for example.

System Error Program: There is one Program generated to manage system
errors, the SSYSERT Program. This Program is called by the Main Program
after a server access has been performed. If a system error is detected, it
opens the System Error Map, S SYSERR.

Chapter 6. Application Generation and Enhancement 323

System Error Map: The System Error Map - S SYSERR - displays the error
messages that are issued following the detection of a system error.

It displays the SQL code of the error, the identifier of the application where
the error has been detected, the identifier of the function in progress when the
error was detected.

This Map is filled in with the data from the WSYS-ERROR Record (see “Error
Data Records” on page 315).

Application Enhancement: Public Interface of GUI Generated Components

The API described in this subchapter is the API of the Resource Object, of the
Business Object and of the List Manager bean/parts. This API offers services
for manipulating Business Object’s data.

Note: To perform the actions on the Business Object’s data, the API
introduces two Business Object states: persistent and volatile. The
Business Object instance is persistent when it is read from the database.
It is volatile when it is not yet stored in the database (when it is created
via the New action, for example).

The Business Object instance is unique, it is defined by its key: once it has
been read in the database, this instance is always returned if the Business
Object appears several times in the application. This is visible for example
when you read an instance in a detail, its key becomes read-only. When the
instance is used in the application, it is removed from an internal dictionary
(weak dictionary mechanism). It is not memorized in a cache.

This API is an instance API.

Resource Object Bean/Part Interface
The ResourceObject API is an API for accessing data.

API for Managing Detail Data
read: aBusinessObject

v Requirements: The Business Object instance must be volatile.
v Responsibility: Trigger a server access from the data held by

aBusinessObject. If the access succeeds, the aBusinessObject data is updated
from the data returned by the server; aBusinessObject becomes persistent. If
the access fails, an error is raised; aBusinessObject is not modified.

create: aBusinessObject

v Requirements: The Business Object instance must be volatile.
v Responsibility: Trigger a server access from the data held by

aBusinessObject. If the access succeeds, the aBusinessObject data is updated

324 VisualAge Generator Templates Standard Functions: User’s Guide

from the data returned by the server; aBusinessObject becomes persistent. If
the access fails, an error is raised; aBusinessObject is not modified.

update: aBusinessObject

v Requirements: The Business Object instance must be persistent.
v Responsibility: Trigger a server access from the data held by

aBusinessObject. If the access succeeds, the aBusinessObject data is updated
from the data returned by the server. If the access fails, an error is raised;
aBusinessObject is not modified.

delete: aBusinessObject

v Requirements: The Business Object instance can be either persistent or
volatile.

v Responsibility: Trigger a server access from the key of aBusinessObject. If
the access succeeds, the aBusinessObject data is re-initialized and
aBusinessObject becomes volatile. If the access fails, an error is raised;
aBusinessObject is not modified.

save: aBusinessObject

v Requirements: The Business Object instance can be either persistent or
volatile.

v Responsibility: Trigger a server access. If the access succeeds, the
aBusinessObject data are updated from the data returned by the server and
aBusinessObject becomes persistent. If the access fails, an error is raised;
aBusinessObject is not modified.

API for Managing List Data
The Resource Object list API positions the extract criteria and the data that
characterize the key to be read. An action retrieves a Business Object
collection that corresponds to a data page read by a server access.
readBusinessObjects: aListManager

v Responsibility: Read a data page from the criteria in aListManager, and
updates aListManager.

API for Managing Upatable List Data
The API accepts one or more collections holding the Business Object instances
on which the elementary actions are performed. An action triggers the server
call on these collections.
commitInsertionsIn: insertionsOC updatesIn: updatesOC deletionsIn: deletionsOC

v Responsibility: Activate the server call on the collection of movements to
commit.

Business Object Bean/Part Interface
The Business Object API allows manipulating the Business Object via
connections.

Chapter 6. Application Generation and Enhancement 325

The API provides getters and setters on the updatable Business Object fields
and getters on the read-only fields. It also provides actions.
check

v Responsibility: Check every layout field in the Business Object. Otherwise,
call the events: createFailed, createSucceeded or actionSucceeded.

read

v Requirements: Self is volatile.
v Responsibility: Search if an instance with the same key exists in the

instance dictionary and return it. Otherwise, call the read: method from the
Resource Object. If the method succeeds, store self in the instance
dictionary. The events returned are: readFailed, readSucceeded or
actionSucceeded.

create

v Requirements: Self is volatile.
v Responsibility: Search if an instance with the same key exists in the

instance dictionary. If such an instance exists, an error is raised. Otherwise,
call the create: method from the Resource Object. If the method succeeds,
store self in the instance dictionary. The events returned are: createFailed,
createSucceeded or actionSucceeded.

update

v Requirements: Self is persistent.
v Responsibility: Call the update: method from the Resource Object. The

events returned are: updateFailed, updateSucceeded or actionSucceeded.
save

v Requirements: Self is either persistent or volatile.
v Responsibility: If self is volatile, call the create: method from the Resource

Object. If the action succeeds, self is stored in the instance dictionary. If self
is persistent, call the update: method from the Resource Object.

delete

v Requirements: Self is either persistent or volatile.
v Responsibility: Call the delete: method from the Resource Object and

remove from the instance dictionary the inputed data corresponding to the
Business Object key to be deleted. The events returned are: deleteFailed,
deleteSucceeded or actionSucceeded.

newInstance

v Responsibility: Return a new volatile Business Object instance initialized
with the default Business Object’s values. The event returned is
actionSucceeded.

refresh

v Requirements: Self is either persistent.

326 VisualAge Generator Templates Standard Functions: User’s Guide

v Responsibility: Call the read: method from the Resource Object. If the
instance is being used in a list, it is also refreshed. The events returned are:
refreshFailed, refreshSucceeded or actionSucceeded.

undo

v Requirements: Self is either persistent.
v Responsibility: Re-initialize the data from self with the data that were

memorized during the last read.

List Manager Bean/Part Interface
The API provides getters and setters on the extract fields and the sort fields. It
also provides actions. It provides an ordered collection of the Business Objects
in the current data page and an ordered collection of the Business Objects in
all the read pages.

It also provides actions. When an instance has been deleted from a detail for
example, the instance is automatically removed from the ordered collection.

API for Managing List Data
top

v Responsibility: Call the readBusinessObjects: method from the
ResourceObject to read the first data page. Update the ordered collection.
The events retuned are: topSucceeded, topFailed.

next

v Responsibility: Call the readBusinessObjects: method from the
ResourceObject to read the next data page. Update the ordered collection.
The events retuned are: nextSucceeded, nextFailed.

previous

v Responsibility: Call the readBusinessObjects: method from the
ResourceObject to read the previous data. Update the ordered collection.
The events retuned are: previousSucceeded, previousFailed.

extract

v Responsibility: Call the readBusinessObjects: method from the
ResourceObject to read the data page that corresponds to the extract
criteria. Update the ordered collection. The events retuned are:
extractSucceeded, extractFailed.

refresh

v Responsibility: Call the readBusinessObjects: method from the
ResourceObject to refresh the current data page. Update the ordered
collection. The events retuned are: refreshSucceeded,refreshFailed.

Additional API for Managing Updatable List Data
addRow: anIndex

v Responsibility: Add an empty row at the index anIndex +1

Chapter 6. Application Generation and Enhancement 327

deleteRow: anObject

v Responsibility: Remove the object designated by anObject from the list.
updateRow: anObject

v Responsibility: Set the modifications made to the object designated by
anObject.

submit

v Responsibility: Send the addition, deletion and modification movements to
the server by calling the commitInsertionsIn:updatesIn:DeletionsIn:
method from the Resource Object bean/part. If the deletion movements fail,
the corresponding objects are added at the end of the collection.

328 VisualAge Generator Templates Standard Functions: User’s Guide

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2000 329

330 VisualAge Generator Templates Standard Functions: User’s Guide

Glossary

Application. A set of related Members’
definitions that VisualAge Generator can
generated into executable form. (Source:
Introducing VisualGen, GH23-6570-02)

Business Object. An object via which persistent
data can be consulted and updated. Business
Objects group a set of fields (Data Element calls)
mapping to the columns of one or more
Relational Tables, to match the needs for a
specific application to access, present, and
manipulate persistent data.

Data Element. An information element stored
in a Relational Table column or manipulated as a
Business Object field. Its description includes a
type, a length, labels, On-Line Help text for
end-users, value checks ...

Data-Item. A unit of information defined by
length, data type, and other characteristics.
(Source: VisualGen Library Guide and Glossary,
GH23-6554-02)

Record, Table

Graphical page. In a read-only list, the number
of data displayed simultaneously on screen.

Memory page, Selection

GUI client application. A definition of a
window or a set of windows that represent the
graphical user interface of an application.

Hook. An empty VisualAge Generator Process
or StatementGroup generated by VAGTemplates
to allow addition of specific code.

Information Model. The structure of the
information required to describe the applications
at a logical level.

Interface Unit. The interface presenting the
Business Objects and specifying whether the
Business Object is used as a detail or as a list. The

Interface Unit also defines the navigation
towards other Interface Units (graphic Windows
or Maps).

List of movements. The set of movements
passed to the server simultaneously, in an
updatable list.

Map. A definition of all or part of the layouts
and characteristics of the information presented
on a character-based screen.

Map group

Map group. The set of all the maps used in an
application. The Map group groups all the
layouts and characteristics of the information
presented on a character-based screen.

Map

Memory page. A selection available without a
new database access, in a read-only list.

Graphical page, Selection

Movement. A creation, an update or a deletion,
in an updatable list.

Process. A block of logic consisting of a set of
processing statements surrounding a central
input or output (I/O) operation. (Source:
Introducing VisualGen, GH23-6570-02)

StatementGroup

Program Specification Block. A formal DL/I
description of the hierarchical database structures
that an application can access. (Source: VisualGen
Library Guide and Glossary, GH23-6554-02)

PSB.

Program Specification Block

Record. A collection of Data-Items structured to
describe the layout of information in memory, in
a database table, or in a file.

Data-Item

© Copyright IBM Corp. 1997, 2000 331

Relational Table. A relational table holding the
characteristics of either a Table, comprising a list
of columns, or a View, comprising several
columns extracted from one or several Tables.

Selection. The set of data verifying an extract
criteria, in a read-only list.

Memory page, Graphical page

StatementGroup. A set of processing statements
that perform processing only (no I/O operations
are performed). (Source: VisualGen Library Guide
and Glossary, GH23-6554-02)

Process

Table. A collection of related Data-Items that
can be used to edit data, store messages that an
application issues, and store information for
reference by an application. (Source: Introducing
VisualGen, GH23-6570-02)

Data-Item

Value Style. A set of characteristics defining a
presentation style for a numeric, date or time
value. It holds all the display and input
characteristics a numeric, date or time value will
have in the generated applications.

Workspace. A development context that
corresponds to the import of one and only one
relational database.

332 VisualAge Generator Templates Standard Functions: User’s Guide

Index

A
Access parameters 159
action bar 13
application error 155, 157

C
Classes

Targeted classes
MdlVGApplication 211

column 183
container 191

D
display name 162, 164, 165

E
Editors

Business Object Definition
editor 67

Business Object editor 13
Data Element Definition

editor 79
Data Element editor 13
Interface Unit editor 13, 89
Relational Table editor 13, 96
Value Style Definition editor 102
Value Style editor 13
Workspace editor 10

Entities area 12
Entity menu 14, 36

Default Generation Parameters
choice 36, 57, 75, 76, 84, 86, 93,
94, 101

Extension 159
extract criteria 148, 159

F
foreign key 190

G
graphical page 149

H
Help menu

General Help choice 49
Help Index choice 49

I
Information Model 52
Information Model entities

Business Object 52, 56, 85

Information Model entities
(continued)

Data Element 52, 56, 76, 102
Interface Unit 52
Relational Table 52, 94
Value Style 52, 102

Instance menu 14
Copy Generation Parameters

from... choice 39
Definition choice 38
Generate choice

cascaded generation radio
button 41

cascaded generation with
predefined members radio
button 41

instance generation radio
button 41

Override existing parts check
box 41

Save as default check box 41
New ... choice 37
Save As... choice

Application combo box 40
Instance names 40
New instance name 40
Open now check box 40

Instances area 12
interval 172

L
line 183
list of movements 150

M
memory page 149
menu bar 12
Methods

Instance methods
arePFKeysEquated: 211

movement 150

N
name 11

O
Open windows area 13

P
Parameters

BusinessObject parameters
Alignment 59, 186

Parameters (continued)
BusinessObject parameters

(continued)
Backward label 66, 195
Check label 61, 190
Copy label 165
Create label 61, 190
CRUD Activation Control 61
Cut label 165
Delete label 62, 190
Display 58, 60, 63, 65, 68,

181, 183, 189, 193, 195, 217
Edit menu title 165
Extract label 66, 195
Extraction criteria

displayed 195
Foreign key help list 220
Forward label 66, 195
Help list display 170, 191,

212
Help list for all foreign

keys 66, 190
Help list page display 66,

191
Help list prefilled 67, 191,

221
Help list size 67, 189
Help panel ID 75
Label 58, 63, 184, 194
Label and value display 60
Layout 59, 187, 219
Layout Suffix 57
List pages stack number 64
List prefilled 63, 194, 223
List size 174
Menu label 66
New label 61, 190
Notebook field location 59
Number of columns 58, 185,

187, 194, 222
Number of fields per

page 59, 185
Number of lines 58, 64, 185,

187, 194, 222
Number of rows to fetch 62,

149, 150
Page display 149
Paging policy 149, 150
Paste label 165

© Copyright IBM Corp. 1997, 2000 333

Parameters (continued)
Position 61
Read label 61, 190
Refresh label 66, 195
Save label 62, 190
Service Level 67
Show message label 62
Sizing 60, 65, 188
Submit label 66, 195
Top label 195
Update label 62, 190
Zoom on double click 57

DataElement parameters
Case control 177
Check type 169, 172, 173, 212
Column 176
Column label 213
Comment display 78, 171,

172
Default 176
Default label 213
Help panel ID 85
Horizontal Orientation 79
Max display size 79, 176
Pattern 79, 174
Size 177
SQL type 77
Target name 75, 85
Value display 78, 170, 171,

173, 188
Interface Unit parameters

Menu label 88
InterfaceUnit parameters

Allow maximize 198
Allow minimize 198
Allow resize 198
Edit menu title 198
Fastpath 207
Help panel ID 93
Interface unit display 197
Layout type 191, 221
Navigation menu title 158,

198
Target name 93
Title 197, 206
Type label 199
Windows menu title 158, 198

RelationalTable parameters
Backward label 96, 191
Concurrency management 94
Forward label 96, 191
SQL Qualified 95
Table qualifier 95
Target name 101
Top label 65, 96, 191

Parameters (continued)
Workspace parameters

Action display policy 207
Business Object

mnemonic 34
Cancel 209
Column 176
Column label 213
Common area 32
Control location 32, 153, 154,

155
Create 209
Create function key and

label 32
Data Element mnemonic 32
DataItem mnemonic 32
Date Format 180
Delete 209
Delete function key and

label 32
Display actions 209
Display popup 211
Entry default value 32
Error color 22, 153, 155, 156,

205
Error message color 32, 206
Exit 209
Exit function key and

label 32
Field selected on focus 22
Function key display

policy 23
Function key label color 32,

205
Function keys display

policy 207, 208
General Help File 23
GUI Application

mnemonic 32
Help 32, 160
Help function key and

label 23
Help key 163
Help text color 28, 206
Horizontal margin 22
Horizontal Orientation 22
identifier first 29
Information message

color 28
Interface Unit mnemonic 34
Label to value horizontal

gap 22
Label to value vertical

gap 22

Parameters (continued)
Workspace parameters

(continued)
Left function key and

label 32
Letter width 22
Lookup 210
Lookup function key and

label 32
LUW mode 32
Map Group mnemonic 32
Map mnemonic 34
Max navigation stack

number 24
Max number of messages 24
Max number of variables 24
Max size of variables 24
Messages display 24, 157,

207
Messages per page 24, 207
Next message 210
Next page 210
Normal color 22, 205
Null managed 29
Popup policy 164
Previous message 210
Previous page 210
Process mnemonic 34
Program mnemonic 34
PSB mnemonic 34
Read 210
Read only color 22
Read-only color 205
Record mnemonic 34
Refresh 210
Relational Table

mnemonic 34
Right 211
Screen resolution 22
Server layer 32
Show message label 155
Standard device 199
Statement Group

mnemonic 34
Table mnemonic 34
Title color 28, 205
Top 211
type first 24
Update 211
Update GUI policy 148
Update policy 23
Update TUI policy 148
Vertical margin 22
Warning message color 206
Workspace mnemonic 34

334 VisualAge Generator Templates Standard Functions: User’s Guide

Pop-up menu 14
Add choice 56, 91
Add volatile choice 56
Copy Parameters from...

choice 14
Default Generation Parameters

choice 14, 36
Delete choice 14
Editions... choice 14
Generate choice

instance generation radio
button 14

Load... choice
Another Edition 14
Previous Edition 14

New... choice 14
presentation label 176, 213
Push buttons

Cancel push button 55
Customize Value Style push

button 102
Delete push button 14
Help push button 55
OK push button 55
Reset push button 55

S
selection 149
Settings

BusinessObject settings
Access Level 72
Application 68
Data Element 76
Default use name 68
Display name 68, 161, 162,

164, 165
Extract Field 71
Extraction Criteria 71
Field Name 71, 72
Fields 70, 72
Join condition type 73
Laid Out 73
Logical key 71
On line help description 69
On-line help description 160,

162
Required 72
Retrieve Policy 71
Sort Criteria 71
Sort Field 71
Source field 74
Source Table 73
Table 72
Target field 74
Textual description 68

Settings (continued)
BusinessObject settings

(continued)
Updatable 73

CRUD Properties 100
DataElement settings

Column label 78
Default label 77
Default use name 80
Default value mode 82
Display name 80, 161, 162,

164, 165
Maximum 84
Minimum 84
On line help description 82
On-line help description 160,

162
Textual description 81
Type 84
Value style 81
Value type 80

InterfaceUnit settings
Application 89
Business Object 91
Display name 161, 162, 164,

165
Fastpath 86
Interface Unit 91
Layout type 91
On line help description 90
On-line help description 160,

162
Textual description 90
Title 86
Type 90
Use name 91

RelationalTable settings
Application 96
Columns 98
Concurrency management

column 98
Data Element 98
Default use name 96
Delete rule 98
Display name 96
Identifier 98
Join condition 100
Keys 98
Label 98
Links 98
Mapped column 100
Mapped table 100
Mapper 100
Mapping 100
Source Columns 73

Settings (continued)
RelationalTable settings

(continued)
Source key 98
Table name 97
Table type 97
Target Columns 74
Target table 98
Textual description 96
Update rule 98

ValueStyle settings
Am string 103, 180
Application 103
Capacity 214
Cycle 103, 180
Date style 181
Decimal separator 103, 177,

214
Default use name 103
Display name 103
Mask 103, 179, 180, 216
Name 103
Negative sign 103, 177, 214
Pm string 103, 180
Positive sign 103, 177, 214
Separator 103, 179, 181, 216
Sign position 103
Textual description 103
Thousand separator 103
Thousands separator 177,

214
Time style 181
Type 103
Unit 103, 177, 214
Unit and sign alignment 103,

173, 177, 214
Unit position 103, 177, 214
Year style 103, 179, 216

Workspace settings
Application 20
Date Internal Format 30
Decimal separator 30
SQL High value 20, 30
SQL Low value 20, 30
Target application 20
Target Name 20

system error 156, 157

System menu 10

Maximize choice 13
Move choice 13
Reduce choice 13
Resize choice 13

Index 335

T
Tabs

Definition editor 52
Extensions panels 56
Generation Parameters editor 53

title bar 12, 13
Tools menu

Import from Database choice
Application 46
DBMS 46
Identifier 46
Password 46
Qualifier 46
Re-use data element 46
Tables 46
UserId 46

V
value table 169, 212
View 94
VisualAge Generator Parts

Map
Data Map 211
Header Map 200, 201, 202,

207
Help List Map 204, 211
Help Map 165, 199, 204, 205,

207, 211
Root Map 158, 199, 200, 201
Simple Map 199, 201, 202,

203
Trailer Map 157, 199, 201,

203, 207

W
window dialog 157
Window menu 13
Workspace menu 15

Delete choice 16
Generate choice 16

Override existing parts check
box 20

Save as default check box 20
Open... choice 14

Workstation windows
Add Business Objects

window 91
Copy Instance Parameters from

Workspace window 39
Delete Workspace window 16
Entity Default Generation

Parameters editor 36
Generate (instance) window 41
Generate window 36

Workstation windows (continued)
Import from Database

window 46
New VAGT Instance window 37
Open Workspace window 15

336 VisualAge Generator Templates Standard Functions: User’s Guide

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator Templates Standard Functions
User’s Guide
Version 4.5

Publication No. SH23-0269-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH23-0269-01

SH23-0269-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
IBM SWS - Paris Laboratory
1, place Jean-Baptiste Clément
93881 Noisy-le-Grand CEDEX
France.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0269-01

	Contents
	Notices
	Trademarks
	About this Document
	Conventions Used in this Book
	Style conventions
	Symbols

	Other VAGTemplates Documentation

	Part 1. VAGTemplates Overview
	Chapter 1. Introduction
	General Presentation
	Objectives and Use Context

	Part 2. The VAGTemplates Workbench
	Chapter 2. The Workbench
	General Functions
	Accessing the Workbench
	Starting the Browser
	Closing the Browser

	Defining a Workspace
	Importing a Relational Database
	Browsing Instances
	Creating, Modifying or Deleting Instances
	Accessing the Generation Tools

	The VAGTemplates Workbench
	Presentation of the Browser
	File Menu
	File menu / Exit VisualAge Templates choice

	Workspace Menu
	Workspace menu / Open... choice
	Workspace menu / Close choice
	Workspace menu / Load choice
	Workspace menu / Editions choice
	Workspace menu / Move... choice
	Workspace menu / Copy ... choice
	Workspace menu / Delete ... choice
	Workspace menu / Generate choice
	Workspace menu / Definition choice

	Entity Menu
	Entity menu / Default Generation Parameters choice
	Entity menu / Show Duplicate Generation Parameters choice

	Instance Menu
	Instance menu / New ... choice
	Instance menu / Definition choice
	Instance menu / Generation Parameters choice
	Instance menu / Load choice
	Instance menu / Editions choice
	Instance menu / References ... choice
	Instance menu / Associates choice
	Instance menu / Referenced Workspaces choice
	Instance menu / Copy Generation Parameters from... choice
	Instance menu / Set Generation Parameters to Default choice
	Instance menu / Move ... choice
	Instance menu / Copy choice
	Instance menu / Delete choice
	Instance menu / Create Business Object from RT ... choice
	Instance menu / Create Interface Unit from BO... choice
	Instance menu / Generate choice

	View Menu
	View menu / Refresh Now choice
	View menu / Select All choice
	View menu / Deselect All choice
	View menu / Sort by choice
	View menu / Reorder Columns choice
	View menu / Reorder Status Bar Text choice

	Tools Menu
	Tools menu / Import from Database choice
	Tools menu / Show Duplicate Instances choice

	Options Menu
	Options menu / Save Settings as Default choice

	Help Menu
	Help menu / Help Index choice
	Help menu / General Help choice
	Help menu / Using Help choice
	Help menu / Product Information choice

	How to Use VAGTemplates On-Line Help

	Chapter 3. Information Model Entities and their Editors
	Introduction
	The Information Model Entities
	The Definition Editor
	The Default generation Parameters editor and the Generation ParametersEditor
	Editor General Characteristics
	Navigation within an Editor
	Push Buttons
	Pop-up Menus
	Editor Extensions Panels

	Business Object
	What is a Business Object?
	Default Generation Parameters
	Default Generation Parameters Editor

	How to Define a Business Object
	Definition Editor

	How to Specify the Business Object Parameters
	Generation Parameters Editor

	How to Specify the Business Object Extensions

	Data Element
	What is a Data Element?
	Default Generation Parameters
	Default Generation Parameters Editor

	How to Define a Data Element
	Definition Editor

	How to Specify the Data Element Parameters
	Generation Parameters Editor

	How to Specify the Data Element Extensions

	Interface Unit
	What is an Interface Unit?
	Default Generation Parameters
	Default Generation Parameters Editor

	How to Define an Interface Unit
	Definition Editor

	How to Specify the Interface Unit Parameters
	Generation Parameters Editor

	How to Specify the Interface Unit Extensions

	Relational Table
	What is a Relational Table?
	Default Generation Parameters
	Default Generation Parameters Editor

	How to Define a Relational Table
	Definition Editor

	How to Specify the Relational Table Parameters
	Generation Parameters Editor

	How to Specify the Relational Table Extensions

	Value Style
	What is a Value Style?
	How to Define a Value Style
	Definition Editor

	How to Specify the Value Style Extensions

	Part 3. Standard Use of VAGTemplates
	Chapter 4. Exploring VAGTemplates Basic Functions
	Presenting a List and a Detail in the Same Window (GUI) or Map (TUI)
	Creating an Interface Unit Presenting a List and a Detail
	Defining the Interface Unit
	Definition Editor

	Setting the Interface Unit Generation Parameters
	Generation Parameters Editor

	Modifying the Business Object
	Definition Editor
	Generation Parameters Editor

	TUI Only: Modifying the Presentation of the Business Object
	TUI Only: Modifying the MainMenu Interface Unit
	Generating your Application
	Generating your GUI Client Application
	Generating your TUI Application

	Enhancing the GUI Client Application
	Testing your Application
	Testing the GUI Client Application
	Testing the TUI application

	Presenting a List and Detail in Two Different Windows (GUI) or Maps (TUI)
	Creating an Interface Unit Presenting the List
	Definition Editor
	Generation Parameters Editor

	GUI Only: Modifying the Detail Interface Unit
	GUI Only: Modifying the Business Object's Behavior
	TUI Only: Modifying the MainMenu Interface Unit
	Generating your Application
	Testing your Application
	Testing the GUI Client Application
	Testing the TUI Application

	Generating On-Line Help (VAGTemplates on Smalltalk Example)
	Generating On-Line Help for the GUI Client Application
	Generating On-Line Help for the TUI Application
	Testing On-Line Help
	Testing On-Line Help for the GUI Client Application
	Testing On-Line Help for the TUI Application

	Enhancing the GUI On-Line Help (IPF file)
	Enhancing the GUI On-Line Help (RTF file)
	Enhancing the TUI On-Line Help

	Using Foreign Keys to Provide a Help List
	Help List Principles
	Help Lists in GUI Client Applications
	Help Lists in TUI Applications

	Help List Specification
	Testing your Help List
	Testing the Help List of the GUI Client Application
	Testing the Help List of the TUI Application

	Chapter 5. Standard Functions and Layouts of GeneratedApplications
	Standard Functions
	Management of Persistent Data
	Actions Available for Detail Business Objects
	Actions Available for List Business Objects
	Actions Available for Help Lists
	Automatic Zoom in (GUI)
	Data Transfer between TUI Maps

	Error Handling in GUI Client applications
	Unitary Check: Errors in Input Fields
	Global Check: Field Consistency
	Server Check: Access Errors

	Error Handling in TUI Applications
	Unitary Check: Format Errors in Input Fields
	Global Check: Access Errors

	Management of the Navigation
	Navigating Throughout a GUI Client application
	Navigating Throughout a TUI Application

	On-Line Help
	GUI On-Line Help
	TUI On-Line Help

	Edition Functions (GUI)
	VAGTemplates on Java: Implementation Principle

	Prompt on close
	VAGTemplates on Java: Implemention Principle

	Windows Menu
	VAGTemplates on Java: Implementation Principle

	BiDi Applications
	VAGTemplates on Java: Implementation Principle

	Standard Layouts of GUI Client applications
	Fields
	Default Layout
	Layout Parameters
	Input Mask

	Detail Business Objects
	Default Layout
	Layout Parameters
	Help Lists

	List Business Objects
	Default Layout
	Layout Parameters
	Extraction Criteria Layout

	Windows
	Default Layout
	Layout Parameters

	Standard Layouts of TUI Applications
	Maps
	Root Map Default Layout
	Simple Map Default Layout
	Application Error Map Default Layout
	Management of Messages
	Help Map Default Layout
	Help List Map Default Layout
	Layout Parameters
	Help List, Help Map, Error Map Presentation

	Fields
	Default Layout
	Layout Parameters
	Field Size and Presentation

	Detail Business Objects
	Default Layout
	Layout Parameters
	Help Lists

	List Business Objects
	Default Layout
	Layout Parameters

	Chapter 6. Application Generation and Enhancement
	Standard Generation
	List of Available Generators
	VAGTemplates on Smalltalk 3.1 Generators
	VAGTemplates on Smalltalk 4.0 Generators
	VAGTemplates on Java Generators

	Instance Only / Instance Generation Option
	Business Object Generation
	Data Element Generation
	Interface Unit Generation
	Relational Table Generation
	Workspace Generation
	VAGTemplates on Smalltalk: Help Generation

	With associates/Cascaded Generation Option
	With Associates and Predefined Beans / Cascaded Generation WithPredefined Parts Option
	Application Storage
	Specification Storage
	Generated Components Storage
	VAGTemplates on Smalltalk: Generated Help Files Storage

	Enhancements and Re-generation
	Traceability Information
	Traceability Categories
	Generated Part Documentation
	VAGTemplates on Java: Traceability in Comments

	How the Generators Use the Traceability Information
	What Generator Do You Use When Re-generating
	VAGTemplates on Java
	VAGTemplates on Smalltalk

	Generated Architecture and Principles
	Introduction
	Generated Components Naming Policy
	Long Name Structures
	VisualAge for Java/VisualAge Smalltalk Enterprise Components Naming

	Predefined Beans/Parts
	Server Architecture
	Server types
	Generated Servers by Entity Type

	Client Architecture
	Web Client
	GUI Client
	TUI Client

	Overview of Generated Code
	Servers and their Hooks
	Hooks
	Server Common Functions
	Two- or Three-Tier Layers
	Generation of Atomic Detail Servers
	Generation of Help List Servers

	Clients
	Web Client
	GUI Client
	TUI Client

	Components Generated by Entities
	Components Generated from a Data Element
	GUI and TUI Components
	GUI Components: Java/Smalltalk Class

	Components Generated from a Business Object
	WEB Components
	GUI and TUI Components
	GUI Components
	TUI Component: Additional Server Program

	Components Generated from a Relational Table
	GUI and TUI components
	GUI components: Non-Visual components

	Components Generated from an Interface Unit
	WEB Components
	GUI Components
	TUI Parts

	Components Generated From a Workspace: Predefined Beans/Parts
	GUI and TUI Components
	GUI Components
	TUI Components

	Application Enhancement: Public Interface of GUI Generated Components
	Resource Object Bean/Part Interface
	API for Managing Detail Data
	API for Managing List Data
	API for Managing Upatable List Data

	Business Object Bean/Part Interface
	List Manager Bean/Part Interface
	API for Managing List Data
	Additional API for Managing Updatable List Data

	Part 4. Appendixes
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

