
VisualAge Generator

Programmer’s Reference
Version 4.5

SH23-0262-01

IBM

Note

Before using this document, read the general information under “Notices” on page xix.

Second Edition (October 2000)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 3.1
v IBM VisualAge Generator Server for AS/400 Version 3.6
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 062, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices xix

Trademarks xxi

About this document xxiii
Documentation provided with VisualAge
Generator xxiv

Part 1. VAGen parts 1

Chapter 1. Graphical user interfaces . . . 3
Graphical user interfaces in Smalltalk 3

VisualAge Generator parts category for
Smalltalk 3
Additional VisualAge Generator features
for VisualAge Smalltalk parts 22
VisualAge Generator extensions to
VisualAge Smalltalk data types 29

Graphical user interfaces in Java 30
VisualAge Generator parts category for
Java 30
Additional VisualAge Generator Features
for VisualAge Java Beans. 54

Chapter 2. Programs 57
Program elements 57
Allow implicits 59

Uses 59
Performance information for Allow
implicits 60
Target environments for Allow implicits. . 60

Bypass edit keys 60
Uses 60
Target environments for bypass edit keys 60

Called parameter list 61
Uses 61
Definition considerations for called
parameter list 62
Target environments for called parameter
list 62

Execution mode. 63
Uses 63
Definition considerations for segmented. . 64

Definition considerations for single
segment 64
Target environments for execution mode 64

F1-12=F13-24 65
Uses 66
Target environments for F1-12=F13-24 . . 66

First map 66
Uses 67
Definition considerations for first map . . 67
Target environments for first map 67

First UI record 68
Definition considerations for First UI
record 69
Target environments for First UI record . . 69

Flow statements. 69
Uses 70
Target environments for flow statements 70

Help key 70
Uses 70
Definition considerations for help key . . 70
Target environments for help key 70

Help map group name 71
Uses 71
Definition considerations for help map
group name 71
Target environments for help map group
name 71

Keep after use 72
Definition considerations for keep after use 72
Target environments for keep after use . . 73

Main function list 73
Uses 74
Target environments for main function list 74

Map group name 74
Uses 74
Performance information for map group
name 74
Target environments for map group name 74

Message table prefix 75
Uses 75
Definition considerations for message table
prefix 76
Target environments for message table
prefix 76

Program name 76

© Copyright IBM Corp. 1980, 2000 iii

Definition considerations for program
name 76
Target environments for program name . . 77

Program type 77
Uses 77
Definition considerations for Main
transaction and Main batch 78
Definition considerations for Web
transaction 78
Target environments for program type . . 78

Prologue 79
Uses 79
Target environments for prologue 79

Program specification block (PSB) name. . . 79
Uses 79
Definition considerations for PSB name . . 79
Target environments for PSB name . . . 80

Structure list 81
Uses 81
Target environments for structure list . . 81

Table and additional record list 81
Definition considerations for table and
additional record list 82
Target environments for table and
additional record list 82

Working storage 82
Definition considerations for working
storage 82
Target environments for working storage 83

Chapter 3. Functions 85
Function elements 85
DL/I call 88

Uses 88
Target environments for DL/I call. . . . 89

DL/I call - Database identifier 89
Uses 89
Target environments for Database identifier 89

DL/I call - Scan for update 90
Uses 90
Target environments for Scan for update 90

DL/I call - Scan in parent 91
Uses 91
Target environments for Scan in parent . . 91

DL/I call - Segment search arguments . . . 92
Uses 92
Definition considerations for Segment
search arguments 96
Target environments for Segment search
arguments 97

Function 98
Uses 98
Target environments for function 98

Function description 98
Uses 98
Target environments for function
description 98
Function local storage list 99
Function name 101
I/O error routine 101
Function parameter list 103
Function return value 106
I/O object 107
I/O option 108
I/O option - ADD 109
I/O option - CLOSE 112
I/O option - CONVERSE 116
I/O option - DELETE 118
I/O option - DISPLAY 119
I/O option - EXECUTE 120
I/O option - INQUIRY 121
I/O option - REPLACE 122
I/O option - SCAN 123
I/O option - SCANBACK 129
I/O option - SETINQ 132
I/O option - SETUPD 133
I/O option - SQLEXEC 134
I/O Option - UPDATE 136
SQL statement 137
SQL statement - Declare cursor with hold 140
SQL statement - Execution time statement
build 141
SQL statement - Model SQL statement
generation 143
SQL Statement - Single row select . . . 144
SQL statement - UPDATE or SETUPD
function name 146

Chapter 4. Records 149
Record elements 150
Alternate specification 152

Uses 152
Definition considerations for Alternate
specification 152
Target environments for Alternate
specification 153

Default key item (SQL) 154
Uses 154
Target environments for Default key item
(SQL) 154

iv VisualAge Generator: Programmer’s Reference

Default selection conditions (SQL) 155
Uses 155
Definition considerations for Default
selection conditions 156
Target environments for Default selection
conditions 156

File name 157
Uses 157
Definition considerations for File name 158
Generation Considerations for File name 158
Target environments for File name . . . 158

Key item (DL/I) 160
Uses 160
Definition considerations for Key item 160
Target environments for Key item . . . 160

Number of occurrences item 161
Uses 162
Definition considerations for Number of
occurrences item 162
Target environments for Number of
occurrences item 163

Organization 165
Uses 165
Target environments for Organization . . 165

Organization - DL/I segment 165
Uses 165
Target environments for DL/I segment 166

Organization - Indexed 166
Uses 167
Target environments for Indexed. . . . 167

Organization - Message queue 168
Definition considerations for Message
queue 169
Target environments for Message queue 169

Organization - Redefined 170
Uses 170
Target environments for Redefined . . . 170

Organization - Relative 171
Uses 171
Target environments for Relative 171

Organization - Serial 173
Uses 173
Target environments for Serial 173

Organization - SQL row. 174
Target environments for SQL row . . . 174

Organization - User interface 175
Definition considerations for User
interface 176
Target environments for User interface 181

Organization - Working storage 182

Uses 182
Definition considerations for Working
storage 182
Generation Considerations for Working
storage 183
Target environments for Working storage 183

Prologue 184
Uses 184
Target environments for Prologue . . . 184

Record 185
Uses 185
Target environments for Record 185

Record ID item 185
Definition considerations for Record ID
item 185
Target environments for Record ID item 186

Record length item 187
Uses 187
Definition considerations for Record
length item 187
Target environments for Record length
item 188

Record name 190
Uses 190
Target environments for Record name . . 190

Record data structure 190
Uses 190
Target environments for Record data
structure 190

Redefinition for 191
Uses 191
Target environments for Redefinition for 191

SQL row record data structure 192
Uses 192
Target environments for SQL row record
data structure 192

SQL table names 192
Uses 192
Target environments for SQL table names 194

Variable length item (DL/I) 195
Uses 195
Target environments for variable length
item (DL/I) 195

Chapter 5. Tables 197
Table elements 197
Column definition 198

Uses 198
Target environments for Column
definition 198

Contents v

Contents definition 198
Uses 199
Target environments for Contents
definition 199

Prologue 199
Uses 199
Target environments for Prologue . . . 199

Resident 199
Uses 199
Definition considerations for Resident . . 199
Target environments for Resident . . . 200

Shared 201
Uses 201
Target environments for Shared 201

Table name 203
Definition considerations for Table name 203
Target environments for Table name . . 204

Table type 204
Uses 204
Target environments for Table type . . . 206

Chapter 6. Items 209
Item elements 209
Data item 215
Data item bytes 216

Uses 216
Target environments for Data item bytes 217

Data item decimal places 218
Uses 218
Target environments for Data item
decimal places 218

Data item description 218
Uses 218
Target environments for Data item
description 218

Data item key 218
Uses 218
Target environments for Data item key 219

Data item length 219
Uses 219
Target environments for Data item length 220

Data item level. 220
Uses 220
Definition considerations for Data item
level 220
Target environments for Data item level 221
Examples for Data item level 222

Data item name 222
Uses 222
Target environments for Data item name 222

Data item occurs 223
Uses 223
Definition considerations for Data item
occurs. 223
Target environments for Data item occurs 223

Data item Read-only 223
Uses 223
Definition considerations for Data item
Read-only 223
Target environments for Data item
Read-only 224

Data item usage 224
Uses 224
Definition considerations for Data item
usage 224
Target environments for Data item usage 225

Data item SQL column name 225
Uses 225
Definition considerations for Data item
SQL column name 225
Target environments for Data item SQL
column name 225

Data item SQL data code 226
Uses 226
Target environments for Data item SQL
data code 227

Data item type 228
Uses 228
Performance Information for numeric
data types 229
Target environments for Data item type 229

Data item type - Bin 229
Uses 229
Target environments for Data item type -
Bin. 229

Data item type - CHA 230
Target environments for Data item type -
CHA 231

Data item type - DBCS 232
Uses 232
Target environments for Data item type -
DBCS 232

Data item type - Hex 233
Uses 233
Target environments for Data item type -
Hex 233

Data item type - Mixed 233
Uses 233
Definition considerations for Data item
type - Mixed 234

vi VisualAge Generator: Programmer’s Reference

Target environments for Data item type -
Mixed. 234

Data item type - Num 235
Uses 235
Definition considerations for Data item
type - Num 235
Target environments for Data item type -
Num 235

Data item type - Numc 236
Uses 236
Definition considerations for Data item
type - Numc 237
Target environments for Data item type -
Numc. 237

Data item type - Pacf 238
Uses 238
Definition considerations for data item
type - Pacf 238
Target environments for Data item type -
Pacf 238

Data item type - Pack 238
Uses 239
Definition considerations for Data item
type - Pack 239
Target environments for data item type -
Pack 239

Data item type - Unicode 239
Definition considerations for Data item
type - Unicode 239
Target environments for Data item type -
Unicode 240

Data item UI type. 241
Uses 241
Definition considerations for Data item UI
type 242
Target environments for Data item UI
type 243

Data item UI type - Form 243
Uses 243
Definition considerations for Data item UI
type - Form 244
Target environments for Data item UI
type - Form 245

Data item UI type - Hidden 246
Uses 246
Target environments for Data item UI
type - Hidden 246

Data item UI type - Input 247
Uses 247

Target environments for Data item UI
type - Input 247

Data item UI type - Input/Output 248
Uses 248
Target environments for Data item UI
type - Input/Output 248

Data item UI type - None 249
Uses 249
Target environments for Data item UI
type - Input/Output 249

Data item UI type - Output 250
Uses 250
Target environments for Data item UI
type - Output 250

Data item UI type - Program link 251
Uses 251
Definition considerations for Data item UI
type - Program link 251
Target environments for Data item UI
type - Program link 252

Data item UI type - Submit 253
Uses 253
Definition considerations for Data item UI
type - Submit 253
Target environments for Data item UI
type - Submit 254

Data item UI type - Submit bypass 255
Uses 255
Definition considerations for Data item UI
type - Submit bypass 255
Target environments for Data item UI
type - Submit bypass 256

UI record data item edits 256
Uses 256
Definition considerations for UI record
data item edits 257
Target environments for UI record data
item edits 257

UI record data item edits - Check SO/SI
space 257

Definition considerations for UI record
data item edits - Check SO/SI space . . 258
Target environments for UI record data
item edits - Check SO/SI space 258

UI record data item edits - Currency . . . 259
Definition considerations for UI record
data item edits - Currency 259
Target environments for UI record data
item edits - Currency 259

UI record data item edits - Currency symbol 260

Contents vii

Definition considerations for UI record
data item edits - Currency symbol . . . 260
Target environments for UI record data
item edits - Currency symbol 260

UI record data item edits - Edit function . . 261
Uses 261
Definition considerations for UI record
data item edits - Edit function 261
Target environments for UI record data
item edits - Edit function 261

UI record data item edits - Edit type . . . 262
Definition considerations for UI record
data item edits - Edit type 262
Target environments for UI record data
item edits - Edit type 263

UI record data item edits - Edit table . . . 264
Target environments for UI record data
item edits - Edit table 264

UI record data item edits - Fill character . . 264
Definition considerations for UI record
data item edits - Fill character 265
Target environments for UI record data
item edits - Fill character 265

UI record data item edits - Fold 266
Definition considerations for UI record
data item edits - Fold 266
Target environments for UI record data
item edits - Fold 266

UI record data item edits - Input required 267
Target environments for UI record data
item edits - Input required 267

UI record data item edits - Maximum value 268
Definition considerations for UI record
data item edits - Maximum value . . . 268
Target environments for UI record data
item edits - Maximum value 268

UI record data item edits - Minimum input 269
Target environments for UI record data
item edits - Minimum input 269

UI record data item edits - Minimum value 270
Definition considerations for UI record
data item edits - Minimum value . . . 270
Target environments for UI record data
item edits - Minimum value 270

UI record data item edits - Numeric
Separator 271

Definition considerations for UI record
data item edits - Numeric Separator . . 271
Target environments for UI record data
item edits - Numeric Separator 271

UI record data item edits - Run edit function
on web 272

Definition considerations for UI record
data item edits - Run edit function on
web 272
Target environments for UI record data
item edits - Run edit function on web . . 272

UI record data item edits - Sign 273
Definition considerations for UI record
data item edits - Sign 273
Target environments for UI record data
item edits - Sign 274

UI record data item edits - Zero edit . . . 274
Definition considerations for UI record
data item edits - Zero edit 274
Target environments for UI record data
item edits - Zero edit 275

Chapter 7. Program specification block 277
Program specification block elements . . . 277
Program communication block (PCB) . . . 278

Uses 278
Definition considerations for PCBs . . . 279
Target environments for PCBs. 280

Chapter 8. Maps 283
Map elements 283
Bypass edit keys 284

Uses 284
Target environments for Bypass edit keys 285

Device selection 286
Definition considerations for Device
selection 286
Target environments for Device selection 286

Floating area 288
Uses 288
Target environments for Floating area . . 289

Floating map 290
Definition considerations for Floating
map 290
Target environments for Floating map . . 291

Initial cursor field. 292
Uses 292
Definition considerations for Initial cursor
field 292
Target environments for Initial cursor
field 292

Help key. 293
Uses 293
Target environments for Help key . . . 293

viii VisualAge Generator: Programmer’s Reference

Help map name 294
Uses 294
Definition considerations for Help map
name 294
Target environments for Help map name 295

Map group 296
Uses 296
Definition considerations for Map group 296
Target environments for Map group . . 297

Map name 298
Definition considerations for Map name 298
Target environments for Map name . . . 298

Map position 300
Uses 300
Definition considerations for Map
position 300
Target environments for Map position 300

Map size 302
Uses 302
Target environments for Map size . . . 302

SO/SI take position 303
Uses 303
Target environments for SO/SI take
position 303

Variable field folding. 305
Uses 305
Target environments for Variable field
folding 305

Chapter 9. Map fields 307
Map field elements 307
Constant field 312

Uses 312
Target environments for Constant field 312

Constant field - DBCS 314
Uses 314
Definition considerations for Constant
field - DBCS 315
Target environments for Constant field -
DBCS 315

Constant field - MIX 316
Uses 316
Definition considerations for Constant
field - MIX 317
Target environments for Constant field -
MIX 317

Field attributes. 318
Uses 319
Target environments for Field attribute 319

Field attribute - Color 319

Uses 319
Definition considerations for Field
attribute - Color 319
Target environments for Field attribute -
Color 319

Field attribute - Highlight 320
Uses 320
Target environments for Field attribute -
Extended Highlighting 321

Field attribute - Initial cursor field 322
Uses 322
Target environments for Field attribute -
Initial cursor field. 322

Field attribute - Input required 323
Uses 323
Target environments for Field attribute -
Input required 324

Field attribute - Intensity 324
Uses 325
Target environments for Field attribute -
Intensity 325

Field attribute - Light pen detect 326
Uses 326
Definition considerations for Field
attribute - Light pen detect. 326
Target environments for Field attribute -
Light pen detect 327
Example for Field attribute - Light pen
detect 328

Field attribute - Modified data tag 328
Uses 328
Definition considerations for Field
attribute - Modified data tag 328
Target environments for Field attribute -
Modified data tag. 329

Field attribute - Numeric 330
Uses 330
Target environments for Field attribute -
Numeric 330

Field attribute - Outlining 331
Uses 331
Definition considerations for Field
attribute - Outlining 331
Target environments for Field attribute -
Outlining 331

Field attribute - Protection 333
Uses 333
Definition considerations for Field
attribute - Protection 333

Contents ix

Target environments for Field attribute -
Protection 333

Field attribute - Require fill on input . . . 334
Uses 334
Target environments for Field attribute -
Require fill on input 335

Message field - EZEMSG 336
Uses 336
Definition considerations for Message
field - EZEMSG 336
Target environments for Message field -
EZEMSG. 336

Variable field 337
Uses 337
Definition considerations for Variable
field 337
Target environments for Variable field 338

Variable field array 339
Uses 339
Definition considerations for Variable
field array 339
Target environments for Variable field
array 339

Variable field - DBCS 340
Uses 340
Definition considerations for Variable
field - DBCS 341
Target environments for Variable field -
DBCS 341

Variable field - MIX 342
Uses 342
Definition considerations for Variable
field - MIX 343
Target environments for Variable field -
MIX 343

Variable field edit 344
Uses 344
Target environments for Variable field
edit 345

Variable field edit - Check SO/SI space . . 345
Definition considerations for Variable
field edit - Check SO/SI space 345
I/O editing considerations for Variable
field edit - Check SO/SI space 345
Target environments for Variable field
edit - Check SO/SI space 346

Variable field edit - Currency 346
Uses 347
I/O editing considerations for Variable
field edit - Currency Symbol 347

Target environments for Variable field
edit - Currency. 347

Variable field edit - Date edit mask 348
Uses 348
Date edit mask formats 349
Length of the Date edit mask for data
items 350
Length of the Date edit mask for map
variable fields 351
I/O editing considerations for Variable
field edit - Date edit mask 351
Target environments for Variable field
edit - Date edit mask. 352

Variable field edit - Decimals 353
Uses 353
I/O editing considerations for Variable
field edit - Decimals 353
Target environments for Variable field
edit - Decimals. 354

Variable field edit - Description 354
Uses 355
Target environments for Variable field
edit - Description 355

Variable field edit - Edit error message
number 356

Uses 356
Definition considerations for Edit error
message number 356
Target environments for Edit error
message number 357

Variable field edit - Edit routine 357
Uses 358
I/O editing considerations for Edit
routine 358
Target environments for Edit routine . . 358

Variable field edit - Fill character. 359
Uses 359
I/O editing considerations for Fill
character 360
Target environments for Fill character . . 360

Variable field edit - Fold 361
Uses 361
Target environments for Variable field
edit - Fold 361

Variable field edit - Hex edit 362
Uses 362
I/O editing considerations for Variable
field edit - Hex edit 362
Target environments for Variable field
edit - Hex edit 363

x VisualAge Generator: Programmer’s Reference

Variable field edit - Input required 363
Uses 364
I/O editing considerations for Variable
field edit - Input required 364
Target environments for Variable field
edit - Input required 364

Variable field edit - Justify 365
Uses 365
I/O editing considerations for Variable
field edit - Justify 365
Target environments for Variable field
edit - Justify 365

Variable field edit - Maximum value . . . 366
Uses 366
I/O editing considerations for Variable
field edit - Maximum value 366
Target environments for Variable field
edit - Maximum value 367

Variable field edit - Minimum input . . . 368
Uses 368
I/O editing considerations for Variable
field edit - Minimum input 368
Target environments for Variable field
edit - Minimum input 368

Variable field edit - Minimum value . . . 369
Uses 369
I/O editing considerations for Variable
field edit - Minimum value 369
Target environments for Variable field
edit - Minimum value 369

Variable field edit - Numeric separator. . . 370
Uses 370
I/O editing considerations for Variable
field edit - Numeric separator. 370
Target environments for Variable field
edit - Numeric separator 371

Variable field edit - Sign 372
Uses 372
I/O editing considerations for Variable
field edit - Sign 372
Target environments for Variable field
edit - Sign 373

Variable field edit - Zero edit 374
Uses 374
I/O editing considerations for Variable
field edit - Zero edit 375
Target environments for Variable field
edit - Zero edit. 375

Variable field edit order 376

Definition considerations for Variable
field edit order. 376
Target environments for Variable field
edit order 377

Variable field length 377
Uses 378
Definition considerations for Variable
field length 378
Target environments for Variable field
length. 378

Variable field name 379
Definition considerations for Variable
field name 379
Target environments for Variable field
name 379

Part 2. Scripting language 381

Chapter 10. Program processing
statements 383
Statement Elements 383
AID value 384

Target environments for AID value . . . 385
Data item 387
I/O error value 389

Uses 390
I/O status codes 397

SYS value 398
Assignment statement 399

numeric expression 400
Achieving consistent results across
environments 403
Compatibility with CSP/AE arithmetic 403
Target environments for assignment. . . 404
Examples for assignment 404

CALL statement 407
Definition considerations for CALL . . . 410
Target environments for CALL 411
Examples for CALL 414

DXFR statement 414
Definition considerations for DXFR . . . 415
Generation considerations for DXFR . . 416
Target environments for DXFR 416
Examples for DXFR 419

FIND statement 419
Target environments for FIND 420
Examples for FIND 421

Function invocation statement 421
Definition considerations for Function
invocation statement 422

Contents xi

Target environments for function
invocation statements 422
Examplesof function invocation
statements 422

IF statement 423
logical expression 423
condition 423
Definition considerations for IF 428
Target environments for IF 429
Examples for IF 431

MOVE statement 432
Definition considerations for MOVE . . 432
Target environments for MOVE 435
Examples for MOVE 435

MOVEA statement 436
Uses 436
Definition considerations for MOVEA . . 437
Target environments for MOVEA . . . 437
Examples for MOVEA 437

RETR statement (Retrieve) 439
Definition considerations for RETR . . . 440
Target environments for RETR 440
Examples for RETR 440

SET statement 441
color 442
ext-hilite (extended highlighting). . . . 442
Definition considerations for SET . . . 446
Target environments for SET 447
Examples for SET 448

TEST statement 448
Definition considerations for TEST . . . 451
Target environments for TEST. 452
Examples for TEST 453

WHILE statement 455
logical expression 455
condition 455
Uses 459
Target environments for WHILE 460
Examples for WHILE 461

XFER statement 463
Definition considerations for XFER . . . 466
Target environments for XFER 467
Examples for XFER 471

Chapter 11. Special function words . . . 473
Special function words 473
EZEAID 476

Uses 477
Target environments for EZEAID . . . 477
Example for EZEAID 479

EZEAPP 479
Uses 479
Definition considerations for EZEAPP 480
Target environments for EZEAPP . . . 480
Example for EZEAPP 481

EZEBYTES 481
Uses 481
Target environments for EZEBYTES . . 481
Example for EZEBYTES 481

EZECLOS 481
Uses 482
Target environments for EZECLOS . . . 482
Example for EZECLOS 483

EZECNVCM 483
Uses 483
Definition considerations for
EZECNVCM 484
Target environments for EZECNVCM 484
Example for EZECNVCM 485

EZECOMIT 485
Uses 485
Definition considerations for EZECOMIT 485
Target environments for EZECOMIT . . 487
Example for EZECOMIT 490

EZECONCT 490
Uses 491
Definition considerations for
EZECONCT 493
Target environments for EZECONCT . . 495
Example for EZECONCT 497

EZECONV 497
Uses 497
Definition considerations for EZECONV 497
Target environments for EZECONV . . 498
Example for EZECONV 499

EZECONVT 499
Uses 499
Definition considerations for EZECONVT 499
Target environments for EZECONVT . . 500
Example for EZECONVT 501

EZEC10 501
Uses 501
Definition considerations for EZEC10 . . 502
Target environments for EZEC10 . . . 502
Example for EZEC10 502

EZEC11 503
Uses 503
Definition considerations for EZEC11 . . 503
Target environments for EZEC11. . . . 503
Example for EZEC11 503

xii VisualAge Generator: Programmer’s Reference

EZEDAY 504
Uses 504
Target environments for EZEDAY . . . 505
Example for EZEDAY 505

EZEDAYL 505
Uses 505
Target environments for EZEDAYL . . . 505
Example for EZEDAYL 505

EZEDAYLC 505
Uses 506
Target environments for EZEDAYLC . . 506
Example for EZEDAYLC 506

EZEDEST 507
Uses 507
Definition considerations for EZEDEST 507
Target environments for EZEDEST . . . 510
Example for EZEDEST 522

EZEDESTP 522
Uses 522
Definition considerations for EZEDESTP 523
Target environments for EZEDESTP . . 524
Examples for EZEDESTP 529

EZEDLCER (DL/I) 529
Uses 529
Definition considerations for EZEDLCER 530
Target environments for EZEDLCER . . 530
Example for EZEDLCER 531

EZEDLCON (DL/I) 531
Uses 531
Definition considerations for EZEDLCON 532
Target environments for EZEDLCON . . 532
Example for EZEDLCON 533

EZEDLDBD (DL/I) 533
Uses 533
Definition considerations for EZEDLDBD 533
Target environments for EZEDLDBD . . 534
Example for EZEDLDBD 535

EZEDLERR (DL/I) 535
Uses 535
Definition considerations for EZEDLERR 535
Target environments for EZEDLERR . . 536
Example for EZEDLERR 537

EZEDLKEY (DL/I) 537
Uses 537
Definition considerations for EZEDLKEY 537
Target environments for EZEDLKEY . . 538
Example for EZEDLKEY 539

EZEDLKYL (DL/I) 539
Uses 539
Definition considerations for EZEDLKYL 539

Target environments for EZEDLKYL . . 540
Example for EZEDLKYL 541

EZEDLLEV (DL/I) 541
Uses 541
Definition considerations for EZEDLLEV 541
Target environments for EZEDLLEV . . 542
Example for EZEDLLEV 543

EZEDLPCB (DL/I) 543
Uses 543
Definition considerations for EZEDLPCB 544
Target environments for EZEDLPCB . . 544
Examples for EZEDLPCB 546

EZEDLPRO (DL/I) 547
Uses 547
Definition considerations for EZEDLPRO 547
Target environments for EZEDLPRO . . 548
Example for EZEDLPRO 549

EZEDLPSB (DL/I) 549
Uses 549
Definition considerations for EZEDLPSB 550
Target environments for EZEDLPSB . . 550
Example for EZEDLPSB 553

EZEDLRST (DL/I) 553
Uses 553
Definition considerations for EZEDLRST 554
Target environments for EZEDLRST . . 554
Example for EZEDLRST 555

EZEDLSEG (DL/I) 555
Uses 555
Definition considerations for EZEDLSEG 556
Target environments for EZEDLSEG . . 556
Example for EZEDLSEG 557

EZEDLSSG (DL/I) 557
Uses 557
Definition considerations for EZEDLSSG 557
Target environments for EZEDLSSG . . 558
Example for EZEDLSSG 559

EZEDLSTC (DL/I) 559
Uses 559
Definition considerations for EZEDLSTC 559
Target environments for EZEDLSTC . . 560
Example for EZEDLSTC 560

EZEDLTRM (DL/I) 561
Uses 561
Definition considerations for EZEDLTRM 561
Target environments EZEDLTRM . . . 561

EZEDTE 562
Uses 562
Target environments for EZEDTE . . . 563
Example for EZEDTE 563

Contents xiii

EZEDTEL 563
Uses 563
Target environments for EZEDTEL . . . 563
Example for EZEDTEL 564

EZEDTELC 564
Uses 564
Target environments for EZEDTELC . . 565
Example for EZEDTELC 565

EZEFEC 565
Uses 565
Target environments for EZEFEC . . . 566
Example for EZEFEC 566

EZEFLO 566
Uses 566
Target environments for EZEFLO . . . 566
Example for EZEFLO 567

EZEG10 567
Uses 567
Target environments for EZEG10 . . . 568
Example for EZEG10 568

EZEG11 568
Uses 569
Target environments for EZEG11 . . . 569
Example for EZEG11 569

EZELOC 570
Uses 570
Definition considerations for EZELOC 570
Target environments for EZELOC . . . 571
Example for EZELOC 572

EZELTERM 572
Uses 572
Target environments for EZELTERM . . 573
Example for EZELTERM 574

EZEMNO 574
Uses 575
Definition considerations for EZEMNO 575
Target environments for EZEMNO . . . 575
Examples for EZEMNO 576

EZEMSG. 577
Uses 577
Definition considerations for EZEMSG 577
Target environments for EZEMSG . . . 577
Example for EZEMSG 578

EZEOVER 578
Uses 579
Target environments for EZEOVER . . . 579
Example for EZEOVER 581

EZEOVERS 581
Uses 581
Target environments for EZEOVERS . . 581

Example for EZEOVERS 581
EZEPURGE 581

Uses 582
Target environments for EZEPURGE . . 582
Examples for EZEPURGE 583

EZERCODE. 583
Target environments for EZERCODE . . 584
Example for EZERCODE 585

EZEREPLY 585
Uses 586
Target environments for EZEREPLY. . . 586
Example for EZEREPLY. 586

EZEROLLB 587
Uses 587
Definition considerations for EZEROLLB 587
Target environments for EZEROLLB . . 587
Example for EZEROLLB 590

EZERTN 590
Uses 590
Target environments for EZERTN . . . 590
Example for EZERTN 591

EZERT2 592
Uses 592
Target environments for EZERT2 . . . 592

EZERT8 592
Uses 592
Definition considerations for EZERT8 . . 593
Generation Considerations for EZERT8 593
Target environments for EZERT8 . . . 594
Example for EZERT8 600

EZESEGM 600
Uses 600
Target environments for EZESEGM . . . 601
Example for EZESEGM 602

EZESEGTR 602
Uses 602
Target environments for EZESEGTR . . 603
Example for EZESEGTR 604

EZESQCOD (SQL) 604
Uses 604
Target environments for EZESQCOD . . 605
Example for EZESQCOD 606

EZESQISL (SQL) 606
Uses 606
Definition considerations for EZESQISL 606
Target environments for EZESQISL . . . 607
Example for EZESQISL 608

EZESQLCA (SQL). 608
Uses 608
Target environments for EZESQLCA . . 608

xiv VisualAge Generator: Programmer’s Reference

Example for EZESQLCA 610
EZESQRD3 (SQL) 610

Uses 610
Target environments for EZESQRD3 . . 610
Example for EZESQRD3 611

EZESQRRM (SQL) 611
Uses 612
Definition considerations for EZESQRRM 612
Target environments for EZESQRRM . . 612
Example for EZESQRRM 613

EZESQWN1 (SQL) 613
Uses 614
Definition considerations for EZESQWN1 614
Target environments for EZESQWN1 . . 614
Example for EZESQWN1 615

EZESQWN6 (SQL) 616
Uses 616
Definition considerations for EZESQWN6 616
Target environments for EZESQWN6 . . 617
Example for EZESQWN6 618

EZESYS 618
Uses 618
Definition considerations for EZESYS . . 619
Target environments for EZESYS . . . 619
Examples for EZESYS 619

EZETIM 620
Uses 620
Target environments for EZETIM . . . 620
Example for EZETIM 620

EZETST 620
Uses 621
Target environments for EZETST . . . 621
Example for EZETST 621

EZEUSR 622
Uses 622
Target environments for EZEUSR . . . 623
Example for EZEUSR 625

EZEUSRID 625
Uses 625
Target environments for EZEUSRID . . 625
Example for EZEUSRID 627

EZEWAIT 627
Uses 627
Target environments for EZEWAIT . . . 628
Example for EZEWAIT 629

Chapter 12. String function words . . . 631
String function words 632
EZESBLKT 633

Target environmentsfor EZESBLKT . . . 633

Examplefor EZESBLKT 633
EZESCCWS 633

Target environmentsfor EZESCCWS. . . 634
Example for EZESCCWS 634

EZESCMPR 634
Definition considerations for EZESCMPR 635
Target environments for EZESCMPR . . 635
Example for EZESCMPR 635

EZESCNCT 635
Target environments for EZESCNCT . . 636
Example for EZESCNCT 636

EZESCOPY 636
Definition considerations for EZESCOPY 637
Target environments for EZESCOPY . . 637
Example for EZESCOPY 637

EZESFIND 637
Definition considerations for EZESFIND 638
Target environments for EZESFIND . . 638
Example for EZESFIND 638

EZESNULT 638
Definition considerations for EZESNULT 639
Target environments for EZESNULT . . 639
Example for EZESNULT 639

EZESSET. 639
Definition considerations for EZESSET 640
Target environments for EZESSET . . . 640
Example for EZESSET 640

EZESTLEN 640
Target environments for EZESTLEN . . 640
Example for EZESTLEN 640

EZESTOKN 640
Definition considerations for EZESTOKN 641
Target environments for EZESTOKN . . 642
Example for EZESTOKN 642

Chapter 13. Math function words 643
Math function exceptions 643
Math function words. 644
EZEABS 645

Target environments for EZEABS . . . 646
Example for EZEABS 646

EZEACOS 646
Target environments for EZEACOS . . . 646
Example for EZEACOS 646

EZEASIN 646
Target environments for EZEASIN . . . 647
Example for EZEASIN 647

EZEATAN 647
Target environments for EZEATAN . . . 647
Example for EZEATAN 647

Contents xv

EZEATAN2 648
Target environments for EZEATAN2 . . 648
Example for EZEATAN2 648

EZECEIL. 648
Target environments for EZECEIL . . . 649
Example for EZECEIL 649

EZECOS 649
Target environments for EZECOS . . . 649
Example for EZECOS 649

EZECOSH 649
Target environments for EZECOSH . . . 650
Example for EZECOSH 650

EZEEXP 650
Target environments for EZEEXP . . . 650
Example for EZEEXP 650

EZEFLADD 651
Target environments for EZEFLADD . . 651
Example for EZEFLADD 651

EZEFLDIV 651
Target environments for EZEFLDIV . . 652
Example for EZEFLDIV 652

EZEFLMOD 652
Target environments for EZEFLMOD . . 652
Example for EZEFLMOD 652

EZEFLMUL 653
Target environments for EZEFLMUL . . 653
Example for EZEFLMUL 653

EZEFLOOR 653
Target environments for EZEFLOOR . . 653
Example for EZEFLOOR 654

EZEFLSET 654
Target environments for EZEFLSET. . . 654
Example for EZEFLSET. 654

EZEFLSUB 654
Target environments for EZEFLSUB . . 655
Example for EZEFLSUB 655

EZEFREXP 655
Target environments for EZEFREXP . . 655
Example for EZEFREXP 655

EZELDEXP 656
Target environments for EZELDEXP . . 656
Example for EZELDEXP 656

EZELOG 656
Target environments for EZELOG . . . 657
Example for EZELOG 657

EZELOG10 657
Target environments for EZELOG10 . . 657
Example for EZELOG10 657

EZEMAX 657
Target environments for EZEMAX . . . 658

Example for EZEMAX 658
EZEMIN 658

Target environments for EZEMIN . . . 658
Example for EZEMIN 658

EZEMODF 658
Target environments for EZEMODF . . 659
Example for EZEMODF 659

EZENCMPR 659
Target environments for EZENCMPR . . 659
Example for EZENCMPR 659

EZEPOW 660
Target environments for EZEPOW . . . 660
Example for EZEPOW 660

EZEPRCSN 660
Target environments for EZEPRCSN . . 661
Example for EZEPRCSN 661

EZEROUND 661
Target environments for EZEROUND . . 661
Example for EZEROUND 661

EZESIN 662
Target environments for EZESIN . . . 662
Example for EZESIN 662

EZESINH 662
Target environments for EZESINH . . . 662
Example for EZESINH 663

EZESQRT 663
Target environments for EZESQRT . . . 663
Example for EZESQRT 663

EZETAN 663
Target environments for EZETAN . . . 664
Example for EZETAN 664

EZETANH 664
Target environments for EZETANH. . . 664
Example for EZETAN 664

Chapter 14. Object Scripting EZE words 665
Object scripting words 665
EZESCRPT 665

Uses 665
Definition considerations 666
Target environments for EZESCRPT. . . 666
Example for EZESCRPT. 667

Chapter 15. User interface EZE words 669
EZEUIERR 669

Target environments for EZEUIERR. . . 669
Example for EZEUIERR. 669

EZEUILOC 669
Target environments for EZEUILOC . . 670
Example for EZEUILOC 670

xvi VisualAge Generator: Programmer’s Reference

Chapter 16. Services 671
Services elements 671
AUDIT 672

Uses 672
Target environments for AUDIT 673
Examples for AUDIT. 674

COMMIT 675
CREATX 675

Definition considerations for CREATX 676
Target environments for CREATX . . . 676

CSPTDLI. 684
Definition considerations for CSPTDLI 685
Target environments for CSPTDLI . . . 685
Examples for CSPTDLI 687

EZCHART 689
Uses 689
Definition considerations for EZCHART 689
Parameters for EZCHART 690
Target environments for EZCHART . . . 694

Examples for EZCHART 695
RESET 697

Part 3. Appendixes 699

Appendix A. Reading syntax diagrams 701

Appendix B. Naming conventions for data
item, record, function names 703
National characters 704
DBCS naming conventions 704

Appendix C. Size restrictions and record
lengths 707
Size limitations for VisualAge Generator . . 707
Maximum record lengths 708

Index 711

Contents xvii

xviii VisualAge Generator: Programmer’s Reference

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2000 xix

xx VisualAge Generator: Programmer’s Reference

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries:

ACF/VTAM
AD/Cycle
AIX
AS/400
C Set ++
CICS
CICS OS/2
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/2
COBOL/370
COBOL/400
DataJoiner
DB2
DB2/2
DB2/400
DB2/6000
DRDA
FAA
GDDM
IBM
IBMLink
IMS
IMS/ESA
InfoExplorer
Language Environment
MVS
MVS/ESA
Operating System/2
OS/2
OS/400
RACF
RS/6000
SAA
SQL/DS
SQL/400
System/370
TeamConnection

© Copyright IBM Corp. 1980, 2000 xxi

Virtual Machine/Enterprise Systems Architecture
VisualAge
VisualGen
VM/ESA

The following terms are trademarks of other companies:

Adobe Adobe Systems Incorporated
HP-UX Hewlett-Packard Company
Micro Focus IMS Option Micro Focus Limited

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

Solaris, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

xxii VisualAge Generator: Programmer’s Reference

About this document

You can use this document as a reference for writing VisualAge Generator
programs. If you are writing a program, you can use this document to look
up language element syntax, usage, and examples. This document, along with
VisualAge Generator Design Guide, VisualAge for Smalltalk User’s Guide, and
VisualAge Generator Generation Guide , serves as a source of general
information needed to write a VisualAge Generator program.

Another use is as a design guide for portable programs. If you are designing a
VisualAge Generator program to run in an environment other than the
environment in which the program is written, you can use this document to
become aware of the portability or compatibility considerations that could
affect the way your program runs.

The language elements described in this document are grouped into
non-procedural elements (Part Specifications) and procedural elements
(Scripting Language, also known as “code”).

Part specifications are grouped by the following part types:

Graphical user interface specification
An event-driven program that contains the graphical user interface of
a program.

Program specification
Text or 3270 user interface program, batch program, or server
program.

Function specification
An I/O operation or sequence of associated code used within a
program.

Record specification
A data structure representing temporary working storage or a file or
database record.

Table specification
A data array containing a set of predefined values.

Program specification block specification
Definition of the hierarchical record relationships between DL/I
record segments.

© Copyright IBM Corp. 1980, 2000 xxiii

Item specification
A data element definition. The element can be part of a record or
table.

Map specification
Definition of a text or 3270 user interface format or a printer format.
Elements related to the map as a whole.

Map field specification
Elements related to individual constant and variable fields on the
map.

Scripting language elements are used when you enter procedural logic (code)
associated with function parts, or program flow statements that control the
order in which the main (top-level) functions of a program run.

The scripting language elements are grouped by the following topics:

Program statements
VisualAge Generator language statements and syntax.

Special function words
VisualAge Generator defined variables and services.

Services
System services specific to some run-time environments.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM and from the VisualAge

Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

xxiv VisualAge Generator: Programmer’s Reference

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

4. This document is included when you order the VisualAge Generator Server product CD.

About this document xxv

xxvi VisualAge Generator: Programmer’s Reference

Part 1. VAGen parts

© Copyright IBM Corp. 1980, 2000 1

2 VisualAge Generator: Programmer’s Reference

Chapter 1. Graphical user interfaces

A graphical user interface (GUI) program is an event-driven program that
contains one or more windows that represent the graphical user interface
through which the program user enters data and requests the actions
performed by the program. GUI programs consist of GUI windows and the
logic (functions) and data (records, tables) parts associated with the window.
The GUI program calls batch or server programs to access files and databases.

Defining a GUI program requires an approach that is different from defining
character-based programs. A VisualAge Generator GUI program requires that
you visually construct the user interface of the program and that you also
visually construct the communication between the visual parts of the program
and the nonvisual logic and data parts.

Graphical user interfaces in Smalltalk

The VisualAge Smalltalk product ships a parts palette that includes templates
for creating many visual and nonvisual program parts. VisualAge Generator
ships the following extensions to the VisualAge Smalltalk parts palette:
v Additional features (such as actions, attributes and events) for parts

shipped with VisualAge Smalltalk
v Additional VisualAge Generator categories and their parts

All of the VisualAge Generator extensions to the parts palette have names that
begin with the VAGen prefix. The VisualAge Generator extensions are
described in this chapter, along with some techniques for visual programming.
The basic parts palette shipped with VisualAge Smalltalk is described in the
VisualAge Smalltalk online help and the VisualAge Smalltalk User’s Reference.

For more information on visual programming and the visual parts of a GUI
program, refer to the VisualAge Smalltalk User’s Reference. For information on
defining nonvisual parts, refer to the other chapters in this book.

VisualAge Generator parts category for Smalltalk
The VisualAge Generator product ships categories and parts that are added to
the VisualAge Smalltalk parts palette during installation. The following are
the VisualAge Generator parts.
v VAGen Record
v VAGen Table
v VAGen Program

© Copyright IBM Corp. 1980, 2000 3

v VAGen Function

VAGen Data parts
VAGen Data Parts include VisualAge Generator Developer data parts you can
use to help build a GUI client. The parts in this category are nonvisual. The
parts are described in the following sections.

Notes:

1. The Settings view of an embedded view does not show promoted
attributes that belong to VAGen Data Parts.

2. The Public Interface Editor’s Promote Feature page cannot be used to
promote VAGen Data Parts attributes that are associated with data items.
To promote these attributes, choose the Promote Part Feature... option
from the parts in the Composition Editor. Once the attributes are
promoted, the Promote Feature page can be used to view them.

VAGen Record part: Select the VAGen Record part to add a VisualAge
Generator record to the free-form surface.

VAGen Record attributes:

self The self attribute represents the part itself.

Connecting to this property of a record part to pass parameter to a
function part expecting a record or to pass a record part into another
part that contains a place holder for it (a VAGen variable).

data The data attribute represents the contents of the record, table, or data
item.

Note: In the case of an occurs item, it represents an Ordered
Collection with the values of the valid elements of the occurs
item.

data item attributes and data item data attributes
Two attributes are created for each of the individual and top-level
substructured data items in the record. One attribute represents the
data item and the other attribute represents the data item data.

VAGen Record actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

VAGen Record events:

4 VisualAge Generator: Programmer’s Reference

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

You can use any of the data item attributes in the record as a source of an
event-to-action connection. The event is the modification of the value of the
data item when the application runs. For example, you can use a flag in a
working storage record and set the flag from the VisualAge Generator logic to
trigger an action, such as opening or closing a window, in the application.

VAGen Record properties: No properties may be set for this part.

VAGen Table part: Select the VAGen Table part to add VisualAge Generator
tables to the free-form surface.

VAGen Table attributes:

self The self attribute represents the part itself.

Connecting to this property of a record part to pass parameter to a
function part expecting a record or to pass a record part into another
part that contains a place holder for it (a VAGen variable).

data The data attribute represents the contents of the record, table, or data
item.

Note: In the case of an occurs item, it represents an ordered collection
with the values of the valid elements of the occurs item.

table columns
The table columns attribute represents the data items that make up the
columns of a table.

VAGen Table actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

VAGen Table events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

VAGen Table properties: No properties may be set for this part.

VAGen Record

Chapter 1. Graphical user interfaces 5

VAGen Logic parts
VAGen Logic Parts include VisualAge Generator logic parts you can use in
building a GUI program. These parts are nonvisual. The parts are described in
the following sections.

VAGen Program part: Select the VAGen Program part to add a VisualAge
Generator program or a non-VisualAge Generator program to the free-form
surface. You can use the VAGen Program part as a way to visually call server
programs.

VAGen Program attributes:

self The self attribute represents the part itself.

Torn-off attributes get their values by using the self attribute. In
general, it is a read-only attribute, passing a value or values to
another part but not receiving any values.

You can use the self attribute of a torn-off attribute in an
attribute-to-attribute connection.

You can use the self attribute as a parameter in an event-to-action
connection.

lastResult
The lastResult attribute represents an object of the type
HptProgramResult. The lastResult attribute is the result of the last call
to this VAGen Callable Function.

The HptProgramResult object type is defined with the following
features:
v Attributes

returnCode
The returnCode attribute represents an Integer value that is
the return code value of the VAGen Program. In the case of
a local DLL call, the return code is the value returned by
the function. In the case of a remote call, the value is a
VAGen middleware Reason Code.

v Actions

displayError
The displayError action displays the VAGen middleware
error message that resulted from a remote call. The failure
event of the VAGen Program can be connected to this
action so that an error message will be displayed when the
remote call fails.

VAGen Logic parts

6 VisualAge Generator: Programmer’s Reference

getErrorText
The getErrorText action returns the VAGen middleware error
message that resulted from a remote call.

linkageInfo
The linkageInfo attribute represents an object of the type
HptCallLinkageInformation, and contains necessary linkage
information for making a call to another function or program.

The HptCallLinkageInformation class is defined with the following
attributes:

appType
The appType attribute specifies the remote application type.
appType can have one of the following values:

VG The called program is a generated VisualAge
Generator application. An additional parameter is
automatically passed to the server to allow the server
to return an error code to the middleware if the server
application ends abnormally.

NON_VG
The called program was developed using a tool other
than VisualAge Generator. Only the parameters
passed on the call are passed to the called program.

conversionTable
The conversionTable attribute specifies the name of the
conversion table used to perform automatic data conversion
on the call to the remote application. The name is a 9-byte
character array containing a null-terminated character string.

Some names have a special meaning:

* Conversion is performed on the client using the
default conversion table. You must enclose the asterisk
in single quotes.

On OS/2, AIX, and Windows systems, the default is
the conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELACNxxx (OS/2 or AIX) or
ELACWxxx (Windows), where xxx is the national
language code specified in environment variable
EZERNLS. If EZERNLS is not specified, the default
national language code is ENU.

BINARY
Only binary fields are converted. The byte order in
the binary field is reversed.

VAGen Program

Chapter 1. Graphical user interfaces 7

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa,
when both the client and the server are running under
the same code page.

NONE
No conversion is performed.

externalName
The externalName attribute specifies the name of the entry
point in the DLL named in the library. The externalName value
is ignored if isRemote is true.

isRemote
The isRemote attribute is a Boolean value that specifies if a call
is to a remote or local function.

is32Bit
The is32Bit attribute is a Boolean value that tells whether a
called DLL function is a 32 Bit or 16 Bit function. The is32Bit
attribute is ignored if isRemote is true.

library
If isRemote is true, the library attribute specifies the name of
the library that contains function to be called.

If externalName and programName are empty, library will also
be the function name.

If isRemote is true, the library attribute specifies the OS/400
program library name. The name is a 20-byte character array
containing a null-terminated character string. This value is
used only with the Client Access/400 and Java400 protocols. It
specifies the name of the OS/400 library that contains the
called program. The default value is the application name if
the array contains a null string.

linkageTableName
The linkageTableName attribute specifies the file name of the
linkage table to be used if run-time bind is specified for the
Protocol parameter.

If not specified (null string), the linkage table file name is
obtained from environment variable CSOLINKTBL.

If the name is not fully qualified, the VisualAge Generator
middleware uses the current DPATH (for OS/2) or PATH (for
Windows) search path to find the table.

location
The location attribute specifies the protocol-dependent server

VAGen Program

8 VisualAge Generator: Programmer’s Reference

system name. The name is a 20–byte character array
containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null
string).

Protocol Meaning of location Default value

CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.

CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.

DCE,
DCESECURE,
DCECICS,
DCEIMS,
DCEVM

Location where the server
advertises in the DCE CDS
database. The location is
specified in the configuration file
used when the VisualAge
Generator DCE server program is
started.

No default.

APPCIMS CPIC side information identifier.
The side information specifies:
v Partner LU Alias
v Transaction Program Name
v Mode Name

No default

VG See VisualAge Generator routing
table description

Host defined for applname in
routing table

TCPIP TCP/IP hostname No default

NPIPE For remote NPIPE support
(IBM’s LAN Server), specify the
COMPUTERNAME value from
the LAN server’s IBMLAN.INI
file. For local NPIPE support,
specify LOCAL.

No default

CA/400 AS/400 system identifier The managing OS/400 system

luwType
The luwType attribute specifies the logical unit of work type.
Values are as follows:

CLIENT
Unit of work is under client control.

Server updates are not committed or rolled back until
the client requests commit or rollback using the
EZECOMIT or EZEROLLB services of VisualAge

VAGen Program

Chapter 1. Graphical user interfaces 9

Generator or the commit or rollback actions of the
VisualAge Generator commSession attribute for the
class on whose free-form surface this part was
dropped. Server applications cannot request commit
or rollback.

Environments which do not support client-controlled
unit of work will ignore this value.

SERVER
Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) is automatically issued when the server
returns. Server applications can request rollback.

parmform
The parmform attribute specifies the parameter format.

This option is supported only when calling through the CICS
OS/2 ECI or CICS Client ECI. It is ignored for all other types
of middleware.

Possible values for parmform are as follows:

COMMPTR
The server program expects to be called using the
CSP/AE parameter-passing convention that uses
pointers in the COMMAREA. Use only with MVS
CICS or VSE CICS server programs that were
generated or coded to use this parameter-passing
convention.

COMMDATA
The server program expects to receive the parameter
values in the CICS COMMAREA. The parameter
values passed on the call are moved into a single
buffer, each value adjoining the previous value
without regard for boundary alignment. On return
from the remote call, the values returned in the output
buffer are moved back to the corresponding
parameters that were passed on the call.

programName
The programName attribute specifies the name of the server
program that is being called.

The name is a null-terminated character string with a
maximum length of eight characters plus the null terminator.

VAGen Program

10 VisualAge Generator: Programmer’s Reference

protocol
The protocol attribute specifies the communications protocol
used to communicate with the client application.

Valid values are as follows:

Runtime Bind
The communications protocol is read from the linkage
table at run time. In addition, the following option
values are read from the linkage table and any
corresponding option specified in the linkageInfo
settings is ignored:

luwType
appType
parmform
conversionTable
location
serverId
library

CICS Client ECI
CICS Client External Call Interface

Client Access/400
Client Access/400

Java400
Java driver to connect to AS/400 system

APPC to IMS
LU 6.2 connection to IMS message processing region

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC), no authorization checking

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC) with authorization
checking

DCE to CICS
Distributed Computing Environment to CICS

DCE to IMS
Distributed Computing Environment to IMS message
processing region

DCE to VM
Distributed Computing Environment to VM

LU2 Logical Unit 2

VAGen Program

Chapter 1. Graphical user interfaces 11

Name Pipes
Name Pipes

PACBASE
PACBASE

TCP/IP
Transmission Control Protocol/Internetwork Protocol

serverId
The serverId attribute specifies the protocol-dependent server
channel or transaction name. The name is a 20–byte character
array containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null
string).

Protocol Meaning of Server Identifier

CICS, CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all applications called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction.

DCE, DCESECURE Server ID name advertised by the server in the DCE CDS
database. The serverId is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

user-defined parameters
Parameters added to the public interface by selecting Build
parameters from definition or Add parameter from the VAGen
Program’s pop-up menu.

VAGen Program actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

execute
The execute action runs the function or program. This method accepts
parameters for the program or function on the connection.

executeDeferred:
The executeDeferred: action runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay
interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

VAGen Program

12 VisualAge Generator: Programmer’s Reference

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

executeWithArguments:
The executeWithArguments: action calls the function or program, with
the arguments given. This action requires an OrderedCollection of
arguments to pass to the function or program being called.

executeDeferred:withArguments:
The executeDeferred:withArguments: action calls the function or program
on the connection after the specified delay, with the arguments given.
This action requires an OrderedCollection of arguments to pass to the
function or program being called.

VAGen Program events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

failure
The failure event signals that the call has failed. The lastResult attribute
is signaled with this event.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

success
The success event signals that the call was successful. The lastResult
attribute is signaled with this event.

VAGen Program properties: The following VAGen Program attributes can be set
from the Settings window for this part:
v lastResult

VAGen Program

Chapter 1. Graphical user interfaces 13

v linkageInfo

VAGen Function part: Select the VAGen Function part to add a VisualAge
Generator function to the free-form surface.

VAGen Function attributes:

self The self attribute represents the part itself.

Torn-off attributes get their values by using the self attribute. In
general, it is a read-only attribute, passing a value or values to
another part but not receiving any values.

You can use the self attribute of a torn-off attribute in an
attribute-to-attribute connection.

You can use the self attribute as a parameter in an event-to-action
connection.

returnValue
The returnValue attribute is the result of the last call to a VAGen
Function. It is the value returned on the EZERTN statement within the
function.

The return values from the function mapped to the actual type of
object returned by the returnValue attribute are:

any numeric value with no decimal precision
Integer

any numeric value with decimal precision
Fraction

Char HptChaString

DBCS HptDBCSString

Mixed HptMixString

Hex HptMixString

VAGen Function actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

execute
The execute action runs the function or program. This method accepts
parameters for the program or function on the connection. This
feature might require parameter connections equivalent to the number
of arguments the function part expects.

VAGen Program

14 VisualAge Generator: Programmer’s Reference

A value is returned if the returnValue attribute is defined for the
function.

executeDeferred:
The executeDeferred: action runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. This feature might require parameter
connections equivalent to the number of arguments the function part
expects. The argument to this action is the delay interval, which is
specified in milliseconds. It is recommended that you do not use
delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

executeWithArguments:
The executeWithArguments: action calls the function or program, with
the arguments given. This action requires an OrderedCollection of
arguments to pass to the function or program being called.

executeDeferred:withArguments:
The executeDeferred:withArguments: action calls the function or program
on the connection after the specified delay, with the arguments given.
This action requires an OrderedCollection of arguments to pass to the
function or program being called.

VAGen Function events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

VAGen Function

Chapter 1. Graphical user interfaces 15

VAGen Function properties: No properties may be for this part.

VAGen Container Details part
Select the VAGen Container Details part to add a part that displays
information in rows and columns, with each item occupying a row. You can
add columns by dragging a Container Details Column part from the parts
palette. The number of rows is determined at run time by the object
connected to the items attribute.

You can use a VAGen Container Details part to display the contents of a
VisualAge Generator Table or an occurs item of a VisualAge Generator
Record. You can also retrieve rows in packets that can be specified in the
VAGen Container Details part, rather than retrieving all rows at once.

You can allow users of your application to change the contents of a cell in the
VAGen Container Details part. They can do this by selecting the cell and
entering data. It is recommended that you switch the selectionPolicy to single
cell selection if you enable users to modify cells.

Part: VAGen Container Details

Class Name:
HptContainerDetailsView

Differences between Container Details and VAGen Container Details: The
VAGen Container Details part provides the packeting support that is provided
in the Packeting Container Details part. The packet support allows you to
have individual rows retrieved in packets as requested by the VAGen
Container Details part instead of having all rows retrieved at once. Besides the
packet support, the VAGen Container Details part provides some other useful
features, such as the events cellValueChanged and userInputConvertError.

VAGen Container Details inherits features from Container Details. For
descriptions of the Container Details features, refer to the VisualAge Smalltalk
Reference. VAGen Container Details has all the features provided by Container
Details, as well as the following features:

attributes

v packet

v packetEnabled

v packetSize

v totalRows

actions

VAGen Container Details

16 VisualAge Generator: Programmer’s Reference

v forcePacketRequest

v getSelectedCell

v getSelectedColumnIndices

v getTopIndex

events

v cellValueChanged

v packetRequested

v userInputConvertError

VAGen Container Details attributes: The following VAGen Container
Details attributes can be set as properties, which are available from the
Settings view for this part:

packet The packet property represents the packet data structure that is used
during packeting. It replaces the variable you previously had to
connect from the packetRequested event. It supports the following
features:

startRow
The row where the packet begins

endRow
The row where the packet ends

dataRows
The items or rows in the packet

packetEnabled
The packetEnabled attribute specifies whether the part will request data
one packet at a time.

packetSize
The packetSize specifies the size of packets the VAGen Container
Details part retrieves.

The packetSize attribute enables you to set the packet size before the
packet request is run. This value is used as a suggested value when
the packet is requested. However, if the suggested value is not valid,
it is not updated automatically to reflect the actual size of the packet
that was requested. To get the actual size of the packet that was
requested, you should look at the endRow setting of the packet
attribute.

totalRows
The totalRows attribute specifies the total number of rows within the
container.

VAGen Container Details actions:

VAGen Container Details

Chapter 1. Graphical user interfaces 17

forcePacketRequest:
The forcePacketRequest: action triggers the packet request operation.

getSelectedCell
The getSelectedCell action returns a Point object representing the
(column,row) coordinate of the selected cell in the container.

getSelectedColumnIndices
The getSelectedColumnIndices action returns a collection of the indices
of the selected columns.

getTopIndex
The getTopIndex action returns the index of the top visible row in the
container.

VAGen Container Details events:

cellValueChanged
The cellValueChanged event signals that one of the cells in the part was
modified. This event contains a parameter that contains the following
features:
v row
v column
v oldValue
v newValue

packetRequested
The packetRequested event signals that the part needs a new packet of
information.

userInputConvertError
The userInputConvertError event signals that the user has typed an
invalid value into the current cell of the part. This event is signalled
with a cell error callback data object of type HptCellErrorCallbackData
that contains the information about the cell that is in error. This
callback data object has the following attributes:

newValue
This is the new string that was typed into the cell. The string
is not valid for this cell. If this attribute is set to another valid
string when this event is being handled, the valid value will
be put in the cell. If this attribute is left unchanged when this
event is handled, the last valid value of this cell (oldValue) will
be put back in the cell.

The following steps show an example using the userInputConvertError
event:

VAGen Container Details

18 VisualAge Generator: Programmer’s Reference

1. Connect the VAGen Container Details view’s userInputConvertError
event to the self attribute of a variable. When an error occurs, the
variable will hold the cell error callback data object that is
signalled with this event.

2. Connect the VAGen Container Details view’s userInputConvertError
event to the prompt action of a text prompter, to prompt the user
for a valid value.

3. Connect the answerString attribute of the text prompter to the
newValue attribute of the variable. You will need to connect to an
unlisted attribute of the variable. When prompted for the unlisted
attribute name, type newValue.

4. These connections will cause a text prompter to be displayed when
an invalid value is typed into one of the cells and focus is then
moved elsewhere. If a valid value is typed into the prompter,
when OK is pressed, that valid value is entered into the error cell
and committed. If an invalid value is typed, the prompter remains
displayed until either a valid value is typed or Cancel is pressed.
If Cancel is pressed, the last valid value in that cell is entered into
the cell.

Note: For a valid value to be put back into the cell, the newValue
attribute must be set in the process of handling the
userInputConvertError event. After the event is handled,
setting newValue will not have any effect.

VAGen Variable part
Select the VAGen Variable part to enable your application to work with a part
that is created at run time. A variable is a placeholder for the actual part,
much like a parameter in an ordinary programming language.

When you add a variable to the free-form surface, you specify its class and
connect the variable so that, at run time, it receives its identity from a part
elsewhere in your application. At run time, a part of that class takes the place
of the variable.

Part: VAGen Variable

Class Name:
AbtVariable

Refer to the Variable part description in the VisualAge Smalltalk User’s Reference
for more information on the Variable part.

VAGen Container Details

Chapter 1. Graphical user interfaces 19

Differences between VAGen Variable and Variable parts: The VAGen
Variable is intended to be used with other VAGen parts. There are two main
differences between VAGen Variable and Variable.
v When an attribute of a VAGen Variable is connected to another part’s

attribute or a connection’s parameter, the VAGen Variable performs the
appropriate conversion of its attribute into the expected type at the other
end of the connection.
For example, if you have a VAGen Variable that holds a VAGen Num data
item, and you connect data attribute of the variable to enabled of a push
button, the VAGen Variable converts the value of its data attribute from an
integer or a number to a boolean as expected by enabled so that the
alignment of the connection will be successful. If you use a VisualAge
Smalltalk Variable instead of a VAGen Variable, this alignment will cause an
error. Because of this automatic conversion, it is recommended that you use
a VAGen Variable when the value that it holds is a VAGen Data part or is
related to a VAGen Data part. When you tear off an attribute from a VAGen
Data part, a VAGen Variable is used automatically for the tearoff.

v Because VAGen parts are not Smalltalk classes, you cannot change a
VisualAge Smalltalk Variable’s type to a VAGen part to have the
appropriate features listed at edit time. Therefore, the VAGen Variable has
an option to Change VAGen Type instead of Change Type for VisualAge
Smalltalk Variable parts. Change VAGen Type allows you to specify at edit
time the VAGen part that the VAGen Variable will hold at run time, and
that allows the VAGen Variable part to show all features that are available
for that VAGen part.
Remember that VAGen Variables are placeholders for other parts, much like
parameters in 3GL programming languages. Therefore, you must connect
the self attribute of the VAGen Variable to identify the attributes of the part
the VAGen Variable will receive at run time.
Selecting Change VAGen Type is not sufficient to identify the part the
VAGen Variable will receive. This function is available at edit time to make
it easier to make connections to the features of a VAGen Variable.

VAGen Variable inherits from Variable. Therefore, it has the same features as
Variable.

VAGen Variable attributes:

self The self attribute represents the part itself.

valueHolder
The valueHolder attribute holds the value of the variable or class.

After you select Change VAGen Type from the VAGen Variable’s pop-up
menu, the attributes of that part are available.

VAGen Variable

20 VisualAge Generator: Programmer’s Reference

VAGen Variable actions: After you select Change VAGen Type from the
VAGen Variable’s pop-up menu, the actions of that part are available.

VAGen Variable events: After you select Change VAGen Type from the
VAGen Variable’s pop-up menu, the events of that part are available.

VAGen File Accessor part
Select the File Accessor part to add a part that will allow your application to
manipulate text files. With this part, applications can read text files, display
their contents in a string-capable control (for example, a Multi-line Edit), work
with the actual file string, or save the string to any file and invoke the File
dialog.

Use the File Accessor part to allow programs to manipulate text files. With
this part, programs can read text files, display their contents in a string
capable control, work with the actual file string, or save the string to any file
and invoke the File dialog.

Part: VAGen File Accessor

Class Name:
HptFilePart

VAGen File Accessor attributes:

buffer The buffer attribute represents a String value that is a copy in memory
of the contents of the file. The contents of this buffer are preserved
when fileSpec is changed, which allows for save as operations. You can
connect this attribute to a Multi-line Edit and be able to modify a file
simply by using the read and write actions.

The initial value for this attribute is set on the Settings window for
this part.

fileSpec
The fileSpec attribute represents a String value that contains the fully
qualified file name. This is likely to be platform-specific. The File
Accessor part always uses this attribute to indicate what file it is
managing.

The initial value for this attribute is set on the Settings window for
this part.

self The self attribute represents the part itself.

VAGen File Accessor actions:

VAGen Variable

Chapter 1. Graphical user interfaces 21

read The read action clears the buffer, opens, reads the file into the buffer,
and closes the file specified by the fileSpec attribute. If fileSpec is
empty, the file selection dialog is invoked to prompt the user for the
file name.

selectFile
The selectFile action invokes the platform-specific file selection dialog.
The specified file is returned in fileSpec.

write The write action opens, writes the contents of the buffer to the file
specified by fileSpec, and closes the file. If fileSpec is empty, the file
selection dialog is invoked to prompt for the file name. To be able to
invoke a save as type of operation, simply set fileSpec to the new file
name prior to invoking the write action.

VAGen File Accessor events: There are no events for this part.

VAGen File Accessor properties: The following VAGen File Accessor
properties can be set from the Settings view for this part:
v buffer
v fileSpec
v lastError

Additional VisualAge Generator features for VisualAge Smalltalk parts
The VisualAge Generator product ships additional attributes and actions for
several VisualAge Smalltalk parts. The following sections describe these
additional features and list all the VisualAge Smalltalk parts for which they
are available.

Dynamically programming visual parts
VisualAge Generator provides several actions that enable you to dynamically
build visual parts at run time. You can use these features to add new pages to
a notebook part based on some logic, add new menu choices to a menu, or
add new menu pull-downs.

You can use these features to establish a child-parent relationship between
two parts. You can dynamically create a new instance of a visual part with the
Object Factory part, and it can be displayed by the openWidget action without
adding it to a parent part. However, if it does not have a parent part, it is
treated as a top-level part and it is destroyed when it is closed. To prevent it
from being destroyed, add it to a parent part using the subpartNamed: action.

A sample, partadr.dat, showing the use of these features is shipped with
VisualAge Generator. For more information on the sample application, refer to
the VisualAge Generator Getting Started document.

VAGen File Accessor

22 VisualAge Generator: Programmer’s Reference

The following actions enable you to dynamically program visual parts. These
actions require that an instance of a part that you want to add exists to be
used as the “part” parameter. To create an instance of a part, use the Object
Factory part.
v Adding a subpart to an existing composite visual part:

VAGen subpartNamed:put:
The VAGen subpartNamed:put: action adds a subpart to a composite
part using the specified name. The part is added invisibly and must
be opened using openWidget to be visible.

VAGen subpartNamed:putOpened:
The VAGen subpartNamed:putOpened: action adds a subpart to a
composite part using the specified name. The part is added visibly
so no openWidget is necessary after this action.

VAGen subpartNamed:put:beforePartNamed:
The VAGen subpartNamed:put:beforePartNamed: action adds a subpart
invisibly at a specific order in the components list of the parent
part. Note that this action will not show the part in the correct
order in its parent unless the parent part has not been opened yet.
If the parent is already opened, it must be closed and reopened to
display its components in the correct order. If no before part name
is specified, the part is added to the end of the list.

VAGen subpartNamed:putOpened:beforePartNamed:
The VAGen subpartNamed:putOpened:beforePartNamed: action adds a
visible subpart at a specific order in the components list of the
parent part. If no before part name is specified, the part is added to
the end of the list. Though this action will add the part in the
correct component sequence, it is likely the sequence will not
appear correct until the parent is closed and reopened.

v Retrieving and destroying a subpart from a composite part:

VAGen destroySubpartNamed:
The VAGen destroySubpartNamed: action finds the subpart with the
specified name and removes it from its parent.

VAGen subpartNamed:
The VAGen subpartNamed: action finds the subpart with the specified
name. This search recursively scans all subparts of the composite
part until a match is found. The result of this action can be assigned
to a variable that can then act as the subpart.

v Showing and positioning an existing visual part:

openWidget
The openWidget action opens a modeless Window with respect to its
parent Window.

VAGen Features for VisualAge Smalltalk

Chapter 1. Graphical user interfaces 23

closeWidget
The closeWidget action closes the part.

VAGen setX
The VAGen setX action positions the left edge of the widget at the
specified outset.

VAGen setY
The VAGen setY action positions the top edge of the widget at the
specified outset.

VAGen setHeight
The VAGen setHeight action sets the height of the widget.

VAGen setWidth
The VAGen setWidth action sets the width of the widget.

The positioning actions affect the framingSpec of the widget. However, they
only allow you to set absolute/relative dimensions, not proportional or
attachment settings. To access the more powerful attachment functions, you
should use the framingSpec attribute.

The features are available with specific visual parts described in the sections
below.

Nonvisual parts of class: AbtAppBldrPart and visual parts of class:
AbtAppBldrView

Attributes: The attributes and actions described in this section apply to all
nonvisual parts in the AbtAppBldrPart class and all visual parts in the
AbtAppBldrView class.

VAGen commSession
The VAGen commSession attribute is a read-only attribute that is
initialized to an object of type CmSession when the first call to a
VAGen server is issued from the VAGen Callable Function or from a
VAGen CALL statement in a function.

The CmSession class is defined with the following actions:

commit
When executed, the commit action propagates a commit to the
server platforms, as appropriate. The commit will only have
an effect when calls to servers using this session were made
through the CICS Client or Client Access/400 middleware
products and client unit of work was specified. In all other
cases, commit results in an immediate return with no action
taken.

VAGen Features for VisualAge Smalltalk

24 VisualAge Generator: Programmer’s Reference

rollback
When executed, the rollback action propagates a rollback to the
server platforms, as appropriate. The rollback will only have
an effect when calls to servers using this session were made
through the CICS Client or Client Access/400 middleware
products and client unit of work was specified. In all other
cases, rollback results in an immediate return with no action
taken.

If VAGen inheritsCommSession is set to true, then VAGen commSession is
only set if the parent of the part is nil and the VAGen
commSessionOwner attribute is nil. VAGen commSessionOwner is first
checked for the session and if it is nil, then the parent is checked. If
both are nil, then the VAGen commSession attribute is set to a new
instance of the VAGen Communications Session part.

The VAGen commSession attribute can be torn off and used visually or
it can be accessed through Smalltalk code.

VAGen commSessionOwner
The VAGen commSessionOwner attribute can be set to any instance of a
subclass of AbtAppBldrNonVisual. VAGen commSessionOwner is used in
conjunction with VAGen inheritsCommSession to control the ownership
of a given communications session within a hierarchy of parts. If
VAGen commSessionOwner is set, and VAGen inheritsCommSession is set
to true, the session object will be looked for in that part.

VAGen inheritsCommSession
VAGen inheritsCommSession is a boolean attribute that controls how to
look for the instance of a VAGen Communications Session part when
a call to a VAGen server is issued. If set to true, the VAGen
commSessionOwner is checked first. If the VAGen commSessionOwner is
set to nil, then the parent is checked. If the VAGen inheritsCommSession
attribute is false, then the current part returns the session that is
stored in VAGen commSession.

Actions:

VAGen destroyTopLevelSubpartNamed:
The VAGen destroyTopLevelSubpartNamed: action finds the subpart with
the specified name, removes it from its parent and destroys it. This
action differs from the VAGen destroySubpartNamed: action provided by
the primary part in that it starts the search from this part rather than
the primary part.

VAGen topLevelSubpartNamed:
The VAGen topLevelSubpartNamed: action finds the subpart with the
specified name. This search recursively scans all the subparts of the

VAGen Features for VisualAge Smalltalk

Chapter 1. Graphical user interfaces 25

composite part until a match is found. The result of this action can be
assigned to a variable that can then act as the subpart. This action
differs from the VAGen subpartNamed: action provided by the primary
part in that it starts the search from this part rather than the primary
part.

VAGen topLevelSubpartNamed:put:
The VAGen topLevelSubpartNamed:put: action adds a subpart to a
composite part using the specified name. The part is added invisibly
and must be opened using openWidget to be visible. This action
differs from the VAGen subpartNamed:put: action provided by the
primary part in that it adds the subpart to this part instead of adding
the subpart to the primary part.

VAGen performRequest:
The VAGen performRequest: action executes actions stored in its
parameter object, such as a record’s data item.

For example, use the VAGen performRequest: action when you would
like to conditionally trigger an action in the GUI program based on a
computation that is performed in a VisualAge Generator logic part.

Visual parts of class: AbtBasicView
The actions described in this section apply to all visual parts in the class
AbtBasicView in the following categories:
v Buttons
v Data Entry
v Lists
v Menus
v Canvas
v OS/2

Actions:

VAGen setHeight
The VAGen setHeight action sets the height of the widget.

VAGen setWidth
The VAGen setWidth action sets the width of the widget.

VAGen setX
The VAGen setX action positions the left edge of the widget at the
specified offset.

VAGen setY
The VAGen setY action positions the top edge of the widget at the
specified offset.

VAGen Features for VisualAge Smalltalk

26 VisualAge Generator: Programmer’s Reference

Visual parts that can contain other visual parts
The actions described in this section apply to all visual parts that can contain
other visual parts, including:
v Container Details part (Class: AbtContainerDetailsView)
v Composite Views part (Class: AbtCompositeView)
v Parts in the Canvas category

Actions:

VAGen destroySubpartNamed:
The VAGen destroySubpartNamed: action finds the subpart with the
specified name, removes it from its parent and destroys it.

VAGen subpartNamed:
The VAGen subpartNamed: action finds the subpart with the specified
name. This search recursively scans all the subparts of the composite
part until a match is found. The result of this action can be assigned
to a variable that can then act as the subpart.

VAGen subpartNamed:put:
The VAGen subpartNamed:put: action adds a subpart to a composite
part using the specified name. The part is added invisibly and must
be opened using openWidget to be visible.

VAGen subpartNamed:put:beforePartNamed:
The VAGen subpartNamed:put:beforePartNamed: action adds a subpart
invisibly at a specific order in the components list of the parent part.
Note that this action will not show the part in the correct order in its
parent unless the parent part has not been opened yet. If the parent is
already opened, it must be closed and reopened to display its
components in the correct order. If no before part name is specified,
the part is added to the end of the list.

VAGen subpartNamed:putOpened:
The VAGen subpartNamed:putOpened: action adds a subpart to a
composite part using the specified name. The part is added visibly, so
no openWidget is necessary after this action.

VAGen subpartNamed:putOpened:beforePartNamed:
The VAGen subpartNamed:putOpened:beforePartNamed: action adds a
visible subpart at a specific order in the components list of the parent
part. If no before part name is specified, the part is added to the end
of the list. Though this action will add the part in the correct
component sequence, it is likely the sequence will not appear correct
until the parent is closed and reopened.

VAGen Features for VisualAge Smalltalk

Chapter 1. Graphical user interfaces 27

Form, Group Box and Window parts
The attributes described in this section apply to the following parts:
v Form part (Class: AbtFormView)
v Group Box part (Class: AbtGroupBoxView)
v Window part (Class: AbtShellView)

Attributes:

VAGen topLevelEnabled
The VAGen topLevelEnabled attribute is a Boolean value that represents
whether a part is available for user interaction. VAGen topLevelEnabled
is different from enabled in that when VAGen topLevelEnabled is false for
a part, it does not show the part’s children as disabled. The children
of the part will appear enabled.

Window part
The actions described in this section apply to the Window part of class
AbtShellView.

Actions:

VAGen cancelCloseRequest:
The VAGen cancelCloseRequest: action enables you to stop a window
from closing if the program user decides to cancel the close operation
from a confirmation box.

Connect the closeWidgetRequest event as follows:
1. To the self attribute of a Variable part
2. To one of the openModal actions of a confirmation dialog
3. To the suspendExecutionUntilRemoved action of a confirmation

dialog

The cancel event (for example, clicked of the cancel button) of the
confirmation dialog should be connected to the VAGen
cancelCloseRequest: action of the window to be closed. This connection
requires a parameter to which you should connect the self attribute of
the Variable part you assigned in the first connection above.

VAGen getFocusPart
The VAGen getFocusPart action enables you to perform standard CUA
operations, such as Cut, Copy, Paste, and Clear from a menu.

You use this action by connecting some event (for example, clicked of
the Cut menu button) to the VAGen getFocusPart action of a Window
part. The result of this connection should be connected to self of a
Variable part.

VAGen Features for VisualAge Smalltalk

28 VisualAge Generator: Programmer’s Reference

You should also connect the menu button to an unlisted feature of the
variable that corresponds to the action that the VAGen getFocusPart
action should perform. For example, cutSelection, copySelection, paste, or
clearSelection.

VisualAge Generator extensions to VisualAge Smalltalk data types
VisualAge Generator provides some extensions to the VisualAge Smalltalk
basic data types. It is recommended that these VAGen data types be used on
parts that are connected to VAGen data items. This is especially true for the
Boolean, Date and Time data types because of the implicit conversion that
they perform on the data. The VisualAge Generator extensions are:

Boolean-VAGen
The Boolean-VAGen converter is like the Boolean converter except
that on connection alignment, it can accept objects of types String and
Integer in addition to objects of Boolean type. This allows VAGen data
items of String and Integer types to be connected to attributes that
expect Boolean data. See VisualAge Generator User’s Guide for the
rules used to convert String and Integer objects to Boolean objects.

Date-VAGen
The Date-VAGen converter is like the Date converter except that on
connection alignment, it can accept objects of String and Integer types
in addition to objects of Date type. This allows VAGen data items of
String and Integer type to be connected to attributes that expect Date
data. See VisualAge Generator User’s Guide for the rules used to
convert String and Integer objects to Date objects.

DBCS Only-VAGen
The DBCS Only-VAGen converter is like the DBCS Only converter
except that it supports minimum and maximum values.

Number-VAGen
The Number-VAGen converter is like the Number converter except
that it uses VisualAge Generator rules on rounding and truncation.

Time-VAGen
The Time-VAGen converter is like the Time converter except that on
connection alignment, it can accept objects of String type in addition
to objects of Time type. This allows VAGen data items of String type
to be connected to attributes that expect Time data. See VisualAge
Generator User’s Guide for the rules used to convert String objects to
Time objects.

Note: VisualAge Smalltalk recommends that you use Properties Table in
place of Notebook Style settings view. Properties Table is used as the
default unless the VisualAge Notebook Style settings views feature is
loaded and Notebook Style is selected as the preferred settings view
from the VisualAge Preferences window. If Notebook Style is selected,

VAGen Features for VisualAge Smalltalk

Chapter 1. Graphical user interfaces 29

you will need to load the configuration map VAGen GUI Settings to
be able to access the settings view for these VAGen data types.
Otherwise, the Customize button from the part’s settings view is
disabled when one of these data types is selected.

Graphical user interfaces in Java

The VisualAge for Java product ships a parts palette that includes templates
for creating many visual and nonvisual program parts. VisualAge Generator
ships the following extensions to the VisualAge for Java parts palette:
v An additional VisualAge Generator category and parts

All of the VisualAge Generator extensions to the parts palette have names that
begin with the VAGen prefix. The basic parts palette shipped with VisualAge
for Java is described in the VisualAge for Java online help.

For more information on visual programming and the visual parts of a GUI
program, refer to the VisualAge for Java task information in the online help.
For information on defining nonvisual parts, refer to the other chapters in this
book.

VisualAge Generator parts category for Java
The VisualAge Generator product ships categories and parts that are added to
the VisualAge for Java parts palette during installation. The following table
shows the VisualAge Generator categories and their parts.
v VAGen Record
v VAGen Table
v VAGen Program
v VAGen Function

VAGenRecordPart
Select the VAGenRecordPart part to add a VisualAge Generator record to the
free-form surface.

VAGenRecordPart properties:

byteData
The byteData property represents the contents of the record as a byte
array. Use thebyteData property if you wish to share or pass the record
part’s contents. The byteData property is readable, writable, and
bound.

data The data property represents the contents of the record as a string. Use
data property to display the record part’s contents as a string. Due to
internal conversions involved with the data property, if you wish to

VAGen Features for VisualAge Smalltalk

30 VisualAge Generator: Programmer’s Reference

share or pass the record part’s contents, use byteData property instead
to maintain its integrity. The data property is readable, writable, and
bound.

this The this property represents the part itself. Connecting to this
property of a record part to pass parameter to a function part
expecting a record or to pass a record part into another bean that
contains a place holder for it (a VAGen variable).

The this property is readable.

data item properties and data item data properties
Two properties are created for each of the individual and top-level
substructured data items in the record. One property represents the
data item and the other property represents the data item data. These
properties are bound properties. The properties that represent the data
items are readable and bound. The properties that represent the data
items data are readable, writable and bound.

VAGenRecordPart methods:

getByteData()
The getByteData() method returns the byte array that represents the
contents of the record. This method is the get selector for the byteData
property.

getValue()
The getValue() method returns the string that represents the contents
of the record.

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the record to the
byte array given. This method is the get selector for the byteData
property.

setValue(java.lang.String)
The setValue(java.lang.String) method sets the contents of the record to
the string given.

VAGenRecordPart events: The VAGenRecordPart does not have any real
events. However, you can use any of the data item properties in the record as
a source of an event-to-method connections. The event is the modification of
the value of the data item when the application runs.

VAGenTablePart
Select the VAGenTablePart part to add VisualAge Generator tables to the
free-form surface.

VAGenTablePart properties: Following is the list of properties of a
VAGenTablePart, none of which can be set in a Properties dialog:

VAGenRecordPart

Chapter 1. Graphical user interfaces 31

byteData
The byteData property represents the contents of the table as a byte
array. Use the byteData property if you wish to share or pass the table
part’s contents. The byteData property is readable, writable, and
bound.

data The data property represents the contents of the table as a string. Use
data property to display the table part’s contents as a string. Due to
internal conversions involved with the data property, if you wish to
share or pass the table part’s contents, use byteData property instead
to maintain its integrity. The data property is readable, writable, and
bound.

table columns
The table columns property represents the data items that make up the
columns of a table. The table columns property is readable and bound.

table columns data
The table columns data property represents the contents of the columns
of a table as an array of strings. The table columns data property is
readable, writable and bound.

this The this property represents the part itself.

Connecting to this property of a table part to pass parameter to a
function part expecting a table or to pass a table part into another
bean that contains a place holder for it (a VAGen variable). The this
property is readable.

data item properties and data item data properties
Two properties are created for each of the individual and top-level
substructured data items in the record. One property represents the
data item and the other property represents the data item data. These
properties are bound properties. The properties that represent the data
items are readable and bound. The properties that represent the data
items data are readable, writable and bound.

VAGenTablePart methods:

getByteData()
The getByteData() method returns the byte array that represents the
contents of the table. This method is the get selector for the byteData
property.

getValue()
The getValue() method returns the string that represents the contents
of the table.

VAGenTablePart

32 VisualAge Generator: Programmer’s Reference

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the table to the
byte array given. This method is the get selector for the byteData
property.

setValue(java.lang.String)
The setValue(java.lang.String) method sets the contents of the table to
the string given.

VAGenTablePart events: The VAGenTablePart does not have any real events.
However, you can use any of the data item properties in the table as a source
of an event-to-method connections. The event is the modification of the value
of the data item when the application runs.

Additional VAGen parts used with data parts

VAGen Field part: This part represents a data item in a data part, and you
can access its features by tearing off a data item property from a data part. It
is not a part in the VAGen Parts category.

VAGen Field properties: Following is the list of properties of a VAGen Field,
none of which can be set in a Properties dialog:

bigNumData
The bigNumData property represents the contents of the data item as a
com.ibm.vgj.wgs.VGJBigNumber, which is a numeric value with
decimal precision, if possible. The bigNumData property is readable,
writable, and is an expert property.

data The data property represents the contents of the data item. The type of
the data property depends on the type of the data item. The following
table maps the data item type to the Java type that is contained by
this property:

Table 1. Data item type compared to Java type

Data item type Comparable Java type

any numeric value with no decimal
precision

long

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

VAGenTablePart

Chapter 1. Graphical user interfaces 33

Use data property if you wish to share or pass the data item’s
contents. The data property is readable, writable, and bound.

intData
The intData property represents the contents of the data item as a Java
int if possible. The intData property is readable, writable, and is an
expert property.

longData
The longData property represents the contents of the data item as a
Java long if possible. The longData property is readable, writable, and
is an expert property.

shortData
The shortData property represents the contents of the data item as a
Java short if possible. The shortData property is readable, writable, and
is an expert property.

stringData
The stringData property represents the contents of the data item as a
string. The stringData property is readable, writable, and is an expert
property.

this The this property represents the data item itself. Connecting to this
property of a data item to pass parameter to a function part expecting
a data item. The this property is readable.

value The value property represents the contents of the data item as a Java
Object. The following table maps the data item type to the Java object
type that is contained by this property:

Table 2. Data item type compared to Java object type

Data item type Comparable Java object type

any numeric value with no decimal
precision

java.lang.Long

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

The value property is readable, writable, and is an expert property.

data item properties and data item data properties
If a VAGen Field represents a substructured data item, two properties
are created for each of the individual and top-level substructured data
items in the record. One property represents the data item and the

VAGen Field

34 VisualAge Generator: Programmer’s Reference

other property represents the data item data. These properties are
bound properties. The properties that represent the data items are
readable and bound. The properties that represent the data items data
are readable, writable and bound.

VAGen Field methods:

getBigNumData()
The getBigNumData() method returns the contents of the data item as
a com.ibm.vgj.wgs.VGJBigNumber. If the contents of the data item can
not be converted to a numeric value with decimal precision, an
exception will occur. This method is the get selector for the
bigNumData property.

getByteData()
The getByteData() method returns the byte array that represents the
contents of the data item. This method is the get selector for the
byteData property.

getIntData()
The getIntData() method returns the contents of the data item as a
Java int. If the contents of the data item can not be converted to an
integer, an exception will occur. This method is the get selector for the
intData property.

getLongData()
The getLongData() method returns the contents of the data item as a
Java long. If the contents of the data item can not be converted to a
long, an exception will occur. This method is the get selector for the
longData property.

getShortData()
The getShortData() method returns the contents of the data item as a
Java short. If the contents of the data item can not be converted to a
short, an exception will occur. This method is the get selector for the
shortData property.

getStringData()
The getStringData() method returns the contents the contents of the
data item as a string. This method is the get selector for the stringData
property.

getValue()
The getValue() method returns the Java object that represents the
contents of the data item. The following table maps the data item type
to the Java object type that is returned by this method:

VAGen Field

Chapter 1. Graphical user interfaces 35

Table 3. Data item type compared to Java object type

Data item type Comparable Java object type

any numeric value with no decimal
precision

java.lang.Long

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

setBigNumData(com.ibm.vgj.wgs.VGJBigNumber)
The setBigNumData(com.ibm.vgj.wgs.VGJBigNumber) method sets the
contents of the data item to the com.ibm.vgj.wgs.VGJBigNumber
given. If the value given cannot be converted to this data item’s type,
an exception will occur. This method is the set selector for the
bigNumData property.

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the data item to the
byte array given. This method is the get selector for the byteData
property.

setIntData(int)
The setIntData(int) method sets the contents of the data item to the
integer given. If the value given cannot be converted to this data
item’s type, an exception will occur. This method is the set selector for
the intData property.

setLongData()
The setLongData() method sets the contents of the data item to the
long given. If the value given cannot be converted to this data item’s
type, an exception will occur. This method is the set selector for the
longData property.

setShortData()
The setShortData() method sets the contents of the data item to the
short given. If the value given cannot be converted to this data item’s
type, an exception will occur. This method is the set selector for the
shortData property.

setStringData(java.lang.String)
The setStringData(java.lang.String) method sets the contents of the data
item to the string given. If the value given cannot be converted to this
data item’s type, an exception will occur. This method is the set
selector for the stringData property.

VAGen Field

36 VisualAge Generator: Programmer’s Reference

setValue(java.lang.Object)
The setValue(java.lang.String) method sets the contents of the data item
to the Java object given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the value property.

setValueToDefault()
The setValueToDefault() method sets the contents of the data item to
its default value (zero for the numeric data items and blanks for
character data items).

VAGen Field events: The VAGen Field does not have any real events.
However, if it represents a substructured data item, you can use any of the
data item properties in it as a source of an event-to-method connection. The
event is the modification of the value of the data item when the application
runs.

VAGen Array Field: This part represents an occurs data item in a data part,
and you can access its features by tearing off an occurs data item property
from a data part. It is not a part in the VAGen Parts category.

Note: VAGen Array Field parts are indexed from 0 and VAGen Array Field
methods operate on this assumption. For example, the integers in the
method getFieldsInRange(int, int) are zero-based.

VAGen Array Field properties: Following is the list of properties of a VAGen
Array Field, none of which can be set in a Properties dialog:

bigNumArrayData
The bigNumArrayData property represents the contents of the data
item as an array of com.ibm.vgj.wgs.VGJBigNumber(s) if possible. The
bigNumArrayData property is readable, writable, and is an expert
property.

byteArrayData
The byteArrayData property represents the contents of the data item as
a two-dimensional array of bytes. The byteArrayData property is
readable, writable, and is an expert property.

data The data property represents the contents of the data item, which is an
array of values. The type of the values depends on the type of the
data item. The following table maps the data item type to the Java
type that is contained in this array:

Table 4. Data item type compared to Java type

Data item type Comparable Java type

any numeric value with no decimal
precision

long

VAGen Field

Chapter 1. Graphical user interfaces 37

Table 4. Data item type compared to Java type (continued)

Data item type Comparable Java type

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

Use data property if you wish to share or pass the data item’s
contents. The data property is readable, writable, and bound.

intArrayData
The intArrayData property represents the contents of the data item as
an array of Java int(s) if possible. The intArrayData property is
readable, writable, and is an expert property.

longArrayData
The longArrayData property represents the contents of the data item as
an array of Java long(s) if possible. The longArrayData property is
readable, writable, and is an expert property.

shortArrayData
The shortArrayData property represents the contents of the data item
as an array of Java short(s) if possible. The shortArrayData property is
readable, writable, and is an expert property.

stringArrayData
The stringArrayData property represents the contents of the data item
as an array of string. The stringArrayData property is readable,
writable, and is an expert property.

this The this property represents the data item itself. Connecting to this
property of a data item to pass parameter to a function part expecting
a data item or to display the data item contents in a JTable. The this
property is readable.

data item properties and data item data properties
If a VAGen Array Field represents a substructured occurs data item,
two properties are created for each of the data items in the
substructure: one property represents the data item and the other
property represents the data item data. The properties that represent
the data items are readable and bound. The properties that represent
the data items data are readable, writable and bound.

VAGen Array Field methods:

VAGen Array Field

38 VisualAge Generator: Programmer’s Reference

addNewRowAfter(int)
The addNewRowAfter(int) method adds an empty row after the given
row number. The row number is 0-based. If this occurs item is
connected to a JTable, the empty row will now show up in the JTable
allowing the end-user to fill in the columns information.

addNewRowBefore(int)
The addNewRowBefore(int) method adds an empty row before the
given row number. The row number is 0-based. If this occurs item is
connected to a JTable, the empty row will now show up in the JTable
allowing the end-user to fill in the columns information.

addNewRowLast()
The addNewRowLast() method adds an empty row at the end of the
valid rows. If this occurs item is connected to a JTable, the empty row
will now show up at the end of the JTable allowing the end-user to
fill in the columns information.

getBigNumArrayData()
The getBigNumArrayData() method returns the contents of the data
item as an array of com.ibm.vgj.wgs.VGJBigNumber(s). If the contents
of the data item can not be converted to an array of numeric value
with decimal precision, an exception will occur. This method is the get
selector for the bigNumArrayData property.

getByteArrayData()
The getByteArrayData() method returns a two-dimensional array of
bytes that represents the contents of the data item. This method is the
get selector for the byteArrayData property.

getColumnClass(int)
The getColumnClass(int) method is part of the Swing’s TableModel
interface. It returns java.lang.Object class for all of the data items in its
substructure.

getColumnCount()
The getColumnCount() method is part of the Swing’s TableModel
interface. It returns the number of data items in the occurs data item’s
substructure.

getColumnName(int)
The getColumnName(int) method is part of the Swing’s TableModel
interface. It returns the name of the data item positioned at the given
column number in the occurs data item’s substructure.

getElementAt(int)
The getElementAt(int) method is part of the Swing’s ListModel
interface. It returns the value of the element at the specified index.

VAGen Array Field

Chapter 1. Graphical user interfaces 39

getFieldAt(int)
The getFieldAt(int) method returns the element at the specified index
of the occurs data item. You can use this method to pass the element
at the specified index of the array as a parameter to the
VAGenProgramPart.

getFieldsInRange(int, int)
The getFieldsInRange(int, int) method returns elements between two
indexes of an occurs item. You can connect the result of this method
to the model property of a JTable to get only a certain range of the
occurs item.

getIntArrayData()
The getIntArrayData() method returns the contents of the data item as
an array of Java int(s). If the contents of the data item cannot be
converted to an array of integers, an exception will occur. This
method is the get selector for the intArrayData property.

getLongArrayData()
The getLongArrayData() method returns the contents of the data item
as an array of Java long(s). If the contents of the data item cannot be
converted to an array of longs, an exception will occur. This method is
the get selector for the longArrayData property.

getRowCount()
The getRowCount() method is part of the Swing’s TableModel interface.
It returns the count of elements in the occurs data item with
non-default values.

getSelectedItem()
The getSelectedItem() method is part of the Swing’s ComboBoxModel
interface. It returns the value of the selected item from the JComboBox
if the occurs data item is connected to a JComboBox’s model.

getShortArrayData()
The getShortArrayData() method returns the contents of the data item
as an array of Java short(s). If the contents of the data item cannot be
converted to an array of shorts, an exception will occur. This method
is the get selector for the shortArrayData property.

getSize()
The getSize() method is part of the Swing’s ListModel interface. It
returns the count of elements in the occurs data item with non-default
values.

getStringArrayData()
The getStringArrayData() method returns the contents of the data item
as an array of strings. This method is the get selector for the
stringArrayData property.

VAGen Array Field

40 VisualAge Generator: Programmer’s Reference

getValue()
The getValue() method returns the value of the first element in the
Array (index = 0). The following table maps the data item type to the
Java object type that is returned by this method:

Table 5. Data item type compared to Java object type

Data item type Comparable Java object type

any numeric value with no decimal
precision

java.lang.Long

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

getValueAt(int)
The getValueAt(int) method returns the value of the element at the
specified index of the occurs data item. You can connect the result of
this method to anything you would normally connect to the data
property of a non-occurs item such as JTextField’s text .

getValueAt(int, int)
The getValueAt(int, int) method is part of the Swing’s TableModel
interface. It returns the value of cell <row, column> (row is the first
integer given, column is the second integer given. Cell <row, column>
is the occur row of the data item at position column in the occurs data
item’s substructure.

getValuesInRange(int, int)
The getValuesInRange(int, int) method returns the values of elements
between two indexes of an occurs item.

isCellEditable(int, int)
The isCellEditable(int, int) method is part of the Swing’s TableModel
interface. It returns true for all cells <row, column>.

removeRowAt(int)
The removeRowAt(int) method removes the row at the specified index.
The row index is 0-based. If this occurs item is connected to a JTable,
the row will now be removed from the JTable.

setBigNumArrayData(com.ibm.vgj.wgs.VGJBigNumber[])
The setBigNumArrayData(com.ibm.vgj.wgs.VGJBigNumber) method sets
the contents of the occurs data item to the array of
com.ibm.vgj.wgs.VGJBigNumber(s) given. If the value given can not

VAGen Array Field

Chapter 1. Graphical user interfaces 41

be converted to this data item’s type, an exception will occur. This
method is the set selector for the bigNumArrayData property.

setByteArrayData(byte[])
The setByteArrayData(byte[]) method sets the contents of the data item
to the two-dimensional array of bytes given. This method is the get
selector for the byteArrayData property.

setIntArrayData(int[])
The setIntArrayData(int) method sets the contents of the data item to
the array of integers given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the intArrayData property.

setLongArrayData([])
The setLongArrayData([]) method sets the contents of the data item to
the array of longs given. If the value given cannot be converted to this
data item’s type, an exception will occur. This method is the set
selector for the longArrayData property.

setSelectedItem(java.lang.Object)
The setSelectedItem() method is part of the Swing’s ComboBoxModel
interface. It saves the value of the selected item from the JComboBox
if the occurs data item is connected to a JComboBox’s model.

setShortArrayData([])
The setShortArrayData([]) method sets the contents of the data item to
the array of shorts given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the shortArrayData property.

setStringArrayData(java.lang.String[])
The setStringData(java.lang.String[]) method sets the contents of the
data item to the array of strings given. If the value given can not be
converted to this data item’s type, an exception will occur. This
method is the set selector for the stringArrayData property.

setValue(java.lang.Object)
The setValue(java.lang.String) method sets the contents of the first
element of the Array to the Java object given. If the value given can
not be converted to this data item’s type, an exception will occur. This
method is the set selector for the value property.

setValueAt(int, java.lang.Object)
The setValueAt(int, java.lang.Object) method replaces the value of the
element at the specified index with the Java object given. If the value
given can not be converted to this data item’s type, an exception will
occur.

VAGen Array Field

42 VisualAge Generator: Programmer’s Reference

setValueAt(java.lang.Object, int, int)
The setValueAt(int, int) method is part of the Swing’s TableModel
interface. It replaces the value of the cell <row, column> with the
object given (row is the first integer given, column is the second
integer given. Cell <row, column> is the occur row of the data item at
position column in the occurs data item’s substructure.

setValuesInRange(int, int, java.lang.Object[])
The setValuesInRange(int, int) method sets the values of elements
between two indexes of an occurs item to the array of values given.

setValueToDefault()
The setValueToDefault() method sets the contents of the first element
of the Array to its default value (zero for the numeric data items and
blanks for character data items).

VAGen Array Field events: The VAGen Array Field does not have any real
events. However, if it represents a substructured data item, you can use any
of the data item properties in it as a source of an event-to-method connection.
The event is the modification of the value of the data item when the
application runs. VAGen Logic Parts include VisualAge Generator logic parts
you can use in building a GUI program. These parts are nonvisual. The parts
are described in the following sections.

VAGenProgramPart
Select the VAGenProgramPart part to add a VisualAge Generator program or
a non-VisualAge Generator program to the free-form surface. You can use the
VAGen Program part as a way to visually call server programs.

VAGenProgramPart properties:

lastResult
The lastResult property represents an object of the type
HptProgramResult. The lastResult property is the result of the last call
to this VAGen Program.

The HptProgramResult object type is defined with the following
features:

Properties

error The error property returns a boolean indicating if the last
invocation of this program resulted in a nonzero return code.
The error property is readable only.

errorObject
The errorObject property represents an object of the type
HptProgramError if the last invocation of this program
resulted in a non-zero return code. Otherwise, this property
will return null.

VAGen Array Field

Chapter 1. Graphical user interfaces 43

The HptProgramError object type is defined with the
following features:

dateAndTime
The dateAndTime property returns a java.lang.String.
The dateAndTime property is readable and writable.

errorText
The errorText property returns a java.lang.String. The
errorText property is readable and writable.

errorTextReplace
The errorTextReplace property returns a
java.lang.String. The errorTextReplace property is
readable and writable.

errorTextReplace
The errorTextReplace property returns a
java.lang.String. The errorTextReplace property is
readable and writable.

locus The locus property returns a java.lang.String. The locus
property is readable and writable.

origin The origin property returns a java.lang.String. The
origin property is readable and writable.

reasonCode
The reasonCode property returns an int. The reasonCode
property is readable and writable.

returnCode
The returnCode property returns an int. The returnCode
property is readable and writable.

errorText
The errorText property returns a java.lang.String containing the
error text from the last invocation of this program, if an error
was produced. Otherwise, this property will return null. The
errorText property is readable and writable.

returnCode
The returnCode property returns an int. containing the return
code from the last invocation of this program. The returnCode
property is readable and writable.

The lastResult property is readable and bound.

linkageInfo
The linkageInfo property represents an object of the type

VAGenProgramPart

44 VisualAge Generator: Programmer’s Reference

HptCallLinkageInformation, and contains necessary linkage
information for making a call to another function or program.

The HptCallLinkageInformation class is defined with the following
properties:

appType
The appType property specifies the remote application type.
appType can have one of the following values:

VG The called program is a generated VisualAge
Generator application. An additional parameter is
automatically passed to the server to allow the server
to return an error code to the middleware if the server
application ends abnormally.

NON_VG
The called program was developed using a tool other
than VisualAge Generator. Only the parameters
passed on the call are passed to the called program.

conversionTable
The conversionTable property specifies the name of the
conversion table used to perform automatic data conversion
on the call to the remote application. The name is a 9-byte
character array containing a null-terminated character string.
Some names have a special meaning:

* Conversion is performed on the client using the
default conversion table. You must enclose the asterisk
in single quotes.

On OS/2, AIX, and Windows systems, the default is
the conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELACNxxx (OS/2 or AIX) or
ELACWxxx (Windows), where xxx is the national
language code specified in environment variable
EZERNLS. If EZERNLS is not specified, the default
national language code is ENU.

BINARY
Only binary fields are converted. The byte order in
the binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa,
when both the client and the server are running under
the same code page.

VAGenProgramPart

Chapter 1. Graphical user interfaces 45

NONE
No conversion is performed.

externalName
The externalName property specifies the name of the entry
point in the DLL named in the library. The externalName value
is ignored if isRemote is true.

isRemote
The isRemote property is a Boolean value that specifies if a call
is to a remote or local function.

is32Bit
The is32Bit property is a Boolean value that tells whether a
called DLL function is a 32 Bit or 16 Bit function. The is32Bit
property is ignored if isRemote is true.

library
If isRemote is true, the library property specifies the name of
the library that contains function to be called.

If externalName and programName are empty, library will also
be the function name.

If isRemote is true, the library property specifies the OS/400
program library name. The name is a 20-byte character array
containing a null-terminated character string. This value is
used only with the Client Access/400 and Java400 protocols. It
specifies the name of the OS/400 library that contains the
called program. The default value is the application name if
the array contains a null string.

linkageTableName
The linkageTableName property specifies the file name of the
linkage table to be used if run-time bind is specified for the
Protocol parameter.

If not specified (null string), the linkage table file name is
obtained from environment variable CSOLINKTBL.

If the name is not fully qualified, the VisualAge Generator
middleware uses the current DPATH (for OS/2) or PATH (for
Windows) search path to find the table.

location
The location property specifies the protocol-dependent server
system name. The name is a 20–byte character array
containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null

VAGenProgramPart

46 VisualAge Generator: Programmer’s Reference

string).

Protocol Meaning of location Default value

CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.

CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.

DCE,
DCESECURE,
DCECICS,
DCEIMS,
DCEVM

Location where the server
advertises in the DCE CDS
database. The location is
specified in the configuration file
used when the VisualAge
Generator DCE server program is
started.

No default.

APPCIMS CPIC side information identifier.
The side information specifies:
v Partner LU Alias
v Transaction Program Name
v Mode Name

No default

VG See VisualAge Generator routing
table description

Host defined for applname in
routing table

TCPIP TCP/IP hostname No default

NPIPE For remote NPIPE support
(IBM’s LAN Server), specify the
COMPUTERNAME value from
the LAN server’s IBMLAN.INI
file. For local NPIPE support,
specify LOCAL.

No default

CA/400 AS/400 system identifier The managing OS/400 system

Java400 AS/400 system identifier No default

luwType
The luwType property specifies the logical unit of work type.
Values are:

CLIENT
Unit of work is under client control.

Server updates are not committed or rolled back until
the client requests commit or rollback using the
EZECOMIT or EZEROLLB services of VisualAge
Generator or the commit or rollback actions of the
VisualAge Generator commSession property for the

VAGenProgramPart

Chapter 1. Graphical user interfaces 47

class on whose free-form surface this part was
dropped. Server applications cannot request commit
or rollback.

Environments which do not support client-controlled
unit of work will ignore this value.

SERVER
Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) is automatically issued when the server
returns. Server applications can request rollback.

parmform
The parmform property specifies the parameter format.

This option is supported only when calling through the CICS
OS/2 ECI or CICS Client ECI. It is ignored for all other types
of middleware.

Possible values for parmform are:

COMMPTR
The server program expects to be called using the
CSP/AE parameter-passing convention that uses
pointers in the COMMAREA. Use only with MVS
CICS or VSE CICS server programs that were
generated or coded to use this parameter-passing
convention.

COMMDATA
The server program expects to receive the parameter
values in the CICS COMMAREA. The parameter
values passed on the call are moved into a single
buffer, each value adjoining the previous value
without regard for boundary alignment. On return
from the remote call, the values returned in the output
buffer are moved back to the corresponding
parameters that were passed on the call.

programName
The programName property specifies the name of the server
program that is being called.

The name is a null-terminated character string with a
maximum length of eight characters plus the null terminator.

protocol
The protocol property specifies the communications protocol
used to communicate with the client application.

VAGenProgramPart

48 VisualAge Generator: Programmer’s Reference

Valid values are:

Runtime Bind
The communications protocol is read from the linkage
table at run time. In addition, the following option
values are read from the linkage table and any
corresponding option specified in the linkageInfo
settings is ignored:

luwType
appType
parmform
conversionTable
location
serverId
library

CICS Client ECI
CICS Client External Call Interface

Client Access/400
Client Access/400

Java400
Java driver to connect to AS/400 system

APPC to IMS
LU 6.2 connection to IMS message processing region

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC), no authorization checking

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC) with authorization
checking

DCE to CICS
Distributed Computing Environment to CICS

DCE to IMS
Distributed Computing Environment to IMS message
processing region

DCE to VM
Distributed Computing Environment to VM

LU2 Logical Unit 2

Name Pipes
Name Pipes

VAGenProgramPart

Chapter 1. Graphical user interfaces 49

PACBASE
PACBASE

TCP/IP
Transmission Control Protocol/Internetwork Protocol

serverId
The serverId property specifies the protocol-dependent server
channel or transaction name. The name is a 20–byte character
array containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null
string).

Protocol Meaning of Server Identifier

CICS, CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all applications called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction.

DCE, DCESECURE Server ID name advertised by the server in the DCE CDS
database. The serverId is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

providerURL
This providerURL property specifies the host name and port of
the name server used by the EJB client. The property value
must have the following format: iiop://hostname:port, where
hostname is the IP address or hostname of the machine on
which the name server runs and port is the port number on
which the name server listens.

this The this property represents the part itself.

The this property is readable.

VAGenProgramPart methods:

execute
The execute method runs the function or program. This method
accepts parameters for the program or function on the connection.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

executeDeferred:
The executeDeferred: method runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay

VAGenProgramPart

50 VisualAge Generator: Programmer’s Reference

interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

VAGenProgramPart events:

failure
The failure event signals that the call has failed. Both the new and the
old value of the lastResult property is signalled with this event.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

success
The success event signals that the call was successful. Both the new
and the old value of the lastResult property is signalled with this
event.

VAGenFunctionPart
Select the VAGenFunctionPart part to add a VisualAge Generator function to
the free-form surface.

VAGenFunctionPart properties:

returnValue
The returnValue property contains the value returned by the last
invocation of this function part. The following table maps the return
value type returned by the function to the Java object type that is
contained by this property:

VAGenProgramPart

Chapter 1. Graphical user interfaces 51

Table 6. Data item type compared to Java object type

Data item type Comparable Java object type

any numeric value with no decimal
precision

java.lang.Long

any numeric value with decimal precision com.ibm.vgj.wgs.VGJBigNumber

Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

The returnValue property is readable and bound.

this The this property represents the part itself.

The this property is readable.

VAGenFunctionPart methods: The following methods are associated with
VAGenFunctionPart:

execute
The execute method runs the function or program. This method
accepts parameters for the program or function on the connection.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

executeDeferred:
The executeDeferred: method runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay
interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is

VAGenFunctionPart

52 VisualAge Generator: Programmer’s Reference

read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

getBigNumReturnValue()
The getBigNumReturnValue() method returns the returnValue property
converted the type com.ibm.vgj.wgs.VGJBigNumber

getByteNumReturnValue()
The getByteNumReturnValue() method returns the returnValue property
converted the type byte[].

getIntReturnValue()
The getIntReturnValue() method returns the returnValue property
converted the type int

getLongReturnValue()
The getLongReturnValue() method returns the returnValue property
converted the type long

getShortReturnValue()
The getShortReturnValue() method returns the returnValue property
converted the type short

getStringReturnValue()
The getStringReturnValue() method returns the returnValue property
converted the type java.lang.String

VAGenFunctionPart events: The following event is associated with
VAGenFunctionPart:

hasExecuted
The hasExecuted event signals that a function or program has been
run.

VAGenVariable Part
Select the VAGenVariable part and drop it on the free form surface to enable
your program to work with a part that is created at run time. A variable is a
placeholder for the actual part, much like a parameter in an ordinary
programming language.

VAGenCommSession Part
Select the VAGenCommSession Part to add a communication session to the
free form surface. Use this part to explicitly define which communication
session your other VAGen parts use.

VAGenFunctionPart

Chapter 1. Graphical user interfaces 53

VAGenCommSession attributes: Two attributes associated with the VAGen
Communications Session part are VAGen inheritsCommSession and VAGen
commSessionOwner.

VAGen inheritsCommSession is a boolean attribute that controls how to look for
the instance of a VAGen Communications Session part when a call to a
VAGen server is being issued. If set to true, the VAGen commSessionOwner is
checked first. If the VAGen commSessionOwner is set to nil, then the parent is
checked. If the VAGen inheritsCommSession attribute is false, then the current
part will return the session that is stored in VAGen commSession.

VAGen commSessionOwner is an attribute that can be set to any instance of a
subclass of AbtAppBldrNonVisual. VAGen commSessionOwner is used in a
hierarchy of parts to control which parts actually have the VAGen commSession
attribute set to an instance of a VAGen Communications Session part. If
VAGen commSessionOwner is set, and VAGen inheritsCommSession is set to true,
the session object will be looked for in that part.

VAGenCommSession properties: The following properties are associated
with the VAGen Communications Session part:

password
Specifies the password to be used for this communications session.
This property is used in combination with the userID property. The
value needs to be available when the Java GUI requires
communication to an AS/400 server program through the Java400
protocol.

userID
Specifies the user ID to be used for this communications session. This
property is used in combination with the password property. The
value needs to be available when the Java GUI requires
communication to AS/400 server program through the Java400
protocol.

Additional VisualAge Generator Features for VisualAge Java Beans

VAGenCommSession
The VAGenCommSession property represents an object of the type
HptCommSession. This is the same type that is used when a
VAGenCommSession Part is dropped on the free-form surface.

When the first VisualAge Generator part is added to a Java bean, VAGen adds
the VAGenCommSession property to the Java bean’s interface.

The VAGenCommSession property allows users to share the communication
session created to handle server calls between multiple beans. Connecting a

VAGenCommSession Part

54 VisualAge Generator: Programmer’s Reference

VAGenCommSession Part (HptCommSession) from another bean to this
property allows the beans to share the same communication session.

If this property is not set, a communication session is created by default when
needed.

VAGenCommSession

Chapter 1. Graphical user interfaces 55

VAGenCommSession

56 VisualAge Generator: Programmer’s Reference

Chapter 2. Programs

A program refers to any of the following types of VisualAge Generator
programs:
v Programs that communicate with the user via a text (3270 or character

based) user interface.
v Stand alone batch programs.
v Called programs (server programs or local subprograms).

In short, a program is any VisualAge Generator program other than a GUI
program.

When you create a program, you must define general information such as, the
type of program you are creating, the map group the program will use, the
working storage name, the help map group, the message table prefix, and the
first map name. You also define information about function keys and
implicits. Finally, you associate logic and data parts with the program using
the main function list, the table and additional records list, and the called
parameter list.

Program elements

Table 7. Program elements

Element

C
O

B
O

L

C
+

+

Ja
va

T
E

S
T

FA
C

IL
IT

Y

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Allow
implicits

x x

Bypass edit
keys

x x c c x x x x x x x x x x x x

© Copyright IBM Corp. 1980, 2000 57

Table 7. Program elements (continued)

Element

C
O

B
O

L

C
+

+

Ja
va

T
E

S
T

FA
C

IL
IT

Y

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Called
parameter
list

x x x x x c x x x x x x x x x x x x x x x

Execution
mode

c c c c c c i c c c c c c c c x

F1-12 =
F13-24

x x x x x x x x x x x x x x x x

First map x x x c x x x x x x x x x x x x

First UI c c c c c c c c c c c x c

Flow
statements

x x

Help key x x c c x x x x x x x x x x x x

Help map
group
name

x x x x x x x x x x x x x x x x

Keep after
use

x x x x x x x x x x x x x x x x x x x x

Main
function
list

x x

Map group
name

x x x x x x x x x x x x x x x x x x x x

Message
table prefix

x x

Program
name

x x

Program
type

x c x x c c c x c x x x x x x x x x x c x

Prologue x

58 VisualAge Generator: Programmer’s Reference

Table 7. Program elements (continued)

Element

C
O

B
O

L

C
+

+

Ja
va

T
E

S
T

FA
C

IL
IT

Y

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

PSB name c c c c c c c i i i i i c c c i c i x

Structure
list

x x

Table and
additional
records list

x x

Working
storage

x x x x x c x x x x x x x x x x x x x x x

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
i Ignored.
v Supported with VisualAge Generator generation, but not with TeamConnection build
* Resource association file referenced only at runtime
blank Not supported

Note: Program elements do not apply to GUI elements.

Allow implicits

Allow implicits enables you to have the VisualAge Generator test and
generation facilities create implicit data item definitions.

Uses
Implicit data item definitions are needed for unqualified data item names
referenced in the program that are not defined in any of the records, tables, or
maps used in the program.

If you do not specify Allow implicits, the test and generation facilities bypass
all processing involved in creating implicit data items. These facilities issue
error messages for any undefined data item.

Chapter 2. Programs 59

Performance information for Allow implicits
Test and generation performance improve when you do not Allow implicits.

Target environments for Allow implicits
Supported in all environments without compatibility considerations.

Bypass edit keys

You can specify up to five function keys for the program user to use to bypass
map edits and map edit routines.

Uses
When the program user presses a bypass edit key, data is not passed to the
program, and the program continues processing at the statement following the
terminal I/O function (either the first map or a CONVERSE statement).

The data on a map when the program user presses a bypass edit key is not
saved.

PA keys are treated as bypass edit keys in a generated program.

The values specified during program specification are the default keys for the
maps used by the program. However, the values you assign for the bypass
edit keys during map definition override the values specified during program
specification.

For example, if three keys are specified during program specification, but only
one is specified during map definition, only the key specified during map
definition can be used for that map.

Note: You cannot use one function key as both a bypass edit key and the help
key.

Target environments for bypass edit keys

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO PF6 is reserved for a panel recovery function in this environment. If
you press PF6, it is treated as pressing the Clear key. The PF key
value is not passed back to the program. Avoid using PF6 in this
environment.

MVS batch Not supported.

Allow implicits

60 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS IMS reserves the PA keys so they cannot be the default bypass edit
keys. A specific PF key must be defined if the program user is
allowed to bypass edits.

If your installation uses PF12 for the IMS local copy function, you
cannot use PF12 as a bypass edit key.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Called parameter list

The called parameter list shows the names and types of parameters your
program receives.

Uses
The following can be specified for each parameter to be passed to this
program:

Name The name of the data item, record, or map received as a parameter.

Type The part type of the parameter:
v Item
v Map
v Record

Bypass edit keys

Chapter 2. Programs 61

Definition considerations for called parameter list
The following restrictions apply to parameters:
v The maximum number of parameters is 30. Parameters can be maps,

records, or data items. EZEDLPSB or EZEDLPCB can also be a parameter.

Note: If you specify EZEDLPSB or EZEDLPCB as a parameter, specify Item
as the type of parameter.

v The parameters must be listed in the same order as the arguments are listed
in the CALL statement in the calling program.

v The number of parameters must equal the number of arguments.
v The parameter definitions must be the same as or compatible with the

definitions of the call arguments. If data types are not compatible or lengths
are not the same, errors might occur during execution.

v The data item must be defined using data item definition. A data item
parameter cannot be a data item in a record, table, or map used by the
called program.

v If the program is going to be a server program called from a remote system,
the total length of all parameters must not exceed 32567 bytes.

v Parameters in the called parameter list cannot be used as I/O objects or
specified as the working storage record for the called program.

Target environments for called parameter list

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS The preprocessor requires either EZEDLPSB or EZEDLPCB when
generating for IMS/VS. Remote server programs in IMS/VS require
EZEDLPSB but cannot accept EZEDLPCBs.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

Called parameter list

62 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Execution mode

Execution mode defines the mode in which main transaction programs are
started.

Uses
The following execution modes are valid for main transaction programs:

Nonsegmented
A CONVERSE does not mark the end of a unit of work. I/O locks
and database and file positions are maintained across the CONVERSE.

Segmented
Each write to the terminal (CONVERSE or XFER with map or UI
record) is the end of a unit of work.

Single segment
A single input from a terminal is processed and the program stops
running after one of the following occurs:
v The program responds to the input.
v Control transfers to another program.

Programs running in single segment mode have the following
limitations:
v Programs cannot use the CONVERSE I/O option.
v Programs must use the XFER statement with a map and a first map

for terminal I/O operations.
v Programs with terminal I/O operations must use the XFER

statement with a map to transfer to a program with a first map.

Called parameter list

Chapter 2. Programs 63

Definition considerations for segmented
On each write to the terminal, database and file changes are committed. The
program saves the contents of records and maps across a CONVERSE, but not
across an XFER with map or UI record.

The following information is also lost on the commit:
v I/O locks
v Database and file positions
v Main storage resources

Definition considerations for single segment
Each interaction with the program user at the terminal is the end of the unit
of work. Database and file changes are committed and all resources are freed.
The only data passed to the next segment is the data in the map variable and
the data in the passed working storage record.

Target environments for execution mode

Environment Compatibility Considerations

VM CMS Segmented and single segment mode are simulated by the
following:
v Committing database changes prior to each CONVERSE
v Refreshing single user table contents
v Resetting to their default values the EZE words that are not saved

across segments.

VM batch Not supported.

CICS for
MVS/ESA

The end of a segment is the equivalent of a CICS SYNCPOINT. All
updates to recoverable files and databases are committed and all
I/O locks and positions are freed.

Nonsegmented programs run in conversational mode. Segmented
programs run in pseudoconversational mode.

For segmented programs, all main storage resources are free while
the system waits for terminal input from the program user.

MVS/TSO Same as VM CMS.

MVS batch Not supported.

Execution mode

64 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS Nonsegmented main transaction programs are not supported.
EZESEGM is ignored.

The end of a segment is a commit point. All updates to recoverable
files and databases are committed and all I/O locks and positions
are freed.

For segmented programs, all main storage resources are free while
the system waits for terminal input from the program user.

IMS conversational processing is used for segmented programs if an
IMS scratchpad area (SPA) length greater than 0 is specified as a
COBOL generation option.

IMS nonconversational processing is used for segmented programs
if SPA length is equal to 0 or it is not specified.

IMS BMP Not supported.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Ignored, all programs operate as nonsegmented.

OS/2 Same as VM CMS.

AIX Same as VM CMS.

HP-UX Same as VM CMS.

CICS for AIX Same as VM CMS.

Windows NT
(C++)

Same as VM CMS.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as VM CMS.

Solaris Same as VM CMS.

CICS for Solaris Same as VM CMS.

Test Facility None.

F1-12=F13-24

F1-12=F13-24 assigns the functions of the F1 to F12 function keys to the F13 to
F24 function keys.

Execution mode

Chapter 2. Programs 65

Uses
A program test to determine whether a single key, such as F1 has been
pressed will test true if either F1 or F13 is pressed only if F1-F12=F13-F24 is
specified.

Target environments for F1-12=F13-24

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

First map

First map specifies the name of a map to display when a main transaction
first starts.

F1-12=F13-24

66 VisualAge Generator: Programmer’s Reference

Uses
First map is an initial map on which the program user enters input before the
first function is run.

Definition considerations for first map
The program enables the user to enter input from the first map before any
other program logic runs. Any inputs are validated according to map edit
specifications.

A program with a first map starts as the result of one of the following:
v An XFER statement
v A transfer without a map from a non-VisualAge Generator program
v The program being started by a user (entering a transaction code for CICS

or IMS, running a CLIST for TSO, or running a runtime REXX exec for
VM CMS)

If the program was started using an XFER with map, the program reads the
map from the terminal prior to executing the first function. Otherwise, the
program converses the map prior to executing the first function. In this case,
the map fields are initialized as though a SET map CLEAR statement was
performed.

When the map is read, the contents of the map are validated as specified by
the map item edits. If the contents are not valid, the map displays with an
error message. If the contents are valid, execution continues with the first
function defined for the program.

First map cannot be specified for main batch, called batch, called transaction,
or web transaction programs. You cannot use the DXFR statement to transfer
control to a program that has a first map specified.

The first map must be part of the map group specified for the program.

Target environments for first map

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

First map

Chapter 2. Programs 67

Environment Compatibility Considerations

IMS/VS If the program is transferred to or from another program using
XFER with a map, the transferring and the transferred-to programs
must share the same map group.

A program with a first map can also be started with the IMS
/FORMAT command, provided there is an IMS transaction code on
the map.

A program with a first map can also start with a deferred
program-to-program message switch from a non-VisualAge
Generator program. Refer to the IMS chapter in the VisualAge
Generator Design Guide document for more information.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

First UI record

First UI record is an initial UI record to which data is passed in a program
link from one Web transaction program to another Web transaction program.
The first UI record contains the definition of the data items that receive data.

First map

68 VisualAge Generator: Programmer’s Reference

Definition considerations for First UI record
The only valid record type that can be specified as a First UI record is a UI
record. A First UI record can be specified only in a Web transaction program.

Target environments for First UI record

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only for Web transaction programs.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only for Web transaction programs.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only for Web transaction programs.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only for Web transaction programs.

AIX Valid only for Web transaction programs.

HP-UX Valid only for Web transaction programs.

CICS for AIX Valid only for Web transaction programs.

Windows NT
(C++)

Valid only for Web transaction programs.

Windows NT
(Java)

None.

CICS for
Windows NT

Valid only for Web transaction programs.

Solaris Valid only for Web transaction programs.

CICS for Solaris Valid only for Web transaction programs.

Test Facility Valid only for Web transaction programs.

Flow statements

Flow statements consist of the processing statements associated with each
main (first-level) function in the program function list. Flow statements can
identify the next main function to be executed.

First UI record

Chapter 2. Programs 69

Uses
Flow statements for a function are executed after the function is executed. If
no flow statements are specified for the function, the default flow is to execute
the next main function in the program function list.

Flow statements are described in “Chapter 10. Program processing statements”
on page 383.

Flow statements are stored with the program definition and are not part of
the function definition. A function can be used in more than one program
with different flow definitions.

Target environments for flow statements
Supported in all environments without compatibility considerations.

Help key

If the program you are creating provides help information, help key specifies
the Help function key for maps in this program.

Uses
F1 is the default help key, but you can use any function key from F1 to F24.

Note: You cannot have a function key be both a bypass edit key and the help
key.

Definition considerations for help key
You can override the default help function key for individual maps during
map definition.

Target environments for help key

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO F6 is reserved for a panel recovery function in this environment. F6
is treated as pressing the Clear key. The function key value is not
passed back to the program. Avoid using F6 in this environment.

MVS batch Not supported.

IMS/VS If your installation uses F12 for the IMS local copy function, you
cannot use F12 as a help function key.

IMS BMP Not supported.

Flow statements

70 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Help map group name

Help map group name is the name of the map group containing the help
maps you define for the program.

Uses
If your program does not provide help maps or if the help maps are in the
same map group you specified for the Map group name, you do not need to
specify the Help map group name.

Definition considerations for help map group name
Using a separate map group for your help maps is more efficient and can
save storage during execution because the help maps are loaded only when
necessary. You can specify only one help map group for each program.

Target environments for help map group name

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

Help key

Chapter 2. Programs 71

Environment Compatibility Considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Keep after use

Specify Keep after use to have the use count for this table incremented when
the program or program segment first references the table and decremented at
the end of the program.

If you do not specify Keep after use, the use count is incremented at the first
use of the table in a main function and decremented when the main function,
program, or program segment ends.

Definition considerations for keep after use
VisualAge Generator Server for MVS, VSE, and VM and VisualAge Generator
Server maintain a use count for all tables in use by a program.

Help map group name

72 VisualAge Generator: Programmer’s Reference

When the use count goes to zero, the table contents are released from memory
unless the table has been defined as Resident.

Target environments for keep after use

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility Not supported.

Main function list

The main function list shows the sequence and specifications of the main
functions that can be executed as part of the program.

Keep after use

Chapter 2. Programs 73

Uses
The function list determines the default sequence of execution. The default
logic flow begins with reading and editing the First map or First UI record, if
specified, and then executing each main function in turn, based on the order
that they appear in the main function list.

Target environments for main function list
Supported in all environments without compatibility considerations.

Map group name

Map group name is the name of the map group that contains the maps used
in your program.

Note: You must specify a map group name for all transaction programs
except web transactions.

Uses
The map group contains the maps that you will use as one of the following:
v I/O objects
v First map
v Parameters in the called parameter list
v Arguments on a CALL or XFER with map statements

A called program might use a different map group than the calling program
unless a map is a parameter passed to the called program. In this case, the
same map group must be used.

In addition, if a program transfers to another program using an XFER with a
map, the transferring and transferred-to programs must use the same map
group, or the same map must be defined in both map groups.

Performance information for map group name
For better performance, avoid sharing map groups between programs unless
all maps are the same.

Target environments for map group name

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

Main function list

74 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Message table prefix

Message table prefix is a 3 or 4 character prefix that identifies the message
table for your program. The message table contains program messages.

Uses
When the program runs, the national language support code for the
environment where the program is running supplies a suffix to the table name
prefix, forming the name of the message table. The following are the language
codes:

Code Language
CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German
ENP Uppercase English
ENU US English
ESP Spanish

Map group name

Chapter 2. Programs 75

FRA French
ITA Italian
JPN Japanese
KOR Korean
PTB Brazilian Portuguese

Note: Uppercase English is not supported by AIX, OS/2, Windows NT,
HP-UX, SCO OpenServer, and Solaris.

For example, if the table name prefix is PRX and the program was generated
with Spanish as the runtime language, then the message table name would be
PRXESP.

Definition considerations for message table prefix
The message table is accessed during test and execution when one of the
following is true:
v EZEMNO is modified.
v An edit check fails for which you have specified an alternate edit error

message.

When the program type is Web transaction:
v The table type does not have to be Message.
v The table must have 2 columns each of which is type CHA, MIX, or

UNICODE.
v The table is only accessed at the Web Server by the UI Record Java Beans

that were generated from UI Records which used the table.
v Access occurs when:

– EZEUIERR sets a given item in error.
– An edit check fails for which you have specified an alternate edit

message

The given key is used on lookup.

Target environments for message table prefix
Supported in all environments without compatibility considerations.

Program name

Program name specifies the name of the program being defined, and also the
name of the COBOL or C++ program generated for the program.

Definition considerations for program name
Naming conventions for programs:
v Maximum length is 7
v First character must be alphabetic (A-Z)

Message table prefix

76 VisualAge Generator: Programmer’s Reference

v Other characters can be alphanumeric (A-Z, 0-9)
v Cannot begin with the EZE prefix
v Cannot contain embedded blanks
v Cannot be a COBOL reserved word (in COBOL environments)
v Cannot be a DBCS name
v To avoid potential conflicts with the program names generated for the map

groups, do not end the program name with FM or P1

Target environments for program name
Supported in all environments without compatibility considerations.

Program type

Program type indicates the method of processing used by a program.

Uses
You can specify one of the following types of programs:

Main transaction
You intend to start the program by a transfer from the system or
another program.

The program user can interact with the program using maps.

Called transaction
You intend the program to be called from another program.

The program user can interact with the program using maps.

Parameters can be passed and reset by the called program.

Main batch
You intend to start the program by a transfer from the system or
another program.

The program user cannot interact with the program using maps.

Called batch
You intend the program to be called from another program.

The program user cannot interact with the program using maps.

Parameters can be passed and reset by the called program.

Server programs called from remote clients must be specified as called
batch programs.

Web transaction
You intend to start the program by a transfer from the system or
another program.

Program name

Chapter 2. Programs 77

The program user can interact with the program using HTML pages
and forms.

The Segmented execution mode is implied.

Definition considerations for Main transaction and Main batch
You can start a main transaction program or a main batch program with a
transfer from one of the following:
v the system
v a non-VisualAge Generator program
v a VisualAge Generator program

A block of working storage data can be passed to the program on transfer
from a non-VisualAge Generator program or VisualAge Generator program.
The block of storage is used to initialize the working storage record defined
for the program.

Definition considerations for Web transaction
You can start a Web transaction program with a transfer from one of the
following:
v the system
v a non-VisualAge Generator program
v a VisualAge Generator program

A First UI record can be defined and data can be passed to the First UI record
on transfer from another Web transaction program.

There are no map groups in Web transaction programs.

Target environments for program type

Environment Compatibility Considerations

VM CMS Web transaction programs are not supported.

VM batch Transaction programs are not supported.

CICS for
MVS/ESA

None.

MVS/TSO Web transaction programs are not supported.

MVS batch Web transaction programs are not supported.

IMS/VS Called transaction programs are not supported.

IMS BMP Web transaction programs are not supported.

CICS for
VSE/ESA

None.

VSE batch Same as VM batch.

CICS for OS/2 Web transaction programs are not supported.

Program type

78 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

OS/400 Web transaction programs are not supported.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Main transaction and called transaction programs are not
supported..

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Prologue

The prologue area is unformatted text that describes the program.

Uses
The use of a prologue is optional; it is commentary only and does not affect
program execution.

Target environments for prologue
Supported in all environments without compatibility considerations.

Program specification block (PSB) name

PSB name is the name of the PSB part that describes the IMS message queues
and DL/I databases used in the program.

Uses
The PSB definition is used in generating default DL/I call information.

Definition considerations for PSB name
The definition of the database PCBs in the IMS or DL/I PSB used with the
program must match the definition of the PCBs in the PSB part, except for
database names.

Program type

Chapter 2. Programs 79

Target environments for PSB name

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

The PSB name is the default DL/I PSB scheduled when the program
is executed.

The program can schedule another PSB instead of the default PSB
by moving the alternate PSB name to special function word
EZEDLPSB.

The alternate PSB is scheduled the next time PSB scheduling is
required. The program schedules the PSB on the first DL/I function
following:
v Program start
v A commit or rollback

MVS/TSO EZEDLPSB cannot be used to change the PSB name while the
program is running.

The DL/I PSB must be generated with CMPAT=YES specified on
the PSBGEN macro.

MVS batch Same as MVS/TSO.

IMS/VS The PSB part used with a main transaction or main batch program
cannot have the same name as the IMS PSB scheduled for the IMS
transaction, even though the definitions of the PSB part and the IMS
PSB must match. IMS assumes that the IMS PSB name is the same
as the program name. To avoid confusion, choose a naming
convention whereby the PSB part names can be derived in a
consistent fashion from the corresponding program and IMS PSB
name.

EZEDLPSB cannot be used to change the PSB name while the
program is running.

The IMS PSB must be generated with CMPAT=YES specified on the
PSBGEN macro.

IMS BMP The PSB name is required; otherwise same as MVS/TSO.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch EZEDLPSB cannot be used to change the PSB name while the
program is running.

CICS for OS/2 Ignored.

OS/400 Ignored.

OS/2 Ignored.

PSB name

80 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

AIX Ignored.

HP-UX Ignored.

CICS for AIX The PSB name is ignored.

Windows NT
(C++)

Same as CICS for AIX.

Windows NT
(Java)

Ignored.

CICS for
Windows NT

Same as CICS for AIX

Solaris Ignored.

CICS for Solaris The PSB name is ignored.

Test Facility None.

Structure list

Structure list is a top-down structure of all functions in the program.

Uses
The first level in the program structure is defined by the First map
specification and the program main function list. If First map is specified, the
first entry in the first level shows FIRSTMAP as the I/O option and the First
map as the I/O object. Otherwise, the first entry is the first main function in
the program.

Lower levels in the structure are defined implicitly by coding language
elements that invoke lower level functions. These language elements follow:
v FIND or TEST statement that invokes a function
v Function used as an error routine, which is invoked when an I/O error is

returned on execution of the I/O option
v Function specified as a map edit routine for a variable field on the First

map or a conversed map.

Target environments for structure list
Supported in all environments without compatibility considerations.

Table and additional record list

Table and additional records list specifies the tables and additional record
definitions needed in the program.

PSB name

Chapter 2. Programs 81

Definition considerations for table and additional record list
In the table and additional records list, the following items must be specified:
v The names of all table parts referenced in the program, including tables

specified as input edit routines for map variable fields. The list is used to
verify references to tables by function invocation statements and to assure
that the tables are available at program execution.
Do not include the name of the message table in the table and additional
records list. The name of the message table is included in the program by
the message table prefix you specify during program specification.

v Record parts only if they are not specified as the program working storage
record, as I/O objects, or in the called parameter list.
Records in the list can be used as additional temporary storage. The
program cannot reference level-77 data items in a working storage record
when the record is included using the additional records list.

v Record redefinitions needed by the program.

For each table entry in the list you can also specify Keep after use. See “Keep
after use” on page 72 for more information.

Target environments for table and additional record list
Supported in all environments without compatibility considerations.

Working storage

Working storage records define storage areas for temporary data items used in
VAGen programs.

Definition considerations for working storage
Only one primary working storage record is named in the program
specification. Use the table and additional record list to include additional
working storage records.

The primary working storage record is initialized to blanks for CHA, DBCS,
Unicode, and MIX, and zero for numeric data. For main programs, if a record
is received from the transferring program, the primary working storage record
is first initialized based on the type of data and then the received record is
moved into the primary working storage record.

If the primary working storage record is longer than the received record, the
extra data in the primary working storage record remains initialized based on
its data type.

The structure of the received record must match the structure defined in the
working storage record. Otherwise data that is not valid in the working
storage record can cause abnormal termination of the program.

Table and Additional Record List

82 VisualAge Generator: Programmer’s Reference

Target environments for working storage

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS If an input message to a main transaction consists of only the
transaction name followed by blanks, the program assumes it starts
with no working storage record being passed. The primary working
storage record is initialized based on the type of data.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

OS/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Working storage

Chapter 2. Programs 83

Working storage

84 VisualAge Generator: Programmer’s Reference

Chapter 3. Functions

A function is a logic block consisting of statements surrounding a central
function, usually an I/O operation. The central function is defined by: the I/O
option, the I/O object, and the I/O error routine. The I/O option can be a file
or database access, a write and subsequent read of a text user interface map,
or a write of a printer map.

Functions are included in a program by being named in a program main
function list, named as a map item edit routine, named as an I/O error
routine, named as a target of a TEST or FIND statement, dropped as a
Function part on a GUI definition or invoked from within another function.

Statements that can be included in a function definition are described in
Chapter 10. Program processing statements. The function elements are
described in this section.

Function elements

Table 8. Function elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

DL/I call x x x x x x x x

DL/I call -
Database
identifier

x x x x x x x x

DL/I call -
Scan for
update

x x x x x x x x

DL/I call -
Scan in
parent

x x x x x x x x

© Copyright IBM Corp. 1980, 2000 85

Table 8. Function elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

DL/I call -
Segment
search arg

x c c x x c c x

Function x

Function
description

x x

Function
local storage
list

x x x x x x x x x x x g g x x x x x x x x x x

Function
name

x x x x x x x x x x x g g x x x x x x x x x x

Function
parameter
list

x x x x x x x x x x x g g x x x x x x x x x x

Function
return value

x x

I/O error
routine

x x

I/O object x

I/O option -
ADD

c c x c c c c c c c x c c c c c c c c c x

I/O option -
CLOSE

x x c x c c c c c c x x x x c x c x c c x

I/O option -
CONVERSE

c x c c c x c c x x x x x x x x c x

I/O option -
DELETE

x x x x x x x x x x x x x x x x x x x c x

I/O option -
DISPLAY

x x x x x c x x x x x x x x x x x x x x

86 VisualAge Generator: Programmer’s Reference

Table 8. Function elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

I/O option -
EXECUTE

x x x x x x x x x x x g g x x x x x x x x x x

I/O option -
INQUIRY

x x x x x x x x x x x x x x x x x x x c x

I/O option -
REPLACE

x x x x x x x x x x x x x x x x x x x c x

I/O option -
SCAN

x x c x c c c c c c x x x x x x x x x c x

I/O option -
SCANBACK

c c x c c c x c x c x x x x x x x x x

I/O option -
SETINQ

x x x x x x x x x x x x x x x x x x x c x

I/O option -
SETUPD

x x x x x x x x x x x x x x x x x x x c x

I/O option -
SQLEXEC

x x x x x x x x x x x x x x x x x x x c x

I/O option -
UPDATE

x x x x x x x x x x x x x x x x x x x c x

SQL
statement

x x x x x x x x x x x x x x x x x x x x

SQL
statement -
Declare
cursor with
hold

c c x x x x x c c x x x x x x x x x x x

SQL
statement -
Execution
time
statement
build

x x x x x x x x x x x x x x x x x x x x

Chapter 3. Functions 87

Table 8. Function elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

SQL
statement -
Model SQL
statement
generation

x x x x x x x x x x x x x x x x x x x x

SQL
statement -
Single row
select

x x x x x x x x x x x x x x x x x x x x

SQL
statement -
UPDATE or
SETUPD
function
name

x x x x x x x x x x x x x x x x x x x x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Note: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
g The part or some of its features can be connected in a GUI application
blank Not supported

DL/I call

A DL/I call is created when a function uses an I/O object that is a segment in
a DL/I database.

Uses
A default DL/I call is generated automatically based on the I/O option, the
definition of the DL/I segment, and the definition of the database structure in
the PSB part. The default call specification can be modified by the developer.

88 VisualAge Generator: Programmer’s Reference

Target environments for DL/I call
See the following pages for the individual elements that make up the DL/I
call definition.

DL/I call - Database identifier

Database identifier identifies the database in the program PSB that is to be
accessed by this DL/I call.

Uses
Database identifier is a combination of program control block (PCB) number
and database name. The number identifies which PCB in the program
specification block (PSB) is to be used when the database name appears in
more than one PCB in the PSB definition.

The default value is the database name for the first PCB in the PSB that
contains a segment with the same name as the I/O object.

Target environments for Database identifier

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

DL/I call

Chapter 3. Functions 89

Environment Compatibility Considerations

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

DL/I call - Scan for update

Scan for update specifies whether a segment retrieved by a SCAN I/O option
can be replaced or deleted.

Uses
If you do not specify scan for update, you cannot replace or delete the DL/I
segment after a SCAN I/O option.

Target environments for Scan for update

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

DL/I call - Database identifier

90 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

DL/I call - Scan in parent

Scan in parent specifies whether the scan range of a DL/I call is limited to the
parent chain of the database hierarchy.

Uses
If you do not specify Scan in parent, the next segment of that type in the
database is retrieved regardless of the parent chain.

Target environments for Scan in parent

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

DL/I call - Scan for update

Chapter 3. Functions 91

Environment Compatibility Considerations

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

DL/I call - Segment search arguments

Segment search arguments (SSAs) identify the segments in the database to be
accessed on a DL/I call. An SSA can also contain command codes that control
the type of processing performed and qualification statements that specify
search criteria for segment selection.

Uses
SSAs are automatically generated for you based on the I/O option and the
position of the object segment in the database hierarchy in the PSB definition.
You can modify the default SSAs to change the processing performed by the
DL/I call.

You can enter the following information when modifying the SSA list:

Segment name
The name of the segment accessed by the SSA. The segment must be
defined in the parent chain that goes from the object segment back to
the root segment in the database hierarchy.

DL/I call - Scan in parent

92 VisualAge Generator: Programmer’s Reference

Command codes
Command codes are optional codes that identify special processing to
be performed. Up to 4 codes can be entered in the command code
column. Refer to the IMS documentation for a more detailed
description of the command codes.

The following command codes are valid for SSAs:

C Use the concatenated key to select this segment. When C is specified
as a command code, the Segment Field, Boolean Op, and Op fields of
the SSA must be left blank. The Comparison Value Item names a data
item that contains the entire concatenated key for the segment.

D This code allows the retrieval or insertion of multiple segments in a
hierarchical path. This code is not required for the lowest level
segment, since it is always retrieved or inserted. Specify this code for
any higher level segment to be retrieved on INQUIRY, UPDATE, or
SCAN options. For an ADD option, specify this code only for the
highest level segment you want inserted, to add that segment and all
segments at lower levels.

VisualAge Generator Developer handles I/O buffering for segments
retrieved or written using the D command code. If you retrieve
multiple segments for update using the D code, a REPLACE option
with the lowest level segment as the object will replace all the
segments that were retrieved with the D code.

The path call processing option (P) must be specified in DL/I PSB
generation if the D command code is used.

F For the SCAN option, start scanning from the first occurrence of this
segment type under its parent. For the ADD option, this code is
effective only for segments with non-unique or no sequence field, and
the segment is inserted at the first position within its parent.

L For INQUIRY, UPDATE, and SCAN options, retrieve the last
occurrence of this segment type under its parent. If qualification
statements are present, retrieve the last segment that satisfies the
search criteria. For the ADD option, this code is effective only for
segments with non-unique or no sequence field, and the segment is
inserted at the last position within its parent.

N Do not replace this segment on a replace call even though it was
retrieved on the get for update call.

P Set parent position for get next in parent (SCAN) at the hierarchy
level represented by this segment.

Q Lock the retrieved segments until checkpoint or PSB termination.

DL/I call - Segment search arguments

Chapter 3. Functions 93

Note: If you used the Q command code in coding DL/I calls for CICS
in other languages, you followed the Q command code with an
A for IMS compatibility. However, do not enter the A here.
VisualAge Generator Developer supplies the A when it builds
the final SSA list at execution time.

U Do not move the database position from this segment while searching
its hierarchical dependents.

V Like U except that the command code is automatically set at all higher
levels in the call.

The following command codes are supported only in the IMS/VS, IMS BMP,
and CICS for MVS/ESA environments. Use these codes to access subsets of a
special type of database called a fast path data entry database (DEDB). To
identify the subset you are accessing, enter the command code followed by an
integer from 1 to 8.

M Move subset pointer to next occurrence of the segment in the segment
chain.

R Retrieve first occurrence of the segment in the subset.

S Set the subset pointer unconditionally to the current position.

W Set the subset pointer conditionally to the current position.

Z Set the subset pointer to 0.

Certain command codes are applicable only to certain I/O options. The
following table identifies the applicable command codes:

Option Command Codes Fast Path Command Code
INQUIRY D, L, Q, U, V, C, P M, R, S, W, Z
UPDATE D, L, Q, U, V, C, P M, R, S, W, Z
ADD D, L, F, U, V, C M, R, S, W, Z
REPLACE N M, S, W, Z
DELETE None Z
SCAN D, L, F, Q, U, V, C, P M, R, S, W, Z

Command codes are optional. If none are specified, none are used. The R and
F, R and Q, L and F, or U and V command codes cannot both be entered in
the command code field for the same SSA. In addition, only one of the M,S,W,
and Z command codes can be used in the same SSA.

You can only have one C command code in a set of SSAs. On an INSERT call,
the following apply:
v A qualified SSA cannot follow a D command code.

DL/I call - Segment search arguments

94 VisualAge Generator: Programmer’s Reference

v A C command code cannot follow any SSA with a D command code.

Segment field
A qualification statement consists of a segment field, a relational
operator, and a comparison value item. The segment field identifies
the name of the field used for segment selection. You must specify the
field name as defined in the DL/I database description.

When the program runs, DL/I compares the value in the segment
field with the value in the comparison value item to determine
whether the segment qualifies for selection.

The default value used in the generated SSA list is the name of either
the segment’s key item or the index key defined for the segment in
the PSB. If both are defined, the name of the index key is the default.
If neither key is defined, no qualification statement is generated for
the segment.

Relational operator
The following relational operators are used for comparing the segment
values and the Comparison Value Item:
EQ (=) Equal
NE (¬=)

Not equal
GT (>)

Greater than
GE (>=)

Greater than or equal
LT (<) Less than
LE (<=)

Less than or equal

Comparison Value Item
The Comparison Value Item is the name of an item in a record, table,
or map. When the program runs, the value in this item is used as the
field value in building the SSA for the DL/I call. The field value is
compared to the contents of the Segment Field. If the comparison is
true, the search criteria of this qualification statement is satisfied.

The item name can be qualified and/or subscripted. Literals cannot be
used for the item name. If no qualifier is specified, the segment name
from the current SSA is used as the qualifier. If that segment does not
contain the item, the I/O object name is used as the default qualifier.

The default value is the name of either the segment’s key item or the
index key defined for the segment in the PSB. If both are defined, the
name of the index key is the default.

Both the Segment Field and the Comparison Value Item must have
the same length. If the Segment Field is defined to the VisualAge

DL/I call - Segment search arguments

Chapter 3. Functions 95

Generator Developer, the preprocessor verifies that the lengths are
equal. If the Segment Field is not defined to the generator, you are
responsible for ensuring that the fields have equal length.

Boolean operator
The Boolean operator identifies the presence of an additional
qualification statement and shows how the true or false values of the
qualification statements are to be combined.

A Boolean operator in the continuation line indicates that there are
additional qualifications for the SSA. On the continuation line, you
leave the segment name field and command code field blank and
enter data in the qualification statement fields only.

Valid Boolean operators are:

& or AND
AND operator

| or OR
OR operator

Note: Boolean operator “#:” (independent AND) is not supported.
The “**” and “+” forms of the AND and OR operators are not
supported.

For a segment to satisfy an SSA with multiple qualification statements,
a segment can satisfy any set of qualification statements. A set consists
of a sequence of qualification statements that are joined by AND
operators. To satisfy the set, a segment must satisfy each of the
qualification statements in the set. Each OR starts a new set of
qualification statements.

No Boolean operators are used in the default SSA list built by the
VisualAge Generator Developer.

Definition considerations for Segment search arguments
You can specify most parameters for a DL/I call. The only DL/I call
parameters you cannot specify are the address of the I/O area and the
function code. The generated program takes care of I/O area allocation for
you. The function code is determined from the I/O option and the SCAN
parameters.

The function codes used for each I/O option are the following:

I/O OPTION SCAN FOR
UPDATE

SCAN IN
PARENT

DL/I FUNCTION

INQUIRY Get Unique

DL/I call - Segment search arguments

96 VisualAge Generator: Programmer’s Reference

UPDATE Get Hold Unique

ADD Insert

REPLACE Replace

DELETE Delete

SCAN No No Get Next

SCAN Yes No Get Hold Next

SCAN No Yes Get Next in Parent

SCAN Yes Yes Get Hold Next in Parent

Target environments for Segment search arguments

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO Command codes M, R, S, W, and Z are not supported.

MVS batch Same as MVS/TSO.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

Command codes C, M, P, R, S, W, and Z are not supported.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

DL/I call - Segment search arguments

Chapter 3. Functions 97

Environment Compatibility Considerations

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Function

A function is built around a specific action called an I/O option. An I/O
option is the I/O to be performed by a function, such as displaying a map or
gaining access to a record.

You name the map or record used as the object of the function, which is called
the I/O object, in the function specifications. You use only one I/O object per
I/O option.

Uses
You can place additional statements in the function definition, either before or
after the I/O option.

Target environments for function
Supported in all environments without compatibility considerations.

Function description

Function description is a text string from 1 to 30 characters that describes a
function.

Uses
Function description is optional and does not affect execution.

Target environments for function description

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

DL/I call - Segment search arguments

98 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Function local storage list
The local storage list shows the names and types of storage areas may that
may be accessed solely by this function.

Uses
The following can be specified for each local storage area:
Name The name of the data item or record used as a local storage area.
Type The part type of the local storage area:

v Item
v Record

Description
The description of the local storage area. This is not the description of
the shared data item in the library.

Function description

Chapter 3. Functions 99

Item Usage
Item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the function definition.

Item usage can be set to the following:
v Nonshared - These characteristics apply only to the definition of the

item in this function and the characteristics are stored with the
function containing the item in its local storage list.

v Shared - These characteristics apply wherever a shared item with
the same name is defined in any data structure. Shared
characteristics are stored in a data item part, independent of the
data structures, function local storage lists, or function parameter
lists to which they belong.

Item Type
Data item type specifies the internal format or type of data. The data
type determines how the item is processed when referenced in
processing statements.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE

Unicode character data
Item Bytes

Item bytes specify the number of bytes required to store the data item
internally.

Item Decimal Places
Item decimal places specifies the number of places reserved to the
right of an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function local storage list
For records, the local storage name must be the name of a working storage
record part in the library. The part definition defines the storage layout of the
local storage data.

Defining a local storage data item does not create a data item part in the
library unless it is flagged as a shared item definition.

Local storage is not initialized upon entry into a function. Therefore, the user
should make no assumptions as to any of the local storage data area values.

Function local storage list

100 VisualAge Generator: Programmer’s Reference

The scope of reference for a record or item named as local storage for a
function is limited to that function only. If it is to be known by any other
function, it must be passed to that function as an argument. If it is to be
known to the caller, then it should not be a local storage definition. It should
be a shared definition or be received via a parameter instead. The same record
or item can be named in the local storage list for more than one function.
Each function gets a separate copy of the storage mapped by the definition.

Definition of a local storage area that has the same name as a global program
variable hides the global program variable from direct reference by the
function. The function cannot modify the global variable in this case.

Target environments for function local storage list
Supported in all environments without compatibility considerations.

Function name
The function name identifies a set of logic that can perform an I/O operation.

Uses
See Appendix B. Naming conventions for data item, record, function names
for function naming conventions.

Target environments for function name
Supported in all environments without compatibility considerations.

I/O error routine
I/O error routine is the name of an error handling subroutine. An error
routine is started when an error occurs during execution of an I/O option that
accesses a record.

Uses
If you do not specify an error routine, a program ends when an error occurs
with a message describing the error condition. This includes standard
situations such as the end-of-file (EOF) condition.

You cannot specify error routines for functions with map I/O objects or for
EXECUTE functions. Display or printer errors cause the program to end.

The error routine can be any of the following:
v A valid special function word (EZERTN, EZEFLO, EZECLOS)
v The name of a function.

If the error routine is a main function, then control is transferred to that
function when an error occurs and does not return to the failing I/O option.
Otherwise, control returns to the statement following the I/O option after the
error routine ends. When a function invoked as an error routine is defined to
have a return value, the return value is ignored.

Function local storage list

Chapter 3. Functions 101

You can test error codes returned by the system using the TEST, WHILE, and
IF statements.

Target environments for function error routine

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O error routine

102 VisualAge Generator: Programmer’s Reference

Function parameter list
The parameter list shows the names and types of parameters that are received
by the function. The list is an ordered list of data areas to be accessed solely
by this function.

Uses
The following can be specified for each parameter:
Name The name of the data item or record used as a parameter.
Type The part type of the parameter:

v Item
v Map Item
v SQL Item
v Record

Description
The description of the parameter. This is not the description of the
shared data item in the library.

Item Usage
Item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the function definition.

Item usage can be set to the following:
v Nonshared - These characteristics apply only to the definition of the

item in this function and the characteristics are stored with the
function containing the item in its parameter list.

v Shared - These characteristics apply wherever a shared item with
the same name is defined in any data structure. Shared
characteristics are stored in a data item part, independent of the
data structures, function local storage lists, or function parameter
lists to which they belong.

Item Type
Data item type specifies the internal format or type of data. The data
type determines how the item is processed when referenced in
processing statements.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE

Unicode character data

Function parameter list

Chapter 3. Functions 103

ANYCHA
Character data of any length

ANYDBCS
Double-byte character data of any length

ANYHEX
Hexadecimal data of any length

ANYMIX
DBCS data mixed with single-byte character data of any
length

ANYNUMERIC
Bin, Num, Numc, Pacf, or Pack data of any length with any
number of decimal places

ANYUNICODE
Unicode data of any length

Item Bytes
Item bytes specify the number of bytes required to store the data item
internally.

Item Decimal Places
Item decimal places specifies the number of places reserved to the
right of an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function parameter list
For records, the parameter name must be the name of a working storage
record part in the library. The part definition defines the storage layout of the
parameter received by the function.

Defining a parameter data item does not create a data item part in the library
unless it is flagged as a shared item definition.

For items with one of the ANY item types; bytes and decimals are not
allowed. For map item parameters, the only valid parameter item types are:
NUM, CHA, DBCS, MIX, ANYNUMERIC, ANYCHA, ANYDBCS, and
ANYMIX. For SQL item parameters, the only valid parameter item types are:
BIN, CHA, DBCS, HEX, PACK, ANYNUMERIC, ANYCHA, ANYDBCS, and
ANYHEX.

Defining item parameters as one of the ANY item types specifies loose typing
of the parameter. The 4GL statements in the function operate on the
parameter using the data item definition specified for the argument. ITF and
the C++ generator implement loosely typed parameters by passing the
arguments as item objects which contain the item definition as well as the
item value. The COBOL generator implements loosely typed parameters by
generating multiple copies of the function code, one copy for each unique
combination of loosely typed argument definitions used within the program.

Function parameter list

104 VisualAge Generator: Programmer’s Reference

Defining item parameters with a data type other than one of the ANY item
types specifies strong typing of the parameter. Bytes, decimals, and a specific
data type are either specified or defaulted for you. Test and generation will
require exact matches between arguments and parameters when strong typing
is used.

When map or SQL items are passed as arguments, the item state is available
to the logic of the receiving function. This is so the user can test for and
modify the state of the item. For example, TEST SQL-item TRUNC true,false;
or SET map-item MODIFIED;. This may imply that the state of the map
containing the map-item is updated as well. In order to test or set map
conditions, the Parameter type must be Map Item. Likewise, in order to test or
set SQL item conditions, the Parameter type must be SQL item. A parameter
whose type is Map Item must be passed a map item as an argument. A
parameter whose type is SQL Item must be passed an SQL item as an
argument. Map or SQL items may be received into a parameter whose
Parameter type is Item, but the specific map item state information and SQL
item state information will not be available. An attempt to reference the state
information in this case will result in an error in ITF and in the preprocessor.

EZEwords cannot be specified as parameters.

When records are passed as arguments, their level-77 items are not passed.
Only the data structure is passed. The function receives a string of data and
then accesses it using the parameter record definition. The length of the
parameter record definition must be less than or equal to the argument record
length. If the argument length is greater than the parameter length, the
invoked function only has access to the amount of data defined by the
parameter definition.

Functions may receive arrays as parameters only as part of a record. When a
function that has no parameters defined is named as a map edit routine, the
map array is available to the function by its map array name.

The scope of reference for a record or item named as a parameter for a
function is limited to that function only. The same record or item can be
named in the parameter list for more than one function. Each function gets a
separate copy of the storage mapped by the definition.

Parameters are passed by reference. Therefore when a global variable is
passed as an argument to a function and the function modifies the value of
the parameter it received, then the value of the global variable has been
modified. Definition of a parameter, local storage, or return value that has the
same name as a global program variable hides the global program variable
from direct reference by the function. The function cannot modify the global
variable in this case.

Function parameter list

Chapter 3. Functions 105

Target environments for function parameter list
Supported in all environments without compatibility considerations.

Function return value
The return value defines the characteristics of a data area that is returned to
the invoking function upon termination of this function. Any value specified
on an EZERTN statement must be compatible with the characteristics defined.
Each function has one and only one return value.

Uses
The following can be specified for the function return value:
Description

The description of the return value.
Type Type specifies the internal format or type of data. The data type

determines how the return value is processed.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE

Unicode character data
Bytes Bytes specify the number of bytes required to store the data item

internally.
Decimal Places

Decimal places specifies the number of places reserved to the right of
an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function return value
Return values are defined with strong typing. Bytes, decimals, and a specific
data numeric type are either specified or defaulted for you. Upon exit from
the function, the return value is assigned to the receiving data area according
to move compatibility rules.

If a return value definition is specified, all EZERTN statements in that
function must have an argument specified. If a return value definition is not
specified, there may be EZERTN statements, but none of them may have an
argument specified. If the logic of the function is such that the routine falls
through to the end without executing an EZERTN statement, an implicit
EZERTN is executed, returning a temporary storage area that is initialized to a
default value according to the definition.

Function parameter list

106 VisualAge Generator: Programmer’s Reference

Target environments for function return value
Supported in all environments without compatibility considerations.

I/O object
I/O object is the name of a record or map accessed by the I/O option.

Uses
If the I/O option is EXECUTE, an I/O object is not allowed. If the I/O option
is SQLEXEC, the I/O object is optional. All other I/O options require an I/O
object.

Target environments for I/O object

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

Function return value

Chapter 3. Functions 107

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option
I/O option is the I/O operation in a function.

Uses
Only one option can be specified per function. EXECUTE is the default
option.

The following are the I/O options that can be specified:
v ADD
v CLOSE
v CONVERSE
v DELETE
v DISPLAY
v EXECUTE
v INQUIRY
v REPLACE
v SCAN
v SCANBACK
v SETINQ
v SETUPD
v SQLEXEC
v UPDATE

Each option is described individually on the pages that follow.

Target environments for I/O option
The behavior of an I/O option varies with the type of file or database being
accessed. The file type is determined from the record organization specified
for the I/O object and the system file type associated with the record file
during generation. Refer to the VisualAge Generator Generation Guide for more
information on records and resource association files.

See the individual descriptions of the I/O options for variations in I/O option
behavior based on target environment and file type.

I/O object

108 VisualAge Generator: Programmer’s Reference

I/O option - ADD
The ADD I/O option places a new record in a file, database, or message
queue. The program should initialize all fields in the record before processing
the ADD I/O option.

Uses
ADD is valid for DL/I segment, indexed, message queue, relative, serial and
SQL row records.

Definition considerations for ADD
When you use an ADD function with a serial file, records are automatically
appended to the end of the file. Exceptions are noted under the target
platform compatibility considerations.

When you use an ADD function with a DL/I segment, the program should
initialize the key fields of all segments that are parents of the segment being
added.

When you use an ADD I/O option with an SQL row record, items in the
record marked as read-only are not written to the database.

When you use the ADD I/O option to add a message queue record to a
message queue, VisualAge Generator automatically specifies the MQSeries
calls appropriate for the state of the queue:
MQCONN

Connect the VisualAge Generator program to the default queue
manager if no connection is active

MQOPEN
Establish access to the queue if the queue is not open

MQPUT
Put the message queue record in the queue

Some file types do not allow an ADD and SCAN function for the same serial
file to be done in the same program. When using both an ADD and a SCAN
function for a serial file in the same program, the file is closed and reopened
whenever the program changes from adding to scanning or from scanning to
adding. When the file is closed, file position is lost. Therefore, the first SCAN
function after an ADD function reads the first record from the file. The
following list identifies the file types that support both the ADD and SCAN
I/O option in the same program:

File type ADD and SCAN supported

GSAM No

MMSGQ No

OS2COBOL Yes

I/O option - ADD

Chapter 3. Functions 109

SEQ Yes

SEQRS Yes

SMSGQ No

SPOOL No

TEMPAUX Yes

TEMPMAIN Yes

TRANSIENT Yes

VSAM Yes

VSAMRS Yes

Target environments for ADD

Environment Compatibility Considerations

VM CMS The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using the DISP MOD option on the CMS FILEDEF
command. Until the file is closed, subsequent ADD functions place
data following the previously added data.

VM batch Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using the MOD option on a TSO ALLOCATE command.
Until the file is closed, subsequent ADD functions place data
following the previously added data.

MVS batch The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using DISP=MOD in the JCL for the batch job. Until the
file is closed, subsequent ADD functions place data following the
previously added data.

An ADD function for a serial record assigned to a GSAM file results
in an ISRT command to the GSAM database. The program starts
adding the records at the beginning of the file unless the file is
allocated using DISP=MOD in the JCL for the batch job.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

I/O option - ADD

110 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS A serial record must be associated with an alternate PCB (a TP PCB
in the PSB). The IMS message header (length, ZZ field, and
transaction code) is automatically added to each record written to
the message queue. An ADD function for a serial record assigned to
a message queue results in an ISRT call to the message queue.

If an error occurs and the record is assigned to a multiple segment
message queue and associated with PCB #2 (the express PCB), any
records already added are committed, even if an explicit CLOSE
function has not occurred. If it is important that these records are
not committed, include an additional express PCB in the PSB and
associate the file with the additional express PCB.

IMS BMP An ADD function to a serial non-VSAM file adds data to the
beginning of the file and loses all previous data, unless the file is
allocated using DISP=MOD in the JCL for the batch job. Until the
file is closed, subsequent ADD functions place data following the
previously added data.

An ADD function for a serial record assigned to a message queue
results in an ISRT call to the message queue. The IMS message
header (length, ZZ field, and transaction code) is automatically
added to each record written to the message queue.

An ADD function for a serial record assigned to a GSAM file results
in an ISRT to the GSAM database. The program starts adding the
records at the beginning of the file unless the file is allocated using
DISP=MOD in the JCL for the batch job.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

CICS for
VSE/ESA

The first ADD function to a SPOOL file creates a new VSE/POWER
queue part and adds the data to the beginning of the file. Until the
file is closed, subsequent ADD functions place data following the
previously added data.

Once a SPOOL file that is a VSE/POWER LST or PUN queue part is
closed, a subsequent ADD function to that file creates a new
segment for that queue part.

Once a SPOOL file that is a VSE/POWER RDR queue part is closed,
a subsequent ADD function to that file creates a new RDR queue
part that is processed as a separate batch job.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 Use with message queue records is not supported.

OS/400 None.

I/O option - ADD

Chapter 3. Functions 111

Environment Compatibility Considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) If the file is a native serial file and the /REPLACE option was
specified for the file in the resource association file, the first ADD
adds the record to the beginning of the file. All previous data in the
file is lost.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Serial, SQL, and message records are the only supported I/O
objects.

CICS for
Windows NT

Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

I/O option - CLOSE
The CLOSE I/O option can do any of the following:
v Close a file
v Disconnect a printer
v Release any unprocessed rows in a set of SQL row records selected by the

UPDATE, SETUPD, or SETINQ I/O option
v Close a message queue

Uses
CLOSE is valid for indexed, message queue, relative, serial or SQL row
records and for printer maps.

Definition considerations for CLOSE
The function of the CLOSE I/O option varies with the type of I/O object and
the system on which a CLOSE is issued.

Files If the I/O object is a file, the CLOSE I/O option results in system
close for the file. If you use EZEDEST to change the resource name
associated with a file that is currently open, that file is closed on the
next I/O option issued for the file. You do not need to explicitly
specify the CLOSE I/O option for the previously opened file.

I/O option - ADD

112 VisualAge Generator: Programmer’s Reference

If the program ends before all files are closed, VisualAge Generator
Server for MVS, VSE, and VM and VisualAge Generator Server ensure
that all files are closed.

Message queue
If the I/O object is a MQSeries message queue, the CLOSE I/O option
closes the queue.

Printer maps
If the I/O object is a printer map, the CLOSE I/O option issues a
form feed and then either disconnects from the printer or closes the
printer file on systems where the print lines are spooled to a file.

When you use EZEDESTP to change the print destination, use a
CLOSE I/O option to close the print file specified by the current value
of EZEDESTP. Issue a CLOSE I/O option for each destination you use,
because multiple print files can be open at the same time.

If the program ends before all printers are closed, VisualAge
Generator Server for MVS, VSE, and VM and VisualAge Generator
Server ensure that all printers are closed.

SQL row record
If the object is an SQL row record, a CLOSE I/O option results in a
CLOSE cursor when an SQL cursor is open for the record.

Cursors that were declared using CURSOR WITH HOLD are not
closed on a COMMIT. But a rollback or a CONNECT function will
close all cursors including those declared using a WITH HOLD.

The CLOSE function for an SQL row record is performed
automatically when:
v The SCAN loop following a SETINQ or SETUPD function continues

until a no record found (NRF) condition is encountered, indicating
all rows in the set were processed.

v A single row is read for an INQUIRY function.
v A REPLACE or DELETE function for the same I/O object is

executed following an UPDATE function.
v Another INQUIRY, UPDATE, SETINQ, or SETUPD function is

executed for the same I/O object. Only one set of rows can be
selected for a specific SQL row record at a time.

v A program transfers to another program.
v Database changes are committed or rolled back.

Target environments for CLOSE

Environment Compatibility Considerations

VM CMS None.

I/O option - CLOSE

Chapter 3. Functions 113

Environment Compatibility Considerations

VM batch None.

CICS for
MVS/ESA

For SPOOL files, the SPOOL CLOSE command is executed for the
file. For all other files, the CLOSE function does not physically close
a file, it resets the position pointer to the beginning of the file. The
CLOSE I/O option does not delete temporary storage files.

Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE as well as at the end of a program.

MVS/TSO None.

MVS batch A CLOSE function for a record or printer map assigned to a VSAM
or MVS sequential file results in an OS CLOSE for the file.

A CLOSE function for a serial record assigned to a GSAM file
results in a CLSE call to the GSAM database.

A CLOSE function for a printer map assigned to a GSAM file results
in a form feed followed by a CLSE call.

IMS/VS A CLOSE function for a serial record assigned to a message queue
for output results in a PURG call to the message queue.

A CLOSE function for a serial record assigned to a message queue
for input is ignored.

A CLOSE function for a printer map results in a form feed followed
by a PURG call.

When a main program ends or when a program called by a
non-VisualAge Generator program ends, a form feed is issued for
each destination to which printer maps were sent, followed by a
PURG call for that destination.

A main program is considered to have ended when it finishes its
last function or does an EZECLOS, an XFER, or a DXFR.

A form feed and a PURG call are also issued for each destination
when a segmentation break occurs at a CONVERSE function.

A form feed and CLOSE function are not done when a program
called by another VisualAge Generator program ends.

I/O option - CLOSE

114 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS BMP A CLOSE function for a record or printer map assigned to a VSAM
or MVS sequential file results in an OS CLOSE for the file.

If the GSAM file is open due to an I/O function other than CLOSE,
a CLOSE function for a serial record assigned to a GSAM file results
in a CLSE call to the GSAM database.

A CLOSE function for a printer map assigned to a GSAM file results
in a form feed followed by a CLSE call.

A CLOSE function for a serial record assigned to a message queue
for output results in a PURG call to the message queue.

A CLOSE function for a serial record assigned to a message queue
for input is ignored.

A CLOSE function for a printer map assigned to a message queue
results in a form feed followed by a PURG call.

When a main program ends or when a program called by a
non-VisualAge Generator program ends, a form feed is issued for
each message queue destination to which printer maps were sent,
followed by a PURG call for that destination.

CICS for
VSE/ESA

For SPOOL files, a CLOSE function results in a CLOSE
VSE/POWER access service request for that part. For all other files,
a CLOSE function does not physically close a file, it resets the
position pointer to the beginning of the file. A CLOSE function does
not delete temporary storage files.

Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE function as well as at the end of a
program.

VSE batch For SPOOL files, a CLOSE function results in a CLOSE
VSE/POWER access service request for that part. A CLOSE function
for a record or printer map assigned to a file with the type SEQ,
VSAM, or VSAMRS results in a system close for the file.

CICS for OS/2 For all files, the CLOSE function does not physically close a file, it
resets the position pointer to the beginning of the file. The CLOSE
function option does not delete temporary storage files.

Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE as well as at the end of a program.

Using CLOSE with a message queue record is not supported.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

I/O option - CLOSE

Chapter 3. Functions 115

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX CLOSE for CICS files does not physically close the file, it resets the
position pointer to the beginning of the file. The CLOSE does not
delete temporary storage files.

Windows NT
(C++)

None.

Windows NT
(Java)

Serial, SQL, and message records are the only supported I/O
objects.

CICS for
Windows NT

Same as CICS for AIX.

Solaris None.

CICS for Solaris CLOSE for CICS files does not physically close the file, it resets the
position pointer to the beginning of the file. The CLOSE does not
delete temporary storage files.

Test Facility None.

I/O option - CONVERSE
If the program type is Web transaction, CONVERSE sends a user interface
(UI) record and waits for input from the program user. If the program type is
not Web transaction, CONVERSE displays a map and waits for input from the
program user.

CONVERSE is valid only for display maps (3270 user interface screens) or UI
records.

Using the CONVERSE I/O option with a map
If the CONVERSE I/O option sends a map, edit validation is bypassed if the
program user presses an attention key or a function key defined as a bypass
edit key.

Using the CONVERSE I/O option with a UI record
If the CONVERSE I/O option sends a UI record, all edits are bypassed if the
submit value sent back is defined as a Submit Bypass item.

Definition considerations for CONVERSE with maps
If the CONVERSE I/O option sends a map and the program user presses
Enter or a function key, the data entered by the program user is read and
validated as specified in the map variable field edit definitions. If the data

I/O option - CLOSE

116 VisualAge Generator: Programmer’s Reference

entered is not valid, the map appears again without passing the input to the
program for processing. A message prompts the user to correct the data in
error.

Definition considerations for CONVERSE with UI records
If the CONVERSE I/O option sends a UI record and the program user
submits the HTML page to the server:
v The specified edit validations occur at the Web Server where the UI Record

beans have been deployed:
– If the specified edit validations fail, the HTML page is sent back to the

user. The HTML page can access error messages available in the UI bean.
The default generated HTML page will show the error directly
underneath the field in error.

– If the specified edit validations succeed, the data is passed back to the
program and any user defined edit functions are run on the server. If
any of the user defined edit functions fail, the CONVERSE of the UI
record is repeated, otherwise the program continues on after the
CONVERSE statement.

Target environments for CONVERSE

Environment Compatibility Considerations

VM CMS UI records are not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO UI records are not supported.

MVS batch UI records are not supported.

IMS/VS Multiple partial maps cannot be used for terminals because the
screen is erased before the map displays.

PA2 cannot be used as a bypass edit key.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 UI records are not supported.

OS/400 UI records are not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

I/O option - CONVERSE

Chapter 3. Functions 117

Environment Compatibility Considerations

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

UI records are the only supported I/O objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - DELETE
DELETE removes a record from a file or database.

Uses
DELETE is valid for relative, indexed, DL/I segment and SQL row records.

You must first obtain the record by an UPDATE function or a SCAN for an
update function for DL/I or relational databases.

Target environments for DELETE

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

I/O option - CONVERSE

118 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - DISPLAY
DISPLAY sends a map to a printer or to a terminal output buffer.

Uses
If a map is sent to a terminal output buffer, the buffer contents are sent to the
screen when the next CONVERSE occurs.

The DISPLAY option serves the following two purposes:
v Sends a map to a printer
v Sends a number of maps to the screen at once. The maps can be floating

maps or fixed maps, each of which only partially fills the screen. Each
DISPLAY option sends a map to the terminal I/O buffer until the
CONVERSE option of a subsequent map causes all the accumulated maps
(including the conversed map) to be sent to the screen.

DISPLAY is valid for both terminal and printer maps.

Target environments for DISPLAY

Environment Compatibility Considerations

VM CMS None.

I/O option - DELETE

Chapter 3. Functions 119

Environment Compatibility Considerations

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS The DISPLAY I/O option is only supported for printer maps.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - EXECUTE
EXECUTE is not associated with an I/O operation. EXECUTE has no I/O
object (map or record).

I/O option - DISPLAY

120 VisualAge Generator: Programmer’s Reference

Uses
Use EXECUTE for special processing, such as controlling the flow between
functions, initialization, processing not to be repeated in an I/O function,
error handling, and processing that ends the program.

Target environments for EXECUTE
Supported in all environments without compatibility considerations.

I/O option - INQUIRY
INQUIRY reads a single record from a file or database. The current value in
the key identifies the record to be read.

Uses
INQUIRY is valid for indexed, relative, DL/I segment, or SQL row records.

Definition considerations for INQUIRY
For an SQL row record, the SELECT statement built for the INQUIRY function
is always issued using an SQL cursor unless Single row select is specified for
the SQL statement. The INQUIRY function reads the first row returned by the
SELECT and automatically issues a CLOSE function to release any other rows.

Target environments for INQUIRY

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

I/O option - EXECUTE

Chapter 3. Functions 121

Environment Compatibility Considerations

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O object.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - REPLACE
REPLACE puts a changed record back into a file or database.

Uses
REPLACE is valid for indexed, relative, DL/I segment, or SQL row records.

You must first obtain the record by an UPDATE or SCAN for update function
for DL/I or relational databases.

Definition considerations for REPLACE
The default SQL statement built for a REPLACE function for an SQL row
record does not write to the database any item specified as the default key or
as read-only in the SQL row record.

Target environments for REPLACE

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

I/O option - INQUIRY

122 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - SCAN
The SCAN I/O option reads the next record in a file, database or message
queue.

Uses
The SCAN I/O option is valid for DL/I segment, indexed, message queue,
relative, serial or SQL row records.

Definition considerations for SCAN
Any successful file I/O sets the position for the SCAN function. The position
following an unsuccessful I/O operation is undefined. The program must
establish file position again when an unsuccessful read occurs.

A SET record SCAN statement also establishes positioning to the next record to
be retrieved if followed by a SCAN I/O option. The SET record SCAN
statement is used only with indexed or DL/I segment records. It is not
allowed for relative records and is ignored for all other record types.

I/O option - REPLACE

Chapter 3. Functions 123

DL/I segments
The scan position for records in a DL/I database depends on previous
calls to the database. The Get Next in Parent option for the DL/I
CALL defined for the function controls when EOF is returned for the
SCAN. If Get Next in Parent is specified, EOF is indicated after the
last segment of that type for the current parent has been read; if Get
Next in Parent is not specified, EOF is indicated after the last segment
of that type in the database has been read. Refer to the section on
developing DL/I programs in the Design Guide online document for a
more detailed discussion of the scan position for DL/I segments.

Message queue records
If you use the SCAN I/O option to read a message queue record in a
message queue, VisualAge Generator automatically:
1. Connects to the queue manager, if the queue manager is not

already connected
2. Opens the queue, if the queue is not already open
3. Gets the next message from the queue and moves the message

contents to the message queue record structure

Relative and indexed files
The SCAN function reads the record following the last read record in
key sequence. The first record of a file is read if no function that uses
the record as an object has been previously executed.

A SCAN function following a SCANBACK function retrieves the
record following the record accessed on the SCANBACK function. If a
SCANBACK function returns an EOF condition, the SCAN function
returns the first record in the file.

An EOF condition is returned on the SCAN function after the last
record is read. For compatibility with versions of Cross System
Product, relative file I/O will also return NRF on a SCAN function
past the end of the file.

When using alternate indexes, a SCAN function returns the record in
the file with the next higher alternate key than the current position in
the file. A DUP condition occurs if the record retrieved using the
SCAN function has the same key as another record in the file. An
exception occurs when retrieving the last record in a group of
duplicate-keyed records. In this case, although the record has a
duplicate key, the DUP mnemonic is not set. If records with duplicate
keys exist in the file, a SCAN function following a SCAN retrieves
any duplicate-keyed record before retrieving the record with the next
key. Records with duplicate keys are returned in the order that VSAM
returns them. A SCAN function following a successful I/O option

I/O option - SCAN

124 VisualAge Generator: Programmer’s Reference

(other than a SCAN function that retrieved a duplicate-keyed record)
skips over any remaining duplicate-keyed records and retrieves the
record with the next greater key.

An EOF condition is returned on the SCAN after the last record has
been read. For compatibility with previous versions of VisualAge
Generator, relative file I/O will also return NRF on a SCAN past the
end of the file.

Serial files
A SCAN function reads the record following the last record read in
the entry sequence. The first record is read for the first scan of a file.

If the record accessed on the previous I/O operation was the last
record in the file, SCAN returns EOF. The following list identifies the
file types that support both the ADD and SCAN I/O option in the
same program:

File type ADD and SCAN supported

GSAM No

MMSGQ No

OS2COBOL Yes

SEQ Yes

SEQRS Yes

SMSGQ No

SPOOL No

TEMPAUX Yes

TEMPMAIN Yes

TRANSIENT Yes

VSAM Yes

VSAMRS Yes

When using both an ADD and a SCAN function in the same program,
the file is closed and reopened whenever the program changes from
adding to scanning or from scanning to adding. When the file is
closed, the file position is lost; therefore, the first SCAN after an ADD
will read the first record from the file.

SQL row records
The SCAN function reads the next row from a set of rows selected
from the relational database by a SETINQ or SETUPD I/O option. If a

I/O option - SCAN

Chapter 3. Functions 125

row was selected using SETUPD, it can be replaced (REPLACE
option) or deleted (DELETE option) immediately following the SCAN
function that retrieved the row.

The SET record SCAN statement has no effect on SQL row records.
Position for SQL row can only be set with a SETINQ or SETUPD I/O
option.

A NRF condition is set if the last row in the set was retrieved on a
previous SCAN function.

The scan position is lost if a CLOSE function is performed for the set
of rows. See the description of the CLOSE I/O option for a
description of when CLOSE processing is performed.

For details concerning SQL options, refer to the section on developing
SQL programs in the Design Guide document.

Target environments for SCAN

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

The scan position is lost when a commit or rollback is issued, or
following a CONVERSE function if running in segmented mode.

Cursors that were declared using CURSOR WITH HOLD are not
closed on a commit, but a rollback or database connect function will
close all cursors including those declared using WITH HOLD.

MVS/TSO None.

MVS batch A SCAN function for a serial record assigned to a GSAM file results
in a get next call to the GSAM database.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

I/O option - SCAN

126 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS A serial record must be associated with the I/O PCB (PCB 0). The
SCAN function is not supported for a transaction program or for a
batch program that is called from a transaction program. Batch
programs can use only one serial file for input. The IMS message
header (length, ZZ field, and transaction code) is automatically
removed from each record read from the queue.

A SCAN function for a serial record assigned to a single-segment
message queue results in a get unique (GU) call to the I/O PCB.
This GU call results in an automatic commit point.

The first SCAN for a serial record assigned to a multiple-segment
message queue results in a GU call to the I/O PCB. Subsequent
SCAN functions result in get next calls until an NRF (status code
QD) condition is reached. The first SCAN function after the NRF
results in another GU call, and the function continues until an EOF
(status code QC) is reached. Each GU call results in an automatic
commit point.

During any specific scheduling of a batch program, the program can
do a SCAN function from only one message queue. The transaction
code for which IMS scheduled the program determines the message
queue that is scanned. The system resource specified during
generation is ignored.

IMS BMP For an IMS batch-oriented BMP, a SCAN function for a serial record
assigned to a GSAM file results in a get next call to the GSAM
database.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

For an IMS transaction-oriented BMP, a SCAN function for a serial
record assigned to a message queue is the same as IMS/VS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch The SCAN function is not supported for a serial record that is
assigned to a SPOOL file.

CICS for OS/2 Same as CICS for MVS/ESA except that use with message queue
records is not supported.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

I/O option - SCAN

Chapter 3. Functions 127

Environment Compatibility Considerations

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Serial, SQL, and message records are the only supported I/O
objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Examples for SCAN
Consider a file where the keys are as follows:

1, 2a, 2b, 2c, 3, 4

Where a, b, and c are used to indicate duplicate-keyed records for key 2 and
the order in which they were added to the file.

The following examples illustrate the order in which records are retrieved.

Example 1:

I/O option Key Retrieves Sets

INQUIRY 2 2a DUP

SCAN 3

Example 2:

I/O option Key Retrieves Sets

SET record SCAN 2

SCAN 2a DUP

SCAN 2b DUP

SCAN 2c

SCAN 3

I/O option - SCAN

128 VisualAge Generator: Programmer’s Reference

I/O option - SCANBACK
SCANBACK reads the previous record in an indexed file.

Uses
SCANBACK is valid only for indexed records.

Definition considerations for SCANBACK
A SCANBACK function returns the record in the file with the highest key that
is less than the current position in the file. The last record of a file is read if
no function that uses the record as an object has been previously executed and
no SET record SCAN statement has been done.

A SCANBACK function on an uninitialized file causes an NRF condition to
occur. A SCANBACK function on an empty file causes an EOF for a non-CICS
environment, and both an EOF and an NRF for a CICS environment. An
uninitialized file is one that has never had any records added to it. An empty
file is one from which all records have been deleted.

The file position after an unsuccessful INQUIRY, UPDATE, SCAN, or
SCANBACK function is undefined. The program must establish file position
again when an unsuccessful read occurs.

The SCANBACK position is set on any successful I/O to the file. A
SCANBACK function after any successful I/O operation retrieves the record
with the highest key value that is less than the key of the record accessed on
the previous I/O operation.

A SCANBACK function following a SET record SCAN statement retrieves the
record with the highest key value that is less than or equal to the current
record key value. A SET record SCAN with a key value set to all hexadecimal
FF bytes prior to a SCANBACK function sets the position pointer in all
environments to the end of the file so that the next SCANBACK function
retrieves the last record in the file.

If a SCANBACK function follows a SCAN function that returned an EOF
condition, the last record in the file is retrieved.

An EOF condition occurs if no previous record was in the file. This occurs, for
example, when SCANBACK functions are repeated past the beginning of the
file.

When using alternate indexes, a SCANBACK function returns the record in a
file with the highest alternate key that is less than the current position in the
file. A DUP condition occurs if the record retrieved using a SCANBACK
function has the same key as another record in the file. An exception occurs
when retrieving the last record in a group of duplicate-keyed records. In this

I/O option - SCANBACK

Chapter 3. Functions 129

case, although the record has a duplicate key, the DUP mnemonic is not set. If
records with duplicate keys exist in the file, a SCANBACK function following
a SCANBACK function retrieves any duplicate-keyed record before retrieving
the record with the previous key. Records with duplicate keys are returned in
the order that VSAM returns them.

A SCANBACK function following a successful I/O option (except for a
SCANBACK function that retrieved a duplicate-keyed record) skips over any
remaining duplicate-keyed records and retrieves the record with the next
lower key.

Target environments for SCANBACK

Environment Compatibility Considerations

VM CMS VSAM files that use a SCANBACK function must be specified as file
type VSAMRS during generation. All programs within a run unit
that share the file must also specify VSAMRS for the file.

VM batch Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Not supported.

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

None.

VSE batch Same as VM CMS.

CICS for OS/2 None.

OS/400 SET Record SCAN must be used before SCANBACK if the
SCANBACK is the first I/O operation performed on the file.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

I/O option - SCANBACK

130 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Examples for SCANBACK
Consider a file where the keys are as follows:

1, 2a, 2b, 2c, 3, 4

Where a, b, and c are used to indicate duplicate-keyed records for key 2 and
the order in which they were added to the file.

The following examples illustrate the order in which records are retrieved.

Example 1:

I/O option Key Retrieves Sets

INQUIRY 3 3

SCANBACK 2a DUP

SCANBACK 2b DUP

SCANBACK 2c

SCANBACK 1

Example 2:

I/O option Key Retrieves Sets

SET record SCAN 2

SCAN 2a DUP

SCAN 2b DUP

SCANBACK 1

Example 3:

I/O option Key Retrieves Sets

SET record SCAN 1

I/O option - SCANBACK

Chapter 3. Functions 131

SCANBACK nothing EOF

I/O option - SETINQ
SETINQ selects a set of rows from a relational database for later retrieval with
the SCAN I/O option.

Uses
The object must be an SQL row record.

Definition considerations for SETINQ
The default SQL statement built for a SETINQ function selects all rows that
meet any default selection conditions defined for the SQL row record, and
whose key column is greater than or equal to the current key item value. The
rows are sorted in key column sequence if a key was specified.

The default WHERE clause is not built when multiple-column keys exist.

Target environments for SETINQ

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

I/O option - SCANBACK

132 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O object..

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - SETUPD
SETUPD selects a set of records from a relational database for later processing
with the SCAN I/O option.

Uses
The selected records can be replaced or deleted. The object must be an SQL
row record.

Definition considerations for SETUPD
If a single key is defined for an SQL row record, the default SQL statement
built for a SETUPD function selects all rows that meet any default selection
conditions defined for the SQL row record, and whose key column is greater
than or equal to the current key item value. The rows are not sorted.

The default WHERE clause is not built when multiple-column keys exist. If
multiple keys are defined for the SQL row record, the default SQL statement
retrieves all rows that meet the default selection conditions defined for the
record.

Target environments for SETUPD

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

I/O option - SETINQ

Chapter 3. Functions 133

Environment Compatibility Considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O objects..

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - SQLEXEC
SQLEXEC enables you to define your own SQL statement to run as the I/O
option.

Uses
SQLEXEC is valid only for SQL records. However, using an SQL row record
I/O object is optional.

Definition considerations for SQLEXEC
The SQLEXEC I/O option supports the use of SQL data manipulation and
definition statements that are not directly supported by other I/O options.

The statements supported by SQLEXEC are as follows:
v Multirow INSERT
v Multirow DELETE

I/O option - SETUPD

134 VisualAge Generator: Programmer’s Reference

v Multirow UPDATE
v GRANT
v REVOKE
v CREATE
v DROP
v SET

To use the SQLEXEC function you must be familiar with SQL statement
syntax. Refer to the SQL reference manual for the relational database manager
used at your location for information on SQL statement syntax. The rules for
SQL statement syntax differ among the various database managers.

SELECT statements cannot be issued using the SQLEXEC I/O option because
the SQL interfaces that support the SQLEXEC I/O option do not support
SELECT statements. Use the SETINQ, SETUPD, INQUIRY, or UPDATE I/O
options for SELECT processing.

If you do not enter an SQL statement, the I/O behaves like an EXECUTE I/O
option.

An I/O object is not required. You can specify an SQL row record as an I/O
object.

Target environments for SQLEXEC

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

I/O option - SQLEXEC

Chapter 3. Functions 135

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O Option - UPDATE
UPDATE reads a record from a file or database with the implied intention of
replacing or deleting the record.

Uses
UPDATE locks the record, protecting it from updates by other users, until
another operation is complete for the file or database.

UPDATE is valid for indexed, relative, DL/I segment, or SQL row records.

Definition considerations for UPDATE
If the file or database is shared by multiple users, an UPDATE function
should not be held across a CONVERSE function. This can cause other users
attempting to access the record to wait until the first user responds to the
CONVERSE function.

The default SQL statement built for an UPDATE function for an SQL row
record reads the row whose key columns are equal to the current key item
values. All columns represented in the record are retrieved; only columns
other than key columns or read-only columns can be written back to the
database on the associated REPLACE I/O option.

I/O option - SQLEXEC

136 VisualAge Generator: Programmer’s Reference

Target environments for UPDATE

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

SQL records are the only supported I/O objects.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL statement
An SQL statement is created for a function to access a relational database.

I/O option - UPDATE

Chapter 3. Functions 137

Uses
A default SQL statement is generated for the function based on the I/O option
and the definition of the SQL row record I/O object.

Definition considerations for SQL statement
You can modify the SQL statements for some I/O options if you understand
SQL syntax. You cannot change the following:
v The table name clause in the SQL statement for any I/O option other than

the SQLEXEC I/O option
v The SQL statements for the DELETE, SCAN, and CLOSE I/O options
v The WHERE CURRENT OF CURSOR clause in the SQL statements for the

REPLACE and DELETE I/O options.

You can define entire SQL statements for the SQLEXEC function or use the
model option to create default UPDATE or DELETE statements. You can
modify all clauses in the model statement.

If you change or enter a statement, use the SQL statement syntax described in
the appropriate DB2 reference manual with the following additions or
exceptions:
v To use data items as host variables in the statement, place a colon

immediately preceding the data item name.
v Do not use null indicator variables. Null indicators are maintained by the

VisualAge Generator Developer for all items in SQL row definitions. Use
the TEST and IF statements to test null indicators and the SET statement to
set null indicators for SQL row items.

v Use an INTO clause with all SELECT statements. The SELECT might
actually be executed with an SQL cursor. If so, the INTO clause identifies
the data items that receive the data when a row is retrieved with the
FETCH command associated with the cursor. The INTO clause is defined
with the SELECT because a one-to-one relationship must be maintained
between the selected columns and the items in the INTO clause. You can
avoid use of a cursor for an INQUIRY I/O option by selecting the Single
row select option.

v To enter a comment line in the statement, type /* as the first characters in
the comment.

v Enter an SQL column name directly, or enter the data item name in the SQL
row record preceded by an exclamation mark (!item-name). When the SQL
statement is prepared for execution, the data item name is replaced by the
SQL column name defined for the data item in the SQL row definition.

The SQLEXEC I/O option is used for advanced SQL programming functions
for database manipulation. With SQLEXEC, you define the entire SQL

SQL statement

138 VisualAge Generator: Programmer’s Reference

statement. You can enter any statement that you execute using the EXECUTE
command of the SQL interface for high-level languages.

For more information and examples of how to use SQL statements in a
program, refer to the Design Guide document.

If the program contains a large number of SQL I/O options, DB2 precompiler
limits can be exceeded. If you exceed a limit, split the program.

Target environments for SQL statement

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

SQL statement

Chapter 3. Functions 139

Environment Compatibility Considerations

Test Facility None.

SQL statement - Declare cursor with hold
Declare cursor with hold specifies that the WITH HOLD clause is added to
the DECLARE CURSOR statement that is issued for the SETINQ or SETUPD
I/O options.

Uses
If you use the WITH HOLD clause, the cursor is not closed when a commit
occurs.

The WITH HOLD clause is not effective on rollback functions or at the end of
a segment.

Definition considerations for Declare cursor with hold
To avoid an SQL error, do the following:
v When using the SETUPD I/O option, specify the SCAN I/O option after a

commit before using the DELETE or REPLACE I/O option,
v Before connecting to a different database using EZECONCT, use the CLOSE

I/O option to close all cursors.

If you have specified an I/O option other than SETINQ or SETUPD, you
cannot specify Declare cursor with hold.

Target environments for Declare cursor with hold

Environment Compatibility Considerations

VM CMS Refer to the reference manual for your version of SQL/DS VM to
determine if the WITH HOLD clause can be specified on the
DECLARE CURSOR statement. If the WITH HOLD clause is not
supported, do not specify Declare cursor with hold. Otherwise, the
SQL/DS VM precompiler fails when you prepare the program.

VM batch Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

SQL statement

140 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
VSE/ESA

Refer to the reference manual for your version of DB2 VSE
(SQL/DS) to determine if the WITH HOLD clause can be specified
on the DECLARE CURSOR statement. If it is not supported, do not
specify Declare cursor with hold. Otherwise, the DB2 VSE(SQL/DS)
precompiler will fail when you prepare the program.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL statement - Execution time statement build
Execution time statement build indicates that the SQL statement generated for
a function is prepared dynamically each time it is executed. This lets you
modify parts of the SQL statement (the WHERE clause, for example) at
execution time.

Uses
Execution time statement build can be specified for SELECT statements and
statements issued using the SQLEXEC I/O option.

Use Execution time statement build to do the following tasks:
v Dynamically modify an SQL statement generated for an SQL function when

the program runs
v To use host variables in SQL where host variables are not normally

supported.

SQL statement - declare cursor with hold

Chapter 3. Functions 141

If you do not specify Execution time statement build, the statement is built as
a static SQL statement or prepared and executed using the dynamic or
extended dynamic PREPARE and EXECUTE interface. You use host variables
as defined in normal SQL statement syntax. All valid host variable data types
are supported.

If you specify Execution time statement build, the statement is prepared each
time the function is executed. SQLEXEC functions are executed using the SQL
dynamic EXECUTE IMMEDIATE command. INQUIRY, SETINQ, UPDATE,
and SETUPD functions are executed using PREPARE and cursor manipulation
statements. Any REPLACE and DELETE functions associated with dynamic
SELECT statements are also executed dynamically.

Definition considerations for Execution time statement build
When you specify Execution time statement build, the statement executed is
built by replacing all the host variables in the statement (except host variables
in the INTO clause in the SELECT statement) with the character
representation of the contents of the host variables.

Only host variables with type CHA, BIN, or PACK can be used in the
statement, except in the INTO clause. The CHA fields are inserted directly
into the statement without being enclosed in single quotes. This has the
advantage of allowing host variables to be used in places where SQL does not
normally support host variables.

For example, you could code a host variable in place of an entire WHERE
clause and have the program dynamically build the WHERE clause in the
host variable at execution time.

Target environments for Execution time statement build

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

SQL statement - Execution time statement build

142 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL statement - Model SQL statement generation
Model SQL statement generation specifies whether a model SQL statement is
generated for an SQLEXEC function, and if required, the type of model SQL
statement.

Uses
You can specify one of the following:

None To define a function with an SQLEXEC I/O option without a model
SQL statement.

Update
To define a function with an SQLEXEC I/O option with a model SQL
statement for updating a table row.

The model SQL statement is derived from the SQL statement you
specified as the default for the SQL row record that is the I/O object.

Delete To define a function with an SQLEXEC I/O option with a model SQL
statement for deleting an SQL table row.

The model SQL statement is derived from the SQL statement you
specified as the default for the SQL row record that is the I/O object.

SQL statement - Execution time statement build

Chapter 3. Functions 143

Target environments for Model SQL statement generation

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL Statement - Single row select
Single row select specifies single row selection if you are defining a function
with an INQUIRY I/O option.

SQL statement - Model SQL statement generation

144 VisualAge Generator: Programmer’s Reference

Uses
Single row select is designated during SQL statement definition for an
INQUIRY function to indicate that the row be retrieved with a Single row
select rather than with an SQL cursor.

This option is effective only with static execution and is ignored when the
program is run in the test facility, which runs in dynamic mode.

Definition considerations for Single row select
Single row select is more efficient than retrieving a single row with a cursor,
but it will fail if more than one record meets the selection criteria. Use Single
row select when retrieving rows by key where the key is unique.

Target environments for Single row select

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

SQL Statement - Single row select

Chapter 3. Functions 145

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility Not supported.

SQL statement - UPDATE or SETUPD function name
UPDATE or SETUPD function name identifies the name of an UPDATE or
SETUPD function that selected the rows to be replaced by a REPLACE I/O
option.

Uses
The UPDATE or SETUPD function name is required for generation if more
than one UPDATE or SETUPD function exists with the same I/O object as the
REPLACE function and at least one of the FOR UPDATE OF clauses was
modified.

The UPDATE or SETUPD function name provides the information needed to
correctly associate SQL SELECT and UPDATE statements in the generated
module.

Target environments for UPDATE or SETUPD function name

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

SQL Statement - Single row select

146 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL statement - UPDATE or SETUPD function name

Chapter 3. Functions 147

SQL statement - UPDATE or SETUPD function name

148 VisualAge Generator: Programmer’s Reference

Chapter 4. Records

A record defines the organization and item structure of the record along with
other options such as file name and record ID item. Record specification
options vary depending on the organization you choose.

VisualAge Generator supports the following record organizations:
v DL/I segment
v Indexed
v Message queue
v Redefined
v Relative
v Serial
v SQL row
v User interface
v Working storage

Records are included in a program by specifying the record name as:
v An I/O object
v An entry in the table and additional records list for the program
v A working storage record
v A called parameter
v A parameter for a function
v A local storage area for a function
v The name of a record part included in a GUI definition

© Copyright IBM Corp. 1980, 2000 149

Record elements

Table 9. Record elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Alternate
specification

c c c c c x c c c c x x x x c x c x c x x

Default key
item (SQL)

x x

Default
selection
conditions
(SQL)

x x

File name c c c c c c c c c c x x x x c x c x c x x

Key item
(DL/I)

x x x x x x x x x

Number of
occurrences
item

c c c c c c c c c c g g x x x c x c x c x x

Organization
- DL/I
segment

x x x x x x x x

Organization
- Indexed

x x x x x x x x x x x x x x x x x x x

Organization
- Message
queue

x x

Organization
- Redefined

x x

Organization
- Relative

x x c x x x c x c x x x x x x x x x x

Organization
- Serial

x x c x x c x c x c x x x x x x x x x x x

150 VisualAge Generator: Programmer’s Reference

Table 9. Record elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Organization
- SQL row

x x

Organization
- User
Interface

c c c c c c c c c c c c c

Organization
- Working
storage

x x

Prologue x

Record x

Record ID
item

x x

Record
length item

c c c c c c c c c c x x x c x c x c x x

Record
name

x x

Redefinition
for

x x

SQL table
names

x x

Variable
length item
(DL/I)

x x x x x x x x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
g The part or some of its features can be connected in a GUI application
blank Not supported

Chapter 4. Records 151

Alternate specification

“Alternate specification” is the name of an existing record whose data item
structure is to be used for this record.

Uses
Specify “Alternate specification” to avoid creating and maintaining several
record structures. Once you change the structure of one record, you change
the structure of all records that refer to it as an alternate specification.

There is no record structure defined for this record. VisualAge Generator uses
the structure defined in the record named as the “Alternate specification”.

Definition considerations for Alternate specification
For VSAMRS files accessed using VisualAge Generator Server for MVS, VSE,
and VM or VisualAge Generator Server (specifying the VSAMRS file type at
generation) or for VSAM files on CICS, the file name for the alternate
specification cannot be the same as the file name for any other record in the
program.

Indexed records
When used with indexed records, an alternate specification enables
you to specify an alternate record ID item that can be associated with
an alternate index. You must also specify an alternate file name.

SQL row records
When used with another SQL record, alternate specification records
allow a program to do the following:
v Simultaneously scan two different sets of rows from the same

relational table
v Access a table with a different default key item
v Access a table with different default selection conditions

You cannot specify an SQL row record as an alternate specification for
a record with a different organization.

You cannot specify a record with a different organization as an
alternate specification for an SQL row record.

You cannot enter SQL table names for a row defined as an alternate
specification for another record.

Alternate specification

152 VisualAge Generator: Programmer’s Reference

Target environments for Alternate specification

Environment Compatibility considerations

VM CMS If you generate the program to use COBOL I/O statements to access
a VSAM file using an alternate index (file type is specified as VSAM
at generation), then all programs in the job step that do I/O to the
same file must include both the alternate specification record and
the base record defined with the primary key. Both records must
specify the same file name. All programs must include both of the
records, either as I/O objects or listed in the table and additional
records list.

VM batch Same as VM CMS.

CICS for
MVS/ESA

For VSAM files, the file name for the alternate specification cannot
be the same as the file name for any other record in the program.

MVS/TSO For VSAMRS files accessed using VisualAge Generator Server for
MVS, VSE, and VM or VisualAge Generator Server (specifying the
VSAMRS file type at generation), the file name for the alternate
specification cannot be the same as the file name for any other
record in the program.

If you generate the program to use COBOL I/O statements to access
a VSAM file using an alternate index (file type is specified as VSAM
at generation), then all programs in the job step that do I/O to the
same file must include both the alternate specification record and
the base record defined with the primary key. Both records must
specify the same file name. All programs must include both of the
records, either as I/O objects or listed in the table and additional
records list.

MVS batch Same as MVS/TSO.

IMS/VS None.

IMS BMP Same as MVS/TSO.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as MVS/TSO.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Alternate specification

Chapter 4. Records 153

Environment Compatibility considerations

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Default key item (SQL)

Default key item specifies the name of the data item to be used as the search
field in default SQL statements built for an alternate specification of an SQL
row record.

Uses
The default key item is used as the search field in the SQL statements that
access records in relational databases.

Specifying the Default key item is optional, but is the only way to specify an
SQL key item for an alternate specification for record.

Default key item is most useful for accessing tables that have a single column
for which a unique index is defined. If a default key is specified, the key item
cannot be modified by a REPLACE function.

If specified, the default key item must be in the item list for the primary
record associated with the alternate specification record.

If you did not specify Alternate specification, you cannot specify Default key
item.

Target environments for Default key item (SQL)

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

Alternate specification

154 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Default selection conditions (SQL)

Default selection conditions are default search criteria specified for a record
defined as an SQL row.

Uses
Default selection conditions refer to SQL search-conditions defined in
conjunction with a record that is automatically included in default SELECT
statements built for functions that access that record. You enter the search
condition in the WHERE clause of a simulated SELECT statement.

Default key item (SQL)

Chapter 4. Records 155

Default selection conditions are useful for defining join conditions that need
to be specified for an SQL row record that is defined as a join of two or more
relational tables. If the SQL row record represents a single table with one or
more columns combining to form a unique index, you would usually specify
items in the record as key items instead of coding default selection conditions.

If an index is defined for any columns referenced in the search conditions, the
item that represents the column in the SQL row record must be defined as
read-only, or the index is not used in the search in an UPDATE or SETUPD
function.

Definition considerations for Default selection conditions
Join conditions are search conditions that express the relationships between
the combined tables. Join conditions limit the number of rows in the larger
table by selecting only valid combinations of rows. If no join conditions are
defined, all possible combinations of rows are formed.

Using the WHERE clause
Default selection conditions are specified using the syntax for a search
condition in the WHERE clause of a SELECT statement.

The syntax is not validated until the SQL statements with the default selection
conditions are preprocessed by the relational database manager.

The default selection conditions are built into any WHERE clauses generated
for functions with the SQL row record as the I/O object.

If key items are also specified for the SQL row, the default selection conditions
are combined with any default key selection conditions using an AND logical
operator.

Target environments for Default selection conditions

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

Default selection conditions (SQL)

156 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

File name

File name associates a record specification with a physical file.

Uses
File name is specified for indexed, message queue, relative and serial files.

File name is a 1- to 8-character file name that must meet the following
conventions:
v The first character must be alphabetic or national (A-Z, $, #, @).
v The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@).
v The name cannot contain special characters or embedded blanks or have an

EZE prefix.
v The name cannot use $, #, or a COBOL reserved word if the file is

associated with:
– VSAM or SEQ in a non-CICS environment

Default selection conditions (SQL)

Chapter 4. Records 157

– OS2COBOL in a CICS OS/2 environment

Note: The $, #, and @ are not in the National Language syntactic character set
and cannot be represented by equivalent code points across differing
code pages. Avoid using these characters if the program you are
developing will be exported or generated for these differing code
pages. This will particularly affect programs exported between the
System/370 host and the workstation.

Definition considerations for File name
Records sharing the same file name are associated with the same physical file.
The physical file associated with the file name can be specified during
program generation. The default destination can be overridden during
resource association or by using the EZEDEST special function word.

Programs that run together in the same run unit and access the same physical
file must have the same file name specified for all records associated with the
file.

All records with the same file name that run together in the same run unit
must have the same attributes (record format, length, organization, key length,
and key offset). They must also match the physical file definition.

If you define a message queue record, you must specify a file name.

Note: For more information on size restrictions and record lengths, see
“Appendix C. Size restrictions and record lengths” on page 707.

Generation Considerations for File name
Using the linkage table, you can specify whether a file associated with the file
name is at a remote location and whether automatic data conversion from
ASCII to EBCDIC is to be performed when file records are accessed.

For more information on accessing remote files, refer to VisualAge Generator
Client/Server Communications Guide.

Target environments for File name

Environment Compatibility considerations

VM CMS If the program has not set the EZEDEST special function word for
the record, this file name is used as the file name on a CMS
FILEDEF command or DLBL command to allocate the physical file
prior to running the program.

VM batch If the file is associated with a VSAM or VM file and the program
has not set the EZEDEST special function word for the record, the
value is the file name used when the file is opened.

File name

158 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
MVS/ESA

The file name is the default system resource name. Its meaning is
based on the file type selected when the program is generated or
tested.

MVS/TSO If the program has not set the EZEDEST special function word for
the record, use this file name as the file name on a TSO ALLOC
command or DLBL command to allocate the physical file prior to
running the program.

MVS batch If the file is associated with a VSAM or sequential MVS file and the
program has not set the EZEDEST special function word for the
record, the value is the DD name used when the file is opened.

If a serial file is associated with a GSAM file, the value is the DD
name used in the JCL. It must match the DD name specified in the
GSAM DBD.

IMS/VS The file name is the default logical terminal or transaction code
used when records are added to a serial output file allocated to an
IMS message queue. The actual logical terminal or transaction code
used when the program is running must be defined to IMS.

File name is ignored for an input message queue because it uses the
I/O PCB.

IMS BMP If the file is associated with a VSAM or sequential MVS file, and the
program has not set the EZEDEST special function word for the
record, the value is the DD name used when the file is opened.

If a serial output file is associated with a message queue, the value
is the default logical terminal or transaction code. The actual logical
terminal or transaction code used when the program is running
must be defined to IMS.

File name is ignored for an input message queue because it uses the
I/O PCB.

If a serial file is associated with a GSAM file, the value is the DD
name used in the JCL. It must match the DD name specified in the
GSAM DBD.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch If the program has not set the EZEDEST special function word for
the record, the file name is the DLBL name used when the file is
opened. Only the first 7 characters of the name are used.

CICS for OS/2 Same as CICS for MVS/ESA except that use with message queue
records is not supported.

OS/400 None.

File name

Chapter 4. Records 159

Environment Compatibility considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility The test facility resolves the logical filename specified in the record
to the physical filename. The Resource Association File (RAF) is
used to connect the logical file name to the physical file name at test
time.

Key item (DL/I)

Key item specifies the name of an item in a DL/I segment record that
contains the segment key.

Uses
The default value is blank. Use the default value if the DL/I segment has no
sequence field.

Definition considerations for Key item
The Key item must have the same name, length, and offset that the segment
sequence field has in the DL/I database description.

Target environments for Key item

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

File name

160 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Number of occurrences item

Number of occurrences item supports the definition of variable-length records
for files in which all records have a fixed-length part at the beginning of the
record, followed by an array with a variable number of entries at the end of
the record.

Key item (DL/I)

Chapter 4. Records 161

Uses
Number of occurrences item is valid only for indexed, message queue or
serial records.

If the record you define ends with an array that can have a variable number
of occurrences, specify the name of the data item that contains the number as
the Number of occurrences item.

The data item that contains the number of occurrences must meet all of the
following requirements:
v Be defined in the fixed-length part of the variable-length record
v Have a data type of numeric (Num), binary (Bin), or packed (Pack)
v Have a maximum length of 9 characters
v Contain no decimal places

Definition considerations for Number of occurrences item
The number of occurrences item contains the number of entries in the array.
When the record is written to the file, VisualAge Generator computes the
length of the record by multiplying the current value in the number of
occurrences item by the length of an array entry.

For message queue records, the occurrences item value multiplied by the
length of an array item plus the length of the record structure without the
array determines the message length. If the record contains both a record
length item and occurrences item, the record length item is set to the length
calculated from the number of occurrences before a message is added to the
queue.

The array is represented in the record data item definition by the last item
that is not subordinate to any other item (not part of a substructure). The
array itself can be substructured. The dimension (occurrences) specified for
the array is the maximum number of entries that can be written out for the
record. The minimum number of entries is zero.

The number of occurrences item must not be specified for fixed-length
records.

If the records in a file are variable-length, the record specification must
include a record length item, a number of occurrences item, or both.

If you have both a record length item and a number of occurrences item, the
record length is calculated using the number of occurrences item each time
the record is written to the file. The calculated length is moved to the record
length item before writing the record.

Number of occurrences item

162 VisualAge Generator: Programmer’s Reference

Test and runtime use the number of occurrences item only when reading
records from the file or writing records to the file.

Program statements can reference all the items in the entire record regardless
of the values of the record length item and number of occurrences item.

Target environments for Number of occurrences item

Environment Compatibility considerations

VM CMS Variable-length records are supported in VSAM files and VM
sequential files.

Variable-length records in VM non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to a VM
non-VSAM sequential file with variable record format and removed
when the record is read.

VM batch Same as VM CMS.

CICS for
MVS/ESA

Variable-length records are not supported for temporary storage
queues and transient data queues.

MVS/TSO Variable-length records are supported in VSAM files and MVS
sequential files.

Variable-length records in MVS non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to an MVS
non-VSAM sequential file with variable record format and removed
when the record is read.

MVS batch If the file is a GSAM file, the 2-byte leading length field is added to
records written to the file and removed from records read from the
file. The data item definition for the record should not include the
header.

If the file is not a GSAM file, then the same considerations for
MVS/TSO apply to MVS batch.

IMS/VS Number of occurrences item is only supported for serial files
associated with IMS message queues. The IMS message header
(length, ZZ field, and transaction code) is added to records written
to a queue and removed from records read from the queue. The
data item definition for the record should not include the header.

Number of occurrences item

Chapter 4. Records 163

Environment Compatibility considerations

IMS BMP If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

For files associated with IMS message queues, the considerations for
IMS/VS apply to IMS BMP.

Otherwise, the considerations for MVS/TSO apply to IMS BMP.

CICS for
VSE/ESA

VSE supports variable length sequential files. Variable-length
records in VSE non-VSAM sequential (SAM) files have an eight-byte
header. The first four bytes are the block length descriptor (BL) and
the next four bytes are the record length (RL) descriptor. The value
in BL includes the length of both BL plus RL. The value in RL
includes the length of RL. In both the BL and RL, bytes 0 through 1
are the length in binary format. Bytes 2 through 3 are reserved. This
is true for both variable length blocked and unblocked records.
Variable unblocked records have a blocking factor of one.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 Variable-length records are supported with CICS-managed files
(generation file type VSAM), and COBOL-managed files (file type
OS2COBOL). Variable-length records are not supported for
temporary storage queues and transient data queues. Use with
message queue records is not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

A program can be considered to be a part to a GUI program.
Therefore, the program or features of the program can be connected
in a GUI program.

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for AIX.

Solaris None.

Number of occurrences item

164 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for Solaris Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Test Facility None.

Organization

Organization describes how the file or database in which the record resides is
organized. The organization determines which I/O options can be used to
access the record in the program.

Uses
The following are the types of organization supported:
v DL/I segment
v Indexed
v Message queue
v Redefined
v Relative
v Serial
v SQL row
v Working storage
v User interface

Record specification options vary depending on the record organization you
specify.

Target environments for Organization
Support for an organization means that I/O operations can be performed for
the record in the environment.

Except for redefined records, all types of records can be included in GUI
programs.

All types of records can be used in any other type of program as temporary
storage data structures by specifying the record name in the called parameter
list or the table and additional records list.

Organization - DL/I segment

DL/I segment organization indicates that the record is a segment in a DL/I
database.

Uses
The record name must be the same as the segment name in the DL/I
database.

Number of occurrences item

Chapter 4. Records 165

Target environments for DL/I segment

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Organization - Indexed

Indexed organization indicates that the records are in a file and are accessed
by a key.

Organization - DL/I segment

166 VisualAge Generator: Programmer’s Reference

Uses
The record key is specified in the record ID item.

Target environments for Indexed

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Not supported.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Organization - Indexed

Chapter 4. Records 167

Organization - Message queue

A message queue record represents a message on an MQSeries message
queue. Message attributes include instructions for processing the message.
I/O operations on message queues are like I/O operations on serial files.
Only the ADD, SCAN and CLOSE I/O options are supported for message
queue records.

Message queue record definitions include the following message queue record
attributes:

Include message in transaction
Includes the message as a recoverable resource in the program’s unit
of work.

Open queue for exclusive use on input
Opens the message queue for exclusive use on input. If this attribute
is not specified, the queue is opened for shared use.

The following message queue record attributes specify records used as
parameters on MQ API calls. If a record is not specified for an attribute, a
default record is built based on the attributes specified for the message queue
record.

Queue descriptor record
MQ Object Descriptor, MQOD, record.

MQOD is used as a parameter on MQSeries MQOPEN and
MQCLOSE calls to functions that open and close queues.

Open options record
MQ Open Options, MQOO, record.

MQOO is used as a parameter on MQSeries MQOPEN and
MQCLOSE calls to functions that open and close queues.

Message descriptor record
MQ Message Descriptor, MQMD, record.

MQMD is used as a parameter on MQSeries MQGET and MQPUT
calls to functions that implement the ADD and SCAN I/O options for
message queue records.

Get options record
MQ Get Message Options, MQGMO, record.

MQGMO is used as a parameter on the MQSeries MQGET call to the
function that implements the SCAN I/O option for a message queue
record.

Put options record
MQ Put Message Options, MQPMO, record.

Organization - Message queue

168 VisualAge Generator: Programmer’s Reference

MQPMO is used as a parameter on the MQSeries MQPUT call to the
function that implements the ADD I/O option for a message queue
record.

Message queue record definitions also include the following record attributes:
v File name
v Alternate specification
v Record length item
v Occurrences item

Definition considerations for Message queue
A message queue record can be defined as a unit of related data items (data
structure), similar to the definition of other record organizations. One or more
single, unrelated data items can be defined for use in the message queue
record instead of, or in addition to, the data structure.

Message queue records provide the following:
v Data items to temporarily hold message data
v Data items to be passed as arguments to another program

Target environments for Message queue

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

Organization - Message queue

Chapter 4. Records 169

Environment Compatibility considerations

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Organization - Redefined

A redefined record is an alternate data item structure for an existing record.

Uses
The alternate data structure enables you to access the data in a record using
different data item names and definitions.

You cannot use redefined records as I/O objects, but you can use them in
statements and as passed parameters.

To use a redefined record, you must specify the name of the record in the
Tables and Additional Record List during program definition. The record that
it redefines must also be referenced in the program as an I/O object,
additional record, or working storage record.

Target environments for Redefined

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

Organization - Message queue

170 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Organization - Relative

Relative organization indicates that the file is an ordered set of fixed-length
records accessed by a relative number.

Uses
The relative number is found in the record ID item specified for the record.

For relative records, the record ID item does not need to be part of the record
structure. It can be an item in any map, record, or table used in the program.

Target environments for Relative

Environment Compatibility considerations

VM CMS None.

Organization - Redefined

Chapter 4. Records 171

Environment Compatibility considerations

VM batch None.

CICS for
MVS/ESA

When serial or relative files are associated with temporary storage
queues, an additional byte is added to the front of the record. The
VisualAge Generator record definition should not include this byte.

However, non-VisualAge Generator programs sharing the same
temporary storage queue must allocate space for the byte and
maintain its value.

A zero (0) in the additional byte means the record logically exists in
the file. A one (1) in the additional byte means it has been deleted.
The record length for a deleted record should be 1. Functions
operating on temporary storage queues have the following actions:

v An ADD function sets this byte to ’0’.

v A DELETE function sets this byte to ’1’ and sets the record length
to 1.

v An INQUIRY function for a record with a value of ’1’ in the
additional byte causes the NRF record state to be set.

v A REPLACE function sets this byte to ’0’.

v A SCAN function skips records with a byte value of ’1’ in the first
byte space.

v An UPDATE function for a record with a byte value of ’1’ in the
additional byte causes the NRF record state to be set.

MVS/TSO None.

MVS batch None.

IMS/VS Not supported.

IMS BMP None.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch None.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Same as CICS for MVS/ESA.

Organization - Relative

172 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Organization - Serial

Serial organization indicates that the records are stored in the file in sequential
order.

Uses
References to the records start at the beginning and go consecutively to the
end of the file.

With serial files, you can only use the ADD, SCAN, or CLOSE function
options.

Target environments for Serial

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

When serial or relative files are associated with temporary storage
queues, an additional byte is added to the front of the record. The
VisualAge Generator record definition should not include this byte.

However, non-VisualAge Generator programs sharing the same
temporary storage queue must allocate space for the byte and
maintain its value.

A zero (0) in the additional byte means the record logically exists in
the file. A one (1) in the additional byte means it has been deleted.
The record length for a deleted record should be 1. Functions
operating on temporary storage queues have the following actions:

v An ADD function sets this byte to ’0’.

v A SCAN function skips records with a byte value of ’1’ in the first
byte space.

Organization - Relative

Chapter 4. Records 173

Environment Compatibility considerations

MVS/TSO None.

MVS batch None.

IMS/VS Transaction programs cannot use a serial file for input. Batch
programs can only use one serial file for input.

IMS BMP None.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch None.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Organization - SQL row

SQL row organization indicates that the record represents a row in a table in a
relational database.

Target environments for SQL row

Environment Compatibility considerations

VM CMS None.

Organization - Serial

174 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Organization - User interface

A User Interface (UI) record is a special type of record you can use in Web
transaction programs. UI records are generated into HTML pages. Data items,
tables and literals in a UI record are generated into HTML parts included in
the page.

Organization - SQL row

Chapter 4. Records 175

These records specify how data is defined and processed but not how it is
displayed. User Interface Records (UI records) can be the object of
CONVERSE and XFER with UI record. This programming model separates
the concerns of the business logic developer from the user interface developer.
The outputs of UI record generation are a Java bean, which encapsulates all
the defined processing of the business data and a Java Server Page, which
accesses this bean. These outputs are deployed on the web server and the Java
Server Page. An HTML expert can then complete the user interface without
having to consider how the runtime data populates the page.

Definition considerations for User interface
Data items for this type of record can be laid out freely as in a Working
Storage Record with the addition of User Interface related record attributes
and record item attributes. For information on defining UI record data item
edits, see “UI record data item edits” on page 256. For information on defining
data item UI types, see “Data item UI type” on page 241. UI Record attributes
are:

UI title
Default title for the UI record

Submit value item
Name of the data item in the UI record that will receive a value as
defined by any of the items that have a UIType of Submit or Submit
Bypass. Because HTML pages provide no predefined way to capture
the values of function keys pressed by end users (no EZEAID
equivalent), this item along with the Submit and Submit Bypass items
are used to provide this function. Submit and Submit Bypass items set
up all the possible values available to the end user and the Submit
Value Item receives the value of the key selected by the end user.
Define this item if the values to be checked in the Web Transaction
program must be more descriptive than ’PF1’, ’Enter’, and the like. If
you do not specify a value, the default behavior is to check PF values
and use EZEAID. In this case, the values for the Submit and Submit
Bypass items must be strings like ’PF1’ as outlined in the following
list.

The submit value item must be defined in the UI record’s data item
list with a Char, Mixed, DBCS, or Unicode data type. This item may
be an array item. An array item is an item defined with an occurs
value greater than one.

The submit value item must not be an occurrences or selected index
item defined for a data item in the UI record’s data item list.

By default, the Submit value item field is blank and EZEAID is the
defined submit value item. Only the following string values are valid
with the default definition:

Organization - User interface

176 VisualAge Generator: Programmer’s Reference

v ’PF1’ - ’PF24’
v ’PA1’ - ’PA3’
v ’ENTER’

’ENTER’ is used if the specified value is not valid.

Input edit order
Input edits are processed at run time according to the input edit order.

The default input edit order is set as input items are created in the UI
record, from the top of the record to the bottom of the record. You can
change the input edit order.

Help text
Default help text for the entire UI Record.

UI record default HTML generation
The generation of default HTML both during ITF execution and JavaServer
Pages (JSP) generation is defined through a combination of UI record data
item attributes (type, length, occurs, and so on), substructuring, UIType,
UIType Properties and Edits. Table 10 and the sections which follow describe
how these elements are combined for creating different HTML elements and
default layout. For most elements, if the item is occurred it simply means
repeat the element for as many occurs as there are. However, for some
combinations an occurred item will cause different HTML elements to be
generated.

Table 10 gives a basic description of how different HTML elements are related
to the UI record item definition.

Table 10. HTML elements and UI record item definition

HTML
element(s)

Item
attributes Occurs UI type

UI type
properties Edits Notes

Text Input N/A 1 Input,
Input/Output

N/A N/A N/A

Checkbox CHA,
Numeric

1 Input,
Input/Output

N/A Boolean value = ’Y’ or
’N’ for CHA

value = 0 or 1
for Numeric

TextArea CHA, MIX,
Length>80

1 Input,
Input/Output

N/A N/A N/A

Plain Text N/A 1 Output N/A N/A N/A

Organization - User interface

Chapter 4. Records 177

Table 10. HTML elements and UI record item definition (continued)

HTML
element(s)

Item
attributes Occurs UI type

UI type
properties Edits Notes

Plain Text
Paragraph

N/A >1 Output Selected
Index Item
is NOT
defined.

N/A Each array
element will be
a separate line
in the
paragraph.

Submit
Button

CHA, MIX 1 Submit,
Submit
Bypass

N/A N/A Buttons only
show if there
are values in
the item.
Default values
can be set in
UIType
Properties.

HyperText
Link

N/A 1 Program
Link

Link
properties
define
what will
be used for
the HREF
attribute of
the <A>
HTML
element.

N/A Parameters
defined in the
Link Properties
are defined as
query
parameters on
the URL
generated for
the HREF
attribute of the
<A> HTML
element.

Form N/A 1 Form Link
properties
define
what will
be used for
the
ACTION
attribute of
the
<FORM>
HTML
element.

N/A Parameters
defined in the
Link Properties
are defined as
Hidden Input
fields within
the <FORM>
HTML
element.

Organization - User interface

178 VisualAge Generator: Programmer’s Reference

Table 10. HTML elements and UI record item definition (continued)

HTML
element(s)

Item
attributes Occurs UI type

UI type
properties Edits Notes

Drop
Down List

N/A 1 Input,
Input/Output

No
Selected
Index Item
defined

Match
Valid
Edit
Table

The data of
this list is
constant based
on the data in
the table. The
selected value
will be
contained in
the item that
references the
Edit Table.

Drop
Down List

N/A >1 Output Selected
Index Item
is defined.

N/A The list is
composed of
the data
contained in
the item at run
time. The
actual index of
the item
selected is set
into the
defined
Selected Index
Item. If the
index item is
occurred the
list will be
multiple select.

Organization - User interface

Chapter 4. Records 179

Table 10. HTML elements and UI record item definition (continued)

HTML
element(s)

Item
attributes Occurs UI type

UI type
properties Edits Notes

Table N/A >1 Output Selected
Index Item
can be
optionally
defined

N/A Substructed
items at the
next level
define the
columns. The
labels of these
items will be
the column
headers. These
items can be
further
substructured
to give
structure to the
cells of the
column. If a
Selected Index
Item is defined
the first
column of the
table will
contain radio
buttons or
checkboxes for
handling single
or multiple
select
respectively.

Selected Index Item: This item must be a numeric item. If it is occurred, the
list will be a multiple select list. The number of occurrences of the Selected
Index Item must be the same as the item referencing it in this case.

In the case where the list item is substructured under an item of
UIType=Form, the selected index item is of little value. This is because a Form
defines the invocation of an independent program. This means that one
cannot index into an existing set of data because the program is invoked anew
each time and this set of data does not exist. This is unlike returning back
from a CONVERSE in which the existing set of data still exists and can
readily be indexed using the Selected Index Item values.

Occurrences item: The value in this referenced item determines how many
occurrences should show in the list. If no item is referenced, then all elements
in the array will show.

Organization - User interface

180 VisualAge Generator: Programmer’s Reference

Labels: In most cases, the label defined for an item is displayed in bold next
to or above the appropriate HTML element. However, there are some special
cases to note:
v For an occurred item (either explicitly defined or implicitly as result of

parent item being occurred) one can define a single label for all occurrences
or a label for each occurrence. Each line of the label definition is a separate
label. Define one label to have the same label for all occurrences. To have a
separate label for each occurrence, define as many labels (one on each line)
as there are occurrences.

v If no label is defined for a Program Link, Submit, or Submit Bypass item,
the data of the item itself is used as the label.

HTML element layout: The following areas of HTML element layout can be
controlled by the UI record developer:
v In general, HTML elements will show up in the order that the items have

been defined in the UI record. There are a few exceptions:
– Submit/Submit Bypass items that are NOT substructured will show up

across the bottom of the page no matter where they are defined relative
to the other items.

– In HTML, Forms cannot contain Forms. Because the UI Record itself
implicitly defines a Form, items with UIType=Form cannot be
interspersed with items that are meant to be in the default form. To
handle this situation, the default generation will place the Form elements
after all the other elements regardless of where they were defined in the
record.

v In general, items at the top structure level create line breaks between their
generated HTML elements. However, if an item is substructured the sub
item HTML elements will flow from left to right without line breaks. The
exception to this rule are items with UIType=Form. Basically the flow rule
described above starts over with items substructured under a Form item.
The highest level items under a Form item will create line breaks between
themselves. To get items to flow from left to right, substructure them
further under another item. Note: if the only purpose of the super item is
for layout purposes use a filler item. An item named * is a filler item.

Target environments for User interface

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only for Web transaction programs.

MVS/TSO Not supported.

Organization - User interface

Chapter 4. Records 181

Environment Compatibility considerations

MVS batch Not supported.

IMS/VS Valid only for Web transaction programs.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only for Web transaction programs.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Valid only for Web transaction programs.

AIX Valid only for Web transaction programs.

HP-UX Valid only for Web transaction programs.

CICS for AIX Valid only for Web transaction programs.

Windows NT
(C++)

Valid only for Web transaction programs.

Windows NT
(Java)

Valid only for Web transaction programs.

CICS for
Windows NT

Valid only for Web transaction programs.

Solaris Valid only for Web transaction programs.

CICS for Solaris Valid only for Web transaction programs.

Test Facility Valid only for Web transaction programs.

Organization - Working storage

Working storage records define storage areas for temporary data items that
are used in programs.

Uses
The data item values are not saved when the program has finished running
unless the data items have been moved to a record and placed in a file.

Definition considerations for Working storage
A working storage record can be defined as a unit of related data items (data
structure), similar to the definition of other record organizations. One or more

Organization - User interface

182 VisualAge Generator: Programmer’s Reference

single, unrelated data items can be defined for use in the working storage
record instead of, or in addition to, the data structure.

If an input message to a main transaction consists of only the transaction
name followed by blanks, the program assumes it is being started with no
working storage record being passed.

Working storage records provide the following:
v Data items to temporarily hold data, such as the date or intermediate

results of calculations
v Data items to be passed as arguments to another program

Level-77 data items
Single data items are referred to as level-77 data items. These data items are
defined with a level of 77 after all data items in the working storage structure
have been defined.

Level-77 data items are initialized to blanks, or to numeric or binary zeros,
depending on the defined data type.

Level-77 items are included in a program only if the working storage record is
specified as the primary working storage record in the program specification.

If a working storage record is passed as a parameter to another program, only
the structure is passed. Any level-77 data items you want to pass must be
specified as separate arguments on the CALL statement.

Generation Considerations for Working storage
The primary working storage record identified in the program specification is
always initialized. If the /INITADDWS generation option is specified,
working storage records included in the Table and Additional Record List are
initialized based on the type of data (blanks for character, DBCS, Unicode, and
mixed data, and zero for numeric data).

Target environments for Working storage

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

Organization - Working storage

Chapter 4. Records 183

Environment Compatibility considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Working storage records are included in a GUI program by
specifying the working storage record name as the name of a record
part dropped on the GUI definition. Level-77 items are included
with each record.

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Prologue

A prologue is a text description of the record.

Uses
The use of the prologue is optional. The prologue area is used for
documentation purposes only. It is for commentary and does not affect the
program at run time.

Target environments for Prologue
Supported in all environments without compatibility considerations.

Organization - Working storage

184 VisualAge Generator: Programmer’s Reference

Record

A record or multiple records are individually accessible units of storage in a
file or database.

Uses
Records can also be used as temporary working storage when a program
runs. A record definition consists of the following:
v A specific record organization

The record organization indicates both the structure of the file or database
containing the collection of records and how to gain access to the record.
You can choose from the following types of organization:
– DL/I segment
– Indexed
– Redefined
– Relative
– Serial
– SQL row
– User interface
– Working storage

v A list of data items

Target environments for Record
Supported in all environments without compatibility considerations.

Record ID item

Record ID item is the name of the data item that contains the record key for
an indexed file, or the relative record number for a relative file.

Definition considerations for Record ID item

Indexed records
For an indexed file, the record ID item must be defined in the Data
items list for the record.

The record ID item should have the same length and record offset as
the key in the records in the physical file.

Relative records
The record ID item does not have to be specified in the Data items list
as part of the record structure for a relative record.

The item should be defined as follows:

Data type
Numeric (Num), packed (Pack), or binary (Bin)

Record

Chapter 4. Records 185

Decimal places
0

Maximum length
9

If you have not defined the record ID item anywhere in your program
and implicits are allowed for the program, test and generation defines
a 2-byte binary implicit data item.

When a relative record file is accessed while the program is running,
the record ID item must contain a number that indicates the record
position in the file relative to the beginning of the file.

Target environments for Record ID item

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Record ID item

186 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Record length item

Record length item specifies the data item that contains the length of a
variable-length serial, indexed or message queue record.

Uses
When a variable-length record is read from the file, the length is stored in the
record length item. When a record is written to the file, the length is obtained
from the record length item. The data item specified as the Record length item
does not have to be defined in the record definition itself.

The data item characteristics of the record length item must be one of the
following:
v Have a data type of numeric (Num), binary (Bin), or packed, (Pack)
v Have a maximum length of 9 digits
v Contain no decimal places

Definition considerations for Record length item
If the record length item is not defined anywhere in the program and
implicits are allowed in the program, the record length item is defined
implicitly as a 2-byte binary field.

The maximum length for a variable-length record is the record length
calculated from the data item definition for the record. When a variable-length
record with a record length item is written to the file, the value in the record
length item must be less than or equal to the maximum record length.

For message queue records, the message length is set equal to the value in the
record length item when a program adds the record to a message queue.
When the program reads a message from the queue, the message length is
returned in the record length item. If the record contains both a record length
item and occurrences item, the record length item is set to the length
calculated from the number of occurrences before a message is added to the
queue.

Record ID item

Chapter 4. Records 187

The record length item must not be specified for fixed-length records.

If the records in a file are variable-length, the record specification must
include a record length item, a number of occurrences item, or both.

If you have both a record length item and a number of occurrences item, the
record length is calculated using the number of occurrences item each time
the record is written to the file. The calculated length is moved to the record
length item before writing the record.

Test and runtime use the record length only when reading records from the
file or writing records to the file.

Program statements can reference all the items in the entire record regardless
of the values of the record length item and number of occurrences item.

For platform specific record lengths, see “Maximum record lengths” on
page 708.

Target environments for Record length item

Environment Compatibility considerations

VM CMS Variable-length records are supported in VSAM files and VM
sequential files.

Variable-length records in VM non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to a VM
non-VSAM sequential file with variable record format and removed
when the record is read.

VM batch Same as VM CMS.

CICS for
MVS/ESA

Variable-length records are not supported for temporary storage
queues and transient data queues.

MVS/TSO Variable-length records are supported in VSAM files and MVS
sequential files.

Variable-length records in MVS non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to an MVS
non-VSAM sequential file with variable record format and removed
when the record is read.

Record length item

188 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS batch If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

Otherwise, the considerations for MVS/TSO apply to MVS batch.

IMS/VS Record length item is only supported for serial files associated with
IMS message queues. The IMS message header (length, ZZ field,
and transaction code) is removed from records read from a queue
and added to records written to the queue. The data item definition
for the record should not include the header.

IMS BMP If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

For files associated with IMS message queues the same
considerations for IMS/VS apply to IMS BMP.

Otherwise, the considerations for MVS/TSO apply to IMS BMP.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as CICS for MVS/ESA.

CICS for OS/2 Variable-length records are supported with CICS-managed files
(generation file type VSAM), and COBOL-managed files (file type
OS2COBOL). Variable-length records are not supported for
temporary storage queues and transient data queues. Use with
message queue records is not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

Record length item

Chapter 4. Records 189

Environment Compatibility considerations

CICS for
Windows NT

Same as CICS for AIX.

Solaris None.

CICS for Solaris Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Test Facility None.

Record name

The record name identifies a record part.

Uses
See Appendix B. Naming conventions for data item, record, function names
for record naming conventions.

Target environments for Record name
Supported in all environments without compatibility considerations.

Record data structure

Record data structure, called a record data item definition, specifies a data
structure that describes the format or field layout of data items within a
record.

Uses
The structure definition is specified as a list of data items. The following
elements can be specified for each data item in the list:
v BYTES
v DEC (decimal positions)
v DESCRIPTION
v LENGTH
v LEVEL
v NAME
v OCCURS
v TYPE
v USAGE

These data items are discussed in “Data item” on page 215.

Target environments for Record data structure
See the individual data item discussions in “Data item” on page 215.

Record length item

190 VisualAge Generator: Programmer’s Reference

Redefinition for

The redefinition for element identifies the name of the record that is being
redefined when record organization is specified as redefined record.

Uses
You cannot use redefined records as I/O objects, but you can use them in
statements and as passed parameters.

To use a redefined record, you must specify the name of the record in the
Table and Additional Record List during program definition.

Target environments for Redefinition for

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

Redefinition for

Chapter 4. Records 191

Environment Compatibility considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL row record data structure

SQL row record data structure defines a set of data items that represent
columns in the SQL tables represented by the SQL row.

Uses
The structure definition is specified as a list of data items. The following
elements can be specified for each data item in the list:
v BYTES
v DEC (decimal positions)
v DESCRIPTION
v KEY
v LENGTH
v NAME
v READ-ONLY
v SQL COLUMN NAME
v SQL DATA CODE
v TYPE
v USAGE

These data items are discussed in “Data item” on page 215.

Target environments for SQL row record data structure
See the individual data item discussions in “Data item” on page 215.

SQL table names

SQL table names is the set of relational tables that an SQL row record
represents.

Uses
Two elements are specified for each table: table name and table label. The data
that you enter for the table name and table label must meet SQL naming
conventions. SQL names are not validated.

Redefinition for

192 VisualAge Generator: Programmer’s Reference

SQL Table Name
SQL table name is the name of a table or view as it is known by the database
manager. The name can be in any format that is accepted by the database
manager. You can qualify the name with an owner or authorization identifier
and a remote database location, or you can specify a synonym for a table
name instead of the table name itself. The table name can be specified directly
(as a literal) or indirectly (as a host variable). If you use host variable format,
the program must move the table or view name to the variable at run time.

Literal (direct): The value of table name must meet SQL naming conventions.
VisualAge Generator does not validate SQL names.

The name is left-justified and padded with blanks and is not changed to
uppercase. The name is inserted in SQL statements and passed to the database
manager exactly as it is entered.

Host variable (indirect): When using host variable format, the table name is
a data item name preceded by the SQL host variable indicator. The program
must move the SQL table name to the data item at run time. The SQL table
names in host variable format can be as follows:
v The SQL host variable indicator is defined in the environment variable

EZERSQLHOST. The default character can be changed by your system
administrator using the customization procedures for language-dependent
options. You can also change the default character by using the
EZERSQLHOST environment variable.

Note: For VisualAge Generator Developer, all support for EZER*
environment variables have been removed. The SQL host variable
indicator is specified on the VAGen-SQL tab in the VisualAge
Preferences dialog. Some of these environment variables are still
supported by VisualAge Generator Server.

v A valid data item name preceded by a question mark (?) if you want to
specify a table name in SQL host variable format in the external source
format file.

v The data item must define a CHA or MIXED data item.
v The data item name can be qualified, subscripted, or both. The subscript

can be a numeric data item or a literal. The table name has a maximum
length of 60 characters, including the SQL host variable indicator.

At run time, the program must move the actual table name into the host
variable before the SQL record is accessed. The SQL statements for functions
that gain access to the record as an I/O object are prepared and executed
dynamically when the program runs. The current contents of the data item for
the host variable are substituted wherever it appears in the SQL statement.

SQL table names

Chapter 4. Records 193

The value moved into the table name host variable must meet SQL naming
conventions. The generated program does not validate the value.

SQL table label
SQL table label is a shortened version of the table name. You can enter a label
up to 4 characters long. The label is used as a qualifier to uniquely identify
column names in SQL row definitions and SQL statements when the SQL row
record represents two or more tables joined together.

If you do not specify the label, record specification automatically generates
one for you.

Table Joins
If there is more than one table specified, the record represents a join of the
tables in the list. When a record represents a join, use the Default Selection
Conditions element to specify default join conditions to limit the number of
rows produced when the tables are joined. SQL rows that represent joins
cannot be used with I/O options that modify the database (UPDATE,
SETUPD, REPLACE, DELETE, and ADD).

Target environments for SQL table names

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

SQL table names

194 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable length item (DL/I)

Variable length item is the name of a data item in a DL/I segment that
contains the length of the rest of the segment, including the length field.

Uses
The name must be specified if the segment has variable length. The item must
be a 2-byte binary item and have the same length and offset as the length
field in the segment in the DL/I database description.

If the segment has fixed length, the variable-length item field must be left
blank.

The variable-length item will usually be the first item in the segment. The
only time the variable-length item is not first is when a concatenated segment
in a logical database is built from a fixed-length segment followed by a
variable-length segment.

Target environments for variable length item (DL/I)

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

SQL table names

Chapter 4. Records 195

Environment Compatibility considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Variable length item (DL/I)

196 VisualAge Generator: Programmer’s Reference

Chapter 5. Tables

A table part is an array of predefined data values that can be used for the
following:
v Editing data that is entered on a map by a user of the program (edit table

types)
v Storing messages that the program issues (message table type)
v Storing information for reference by a program when it runs (all table

types)

Tables are included in a program by specifying the table name as the program
message table, in the table and additional records list for the program, or as
the name of a table part included in a GUI definition. The table that a
program uses for its message table must be identified in the message table
prefix for the program.

Table elements

Table 11. Table elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Column
definition

x x

Contents
definition

x x x x x x x x x c x x x x x x c x x x c x x

Prologue x

Resident c c c c c c c c c c c x x c c c c c c c c c x

Shared c c c c c c c c c c x c i c c c c c c c c x c

Table name x

Table type x x x x x x x x x x c c c x x x x x x x x x c

© Copyright IBM Corp. 1980, 2000 197

Table 11. Table elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

Column definition

A table column definition specifies a data structure that describes the format
of each row in a generator data table as opposed to a relational database table.

Uses
The column definition is specified as a list of data items. The following item
elements can be specified for each data item in the list:
v BYTES
v DEC (decimal positions)
v DESCRIPTION
v LENGTH
v LEVEL
v NAME
v TYPE
v USAGE

These data items are discussed in “Data item” on page 215.

Target environments for Column definition
Supported in all environments without compatibility considerations.

Contents definition

A table contents definition defines the contents of the data values stored in
the table.

198 VisualAge Generator: Programmer’s Reference

Uses
The contents are specified in a list. Each row in the list represents one row in
the table. Each row is formatted as specified in the table column definition.

For tables, the comparison is always done from the first row in the table
through the last row in the table. For better performance, values that occur
most frequently should be put first in the table.

Table contents are converted to the format of the runtime environment when
the table is generated for an environment.

Target environments for Contents definition
Supported in all environments without compatibility considerations.

Prologue

The prologue area is used for documentation purposes only.

Uses
The use of a prologue is optional; it is commentary only and does not affect
program execution.

Target environments for Prologue
Supported in all environments without compatibility considerations.

Resident

Resident keeps the shared table in storage after its use count is set to zero.

Uses
A use count is kept for shared tables accessed by programs. If Resident is
specified, the table contents are not removed from memory when the use
count is set to zero.

Note: You can only specify Resident for tables that are shared.

Definition considerations for Resident
The time it takes to delete the table contents depends on the target runtime
environment.

The Keep after use attribute determines when the use count is incremented
and decremented for a specific program.

Contents definition

Chapter 5. Tables 199

Target environments for Resident

Environment Compatibility Considerations

VM CMS Resident table contents are removed from storage when any of the
following occurs:
v The main program ends
v The main program performs an XFER
v The main program performs a DXFR to a non-VisualAge

Generator program
v A called program returns to a non-VisualAge Generator program.

VM batch Same as VM CMS.

CICS for
MVS/ESA

Do not use the RES keyword on the CICS PPT entry for the table
program if you use the resident attribute.

Resident table contents are deleted only when the CICS region
comes down or when the VisualAge Generator Server for MVS,
VSE, and VM new copy utility is used to delete the table.

When new copy is used, transactions that are already active and
have the table loaded continue to use the old copy of the table until
the table use count is set to zero for the transaction. The old copy is
deleted when no more programs are using the copy.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Resident table contents are deleted when any of the following
occurs:
v A main batch program ends
v A called program returns to a non-VisualAge Generator program
v A main transaction program finishes processing all messages in

the input message queue

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as VM CMS.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Same as VM CMS.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) Resident table contents are deleted when the run unit ends.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Resident

200 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

Shared

Shared specifies whether all users of a table share a single copy of the table.

Uses
If you do not specify Shared, each program user has a unique copy of the
table.

Note: You can only specify Resident for tables that are shared.

Target environments for Shared

Environment Compatibility Considerations

VM CMS Shared tables marked as resident remain loaded until any of the
following ends VisualAge Generator Server for MVS, VSE, and VM:
v Return to the system or the non-VisualAge Generator program
v XFER
v DXFR to non-VisualAge Generator program

Otherwise, the shared indicator is ignored. Each user has a separate
copy of the table.

VM batch Same as VM CMS.

CICS for
MVS/ESA

If shared tables are modified, the modifications are effective for all
users of the table in the same CICS region until the table is
reloaded.

If the table being modified has synchronization considerations with
other transactions using the table, the modifications to the table
should not be made across a CALL statement or an I/O option.
Programs requiring synchronization across CALL statements or I/O
options should use an external serialization method.

Resident

Chapter 5. Tables 201

Environment Compatibility Considerations

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Shared tables cannot be modified by the program.

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as VM CMS.

CICS for OS/2 If shared tables are modified, the modifications are effective for all
users of the table on the same CICS for OS/2 system until the table
is reloaded.

Updates to shared tables are not synchronized in CICS for OS/2.
Programs requiring synchronization for updates to shared tables
should use an external serialization method.

An example of an external serialization method would be to call an
external non-VisualAge Generator program to perform a CICS ENQ
function while the table is being updated.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

All GUIs running under the same IBM image in a single function
share the same copy of a shared table. If the table is not marked as
shared, each GUI has a separate copy of the table.

GUIs do not share tables with called programs.

Windows Java
(GUI)

Ignored.

OS/2 (C++) Shared tables cannot be updated.

AIX Shared tables cannot be updated.

HP-UX Shared tables cannot be updated.

CICS for AIX Shared tables cannot be updated.

Windows NT
(C++)

Shared tables cannot be updated.

Windows NT
(Java)

None.

CICS for
Windows NT

Shared tables cannot be updated.

Solaris Shared tables cannot be updated.

CICS for Solaris Shared tables cannot be updated.

Shared

202 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Test Facility All GUIs running under the test facility share the same copy of a
shared table. If the table is not marked as shared, each GUI has a
separate copy of the table.

All other types of programs running under the test facility share the
same copy of a table, whether or not it is marked as shared.

Programs running under the test facility do not share tables with
generated programs that are called from the programs being tested.

Table name

The table name is the name of the table part.

Definition considerations for Table name
Naming conventions for tables:

Maximum length
7

First character
Alphabetic (A-Z)

Other characters
Alphanumeric (A-Z, 0-9)

DBCS name
No

v Table names cannot end with a 0 (zero)
v The table name must be unique within a CICS execution system and within

a target MVS load library
v To avoid potential conflicts with the program names generated for the map

groups, do not end the table name with FM or P1
v Table names cannot begin with the EZE prefix.
v Table names cannot contain embedded blanks.
v Table names cannot be COBOL reserved words.

Other rules apply for message tables. The format of the message table name is
xxxxyyy where xxxx is the message table prefix and yyy is a suffix that
identifies the national language. The format for the message table name prefix
follows.
v Maximum length: 4
v First character: alphabetic (A-Z)
v Other characters: alphanumeric (A-Z, 0-9)

The message table prefix is specified during program specification.

Shared

Chapter 5. Tables 203

A suffix is appended to the message table prefix to build the name of the user
message table. The VisualAge Generator Developer supports the following
suffixes for the national languages:

Code Language
CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German
ENP Uppercase English
ENU US English
ESP Spanish
FRA French
ITA Italian
JPN Japanese
KOR Korean
PTB Brazilian Portuguese

Note: Uppercase English is not supported by AIX, OS/2, Windows NT,
HP-UX, SCO OpenServer, and Solaris.

Target environments for Table name
Supported in all environments without compatibility considerations.

Table type

Table type defines how the table is to be used.

Uses
You can specify the following table types:

Unspecified
Defines a table to store information to which a program refers when it
runs.

Statements can refer to a table with the Unspecified type.

You cannot use a table with the Unspecified type as an edit routine.

Match valid
Defines a table that requires the data entered by a program user to
match a value in the first column of the table.

A match valid table can be specified as a map variable field edit
routine. This type of table is useful for checking a set of valid entries
for a map field.

Match invalid
Defines a table that requires that the data entered by a program user
does not match any of the data in the first column of the table.

Table name

204 VisualAge Generator: Programmer’s Reference

A match invalid table can be specified as a map variable field edit
routine.

Range match valid
Defines a table that requires the data entered by a program user to be
between sets of values.

A range match valid table can be specified as a map variable field edit
routine. It must have at least two columns, with the first and second
columns showing the valid ranges.

When a map variable field has a range valid table specified as an edit
table, each time a value is entered in the field it is checked against
each row of the table to see if it is greater than or equal to the first
column, and less than or equal to the second column. If the range
check fails, the value is treated as not valid. If the range check passes,
the value is treated as valid.

Message
Defines a table to contain user messages for your program to use.

Message tables must have at least two columns, the first column
contains the message number and the second column contains the
message text.

Program messages are used to notify the user of errors detected in
validated input from maps. You identify which message is to be
displayed in response to an edit error by coding the program to move
a message number to EZEMNO or by specifying a message number as
the Edit Error Message Number.

When an error is detected, the text from the second column for the
selected error message is displayed in map field EZEMSG. The second
column can be defined to be longer than 78 characters, but if it is
longer than the field defined using the EZEMSG special function
word, the value will be truncated.

The message table columns must follow the following conventions:

The first two columns of a message table with the lowest level data
item must meet the following requirements:

Column 1
This data item is used for the message number.

Type Num

Length
4

Decimals
0

Table type

Chapter 5. Tables 205

Column 2
This data item is used for the message text.

Type Char or Mixed

Length
1 to 254 (78 is recommended)

Decimals
0

Target environments for Table type

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 MESSAGE type tables may not be referenced in a statement. Only
access to MESSAGE tables is via EZEMNO or as a message number
reference for a map edit failure.

Windows-OS/2
Smalltalk (GUI)

Functions related to table type are not supported in GUIs. All tables
are treated as if the table type was unspecified.

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

Table type

206 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility Results can vary for range checks in different environments due to
differences in data formats in the environment.

Table type

Chapter 5. Tables 207

Table type

208 VisualAge Generator: Programmer’s Reference

Chapter 6. Items

An item is a data element. The item can be defined by itself as a separate
part, or within the context of a data structure definition.

Item elements

Table 12. Item elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Data item
bytes

x x

Data item
decimal
places

x x

Data item
description

x x

Data item
key (SQL
row record)

x x

Data item
length

x x

Data item
level

x x x x x x x x x c x c c c x x x c c x x x c

Data item
name

x x

Data item
occurs

x x

© Copyright IBM Corp. 1980, 2000 209

Table 12. Item elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Data item
read-only
(SQL row
record)

x x

Data item
SQL
column
(SQL row
record)

x x

Data item
SQL data
code (SQL
row record)

x x

Data item
type - Bin

x x x x x x x x x c x c c c x x x c c x x x c

Data item
type - Char

c c

Data item
type -
DBCS

c c

Data item
type - Hex

x x

Data item
type -
Mixed

c c

Data item
type - Num

c c

Data item
type -
Numc

c c

210 VisualAge Generator: Programmer’s Reference

Table 12. Item elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Data item
type - Pacf

c c

Data item
type - Pack

c c

Data item
type -
Unicode

x x x x x x x x x x x x

Data item
UI type

c c c c c c c c c c c c c

Data item
UI type -
Form

c c c c c c c c c c c c c

Data item
UI type -
Hidden

c c c c c c c c c c c c c

Data item
UI type -
Input

c c c c c c c c c c c c c

Data item
UI type -
Input/Output

c c c c c c c c c c c c c

Data item
UI type -
None

c c c c c c c c c c c c c

Data item
UI type -
Output

c c c c c c c c c c c c c

Data item
UI type -
Program
link

c c c c c c c c c c c c c

Chapter 6. Items 211

Table 12. Item elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Data item
UI type -
Submit

c c c c c c c c c c c c c

Data item
UI type -
Submit
bypass

c c c c c c c c c c c c c

Data item
usage

x c x

UI record
data item
edits

c c c c c c c c c c c c c

UI record
data item
edits -
Check
SO/SI
space

c c c c c c c c c c c c c

UI record
data item
edits -
Currency

c c c c c c c c c c c c c

UI record
data item
edits -
Currency
symbol

c c c c c c c c c c c c c

UI record
data item
edits - Edit
function

c c c c c c c c c c c c c

212 VisualAge Generator: Programmer’s Reference

Table 12. Item elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

UI record
data item
edits - Edit
table

c c c c c c c c c c c c c

UI record
data item
edits - Edit
type

c c c c c c c c c c c c c

UI record
data item
edits - Fill
character

c c c c c c c c c c c c c

UI record
data item
edits - Fold

c c c c c c c c c c c c c

UI record
data item
edits -
Input
required

c c c c c c c c c c c c c

UI record
data item
edits -
Maximum
value

c c c c c c c c c c c c c

UI record
data item
edits -
Minimum
input

c c c c c c c c c c c c c

Chapter 6. Items 213

Table 12. Item elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

UI record
data item
edits -
Minimum
value

c c c c c c c c c c c c c

UI record
data item
edits -
Numeric
Separator

c c c c c c c c c c c c c

UI record
data item
edits - Run
edit
function on
web

c c c c c c c c c c c c c

UI record
data item
edits - Sign

c c c c c c c c c c c c c

UI record
data item
edits - Zero
edit

c c c c c c c c c c c c c

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

214 VisualAge Generator: Programmer’s Reference

Data item

An item is a data element. The item can be defined by itself as a separate
part, or within the context of a data structure definition.

Shared data item definitions are stored independently of the records or tables
to which they belong.

This section describes the language elements that specify data item
characteristics. Some characteristics can be stored in a data item part
independent of any record or table structure if the usage of the data item
definition is shared. Other elements specify information about a data item as
it is used in that structure.

If the usage of the data item definition is specified as shared, the following
data item characteristics are independent of the structure:

BYTES
DEC (Decimal positions)
DESCRIPTION
LENGTH
NAME
TYPE

If the usage of the data item definition is specified as nonshared, the
characteristics above are stored with the data structure, not with a separate
data item.

A data item name represents the same data item wherever it is used as a
shared data item in a record or table. Changing the shared data item
specifications of type, length, and decimal places in one structure causes a
corresponding change in all structures that include the data item as a shared
data item. Changing the characteristics of a nonshared data item does not
affect any other data item definition.

The following data item characteristics are always stored with the data
structure, treated as local data and dependent on the structure:

KEY (SQL row record)
LEVEL
OCCURS
READ-ONLY (SQL row record)
SQL COLUMN NAME (SQL row record)
SQL DATA CODE (SQL row record)
USAGE

Data item

Chapter 6. Items 215

Data item bytes

Data item bytes specify the number of bytes required to store the data item
internally.

Uses
If data item length is specified, the bytes are automatically calculated from the
length value.

Maximum Number of Characters

The following table explains the maximum number of characters for records
and tables, based on the type of data:

Data
type

Length
in record

Bytes
in record

Length
in table

Bytes
in table

Char 32767 32767 254 254

Mixed 32767 32767 254 254

DBCS 16383 32766 127 254

UNICODE 16383 32766 127 254

Hex 65534 32767 254 127

Maximum Number of Digits

The following table explains the maximum number of digits for records and
tables, based on the type of data:

Data
type

Length
in record

Bytes
in record

Length
in table

Bytes
in table

Num/Numc 18 18 18 18

Pack/Pacf 18 10 18 10

Bin 18 8 18 8

SQL Bin 9 4 N/A N/A

SQL Pack 18 10 N/A N/A

For binary data, the following table shows the correspondence between the
number of digits and the number of bytes required:

Length (in digits) Bytes

1 - 4 2

5 - 9 4

Data item bytes

216 VisualAge Generator: Programmer’s Reference

10 - 18 8

Target environments for Data item bytes

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Data item bytes

Chapter 6. Items 217

Data item decimal places

Data item decimal places specifies the number of places reserved to the right
of an implied decimal point. The default is 0 (no decimal places).

Uses
The length of the data item must include space for the decimal places. The
maximum number of decimal places is 18 or the length of the data item, if it
is shorter than 18. The decimal point is not stored with the data.

You cannot specify Decimal places when either of the following conditions is
true:
v You select a data type that is not numeric.
v For SQL data items, you select a data type other than PACK.

Target environments for Data item decimal places
Supported in all environments without compatibility considerations.

Data item description

Data item description is a text description of what the data item represents.

Uses
You can specify a 1- to 30-character description of a data item.

Descriptions can be entered in uppercase, lowercase, or mixed case.

Target environments for Data item description
Supported in all environments without compatibility considerations.

Data item key

Data item key designates whether a data item in an SQL row record is a key
column in an SQL row.

Uses
Columns that are defined as key items are used as the selection variables
when building the default SQL statements for INQUIRY, UPDATE, SETINQ,
and SETUPD functions.

Key items are not replaced by the default SQL statement built for the
REPLACE I/O option.

Any column designated as a key is included in the ORDER BY clause of the
SELECT statement for a SETINQ function. The order of the key within the
record definition determines its position within the ORDER BY clause.

Data item decimal places

218 VisualAge Generator: Programmer’s Reference

The data item key designation is ignored if the data item definition is used
with an alternate specification record. Use the default key item to specify a
key column for an alternate specification record.

Target environments for Data item key
Supported in all environments without compatibility considerations.

Data item length

Data item length specifies the number of characters or digits set aside in a
data structure for a single occurrence of a data item.

The bytes set aside for an array is length times occurs.

Uses
If the Bytes value is specified, the Length value is automatically calculated
from the bytes value.

Maximum Number of Characters

The following table explains the maximum number of characters for records
and tables, based on the type of data:

Data
type

Length
in record

Bytes
in record

Length
in table

Bytes
in table

Char 32767 32767 254 254

Mixed 32767 32767 254 254

DBCS 16383 32766 127 254

UNICODE 16383 32766 127 254

Hex 65534 32767 254 127

Maximum Number of Digits

The following table explains the maximum number of digits for records and
tables, based on the type of data:

Data
type

Length
in record

Bytes
in record

Length
in table

Bytes
in table

Num/Numc 18 18 18 18

Pack/Pacf 18 10 18 10

Bin 18 8 18 8

SQL Bin 9 4 N/A N/A

Data item key

Chapter 6. Items 219

SQL Pack 18 10 N/A N/A

For binary data, the following table shows the correspondence between the
number of digits and the number of bytes required:

Length (in digits) Bytes

1 - 4 2

5 - 9 4

10 - 18 8

Target environments for Data item length
Supported in all environments without compatibility considerations.

Data item level

Data item level specifies a number that can be used to create a substructure
within the data items in a record or table.

Uses
Level information is unique to a data structure definition. Level numbers can
differ for the same data item that is used in several data structures. The only
valid levels are 3 through 49, and 77.

Data items with the lowest level number in a structure occupy the highest
position in the structure. Data items with higher level numbers represent
substructures of the previous item in the structure list with a lower level
number. The byte length of data items in a substructure must be equal to the
length of the data item at the next higher level in the structure. The default
level number is 3.

Definition considerations for Data item level
A data structure can contain one or more filler data items (nonshared data
items with a * specified for the name). The length of the filler data item must
be included in the entire length of a structure.

Working storage records can contain single data items in addition to or in
place of a data structure. Level 77 data items are not part of a data structure.
If both a data structure and single data items are defined, the structure must
be defined first. The level 77 data items will follow the structured data items.

Level 77 data items can be used for relative record ID items, work items, or
arguments to be passed to another program in a CALL statement. They are
not passed as part of the working storage when the working-storage record is

Data item length

220 VisualAge Generator: Programmer’s Reference

passed as a parameter on CALL, XFER, or DXFR statements. They are not
included if the working-storage record is specified in the Table and Additional
Record List for the program.

Target environments for Data item level

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Binary items are stored in byte-reversed order in OS/2 and
Windows environments. Therefore, using levels to access bytes
within binary items will have different results than in other
environments.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Same as CICS for OS/2.

Windows Java
(GUI)

Same as CICS for OS/2.

OS/2 (C++) Same as CICS for OS/2.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Same as CICS for OS/2.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris None.

CICS for Solaris None.

Data item level

Chapter 6. Items 221

Environment Compatibility considerations

Test Facility Same as CICS for OS/2.

Examples for Data item level
The following example depicts how various lengths of data entered in a
certain field level must total the next higher field level.

Name Level Numbers Length

ADDRESS 10 42

STREET 12 20

LOCALE 12 22

CITY 14 10

STATE 14 2

NEWZIP 14 10

ZIP 16 5

* 16 5

Notice in the table above that the total length of the data items in a
substructure must equal the length of the owning data item. For example:
v ADDRESS is level 10 and has a length of 42. STREET and LOCALE are

level 12 and have a combined length equal to ADDRESS.
v CITY, STATE, and NEWZIP are level 14 and have a combined length equal

to LOCALE.
v ZIP and * (a filler) are level 16 and have a combined length equal to

NEWZIP.

Data item name

Data item name is the unique identification of a data item within a data
structure.

Uses
For data item naming conventions, see Appendix B. Naming conventions for
data item, record, function names.

Target environments for Data item name
Supported in all environments without compatibility considerations.

Data item level

222 VisualAge Generator: Programmer’s Reference

Data item occurs

Data item occurs specifies the number of occurrences of the data item,
allowing the creation of arrays within a record.

Uses
A number from 1 to 32767 can be specified. The default is 1.

Definition considerations for Data item occurs
If you define a data item with more than 1 occurrence, no other data items
within its substructure can have more than 1 occurrence.

The same data item can be used in other data structures. The occurs
characteristic for a data item applies only for the data structure where the
characteristic is defined. The data item can have a different number of
occurrences for each data structure in which it is used.

For information on handling occurs in GUI programs, refer to the VisualAge
Smalltalk User’s Guide.

You cannot define level-77 data items in working storage with an occurrence
greater than 1.

You cannot define the number of occurrences for an item in an SQL row
record. An SQL row is treated as a set of single data items at the same level.

You cannot define the number of occurrences for an item in a table. For a
table item, the number of occurrences is equal to the number of rows defined
for table contents.

Target environments for Data item occurs
Supported in all environments without compatibility considerations.

Data item Read-only

Data item read-only prevents the data item from being written to the
relational database.

Uses
The specification of read-only determines what columns are included in the
generated SQL statements that write to the relational database.

Definition considerations for Data item Read-only
Specify Read-only for columns from a view that you know cannot be updated
and for columns that your program never needs to change.

Read-only is automatically specified when the following is true:
v Data items in SQL column names are expressions.

Data item occurs

Chapter 6. Items 223

v Data items in an SQL row record are defined as an SQL join.

Target environments for Data item Read-only
Supported in all environments without compatibility considerations.

Data item usage

Data item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the data structure definition.

Uses
Data item usage can be set to the following:
v Nonshared
v Shared

Nonshared characteristics apply only to the definition of the item in that data
structure and the characteristics are stored with the part containing the data
structure.

Shared characteristics apply wherever a shared item with the same name is
defined in any data structure. Shared characteristics are stored in a data item
part, independent of the data structures, function local storage lists, or
function parameter lists to which they belong.

Map fields are always nonshared.

Data item usage applies only to where VisualAge Generator stores and
retrieves the information about the data item, not to the usage of the item in
terms of generated code.

Definition considerations for Data item usage
A data item name represents the same data whenever it is used as a shared
data item in a data structure. Changing the shared data item specifications of
type, length, and decimal places in one structure causes a corresponding
change in all structures that include the data item as a shared data item.
Changing the characteristics of a nonshared data item does not affect any
other data item definition.

When you export an ENVY application containing a new shared data item,
both a VisualAge Generator shared data item and a shared data element are
created. VisualAge Generator Developer creates the shared data element with
the same name as the shared data item.

Nonshared data item characteristics are saved with the containing data
structure. Nonshared data item information is not saved as a separate data
item part.

Data item Read-only

224 VisualAge Generator: Programmer’s Reference

Target environments for Data item usage
Supported in all environments without compatibility considerations.

Data item SQL column name

Data item SQL column name specifies the column name used in the relational
database. The name can be from 1- to 36-characters.

Uses
If you do not enter a name, the data item name is used as the SQL column
name.

Definition considerations for Data item SQL column name
The SQL column can be the name of a column in a relational table or view
definition, or an SQL expression made up of column names, SQL operators,
constants, and built-in functions.

Relational table column
Specify a relational table column name if the actual name of the column in the
relational table or view definition differs from the data item name. If the SQL
row was defined as a join of multiple tables or views, the column name
should be qualified by the table label to which it belongs. The table label is
defined for the table or view name in the record specification to which it
belongs.

SQL expression
Specify an SQL expression to define a virtual column that can be used as a
read-only data item in the SQL row definition. The expression can be made
up of column names, SQL operators, constants, and built-in functions. The
expression is calculated when the SQL row is read from the database.

An example of an expression used as a column name is as follows:
MONTHLY-SALARY * 12

The name is inserted into the generated SQL statements just as it is entered.
All single-byte characters not within double quotes are folded to uppercase.
The specified name is not validated by VisualAge Generator. Instead, the
name is checked by the relational database manager during SQL statement
preparation for a program.

Target environments for Data item SQL column name

Environment Compatibility considerations

VM CMS None.

VM batch None.

Data item usage

Chapter 6. Items 225

Environment Compatibility considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Data item SQL data code

Data item SQL data code is the number that identifies the data type of the
data item in the relational database.

Uses
SQL data codes can vary only for DBCS, character, hexadecimal, and unicode
data items. SQL data codes are fixed for other types of data items and cannot
be modified.

Data item SQL column name

226 VisualAge Generator: Programmer’s Reference

SQL data codes are set correctly if you retrieved the data item definition for
the record from the relational database. If you enter the data item definitions,
specify the SQL data code to be the same as the SQL data code defined for the
associated column in the database for the data item.

When specified for hexadecimal data items, the SQL data code lets a program
access SQL data types not supported by corresponding VisualAge Generator
data types. For example, to access a double-precision FLOAT column in a
relational database, define the corresponding data item with a type of
hexadecimal, a bytes value of 8, and an SQL data code of 481.

Valid combinations of SQL data codes, and character or DBCS data items are
as follows:

Table 13. SQL Data Types for Variable and Fixed Length Columns

VisualAge
Generator Data
Type SQL Data Type Variable/Fixed

CHA 453—CHA (default) Fixed

CHA 449—VARCHAR, length < 255 Variable

CHA 457—VARCHAR, length > 254 Variable

DBCS 469—GRAPHIC (default) Fixed

DBCS 465—VARGRAPHIC, length < 128 Variable

DBCS 473—VARGRAPHIC, length > 127 Variable

UNICODE 469—GRAPHIC (default) Fixed

UNICODE 465—VARGRAPHIC, length < 128 Variable

UNICODE 473—VARGRAPHIC, length > 127 Variable

For more information on SQL data codes, refer to VisualAge Generator Design
Guide

Target environments for Data item SQL data code

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None

IMS/VS None.

Data item SQL data code

Chapter 6. Items 227

Environment Compatibility considerations

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Data item type

Data item type specifies the internal format or type of data. The data type
determines how the item is processed when referenced in processing
statements.

Uses
The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format

Data item SQL data code

228 VisualAge Generator: Programmer’s Reference

Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
Unicode

Double-byte character data

Performance Information for numeric data types
VisualAge Generator supports five numeric data types to allow you to define
record structures that match the structure of records in existing files.

For new data item definitions, in general, use BIN because it requires the least
amount of storage and performs the best overall.

For zoned decimal data, NUMC performs better than NUM. For packed
decimal data, PACK performs better than PACF.

BIN data type is the most efficient for array subscripting and relative record
IDs. Try to use short binary positive numbers with no decimal places. “Short”
includes numbers whose values are less than 32768 (or defined as four
numeric digits), which can be resolved into a length of two bytes.

NUM data without decimal places is more efficient in calculations, moves,
and comparisons than numeric data with decimals. If decimal places are
required, the number of decimal places across all items in a calculation should
be consistent.

VisualAge Generator handles numeric or binary data with up to 18 digits,
including decimal places. Performance is improved, however, if the fields
contain 4 or less digits (including decimal places).

Target environments for Data item type
See the individual data item types for compatibility considerations.

Data item type - Bin

Bin (binary) specifies numeric data stored in binary format.

Uses
Binary data can store large numbers in a smaller number of bytes than other
numeric data types.

Target environments for Data item type - Bin

Environment Compatibility considerations

VM CMS None.

VM batch None.

Data item type

Chapter 6. Items 229

Environment Compatibility considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Binary items are stored in byte-reverse order on OS/2 and Windows
systems. Therefore, using substructures for binary items can have
different results that in other systems.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Same as CICS for OS/2.

Windows Java
(GUI)

Same as CICS for OS/2.

OS/2 (C++) Same as CICS for OS/2.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Same as CICS for OS/2.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris None.

CICS for Solaris None.

Test Facility The test facility stores binary numbers in INTEL format in byte
reversed order.

Data item type - CHA

CHA (character) data consists of alphabetic, numeric, or national characters.

Data item type - Bin

230 VisualAge Generator: Programmer’s Reference

Target environments for Data item type - CHA
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations

VM CMS Uses EBCDIC character sets.

VM batch Uses EBCDIC character sets.

CICS for
MVS/ESA

Uses EBCDIC character sets.

MVS/TSO Uses EBCDIC character sets.

MVS batch Uses EBCDIC character sets.

IMS/VS Uses EBCDIC character sets.

IMS BMP Uses EBCDIC character sets.

CICS for
VSE/ESA

Uses EBCDIC character sets.

VSE batch Uses EBCDIC character sets.

CICS for OS/2 Uses ASCII character sets.

OS/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java
(GUI)

Uses ASCII character sets.

OS/2 (C++) Uses ASCII character sets.

AIX Uses ASCII character sets.

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT
(C++)

Uses ASCII character sets.

Windows NT
(Java)

Uses ASCII character sets.

CICS for
Windows NT

Uses ASCII character sets.

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility Uses ASCII character sets.

Data item type - CHA

Chapter 6. Items 231

Data item type - DBCS

DBCS (double-byte character set) data consists of double-byte characters.
DBCS data is ideographic character data that requires two positions for each
character in a record, table, or map.

Uses
DBCS data requires a terminal or printer device with DBCS capability so that
double-byte character data can be viewed or printed. Double-byte characters
are required for languages such as Japanese, Korean, and Chinese.

Target environments for Data item type - DBCS
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations

VM CMS Uses EBCDIC character sets.

VM batch Uses EBCDIC character sets.

CICS for
MVS/ESA

Uses EBCDIC character sets.

MVS/TSO Uses EBCDIC character sets.

MVS batch Uses EBCDIC character sets.

IMS/VS Uses EBCDIC character sets.

IMS BMP Uses EBCDIC character sets.

CICS for
VSE/ESA

Uses EBCDIC character sets.

VSE batch Uses EBCDIC character sets.

CICS for OS/2 Uses ASCII character sets.

OS/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java
(GUI)

Uses ASCII character sets.

OS/2 (C++) Uses ASCII character sets.

AIX Uses ASCII character sets.

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT
(C++)

Uses ASCII character sets.

Data item type - DBCS

232 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

Uses ASCII character sets.

CICS for
Windows NT

Uses ASCII character sets.

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility Uses ASCII character sets.

Data item type - Hex

HEX data consists of bytes of data where each byte is represented by two
hexadecimal (base 16) digits.

Uses
Hexadecimal data items provide basic processing functions (moves,
comparisons and parameter passing) for database fields whose data type is
not directly supported by VisualAge Generator.

If the data type of the data item in a physical record does not match any of
the other data types, select HEX. Specify a Bytes value equal to the number of
bytes the field uses in the database record or file.

The Length value represents the number of digits in the hexadecimal data
item and is twice the Bytes value.

Hexadecimal data items cannot be used in arithmetic expressions.

Target environments for Data item type - Hex
Supported in all environments without compatibility considerations.

Data item type - Mixed

Mixed data can contain both single-byte (SBCS) and double-byte characters
(DBCS).

Uses
Mixed data requires a terminal or printer device with DBCS capability so that
double-byte character data can be viewed or printed. Double-byte characters
are required for languages such as Japanese, Korean, and Chinese.

The length specified for a mixed data item type is the number of single-byte
characters that the field can contain. The number of Bytes for a mixed field
must equal the length.

Data item type - DBCS

Chapter 6. Items 233

Relational database managers do not support a data type for mixed data.
Instead, they allow mixed data in character columns when the database is
running in a DBCS environment. When accessing mixed data in a relational
database, the character items in the SQL row record must be defined as
character data items instead of mixed data items. The character data items can
be moved to mixed variable fields on maps or in other data structures.

Definition considerations for Data item type - Mixed
On systems that use EBCDIC character sets (mainframes like the System/370
and AS/400), special delimiters identify DBCS subfields within a mixed data
item. The shift-out (SO) character in SBCS text signifies that the text following
the SO character is DBCS. The shift-in (SI) character in DBCS text signifies
that the text following the SI character is SBCS. If you are defining mixed data
items for records that will be stored on mainframes, ensure that the item
length includes space for SO/SI characters for all valid values for the item.

Target environments for Data item type - Mixed
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations

VM CMS Uses EBCDIC character sets.

VM batch Uses EBCDIC character sets.

CICS for
MVS/ESA

Uses EBCDIC character sets.

MVS/TSO Uses EBCDIC character sets.

MVS batch Uses EBCDIC character sets.

IMS/VS Uses EBCDIC character sets.

IMS BMP Uses EBCDIC character sets.

CICS for
VSE/ESA

Uses EBCDIC character sets.

VSE batch Uses EBCDIC character sets.

CICS for OS/2 Uses ASCII character sets.

OS/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java
(GUI)

Uses ASCII character sets.

OS/2 (C++) Uses ASCII character sets.

AIX Uses ASCII character sets.

Data item type - Mixed

234 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT
(C++)

Uses ASCII character sets.

Windows NT
(Java)

Uses ASCII character sets.

CICS for
Windows NT

Uses ASCII character sets.

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility Uses ASCII character sets.

Data item type - Num

NUM data is numeric data in character (or zoned decimal) format.

Uses
NUM is supported for compatibility with previous products. For new
development, use BIN or PACK for defining numeric data items.

Definition considerations for Data item type - Num
Internally, each digit is represented by the character for that digit. The data
value is right-justified padded on the left with character zeros. The sign of the
number is stored in the left half of the last byte (the zone).

In EBCDIC, a positive sign is represented by the standard zone value for a
numeric character, which is hexadecimal F. The negative sign is hexadecimal
D.

A negative sign is represented by the hexadecimal digit 7.

NUM is not supported in relational databases.

Target environments for Data item type - Num

Environment Compatibility considerations

VM CMS EBCDIC sign formats are used.

VM batch EBCDIC sign formats are used.

CICS for
MVS/ESA

EBCDIC sign formats are used.

MVS/TSO EBCDIC sign formats are used.

Data item type - Mixed

Chapter 6. Items 235

Environment Compatibility considerations

MVS batch EBCDIC sign formats are used.

IMS/VS EBCDIC sign formats are used.

IMS BMP EBCDIC sign formats are used.

CICS for
VSE/ESA

EBCDIC sign formats are used.

VSE batch EBCDIC sign formats are used.

CICS for OS/2 ASCII sign formats are used.

OS/400 EBCDIC sign formats are used.

Refer to the VisualAge Generator Design Guide and VisualAge
Generator Generation Guide documents for more information on
compatibility. You can optimize runtime performance by using the
Generation option /POSSIGN=F.

Windows-OS/2
Smalltalk (GUI)

ASCII sign formats are used.

Windows Java
(GUI)

ASCII sign formats are used.

OS/2 (C++) ASCII sign formats are used.

AIX ASCII sign formats are used.

HP-UX ASCII sign formats are used.

CICS for AIX ASCII sign formats are used.

Windows NT
(C++)

ASCII sign formats are used.

Windows NT
(Java)

ASCII sign formats are used.

CICS for
Windows NT

ASCII sign formats are used.

Solaris ASCII sign formats are used.

CICS for Solaris ASCII sign formats are used.

Test Facility ASCII sign formats are used.

Data item type - Numc

NUMC data is numeric data in character (or zoned decimal) format with a
system sign value.

Uses
NUMC is supported for compatibility with previous products. For new
development, use BIN or PACK for defining numeric data items.

Data item type - Num

236 VisualAge Generator: Programmer’s Reference

Definition considerations for Data item type - Numc
Internally, each digit is represented by the character for that digit. The data
value is stored right-justified padded on the left with character zeros. The sign
of the number is stored in the left half of the last byte (the zone).

In EBCDIC, NUMC data items are equivalent to NUM data items, except that
the hexadecimal digit C represents a positive sign. The negative sign is
hexadecimal D.

A negative sign is represented by the hexadecimal digit 7.

Select NUMC when a program creates records to be processed by other
products using the C convention for positive sign.

NUMC is not supported in relational databases.

Target environments for Data item type - Numc

Environment Compatibility considerations

VM CMS EBCDIC sign formats are used.

VM batch EBCDIC sign formats are used.

CICS for
MVS/ESA

EBCDIC sign formats are used.

MVS/TSO EBCDIC sign formats are used.

MVS batch EBCDIC sign formats are used.

IMS/VS EBCDIC sign formats are used.

IMS BMP EBCDIC sign formats are used.

CICS for
VSE/ESA

EBCDIC sign formats are used.

VSE batch EBCDIC sign formats are used.

CICS for OS/2 ASCII sign formats are used.

OS/400 EBCDIC sign formats are used.

Refer to the VisualAge Generator Design Guide and VisualAge
Generator Generation Guide documents for more information on
compatibility. You can optimize runtime performance by using the
Generation option /POSSIGN=C.

Windows-OS/2
Smalltalk (GUI)

ASCII sign formats are used.

Windows Java
(GUI)

ASCII sign formats are used.

OS/2 (C++) ASCII sign formats are used.

Data item type - Numc

Chapter 6. Items 237

Environment Compatibility considerations

AIX ASCII sign formats are used.

HP-UX ASCII sign formats are used.

CICS for AIX ASCII sign formats are used.

Windows NT
(C++)

ASCII sign formats are used.

Windows NT
(Java)

ASCII sign formats are used.

CICS for
Windows NT

ASCII sign formats are used.

Solaris ASCII sign formats are used.

CICS for Solaris ASCII sign formats are used.

Test Facility ASCII sign formats are used.

Data item type - Pacf

PACF data items specify packed decimal data. Packed decimal data has 2
digits in every byte, with the sign in the right half of the last byte.

Uses
PACF is supported for compatibility with previous products. Use BIN or
PACK data types for new development.

Definition considerations for data item type - Pacf
Internally, the data value is stored right-justified padded on the left with
zeros. The positive sign is a hexadecimal F. The negative sign is hexadecimal
D. B is accepted as a negative sign in data created using other products.

PACF is not supported in relational databases.

Target environments for Data item type - Pacf
Refer to the VisualAge Generator Design Guide and VisualAge Generator
Generation Guide documents for more information on compatibility. You can
optimize runtime performance for the OS/400 environment by using the
generation option /POSSIGN=F.

Data item type - Pack

PACK data items specify packed decimal data. Packed decimal data has 2
digits in every byte, with the system generated sign value in the right half of
the last byte.

Data item type - Numc

238 VisualAge Generator: Programmer’s Reference

Uses
Use PACK for decimal numbers (non-integer numbers) for programs that will
normally run on MVS, VSE, VM, or OS/400. If the program is to be used
regularly on workstations, use BIN for numeric data. Always use BIN for
integer data.

Definition considerations for Data item type - Pack
Internally the data value is stored right-justified padded on the left with
zeros. The positive sign is represented by hexadecimal C. The negative by
hexadecimal D. B is accepted as a negative sign in data created using other
products.

Target environments for data item type - Pack
Refer to the VisualAge Generator Design Guide and VisualAge Generator
Generation Guide documents for more information on compatibility. You can
optimize runtime performance for the OS/400 environment by using the
generation option /POSSIGN=C.

Data item type - Unicode

Unicode is a 16 bit (2-byte) character encoding standard established by the
Unicode Consortium. It’s goal is to support all characters from all languages
in one character set. In version 2.0 of the standard, the character set contains
over 38,000 distinct coded characters from 25 supported scripts.

Java uses the Unicode character encoding for character strings within Java
programs. However, since very few systems have Unicode keyboards, fonts,
or printers, Java converts strings between Unicode and the locale character set
when displaying or printing data or reading data from the keyboard.

Data items with the Unicode data type are assumed to contain double byte
Unicode characters.

Use the Unicode data type for better performance for 4GL parts used only
within Java clients, and for storing text information for applications where the
text can be entered in different languages.

Definition considerations for Data item type - Unicode
The Unicode data type is only available for VisualAge Generator Developer
on Java.

Unicode items can be defined in records and tables, but not maps. Unicode
data is entered and displayed from Java client programs or Web programs.

Unicode support is not available for 3270 maps.

Data item type - Pack

Chapter 6. Items 239

Servers can store Unicode data directly in files or using the
GRAPHIC/VARGRAPHIC SQL data type on UDB databases where Unicode
has been specified as the code page for GRAPHIC data.

Unicode items can only be assigned, moved, or compared to other Unicode
items. All comparisons are logical comparisons between the bit values of the
items in Unicode.

Unicode items are padded with Unicode blanks when required. String
functions operate on Unicode items as byte strings.

The length for a Unicode item is expressed as the number of Unicode
characters. The number of bytes in the item is twice the length.

Unicode literals are not supported. Use tables to define initialized Unicode
variables.

Table contents for Unicode variables are entered as single byte or mixed
character data. Table definition converts the character strings to the
corresponding Unicode values based on the current locale.

Target environments for Data item type - Unicode

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Not supported.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Not supported.

IMS BMP Not supported.

CICS for
VSE/ESA

Not supported.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

Data item type - Unicode

240 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None

CICS for Solaris None.

Test Facility None.

Data item UI type

Data item UI type is available only for items defined in User Interface (UI)
records.

The user interface type defines how the item is used in the user interface and
together with other data item attributes such as occurs, substructuring, etc.
help determine the default UI elements used to implement the HTML form
when the UI record is generated.

Uses
The following Data item UI types are available:
Form Form is similar to Program Link except that it allows items that are

substructured under an item with this UI Type to be part of an HTML
″Form″. With the Form UI Type you can substructure items of UI
Type=Input, Input/Output, Submit, etc. to create multiple Forms that
invoke independent programs, passing the data of the given form.

Hidden
Fields of this type are not visible to the program user on the
generated HTML page. However, the data of these fields will be
passed when a form containing a hidden field is submitted.

Input Defines that input can be entered by the program user and that edits
will be run on the input data.

Input/Output
Defines that both INPUT and OUTPUT attributes are specified.

None Defines that the field is not to show on the user interface and that no

Data item type - Unicode

Chapter 6. Items 241

edits are to be defined for it. Items with this setting are typically used
as control data for user defined edits or as items such as the defined
the submit value item.

Output
Defines that output edits will be performed on data received from the
server.

Program Link
Enables an item with specified Link properties to define a link that
invokes a referenced program when the generated HTML link is
selected by the program user.

Submit
Defines an item to contain a value, or set of values if the item has an
occurs value greater than one, that can be received into the submit
value item when the program user submits a form back to the server.

Submit Bypass
Defines an item to contain a value, or set of values if the item has an
occurs value greater than one, that can be received into the submit
value item when the program user submits a form back to the server.
All input edits are bypassed when the program user submits the form.

Definition considerations for Data item UI type
The following properties are available:
v Occurrences item
v Selected index item
v Help text
v UI label

Occurrences item
The data item that defines the number of rows to display in the
generated HTML page. The specified occurrences item must be
defined in the UI record as follows:

Occurs
1

Data Type
Bin, Num, Numc, Pacf or Pack

Decimals
0

The data item specified as the occurrences item must not be the item
you are currently defining, the selected index item of the item you are
currently defining or the record’s submit value item.

Selected index item
The data item that receives the index or indices of the element(s)

Data item UI type

242 VisualAge Generator: Programmer’s Reference

selected by the program user. The specified selected index item must
be defined in the UI record as follows:

Data Type
Bin, Num, Numc, Pacf or Pack

Decimals
0

You can specify an array item as the selected index item. If the
specified selected index item is an array item, the generated UI part is
a multiple select list. The occurs value of the array item must match
the occurs value of the data item you are defining. If the specified
selected index item is not an array item, the generated UI part is a
single select list.

Help text
Help text defined for the item. Help text can be shared among all
records that use a shared data item.

UI label
The label defined for the item. If the item has an occurs value greater
than one and the item type is Submit, Submit Bypass or Program
Link, labels can be defined for each occurrence.

Target environments for Data item UI type
See the individual data item UI types for compatibility considerations.

Data item UI type - Form

UI Type - Form is similar to Data item UI type - Program Link except that it
allows items that are substructured under an item with this UI Type to be part
of an HTML ″Form″. With UI Type - Form you can substructure items of UI
Type=Input, Input/Output, Submit, etc. to create multiple Forms that invoke
independent programs, passing the data of the given form.

Uses
Use UIType - Form if data to be passed into the referenced program when this
Form is submitted is meant to be updated by the program user. The
substructured items of UI Type - Input, Input/Output will be input fields that
can be updated by the program user. This data will be passed to the
referenced program when this Form is submitted.

Note that not all data that is substructured will be passed. Only data of UI
Types Input, Input/Output, Submit, Submit Bypass, and Hidden will be
passed because these types turn into forms of the HTML INPUT tag. Other
UITypes such as Output can be substructured to control the appearance of the
form, but this data will not be passed. To pass data of fields with UITypes of

Data item UI type

Chapter 6. Items 243

Output, None (any types that do not become HTML INPUT fields), use the
Link Parameter definition as outlined in 244.

The UI record as a whole is treated as a default Form with the referenced
program implicitly being the one that CONVERSEd it. The same rules as
outlined previously for passing data apply to this default Form, that is, only
those fields that become HTML INPUT fields will actually be passed back
from the browser.

The main difference between using fields with UIType - Form and the default
Form of the entire UI record is that the default Form is sent to the browser as
the result of a CONVERSE and the entire state of that UI record has been
saved at the server. When you invoke the reference program of an item with
UIType - Form, this program is started new each time, so the First UI record
of this program will only have the state of the data that is passed to it.

Definition considerations for Data item UI type - Form
The following Program Link properties are available for Data item UI type -
Form:
v First UI record
v Link parameters
v Open as new window
v Program

First UI record
The name of a UI record that is defined in the specified program. If
data is passed when the program is invoked, the First UI record
specified contains the definition of the data items that receive data.
Specifying the First UI record is optional but using a Form to invoke a
program without passing data is not efficient. If the you want to
invoke a program without passing data, use UIType - Program Link.

Link parameters
Parameters that associate a data item in the First UI record of the
referenced program with data of the UI record containing the given
link. The difference between parameters defined here and those
defined for UIType - Program Link is that in the generated HTML
these parameters become HTML INPUT fields of TYPE=hidden
instead of query parameters tacked onto a URL. You can successfully
pass 400 bytes of data this way.

Name The name of the data item that receives data when the
program is invoked. This data item must be defined in the
specified First UI record.

Value Item
The name of the item that contains the data to be passed to
the invoked program. Parameter values passed to this

Data item UI type - Form

244 VisualAge Generator: Programmer’s Reference

program when the program user submits this Form are the
state of the value items at the time when the page is sent to
the browser The data item specified as the value item and the
program link must be defined in the same UI record. A literal
can also be specified as the Value Item.

Open as new window
A boolean value used to specify whether the results returned when a
user transits a link are displayed in a new window or in the current
window. If you are defining a program link, specifying a new window
for the linked program is optional.

Program
The name of the program to invoke. A Web Transaction program is
the only valid type of program you can define for this property. This
field is mandatory.

Target environments for Data item UI type - Form

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

Data item UI type - Form

Chapter 6. Items 245

Environment Compatibility considerations

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Hidden

UI Type - Hidden fields are not visible to the program user on the generated
HTML page. However, the data of these fields will be passed when a form
containing a hidden field is submitted.

Uses
Use UIType - Hidden if the data should not be visible to the program user but
must be passed to the server program.

Target environments for Data item UI type - Hidden

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Data item UI type - Form

246 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Input

UI Type - Input defines that input can be entered by the program user and
that edits will be run on the input data.

Uses
Use UI Type - Input if the generated UI part initially displays no data and
allows the program user to input data.

Target environments for Data item UI type - Input

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Data item UI type - Hidden

Chapter 6. Items 247

Environment Compatibility considerations

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Input/Output

UI Type - Input/Output defines that both INPUT and OUTPUT attributes are
specified.

Uses
Use UI Type - Input/Output if the generated UI part initially displays data
and allows your user to input data.

Target environments for Data item UI type - Input/Output

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

Data item UI type - Input

248 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - None

UI Type - None defines that both INPUT and OUTPUT attributes are specified
for the data item.

Uses
Use UI Type - None if the data item generates control data. UI Type - None
data items are not displayed to the program user.

Target environments for Data item UI type - Input/Output

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

Data item UI type - Input/Output

Chapter 6. Items 249

Environment Compatibility considerations

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Output

UI Type - Output defines that output edits will be performed on data received
from the server.

Uses
Use UI Type - Output if the generated UI part displays data to the program
user.

Target environments for Data item UI type - Output

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

Data item UI type - None

250 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Program link

UI Type - Program Link enables an item with specified Link properties to
define a link that invokes a referenced program when the generated HTML
link is selected by the program user.

Uses
Use UI Type - Program Link when a hypertext link to another Web
Transaction program is required.

Definition considerations for Data item UI type - Program link
The following Program Link properties are available:
v First UI record
v Link parameters
v Open as new window
v Program

First UI record
The name of a UI record that is defined in the specified Program. If
data is passed when the program is invoked, the First UI record
specified contains the definition of the data items that receive data. If
you are defining a program link and not passing any data, specifying
the First UI record is not necessary.

Link parameters
Parameter that associate a data item in the First UI record of the
referenced program with the data of the UI record containing the
given link. In the HTML, a program link becomes an HTML element
and the link parameters become query parameters that are part of the
HREF attribute of the HTML element. This means that there is an

Data item UI type - Output

Chapter 6. Items 251

implied limit to the amount of data that can be passed and it varies
depending on the browser and the web server used. If you need to
pass more than 400 bytes, use the UI Type of Form.

Name The name of the data item that receives data when the
program is invoked. This data item must be defined in the
specified First UI record.

Value Item
The name of the item that contains the data to be passed to
the invoked program. Parameter values passed to this
program when the program user clicks on this link are the
state of the value items when the page was sent to the
browser. The data item specified as the value item and the
program link must be defined in the same UI record. A literal
can also be specified as the Value Item and usage rules are the
same as when you use literals as operands in statements.

Open as new window
A boolean value used to specify whether the results returned when a
user transits a link are displayed in a new window or in the current
window. If you are defining a program link, specifying a new window
for the linked program is optional. This field is optional.

Program
The name of the program to invoke. A Web transaction program is the
only valid type of program you can define for this property. If you are
defining a program link, specifying the program is mandatory.

Target environments for Data item UI type - Program link

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

Data item UI type - Program link

252 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Submit

UI Type - Submit defines an item to contain a value, or set of values if the
item has an occurs value greater than one, that can be received into the
submit value item when the program user submits a form back to the server.

Uses
Use UI Type - Submit if the generated UI part is a push button that validates
the data entered by the program user against the edits specified for each
generated UI part on the HTML page.

Definition considerations for Data item UI type - Submit
EZEAID can be used as the submit value item if the values are valid EZEAID
values.

An example UI Type - Submit definition and explanation of the generated
output:
v A UI record data item is created and named SUBMIT_ITEM
v The item SUBMIT_ITEM is defined as UI Type - Submit
v The item SUBMIT_ITEM is further defined as CHA with an occurs value of

2
v A UI record data item is created and named SUBMIT_VALUE
v The item SUBMIT_VALUE is defined as UI Type - None
v The item SUBMIT_VALUE is further defined as the submit value item of

the given UI record
v The values set into the array are ’F1’ and ’F2’
v The Labels defined for the item contain ’CONTINUE’ and ’CANCEL’

Data item UI type - Program link

Chapter 6. Items 253

In this example, the default generated HTML page includes 2 submit push
buttons with text containing the defined label values. The value of the actual
button pressed, ’F1’ or ’F2’, is set into the item named SUBMIT_VALUE when
the form is submitted back to the server. The program then tests the value of
the item named SUBMIT_VALUE to determine if the program user wants to
’CONTINUE’ or ’CANCEL’.

Submit properties

Initial Values
The item must have a value, set into the submit value item, for the
buttons to be visible to the program user on the generated HTML
page. In most cases, a value can be programmatically set into the
submit value item. However, in the case of a First UI Record that is
receiving data, no program logic is run in time to set the data. To
address this situation, you can define initial values for Submit and
Submit Bypass items. During run time or ITF execution, these values
will be set into the item when the record or UI Bean is instantiated. If
the item has an occurs value greater than one, each line is a separate
value for each occurrence. Blank lines mean the occurrence at that
index will have no value. If the item is arrayed and there is only one
value specified, this value will be set on all occurrences.

Target environments for Data item UI type - Submit

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

Data item UI type - Submit

254 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Data item UI type - Submit bypass

UI Type - Submit Bypass defines an item to contain a value, or set of values if
the item has an occurs value greater than one, that can be received into the
submit value item when the program user submits a form back to the server.
Submit Bypass is identical to Submit except that all input edits are bypassed
when the program user submits the form.

Uses
Use UI Type - Submit Bypass if the generated UI part is a push button that
does not validate the data entered by the program user against the edits
specified for each generated UI part on the HTML page.

Definition considerations for Data item UI type - Submit bypass
EZEAID can be used as the submit value item if the values are valid EZEAID
values.

Submit Bypass properties

Initial Values
The item must have a value, set into the submit value item, for the
buttons to be visible to the program user on the generated HTML
page. In most cases, a value can be programmatically set into the
submit value item. However, in the case of a First UI Record that is
receiving data, no program logic is run in time to set the data. To
address this situation, you can define initial values for Submit and
Submit Bypass items. During run time or ITF execution, these values
will be set into the item when the record or UI Bean is instantiated. If
the item has an occurs value greater than one, each line is a separate
value for each occurrence. Blank lines means the occurrence at that
index will have no value.

Data item UI type - Submit

Chapter 6. Items 255

Target environments for Data item UI type - Submit bypass

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits

UI record data item edits are part of data item definition and are available
only for use in User Interface (UI) records and Web transaction programs.

Uses
Use UI record data item edits to specify the type of edit you want performed
on the selected data item. The following UI record data item edits are
available:

Data item UI type - Submit bypass

256 VisualAge Generator: Programmer’s Reference

v Check SO/SI space
v Currency
v Currency symbol
v Edit function
v Edit type
v Edit table
v Fill character
v Fold
v Input required
v Maximum value
v Minimum input
v Minimum value
v Numeric separator
v Run edit function on web
v Sign
v Zero edit

Definition considerations for UI record data item edits
Input edits are processed in the following order or levels:
1. VAGen edits (valid numeric, range, required field, and so on).
2. Table edits
3. User Functions defined to run on the web server with the UI Record.
4. User Functions defined to run in the server program that did the

CONVERSE.

VAGen edits, Table edits, and User Functions defined to run on the web
server with the UI Record are run on the web server where the UI record
beans are deployed. All fields are run through the input edits for each type. If
all fields pass a level, the next level is processed. If all fields do not pass a
level, processing stops at the level where input edits failed and the page is
sent back to the browser. Fields are processed in the defined input edit order.
The default input edit order is set as input items are created in the UI record,
from the top of the record to the bottom of the record.

Target environments for UI record data item edits
See the individual UI record data item edits for compatibility considerations.

UI record data item edits - Check SO/SI space

UI record data item edits - Check SO/SI space determines whether mixed
data (SBCS or DBCS) entered in the generated UI part can be converted to the
mainframe SO/SI format with a valid length for the generated UI part.

UI record data item edits

Chapter 6. Items 257

Definition considerations for UI record data item edits - Check SO/SI
space

Mixed fields require fewer bytes of storage on OS/2 and Windows systems
because the ASCII DBCS format does not use SO/SI escape characters for
delimiting DBCS data.

Check SO/SI space is only available for mixed data items.

Target environments for UI record data item edits - Check SO/SI space

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Check SO/SI space

258 VisualAge Generator: Programmer’s Reference

UI record data item edits - Currency

UI record data item edits - Currency displays a currency symbol or accepts a
currency symbol for numeric data in the generated UI part when the program
user submits the generated HTML page.

Definition considerations for UI record data item edits - Currency
One currency symbol is accepted preceding or following the numeric data
entered by the program user.

Field length is calculated automatically.

Target environments for UI record data item edits - Currency

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

UI record data item edits - Currency

Chapter 6. Items 259

Environment Compatibility considerations

Test Facility Valid only in UI records.

UI record data item edits - Currency symbol

UI record data item edits - Currency symbol defines a one to three character
symbol for the data item.

Definition considerations for UI record data item edits - Currency symbol
The default system currency symbol is used when a currency symbol is not
defined and UI record data item edits - Currency is defined. The default
system currency symbol can be changed by your system administrator using
the customization procedures for language-dependent options.

Target environments for UI record data item edits - Currency symbol

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

UI record data item edits - Currency

260 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Edit function

UI record data item edits - Edit Function defines an edit function for
validating data entered by the program user in the generated user interface
part.

Uses
Use edit functions to check user input entered into the generated user
interface.

Definition considerations for UI record data item edits - Edit function
The edit function cannot be defined with parameters. The function can invoke
other functions defined with parameters. EZEC10 and EZEC11 are also valid
edit functions.

Target environments for UI record data item edits - Edit function

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

UI record data item edits - Currency symbol

Chapter 6. Items 261

Environment Compatibility considerations

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Edit type

UI record data item edits - Edit type defines the data item as one of the
following:
v Date
v Time
v Boolean
v None

Date Date edit type specifies that the internal data of the item should be
treated as a date. The purpose of this is to allow the Java Server Page
developer to format it appropriately. In order for this to work the
internal date format defined for the server must match the date
format of the hptDateMask initialization parameter of the Gateway
Servlet on the Web Server. For additional information on data item
date formats, see “EZEDTELC” on page 564. If the date format of the
server is sufficient i.e. it need not be specially formatted on the Java
Server Page, then do not specify this edit. For additional information
on date formatting for the Gateway Servlet, see the VisualAge
Generator User’s Guide.

Time Time defines the data item as a time.

Boolean
Boolean defines the data item as a boolean edit.

None None defines the data item as neither a date, time or boolean.

Definition considerations for UI record data item edits - Edit type
Valid numeric item values for the Boolean Edit Type are 1 (true) and 0 (false).
Valid character item values are Y (true) and N (false).

UI record data item edits - Edit function

262 VisualAge Generator: Programmer’s Reference

The data item specified as Date, Time, or Boolean must be defined as follows:

Data Type
Bin, Char, Num, Numc, Pacf or Pack

Decimals
0

Target environments for UI record data item edits - Edit type

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Edit type

Chapter 6. Items 263

UI record data item edits - Edit table

UI record data item edits - Edit table defines an edit table for validating data
entered by the program user in the generated user interface part.

Target environments for UI record data item edits - Edit table

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Fill character

UI record data item edits - Fill character defines a character to fill unused
positions in the generated UI part.

UI record data item edits - Edit table

264 VisualAge Generator: Programmer’s Reference

Definition considerations for UI record data item edits - Fill character
A fill character can be an alphanumeric character or a blank.

The Fill Character field is not available for DBCS or Unicode items because
blank is the only valid definition.

Null is not a valid character.

Target environments for UI record data item edits - Fill character

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Fill character

Chapter 6. Items 265

UI record data item edits - Fold

UI record data item edits - Fold specifies the folding of alphabetic characters
in the generated UI part to uppercase characters when the program user
submits the generated HTML page.

Definition considerations for UI record data item edits - Fold
Fold is not available when the data type is:
v Bin
v DBCS
v Num
v Numc
v Pacf
v Pack
v Unicode

Folding does not occur for DBCS data in mixed fields.

Target environments for UI record data item edits - Fold

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

UI record data item edits - Fold

266 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Input required

UI record data item edits - Input required defines that the program user must
enter information in the generated UI part before submitting the generated
HTML page. The edit is satisfied if the field contains a value other than
blanks, or zero for a numeric field.

Target environments for UI record data item edits - Input required

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

UI record data item edits - Fold

Chapter 6. Items 267

Environment Compatibility considerations

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Maximum value

UI record data item edits - Maximum value defines the upper limit of a range
of numbers that the program user can enter in the generated UI part.

Definition considerations for UI record data item edits - Maximum value
If you specify UI record data item edits - Maximum Value, you must also
specify UI record data item edits - Minimum Value.

Target environments for UI record data item edits - Maximum value

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

UI record data item edits - Input required

268 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Minimum input

UI record data item edits - Minimum input defines the minimum number of
characters that the program user is required to enter in the generated user
interface part. If the program user enters any data in the generated user
interface part, the minimum input definition applies.

Target environments for UI record data item edits - Minimum input

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

UI record data item edits - Maximum value

Chapter 6. Items 269

Environment Compatibility considerations

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Minimum value

UI record data item edits - Minimum value defines the lower limit of a range
of numbers that the program user can enter in the generated UI part.

Definition considerations for UI record data item edits - Minimum value
If you specify UI record data item edits - Minimum Value, you must also
specify UI record data item edits - Maximum Value.

Target environments for UI record data item edits - Minimum value

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

UI record data item edits - Minimum input

270 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Numeric Separator

UI record data item edits - Numeric Separator accepts on input or displays a
numeric separator for numeric data.

Definition considerations for UI record data item edits - Numeric
Separator

Field length is calculated automatically.

If the number of significant digits is fewer than 4, Numeric Separator is not
valid.

For VisualAge Generator Developer, the default numeric separator is
determined by your development environment’s system setting.

Target environments for UI record data item edits - Numeric Separator

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

UI record data item edits - Minimum value

Chapter 6. Items 271

Environment Compatibility considerations

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Run edit function on web

UI record data item edits - Run edit function on web defines that the edit
function is to run on the web server where the UI record run time bean is
deployed.

Definition considerations for UI record data item edits - Run edit function
on web

When Run edit function on web is defined, the function’s data usage is
strictly limited to the data of the UI record where the function is defined.
When Run edit function on web is not defined, the edit function runs on the
server and can access any of the data available to the program.

Target environments for UI record data item edits - Run edit function on
web

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

UI record data item edits - Numeric Separator

272 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Sign

UI record data item edits - Sign defines how the program user enters a sign in
the generated UI part:

Leading
Accepts on input or displays a plus (+) or a minus (-) sign to the left
of numeric data.

Trailing
Accepts on input or displays a plus (+) or a minus (-) sign to the right
of numeric data.

None Prevents your user from entering a sign with the numeric data.

Definition considerations for UI record data item edits - Sign
Field length is calculated automatically.

UI record data item edits - Run edit function on web

Chapter 6. Items 273

Target environments for UI record data item edits - Sign

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Zero edit

UI record data item edits - Zero edit displays the value zero in the generated
UI part.

Definition considerations for UI record data item edits - Zero edit
If UI record data item edits - Zero Edit is not defined, the value zero is not
displayed in generated UI part.

UI record data item edits - Sign

274 VisualAge Generator: Programmer’s Reference

Target environments for UI record data item edits - Zero edit

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.

IMS BMP Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.

OS/2 Valid only in UI records.

AIX Valid only in UI records.

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

UI record data item edits - Zero edit

Chapter 6. Items 275

UI record data item edits - Zero edit

276 VisualAge Generator: Programmer’s Reference

Chapter 7. Program specification block

A program specification block (PSB) is a formal DL/I description of the
hierarchical database structures a program can access. VisualAge Generator
uses the PSB definition to build and validate DL/I calls for I/O functions that
access records in DL/I databases. The PCBs are listed in the VisualAge
Generator PSB in the same order that they appear in the actual DL/I or IMS
PSB definition to be used with the program. The PSB structure also identifies
the PCBs used for terminal, printer, and message queue support in the
IMS/VS and IMS BMP environments.

VisualAge Generator supports the definition of a part that contains a subset of
the information in the DL/I PSB. The PSB definition describes the hierarchical
relationship between types of segments.

A PSB is made up of program communication blocks (PCBs). You define the
PSB by defining its PCBs.

Program specification block elements

Table 14. Program specification block elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Program
specification
block

c c c c c c c x

Program
communication
block

c c c c c c c x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

© Copyright IBM Corp. 1980, 2000 277

Table 14. Program specification block elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Note: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

Program communication block (PCB)

A PCB is an entry in a PSB that describes the segment within one hierarchical
database, IMS message queues, or GSAM databases.

Uses
You can specify the following information when defining PCBs:

PCB number
The number of the PCB you are defining. The PCB number is
calculated by VisualAge Generator, based on the placement of the
PCB within the PSB.

The number identifies which PCB in the PSB is to be used when the
database name appears in more than one PCB in the PSB definition.

Type There are three types of PCBs: database (DB); generalized sequential
access method (GSAM); and teleprocessing (TP).

The three types of PCBs are described under “Definition
considerations for PCBs” on page 279.

Database
A 1- to 8-character name of the database used with the PSB. The
database name is required for DB and GSAM PCBs, but cannot be
specified with TP PCBs.

When you specify a new database, you signal the start of a new PCB
in the PSB.

278 VisualAge Generator: Programmer’s Reference

You can also specify ELAMSG or ELAWORK as the name of the
database. ELAMSG and ELAWORK represent message and work
databases used with Server for MVS, VSE, and VM to run the
program. If you specify ELAMSG or ELAWORK as the name of the
database, do not specify a segment or index key.

Segment
A 1- to 8-character name for the segment in the database. The segment
name must be the same as the name in the DL/I PSB.

Note: Before you can access the segment in a program, you must
define the segment as a record with the DL/I segment
organization.

Parent A 1- to 8-character name of the segment that is the parent of this
segment in the database. The parent/segment relationship (hierarchy)
must be the same as in the DL/I PSB.

If the segment is the root segment in a PCB structure, the parent name
is blank.

Index key
A 1- to 8-character name for the secondary index key field.

If you want the program to access the database through a secondary
index (the PCB in the DL/I PSB has a PROCSEQ keyword specified),
you must name the secondary index key.

The index key must be the name of a data item you have defined in a
segment.

The data item name must be the same as the name specified for the
secondary index field in the DL/I database description (NAME
keyword in the XDFLD statement). The data item length must be the
same as the length of the field defined in the XDFLD statement.

Definition considerations for PCBs
You can pass individual PCBs on a call. This enables you to define a program
with a PSB and call the program from other programs that have different PSB
structures. You use the special function word EZEDLPCB, subscripted with
the PCB number to be passed, on the CALL statement.

The following describes the three types of PCBs:

Database (DB) PCB
Each DB PCB describes one hierarchical data structure that a program
can use. The data structure might correspond directly to the structure
of a physical or logical DL/I database or might invert the database
structure through access by a secondary index.

Program Communication Block (PCB)

Chapter 7. Program specification block 279

If the database is accessed using a secondary index, the first line must
contain the PCB type (DB), the database name, the name of the root
segment, and the name of the index field.

One line is specified for each SENSEG segment defined for the
database PCB in the DL/I or IMS Program Specification Block. Each
SENSEG line specifies a segment name and parent name in the same
order that they appear in the PSB. If the segment is the root segment
(no parent) in a PCB structure, the database name is specified, and the
parent name is left blank.

For more information on DB PCBs, refer to “Developing DL/I
Programs” in VisualAge Generator Design Guide

Generalized Sequential Access Method (GSAM) PCB
Each GSAM PCB represents a generalized sequential access method
(GSAM) database in an IMS Program Specification Block.

The database name is the only field that can be specified for a GSAM
PCB. GSAM PCBs appear last in the PSB definition.

Teleprocessing (TP) PCB
Each TP PCB represents an alternate PCB in an IMS Program
Specification Block. The alternate PCB represents a terminal, printer,
or message queue in the IMS environment.

There is one line in the list for each teleprocessing PCB. TP PCBs
appear first in the PSB definition.

A TP PCB must not be specified for PCB zero, which is the main I/O
PCB. This PCB is not specified in the IMS PSB definition.

TP PCBs are not used in non-IMS environments but can be included if
the program using the PSB is to be generated for both IMS and
non-IMS environments.

Target environments for PCBs

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

The I/O, teleprocessing (TP), and GSAM PCBs cannot be referenced
in the CICS environment with the EZEDLPCB special function
word, or the CSPTDLI service routine.

When database (DB) PCBs are accessed using the EZEDLPCB
special function word or the CSPTDLI service routine, the PCB
number should be specified using the PCB number from the PSB
definition.

Program Communication Block (PCB)

280 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS/TSO The IMS PSB definition must be generated with the CMPAT=YES
option specified on the PSBGEN macro. The TP PCBs are ignored.

At least two PCBs are needed in the PSB so the COBOL program
can determine whether it is being started by the IMS control region
or through an XCTL from a non-VisualAge Generator program
passing working storage and the EZEDLPSB parameter.

MVS batch Same as MVS/TSO.

IMS/VS The IMS PSB generated for use with a main transaction program
must have the same name as the COBOL program load module for
the program. The default name for the load module is the program
name.

The definition for the IMS PSB must match the definition of the PSB
part PCB for PCB, except for the PSB name and the database names.

The first TP PCB must be a modifiable alternate PCB, to be used for
switching transactions. The second TP PCB must be a modifiable
express alternate PCB, to be used for diagnostic information. These
two TP PCBs are required. Additional modifiable or not modifiable
alternate or express alternate PCBs can follow.

Database PCBs must be included in the PSB for the VisualAge
Generator Server for MVS, VSE, and VM work database
(ELAWORK) if a DL/I implementation of this database is used. The
work database is indicated in the PSB by database name only and
does not require a line for each segment.

IMS BMP The IMS PSB definition must be generated with the CMPAT=YES
option specified on the PSBGEN macro. The TP PCBs are used to
access the message queues as serial files.

Programs that read input from the I/O PCB are transaction-oriented
BMPs. Programs that do not read input from the I/O PCB are
batch-oriented BMPs.

The requirements defined for the two TP PCBs for the IMS/VS
environment also apply.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

Program Communication Block (PCB)

Chapter 7. Program specification block 281

Environment Compatibility considerations

VSE batch DL/I DOS/VS does not support definition of PSBs with
teleprocessing (TP) or GSAM PCBs. If a PSB with teleprocessing
PCBs will be used in the same program on both MVS and VSE
systems, the DL/I DOS/VS PSB should omit the TP and GSAM
PCBs.

When using a language element which requires specifying a PCB by
number (such as EZEDLPCB or CSPTDLI), always use the PCB
number for the PCB as it is defined in the PSB part. The VisualAge
Generator Developer adjusts the number you specify to account for
the TP and GSAM PCBs not being included in the DL/I DOS/VS
PSB.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Program Communication Block (PCB)

282 VisualAge Generator: Programmer’s Reference

Chapter 8. Maps

A map is a format specification for a character-based user interface on a
terminal or printer. Map specification language elements specify
nonprocedural processing information related to a map.

Map specification enables you to define options such as the size and position
of a map. The map size is the number of lines and columns of a map. The
map position is the position where the map starts on a device. Other options
in map specification include items such as whether to fold input to uppercase,
the name of the help map, and which key is the help key.

Map elements

Table 15. Map elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Bypass edit
keys

x x c c x x x x x x x x x x x x

Device
selection

x x x x x c c x x c c c c c c c c c c x

Floating
area

x x x x x c c x x x x c c c c c c c c x

Floating
map

x x x x x c x x x x x x x x x x x x x x

Initial
cursor field

x x x x x x x x x x x x x x x x

Help key x x c c x x x x x x x x x x x x

Help map
name

x x x x x x x x x x x x x x x x

© Copyright IBM Corp. 1980, 2000 283

Table 15. Map elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Map group x

Map name x

Map
position

x x x x x x x x x x c x x x x x x x x x

Map size x x x x x c x x x x x x x x x x x x x x

SO/SI take
position

c c c c c c c c c c c c c c c c c c c c

Variable
field folding

x c x c c c x c c c c c c c c x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

Bypass edit keys

Bypass edit keys enable the program user to bypass map edits and map edit
routines.

Uses
You can specify up to five function keys as bypass edit keys. PA keys are
treated as bypass edit keys in a generated program.

When the program user presses a bypass edit key, data is not passed to the
program and the program continues processing at the statement following the
terminal I/O function (either the first map or an I/O option).

The data on the map is not saved when the program user presses a bypass
edit key.

284 VisualAge Generator: Programmer’s Reference

During program specification you can specify bypass edit keys to be used as
defaults for all the maps used by a program. The bypass edit keys you define
for the map override the default specification. For example, if you specify
three keys to be bypass edit keys, but you only specify one bypass edit key on
the map you define, only that key can be used for that map.

Note: You cannot have a function key be both a bypass edit key and the help
key.

Target environments for Bypass edit keys

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO PF6 is reserved for a panel recovery function in this environment.
Pressing PF6 is treated as pressing the Clear key. The PF key value
is not passed back to the program. Avoid using PF6 in this
environment.

MVS batch Not supported.

IMS/VS IMS reserves the PA keys so they cannot be the default bypass edit
keys. A specific PF key must be defined if the program user is
allowed to bypass edits.

If your installation uses PF12 for the IMS local copy function, PF12
cannot be used as a bypass edit key.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Bypass edit keys

Chapter 8. Maps 285

Environment Compatibility Considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Device selection

Device selection enables you to specify the devices on which the map can be
displayed or printed.

You must always have at least one device supported at all times.

Definition considerations for Device selection
Many of the device types are supported only for compatibility with previous
products. If you are defining a new map, select Printer (SBCS) or 5550P
(DBCS) for a print map, 5550D for a DBCS terminal map, or an ANY-xx
device with the correct screen size for a single-byte terminal map.

A map group that does not contain any DBCS maps cannot be used in the
same job step with a map group that contains DBCS maps. Make sure that at
least one map in the map group specifies a DBCS device type if you mix
DBCS and non-DBCS maps from different map groups.

Target environments for Device selection

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

Bypass edit keys

286 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS For non-DBCS terminals, only 3270-type terminals are supported. If
non-3270 display devices (3643) are specified, generation builds MFS
definitions for 3270 devices with a compatible screen size.

The minimum screen size supported is 24 x 80. If maps are defined
with a smaller screen size, generation builds MFS definitions for
3270 devices with a 24 x 80 screen.

The MFSDEV, MFSFEAT, and MFSEATTR generation options should
be set up to specify the device characteristics for different device
types at your installation.

IMS BMP If you specify the MSP(MFS) or MSP(ALL) generation option, the
considerations are the same as IMS/VS. Otherwise there are no
compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 CICS OS/2 3270 emulation can display maps on the workstation
screen, in a window, or on an ASCII terminal attached to the
workstation as specified in the CICS OS/2 Terminal Control Table
(TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

OS/400 The following device types are supported:

ANY-2D 24 x 80 panel
ANY-5D 27 x 132 panel
PRINTER printer
5550D DBCS terminal
5550P DBCS printer

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) There is no concept of a Device when generating C++ programs.
The C++ runtime will use the current size of the OS/2 session,
Windows NT (C++) session, or AIX window when running a
program. If the maps are defined with variable fields that wrap on
multiple lines, the program user should define the OS/2 session,
Windows NT (C++) session, or AIX window with the same number
of columns as the map. Otherwise, the wrapping variable fields can
have unpredictable results.

AIX Same as OS/2 (C++).

Device selection

Chapter 8. Maps 287

Environment Compatibility Considerations

HP-UX Same as OS/2 (C++).

CICS for AIX CICS for AIX 3270 emulation can display maps on the workstation
screen, in a window, or on an ASCII terminal attached to the
RS/6000 as specified in the CICS for AIX Terminal Control Table
(TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

CICS for Windows NT 3270 emulation can display maps on the
workstation screen, in a window, or on an ASCII terminal attached
to the Windows NT (C++) system as specified in the CICS for
Windows NT Terminal Control Table (TCT). The screen dimensions
are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Solaris Same as OS/2 (C++).

CICS for Solaris CICS for Solaris 3270 emulation can display maps on the
workstation screen, in a window, or on an ASCII terminal attached
to the RS/6000 as specified in the CICS for Solaris Terminal Control
Table (TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Test Facility None.

Floating area

Floating area is an area within a device display region reserved for displaying
maps defined as floating maps.

Uses
Usually, the floating area is defined with the same depth for all terminals in a
map group. No side-by-side maps are supported. Only one floating area can
be specified for each device in a map group.

The floating area consists of a floating area size and a floating area position.

Device selection

288 VisualAge Generator: Programmer’s Reference

The following elements must be specified to define a floating area size:

Lines The number of lines in the floating area.

Columns
The number of columns in the floating area.

When a floating map appears, it is written to the next available line in the
floating area defined for the map group. Once the floating area is full, the
program must converse the last map so that all the displayed floating maps
can be seen by the user. If there is not sufficient room in the floating area for
the map, the floating area is erased and the map is positioned in the first line
of the floating area.

The following elements must be specified to define a floating area position:

Starting line
The starting line of the floating area.

Starting column
The starting column of the floating area.

Note: If you specify a value for any one of the elements above, you must
specify a value for all the elements. If these values are left blank, the
entire device is considered as the floating area.

Target environments for Floating area

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS A floating area is valid only for printer maps. A floating area is not
valid for maps defined for display devices.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Floating Area

Chapter 8. Maps 289

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) Only one floating area is used for display maps and only one
floating area is used for printer maps. If different floating areas are
defined for different display or printer types, the definition that is
used depends on the order in which maps were defined, and is
unpredictable. To avoid confusion, specify the same print device for
all printer maps and the same display device for all display maps,
or specify the same floating area for all print devices and the same
floating area for all display devices.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

Floating map

When you specify a map as a floating map, you can specify only the size of
the map, not the position. The starting line of the map is “Next” by definition,
meaning the map will occupy the next available line in the floating area. The
starting column of the map is “Same” by definition, meaning the map always
displays in the same column, which is defined by the position of the floating
area.

Definition considerations for Floating map
A floating map is displayed starting at the next available line in the floating
area. If the map will not fit in the remaining available lines, the floating area
is erased and the map is displayed at the top of the floating area.

To ensure that the user sees all floating maps, code your program to issue a
CONVERSE instead of a DISPLAY for the last map that will fit in a floating
area. Maps written with the DISPLAY option do not show up on the screen

Floating Area

290 VisualAge Generator: Programmer’s Reference

until the next CONVERSE and will be lost if a subsequent DISPLAY or
CONVERSE causes the floating area to be erased.

When a floating print map is displayed following a fixed print map, a page
eject occurs and the floating map displays in the first line of the floating area.
When a fixed print map is displayed following a floating map, a page eject is
issued before the fixed map is displayed.

Target environments for Floating map

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS A floating map is valid only for printer maps. A floating map is not
valid for maps defined for display devices.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

Floating map

Chapter 8. Maps 291

Environment Compatibility Considerations

CICS for Solaris None.

Test Facility None.

Initial cursor field

The initial cursor field is the field on a map where the cursor appears when
the map is first displayed.

Uses
The default for the initial cursor field is the first named and unprotected
variable field on the map.

Definition considerations for Initial cursor field
To define a variable field as the initial cursor field, select the initial cursor
field attribute for the field where you want the cursor to appear. Alternatively,
from the Define menu in the Map editor, select Field Edit Order, then Show
Tags and place the initial cursor graphical tag on the field you want to
initially set the cursor on. The initial cursor graphical tag is the yellow tag.

At runtime, the SET item CURSOR statement overrides the initial cursor field
previously specified.

Target environments for Initial cursor field

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Floating map

292 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Help key

Help key specifies a function key that displays the help map for a map.

Uses
If you do not specify a value for a help key within map definition, the value
specified in program definition is used as the default.

If you specify a help key, you must also specify a help map name.

Target environments for Help key

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO PF6 is reserved for a panel recovery function in this environment. If
you press PF6, it is treated as pressing the Clear key. The PF key
value is not passed back to the program. Avoid using PF6. in this
environment.

MVS batch Not supported.

Initial cursor field

Chapter 8. Maps 293

Environment Compatibility Considerations

IMS/VS If your installation uses PF12 for the IMS local copy function, PF12
cannot be used as a help key.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Help map name

Help map name specifies the help map that displays when the user presses
the help key while conversing the map.

Uses
The map must be in the help map group specified for the program. If a help
map group is not specified, the map must reside in the program map group.

Definition considerations for Help map name
A help map is a map defined with the following restrictions:
v A help map cannot have variable fields.
v A help map cannot be a floating map.

Help Key

294 VisualAge Generator: Programmer’s Reference

v A help map must be defined for display, not printing.

The screen is always erased prior to the display of a help map.

Target environments for Help map name

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Help Map Name

Chapter 8. Maps 295

Map group

A map group has two different meanings in VisualAge Generator. In one
context, a map group is a logical grouping of maps that are used by a
particular program as I/O objects or help maps. In the other context, a map
group is a part that contains the definition of the floating areas to be used for
the various devices supported by the maps in the map group. In both cases,
the name of the map group is the first part of the two part name that is
specified when saving a map part.

Uses
Maps in a map group can be shared between VisualAge Generator programs.

You specify a map group name in the program to indicate the set of maps
that can be used by the program, either as I/O objects or as the FIRSTMAP.
You can optionally specify a help map group name to indicate the set of help
maps that can be used by the maps displayed by the program.

To define floating areas, open the Map Group Editor and define the floating
areas for each supported device. Any maps in this map group with the device
specified can use the floating areas.

The generated map group is the combination of the executable form of the
maps in the map group, as well as the floating area information required to
properly display floating maps from a program. The map group can be
generated with or separate from the programs in which it is used.

Definition considerations for Map group
Each map within a map group must have a unique name. All maps used in a
program must be in the same map group, except for help maps, which can be
in a separate map group.

The map group name and the map name are separated by a blank. The
format for a map group name is as follows:

Map group name
Naming conventions for map groups:

Maximum length
6

First character
Alphabetic (A-Z)

Other characters
Alphanumeric (A-Z, 0-9)

DBCS name
No

Map group

296 VisualAge Generator: Programmer’s Reference

v The map group name cannot have the same name as the map
v The map group name cannot have the same name as another

program in the MVS library or the same CICS system

The following part name conventions apply to all part types:
v part names cannot begin with the EZE prefix.
v part names cannot contain embedded blanks.
v part names cannot be COBOL reserved words (in COBOL environments)

Target environments for Map group

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS All maps in a map group are generated in a single MFS message
input description (MID) or message output description (MOD) per
device. If you have a large map group, it can exceed the 32K size
limit for MFS control blocks. For more information on estimating the
size, refer to the Design Guide document.

IMS BMP If you specify the MSP(MFS) or the MSP(ALL) generation option,
the IMS/VS compatibility considerations apply. Otherwise, there are
no compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Map group

Chapter 8. Maps 297

Environment Compatibility Considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Map name

Map name specifies the unique name of a map that is used to define the
layout and characteristics of information to be presented on a screen or
printed report.

Definition considerations for Map name
The format for map name is as follows:

Map name
Naming conventions for maps:

Maximum length
8

First character
Alphabetic (A-Z) or one of the valid national characters for
your workstation

Other characters
Alphanumeric (A-Z, 0-9), or one of the valid national
characters for your workstation

DBCS name
No

The following part name conventions apply to all part types:
v part names cannot begin with the EZE prefix.
v part names cannot contain embedded blanks.
v part names cannot be COBOL reserved words (in COBOL environments)

Target environments for Map name

Environment Compatibility Considerations

VM CMS None.

VM batch None.

Map group

298 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS All maps in a map group are generated in a single MFS message
input description (MID) or message output description (MOD) per
device. If you have a large map group, it can exceed the 32K size
limit for MFS control blocks. For more information on estimating the
size, refer to the Design Guide document.

IMS BMP If you specify the MSP(MFS) or the MSP(ALL) generation option,
the IMS/VS compatibility considerations apply. Otherwise, there are
no compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Map name

Chapter 8. Maps 299

Map position

Map position specifies the starting position on a device using a line and
column coordinate.

Uses
The default is line 1 column 1 (upper left corner).

You can specify the following:

Starting line
The row on the device where the map begins.

Starting column
The column on the device where the map begins.

If you specify a Floating map, you cannot specify a starting line or starting
column. The starting line is set to Next and the starting column is set to Same.

Definition considerations for Map position
If the position and size of the partial maps (maps smaller than the device size)
permit each map to display in a different set of rows on the screen, then
partial maps can share the same device.

If one fixed map overlaps another perfectly, the screen is not erased. To
overlap perfectly, both maps must be the same size and start in the same
position.

If one fixed map overlaps another imperfectly, the screen is erased. Even if a
map is positioned in the same rows (side-by-side, with no overlap), the screen
is erased.

Target environments for Map position

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

Map position

300 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

VSE batch None.

CICS for OS/2 None.

OS/400 The following compatibility considerations apply to maps displayed
on devices, including DBCS devices, in the 5250 family:

v Row 1, column 1, must either be blank or contain a field attribute
byte.

v The number of variable fields allowed varies with the control unit
to which the display device is attached. If the number is less than
or equal to 256, the map can be displayed on any 5250 control
unit.

The following compatibility considerations apply to maps
containing double-byte fields:

v An AS/400 DBCS screen does not display double-byte characters
that start in column 80. Instead, a single-byte X is displayed in
column 80 and in column 1 of the following line. To avoid this
situation, do not define double-byte fields that span lines.

v When field outlining is specified for a field on a map, no data
other than blanks can be displayed in the first three bytes on a
map (row 1, columns 1 through 3). In addition, row 1, column 4
can only be a blank or an attribute byte.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Map position

Chapter 8. Maps 301

Map size

Map size specifies the number of lines and columns for a map.

Uses
You can specify the following:

Lines The depth of the map.

Columns
The width of the map.

The default size is the maximum size that fits on all selected devices. You can
change the size to be less than the default size, defining a partial map.

Target environments for Map size

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Because the screen is cleared after each CONVERSE function is
processed, multiple partial maps are not supported for display
maps.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Map size

302 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

SO/SI take position

SO/SI take position enables you to specify that shift-out (SO) and shift-in (SI)
characters take a position when a DBCS printer map is printed.

Uses
This is the default setting for a new map.

To line up the information on your maps like they are in the map definition,
do the following:
v Specify SO/SI take position if you are using DBCS printers that strip the

SO/SI characters from the print line.
v Do not specify SO/SI take position if you are using DBCS printers that

automatically print SO/SI characters as blanks.

Target environments for SO/SI take position

Environment Compatibility Considerations

VM CMS The EBCDIC format for DBCS data is used, in which each DBCS
string is preceded by an SO character and followed by an SI
character.

When directing printer output containing DBCS or mixed data to a
system printer on these environments, you must specify to the
system print utility that SO and SI will not take a position.

If you want the SO/SI position to be represented by blanks in the
printed output, specify SO/SI take position. The program sends a
blank with each SO/SI in a mixed field in the output file.

If you do not want the SO/SI position represented by blanks, do not
specify SO/SI take position.

VM batch Same as VM CMS.

Map size

Chapter 8. Maps 303

Environment Compatibility Considerations

CICS for
MVS/ESA

Same as VM CMS.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Same as VM CMS.

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

Same as VM CMS.

VSE batch Same as VM CMS.

CICS for OS/2 OS/2 supports the ASCII format for DBCS data which does not use
SO/SI delimiters. SO/SI take position is ignored.

SO/SI characters in mixed constant fields on the map are always
replaced with blanks, so that the constant fields on the map appear
just as you defined them in map definition.

No blanks are inserted around DBCS substrings in mixed variable
fields on the map.

OS/400 Same as VM CMS.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) OS/2 supports the ASCII format for DBCS data which does not use
SO/SI delimiters. If a host program is being migrated to the
workstation, specify SO/SI take position. This causes blanks to be
inserted in mixed constant fields where an SO or SI character would
have appeared on the host. Otherwise, the constant fields appear in
native format.

No blanks are inserted around DBCS substrings in mixed variable
fields on the map.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++).

SO/SI take position

304 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility Same as OS/2 (C++).

Variable field folding

Variable field folding changes all non-numeric, SBCS data entered in all
variable fields to uppercase.

Uses
This is the default setting for a new map.

Do not use Variable field folding for only specific variable fields. To have data
folded to uppercase for specific fields, use the Fold variable field edit.

Target environments for Variable field folding

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

Do not specify UCTRAN in the CICS terminal definition if you
want lower case data to be passed to the program.

MVS/TSO None.

MVS batch Not supported.

IMS/VS For folding to be effective, EDIT=ULC must be specified on the
TRANSACT macro in the IMS GEN.

If EDIT=UC, input data will be folded by IMS.

If EDIT names a user-supplied transaction input edit routine, the
data is edited by that routine and then edited based on any folding
requirements specified for the map.

IMS BMP Not supported.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CICS for OS/2 For folding to be effective, do not specify UCTRAN. Folding is
performed based on the current code page in effect for OS/2.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

SO/SI take position

Chapter 8. Maps 305

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) Folding is performed based on the current code page.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

Variable field folding

306 VisualAge Generator: Programmer’s Reference

Chapter 9. Map fields

Map field specification, using nonprocedural elements, enables you to define
the fields on a map and the various edits that can be associated with those
fields. Map fields can either be constant or variable. You can define editing
characteristics for each field. Field attributes, such as BRIGHT or RED, can be
specified for both constant and variable fields.

Map field elements

Table 16. Map field elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Constant
field

x x x x x c c x x x c x x x x x x x x x

Constant
field -
DBCS

x x x x x c c x x c c c c c c c c c c x

Constant
field -
Mixed

x x x x x c c x x c c c c c c c c c c x

Field
attribute -
Color

x x x x x x x x x x x x x x x x

Field
attribute -
Highlight

x x x x x c c c c c c c c c c x

Field
attribute -
Initial
cursor field

x x x x x x x x x x x x x x x x

© Copyright IBM Corp. 1980, 2000 307

Table 16. Map field elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Field
attribute -
Input
required

x x x x x x x x x x x x x x x x

Field
attribute -
Intensity

x x x x x x x x x x x x x x x x

Field
attribute -
Light pen
detect

x x x x x c x c c c c c c c c x

Field
attribute -
Modified
data tag

x x x x x x x x x x x x x x x x

Field
attribute -
Numeric

x x x x x x x x

Field
attribute -
Outlining

x x x x x x x x x c c c c c c c c c c x

Field
attribute -
Protection

x x x x x x x x x x x x x x x c

Field
attribute -
Require fill
on input

x x x x x x x x x x x x x x x x

Message
field -
EZEMSG

x x x x x x x x x x x x x x x x

308 VisualAge Generator: Programmer’s Reference

Table 16. Map field elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Variable
field

x x x x x c x x x x c x x x x x x x x x

Variable
field array
- Field
placement

x x x x x c x x x x c x x x x x x x x x

Variable
field -
DBCS

x x x x x c x x x c c c c c c c c c c x

Variable
field - MIX

x x x x x c x x x c c c c c c c c c c x

Variable
field edit -
Check
SO/SI
space

i i i i i x x x x x x x x x x x

Variable
field edit -
Currency

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Date edit
mask

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Decimals

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Description

x x x x x x x x x x x x x x x x x x x x

Chapter 9. Map fields 309

Table 16. Map field elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Variable
field edit -
Edit error
message
number

x x x x x x x x x x x x x x x x

Variable
field edit -
Edit
routine

x x x x x x x x x x x x x x x x

Variable
field edit -
Fill
character

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Fold

x c x c c c x c c c c c c c c x

Variable
field edit -
Hex edit

x x x x x x x x x x x x x x x x

Variable
field edit -
Input
required

x x x x x x x x x x x x x x x x

Variable
field edit -
Justify

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Maximum
value

x x x x x x x x x x x x x x x x

310 VisualAge Generator: Programmer’s Reference

Table 16. Map field elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Variable
field edit -
Minimum
input

x x x x x x x x x x x x x x x x

Variable
field edit -
Minimum
value

x x x x x x x x x x x x x x x x

Variable
field edit -
Numeric
separator

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Sign

x x x x x x x x x x x x x x x x x x x x

Variable
field edit -
Zero edit

x x x x x x x x x x x x x x x x x x x x

Variable
field edit
order

x x x x x x x x x x x x x x x x

Variable
field length

x x x x x x x x x x x x x x x x x x x x

Variable
field name

x x x x x x x x x x x x x x x x x x x x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
i Ignored.
blank Not supported

Chapter 9. Map fields 311

Constant field

Constant fields on a map are fields that cannot be modified by the program.

Uses
A constant field appears enclosed in brackets. A constant field is specified by
selecting a Constant object and placing it at the desired position on the map
presentation area. The constant field mark specifies the starting position of a
constant field, but it is not a visible character on the map. The starting field
mark of the next field is considered the end mark of the previous field.

Target environments for Constant field

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

312 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS Row 1 column 1 on the map must be blank, or contain a constant or
variable field mark character. Unprotected literal constant fields are
not supported. The generated MFS defines them as though they
were protected. If a constant field mark character is in the last
position of a map (last row, last column), it is treated as though it is
in row 1 column 1. A zero-length constant field is not supported for
maps. Non-blank constant fields longer than 255 bytes are not
supported.

Each map must contain 8 bytes in a constant field that can be used
to store the IMS transaction code in the MFS definition for the map.
You can designate this field by defining an 8-byte constant field on
the map with the protect and dark attributes.

Explicitly defining the transaction code constant on the map enables
the program user to use the IMS /FORMAT command to display a
formatted map to start a transaction.

If you do not define an 8-byte constant, generation looks for any 9
consecutive blanks in a constant on the map and sets aside this area
as a protected, dark variable field in the generated MFS map. The
generated COBOL program uses this field to store the name for a
subsequent IMS transaction started after a CONVERSE or XFER
statement with a map. The /FORMAT command cannot be used to
start a transaction for these maps because there is no default IMS
transaction code.

Two additional consecutive blanks in a constant field are required
on each terminal map. This area is converted to a protected,
nondisplay field on the map to indicate what information is stored
in the work database.

If you do define the transaction and flag constant fields, they can be
next to each other in a single 10-byte area.

IMS BMP If you specify the /MSP=MFS or the /MSP=ALL generation option,
then IMS BMP has the same considerations as IMS/VS. Otherwise
there are no compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

Constant field

Chapter 9. Map fields 313

Environment Compatibility Considerations

OS/400 The following compatibility considerations apply to maps displayed
on devices, including DBCS devices, in the 5250 family:

v Row 1, column 1, must either be blank or contain a field attribute
byte.

v The number of variable fields allowed varies with the control unit
to which the display device is attached. If the number is less than
or equal to 256, the map can be displayed on any 5250 control
unit.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Constant field - DBCS

DBCS (double-byte character set) constant fields are map constants that
contain double-byte characters. DBCS data is ideographic character data that
requires two positions for each character.

Uses
A DBCS constant field appears enclosed in brackets. A DBCS constant field is
specified by selecting a DBCS Constant part and placing it at the desired
position on the map presentation area. The constant field mark specifies the
starting position of a constant field, but it is not a visible character on the
map. The starting field mark of the next field is considered the end mark of
the previous field.

Constant field

314 VisualAge Generator: Programmer’s Reference

Definition considerations for Constant field - DBCS
DBCS constants can be specified only for maps defined for DBCS devices.
DBCS devices are display and printer devices with DBCS capability that
enable double-byte character data to be viewed or printed. Double-byte
characters are required for languages such as Chinese, Japanese, and Korean.

For constant DBCS fields on a DBCS printer, wrapping fields are allowed only
if the map width is equal to the printer width. If you define a wrapping field,
you must start the field in an even-numbered column.

Target environments for Constant field - DBCS

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark. Unprotected literal constant fields are not
supported. The generated Message Format Service (MFS) defines
them as though they were protected. If a constant field mark is in
the last position of a map (last row, last column), it is treated as
though it were in row 1 column 1. A zero-length constant field is
not supported for maps. DBCS constant fields longer than 254 bytes
are not supported.

IMS BMP If you specify the /MSP=MFS or the /MSP=ALL generation option,
then the IMS/VS considerations apply to IMS BMP. Otherwise,
there are no compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 A double-byte character that starts in the last column of a line is
split in the middle when displayed on the workstation. To avoid
this, do not define a double-byte field that spans lines on the map.

Constant field - DBCS

Chapter 9. Map fields 315

Environment Compatibility Considerations

OS/400 The following compatibility considerations apply to maps
containing double-byte fields:

v An AS/400 DBCS screen does not display double-byte characters
that start in column 80. Instead, a single-byte X is displayed in
column 80 and in column 1 of the following line. To avoid this
situation, do not define double-byte fields that span lines.

v When field outlining is specified for a field on a map, no data
other than blanks can be displayed in the first three bytes on a
map (row 1, columns 1 through 3). In addition, row 1, column 4
can only be a blank or an attribute byte.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as CICS for OS/2.

AIX Same as CICS for OS/2.

HP-UX Same as CICS for OS/2.

CICS for AIX Same as CICS for OS/2.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris Same as CICS for OS/2.

CICS for Solaris Same as CICS for OS/2.

Test Facility None.

Constant field - MIX

MIX constant fields are map constants that might contain both SBCS
(single-byte) and DBCS (double-byte) characters. DBCS data is ideographic
character data that requires two positions for each character.

Uses
A mixed constant field appears enclosed in brackets. A mixed constant field is
specified by selecting a MIXED Constant part and placing it at the desired
position on the map presentation area. The constant field mark specifies the

Constant field - DBCS

316 VisualAge Generator: Programmer’s Reference

starting position of a constant field, but it is not a visible character on the
map. The starting field mark of the next field is considered the end mark of
the previous field.

Definition considerations for Constant field - MIX
You can specify mixed constants only for maps defined for DBCS devices.
DBCS devices are display and printer devices with DBCS capability that
enable double-byte character data to be viewed or printed. Double-byte
characters are required for languages such as Chinese, Japanese, and Korean.

Mixed constant fields cannot span multiple lines on a DBCS printer.

Target environments for Constant field - MIX

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark character. Unprotected literal constant fields are
not supported. The generated Message Format Service (MFS) defines
them as though they were protected. If a constant field mark is in
the last position of a map (last row, last column), it is treated as
though it were in row 1 column 1. A zero-length constant field is
not supported for maps. Mix constant fields longer than 255 bytes
are not supported.

IMS BMP If you specify the /MSP=MFS or the /MSP=ALL generation option,
then the IMS/VS considerations apply to IMS BMP. Otherwise,
there are no compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 A double-byte character that starts in the last column of a line is
split in the middle when displayed on the workstation. To avoid
this, do not define a double-byte field that spans lines on the map.

Shift-out/Shift-in (SO/SI) characters in a Mixed constant field are
converted to blanks when the map is generated in ASCII format.

Constant field - MIX

Chapter 9. Map fields 317

Environment Compatibility Considerations

OS/400 The following compatibility considerations apply to maps
containing double-byte fields:

v An AS/400 DBCS screen does not display double-byte characters
that start in column 80. Instead, a single-byte X is displayed in
column 80 and in column 1 of the following line. To avoid this
situation, do not define double-byte fields that span lines.

v When field outlining is specified for a field on a map, no data
other than blanks can be displayed in the first three bytes on a
map (row 1, columns 1 through 3). In addition, row 1, column 4
can only be a blank or an attribute byte.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) A double-byte character that starts in the last column of a line is
split in the middle when displayed on the workstation. To avoid
this, do not define a double-byte field that spans lines on the map.

When Shift-out/Shift-in (SO/SI) take position is set, a blank is
inserted at the beginning and end of a DBCS portion of the
constant.

AIX Same as OS/2 (C++)

HP-UX Same as OS/2 (C++)

CICS for AIX Same as OS/2 (C++)

Windows NT
(C++)

Same as OS/2 (C++)

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++)

Solaris Same as OS/2 (C++)

CICS for Solaris Same as OS/2 (C++)

Test Facility None.

Field attributes

Field attributes specify display characteristics such as color and highlighting.

Constant field - MIX

318 VisualAge Generator: Programmer’s Reference

Uses
Field attributes are used when displaying maps. Attributes can be specified
for each variable and constant field on a map. If the map appears on a device
that does not support a specified attribute, that attribute is ignored.

Target environments for Field attribute
See the compatibility considerations for the individual field attributes.

Field attribute - Color

Color specifies the color of the field when it appears on a color device.

Uses
You can specify the following colors:
v Blue
v Green
v Mono (default)
v Pink
v Red
v Turquoise
v White
v Yellow

Definition considerations for Field attribute - Color
The following table shows the field characteristics of the Mono (default) color:

Normal intensity Bright intensity

Protected Blue White

Unprotected Green Red

These were the only colors available on older 3270s that did not support the
color attribute. This is called four color mode on newer 3270s to be compatible
with older 3270s.

The exception to the above table is when a color attribute appears anywhere
on the screen. In this case, four color mode is suppressed and all Mono fields
take on the colors of Green (normal) or White (bright). The suppression
continues until the screen is cleared, even if the color attribute is overlaid with
a Mono attribute without clearing the screen. The program can explicitly clear
the screen by coding a SET <map> PAGE.

Target environments for Field attribute - Color

Environment Compatibility Considerations

VM CMS None.

Field attributes

Chapter 9. Map fields 319

Environment Compatibility Considerations

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Field attribute - Highlight

Highlight enables you to use different display highlighting techniques.

Uses
You can specify the following highlighting:

Field attribute - Color

320 VisualAge Generator: Programmer’s Reference

No highlight
Text has no special highlighting. This is the default.

Blink Text flashes on and off.

Reverse video
Text and the background colors are reversed. For example, if the
display has a dark background with light letters, the background
becomes light and the text becomes dark.

Underscore
The field is underlined.

Note: All of these attributes are device dependent and might be supported
differently depending on your system configuration.

Target environments for Field attribute - Extended Highlighting

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 An underscore is not supported on color monitors. Using an
underscore in maps will cause underscored characters to be
displayed using reverse video when generated for the CICS for
OS/2 environment.

OS/400 For color devices in the 5250 family, the blink attribute for extended
highlighting is supported only for red fields. The blink attribute is
ignored for fields of any other color.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) An underscore is not supported on color monitors. Another
attribute, such as a variation of reverse video, can be used instead of
an underscore.

Field attribute - Highlight

Chapter 9. Map fields 321

Environment Compatibility Considerations

AIX Same as OS/2 (C++)

HP-UX Same as OS/2 (C++)

CICS for AIX Same as OS/2 (C++)

Windows NT
(C++)

Same as OS/2 (C++)

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++)

Solaris Same as OS/2 (C++)

CICS for Solaris Same as OS/2 (C++)

Test Facility Blink highlighting is not supported.

Field attribute - Initial cursor field

Initial cursor field specifies the field in which the cursor is to be positioned
when a map is first displayed.

Uses
The default for the initial cursor field is the first named and unprotected
variable field in the map.

Initial cursor field removes the previous setting of this attribute from any
other fields that might have it set.

Target environments for Field attribute - Initial cursor field

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

Field attribute - Highlight

322 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Field attribute - Input required

Input required specifies that the program user must enter data in the field
before pressing Enter or an action key.

Note: This is a 3270 attribute that is supported for upward compatibility.

Uses
An error occurs if data is not entered in this field. If any errors occur during
the processing of a map and that map is displayed again, then the program
user must enter the data in all of the fields that have the Input required
attribute specified.

This attribute is simulated by treating it as an input required edit.

By default, the Input required attribute is set to false.

Field attribute - Initial cursor field

Chapter 9. Map fields 323

Target environments for Field attribute - Input required

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Field attribute - Intensity

Light intensity specifies the brightness of the value in the field when it
displays on the screen.

Field attribute - Input required

324 VisualAge Generator: Programmer’s Reference

Uses
You can specify the following intensity:

Normal
Text appears with normal light intensity. This is the default.

Dark Text is not visible. This is useful for passwords.

Bright Text appears with a higher-than-normal light intensity.

Note: All of these attributes are device dependent and might be supported
differently depending on your system configuration.

Target environments for Field attribute - Intensity

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

Field attribute - Intensity

Chapter 9. Map fields 325

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Field attribute - Light pen detect

Light pen detect specifies whether a light pen can cause a terminal interrupt
for the field.

Note: This is a 3270 attribute that is supported for upward compatibility.

Uses
A light pen field is usually a variable field.

If a field is light pen detectable, the program is notified when a light pen is
pointed at the field (or on some devices, it can be cursor selected).

There are two types of light pen detectable fields:

Immediate detect
Acts as if a device interrupt occurred.

Delayed detect
Sets a detect flag on for a field, but an interrupt does not occur until a
function key or the Enter key is pressed.

Definition considerations for Field attribute - Light pen detect
If you specify Light pen detect, consider the following:
v The field must start with certain characters, called designator characters,

that determine the action to be taken when the field is selected. See the
documentation for the specified devices to determine the correct designator
characters.
The most common designator characters are:

& Immediate detect

? Delayed detect
v On IBM 3278- and 3279-type terminals, either the immediate or delayed

detect can be specified. On IBM 3277 terminals, delayed detect is the only
type of light pen field that works correctly.

v The field should be protected to prevent the program user from modifying
the designator character, and thus changing the effect of selecting the field.

Field attribute - Intensity

326 VisualAge Generator: Programmer’s Reference

v The field cannot have Dark specified. If you specify Bright for the field, the
field must start with the appropriate designator character for the field to be
detectable by a light pen.

v The IF map item MODIFIED statement can be used to check for any fields
that were selected using the light pen.

Target environments for Field attribute - Light pen detect

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 The mouse is used in place of the light pen to select a field that is
light pen detectable.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as CICS for OS/2.

AIX Same as CICS for OS/2.

HP-UX Same as CICS for OS/2.

CICS for AIX Same as CICS for OS/2.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris Same as CICS for OS/2.

CICS for Solaris Same as CICS for OS/2.

Field attribute - Light pen detect

Chapter 9. Map fields 327

Environment Compatibility Considerations

Test Facility None.

Example for Field attribute - Light pen detect
The following is an example of a definition of a variable field using
immediate detect:

&Update Purchase order file

Field attribute - Modified data tag

Modified data tag causes the field to be considered modified when the map
first displays.

Uses
Modified data tag enables you to present default data to the program user for
that field when the program runs.

The modified data tag affects only variable fields. When the field appears, the
program user can accept the default data by pressing Enter or by typing new
data over the default data.

If you do not specify Modified data tag, the program user must change the
default data for it to be read by the program.

Definition considerations for Field attribute - Modified data tag
When a map first displays, Modified data tag is set if one of the following
occurs:
v Modified data tag is specified as an attribute.
v A SET map item DEFINED statement is specified before the map is displayed,

and Modified data tag was specified as an attribute.
v A SET map item MODIFIED statement is specified in a program before a

CONVERSE or DISPLAY I/O option occurs.

Modified data tag remains set until a map appears again. As soon as the map
displays, Modified data tag is automatically turned off.

Modified data tag is set on again if one of the following occurs:
v A SET map item MODIFIED statement is specified in a program before the

display of a map.
v A SET map CLEAR statement is specified before a map is displayed and

Modified data tag was specified during field attribute definition. A SET map
CLEAR resets all the fields on a map to their original definition.

v A SET map item DEFINED statement is specified before the map is displayed,
and Modified data tag was specified as an attribute.

Field attribute - Light pen detect

328 VisualAge Generator: Programmer’s Reference

Target environments for Field attribute - Modified data tag

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported

IMS/VS None.

IMS BMP Not supported

CICS for
VSE/ESA

None.

VSE batch Not supported

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Field attribute - Modified data tag

Chapter 9. Map fields 329

Field attribute - Numeric

Numeric attribute specifies that the field will only accept numeric data.

Note: This is a 3270 attribute that is supported for upward compatibility.

Uses
At run time, the numeric attribute simulates the behavior of 3270 hardware in
rejecting character data entered in a field.

Target environments for Field attribute - Numeric

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Field attribute - Numeric

330 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

Field attribute - Outlining

Field outlining enables you to draw lines at the edges of fields on DBCS
devices.

Uses
Outlining is only valid for DBCS devices.

You can specify the following outlining:

Box Draws a line over the field, under the field, to the left of the field, and
to the right of the field.

Over Draws a horizontal line over the text from the beginning field mark to
the ending field mark.

Under Draws a horizontal line under the text from the beginning field mark
to the ending field mark.

Left Draws a vertical line to the left of the text in the position of the
beginning field mark.

Right Draws a vertical line to the right of the text in the position of the
ending field mark.

Definition considerations for Field attribute - Outlining
When field outlining is specified, an attribute byte at the beginning of an
outlined constant or variable field cannot be in the last column of a printer
map. An outlined constant or variable field cannot end in the last column of a
printer map.

Target environments for Field attribute - Outlining

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

Field attribute - Numeric

Chapter 9. Map fields 331

Environment Compatibility Considerations

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Outlining on workstation printers is supported by overwriting the
line with control characters. Only Over and Left are supported, but
others can be simulated:
v The Under attribute is simulated by using the Over attribute on

the next line.
v The Right attribute is simulated by using the Left attribute on the

next column.
v The Under attribute cannot be simulated on the last line of a

page.
v The Right attribute cannot be simulated on the last character of a

line.

To ensure that a map is portable, do not use the Under attribute on
the last line of a page, or use the Right attribute on the last
character of the line.

OS/400 When field outlining is specified for a field on a map, no data other
than blanks can appear in the first 3 bytes. Byte 4 can only be a
blank or an attribute byte.

Some field outlining might disappear when adjacent partial maps
appear. The outlining specified for the second map overlays the
outlining specified for the first map on the boundary between the
two maps.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Outlining is supported for print maps, but not for display maps.

AIX Same as OS/2 (C++)

HP-UX Same as OS/2 (C++)

CICS for AIX Same as CICS for OS/2.

Windows NT
(C++)

Same as OS/2 (C++)

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for OS/2.

Field attribute - Outlining

332 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Solaris Same as OS/2 (C++)

CICS for Solaris Same as CICS for OS/2.

Test Facility None.

Field attribute - Protection

Protection specifies whether data can be entered in the field.

Uses
You can specify the following protection values:

Unprotected
Enables the program user to enter data in a field. This is the default
for variable fields.

Protected
Prevents the program user from entering data in a field.

Autoskip
Causes the cursor to automatically move to the next input field as the
program user types. This attribute protects the field for which it is
defined and should be placed on a field that follows an input field.

Definition considerations for Field attribute - Protection
When moving through the fields on a map, the cursor and the Tab key
operate differently depending on what type of protection you specify for each
of the fields:

Unprotected Protected Autoskip

Cursor moves to this field
as you type.

Cursor moves to this field
as you type.

Cursor skips this field as
you type.

Cursor moves to this field
using the TAB key.

Cursor skips this field
using the TAB key.

Cursor skips this field
using the TAB key.

Target environments for Field attribute - Protection

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

Field attribute - Outlining

Chapter 9. Map fields 333

Environment Compatibility Considerations

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility The Unprotected value is ignored on constant fields.

Field attribute - Require fill on input

Require fill on input enforces filling a variable field completely or not at all.

Note: This is a 3270 attribute that is supported for upward compatibility.

Uses
By specifying this attribute, you are not defining the variable field as an input
required field.

Field attribute - Protection

334 VisualAge Generator: Programmer’s Reference

If an error occurs during the processing of a map and that map is displayed
again, then the program user must enter the data to all the fields that have
the Require fill on input attribute specified.

This attribute is simulated by treating it as a minimum input edit with the
minimum number of characters equal to its field length.

Target environments for Field attribute - Require fill on input

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Field attribute - Require fill on input

Chapter 9. Map fields 335

Environment Compatibility Considerations

Test Facility None.

Message field - EZEMSG

EZEMSG is an optional variable field on a map that is used to display
messages.

Uses
A variable field becomes a message field by having its name specified as
EZEMSG. The message field must be a character (CHA) or mixed (MIX) field
from 11 to 78 bytes.

Definition considerations for Message field - EZEMSG
If a map variable field edit error is detected, messages from the program or
the runtime services message table are displayed in the EZEMSG field on the
map. If an EZEMSG field does not exist, the screen is cleared prior to
displaying the error message. When the program user presses Enter, the map
reappears.

Programs can move messages directly into the EZEMSG field prior to
displaying a map.

EZEMSG is set to blanks when the program starts and after a CONVERSE, a
DISPLAY, a SET map CLEAR statement, or reCONVERSE of a map following
detection of an input edit error.

Target environments for Message field - EZEMSG

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

Field attribute - Require fill on input

336 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field

A variable field on a map is a field whose values and field attributes can be
modified by a program.

Uses
Data entered by end users in variable fields can be read by a program.

A variable field appears as an outlined box. A variable field is specified by
selecting a Variable part from the Parts Palette and placing it at the desired
position on the map presentation area. The variable field mark specifies the
starting position of a variable field, but it is not a visible character on the
map. The starting field mark of the next field is considered the end mark of
the previous field.

Definition considerations for Variable field
Variable fields must be at least 1 byte long and cannot wrap to the top of the
map.

Message field - EZEMSG

Chapter 9. Map fields 337

Target environments for Variable field

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark character.

If the map is displayed using the IMS /FORMAT command, all
variable fields in the map are set to blanks instead of to the initial
values defined in the map definition.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 The following compatibility considerations apply to maps displayed
on devices, including DBCS devices, in the 5250 family:

v Row 1, column 1, must either be blank or contain a field attribute
byte.

v The number of variable fields allowed varies with the control unit
to which the display device is attached. If the number is less than
or equal to 256, the map can be displayed on any 5250 control
unit.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

Variable field

338 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field array

A variable field array (also known as map array) is a set of variable fields on
a map referenced by a subscripted variable name, and sharing the same
definition and edit characteristics.

Uses
A map array is specified by giving the same name to each field in the array
and by specifying a unique index (or subscript) for each field in the array. The
array variables can be positioned anywhere on the map and the indexes do
not have to be in the same order as the fields appear on the map. All index
values between 1 and the number of fields in the array must be used for the
array to be valid; thus, no gaps in the index values are allowed.

Definition considerations for Variable field array
All variable fields in a map array must have the same data type, length, and
share the same map edit specifications. Hardware attributes might be different
for each variable field in the map array. The hardware attributes can be set
using the properties window or changed at run time using the SET statement.

Target environments for Variable field array

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark character.

If the map is displayed using the IMS /FORMAT command, all
variable fields in the map are set to blanks instead of to the initial
values defined in the map definition.

IMS BMP None.

Variable field

Chapter 9. Map fields 339

Environment Compatibility Considerations

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 The following compatibility considerations apply to maps displayed
on devices, including DBCS devices, in the 5250 family:

v Row 1, column 1, must either be blank or contain a field attribute
byte.

v The number of variable fields allowed varies with the control unit
to which the display device is attached. If the number is less than
or equal to 256, the map can be displayed on any 5250 control
unit.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field - DBCS

DBCS variable fields are map variables that contain only double-byte
characters.

Uses
You can specify DBCS variable fields only for maps defined for DBCS devices.

Variable field array

340 VisualAge Generator: Programmer’s Reference

A DBCS variable field appears as an outlined box. A variable field is specified
by selecting a DBCS Variable part from the Parts Palette and placing it at the
desired position on the map presentation area. The variable field mark
specifies the starting position of a variable field, but it is not a visible
character on the map. The starting field mark of the next field is considered
the end mark of the previous field.

Definition considerations for Variable field - DBCS
DBCS devices are display or printer devices with DBCS capability that allows
double-byte character data to be viewed or printed. Double-byte characters
are required for languages such as Chinese, Japanese, and Korean.

For variable DBCS fields on a DBCS printer, wrapping fields are allowed only
if the map width is equal to the printer width. If you define a wrapping field,
you must start the field in an even-numbered column. DBCS variable fields
must be at least 2 bytes long and cannot wrap to the top of the map.

The length of these fields must be an even number. Length is expressed in
bytes on maps.

Target environments for Variable field - DBCS

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark character.

If the map is displayed using the IMS /FORMAT command, all
variable fields in the map are set to blanks instead of to the initial
values defined in the map definition.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 A double-byte character that starts in the last column of a line is
split in the middle when displayed on the workstation. To avoid
this, do not define a double-byte field that spans lines on the map.

Variable field - DBCS

Chapter 9. Map fields 341

Environment Compatibility Considerations

OS/400 The following compatibility considerations apply to maps
containing double-byte fields:

v An AS/400 DBCS screen does not display double-byte characters
that start in column 80. Instead, a single-byte X is displayed in
column 80 and in column 1 of the following line. To avoid this
situation, do not define double-byte fields that span lines.

v When field outlining is specified for a field on a map, no data
other than blanks can be displayed in the first three bytes on a
map (row 1, columns 1 through 3). In addition, row 1, column 4
can only be a blank or an attribute byte.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as CICS for OS/2.

AIX Same as CICS for OS/2.

HP-UX Same as CICS for OS/2.

CICS for AIX Same as CICS for OS/2.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris Same as CICS for OS/2.

CICS for Solaris Same as CICS for OS/2.

Test Facility None.

Variable field - MIX

MIX variable fields are map variable fields that can contain both double-byte
character data and single-byte character data.

Uses
You can specify mixed variable fields only for maps defined for double-byte
character set (DBCS) devices.

A mixed variable field appears as an outlined box. A mixed variable field is
specified by selecting a MIXED Variable part from the Parts Palette and
placing it at the desired position on the map presentation area. The variable

Variable field - DBCS

342 VisualAge Generator: Programmer’s Reference

field mark specifies the starting position of a variable field, but it is not a
visible character on the map. The starting field mark of the next field is
considered the end mark of the previous field.

Definition considerations for Variable field - MIX
Mixed variable fields can be specified only for maps defined for DBCS
devices. Double-byte character sets are required for languages such as
Chinese, Japanese, and Korean.

Mixed variable fields cannot span multiple lines on a DBCS printer.

Specifying a variable field as Mixed during map definition forces the data
type to be Mixed in the variable field edit definition. The data type can be
changed only during map definition.

Mixed variable fields must be at least 2 bytes long and cannot wrap to the top
of the map.

Target environments for Variable field - MIX

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Row 1 column 1 of the map must be blank, or contain a constant or
variable field mark character.

If the map is displayed using the IMS /FORMAT command, all
variable fields in the map are set to blanks instead of to the initial
values defined in the map definition.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 A double-byte character that starts in the last column of a line is
split in the middle when displayed on the workstation. To avoid
this, do not define a mixed field that spans lines on the map.

Variable field - MIX

Chapter 9. Map fields 343

Environment Compatibility Considerations

OS/400 The following compatibility considerations apply to maps
containing double-byte fields:

v An AS/400 DBCS screen does not display double-byte characters
that start in column 80. Instead, a single-byte X is displayed in
column 80 and in column 1 of the following line. To avoid this
situation, do not define double-byte fields that span lines.

v When field outlining is specified for a field on a map, no data
other than blanks can be displayed in the first three bytes on a
map (row 1, columns 1 through 3). In addition, row 1, column 4
can only be a blank or an attribute byte.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as CICS for OS/2.

AIX Same as CICS for OS/2.

HP-UX Same as CICS for OS/2.

CICS for AIX Same as CICS for OS/2.

Windows NT
(C++)

Same as CICS for OS/2.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for OS/2.

Solaris Same as CICS for OS/2.

CICS for Solaris Same as CICS for OS/2.

Test Facility None.

Variable field edit

A variable field edit is an edit specification defining the editing performed on
map variable fields.

Uses
Editing occurs before the fields appear or are printed, or after they are read
from the display.

Input edits include validation of the input data. When data is detected that is
not valid, the map is shown to the user along with an error message
describing why the data is not valid. The user can enter correct data, or press

Variable field - MIX

344 VisualAge Generator: Programmer’s Reference

a bypass edit key to bypass input editing. Output edits specify how the data
is to be formatted when shown to the user.

Variable field edit elements are associated with the field name. All fields in a
map array share the same edit specifications.

Target environments for Variable field edit
See the compatibility considerations for the individual variable field edits.

Variable field edit - Check SO/SI space

Check SO/SI space determines whether mixed data entered in a field on an
ASCII device can be converted to the mainframe SO/SI format and still fit in
a field of the same length.

Definition considerations for Variable field edit - Check SO/SI space
Mixed fields require fewer bytes of storage on OS/2 systems because the
ASCII DBCS format does not use SO/SI escape characters for delimiting
DBCS data.

I/O editing considerations for Variable field edit - Check SO/SI space
If you specify Check SO/SI space and input was entered in the field on an
ASCII device, the data in the variable field is checked to ensure that there are
enough blank spaces at the end of the field to convert the data to SO/SI
format.

During conversion from ASCII to EBCDIC, trailing blanks are deleted from
the end of the string to allow room for SO/SI delimiters to be inserted around
DBCS substrings.

If the input check fails, the value entered by the program user is truncated at
the point at which conversion can occur. The value displays to the program
user with a warning message and the cursor pointing to the truncated field.

An ASCII value that can be converted without truncation must have at least
two blanks at the end of the field for each DBCS string within the mixed
value.

If Check SO/SI space was not specified, the program user can fill up the
input field with mixed data. An attempt to convert the value to SO/SI format
might result in nonblank data being truncated on the conversion.

Output editing action
None.

Variable field edit

Chapter 9. Map fields 345

Target environments for Variable field edit - Check SO/SI space

Environment Compatibility Considerations

VM CMS Ignored.

VM batch Not supported.

CICS for
MVS/ESA

Ignored.

MVS/TSO Ignored.

MVS batch Not supported.

IMS/VS Ignored.

IMS BMP Not supported.

CICS for
VSE/ESA

Ignored.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Currency

Currency symbol editing indicates whether the currency symbol is supported
in the field.

Variable field edit - Check SO/SI space

346 VisualAge Generator: Programmer’s Reference

Uses
If currency symbol editing is supported, when the program user enters data,
one currency symbol is accepted preceding or following the field. Currency is
only valid for numeric fields.

The currency symbol uses a position in the field and must be considered
when the field length is defined.

The default character can be changed by your system administrator using the
customization procedures for language-dependent options.

I/O editing considerations for Variable field edit - Currency Symbol
If you specify Currency, one currency symbol is accepted preceding or
following the field when data is entered by a user.

The currency symbol is removed before the field is placed in internal storage.

If you do not specify Currency, the data in the variable field is checked to
ensure that the program user did not enter a currency symbol in the field.

Output editing action
When a value is displayed in the field, a currency symbol is inserted to the
left of the left-most significant digit.

For example, if right-justify is specified, the currency symbol is placed to the
left of the left-most significant digit with all of the digits justified to the right.

Target environments for Variable field edit - Currency

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Variable field edit - Currency

Chapter 9. Map fields 347

Environment Compatibility Considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Date edit mask

Date edit mask provides a way to specify the format for dates to be entered or
displayed in a map.

Uses
You can specify the following date edit mask characters:

D, M, Y
D for day, M for month, Y for year

Separator character
Any nonnumeric, single-byte character except D, M, and Y.

Separator characters must be included when defining the date edit
mask, but can be omitted when a date is entered at program run time.

Special characters
SYSGREGRN or SYSJULIAN

Date edit masks can be specified in either Gregorian or Julian formats.

The required length differs for data items and map variable items.

Variable field edit - Currency

348 VisualAge Generator: Programmer’s Reference

Date edit mask is not available when any of the following occur:
v The data type for the data item is DBCS, Mixed, or Hex.
v The length of the data item or map variable field is not valid.
v You have specified that this data item or map variable field is to have

decimal places, a currency symbol, a numeric separator, a sign, or any
combination of these edit characteristics.

Date edit mask formats
Valid date edit masks can be one of the following formats:

Short Gregorian
The short version of the Gregorian mask must contain the following
parts in any order:

YY 2-digit year

MM 2-digit numeric month

DD 2-digit numeric day of month

The mask parts must be separated by any single-byte nonnumeric
character except D, M, or Y.

For example, a mask of YY/MM/DD is used to display the date
96/08/05, August 5, 1996.

Long Gregorian
The long version of the Gregorian mask must contain the following
parts in any order:

YYYY 4-digit year

MM 2-digit month

DD 2-digit day of month

The mask parts must be separated by any single-byte nonnumeric
character except D, M, or Y.

For example, a mask of YYYY/MM/DD is used to display the date
1996/08/05, August 5, 1996.

Short Julian
The short version of the Julian mask must contain the following parts
in any order:

YY 2-digit year

DDD 3-digit numeric day of year

Variable field edit - Date edit mask

Chapter 9. Map fields 349

The mask parts must be separated by any single-byte nonnumeric
character except D or Y.

For example, a mask of DDD-YY can be used to display the date
218-96, which is August 5, 1996.

Long Julian
The long version of the Julian mask must contain the following parts
in any order:

YYYY 4-digit year

DDD 3-digit numeric day of year

The mask parts must be separated by any single-byte nonnumeric
character except D or Y.

For example, a mask of DDD-YYYY can be used to display the date
218-1996, which is August 5, 1996.

You can also choose the system default date format by specifying either the
SYSGREGRN or SYSJULIAN keyword. Depending on the length of the field,
SYSGREGRN and SYSJULIAN apply either the short or long format of the
date edit mask. The default date format is defined in the hpt.ini file using the
following keys: gregorianLongDateFormat, gregorianShortDateFormat,
julianLongDateFormat, julianShortDateFormat.

For VisualAge Generator Server for MVS, VSE, and VM, date edit masks
associated with SYSGREGRN and SYSJULIAN are defined as installation
options. For VisualAge Generator Server, date edit masks associated with
SYSGREGRN and SYSJULIAN are defined using environment variables.

Note: For information on the keys and values in the hpt.ini file and
VisualAge Generator environment variables, refer to the VisualAge
Generator Installation Guide.

Length of the Date edit mask for data items
The data item length must be valid for the date edit you specify. The length of
the data item can be greater than the length of the date edit mask you specify.

Character data item lengths
If you are specifying a date edit mask for a character data item, the length of
the data item must be at least the same as the length of the valid date edit
mask. The following are valid lengths for character data items for short dates:
v 8 or greater for Gregorian dates
v 6 or greater for Julian dates

If the date edit mask is MM/DD/YYYY, the length must be at least 10.

Variable field edit - Date edit mask

350 VisualAge Generator: Programmer’s Reference

Numeric data item lengths
If you are specifying a date edit mask for a numeric data item, the length
must be at least the same as the number of digits without the separator
characters. The following are valid lengths for numeric data items for short
dates:
v 6 or greater for Gregorian dates
v 5 or greater for Julian dates

If the date edit mask is MM/DD/YYYY, the length must be at least 8. If it is
YY-DDD, the length must be at least 5.

Length of the Date edit mask for map variable fields
The map variable field length must be valid for the date edit you specify. The
length of the map variable field must be the exact number required for the
date edit mask.

Map variable field length
The map field length field must match the length of the date edit mask you
specify. Valid lengths for map variable fields are as follows:
v Must be 8 or 10 for Gregorian dates
v Must be 6 or 8 for Julian dates

For example, if the date edit mask is MM/DD/YYYY, the length of the
variable field must be 10; if it is YY-DDD, the length must be 6.

I/O editing considerations for Variable field edit - Date edit mask
The data in the variable field is checked to ensure that the date was entered in
the format specified. The program user does not need to enter the leading
zeros for days and months, for example, 8/5/1996 can be entered instead of
08/05/1996.

The program user can omit the separator characters, although all leading
zeros must be entered in this case, for example, 120796 must be entered
instead of 12796 to get 12/7/96.

When the program user enters valid data from a map, the date is converted
from the format specified for the field to internal format. If you have specified
other editing options, such as edit routines or range checks for dates in
numeric fields, the date edit is done first. That is, the date will be in internal
format when the other edits are performed.

The internal format for a numeric Gregorian date is 00YYYYMMDD or
00YYMMDD. The internal format for a numeric Julian date is 0YYYYDDD or
0YYDDD. Internal format for a character date is the same as the system
default format, with separator characters included.

Variable field edit - Date edit mask

Chapter 9. Map fields 351

Once the date has been edited and stored in internal format, it is no longer
recognized as a date, but simply as data. For example, if a character date is
stored in an 8-byte data item that is moved to a 10-byte data item, the 10-byte
data item will be padded on the right with blanks. A 2-digit year will not be
converted to a 4-digit year.

Output editing action
The date is converted from its internal format into the date format specified
for display on the map. Either 2 or 4 digits are displayed for the year,
depending on the format specified.

A leading zero is removed from the date, except when the date begins with
the year.

Target environments for Variable field edit - Date edit mask

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Variable field edit - Date edit mask

352 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Decimals

Decimals is the number of positions to the right of a decimal point in numeric
variables.

Uses
Decimals can only be specified for numeric variables and have a maximum
value of 18.

If this variable field is an element of an array, the number of decimal places
applies to all variable fields in the array.

The default decimal point character is a period (.). The default character can
be changed by your system administrator using the customization procedures
for language-dependent options.

The decimal point character uses a position in the map variable field and
must be considered when the field length is defined during map presentation.

I/O editing considerations for Variable field edit - Decimals
If a number other than 0 is specified, one decimal point is accepted anywhere
in the field. The data is aligned according to the number of decimal places
defined for the field. Insignificant digits are truncated without notifying the
user.

The decimal point is removed before the field is placed in internal storage.

If no decimal point is entered, the number is assumed to be an integer.

If decimal places are specified as 0, the data in the field is checked to ensure
that the program user did not enter a decimal point in the field.

Output editing action
Data appears with a decimal point character aligned according to the number
of decimal places specified.

Variable field edit - Date edit mask

Chapter 9. Map fields 353

If decimal places are specified as 0, the number is displayed as an integer.

Target environments for Variable field edit - Decimals

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Description

Description is a 30-character text string that describes the variable field.

Variable field edit - Decimals

354 VisualAge Generator: Programmer’s Reference

Uses
A description is used for documentation only and does not affect execution.
The description can be specified in uppercase, lowercase, or mixed case.

Target environments for Variable field edit - Description

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Description

Chapter 9. Map fields 355

Variable field edit - Edit error message number

Edit error message number specifies a number that identifies a message in a
program message table that will be displayed if the corresponding edit fails.

Uses
You can specify a message number for each of the following types of edits. If
you specify an edit error message number, that message should be in the
program message table. If you do not specify your own message number, an
error message is automatically provided.

Data type
The message number to display when the program user enters data
that is not compatible with the data type defined for the variable
field.

The default error message is “Data type error in input -- reenter”.

Edit routine
The message number to display when the program user enters data
that fails a modulus check (EZEC10 or EZEC11) or table edit check.

The default error message for a modulus check is “Modulus check
error on input--reenter”.

The default error message for a table edit check is “Table edit validity
error - reenter”.

Input required
The message number to display when the program user does not
enter data in a field for which the input required edit was specified.

The default error message is “No input received for required field -
reenter”.

Minimum input
The message number to display when the program user does not
enter the minimum number of characters required for a variable field
that has the minimum input edit specified.

The default error message is “Input minimum length error in contents
- reenter”.

Definition considerations for Edit error message number
If an input edit error is detected and a message number is specified for that
type of error, that message is displayed when the map is shown to the
program user. If a number is not specified for that type of error, a default
error message is displayed.

If EZEMSG is defined on the map, the message is displayed in EZEMSG.
Otherwise, the message is displayed on a blank panel.

Variable field edit - Edit error message number

356 VisualAge Generator: Programmer’s Reference

Target environments for Edit error message number

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Edit routine

Edit routine is the name of a routine or edit table for special editing of data
that is entered by the program user in a variable field.

Variable field edit - Edit error message number

Chapter 9. Map fields 357

Uses
An edit routine can be one of the following:
v One of the following special function words:

– Modulus 10 check digit routine (EZEC10)
– Modulus 11 check digit routine (EZEC11)

v The name of a function used as an edit routine.
If the edit function detects an error, it requests the display of the map by
moving a message number (or the value 9999, if no message from the
message file is required) to the EZEMNO special function word.

v The name of one of the following types of editing tables:
– Match valid table
– Match invalid table
– Range match valid table

The table must be defined to the program in the table and additional
records list.

An edit routine cannot invoke any CONVERSE function or DISPLAY function
that writes to the terminal.

I/O editing considerations for Edit routine
The program starts the edit routines for each variable after all other
formatting and all other edit checks are successful.

An edit table or function can be assigned to a map array. If an edit table is
specified, each item entered in the array is compared against the table. If you
specify a function and data is entered in any item in the array, the function
will be processed only once. Code the function to do all editing required on
the whole array when it runs. The function can check the modified data tag
for each item in the array to determine which items were actually entered by
the program user.

Output editing action
None.

Target environments for Edit routine

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

Variable field edit - Edit routine

358 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Fill character

Fill character is the character used to fill unused map variable field positions
on output to a display or printer.

Uses
A fill character can be an alphanumeric character, a blank, or a null (binary
zeroes). If you do not enter a fill character, a default is provided based on the
type of data:

DBCS, Mixed, and CHA
The default is N for null characters. For DBCS data, only blanks and
null characters are allowed. For mixed data, only SBCS characters are
allowed.

Variable field edit - Edit routine

Chapter 9. Map fields 359

Num, Numc, Pacf, and Bin
The default is blank.

Hex The default is 0.

For fields that are not justified, fill characters are added only on the right.

I/O editing considerations for Fill character
There is no input editing action.

Output editing action
Unused positions of the field are filled with the fill character specified.

Target environments for Fill character

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

Variable field edit - Fill character

360 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Fold

Fold specifies whether lowercase alphabetic characters entered by the user are
to be folded (converted) to uppercase.

Uses
Fold does not occur for numeric fields, DBCS fields, or DBCS data in mixed
fields.

Target environments for Variable field edit - Fold

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

For folding to be effective, do not specify UCTRAN in the CICS
terminal definition. If UCTRAN is specified, CICS translates all
input from the terminal to uppercase before it is passed to the
program.

MVS/TSO None.

MVS batch Not supported.

IMS/VS For folding to be effective, EDIT=ULC must be specified on the
TRANSACT macro in the IMS GEN.

If EDIT=UC, input data will be folded by IMS.

If EDIT names a user-supplied transaction input edit routine, the
data is edited by that routine and then edited based on any folding
requirements specified for the map.

IMS BMP Not supported.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CICS for OS/2 For folding to be effective, do not specify UCTRAN. Folding is
performed based on the current code page in effect for OS/2.

OS/400 None.

Variable field edit - Fill character

Chapter 9. Map fields 361

Environment Compatibility Considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Folding is performed based on the current code page.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

Variable field edit - Hex edit

Hex edit specifies that only hexadecimal digits can be entered in a map
variable field.

Uses
The data type of the variable field must be CHA. The data item associated
with the map variable field must be CHA or Hex.

I/O editing considerations for Variable field edit - Hex edit
If you specify Hex edit, characters entered in the map field must be from the
following set:

abcdefABCDEF0123456789

When data is entered on the map, trailing blanks are converted to zeros.

If you do not specify Hex edit, the variable field is not checked for
hexadecimal characters.

Output editing action
None.

Variable field edit - Fold

362 VisualAge Generator: Programmer’s Reference

Target environments for Variable field edit - Hex edit

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Input required

Input required specifies that valid data must be entered in a map field.

Variable field edit - Hex edit

Chapter 9. Map fields 363

Uses
The input required edit is satisfied if both of the following are true:
v The field contains a value other than blanks, or zero for a numeric field.
v The program user entered the data in the field or the program set the

modified attributed on for the field before the map was conversed.

Blanks, or a zero in a numeric field, will not satisfy the input-required edit
check. If blanks or zeros are valid values, and you want to ensure sure that
the program user typed data in the field, use the Minimum input edit.

I/O editing considerations for Variable field edit - Input required
If you specify Input required, the data in the variable field is checked to
ensure sure that valid data is in the field.

Output editing action
None.

Target environments for Variable field edit - Input required

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Variable field edit - Input required

364 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Justify

Justify specifies the position of data in a variable field when the data is
shorter than the length of the field.

Uses
You can specify one of the following justify values:

Left Data is aligned to the left of the field.

Right Data is aligned to the right of the field.

None No justification.

If a justification is not specified, character data is left-justified and numeric
data is right-justified. Right-justification is required for numeric fields that
also have a decimal position or a sign edit specified.

I/O editing considerations for Variable field edit - Justify
Numeric data is always right-justified and zero-filled. Character data is
aligned as specified.

Output editing action
The value is positioned based on the specified justification.

Target environments for Variable field edit - Justify

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

Variable field edit - Input required

Chapter 9. Map fields 365

Environment Compatibility Considerations

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Maximum value

Maximum value specifies the largest number a program user can enter in a
variable field.

Uses
If you specify the maximum value, you must also specify the minimum value,
otherwise zero is assumed to be the minimum value.

I/O editing considerations for Variable field edit - Maximum value
The data entered in the variable field is checked to ensure that it is less than
or equal to the value specified for Maximum value.

Variable field edit - Justify

366 VisualAge Generator: Programmer’s Reference

Output editing action
None.

Target environments for Variable field edit - Maximum value

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Maximum value

Chapter 9. Map fields 367

Variable field edit - Minimum input

Minimum input specifies the minimum number of characters the program
user must enter in the variable field. The default is 0.

Uses
To test whether a program user typed data into a field, the program can set
the modified data tag on with the minimum input value specified as 1. When
the modified data tag is not on for the field, no check is made.

I/O editing considerations for Variable field edit - Minimum input
When the modified data tag is on for the field, the data in the variable field is
checked to ensure that the minimum number of characters have been entered.

Output editing action
None.

Target environments for Variable field edit - Minimum input

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Variable field edit - Minimum input

368 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Minimum value

Minimum value specifies the smallest number a program user can enter in a
variable field.

Uses
If you specify the minimum value, you must also specify the maximum value.

I/O editing considerations for Variable field edit - Minimum value
The data in the variable field is checked to ensure that it is greater than or
equal to the value specified for Minimum value.

Output editing action
None.

Target environments for Variable field edit - Minimum value

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

Variable field edit - Minimum input

Chapter 9. Map fields 369

Environment Compatibility Considerations

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Numeric separator

Numeric separator specifies that data containing numeric separators can be
entered in a variable field.

Uses
Numeric separators use positions in the field and must be considered when
the field length is specified.

The default numeric separator is a comma (,). The default character can be
changed by your system administrator using the customization procedures for
language-dependent options.

If the number of significant digits is fewer than 4, Separator is not valid.

Note: You cannot specify Separator with date edits.

I/O editing considerations for Variable field edit - Numeric separator
If you specify Separator, numeric separators are allowed in the field when a
program user enters data.

Variable field edit - Minimum value

370 VisualAge Generator: Programmer’s Reference

The numeric separators are removed before the field is placed in internal
storage.

If you did not specify Separator, the data in the variable field is checked to
ensure that the program user did not enter a numeric separator in the field.

Output editing action
When a value is displayed in the field, numeric separators are inserted
between every 3 significant digits; every fourth position to the left of the
decimal point is a separator.

Target environments for Variable field edit - Numeric separator

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

Variable field edit - Numeric separator

Chapter 9. Map fields 371

Environment Compatibility Considerations

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Sign

Sign specifies whether a sign should appear in a field and whether it is a
leading or trailing sign.

Uses
Signs can only be specified for numeric fields.

You can specify one of the following sign values:

Leading
Accept on input or display a plus (+) or a minus (−) sign to the left of
numeric data.

If you specify Leading, you must also specify Right for the Justify
edit.

Trailing
Accept on input or display a plus (+) or a minus (−) sign to the right
of numeric data.

If you specify Trailing, you must also specify Right for the Justify edit.

None Ensures that a sign is not entered in the field.

The sign uses a position in the field and must be considered when the field
length is specified.

I/O editing considerations for Variable field edit - Sign

Leading
A plus (+) or a minus (−) must be entered on input to the left of a
numeric data item.

Trailing
A plus (+) or a minus (−) must be entered on input to the right of a
numeric data item.

None Validation is done to ensure that the program user did not enter a
sign anywhere in the field.

Variable field edit - Numeric separator

372 VisualAge Generator: Programmer’s Reference

Output editing action
If the field is not large enough to hold both the sign and the value of the
number, a positive sign is omitted. If the value is negative, the numeric value
is truncated on the left to display the negative sign. To ensure that the sign
and the entire number is always visible, define the field length to be at least
one greater than the length of any numeric item moved to the map field.

Leading
A sign displays to the left of the left-most significant digit. Positive
leading signs (+) are not displayed. If a leading sign and currency
symbol are specified, the sign precedes the currency symbol when
data appear.

Trailing
A sign displays to the right of the number.

None The number displays without a sign, even if the number is negative.

Target environments for Variable field edit - Sign

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Variable field edit - Sign

Chapter 9. Map fields 373

Environment Compatibility Considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit - Zero edit

Zero edit specifies how zero values are displayed in numeric fields.

Uses
If you specify Zero edit, a zero value is displayed as the number zero. If you
do not specify Zero edit, a zero value is displayed as if it were a character
field containing blanks.

The display format depends on the other edit characteristics specified for the
variable field.

Note: Other editing characteristics like decimal positions, currency symbol,
and numeric separator are also applied to the variable field.

How Zero Edit Affects Edits
If you specify Zero edit, the following rules apply:
v If the fill character is 0, the data is formatted with the character 0.
v If the fill character is nulls, the data is left-justified.
v If the fill character is blanks, the data is right-justified.
v If the fill character is an asterisk (*), the asterisk is used as a filler instead of

a blank.

How Zero Edit Affects Variable fields
The following table shows a list of the contents of a numeric field when Zero
edit is specified and when Zero edit is not specified. The sample field is
defined as right-justified with a length of 11. A “b” represents a blank fill
character.

Variable field edit - Sign

374 VisualAge Generator: Programmer’s Reference

Decimal
places (2)

Currency
or Separator

Fill
Character

Zero edit
not selected

Zero edit
selected

no no N nulls 0

no no b blanks bbbbbbbbbb0

no no 0 00000000000 00000000000

no no * *********** **********0

yes no N nulls 0.00

yes no b blanks bbbbbbb0.00

yes no 0 00000000000 00000000.00

yes no * *********** *******0.00

yes yes N nulls $0.00

yes yes b blanks bbbbbb$0.00

yes yes 0 00000000000 $000,000.00

yes yes * *********** ******$0.00

I/O editing considerations for Variable field edit - Zero edit
There is no input editing action.

Output editing action
Depending on whether or not you specify Zero edit, editing is done on
numeric fields with a value of 0 to transform them into the specific format
described in the table. If there is a value of zero to the left of the decimal
point, one significant zero is displayed in front of the decimal point.

If the zero value was entered with a negative sign (−), the negative sign
appears if both the zero edit option and a sign are specified.

Target environments for Variable field edit - Zero edit

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

Variable field edit - Zero edit

Chapter 9. Map fields 375

Environment Compatibility Considerations

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field edit order

Variable field edit order specifies the order in which variable field edits take
place when the program is running or being tested.

Definition considerations for Variable field edit order
The default order is determined by the position of the variables on the map,
from left to right and top to bottom. A different order can be specified by
reordering the edit order graphical tags. Regardless of the specified order, the
edit routines are called after all other formatting and checking is done. First,
all other edits are performed for each field in the order specified by the edit
order tags. Then the edit routine specified for each field is started in the order
specified by the edit order tags.

For array elements, the edits are performed in the order of their indices.

Variable field edit - Zero edit

376 VisualAge Generator: Programmer’s Reference

Target environments for Variable field edit order

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS None.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field length

Variable field length specifies the number of bytes between the beginning
variable field mark and the ending variable field mark.

Variable field edit order

Chapter 9. Map fields 377

Uses
The length of the variable field includes the places set aside for decimal point,
sign, currency symbol, and numeric separators.

Definition considerations for Variable field length
A maximum of 18 digits can be displayed in a numeric variable field.
However, a variable field can be longer than 18 bytes if numeric edits are
specified, such as decimal point, sign, currency symbol, and numeric
separators.

When the map width does not equal the device width, a variable field cannot
wrap to the next line. DBCS and mixed variable fields also place restrictions
on the length of variable fields.

Target environments for Variable field length

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Variable field length

378 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field name

Variable field name is an identifier for a map variable field.

Definition considerations for Variable field name
The naming restrictions for a variable field name are the same as for a data
item. For further details, see Appendix B. Naming conventions for data item,
record, function names.

Target environments for Variable field name

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

Variable field length

Chapter 9. Map fields 379

Environment Compatibility Considerations

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Variable field name

380 VisualAge Generator: Programmer’s Reference

Part 2. Scripting language

© Copyright IBM Corp. 1980, 2000 381

382 VisualAge Generator: Programmer’s Reference

Chapter 10. Program processing statements

Statement Elements

Table 17. Program Statement Elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

T
E

S
T

FA
C

IL
IT

Y

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

AID value x x c c x c x x x x c x c x x

Assignment
statement

x x

CALL
statement

c c c c c c c c c c c x x c c c c c c c c

Data item x

DXFR
statement

c c c c c c c c c c c c c c c c c x c

FIND
statement

x x

IF statement x x x x x c x x x c x c c x x x x x x c c

I/O error
value

x x

MOVE
statement

x x

MOVEA
statement

x x

RETR
statement

x x

SET statement x x x x x x x x x x x c c x x x x x x x x

SYS value x

© Copyright IBM Corp. 1980, 2000 383

Table 17. Program Statement Elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

T
E

S
T

FA
C

IL
IT

Y

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

TEST
statement

x x x x x c x x x x x c c x x x x x x c x

WHILE
statement

x x x x x c x x x c x c c x x x x x x c c

XFER
statement

c c c c c c c c c c c c c c c c x c

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

AID value

AID value is a syntactical element common to many VisualAge Generator
statements. AID values are used to test the state of the EZEAID special
function word. EZEAID identifies which interrupt key the program user
pressed.

ÊÊ ENTER
BYPASS
PAn
PFn
PA
PF

ÊÍ

Attribute Description

BYPASS Any of the keys specified as bypass keys for the map, or for the
program, if none were specified for the map.

384 VisualAge Generator: Programmer’s Reference

Attribute Description

ENTER The ENTER key was pressed.

PA Any PA key was pressed.

PAn Where “n” is an integer from 1 to 3. PAn is on if the PA key with the
corresponding number was pressed.

PF Any function key was pressed.

PFn Where “n” is an integer from 1 to 24. PFn is on if the function key
with the corresponding number was pressed.

Target environments for AID value

Environment Compatibility considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO PF6 and PA3 are reserved for a panel recovery function. If the
program user presses PF6 or PA3, it is treated as pressing the Clear
key. The AID value is not passed back to the program.

MVS batch Not supported.

IMS/VS PA1, PA2, and PA3 are reserved for paging by IMS/VS. If your
installation uses PF12 for the IMS local copy function, PF12 cannot
be used. If these keys are pressed, no AID value is passed to the
program.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

AID value

Chapter 10. Program processing statements 385

Environment Compatibility considerations

CICS for OS/2 The mapping of the personal computer keyboard keys to 3270 keys
is defined in the CICS OS/2 Workstation Setup (WSU) table. The
VisualAge Generator test facility supports the default CICS OS/2
mapping. The default mapping is:

Program Function Personal Computer Key
Key Key

PF1 - PF12 F1 - F12
PF13 - PF24 Alt+F1 - Alt+F12
PA1 - PA3 Ctrl+F1 - Ctrl+F3

Refer to the CICS OS/2 System and Application Guide for information
on how to modify the WSU table to change the key mapping.

Closing the Map Monitor during CONVERSE is the same as
pressing PA2 which is the default bypass edit key. Thus, after
closing the Map Monitor during a CONVERSE, EZEAID will have a
value of ’PA2’.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX The mapping of the AIX terminal keyboard keys to 3270 keys is
defined in the 3270keys file, which is part of TCP/IP. The default
values depend on what type of terminal or session you are using to
run CICS for AIX transactions.

For further information, refer to the section ″3270keys File Format
for TCP/IP″ using InfoExplorer, in the AIX online help facility.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

The mapping of the Windows NT (C++) terminal keyboard keys to
3270 keys is defined in the 3270keys file, which is part of TCP/IP.
The default values depend on what type of terminal or session you
are using to run CICS for Windows NT transactions.

For further information, refer to the section ″3270keys File Format
for TCP/IP″ using InfoExplorer, the Windows NT (C++) online help
facility.

AID value

386 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Solaris None.

CICS for Solaris The mapping of the Solaris terminal keyboard keys to 3270 keys is
defined in the 3270keys file, which is part of TCP/IP. The default
values depend on what type of terminal or session you are using to
run CICS for Solaris transactions.

For further information, refer to the section ″3270keys File Format
for TCP/IP″ using InfoExplorer, in the Solaris online help facility.

Test Facility None.

Data item

Data item is a syntactical element common to many VisualAge Generator
statements. A data item identifies a record data item, table column, or map
variable that is used as the source or recipient of a data value in a statement.

ÊÊ item name
qualifier. [subscript]

qualifier.
literal
special function word

ÊÍ

AID value

Chapter 10. Program processing statements 387

Attribute Description

qualifier. The name of the record, table, or map that contains the item being
referenced. If a qualifier is not supplied and the statement is in a
function, the data item is resolved from:

1. The item names in the local storage and parameter lists

2. One and only one of:

v The function object and the items of the function object

v The records and the items of the records in the parameter list

v The records and the items of the records in the local storage list

If the name is not unique across this category, the result is an
ambiguous item reference message.

3. One and only one of:

v Program working storage and the items of the program working
storage

v Table and additional records list and the items of the tables and
records in the table and additional records list

v Called parameter list and the items of the records and maps in
the called parameter list

v Other I/O objects and the items of other I/O objects in the
program

If the name is not unique across this category, the result is an
ambiguous item reference message.

If the item is not resolved and you have specified in program
specification to allow implicits, the generator creates an implicit
definition for the item based on how it is used within the program.
Implicit data item names are not supported in functions that use
parameters, local storage or a return value.

Qualified subscript names are allowed to help avoid name conflicts.

Items that appear in more than one structure must be qualified either
explicitly or implicitly.

item name The name of a record data item, table column, or map variable field.

subscript When a data item represents an array of values (the item represents a
map array, a table column, or a record data item with multiple
occurrences), the subscript identifies which element in the array is
accessed. The subscript must be a numeric literal or the name of a data
item that contains an integer value. If the subscript is omitted, the first
element in the array is accessed.

The subscript name may be qualified. A subscript can be implicit.

Data item

388 VisualAge Generator: Programmer’s Reference

Attribute Description

literal Constant values can be specified in place of a data item name when
the data item is used as the source of a value in a statement. There are
four types of literals: character constant, numeric, mixed, and DBCS.

A character constant is a string of characters enclosed in quotes. If
single quotes (‘) are used, the string is folded to uppercase. If double
quotes (“) are used, the literal is used as entered.

A number is not enclosed in quotes. The number can have a leading
sign and can include a decimal.

A mixed single-byte and double-byte literal is enclosed in quotes.

On System/370 a DBCS literal has the form G‘<XXXX>’ where:
< represents the shift-out (SO) character
> represents the shift-in (SI) character
XXXX represents one or more DBCS characters

The SO/SI characters are deleted when the DBCS value is moved to a
DBCS data item.
Note: In OS/2, DBCS and MIX literals are entered the same as on
System/370, except without SO/SI characters. For example, the
System/370 literal G‘<XXXX>’ is the same as the OS/2 DBCS literal
G‘XXXX’. Refer to VisualAge Generator Design Guide for more
information.

special
function word

Special function words are predefined names that can be specified as
operands in statements. All special function words begin with the
prefix EZE, such as EZEDAY, EZEDEST, or EZEMSG.

I/O error value

I/O error values indicate the type of error, if any, that occurred on the last
access to a file or database record. The error values that can be set depend on
the record organization.

Note: When using ODBC, both the SQLCODE and SQLSTATE fields are set in
EZESQLCA. However, the value in SQLCODE is unreliable. It is highly
recommended that you instead use the I/O error value to test the SQL
record for error states.

Data item

Chapter 10. Program processing statements 389

ÊÊ DED
DUP
EOF
ERR
FMT
FNA
FNF
FUL
HRD
LOK
NRF
UNQ

ÊÍ

Attribute Description

DED Tests whether a deadlock occurred when two separate transactions
attempted to updated records being held by other locks.

DED only occurs for SQL row records and is a hard error. When using
DB2, the SQLCODE is -911. The DED error code can be received only
if EZEFEC is equal to 1.

DUP Tests for a duplicate key. The I/O option might or might not have
been successful, depending on whether duplicate keys are allowed.

EOF Tests for end of a file.

ERR Tests for a return code other than zero (0) for file and relational
databases, or blank for DL/I databases.

FMT Tests the format of a file against that which has been defined.

FNA Tests for the availability of a file.

FNF Tests for “no file found” for the record.

FUL Tests for a full file or temporary storage queue key greater than 32767.

FUL is not set for non-VSAM serial files in MVS/TSO and MVS batch.
Instead, an abnormal end (B37) is received.

HRD Tests for any hard I/O error.

LOK Tests for a lockout condition on an OS/400 system.

NRF Tests for “no record found” in a file or database.

UNQ Tests whether an attempt was made to add or replace a record in a file
or database for which a duplicate key already exists.

Uses
VisualAge Generator distinguishes between two classes of I/O return codes
during execution. They are classified as hard or soft errors. The program
continues processing on soft errors if the user provides an error routine for
the I/O function. The hard errors cause the program to be terminated with

I/O error value

390 VisualAge Generator: Programmer’s Reference

error messages unless the program has set the EZEFEC switch to 1, indicating
that the program will handle hard I/O errors, and an error routine is defined
for the function.

Abend codes are errors that cause the program to terminate. These cannot be
processed by the program under any circumstances.

Return code results differ in meaning depending upon the type of file
organization used.

DED Tests for the following:
v Whether a deadlock occurred when two separate transactions

attempted to updated records being held by other locks.
DED only occurs for SQL row records and is a hard error. When
using DB2, the SQLCODE is -911. The DED error code can be
received only if EZEFEC is equal to 1.

DUP Tests whether a duplicate key already exists. The I/O option might or
might not have been successful, depending on whether duplicate keys
are allowed. DUP is set in the following situations:
v For an indexed, relative, or serial file, DUP is a soft error and is set

for the following:
– When using an ADD I/O option, an attempt is made to add a

record to a file, or to add an entry to an alternate index with a
record ID (key) that duplicates another record ID that already
exists in the file or alternate index. If duplicate IDs (keys) are
allowed when the file is defined, the record is added to the file.
Otherwise, the record is not added to the file. DUP might not
indicate failure, depending on the data set or index being added
or updated.

Note: The DUP mnemonic is returned only if the access method
returns this information. Therefore, adding a duplicate
record to the file might return the DUP mnemonic on
some operating systems, but not on others.

– When using a REPLACE I/O option, an attempt is made to
replace a record in a file while a record in an alternate index has
the same key. If duplicate keys are permitted, the replace is
successful. DUP might not indicate failure depending on the data
set or index being added or updated.

– When using the SCAN, SCANBACK, INQUIRY, or UPDATE I/O
options, a record is successfully read. However, records exist in
the file with keys that were duplicates of the key field of the
record returned.

I/O error value

Chapter 10. Program processing statements 391

v For a DL/I database, DUP is a soft error. DUP is set when an
attempt is made to add a record to a database in which records
with duplicate keys are not permitted and a record with the same
key already exists in the database. The ADD failed. The status code
is II.

v For an SQL row record, DUP is a hard error. DUP is set when an
attempt is made to add or replace a row in a database. The value
being inserted for the column is a duplicate value. DUP always
indicates the add or replace failed. For DB2, the SQLCODE is -803.
This mnemonic can only be received if EZEFEC is 1.
DUP and UNQ are not identical for SQL row records. DUP and
UNQ are both set when the DUP condition occurs and a unique
index is defined for one of the SQL columns. Only DUP is set when
the DUP condition occurs and a unique index is not defined for any
of the SQL columns.

v For OS/400, see Resource Source Association tag :FILE /DUP option
in VisualAge Generator Generation Guide.

EOF Tests whether the end of a file has been reached. EOF is a soft error.
End of file occurs when:
v For a serial or relative file, the last record in the file was accessed

by the previous retrieval of a record (end of file).
v For an indexed file:

– The last record in the file was accessed by the previous retrieval
of a record (end of file).

– A SET record SCAN specified a position that had no records
following it in the file.

– For SCANBACK, the first record of a file was accessed by the
previous retrieval of a record (top of file) or SET record SCAN
specified a position that had no records preceding it in the file.

– For Non-CICS environments:
- if empty - ERR, EOF, EZERT8=102
- if uninitialized - ERR, EOF, NRF, EZERT8=205

– For CICS environments:
- if empty and SCAN - ERR, EOF, NRF, EZERT8=102
- if empty and SCANBACK - ERR, EOF, EZERT8=102
- if uninitialized and SCAN - ERR, EOF, NRF, EZERT8=102
- if uninitialized and SCANBACK - ERR, EOF, EZERT8=102

v For a serial file implemented as a GSAM file, no more segments
exist in the database. The status code is GB.

v For a serial file implemented as an IMS message queue, no more
messages exist on the message queue. The status code is QC.

I/O error value

392 VisualAge Generator: Programmer’s Reference

v For a DL/I database, the end of the database has been reached. The
program was positioned at the end of the database and a SCAN
was requested. The status code is GB.

ERR Tests for the following:
v For a serial, indexed, or relative file, a nonzero return code was

received from the I/O operation.
v For a serial file implemented as a GSAM file, a nonblank status

code was returned by DL/I.
v For a serial file implemented as an IMS message queue, a nonblank

status code was returned by DL/I.
v For a DL/I database, a nonblank status code was returned by DL/I

or a nonzero condition code was returned in response to the DL/I
call.

v When using DB2 for an SQL row record, the SQLCODE was
anything other than 0.

Note: ERR might be either a hard or soft error, depending on the type
of error.

FMT Tests whether the format of the file associated with the record matches
the record definition. FMT can occur for any I/O option. This is a
hard error that indicates that the record I/O operation failed.

To test for FMT, the value of the special function word EZEFEC must
be equal to 1.

Some conditions that would cause a format (FMT) error to occur are
as follows:

Record Length
For fixed-length records, the record length of the file is not
equal to the record length of the VisualAge Generator record.
For variable-length records, the record length of the file is
larger than the record length of the VisualAge Generator
record.

Record Format
The format of the VisualAge Generator record (fixed or
variable length) does not match the format of the file.

Key Length
The key length of the indexed VisualAge Generator record
does not match the key length of the indexed file.

Key Offset
The key offset of the indexed VisualAge Generator record
does not match the key offset of the indexed file.

I/O error value

Chapter 10. Program processing statements 393

Record Organization
The organization of the VisualAge Generator record (serial,
indexed, or relative) does not match the organization of the
file.

File Type
The file type specified for the VisualAge Generator record,
such as SEQ, SEQRS, VSAM, or VSAMRS, does not match the
file type of the file.

FNA Tests whether the file associated with the record is available. FNA can
occur for any I/O option.

Test for FNA when another program could be using the file or when
system resources for accessing the file might be scarce. This is a hard
error that indicates the record I/O operation failed.

To test for FNA, the value of the special function word EZEFEC must
be equal to 1.

FNF Tests whether the file associated with the record can be found. FNF
can occur for any I/O option. This is a hard error that indicates the
record I/O operation failed.

To test for FNF, the value of the special function word EZEFEC must
be equal to 1.

FUL Tests if a file is full. This is a hard error that indicates the record I/O
operation failed.

To test for FUL, the value of the special function word EZEFEC must
be equal to 1.

FUL is set in the following situations:
v For a serial or indexed file because the file was full.
v For a serial or relative file implemented as a CICS temporary

storage queue, an add attempted to insert a key greater than 32767.

HRD Tests for any hard I/O error. A hard error is an I/O operation that is
not successful.

The following are not considered hard errors: EOF, NRF, and LOK.
DUP and UNQ are not considered hard errors for most record types;
however, they are hard errors for SQL row records.

The following are considered hard errors: FUL, FMT, FNF, FNA, and
DED.

To test for HRD, the value of the special function word EZEFEC must
be equal to 1.

I/O error value

394 VisualAge Generator: Programmer’s Reference

To test for HRD after DL/I database operations, either the value of the
special function word EZEDLERR must be equal to 1 or the value of
the special function word EZEFEC must be equal to 1.

HRD is set in the following situations:
v For a serial, indexed, or relative file, any file I/O error other than

an error defined as a soft error. Soft errors set EOF, NRF, DUP,
UNQ, or LOK.

v For a serial file implemented as a GSAM file, any nonblank status
code returned by DL/I. The status code is not GB.

v For a serial file implemented as an IMS message queue, any
nonblank status code returned by DL/I. The status code can be any
status code other than QC, QD, CE, CF, CG, CI, CJ, CK, or CL.

v For a DL/I database, any nonblank DL/I status code or nonzero
CICS DL/I error code. The DL/I status code can be any status code
other than GA, GB, GD, GE, GK, or II.

v When using DB2 for an SQL row record, the SQLCODE is 304, 802,
or less than 0.

LOK Tests whether a lockout condition exists on an OS/400 system.

For serial, indexed, or relative files, lockout occurs when two separate
transactions attempt to update the same record in a file. It also occurs
when you attempt to delete or replace a record that is not locked for
update.

LOK is a soft error.

NRF Tests whether a “no record found” condition exists during record I/O
operations. NRF is always a soft error. NRF is set in the following
situations:
v For an indexed file:

– On an INQUIRY or UPDATE I/O option, no record is found for
the specified record ID

– On a SCANBACK for an empty file in the CICS environment
v For a relative file:

– On an INQUIRY or UPDATE I/O option, no record is found for
the specified record ID.

– For a SCAN, when scanning beyond the end of the file
v For a serial file implemented as an IMS message queue, no more

message segments exist for the last message being read from the
message queue. The status code is QD.

v For a DL/I database, no record is found in the database that
satisfies the selection conditions specified in the DL/I call. This

I/O error value

Chapter 10. Program processing statements 395

state can be set for an ADD I/O option if the parent of a segmented
to be inserted is not found. The status code is GE.

v For an SQL row record:
– On an INQUIRY or UPDATE I/O option, no row is found in the

database that satisfies the selection conditions specified in the
SELECT statement.

– For a SCAN, there are no rows left that were selected for
scanning.
When using DB2, the SQLCODE is 100 in both situations.

UNQ Tests if an attempt was made to add or replace a record in a file or
database with a key that already exists. If the UNQ condition exists,
the ADD or REPLACE failed. UNQ is set in the following situations:
v For an indexed, relative, or serial file, UNQ is a soft error. UNQ is

set when:
– When using an ADD I/O option, an attempt is made to add a

record to a file or an entry into an alternate index with a record
ID (key) that duplicates another record ID that already exists in
the file or alternate index. The file definition indicates that
duplicate keys are not allowed.

– When using a REPLACE I/O option, an attempt is made to
replace a record in a file in which duplicate keys are not
permitted, and a record with the same key already exists. The
key can be an alternate index key.

v For a DL/I database, UNQ is a soft error. UNQ is set when an
attempt is made to add a record to a database in which records
with duplicate keys are not permitted and a record with the same
key already exists in the database. The status code is II. UNQ is
equivalent to DUP for DL/I records.

v For an SQL row record, UNQ is a hard error. UNQ is set when an
attempt is made to add or replace a row in a database for which
one of the columns being replaced has a unique index defined. The
value being inserted for the index column is a duplicate value.
When using DB2, the SQLCODE is -803. This mnemonic can only
be received if EZEFEC is 1.
DUP and UNQ are equivalent for SQL row records. DUP and UNQ
are both set when the DUP condition occurs and a unique index is
defined for one of the SQL columns. Only DUP is set when the
DUP condition occurs and a unique index is not defined for any of
the SQL columns.

I/O error value

396 VisualAge Generator: Programmer’s Reference

I/O status codes
EZERT8 contains the file I/O status code. Use the /SYSCODES generation
option to control the codes that are returned for file I/O errors. The
/SYSCODES generation option value does not affect the use of VisualAge
Generator mnemonics.
v If /NOSYSCODES is specified, EZERT8 contains system independent

codes.
v If /SYSCODES is specified, EZERT8 contains system dependent access

method return codes. For VisualAge Generator, that is the COBOL file
status key value. Refer to the COBOL reference information for your
environment for information on the COBOL File Status Key values.

The following table describes the correspondence between status key values,
mnemonics, and EZERT8 in COBOL environments. There is a many-to-1
correspondence between the file status key values and EZERT8.

EZERT8 - /SYSCODES,
COBOL File Status Key
values

VisualAge Generator
Mnemonics EZERT8 - /NOSYSCODES

00,05,07 NORMAL 000

02 DUP, ERR 103

04 (Var record format) NORMAL 000

04 FMT, ERR, HRD 220

10,14,46 EOF, ERR 102

22 UNQ, ERR 206

23 (START) EOF, ERR 102

23 NRF, ERR 205

24,34 (access method not
relative or relative key not
0)

FUL, ERR, HRD 25A

35 FNF, ERR, HRD 251

38 FNA, ERR, HRD 218

39,95 FMT, ERR 220

9D (OS/400 only) LOK, ERR, HRD 381

For all other file status codes, EZERT8 in COBOL environments is set based
on the type of request as shown in the following table:

I/O error value

Chapter 10. Program processing statements 397

Type of Request
VisualAge Generator
Mnemonics EZERT8 - /NOSYSCODES

OPEN ERR, HRD 500

CLOSE, UNLOCK ERR, HRD 989

READ, START ERR, HRD 987

WRITE ERR, HRD 988

SYS value

SYS values are used to test the state of the EZESYS special function word.
EZESYS identifies the system on which the program is running.

ÊÊ AIX
AIXCICS
HP
IMSBMP
IMSVS
MVSBATCH
MVSCICS
NTCICS
OS2
OS2CICS
OS2GUI
OS400
SOLACICS
SOLARIS
TSO
VMCMS
VMBATCH
VSEBATCH
VSECICS
WINGUI
WINNT

ÊÍ

Attribute Description

AIX Tests true if the program is running in the AIX environment.

AIXCICS Tests true if the program is running in the CICS for AIX environment.

HP Tests true if the program is running in the HP-UX environment.

IMSBMP Tests true if the program is running in the IMS BMP environment.

IMSVS Tests true if the program is running in the IMS/VS environment.

MVSBATCH Tests true if the program is running in the MVS batch environment.

MVSCICS Tests true if the program is running in the CICS for MVS/ESA
environment.

I/O error value

398 VisualAge Generator: Programmer’s Reference

Attribute Description

NTCICS Tests true if the program is running in the CICS for Windows NT
(C++) environment.

OS2 Tests true if the program is running in the OS/2 (C++) environment.

OS2CICS Tests true if the program is running in the CICS for OS/2
environment.

OS2GUI Tests true if the program is running in the OS/2 GUI environment.

OS400 Tests true if the program is running in the OS/400 environment.

SOLACICS Tests true if the program is running in the CICS for Solaris
environment.

SOLARIS Tests true if the program is running in the Solaris environment.

TSO Tests true if the program is running in the MVS/TSO environment.

VMCMS Tests true if the program is running in the VM CMS environment.

VMBATCH Tests true if the program is running in the VM batch environment.

VSEBATCH Tests true if the program is running in the VSE batch environment.

VSECICS Tests true if the program is running in the CICS for VSE/ESA
environment.

WINGUI Tests true if the program is running in the Windows environment.

WINNT Tests true if the program is running in the Windows NT (C++)
environment.

Assignment statement

The Assignment statement specifies arithmetic calculation or data movement.
You can use the assignment statement to assign the value of an arithmetic
expression to a data item, assign the value of one item to another, or assign
the values of items in one structure to corresponding items (items with the
same names) in another structure.

ÊÊ result = numeric-expression
(R

operand
function-invocation

; ÊÍ

SYS value

Chapter 10. Program processing statements 399

numeric expression

ÊÊ numeric-expression operator numeric-expression
operand

− (numeric-expression)
+

ÊÍ

Attribute Description

result The result for an arithmetic assignment statement can be a data
item, EZETST, EZEMNO, or EZERCODE. If it is a data item, it can
be subscripted, qualified, or both, and it must be numeric, packed,
or binary.

For other assignment statements, the result can be a data item,
record, map, or certain special function words as listed in the table
on Table 20 on page 473. If the result is a data item, it can be
subscripted, qualified, or both.

For Assignment statement examples, see “Examples for assignment”
on page 404.

function
invocation

The operand can be a function invocation of a user defined function
or of certain VAGen supplied special function words. A function
used in an assignment statement must be defined to have a return
value that is compatible with the result of this statement.

For the general syntax of function invocations, see “Function
invocation statement” on page 421 or for details of invoking a
specific VAGen supplied function, refer to the description of that
word in “Special function words” on page 473.

operator The following arithmetic operators are supported:
+ Operands are added.
− The second operand is subtracted from the first operand.
* Operands are multiplied.
/ The first operand is divided by the second operand.

// The result is the remainder of a division of the first
operand by the second operand. The remainder operator
cannot be used with other operators.

All operators, except unary operators, must be surrounded by a
space or line boundary, except when preceded or followed by
parenthesis.

No operators are allowed on assignment statements involving
records, maps, functions, or nonnumeric data.

Assignment

400 VisualAge Generator: Programmer’s Reference

Attribute Description

numeric
expression

When the expression is an arithmetic calculation the following true:

v The expression can consist of 1 to 255 operands. Up to 500
characters can be entered using the Assignment Statement
Template.

v The number of implicits in an arithmetic statement is limited to
16.

v The arithmetic operators can be any of the five binary operators
(+, −, *, /, //). These operators require two operands.

v The arithmetic operators can be one of the two unary operators
(+, −). These operators precede their operand.

v Parentheses can be used to specify the order in which the
arithmetic expression is evaluated. When an arithmetic expression
contains nested parentheses, the nested expression is evaluated
before the expression in which it is contained.

The number of opening and closing parentheses must match,
except for the rounding option symbol, (R. A closing parenthesis
is not allowed for the rounding option symbol. If you specify the
rounding option, you must code it after the last closing
parenthesis.

v When you do not use parentheses, the following order of
evaluation applies:
– Unary operators are performed first.
– Multiplication and division are performed next.
– Addition and subtraction are performed last.
– Within a statement, the operations are performed according to

priority as they are encountered in the statement from left to
right. All first priority operations are performed before any
second priority operations.

Note: Do not use the remainder operator with other arithmetic
operators or with the rounding option.

For Assignment statement examples, see “Examples for assignment”
on page 404.

Assignment

Chapter 10. Program processing statements 401

Attribute Description

operand For arithmetic assignment statements, the operand can be a data
item, numeric literal, or any numeric special function word. If it is a
data item, it can be subscripted, qualified, or both, and must be
numeric, packed, or binary.

For other assignment statements, the operand can be a data item,
literal, record, map, or certain special function words as listed in the
table on Table 20 on page 473. If the operand is a data item, it can
be subscripted, qualified, or both.
Note: For all assignment statements where the operand is a numeric
literal, you must surround the numeric literal with at least one
blank.

Any record data item can be specified as an argument on string
function calls. In addition, numeric literals can be specified on calls
to some string function words. See “String Function EZE words” to
determine whether numeric literals can be used with a particular
string function.

(R For arithmetic assignment statements, use (R to round the results
after all arithmetic calculations are completed. If you do not specify
the rounding option, the result is truncated.
Note: The rounding option cannot be used with the remainder
operator.

Although the maximum supported length is 18, the maximum
length of a data item used as a result of the rounding option is 17.
This is because one digit is added internally to the original data
item precision when performing the rounding option. Any
violations for numeric and packed decimal items are detected at
preprocessing time. No detection occurs for binary and numeric
map field items if more than 17 digits are used in the rounded
arithmetic calculation. Instead, overflow occurs during execution.
Numeric implicits are created with a length of 17 instead of 18
when used as result data items of a rounded operation.

If you define an arithmetic statement with more than one operation,
all intermediate operations are carried out without the rounding
option. Only the result of the last operation is rounded. This is done
by adding five to the digit at precision one higher than the precision
of the result and then truncating.

For Assignment statement examples, see “Examples for assignment”
on page 404.

Assignment

402 VisualAge Generator: Programmer’s Reference

Attribute Description

function
invocation

The operand can be a function invocation of a user defined function
or of certain VAGen supplied special function words. A function
used in an assignment statement must be defined to have a return
value that is compatible with the result of this statement.

For the general syntax of function invocations, see “Function
invocation statement” on page 421 or for details of invoking a
specific VAGen supplied function, refer to the description of that
word in “Special function words” on page 473.

Achieving consistent results across environments
Due to truncation of intermediate results, COBOL programs might have
different results than GUI or C++ programs for the same arithmetic
statements.

To ensure consistent results across environments, use only one binary operator
per statement. Multiple addition and subtraction operators can be safely
combined if the number of decimal places defined for the result item is
greater than or equal to the number of decimal places in any of the operands.

The remainder operator can produce inconsistent results if the result or any of
the operands are defined with decimal places greater than zero. To get a
consistent remainder with decimal places, use the following algorithm instead
of the remainder operator:

quotient = dividend / divisor ;
remainder = dividend - (quotient * divisor) ;

Overflow conditions
You can test and control overflow conditions resulting from arithmetic
calculations using EZEOVER and EZEOVERS special function words.

Compatibility with CSP/AE arithmetic
Customers moving programs from CSP/AE to VisualAge Generator can
specify /MATH=CSPAE when generating the programs for host COBOL
environments to ensure that the results of arithmetic expressions are the same
in COBOL as they were when running under CSP/AE. If standard COBOL
arithmetic is satisfactory, use the default option, /MATH=COBOL, instead for
better performance.

Compatibility with CSP/AE is not supported in the test facility, in GUI, or in
generated C++ programs.

CSP/AE statements that follow the guidelines for compatibility in the
previous section provide consistent results in all environments.

Assignment

Chapter 10. Program processing statements 403

Target environments for assignment
Supported in all environments without compatibility considerations.

Examples for assignment
The following examples use the Assignment statement as an arithmetic
expression or a MOVE statement:

An arithmetic expression with parentheses
The following example shows an arithmetic expression that uses parentheses.

PERCENT-CHANGE = (NEW-VALUE - OLD-VALUE) * 100 / OLD-VALUE;

The processing order in the above example is determined by the parenthesis
and the precedence of operators, as follows:

1st intermediate result1 = (NEW-VALUE minus OLD-VALUE)
2nd intermediate result2 = intermediate result1 multiplied by 100
3rd PERCENT-CHANGE = intermediate result2 divided by OLD-VALUE

An assignment statement to move or initialize data
When the assignment statement involves data movement and the source
expression consists of one operand, the assignment statement works exactly
like the MOVE statement.

The following example shows how you use the assignment statement to move
data or initialize data:

OLD-VALUE = NEW-VALUE;

Example of valid arithmetic statements
The following are valid arithmetic statement examples:
OP1 = OP2 + OP3 * OP4; /* Need space around *, /, +, −, //
OP1 = OP2 * (OP3 + OP4); /* Parentheses force addition first.
OP1 = OP2 - -OP3; /* There can be blanks between the unary
OP1 = OP2 + -OP3; /* sign and the operand.
OP1 = OP2 - -(OP + OP); /* Unary sign before parenthesis is valid.
OP1 = OP2 + -(-OP3); /* OP3 is an operand, (−OP3) is an

/* operand.
OP1 = -OP2 + OP3; /* You can start with unary minus.
OP1 = OP2 + OP3[R]; /* [R] is a subscript.
OP1 = (OP2) (R; /* You can round a single operand.
OP1 = OP2 /(OP3 + OP4); /* No space needed between / and (.

Example of arithmetic statements that are not valid
The following arithmetic statement examples are not valid:
OP1 = OPERAND1 - - -OPERAND2; /* Two consecutive signs not allowed.
OP1 = OP2+OP3*OP4; /* Need spaces around + and *.
OP1 = OP2 (- OP3); /* Missing operator.
OP1 = OP2 *(OP3 +(OP4 / OP5); /* Unmatched parentheses.
OP1 = OP2 + OP3 * OP5 [R]; /* No space allowed before subscript,

Assignment

404 VisualAge Generator: Programmer’s Reference

Example of valid assignment statements
The following are example assignment statements:
MESSAGE_FIELD = 'Enter option'; /* Set up message.
MESSAGE-NUMBER = 007; /* Initialize message number.
INIT-MAP = CUST-INFO-RECORD; /* Initialize map fields.

Example assignment statement that is not valid
The following assignment statement is not valid:
MESSAGE_FIELD = ('Enter option'); /* Do not use ()s with character data

Rounded arithmetic statement with multiple operations
The following example uses the /MATH=CSPAE option:
RESULT = OP1 + OP2 + OP3 (R;

Where:
Field Decimal
Name Places Length Value

RESULT 2 4
OP1 4 5 1.2345
OP2 3 4 5.678
OP3 4 4 .1169

This statement is executed as follows:
HOLD = OP1 + OP2 = 1.234 + 5.678 = 6.912
RESULT = HOLD + OP3 = 6.912 + .116 = 7.028
RESULT = 7.028 + 0.005 = 7.033
RESULT = 7.03

Without rounding, the statement is executed as follows:
HOLD = OP1 + OP2 = 1.23 + 5.67 = 6.90
RESULT = HOLD + OP3 = 6.90 + .11 = 7.01

Note: Truncation occurs on the operands to match the characteristics of the
RESULT field.

Arithmetic statement with a negative number
The following example uses the /MATH=CSPAE option.
Without rounding:
A = B - C;

Where: A has 2 decimal places and a length of 3

B = 1.111
C = 3.888

A = -2.78

Note: If the number is negative, rounding is applied to the absolute value.

Assignment

Chapter 10. Program processing statements 405

When you use the rounding option, a variable overflow condition can occur,
depending on the value and the defined number of characters of the result
item.

Arithmetic statement with a variable overflow
The following example uses the /MATH=CSPAE option:
Without rounding:

A = B + C;

Where: A has 2 decimal places and a length of 3
B = 8.888
C = 1.111

A = 9.99 with no overflow

With rounding:
A = B + C (R;

Where: A has 2 decimal places and a length of 3
B = 8.888
C = 1.111

A = 0.00 with overflow

The possibility of maximum value overflow increases because the operand
value increments.

Arithmetic statement with division with a remainder
The following example uses the /MATH=CSPAE option.

Use integers in the operand and result portion of the statement when dividing
for remainder. To obtain remainders when dealing with numbers other than
integers, use the length and number of decimal places for the result for the
remainder.

The following formula is used when calculating the remainder:
REMAINDER = DIVIDEND - (DIVISOR * QUOTIENT);

Note: In the preceding formula, the value in the QUOTIENT has the same
length and number of decimal places as the REMAINDER, as
illustrated in the following example:
Name Type Length Dec

REMAINDER1 NUM 8 3
REMAINDER2 NUM 8 0

A. REMAINDER1 = 12345 // 10000 = 5.000
QUOTIENT1 = 12345 / 10000 = 1.234

Assignment

406 VisualAge Generator: Programmer’s Reference

Example A is calculated as follows:

REMAINDER1 = 12345 - (10000 * 1.234) = 5.000

B. REMAINDER2 = 12345 // 10000 = 2345
QUOTIENT2 = 12345 / 10000 = 1

Example B is calculated as follows:

REMAINDER2 = 12345 - (10000 * 1) = 2345

CALL statement

CALL transfers control to another program or non-VisualAge Generator
program. When the called program or program ends, the current function
continues with the statement following the CALL.

ÊÊ CALL name
service routine

»

,

character, mixed, or DBCS literal
record
map
data item
working storage structure
EZEDLPSB
EZEDLPCB

Ê

Ê

»

,

(NOMAPS
NONCSP
REPLY

; ÊÍ

Attribute Description

name The name of a VisualAge Generator called program, or the name of a
non-VisualAge Generator program.

For more information on calling non-VisualAge Generator programs,
refer to the section on transferring program control in the VisualAge
Generator Client/Server Communications Guide manual.

service routine Service routines: AUDIT, COMMIT, CREATX, CSPTDLI, or RESET

Assignment

Chapter 10. Program processing statements 407

Attribute Description

argument A character, mixed, or DBCS literal, record, map, data item, working
storage structure, EZEDLPSB, or EZEDLPCB. An argument name can
be qualified and/or subscripted.

If working storage is passed, the level-77 items within it are not passed
unless explicitly included in the list of arguments.

The maximum number of arguments supported is 30. The arguments
specified must match the parameters defined for the called program.

CALL

408 VisualAge Generator: Programmer’s Reference

Attribute Description

option For logic parts used within a GUI client, the NOMAPS on a CALL
statement is ignored.

The option can be one or all of the following:

NOMAPS
Use NOMAPS on CALL statements in main or called
transaction programs to indicate that the called program or
program does not use the screen. Maps displayed before the
CALL statement do not need to be refreshed. If you do not
specify NOMAPS, the screen is refreshed when control is
returned to the calling program.

If your program converses a full-screen map after the CALL,
use the NOMAPS option even if the called program might
have used the screen. This prevents the refreshing of the
screen prior to the output of a map that completely overlays
the prior map.
Note: Although this recommendation applies to calls to
VisualAge Generator programs, it can also be done for calls to
non-VisualAge Generator programs as long as the calling
program does not CONVERSE the same full-screen map
before and after the call.

REPLY Indicates the status of a call by setting a return code in
EZERT8. REPLY is effective with any of the service routines in
the CICS environments, with calls to remote server programs.
Note: In the IMS environments, the REPLY option is only
effective when used with CREATX.

The return code indicates why the service or remote call could
not be initiated and is available in the EZERT8 special
function word as the 8-character displayable form of the
return code.

REPLY cannot be used to test the program return code from a
called program. Program return codes should be passed back
using a parameter.

If REPLY was not specified or is not effective and an error is
detected in the service, the calling program ends with an error
message that explains the reason for the termination and
displays the return code.

Termination for GUI clients means that a walkback is
generated.

CALL

Chapter 10. Program processing statements 409

Attribute Description

option
(continued) NONCSP

Indicates that the target program is a non-VisualAge
Generator program.

When used with the CALL statement, the NONCSP option
affects the passing of parameters to CICS programs defined
with REMOTE or DYNAMIC linkage in the linkage table. You
can use it to improve performance in the test facility as it
indicates that the called program or program is not to be run
from the MSL.

You can also define the characteristics of the called program
in the linkage table as an alternative to coding the NONCSP
option on each CALL. Refer to VisualAge Generator
Client/Server Communications Guide for more information.

Definition considerations for CALL
Whenever data is passed to another program, modification of that data by the
called program or program effectively modifies the storage of the calling
program. Recursive calls (A calls A; or A calls B, which calls A) are not
supported, except with C++ generated programs.

The type of linkage used on the CALL and the format of the parameters
passed during generation or test execution varies by system. The default
linkage for generated programs is described in “Target environments for
CALL” on page 411.

You can use the linkage table to request that other types of linkage be
generated for calls to specific programs. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information on
transferring program control, preparing programs for generation, and for
more information regarding the linkage table.

Calls to remote called batch programs
At program generation, use the linkage table to specify that a CALL is a call
to a remote called batch program (a called batch program that is generated to
receive CALLs from a remote system).

The linkage table describes the type of linkage to be generated for both called
and calling programs, including how the location of the called program is
identified, and what kind of data format conversion needs to be performed on
the call.

CALL

410 VisualAge Generator: Programmer’s Reference

The input and output arguments on a remote call are passed and returned by
value, not by pointer. Arguments that overlap in storage (same argument
passed more than once or multiple definitions of the same record) cannot be
passed on a remote call. The total number of bytes in the data structures
defined for the arguments must be less than 32567 bytes.

The REPLY option allows continuation with a nonzero system error code from
the remote CALL function. The return code is available to the program in
EZERT8 if REPLY is specified.

Refer to the section on implementing client/server processing using the CALL
statement in VisualAge Generator Client/Server Communications Guide for more
information on using the CALL statement for calling programs on remote
systems.

Target environments for CALL
Any record item (not just a level 77 item) can be an argument on a string
function.

Environment Compatibility Considerations

VM CMS When default linkage is used, a CALL is implemented as a dynamic
COBOL CALL. Register 1 points to the parameter list. The return
code set in Register 15 by the called program is not passed back to
the calling program.

Calling a remote program is not supported.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

VM batch Same as VM CMS.

CALL

Chapter 10. Program processing statements 411

Environment Compatibility Considerations

CICS for
MVS/ESA

When default linkage is used in CICS environments, a CALL is
implemented using a CICS LINK. The parameter list is passed in
the CICS COMMAREA. The return code set in register 15 by the
called program is not passed back to the calling program.

When using the COMMDATA linkage convention on a CICS/ESA
system, the maximum COMMAREA length (total bytes of all
parameters passed) is 32763. The maximum COMMAREA length is
32763 for a call to a remote program.

Calling a remote program is supported only in CICS/ESA Version 3
Release 3 or later systems. If EZELOC is used to specify the target
system for a remote CALL, the generated program will not
precompile correctly on earlier systems.

Calling a remote called batch program running on the same system
is supported, allowing programs on a host system and programs on
workstations to share the same called program running on the host.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

MVS/TSO When calling a non-VisualAge Generator program OS LINK is used.
Otherwise, same as VM CMS.

MVS batch Same as MVS/TSO.

IMS/VS If the initial program is a main transaction, a CALL to a batch
program that accesses the I/O PCB as a serial file is not supported.

When default linkage is used, a CALL is implemented as a dynamic
COBOL CALL. Register 1 points to the parameter list. The return
code set in register 15 by the called program is not passed back to
the calling program.

When calling a non-VisualAge Generator program OS LINK is used.

Calling a remote program is not supported.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

The REPLY option is only effective when used with CREATX.

IMS BMP The REPLY option is only effective when used with CREATX.
Otherwise, same as MVS/TSO.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as VM CMS.

CALL

412 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for OS/2 When default linkage is used in CICS environments, a CALL is
implemented using a CICS LINK. The parameter list is passed in
the CICS COMMAREA. The return code set in register 15 by the
called program is not passed back to the calling program.

The maximum COMMAREA length is 32567 for a call to a remote
program.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

If a program calls a remote called batch program that accesses DL/I
databases, the calling program must pass EZEDLPSB as a parameter
to the remote called batch program. The PSB is scheduled in the
first remote program and the CICS UIB address is passed back in
the EZEDLPSB parameter for use on subsequent calls to remote
DL/I programs. In a single logical unit of work, all calls to DL/I
remote called batch programs must go to the same target system.

OS/400 If the program is a non-VisualAge Generator program, the CALL
uses the standard OS/400 CALL interface. Parameters are passed
using a standard system argument list.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) Recursive calls are supported. A linkage table entry is only needed
for the calling programs. Called programs do not require a linkage
table entry. Calls to remote programs are supported as well as calls
to existing local or remote CICS programs. Refer to the VisualAge
Generator Generation Guide document for more information on
defining linkage tables.

The REPLY option is supported on calls to remote programs.

AIX Same as OS/2 (C++)

HP-UX Same as OS/2 (C++)

CICS for AIX Recursive calls are supported. Default linkage is via a CICS
statement passing pointers in the CICS COMMAREA The
generation linkage table can be used to request that parameters be
passed by value in the COMMAREA or to specify that the called
program is a remote server program.

EZEDLPSB must be passed as a parameter to a remote server
program if the server program accesses DL/I databases and the unit
of work extends across multiple server calls.

CALL

Chapter 10. Program processing statements 413

Environment Compatibility Considerations

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Same as CICS for AIX.

Solaris Same as OS/2 (C++)

CICS for Solaris Recursive calls are supported. Default linkage is via a CICS
statement passing pointers in the CICS COMMAREA The
generation linkage table can be used to request that parameters be
passed by value in the COMMAREA or to specify that the called
program is a remote server program.

EZEDLPSB must be passed as a parameter to a remote server
program if the server program accesses DL/I databases and the unit
of work extends across multiple server calls.

Test Facility The REPLY option can be used on calls to COMMIT and RESET.
The test facility displays a message that corresponds to the value set
in EZERT8.

Recursive programs are not supported.

Examples for CALL
To go to another program called APPL2, passing a data item called ITEM1,
enter the following:

CALL APPL2 ITEM1;

or:
CALL APPL2 ITEM1 (NOMAPS;

The parenthesis preceding the option is required.

DXFR statement

DXFR transfers control to another program or program. The current program
ends and any open files are closed.

ÊÊ DXFR program
EZEAPP record (NONCSP

; ÊÍ

Attribute Description

program Name of the program to be initiated.

CALL

414 VisualAge Generator: Programmer’s Reference

Attribute Description

EZEAPP Special function word used to dynamically specify the program name
on a DXFR statement. This special function word enables you to
change the transferred-to program name within a program.

record Name of any record used in the current program. The information in
the record is used to initialize the working storage record of the
transferred-to program. The data in the record must be compatible
with the record expected by the transferred-to program.

Compatible working storage must be defined for the program that is
the object of the transfer. If a working storage record is specified on an
DXFR, only the data in the structure is transferred. Any level-77 data
items defined are not transferred.

If the receiving working storage is not the same size as the one
transferred, the smaller size is used for the transfer. If the receiving
area is larger, the primary working storage record of the transferred-to
program is initialized based on the type of data (blanks for character
data, and zero for numeric data). The initialization is done before the
transferred record, if any, is moved into the primary working storage
record.

If the definition of the record specified on the DXFR statement is not
compatible with the definition of the primary working storage record
of the transferred-to program, unpredictable results, including
abnormal termination or the display locking up, can occur in the
transferred-to program. For example, the following conditions might
cause incompatibilities between the two records to occur:
v The records differ in length
v The field boundaries of the two records do not correspond
v The type of data differs (for example, the field is defined as

character in the record used on the DXFR statement, but the
transferred-to program expects the field to be DBCS data).

NONCSP Indicates that the target program is a non-VisualAge Generator
program. The option can be specified on the DXFR statement or in the
linkage table on a :DXFRLINK statement. The option is required when
generating the program for a COBOL environment. Transfers to
VisualAge Generator and non-VisualAge Generator programs are
generated differently in those environments.

If the NONCSP option is specified, the implementation of the DXFR
depends upon the environment. See “Target environments for DXFR”
on page 416 for more information.

Definition considerations for DXFR
You can specify either the name of the program or the special function word,
EZEAPP. EZEAPP enables you to dynamically change the transferred-to
program name in a program.

DXFR

Chapter 10. Program processing statements 415

DXFR is designed to transfer control to another program, but to stay in the
same CICS or IMS/VS transaction. For environments that do not support
transactions, DXFR provides similar function within the same run unit.

DXFR cannot be used from a called program. You cannot transfer using a
DXFR to a main transaction that has a first map defined. If the transfer of
control is to another program, it must be defined as main transaction or main
batch.

Generation considerations for DXFR
A linkage table entry specifying static linkage for non-CICS MVS host
environments and the target program is a generated program that calls PL/I
programs and the programs are not using LE/370.

Target environments for DXFR

Environment Compatibility Considerations

VM CMS Transfer to non-VisualAge Generator programs is done using the OS
XCTL macro. The record is passed as a parameter. For DXFRs to
non-VisualAge Generator programs, the maximum record size is
32757.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

If you are using generated programs as saved segments, the
following restrictions apply:
v If the saved segment is an initial program then you cannot

transfer with a DXFR statement that uses an XCTL or XFER to
other programs

v You cannot transfer with a DXFR statement that uses an XCTL or
XFER to a program that is loaded as a saved segment

VM batch Same as VM CMS.

CICS for
MVS/ESA

The DXFR is implemented using the CICS XCTL command for both
VisualAge Generator programs and non-VisualAge Generator
programs. The record is passed using the COMMAREA option of
XCTL. The data starts in the first byte of the common area. The
maximum record size is 32763.

In CICS environments only, a commit occurs on a DXFR when a
PSB is scheduled at the time of the DXFR. You can use the
/NOSYNCDXFR generation option to prevent a commit in CICS
when the transferring and transferred-to program use the same PSB
(have the same PSB part name specified in the program definition).
Refer to the section on generation options in the VisualAge Generator
Generation Guide document for details.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

DXFR

416 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

MVS/TSO Transfer to non-VisualAge Generator programs is done using the OS
XCTL macro. The record and EZEDLPSB (if a PSB was used in the
transferring program) are passed as parameters. For DXFRs to
non-VisualAge Generator programs, the maximum record size is
32757.

All programs in the same run unit must share the same DL/I PSB.
The PSB part definition can vary if EZEDLPCB is used to pass
information on the CALL.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

MVS batch DL/I calls and GSAM files are supported in the transferred-to
program only if there was a PSB specified for the transferring
program and the transferring program does at least one of the
following:
v Uses CSPTDLI
v Associates at least one file or EZEPRINT with GSAM
v Uses EZEDLPSB or EZEDLPCB in any statement in the program
v Has DL/I databases other than ELAWORK or ELAMSG in the

PSB definition

Otherwise, the same as MVS/TSO.

IMS/VS A transfer using DXFR to a non-VisualAge Generator program is not
supported. The NONCSP option is ignored. DXFRLINK with
LINKTYPE=NONCSP in the linkage table is not supported.

Programs that run under the same transaction using DXFR must
share the same PSB, must have the same execution mode, and must
use the IMS scratchpad area (SPA) in the same way. A commit point
never occurs at DXFR. SPA use is specified as a generation option.

If the initial program in a transaction is a main batch program,
DXFR to a main transaction program is not supported. If the initial
program is a main transaction, DXFR to a main batch program that
accesses the I/O PCB as a serial file is not supported.

IMS BMP Same as MVS/TSO.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

DXFR

Chapter 10. Program processing statements 417

Environment Compatibility Considerations

VSE batch DXFR is not supported for non-VisualAge Generator programs.

DL/I CALL files are supported in the transferred-to program only if
there was a PSB specified for the transferring program and the
transferring program does at least one of the following:
v Uses CSPTDLI.
v Uses EZEDLPSB or EZEDLPCB in any statement in the program
v Has DL/I databases other than ELAWORK or ELAMSG in the

PSB definition

All programs in the same run unit must share the same PSB.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Control is passed directly to the program to be initiated using the
OS/400 XCTL interface. Working storage is passed as a parameter
using a standard system argument list. The program issuing the
DXFR is removed from the program invocation stack and does not
resume control when the initiated program ends.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The DosExecPgm API is used to transfer control to a non-VisualAge
Generator program. The record is passed via a transfer block in
shared memory. Refer to the VisualAge Generator Client/Server
Communications Guide document for more information on how to
transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

AIX The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

HP-UX The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

CICS for AIX The DXFR is implemented using the CICS XCTL command. The
record is passed using the COMMAREA option of XCTL. The data
starts in the first byte of the COMMAREA. The maximum record
size is 32763.

DXFR

418 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

DXFR may only be used for UI records and local Java Server
Programs.

CICS for
Windows NT

Same as CICS for AIX.

Solaris The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

CICS for Solaris The DXFR is implemented using the CICS XCTL command. The
record is passed using the COMMAREA option of XCTL. The data
starts in the first byte of the COMMAREA. The maximum record
size is 32763.

Test Facility None.

Examples for DXFR
To transfer control and pass the record MYRECD to the program called
NEWAPP1, type:

DXFR NEWAPP1 MYRECD;

To transfer control to another program called APPL2, type:
DXFR APPL2;

To use EZEAPP to specify a variable name, type:
MOVE 'APPL2' TO EZEAPP;
DXFR EZEAPP;

To pass a working storage record to a non-VisualAge Generator program,
type:

MOVE 'APPL3' to EZEAPP;
DXFR EZEAPP COMMON_DATA_RECORD (NONCSP;

FIND statement

FIND transfers control to a function depending on whether a data item value
is found in the search column of a table.

ÊÊ FIND data item table
.search column

true
,false
true,false

; ÊÍ

DXFR

Chapter 10. Program processing statements 419

Attribute Description

data item Name of a data item or literal. The data item name can be subscripted,
qualified, or both.

table Name of a table to be searched.

search column Name of column in a table to be searched. The default is the first
column in a table.

true Name of a main function, or EZECLOS, if specified in a program flow.
The name of a function, EZECLOS, EZEFLO, or EZERTN if specified
in a function.

false Name of a main function or EZECLOS, if specified in a program flow.
The name of a function, EZECLOS, EZEFLO, or EZERTN if specified
in a function.

If the data item value is found in the specified column in any of the rows in
the table, the true element is executed as an unconditional statement. If the
true element is not specified, execution continues with the statement following
the FIND.

If the data item value is not found in the specified column in any of the rows
in the table, the false element is executed as an unconditional statement. If the
false element is not specified, execution continues with the statement
following the FIND.

The special function word EZETST is loaded with a value depending on the
results of a FIND statement. EZETST contains the following values:
v Zero if no match is found
v The row number of the first row where a match is found. If the data in the

search column is not unique, the first occurrence in the table is the one
used.

When EZETST contains a row number, it can be used as a subscript for other
statements that reference other columns in that same row of the table.

For more efficient performance, use FIND instead of IF...OR....OR.

In the statements area, if you specify both a true and a false name on a FIND
statement, you can separate the names with a comma. If you specify only a
false name, you must precede it with a comma. Commas are automatically
inserted for you if you are using the FIND statement template.

Target environments for FIND
Supported in all environments without compatibility considerations.

FIND

420 VisualAge Generator: Programmer’s Reference

Examples for FIND
In the following example, a table (INFO) has 50 rows and 3 columns called
STATE, POPULTN, and AREA. The first column has an entry for each of the
50 states, the second column contains the population for each state, and the
third column contains the area in square miles for each state.

INFO:

STATE POPULATN AREA

Alabama 4,041,000 51,600

Alaska 550,000 586,000

. . .

. . .

A FIND statement could be used to pick up the row number containing a
certain state from the table above and branch accordingly.
MOVE 'ALASKA' TO ITEM;
FIND ITEM INFO.STATE MATCH,NOMATCH;

When the FIND is executed and a match is found, EZETST is set to 2. This is
the row number of the matching state. Control is passed to MATCH. If no
match is found, EZETST is set to 0 and control is passed to NOMATCH.

The following statement will pass control to MATCH only if a match is found.
FIND ITEM INFO.STATE MATCH;

If no match is found, the statement immediately following the
FIND statement is run.

The following statement will pass control to NOMATCH if a match is not
found.
FIND ITEM INFO.STATE ,NOMATCH;

If a match was found, the statement immediately following the
FIND statement is run.

Function invocation statement

Function transfers control to another function.

ÊÊ function () ; ÊÍ

FIND

Chapter 10. Program processing statements 421

Attribute Description

function The name of a function.

Definition considerations for Function invocation statement
When the function invocation statement ends, control is returned to the
statement following the function invocation statement.

Function invocation statements do not use flow statements. If a function is
used both as a main function and as a function invocation statement in the
same program, the flow statements will not be executed when the function is
performed.

Function invocation statements cannot be used as edit routines for map items.
However, they can be performed from map variable field edit routines.
DISPLAY or CONVERSE functions cannot be performed from a map edit
group either directly or from any functions started during map edit group
execution.

Note: Do not use function invocation statements for unconditional flow,
transfer, or return processing. Use the special function word EZERTN
for an immediate return to the invoking function. Use the special
function word EZEFLO for “go to” or transfer processing.

Any record data item can be specified as an argument on string function calls.
In addition, numeric literals can be specified on calls to some string function
words. See “String Function EZE words” to determine whether numeric
literals can be used with a particular string function.

Target environments for function invocation statements
Supported in all environments without compatibility considerations.

Examplesof function invocation statements
To pass a record as an argument and return the result to ARESULT:
TESTIT-WSREC.ARESULT = RFUNCMAX(TESTIT-WSREC);

To pass data items as arguments and return the result to BIGGESTNUM:
BIGGESTNUM = FUNCMAX(FIRST,SECOND);

To pass numeric literals as arguments and return the result to BIGGESTNUM:
BIGGESTNUM = FUNCMAX(010,100);

FIND

422 VisualAge Generator: Programmer’s Reference

IF statement

IF marks the start of a set of statements that is executed conditionally based
on the results of one or more comparisons.

ÊÊ IF logical expression ; ÊÍ

ÊÊ »

.

statement ;
ÊÍ

ÊÊ
ELSE ;

ÊÍ

ÊÊ »

.

statement ;
ÊÍ

ÊÊ
END ;

ÊÍ

logical expression

ÊÊ logical expression AND logical expression
OR

(logical expression)
condition

ÊÍ

condition

IF

Chapter 10. Program processing statements 423

ÊÊ map item IS BLANK
NOT BLANKS

CURSOR
DATA
MODIFIED
NULL
NULLS
NUMERIC

SQL row record item IS BLANK
NOT BLANKS

NULL
NUMERIC
TRUNC

record IS I/O error value
NOT

UI record IS MODIFIED
NOT

map IS MODIFIED
NOT

EZEAID IS AID value
NOT

data item IS BLANK
NOT BLANKS

NUMERIC
data item EQ data item

=
NE
¬=
=¬
|=
=|
GT
>
LT
<
GE
>=
=>
LE
<=
=<
IN

EZESYS IS SYS value
NOT

ÊÍ

Attribute Description

statement Any statement or the line that represents the execution of the I/O
option within statement definition.

IF

424 VisualAge Generator: Programmer’s Reference

Attribute Description

AND, OR Connectors that can be used to test multiple conditions. With AND,
both conditions must be met. With OR, either condition can be met. A
combination of AND and OR can be used, but AND is evaluated
before OR unless you use parentheses to control the order. Multiple
ANDs and ORs can be specified on a single line.

map item Name of a variable field on a map or a map item parameter for a
function. A map item can be subscripted, qualified, or both. This
comparison is only valid for terminal maps.

IS Boolean operator that tests true if the specified state is true.

NOT Boolean operator that tests true if the specified state is false.

BLANK,
BLANKS

When used with map items, tests true if either of the following cases
are true:

v The data received from the display for the specified data item
contained all blanks or nulls or both.

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When used with non-map items with data type CHA, MIX, DBCS, or
UNICODE, tests true if the data item contains all blanks.

CURSOR Tests that the user left the cursor in the specified data item.

DATA Tests that there is data other than blanks or nulls within the map item
specified. Either the user entered the data or the data was moved to
the field before writing to the screen.

MODIFIED Tests true if data in the variable field has changed. Data is considered
changed if any of the following conditions are true:

v When specified for a map variable field, data was entered by the
program user the last time the map was displayed.

v A SET MODIFIED was done prior to the CONVERSE of the map.

v The field on the map was defined with a modified data tag (MDT)
at map definition time, and this is the first display of the map in the
program or the first display of the map after a SET CLEAR.

v When specified for a map, tests true if any variable field on the map
was changed.
Note: This saves you from having to test each map field separately.

IF

Chapter 10. Program processing statements 425

Attribute Description

NULL,
NULLS

When specified for map variable field, tests true if either of the
following cases are true:

v The data received from the display for the specified data item
contained all nulls, blanks, or both. Nulls are received when the
program user presses the Erase EOF key.

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When used with non-map items with data type CHA, MIX, DBCS, or
UNICODE, tests true if the data item contains all blanks.

NULL (SQL
row record
item)

Tests true if the SQL row record item has had no value assigned to the
item.

NUMERIC If the map item or data item type is character or mixed, tests true if
the field contains the characters 0 through 9. NUMERIC cannot be
used with EZE words.

SQL row
record item

Name of a data item in an SQL row record or an SQL item parameter
for a function. The name can include a qualifier.

TRUNC Tests whether a character or a DBCS item in an SQL row record was
truncated (nonblank characters deleted on the right) the last time the
item value was read from the relational database. Truncation can only
occur when the column in the database is longer than the data item.

The TRUNC indicator is reset whenever a value is moved to the item,
or when the item is set to NULL.

record Name of a record.

I/O error
value

Tests true if the I/O error value specified was returned from the
system on the last I/O option that accessed the record. See “I/O error
value” on page 389 for more information.

map Name of a map.

EZEAID The special function used to test the key that caused the input
interrupt from the display.

AID value Used in testing the state of the EZEAID special function word. See
“AID value” on page 384 for more information.

data item A data item syntactical element. See “Data item” on page 387 for more
information.

EQ or = Boolean operators that test true if data item values are equal.

IF

426 VisualAge Generator: Programmer’s Reference

Attribute Description

NE, ¬=, =¬,
|=, or =|

Boolean operators that test true if data item values are not equal.
Note: The ¬ and | symbols are not in the national language syntactic
character set, and might not have an equivalent code point across
different code pages. If you are exporting your program or generating
for machines with differing code pages (in particular, between
System/370 host systems and workstations), use NE, not the symbols.

GT or > Boolean operators that test true if the value of the first data item is
greater than the second.

LT or < Boolean operators that test true if the value of the first data item is less
than the second.

GE, >=, or => Boolean operators that test true if the value of the first data item is
greater than or equal to the second.

LE, <=, or =< Boolean operators that test true if the value of the first data item is less
than or equal to the second.

IN Boolean operator that tests true if the value in the first data item can
be found in the array represented by the second data item.

If a match is not found, processing skips to the corresponding ELSE or
END statement.
Note: The value of special function word EZETST is set to 0 if a match
is not found. If a match is found, EZETST is set to the index number
of the first element of the array that matches the value of the data
item.

Successive items in the array are compared until a match is found or
the end of the array is reached. If the array includes an index, the
testing starts there rather than from the first item in the array. If no
starting index is given, the test starts with the first item in the array. If
the value of the starting index is greater than the number of entries in
the array or if no match is found, the test will test false.

Comparing against a single data item instead of an array is equivalent
to comparing for equal, but is slower and causes setting of EZETST to
0 or 1. It will not be treated as an error.

The IN function is similar to the FIND statement in that they both scan
for values, but you would use IF or WHILE rather than FIND in the
following situations:
v IN works with any array, not just a table column.
v The search does not have to start at the first entry of the array.
v Duplicate values can be found in the array.

IF

Chapter 10. Program processing statements 427

Attribute Description

EZESYS A special function word used to test the system on which a program is
running.

The EZESYS test is a runtime test. Generation for a target system will
fail if the program includes functions not supported on that system,
even if the function is within an IF EZESYS clause that would prevent
that function from executing on the target system. To allow generation
for the target system to proceed, replace the offending function with a
call to a program that performs the function.

SYS value Used to test the state of the EZESYS special function word. See “SYS
value” on page 398 for more information.

Definition considerations for IF
Statements between the IF logical expression and the ELSE statement (or END
statement, if the ELSE is omitted) are processed only if the Boolean expression
tests true. Any statements between the ELSE and the END are processed only
if the Boolean expression tests false.

Parentheses can be used to control how conditions are evaluated.

When a conditional expression is nested within parentheses, evaluation
proceeds from the least inclusive to the most inclusive part of the expression.
The nested expression is evaluated before the expression which contains it.
Unless the evaluation order is modified by parentheses, the AND operator is
evaluated before the OR operator.

Parentheses can be used to:
v Modify the normal Boolean precedence of operations
v Eliminate ambiguities where operations appear at the same level.

The block of statements controlled by a conditional statement can contain
conditional statements. This can continue up to a maximum of 15 levels deep.

When using the IF statement within a function, you may test the map
attributes of a parameter item as long as the parameter item has been defined
as a map item parameter or the SQL attributes as long as the parameter item
has been defined as an SQL item parameter. This capability allows reusable
routines to be written to handle the map and SQL item processing.

The following table shows which data items can be compared with each other:

IF

428 VisualAge Generator: Programmer’s Reference

Table 18. Valid data item comparisons

BIN CHA DBCS HEX MIX NUM NUMC PACK PACF UNICODE

BIN x x x x x

CHA 1 2 1 3

DBCS 1

HEX 2 4

MIX 1 1

NUM x 3 x x x x

NUMC x x x x x

PACF x x x x x

PACK x x x x x

UNICODE 1

Legend:
x Valid data item comparison
1 For CHA to CHA, DBCS to DBCS, MIX to MIX, UNICODE to UNICODE, CHA to MIX, or MIX

to CHA comparisons, the shorter item is logically padded on the right with blanks to the length
of the longer item. All comparisons are logical comparisons.

2 Valid only if CHA field contains hexadecimal characters (a-f, A-F, 0-9). If a HEX item is
compared to a CHA item, the CHA item is converted to HEX format, the shorter field is
padded on the right with binary zeros, and a logical comparison is made.

3 Indicates that the data content of the source is validated prior to comparison. If nonnumeric,
the program is abnormally terminated. Valid only if the numeric field is defined without
decimal positions. The shorter field is padded on the left with zeros.

4 If a HEX item is compared to a HEX item, the shorter field is padded on the right with binary
zeros to the length of the longer field, and a logical comparison is made.

Target environments for IF
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility Considerations

VM CMS Uses EBCDIC character sets.

VM batch Uses EBCDIC character sets.

CICS for
MVS/ESA

Uses EBCDIC character sets.

MVS/TSO Uses EBCDIC character sets.

MVS batch Uses EBCDIC character sets.

IF

Chapter 10. Program processing statements 429

Environment Compatibility Considerations

IMS/VS For a map field to test true when the data entered for a data item
contained all blanks, nulls, or a combination of both, the program
user must enter at least one blank in the field before pressing the
Erase EOF key. If the program user presses Erase EOF without
entering one blank in the field, IMS message format services leave
the field set to its original contents.

Uses EBCDIC character sets.

IMS BMP Uses EBCDIC character sets.

CICS for
VSE/ESA

Uses EBCDIC character sets.

VSE batch Uses EBCDIC character sets.

CICS for OS/2 Range check comparisons for character data are performed using the
ASCII collating sequence.

OS/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Range check comparisons for character data are performed using the
ASCII collating sequence.

The following are not supported:
v IF record IS I/O error value
v IF record NOT I/O value

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI)

OS/2 (C++) Uses ASCII character sets.

AIX Uses ASCII character sets.

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT
(C++)

Uses ASCII character sets.

Windows NT
(Java)

Uses ASCII character sets.

CICS for
Windows NT

Uses ASCII character sets.

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility No distinction is made between testing for BLANKS and NULLS.

Uses ASCII character sets.

IF

430 VisualAge Generator: Programmer’s Reference

Examples for IF
The following are examples of the IF statement:

IF ELSE statement
IF FLD1 EQ FLDA

AND FLD2 EQ FLDB;
PROCDUP();

ELSE;
GETMOR();

END;

Nested IF statements
To use nested IF statements to respond to the function keys pressed by a user,
type:
IF EZEAID IS PF3

OR EZEAID IS PA2;
EZECLOS;

ELSE;
IF EZEAID IS PF12;

PROCINQ();
ELSE;

IF EZEAID IS PF10;
PROCADD();

END;
END;

END;

IF statement with AND and OR conditions
The following is an example of an IF statement using parentheses and mixing
AND and OR conditions:
IF NUMRECS > 0 AND /* Ensure there are records
(OPCODE = CHGREC OR OPCODE = REVREC OR /* to change, review,
OPCODE = DELREC); /* or delete

IF statement testing map data
The following is an example of an IF statement that tests if a map contains
data:
IF DEPTNO IS DATA; /* If user has entered data in the dept
LOOKUP(); /* field, find department information.

IF statement comparing numeric and character data
The following example demonstrates how the comparison of numeric to
character data would work:
ITEM-A is defined as CHA, length 4
ITEM-B is defined as NUM, length 4

MOVE '3' TO ITEM-A; /* ITEM-A's value is '3'
MOVE 3 TO ITEM-B; /* ITEM-B's value is '0003'
IF ITEM-A EQ ITEM-B;

EQ-FUNCTION(); /* This will never be done

IF

Chapter 10. Program processing statements 431

ELSE;
NE-FUNCTION(); /* This will always be done

END;
MOVE '0003' TO ITEM-A; /* ITEM-A's value is now '0003'
IF ITEM-A EQ ITEM-B;

EQ-FUNCTION2(); /* This will always be done
ELSE;
NE-FUNCTION2(); /* This will never be done

MOVE statement

The MOVE statement moves the contents of one item to another item, or
moves the corresponding items in one data structure to another data
structure.

Any statement that can be written as a MOVE statement can also be written
as an assignment statement.

ÊÊ MOVE source
TO

target ; ÊÍ

Attribute Description

source A literal, data item (can be subscripted, qualified, or both), record,
map, or certain special function words. A literal is limited to the size of
the target.

target A data item (can be subscripted, qualified, or both), record, map, or
certain special function words.

If the source is a literal, data item, or special function word, the target
must be a data item or special function word. If the data item has an
OCCURS greater than 1 and no subscript is supplied, the first
occurrence of the data item is used. The data item might be defined in
a record, map, or table or in the function parameter or local storage
lists or in one of the records in these lists.

If the source is a record or map, the target must be a record or map.
The data items within a record or map move to the corresponding data
items, with the same name, within the record or map that is the target.

Definition considerations for MOVE
The following table shows the valid source and target data item types:

Source Target

BIN BIN, NUM, NUMC, PACF, PACK

CHA CHA, HEX 5, MIX, NUM 6

IF

432 VisualAge Generator: Programmer’s Reference

DBCS DBCS

HEX CHA, HEX

MIX CHA, MIX

NUM BIN, CHA 7, NUM, NUMC, PACF, PACK

NUMC BIN, NUM, NUMC, PACF, PACK

PACF BIN, NUM, NUMC, PACF, PACK

PACK BIN, NUM, NUMC, PACF, PACK

UNICODE UNICODE

Moved Data Exceptions
Generally, the exact data content is moved from a source data item to the
target data item. There are five exceptions to this:
1. A MOVE between NUM, NUMC, PACK, PACF, and BIN data items results

in the necessary format conversions being made.
2. A MOVE statement between data items with unequal lengths results in

truncation or padding depending on the data type.
If the target is a CHA, DBCS, or UNICODE item, the source value is
truncated or padded on the right with blanks as required.
If target is a HEX item, the move takes place left to right, truncating or
padding on the right with binary zero bytes as required.
If the target item is numeric, packed, or binary, the source data is first
decimally aligned to match the number of decimal places in the target. The
source is then moved to the target with excess digits on either side of the
decimal point truncated. If there are fewer digits on either side of the
decimal point, zeros are added.
If a MIX data item is moved to a longer data item, the target is padded on
the right with single-byte blank characters. If the target item length is
shorter than the source MIX data item length, the source data must be
truncated. Unoccupied positions in the target that result from DBCS
substring truncation are filled with single-byte blank characters.

3. In a move from HEX to CHA data, the HEX field is converted to
hexadecimal character representation (0-9, a-f, A-F). Each HEX byte is
converted to two character bytes. The move is done left to right,
truncating or padding with character zeros as required.

5. Valid only if the CHA field contains hexadecimal characters (a-f, A-F,0-9)

6. Indicates that the data content of the source is validated prior to movement. If the data content is nonnumeric, the
program is abnormally terminated. This movement is valid only if the numeric field is defined without decimal
positions.

7. This movement is valid only if the numeric field is defined without decimal positions.

MOVE

Chapter 10. Program processing statements 433

4. In a move from CHA to HEX data, the character field must contain only
the characters a-f, A-F, or 0-9. Each pair of characters from the character
field is translated to its single HEX byte equivalent. The move is done left
to right, truncating or padding with binary zeros as required. Execution is
terminated if the CHA field contains characters that are not valid for HEX
conversion. You can use the hexadecimal variable field edit to ensure that
data entered from a map is valid for HEX conversion.

5. Moving from NUM data items to CHA data items does no conversion (this
can only be done if the numeric field contains no decimal positions). In
other words, the numeric field is treated as if it were character. If you wish
to move the NUMC data format so that the sign for positive numbers is
converted, the low-order byte that contains the sign can be converted as
follows:
v Move a NUMC item to a NUM item.
v Move the NUM item to a CHA item.

If the NUM or NUMC item has a negative value, the last byte is an
invalid character.

Move Corresponding
Data moved between two structures with a single statement is called a move
corresponding. These structures can be records or maps. Level-77 items are
not considered part of a record structure and are not included in the move.
The generated program operates as if one MOVE statement was specified for
each item (or map variable field) in the source structure that has an item (or
map variable) with the same name in the target structure.

Move corresponding is useful when moving data between maps and records
that have corresponding map fields and data items. When moving entire
records it is better to use a MOVE between the two high-level data items of
the records rather than doing a move corresponding. Both accomplish the
same thing, but the high-level data item MOVE executes one MOVE instead
of a MOVE for each data item. If a high-level data item is used, be sure that
the data items defined in both structures match in length and type because no
data conversion will be done.

Similarly, if you are moving part of your record to another record, it is more
efficient to move the highest level structures possible in the records.

When moving data from a record or table to a map, you should be sure the
record data can be displayed. If a character data item in a record contains data
that cannot be displayed, it might cause terminal errors to occur when moved
to a map. If a field exists in both the record and the map (the field has the
same name) and it is binary or packed in the record, it must be numeric in the
map.

MOVE

434 VisualAge Generator: Programmer’s Reference

Target environments for MOVE
Supported in all environments without compatibility considerations.

Examples for MOVE
Following are examples of the MOVE statement:

MOVE statement
MOVE STATE TO DSTAT;

Moving a Blank to a Data item
The following moves a blank to a data item called ITEM1:
MOVE ' ' TO ITEM1;

VisualAge Generator does not support keywords for the MOVE statement as
are supported by COBOL, such as BLANK, BLANKS, ZERO or ZEROS. Use
literals instead.

Only one literal blank is needed regardless of the field length.

Moving Zero to a Numeric or Binary Field
The following fills a numeric or binary field called ITEM2 with zeros:
MOVE 0 TO ITEM2;

Only one 0 is needed regardless of the field length.

Moving Fields from One Map to Another
The following moves all fields with identical names from MAP1 to MAP2:
MOVE MAP1 TO MAP2;

Moving a Data item to an Element of an Array
The following moves the contents of ITEM1 to the second occurrence of
ARRAY in REC1:
MOVE ITEM1 TO REC1.ARRAY[2];

Using special function words in a MOVE statement
Some special function words can be used in a MOVE statement.

The following moves a program user ID to an item called NAME:
MOVE EZEUSRID TO NAME;

The following moves a terminal ID to an item called TERM-ID:
MOVE EZELTERM TO TERM-ID;

The following moves the current date to an item called DATE:
MOVE EZEDTE TO DATE;

MOVE

Chapter 10. Program processing statements 435

The following moves a literal to a map message field (EZEMSG):
MOVE “This is a message” TO EZEMSG;

MOVEA statement

The MOVEA statement moves the contents of one array to another or
initializes the elements of an array.

ÊÊ MOVEA source
TO

target
FOR occurrence

; ÊÍ

Attribute Description

source A literal, data item (can be subscripted, qualified, or both), array, or
special function word. The source data type must be compatible with
the target data type.

target An array or a data item in an array or table.

occurrence Any numeric literal, data item (can include a subscript, be qualified, or
both), or EZE special function word that contains an integer greater
than 0 but less than 65536.

Uses
The MOVEA statement simplifies the coding of a program by replacing a loop
or a series of MOVE statements for the following actions:
v Initializing arrays
v Moving tables or parts of tables into map or record arrays
v Moving large arrays into small map arrays and using the CONVERSE

statement to present them to the program user.

If the source is an array (map variable field array, table column, or item in a
record with multiple occurrences), MOVEA moves the source array to the
target array. If the source is a literal value or scalar (single-valued item or
field), the target array is initialized with the scalar. You can designate a
starting position within each array and specify the number of elements you
want to move.

Subscripts
The source and target can each include a subscript. The subscript specifies the
starting position within that array for the move array operation. If you do not
use a subscript, MOVEA starts with the first element of the array. The number
of occurrences from the starting position specified to the end of the array is
called the resultant size. For example, if the array has 10 elements and 3 is
specified as the subscript, the size is 8.

EZETST contains the subscript of the last element changed in the target.

MOVE

436 VisualAge Generator: Programmer’s Reference

Definition considerations for MOVEA
For definition considerations for MOVEA, see “Definition considerations for
MOVE” on page 432.

Target environments for MOVEA
Supported in all environments without compatibility considerations.

Examples for MOVEA
Following are examples of the MOVEA statement.

Scalar to array with MOVEA
The source is a literal or a scalar item (not an array). The FOR operand
specifies the number of elements to which the source value is propagated. If
the FOR operand is omitted, the default is the resultant size of the target
array.
MOVEA source TO target[x] FOR y;

If y is less than or equal to the resultant size of the target, this statement
moves the value of the source to elements x through (x + y - 1). However, if y
is larger than the resultant size of the target, or is omitted, the MOVEA
statement moves the value of the source to elements x through the end of the
array. This function of the MOVEA statement is ideal for initializing arrays.

Array to array with MOVEA
The source must be an array element. The FOR operand specifies the number
of items to be moved. If the FOR operand is omitted, the default is the
smaller resultant size of either the source or the target.
MOVEA source[x] TO target[y] FOR z;

This statement moves the contents of the source, beginning with element x, to
the target, beginning with element y, for the minimum of the resultant size of
the source, the resultant size of the target, and z.

For instance, suppose the source had 5 elements, the target had 10, and the
following statement was used:
MOVEA source TO target [5] FOR 3;

Only three elements are moved since that is the minimum of 5, 6, and 3. The
first three elements of the source are moved, by position, to the fifth, sixth,
and seventh elements of the target.

MOVEA

Chapter 10. Program processing statements 437

Initializing an entire array with MOVEA
MOVEA 0 to ARRAY2;

BEFORE source = 0 ARRAY2 = 1 2 3 4
AFTER source = 0 ARRAY2 = 0 0 0 0

EZETST = 4

Because an entire array was initialized, EZETST holds the size of the array.

Initializing part of an array with MOVEA
MOVEA ‘A’ TO ARRAY2[2];

BEFORE source = 'A' ARRAY2 = 1 2 3 4
AFTER source = 'A' ARRAY2 = 1 A A A

EZETST = 4

Because an occurrence was omitted, the default is the resultant size
(4 - 2 + 1 = 3) of the target array. EZETST holds the subscript of the last
element changed in the target array.

Character string to array with MOVEA
MOVEA ‘ABC’ TO ARRAY2;

BEFORE source = 'ABC' ARRAY2 = 1 2 3 4
AFTER source = 'ABC' ARRAY2 = ABC ABC ABC ABC

EZETST = 4

A character string has been moved into each element of the array.

Data item to array with MOVEA
MOVEA RESULT TO ARRAY2[2] FOR 3;

BEFORE RESULT = 'ABC' ARRAY2 = 1 2 3 4
AFTER RESULT = 'ABC' ARRAY2 = 1 ABC ABC ABC

EZETST = 4

By using the subscript and FOR options, source was moved to target
beginning with the second element in target and ending with the fourth
element.

MOVEA

438 VisualAge Generator: Programmer’s Reference

Changing part of an array with MOVEA
MOVEA ARRAY1[1] TO ARRAY2[2] FOR 2;

BEFORE ARRAY1 = A B C ARRAY2 = 1 2 3 4
AFTER ARRAY1 = A B C ARRAY2 = 1 A B 4

EZETST = 3

By using the subscript and FOR options, only part of an array was changed.
Notice that the first and last elements in ARRAY2 did not change.

Target array smaller than source array with MOVEA
MOVEA ARRAY1 TO ARRAY2;

BEFORE ARRAY1 = A B C ARRAY2 = 1 2
AFTER ARRAY1 = A B C ARRAY2 = A B

EZETST = 2

Notice that the third element in ARRAY1 did not move.

Target array larger than source array with MOVEA
MOVEA ARRAY1 TO ARRAY2;

BEFORE ARRAY1 = A B C ARRAY2 = 1 2 3 4
AFTER ARRAY1 = A B C ARRAY2 = A B C 4

EZETST = 3

Notice that the fourth element in ARRAY2 did not change.

Move array in record or table to map array with MOVEA
MOVEA ARRAY1[START] TO ARRAY2;

In this example, the MOVEA statement is used to move an array in a data
structure to a map array. ARRAY1 has 100 elements and ARRAY2, which is on
a map, has only 10.

The variable, START, can then be modified to step through the array. If the
map is conversed 10 times to display all the information in ARRAY1, START
could be set to 1 on the first converse, 11 on the second converse, 21 on the
third, and so forth. The above statement moves the data in sets.

RETR statement (Retrieve)

RETR (Retrieve) obtains data from a table based on a search argument.

MOVEA

Chapter 10. Program processing statements 439

ÊÊ RETR dataitem1 table
. search column

dataitem2
return column

; ÊÍ

Attribute Description

dataitem1 Data item name or literal. The data item can be subscripted, qualified,
or both.

table Name of a table.

search column Name of a column in the table. The default is the first column in the
table.

dataitem2 Data item name (cannot be literal). The data item can be subscripted,
qualified, or both. This data item receives the value of the return
column.

return column Name of a column in the table. The default is the second column in
the table.

Definition considerations for RETR
If the value in dataitem1 is found in the search column of a row in the table,
the data in the return column of the same row is moved to dataitem2. If the
data in the search column is not unique, the first occurrence in the table is the
one used.

The special function word EZETST is loaded with a value depending on the
results of the RETR statement. The contents of EZETST will be either:
v Zero if the data item is not found
v The row number where the data item is located if the data item is found.

When EZETST contains a row number, it can be used as a subscript for other
statements that reference other columns in that same row of the table.

Target environments for RETR
Supported in all environments without compatibility considerations.

Examples for RETR
In the following example, a table (INFO) has 50 rows and 3 columns called
STATE, POPULATION, and AREA. The first column has an entry for each of
the 50 states, the second column contains the population for each state, and
the third column contains the area in square miles for each state.

INFO:

STATE POPULATION AREA

Alabama 3,500,000 51,600

RETR

440 VisualAge Generator: Programmer’s Reference

Alaska 302,000 586,000

. . .

. . .

A RETR statement could be used to pick up the area information from the
above table, based on a matching state.
MOVE 'ALASKA' TO ITEM;
RETR ITEM INFO.STATE AMOUNT AREA;

AMOUNT now has 586,000 in it. EZETST contains 2, the row number of the
matching state. If no match is made, EZETST is set to 0 and the contents of
AMOUNT are not changed. If the match is found, you can now obtain the
population for ALASKA by the following statement:
MOVE INFO.POPULATION[EZETST] TO PEOPLE;

You could also code:
PEOPLE = INFO.POPULATION[EZETST];

SET statement

You can use SET to do any of the following:
v Position the cursor on a map field
v Change the attribute of a map field
v Set an SQL row record item to null
v Clear a map or record
v Skip to a new page
v Establish a position in a file

RETR

Chapter 10. Program processing statements 441

ÊÊ SET »

»

»

»

,

record SCAN
EMPTY

SQL row record item NULL
,

map PAGE
ALARM
CLEAR
EMPTY
,

map item CURSOR
FULL
NORMAL
DEFINED

,

map item CURSOR
FULL
color
ext-hilite
MODIFIED
BRIGHT
DARK
PROTECT
AUTOSKIP

; ÊÍ

color

ÊÊ MONO
BLUE
PINK
YELLOW
TURQ
RED
GREEN
WHITE

ÊÍ

ext-hilite (extended highlighting)

ÊÊ NOHILITE
BLINK
RVIDEO
USCORE

ÊÍ

SET

442 VisualAge Generator: Programmer’s Reference

Attribute Description

record Name of a record.

SQL row
record item

Name of a data item in an SQL row record or an SQL item parameter
for a function. The item name can be qualified by the record name.

map Name of a map.

map item Name of a variable field on a map or a map item parameter for a
function. A map item can be subscripted, qualified, or both.

SCAN Used to establish the scan position for an indexed file or DL/I
database without having to use an INQUIRY I/O option. If the record
is an indexed file, the action taken depends on the next option
selected.

v If the option executed for the file is a SCAN, the next record
retrieved from a file will have a key value greater than or equal to
the record ID item defined for the record.

v If the option executed for the file is a SCANBACK, the record
retrieved will be the record with the highest key value that is less
than or equal to the record ID item defined for the record.

v Options other than SCAN and SCANBACK cause the condition to
be reset and ignored.

A SET record SCAN with a key value set to all X'FF' bytes prior to a
SCANBACK sets the position pointer in all environments to the end of
the file, so that the next SCANBACK retrieves the last record in the
file.

For DL/I records, you must set the segment key value and the key
values of its parent segments, if there are parent segments, in the DL/I
database.

If the record is in a DL/I database and the next option executed for
the record is a SCAN using the default search arguments, then the
DL/I call is modified to retrieve the first occurrence of the record in
the database at or following the position indicated by the segment key
value and the key values of its parent segments in the database.

SET record SCAN can be used only with DL/I calls with Scan in
Parent equal to No and unmodified SSA lists. If the next option
executed for that segment is a SCAN DL/I function with a modified
SSA list, execution is terminated. If the next option executed for the
segment is not a SCAN, the condition is reset and ignored.

SET

Chapter 10. Program processing statements 443

Attribute Description

EMPTY Used to initialize all data items in a record (blanks for character,
mixed, DBCS and Unicode data items; zeros for numeric data items;
and binary zeros for binary and hexadecimal data items).

If the record is a working storage record, the level-77 items are not
affected by the SET record EMPTY statement.

For a data structure that is subdivided, a SET record EMPTY statement
does the same thing as specifying individual MOVE statements of the
default values for each data item in the structure.

If specified for a map, EMPTY causes the contents of each map field to
be set to 0 for numeric fields, or blanks for character, mixed, and
DBCS fields. The field attributes are not changed.

NULL Sets the null indicator for an item in an SQL row record structure to
the null condition (value -1). The condition has no effect on items not
in SQL row records.

PAGE Used to clear the display or advance the paper to the top of the next
page before the next CONVERSE or DISPLAY I/O option.

This condition affects the device for the next CONVERSE or DISPLAY
I/O option for any map, not just the one specified in the SET
statement.

An automatic SET PAGE is performed when a different fixed map
appears that would be positioned on any of the same lines as defined
in an already displayed fixed map (unless the maps match exactly on
start position and depth).

If this map is the first in a program and is going to a printer, the
program user must position the paper to the top of the page before
running the program, unless a SET map PAGE is used. If a called and
calling program are both printing to the same file, a CLOSE map can
be issued before the first DISPLAY in the called program to ensure that
the paper is positioned correctly for the called program.

ALARM Causes the display alarm to sound on the next CONVERSE I/O option
when the specified map appears.

CLEAR Resets the map to its originally defined state. The specified map does
not have to be the next map displayed. The attributes and contents for
the fields are set to the original values defined for the map.

CURSOR Positions the cursor on the first position of a map field when the map
appears. If more than one SET map field CURSOR is issued for a map,
the cursor is positioned on the map field of the last SET statement
issued. The CURSOR state does not affect any other condition.

SET

444 VisualAge Generator: Programmer’s Reference

Attribute Description

NORMAL Displays data with normal intensity, and a map field is set to
UNPROTECTED and UNMODIFIED. The only conditions that can be
used with NORMAL are CURSOR and FULL.

DEFINED Displays data with the attributes originally defined for the map field.
The only conditions that can be used with DEFINED are CURSOR and
FULL.

FULL Used to remind the program’s users that a field should be completely
filled.

Asterisks are placed in an empty or blank field when the map is
displayed by the CONVERSE I/O option.

When the program user types data in the variable field, any remaining
asterisks are part of the data.

If a map field has a fill character other than the default specified, the
fill character is used instead of the asterisks.

The asterisks only appear on the map, and not in internal storage if
the map field is not set to MODIFIED. The program user must clear
the field of the asterisks if data is entered in the fields to prevent the
asterisks from being passed to the program.

FULL remains in effect until another SET map item statement for this
field executes or something else is done that clears the field attributes,
such as a SET map CLEAR. SET FULL is for each individual item, not
the map structure.

SET of an empty mixed map field FULL causes single-byte asterisks to
appear in the map field the next time it is displayed. To be considered
empty, the map field must contain all single-byte blanks.

If the program wants the use of SET map item FULL to be honored,
the map group must be generated with the /SETFULL generation
option. If the /NOSETFULL generation option is specified, the
mapping services program will not place an asterisk (*) in fields that
have been set full.

color Sets the color attribute for a map field to one of the following colors:
monochrome, blue, pink, yellow, turquoise, red, green, or white.

ext-hilite Sets the extended highlighting attribute for a map field to one of the
Following values: no extended highlighting, blink, reverse video, or
underscore.

SET

Chapter 10. Program processing statements 445

Attribute Description

MODIFIED Used to set the status of the variable field to modified. This forces the
contents of the field to be returned to the program on the next
CONVERSE.

The modified condition does not have any affect on the map field until
the map is conversed. A TEST MODIFIED statement before a map is
conversed does not give a true condition as a result of this SET
statement. This statement can also be used to force editing of the data
(non-blank character or non-zero numeric) in a field when the map is
conversed.

The modified condition is reset before the next display of a map unless
another SET map field MODIFIED statement is executed.

BRIGHT Displays a map field with bright intensity.

If you are running on a color display and all your map fields are
defined with default colors, the BRIGHT operand causes the color of a
normal unprotected field to be changed from green to red. (A normal
protected field changes from blue to white.) Otherwise, no color
change takes place.

DARK Used to prevent the variable field from displaying data.

DARK is usually used for security reasons, such as passwords.

PROTECT Protects a map field from modification by a user.

PROTECT and AUTOSKIP cannot be specified together because
AUTOSKIP forces PROTECT.

AUTOSKIP Protects a map field from modification by a user, by causing the cursor
to skip over this field.

Definition considerations for SET
When using the SET statement to set a map field with attributes other than
cursor, color, or extended highlighting, the specified attributes act as a
complete replacement for all attributes other than cursor, color, extended
highlighting, numeric, and fold attributes specified at map definition.

When using the SET statement within a function, you may set the map
attributes of a parameter item as long as the parameter item has been defined
as a map item parameter or the SQL attributes as long as the parameter item
has been defined as an SQL item parameter. This capability allows reusable
routines to be written to handle the map and SQL item processing.

When using the SET statement to assign color and extended highlighting
attributes to variable map items, you can specify only one color and one
extended highlighting attribute. They can be combined with any other map

SET

446 VisualAge Generator: Programmer’s Reference

item attribute values except DEFINED and NORMAL. Both DEFINED and
CLEAR reset the color and extended highlighting attributes to those originally
defined in map definition. NORMAL has no effect on either color or extended
highlighting.

The following guidelines also apply to the color and extended highlighting
attributes:
v If you issue more than one SET statement containing color or extended

highlighting for a map item before the map is displayed, the selection that
was specified last is used.

v If you are using a color display and assign a color to a field on a map
containing all monochrome fields, execution will switch from four-color
mode to seven-color mode. To prevent colors from changing inadvertently,
you can explicitly assign colors to the fields on the map in map or program
definition instead of accepting the monochrome default.

v If you specify a combination of regular highlighting (BRIGHT, DARK),
color, or extended highlighting attributes for a map item, the resulting
appearance of the item is device-dependent. Some of the attributes you set
might not be visible on the map.

Target environments for SET

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Only statements supported are:
v SET record EMPTY
v SET SQL row record item NULL

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

SET

Chapter 10. Program processing statements 447

Environment Compatibility considerations

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility None.

Examples for SET
The following resets MAP1 to its original state:
SET MAP1 CLEAR;

The following clears the panel and resets MAP1 to its original state before it
appears, and to sounds the terminal alarm when MAP1 appears:
SET MAP1 PAGE, CLEAR, ALARM;

The following sets all the fields in a record called REC1 to zero (numeric data
items) or blank (character data items):
SET REC1 EMPTY;

The following sets the color to red and the extended highlighting to blink:
SET MAPITEM RED,BLINK;

The following sets the extended highlighting to reverse video, to protect a
map field, and sets the color to turquoise:
SET MAPITEM RVIDEO,PROTECT,TURQ;

TEST statement

TEST transfers control to a function based on the status of the tested field,
record, map, or special function word with the EZE prefix.

SET

448 VisualAge Generator: Programmer’s Reference

ÊÊ TEST map item BLANK
BLANKS
CURSOR
DATA
MODIFIED
NULL
NULLS
NUMERIC
nnn
+nnn
−nnn

SQL row record item BLANK
BLANKS
NULL
NUMERIC
TRUNC

record I/O error value
UI record MODIFIED
map MODIFIED
EZEAID AID value
data item BLANK

BLANKS
NUMERIC

EZESYS SYS value

true
,false
true,false

; ÊÍ

Attribute Description

map item Name of a variable field on a map or a map item parameter for a
function. A map item can be subscripted, qualified, or both. This
comparison is only valid for terminal maps.

BLANK,
BLANKS

When used with map items, tests true if either of the following cases
are true:

v The data received from the display for the specified data item
contained all blanks or nulls or both.

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When use with non-map items with data type CHA, MIX, or DBCS,
tests true if the data item contains all blanks.

CURSOR Tests that the user left the cursor in the specified data item.

DATA Tests that there is data other than blanks or nulls within the map item
specified. Either the user entered the data or the data was moved to
the field before writing to the screen.

TEST

Chapter 10. Program processing statements 449

Attribute Description

MODIFIED Tests true if data in the variable field has changed. Data is considered
changed if any of the following conditions are true:

v When specified for a map variable field, data was entered by the
program user the last time the map was displayed.

v A SET MODIFIED was done prior to the CONVERSE of the map.

v The field on the map was defined with a modified data tag (MDT)
at map definition time, and this is the first display of the map in the
program or the first display of the map after a SET CLEAR.

v When specified for a map, tests true if any variable field on the map
was changed.
Note: This saves you from having to test each map field separately.

NULL,
NULLS

When specified for map variable field, tests true if either of the
following cases are true:

v The data entered into the panel for the specified data item contained
all nulls or blanks. Nulls are received when the program user
presses the Erase EOF key. Note that a true TEST for NULLS does
not mean that the field contains nulls internally (it contains blanks).

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When use with non-map items with data type CHA, MIX, DBCS, or
UNICODE, tests true if the data item contains all blanks.

NULL (SQL
row record
item)

Tests true if the SQL row record item has had no value assigned to the
item.

NUMERIC If the map item or data item type is character or mixed, tests true if
the field contains the characters 0 through 9. NUMERIC cannot be
used with EZE words.

nnn, +nnn,
−nnn

Compares the length of the data returned against the value nnn, which
is a numeric literal. If no sign precedes the number, the test is for an IS
EQUAL TO condition. If a + sign precedes the number, the condition
tested is IS GREATER THAN. For a minus (−) sign preceding a
number, the test is IS LESS THAN.

v In calculating the length, leading blanks, trailing blanks, and nulls
are not counted.

v If the field is at its originally defined state, the length is 0. For
example, if the map item contains default text (inserted during
definition) and it has not been modified during execution in any
way, then the length is calculated as 0. SET map CLEAR resets a
field to its originally defined state.

v If the field is not at its originally defined state, then the length is
calculated based on what was displayed or entered on the last
converse.

TEST

450 VisualAge Generator: Programmer’s Reference

Attribute Description

true Name of a main function or EZECLOS if specified within a program
flow. The name of a function, EZEFLO, EZERTN, or EZECLOS if
specified within a function.

false Name of a main function or EZECLOS if specified within a program
flow. The name of a function, EZEFLO, EZERTN, or EZECLOS if
specified within a function.

SQL row
record item

Name of a data item in an SQL row record or an SQL item parameter
for a function. The name can include a qualifier.

TRUNC Tests whether a character or a DBCS item in an SQL row record was
truncated (nonblank characters deleted on the right) the last time the
item value was read from the relational database. Truncation can only
occur when the column in the database is longer than the data item.

The TRUNC indicator is reset whenever a value is moved to the item,
or when the item is set to NULL.

record Name of a record.

I/O error
value

Tests true if the I/O error value specified was returned from the
system on the last I/O option that accessed the record. See “I/O error
value” on page 389 for more information.

map Name of a map.

EZEAID The special function used to test the key that caused the input
interrupt from the display.

AID value Used in testing the state of the EZEAID special function word. See
“AID value” on page 384 for more information.

data item A data item syntactical element. See “Data item” on page 387 for more
information.

EZESYS A special function word used to test the system on which a program is
running.

The EZESYS test is a runtime test. Generation for a target system will
fail if the program includes functions not supported on that system,
even if the function is within an IF EZESYS clause that would prevent
that function from executing on the target system. To allow generation
for the target system to proceed, replace the offending function with a
call to a program that performs the function.

SYS value Used to test the state of the EZESYS special function word. See “SYS
value” on page 398 for more information.

Definition considerations for TEST
If you specify both a true and a false name on a TEST statement, you can
separate the names with a comma. If you specify only the false part of the

TEST

Chapter 10. Program processing statements 451

statement, you must precede it with a comma. Commas are automatically
inserted for you when you use the TEST statement template.

If the state being tested is true, the name specified as the true attribute is
executed as an unconditional statement. If the true attribute is not specified,
execution continues with the statement following the TEST statement.

If the state being tested is false, the name specified as the false attribute is
executed as an unconditional statement. If the false attribute is not specified,
execution continues with the statement following the TEST statement.

Testing a map item is valid from the time the map is conversed until the next
map appears or is conversed. If the modified data tag is on, the value of the
item as it appears on the display is tested. Test statement results are consistent
across environments for map items with fill characters null or blank, or with
the modified data tag on.

When using the TEST statement within a function, you may test the map
attributes of a parameter item as long as the parameter item has been defined
as a map item parameter or the SQL attributes as long as the parameter item
has been defined as an SQL item parameter. This capability allows reusable
routines to be written to handle the map and SQL item processing.

Target environments for TEST

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS For a map field to test true when the data entered for a data item
contained all blanks, nulls, or a combination of both, the program
user must enter at least one blank in the field before pressing the
Erase EOF key. If the program user presses Erase EOF without
entering one blank in the field, IMS message format services leave
the field set to its original contents.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

TEST

452 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

The following are not supported:
v TEST record IS I/O error value
v TEST record NOT I/O error value

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Solaris None.

CICS for Solaris None.

Test Facility No distinction is made between testing for BLANKS and NULL.

Examples for TEST
The following examples show how you can use the TEST statement.

TEST statement using NULL
In the following example, control transfers to AOK if the STA column in the
SQLR record is null. Otherwise, control transfers to TRYGEN.
TEST SQLR.STA NULLS AOK,TRYGEN;

TEST statement using NUMERIC
To test using NUMERIC, type:
TEST TEMPNUM NUMERIC IS-NUM,NOT-NUM; /* Call appropriate routine.

TEST statement using MODIFIED
To pass control to MOD if an item is modified, and pass control to NOMOD if
it is not, type:
TEST ITEM MODIFIED MOD,NOMOD;

To pass control to MOD only if an item is modified, type:
TEST ITEM MODIFIED MOD;

TEST

Chapter 10. Program processing statements 453

If the item is not modified, the statement immediately following the TEST
statement is executed.

To pass control to NOMOD if an item is not modified, type:
TEST ITEM MODIFIED ,NOMOD;

If the item is modified, the statement immediately following the TEST
statement is executed.

Testing for a function key
To test if PF1 was pressed by the program user, type:
TEST EZEAID PF1 TRUEGP,FALSEGP;

A variation that is a test for a true condition only is:
TEST EZEAID PF1 TRUEGP;

The TRUEGP set of statements is executed only if (in this example) PF1 is
pressed.

Use of test for false testing is as follows:
TEST EZEAID PF1 ,FALSEGP;

Testing for bypass edit PF keys or a PA key
To test for bypass edit PF keys or a PA key code the following:
TEST EZEAID BYPASS EZEFLO,EZERTN;

Testing the results of the last I/O for a record
You can use a TEST statement to test the results of the last I/O operation for a
record.

The following statement runs ERR1 if REC1 has an end of file condition:
TEST REC1 EOF ERR1;

Testing for the length of data
If a field on map (MAP1.FLD1) is defined as length 10 and XYZ is entered,
the length of the data entered is 3:

TEST MAP1.FLD1 +2 TRUEGP,FALSEGP; /* true
TEST MAP1.FLD1 3 TRUEGP,FALSEGP; /* true
TEST MAP1.FLD1 -3 TRUEGP,FALSEGP; /* false
TEST MAP1.FLD1 +3 TRUEGP,FALSEGP; /* false

TEST

454 VisualAge Generator: Programmer’s Reference

WHILE statement

WHILE repeats a block of statements as long as a specific condition or set of
conditions is true.

ÊÊ WHILE logical expression ; ÊÍ

ÊÊ »

statement ;
ÊÍ

ÊÊ END ; ÊÍ

logical expression

ÊÊ logical expression AND logical expression
OR

(logical expression)
condition

ÊÍ

condition

WHILE

Chapter 10. Program processing statements 455

ÊÊ map item IS BLANK
NOT BLANKS

CURSOR
DATA
MODIFIED
NULL
NULLS
NUMERIC

SQL row record item IS BLANK
NOT BLANKS

NULL
NUMERIC
TRUNC

record IS I/O error value
NOT

map IS MODIFIED
NOT

EZEAID IS AID value
NOT

data item IS BLANK
NOT BLANKS

NUMERIC
data item EQ data item

=
NE
¬=
=¬
|=
=|
GT
>
LT
<
GE
>=
=>
LE
<=
=<
IN

EZESYS IS SYS value
NOT

ÊÍ

Attribute Description

statement Any statement or the line that represents the execution of the I/O
option within statement definition.

AND, OR Connectors that can be used to test multiple conditions. With AND,
both conditions must be met. With OR, either condition can be met. A
combination of AND and OR can be used, but AND is evaluated
before OR unless you use parentheses to control the order. Multiple
ANDs and ORs can be specified on a single line.

WHILE

456 VisualAge Generator: Programmer’s Reference

Attribute Description

map item Name of a variable field on a map or a map item parameter for a
function. A map item can be subscripted, qualified, or both. This
comparison is only valid for terminal maps.

IS Boolean operator that tests true if the specified state is true.

NOT Boolean operator that tests true if the specified state is false.

BLANK,
BLANKS

When used with map items, tests true if either of the following cases
are true:

v The data received from the display for the specified data item
contained all blanks or nulls or both.

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When use with non-map items with data type CHA, MIX, or DBCS,
tests true if the data item contains all blanks.

CURSOR Tests that the user left the cursor in the specified data item.

DATA Tests that there is data other than blanks or nulls within the map item
specified. Either the user entered the data or the data was moved to
the field before writing to the screen.

MODIFIED Tests true if data in the variable field has changed. Data is considered
changed if any of the following conditions are true:

v When specified for a map variable field, data was entered by the
program user the last time the map was displayed.

v A SET MODIFIED was done prior to the CONVERSE of the map.

v The field on the map was defined with a modified data tag (MDT)
at map definition time, and this is the first display of the map in the
program or the first display of the map after a SET CLEAR.

v When specified for a map, tests true if any variable field on the map
was changed.
Note: This saves you from having to test each map field separately.

NULL,
NULLS

When specified for map variable field, tests true if either of the
following cases are true:

v The data entered into the panel for the specified data item contained
all nulls or blanks. Nulls are received when the program user
presses the Erase EOF key. Note that a true TEST for NULLS does
not mean that the field contains nulls internally (it contains blanks).

v The map containing the item has not been conversed since the
program started, or since the last SET map CLEAR.

When use with non-map items with data type CHA, MIX, DBCS, or
UNICODE, tests true if the data item contains all blanks.

WHILE

Chapter 10. Program processing statements 457

Attribute Description

NULL (SQL
row record
item)

Tests true if the SQL row record item has had no value assigned to the
item.

NUMERIC If the map item or data item type is character or mixed, tests true if
the field contains the characters 0 through 9. NUMERIC cannot be
used with EZE words.

SQL row
record item

Name of a data item in an SQL row record or an SQL item parameter
for a function. The name can include a qualifier.

TRUNC Tests whether a character or a DBCS item in an SQL row record was
truncated (nonblank characters deleted on the right) the last time the
item value was read from the relational database. Truncation can only
occur when the column in the database is longer than the data item.

The TRUNC indicator is reset whenever a value is moved to the item,
or when the item is set to NULL.

record Name of a record.

I/O error
value

Tests true if the I/O error value specified was returned from the
system on the last I/O option that accessed the record. See “I/O error
value” on page 389 for more information.

map Name of a map.

EZEAID The special function used to test the key that caused the input
interrupt from the display.

AID value Used in testing the state of the EZEAID special function word. See
“AID value” on page 384 for more information.

data item A data item syntactical element. See “Data item” on page 387 for more
information.

EQ or = Boolean operators that test true if data item values are equal.

NE, ¬=, =¬,
|=, or =|

Boolean operators that test true if data item values are not equal.
Note: The ¬ and | symbols are not in the national language syntactic
character set, and might not have an equivalent code point across
different code pages. If you are exporting your program or generating
for machines with differing code pages (in particular, between
System/370 host systems and workstations), use NE, not the symbols.

GT or > Boolean operators that test true if the value of the first data item is
greater than the second.

LT or < Boolean operators that test true if the value of the first data item is less
than the second.

GE, >=, or => Boolean operators that test true if the value of the first data item is
greater than or equal to the second.

LE, <=, or =< Boolean operators that test true if the value of the first data item is less
than or equal to the second.

WHILE

458 VisualAge Generator: Programmer’s Reference

Attribute Description

IN Boolean operator that tests true if the value in the first data item can
be found in the array represented by the second data item.

If a match is not found, processing skips to the corresponding END
statement.
Note: The value of special function word EZETST is set to 0 if a match
is not found. If a match is found, EZETST is set to the index number
of the first element of the array that matches the value of the data
item.

Successive items in the array are compared until a match is found or
the end of the array is reached. If the array includes an index, the
testing starts there rather than from the first item in the array. If no
starting index is given, the test starts with the first item in the array. If
the value of the starting index is greater than the number of entries in
the array or if no match is found, the test will test false.

Comparing against a single data item instead of an array is equivalent
to comparing for equal, but is slower and causes setting of EZETST to
0 or 1. It will not be treated as an error.

The IN function is similar to the FIND statement in that they both scan
for values, but you would use IF or WHILE rather than FIND in the
following situations:
v IN works with any array, not just a table column.
v The search does not have to start at the first entry of the array.
v Duplicate values can be found in the array.

EZESYS The EZESYS test is a runtime test. Generation for a target system will
fail if the program includes functions not supported on that system,
even if the function is within an IF EZESYS clause that would prevent
that function from executing on the target system. To enable
generation for the target system to proceed, replace the offending
function with a call to a program that performs the function.

SYS value Used to test the state of the EZESYS special function word. See “SYS
value” on page 398 for more information.

Uses
Parentheses can be used to control how conditions are evaluated.

When a conditional expression is nested within parentheses, evaluation
proceeds from the least inclusive to the most inclusive part of the expression.
The nested expression is evaluated before the expression which contains it.
Unless the evaluation order is modified by parentheses, the AND operator is
evaluated before the OR operator.

Parentheses can be used to:

WHILE

Chapter 10. Program processing statements 459

v Modify the normal Boolean precedence of operations
v Eliminate ambiguities where operations appear at the same level.

This block of statements controlled by a conditional statement can contain
conditional statements. This can continue to a maximum of 15 levels deep.

When WHILE is used in the flow stage of a function and a function name is
specified in the block of statements controlled by the WHILE, control is
passed to the function named and does not return.

When using the WHILE statement within a function, you may test the map
attributes of a parameter item as long as the parameter item has been defined
as a map item parameter or the SQL attributes as long as the parameter item
has been defined as an SQL item parameter. This capability allows reusable
routines to be written to handle the map and SQL item processing.

Target environments for WHILE
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations

VM CMS Uses EBCDIC character sets.

VM batch Uses EBCDIC character sets.

CICS for
MVS/ESA

Uses EBCDIC character sets.

MVS/TSO Uses EBCDIC character sets.

MVS batch Uses EBCDIC character sets.

IMS/VS For a map field to test true when the data entered for a data item
contained all blanks, nulls, or a combination of both, the program
user must enter at least one blank in the field before pressing the
Erase EOF key. If the program user presses Erase EOF without
entering one blank in the field, IMS message format services leave

Uses EBCDIC character sets.

IMS BMP Uses EBCDIC character sets.

CICS for
VSE/ESA

Uses EBCDIC character sets.

VSE batch Uses EBCDIC character sets.

CICS for OS/2 Range check comparisons for character data are performed using the
ASCII collating sequence.

OS/400 Uses EBCDIC character sets.

WHILE

460 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows-OS/2
Smalltalk (GUI)

Range check comparisons for character data are performed using the
ASCII collating sequence.

The following are not supported:
v WHILE record IS I/O error value
v WHILE record NOT I/O value

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

OS/2 (C++) Uses ASCII character sets.

AIX Uses ASCII character sets.

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT
(C++)

Uses ASCII character sets.

Windows NT
(Java)

Uses ASCII character sets.

CICS for
Windows NT

Uses ASCII character sets.

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility No distinction is made between testing for BLANKS and NULLS.

Uses ASCII character sets.

Examples for WHILE
The following examples show you how to use the WHILE statement:

WHILE statement
The following is an example of a WHILE statement:

WHILE NUMRECS > 0 AND /* While there is more data and
(REQTYPE = 1 OR /* request type is 1 or
REQTYPE = 2); /* request type is 2.

WHILE statement summing the elements in an array
The following statements sum the elements in an array, which has 50 entries,
but stop early if an entry greater than 9999 is found:

MOVE 0 TO TOTAL;
MOVE 1 TO J;
WHILE J LE 50
AND ARRAY[J] LE 9999;
TOTAL = TOTAL + ARRAY[J];
J = J + 1;

END;

WHILE

Chapter 10. Program processing statements 461

The two conditions being tested are that J is less than or equal to 50 (that is,
the subscript is within the range of the array) and that the entry is less than
or equal to 9999. As long as both conditions are met (AND), the entry is
added to the sum of the previous entries (TOTAL) and the subscript (J) is
incremented. When either condition is not met, the summation stops.

WHILE statement using the IN operation
The IN operation provides a function similar to FIND, but much more
powerful. One data item (called ITEM in the example below) is compared to
another data item (called LIST in the example below) to ensure they match.
The LIST data item must be an array. Successive items in the array are
compared until a match is found or the end of the array is reached. If LIST
includes an index, the search begins there rather than at the first item in the
array. See the following example:

MOVE 1 TO START; /* Beginning of array
NUMBER-OF-OCCURS = 0; /* None found yet
WHILE ITEM IN LIST[START]; /* Find next occurrence
NUMBER-OF-OCCURS = NUMBER-OF-OCCURS + 1; /* Count number of occurrences
START = EZETST + 1; /* Skip past the one found

END:

At this point NUMBER-OF-OCCURS contains the number of times the value
in ITEM appears in the array LIST.

The above example is intended to determine the number times a value occurs
in an array. The loop will terminate if any of the following conditions occur:
v If ITEM does not appear in LIST
v When START becomes greater than the number of entries in the array LIST.
v When there are no occurrences of the value of ITEM in LIST at or above the

entry previously found.

If no starting index is specified, the test starts with the first item in the array.
If the value of the starting index is greater than the number entries in the
array, the test will test false. It will not be treated as an error.

The following are some advantages of using IN instead of the FIND
statement:
v IN works with any array, not just a table column.
v The search does not have to begin at the first array entry.
v Duplicate values can be found in the array.

The following table shows which data items can be compared with each other:

WHILE

462 VisualAge Generator: Programmer’s Reference

Table 19. Valid data item comparisons

BIN CHA DBCS HEX MIX NUM NUMC PACK PACF UNICODE

BIN x x x x x

CHA 1 2 1 3

DBCS 1

HEX 2 4

MIX 1 1

NUM x 3 x x x x

NUMC x x x x x

PACF x x x x x

PACK x x x x x

UNICODE 1

Legend:
x Valid data item comparison
1 For CHA to CHA, DBCS to DBCS, MIX to MIX, UNICODE to UNICODE, CHA to MIX, or MIX

to CHA comparisons, the shorter item is logically padded on the right with blanks to the length
of the longer item. All comparisons are logical comparisons.

2 Valid only if CHA field contains hexadecimal characters (a-f, A-F, 0-9). If a HEX item is
compared to a CHA item, the CHA item is converted to HEX format, the shorter field is
padded on the right with binary zeros, and a logical comparison is made.

3 Indicates that the data content of the source is validated prior to comparison. If nonnumeric,
the program is abnormally terminated. Valid only if the numeric field is defined without
decimal positions. The shorter field is padded on the left with zeros.

4 If a HEX item is compared to a HEX item, the shorter field is padded on the right with binary
zeros to the length of the longer field, and a logical comparison is made.

XFER statement

XFER transfers control to another program or CICS or IMS transaction. When
the program to which you are transferring ends, all open files are closed. The
current program ends when the transfer occurs and is not resumed when the
initiated program or program ends.

You can specify a working storage record, map, or both for the program
receiving control.

In a Web transaction program, you can specify a working storage record, a UI
record, or both for the program receiving control.

WHILE

Chapter 10. Program processing statements 463

ÊÊ XFER
(1)

program
EZEAPP record (NONCSP

record,mapname
,mapname

blank string ,UIrecordname
(2) (3)

program ,UIrecordname
EZEAPP record,UIrecordname

; ÊÍ

Notes:

1 NONCSP indicates that the program is a non-VisualAge Generator
program.

2 EZEAPP can contain a blank string only when EZEAPP is used in
conjunction with UI recordname.

3 When EZEAPP does not contain blanks or a non-blank program name
is specified, then First UI record should be used in the XFERed to
program to receive the data of the specified UI record. In this case, the
UI record is sent to be displayed as with XFER with a blank program
name, but the data of the optional working storage and the UI record
are saved at the server.

Attribute Description

program Name of the program to be initiated.

If the XFER statement is used in a Web transaction program, a blank
program name is only valid if a UI record has been specified.

EZEAPP A variable name on a transfer statement. This special function word
enables you to dynamically change the transferred-to program name
within a program.

If the XFER statement is used in a Web transaction program, EZEAPP
can contain a blank string only if a UI record has been specified.

blank string The only valid format is one blank space separated by single quotes.
For example:

'b' where b is a blank space.

A blank string can be used in place of a program name or EZEAPP.

If the XFER statement is used in a Web transaction program, a blank
string is only valid if a UI record has been specified.

XFER

464 VisualAge Generator: Programmer’s Reference

Attribute Description

record Name of any record used in the current program, including working
storage. The information in the record is used to initialize the working
storage record of the transferred-to program. The maximum size of the
record that can be passed is 32767 bytes.

Compatible working storage must be defined for the program that is
the object of the transfer. If a working storage record is specified on an
XFER, only the data in the structure is transferred. Any level-77 data
items defined are not transferred.

If the receiving working storage is not the same size as the one
transferred, the smaller size is used for the transfer. If the receiving
area is larger, the primary working storage record of the transferred-to
program is initialized based on the type of data (blanks for CHA,
DBCS, UNICODE, and MIX, and zero for numeric data). The
initialization is done before the transferred record, if any, is moved into
the primary working storage record.

If the definition of the record specified on the XFER statement is not
compatible with the definition of the primary working storage record
of the transferred-to program, unpredictable results, including
abnormal termination or the display locking up, can occur in the
transferred-to program. For example, the following conditions might
cause incompatibilities between the two records to occur:
v The records differ in length
v The field boundaries of the two records do not correspond
v The type of data differs (for example, the field is defined as

character in the record used on the XFER statement, but the
transferred-to program expects the field to be DBCS data).

If the XFER statement is used in a Web transaction program, a
working storage record can optionally be specified for this parameter.
The working storage record is passed to the specified program. The
program name cannot be blank.

mapname Name of a map used in the program. The transferring program must
be a main transaction program. The map appears before the transfer to
the new program is completed. The new program should use First
Map to read the map before the program is run.

The map name on the XFER must match the First Map specification
for the program that is the object of the transfer. Both programs must
use the same map.

XFER

Chapter 10. Program processing statements 465

Attribute Description

UIrecordname If EZEAPP contains blanks or a blank literal is used, then the specified
UI record will be sent, as in a CONVERSE, but no state will be saved
and the transaction will end. The UI record is sent in all cases
regarding program name.

If the XFER statement is used in a Web transaction program, a UI
record is the only type of record you can specify for this parameter.

NONCSP Indicates that the program is a non-VisualAge Generator program.

Definition considerations for XFER
XFER from called programs is not supported.

When an XFER statement is used in a Web transaction program:
1. The UI record is sent.
2. The transaction ends.
3. Data is saved or not saved depending on whether the program name is

specified:
v Data is saved if a program name is specified on the XFER statement.

The data of the optional working storage record and the UI record is
saved automatically. Use this style of XFER if the program flow is to be
determined completely at the server and the amount of state to save
between pages needs to be only what is in the working storage record.
If you need to save the state of all data accessible to the program, use
CONVERSE instead. Noted that when you use this style of XFER or a
CONVERSE the program user will have access to only one page at a
time since access to other pages is always controlled by the server. This
means the program user will not be able to use the BACK/FORWARD
buttons of the browser to get to other pages that may have already been
displayed.

v Data is not saved if a program name is not specified on the XFER
statement. Use this style of XFER if the program flow is determined at
the client. This means that there are Forms and Program Links on the
program users page that allow independent invocation of Web
Transactions. Since these programs can be accessed at any time it is not
efficient to have state saved for each invocation. This would occur if the
results of a client invocation were returned using a CONVERSE or an
XFER program. Thus XFER with a blank name means send the results to
the browser without saving any state. When application systems are
built using a combination of Program Links and Forms on the end user
pages together with First UI record and XFER with blank names in the
server programs, all pages are freely accessible from the browser at any
time using FORWARD/BACK buttons, history logs, etc.

XFER

466 VisualAge Generator: Programmer’s Reference

Target environments for XFER

Environment Compatibility considerations

VM CMS The transfer is done using the OS XCTL macro. The record and map
are passed as parameters. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on transferring program control.

The /SYNCXFER generation option controls whether a commit is
taken when the XFER is executed for nonsegmented programs.

XFER with a map to a non-VisualAge Generator program is not
supported.

If you are using generated programs as saved segments, the
following restrictions apply:
v If the saved segment is an initial program then you cannot

transfer with a DXFR statement that uses an XCTL or XFER to
other programs

v You cannot transfer with a DXFR statement that uses an XCTL or
XFER to a program that is loaded as a saved segment

XFER with a UI record or with a blank program name is not
supported.

VM batch XFER with a map is not supported. Otherwise, same as VM CMS.

CICS for
MVS/ESA

The program name or EZEAPP specifies the name of the new
transaction to be started. The entry name is the 1- to 4-character
name of the transaction to be initiated. The name is truncated to
four characters.

The transaction is started using a CICS START command. Working
storage data is passed in the CICS COMMAREA. The maximum
record length is 32763.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

XFER with a map to a non-VisualAge Generator program is not
supported.

XFER

Chapter 10. Program processing statements 467

Environment Compatibility considerations

MVS/TSO The transfer is done using the OS XCTL macro. The record, map,
and EZEDLPSB, if a PSB was used in the transferring program, are
passed as parameters. Refer to the VisualAge Generator Client/Server
Communications Guide document for more information on
transferring program control.

The /SYNCXFER generation option controls whether a commit is
taken when the XFER is executed for nonsegmented programs.

DL/I calls are supported in the transferred-to program only if there
was a PSB specified for the transferring program, and the
transferring program does at least one of the following:
v Uses CSPTDLI
v Uses EZEDLPSB or EZEDLPCB on any statement in the program
v Has DL/I databases other than ELAWORK or ELAMSG in the

PSB definition

XFER with a map to a non-VisualAge Generator program is not
supported.

XFER with a UI record or with a blank program name is not
supported.

MVS batch The transfer is done using the OS XCTL macro. The record, and
EZEDLPSB if a PSB was used in the transferring program, are
passed as parameters. Refer to the VisualAge Generator Client/Server
Communications Guide document for more information on
transferring program control.

The /SYNCXFER generation option controls whether a commit is
taken when the XFER is executed.

DL/I calls and GSAM files are supported in the transferred-to
program only if there was a PSB specified for the transferring
program, and the transferring program does at least one of the
following:
v Uses CSPTDLI
v Uses AUDIT service routine
v Associates at least one file or EZEPRINT with GSAM.
v Uses EZEDLPSB or EZEDLPCB on any statement in the program
v Has DL/I databases other than ELAWORK or ELAMSG in the

PSB definition

XFER with a map to a non-VisualAge Generator program is not
supported.

XFER with a UI record or with a blank program name is not
supported.

XFER

468 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

IMS/VS The program name or EZEAPP specifies the name of a new
transaction to be started. The entry name is the 1- to 8-character
name of the transaction to be initiated.

The /SPA generation option for both the transferring and the
transferred-to program must be the same.

If a map is specified on the XFER, the transferring and the
transferred-to programs must share the same map group.

The map name can be used in conjunction with a non-VisualAge
Generator program. The non-VisualAge Generator program must
use the MFS for the map that was created by the VisualAge
Generator Developer.

XFER cannot be used from batch programs. The maximum size limit
for a record passed on an XFER is 32753 bytes.

If an input message to a main transaction consists of only the
transaction name followed by blanks, the program assumes it is
being started with no working storage record being passed. The
primary working storage record for the program is initialized based
on the data types.

The method of passing working storage (SPA, IMS message, or
work database) depends on the generation options.

Refer to the VisualAge Generator Client/Server Communications Guide
document for more information on transferring program control.

IMS BMP The transfer is done using the OS XCTL macro. The record and the
PSB are passed as parameters. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on transferring program control.

The /SYNCXFER generation option controls whether a commit is
taken when the XFER is executed for nonsegmented programs.

XFER with a map is not supported.

XFER with a UI record or with a blank program name is not
supported.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CICS for OS/2. XFER with a UI record or with a blank program name is not
supported. Otherwise, same as CICS for MVS/ESA.

XFER

Chapter 10. Program processing statements 469

Environment Compatibility considerations

OS/400 Control is passed directly to the program to be initiated using the
OS/400 XCTL interface. Working storage is passed as a parameter
using a standard system argument list. The program issuing the
XFER is removed from the program invocation stack and does not
resume control when the initiated program ends.

XFER with a map to a non-VisualAge Generator program is not
supported.

XFER with a UI record or with a blank program name is not
supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The DosExecPgm API is used to transfer control to a non-VisualAge
Generator program. The record is passed via a transfer block in
shared memory. Refer to the VisualAge Generator Client/Server
Communications Guide document for more information on how to
transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

XFER with a map to a non-VisualAge Generator program is not
supported.

AIX The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

XFER with a map to a non-VisualAge Generator program is not
supported.

HP-UX The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

XFER with a map to a non-VisualAge Generator program is not
supported.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

XFER may only be used with UI records and local Java Server
Programs.

XFER

470 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris The exec() and fork() system calls are used to transfer control to a
non-VisualAge Generator program. Refer to the VisualAge Generator
Client/Server Communications Guide document for more information
on how to transfer control from a VisualAge Generator program to a
non-VisualAge Generator program.

XFER with a map to a non-VisualAge Generator program is not
supported.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Examples for XFER
The following examples show you how to use the XFER statement.

Transferring control using the XFER statement
The following transfers control to program APPL2 and passes it a working
storage record named WSREC:

XFER APPL2 WSREC;

Using EZEAPP to specify a variable name
The following uses EZEAPP to specify a variable name:

MOVE 'APPL2' TO EZEAPP;
XFER EZEAPP;

In CICS or IMS, the following transfers a working storage record and a map
to a program named APPL3, which is associated with TRX3:

MOVE 'TRX3' to EZEAPP;
XFER EZEAPP MYWORK, MYMAP;

APPL3 must have MYMAP specified as its first map.

Developing a program for TSO and CICS
If you are developing a program for both the TSO and CICS environments,
you can code the following:

IF EZESYS IS MVSCICS;
MOVE 'TRX3' TO EZEAPP; /* CICS transaction code
XFER EZEAPP MYWORK, MYMAP;

ELSE;
XFER APPL3 MYWORK, MYMAP; /* program name for TSO

END;

XFER

Chapter 10. Program processing statements 471

If you specify the actual program name on the XFER statement for TSO, the
generated sample execution CLIST will automatically allocate any data sets
for the transferred-to program.

XFER

472 VisualAge Generator: Programmer’s Reference

Chapter 11. Special function words

Special function words

Table 20. Special function words

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZEAID x x c c x c x c c c c c c x c x c

EZEAPP x x c x x c x c c c x x x x c x c x c x x

EZEBYTES x

EZECLOS x x x x x c x x x x x x x x x x x x x x x x c

EZECNVCM x x c x x c x c x c x c c c c c c c c c c

EZECOMIT c c c c c i c c c c c c c c c c c c c c c c c

EZECONCT c c c c c c c c c c c c c c c c c x x c x

EZECONV x x x x x x x x x x x x x x x x x x x

EZECONVT x x x x x x x x x x x x x x x

EZEC10 x

EZEC11 x

EZEDAY x

EZEDAYL x

EZEDAYLC x

EZEDEST c c c c c c c c c c c c c c c c c c c x c

EZEDESTP c

EZEDLCER
(DL/I)

x c c c c x c c c

EZEDLCON
(DL/I)

x c c c c x c c c

© Copyright IBM Corp. 1980, 2000 473

Table 20. Special function words (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZEDLDBD
(DL/I)

x x x x x x x x

EZEDLERR
(DL/I)

x x x x x x x x

EZEDLKEY
(DL/I)

x x x x x x x c

EZEDLKYL
(DL/I)

x x x x x x x x

EZEDLLEV
(DL/I)

x x x x x x x x

EZEDLPCB
(DL/I)

c c c c c c c c

EZEDLPRO
(DL/I)

x x x x x x x x

EZEDLPSB
(DL/I)

i i c c c c c c c c i i i i c c c i c i c

EZEDLRST
(DL/I)

x c c c c x c c c

EZEDLSEG
(DL/I)

x x x x x x x x

EZEDLSSG
(DL/I)

x x x x x x x x

EZEDLSTC
(DL/I)

x x x x x x x x

EZEDLTRM
(DL/I)

c x i c i c i c c

EZEDTE x

EZEDTEL x

EZEDTELC x

474 VisualAge Generator: Programmer’s Reference

Table 20. Special function words (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZEFEC x

EZEFLO x c

EZEG10 x

EZEG11 x

EZELOC c c x c c c c x c x x x x x x x x

EZELTERM c x

EZEMNO x

EZEMSG x

EZEOVER x x x x x x x x x x x x x c c c c c c c c x c

EZEOVERS x

EZEPURGE i i x i i i i x i x x x x

EZERCODE x x c x x c x c x c c c c c c c c c i x

EZEREPLY x

EZEROLLB c c c c c c c c c c x c c c c c c c c c c c

EZERTN x

EZERT8 c

EZESEGM c i x c i c i x i x c c c c c c c c c x

EZESEGTR i i c i i c c c i c c c c c c c c c i i

EZESQCOD
(SQL)

c c

EZESQISL
(SQL)

c c i i i i i c c i i i i i i i i i i

EZESQLCA
(SQL)

c x

EZESQRD3
(SQL)

c x

Chapter 11. Special function words 475

Table 20. Special function words (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZESQRRM
(SQL)

c x

EZESQWN1
(SQL)

c c c c c c c c c c c c c c c c c c c x x

EZESQWN6
(SQL)

c x

EZESYS x

EZETIM x

EZETST x

EZEUSR c c c c c c c c c c x c c c c c c c c c c

EZEUSRID c c c c c c c c c c x c c c c c c c c c c

EZEWAIT x x x x x i x x x x x x x x x x x x x x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
i Ignored.
blank Not supported
ST Smalltalk

EZEAID

EZEAID indicates the function key the program user pressed during a map
I/O operation.

EZEAID is reset on every CONVERSE I/O option. If a first map is not
specified, EZEAID is set to Enter until the first CONVERSE I/O option for a
map occurs.

476 VisualAge Generator: Programmer’s Reference

Uses
You can use EZEAID to test for the following values:
v PA (any program access, or PA, key), PA1, PA2, and PA3
v PF (any function key), PF1 through PF24
v Enter
v BYPASS (any bypass edit function key)

Use EZEAID as an operand of the following statement types:
v IF statement
v WHILE statement
v TEST statement

The characteristics of EZEAID follow:

Data type
Character

Data length in bytes
1

Value saved across segments
No

Target environments for EZEAID

Environment Compatibility considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO PF6 is reserved for a panel recovery function. If the program user
presses PF6, it is treated as pressing the Clear key. The AID value is
not passed back to the program.

MVS batch Not supported.

IMS/VS PA1, PA2, and PA3 are reserved for paging by IMS/VS. If your
installation uses PF12 for the IMS local copy function, PF12 cannot
be used. If these keys are pressed, no AID value is passed to the
program.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

EZEAID

Chapter 11. Special function words 477

Environment Compatibility considerations

CICS for OS/2 Mapping the personal computer keyboard keys to 3270 keys is
defined in the CICS OS/2 Workstation Setup (WSU) table. The
following is the default mapping:

Program Function Key Personal Computer Key

PF1 - PF12 F1 - F12
PF13 - PF24 Alt+F1 - Alt+F12
PA1 - PA3 Ctrl+F1 - Ctrl+F3

Refer to the CICS for OS/2 System and Application Guide for
information on how to modify the WSU table to change the key
mapping.

Closing the Map Monitor during CONVERSE is the same as
pressing PA2 which is the default bypass edit key. Thus, after
closing Map Monitor during a CONVERSE, EZEAID will have a
value of PA2.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The following is the default mapping:

AID Personal Computer Key

PF1 - PF12 F1 - F12
PF13 - PF14 Shift+F1 - Shift+F12
PA1 - PA3 Ctrl+F1 - Ctrl+F3

AIX Same as OS/2 (C++).

CICS for AIX Mapping the AIX terminal keyboard keys to 3270 keys is defined in
the 3270keys file, which is part of TCP/IP. The default values
depend on the type of terminal or session you are using to run
CICS for AIX transactions.

For more information, refer to “3270keys File Format for TCP/IP
using InfoExplorer”, in the AIX online help facility.

HP-UX Same as OS/2 (C++).

Solaris None.

CICS for Solaris Mapping the AIX terminal keyboard keys to 3270 keys is defined in
the 3270keys file, which is part of TCP/IP. The default values
depend on the type of terminal or session you are using to run
CICS for AIX transactions.

For more information, refer to “3270keys File Format for TCP/IP
using InfoExplorer”, in the AIX online help facility.

EZEAID

478 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

None.

CICS for
Windows NT

Mapping the Windows NT terminal keyboard keys to 3270 keys is
defined in the 3270keys file, which is part of TCP/IP. The default
values depend on the type of terminal or session you are using to
run CICS for Windows NT transactions.

For more information, refer to “3270keys File Format for TCP/IP
using InfoExplorer”, in the Windows NT online help facility.

Test Facility The test facility supports the default CICS OS/2 mapping.

Example for EZEAID
IF EZEAID IS PA1;
END;

EZEAPP

EZEAPP can be used to change the name of the program or non-VisualAge
Generator program to which you want to transfer.

EZEAPP is used with the DXFR or XFER statements to change the
transferred-to program name while the program is running. EZEAPP is set to
the program name before the transfer statement runs. EZEAPP cannot contain
DBCS literals. The contents of EZEAPP are not checked when the transfer
statement runs.

In a Web transaction program, EZEAPP can contain a blank when a UI record
is specified on the XFER statement.

Uses
You can use EZEAPP as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v The program operand in a DXFR or XFER statement
v Data item 1 or 2 in a RETR statement
v The data item of an IF or WHILE statement
v The data item of a FIND statement
v Operand of a TEST statement

The characteristics of EZEAPP follow:

EZEAID

Chapter 11. Special function words 479

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

Definition considerations for EZEAPP
When EZEAPP is a target operand, the contents of EZEAPP are automatically
folded to uppercase. Therefore, any subsequent use of EZEAPP will involve
the folded version.

Target environments for EZEAPP

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

When EZEAPP is used with an XFER statement, EZEAPP contains
the name of the new transaction to be started, not the program
name. Only the first 4 bytes of the name are used.

EZEAPP is not folded in CICS environments.

MVS/TSO None.

MVS batch None.

IMS/VS When EZEAPP is used with an XFER statement, EZEAPP contains
the name of the new transaction to be started, not the program
name.

IMS BMP None.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Transfers using XFER are not supported.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

EZEAPP

480 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for Solaris Compatibility considerations.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Test Facility None.

Example for EZEAPP
The following example puts a program name into EZEAPP:
MOVE 'APPL' TO EZEAPP;
DXFR EZEAPP;

EZEBYTES

EZEBYTES returns the length of an item or record in bytes.

Uses

ÊÊ result = EZEBYTES (itemOrRecord) ; ÊÍ

Attribute Description

result Full-word integer (bin, bytes=4) which on return contains the length of
itemOrRecord.

itemOrRecord Any data item or record part type.

Target environments for EZEBYTES
Supported in all environments without compatibility considerations.

Example for EZEBYTES
EZEREPLY = 0;
RESULT = EZEBYTES (Recd1);

EZECLOS

EZECLOS immediately ends the program. If the program is a called program,
EZECLOS returns control to the calling program. EZECLOS is the default flow
for the last main function in a program.

EZEAPP

Chapter 11. Special function words 481

Uses
You can use EZECLOS as any of the following:
v The name of a function error routine
v The true or false operand of a TEST or FIND statement in a function or

flow
v A function invocation statement

Target environments for EZECLOS

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS For a segmented program that runs with a scratchpad area,
EZECLOS causes the IMS/VS conversation to end.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

EZECLOS

482 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

None.

Test Facility If EZEFLO or EZECLOS is encountered and Exit breakpoints are set
on any of the functions that are currently listed in the Execution
Stack Monitor, the following status message is displayed in the
status area of the Test Monitor:

Exit Breakpoints exist

The break in execution will occur on the EZEFLO or EZECLOS
statement.

If EZECLOS is encountered and Exit breakpoints are not set on any
of the functions that are currently listed in the Execution Stack
Monitor, but the current program uses Exit breakpoints, the
following status message is displayed in the status area of the Test
Monitor:

Break on program - program_name

The break in execution will occur on the EZECLOS statement.

Example for EZECLOS
TEST EZEAID PF1 EZECLOS, FALSEGP;

EZECNVCM

EZECNVCM is a switch used to control whether data is automatically
committed for every CONVERSE I/O option. When EZECNVCM is set to 1,
EZECOMIT is called during every CONVERSE. The default setting of
EZECNVCM is 0 if nonsegmented and 1 if segmented. The program can
change EZECNVCM at any time.

Uses
You can use EZECNVCM as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZECNVCM follow:

Data type
Numeric

EZECLOS

Chapter 11. Special function words 483

Data length in bytes
1

Value saved across segments
Yes

Definition considerations for EZECNVCM
When EZECNVCM is set to 1, EZECOMIT is automatically called during
every CONVERSE function following terminal write, but before terminal read.
This commits data changes to files or databases and logs terminal output at
the same time. When EZECNVCM is set to 0, a commit is done on the
CONVERSE only if the program is running in segmented mode at the time of
the CONVERSE.

Target environments for EZECNVCM

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

EZECNVCM is ignored on a segmented CONVERSE. The
CONVERSE marks the end of a segment; a commit is always done
at the end of a segment.

MVS/TSO None.

MVS batch None.

IMS/VS The value of EZECNVCM is ignored. In IMS, each CONVERSE is
the end of a segment; a commit is always done at the end of a
segment.

IMS BMP None.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch None.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Commits changes to relational databases. Files are not affected.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Compatibility considerations.

CICS for Solaris Compatibility considerations.

EZECNVCM

484 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for AIX Commits changes to relational databases and files defined as
recoverable resources to CICS for AIX.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Commits changes to relational databases and files defined as
recoverable resources to CICS for Windows NT.

Test Facility If the program is running under the test facility, data is committed
only when a map appears.

Example for EZECNVCM
MOVE 1 TO EZECNVCM;

EZECOMIT

EZECOMIT calls services to save recoverable file, database, and message
queue updates since the last commit.

If the program is running in a transactional environment (CICS, IMS, or
OS/400), VAGen issues an environment commit that performs a two-phase
commit coordinated across all resource managers. In non-transaction
environments, VAGen performs a single phase commit calling each
recoverable resource manager separately.

The scan position is lost and update locks are released for any files or
databases affected by the EZECOMIT. An exception to this occurs when using
Declare Cursor With Hold. The WITH HOLD option is not supported for
ODBC. When using ODBC, all open cursors are closed on an EZECOMIT and
all statements must be re-prepared.

Uses
You can use EZECOMIT as the function name in a function invocation
statement.

Always use EZECOMIT in GUIs prior to completing processing of any event
that results in relational database updates being made by local DLLs called by
the GUI or calls to a remote server where client controlled unit of work is
specified for the server call.

Definition considerations for EZECOMIT
You should consider the need for using EZECOMIT and the implications of
using EZECOMIT with message queues. The following sections examine when

EZECNVCM

Chapter 11. Special function words 485

the use of EZECOMIT is unnecessary due to implicit commit situations and
definition considerations for EZECOMIT when message queues are involved.

EZECOMIT and implicit commit situations

Note: You might not need to use EZECOMIT if you consider the following
implicit commit situations. If you can take advantage of these implicit
commit situations, you could enhance performance by not using
EZECOMIT explicitly.

A commit point is taken on any of the following:
v When a program calls either the EZECOMIT or COMMIT service routine.

For VM CMS, VM batch, MVS/TSO, MVS batch, and VSE batch, VisualAge
Generator programs that do not use DL/I issue a commit point only if the
program has made changes to an SQL table. A commit point does not occur
for changes to an SQL table made by a non-VisualAge Generator program.
For IMS/VS and transaction-oriented IMS BMP programs (programs that
scan a serial file associated with the I/O PCB), EZECOMIT is ignored. A
commit point occurs whenever there is a get unique to the I/O PCB.

v When the top-level program in a run unit ends successfully.
For VM CMS, VM batch, MVS/TSO, MVS batch, IMS BMP, and VSE batch,
a run unit consists of all VisualAge Generator programs and non-VisualAge
Generator programs that transfer control among themselves using an XFER,
DXFR, or CALL statement. For non-VisualAge Generator programs, this
also includes any transfer that uses an OS XCTL macro or CALL statement.
For CICS or IMS/VS, a run unit is equivalent to a single transaction and
consists of all VisualAge Generator programs and non-VisualAge Generator
programs that transfer control among themselves using a DXFR or CALL
statement. For non-VisualAge Generator programs, this also includes any
transfer that uses a CALL statement, a CICS command.

v When a program uses a CONVERSE I/O option and any of the following is
set to 1:
– EZESEGM special function word (segmented mode).

The EZESEGM special function word defaults to 1 if the program is
defined as segmented (in environments that support segmented mode).

– EZECNVCM special function word (CONVERSE commit)
– EZEDLTRM special function word (end PSB at CONVERSE) if the

program uses DL/I.

The best time for a commit point to occur is after terminal output and
before the next terminal input. A commit point at terminal I/O
synchronizes updates to the database and confirmation messages to the
program user.

EZECOMIT

486 VisualAge Generator: Programmer’s Reference

v On a XFER statement, unless the /NOSYNCXFER option was specified for
VM CMS, VM batch, MVS/TSO, MVS batch, or batch-oriented IMS BMP
programs.

v For IMS/VS and transaction-oriented IMS BMP programs, when a program
does a successful GET UNIQUE to the I/O PCB

v For CICS, when a transfer using a DXFR statement occurs, a PSB is
scheduled, and one of the following occurs:
– Transfer to a non-VisualAge Generator program
– The /SYNCDXFR generation option is specified for the transferred-from

program
– The /NOSYNCDXFR generation option is specified for the

transferred-from program and different PSB names were identified in the
program specifications for the two programs.

v For CICS, when a called DL/I program returns to the calling program, the
PSB was not passed using the EZEDLPSB special function word, and PCBs
were not passed using the EZEDLPCB special function word.

EZECOMIT and message queues
When you use EZECOMIT with message queue records, note the following:
v Message queue updates are recoverable only if the Include message in

transaction option is selected in message queue record definition.
v Both message SCANs and ADDs are affected by commit and rollback for

recoverable messages. If a rollback is issued following a SCAN for a
recoverable message, the message is placed back on the input queue so that
the input message is not lost when the transaction fails to complete
successfully.

Target environments for EZECOMIT

Environment Compatibility considerations

VM CMS EZECOMIT commits changes to relational databases. EZECOMIT
results in an SQL COMMIT WORK if the program has issued SQL
requests.

VM batch Same as VM CMS.

CICS for
MVS/ESA

EZECOMIT results in a CICS SYNCPOINT, which commits changes
to relational databases, DL/I databases, and files defined as
recoverable resources to CICS.

The end of a segment (issuing a CONVERSE when running in
segmented mode) has the same effect as EZECOMIT.

Remote called batch program (programs that reside on a different
system than the invoking program) can invoke EZECOMIT. If
ECI_NO_EXTEND was specified, commit will work. If ECI_EXTEND
was specified, a runtime error message is issued that commit failed
with INVREQ.

EZECOMIT

Chapter 11. Special function words 487

Environment Compatibility considerations

MVS/TSO EZECOMIT commits changes to relational and DL/I databases.
EZECOMIT results in an SQL COMMIT WORK if the program has
issued SQL requests.

A DL/I CHKP (checkpoint) call is issued if the program has issued
DL/I requests. The contents of special function word EZEDLPSB are
used as the checkpoint identifier on the CHKP call.

MVS batch If the batch has not specified a PSB but has issued SQL requests, an
SQL COMMIT WORK is issued.

If the program has a PSB specified, invoking EZECOMIT results in a
DL/I basic CHKP call, which commits changes to databases. The
contents of the special function word EZEDLPSB are used as the
checkpoint identifier on the CHKP call.

GSAM files are not recoverable when used with basic CHKP. To make
GSAM files recoverable, use CSPTDLI for symbolic checkpoint
instead of EZECOMIT.

IMS/VS EZECOMIT is ignored in this environment. Commit processing is
done by the system at the following points:
v On each CONVERSE
v When a transaction program finishes:

– At the end of the last main function
– Executing an EZECLOS
– Executing an XFER

v When a batch program scans a serial file assigned to the I/O PCB
for the first segment of the next message

v When a batch program uses CSPTDLI to issue a CHKP function or
a get unique call to the I/O PCB

Changes to all databases and serial files are committed.

IMS BMP For a batch-oriented BMP program that does not scan a serial file
associated with the I/O PCB, invoking EZECOMIT results in a DL/I
basic CHKP call, which commits changes to all databases. The
contents of the special function word EZEDLPSB are used as the
checkpoint identifier on the CHKP call.

GSAM files are not recoverable when used with basic CHKP. To make
GSAM files recoverable, use CSPTDLI for symbolic checkpoint
instead of EZECOMIT.

EZECOMIT is ignored for transaction-oriented BMP programs in
which the program scans a serial file associated with the I/O PCB.
For these programs the commit is done by the system each time a
SCAN is issued for a serial file assigned to the I/O PCB to obtain the
first segment of a message or when CSPTDLI is used to request a
CHKP function.

EZECOMIT

488 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
VSE/ESA

Remote server programs (programs that reside on a different system
than the invoking program) can issue EZECOMIT only if the linkage
table specified server unit of work for the program.

Otherwise, same as CICS for MVS/ESA.

VSE batch If the program has not specified a PSB but has issued SQL requests,
an SQL COMMIT WORK is issued.

If the program has a PSB specified, invoking EZECOMIT results in a
DL/I basic CHKP call, which commits changes to databases. The
contents of the special function word EZEDLPSB are used as the
checkpoint identifier on the CHKP call.

CICS for OS/2 EZECOMIT results in a CICS SYNCPOINT.

The CICS SYNCPOINT commits changes made to DB2 databases and
files defined as recoverable files to CICS. The SYNCPOINT also
commits changes to databases and recoverable files on a CICS host
when the changes are made by a remote called batch program that is
called by the program invoking EZECOMIT. CICS coordinates the
host and workstation commit functions.

The SQL COMMIT WORK commits changes made to relational
databases.

Remote called batch programs (programs that reside on a different
system than the invoking program) can invoke EZECOMIT. If
ECI_NO_EXTEND was specified, commit will work. If ECI_EXTEND
was specified, a runtime error message is issued that commit failed
with INVREQ.

Files generated with file type OS2COBOL are not recoverable
resources and are not affected by EZECOMIT.

OS/400 An implicit commit is issued when a MAIN type program ends,
which constitutes the end of a run unit. The most common instance
of this is when the MAIN program returns to the non-VisualAge
Generator program from which it was started.

Another instance of an implicit commit is on an XFER. A DXFR does
not cause a commit.

Invoking EZECOMIT results in an SQL COMMIT WORK if the
program has issued SQL requests.

Invoking EZECOMIT results in the equivalent of an OS/400
COMMIT command, if the program has not issued SQL requests.

EZECOMIT

Chapter 11. Special function words 489

Environment Compatibility considerations

Windows &
OS/2 Smalltalk
(GUI)

EZECOMIT results in a commit of relational database changes made
by generated C++ programs called locally plus any recoverable
resource changes made by remote server programs called using client
controlled unit of work in the linkage table. A two-phase commit is
used only if all the servers were called using a transaction manager
under the same transaction.

WindowsJava
(GUI)

Same as Windows & OS/2 Smalltalk (GUI)..

OS/2 (C++) Commits changes to relational databases and changes made to remote
server programs called using client controlled unit of work. Single
phase commit is used where there are multiple resource managers.

AIX Same as OS/2 (C++).

CICS for AIX Commits changes to relational databases, files defined as recoverable
to CICS, and changes made by remote server programs defined in the
linkage table as using client controlled unit of work. The commit can
be set up as a two-phase commit controlled by CICS.

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for
Solaris

Commits changes to relational databases, files defined as recoverable
to CICS, and changes made by remote server programs defined in the
linkage table as using client controlled unit of work. The commit can
be set up as a two-phase commit controlled by CICS.

Windows NT
(C++)

Commits changes to relational databases and files defined as
recoverable resources to Windows NT.

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Same as CICS for AIX.

Test Facility EZECOMIT is ignored in the IMS/VS DL/I execution environment.
The call to EZECOMIT is ignored, but the test continues.

Example for EZECOMIT
EZEREPLY = 0;
EZECOMIT();

EZECONCT

EZECONCT controls the database unit of work in VisualAge Generator
programs. EZECONCT enables a program to connect, disconnect, or activate
database connections.

EZECOMIT

490 VisualAge Generator: Programmer’s Reference

Uses
You can use EZECONCT as the function name in a function invocation
statement.

The following is the calling sequence for EZECONCT:

ÊÊ EZECONCT (userid , password , servername , product , release , Ê

Ê uow) ; ÊÍ

userid A database user identifier (8-byte CHA data item). Refer to
“Authorization considerations”, in the VisualAge Generator Design
Guide document, for more information on options for specifying a
database userid and password for workstation programs.

password
A database password (8-byte CHA data item).

servername
A database program server name (18-byte CHA data item).

For MVS, this argument contains one the following:
v Blanks
v RESET
v The name of the program server to receive the SQL requests.

For other systems, it contains the name of the program server for the
database requests.

Table 21. Arguments allowed on invocation of EZECONCT

Arguments Connection

servername contains RESET Reconnect to default database (DB2
CONNECT RESET); fill product and
release with information about the server

servername nonblank, but does not contain
RESET

Connect to specified server (DB2
CONNECT TO); fill product and release
with information about the server

servername is blank Perform a query for product and release
level of the server (DB2 CONNECT); fill
product and release with information
about the server

EZECONCT

Chapter 11. Special function words 491

product
A database product name (8-byte CHA item). The name of the
currently connected database product is returned in this field if
servername is blank.

This argument is optional, but must be specified if release is
specified.

release
A database product release level (8-byte CHA item). The release level
of the currently connected database product is returned in this field if
servername is blank.

This argument is optional, but must be specified if uow is specified.

uow The unit of work connection option (CHA item or literal).

R Type 1 Connect, Remote Unit of Work (default).

Perform a type 1 connection to the database identified in the
servername parameter. Only one database can be connected at
a time; EZECOMIT or EZEROLLB must be issued prior to
connection to another database. Connection to another
database ends an existing connection. All cursors are closed
when the connection occurs.

If servername is RESET, a CONNECT RESET is performed.
This results in a commit operation and a disconnect from the
current server.

Remote unit of work must be used if the database managers
are at the following levels:
v DB2 Version 2
v DB2/6000 Version 1
v DataJoiner Version 1
v Oracle

Use remote unit of work whenever your program design
permits. Remote unit of work is more efficient than
distributed unit of work connections.

Dxy Type 2 Connect, Distributed Unit of Work.

Type 2 is only supported for DB2 and DataJoiner.

Perform a type 2 connection to the database identified in the
servername parameter; x and y specify connection syncpoint
and automatic disconnect options.

EZECONCT

492 VisualAge Generator: Programmer’s Reference

With type 2 connections, multiple connections can be made
within a single unit of work. Connection to another database
does not end prior connections. Cursors are not closed when
another connection occurs.

Values for x, the syncpoint option, are as follows:
1 One-phase commit; only one database can be updated

within the unit of work. Use one phase commit if
your program design permits; a one phase commit
does not have the overhead associated with a two
phase commit.

2 Two-phase commit; multiple databases can be
updated within the unit of work.

Values for y, the automatic disconnect option, are:
A Disconnect is automatic. The connection is

disconnected following a commit or rollback.
C Automatic disconnect is conditional. Connections that

have no open WITH HOLD cursors are disconnected
at commit or rollback.

E Disconnect must be explicitly requested. The
connection remains active following a commit or
rollback. A program must explicitly issue a disconnect
request for connection resources to be released.

Specifying RESET for the servername is equivalent to an
explicit connect to the DB2 default database named in
environment variable DB2DBDFT. If the default database is
not available, the connection state remains unchanged.

DISC Disconnect from the database identified in servername.

DCURRENT
Disconnect from the currently connected database.

DALL Disconnect from all currently connected databases.

SET Set connection to dormant database connection.

Definition considerations for EZECONCT
Follow these coding guidelines to avoid SQL errors when using EZECONCT:
v Ensure all open cursors have been closed prior to connecting to another

database.
v Use EZECOMIT or EZEROLLB prior to explicitly disconnecting from a

database.
v Use SET instead of one of the type-2 connect options to reactivate a

dormant database connection.

EZECONCT

Chapter 11. Special function words 493

Follow these guidelines to avoid SQL errors when running a test environment
with some SQL requests issued from the test facility and some from generated
native C++ DLLs called locally from the test facility:
v Issue all EZECONCT, EZEROLLB, and EZECOMIT requests from a

program running under the test facility, not from the generated C++
program.

v Set the default database name in the VAGen-SQL tab of the VisualAge
Preferences window. Do not set the VisualAge Generator environment
variables EZERSQLDB or FCWDBNAME_<applname>.

Following the EZECONCT invocation, if EZEFEC is set to 1, the EZESQ
special function words are set to values returned by the CONNECT statement.

Default Database Connections
If EZECONCT is not used, the default database connection is a Type 1
(remote unit of work) connection. The specification of the default server name
varies with the environment.

The test facility checks the following for the server name in this order:
v Database name in VisualAge Generator SQL Preferences
v If no database name is passed to DB2/2 on a default database connection,

DB2/2 checks the DB2/2 environment variable DB2DFTDB for the database
name.

CICS for OS/2 programs check for the server name in this order:
v ELARTRDB_tttt where tttt is the CICS transaction identifier.
v EZERSQLDB environment variable
v If no database name is passed to DB2/2 on a default database connection,

DB2/2 checks the DB2/2 environment variable DB2DFTDB for the database
name.

Generated C++ programs check for the server name in this order:
v FCWDBNAME_applname where applname is the name of the program

issuing the first SQL request
v EZERSQLDB environment variable
v If no database name is passed to DB2/2 on a default database connection,

DB2/2 checks the DB2/2 environment variable DB2DFTDB for the database
name.

v If the server name is not found in the above checks, DB2 checks the DB2
environment variable DB2DFTDB (native C++ programs) or the default
database defined to CICS for AIX region (recommended for best
performance for CICS for AIX programs).

In CICS for MVS/ESA, CICS for VSE/ESA, and IMS environments, the
default database is specified when setting up the environment.

EZECONCT

494 VisualAge Generator: Programmer’s Reference

For VM, MVS/TSO, MVS batch, and VSE batch programs, the default
database is specified in the JCL or EXEC used to start the job. Refer to the
appropriate Running manual for details.

For OS/400, the default database is the DB2/400 database on that OS/400
system.

Target environments for EZECONCT

Environment Compatibility considerations

VM CMS CONNECT RESET and UOW (the unit of work connection option)
are not supported.

The password argument is supported.

VM batch Same as VM CMS.

CICS for
MVS/ESA

Connection functions are supported by DB2 Version 2 Release 3 or
later.

The password argument is ignored.

UOW (the unit of work connection option) is not supported.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

Connection to a different database is not supported. Only one
database can be used for each transaction and that database is
associated with the transaction in the CICS tables.

CONNECT RESET is not supported.

UOW (the unit of work connection option) is not supported.

The password argument is ignored.

VSE batch Connection to a different database requires DB2/VSE 3.4 or later.

CONNECT RESET is not supported.

The password argument is supported.

UOW (the unit of work connection option) is not supported.

EZECONCT

Chapter 11. Special function words 495

Environment Compatibility considerations

CICS for OS/2 If ELARTRDB_tttt or EZERSQLDB is used to specify the database
name, the first SQL program in the run-unit will connect to the
specified database while the program is initialized. In addition,
following an EZECONCT RESET, the program will immediately
reconnect to this database.

If the DB2/2 SQL default database is being used, DB2/2 will
perform an implicit connect when the run-unit performs its first
SQL statement. The same applies following an EZECONCT RESET.
Note: Since DB2/2 is handing the connection, the default access
mode specified in EZERSQLUS will not be used. All databases
connected using implicit connect are connected in SHARED mode.

For more information about implicit connect, see your DB2/2
documentation.

DB2/2 Version 2.1 is required for password support.

UOW (the unit of work connection option) is not supported.

OS/400 The password argument is ignored.

UOW (the unit of work connection option) is not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) DB2/2 Version 2.1 or later is required for password support.

AIX The password argument is supported.

HP-UX The password argument is supported.

CICS for AIX The password argument is ignored.

Solaris None.

CICS for Solaris None.

Windows NT
(C++)

The password argument is supported.

Windows NT
(Java)

When connecting to a JDBC database via EZECONCT, the physical
database name is found by looking up the property
vgj.jdbc.database.xxxx, where xxxx is the name of the server
specified on the EZECONCT call. If this property is not defined, the
server name specified on the EZECONCT call is used as-is.

CICS for
Windows NT

The password argument is ignored.

Test Facility None.

EZECONCT

496 VisualAge Generator: Programmer’s Reference

Example for EZECONCT
EZECONCT('scalia','justs4u','dojhost','goodz','4.0','D1C');

EZECONV

EZECONV converts data between EBCDIC (host) and ASCII (workstation)
formats, or performs code page conversion within a single format.

Uses
You can use EZECONV as the function name in a function invocation
statement.

The following is the calling sequence for EZECONV:

ÊÊ EZECONV (target , direction , conversion_table) ; ÊÍ

target The name of the record, map, or data item that has the format you
want to convert. The data is converted in place based on the item
definition of the lowest-level items (items with no substructure) in the
target object.

Variable length records are converted only for the length currently set
for the record in the number of occurrences item for variably
occurring records, or in the record length or variable length item for
other types of records. A conversion error occurs and the program
ends if the variable length record ends in the middle of a numeric
field or a DBCS character.

direction (’R’ or ’L’)
An optional character literal identifying the direction of the
conversion. If you specify ’R’, the data is assumed to be in remote
format and is converted to local format. If you specify ’L’, the data is
assumed to be in local format and is converted to remote format as
defined in the conversion table. ’R’ is the default. The ’R’ and the ’L’
must be surrounded by quotation marks.

Direction is required if you specify conversion_table.

conversion_table
An optional 8-character data item or literal specifying the name of the
conversion table you want to use for data conversion. The default is
the conversion table associated with the national language code
specified when the program was generated.

Definition considerations for EZECONV
You can use the linkage table to request that automatic data conversion be
generated for remote calls, CREATX requests, and file I/O requests.

EZECONCT

Chapter 11. Special function words 497

Automatic conversion is always performed using the data structure defined
for the argument being converted. Do not request automatic conversion if an
argument has multiple formats. For arguments with multiple formats, code
the program to explicitly call EZECONV with redefined record definitions that
correctly map the current values of the argument.

For more information, refer to the section on converting data in the Design
Guide document.

Target environments for EZECONV

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Solaris None.

CICS for Solaris None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

EZECONV

498 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

None.

Test Facility None.

Example for EZECONV
In the following example, MY_RECORD is defined as a VisualAge Generator
record and MY_CONV_TABLE is an 8-byte character data item containing the
name of the conversion table.
EZECONV(MY_RECORD,'L',MY_CONV_TABLE);

EZECONVT

EZECONVT contains the name of the conversion table used to dynamically
convert data in an argument or record structure on CALL or CREATX
requests to programs on remote systems or on file I/O requests to files at
remote locations. The conversion occurs when the data is being moved
between EBCDIC-based and ASCII-based systems or between systems that use
different code pages.

Conversion is bypassed at run time if EZECONVT is blank.

Uses
You can use EZECONVT as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand of a MOVE or assignment statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZECONVT follow:
Data type: Character
Data length in bytes: 8
Value saved across segments: Yes

Definition considerations for EZECONVT
You should use EZECONVT to switch conversion tables in a program or to
turn data conversion on or off in a program. The value in EZECONVT is used
only when EZECONVT is specified as the data conversion table name in the
linkage table.

You can use the linkage table to specify that a CICS program invoked by a
CALL or CREATX statement or a CICS VSAM file or transient data queue is
located at a remote system. If you specify EZECONVT as the conversion table

EZECONV

Chapter 11. Special function words 499

name for a remote function in the linkage table, and EZECONVT contains a
conversion table name, automatic data format conversion is performed when
the remote CALL statement, CREATX service routine, or file I/O function is
processed. If EZECONVT is blank, no conversion is performed.

Conversion is performed on the system that originates the function based on
the description of the arguments defined in the originating program. When
you define multiple levels of a record structure, conversion is performed on
the lowest level items (items with no substructure).

EZECONVT is initialized to blanks. You must code your program to move a
valid conversion table name to EZECONVT for conversion to occur. You can
set EZECONVT to an asterisk to use the default conversion table for the
national language specified in the EZERNLS environment variable.

If EZECONVT must be set to different values for different functions, code the
program to move the correct value to EZECONVT immediately prior to
processing the function that uses it.

Prior to its use, the value in EZECONVT is folded to uppercase. However, the
value in the special function word EZECONVT remains unchanged. The
special function word EZECONVT will test true when compared against the
lowercase version if that is how it was initialized.

For additional information on cooperative processing and data conversion,
refer to the sections on designing cooperative programs and converting data
format in the Design Guide document.

Target environments for EZECONVT

Environment Compatibility considerations

VM CMS Not supported. EZECONVT has no effect because access to remote
programs and files is not supported.

VM batch Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Same as VM CMS.

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

None.

VSE batch Same as VM CMS.

EZECONVT

500 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Solaris None.

CICS for Solaris None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Test Facility None.

Example for EZECONVT
MOVE CNVTABLE TO EZECONVT;

EZEC10

EZEC10 verifies a modulus-10 check-digit.

Uses
You can use EZEC10 as any of the following:
v The function name in a function invocation statement
v A map variable field edit routine

The following is the calling sequence for EZEC10:

ÊÊ EZEC10 (xxxx , yyyy , zzzz) ; ÊÍ

EZECONVT

Chapter 11. Special function words 501

xxxx
A character data item in working storage that contains the number for
which you want to verify a check digit, including a position for the check
digit.

yyyy
A binary data item of less than 5 digits that contains the number of
characters to be used in item xxxx, including the check digit.

zzzz
A binary data item of less than 5 digits that returns a 0 if the number is a
modulus-10 number, or a 1 if it is not.

Definition considerations for EZEC10
When used as a map variable field edit routine, the value is checked for the
defined field length to insure that it passes the modulus-10 check. If the check
fails, the program user is prompted to correctly enter the data.

Target environments for EZEC10
Supported in all environments without compatibility considerations.

Example for EZEC10
In the following example, myinput is defined as character data containing the
value 1734284 (the rightmost 4 is the entered self-checking digit, not part of
the base number), mylength is a binary data item containing the value 7, and
myresult is a binary data item whose value will be set by the EZEC10 routine.
EZEC10(myinput,mylength,myresult);

EZEC10 derives the modulus-10 check digit, using the following algorithm:
1. Multiply the units position of the base number of source data by 2, and

multiply every alternate position, moving right to left, by 2:
1 7 3 4 2 8 4 (Self-checking digit)

x 2 x 2 x 2
___ ___ ___
14 8 16

2. Add the digits of the products to the digits of the base number that were
not multiplied by 2:
1 + 1 + 4 + 3 + 8 + 2 + 1 + 6 = 26

3. Subtract the sum from the next-highest number ending in 0 to get the
check digit. (If the difference is 10, 0 is used.)

30 - 26 = 4

The resulting digit is the self-checking digit. The variable myresult is set to
0 if the self-checking digit is generated or 1 if not.

EZEC10

502 VisualAge Generator: Programmer’s Reference

EZEC11

EZEC11 verifies a modulus-11 check-digit.

Uses
You can use EZEC11 as any of the following:
v The function name in a function invocation statement
v A map variable field edit routine

The following is the calling sequence for EZEC11:

ÊÊ EZEC11 (xxxx , yyyy , zzzz) ; ÊÍ

xxxx
A character data item in working storage that contains the number for
which you want to verify a check digit, including a position for the check
digit.

yyyy
A binary data item of less than 5 digits that contains the number of
characters to be used in item xxxx, including the check digit.

zzzz
A binary data item of less than 5 digits that returns a 0 if the number is a
modulus-11 number, or a 1 if it is not.

Definition considerations for EZEC11
When used as a map variable field edit routine, the value is checked for the
defined field length to insure that it passes the modulus-11 check. If the check
fails, the program user is prompted to correctly enter the data.

Target environments for EZEC11
Supported in all environments without compatibility considerations.

Example for EZEC11
In the following example, myinput is defined as character data containing the
value 56621865 (the rightmost 5 is the entered self-checking digit, not part of
the base number), mylength is a binary data item containing the value 8, and
myresult is a binary data item whose value will be set by the EZEC11 routine.
EZEC11(myinput,mylength,myresult);

EZEC11 derives the modulus-11 check digit using the following algorithm:
1. Multiply the units (rightmost) digit of the base number by 2, the tens

position by 3, the hundreds position by 4, and so on, until 7 is used as a
multiplier. If there are more digits to multiply, begin the sequence again
using 2 as a multiplier:

EZEC11

Chapter 11. Special function words 503

5 6 6 2 1 8 6 5 (Self-checking digit)
x 2 x 7 x 6 x 5 x 4 x 3 x 2
10 42 36 10 4 24 12

2. Add the products of step 1:
10 + 42 + 36 + 10 + 4 + 24 + 12 = 138

3. Divide the sum of the products by 11:
12

11 |138

11

28
22

6

Subtract the remainder from 11 to get the self-checking digit. (If the
remainder is 0 or 1, 0 is used.)
11 - 6 = 5

The resulting digit is the self-checking digit. The variable myresult is set to
0 if the self-checking digit is generated or 1 if not.

EZEDAY

EZEDAY retrieves the current system date in Julian format (YYDDD).
EZEDAY is automatically updated each time it is referenced by the program.

The Julian date is presented in a numeric format without separator characters.

The retrieved date format is valid for use in variable fields defined with a
Julian date edit mask with a two-digit year.

Uses
You can use EZEDAY as the following:
v The source operand in a MOVE, MOVEA, or assignment statement

The receiver can be a map field or data item.

The characteristics of EZEDAY follow:

Data type
Numeric

Data length in bytes
5

EZEC11

504 VisualAge Generator: Programmer’s Reference

Value saved across segments
No

Target environments for EZEDAY
Supported in all environments without compatibility considerations.

Example for EZEDAY
MOVE EZEDAY TO MYDAY;

EZEDAYL

EZEDAYL retrieves the current date in Julian format (YYYYDDD). EZEDAYL
is automatically updated each time it is referenced by the program.

The Julian date is presented in a numeric format without separator characters.

The retrieved date format is valid for use in variable fields defined with a
Julian date edit mask with a four-digit year.

Uses
You can use EZEDAYL as the following:
v The source operand in a MOVE, MOVEA, or assignment statement

The receiver can be a map field or data item.

The characteristics of EZEDAYL follow:

Data type
Numeric

Data length in bytes
7

Value saved across segments
No

Target environments for EZEDAYL
Supported in all environments without compatibility considerations.

Example for EZEDAYL
MOVE EZEDAYL TO DATE_ITEM;

EZEDAYLC

EZEDAYLC retrieves the current date in the system default long Julian
format.

EZEDAY

Chapter 11. Special function words 505

The system default format for the Julian date includes separator characters.
The environment variable EZERJULL_xxx where xxx determines the Julian
format for dates.

The xxx specifies the language code. For example, the following are applicable
language codes:

CHS Simplified Chinese

PTB Brazilian Portuguese

ENU English

JPN Japanese

KOR Korean

The retrieved date format is valid for use in variable fields defined with a
Julian date edit mask with a four-digit year.

For OS/2, if EZERJULL_xxx does not exist, the default Julian format is
derived from the OS/2 system settings.

For 370 environments, if EZERJULL_xxx does not exist, the default Julian
format is specified during installation.

Uses
You can use EZEDAYLC as the following:
v The source operand in a MOVE, MOVEA or assignment statement

The receiver can be a map field or a data item.

The characteristics of EZEDAYLC follow:

Data type
Character

Data length in bytes
8

Value saved across segments
No

Target environments for EZEDAYLC
Supported in all environments without compatibility considerations.

Example for EZEDAYLC
MOVE EZEDAYLC TO DAY_ITEM;

EZEDAYLC

506 VisualAge Generator: Programmer’s Reference

EZEDEST

EZEDEST dynamically changes the system resource name associated with a
record while the program is running.

You can change the physical file or data set associated with the logical file
name defined for a record by moving a data item or literal containing the new
system resource name for the file into the special function word EZEDEST.
This change takes place dynamically while the program is running.

EZEDEST must be a qualified record name (recordname.EZEDEST) unless it is
implicitly qualified as in the following conditions:
v Only one record is used as an I/O object in the program.
v EZEDEST is used in a function that has a record as the I/O object. The

record name implicitly qualifies EZEDEST.
v Multiple records are used as I/O objects in the program, but all records

have the same file name. The first record that appears as an I/O object is
used as the implicit qualifier.

Uses
You can use EZEDEST as any of the following:
v The source operand of a MOVE, MOVEA, or assignment statement
v The target operand of an assignment or MOVE statement
v Data item 1 and 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEDEST follow:

Data type
Character

Data length in bytes
Varies by file type

Value saved across segments
Yes

Definition considerations for EZEDEST
You must ensure that the value moved into EZEDEST is a valid system
resource name for the runtime environment and file type specified when the
program was generated. The Target environments section describes the valid
name formats by environment and file type.

If more than one record has the same file name specified, modification of
EZEDEST for any record with that file name changes the setting of EZEDEST
for all records in the program with the same file name.

EZEDEST

Chapter 11. Special function words 507

Whenever an I/O operation is performed for a record, the program performs
the I/O on the physical file or data set whose name is in the EZEDEST item
for the record.

Use a CLOSE I/O option to close the file associated with the current setting of
EZEDEST. When a run unit ends or a segmented CONVERSE occurs, all open
files are closed, except when running with the test facility.

The previously opened physical file closes when a I/O option for a record
with the same VisualAge Generator file name is run and EZEDEST has been
modified. If two programs are using the same VisualAge Generator file name,
you must ensure EZEDEST contains the same value. Otherwise, the
previously opened physical file is closed and the new one is opened.

Prior to its use, the value in EZEDEST is folded to uppercase. However, the
value in the special function word EZEDEST remains unchanged.

The special function word EZEDEST tests true when compared against the
lowercase version if that is how it was initialized.

EZEDEST is initialized to the system resource name specified during
generation.

Using EZEDEST with Files Shared across Programs
If EZEDEST is used, each program that accesses the file must set EZEDEST
for the file. If two programs in the same run unit access the same logical file,
each program must set EZEDEST to the same system resource name to ensure
that both programs access the same physical file at run time.

Using EZEDEST with message queue records
If you are using VAGen support for MQSeries message queues, the program
can dynamically change the message queue associated with the record by
moving a data item or literal containing the system resource name for the
message queue record into the special function word EZEDEST.

The system resource name for message queue records defines the queue
manager name and queue name. Specify the name using the format:
queue_manager_name:queue_name

where the names are separated by a single colon (:) or specify the
queue_name by itself if you omit the queue_manager_name. The system
resource name is used as the initial value for the EZEDEST item for the
message queue record and identifies the default queue associated with the
record.

EZEDEST

508 VisualAge Generator: Programmer’s Reference

VAGen uses the system resource name on ADD and SCAN I/O operations for
the message queue record. The queue name identifies the queue that is
accessed by the operation. The queue manager name identifies the queue
manager on which the queue is defined. The default queue manager is the
queue manager to which the program is connected.

If there is not already an active connection, VAGen uses the queue manager
name to connect to the queue manager before accessing the queue. If no
queue manager name is specified, VAGen connects to the default queue
manager for the system.

If the system resource name is not specified in a resource association file, a
default system resource name is defined by the File name property of the
message queue record.

Specifying System Resource Name at Generation
If two programs in the same run unit access the same logical file, you must
specify the same system resource name for the logical file at generation to
ensure that both programs access the same physical file at run time.

EZEDEST

Chapter 11. Special function words 509

Target environments for EZEDEST

Environment Compatibility considerations

VM CMS
SEQ Not supported.

SEQRS The value is a CMS file name (fn ft fm), a fully qualified
name of an MVS file on an OS formatted mini disk (for
input only), or an 8-byte DD name for a system sequential
file associated with a serial file.

The DD name is the value from a previously specified
FILEDEF or DLBL command.

If no value has been set for EZEDEST, the program first
looks to see if a data set has been preallocated using the
logical file name as the DD name. Otherwise, the system
resource name specified at generation is used to access the
file.

When you move a data set name into EZEDEST, the
resource is dynamically allocated to the EZEDEST record
file name using a CMS FILEDEF command. The allocation
is done with the DISP option set to OLD. This will force
the data set to be rewritten each time it is opened for
output.

VSAM Not supported.

VSAMRS
The value is a 44-byte data set name or an 8-byte DD name
for a VSAM file associated with an indexed, relative, or
serial file.

The DD name is the value from a previously specified
DLBL command.

If no value has been set for EZEDEST for a file, the
program first looks to see if a data set has been
preallocated using the logical file name as the DD name.
Otherwise, the system resource name specified at
generation is used to access the file.

When you move a data set name into EZEDEST, the
resource is dynamically allocated to the EZEDEST record
file name using a CMS DLBL command. The allocation is
done with the DISP option set to OLD, which forces the
data set to be written each time it is open for output.

EZEDEST

510 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VM batch GSAM Not supported.
SEQ Not supported.
SEQRS Same as VM CMS.
VSAM Not supported.
VSAMRS

Same as VM CMS.

EZEDEST

Chapter 11. Special function words 511

Environment Compatibility considerations

CICS for
MVS/ESA SPOOL

The value is the input or output file name for a JES SPOOL
file associated with a serial file.

Input file name: userid.class. The userid parameter is a
4- to 8-character external writer name or an asterisk (*). If
an external writer name is used, CICS requires that the first
4 characters of the external writer name be the same as the
first 4 characters of the CICS APPLID used to identify the
CICS region to ACF/VTAM. The class parameter is a
1-character spool class. Class is optional and defaults to
“A”. The maximum name size is 10 bytes. Refer to the
CICS customization manual for more information.

Output file name: nodeid.userid.class. The nodeid
parameter is either a 1- to 8-character system node ID, or
an asterisk (*). The userid parameter is a 1- to 8-character
system user ID, or an asterisk (*). The class parameter is a
1-character spool class. Class is optional and defaults to
“A”. If class is not specified, userid is also optional and
defaults to the CICS user ID (the same value stored in
EZEUSRID). The maximum name size is 19 bytes. Refer to
the CICS customization manual for more information.

TEMPMAIN
The value is an 8-byte queue name for a main temporary
storage queue associated with a relative or serial file. Some
queue names are reserved for use by VisualAge Generator
Server for MVS, VSE, and VM and are prefixed with EZE.

When a temporary storage queue name is moved into
EZEDEST, the queue is dynamically created, unless it
already exists. A single temporary storage queue file cannot
be shared by multiple users at the same time. A CICS ENQ
is used to serialize access to the file the first time it is
referenced in the program. The DEQ is issued when the
program closes the file.

TEMPAUX
TEMPAUX is like TEMPMAIN, except that it is for an
auxiliary temporary storage queue.

TRANSIENT
The value is a 4-byte DCT name for a transient data queue
associated with a serial file. The transient data queue name
must be defined to CICS.

VSAM The value is an 8-byte FCT name for a VSAM file
associated with an indexed, relative, or serial file.

EZEDEST

512 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS/TSO
SEQ Not supported.

SEQRS The value is a 54-byte data set name or an 8-byte DD name
for a system sequential file associated with a serial file.

If a value has not been set for EZEDEST for a file, the
program first looks to see if a data set has been
preallocated using the logical file name as the DD name.
Otherwise, the system resource name specified at
generation is used to access the file.

When you move a data set name into EZEDEST, the
resource is dynamically allocated to the EZEDEST record
file name using an MVS supervisor call (SVC99). The
allocation is done with the DISP option set to SHR. This
will force the data set to be rewritten each time it is opened
for output.

VSAM Not supported.

VSAMRS
The value is a 44-byte data set name or an 8-byte DD name
for a VSAM file associated with an indexed, relative, or
serial file.

If no value has been set for EZEDEST for a file, the
program first looks to see if a data set has been
preallocated using the logical file name as the DD name.
Otherwise, the system resource name specified at
generation is used to access the file.

When you move a data set name into EZEDEST, the
resource is dynamically allocated to the EZEDEST record
file name using an MVS supervisor call (SVC99). The
allocation is done with the DISP option set to SHR, which
forces the data set to be written each time it is open for
output.

MVS batch GSAM Not supported.
SEQ Not supported.
SEQRS Same as SEQRS in MVS/TSO.
VSAM Not supported.
VSAMRS

Same as VSAMRS in MVS/TSO.

EZEDEST

Chapter 11. Special function words 513

Environment Compatibility considerations

IMS/VS
MMSGQ

The value in EZEDEST is not folded to uppercase for this
file type.

Input file name: Not supported.

Output file name: The value is the 8-byte logical terminal
name or transaction code for a multisegment message
queue associated with a serial file. The file must be
associated with a modifiable alternate or modifiable express
alternate PCB. The transaction code or terminal name must
be defined to the IMS system.

SMSGQ
The value in EZEDEST is not folded to uppercase for this
file type.

Input file name: Not supported.

Output file name: The value is the 8-byte logical terminal
name or transaction code for a single-segment message
queue associated with a serial file. The file must be
associated with a modifiable alternate or modifiable express
alternate PCB. The transaction code or terminal name must
be defined to the IMS system.

IMS BMP GSAM Not supported.
MMSGQ

Same as MMSGQ in IMS/VS.
SEQ Not supported.
SEQRS Same as SEQRS in MVS/TSO.
SMSGQ

Same as SMSGQ in IMS/VS.
VSAM Not supported.
VSAMRS

Same as VSAMRS in MVS/TSO.

EZEDEST

514 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
VSE/ESA SPOOL

The value is the input or output system resource name for
a SPOOL file.

No error checking is done by VisualAge Generator Server
for MVS, VSE, and VM to ensure that a correct combination
of values is specified for the qualifiers of the system
resource name. (For example, node must be the current
system node when queue is RDR; it is not valid to send a
VSE/POWER RDR file to another node.) Instead, the
values for each of the system resource name qualifiers will
be sent to VSE/POWER. The return code from
VSE/POWER will be placed in the special function word
EZERT8, where it can be accessed by the VisualAge
Generator program.

Input file name: userid.class.

Userid is a 4- to 8-character external writer name or an
asterisk (*). If an external writer name is used, CICS
requires that the first 4 characters be the same as the first 4
characters of the CICS APPLID used to identify the CICS
region to ACF/VTAM.

Class is a 1-character spool class. Class is optional and
defaults to “A”.

EZEDEST

Chapter 11. Special function words 515

Environment Compatibility considerations

CICS for
VSE/ESA
(continued)

SPOOL
The output system resource name format for a spool file is:
jobname.queue.disp.form.node.userid.parm.

Jobname is 1- to 8-character name that defines the jobname
for the VSE/POWER queue part. Jobname is used except
when queue is PUN or LST. In which case the value in
jobname is ignored, and the VSE/POWER queue part
jobname is the CICS for VSE/ESA program ID. For all other
cases, an asterisk (*) for this qualifier defaults to the
VisualAge Generator file name for the record.

You must specify a jobname qualifier or an asterisk (*). All
other qualifiers can contain an asterisk or be blank. If a
qualifier is blank, you cannot specify any subsequent
qualifiers.

Queue is 3 characters that identify the destination
VSE/POWER queue for the file. The CICS Report Control
Facility (RCF) is used for files that specify RDR or PRT in
this field.
v RDR for job output
v LST for list output
v PUN for punch output
v PRT for list output (using CICS Report Control Facility)

Any other characters for queue cause a spool name error.
An asterisk (*) or a blank for this qualifier defaults to the
PRT queue. LST or PRT specifies that the file is to be a part
of the VSE/POWER LST queue, but PRT uses RCF
commands while LST does not. If you try to use RCF when
you do not have RCF installed on your CICS system, CICS
returns an error. This error might be an AEY9 transaction
abend, a NO SPOOL condition, or the message:

Spooling system is not available.

When queue is PRT or LST, the file is opened by VisualAge
Generator Server for MVS, VSE, and VM with the ASA
option. This option specifies that the report is created using
an American National Standard printer-control character at
the beginning of each line of data. If you are using a serial
file, ensure that valid carriage control characters are used.
If the file is a print file, then VisualAge Generator Server
for MVS, VSE, and VM will add the American National
Standard printer-control character for you.

EZEDEST

516 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
VSE/ESA
(continued)

SPOOL
The output system resource name format for a spool file is:
jobname.queue.disp.form.node.userid.parm.

Disp is a single character that specifies the VSE/POWER
disposition status of the queue part after it closes:
D Process the job and delete it after processing
H Hold in queue until released
K Process the job and keep it in the queue after

processing
L Leave in queue until released

Any other characters cause a spool name error. This
qualifier is not applicable when queue is LST or PUN. An
asterisk or blank for this qualifier defaults to “D”.

Form is 4 characters that identify the print output. An
asterisk or a blank defaults to your location’s standard
form. This qualifier is applicable when queue is LST or PRT
and is ignored for all other queues. Node is 1 to 8 characters
that specify the system node identifier. An asterisk or a
blank defaults to the current system node identifier.

Userid is a 4- to 8-character external writer name or an
asterisk (*). If an external writer name is used, CICS
requires that the first 4 characters be the same as the first 4
characters of the CICS APPLID used to identify the CICS
region to ACF/VTAM.

Parm is valid when queue is LST and is ignored on all other
queues. Parm specifies output operands for files on the
VSE/POWER LST queue, which are used as input in the
OUTDESCR option of the VSECICS SPOOLOPEN OUTPUT
command.

EZEDEST

Chapter 11. Special function words 517

Environment Compatibility considerations

CICS for
VSE/ESA
(continued)

SPOOL
You must specify this qualifier in the correct format for the
OUTDESCR option. The qualifiers use the same keywords
and values that are used on the VSE/POWER LST
statement for user-defined output operands, but the syntax
varies slightly. For example, if you want to use FORMDEF
FORM1 and PAGEDEF PAGE1, the qualifier string would
be:

FORMDEF(FORM1) PAGEDEF(PAGE1)

And the spool file might look like this:

JOBNAME1.LST.*.*.*.*.FORMDEF(FORM1) PAGEDEF(PAGE1)

The length of the qualifier string is variable and depends
on the length of the spool file specification up to this point.
The total length of the spool file specification cannot exceed
65 characters.
TEMPMAIN

Same as CICS for MVS/ESA.
TEMPAUX

Same as CICS for MVS/ESA.
TRANSIENT

Same as CICS for MVS/ESA.
VSAM The value is a 7-byte FCT name for a VSAM file

associated with an indexed, relative, or serial file.

EZEDEST

518 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VSE batch
SEQ Not supported.

SPOOL
The system resource name format for a SPOOL output file
is: jobname.queue.class.disp.form.node.userid

jobname
Same as CICS for VSE/ESA.

queue An asterisk (*) or a blank in this field defaults to
the LST queue. PRT can be used, but the queue
parameter will be changed to LST by VisualAge
Generator Server for MVS, VSE, and VM.

class The class parameter is a 1-character spool class.
Class is optional and defaults to “A”.

disp Same as CICS for VSE/ESA.

form Same as CICS for VSE/ESA.

node Same as CICS for VSE/ESA.

userid Same as CICS for VSE/ESA.

VSAM Not supported.

VSAMRS
The value is a 7-byte DD name for a VSAM file associated
with an indexed, relative, or serial file.

If no value has been set for EZEDEST for a file, the
program first looks to see if a data set has been
preallocated using the logical file name as the DD name.
Otherwise, the system resource name specified at
generation is used to access the file.

Dynamic allocation of resources to EZEDEST is not
supported. Any dynamic allocation attempts will result in
message ELA0007P.

EZEDEST

Chapter 11. Special function words 519

Environment Compatibility considerations

CICS for OS/2
OS2COBOL

The value is a 65-byte OS/2 file name for a native COBOL
data file associated with an indexed, relative, or serial file.
File sharing for COBOL-managed data files is not
supported. Whenever the file is opened, an exclusive lock
is obtained on the file until it is closed.

TEMPMAIN
Same as CICS for MVS/ESA.

TEMPAUX
Same as CICS for MVS/ESA.

TRANSIENT
Same as CICS for MVS/ESA.

VSAM Same as CICS for MVS/ESA.

OS/400 The filetype must be SEQ or VSAM. The value can be moved to
EZEDEST in one of the following ways:
LIB/FILE MEMBER

Explicitly specify Library, File and Member
LIB/FILE

The first member in the file will be used
FILE MEMBER

*LIBL will be used to find the file
FILE *LIBL will be used to find the file and the first member in

that file will be used.

The OVRDBF command is used to support EZEDEST on OS/400. If
the value in EZEDEST is modified, the following is done while
performing a File I/O:
1. CLOSE old file
2. Override to new file name in EZEDEST
3. OPEN new file

The value set in EZEDEST is propagated from the call level and
changed to all its subordinate call levels. However, it is not
propagated if the file has been previously opened by that program.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The file name length is dependent upon the system.

AIX The file name length is dependent upon the system.

HP-UX The file name length is dependent upon the system.

EZEDEST

520 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Solaris The file name length is dependent upon the system.

CICS for Solaris
SEQ The value is the Solaris file name. On Solaris, the

maximum length can vary.

TEMPMAIN
The value is a 1- to 8-byte temporary storage queue name.

When a temporary storage queue name is moved into
EZEDEST, the queue is dynamically created, unless it
already exists. A single temporary storage queue file cannot
be shared by multiple users at the same time. A CICS ENQ
is used to serialize access to the file the first time it is
referenced in the program. The DEQ is issued when the
program closes the file.

TEMPAUX
TEMPAUX is like TEMPMAIN, except that it is for an
auxiliary temporary storage queue.

TRANSIENT
The value is a 1- to 4-byte transient data queue name as
defined in the CICS destination control table (DCT).

VSAM Same as VSAM for CICS for MVS/ESA.

CICS for AIX
SEQ The value is the AIX file name. On AIX, the maximum

length can vary.

TEMPMAIN
The value is a 1- to 8-byte temporary storage queue name.

When a temporary storage queue name is moved into
EZEDEST, the queue is dynamically created, unless it
already exists. A single temporary storage queue file cannot
be shared by multiple users at the same time. A CICS ENQ
is used to serialize access to the file the first time it is
referenced in the program. The DEQ is issued when the
program closes the file.

TEMPAUX
TEMPAUX is like TEMPMAIN, except that it is for an
auxiliary temporary storage queue.

TRANSIENT
The value is a 1- to 4-byte transient data queue name as
defined in the CICS destination control table (DCT).

VSAM Same as VSAM for CICS for MVS/ESA.

EZEDEST

Chapter 11. Special function words 521

Environment Compatibility considerations

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility When running a program, the same system resource name should
not be used for a program being run in the test facility as one being
executed as a generated program.

Example for EZEDEST
MOVE IITEM TO MYREC.EZEDEST;

MOVE 'IMSTRNX' TO MYREC1.EZEDEST;

IF EZESYS IS MVSCICS;
MYREC1.EZEDEST = 'TDQ1';

ELSE;
IF EZESYS IS TSO;

MYREC1.EZEDEST = 'MYUSERID.TEST.RECFILE';
END;

END;

EZEDESTP

EZEDESTP changes the name of the printer while the program is running.
You can change the name of the destination associated with the print file by
moving a data item or literal containing the new printer destination to the
special function word EZEDESTP. For some file types, multiple printers can be
open simultaneously.

Uses
You can use EZEDESTP as any of the following:
v The source operand of a MOVE, MOVEA, or assignment statement
v The target operand of a MOVE or an assignment statement
v Data item 1 and 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEDESTP follow:

Data type
Character

EZEDEST

522 VisualAge Generator: Programmer’s Reference

Data length in bytes
Varies by file type

Value saved across segments
Yes

Definition considerations for EZEDESTP
To prevent interleaving of multiple print outputs, the print file is kept open
until one of the following occurs:
v A CLOSE I/O option is performed against the map
v A segmentation break occurs (except in the test facility)
v The main program ends.
v A called program ends and was called by a non-VisualAge Generator

program

The CLOSE I/O option closes the file only for the current value of EZEDESTP.
A printer is not closed just because EZEDESTP has been used to change the
physical file to which a printout is being directed. For the file types where
multiple print files cannot be open, the printer will be closed when
EZEDESTP is used to change the print destination prior to execution of the
next DISPLAY of a print map.

You must ensure that the value moved into EZEDESTP is a valid system
resource name for the runtime environment and print file type specified when
the program was generated. The target environments section describes valid
name formats by environment and file type.

The value of EZEDESTP is unique for each program. If a program passes
control to another program, the value of EZEDESTP is reset to its default
value.

EZEDESTP is initialized to the system resource name specified during
generation or test execution.

Prior to its use, the value in EZEDESTP is folded to uppercase. However, the
value in the special function word EZEDESTP remains unchanged.

The special function word EZEDESTP will test true when compared against
the lowercase version if that is how it was initialized.

EZEDESTP

Chapter 11. Special function words 523

Target environments for EZEDESTP

Environment Compatibility considerations

VM CMS
SEQ Not supported.

SEQRS The value is a CMS file name (fn ft fm), or an 8-byte DD
name for a system sequential file associated with a print
file.

The DD name is the value from a previously specified
FILEDEF or DLBL command.

If no value has been set for EZEDESTP, the program first
looks to see if a data set has been preallocated using the
logical file name as the DD name. Otherwise, the system
resource name specified at generation is used to access the
file.

When you move a data set name into EZEDESTP, the
resource is dynamically allocated to EZEPRINT using a
CMS FILEDEF command. This forces the data set to be
rewritten each time it is opened for output. The allocation
is done with the DISP option set to OLD.

Multiple files can be open simultaneously.

VM batch GSAM Not supported.
SEQ Not supported.
SEQRS Same as VM CMS.

EZEDESTP

524 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
MVS/ESA

If generation option /PRINTDEST is TERMID, and the program was
started with a CREATX statement that had the recip qualifier set to
binary zeros and specified a prid qualifier, then EZEDESTP is
initialized to the value specified for the prid qualifier. If generation
option PRINTDEST is EZEP, then EZEDESTP is initialized to the
value associated with EZEPRINT at generation.

For any batch program that was not started by CREATX, EZEDESTP
defaults to the CICS EIBTRMID.

SPOOL
The value is the output file name for a JES SPOOL file
associated with a serial file.

Output file name: nodeid.userid.class The nodeid
qualifier is either a 1 to 8-character system node ID, or an
asterisk (*). The userid qualifier is either a 1 to 8-character
system user ID, or an asterisk (*). The class qualifier is a
1-character spool class. Class is optional and defaults to ’A’.
If a class is not specified, userid is also optional and
defaults to the CICS user ID (the same value stored in
EZEUSRID). The maximum name size is 19 bytes. Refer to
the CICS customization manual for more information.

Multiple files can be open simultaneously.

TRANSIENT
The value is a 4-byte DCT name for a transient data queue
associated with a serial file. The transient data queue name
must be defined to CICS.

Multiple files can be opened simultaneously.

EZEDESTP

Chapter 11. Special function words 525

Environment Compatibility considerations

MVS/TSO
SEQ Not supported.

SEQRS The value is a 54-byte data set name or an 8-byte DD name
for a system sequential file associated with a print file.

Multiple files can be open simultaneously.

If EZEDESTP has not been set by the program and the file
type is SEQRS, the program first looks for a file allocated to
DD name EZEPRINT. In all other cases, the system
resource name specified for EZEPRINT at generation is
used as the initial value if EZEDESTP is not explicitly set
by the program.

When you move a data set name into EZEDESTP for an
SEQRS file, the file is dynamically connected using SVC99
dynamic allocation. When dynamic allocation is performed,
the DISP option on the SVC99 is set to SHR. This forces the
data set to be rewritten each time it is opened for output.

MVS batch GSAM Not supported.
SEQ Not supported.
SEQRS Same as SEQRS in MVS/TSO.

Multiple files can be open simultaneously.

IMS/VS
SMSGQ

The value is an 8-byte logical terminal name or transaction
code for a single-segment message queue associated with a
print file. The file must be associated with a modifiable
alternate or modifiable express alternate PCB. The terminal
name must be defined to the IMS system. Multiple files
cannot be open simultaneously. The value in EZEDESTP is
not folded to uppercase for this file type.

IMS BMP GSAM Not supported.
SEQ Not supported.
SEQRS Same as MVS/TSO.
SMSGQ

Same as IMS/VS.

CICS for
VSE/ESA

SPOOL
Same CICS for VSE/ESA SPOOL for EZEDEST.

TRANSIENT
Same as CICS for MVS/ESA.

EZEDESTP

526 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VSE batch SEQ Not supported.
SPOOL

The system resource name format for a SPOOL output file
is:

jobname.queue.class.disp.form.node.userid

or

jobname.queue.class.disp.form.node.userid.fcb.copy

jobname
Same as CICS for VSE/ESA.

queue An asterisk (*) or blank in this field defaults to the
LST queue. PRT can be used but the queue
parameter will be changed to LST by Server for
MVS, VSE, and VM.

class The class parameter is a 1-character spool class.
Class is optional and defaults to “A”.

disp Same as CICS for VSE/ESA.

form Same as CICS for VSE/ESA.

node Same as CICS for VSE/ESA.

userid Same as CICS for VSE/ESA.

fcb 1-to 8-character name that specifies the FCB-image
phase which VSE/POWER is to use for printing
the related job output. The named phase must be
cataloged in a sublibrary defined as accessible
from the VSE/POWER partition.

copy The number of the copies to be printed from LST
queue. The valid number is from 0 to 255.

Both FCB and COPY parameters are positional and
optional. Use an asterisk (*) for defaults. The default FCB
phase name is the one setup at IPL time and the default
COPY is 1.

EZEDESTP

Chapter 11. Special function words 527

Environment Compatibility considerations

CICS for OS/2
OS2COBOL

The value of a 65-byte OS/2 file name for a native COBOL
data file associated with a print file. File sharing for
COBOL-managed data files is not supported. Whenever the
file is opened, an exclusive lock is obtained on the file until
it is closed.

TRANSIENT
Not supported.

OS/400 The filetype must be SEQ. The value can be moved to EZEDESTP
using FILE - *LIBL to find the file.

The OVRPRTF command is used to support EZEDESTP on OS/400.
If the value in EZEDESTP is modified, the following is done at the
time of a DISPLAY I/O option:
1. CLOSE old printer file
2. Override to new printer file name in EZEDESTP (OVRPRTF)
3. OPEN new printer file

The value set in EZEDESTP is propagated from the call level and
changed to all its subordinate call levels. However, it is not
propagated if the file has been previously opened by that program.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The file name length is dependent upon the system.

AIX The file name length is dependent upon the system. In AIX, the
maximum length can vary.

HP-UX The file name length is dependent upon the system. In HP/UX, the
maximum length can vary.

CICS for AIX The EZEDESTP value is a transient data queue name. The default is
EZEP. Refer to the VisualAge Generator Server Guide for Workstation
Platforms document for information on how to define the queue and
associate it with a transaction that writes queue contents to a
terminal printer.

Solaris The file name length is dependent upon the system. In AIX, the
maximum length can vary.

CICS for Solaris The EZEDESTP value is a transient data queue name. The default is
EZEP. Refer to the VisualAge Generator Server Guide for Workstation
Platforms document for information on how to define the queue and
associate it with a transaction that writes queue contents to a
terminal printer.

EZEDESTP

528 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility A print file is not closed on a segmentation break.

The same system resource name should not be used for a program
being run in the test facility as for one being run as a generated
COBOL program.

Examples for EZEDESTP
MOVE ITEM TO EZEDESTP;

MOVE 'ACCTRPT' TO EZEDESTP;

MOVE 'QUAL.PDSFILE(PART)' to EZEDESTP;

EZEDLCER (DL/I)

EZEDLCER contains the CICS for MVS/ESA and CICS for VSE/ESA error
code for a DL/I call issued for a DL/I function.

Uses
You can use EZEDLCER as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand in a TEST statement

The characteristics of EZEDLCER follow:

Data type
Character

Data length in bytes
2

Value saved across segments
No

EZEDESTP

Chapter 11. Special function words 529

Definition considerations for EZEDLCER
EZEDLCER is reset each time a DL/I call is issued. You can code your
program to check EZEDLCER in the function error routine if EZEDLERR or
EZEFEC is set to continue after hard errors. EZEDLCER is read-only and
cannot be reset by the program.

For more information about return codes, refer to the CICS application’s
reference for your version of CICS.

Target environments for EZEDLCER

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO The value of EZEDLCER is always 00.

MVS batch Same as MVS/TSO.

IMS/VS Same as MVS/TSO.

IMS BMP Same as MVS/TSO.

CICS for
VSE/ESA

None.

VSE batch Same as MVS/TSO.

CICS for OS/2 Same as MVS/TSO.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

EZEDLCER

530 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Not supported.

Test Facility If the DL/I execution environment is CICS, and the program is
handling hard errors (EZEFEC=1), the EZEDLCER return field is set
with the CICS return codes that correspond to the results returned
from the DDBA API. Otherwise, if the schedule function fails, the
test facility returns an error.

Example for EZEDLCER
Use an IF statement to test the status information. In the following example,
the statement tests true if the CICS return code is not normal.
IF EZEDLCER NE '00';
END;

EZEDLCON (DL/I)

EZEDLCON contains the condition code returned by CICS for MVS/ESA and
CICS for VSE/ESA for a DL/I call issued for a DL/I function.

EZEDLCON can contain the following values:
00 Normal response
08 Request was not valid
0C Not open

Uses
You can use EZEDLCON as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand in a TEST statement

The characteristics of EZEDLCON follow:

Data type
Character

Data length in bytes
2

Value saved across segments
No

EZEDLCER

Chapter 11. Special function words 531

Definition considerations for EZEDLCON
EZEDLCON is reset each time a DL/I call is issued. You can code your
program to check EZEDLCON in the function error routine if EZEFEC or
EZEDLERR is set to continue after hard errors.

EZEDLCON is read-only; it cannot be reset by the program.

For more information about return codes, refer to the CICS application
programmer’s reference for your version of CICS.

Target environments for EZEDLCON

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO The value of EZEDLCON is always 00.

MVS batch Same as MVS/TSO.

IMS/VS Same as MVS/TSO.

IMS BMP Same as MVS/TSO.

CICS for
VSE/ESA

None.

VSE batch Same as MVS/TSO.

CICS for OS/2 Same as MVS/TSO.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

EZEDLCON

532 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility If the DL/I execution environment is CICS, and the program is
handling hard errors (EZEFEC=1), the EZEDLCON return field is
set with the CICS return codes that correspond to the results
returned from the DDBA API. Otherwise, if the schedule function
fails, the test facility returns an error.

Example for EZEDLCON
Use an IF statement to test the status information. In the following example,
the statement tests true if the CICS error returned is not normal.
IF EZEDLCON NE '00';
END;

EZEDLDBD (DL/I)

EZEDLDBD contains the name of the database accessed by the last DL/I I/O
function. The name is from the database PCB used by the DL/I call for the
function.

Uses
You can use EZEDLDBD as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand in a TEST statement

The characteristics of EZEDLDBD follow:

Data type
Character

Data length in bytes
8

Value saved across segments
No

Definition considerations for EZEDLDBD
EZEDLDBD is set to blanks under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLCON

Chapter 11. Special function words 533

EZEDLDBD is reset each time a DL/I call is issued. EZEDLDBD can be
displayed to assist in error determination or tested in the function error
routine to determine the outcome of a DL/I call.

EZEDLDBD is read-only; it cannot be reset by the program.

EZEDLDBD is not set following CSPTDLI service calls, or following DL/I
calls to IMS message queues or GSAM files.

Target environments for EZEDLDBD

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Java (GUI) Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

EZEDLDBD

534 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLDBD
IF EZEDLDBD NOT BLANKS;
END;

EZEDLERR (DL/I)

EZEDLERR controls processing for error conditions for I/O functions that
have DL/I segments as I/O objects.

If EZEDLERR and EZEFEC are set to 0, or if an error routine is not specified,
the program ends when a hard error occurs on a DL/I call.

If EZEDLERR or EZEFEC is set to 1, and an error routine is specified, the
program does not end when a hard DL/I I/O error occurs. The program must
handle hard errors by checking the DL/I EZE words that contain DL/I status
information.

The default value of EZEDLERR is 0.

Uses
You can use EZEDLERR as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLERR follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
Yes

Definition considerations for EZEDLERR
Hard errors on DL/I calls occur under the following conditions:

EZEDLDBD

Chapter 11. Special function words 535

v A CICS condition code (EZEDLCON) or error code (EZEDLCER) has a
value other than 00

v A DL/I status code has a value other than one of the following:
GA
GB
GD
GE
GK
II
AL

EZEDLERR has no effect on error processing following CSPTDLI service calls
or DL/I calls to IMS message queues or GSAM files.

Target environments for EZEDLERR

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

EZEDLERR

536 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLERR
MOVE 1 TO EZEDLERR;

EZEDLKEY (DL/I)

EZEDLKEY contains the concatenated key of the lowest-level segment found
by the last DL/I I/O function. The key is from the database PCB used by the
DL/I call for the function.

Uses
You can use EZEDLKEY as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on a TEST statement

The characteristics of EZEDLKEY follow:

Data type
Character

Data length in bytes
Variable

Value saved across segments
No

Definition considerations for EZEDLKEY
EZEDLKEY is set to blanks under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLKEY is reset to the concatenated key each time a DL/I call is issued. It
can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLERR

Chapter 11. Special function words 537

EZEDLKEY is read-only; it cannot be reset by the program.

EZEDLKEY is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Special function word EZEDLKYL contains the length of EZEDLKEY. If a
program moves the contents of EZEDLKEY to a data item, the length value in
EZEDLKYL is used to perform the move.

Target environments for EZEDLKEY

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

EZEDLKEY

538 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Not supported.

Test Facility The test facility requires the EBCDIC version of the Micro Focus
Mainframe Express with IMS Option and Micro Focus Mainframe
Express with IMS Option. The Micro Focus Mainframe Express with
IMS Option emulator stores data internally in EBCDIC. The test
facility converts the data to ASCII for display and use within the
test facility. Data defined in the test facility is converted to EBCDIC
before being put in the database.

Following a DL/I I/O option, the information in the EZE DL/I
status words is converted. EZEDLKEY is converted based on the
key items defined for the records referenced by the call. If one of the
referenced segments has no key item defined, conversion of the Key
Feedback area will stop with that field.

Example for EZEDLKEY
MOVE EZEDLKEY TO ITEM1;

EZEDLKYL (DL/I)

EZEDLKYL contains the length of the concatenated key returned in special
function word EZEDLKEY for the last DL/I I/O function. The length is from
the database PCB used by the DL/I call for the function.

Uses
You can use EZEDLKYL as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLKYL follow:

Data type
Binary

Data length in bytes
4

Value saved across segments
No

Definition considerations for EZEDLKYL
EZEDLKYL is set to zero under the following conditions:
v Initially

EZEDLKEY

Chapter 11. Special function words 539

v When the PSB is terminated
v When another program is called

EZEDLKYL is reset to the current key length each time a DL/I call is issued.
It can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLKYL is read-only; it cannot be reset by the program.

EZEDLKYL is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Target environments for EZEDLKYL

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

EZEDLKYL

540 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLKYL
IF EZEDLKYL = 10;
END;

EZEDLLEV (DL/I)

EZEDLLEV contains the level number of the lowest-level segment found by
DL/I in the last DL/I I/O function. The level number is from the database
PCB used by the DL/I call for the function.

Uses
You can use EZEDLLEV as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLLEV follow:

Data type
Numeric

Data length in bytes
2

Value saved across segments
No

Definition considerations for EZEDLLEV
EZEDLLEV is set to zero under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLLEV is reset each time a DL/I call is issued. It can be displayed to
assist in error determination, or tested in the function error routine to
determine the outcome of a DL/I call.

EZEDLKYL

Chapter 11. Special function words 541

EZEDLLEV is read-only; it cannot be reset by the program.

EZEDLLEV is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Target environments for EZEDLLEV

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

EZEDLLEV

542 VisualAge Generator: Programmer’s Reference

Example for EZEDLLEV
IF EZEDLLEV = 4;
END;

EZEDLPCB (DL/I)

EZEDLPCB is an array that represents PCBs in the DL/I PSB used by the
program.

You specify EZEDLPCB with a literal subscript that identifies the specific PCB
being used. The literal can range from 0 (the I/O PCB) to the highest PCB
number for the PSB being used by the program.

The default subscript is 1.

Uses
You can use EZEDLPCB as any of the following:
v The source operand in a MOVE or assignment statement
v An argument on a CALL statement
v A parameter in a called parameter list

The characteristics of EZEDLPCB follow:

Data type
Character

Data length in bytes
Varies with the environment

Value saved across segments
No

You can use EZEDLPCB to do any of the following:
v Check the contents of the I/O PCBs and GSAM PCBs that are not accessible

through the special function words that represent the contents of the
database PCBs. A program can move the current contents of any PCB to a
data item. The type of the source PCB and the length of the target area are
used to determine how much of the PCB to move. If the source PCB is
longer than the target area, the data is truncated. If the source PCB is
shorter than the target area, the entire PCB is moved and the remaining
target area is padded with blanks.

v Pass individual PCBs to a called program. The PSB structures of the main
program and the called program can differ.
You select which PCBs to pass to the called program by providing numeric
literal subscripts on EZEDLPCB. The subscript identifies which PCB in the
calling program’s PSB that is to be passed to the called program.

EZEDLLEV

Chapter 11. Special function words 543

v Specify the PCB parameters in the called parameter list of the called
program. The subscript identifies the PCB definition in the called program’s
PSB that defines the structure of the PCB being passed. The PCB type and
database definition for the PCB being passed must match the definition of
the PCB in the called program.

v You cannot pass EZEDLPCB on a remote call.
v You cannot pass EZEDLPCB and EZEDLPSB on the same CALL statement.

Definition considerations for EZEDLPCB
You can move the contents of a PCB to the appropriate record for the PCB
type and test the contents of the data items in the record definition. The
sample PCB records are:

PCB TYPE RECORD NAME LOW-LEVEL ITEM NAME

I/O PCB DLIIOPCB IOPCB

Alternate DLIALPCB ALPCB

Database DLIDBPCB DBPCB

GSAM DLIGSPCB GSPCB

Target environments for EZEDLPCB

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

If EZEDLPCB is passed on a CALL statement and the PSB is not
scheduled, the PSB is scheduled on the call. Moves from I/O, TP,
and GSAM PCBs are not supported. Passing these PCBs as
parameters is not supported.

MVS/TSO If EZEDLPCB is used in the called parameter list in a program
called by a non-VisualAge Generator program, then PCB 0 must
also be passed to the called program so that the called program can
perform error recovery processing.

MVS batch Same as MVS/TSO.

IMS/VS If EZEDLPCB is used in the called parameter list in a program
called by a non-VisualAge Generator program, then PCBs 0, 1, and 2
must also be passed to the called program so that the called
program can perform error recovery processing.

Either EZEDLPCB or EZEDLPSB must be passed as a parameter to
a called program that issues DL/I calls. This includes the use of
CSPTDLI or GSAM files.

IMS BMP Same as MVS/TSO.

EZEDLPCB

544 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as CICS for MVS/ESA.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility The test facility allows EZEDLPCB to be passed on a call to another
program loaded in the workspace/image.

When EZEDLPSB is passed to another program loaded in the
workspace/image, EZEDLPCB is passed as a null pointer (4 bytes).

When EZEDLPCB[n] is moved to a data item, the PCB is converted
from EBCDIC to ASCII according to the target data item definition.
For any field you want to reference from the PCB, you must define
a subfield in the target data item with the appropriate length, type,
and offset. Refer to the sample programs for examples of records
defined for IO, TP, DB, and GSAM PCBs.

The Key Feedback area is converted by default according to the data
item you have defined in your record. If your Key Feedback area
contains multiple data types, you must substructure the key
feedback item with items appropriate for each of your keys.

I/O or TP PCB references using EZEDLPCB cannot be tested or
emulated on the workstation.

EZEDLPCB

Chapter 11. Special function words 545

Examples for EZEDLPCB
The following moves the I/O PCB:
MOVE EZEDLPCB[0] TO IOPCB;

The following example demonstrates passing individual PCBs on a CALL
statement.

There are two main programs, APPLA and APPLB, and two called programs,
APPLC and APPLD. The following PSBs are defined for the programs in the
examples:

APPLA PSB A APPLB PSB B APPLC PSB C APPLD PSB D

PCBB[1]-Parts PCBC[1]-Order PCBD[1]-Parts

PCBB[2] PCBC[2]-Parts PCBD[2]-Journal

PCBB[3] PCBC[3]-Journal PCBD[3]-Order

PCBB[4]-Order PCBC[4]

PCBB[5]-Journal

The following is the called parameter list for APPLC and APPLD:
EZEDLPCB[1]
EZEDLPCB[2]

v When APPLA calls APPLC to pass PCB number 3 and 5, the CALL
statement is the following:
CALL APPLC EZEDLPCB[3],EZEDLPCB[5];

When the CALL statement is run, the following is true:
PCBC[1] is associated with PCBA[3]
PCBC[2] is associated with PCBA[5]
PCBC[3] and PCBC[4] are not available for use.

v When APPLA calls APPLD to pass PCB number 5 and 2, the CALL
statement is the following:
CALL APPLD EZEDLPCB[5], EZEDLPCB[2];

When the CALL statement is run, the following is true:
PCBD[1] is associated with PCBA[5]
PCBD[2] is associated with PCBA[2]
PCBD[3] is not available for use.

v When APPLB calls APPLC to pass PCB number 4 and 1, the CALL
statement is the following:
CALL APPLC EZEDLPCB[4], EZEDLPCB[1];

EZEDLPCB

546 VisualAge Generator: Programmer’s Reference

When the CALL statement is run, the following is true:
PCBC[1] is associated with PCBB[4]
PCBC[2] is associated with PCBB[1]
PCBC[3] and PCBC[4] are not available for use.

v When APPLB calls APPLD to pass PCB number 1 and 5, the CALL
statement is the following:
CALL APPLD EZEDLPCB[1], EZEDLPCB[5];

When the CALL statement is run, the following is true:
PCBD[1] is associated with PCBB[1]
PCBD[2] is associated with PCBB[5]
PCBD[3] is not available for use.

EZEDLPRO (DL/I)

EZEDLPRO contains the DL/I options for the database accessed by the last
DL/I I/O function. The options come from the database PCB used by the
DL/I call for the function.

Uses
You can use EZEDLPRO as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on a TEST statement

The characteristics of EZEDLPRO follow:

Data type
Character

Data length in bytes
4

Value saved across segments
No

Definition considerations for EZEDLPRO
EZEDLPRO is set to blanks under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLPRO is reset to the current PCB values each time a DL/I call is issued.
It can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLPCB

Chapter 11. Special function words 547

EZEDLPRO is read-only; it cannot be reset by the program.

EZEDLPRO is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Target environments for EZEDLPRO

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

EZEDLPRO

548 VisualAge Generator: Programmer’s Reference

Example for EZEDLPRO
MOVE EZEDLPRO TO PRO2;

EZEDLPSB (DL/I)

EZEDLPSB contains the name of the DL/I PSB to be scheduled for DL/I
database access. The default is the PSB name specified for the program.

When a program runs a DL/I function under CICS and a PSB is not currently
scheduled, the program schedules the PSB named in EZEDLPSB.

Uses
You can use EZEDLPSB as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An argument on a CALL statement
v A parameter in a called parameter list
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEDLPSB follow:

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

You can use EZEDLPSB to do any of the following:
v In CICS, change the name of the PSB to access a different set of databases

for different users. If the program changes EZEDLPSB, the new PSB must
describe databases with the same structure as the PSB for which the
program was generated.
A PSB is scheduled when the first DL/I I/O function of the program is
executed. If EZEDLPSB changes, the new PSB is scheduled when the first
DL/I I/O function is run after a COMMIT or ROLLBACK.

v Share a DL/I PSB with a called program by specifying the item as a
parameter on a call to or from the program.
When EZEDLPSB is passed as a parameter, the 8-byte name is followed by
a 4-byte address field.

EZEDLPRO

Chapter 11. Special function words 549

You cannot pass EZEDLPSB and EZEDLPCB on the same CALL statement.

Definition considerations for EZEDLPSB
To support portability of programs between IMS and non-IMS environments,
EZEDLPSB can be included in the called parameter list of programs that do
not include explicit DL/I processing functions (DL/I functions or CSPTDLI
calls).

By using EZEDLPSB in the called parameter list, you can implement serial file
processing using the PSB (message queues or GSAM) in IMS environments,
and other facilities in non-IMS environments.

In non-DL/I programs, the EZEDLPSB parameter is ignored, so any argument
can be passed as EZEDLPSB to the called program.

Target environments for EZEDLPSB

Environment Compatibility considerations

VM CMS Ignored.

VM batch Ignored.

CICS for
MVS/ESA

When passing EZEDLPSB on a CALL, if the PSB is currently
scheduled, the address field points to the CICS user interface block
(UIB). If the PSB is not scheduled, the address field is 0.

When the UIB address is passed to a program, the program accesses
the PCB address list using the UIB. It does not attempt to
reschedule the PSB.

MVS/TSO EZEDLPSB is not used for PSB scheduling because PSBs are not
scheduled in a non-CICS environment. A single PSB, specified at the
invocation of the program, is used. Programs that run together
using CALL, DXFR, and XFER must share the same PSB.

The contents of EZEDLPSB are used as the checkpoint identifier
field for the CHKP used to implement the EZECOMIT function in a
DL/I batch environment.

Either EZEDLPSB or EZEDLPCB must be passed as a parameter to
a called program that issues DL/I calls. This includes the use of
CSPTDLI or GSAM files.

When EZEDLPSB is passed between a non-VisualAge Generator
program and a program, the 4-byte address passed following the
8-byte PSB must point to a simulated CICS UIB. The simulated UIB
is 6 bytes long:
v The first 4 bytes must be the address of the PCB address list.
v The last 2 bytes must contain binary zeros.

EZEDLPSB

550 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS batch EZEDLPSB is not used for PSB scheduling because the PSB is
specified in the JCL for the batch job step. Programs that run
together in a single job step using CALL, DXFR, or XFER must
share the same PSB.

The contents of EZEDLPSB are used as the checkpoint identifier
field for the CHKP used to implement the EZECOMIT function in a
DL/I batch environment.

Either EZEDLPSB or EZEDLPCB must be included in the called
parameter list whenever a DL/I call occurs in this environment.
This includes the use of CSPTDLI or GSAM files.

When EZEDLPSB is passed between a non-VisualAge Generator
program and a program, the 4-byte address passed following the
8-byte PSB must point to a simulated CICS UIB. The simulated UIB
is 6 bytes long:
v The first 4 bytes must be the address of the PCB address list.
v The last 2 bytes must contain binary zeros.

IMS/VS EZEDLPSB is not used for PSB scheduling because IMS schedules
the PSB automatically for IMS transactions. Programs that run
together in a single IMS transaction using CALL or DXFR must
share the same PSB.

If a new value is moved into EZEDLPSB, the value is ignored.

Either EZEDLPSB or EZEDLPCB must be passed as a parameter to
a called program that issues DL/I calls. This includes the use of
CSPTDLI or GSAM files.

When EZEDLPSB is passed between a non-VisualAge Generator
program and a program, the 4-byte address passed following the
8-byte PSB must point to a simulated CICS UIB. The simulated UIB
is 6 bytes long:
v The first 4 bytes must be the address of the PCB address list.
v The last 2 bytes must contain binary zeros.

EZEDLPSB

Chapter 11. Special function words 551

Environment Compatibility considerations

IMS BMP EZEDLPSB is not used for PSB scheduling because the PSB was
specified in the JCL for the batch job step. Programs that run
together in a single job step using CALL, DXFR, or XFER must
share the same PSB.

For a batch-oriented BMP, the contents of EZEDLPSB are used as
the checkpoint identifier on the CHKP call issued for EZECOMIT
processing. For a transaction-oriented BMP, the contents of
EZEDLPSB are ignored.

Either EZEDLPSB or EZEDLPCB must be passed as a parameter to
a called program that issues DL/I calls. This includes the use of
CSPTDLI or GSAM files.

When EZEDLPSB is passed between a non-VisualAge Generator
program and a program, the 4-byte address passed following the
8-byte PSB must point to a simulated CICS UIB. The simulated UIB
is 6 bytes long:
v The first 4 bytes must be the address of the PCB address list.
v The last 2 bytes must contain binary zeros.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as MVS batch.

CICS for OS/2 If a program calls a remote server program that accesses DL/I
databases, the calling program must pass EZEDLPSB as a parameter
to the remote server program. The PSB is scheduled in the first
remote server program, and the CICS UIB address is passed back in
the EZEDLPSB parameter for use on subsequent calls to remote
DL/I programs. Within a single unit of work, remote server
programs must go to the same target system.

OS/400 Ignored.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Ignored.

AIX Ignored.

HP-UX Ignored.

Solaris Ignored.

EZEDLPSB

552 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for Solaris If a program makes multiple calls within the same unit of work to a
remote server program that accesses DL/I databases, the calling
program must pass EZEDLPSB to the server program. The PSB is
scheduled in the first server program, and the CICS UIB address is
passed back in the EZEDLPSB parameter for use on subsequent
calls to server DL/I programs.

Within a single logical unit of work, all calls to DL/I remote server
programs must go to the same target system.

CICS for AIX If a program makes multiple calls within the same unit of work to a
remote server program that accesses DL/I databases, the calling
program must pass EZEDLPSB to the server program. The PSB is
scheduled in the first server program, and the CICS UIB address is
passed back in the EZEDLPSB parameter for use on subsequent
calls to server DL/I programs.

Within a single logical unit of work, all calls to DL/I remote server
programs must go to the same target system.

Windows NT
(C++)

Same as CICS for AIX.

Windows NT
(Java)

Ignored.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility EZEDLPSB can be passed on a call to another program loaded in
the workspace/image.

When EZEDLPSB is passed to another program loaded in the
workspace/image, the 12 bytes passed include the PSB name
currently in EZEDLPSB (8 bytes) and a NULL UIB pointer (4 bytes).
Data passed back in the UIB pointer is preserved for subsequent
calls, but is not used by the test facility.

Example for EZEDLPSB
CALL MYPROG EZEDLPSB;

EZEDLRST (DL/I)

EZEDLRST indicates whether the DL/I program has been restarted in an
CICS for MVS/ESA or CICS for VSE/ESA environment following an
abnormal end caused by a deadlock when queuing on database records.

Uses
You can use EZEDLRST as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement

EZEDLPSB

Chapter 11. Special function words 553

v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLRST follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
No

Definition considerations for EZEDLRST
You cannot change the value of EZEDLRST in the program.

If EZEDLRST is equal to 1, the DL/I program has been restarted.

For special considerations about restarting your program, refer to the
VisualAge Generator running manual for your operating environment.

Target environments for EZEDLRST

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO EZEDLRST is always set to 0.

MVS batch Same as MVS/TSO.

IMS/VS Same as MVS/TSO.

IMS BMP Same as MVS/TSO.

CICS for
VSE/ESA

None.

VSE batch Same as MVS/TSO.

CICS for OS/2 Same as MVS/TSO.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

EZEDLRST

554 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility A CICS deadlock restart using EZEDLRST cannot be tested or
emulated on the workstation.

Example for EZEDLRST
IF EZEDLRST = 1;
END;

EZEDLSEG (DL/I)

EZEDLSEG contains the name of the lowest-level segment found in the last
DL/I I/O function. The name is from the database PCB used by the DL/I call
for the function.

Uses
You can use EZEDLSEG as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEDLSEG follow:

Data type
Character

Data length in bytes
8

Value saved across segments
No

EZEDLRST

Chapter 11. Special function words 555

Definition considerations for EZEDLSEG
EZEDLSEG is set to blanks under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLSEG is reset to the current PCB values each time a DL/I call is issued.
It can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLSEG is read-only; it cannot be reset by the program.

EZEDLSEG is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Target environments for EZEDLSEG

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

EZEDLSEG

556 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLSEG
MOVE EZEDLSEG TO ITEM4;

EZEDLSSG (DL/I)

EZEDLSSG contains the number of segment types to which a program is
sensitive for the database accessed during the last DL/I I/O function. The
number is from the database PCB used by the DL/I call for the function.

Uses
You can use EZEDLSSG as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLSSG follow:

Data type
Binary

Data length in bytes
4

Value saved across segments
No

Definition considerations for EZEDLSSG
EZEDLSSG is set to zero under the following conditions:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLSEG

Chapter 11. Special function words 557

EZEDLSSG is reset to the current PCB values each time a DL/I call is issued.
It can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLSSG is read-only; it cannot be reset by the program.

EZEDLSSG is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

Target environments for EZEDLSSG

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

EZEDLSSG

558 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLSSG
MOVE EZEDLSSG TO ITEM5;

EZEDLSTC (DL/I)

EZEDLSTC contains the status code returned for the last DL/I I/O function.
The code is from the database PCB used by the DL/I call for the function.

Uses
You can use EZEDLSTC as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEDLSTC follow:

Data type
Character

Data length in bytes
2

Value saved across segments
No

Definition considerations for EZEDLSTC
EZEDLSTC is set to blanks when the following occurs:
v Initially
v When the PSB is terminated
v When another program is called

EZEDLSTC is reset to the current PCB values each time a DL/I call is issued.
It can be displayed to assist in error determination, or tested in the function
error routine to determine the outcome of a DL/I call.

EZEDLSTC is read-only; it cannot be reset by the program.

EZEDLSTC is not set following CSPTDLI service calls or DL/I calls to IMS
message queues or GSAM files.

EZEDLSSG

Chapter 11. Special function words 559

Target environments for EZEDLSTC

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Example for EZEDLSTC
MOVE EZEDLSTC TO ITEM6;

EZEDLSTC

560 VisualAge Generator: Programmer’s Reference

EZEDLTRM (DL/I)

EZEDLTRM is a switch used to control whether data is automatically
committed for every CONVERSE I/O option. When EZEDLTRM is set to 1,
EZECOMIT is invoked during every CONVERSE. The default setting of
EZEDLTRM is 0.

EZEDLTRM is equivalent to EZECNVCM. Setting one flag sets the other.

Uses
You can use EZEDLTRM as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEDLTRM follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
No

Definition considerations for EZEDLTRM
When EZECNVCM or EZEDLTRM is set to 1, EZECOMIT is automatically
invoked during every CONVERSE function following terminal write, but
before terminal read. This commits data changes to files or databases and logs
terminal output at the same time. When EZECNVCM or EZEDLTRM is set to
0, a commit is done on the CONVERSE only if the program is running in
segmented mode at the time of the CONVERSE.

Target environments EZEDLTRM

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

EZECNVCM and EZEDLTRM are ignored on a segmented
CONVERSE. The CONVERSE marks the end of a segment; a
commit is always done at the end of a segment.

MVS/TSO None.

MVS batch Ignored.

EZEDLTRM

Chapter 11. Special function words 561

Environment Compatibility considerations

IMS/VS The values of EZECNVCM and EZEDLTRM are ignored. In IMS,
each CONVERSE is the end of a segment; a commit is always done
at the end of a segment.

IMS BMP Ignored.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Ignored.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

CICS for AIX Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility If the program is running under the test facility, data is committed
only when a map appears.

EZEDTE

EZEDTE contains the system date in Gregorian format (YYMMDD). EZEDTE
is automatically updated each time it is referenced by your program.

The retrieved date format is valid for use in variable fields defined with a
Gregorian date edit mask with a two-digit year.

Uses
You can use EZEDTE as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement

EZEDLTRM

562 VisualAge Generator: Programmer’s Reference

The receiver can be a map field or data item.

The characteristics of EZEDTE follow:

Data type
Numeric

Data length in bytes
6

Value saved across segments
No

Target environments for EZEDTE
Supported in all environments without compatibility considerations.

Example for EZEDTE
MOVE EZEDTE TO MYDAY;

EZEDTEL

EZEDTEL retrieves the current date in Gregorian format (YYYYMMDD).
EZEDTEL is automatically updated each time it is referenced by your
program.

The Gregorian date is presented in a numeric format without separator
characters.

The retrieved date format is valid for use in variable fields defined with a
Gregorian date edit mask with a four-digit year.

Uses
You can use EZEDTEL as any of the following:
v A source operand on a MOVE, MOVEA, or assignment statement.

The receiver can be a map field or data item.

The characteristics of EZEDTEL follow:

Data type
Numeric

Data length in bytes
8

Value saved across segments
No

Target environments for EZEDTEL
Supported in all environments without compatibility considerations.

EZEDTE

Chapter 11. Special function words 563

Example for EZEDTEL
MOVE EZEDTEL TO DATE_ITEM;

EZEDTELC

EZEDTELC retrieves the current date in the system default long Gregorian
format. EZEDTELC is automatically updated each time it is referenced by
your program.

For OS/2, if EZERGRGL_xxx does not exist, the default Gregorian format is
derived from the OS/2 system settings. The system default format for the
Gregorian date includes separator characters. The environment variable
EZERGRGL_xxx where xxx determines the Gregorian format for dates.

The xxx specifies the language code. For example, the following are applicable
language codes:

CHS Simplified Chinese

PTB Brazilian Portuguese

ENU English

JPN Japanese

KOR Korean

For VisualAge Generator Server for MVS, VSE, and VM environments, if
EZERGRGL_xxx does not exist, the default Gregorian format is specified
during installation.

The retrieved date format is valid for use in variable fields defined with a
Gregorian date edit mask with a four-digit year.

Uses
You can use EZEDTELC as any of the following:
v A source operand on a MOVE, MOVEA, or assignment statement.

The receiver can be a map field or data item.

The characteristics of EZEDTELC follow:

Data type
Character

Data length in bytes
10

Value saved across segments
No

EZEDTEL

564 VisualAge Generator: Programmer’s Reference

Target environments for EZEDTELC
Supported in all environments without compatibility considerations.

Example for EZEDTELC
MOVE EZEDTELC TO DATE_ITEM;

EZEFEC

EZEFEC controls whether a program continues to run after a hard I/O error
occurs on a function I/O operation for a file, database, or message queue
record. A hard I/O error is any error except record not found, end of file, or
duplicate record. For a description of the hard I/O errors, see “I/O error
value” on page 389.

If EZEFEC is set to 1 and a function error routine has been specified, the
function error routine runs when a hard I/O occurs. The program is
responsible for reporting the error to the program user. The program can test
the HRD record status to determine if a hard error occurred. EZERT8 contains
a file dependent error code describing the error. EZERT2 also contains the
MQSeries completion code if the record is a message queue record.

If EZEFEC is set to 0, the program ends with an error message when a hard
error occurs on a record I/O.

The initial setting is 0.

If you are using the /ANSISQL generation option, an SQLCODE is treated as
though it were DB2/VSE or DB2 codes. To treat them differently, set EZEFEC
to 1 and include an error routine for the I/O option.

Uses
You can use EZEFEC as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEFEC follow:

Data type
Numeric

Data length in bytes
1

EZEDTELC

Chapter 11. Special function words 565

Value saved across segments
Yes

Target environments for EZEFEC
Supported in all environments without compatibility considerations.

Example for EZEFEC
MOVE 1 to EZEFEC;

EZEFLO

EZEFLO causes control to transfer to the flow statements specified for the
current main function.

If EZEFLO is specified as the error routine of a function and an I/O error
occurs, processing continues with the first flow statement for the current main
function.

Uses
You can use EZEFLO as any of the following:
v A function error routine name
v The true or false operand in a TEST or FIND statement in a function
v The function name in a function invocation statement

Target environments for EZEFLO

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

EZEFEC

566 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Test Facility If EZEFLO or EZECLOS is encountered and Exit breakpoints are set
on any of the functions that are currently listed in the Execution
Stack Monitor, the following status message is displayed in the
status area of the Test Monitor:

Exit Breakpoints exist

The break in execution will occur on the EZEFLO or EZECLOS
statement.

Example for EZEFLO
IF MY_RECORD IS NRF;

EZEFLO;
END;

EZEG10

EZEG10 generates a modulus 10 check-digit.

Uses
You can use EZEG10 as the function name in a function invocation statement.

The calling sequence for EZEG10 is:

ÊÊ EZEG10 (xxxx , yyyy , zzzz) ; ÊÍ

EZEFLO

Chapter 11. Special function words 567

xxxx
A character data item in working storage that contains the number for
which you want to generate a check digit, including a position for the
check digit.

yyy
A binary ydata item of less than 5 digits that contains the number of
characters to be used in item xxxx, including the check digit.

zzzz
A binary data item of less than 5 digits that returns a 0 if the modulus 10
check digit was successfully generated and a 1 if the check digit was not
generated.

Target environments for EZEG10
Supported in all environments without compatibility considerations.

Example for EZEG10
In the following example, myinput is defined as character data containing the
value 1734280 (the rightmost 0 is the position for the generated digit and can
be any value on input), mylength is a binary data item containing the value 7,
and myresult is a binary data item whose value will be set by the EZEG10
routine.
EZEG10(myinput,mylength,myresult);

EZEG10 derives the modulus-10 check digit, using the following algorithm:
1. Multiply the units position of the base number of source data by 2, and

multiply every alternate position, moving right to left, by 2:
1 7 3 4 2 8 0 (generated digit)

x 2 x 2 x 2
___ ___ ___
14 8 16

2. Add the digits of the products to the digits of the base number that were
not multiplied by 2:
1 + 1 + 4 + 3 + 8 + 2 + 1 + 6 = 26

3. Subtract the sum from the next-highest number ending in 0 to get the
self-checking digit. (If the difference is 10, 0 is used.)

30 - 26 = 4

The resulting digit is the self-checking digit. The variable myresult is set to
0 if the self-checking digit is generated or 1 if not.

EZEG11

EZEG11 generates a modulus 11 check-digit.

EZEG10

568 VisualAge Generator: Programmer’s Reference

Uses
You can use EZEG11 as the function name in a function invocation statement.

The calling sequence for EZEG11 is:

ÊÊ EZEG11 (xxxx , yyyy , zzzz) ; ÊÍ

xxxx
A character data item in working storage that contains the number for
which you want to generate a check digit, including a position for the
check digit.

yyyy
A binary data item of less than 5 digits that contains the number of
characters to be used in item xxxx, including the check digit.

zzzz
A binary data item of less than 5 digits that returns a 0 if the modulus 11
check digit was successfully generated and a 1 if the check digit was not
generated.

Target environments for EZEG11
Supported in all environments without compatibility considerations.

Example for EZEG11
In the following example, myinput is defined as character data containing the
value 56621865 (the rightmost 5 is the entered self-checking digit, not part of
the base number), mylength is a binary data item containing the value 8, and
myresult is a binary data item whose value will be set by the EZEG11 routine.
EZEG11(myinput,mylength,myresult);

EZEG11 derives the modulus-11 check digit using the following algorithm:
1. Multiply the units (rightmost) digit of the base number by 2, the tens

position by 3, the hundreds position by 4, and so on, until 7 is used as a
multiplier. If there are more digits to multiply, begin the sequence again
using 2 as a multiplier:
5 6 6 2 1 8 6 5 (Self-checking digit)

x 2 x 7 x 6 x 5 x 4 x 3 x 2
10 42 36 10 4 24 12

2. Add the products of step 1:
10 + 42 + 36 + 10 + 4 + 24 + 12 = 138

3. Divide the sum of the products by 11:
12

11 |138

11

EZEG11

Chapter 11. Special function words 569

28
22

6

Subtract the remainder from 11 to get the self-checking digit. (If the
remainder is 0 or 1, 0 is used.)
11 - 6 = 5

The resulting digit is the self-checking digit. The variable myresult is set to
0 if the self-checking digit is generated or 1 if not.

EZELOC

EZELOC contains the system identifier for the location of a remote program
or file.

You can use the linkage table to specify that a CICS program invoked by
CALL or CREATX, or a CICS VSAM file or transient data queue is located on
a remote system. The linkage table specifies whether the location of a remote
file or program is specified in the CICS tables or whether it is to be obtained
at run time from the EZELOC special function word. If you specify EZELOC
in the linkage table, the program can dynamically modify EZELOC to allow
selection of different locations for the remote program or file.

Uses
You can use EZELOC as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand of a MOVE or assignment statement
v Data item 1 and 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZELOC follow:

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

Definition considerations for EZELOC
The program or file must be defined before run time in the CICS tables on all
systems on which the program or file can reside or be accessed.

EZEG11

570 VisualAge Generator: Programmer’s Reference

EZELOC does not support dynamic definition of files or programs, but does
support dynamic selection from a predefined set of possible locations for the
file or program.

EZELOC is initialized to blanks and must be set before doing any CALL,
CREATX, or file I/O function that requires the location. If different locations
are used for different functions, code the program to move the correct value
to EZELOC immediately prior to the execution of the function that uses it.

Prior to its use, the value in EZELOC is folded to uppercase. However, the
value in EZELOC does not change.

The special function word EZELOC will test true when compared against the
lowercase version if that is how it was initialized.

Target environments for EZELOC

Environment Compatibility considerations

VM CMS Not supported. EZELOC has no effect because access to remote
programs and files is not supported.

VM batch Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Same as VM CMS.

IMS BMP Same as VM CMS.

CICS for
VSE/ESA

None.

VSE batch Same as VM CMS.

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris None.

EZELOC

Chapter 11. Special function words 571

Environment Compatibility considerations

CICS for AIX None.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Test Facility None.

Example for EZELOC
MOVE 'SYSTEMA' TO EZELOC;

EZELTERM

For programs other than web transactions, EZELTERM contains the terminal
identifier, if one exists in the environment where the program is running. The
terminal identifier is padded with blanks to 8 characters. EZELTERM is
equivalent to EZEUSR in the CICS environments.

For web transactions, EZELTERM contains the conversation id assigned by the
Session ID Manager. Each conversation ID is specific to an execution thread,
which is a sequence of web transactions running in a given web application
server session. The conversation ID is unchanged when a web transaction is
invoked by way of a CONVERSE or an XFER with a named program. A new
conversation ID is assigned, however, when the user invokes a web
transaction in response to an XFER with a blank. For details on invocation, see
the VisualAge Generator Web Transaction Development Guide.

Uses
You can use EZELTERM as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZELTERM follow:

Data type
Character

Data length in bytes
8 (padded with blanks)

EZELOC

572 VisualAge Generator: Programmer’s Reference

Value saved across segments
Yes

Target environments for EZELTERM
The following table is meaningful only for programs other than web
transactions.

Environment Compatibility considerations

VM CMS EZELTERM is blank.

VM batch Same as VM CMS.

CICS for
MVS/ESA

EZELTERM contains the CICS terminal identifier.

EZELTERM is equivalent to EZEUSR.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS EZELTERM contains the logical terminal identifier from the first 8
bytes of the I/O PCB. EZELTERM is updated whenever there is a
successful get unique call to the I/O PCB. This is caused by a SCAN
for a serial file associated with the I/O PCB, a CONVERSE I/O
option, or a first map. EZELTERM is set to blanks when a main
batch program that scans the message queue gets an EOF (GC status
code for a get unique call).

IMS BMP EZELTERM is initialized to blanks. If the program runs as an IMS
transaction-oriented BMP, EZELTERM is reset to the logical terminal
identifier from the first 8 bytes of the I/O PCB on each SCAN that
results in a successful get unique call for a serial file associated with
the I/O PCB.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Same as VM CMS.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 EZELTERM is initialized to blanks. If the program is run in an
OS/400 interactive job, EZELTERM is reset to the terminal device
name received from a query of the active job’s attributes. On
OS/400, EZELTERM is 10 characters in length, padded with blanks.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) EZELTERM is equivalent to EZEUSR.

EZELOC

Chapter 11. Special function words 573

Environment Compatibility considerations

AIX In the AIX environment, the first directory specification is ignored,
since terminal names can be arbitrarily long. From there, the first 8
characters are returned as the terminal identifier. For example, if the
terminal name returned from the AIX “tty” command is:

/dev/pts/1

The value of EZELTERM is “pts/1”.

HP-UX In the HP-UX environment, the first directory specification is
ignored, since terminal names can be arbitrarily long. From there,
the first 8 characters are returned as the terminal identifier. For
example, if the terminal name returned from the HP-UX “tty”
command is:

/dev/pts/1

The value of EZELTERM is “pts/1”.

Solaris In the AIX Solaris environment, the first directory specification is
ignored, since terminal names can be arbitrarily long. From there,
the first 8 characters are returned as the terminal identifier. For
example, if the terminal name returned from the AIX Solaris“tty”
command is:

/dev/pts/1

The value of EZELTERM is “pts/1”.

CICS for Solaris Same as CICS for MVS/ESA.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Same as CICS for MVS/ESA.

Test Facility None.

Example for EZELTERM
MOVE EZELTERM TO ITEM10;

EZEMNO

EZEMNO sets the number for the message that appears on the next
CONVERSE, DISPLAY, XFER with a map, or redisplay of a map with an edit
error.

EZELOC

574 VisualAge Generator: Programmer’s Reference

The text of the message is taken from the program message table. The
message text appears in the variable field EZEMSG on the map.

EZEMNO is initialized and reset to 0 after every CONVERSE, DISPLAY, XFER
with a map, or redisplay of a map for an edit error. On the next CONVERSE,
DISPLAY, XFER with a map, or redisplay of a map for an edit error, if
EZEMNO contains a value other than 0 or 9999, the message specified by that
number is retrieved and the map is then redisplayed. The range for EZEMNO
is from -9999 to 9999.

Uses
You can use EZEMNO as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEMNO follow:

Data type
Binary

Data length in bytes
2

Value saved across segments
No

Definition considerations for EZEMNO
A function used as an edit routine indicates that an error has been detected by
moving a nonzero value to EZEMNO. This automatically displays the map
again, with the field in error highlighted and the text of the message
displayed.

If a message table is not available, an edit routine can force the map to be
conversed again by moving message text to EZEMSG and setting EZEMNO to
9999.

Target environments for EZEMNO

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

EZEMNO

Chapter 11. Special function words 575

Environment Compatibility considerations

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Test Facility None.

Examples for EZEMNO
The following example sets EZEMNO to 9999. You could use this example in
an edit routine to cause the map to be conversed again.
MOVE 'There has been an error' TO EZEMSG;
MOVE 9999 TO EZEMNO;

The following example causes the text for message 1234 to be retrieved from
the program message table before the next map is conversed.
MOVE 1234 to EZEMNO;

EZEMNO

576 VisualAge Generator: Programmer’s Reference

EZEMSG

EZEMSG is used for displaying message text on the next CONVERSE,
DISPLAY, XFER with a map, or redisplay of a map with an edit error.

To display a message on a map, you need to define EZEMSG as a variable
field on the map. If you do not define an EZEMSG field, the screen is cleared
before the error message is displayed to the program user. When the program
user presses the Enter key, the program map appears again.

Uses
You can use EZEMSG as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement
v A map item in a SET statement

The characteristics of EZEMSG follow:

Data type
Character or Mixed

Data length in bytes
11 to 78

Value saved across segments
No

Definition considerations for EZEMSG
EZEMSG for a map is set to spaces after the map is conversed or displayed,
or when a SET map CLEAR is performed. EZEMSG is used as a message area
for VisualAge Generator Server for MVS, VSE, and VM or VisualAge
Generator Server editing messages. However, literals can be moved to
EZEMSG if EZEMNO contains 0 or 9999 and SET map CLEAR is not specified
after the MOVE.

Target environments for EZEMSG

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

EZEMSG

Chapter 11. Special function words 577

Environment Compatibility considerations

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Test Facility None.

Example for EZEMSG
MOVE ’Invalid data’ to EZEMSG;

EZEOVER

EZEOVER controls error processing after an arithmetic overflow.

Two types of overflow conditions are detected:

Maximum value
Occurs when the result of an arithmetic operation is greater than 18
digits.

EZEMSG

578 VisualAge Generator: Programmer’s Reference

User variable
Occurs when the result of an arithmetic operation or a move to a
numeric data item causes a significant value (not decimal positions) to
be lost due to the length of the data item.

Depending on the value of EZEOVER, the overflow condition is handled
differently. You can set EZEOVER to one of the following values. The default
setting is 0.

0 On maximum value overflow, the program ends abnormally with an
error message.

On user variable overflow, the program continues and special function
word EZEOVERS is set to 1.

1 Ends the program when there is either a maximum value or user
variable overflow. An error message is issued indicating the statement
that caused the overflow condition.

2 Continues to run the program when a maximum value or user
variable overflow occurs and special function word EZEOVERS is set
to 1.

Uses
You can use EZEOVER as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEOVER follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
Yes

Target environments for EZEOVER

Environment Compatibility considerations

VM CMS None.

VM batch None.

EZEOVER

Chapter 11. Special function words 579

Environment Compatibility considerations

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) The generated C++ code can contain more precision than the
COBOL programs. In calculating significant digits, zeros to the left
of the decimal point are not considered significant digits. For
example, in the following expression:

x = (999999999999999999 + 1)/5;

The intermediate result of the parenthetical expression is 1 x 10**18.
This number is considered to have 1 significant digit, not 19.
Therefore, the calculation can continue without an overflow error.
Note: The NUMOVFL generation option is not supported in the
C++ program generator. Overflow checking always occurs.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

None.

CICS for
Windows NT

Same as OS/2 (C++).

Test Facility A warning is issued on maximum value overflow.

EZEOVER

580 VisualAge Generator: Programmer’s Reference

Example for EZEOVER
MOVE 2 TO EZEOVER;

EZEOVERS

EZEOVERS provides the means to test for arithmetic overflow. EZEOVERS is
set to 1 to indicate that arithmetic overflow has occurred.

After an overflow condition is detected, EZEOVERS is not reset automatically.
You need to code the program to reset EZEOVERS to 0 before doing any
calculations or moves that you want checked for arithmetic overflow.

Uses
You can use EZEOVERS as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEOVERS follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
Yes

Target environments for EZEOVERS
Supported in all environments without compatibility considerations.

Example for EZEOVERS
MOVE 0 TO EZEOVERS;
MOVE 2 TO EZEOVER;
A = B * C;
IF EZEOVERS EQ 1;

MOVE 1234 to EZEMNO;
CONVERSE-MYMAP();

END;

EZEPURGE

EZEPURGE deletes a CICS temporary storage queue.

EZEOVER

Chapter 11. Special function words 581

Uses
You can use EZEPURGE as the function name in a function invocation
statement.

The calling sequence is:

ÊÊ EZEPURGE (queuename) ; ÊÍ

Attribute Description

queuename Is a 1- to 8-character data item or 1- to 8-byte character literal that
contains the name of a single temporary storage queue to be deleted.

You must provide a queue name on the call to let the program know which
queue is to be deleted from temporary storage. The program enqueues (ENQ
command with the NOSUSPEND option) on the resource name
EZETEMP-queuename on an EZEPURGE invocation. The program dequeues
(DEQ command) after the temporary storage queue is deleted.

If an error occurs, the first byte of the EIBFN is placed in the first 2 characters
of EZERT8, and bytes 0 to 2 of the EIBRCODE are placed in the last 6
characters of EZERT8.

Target environments for EZEPURGE

Environment Compatibility considerations

VM CMS Ignored.

VM batch Ignored.

CICS for
MVS/ESA

None.

MVS/TSO Ignored.

MVS batch Ignored.

IMS/VS Ignored.

IMS BMP Ignored.

CICS for
VSE/ESA

None.

VSE batch Ignored.

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

EZEPURGE

582 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX None.

Solaris Not supported.

CICS for Solaris None.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

None.

Test Facility Not supported.

Examples for EZEPURGE
The following deletes the CICS temporary storage queue associated with the
current value of EZEDEST for record ABC:
MOVE ABC.EZEDEST to MYQUEUE;
EZEPURGE (MYQUEUE);

Where MYQUEUE is a data item name.

The following deletes the CICS temporary storage queue associated with
destination XYZ:
EZEPURGE('XYZ');

EZERCODE

EZERCODE is an external return code to be checked by the JCL, command
processor, or calling high-level language program when the program ends.
Passing return codes from one program to another is not supported.

EZERCODE is initially set to 0. If the program ends because of an unexpected
error, EZERCODE is set to a value greater than 512. Programs should not set
EZERCODE to a value greater than 512 and should not set negative return
codes.

EZEPURGE

Chapter 11. Special function words 583

EZERCODE is implemented using the COBOL RETURN-CODE special
register. The contents of EZERCODE are used to set RETURN-CODE when a
program ends.

If the link type for a called program is static or dynamic, the return code is
returned in register 15 on System/370 processors. The return code is not
passed back for a called remote, called CICS :link, or main program.

You can use EZERCODE as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZERCODE follow:

Data type
Binary

Data length in bytes
4

Value saved across segments
Yes

Target environments for EZERCODE

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

If the link type for a called program is static or dynamic, the return
code is passed back and placed in Register 15. The return code is
not passed back for a called remote, called CICS :link, or main
program.

MVS/TSO None.

MVS batch None.

IMS/VS The return code is not passed back from main programs.

IMS BMP None.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch None.

CICS for OS/2 Same as CICS for MVS/ESA.

EZERCODE

584 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) If the program ends abnormally, a return code other than
EZERCODE is returned. In AIX, OS/2 (C++), and Windows NT this
return code is 65280.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris The value in EZERCODE is not passed back to the system or calling
program.

CICS for AIX The value in EZERCODE is not passed back to the system or calling
program.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Ignored. The return code of a program is dependent on the JVM.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZERCODE
EZERCODE = 6;

EZEREPLY

EZEREPLY specifies whether any exception code raised by the VAGen
supplied function should be returned in EZERT8. EZEREPLY is only effective
for the VAGen supplied functions.

If EZEREPLY is set to 1 when a VAGen supplied function fails, the return
code indicates why the function invocation failed and is available in the
EZERT8 special function word as the 8-character displayable form of the
return code. Execution continues with the statement immediately following
the function invocation.

EZERCODE

Chapter 11. Special function words 585

If EZEREPLY is set to 0 when a VAGen supplied function fails, the invoking
program ends with an error message that explains the reason for the
termination and displays the return code.

The initial value of EZEREPLY is 0.

The setting of EZEREPLY has no effect on:
v EZESBLKT
v EZESCCWS
v EZESCNCT
v EZESTLEN
v EZECONCT
v EZEC10
v EZEC11
v EZECONV
v EZEG10
v EZEG11
v EZEPURGE
v EZEWAIT

Uses
You can use EZEREPLY as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZEREPLY follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
No

Target environments for EZEREPLY
Supported in all environments without compatibility considerations.

Example for EZEREPLY
MOVE 1 to EZEREPLY;

EZEREPLY

586 VisualAge Generator: Programmer’s Reference

EZEROLLB

EZEROLLB calls system services to back out recoverable file, database, and
message queue updates since the last commit point. VAGen issues an
environment rollback request when EZEROLLB is processed. A rollback occurs
automatically if the program ends with an unexpected error.

Uses
You can use EZEROLLB as the function name in a function invocation
statement.

You can use EZEROLLB in place of the CALL RESET service routine.

A roll back occurs when:
v A VisualAge Generator program calls the EZEROLLB or RESET service.
v A program ends because of an error condition.

Definition considerations for EZEROLLB
When you use EZEROLLB with message queue records, note the following:
v Message queue updates are recoverable only if the Include message in

transaction option is selected in message queue record definition.
v Both message SCANs and ADDs are affected by commit and rollback for

recoverable messages. If a rollback is issued following a SCAN for a
recoverable message, the message is placed back on the input queue so that
the input message is not lost when the transaction fails to complete
successfully.

Target environments for EZEROLLB

Environment Compatibility considerations

VM CMS EZEROLLB results in an SQL ROLLBACK WORK if SQL requests
have been issued by the program.

VM batch Same as VM CMS.

CICS for
MVS/ESA

EZEROLLB results in a CICS SYNCPOINT ROLLBACK. This rolls
back any updates from the last commit point to DL/I databases,
relational databases, and files defined as recoverable resources.
EZEROLLB services are called automatically for the program if the
program calls the RESET service.

Remote called batch program can invoke EZEROLLB. Invoking
EZEROLLB from remote programs result in an CICS SYNCPOINT
ROLLBACK if ECI_NO_EXTENDED is specified in the middleware
routing table. A runtime error message is issued indicating that
rollback failed with INVREQ if ECI_EXTEND is specified in the
middleware routing table.

Spool files are rolled back.

EZEROLLB

Chapter 11. Special function words 587

Environment Compatibility considerations

MVS/TSO EZEROLLB results in an SQL ROLLBACK WORK if the program
has issued SQL requests.

If DL/I requests have been issued, a DL/I ROLB (rollback) call is
executed. The IMS batch parameter BKO=Y must be specified in the
startup CLIST for the ROLB call to be honored. If BKO=N is
specified, DL/I returns status code AL for the ROLB call. Execution
treats the AL as a soft error code, and no error message is issued.

VisualAge Generator programs that do not use DL/I issue a
rollback only if the program has made changes to an SQL table. A
rollback does not occur for changes to an SQL table made by a
non-VisualAge Generator program.

MVS batch If the program runs under the TSO terminal monitor program for
SQL access, invoking EZEROLLB results in an SQL ROLLBACK
WORK.

If the program runs as a DL/I batch job and DL/I or SQL requests
have been issued, a DL/I ROLB call is issued. The IMS batch
parameter BKO=Y must be specified when the batch job is started in
order for the ROLB call to be honored. If BKO=N is specified, DL/I
returns status code AL for the ROLB call. Execution treats the AL as
a soft error, and no error message is issued.

BKO is specified as a parameter in the job step that calls the IMS
control program DFSRRC00.

Serial or print files associated with GSAM files and CALL AUDIT
result in DL/I requests and cause the DL/I ROLB call to be issued.

VisualAge Generator programs that do not use DL/I issue a
rollback only if the program has made changes to an SQL table. A
rollback does not occur for changes to an SQL table made by a
non-VisualAge Generator program.

IMS/VS EZEROLLB results in a DL/I ROLB call.

IMS BMP Same as IMS/VS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch EZEROLLB results in an SQL ROLLBACK WORK if SQL requests
have been issued by the program. There is no automatic rollback
function for DL/I databases under VSE batch.

If you need to roll back changes to a DL/I database, you must code
your program to end with an error message indicating the end user
should run the DL/I DOS/VS backout utility.

Spool files are rolled back.

EZEROLLB

588 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for OS/2 EZEROLLB results first in an SQL ROLLBACK WORK, if the
program issued SQL requests on the workstation, and then a CICS
SYNCPOINT ROLLBACK. CICS coordinates the host and
workstation roll back functions.

The CICS SYNCPOINT ROLLBACK backs out changes made to
workstation files that are defined as recoverable resources to CICS
OS/2. The CICS SYNCPOINT ROLLBACK also backs out changes
to databases and recoverable files on a CICS host when the changes
are made by a remote called batch program that is called by this
program.

The SQL ROLLBACK WORK backs out changes made to relational
databases.

Remote called batch program can invoke EZEROLLB. Invoking
EZEROLLB from remote programs result in an CICS SYNCPOINT
ROLLBACK if ECI_NO_EXTENDED is specified in the middleware
routing table. A runtime error message is issued indicating that
rollback failed with INVREQ if ECI_EXTEND is specified in the
middleware routing table.

Files generated with file type OS2COBOL are not recoverable
resources and are not affected by EZEROLLB.

OS/400 None.

Windows &
OS/2 Smalltalk
(GUI)

EZEROLLB uses the client/server communication support.

Windows Java
(GUI)

Same as Windows & OS/2 Smalltalk (GUI)..

OS/2 (C++) EZEROLLB rolls back changes to relational databases. Files are not
affected by EZEROLLB.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris EZEROLLB rolls back changes to relational databases and files
defined as recoverable resources.

CICS for AIX EZEROLLB rolls back changes to relational databases and files
defined as recoverable resources.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

EZEROLLB

Chapter 11. Special function words 589

Environment Compatibility considerations

CICS for
Windows NT

Same as CICS for AIX.

Test Facility The VSE batch DL/I execution environment does not support
EZEROLLB. The test facility issues EZEROLLB so that manual
cleanup of the database is not necessary.

If you are using the local DL/I emulation option, the Micro Focus
products ignore a rollback request. Database positioning is lost
when the rollback is issued, but the data itself is not rolled back.

Example for EZEROLLB
EZEREPLY=1;
EZEROLLB();

EZERTN

EZERTN causes an immediate return from a function.

Specifying EZERTN enables you to return a value from a function.

Specifying EZERTN in a main function causes an immediate transfer to the
first flow statement specified for that function. EZERTN in a main function is
equivalent to EZEFLO.

Specifying EZERTN as an error routine in a function causes the program to
continue with the statement immediately following the I/O option if an I/O
error occurs.

Uses
You can use EZERTN as any of the following:
v The name of a function error routine
v The true or false operand in a TEST or FIND statement in a function
v The function name in a function invocation statement

Target environments for EZERTN

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

EZEROLLB

590 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

IMS/VS None.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

None.

Windows Java
(GUI)

None.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Test Facility If EZERTN is encountered and an Exit breakpoint is set on the
logic part that is being executed, the following status message is
displayed in the status area of the Test Monitor:

Break on part - function_name

The break in execution will occur on the EZERTN statement.

Example for EZERTN
TEST ITEM3 BLANKS EZERTN;
EZERTN (ABC);

EZERTN

Chapter 11. Special function words 591

EZERT2

EZERT2 contains the completion code from an MQSeries API call following an
ADD or SCAN I/O operation for a message queue record.

Valid values are:
00 OK
01 WARNING
02 FAILED

Uses
You can use EZERT2 as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZERT2 follow:

Data type
Character

Data length in bytes
2

Value saved across segments
Yes

Target environments for EZERT2
Supported in all environments without compatibility considerations.

EZERT8

EZERT8 contains the status code after:
v An I/O function to an indexed, message queue, relative or serial file
v CALL statements with the REPLY option
v Function invocation statements when EZEREPLY equals 1

Uses
You can use EZERT8 as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

EZERT2

592 VisualAge Generator: Programmer’s Reference

The characteristics of EZERT8 follow:

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

Definition considerations for EZERT8
The following sections address server call errors and the implications of using
EZERT8 with message queues.

Server call error considerations
If an error occurs on a call to a server program, the program behaves
differently depending on the type of error and whether the REPLY option was
coded on the CALL statement.

Table 22. Error handling for remote calls

Type of Error

REPLY
Option
Specified EZERT8 Setting

Log or
Trace
Message
on Client

Log or
Trace
Message
on Server

Program
Ends With
Message
to User

No error,
successful
completion

No Unchanged No No No

No error,
successful
completion

Yes 0 No No No

Communication
failure or
terminating error
in server

No Unchanged Yes No Yes

Communication
failure or
terminating error
in server

Yes CSO error
message number

Yes No No

Message queue record I/O considerations
EZERT8 contains the MQ API call reason code following on I/O operation for
a message queue record.

Generation Considerations for EZERT8
You can use the /SYSCODES generation option to control the codes that are
returned for file I/O function errors.

EZERT8

Chapter 11. Special function words 593

If you specify /SYSCODES, EZERT8 contains system file I/O status codes.
The codes are dependent on run-time environment and file type.

Target environments for EZERT8

Environment Compatibility considerations

VM CMS If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the return
codes section of VisualAge Generator Server Guide for MVS, VSE, and
VM

SEQ EZERT8 contains the COBOL status key value or values in
the first 2 characters. The remaining 6 characters are zeros.

SEQRS The contents of EZERT8 depend on the operation that
failed:

v If a dynamic allocation fails, EZERT8 contains the value
‘00000218’.

v If an OPEN fails, EZERT8 contains return code 8
(’00000008’).

v If a READ end-of-file condition occurs, EZERT8 contains
return code 4 (’00000004’).

v If a READ, WRITE, or CLOSE fails, EZERT8 contains
return code 12 (’00000012’).

VSAM EZERT8 contains the COBOL status key value or values in
the first 2 characters followed by 2 characters for the
COBOL VSAM return code (VSAM feedback code), 1
character for the COBOL VSAM function code (VSAM
component code), and 3 characters for the COBOL VSAM
feedback code (VSAM reason code).

VSAMRS
The operation that fails determines the contents of EZERT8:

v If a dynamic allocation fails, EZERT8 contains the value
‘00000218’.

v If an OPEN or CLOSE fails, the first 2 bytes of EZERT8
contain the error code from the VSAM program control
block (ACB) in hexadecimal. The remaining 6 characters
are zeros.

v If an operation other than OPEN or CLOSE fails, the first
2 characters are zeros followed by 2 characters for the
COBOL VSAM return code (VSAM feedback code), 1
character for the COBOL VSAM function code (VSAM
component code), and 3 characters for the COBOL
VSAM feedback code (VSAM reason code).

EZERT8

594 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

VM batch If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the
return codes section of VisualAge Generator Server Guide for MVS,
VSE, and VM

SEQ Same as VM CMS.

SEQRS Same as VM CMS.

VSAM Same as VM CMS.

VSAMRS
Same as VM CMS.

CICS for
MVS/ESA

If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the
return codes section of VisualAge Generator Server Guide for MVS,
VSE, and VM . Otherwise, the first two characters of EZERT8
contain the hexadecimal representation of the first byte of the EIBFN
from the CICS EXEC interface block. The remaining 6 characters
contain the hexadecimal representation of bytes 0-2 of the
EIBRCODE, also from the CICS EXEC interface block.

EZERT8

Chapter 11. Special function words 595

Environment Compatibility considerations

MVS/TSO If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the return
codes section of VisualAge Generator Server Guide for MVS, VSE, and
VM

SEQ EZERT8 contains the COBOL status key value or values in
the first 2 characters. The remaining 6 characters are zeros.

SEQRS The contents of EZERT8 depend on the operation that
failed:

v If a dynamic allocation fails, the first 3 bytes of EZERT8
contain the value S99 (for SVC 99, dynamic allocation),
byte 4 is the SVC 99 return code in hexadecimal and
bytes 5-8 contain the error reason code in hexadecimal.

v If an OPEN fails, EZERT8 contains return code 8
(’00000008’).

v If a READ end-of-file condition occurs, EZERT8 contains
return code 4 (’00000004’).

v If a READ, WRITE, or CLOSE fails, EZERT8 contains
return code 12 (’00000012’).

VSAM EZERT8 contains the COBOL status key value or values in
the first 2 characters followed by 2 characters for the
COBOL VSAM return code (VSAM feedback code), 1
character for the COBOL VSAM function code (VSAM
component code), and 3 characters for the COBOL VSAM
feedback code (VSAM reason code).

VSAMRS
The operation that fails determines the contents of EZERT8:

v If a dynamic allocation fails, the first 3 bytes of EZERT8
contain the value S99 (for SVC 99, dynamic allocation),
byte 4 is the SVC 99 return code in hexadecimal, and
bytes 5-8 contain the error reason code in hexadecimal.

v If an OPEN or CLOSE fails, the first 2 bytes of EZERT8
contain the error code from the VSAM program control
block (ACB) in hexadecimal. The remaining 6 characters
are zeros.

v If an operation other than OPEN or CLOSE fails, the first
2 characters are zeros followed by 2 characters for the
COBOL VSAM return code (VSAM feedback code), 1
character for the COBOL VSAM function code (VSAM
component code), and 3 characters for the COBOL
VSAM feedback code (VSAM reason code).

EZERT8

596 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

MVS batch If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the
return codes section of VisualAge Generator Server Guide for MVS,
VSE, and VM

GSAM EZERT8 contains the DL/I status code after an I/O
function. The last 6 characters of EZERT8 are spaces.

SEQ Same as MVS/TSO.

SEQRS Same as MVS/TSO.

VSAM Same as MVS/TSO.

VSAMRS
Same as MVS/TSO.

IMS/VS The only files that can be used in this environment are serial files
associated with IMS message queues. EZERT8 contains the DL/I
status code after an I/O function to one of these files. The last 6
characters of EZERT8 are spaces.

IMS BMP
GSAM EZERT8 contains the DL/I status code after an I/O

function. The last 6 characters of EZERT8 are spaces.

IMS message queue
EZERT8 contains the DL/I status code after an I/O
function. The last 6 characters of EZERT8 are spaces.

Otherwise, same as MVS/TSO.

CICS for
VSE/ESA

The first two characters of EZERT8 contain the hexadecimal
representation of the first byte of the EIBFN from the CICS EXEC
interface block.

The third and fourth characters of EZERT8 contain byte 4 of the
EIBRCODE, also from the CICS EXEC interface block.

The remaining 4 characters of EZERT8 contain the hexadecimal
representation of the EIBRESP2 code from the CICS EXEC interface
block. EIBRESP2 contains the VSE/POWER return and feedback
codes, which can be found in the VSE/POWER PWRDPL copybook.

EZERT8

Chapter 11. Special function words 597

Environment Compatibility considerations

VSE batch If EZERT8 is in the form RSnnnnnn, look under nnnnnn in the
return codes section of VisualAge Generator Server Guide for MVS,
VSE, and VM

SEQ Same as SEQ in VM CMS.

VSAM Same as VSAM in VM CMS.

VSAMRS
The operation that fails determines the contents of EZERT8:

v If an OPEN or CLOSE fails, the first 2 bytes of EZERT8
contain the error code from the VSAM program control
block (ACB) in hexadecimal. The remaining 6 characters
are zeros.

v If an operation other than OPEN or CLOSE fails, the first
2 characters are zeros followed by 2 characters for the
COBOL VSAM return code (VSAM feedback code), 1
character for the COBOL VSAM function code (VSAM
component code), and 3 characters for the COBOL
VSAM feedback code (VSAM reason code).

SPOOL
The first two characters of EZERT8 contain the hexadecimal
value of the VSE/POWER return code (PXPRETCD) from
the XPCCB user data area. The following two characters
contain the hexadecimal value of the VSE/POWER
feedback code (PXPFBKCD) from the XPCCB user data
area. The remaining four characters contain zeroes.

CICS for OS/2 For files accessed through COBOL, EZERT8 contains file status key
1 in the first character and file status key 2 in the next 3 characters,
followed by 4 characters of zeros. If file status key 1 is the character
“9”, file status key 2 is converted from single-byte binary to
3-character decimal format.

For files accessed through CICS, the first 2 characters of EZERT8
contain the first byte of the EIBFN field from the CICS EXEC
interface block. The remaining 6 characters contain bytes 0-2 of the
EIBRCODE, also from the CICS EXEC interface block.

Otherwise, same as CICS for MVS/ESA.

OS/400 EZERT8 contains the file I/O status code. See “I/O status codes” on
page 397.

Windows-OS/2
Smalltalk (GUI)

The first 4 bytes of EZERT8 represent the Client/Server
Communication (CSC) subsystem in which the error occurred. The
last 4 bytes represent the CSC subsystem error number.

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

EZERT8

598 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/2 (C++) The /SYSCODES generation option is not supported. The value of
EZERT8 is always evaluated.

For files accessed through Micro Focus COBOL, EZERT8 contains
file status key 1 in the first character, and file status key 2 in the
next 3 characters, followed by 4 characters of zeros. If the file status
key 1 is the character 9, file status key 2 is converted from
single-byte binary to 3-character decimal format.

For files accessed through native OS/2 or AIX, the decimal
representation of the return code is placed in the low order two
bytes of EZERT8. The return code corresponds to the “errno” values
(errno.h) that are shipped with the IBM C++ Set compilers.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris The /SYSCODES generation option is not supported. The value of
EZERT8 is always evaluated.

For sequential file access, the decimal representation of the return
code is placed in the low order two bytes of EZERT8. The return
code corresponds to the “errno” values (errno.h) that are shipped
with the IBM C++ Set compilers.

For files accessed through CICS, the first two characters of EZERT8
contain the hexadecimal representation of the first byte of the EIBFN
field from the CICS EXEC interface block. The remaining six
characters contain the hexadecimal representation of bytes 0-2 of the
EIBRCODE, also from the CICS EXEC interface block.

CICS for AIX The /SYSCODES generation option is not supported. The value of
EZERT8 is always evaluated.

For sequential file access, the decimal representation of the return
code is placed in the low order two bytes of EZERT8. The return
code corresponds to the “errno” values (errno.h) that are shipped
with the IBM C++ Set compilers.

For files accessed through CICS, the first two characters of EZERT8
contain the hexadecimal representation of the first byte of the EIBFN
field from the CICS EXEC interface block. The remaining six
characters contain the hexadecimal representation of bytes 0-2 of the
EIBRCODE, also from the CICS EXEC interface block.

Windows NT
(C++)

Same as OS/2 (C++).

EZERT8

Chapter 11. Special function words 599

Environment Compatibility considerations

Windows NT
(Java)

The /SYSCODES generation option is not supported. EZERT8can be
filled with a CSO or VGJ message number documented in the
(Messages Book).

CICS for
Windows NT

Same as CICS for AIX.

Test Facility EZERT8 can be filled with any of the following:

v A VisualAge Generator return code that is documented in the
return codes section of the VisualAge Generator Running
documents.

v A return code from the File Access Method.

v An OS/2 system return code. These return codes will be in the
form OSnnnnnn.

v A CSO message number documented in the VisualAge Generator
Messages and Problem Determination Guide document.

Example for EZERT8
IF EZERT8 = '00000008';
END;

EZESEGM

EZESEGM changes CONVERSE processing to either segmented mode or
nonsegmented mode.

You can use EZESEGM to specify that a portion of a program is to run in a
particular execution mode regardless of how the rest of the program runs.

If EZESEGM is set to 1, the CONVERSE I/O option runs in segmented mode.
If EZESEGM is set to 0, the CONVERSE I/O option runs in nonsegmented
mode.

The default value of EZESEGM is 0 for nonsegmented programs and 1 for
segmented or single-segmented programs. EZESEGM is reset to the default
after the CONVERSE I/O option is complete.

EZESEGM is ignored in called programs.

For additional information about segmented programs, refer to VisualAge
Generator Design Guide.

Uses
You can use EZESEGM as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement

EZERT8

600 VisualAge Generator: Programmer’s Reference

v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZESEGM follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
No

Target environments for EZESEGM

Environment Compatibility considerations

VM CMS If EZESEGM is set to 1, segmented mode is simulated by the
following:
v Committing database changes before each CONVERSE
v Refreshing single user table contents
v Resetting to their default values the EZE words that are not saved

across segments.

VM batch Ignored.

CICS for
MVS/ESA

None.

MVS/TSO Same as VM CMS.

MVS batch Ignored.

IMS/VS Ignored. All programs must be segmented.

IMS BMP Ignored.

CICS for
VSE/ESA

None.

VSE batch Ignored.

CICS for OS/2 None.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as VM CMS.

EZESEGM

Chapter 11. Special function words 601

Environment Compatibility considerations

AIX Same as VM CMS.

HP-UX Same as VM CMS.

Solaris Same as VM CMS.

CICS for Solaris Same as VM CMS.

CICS for AIX Same as VM CMS.

Windows NT
(C++)

Same as VM CMS.

Windows NT
(Java)

Same as VM CMS.

CICS for
Windows NT

Same as VM CMS.

Test Facility None.

Example for EZESEGM
MOVE 0 TO EZESEGM;

EZESEGTR

EZESEGTR changes the name of the transaction code for the next program
segment when the program runs. The program stores the transaction name in
EZESEGTR prior to a CONVERSE I/O option.

Initially, EZESEGTR contains the segmented transaction name defined when
the program is generated. If the program is started using a DXFR statement,
EZESEGTR contains the segmented transaction name for the program that
initiated the DXFR statement.

The program can change EZESEGTR to another transaction name. When the
next segment is started, this new transaction name is used. EZESEGTR
remains at its new value in the new segment.

Uses
You can use EZESEGTR as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v Data item 1 or 2 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZESEGTR follow:

EZESEGM

602 VisualAge Generator: Programmer’s Reference

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

Target environments for EZESEGTR

Environment Compatibility considerations

VM CMS Ignored.

VM batch Ignored.

CICS for
MVS/ESA

If a segmented transaction name is specified at generation, it is used
to set the initial contents of EZESEGTR. If a segmented transaction
name is not specified at generation, the CICS transaction code is
used to set EZESEGTR. The program can change EZESEGTR. The
contents of EZESEGTR at a CONVERSE are used to set the next
transaction code.

MVS/TSO Ignored.

MVS batch Ignored.

IMS/VS For transaction programs, the initial value of EZESEGTR for the
initial program is the IMS transaction code being used when the
program is started.

For a batch program that scans the I/O PCB, EZESEGTR is reset to
the transaction code from the IMS message header each time a
SCAN results in a successful get unique call to the I/O PCB.

IMS BMP If the program runs as a batch-oriented BMP, EZESEGTR is ignored.

If the program runs as a transaction-oriented BMP, EZESEGTR is
reset to the transaction code from the IMS message header each time
a SCAN results in a successful get unique call to the I/O PCB.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Ignored.

CICS for OS/2 Same as CICS for MVS/ESA.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

EZESEGTR

Chapter 11. Special function words 603

Environment Compatibility considerations

OS/2 (C++) Ignored. An 8-character data item is allocated and can be used in
the various statements, although the item has no effect. Programs in
this environment run as nonsegmented transactions.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Ignored.

CICS for
Windows NT

Same as OS/2 (C++).

Test Facility Ignored during testing.

Example for EZESEGTR
MOVE "TRXZ" to EZESEGTR;

EZESQCOD (SQL)

EZESQCOD contains the return code for the most recently completed SQL
I/O option. It is obtained from the SQL communications area (SQLCA).

Uses
You can use EZESQCOD as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZESQCOD follow:

Data type
Binary

Data length in bytes
4

Value saved across segments
No

EZESEGTR

604 VisualAge Generator: Programmer’s Reference

Target environments for EZESQCOD

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with relational
database manager. On this system, the database manager is SQL/DS
VM.

VM batch Same as VM CMS.

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

OS/400 The information returned in the SQLCA varies with the relational
database manager. In OS/400, the database manager (SQL/400) is
included in the base operating system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

EZESQCOD

Chapter 11. Special function words 605

Environment Compatibility considerations

Windows NT
(Java)

Contains the DBMS native return code for the last completed SQL
I/O function. For portability, use VAGen I/O Error Values.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZESQCOD
MOVE EZESQCOD TO RCITEM;

EZESQISL (SQL)

EZESQISL contains the isolation level of SQL I/O functions. If set to 0 (the
default), the isolation level is set to repeatable read. If set to 1, the isolation
level is set to cursor stability.

Note: EZESQISL is supported in this release for upward compatibility, but has
no meaning in the supported environments.

Uses
You can use EZESQISL as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZESQISL follow:

Data type
Numeric

Data length in bytes
1

Value saved across segments
Yes

Definition considerations for EZESQISL
The isolation level for INQUIRY, UPDATE, ADD, SETINQ, SETUPD, and
SQLEXEC functions is the isolation level in effect when the function is run.

The isolation level for SCAN, REPLACE, and DELETE functions is the
isolation level in effect when the previous UPDATE, SETINQ, or SETUPD for
the same SQL row was run.

EZESQCOD

606 VisualAge Generator: Programmer’s Reference

Target environments for EZESQISL

Environment Compatibility considerations

VM CMS Ignored. The isolation level is specified during SQL preprocessing
and cannot be dynamically controlled from the program.

VM batch Same as VM CMS.

CICS for
MVS/ESA

Ignored. On DB2 systems, isolation level is specified during BIND
processing and cannot be dynamically controlled from the program.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

Ignored. The isolation level is specified during SQL preprocessing
and cannot be dynamically controlled from the program.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 Not supported.

OS/400 Ignored. The isolation level is specified during program CREATE
processing with the COMMIT keyword and cannot be dynamically
controlled from the program.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Ignored. On DB2/2 systems, isolation level is specified during BIND
processing and cannot be dynamically controlled from the program.
On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Ignored.

CICS for Solaris Ignored.

CICS for AIX Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

This value is currently ignored for the JDBC environment. Database
default is assumed. For DB2, the default setting is
TRANSACTION_READ_COMMITTED.

CICS for
Windows NT

Same as OS/2 (C++).

EZESQISL

Chapter 11. Special function words 607

Environment Compatibility considerations

Test Facility Not supported.

Example for EZESQISL
MOVE 1 TO EZESQISL;

EZESQLCA (SQL)

EZESQLCA contains the entire SQL communication area (SQLCA) returned
for the last SQL I/O option.

Uses
You can use EZESQLCA as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

In order to refer to specific fields in the SQLCA you will need to move
EZESQLCA to a working storage record. The record should have substructure
fields defined as specified in the SQLCA description in your DB2 SQL
reference manual.

Use the substructured working storage record if you pass the SQLCA contents
to a remote program so that the contents will be converted correctly to the
remote system data format.

The characteristics of EZESQLCA follow:

Data type
Hexadecimal

Data length in bytes
136

Value saved across segments
No

Target environments for EZESQLCA

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is SQL/DS
VM.

VM batch Same as VM CMS.

EZESQISL

608 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

OS/400 The information returned in the SQLCA varies with the relational
database manager. In OS/400, the database manager (SQL/400) is
included in the base operating system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

For specific information about fields within EZESQLCA refer to the
corresponding EZE words as documented in this section.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

EZESQLCA

Chapter 11. Special function words 609

Example for EZESQLCA
MOVE EZESQLCA TO ITEM1;

EZESQRD3 (SQL)

EZESQRD3 contains the third integer return value in the SQL communications
area (SQLCA) returned for the last SQL I/O option. It returns the number of
rows processed for some SQL requests.

Uses
You can use EZESQRD3 as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZESQRD3 follow:

Data type
Binary

Data length in bytes
4

Value saved across segments
No

Target environments for EZESQRD3

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is SQL/DS
VM.

VM batch Same as VM CMS.

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

EZESQLCA

610 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

OS/400 The information returned in the SQLCA varies with the relational
database manager. In OS/400, the database manager (SQL/400) is
included in the base operating system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Currently has no meaning for the JDBC environment. It will not be
updated as the program executes, and it will always have its default
value unless explicitly changed by the program.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZESQRD3
MOVE EZESQRD3 TO RCITEM2;

EZESQRRM (SQL)

EZESQRRM contains the substitution variables for the error message
associated with the return code in EZESQCOD. EZESQRRM is obtained from
the SQL communications area (SQLCA) for the last SQL I/O option.

EZESQRD3

Chapter 11. Special function words 611

Uses
You can use EZESQRRM as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZESQRRM follow:

Data type
Character

Data length in bytes
70

Value saved across segments
No

Definition considerations for EZESQRRM
The substitution variables are separated by a single byte containing X'FF'.

Target environments for EZESQRRM

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with the relational
database manager. On this systems, the database manager is
SQL/DS VM.

VM batch Same as VM CMS.

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

EZESQRRM

612 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

OS/400 The information returned in the SQLCA varies with the relational
database manager. The character string is formatted for OS/400
messages, and does not contain the X'FF' separators. In OS/400, the
database manager (SQL/400) is included in the base operating
system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Currently has no meaning for the JDBC environment. It will not be
updated as the program executes, and it will always have its default
value unless explicitly changed by the program.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZESQRRM
MOVE EZESQRRM TO RCITEM3;

EZESQWN1 (SQL)

EZESQWN1 is the second warning byte returned in the SQL communications
area (SQLCA) for the last SQL I/O option. EZESQWN1 indicates whether
character data items were truncated.

EZESQRRM

Chapter 11. Special function words 613

Uses
You can use EZESQWN1 as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand in a TEST statement

The characteristics of EZESQWN1 follow:

Data type
Character

Data length in bytes
1

Value saved across segments
No

Definition considerations for EZESQWN1
EZESQWN1 contains a W if the last SQL I/O option caused the database
manager to truncate character data items because of insufficient space in the
program host variables. You can test specific fields to determine which ones
were truncated by using the following:
v TEST item TRUNC
v IF item IS TRUNC
v IF item NOT TRUNC
v WHILE item IS TRUNC
v WHILE item NOT TRUNC

When the data item is a number, no truncation warning is given. Fractional
parts of a number will be truncated with no indication. If the non-fractional
part of a number will not fit into a user variable, the database manager
returns a -304 in EZESQCOD when DB2 is used.

Target environments for EZESQWN1

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is SQL/DS
VM.

VM batch Same as VM CMS.

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

EZESQWN1

614 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

OS/400 The information returned in the SQLCA varies with the relational
database manager. In OS/400, the database manager (SQL/400) is
included in the base operating system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

None.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZESQWN1
In the following example, MY-CHAR-FIELD is a field in the SQL row record
just processed and LOST-DATA is a function that sets an error message
indicating that information for MY-CHAR-FIELD was truncated.

EZESQWN1

Chapter 11. Special function words 615

IF EZESQWN1 = 'W';
TEST MY-CHAR-FIELD TRUNC LOST-DATA;

END;

EZESQWN6 (SQL)

EZESQWN6 is the seventh warning byte returned in the SQL communications
area (SQLCA) for the last SQL I/O option. The meaning of the EZESQWN6
field is dependent on the database manager.

Uses
You can use EZESQWN6 as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand in a TEST statement

The characteristics of EZESQWN6 follow:

Data type
Character

Data length in bytes
1

Value saved across segments
No

Definition considerations for EZESQWN6
For DB2/VSE, EZESQWN6 contains a W or an S if the last SQL statement
processed caused SQL to back out all requests from this program since the last
call to EZECOMIT. This field contains an S if the last call to DB2/VSE caused
an error so severe that any further attempt to communicate with SQL would
cause the program to end.

For DB2, EZESQWN6 contains a W when an adjustment was made to correct
a result that was not valid from an arithmetic operation on date or time
values.

For DB2/2 Version 1.0, EZESQWN6 contains a W if the result of a date
calculation was adjusted to avoid an impossible date.

S is not valid on workstation relational database management systems or DB2.

EZESQWN1

616 VisualAge Generator: Programmer’s Reference

Target environments for EZESQWN6

Environment Compatibility considerations

VM CMS The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is SQL/DS
VM.

VM batch Same as VM CMS.

CICS for
MVS/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2.

MVS/TSO Same as CICS for MVS/ESA.

MVS batch Same as CICS for MVS/ESA.

IMS/VS Same as CICS for MVS/ESA.

IMS BMP Same as CICS for MVS/ESA.

CICS for
VSE/ESA

The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is
DB2/VSE.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

OS/400 The information returned in the SQLCA varies with the relational
database manager. In OS/400 the database manager (SQL/400) is
included in the base operating system.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) The information returned in the SQLCA varies with the relational
database manager. On this system, the database manager is DB2/2.

AIX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

HP-UX Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

Solaris Same as OS/2 (C++). On this system, the database manager is
DB2/6000.

CICS for Solaris The information returned in the SQLCA varies with the relational
database manager.

CICS for AIX The information returned in the SQLCA varies with the relational
database manager.

Windows NT
(C++)

Same as OS/2 (C++).

EZESQWN6

Chapter 11. Special function words 617

Environment Compatibility considerations

Windows NT
(Java)

Currently has no meaning for the JDBC invironment. It will not be
updated as the program executes, and it will always have its default
value unless explicitly changed by the program.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

Example for EZESQWN6
IF EZESQWN6 = 'S';

EZESYS

EZESYS identifies the environment in which the program is running.

The following are valid values for EZESYS:
v AIX
v AIXCICS
v HP
v IMSBMP
v IMSVS
v ITF
v MVSBATCH
v MVSCICS
v NTCICS
v OS2
v OS2CICS
v OS2GUI
v OS400
v SOLARIS
v SOLACICS
v TSO
v VMCMS
v VMBATCH
v VSEBATCH
v VSECICS
v WINGUI
v WINNT

Uses
You can use EZESYS as any of the following:
v The source operand in an assignment, MOVE, or MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

EZESQWN6

618 VisualAge Generator: Programmer’s Reference

v An operand on the TEST statement

The characteristics of EZESYS follow:

Data type
Character

Data length in bytes
8 (padded with spaces)

Value saved across segments
Yes

Definition considerations for EZESYS
EZESYS tests are implemented as run-time tests, not generation tests.
Therefore, you cannot use EZESYS in conjunction with the IF, WHILE, or
TEST statements to optionally include or exclude functions in generated
programs.

Consider the following sequence of code:
IF EZESYS NOT IMSVS;

MY_VSAM_FUNC(); /* Perform my VSAM function */
END;

Because VSAM is not supported for the IMS/VS environment, you cannot
generate the program for IMS/VS. To generate the program for IMS/VS, you
must move the VSAM functions to another program and change the IF
statement to the following:
IF EZESYS NOT IMSVS;

CALL VSAMAPP VSAM_FUNC,RECORD;
END;

Similar measures must be taken to optionally execute any function that will
generate for one environment, but not for another.

Target environments for EZESYS
Supported in all environments without compatibility considerations.

Examples for EZESYS
The following is an CICS for OS/2 example:
IF EZESYS IS OS2CICS;
END;

The following is an OS/2 (GUI) and Windows example:
IF EZESYS IS WINGUI;

MOVE “Windows” TO ENVRECD.UI;
ELSE;

IF EZESYS IS OS2GUI;
MOVE “OS/2” TO ENVRECD.UI;

EZESYS

Chapter 11. Special function words 619

ELSE;
MOVE “NPT” TO ENVRECD.UI;

END;
END;

The “IF EZESYS IS WINGUI;” statement above could be coded in a function
in a GUI program or a non-GUI program, and could be generated and run in
any target environment. That is, EZESYS could be tested for being WINGUI
anywhere, but would only test “true” in a GUI program running under
Windows, and would test “false” everywhere else.

EZETIM

EZETIM contains the current system time in the format of HH:MM:SS.
EZETIM is automatically updated each time your program refers to it.

Uses
You can use EZETIM as the source operand in a MOVE, MOVEA, or
assignment statement.

The characteristics of EZETIM follow:

Data type
Character

Data length in bytes
8

Value saved across segments
No

Target environments for EZETIM
Supported in all environments without compatibility considerations.

Example for EZETIM
MOVE EZETIM TO TIMFLD;

EZETST

EZETST contains the following:
v The number of the first row in the table that meets the search conditions

specified in a FIND or RETR statement.
v The number of the first element in an array that matches the search

conditions in an IF or WHILE statement with an IN operator.
v The subscript of the last element modified in the target array after a

MOVEA statement.

EZESYS

620 VisualAge Generator: Programmer’s Reference

If a row or an array element is not found, EZETST contains 0. Once EZETST
is set, you can specify it as a table or array subscript to access the data in the
selected row or array element.

Uses
You can use EZETST as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v The target operand in a MOVE or assignment statement
v An occurrence operand in a MOVEA statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement

The characteristics of EZETST follow:

Data type
Binary

Data length in bytes
2

Value saved across segments
No

Target environments for EZETST
Supported in all environments without compatibility considerations.

Example for EZETST
If you have a table named INFO with 50 rows and 3 columns named STATE,
AREA, and POPULATION, you could use the following sequence to set the
variable PEOPLE to the population for Alaska. AMOUNT is set with the
RETR statement to the area.

In the following table, the first column has an entry for each of the 50 states,
the second column contains the population for each state, and the third
column contains the area in square miles for each state.

INFO:
STATE POPULATION AREA

1 Alabama 3,500,000 51,600
2 Alaska 302,000 586,000

. . .

. . .

. . .

A RETR statement could be used to pick up the area information from the
above table, based on a matching state.

EZETST

Chapter 11. Special function words 621

MOVE 'ALASKA' TO ITEM;
RETR ITEM INFO.STATE AMOUNT AREA;

AMOUNT now has 586,000 in it. EZETST contains 2, the row number of the
matching state. If no match is made, EZETST is set to 0 and the contents of
AMOUNT are not changed. If the match is found, you can now obtain the
population for ALASKA by the following statement:
MOVE INFO.POPULATION[EZETST] TO PEOPLE;

You could also code:
PEOPLE = INFO.POPULATION[EZETST];

EZEUSR

EZEUSR contains the system-dependent user identifier or terminal identifier
for your program.

EZEUSR is supported only for compatibility with releases previous to CSP
370AD Version 4 Release 1.

Note: For Web Transaction programs, EZEUSR contains the user connection
id code. Use the EZEUSR value as a key value to access file or database
information shared between transactions running on behalf of a single
web user within a single Internet session.

Uses
You can use EZEUSR as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEUSR follow:

Data type
Character

Data length in bytes
8

Value saved across segments
Yes

EZETST

622 VisualAge Generator: Programmer’s Reference

Target environments for EZEUSR

Environment Compatibility considerations

VM CMS EZEUSR contains the VM logon user ID.

EZEUSR is equivalent to EZEUSRID.

VM batch EZEUSR contains the VM userid of the VM batch virtual machine
running the program.

EZEUSR is equivalent to EZEUSRID.

CICS for
MVS/ESA

EZEUSR contains the CICS terminal identifier.

EZEUSR is equivalent to EZELTERM.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

MVS/TSO EZEUSR contains the TSO logon identifier.

EZEUSR is equivalent to EZEUSRID.

MVS batch EZEUSR contains the job name from the JOB card.

EZEUSR is equivalent to EZEUSRID.

IMS/VS EZEUSR contains the user ID field from I/O PCB. EZEUSR is
updated whenever there is a successful get unique call to the I/O
PCB. This is caused by a SCAN for a serial file associated with the
I/O PCB, a CONVERSE I/O option, or a first map.

EZEUSR is set to spaces when a main batch program that scans the
message queue gets an EOF (GC status code for a get unique call).

The user ID field is blank if sign-on security is not active on the
system.

EZEUSR is equivalent to EZEUSRID.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

IMS BMP If the program runs as an IMS batch-oriented BMP, EZEUSR is set
to the job name from the JOB card.

If the program runs as an IMS transaction-oriented BMP, EZEUSR is
initialized to the name of the job from the JOB card of the JCL.
EZEUSR is reset to the user ID field from the I/O PCB on each
SCAN that results in a successful get unique call for a serial file
associated with the I/O PCB. The user ID field is blank if sign-on
security is not active on the system.

EZEUSR is equivalent to EZEUSRID.

EZEUSR

Chapter 11. Special function words 623

Environment Compatibility considerations

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

VSE batch Same as MVS batch.

CICS for OS/2 Same as CICS for MVS/ESA.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) EZEUSR contains “PC user”, for compatibility with the VisualAge
Generator Test Facility.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

AIX EZEUSR contains the first 8 characters of the logon identifier.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

HP-UX EZEUSR contains the first 8 characters of the logon identifier.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

Solaris EZEUSR contains the first 8 characters of the logon identifier.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

CICS for Solaris Same as CICS for MVS/ESA.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

CICS for AIX Same as CICS for MVS/ESA.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

Windows NT
(C++)

Same as OS/2 (C++).

See note on Web Transaction programs at the beginning of the
EZEUSR section.

EZEUSR

624 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows NT
(Java)

In main and called programs, EZEUSR is initialized from the system
property user.name. If the property cannot be retrieved, EZEUSR is
blank.

CICS for
Windows NT

Same as CICS for MVS/ESA.

See note on Web Transaction programs at the beginning of the
EZEUSR section.

Test Facility EZEUSR contains “PC user”.

Example for EZEUSR
MOVE EZEUSR to ITEM7;

EZEUSRID

EZEUSRID contains a user identifier in environments that have a user ID
available.

Uses
You can use EZEUSRID as any of the following:
v The source operand in a MOVE, MOVEA, or assignment statement
v Data item 1 in a RETR statement
v A data item in an IF or WHILE statement
v A data item in a FIND statement
v An operand on the TEST statement

The characteristics of EZEUSRID follow:

Data type
Character

Data length in bytes
8 (padded with spaces)

Value saved across segments
Yes

Target environments for EZEUSRID

Environment Compatibility considerations

VM CMS EZEUSRID contains the VM logon user ID.

EZEUSRID is equivalent to EZEUSR.

VM batch EZEUSRID contains the VM userid of the VM batch virtual machine
running the program.

EZEUSRID is equivalent to EZEUSR.

EZEUSR

Chapter 11. Special function words 625

Environment Compatibility considerations

CICS for
MVS/ESA

EZEUSRID contains the CICS user ID.

If the user signed onto the system, EZEUSRID contains the user ID
specified at sign-on. When RACF is installed, this is the RACF user
ID. If the user did not sign on, EZEUSRID contains spaces.

MVS/TSO EZEUSRID contains the TSO logon identifier.

EZEUSRID is equivalent to EZEUSR.

MVS batch EZEUSRID contains the job name from the JOB card.

EZEUSRID is equivalent to EZEUSR.

IMS/VS EZEUSRID contains the user ID field from the I/O PCB. EZEUSRID
is updated whenever there is a successful get unique call to the I/O
PCB. This is caused by a SCAN for a serial file associated with the
I/O PCB, a CONVERSE I/O option, or a first map.

EZEUSRID is set to spaces when a main batch program that scans
the message queue gets an EOF (GC status code for a get unique
call).

The user ID field is blank if sign-on security is not active on the
system.

EZEUSRID is equivalent to EZEUSR.

IMS BMP If the program runs as an IMS batch-oriented BMP, EZEUSRID
contains the job name from the JOB card.

If the program runs as an IMS transaction-oriented BMP, EZEUSRID
is initialized to the name of the job from the JOB card of the JCL. It
is updated with the user ID field from the I/O PCB on each SCAN
that results in a successful get unique call for a serial file associated
with the I/O PCB. The user ID field is blank if sign-on security is
not active on the system.

EZEUSRID is equivalent to EZEUSR.

CICS for
VSE/ESA

If the program user is signed on to the VSE Interactive User
Interface (IUI), EZEUSRID contains the user ID specified at sign-on.
If the user did not sign on, EZEUSRID contains spaces.

VSE batch Same as MVS batch.

CICS for OS/2 EZEUSRID contains the CICS user ID.

If the user signed onto the system, EZEUSRID contains the user ID
specified at sign-on. If the user did not sign on, EZEUSRID contains
spaces.

OS/400 None.

EZEUSRID

626 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) EZEUSRID contains spaces for compatibility with the VisualAge
Generator Test Facility.

AIX EZEUSRID contains the first 8 characters of the logon identifier.

HP-UX EZEUSRID contains the first 8 characters of the logon identifier.

Solaris EZEUSRID contains the first 8 characters of the logon identifier.

CICS for Solaris EZEUSRID contains the CICS user ID.

CICS for AIX EZEUSRID contains the CICS user ID.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

EZEUSRID is initialized from the system property user.name. If the
property cannot be retrieved, EZEUSRID is blank.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility EZEUSRID is blank by default but may be specified in the VAGen
Options/Preferences menu.

Example for EZEUSRID
MOVE EZEUSRID TO ITEM12;

EZEWAIT

EZEWAIT enables a program to suspend activities for a specified amount of
time.

Uses
You can use EZEWAIT as the function name in a function invocation
statement.

The calling sequence for EZEWAIT is:

ÊÊ EZEWAIT (time) ; ÊÍ

time
A numeric data item specifying the waiting period in hundredths of
seconds.

EZEUSRID

Chapter 11. Special function words 627

You can use EZEWAIT when two asynchronously running programs need to
communicate through a record in a shared file or database. One program
might need to suspend processing, without tying up computer system
resources, until the other program updates the information in the shared
record.

Target environments for EZEWAIT

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch None.

IMS/VS Ignored.

IMS BMP None.

CICS for
VSE/ESA

None.

VSE batch None.

CICS for OS/2 None.

OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) None.

AIX None.

HP-UX None.

Solaris None.

CICS for Solaris None.

CICS for AIX None.

Windows NT
(C++)

None.

Windows NT
(Java)

None.

CICS for
Windows NT

None.

Test Facility Not supported.

EZEWAIT

628 VisualAge Generator: Programmer’s Reference

Example for EZEWAIT
The following will cause the program to wait for 15 seconds:

MOVE 1500 TO WAIT-TIME;
EZEWAIT(WAIT-TIME);

EZEWAIT

Chapter 11. Special function words 629

EZEWAIT

630 VisualAge Generator: Programmer’s Reference

Chapter 12. String function words

String function words are reserved names in VisualAge Generator. String
function words provide string-handling capabilities to the VisualAge
Generator language. Using string functions, a program can perform operations
such as copies, comparisons and concatenations on substrings within string
data items.

A string is a fixed-length sequence of bytes. For VisualAge Generator, a string
is a data item with a type of CHA, MIX, DBCS, HEX, or UNICODE. A
substring is a subset of a string identified by an index and a length. The index
value identifies the starting byte of the substring within the data item. The
index value for the first byte in the item is 1. The length is the number of
bytes in the substring.

To prevent substring definition from extending outside a data item, the index
must be a value between 1 and the number of bytes in the item, and the
substring length must not extend beyond the end of the data item that
contains the substring. Lengths that are too long are adjusted so that the
substring ends at the last byte of the data item.

String functions are invoked using the specified syntax. Arguments must be
specified for each function parameter. The test facility and generators check
that the arguments are compatible with the parameter definitions.

String function arguments can be record data items at any level, or character
or numeric literals, where appropriate. Item names can be qualified or
subscripted.

Note: Where numeric literals are valid as string function arguments, you
must surround the numeric literal with at least one blank.

Example:
func (a, 10.2 ,c);

Functions can raise exception conditions. EZEREPLY specifies whether
exception codes raised by a function will be returned in EZERT8. EZEREPLY
is effective only for functions supplied by VisualAge Generator (VAGen).

The definition of the term ″blank″ in the string function descriptions varies
with the data type as listed in Table 23 on page 632.

© Copyright IBM Corp. 1980, 2000 631

Table 23. Data types and blank definition

Data item type Blank value

CHA, MIX Single byte space character

DBCS Double byte space character

UNICODE Unicode blank (X’0020’) character

HEX Null (X’00’) character

String function words

Table 24. String function words

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZESBLKT x

EZESCCWS x

EZESCMPR x

EZESCNCT x

EZESCOPY x

EZESFIND x

EZESNULT x

EZESSET x

EZESTLEN x

EZESTOKN x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

632 VisualAge Generator: Programmer’s Reference

EZESBLKT

EZESBLKT changes the null terminator and any subsequent characters in a
string to spaces.

EZESBLKT changes a null-terminated string value returned from a C program
to a character data item value that can operate correctly within a VisualAge
Generator program.

ÊÊ EZESBLKT (target) ; ÊÍ

Attribute Description

target The target string item.

The target string is searched for a null terminator. If one is found, the
null terminator and any characters following it are changed to spaces.

Target environmentsfor EZESBLKT
Supported in all environments without compatibility considerations.

Examplefor EZESBLKT
EZESBLKT (TARGET);

EZESCCWS

EZESCCWS concatenates one string to another with a separator string
between them.

If the initial length of the target string is zero, not counting trailing blanks and
nulls, the separator is omitted and only the source string is moved to the
target string.

ÊÊ result = EZESCCWS (target , source , separator) ; ÊÍ

Attribute Description

result A numeric data item that will contain the result value returned by the
function. The result is a nine-digit binary item. The following values
are returned:
0 Concatenated string fits in the target item.
–1 Concatenated string was longer than the target item;

characters other than nulls and spaces were truncated from
the result.

EZESBLKT

Chapter 12. String function words 633

Attribute Description

target The target string item.

source The source string item or literal.

separator The separator string.

Trailing spaces and nulls are truncated from the target string. The source and
separator strings are appended to the truncated value. The result is truncated
to the length of the target string (if the result is longer than the target value)
or padded with spaces (if the result is shorter than the target value).

Target environmentsfor EZESCCWS
Supported in all environments without compatibility considerations.

Example for EZESCCWS
MOVE 'CLIENT NAME =' TO PRINT_LINE;
RESULT = EZESCCWS(PRINT_LINE,CLIENT_NAME,' ');
IF RESULT = -1;

CALL PRINT_LINE_OVERFLOW;
END;

EZESCMPR

EZESCMPR compares one substring to another.

ÊÊ result = EZESCMPR (target , target substring index , Ê

Ê target substring length , source , source substring index , Ê

Ê source substring length) ; ÊÍ

Attribute Description

result A numeric data item that will contain the result value returned by the
function. The result is a nine-digit binary item. The following values
are returned:
1 Target substring is greater than the source substring.
0 Target substring is equal to the source substring.
–1 Target substring is less than the source substring.

target The target string item.

target
substring
index

Substring index identifying the starting byte of the target substring
within the target item. The substring index is a nine-digit binary item.
The index value for the first byte in the string item is 1.

EZESCCWS

634 VisualAge Generator: Programmer’s Reference

Attribute Description

target
substring
length

Target substring length in bytes. The substring length is a nine-digit
binary item.

source The source string item or literal.

source
substring
index

Substring index identifying the starting byte of the source substring
within the source item. The substring index is a nine-digit binary item.
The index value for the first byte in the string item is 1.

source
substring
length

Source substring length in bytes. The substring length is a nine-digit
binary item.

The comparison is a byte-by-byte binary comparison of the substring values.
If the substrings are not the same length, the shorter substring is padded with
spaces prior to the comparison.

Definition considerations for EZESCMPR
The following exception code values are returned:
8 Index less than 1 or greater than string length
12 Length less than 1
20 Invalid double byte index; an index for a DBCS or UNICODE string

points to middle of double byte character
24 Invalid double byte length ; length in bytes for DBCS or UNICODE

string is odd; length for a double byte string must be even

Numeric literals can be specified in the length and index arguments.

Target environments for EZESCMPR
Supported in all environments without compatibility considerations.

Example for EZESCMPR
EZEREPLY = 1;
RESULT = EZESCMPR(TARGET,3,2,SOURCE,8,2);

EZESCNCT

EZESCNCT concatenates one string to another.

ÊÊ result = EZESCNCT (target , source) ; ÊÍ

EZESCMPR

Chapter 12. String function words 635

Attribute Description

result A numeric data item that will contain the result value returned by the
function. The result is a nine-digit binary item. The following values
are returned:
0 Concatenated string fits in the target item.
–1 Concatenated string was longer than the target item;

characters other than nulls and spaces were truncated from
the result.

target The target string item.

source The source string item or literal.

Trailing spaces and nulls are truncated from the target string. The source and
separator strings are appended to the truncated value. The result is truncated
to the length of the target string (if the result is longer than the target value)
or padded with spaces (if the result is shorter than the target value).

Target environments for EZESCNCT
Supported in all environments without compatibility considerations.

Example for EZESCNCT
MOVE 'SALARY = $' TO PRINT_LINE;
RESULT = EZESCNCT(PRINT_LINE,SALARY);
IF RESULT = -1;

CALL PRINT_LINE_OVERFLOW;
END;

EZESCOPY

EZESCOPY copies one substring to another.

ÊÊ EZESCOPY (target , target substring index , target substring length , Ê

Ê source , source substring index , source substring length) ; ÊÍ

Attribute Description

target The target string item.

target
substring
index

Substring index identifying the starting byte of the target substring
within the target item. The substring index is a nine-digit binary item.
The index value for the first byte in the string item is 1.

target
substring
length

Target substring length in bytes. The substring length is a nine-digit
binary item.

EZESCNCT

636 VisualAge Generator: Programmer’s Reference

Attribute Description

source The source string item or literal.

source
substring
index

Substring index identifying the starting byte of the source substring
within the source item. The substring index is a nine-digit binary item.
The index value for the first byte in the string item is 1.

source
substring
length

Source substring length in bytes. The substring length is a nine-digit
binary item.

If the source substring is longer than the target substring, the source substring
value is truncated when copied to the target substring. If the source substring
is shorter than the target substring, the source value is padded on the right
with spaces when copied to the target.

Definition considerations for EZESCOPY
The following exception code values are returned:
8 Index less than 1 or greater than string length
12 Length less than 1
20 Invalid double byte index; an index for a DBCS or UNICODE string

points to middle of double byte character
24 Invalid double byte length ; length in bytes for DBCS or UNICODE

string is odd; length for a double byte string must be even

Numeric literals can be specified in the length and index arguments.

Target environments for EZESCOPY
Supported in all environments without compatibility considerations.

Example for EZESCOPY
EZEREPLY = 1;
EZESCOPY(COPY_TO,3,6,COPY_FROM,8,6);

EZESFIND

EZESFIND finds the first occurrence of a specified string within a string.

ÊÊ result = EZESFIND (source , source substring index , Ê

Ê source string length , search string) ; ÊÍ

EZESCOPY

Chapter 12. String function words 637

Attribute Description

result A numeric data item that will contain the result value returned by the
function. The result is a nine-digit binary item. The following values
are returned:
0 The search string is found.
–1 The search string is not found.

source The source string item or literal.

source
substring
index

Substring index identifying the starting byte of the search string within
the source item. The substring index is a nine-digit binary item. The
index value for the first byte in the string item is 1.

source string
length

Source string length in bytes. The string length is a nine-digit binary
item.

search string The search string item or literal. Trailing blanks and nulls are
truncated from the search string prior to performing the search.

If the search string is found, the source index is set to the index of the starting
byte of the matching substring. Otherwise, the substring index is not changed.

Definition considerations for EZESFIND
The following exception code values are returned:
8 Index less than 1 or greater than string length
12 Length less than 1
20 Invalid double byte index; an index for a DBCS or UNICODE string

points to middle of double byte character
24 Invalid double byte length ; length in bytes for DBCS or UNICODE

string is odd; length for a double byte string must be even

Numeric literals can be specified in the length argument.

Target environments for EZESFIND
Supported in all environments without compatibility considerations.

Example for EZESFIND
INDEX=1;
EZEREPY = 1;
RESULT = EZESFIND(CLIENT_ADDRESS,INDEX,100,SEARCH_ZIP_CODE);

EZESNULT

EZESNULT changes trailing spaces to nulls in a string. You can use
EZESNULT to change a data item to an argument that can be passed to a C
program expecting a null-terminated string.

EZESFIND

638 VisualAge Generator: Programmer’s Reference

ÊÊ EZESNULT (target) ; ÊÍ

Attribute Description

target The target string item.

The target string is searched for trailing spaces and nulls. Any spaces found
are changed to nulls. If no trailing spaces or nulls are found, an exception
code is returned in EZERT8.

Definition considerations for EZESNULT
The following exception code value is returned:
16 The last byte of the target string is not a space or null character.

Target environments for EZESNULT
Supported in all environments without compatibility considerations.

Example for EZESNULT
EZEREPLY = 1;
EZESNULT(TARGET);

EZESSET

EZESSET sets each character in a substring to the same character value.

ÊÊ EZESSET (target , target substring index , target substring length , Ê

Ê source) ; ÊÍ

Attribute Description

target The target string item.

target
substring
index

Substring index identifying the starting byte of the target substring
within the target item. The substring index is a nine-digit binary item.
The index value for the first byte in the string item is 1.

target
substring
length

Target substring length in bytes. The substring length is a nine-digit
binary item.

source If the target item is CHA, MIX, or HEX, the character item must be
one-byte CHA, MIX, or HEX item or CHA literal. If the target is a
DBCS or UNICODE item, the character must be a single character
DBCS or UNICODE item.

EZESNULT

Chapter 12. String function words 639

Definition considerations for EZESSET
The following exception code values are returned:
8 Index less than 1 or greater than string length
12 Length less than 1
20 Invalid double byte index; an index for a DBCS or UNICODE string

points to middle of double byte character
24 Invalid double byte length ; length in bytes for DBCS or UNICODE

string is odd; length for a double byte string must be even

Numeric literals can be specified in the length and index arguments.

Target environments for EZESSET
Supported in all environments without compatibility considerations.

Example for EZESSET
EZEREPLY = 0;
EZESSET(TARGET,12,5,' ');

EZESTLEN

EZESTLEN returns the length of an item less trailing spaces and nulls.

ÊÊ length = EZESTLEN (source) ; ÊÍ

Attribute Description

length A numeric data item that will contain the returned length of the source
string in bytes. Trailing spaces and nulls are not included in the value
returned. The result is a nine-digit binary item.

source The source string item or literal.

Target environments for EZESTLEN
Supported in all environments without compatibility considerations.

Example for EZESTLEN
LENGTH = EZESTLEN(SOURCE);

EZESTOKN

EZESTOKN finds the next token in a string and copies the token to an item.

Tokens are substrings separated by delimiter characters. For example, given
the string 'CALL PROGRAM ARG1,ARG2, ARG3 ' and the delimiter characters
space (’ ’) and comma (’,’) the tokens are 'CALL', 'PROGRAM', 'ARG1',
'ARG2', and 'ARG3 '.

EZESSET

640 VisualAge Generator: Programmer’s Reference

ÊÊ result = EZESTOKN (target , source , source substring index , Ê

Ê source substring length , character delimiter) ; ÊÍ

Attribute Description

result A numeric data item that will contain the result value returned by the
function. The result is a four-byte binary item. The following values
are returned:
+n Length of token copied to target item.
0 No token in source substring.
–1 Token truncated when copied to target item.

target The target string item.

source The source string item or literal.

source
substring
index

Substring index identifying the starting byte within the source item at
which the search should begin for the delimiting characters. The
substring index is a nine-digit binary item. The index value for the
first byte in the string item is 1.

When a match is found, the value in the substring index is changed to
the index of the character following the matched token.

source
substring
length

Source substring length in bytes. The substring length is a nine-digit
binary item.

When the call is successful, the value in the source substring length is
changed to the length of the substring left following the token that
was returned.

character
delimiter

The item containing the delimiter characters.

If the delimiter item is DBCS or UNICODE, the delimiter characters
are double byte characters.

Because the source index and source length values are updated on each
successful call, a sequence of calls can be made to retrieve, in order, each of
the tokens in a substring, without resetting the source index and source length
before each call.

Definition considerations for EZESTOKN
The following exception code values are returned:
8 Index less than 1 or greater than string length
12 Length less than 0
20 Invalid double byte index; an index for a DBCS or UNICODE string

points to middle of double byte character

EZESTOKN

Chapter 12. String function words 641

24 Invalid double byte length ; length in bytes for DBCS or UNICODE
string is odd; length for a double byte string must be even

Target environments for EZESTOKN
Supported in all environments without compatibility considerations.

Example for EZESTOKN
ARGLEN = EZESTOKN(TOKEN,INPUT_LINE,NEXT,REMAINING_LEN,',');
IF TOKEN = 'CALL';

ARGLEN = EZESTOKN(PROGRAM_NAME,INPUT_LINE,NEXT,REMAINING_LEN,',');
ARGCOUNT = 0;
WHILE ARGLEN > 0;

ARGCOUNT = ARGCOUNT + 1;
ARGLEN = EZESTOKN(ARG[ARGCOUNT],INPUT_LINE,NEXT,REMAINING_LEN,',');

END;
ARGCOUNT = ARGCOUNT - 1;

END;

EZESTOKN

642 VisualAge Generator: Programmer’s Reference

Chapter 13. Math function words

Math function words are reserved names in VisualAge Generator that perform
basic mathematical functions, including:
v Transformation between VisualAge Generator numeric data types and

floating point numbers
v Floating point arithmetic
v Log functions
v Powers and square root
v Trigonometric functions

Except where noted otherwise, the input parameters are converted to double
precision floating point numbers in the format appropriate for the machine on
which the program is running. The operation is performed using a C
language function and the result is converted back to the format of result
parameter.

The term ″numeric data item″ refers to any of the following:
v Any data item with the type NUM, NUMC, PACK, PACF, or BIN.
v A 4-byte HEX item. The item is assumed to be a single precision, 4-byte

floating point number native to the run-time environment.
v An 8-byte HEX item. The item is assumed to be a double precision, 8-byte

floating point number native to the run-time environment.

Math function exceptions

Functions can raise exception conditions. EZEREPLY specifies whether
exception codes raised by a function will be returned in EZERT8. EZEREPLY
is effective only for functions supplied by VisualAge Generator (VAGen).

The following exception codes are returned from the math functions:

8 Domain error; argument is not in a valid range for the function to
operate on

12 Range error; intermediate or final result cannot be represented as a
double precision floating point number, or with the precision of the
result parameter.

16 C math function exception

© Copyright IBM Corp. 1980, 2000 643

Math function words

Table 25. Math function words

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZEABS x

EZEACOS x

EZEASIN x

EZEATAN x

EZEATAN2 x

EZECEIL x

EZECOS x

EZECOSH x

EZEEXP x

EZEFLADD x

EZEFLDIV x

EZEFLMOD x

EZEFLMUL x

EZEFLOOR x

EZEFLSET x

EZEFLSUB x

EZEFREXP x

EZELDEXP x

EZELOG x

EZELOG10 x

EZEMAX x

EZEMIN x

EZEMODF x

644 VisualAge Generator: Programmer’s Reference

Table 25. Math function words (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZENCMPR x

EZEPOW x

EZEPRCSN x

EZEROUND x

EZESIN x

EZESINH x

EZESQRT x

EZETAN x

EZETANH x

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

EZEABS

EZEABS returns the absolute value of numericDataItem.

ÊÊ result = EZEABS (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The absolute value of
numericDataItem is converted to the format of the result item
and returned in the result.

numericDataItem Any numeric data item.

Chapter 13. Math function words 645

Target environments for EZEABS
Supported in all environments without compatibility considerations.

Example for EZEABS
EZEREPLY = 1;
RESULT = EZEABS(ITEM);

EZEACOS

EZEACOS is a function that returns the arccosine of numericDataItem in the
range −1,1. The result, in radians, is in the range 0,π.

The function is implemented using the C function acos(numericDataItem).

ÊÊ result = EZEACOS (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the acos
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the acos function is
called.

Target environments for EZEACOS
Supported in all environments without compatibility considerations.

Example for EZEACOS
EZEREPLY = 0;
RESULT = EZEACOS(ITEM);

EZEASIN

EZEASIN is a function that returns the arcsine of numericDataItem, where
numericDataItem is in the range −1,1. The result, in radians, is in the range
−π/2, π/2.

This function is implemented using the C function asin(numericDataItem)

ÊÊ result = EZEASIN (numericDataItem) ; ÊÍ

EZEABS

646 VisualAge Generator: Programmer’s Reference

Attribute Description

result Any numeric data item. The value returned by the asin
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the asin function is
called.

Target environments for EZEASIN
Supported in all environments without compatibility considerations.

Example for EZEASIN
EZEREPLY = 1;
RESULT = EZEASIN(ITEM);

EZEATAN

EZEATAN is a function that returns the arctangent of numericDataItem. The
result, in radians, is in the range −π/2, π/2.

This function is implemented using the C function atan(numericDataItem)

ÊÊ result = EZEATAN (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the atan
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the atan function is
called.

Target environments for EZEATAN
Supported in all environments without compatibility considerations.

Example for EZEATAN
EZEREPLY = 0;
RESULT = EZEATAN(ITEM);

EZEASIN

Chapter 13. Math function words 647

EZEATAN2

EZEATAN2 is a function that returns the theta component of the polar
coordinate (r, theta) corresponding to the rectangular coordinate
(numericDataItem1, numericDataItem2). The result, in radians, is in the range −π,
π.

This function is implemented using the C function
atan2(numericDataItem1,numericDataItem1).

ÊÊ result = EZEATAN2 (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the atan2
function is converted to the format of the result item and
returned in result.

numericDataItem1 Any numeric data item. The data item is converted to a
double precision floating point before the atan2 function is
called.

numericDataItem2 Any numeric data item. The data item is converted to a
double precision floating point before the atan2 function is
called.

Target environments for EZEATAN2
Supported in all environments without compatibility considerations.

Example for EZEATAN2
EZEREPLY = 1;
RESULT = EZEATAN2(ITEM1,ITEM2);

EZECEIL

EZECEIL is a function that returns the smallest integer not less than
numericDataItem.

ÊÊ result = EZECEIL (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The absolute value of numericDataItem is
converted to the format of the result item and returned in the result.

numericDataItemAny numeric data item.

EZEATAN2

648 VisualAge Generator: Programmer’s Reference

Target environments for EZECEIL
Supported in all environments without compatibility considerations.

Example for EZECEIL
EZEREPLY = 0;
RESULT = EZECEIL(ITEM);

EZECOS

EZECOS is an operation that returns the cosine of numericDataItem. The result
is in the range −1, 1.

The function is implemented using the C function cos(numericDataItem).

ÊÊ result = EZECOS (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the cos
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the cos function is
called.

Target environments for EZECOS
Supported in all environments without compatibility considerations.

Example for EZECOS
EZEREPLY = 0;
RESULT = EZECOS(ITEM);

EZECOSH

EZECOSH is a function that returns the hyperbolic cosine of numericDataItem.

The function is implemented using the C function cosh(numericDataItem).

ÊÊ result = EZECOSH (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the cosh
function is converted to the format of the result item and
returned in result.

EZECEIL

Chapter 13. Math function words 649

Attribute Description

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the cosh function is
called.

Target environments for EZECOSH
Supported in all environments without compatibility considerations.

Example for EZECOSH
EZEREPLY = 0;
RESULT = EZECOSH(ITEM);

EZEEXP

EZEEXP is a function that returns the exponential value of numericDataItem.
That is, e raised to the power of numericDataItem.

The function is implemented using the C function exp(numericDataItem).

ÊÊ result = EZEEXP (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the exp
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the exp function is
called.

Target environments for EZEEXP
Supported in all environments without compatibility considerations.

Example for EZEEXP
EZEREPLY = 0;
RESULT = EZEEXP(ITEM);

EZECOSH

650 VisualAge Generator: Programmer’s Reference

EZEFLADD

EZEFLADD is a function that returns the sum of numericDataItem1 and
numericDataItem2.

The function is implemented using double precision floating point arithmetic.

ÊÊ result = EZEFLADD (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The sum is converted to the format
of the result item and returned in result.

numericDataItem1 Any numeric data item. The numeric data item is converted
to double precision floating point before the sum is
calculated.

numericDataItem2 Any numeric data item. The numeric data item is converted
to double precision floating point before the sum is
calculated.

Target environments for EZEFLADD
Supported in all environments without compatibility considerations.

Example for EZEFLADD
EZEREPLY = 0;
RESULT = EZEFLADD(ITEM1,ITEM2);

EZEFLDIV

EZEFLDIV is a function that returns the quotient of numericDataItem1 divided
by numericDataItem2. A domain exception is raised if numericDataItem2 is
equal to 0.

The function is implemented using double precision floating point arithmetic.

ÊÊ result = EZEFLDIV (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The quotient is converted to the
format of the result item and returned in result.

numericDataItem1 Any numeric data item. The numeric data item is converted
to double precision floating point before the quotient is
calculated.

EZEFLADD

Chapter 13. Math function words 651

Attribute Description

numericDataItem2 Any numeric data item. The numeric data item is converted
to double precision floating point before the quotient is
calculated.

Target environments for EZEFLDIV
Supported in all environments without compatibility considerations.

Example for EZEFLDIV
EZEREPLY = 0;
RESULT = EZEFLDIV(ITEM1,ITEM2);

EZEFLMOD

EZEFLMOD is a function that calculates the floating point remainder of
numericDataItem1 divided by numericDataItem2. The result has the same sign
as numericDataItem1. A domain exception is raised if numericDataItem2 is equal
to 0.

The function is implemented using the C function
fmod(numericDataItem1,numericDataItem2).

ÊÊ result = EZEFLMOD (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The floating point remainder is
converted to the format of the result item and returned in
result.

numericDataItem1 Any numeric data item. numericDataItem1 is converted to
double precision floating point before the fmod function is
called.

numericDataItem2 Any numeric data item. numericDataItem2 is converted to
double precision floating point before the fmod function is
called.

Target environments for EZEFLMOD
Supported in all environments without compatibility considerations.

Example for EZEFLMOD
EZEREPLY = 0;
RESULT = EZEFLMOD(ITEM1,ITEM2);

EZEFLDIV

652 VisualAge Generator: Programmer’s Reference

EZEFLMUL

EZEFLMUL is a function that returns the product of numericDataItem1 and
numericDataItem2.

The function is implemented using double precision floating point arithmetic.

ÊÊ result = EZEFLMUL (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The product is converted to the
format of the result item and returned in result.

numericDataItem1 Any numeric data item. The numeric data item is converted
to double precision floating point before the product is
calculated.

numericDataItem2 Any numeric data item. The numeric data item is converted
to double precision floating point before the product is
calculated.

Target environments for EZEFLMUL
Supported in all environments without compatibility considerations.

Example for EZEFLMUL
EZEREPLY = 0;
RESULT = EZEFLMUL(ITEM1,ITEM2);

EZEFLOOR

EZEFLOOR is a function that returns the largest integer not greater than
numericDataItem.

ÊÊ result = EZEFLOOR (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The largest integer not greater than
numericDataItem is converted to the format of the result item
and returned in result.

numericDataItem Any numeric data item.

Target environments for EZEFLOOR
Supported in all environments without compatibility considerations.

EZEFLMUL

Chapter 13. Math function words 653

Example for EZEFLOOR
EZEREPLY = 0;
RESULT = EZEFLOOR(ITEM);

EZEFLSET

EZEFLSET is a function that converts numericDataItem to a double precision
floating point number and then sets the result value from the floating point
number.

The function assigns the value of BIN, NUM, NUMC, PACK, or PACKF items
to floating point numbers defined as HEX items, and vice versa.

ÊÊ result = EZEFLSET (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The floating point number is
converted to the format of the result and returned in result.

numericDataItem Any numeric data item. numericDataItem is converted to
double precision floating point before it is assigned to the
result.

Target environments for EZEFLSET
Supported in all environments without compatibility considerations.

Example for EZEFLSET
EZEREPLY = 0;
RESULT = EZEFLSET(ITEM);

EZEFLSUB

EZEFLSUB is a function that returns the difference between numericDataItem1
and numericDataItem2. numericDataItem2 is subtracted from numericDataItem1
and the difference is returned in result.

The function is implemented using double precision floating point arithmetic.

ÊÊ result = EZEFLSUB (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The difference is converted to the
format of the result item and returned in result.

EZEFLOOR

654 VisualAge Generator: Programmer’s Reference

Attribute Description

numericDataItem1 Any numeric data item. The numeric data item is converted
to double precision floating point before the difference is
calculated.

numericDataItem2 Any numeric data item. The numeric data item is converted
to double precision floating point before the difference is
calculated.

Target environments for EZEFLSUB
Supported in all environments without compatibility considerations.

Example for EZEFLSUB
EZEREPLY = 0;
RESULT = EZEFLSUB(ITEM,INTEGER);

EZEFREXP

EZEFREXP is a function that splits numericDataItem into a normalized fraction
in the range 1/2, 1, which is returned as the result, and a power of 2, which is
stored in integer.

The function is implemented using the C function frexp(numericDataItem,
integer).

ÊÊ result = EZEFREXP (numericDataItem , integer) ; ÊÍ

Attribute Description

result Any numeric data item. The floating point fraction is
converted to the format of the result item and returned in
result.

numericDataItem Any numeric data item. numericDataItem is converted to a
double precision floating point number before frexp is called.

integer An integer data item defined as 4-byte BIN with zero
decimal places.

Target environments for EZEFREXP
Supported in all environments without compatibility considerations.

Example for EZEFREXP
EZEREPLY = 1;
RESULT = EZEFREXP(ITEM,INTEGER);

EZEFLSUB

Chapter 13. Math function words 655

EZELDEXP

EZELDEXP is a function that returns the product of numericDataItem
multiplied by 2 to the power of integer.

The function is implemented using the C function ldexp(numericDataItem,
integer).

ÊÊ result = EZELDEXP (numericDataItem , integer) ; ÊÍ

Attribute Description

result Any numeric data item. The floating point fraction is
converted to the format of the result item and returned in
result.

numericDataItem Any numeric data item. numericDataItem is converted to a
double precision floating point number before ldexp is
called.

integer An integer data item defined as 4-byte BIN with zero
decimal places.

Target environments for EZELDEXP
Supported in all environments without compatibility considerations.

Example for EZELDEXP
EZEREPLY = 0;
RESULT = EZELDEXP(ITEM,INTEGER);

EZELOG

EZELOG is a function that returns the natural logarithm of numericDataItem.

The function is implemented using the C function log(numericDataItem).

ÊÊ result = EZELOG (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the log
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the log function is
called.

EZELDEXP

656 VisualAge Generator: Programmer’s Reference

Target environments for EZELOG
Supported in all environments without compatibility considerations.

Example for EZELOG
EZEREPLY = 0;
RESULT = EZELOG(ITEM);

EZELOG10

EZELOG10 is a function that returns the base 10 logarithm of numericDataItem.

The function is implemented using the C function log10(numericDataItem).

ÊÊ result = EZELOG10 (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the log10
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the log10 function is
called.

Target environments for EZELOG10
Supported in all environments without compatibility considerations.

Example for EZELOG10
EZEREPLY = 0;
RESULT = EZELOG10(ITEM);

EZEMAX

EZEMAX is a function that returns the maximum of numericDataItem1 and
numericDataItem2.

ÊÊ result = EZEMAX (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The maximum of numericDataItem1
and numericDataItem2 is converted to the format of the result
item and returned in the result.

numericDataItem1 Any numeric data item.

EZELOG

Chapter 13. Math function words 657

Attribute Description

numericDataItem2 Any numeric data item.

Target environments for EZEMAX
Supported in all environments without compatibility considerations.

Example for EZEMAX
EZEREPLY = 0;
RESULT = EZEMAX(ITEM1,ITEM2);

EZEMIN

EZEMIN is a function that returns the minimum of numericDataItem1 and
numericDataItem2.

ÊÊ result = EZEMIN (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The minimum of numericDataItem1
and numericDataItem2 is converted to the format of the result
item and returned in the result.

numericDataItem1 Any numeric data item.

numericDataItem2 Any numeric data item.

Target environments for EZEMIN
Supported in all environments without compatibility considerations.

Example for EZEMIN
EZEREPLY = 0;
RESULT = EZEMIN(ITEM1,ITEM2);

EZEMODF

EZEMODF is a function that splits numericDataItem1 into integral and
fractional parts with the same sign as numericDataItem1.

The fractional part is returned in result and the integral part is returned in
numericDataItem2.

ÊÊ result = EZEMODF (numericDataItem1 , numericDataItem2) ; ÊÍ

EZEMAX

658 VisualAge Generator: Programmer’s Reference

Attribute Description

result Any numeric data item. The fractional part of
numericDataItem1 is converted to the format of the result
item and returned in result.

numericDataItem1 Any numeric data item.

numericDataItem2 Any numeric data item. The integral part of
numericDataItem1 is converted to the format of
numericDataItem2 and returned in numericDataItem2.

Target environments for EZEMODF
Supported in all environments without compatibility considerations.

Example for EZEMODF
EZEREPLY = 0;
RESULT = EZEMODF(ITEM1,ITEM2);

EZENCMPR

EZENCMPR is a function that returns a result determined by comparing
numericDataItem1 to numericDataItem2.

ÊÊ result = EZENCMPR (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result An integer item defined as a 4-byte BIN with 0 decimal
places. Result is set to the value of the result item and
returned in result. The following values are returned:
1 numericDataItem1 is greater than numericDataItem2
0 numericDataItem1 is equal than numericDataItem2
-1 numericDataItem1 is less than numericDataItem2

numericDataItem1 Any numeric data item.

numericDataItem2 Any numeric data item.

Target environments for EZENCMPR
Supported in all environments without compatibility considerations.

Example for EZENCMPR
EZEREPLY = 0;
RESULT = EZENCMPR(ITEM1,ITEM2);

EZEMODF

Chapter 13. Math function words 659

EZEPOW

EZEPOW is a function that returns numericDataItem1 raised to the power of
numericDataItem2.

A domain exception is raised if numericDataItem1 is equal to 0 and
numericDataItem2 is less than or equal to 0, or if numericDataItem1 is less than
0 and numericDataItem2 is not an integer.

The function is implemented using the C function
pow(numericDataItem1,numericDataItem2).

ÊÊ result = EZEPOW (numericDataItem1 , numericDataItem2) ; ÊÍ

Attribute Description

result Any numeric data item. The floating point fraction is
converted to the format of the result item and returned in
result.

numericDataItem1 Any numeric data item. numericDataItem1 is converted to a
double precision floating point number before the pow
function is called.

numericDataItem2 Any numeric data item. numericDataItem2 is converted to a
double precision floating point number before the pow
function is called.

Target environments for EZEPOW
Supported in all environments without compatibility considerations.

Example for EZEPOW
EZEREPLY = 0;
RESULT = EZEPOW(ITEM1,ITEM2);

EZEPRCSN

EZEPRCSN is a function that returns the maximum precision in decimal digits
for numericDataItem. For floating point numbers (4-byte HEX item for standard
floating point number, 8-byte HEX for double precision floating point
number), the precision is the maximum number of decimal digits that can be
represented in the number for the system on which the program is running.

ÊÊ result = EZEPRCSN (numericDataItem) ; ÊÍ

EZEPOW

660 VisualAge Generator: Programmer’s Reference

Attribute Description

result An integer item defined as a 4-byte BIN with 0 decimal
places. On return result is set the precision of
numericDataItem.

numericDataItem Any numeric data item.

Target environments for EZEPRCSN
Supported in all environments without compatibility considerations.

Example for EZEPRCSN
EZEREPLY = 0;
RESULT = EZEPRCSN(ITEM);

EZEROUND

EZEROUND is a function that rounds numericDataItem to the integer power of
10 and returns the result.

ÊÊ result = EZEROUND (numericDataItem , integer) ; ÊÍ

Attribute Description

result Any numeric data item. The floating-point fraction is
converted to the format of the result item and returned in
result.

numericDataItem Any numeric data item.

integer An integer item defined as 4-byte BIN with 0 decimal places.

Target environments for EZEROUND
Supported in all environments without compatibility considerations.

Example for EZEROUND
EZEREPLY = 0;
RESULT = EZEROUND(ITEM,INTEGER);

EZEPRCSN

Chapter 13. Math function words 661

EZESIN

EZESIN is a function that returns the sine of numericDataItem. The result is in
the range −1,1.

The function is implemented using the C function sin(numericDataItem).

ÊÊ result = EZESIN (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the sin
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the sin function is
called.

Target environments for EZESIN
Supported in all environments without compatibility considerations.

Example for EZESIN
EZEREPLY = 1;
RESULT = EZESIN(ITEM);

EZESINH

EZESINH is a function that returns the hyperbolic sine of numericDataItem.

The function is implemented using the C function sinh(numericDataItem).

ÊÊ result = EZESINH (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the sinh
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the sinh function is
called.

Target environments for EZESINH
Supported in all environments without compatibility considerations.

EZESIN

662 VisualAge Generator: Programmer’s Reference

Example for EZESINH
EZEREPLY = 0;
RESULT = EZESINH(ITEM);

EZESQRT

EZESQRT is a function that returns the square root of numericDataItem where
numericDataItem is greater than or equal to 0.

The function is implemented using the C function sqrt(numericDataItem).

ÊÊ result = EZESQRT (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the sqrt
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the sqrt function is
called.

Target environments for EZESQRT
Supported in all environments without compatibility considerations.

Example for EZESQRT
EZEREPLY = 0;
RESULT = EZESQRT(ITEM);

EZETAN

EZETAN is a function that returns the tangent of numericDataItem.

The function is implemented using the C function tan(numericDataItem).

ÊÊ result = EZETAN (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the tan
function is converted to the format of the result item and
returned in result.

EZESINH

Chapter 13. Math function words 663

Attribute Description

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the tan function is
called.

Target environments for EZETAN
Supported in all environments without compatibility considerations.

Example for EZETAN
EZEREPLY = 0;
RESULT = EZETAN(ITEM);

EZETANH

EZETANH is a function that returns the hyperbolic tangent of
numericDataItem. The result is in the range −1,1.

The function is implemented using the C function tanh(numericDataItem).

ÊÊ result = EZETANH (numericDataItem) ; ÊÍ

Attribute Description

result Any numeric data item. The value returned by the tanh
function is converted to the format of the result item and
returned in result.

numericDataItem Any numeric data item. The data item is converted to a
double precision floating point before the tanh function is
called.

Target environments for EZETANH
Supported in all environments without compatibility considerations.

Example for EZETAN
EZEREPLY = 0;
RESULT = EZETAN(ITEM);

EZETAN

664 VisualAge Generator: Programmer’s Reference

Chapter 14. Object Scripting EZE words

The following Object Scripting EZE words are used to invoke a Smalltalk or
Java script from within a VisualAge Generator function.
v EZESCRPT

Object scripting words

Table 26. Object Scripting words

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

EZESCRPT x x c

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

EZESCRPT

EZESCRPT executes a script, written in the object-oriented language of your
development environment, from within a VAGen function that was invoked
by a GUI client. The scripts that can be invoked are associated with the
instance of the GUI client class and cannot require arguments. The invocation
is executed synchronously, like a CALL statement or any other VisualAge
Generator function invocation.

Uses

© Copyright IBM Corp. 1980, 2000 665

ÊÊ EZESCRPT (target) ; ÊÍ

Attribute Description

target The target can be either the name of the method being invoked from
the VAGen function or the name of a data item that contains the string
literal name of the method. The target is case sensitive.

Some example uses of EZESCRPT are:
v To access user interface parts on a GUI client
v To access Enterprise JavaBeans (VisualAge for Java)

Definition considerations
Scripts can be invoked only from functions that are executed from the GUI
client with which the VAGen Script is stored. They cannot be invoked from
server programs.

EZESCRPT accepts one argument: a literal script name or the name of the
data item that contains the script name. Script names are case sensitive. To
preserve the case of a literal script name you specify, enclose it in double
quotes as shown in the example.

Script names should adhere to the following rules:
v Script names can contain numbers, but the first character must be a letter.
v Spaces and special characters are not valid in script names.
v In Smalltalk, DBCS, and mixed script names are not valid.
v In Java, character, DBCS, and mixed script names are all valid.

For information on packaging GUI client programs and details about object
scripting requirements, refer to the VisualAge Generator User’s Guide.

Target environments for EZESCRPT

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

Not supported.

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Not supported.

IMS BMP Not supported.

EZESCRPT

666 VisualAge Generator: Programmer’s Reference

Environment Compatibility considerations

CICS for
VSE/ESA

Not supported.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

OS/2 (GUI) None.

Windows (GUI) None.

OS/2 (C++) Not supported.

AIX Not supported.

HP-UX Not supported.

CICS for AIX Not supported.

Windows NT Not supported.

CICS for
Windows NT

Not supported.

Test Facility None. See the online help for details on how Test Facility handles
script invocations.

Example for EZESCRPT
IF DATA_ITEM1 NOT NUMERIC;

EZESCRPT("indicateErrorInText");
END;

IF DATA_ITEM1 NOT NUMERIC;
EZESCRPT(dataItem);

END;

EZESCRPT

Chapter 14. Object Scripting EZE words 667

EZESCRPT

668 VisualAge Generator: Programmer’s Reference

Chapter 15. User interface EZE words

The following User Interface (UI) EZE words are available for use in Web
Transaction programs:
v EZEUIERR
v EZEUILOC

EZEUIERR

EZEUIERR is used to set a given field in a UI record in error. Use of
EZEUIERR is restricted to Web Transactions.

If EZEUIERR is invoked in a user defined edit, the UI record will be
CONVERSEd again. Invocation of the method hasInputError() for the UI
Record Bean as a whole or on the specific item that is set in error returns true.

ÊÊ EZEUIERR (UIrecordDataItem , errorMessageKey
, insertDataItem

) ÊÍ

Attribute Description

DataItem The UI record data item that is to be set in error.

ErrorMessageKey A CHA or MIX item or literal that contains the error
message key to associate with the error. This is the key into
a user message table that contains an error message. If this
key is blank, there is no lookup done and the message is just
a concatenation of the inserts.

insertDataItem One or more data items that contain the inserts for the
referenced error message. The insertDataItem is inserted in
the message text where %n is found for the nth
insertDataItem.

Target environments for EZEUIERR
EZEUIERR is available for Web Transactions only.

Example for EZEUIERR
EZEUIERR (UIRECORD.INPUT_FIELD, "MSGE1001", WSRECORD.INSERT_VALUE) ;

EZEUILOC

EZEUILOC is used to change UI Bean Locale.

© Copyright IBM Corp. 1980, 2000 669

This function is used to programmatically change the Locale being used by
the program. Each invocation would change the Locale for the duration of the
user session. Edit routines can be run to invoke EZEUILOC and change the
Locale for the duration of the Web Transaction Program. The Locale change
occurs at the web server where the NLS data of the UI Record Bean is
accessed by JavaServer Pages. This function is only allowed to run in an edit
function that runs at the web server in a UI bean.

EZEUILOC conforms to the JDK 1.1 API documentation for class
java.util.Locale. See ISO 639 for language codes and ISO 3166 for country
codes.

ÊÊ EZEUILOC (LanguageCode , CountryCode
, Variant

) ÊÍ

Attribute Description

LanguageCode CHA data item or literal with two character language code.
Only language codes defined by ISO 639 are valid.

CountryCode CHA data item or literal with two character country code.
Only country codes defined by ISO 3166 are valid.

Variant CHA data item or literal with indefinite length variant.
Variant code selection depends on browser and vendor
products. Specifying the variant is optional.

Target environments for EZEUILOC
EZEUILOC is available for Web Transactions only.

Example for EZEUILOC
EZEUILOC("fr","CA") ;

EZEUILOC

670 VisualAge Generator: Programmer’s Reference

Chapter 16. Services

VisualAge Generator services are system-dependent services that VisualAge
Generator programs can call in various operating environments. If portability
between supported and unsupported environments is required, you can
develop a non-VisualAge Generator program with the same name as the
service routine to receive the service call in the unsupported environments.
The program either does nothing and returns to the caller, or it simulates the
service function in the unsupported environment.

Services elements

Table 27. Services elements

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

AUDIT c c c c c x

COMMIT
(same as
EZECOMIT)

c x

CREATX c c c c c c c c c c c c c c c c x

CSPTDLI c x x c x c c c

EZCHART x x x x x

RESET
(same as
EZEROLLB)

c c c c c c c c c c x c c c c c c c c c c c c

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

© Copyright IBM Corp. 1980, 2000 671

Table 27. Services elements (continued)

Element

C
O

B
O

L

G
U

I

C
+

+

Ja
va

Te
st

Fa
ci

li
ty

V
M

C
M

S

V
M

B
at

ch

M
V

S
C

IC
S

M
V

S
/T

S
O

M
V

S
B

at
ch

IM
S

/V
S

IM
S

B
M

P

V
S

E
C

IC
S

V
S

E
B

at
ch

O
S

/2
C

IC
S

O
S

/4
00

W
in

d
ow

s*
-O

S
/2

(S
T

)

W
in

d
ow

s*
(J

av
a)

O
S

/2

A
IX

H
P

-U
X

A
IX

C
IC

S

W
in

d
ow

s
N

T

W
in

d
ow

s
N

T
C

IC
S

S
ol

ar
is

S
ol

ar
is

C
IC

S
W

in
d

ow
s

N
T

Legend: In this table, the following characters are used to indicate the level of support:
x Supported
c Supported with compatibility considerations
blank Not supported

AUDIT

AUDIT writes a record to the CICS journal or IMS log.

Uses
The program can use AUDIT to write tracking information to the system log
or journal.

ÊÊ
CALL

AUDIT record
,jid

; ÊÍ

Attribute Description

record The name of a record to be written to a journal file. The first 2 bytes
contain the length of the record to be written. The next 2 bytes contain
a user-supplied code identifying the source of the journal record. The
first byte of the user code must be in the range X'A0' to X'FF'.

In addition to containing the record length and record identifier code,
the first 28 bytes are reserved for system usage. They should not
contain user data because the data is overlaid when it is written to the
terminal. Bytes 29 to 32767 are available for user audit data.

jid An optional parameter that specifies the ID (1-99) of the journal file to
which the service routine writes the record. If jid is omitted, the record
is written, by default, to the system journal. The parameter is a 2-byte
binary number.

672 VisualAge Generator: Programmer’s Reference

Target environments for AUDIT

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for
MVS/ESA

If the REPLY option is specified on the CALL, EZERT8 contains one
of the following codes after the CALL:

Code Description

000 Successful completion

201 Length error

202 User source code error

204 Journal identifier error

803 I/O Error

MVS/TSO Not supported.

MVS batch Not supported unless a PSB is specified for the program and the
program does at least one of the following:
v Uses EZEDLPSB or EZEDLPCB in any statement in the program
v Has DL/I databases other than ELAWORK or ELAMSG in the

PSB definition
v Uses CSPTDLI
v Associates at least one file or EZEPRINT with GSAM.

If a PSB is specified and the program does one of the above, same
as IMS/VS.

IMS/VS The record is automatically converted to IMS log format, by
VisualAge Generator by adding 2 to the length and inserting 2 bytes
of binary zeros following the length field. Only the first byte of the
record identifier code is used. The second byte of the record
identifier code is ignored.

The jid parameter is ignored.

IMS/VS has a maximum limit of 32765 bytes.

IMS BMP Same as IMS/VS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

AUDIT

Chapter 16. Services 673

Environment Compatibility Considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

CICS for AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Examples for AUDIT
In this example, the data structure, WRKSTG, is shown in the following table:

Name Level Occurs Type Length Bytes

WHOLE 05 1 CHA 32765 32765 /*WHOLE
RECORD

HEADER 10 1 CHA 28 28 /*HEADER

LENGTH 15 1 BIN 4 2 /*RECORD
LENGTH
(BINARY)

CODE 15 1 CHA 2 2 /*2
CHARACTER
CODE

RSRVD1 15 1 CHA 24 24 /*RESERVED

DATA 10 1 CHA 32737 32737 /*USER
SUPPLIED
DATA

JRNLID 77 1 BIN 4 2 /*JOURNAL
ID
(BINARY
LEVEL-77)

AUDIT

674 VisualAge Generator: Programmer’s Reference

The following code shows the data structure written to journal file number 2:
MOVE 32765 TO LENGTH;
MOVE 'A' TO CODE;
MOVE 2 TO JRNLID;
MOVE 'THIS IS THE DATA TO BE WRITTEN TO JOURNAL NUMBER 2' TO DATA;
AUDIT WRKSTG,JRNLID;

COMMIT

The COMMIT service is equivalent to the EZECOMIT special function word.
However, the syntax for using COMMIT is different than the syntax for using
EZECOMIT.

ÊÊ
CALL

COMMIT ; ÊÍ

Refer to EZECOMIT for further information.

CREATX

CREATX starts an asynchronous transaction in a transactional environment
and passes a record to the transaction being started. If the transaction is a
VisualAge Generator program, the record is used to initialize the working
storage of the program.

ÊÊ
CALL

CREATX request
,prid

,recip

; ÊÍ

AUDIT

Chapter 16. Services 675

Attribute Description

request The name of a working-storage record. The working-storage record
must have the following format:

v The first 2 bytes (binary) contain the length of the data to be passed
to the started transaction, plus 10 for the length and transaction
name fields. These 2 bytes are not passed to the started transaction.
The maximum length cannot exceed 32767 bytes.

v The next 8 bytes (character) contain the name of the transaction to be
started. These 8 bytes are not passed to the started transaction.
Note: The transaction name is system-dependent and is described in
the compatibility considerations. If the transaction invokes a
VisualAge Generator program, the program must be type main.

v The remaining part of the request record is passed to the started
transaction.

prid An optional 4-character or 4-byte binary item. Its use is system
dependent and is described in the Target environments section. If you
specify recip, prid is required.

recip An optional 4-character item containing the terminal ID to be
associated with the transaction being started.

Definition considerations for CREATX
You can use the CREATX service in CICS environments to start a transaction
on a remote system and pass a record to the transaction for processing. The
remote program receives the record in the working storage area when the
transaction is started.

At program generation, use the linkage table to specify that the CREATX
statement starts a transaction at a remote system. The linkage table also
specifies how the location of the remote system is to be determined and
whether the data in the working storage record needs to be converted
between mainframe and workstation format. Refer to the section on
implementing cooperative processing using the CREATX service routine in the
VisualAge Generator Design Guide document for more information.

The prid and recip arguments are ignored if specified on a CREATX call to a
remote program. The started transaction is not associated with any terminal.

Target environments for CREATX

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CREATX

676 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for
MVS/ESA

The 4-byte CICS transaction code should be followed by 4 bytes of
blanks in the transaction name field in the request record. The
2-byte length and the transaction name field are not passed to the
started transaction.

The CREATX results in a CICS START command being issued for
the indicated transaction. The START command is issued with or
without an associated terminal, depending on the contents of recip.

If recip is omitted, the started transaction is associated with the
current terminal. The value of prid is ignored.

If PRINTDEST=TERMID and recip is set to binary zeros, the value
of prid becomes the initial value for EZEDESTP in the started
transaction. The CICS START command is issued without an
associated terminal.

If PRINTDEST=TERMID, EZEDESTP will be initialized to the
following:
v If main batch program, EZEDESTP initialized to EIBTRMID
v If main transaction, EZEDESTP initialized to destination

associated with EZEPRINT at generation.
v If called program, the same guidelines are followed unless the

caller also displays printer maps, in which case the called
program always initializes with same destination as the calling
program.

If PRINTDEST=EZEP, EZEDESTP will always be initialized to the
destination associated with EZEPRINT at generation.

If recip is not binary zeros, it must contain the terminal ID to be
associated with the transaction being started. It can be either a
terminal or a printer ID. It is not recommended that this be the
current terminal. Use XFER to start a new transaction on the current
terminal. The value of prid is ignored.

The started transaction must have PCT and PPT entries for the
program. If the started transaction is not a VisualAge Generator
program, it must issue a CICS RETRIEVE to get the passed work
area.

CREATX

Chapter 16. Services 677

Environment Compatibility Considerations

CICS for
MVS/ESA
(continued)

If the REPLY option is specified on the CALL, EZERT8 can contain
the following return codes:

Code Description
00000000

Successful CREATX
00000203

Transaction identifier not valid
00000205

Terminal identifier not valid
00000206

Parameters not valid
00000207

System identifier not valid
00000208

Link out of service
ffrrrrrr Other CICS error where ff is the hexadecimal

representation of EIBFN byte 0 and rrrrrr is the
hexadecimal representation of EIBRCODE bytes 0-2.

MVS/TSO Not supported.

MVS batch Not supported.

CREATX

678 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

IMS/VS The transaction name field in the request record is the 8-byte IMS
transaction code.

CREATX results in an insert to the modifiable alternate PCB. The
indicated work area is passed as the message. The generated
COBOL program automatically adds an extra 2 bytes between the
length and the transaction and adds 2 to the length value. The
transaction is started without an associated terminal. Prid and recip
are ignored.

The maximum length on the request record is 32765 bytes.

The transaction that is started must be included in the IMS GEN
and must be defined as a nonconversational transaction. If the
started transaction is not a VisualAge Generator program, it must
issue a get unique call to the I/O PCB to retrieve the message.

CREATX is not supported to a program at a remote system or from
a program at a remote system.

If the REPLY option is specified on the call, EZERT8 can contain the
following value:

Code Description
00000203

CREATX failed. The most probable cause is a transaction
identifier that is not valid.

IMS BMP Same as IMS/VS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch Not supported.

CREATX

Chapter 16. Services 679

Environment Compatibility Considerations

CICS for OS/2 Be sure to follow the 4-byte CICS transaction code by 4 bytes of
blanks in the transaction name field in the request record.

The CREATX results in a CICS START command being issued for
the indicated transaction. The START command is issued with or
without an associated terminal, depending on the contents of recip.

If recip is omitted, the started transaction is associated with the
current terminal. The value of prid is ignored.

If recip is not binary zeros, it must contain the terminal ID to be
associated with the transaction being started. It can be either a
terminal or a printer ID. It is not recommended that this be the
current terminal. Use XFER to start a new transaction on the current
terminal. The value of prid is ignored.

The started transaction must have a PCT entry for the program. If
the started transaction is not a VisualAge Generator program, it
must issue a CICS RETRIEVE to get the passed work area.

The prid argument is ignored if specified.

The CREATX results in a CICS START command being issued for
the indicated transaction. The transaction is started without an
associated terminal.

Refer to CICS for MVS/ESA for a list of return codes in EZERT8 if
the REPLY option is specified on the CALL.

CREATX

680 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

OS/400 VisualAge Generator Server for AS/400 provides OS/400 support
for CREATX by way of command language (CL) programs (PGMs).
Two CL PGMs in the VisualAge Generator Server for AS/400
product support the CREATX function, CREATX and CREATXPP.
CREATX gets the current job number and sends the user data to a
data queue called VGCREATX. CREATX then starts a new job called
CREATXJOB, which starts the CREATXPP CL PGM. CREATXPP
uses the previous job number as the key to retrieve the data from
the data queue VGCREATX. CREATXPP then calls the asynchronous
CL PGM specified in the user data record bytes 3 through 11.

Define the CREATX call arguments as follows:

VG RECORD
The maximum record length is 4095 bytes for OS/400
CREATX calls.

Bytes 1 through 2 is the length of the VisualGen data being
passed, plus 10 for the length field and the program name
field. Bytes 3 through 11 is the name of the asynchronous
program. Bytes 12 through 4095 is the actual VisualGen
user data.

PRID A 4-byte char field with the value of the output queue used
for the asynchronous job. The default value is VGEN. (This
output queue must be defined before executing the first
CREATX call.)

RECIP This parameter is not used in AS/400 CREATX, but should
be specified for environment compatibility.

Windows-OS/2
Smalltalk (GUI)

The prid and recip arguments are ignored if specified.

Windows Java
(GUI)

Not supported.

OS/2 (C++) Same as Windows-OS/2 Smalltalk (GUI).

AIX Same as Windows-OS/2 Smalltalk (GUI).

CREATX

Chapter 16. Services 681

Environment Compatibility Considerations

CICS for AIX Be sure to follow the 4-byte CICS transaction code by 4 bytes of
blanks in the transaction name field in the request record.

The CREATX results in a CICS START command being issued for
the indicated transaction. The START command is issued with or
without an associated terminal, depending on the contents of recip.

If recip is omitted, the started transaction is associated with the
current terminal. The value of prid is ignored.

If recip is not binary zeros, it must contain the terminal ID to be
associated with the transaction being started. It can be either a
terminal or a printer ID. It is not recommended that this be the
current terminal. Use XFER to start a new transaction on the current
terminal. The value of prid is ignored.

The started transaction must have a PCT entry for the program. If
the started transaction is not a VisualAge Generator program, it
must issue a CICS RETRIEVE to get the passed work area.

The prid argument is ignored if specified.

The CREATX results in a CICS START command being issued for
the indicated transaction. The transaction is started without an
associated terminal.

Refer to CICS for MVS/ESA for a list of return codes in EZERT8 if
the REPLY option is specified on the CALL.

HP-UX Same as Windows-OS/2 Smalltalk (GUI).

Solaris Same as Windows-OS/2 Smalltalk (GUI).

CREATX

682 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

CICS for Solaris Be sure to follow the 4-byte CICS transaction code by 4 bytes of
blanks in the transaction name field in the request record.

The CREATX results in a CICS START command being issued for
the indicated transaction. The START command is issued with or
without an associated terminal, depending on the contents of recip.

If recip is omitted, the started transaction is associated with the
current terminal. The value of prid is ignored.

If recip is not binary zeros, it must contain the terminal ID to be
associated with the transaction being started. It can be either a
terminal or a printer ID. It is not recommended that this be the
current terminal. Use XFER to start a new transaction on the current
terminal. The value of prid is ignored.

The started transaction must have a PCT entry for the program. If
the started transaction is not a VisualAge Generator program, it
must issue a CICS RETRIEVE to get the passed work area.

The prid argument is ignored if specified.

The CREATX results in a CICS START command being issued for
the indicated transaction. The transaction is started without an
associated terminal.

Refer to CICS for MVS/ESA for a list of return codes in EZERT8 if
the REPLY option is specified on the CALL.

Windows NT
(C++)

Same as Windows-OS/2 Smalltalk (GUI).

CREATX

Chapter 16. Services 683

Environment Compatibility Considerations

Windows NT
(Java)

The prid and recip arguments are ignored if specified.

CREATX may only be used for UI records and local Java Server
Programs.

Java programs can only use CREATX to start other VAGen Java
programs. The program created using CREATX will run in a
separate JVM, using the command specified in the property
vgj.java.command. The default command is java.

The package of a program created using CREATX comes from the
package attribute in the linkage table used at generation. If it is not
supplied, it defaults to the package of the calling program.

If the REPLY option is specified on the CALL, and a new JVM
cannot be created or an error occurs while passing the record to the
new program, EZERT8 will contain 00000001. If the new JVM can be
created and the record is successfully passed to the new program,
EZERT8 will contain 00000000. Note that it is possible for EZERT8
to contain 00000000 even if the new program fails to run.

CICS for
Windows NT

Same as CICS for AIX.

Test Facility None.

CSPTDLI

CSPTDLI enables you to issue any DL/I call that is supported by the
execution environment.

ÊÊ
CALL

CSPTDLI function
,pcbno

»

,

additional_argument
; ÊÍ

Attribute Description

function The name of a 4-character variable or a literal containing a DL/I
function code.

pcbno The name of a 2-byte binary variable containing the number of the
PCB to be used on the DL/I or IMS/DC call. The I/O PCB is PCB 0.
All other PCBs are numbered according to the order in which they
appear in the PSB.

CREATX

684 VisualAge Generator: Programmer’s Reference

Attribute Description

additional_argumentA DL/I call parameter. The additional_argument parameter can be a
character, mixed literal or DBCS literal, record, map, or data item.
The definition and contents of the additional_argument must match
the definition of the parameters that are required for the function
code. Certain CSPTDLI calls may not require additional arguments.
If a CSPTDLI call requires additional arguments, the first
additional_argument is always treated as the IO area. You can
specify a maximum of 18 arguments on the call. Up to 15
additional_arguments are allowed following the function, pcbno and
IO area arguments.

Definition considerations for CSPTDLI
You can use the CSPTDLI service to execute any DL/I function, including
those supported through I/O options or special function words. In a specific
environment, only those DL/I functions that are supported in the
environment execute correctly. DL/I returns a nonblank status code in the
PCB for calls that are not supported in the execution environment.

To check the status information returned by DL/I or IMS/DC after the call,
the program should move the PCB to a working storage area using the
EZEDLPCB special function word.

A PSB is required for the program to use CSPTDLI.

VisualAge Generator does not validate the DL/I call. You must code a valid
DL/I call.

Target environments for CSPTDLI

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CSPTDLI

Chapter 16. Services 685

Environment Compatibility Considerations

CICS for
MVS/ESA

Do not use CSPTDLI to schedule (PCB function code) or release
(TERM function code) a PSB. VisualAge Generator automatically
handles PSB scheduling.

Only DB PCBs can be used with CSPTDLI in the CICS environment.
Specify the PCB number based on the order of the PCB in the PSB
part definition.

DL/I call parameters must be 24-bit addressable if IMS/VS is the
product that supports DL/I calls. The IMS/ESA installation option
must be set to No if you use IMS/VS with VisualAge Generator
Server for MVS, VSE, and VM. Refer to the VisualAge Generator
Server Guide for MVS, VSE, and VM document for information on
setting the IMS/ESA installation option.

MVS/TSO None.

MVS batch None.

IMS/VS Do not use the following in a transaction program or in a batch
program that is called by a transaction program:
v Get unique or insert call to the I/O PCB
v ROLB call
v CHKP call

IMS BMP None.

CICS for
VSE/ESA

Do not use CSPTDLI to schedule (PCB function code) or release
(TERM function code) a PSB. The generated program automatically
handles PSB scheduling.

Specify the PCB number based on the order of the PCB in the PSB
part definition. Do not adjust the number for any TP PCBs in the
PSB part definition that are not included in the DL/I DOS/VS PSB.

Only function codes that are supported by DL/I DOS/VS execute
correctly. Refer to the DL/I DOS/VS program programming manual
for a description of the supported codes.

VSE batch Only function codes that are supported by DL/I DOS/VS execute
correctly. Refer to the DL/I DOS/VS program programming manual
for a description of the supported codes.

Specify the PCB number based on the order of the PCB in the PSB
part definition. Do not adjust the number for any TP PCBs in the
PSB part definition that are not included in the DL/I DOS/VS PSB.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

CSPTDLI

686 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

Windows Java
(GUI)

Not supported.

OS/2 (C++) Not supported.

AIX Not supported.

CICS for AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility Calls to I/O or TP PCBs using CSPTDLI cannot be tested or
emulated on the workstation. DL/I calls that access IMS message
queues or fast path databases cannot be tested under the test facility.
You must set up the local DL/I database or remote DL/I
communications link before testing DL/I access. Refer to the
VisualAge Generator User’s Guide for more information.

Examples for CSPTDLI
Example 1

The example uses the restart (XRST) IMS DL/I function.

Note: You can restore up to 7 data areas. This example only uses one. The
example also assumes that you would specify the checkpoint ID in the
PARM field of the program’s JCL, not by coding it in the program.

To issue a restart (XRST) call in a batch-oriented BMP:
1. Define the following data items:

Table 28. Data items for CSPTDLI example

Name Type Length Description

IOPCBNUM BIN 2 Number of the I/O
PCB

IOASIZE BIN 4 Size of the I/O area
(record in message
queue)

CSPTDLI

Chapter 16. Services 687

Table 28. Data items for CSPTDLI example (continued)

Name Type Length Description

CHKPID CHA 8 Checkpoint ID

AREALEN1 BIN 4 Length of first data
area

DATA CHA 50 First data area to
restore

2. Type the following sample code in your program:
/* initialize values */

MOVE 0 TO IOPCBNUM;
MOVE 12 TO IOASIZE;
MOVE 50 TO AREALEN1;
MOVE " " TO CHKPID;

CSPTDLI "XRST",IOPCBNUM,IOASIZE,CHKPID,AREALEN1,DATA;
MOVE EZEDLPCB[0] TO IOPCB; /* Using item in DLIIOPCB record */

/* that VisualAge Generator */
/* ships, then check status */
/* codes and checkpoint ID */

Example 2

The example uses CSPTDLI to perform the equivalent of an INQUIRY
function, retrieving the record where employee number equals 20.

Note: You should use the INQUIRY function with a modified segment search
argument when you want to implement the functionality of the
example in other circumstances.

To issue a get unique (GU) call:
1. Define the following data items:

Table 29. Data items for CSPTDLI example

Name Type Length Description

FUNC_CODE CHA 4 Function code

PCB_NO BIN 2 Number of the I/O
PCB

RD03NMED RECORD 100 I/O area

SSA_1 CHA 26 SSA string

2. Type the following sample code in your program:
/* initialize values */
MOVE 'GU ' TO FUNC_CODE;
MOVE 3 TO PCB_NO;
MOVE 'RD03NMED(EMPNO EQ000020)' TO SSA_1;

CSPTDLI

688 VisualAge Generator: Programmer’s Reference

/* actual CSPTDLI call - will retrieve the data with employee */
/* number equal to 20 and place it in the ioarea, RD03NMED. */
CALL CSPTDLI FUNC_CODE, PCB_NO, RD03NMED, SSA_1;

EZCHART

EZCHART enables you to access the Interactive Chart Utility (ICU) of the
Graphic Data Display Manager (GDDM) from a VisualAge Generator
program.

Uses
A call to EZCHART is essentially a call to a non-VisualAge Generator
program that converts the X and Y axis data to floating point and passes it on
to the ICU. Some parameter checking is done in EZCHART and return codes
are set accordingly. The ICU does not return any information to the calling
program. All facilities normally available in the ICU are available to the
VisualAge Generator program user.

Definition considerations for EZCHART
Some knowledge of the ICU is useful when using EZCHART. Refer to the
Presentation Graphics Feature (PGF) Reference for more information on the ICU.
The introduction explains many of the terms used, and the CALL description
gives an explanation of the parameters passed by VisualAge Generator Server
for MVS, VSE, and VM.

A VisualAge Generator program that uses EZCHART can be one that prompts
the program user for data through several maps, then puts that data into the
necessary format and shows the result to the program user in chart form.
From there, the program user might be allowed to alter the chart, depending
upon the DISPLAY option that was indicated in the parameter list by the
VisualAge Generator program. Programs that allow an interactive session with
the ICU, assume that the program user is familiar the ICU, because VisualAge
Generator has no control over the ICU session.

A VisualAge Generator program can be programmed to collect and rearrange
user data and then print the results in chart form, possibly with several types
of charts incorporating the same data. In which case, the use of EZCHART
may be entirely transparent to the program user, because PRINT might be an
option from a VisualAge Generator map that causes a CALL to EZCHART
with the PRINT option and then returns to the VisualAge Generator program.

Analysts can use the VisualAge Generator programs to enter the ICU with
collected data and modify the charts. These charts can then be used in other
VisualAge Generator programs.

CSPTDLI

Chapter 16. Services 689

The option to display a chart with no ICU session can be useful for
demonstrations and meetings, especially if the output can be projected on a
large screen.

Parameters for EZCHART
You can optionally specify the CALL statement before EZCHART. The
following parameters must be specified after EZCHART in the following
order:
1. Return code
2. Chart control
3. Data control
4. X-axis data
5. Y-axis data
6. Keys
7. Labels
8. Heading

Return code, chart control, and data control are required parameters. Other
parameters are optional.

You can leave out unused parameters from the end of the list when calling
EZCHART and the dummy data is passed to ICU, but parameters cannot be
left out of the middle of the list. For example, when labels are to be used,
XDATA must still be passed even though the information in this record will
not be used.

Parameter List Validation
EZCHART takes the passed parameter list and does the following:
v Checks the number of actual parameters passed against the information in

Chart Control. For example, if the KEYL field in Chart Control is not zero,
all parameters up through the KEYS parameter must be present.

v The X-axis and Y-axis data are converted to floating point data. However, if
the LABEL field is not zero, the X-axis data is ignored, because the label
data is used to build the chart.

Return code parameter for EZCHART
Return code is a 4-byte numeric field for completion code. This field cannot
be defined as binary, and should be checked for a non-zero value upon return
from the call to EZCHART.

The following error return codes can be received from EZCHART:

2 One or more of the 3 required parameters was not passed, or:
KEYL > 0, but no KEYS record was passed, or:
LABELL > 0, but no LABELS record was passed, or:
HEADINGL > 0, but no HEADING record was passed, or:
PAIRING > 0, but no XDATA was passed.

EZCHART

690 VisualAge Generator: Programmer’s Reference

3 Unable to get storage for X or Y parameters

4 Overflow on floating point conversion

8 Missing printer copies

9 Missing printer name

10 Load or link to GDDM failed

Chart control parameter for EZCHART
Chart control is a structure of specified format containing control information
necessary to run the ICU session:

LEVEL
Binary item with length of 9 (BIN 4 bytes) which must be 0

DISPLAY
BIN 4 bytes; a number from 0 to 7 controlling the ICU session

The DISPLAY portion of the Chart Control parameter controls the
type of ICU session that is invoked. There are eight DISPLAY options
offered by the ICU; All are supported transparent to VisualAge
Generator:

DISPLAY=0
This option builds a Chart Data File using the data supplied
in the other parameters. No ICU session is started and no
chart is built.

DISPLAY=1
This option enters the ICU at the home panel, having
initialized the chart and data formats using the parameters
passed.

DISPLAY=2
This option displays the requested chart with the data passed
from the program, and then allows the program user to use
the ICU facilities interactively to modify and save the chart.

DISPLAY=3
This option displays the requested chart with the data passed
from the program, but limits the program user’s access to the
ICU menus.

DISPLAY=4
This is the print option that prints the specified map on the
specified device and returns control to the program.

DISPLAY=5
This option uses the parameters to construct a chart, but no
device I/O is performed.

EZCHART

Chapter 16. Services 691

DISPLAY=6
This option is the same as option 5, except the user can
modify the chart.

DISPLAY=7
This option builds a chart from the parameters passed and
sends it to the current output device. No ICU menu panels are
used.

HELP BIN 4 bytes; possible values are 0 and 1, where 1=help information is
on the panel when it first appears

ISOLATE
BIN 4 bytes; possible values are 0 and 1, where 0=user can SAVE and
RESTORE in ICU session

FORMNAME
8-character name of a previously defined chart format, or an asterisk
to indicate a line graph

DATANAME
8-character name of previously saved data or asterisk to indicate that
data is being passed on the CALL

If DATANAME is equal to an asterisk, you must pass Y-axis data on a
call to EZCHART. Otherwise, unpredictable results can occur.

PAIRING
BIN 4 bytes; possible values are 0 and 1, where 1=passed data that is
paired

NG BIN 4 bytes; number of groups in the data being passed

NE BIN 4 bytes; maximum number of elements in any group

KEYL BIN 4 bytes; length of keys passed

LABELL
BIN 4 bytes; length of labels passed as X-axis data

HEADINGL
BIN 4 bytes; length of character string heading

PRTNAME
8-character name of local print destination

PRTDEP
BIN 4 bytes; depth of chart on printer

PRTWID
BIN 4 bytes; width of chart on printer

PRTCOPY
BIN 4 bytes; number of copies to be printed.

EZCHART

692 VisualAge Generator: Programmer’s Reference

Data control parameter for EZCHART
Data control is an array of items that indicate the number of elements in each
chart group. This must be a separate record definition, defined as BIN 4 bytes,
with the OCCURS value set to the number of groups (NG) as specified in the
control chart. The ICU facility requires data that is passed to be in short
floating point form. You need not be familiar with this form, but you should
be aware that some loss of precision might occur in the conversion of
fractional parts of numbers, due to truncation.

X-axis data parameter for EZCHART
A record definition, with:
v An item defined as BIN 4 bytes containing the length of the field.
v An item defined as BIN 4 bytes containing the number of decimal places.
v A NUM item in which the X-axis data is passed. The length in bytes is the

value of the first item in the record. The number of occurrences is the sum
of all elements for all the groups.

Y-axis data parameter for EZCHART
A record definition, with:
v An item defined as BIN 4 bytes containing the length of the field.
v An item defined as BIN 4 bytes containing the number of decimal places.
v A NUM item in which the Y-axis data is passed. The length in bytes is the

value of the first item in the record. The number of occurrences is the sum
of all elements for all the groups.

Missing data values in the X-axis and Y-axis: The ICU provides a means for
indicating missing data values in the X-axis and Y-axis arrays. If you want to
specify missing data values in your EZCHART call, you must move blanks to
any array elements for which there is no data available. To do this, you must
substructure your array elements as character fields as shown in the following
example:
Item Name Level Occurs Type Length Dec Bytes

YLENG 10 1 BIN 9 0 4
YDEC 10 1 BIN 9 0 4
YITEMS 10 xx NUM yy zz yy
Y-MISSING 15 1 CHA yy zz yy

In the example, xx is the number of items specified in the Data Control
record, yy is the value in YLENG, and zz is the value in YDEC. Any missing
values can be set by the following statement:
MOVE ' ' to Y-MISSING[subscript];

The EZCHART routine passes these values to the ICU as 10 raised to the
power of 72. The ICU recognizes this value as an indicator of a missing data
value. Refer to the Presentation Graphics Feature (PGF) Reference to determine
the effects on different types of charts.

EZCHART

Chapter 16. Services 693

When using paired data, do not specify missing values in the X-axis array. A
GDDM error will occur.

Keys parameter for EZCHART
Is a record containing an array of keys for data groups to be used in building
a chart. There must be as many keys as there are groups in the chart. This
item must be in a separate record and must be defined as CHA with key
length specified in Chart Control and OCCURS as the number of groups
specified in Chart Control.

Labels parameter for EZCHART
Is a record containing an array of character strings that relate to labels along
the X-axis of certain types of charts (bar, pie, etc.) that are used instead of
X-axis data in building the chart. This item must be in a separate record and
must be defined as CHA with label length specified in Chart Control and
OCCURS as the number of elements specified in Chart Control.

Heading parameter for EZCHART
Is a record containing a character string that is used to build a heading on the
requested chart. This must be a record defined as CHA (heading length
specified in Chart Control).

Target environments for EZCHART

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for
MVS/ESA

None.

MVS/TSO None.

MVS batch Not supported.

IMS/VS Not supported.

IMS BMP Not supported.

CICS for
VSE/ESA

None.

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

EZCHART

694 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations

OS/2 (C++) Not supported.

AIX Not supported.

CICS for AIX Not supported.

HP-UX Not supported.

Solaris Not supported.

CICS for Solaris Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Test Facility None.

Examples for EZCHART
To issue a call to EZCHART, you must first define the following records:
1. WS_RECD - Working storage record for EZCHART example

Item Name Level Occurs Type Bytes Description
Return_code 77 1 NUM 4 /* 0=CALL was successful */

2. CHART_CTRL_RECD - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Description
LEVEL 10 1 BIN 4 /* Must be zero */
DISPLAY 10 1 BIN 4 /* ICU access control number */
HELP 10 1 BIN 4 /* 0=PFkey info not displayed */
ISLATE 10 1 BIN 4 /* 0=User can save and restore */
FORM 10 1 CHA 8 /* Name of saved chart or '*' */
DATA 10 1 CHA 8 /* Name of saved data or '*' */
PAIRING 10 1 BIN 4 /* 1=Paired data (x and y) */
NGRPS 10 1 BIN 4 /* Number of data groups */
NELEMS 10 1 BIN 4 /* Number of data elements (max)*/
KEYL 10 1 BIN 4 /* Length of keys passed */
LABELL 10 1 BIN 4 /* Length of labels passed */
HDINGL 10 1 BIN 4 /* Length of heading */
PRTNM 10 1 CHA 8 /* Local print destination name */
PRTDEP 10 1 BIN 4 /* Depth of chart on printer */
PRTWID 10 1 BIN 4 /* Width of chart on printer */
PRCOPY 10 1 BIN 4 /* Number of copies to print */

3. DATA_CTRL_RECD - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Description
DCNTL 10 ? BIN 4 /* Number of elements in each */

/* group. */
/* Occurs = value of */
/* CHART_CTRL_RECD.NGRPS */

EZCHART

Chapter 16. Services 695

4. X_DATA_RECD - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Dec Description
XLENG 10 1 BIN 4 0 /* Total length of field */
XDEC 10 1 BIN 4 0 /* Number of decimal places */
XITEMS 10 ? NUM ? ? /* Array of X-items, */

/* Occurs= total of all DCNTL */
/* ... + DCNTL[n] */
/* items in DATA_CT */
/* ... RL_RECD */
/* Bytes = value of XLENG */
/* Dec = value of XDEC */

5. Y_DATA_RECD - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Dec Description
YLENG 10 1 BIN 4 0 /* Total length of field */
YDEC 10 1 BIN 4 0 /* Number of decimal places */
YITEMS 10 ? NUM ? ? /* Array of Y-items, */

/* Occurs= total of all DCNTL */
/* ... + DCNTL[n] */
/* items in DATA_CT */
/* ... RL_RECD */
/* Bytes = value of YLENG */
/* Dec = value of YDEC */

6. KEY_ARRAY - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Description
KEYARR 10 ? CHA ? /* Occurs = value of */

/* CHART_CTRL_RECD.NGRPS */
/* Bytes = value of */
/* CHART_CTRL_RECD.KEYL */

7. LABEL_ARRAY - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Description
LABLAR 10 ? CHA ? /* Occurs = value of */

/* CHART_CTRL_RECD.NELEMS */
/* Bytes = value of */
/* CHART_CTRL_RECD.LABELL */

8. HEAD_RECD - Working storage record for EZCHART example
Item Name Level Occurs Type Bytes Description
HEAD 10 1 CHA ? /* Bytes = value of */

/* CHART_CTRL_RECD.HDINGL */

Initialize the data values in the records used as parameters. Then call
EZCHART using the following:
CALL EZCHART RETURN_CODE, CHART_CTRL_RECD, DATA_CTRL_RECD,

X_DATA_RECD, Y_DATA_RECD, KEY_ARRAY, LABEL_ARRAY,
HEAD_RECD;

EZCHART

696 VisualAge Generator: Programmer’s Reference

RESET

The RESET service is equivalent to the EZEROLLB special function word.
However, the syntax for using RESET is different than the syntax for using
EZEROLLB.

ÊÊ
CALL

RESET ; ÊÍ

Refer to EZEROLLB for further information.

RESET

Chapter 16. Services 697

RESET

698 VisualAge Generator: Programmer’s Reference

Part 3. Appendixes

© Copyright IBM Corp. 1980, 2000 699

700 VisualAge Generator: Programmer’s Reference

Appendix A. Reading syntax diagrams

The syntax diagrams used throughout the documentation conform to the
following conventions:
v The keywords can be listed in any order.

The ÊÊ─── symbol indicates the beginning of a statement.
The ───Ê symbol indicates that the statement syntax is continued on the
next line.
The Ê─── symbol indicates that a statement is continued from the previous
line.
The ───ÊÍ symbol indicates the end of a statement.
A syntax diagram that does not show the complete statement starts with
the Ê─── symbol and ends with the ───Ê symbol. The >>─── symbol
indicates the beginning of a statement.
A syntax diagram that show the complete statement starts with the ÊÊ───
symbol and ends with the ───ÊÍ symbol.

v Required items appear on the horizontal line (the main path).

ÊÊ STATEMENT required-item ÊÍ

v Optional items appear below the main path.

ÊÊ STATEMENT
optional-item

ÊÍ

v Items positioned above the syntax diagram line are default parameters.

ÊÊ
default-item1

STATEMENT
optional-choice2

ÊÍ

v If you can choose from two or more items, these items appear vertically, in
a stack.
If you must choose an item in the stack, one of the required items appears
on the main path.

ÊÊ STATEMENT :kwd required-choice1
:kwd required-choice2

ÊÍ

© Copyright IBM Corp. 1980, 2000 701

If choosing one of the items is optional, the entire stack appears below the
main path.

ÊÊ STATEMENT
optional-choice1
optional-choice2

ÊÍ

v An arrow returning to the left above the item indicates an item that you
can repeat. Required items appear on the main line and optional items
appear below the main line.

ÊÊ STATEMENT repeatable-item ÊÍ

A repeat arrow indicates that you can make more than one choice from the
grouped items, or repeat a single item.

v Keywords appear in uppercase (for example, PARM1). However, they can be
uppercase or lowercase when they are entered. They must be spelled
exactly as shown. Variables and acceptable values appear in all lowercase
letters (for example, parmx). They represent names or values that you
supply.

v If punctuation marks, parentheses, arithmetic operators, or other symbols
are shown, you must enter them as part of the syntax.

702 VisualAge Generator: Programmer’s Reference

Appendix B. Naming conventions for data item, record,
function names

The following are the naming conventions for data item, record, and function
names:

Maximum length
18 (for record and function)

Maximum length
32 (for data item)

First character
alphabetic (A-Z) or one of the valid national characters for your
workstation

See National characters for a description of national characters in part
names.

Other characters
alphanumeric (A-Z, 0-9), underscore (_), hyphen (-), or one of the
valid national characters for your workstation

DBCS name
Yes, maximum length: 8 (for record and function)

DBCS name
Yes, maximum length: 15 (for data item)

See DBCS naming conventions for a description of DBCS part names.
v An asterisk can be used as the data item name in any data structure. This

type of data item is called a filler data item, which cannot be referenced by
the program. It acts as a space holder in a data structure.

v A data item name can be used only once within a single data structure.

The following conventions apply to all part names:
v Part names cannot begin with the EZE prefix.
v Part names cannot contain embedded blanks.

To avoid aliases being assigned during COBOL generation and to improve the
readability of the generated COBOL program, use a name that meets the
following COBOL naming conventions:
v Use 30 characters or less in data item names.
v Do not use COBOL reserved words.
v Do not use @, #, $, or _ characters.
v Do not use DBCS names for record or function names.

© Copyright IBM Corp. 1980, 2000 703

v Do not use DBCS names for data item names if your program contains SQL
functions.

Data items in DL/I records: Data item names used in DL/I records are
limited to 8 characters. They cannot be DBCS
names or contain hyphens or underscores. To use
long names for data items in a DL/I record,
define a redefined record for the DL/I segment
and use long names for the fields in the
redefined record. Use the DL/I segment
definition only as the I/O object and in defining
DL/I calls.

National characters

By default, the English language version of VisualAge Generator recognizes
the following three code points as valid national characters in part names:

Code point
Symbol

Hex 24
Dollar sign ($)

Hex 23
Number or pound sign (#)

Hex 40
At sign (@)

The set of national characters you can use might differ from those in the list
above, depending on the following:
v Whether you are using a language version other than English
v Whether you have customized the national characters in the EZERDEV.NLS

file for your workstation

Note: Avoid using these characters if the program you are developing will be
exported or generated for another code page.

Refer to the VisualAge Generator Installation Guide document for more
information about valid national characters.

DBCS naming conventions

VisualAge Generator supports DBCS names for any part with a name that can
be longer than 8 characters. A valid DBCS name must meet the following
conditions:
v The DBCS part name can contain only DBCS characters.

704 VisualAge Generator: Programmer’s Reference

v The DBCS part name cannot contain SBCS characters.
v The DBCS part name cannot contain a DBCS blank.
v The maximum number of DBCS characters in a name is shown in the

following table:

PART NAME MAXIMUM

Function 8

Record 8

Data item 15

v A DBCS name must contain at least one DBCS character that does not have
a SBCS equivalent (non-42nd-ward DBCS character). The only valid
SBCS-equivalent (42nd-ward) DBCS characters are as follows:
– double-byte A through Z (.A — .Z)
– double-byte 0 through 9 (.0 — .9)
– double-byte @, #, $, _ and - (hyphen)

Double-byte lowercase characters a-z are folded to double-byte uppercase
A-Z when used in a DBCS name.

Note: A 42nd-ward DBCS character contains Hexadecimal 42 in the first byte
when translated to EBCDIC.

The following table shows DBCS names that are valid and not valid:

VALID DBCS NAMES NOT VALID DBCS NAMES

.CDi.B .A.B.C

DiDjDk AB.C

v Do not use a DBCS name for a function or record.
v Do not use a DBCS name for a data item name if your program contains

SQL functions.

Appendix B. Naming conventions for data item, record, function names 705

706 VisualAge Generator: Programmer’s Reference

Appendix C. Size restrictions and record lengths

Size limitations for VisualAge Generator

Table 30 outlines size limitations for VisualAge Generator. Refer to specific
language element compatibility considerations for additional environmental
restrictions.

Table 30. Size Limitations for VisualAge Generator

Definition Limitations

Number of Data items 32767 data items and literals per program

Data items 32767 bytes in record definition

32730 bytes in record definition (OS/400 only)

254 bytes in table definition

8000 bytes for printer maps (IMS only)

1 byte less than map size for terminal maps (IMS only)

990 data items per record

Map Constant Field 255 bytes (IMS only)

Working Storage 32767 bytes if used in an XFER or DXFR statement

32730 bytes maximum, regardless of XFER or DXFR
(OS/400 only)

Numeric Items 18 digits

Decimal Places 18 digits (included within numeric item size)

Subscripting One level

Number of Occurrences 32767 in record definition

32730 in record definition (OS/400 only)

Maximum Table 524288 bytes for MVS, VM, VSE, or non-shared tables
on CICS for OS/2

64K bytes for shared tables on CICS for OS/2

On OS/400, table rows are limited to 32,767 bytes, total
table contents is limited to 3 mega bytes.

Maximum Number of
Variable fields on a Map

800 on CICS for OS/2

Primary Table Columns 700 top level data items

© Copyright IBM Corp. 1980, 2000 707

Table 30. Size Limitations for VisualAge Generator (continued)

Definition Limitations

Numeric Literals 18 digits plus 1 sign, 1 decimal point, or both

Comments 60 characters of comment per prologue line

73 characters of comment per line or statement

CALL Parameters Limit of 30 arguments

Number of Main Functions 254 per program

Number of lines in an SQL
statement

819

Maximum record lengths

Tables in this section identify the maximum record lengths available in
VisualAge Generator.

In relation to web transactions, a web page can be presented so long as the
following is true of the UI record from which the web page is derived:
record_size + (total_occurs * 8) <= 32344

where

record_size is the number of bytes
in the record data.

total_occurs is the total number of
occurrences in the record; for example, if the record
has two items, each with occurs = 1, and one item with
occurs = 5, the value of total_occurs is 7.

Table 31. Maximum record lengths by environment when using an XFER statement

Environment XFER with Record XFER with Record and Map

VM CMS 32767 32767

VM batch 32767 XFER not supported

CICS (main or main
batch)

32763 (limit set by
CICS)

32753 (Main only) - (32763 - 10 bytes
reserved for VisualAge Generator Server
for MVS, VSE, and VM)

MVS/TSO (main or
main batch)

32767 32767 (Main only)

MVS batch (main
batch)

32767 XFER not supported

IMS/VS (main) 32753 32753

708 VisualAge Generator: Programmer’s Reference

Table 31. Maximum record lengths by environment when using an XFER
statement (continued)

Environment XFER with Record XFER with Record and Map

IMS/VS (main
batch)

XFER not supported XFER not supported

IMS BMP (main
batch)

32767 XFER not supported

OS/400 (main or
main batch)

32730 32730

VSE batch 32767 XFER not supported

OS/2 32767 XFER not supported

Windows NT 32767 XFER not supported

AIX 32767 XFER not supported

HP-UX 32767 XFER not supported

Solaris 32767 XFER not supported

Table 32. Maximum record lengths by environment when using a DXFR statement

Environment DXFR with Record

VM CMS 32767

VM batch 32767

CICS 32763

MVS/TSO 32767

MVS batch 32767

IMS/VS 32767

IMS BMP 32767

VSE 32767

OS/400 32730

VSE batch 32767

OS/2 32767

Windows NT 32767

AIX 32767

HP-UX 32767

Solaris 32767

Appendix C. Size restrictions and record lengths 709

Table 33. Maximum record lengths for serial, relative, indexed, message queue and
working storage records by environment

Environment
Serial, Relative, Indexed, Message Queue
and Working Storage Records

CICS (VSAM) 32763 (32688 for journaled records)

9999 for serial and indexed records on
CICS for OS/2

4092 for relative records on CICS for OS/2

CICS (TD queue) 32763 (32767 on CICS for OS/2)

CICS (TS queue) 32762

CICS (Spool) 32763

IMS/VS (message queue) 32755 (32767 - 2 bytes for LL, 2 bytes for
ZZ, and 8 bytes for transaction name)

(IMS/VS Main can only ADD to a
message queue)

IMS BMP (main batch) 32755 (32767 - 2 bytes for LL, 2 bytes for
ZZ, and 8 bytes for transaction name)

OS/400 32730

Table 34. The maximum audit data length for a record by environment

Environment Audit Data Length

CICS 32763

MVS batch (with DL/I) 32765 (32767 - 2 bytes ZZ)

IMS/VS (with DL/I) 32765 (32767 - 2 bytes ZZ)

IMS BMP (with DL/I) 32765 (32767 - 2 bytes ZZ)

Table 35. The maximum CREATX data length for a record by environment

Environment CREATX Data Length

CICS 32763

IMS/VS 32765 (32767 - 2 bytes ZZ)

IMS BMP 32765 (32767 - 2 bytes ZZ)

710 VisualAge Generator: Programmer’s Reference

Index

A
ADD I/O option 109
AID value 384
allow implicits 59
alternate specification 152
array

map array 339
variable field 339

assignment statement 399
AUDIT service routine 672

B
binary data items (Bin) 229
bypass edit keys 60, 284

C
CALL statement 407
called batch program 77
called parameter list 61
called transaction program 77
character data items (Char) 230
check SO/SI space 257
CLOSE I/O option 112
color attribute 319
column definition 197, 198
COMMIT service routine 675
comparison value item 95
constant field 312

DBCS 314
mixed 316

contents definition 198
CONVERSE I/O option 116
CREATX service routine 675
CSPTDLI service routine 684
currency 259
currency symbol 260

D
data item 387

bytes 216
decimal places 218
definition 215
description 218
key (SQL) 218
length 219
level 220
name 222
occurrences in a record 223
read-only 223
scope 224

data item 387 (continued)
SQL column name 225
SQL data code 226
syntax 387
type 228

binary 229
character 230
DBCS 232
hexadecimal 233
mixed 233
NUMC 236
numeric 235
PACF 238
packed 238
Unicode 239
zoned decimal 236

UI type 241
form 243
hidden 246
input 247
Input/none 249
input/output 248
Input/submit 253
output 250
program link 251
submit bypass 255

usage 224
data item edits

UI record 256
data types, VisualAge Generator

extensions
Boolean-VAGen 29
Date-VAGen 29
DBCS Only-VAGen 29
Number-VAGen 29
Time-VAGen 29

database identifier, DL/I call 89
DBCS constant field 314
DBCS data items (DBCS) 232
DBCS name conventions 704
declare cursor with hold 140
default HTML generation 177
default key item (SQL) 154
default selection conditions

(SQL) 155
DELETE I/O option 118
device selection 286
DISPLAY I/O option 119
DL/I call 88

DL/I call 88 (continued)
database identifier 89
scan for update 90
scan in parent 91
segment search argument 92

DL/I segment 165
DXFR statement 414

E
edit function 261
edit table 264
edit type 262
edits 256
EXECUTE I/O option 120
execution mode 63
execution time statement build 141
EZCHART service routine 689
EZE words

DL/I 529
object scripting 665
SQL 604
user interface 669

EZEABS 645
EZEACOS 646
EZEAID 476
EZEAPP 479
EZEASIN 646
EZEATAN 647
EZEATAN2 648
EZEBYTES 481
EZEC10 501
EZEC11 503
EZECEIL 648
EZECLOS 481
EZECNVCM 483
EZECOMIT 485
EZECONCT 490
EZECONV 497
EZECONVT 499
EZECOS 649
EZECOSH 649
EZEDAY 504
EZEDAYL 505
EZEDAYLC 505
EZEDEST 507
EZEDESTP 522
EZEDLCER 529
EZEDLCON 531
EZEDLDBD 533
EZEDLERR 535

© Copyright IBM Corp. 1980, 2000 711

EZEDLKEY 537
EZEDLKYL 539
EZEDLLEV 541
EZEDLPCB 543
EZEDLPRO 547
EZEDLPSB 549
EZEDLRST 553
EZEDLSEG 555
EZEDLSSG 557
EZEDLSTC 559
EZEDLTRM 561
EZEDTE 562
EZEDTEL 563
EZEDTELC 564
EZEEXP 650
EZEFEC 565
EZEFLADD 651
EZEFLDIV 651
EZEFLMOD 652
EZEFLMUL 653
EZEFLO 566
EZEFLOOR 653
EZEFLSET 654
EZEFLSUB 654
EZEFREXP 655
EZEG10 567
EZEG11 568
EZELDEXP 656
EZELOC 570
EZELOG 656
EZELOG10 657
EZELTERM 572
EZEMAX 657
EZEMIN 658
EZEMNO 574
EZEMODF 658
EZEMSG 577
EZEMSG message field 336
EZENCMPR 659
EZEOVER 578
EZEOVERS 581
EZEPOW 660
EZEPRCSN 660
EZEPURGE 581
EZERCODE 583
EZEREPLY 585
EZEROLLB 587
EZEROUND 661
EZERT2 592
EZERT8 592
EZERTN 590
EZESBLKT 633
EZESCCWS 633
EZESCMPR 634
EZESCNCT 635

EZESCOPY 636
EZESCRPT 665
EZESEGM 600
EZESEGTR 602
EZESFIND 637
EZESIN 662
EZESINH 662
EZESNULT 638
EZESQCOD 604
EZESQISL 606
EZESQLCA 608
EZESQRD3 610
EZESQRRM 611
EZESQRT 663
EZESQWN1 613
EZESQWN6 616
EZESSET 639
EZESTLEN 640
EZESTOKN 640
EZESYS 618
EZETAN 663
EZETANH 664
EZETIM 620
EZETST 620
EZEUIERR 669
EZEUILOC 669
EZEUSR 622
EZEUSRID 625
EZEWAIT 627

F
field attributes 318

color 319
highlight 320
initial cursor field 322
input required 323
light intensity 324
light pen detect 326
modified data tag 328
numeric 330
outlining 331
protection 333
required fill 334

file name 157
fill character 264
FIND statement 419
first map 66
first UI 68
first UI record 244, 251
floating area 288
floating map 290
flow statements 69
fold 266
form 243
form UI type data items 243
function 98

function description 98
function error routine 101
Function invocation statement 421
function key folding 65
function name 101
function specification 85
function words, math 643
function words, string 631
functions 85

local storage list 99
parameter lists 103
return value 106
specification 85

H
help key 293
help key for a program 70
help map group name 71
help map name 294
help text 177
hexadecimal data items (Hex) 233
hidden 246
hidden UI type data items 246
highlight attribute 320
HTML element layout 181

I
I/O error value 389
I/O object 107
I/O option 98, 108

ADD 109
CLOSE 112
CONVERSE 116
DELETE 118
DISPLAY 119
EXECUTE 120
INQUIRY 121
REPLACE 122
SCAN 123
SCANBACK 129
SETINQ 132
SETUPD 133
SQLEXEC 134
UPDATE 136

IF statement 423
indexed 166
initial cursor field 292
initial cursor field attribute 322
initial values 254, 255
input 247
input edit order 177
input/output 248
input/output UI type data

items 248
input required 267
input required attribute 323

712 VisualAge Generator: Programmer’s Reference

input UI type data items 247
INQUIRY I/O option 121
item specification 209

K
keep after use 72
key item (DL/I) 160
key item for SQL row record 218

L
labels 181
layout

HTML elements 181
light intensity attribute 324
light pen detect attribute 326
link parameters 244, 251
local data item definition 215

M
main batch program 77
main function list 73
main transaction program 77
map array 339
map field specification 307
map group 296
map group name 74
map name 298
map position 300
map size 302
map specification 283
match invalid table type 204
match valid table type 204
math function words

defined 643
EZEABS 645
EZEACOS 646
EZEASIN 646
EZEATAN 647
EZEATAN2 648
EZECEIL 648
EZECOS 649
EZECOSH 649
EZEEXP 650
EZEFLADD 651
EZEFLDIV 651
EZEFLMOD 652
EZEFLMUL 653
EZEFLOOR 653
EZEFLSET 654
EZEFLSUB 654
EZEFREXP 655
EZELDEXP 656
EZELOG 656
EZELOG10 657
EZEMAX 657
EZEMIN 658

math function words (continued)
EZEMODF 658
EZENCMPR 659
EZEPOW 660
EZEPRCSN 660
EZEROUND 661
EZESIN 662
EZESINH 662
EZESQRT 663
EZETAN 663
EZETANH 664

maximum record lengths 708
maximum value 268
message field, EZEMSG 336
message queue 168
message table prefix 75

name conventions 203
message table type 205
minimum input 269
minimum value 270
mixed constant field 316
mixed data items (Mixed) 233
model SQL statement

generation 143
modified data tag attribute 328
MOVE statement 432
MOVEA statement 436

N
name 244, 252
naming conventions

data item 703
function 703
record 703

national language characters 704
NLS codes 75, 204
none 249
none UI type data items 249
nonsegmented execution mode 63
number of occurrences item 161
numeric attribute 330
numeric data items (Num) 235
numeric data items (Numc) 236
Numeric Separator 271

O
object scripting EZE words

defined 665
occurrences item 180
open as new window 245, 252
organization

DL/I segment 165
indexed 166
message queue 168
record 165
redefined 170

organization (continued)
relative 171
serial 173
SQL row 174
working storage 182

organization, user interface 175
outlining attribute 331
output 250
output UI type data items 250

P
packed data items (Pacf) 238
packed data items (Pack) 238
parts palette, VisualAge Generator

extensions 3, 30
categories

VAGen Data Parts 4
VAGen Logic Parts 6, 43

features
for Form, Group Box and

Window parts 28
for nonvisual parts (class:

AbtAppBldrPart) 24
for visual parts (class:

AbtAppBldrView) 24
for visual parts (class:

AbtBasicView) 26
for visual parts containing

other visual parts 27
for Window part 28

parts
VAGen Container Details 16
VAGen File Accessor 21
VAGen Function 14
VAGen Program 6
VAGen Record 4
VAGen Table 5
VAGen Variable 19
VAGenFunctionPart 51
VAGenProgramPart 43
VAGenRecordPart 30
VAGenTablePart 31

PCB structure 278
program communication block

(PCB) 277, 278
program link 251
program link properties 244, 251

first UI record 244, 251
link parameters 244, 251

name 244, 252
value item 244, 252

open as new window 245, 252
program 245, 252

program link UI type data
items 251

program name 76

Index 713

program name conventions 76
program specification 57
program specification block

(PSB) 277
program specification block

name 79
program type 77
prologue 79, 199
prologue, record 184
protection attribute 333
PSB name 79
PSB structure 277

R
range match valid table type 205
reading syntax diagrams 701
record 185
record data item UI properties

labels 181
occurrences item 180
selected index item 180

record data structure 190
record data structure SQL 192
record ID item 185
record length item 187
record name 190
record organization 165

DL/I segment 165
indexed 166
message queue 168
redefined 170
relative 171
serial 173
SQL row 174
working storage 182

record organization, user
interface 175

record properties
help text 177
input edit order 177
submit value item 176
UI title 176

record specification 149
redefined 170
redefinition for 191
relational operator for SSA

qualifications 95
relative 171
REPLACE I/O option 122
required fill attribute 334
RESET service routine 697
resident tables 199
RETR statement 439
run edit function on web 272

S
scan for update, DL/I call 90
SCAN I/O option 123
scan in parent, DL/I call 91
SCANBACK I/O option 129
segment search argument, DL/I

call 92
segmented execution mode 63
selected index item 180
serial 173
service routine

AUDIT 672
COMMIT 675
CREATX 675
CSPTDLI 684
EZCHART 689
RESET 697

service routines 671
SET statement 441
SETINQ I/O option 132
SETUPD function name 146
SETUPD I/O option 133
shared tables 201
sign 273
single row select 144
single segment execution mode 63
size limitations for VisualAge

Generator 707
size restrictions and record

lengths 707
SO/SI take position 303
special function words

EZEBYTES 481
SQL data code 226
SQL row 174
SQL row record data structure 192
SQL statement 137

declare cursor with hold 140
execution time statement

build 141
model statement generation 143
SETUPD function name 146
single row select 144
UPDATE function name 146

SQL table names 192
SQLEXEC I/O option 134
string function words

defined 631
EZESBLKT 633
EZESCCWS 633
EZESCMPR 634
EZESCNCT 635
EZESCOPY 636
EZESFIND 637
EZESNULT 638

string function words (continued)
EZESSET 639
EZESTLEN 640
EZESTOKN 640

structure list 81
submit 253
submit bypass 255
submit bypass properties 255

initial values 255
submit bypass UI type data

items 255
submit properties 254

initial values 254
submit UI type data items 253
submit value item 176
syntax

reading 701
SYS value 398

T
table and additional records list 81
table contents list 198
table data structure 198
table definition 197
table name 203
table specification 197
table type 204
TEST statement 448
trademarks xxi

U
UI record 175

default HTML generation 177
UI record data item edits 256

check SO/SI space 257
currency 259
currency symbol 260
edit function 261
edit table 264
edit type 262

boolean 262
date 262
none 262
time 262

fill character 264
fold 266
input required 267
maximum value 268
minimum input 269
minimum value 270
Numeric Separator 271
run edit function on web 272
sign 273
zero edit 274

UI record data item edits - check
SO/SI space 257

714 VisualAge Generator: Programmer’s Reference

UI record data item edits -
currency 259

UI record data item edits - currency
symbol 260

UI record data item edits - edit
function 261

UI record data item edits - edit
table 264

UI record data item edits - edit
type 262

UI record data item edits - fill
character 264

UI record data item edits - fold 266
UI record data item edits - input

required 267
UI record data item edits -

maximum value 268
UI record data item edits - minimum

input 269
UI record data item edits - minimum

value 270
UI record data item edits - Numeric

Separator 271
UI record data item edits - run edit

function on web 272
UI record data item edits - sign 273
UI record data item edits - zero

edit 274
UI title 176
unicode data items

Data item type 239
unspecified table type 204
UPDATE function name 146
UPDATE I/O option 136
user interface 175
user interface EZE words

defined 669

V
VAGen Array Field

events 43
methods 38
properties 37

VAGen Container Details part
actions 17
attributes 17
differences from Container

Details part 16
events 18
properties 17

VAGen Data Parts
VAGenRecordPart 30
VAGenTablePart 31

VAGen Data Parts category
VAGen Record part 4

VAGen Data Parts category
(continued)

VAGen Table part 5
VAGen Field

events 37
methods 35
properties 33

VAGen File Accessor part
actions 21
attributes 21
events 22
properties 22

VAGen Function part
actions 14
attributes 14
events 15
properties 16

VAGen Logic parts
VAGen Program part 6
VAGenProgramPart 43

VAGen Logic Parts
VAGen Function part 14
VAGenFunctionPart 51

VAGen Program part
actions 12
attributes 6
events 13
properties 13

VAGen Record part
actions 4
attributes 4
events 4
methods 31
properties 5

VAGen Table part
actions 5
attributes 5
events 5
properties 5

VAGen Variable part
actions 21
attributes 20
differences from Variable

part 20
events 21

VAGenFunctionPart
events 53
methods 52
properties 51

VAGenProgramPart
events 51
methods 50
properties 43

VAGenRecordPart
events 31

VAGenRecordPart (continued)
properties 30

VAGenTablePart
events 33
methods 32
properties 31

value item 244, 252
variable field 337

DBCS 340
length 377
MIX 342
name 379

variable field array 339
variable field edit 344

check SO/SI space 345
currency 346
date edit mask 348
decimals 353
edit error message number 356
edit routine 357
fill character 359
fold 361
hex edit 362
input required 363
justify 365
maximum value 366
minimum input 368
minimum value 369
numeric separator 370
order 376
sign 372
zero edit 374

variable field edit, description 354
variable field folding 305
variable length item (DL/I) 195
visual parts, dynamically

programming 22

W
WHILE statement 455
working storage 82, 182

X
XFER statement 463

Z
zero edit 274

Index 715

716 VisualAge Generator: Programmer’s Reference

Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
Programmer’s Reference
Version 4.5

Publication No. SH23-0262-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH23-0262-01

SH23-0262-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0262-01

	Contents
	Notices
	Trademarks
	About this document
	Documentation provided with VisualAge Generator

	Part 1. VAGen parts
	Chapter 1. Graphical user interfaces
	Graphical user interfaces in Smalltalk
	VisualAge Generator parts category for Smalltalk
	VAGen Data parts
	VAGen Logic parts
	VAGen Container Details part
	VAGen Variable part
	VAGen File Accessor part

	Additional VisualAge Generator features for VisualAge Smalltalk parts
	Dynamically programming visual parts
	Nonvisual parts of class: AbtAppBldrPart and visual parts of class:AbtAppBldrView
	Visual parts of class: AbtBasicView
	Visual parts that can contain other visual parts
	Form, Group Box and Window parts
	Window part

	VisualAge Generator extensions to VisualAge Smalltalk data types

	Graphical user interfaces in Java
	VisualAge Generator parts category for Java
	VAGenRecordPart
	VAGenTablePart
	Additional VAGen parts used with data parts
	VAGenProgramPart
	VAGenFunctionPart
	VAGenVariable Part
	VAGenCommSession Part

	Additional VisualAge Generator Features for VisualAge Java Beans
	VAGenCommSession

	Chapter 2. Programs
	Program elements
	Allow implicits
	Uses
	Performance information for Allow implicits
	Target environments for Allow implicits

	Bypass edit keys
	Uses
	Target environments for bypass edit keys

	Called parameter list
	Uses
	Definition considerations for called parameter list
	Target environments for called parameter list

	Execution mode
	Uses
	Definition considerations for segmented
	Definition considerations for single segment
	Target environments for execution mode

	F1-12=F13-24
	Uses
	Target environments for F1-12=F13-24

	First map
	Uses
	Definition considerations for first map
	Target environments for first map

	First UI record
	Definition considerations for First UI record
	Target environments for First UI record

	Flow statements
	Uses
	Target environments for flow statements

	Help key
	Uses
	Definition considerations for help key
	Target environments for help key

	Help map group name
	Uses
	Definition considerations for help map group name
	Target environments for help map group name

	Keep after use
	Definition considerations for keep after use
	Target environments for keep after use

	Main function list
	Uses
	Target environments for main function list

	Map group name
	Uses
	Performance information for map group name
	Target environments for map group name

	Message table prefix
	Uses
	Definition considerations for message table prefix
	Target environments for message table prefix

	Program name
	Definition considerations for program name
	Target environments for program name

	Program type
	Uses
	Definition considerations for Main transaction and Main batch
	Definition considerations for Web transaction
	Target environments for program type

	Prologue
	Uses
	Target environments for prologue

	Program specification block (PSB) name
	Uses
	Definition considerations for PSB name
	Target environments for PSB name

	Structure list
	Uses
	Target environments for structure list

	Table and additional record list
	Definition considerations for table and additional record list
	Target environments for table and additional record list

	Working storage
	Definition considerations for working storage
	Target environments for working storage

	Chapter 3. Functions
	Function elements
	DL/I call
	Uses
	Target environments for DL/I call

	DL/I call - Database identifier
	Uses
	Target environments for Database identifier

	DL/I call - Scan for update
	Uses
	Target environments for Scan for update

	DL/I call - Scan in parent
	Uses
	Target environments for Scan in parent

	DL/I call - Segment search arguments
	Uses
	Definition considerations for Segment search arguments
	Target environments for Segment search arguments

	Function
	Uses
	Target environments for function

	Function description
	Uses
	Target environments for function description
	Function local storage list
	Uses
	Definition considerations for function local storage list
	Target environments for function local storage list

	Function name
	Uses
	Target environments for function name

	I/O error routine
	Uses
	Target environments for function error routine

	Function parameter list
	Uses
	Definition considerations for function parameter list
	Target environments for function parameter list

	Function return value
	Uses
	Definition considerations for function return value
	Target environments for function return value

	I/O object
	Uses
	Target environments for I/O object

	I/O option
	Uses
	Target environments for I/O option

	I/O option - ADD
	Uses
	Definition considerations for ADD
	Target environments for ADD

	I/O option - CLOSE
	Uses
	Definition considerations for CLOSE
	Target environments for CLOSE

	I/O option - CONVERSE
	Using the CONVERSE I/O option with a map
	Using the CONVERSE I/O option with a UI record
	Definition considerations for CONVERSE with maps
	Definition considerations for CONVERSE with UI records
	Target environments for CONVERSE

	I/O option - DELETE
	Uses
	Target environments for DELETE

	I/O option - DISPLAY
	Uses
	Target environments for DISPLAY

	I/O option - EXECUTE
	Uses
	Target environments for EXECUTE

	I/O option - INQUIRY
	Uses
	Definition considerations for INQUIRY
	Target environments for INQUIRY

	I/O option - REPLACE
	Uses
	Definition considerations for REPLACE
	Target environments for REPLACE

	I/O option - SCAN
	Uses
	Definition considerations for SCAN
	Target environments for SCAN
	Examples for SCAN

	I/O option - SCANBACK
	Uses
	Definition considerations for SCANBACK
	Target environments for SCANBACK
	Examples for SCANBACK

	I/O option - SETINQ
	Uses
	Definition considerations for SETINQ
	Target environments for SETINQ

	I/O option - SETUPD
	Uses
	Definition considerations for SETUPD
	Target environments for SETUPD

	I/O option - SQLEXEC
	Uses
	Definition considerations for SQLEXEC
	Target environments for SQLEXEC

	I/O Option - UPDATE
	Uses
	Definition considerations for UPDATE
	Target environments for UPDATE

	SQL statement
	Uses
	Definition considerations for SQL statement
	Target environments for SQL statement

	SQL statement - Declare cursor with hold
	Uses
	Definition considerations for Declare cursor with hold
	Target environments for Declare cursor with hold

	SQL statement - Execution time statement build
	Uses
	Definition considerations for Execution time statement build
	Target environments for Execution time statement build

	SQL statement - Model SQL statement generation
	Uses
	Target environments for Model SQL statement generation

	SQL Statement - Single row select
	Uses
	Definition considerations for Single row select
	Target environments for Single row select

	SQL statement - UPDATE or SETUPD function name
	Uses
	Target environments for UPDATE or SETUPD function name

	Chapter 4. Records
	Record elements
	Alternate specification
	Uses
	Definition considerations for Alternate specification
	Target environments for Alternate specification

	Default key item (SQL)
	Uses
	Target environments for Default key item (SQL)

	Default selection conditions (SQL)
	Uses
	Definition considerations for Default selection conditions
	Using the WHERE clause

	Target environments for Default selection conditions

	File name
	Uses
	Definition considerations for File name
	Generation Considerations for File name
	Target environments for File name

	Key item (DL/I)
	Uses
	Definition considerations for Key item
	Target environments for Key item

	Number of occurrences item
	Uses
	Definition considerations for Number of occurrences item
	Target environments for Number of occurrences item

	Organization
	Uses
	Target environments for Organization

	Organization - DL/I segment
	Uses
	Target environments for DL/I segment

	Organization - Indexed
	Uses
	Target environments for Indexed

	Organization - Message queue
	Definition considerations for Message queue
	Target environments for Message queue

	Organization - Redefined
	Uses
	Target environments for Redefined

	Organization - Relative
	Uses
	Target environments for Relative

	Organization - Serial
	Uses
	Target environments for Serial

	Organization - SQL row
	Target environments for SQL row

	Organization - User interface
	Definition considerations for User interface
	UI record default HTML generation

	Target environments for User interface

	Organization - Working storage
	Uses
	Definition considerations for Working storage
	Level-77 data items

	Generation Considerations for Working storage
	Target environments for Working storage

	Prologue
	Uses
	Target environments for Prologue

	Record
	Uses
	Target environments for Record

	Record ID item
	Definition considerations for Record ID item
	Target environments for Record ID item

	Record length item
	Uses
	Definition considerations for Record length item
	Target environments for Record length item

	Record name
	Uses
	Target environments for Record name

	Record data structure
	Uses
	Target environments for Record data structure

	Redefinition for
	Uses
	Target environments for Redefinition for

	SQL row record data structure
	Uses
	Target environments for SQL row record data structure

	SQL table names
	Uses
	SQL Table Name
	SQL table label
	Table Joins

	Target environments for SQL table names

	Variable length item (DL/I)
	Uses
	Target environments for variable length item (DL/I)

	Chapter 5. Tables
	Table elements
	Column definition
	Uses
	Target environments for Column definition

	Contents definition
	Uses
	Target environments for Contents definition

	Prologue
	Uses
	Target environments for Prologue

	Resident
	Uses
	Definition considerations for Resident
	Target environments for Resident

	Shared
	Uses
	Target environments for Shared

	Table name
	Definition considerations for Table name
	Target environments for Table name

	Table type
	Uses
	Target environments for Table type

	Chapter 6. Items
	Item elements
	Data item
	Data item bytes
	Uses
	Target environments for Data item bytes

	Data item decimal places
	Uses
	Target environments for Data item decimal places

	Data item description
	Uses
	Target environments for Data item description

	Data item key
	Uses
	Target environments for Data item key

	Data item length
	Uses
	Target environments for Data item length

	Data item level
	Uses
	Definition considerations for Data item level
	Target environments for Data item level
	Examples for Data item level

	Data item name
	Uses
	Target environments for Data item name

	Data item occurs
	Uses
	Definition considerations for Data item occurs
	Target environments for Data item occurs

	Data item Read-only
	Uses
	Definition considerations for Data item Read-only
	Target environments for Data item Read-only

	Data item usage
	Uses
	Definition considerations for Data item usage
	Target environments for Data item usage

	Data item SQL column name
	Uses
	Definition considerations for Data item SQL column name
	Relational table column
	SQL expression

	Target environments for Data item SQL column name

	Data item SQL data code
	Uses
	Target environments for Data item SQL data code

	Data item type
	Uses
	Performance Information for numeric data types
	Target environments for Data item type

	Data item type - Bin
	Uses
	Target environments for Data item type - Bin

	Data item type - CHA
	Target environments for Data item type - CHA

	Data item type - DBCS
	Uses
	Target environments for Data item type - DBCS

	Data item type - Hex
	Uses
	Target environments for Data item type - Hex

	Data item type - Mixed
	Uses
	Definition considerations for Data item type - Mixed
	Target environments for Data item type - Mixed

	Data item type - Num
	Uses
	Definition considerations for Data item type - Num
	Target environments for Data item type - Num

	Data item type - Numc
	Uses
	Definition considerations for Data item type - Numc
	Target environments for Data item type - Numc

	Data item type - Pacf
	Uses
	Definition considerations for data item type - Pacf
	Target environments for Data item type - Pacf

	Data item type - Pack
	Uses
	Definition considerations for Data item type - Pack
	Target environments for data item type - Pack

	Data item type - Unicode
	Definition considerations for Data item type - Unicode
	Target environments for Data item type - Unicode

	Data item UI type
	Uses
	Definition considerations for Data item UI type
	Target environments for Data item UI type

	Data item UI type - Form
	Uses
	Definition considerations for Data item UI type - Form
	Target environments for Data item UI type - Form

	Data item UI type - Hidden
	Uses
	Target environments for Data item UI type - Hidden

	Data item UI type - Input
	Uses
	Target environments for Data item UI type - Input

	Data item UI type - Input/Output
	Uses
	Target environments for Data item UI type - Input/Output

	Data item UI type - None
	Uses
	Target environments for Data item UI type - Input/Output

	Data item UI type - Output
	Uses
	Target environments for Data item UI type - Output

	Data item UI type - Program link
	Uses
	Definition considerations for Data item UI type - Program link
	Target environments for Data item UI type - Program link

	Data item UI type - Submit
	Uses
	Definition considerations for Data item UI type - Submit
	Submit properties

	Target environments for Data item UI type - Submit

	Data item UI type - Submit bypass
	Uses
	Definition considerations for Data item UI type - Submit bypass
	Submit Bypass properties

	Target environments for Data item UI type - Submit bypass

	UI record data item edits
	Uses
	Definition considerations for UI record data item edits
	Target environments for UI record data item edits

	UI record data item edits - Check SO/SI space
	Definition considerations for UI record data item edits - Check SO/SIspace
	Target environments for UI record data item edits - Check SO/SI space

	UI record data item edits - Currency
	Definition considerations for UI record data item edits - Currency
	Target environments for UI record data item edits - Currency

	UI record data item edits - Currency symbol
	Definition considerations for UI record data item edits - Currency symbol
	Target environments for UI record data item edits - Currency symbol

	UI record data item edits - Edit function
	Uses
	Definition considerations for UI record data item edits - Edit function
	Target environments for UI record data item edits - Edit function

	UI record data item edits - Edit type
	Definition considerations for UI record data item edits - Edit type
	Target environments for UI record data item edits - Edit type

	UI record data item edits - Edit table
	Target environments for UI record data item edits - Edit table

	UI record data item edits - Fill character
	Definition considerations for UI record data item edits - Fill character
	Target environments for UI record data item edits - Fill character

	UI record data item edits - Fold
	Definition considerations for UI record data item edits - Fold
	Target environments for UI record data item edits - Fold

	UI record data item edits - Input required
	Target environments for UI record data item edits - Input required

	UI record data item edits - Maximum value
	Definition considerations for UI record data item edits - Maximum value
	Target environments for UI record data item edits - Maximum value

	UI record data item edits - Minimum input
	Target environments for UI record data item edits - Minimum input

	UI record data item edits - Minimum value
	Definition considerations for UI record data item edits - Minimum value
	Target environments for UI record data item edits - Minimum value

	UI record data item edits - Numeric Separator
	Definition considerations for UI record data item edits - NumericSeparator
	Target environments for UI record data item edits - Numeric Separator

	UI record data item edits - Run edit function on web
	Definition considerations for UI record data item edits - Run edit functionon web
	Target environments for UI record data item edits - Run edit function onweb

	UI record data item edits - Sign
	Definition considerations for UI record data item edits - Sign
	Target environments for UI record data item edits - Sign

	UI record data item edits - Zero edit
	Definition considerations for UI record data item edits - Zero edit
	Target environments for UI record data item edits - Zero edit

	Chapter 7. Program specification block
	Program specification block elements
	Program communication block (PCB)
	Uses
	Definition considerations for PCBs
	Target environments for PCBs

	Chapter 8. Maps
	Map elements
	Bypass edit keys
	Uses
	Target environments for Bypass edit keys

	Device selection
	Definition considerations for Device selection
	Target environments for Device selection

	Floating area
	Uses
	Target environments for Floating area

	Floating map
	Definition considerations for Floating map
	Target environments for Floating map

	Initial cursor field
	Uses
	Definition considerations for Initial cursor field
	Target environments for Initial cursor field

	Help key
	Uses
	Target environments for Help key

	Help map name
	Uses
	Definition considerations for Help map name
	Target environments for Help map name

	Map group
	Uses
	Definition considerations for Map group
	Target environments for Map group

	Map name
	Definition considerations for Map name
	Target environments for Map name

	Map position
	Uses
	Definition considerations for Map position
	Target environments for Map position

	Map size
	Uses
	Target environments for Map size

	SO/SI take position
	Uses
	Target environments for SO/SI take position

	Variable field folding
	Uses
	Target environments for Variable field folding

	Chapter 9. Map fields
	Map field elements
	Constant field
	Uses
	Target environments for Constant field

	Constant field - DBCS
	Uses
	Definition considerations for Constant field - DBCS
	Target environments for Constant field - DBCS

	Constant field - MIX
	Uses
	Definition considerations for Constant field - MIX
	Target environments for Constant field - MIX

	Field attributes
	Uses
	Target environments for Field attribute

	Field attribute - Color
	Uses
	Definition considerations for Field attribute - Color
	Target environments for Field attribute - Color

	Field attribute - Highlight
	Uses
	Target environments for Field attribute - Extended Highlighting

	Field attribute - Initial cursor field
	Uses
	Target environments for Field attribute - Initial cursor field

	Field attribute - Input required
	Uses
	Target environments for Field attribute - Input required

	Field attribute - Intensity
	Uses
	Target environments for Field attribute - Intensity

	Field attribute - Light pen detect
	Uses
	Definition considerations for Field attribute - Light pen detect
	Target environments for Field attribute - Light pen detect
	Example for Field attribute - Light pen detect

	Field attribute - Modified data tag
	Uses
	Definition considerations for Field attribute - Modified data tag
	Target environments for Field attribute - Modified data tag

	Field attribute - Numeric
	Uses
	Target environments for Field attribute - Numeric

	Field attribute - Outlining
	Uses
	Definition considerations for Field attribute - Outlining
	Target environments for Field attribute - Outlining

	Field attribute - Protection
	Uses
	Definition considerations for Field attribute - Protection
	Target environments for Field attribute - Protection

	Field attribute - Require fill on input
	Uses
	Target environments for Field attribute - Require fill on input

	Message field - EZEMSG
	Uses
	Definition considerations for Message field - EZEMSG
	Target environments for Message field - EZEMSG

	Variable field
	Uses
	Definition considerations for Variable field
	Target environments for Variable field

	Variable field array
	Uses
	Definition considerations for Variable field array
	Target environments for Variable field array

	Variable field - DBCS
	Uses
	Definition considerations for Variable field - DBCS
	Target environments for Variable field - DBCS

	Variable field - MIX
	Uses
	Definition considerations for Variable field - MIX
	Target environments for Variable field - MIX

	Variable field edit
	Uses
	Target environments for Variable field edit

	Variable field edit - Check SO/SI space
	Definition considerations for Variable field edit - Check SO/SI space
	I/O editing considerations for Variable field edit - Check SO/SI space
	Output editing action

	Target environments for Variable field edit - Check SO/SI space

	Variable field edit - Currency
	Uses
	I/O editing considerations for Variable field edit - Currency Symbol
	Output editing action

	Target environments for Variable field edit - Currency

	Variable field edit - Date edit mask
	Uses
	Date edit mask formats
	Length of the Date edit mask for data items
	Character data item lengths
	Numeric data item lengths

	Length of the Date edit mask for map variable fields
	Map variable field length

	I/O editing considerations for Variable field edit - Date edit mask
	Output editing action

	Target environments for Variable field edit - Date edit mask

	Variable field edit - Decimals
	Uses
	I/O editing considerations for Variable field edit - Decimals
	Output editing action

	Target environments for Variable field edit - Decimals

	Variable field edit - Description
	Uses
	Target environments for Variable field edit - Description

	Variable field edit - Edit error message number
	Uses
	Definition considerations for Edit error message number
	Target environments for Edit error message number

	Variable field edit - Edit routine
	Uses
	I/O editing considerations for Edit routine
	Output editing action

	Target environments for Edit routine

	Variable field edit - Fill character
	Uses
	I/O editing considerations for Fill character
	Output editing action

	Target environments for Fill character

	Variable field edit - Fold
	Uses
	Target environments for Variable field edit - Fold

	Variable field edit - Hex edit
	Uses
	I/O editing considerations for Variable field edit - Hex edit
	Output editing action

	Target environments for Variable field edit - Hex edit

	Variable field edit - Input required
	Uses
	I/O editing considerations for Variable field edit - Input required
	Output editing action

	Target environments for Variable field edit - Input required

	Variable field edit - Justify
	Uses
	I/O editing considerations for Variable field edit - Justify
	Output editing action

	Target environments for Variable field edit - Justify

	Variable field edit - Maximum value
	Uses
	I/O editing considerations for Variable field edit - Maximum value
	Output editing action

	Target environments for Variable field edit - Maximum value

	Variable field edit - Minimum input
	Uses
	I/O editing considerations for Variable field edit - Minimum input
	Output editing action

	Target environments for Variable field edit - Minimum input

	Variable field edit - Minimum value
	Uses
	I/O editing considerations for Variable field edit - Minimum value
	Output editing action

	Target environments for Variable field edit - Minimum value

	Variable field edit - Numeric separator
	Uses
	I/O editing considerations for Variable field edit - Numeric separator
	Output editing action

	Target environments for Variable field edit - Numeric separator

	Variable field edit - Sign
	Uses
	I/O editing considerations for Variable field edit - Sign
	Output editing action

	Target environments for Variable field edit - Sign

	Variable field edit - Zero edit
	Uses
	How Zero Edit Affects Edits
	How Zero Edit Affects Variable fields

	I/O editing considerations for Variable field edit - Zero edit
	Output editing action

	Target environments for Variable field edit - Zero edit

	Variable field edit order
	Definition considerations for Variable field edit order
	Target environments for Variable field edit order

	Variable field length
	Uses
	Definition considerations for Variable field length
	Target environments for Variable field length

	Variable field name
	Definition considerations for Variable field name
	Target environments for Variable field name

	Part 2. Scripting language
	Chapter 10. Program processing statements
	Statement Elements
	AID value
	Target environments for AID value

	Data item
	I/O error value
	Uses
	I/O status codes

	SYS value
	Assignment statement
	numeric expression
	Achieving consistent results across environments
	Overflow conditions

	Compatibility with CSP/AE arithmetic
	Target environments for assignment
	Examples for assignment
	An arithmetic expression with parentheses
	An assignment statement to move or initialize data
	Example of valid arithmetic statements
	Example of arithmetic statements that are not valid
	Example of valid assignment statements
	Example assignment statement that is not valid
	Rounded arithmetic statement with multiple operations
	Arithmetic statement with a negative number
	Arithmetic statement with a variable overflow
	Arithmetic statement with division with a remainder

	CALL statement
	Definition considerations for CALL
	Calls to remote called batch programs

	Target environments for CALL
	Examples for CALL

	DXFR statement
	Definition considerations for DXFR
	Generation considerations for DXFR
	Target environments for DXFR
	Examples for DXFR

	FIND statement
	Target environments for FIND
	Examples for FIND

	Function invocation statement
	Definition considerations for Function invocation statement
	Target environments for function invocation statements
	Examplesof function invocation statements

	IF statement
	logical expression
	condition
	Definition considerations for IF
	Target environments for IF
	Examples for IF
	IF ELSE statement
	Nested IF statements
	IF statement with AND and OR conditions
	IF statement testing map data
	IF statement comparing numeric and character data

	MOVE statement
	Definition considerations for MOVE
	Moved Data Exceptions
	Move Corresponding

	Target environments for MOVE
	Examples for MOVE
	MOVE statement
	Moving a Blank to a Data item
	Moving Zero to a Numeric or Binary Field
	Moving Fields from One Map to Another
	Moving a Data item to an Element of an Array
	Using special function words in a MOVE statement

	MOVEA statement
	Uses
	Subscripts

	Definition considerations for MOVEA
	Target environments for MOVEA
	Examples for MOVEA
	Scalar to array with MOVEA
	Array to array with MOVEA
	Initializing an entire array with MOVEA
	Initializing part of an array with MOVEA
	Character string to array with MOVEA
	Data item to array with MOVEA
	Changing part of an array with MOVEA
	Target array smaller than source array with MOVEA
	Target array larger than source array with MOVEA
	Move array in record or table to map array with MOVEA

	RETR statement (Retrieve)
	Definition considerations for RETR
	Target environments for RETR
	Examples for RETR

	SET statement
	color
	ext-hilite (extended highlighting)
	Definition considerations for SET
	Target environments for SET
	Examples for SET

	TEST statement
	Definition considerations for TEST
	Target environments for TEST
	Examples for TEST
	TEST statement using NULL
	TEST statement using NUMERIC
	TEST statement using MODIFIED
	Testing for a function key
	Testing for bypass edit PF keys or a PA key
	Testing the results of the last I/O for a record
	Testing for the length of data

	WHILE statement
	logical expression
	condition
	Uses
	Target environments for WHILE
	Examples for WHILE
	WHILE statement
	WHILE statement summing the elements in an array
	WHILE statement using the IN operation

	XFER statement
	Definition considerations for XFER
	Target environments for XFER
	Examples for XFER
	Transferring control using the XFER statement
	Using EZEAPP to specify a variable name
	Developing a program for TSO and CICS

	Chapter 11. Special function words
	Special function words
	EZEAID
	Uses
	Target environments for EZEAID
	Example for EZEAID

	EZEAPP
	Uses
	Definition considerations for EZEAPP
	Target environments for EZEAPP
	Example for EZEAPP

	EZEBYTES
	Uses
	Target environments for EZEBYTES
	Example for EZEBYTES

	EZECLOS
	Uses
	Target environments for EZECLOS
	Example for EZECLOS

	EZECNVCM
	Uses
	Definition considerations for EZECNVCM
	Target environments for EZECNVCM
	Example for EZECNVCM

	EZECOMIT
	Uses
	Definition considerations for EZECOMIT
	EZECOMIT and implicit commit situations
	EZECOMIT and message queues

	Target environments for EZECOMIT
	Example for EZECOMIT

	EZECONCT
	Uses
	Definition considerations for EZECONCT
	Default Database Connections

	Target environments for EZECONCT
	Example for EZECONCT

	EZECONV
	Uses
	Definition considerations for EZECONV
	Target environments for EZECONV
	Example for EZECONV

	EZECONVT
	Uses
	Definition considerations for EZECONVT
	Target environments for EZECONVT
	Example for EZECONVT

	EZEC10
	Uses
	Definition considerations for EZEC10
	Target environments for EZEC10
	Example for EZEC10

	EZEC11
	Uses
	Definition considerations for EZEC11
	Target environments for EZEC11
	Example for EZEC11

	EZEDAY
	Uses
	Target environments for EZEDAY
	Example for EZEDAY

	EZEDAYL
	Uses
	Target environments for EZEDAYL
	Example for EZEDAYL

	EZEDAYLC
	Uses
	Target environments for EZEDAYLC
	Example for EZEDAYLC

	EZEDEST
	Uses
	Definition considerations for EZEDEST
	Using EZEDEST with Files Shared across Programs
	Using EZEDEST with message queue records
	Specifying System Resource Name at Generation

	Target environments for EZEDEST
	Example for EZEDEST

	EZEDESTP
	Uses
	Definition considerations for EZEDESTP
	Target environments for EZEDESTP
	Examples for EZEDESTP

	EZEDLCER (DL/I)
	Uses
	Definition considerations for EZEDLCER
	Target environments for EZEDLCER
	Example for EZEDLCER

	EZEDLCON (DL/I)
	Uses
	Definition considerations for EZEDLCON
	Target environments for EZEDLCON
	Example for EZEDLCON

	EZEDLDBD (DL/I)
	Uses
	Definition considerations for EZEDLDBD
	Target environments for EZEDLDBD
	Example for EZEDLDBD

	EZEDLERR (DL/I)
	Uses
	Definition considerations for EZEDLERR
	Target environments for EZEDLERR
	Example for EZEDLERR

	EZEDLKEY (DL/I)
	Uses
	Definition considerations for EZEDLKEY
	Target environments for EZEDLKEY
	Example for EZEDLKEY

	EZEDLKYL (DL/I)
	Uses
	Definition considerations for EZEDLKYL
	Target environments for EZEDLKYL
	Example for EZEDLKYL

	EZEDLLEV (DL/I)
	Uses
	Definition considerations for EZEDLLEV
	Target environments for EZEDLLEV
	Example for EZEDLLEV

	EZEDLPCB (DL/I)
	Uses
	Definition considerations for EZEDLPCB
	Target environments for EZEDLPCB
	Examples for EZEDLPCB

	EZEDLPRO (DL/I)
	Uses
	Definition considerations for EZEDLPRO
	Target environments for EZEDLPRO
	Example for EZEDLPRO

	EZEDLPSB (DL/I)
	Uses
	Definition considerations for EZEDLPSB
	Target environments for EZEDLPSB
	Example for EZEDLPSB

	EZEDLRST (DL/I)
	Uses
	Definition considerations for EZEDLRST
	Target environments for EZEDLRST
	Example for EZEDLRST

	EZEDLSEG (DL/I)
	Uses
	Definition considerations for EZEDLSEG
	Target environments for EZEDLSEG
	Example for EZEDLSEG

	EZEDLSSG (DL/I)
	Uses
	Definition considerations for EZEDLSSG
	Target environments for EZEDLSSG
	Example for EZEDLSSG

	EZEDLSTC (DL/I)
	Uses
	Definition considerations for EZEDLSTC
	Target environments for EZEDLSTC
	Example for EZEDLSTC

	EZEDLTRM (DL/I)
	Uses
	Definition considerations for EZEDLTRM
	Target environments EZEDLTRM

	EZEDTE
	Uses
	Target environments for EZEDTE
	Example for EZEDTE

	EZEDTEL
	Uses
	Target environments for EZEDTEL
	Example for EZEDTEL

	EZEDTELC
	Uses
	Target environments for EZEDTELC
	Example for EZEDTELC

	EZEFEC
	Uses
	Target environments for EZEFEC
	Example for EZEFEC

	EZEFLO
	Uses
	Target environments for EZEFLO
	Example for EZEFLO

	EZEG10
	Uses
	Target environments for EZEG10
	Example for EZEG10

	EZEG11
	Uses
	Target environments for EZEG11
	Example for EZEG11

	EZELOC
	Uses
	Definition considerations for EZELOC
	Target environments for EZELOC
	Example for EZELOC

	EZELTERM
	Uses
	Target environments for EZELTERM
	Example for EZELTERM

	EZEMNO
	Uses
	Definition considerations for EZEMNO
	Target environments for EZEMNO
	Examples for EZEMNO

	EZEMSG
	Uses
	Definition considerations for EZEMSG
	Target environments for EZEMSG
	Example for EZEMSG

	EZEOVER
	Uses
	Target environments for EZEOVER
	Example for EZEOVER

	EZEOVERS
	Uses
	Target environments for EZEOVERS
	Example for EZEOVERS

	EZEPURGE
	Uses
	Target environments for EZEPURGE
	Examples for EZEPURGE

	EZERCODE
	Target environments for EZERCODE
	Example for EZERCODE

	EZEREPLY
	Uses
	Target environments for EZEREPLY
	Example for EZEREPLY

	EZEROLLB
	Uses
	Definition considerations for EZEROLLB
	Target environments for EZEROLLB
	Example for EZEROLLB

	EZERTN
	Uses
	Target environments for EZERTN
	Example for EZERTN

	EZERT2
	Uses
	Target environments for EZERT2

	EZERT8
	Uses
	Definition considerations for EZERT8
	Server call error considerations
	Message queue record I/O considerations

	Generation Considerations for EZERT8
	Target environments for EZERT8
	Example for EZERT8

	EZESEGM
	Uses
	Target environments for EZESEGM
	Example for EZESEGM

	EZESEGTR
	Uses
	Target environments for EZESEGTR
	Example for EZESEGTR

	EZESQCOD (SQL)
	Uses
	Target environments for EZESQCOD
	Example for EZESQCOD

	EZESQISL (SQL)
	Uses
	Definition considerations for EZESQISL
	Target environments for EZESQISL
	Example for EZESQISL

	EZESQLCA (SQL)
	Uses
	Target environments for EZESQLCA
	Example for EZESQLCA

	EZESQRD3 (SQL)
	Uses
	Target environments for EZESQRD3
	Example for EZESQRD3

	EZESQRRM (SQL)
	Uses
	Definition considerations for EZESQRRM
	Target environments for EZESQRRM
	Example for EZESQRRM

	EZESQWN1 (SQL)
	Uses
	Definition considerations for EZESQWN1
	Target environments for EZESQWN1
	Example for EZESQWN1

	EZESQWN6 (SQL)
	Uses
	Definition considerations for EZESQWN6
	Target environments for EZESQWN6
	Example for EZESQWN6

	EZESYS
	Uses
	Definition considerations for EZESYS
	Target environments for EZESYS
	Examples for EZESYS

	EZETIM
	Uses
	Target environments for EZETIM
	Example for EZETIM

	EZETST
	Uses
	Target environments for EZETST
	Example for EZETST

	EZEUSR
	Uses
	Target environments for EZEUSR
	Example for EZEUSR

	EZEUSRID
	Uses
	Target environments for EZEUSRID
	Example for EZEUSRID

	EZEWAIT
	Uses
	Target environments for EZEWAIT
	Example for EZEWAIT

	Chapter 12. String function words
	String function words
	EZESBLKT
	Target environmentsfor EZESBLKT
	Examplefor EZESBLKT

	EZESCCWS
	Target environmentsfor EZESCCWS
	Example for EZESCCWS

	EZESCMPR
	Definition considerations for EZESCMPR
	Target environments for EZESCMPR
	Example for EZESCMPR

	EZESCNCT
	Target environments for EZESCNCT
	Example for EZESCNCT

	EZESCOPY
	Definition considerations for EZESCOPY
	Target environments for EZESCOPY
	Example for EZESCOPY

	EZESFIND
	Definition considerations for EZESFIND
	Target environments for EZESFIND
	Example for EZESFIND

	EZESNULT
	Definition considerations for EZESNULT
	Target environments for EZESNULT
	Example for EZESNULT

	EZESSET
	Definition considerations for EZESSET
	Target environments for EZESSET
	Example for EZESSET

	EZESTLEN
	Target environments for EZESTLEN
	Example for EZESTLEN

	EZESTOKN
	Definition considerations for EZESTOKN
	Target environments for EZESTOKN
	Example for EZESTOKN

	Chapter 13. Math function words
	Math function exceptions
	Math function words
	EZEABS
	Target environments for EZEABS
	Example for EZEABS

	EZEACOS
	Target environments for EZEACOS
	Example for EZEACOS

	EZEASIN
	Target environments for EZEASIN
	Example for EZEASIN

	EZEATAN
	Target environments for EZEATAN
	Example for EZEATAN

	EZEATAN2
	Target environments for EZEATAN2
	Example for EZEATAN2

	EZECEIL
	Target environments for EZECEIL
	Example for EZECEIL

	EZECOS
	Target environments for EZECOS
	Example for EZECOS

	EZECOSH
	Target environments for EZECOSH
	Example for EZECOSH

	EZEEXP
	Target environments for EZEEXP
	Example for EZEEXP

	EZEFLADD
	Target environments for EZEFLADD
	Example for EZEFLADD

	EZEFLDIV
	Target environments for EZEFLDIV
	Example for EZEFLDIV

	EZEFLMOD
	Target environments for EZEFLMOD
	Example for EZEFLMOD

	EZEFLMUL
	Target environments for EZEFLMUL
	Example for EZEFLMUL

	EZEFLOOR
	Target environments for EZEFLOOR
	Example for EZEFLOOR

	EZEFLSET
	Target environments for EZEFLSET
	Example for EZEFLSET

	EZEFLSUB
	Target environments for EZEFLSUB
	Example for EZEFLSUB

	EZEFREXP
	Target environments for EZEFREXP
	Example for EZEFREXP

	EZELDEXP
	Target environments for EZELDEXP
	Example for EZELDEXP

	EZELOG
	Target environments for EZELOG
	Example for EZELOG

	EZELOG10
	Target environments for EZELOG10
	Example for EZELOG10

	EZEMAX
	Target environments for EZEMAX
	Example for EZEMAX

	EZEMIN
	Target environments for EZEMIN
	Example for EZEMIN

	EZEMODF
	Target environments for EZEMODF
	Example for EZEMODF

	EZENCMPR
	Target environments for EZENCMPR
	Example for EZENCMPR

	EZEPOW
	Target environments for EZEPOW
	Example for EZEPOW

	EZEPRCSN
	Target environments for EZEPRCSN
	Example for EZEPRCSN

	EZEROUND
	Target environments for EZEROUND
	Example for EZEROUND

	EZESIN
	Target environments for EZESIN
	Example for EZESIN

	EZESINH
	Target environments for EZESINH
	Example for EZESINH

	EZESQRT
	Target environments for EZESQRT
	Example for EZESQRT

	EZETAN
	Target environments for EZETAN
	Example for EZETAN

	EZETANH
	Target environments for EZETANH
	Example for EZETAN

	Chapter 14. Object Scripting EZE words
	Object scripting words
	EZESCRPT
	Uses
	Definition considerations
	Target environments for EZESCRPT
	Example for EZESCRPT

	Chapter 15. User interface EZE words
	EZEUIERR
	Target environments for EZEUIERR
	Example for EZEUIERR

	EZEUILOC
	Target environments for EZEUILOC
	Example for EZEUILOC

	Chapter 16. Services
	Services elements
	AUDIT
	Uses
	Target environments for AUDIT
	Examples for AUDIT

	COMMIT
	CREATX
	Definition considerations for CREATX
	Target environments for CREATX

	CSPTDLI
	Definition considerations for CSPTDLI
	Target environments for CSPTDLI
	Examples for CSPTDLI

	EZCHART
	Uses
	Definition considerations for EZCHART
	Parameters for EZCHART
	Parameter List Validation
	Return code parameter for EZCHART
	Chart control parameter for EZCHART
	Data control parameter for EZCHART
	X-axis data parameter for EZCHART
	Y-axis data parameter for EZCHART
	Keys parameter for EZCHART
	Labels parameter for EZCHART
	Heading parameter for EZCHART

	Target environments for EZCHART
	Examples for EZCHART

	RESET

	Part 3. Appendixes
	Appendix A. Reading syntax diagrams
	Appendix B. Naming conventions for data item, record,function names
	National characters
	DBCS naming conventions

	Appendix C. Size restrictions and record lengths
	Size limitations for VisualAge Generator
	Maximum record lengths

	Index
	Readers’ Comments — We'd Like to Hear from You

