VisualAge Generator

Programmer’s Reference

Version 4.5

SH23-0262-01

Note

Before using this document, read the general information under Natices” on page xiy.

Second Edition (October 2000)

This edition applies to the following licensed programs:

* IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5

* IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
* IBM VisualAge Generator Server for AS/400 Version 3.1

+ IBM VisualAge Generator Server for AS/400 Version 3.6

* IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
* http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 062, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . XiX
Trademarks . XX
About this document . . xxiii
Documentation provided with V1sualAge
Generator . . XXiv
Part 1. VAGen parts 1
Chapter 1. Graphical user interfaces 3
Graphical user interfaces in Smalltalk . .3
VisualAge Generator parts category for
Smalltalk . .3
Additional VisualAge Generator features
for VisualAge Smalltalk parts . .22
VisualAge Generator extensions to
VisualAge Smalltalk data types .29
Graphical user interfaces in Java . . .30
VisualAge Generator parts category for
Java. . . 30
Additional V1sualAge Generator Features
for VisualAge Java Beans. . 54
Chapter 2. Programs . 57
Program elements . . 57
Allow implicits . . 59
Uses . . 59
Performance mformat1on for Allow
implicits . 60
Target enV1ronments for Allow 1mp11c1ts . 60
Bypass edit keys . 60
Uses . 60
Target env1r0nments for bypass ed1t keys 60
Called parameter list . . 61
Uses . 61
Definition cons1derat10ns for called
parameter list . 62
Target environments for called parameter
list . .62
Execution mode. . 63
Uses . . 63
Definition cons1derat10ns for segmented . 64

© Copyright IBM Corp. 1980, 2000

Definition considerations for single
segment .
Target enVlronments for executlon mode
F1-12=F13-24.
Uses
Target env1ronments for F1 12 F13 24
First map .
Uses .
Definition con51derat1ons for f1rst map .
Target environments for first map.
First Ul record .
Definition con51derat10ns for Frrst Ul
record . .
Target enVlronments for F1rst UI record
Flow statements.
Uses .
Target env1ronments for flow statements
Help key .
Uses
Definition con51derat1ons for help key
Target environments for help key .
Help map group name
Uses
Definition con51derat1ons for help map
group name . .
Target environments for help map group
name
Keep after use .
Definition con51derat1ons for keep after use
Target environments for keep after use .
Main function list .
Uses
Target env1ronments for main functlon llst
Map group name
Uses
Performance mformat10n for map group
name . o
Target env1ronments for map group name
Message table prefix
Uses .
Definition con51derat10ns for message table
prefix . .
Target env1ronments for message table
prefix .
Program name .

. 64

64

. 65
. 66
. 66
. 66
. 67
. 67
. 67
. 68

. 69
. 69
. 69
. 70

70

.70
. 70
. 70
.70
.71
.71

.71

.71
.72

.73
.73
. 74

.74
. 74

.74

74

.75
.75

. 76

. 76
. 76

iii

Definition considerations for program

name o

Target enV1ronments for program name .
Program type

Uses

Definition cons1derat10ns for Ma1n

transaction and Main batch .

Definition considerations for Web

transaction .o

Target environments for program type .
Prologue .

Uses

Target env1r0nments for prologue
Program specification block (PSB) name.

Uses .

Definition con51derat10ns for PSB name .

Target environments for PSB name
Structure list .

Uses

Target env1r0nments for structure llst
Table and additional record list .

Definition considerations for table and

additional record list . .

Target environments for table ancl

additional record list .
Working storage

Definition con51derat10ns for workmg

storage.

Target enV1r0nments for worklng Storage

Chapter 3. Functions
Function elements .
DL/I call .
Uses .
Target env1ronments for DL / I call
DL/I call - Database identifier .
Uses

Target envrronments for Database 1dent1f1er
. 90
. 90

DL/I call - Scan for update .
Uses .
Target env1r0nments for Scan for update
DL/I call - Scan in parent
Uses . .
Target env1r0nments for Scan n parent
DL/I call - Segment search arguments
Uses
Definition cons1derat10ns for Segment
search arguments
Target environments for Segment search
arguments

iv VisualAge Generator: Programmer’s Reference

. 76
.77
.77
.77

. 78

.78
.78
.79
.79
.79
.79
.79
.79
. 80
. 81
. 81
. 81
. 81

. 82

. 82
. 82

. 82

. 85
. 85
. 88
. 88

. 89
. 89

89

90

.91
.91
.91
.92
.92

. 96

.97

Chapter 4. Records .
Record elements .
Alternate specification

Function .

Uses .
Target enV1ronments for functlon .

Function description .

Uses . .
Target enV1ronments for funct1on
description

Function local storage lrst
Function name.

I/0 error routine .

Function parameter list .
Function return value

I/0 object

I/0 option . .

I/0O option - ADD

I/0O option - CLOSE .

I/0 option - CONVERSE

I/0 option - DELETE

I/0 option - DISPLAY .

I/0 option - EXECUTE .

I/0 option - INQUIRY .

I/0 option - REPLACE .

I/0O option - SCAN . .

I/0 option - SCANBACK .

I/0 option - SETINQ

I/0 option - SETUPD

I/0 option - SQLEXEC .

I/0 Option - UPDATE .

SQL statement . .

SQL statement - Declare cursor w1th hold
SQL statement - Execution time statement
build . .

SQL statement - Model SQL statement
generatron .

SQL Statement - Smgle row select

SQL statement - UPDATE or SETUPD
function name .

Uses .

Definition cons1derat1ons for Alternate
specification

Target environments for Alternate
specification

Default key item (SQL)

Uses .
Target envrronments for Default key 1tem

(SQL) .

. 98
. 98
. 98
. 98
. 98

. 98
.99
. 101
. 101
. 103
. 106
. 107
. 108
. 109
. 112
. 116
. 118
. 119
. 120
. 121
. 122
. 123
. 129
. 132
. 133
. 134
. 136
. 137

140

. 141

. 143
. 144

. 146
. 149
. 150
. 152
. 152
. 152
. 153
. 154
. 154

. 154

Default selection conditions (SQL)

Uses .

Definition cons1derat10ns for Default

selection conditions .

Target environments for Default select1on

conditions
File name

Uses .

Definition cons1derat1ons for F1le name

Generation Considerations for File name

Target environments for File name .
Key item (DL/I)

Uses . .

Definition cons1derat10ns for Key 1tem

Target environments for Key item
Number of occurrences item .

Uses .

Definition cons1derat10ns for Number of

occurrences item .

Target environments for Number of

occurrences item .
Organization

Uses . .

Target env1ronments for Organ1zat10n .
Organization - DL/I segment .

Uses .

Target env1ronments for DL / I segment
Organization - Indexed .

Uses .

Target envrronments for Indexed
Organization - Message queue .

Definition considerations for Message

queue.

Target envrronments for Message queue
Organization - Redefined

Uses .

Target envrronments for Redefmed
Organization - Relative .

Uses .

Target enV1ronments for Relatlve
Organization - Serial .

Uses .

Target env1ronments for Ser1al
Organization - SQL row.

Target environments for SQL row
Organization - User interface .

Definition considerations for User

interface . .

Target env1ronments for User 1nterface
Organization - Working storage .

. 155
. 155

. 156

. 156
. 157
. 157

158
158

. 158
. 160
. 160

160

. 160
. 161
. 162

. 162

. 163
. 165
. 165
. 165
. 165
. 165

166

. 166
. 167
. 167
. 168

. 169

169

. 170
. 170
. 170
. 171
. 171
. 171
. 173
. 173
. 173
. 174
. 174
. 175

. 176

181

. 182

Uses . .
Definition cons1derat1ons for Workmg
storage .
Generation Consrderahons for Workmg
storage .
Target enV1ronments for Workmg storage
Prologue .
Uses .
Target env1ronments for Prologue
Record
Uses . .
Target env1ronments for Record
Record ID item
Definition cons1deratrons for Record ID
item
Target env1ronments for Record ID 1tem
Record length item
Uses .
Definition cons1derat10ns for Record
length item .
Target environments for Record length
item
Record name
Uses . .
Target enV1ronments for Record name .
Record data structure
Uses .
Target env1ronments for Record data
structure .
Redefinition for
Uses .
Target enV1ronments for Redef1n1t1on for
SQL row record data structure
Uses .
Target env1ronments for SQL row record
data structure .
SQL table names .
Uses .
Target env1ronments for SQL table names
Variable length item (DL/I)
Uses .
Target env1ronments for Varrable length
item (DL/I).

Chapter 5. Tables

Table elements .

Column definition
Uses .
Target env1ronments for Column
definition

Contents

. 182

. 182

. 183

183

. 184
. 184
. 184
. 185
. 185
. 185
. 185

. 185

186

. 187
. 187

. 187

. 188
. 190
. 190
. 190
. 190
. 190

. 190
. 191
. 191

191

. 192
. 192

. 192
. 192
. 192

194

. 195
. 195

. 195
. 197
. 197
. 198
. 198

. 198

A\

Contents definition
Uses .
Target enVlronmentS for Contents
definition
Prologue .
Uses .
Target envrronments for Prologue
Resident .
Uses .
Definition c0n51derat10ns for Re51dent
Target environments for Resident
Shared
Uses .
Target enVlronmentS for Shared
Table name .
Definition Consrderatlons for Table name
Target environments for Table name
Table type
Uses .
Target env1ronmer1ts for Table type

Chapter 6. Items .
Item elements .
Data item
Data item bytes
Uses .
Target envrronments for Data 1tem bytes
Data item decimal places
Uses . .
Target enVlronments for Data 1tem
decimal places .
Data item description
Uses .
Target envrronments for Data 1tem
description .
Data item key .
Uses .
Target envrronments for Data 1tem key
Data item length .
Uses .
Target enVlronments for Data 1tem length
Data item level.
Uses .
Definition con51derat10ns for Data 1tem
level . .
Target env1ronments for Data 1tem level
Examples for Data item level .
Data item name
Uses . .
Target env1ronmer1ts for Data 1tem name

. 198
. 199

. 199
. 199
. 199
. 199
. 199
. 199
. 199
. 200
. 201
. 201
. 201
. 203

203

. 204
. 204
. 204
. 206

. 209
. 209
. 215
. 216
. 216

217

. 218
. 218

. 218
. 218
. 218

. 218
. 218
. 218

219

. 219
. 219

220

. 220
. 220

. 220

221

. 222
. 222
. 222

222

vi VisualAge Generator: Programmer’s Reference

Data item occurs .
Uses .
Definition consrderatlons for Data 1tem
occurs.
Target env1ronments for Data 1tem occurs
Data item Read-only .
Uses .
Definition Con31derat10ns for Data 1tem
Read-only .
Target environments for Data 1tem
Read-only
Data item usage
Uses .
Definition consrderatlons for Data 1tem
usage . . .
Target env1ronments for Data 1tem usage
Data item SQL column name .
Uses .
Definition con51derat10ns for Data 1tem
SQL column name
Target environments for Data 1tem SQL
column name .
Data item SQL data code
Uses .
Target enVlronments for Data 1tem SQL
data code
Data item type.
Uses . .
Performance Informatlon for numeric
data types
Target environments for Data 1tem type
Data item type - Bin .
Uses .
Target envrronments for Data 1tem type -
Bin.
Data 1tem type CHA
Target environments for Data 1tern type -
CHA . .
Data item type - DBCS
Uses .
Target envrronments for Data 1tem type -
DBCS. .
Data item type - Hex
Uses .
Target envrronments for Data 1tem type -
Hex .
Data item type - Mlxed
Uses .
Definition Con31derat10ns for Data 1tem
type - Mixed

. 223
. 223

. 223

223

. 223
. 223

. 223
. 224
. 224
. 224

. 224

225

. 225
. 225

. 225
. 225
. 226
. 226
. 227
. 228
. 228

. 229

229

. 229
. 229

. 229
. 230

. 231
. 232
. 232

. 232
. 233
. 233

. 233
. 233
. 233

. 234

Target environments for Data item type - Target environments for Data item Ul

Mixed. . . Lo .. 234 type - Input. 247
Data item type - Num23 Data item Ul type - Input/ Output 248
Uses 235 Uses 248
Definition cons1derat10ns for Data 1terr1 Target env1ror1rnents for Data 1tem UI
type - Num. . . . 235 type - Input/Output. 248
Target environments for Data 1tem type - Data item Ul type - None249
Num23 Uses 249
Data item type - Numc e () Target env1ronments for Data 1tern UI
Uses 236 type - Input/Output.249
Definition con51derat10ns for Data 1tern Data item Ul type - Output 250
type - Numc 237 Uses 250
Target environments for Data 1tem type - Target env1ronments for Data 1tern UI
Numc. . . oo ... 237 type - Output250
Data item type - Pacf Coe .. 238 Data item Ul type - Program hnk ... 251
Uses 238 Uses 251
Definition c0n51derat10ns for data 1tem Definition con51derat10ns for Data 1tem UI
type - Pacf 238 type - Program link 251
Target environments for Data 1tem type - Target environments for Data 1tem UI
Pacf238 type - Program link252
Data item type - Pack S ... 238 Data item UI type - Submit 253
Uses 239 Uses 253
Definition cons1derat10ns for Data 1tern Definition con51derat10ns for Data 1tem UI
type-Pack 239 type - Submit 253
Target environments for data 1tem type - Target environments for Data 1tern UI
Pack . . . oo .23 type - Submit 254
Data item type - Un1code o . 239 Data item Ul type - Subrrut bypass255
Definition considerations for Data 1tem Uses 255
type - Unicode. 239 Definition con51derat10ns for Data 1tem UI
Target environments for Data 1tem type - type - Submit bypass 255
Unicode240 Target environments for Data 1tem UI
Data item Ul type.241 type - Submit bypass 256
Uses 241 Ul record data item edits 256
Definition consrderatrons for Data 1tem UI Uses 256
type 242 Definition con51derat10ns for UI record
Target env1ronments for Data 1tem UI data item edits. 257
type Target environments for UI record data
Data item Ul type Form 243 item edits 257
Uses 243 UI record data item edlts Check SO/ SI
Definition con51derat10ns for Data 1tem UI space 257
type - Form. . . . 244 Definition con51derat10ns for UI record
Target environments for Data 1tem UI data item edits - Check SO/SI space . . 258
type - Form. 245 Target environments for UI record data
Data item UI type - Hldden 246 item edits - Check SO/SI space 258
Uses 246 UI record data item edits - Currency . . . 259
Target env1ronmer1ts for Data 1tem UI Definition considerations for Ul record
type - Hidden246 data item edits - Currency 259
Data item UI type - Input Coe 247 Target environments for Ul record data
Uses o247 item edits - Currency . . . 259

UI record data item edits - Currency symbol 260

Contents Vil

Definition considerations for UI record
data item edits - Currency symbol .
Target environments for Ul record data
item edits - Currency symbol .

Ul record data item edits - Edit function .
Uses . .
Definition cons1derat10ns for UI record
data item edits - Edit function
Target environments for Ul record data
item edits - Edit function .

UI record data item edits - Edit type
Definition considerations for UI record
data item edits - Edit type .

Target environments for Ul record data
item edits - Edit type

Ul record data item edits - Edit table
Target environments for Ul record data
item edits - Edit table .

UI record data item edits - Fill character .
Definition considerations for UI record
data item edits - Fill character .
Target environments for UI record data
item edits - Fill character

Ul record data item edits - Fold .
Definition considerations for Ul record
data item edits - Fold .
Target environments for Ul record data
item edits - Fold . .

UI record data item edits - Input requrred
Target environments for Ul record data
item edits - Input required .

Ul record data item edits - Maximum value
Definition considerations for Ul record
data item edits - Maximum value
Target environments for UI record data
item edits - Maximum value .

UI record data item edits - Minimum input
Target environments for UI record data
item edits - Minimum input

Ul record data item edits - Minimum value
Definition considerations for Ul record
data item edits - Minimum value
Target environments for Ul record data
item edits - Minimum value

UI record data item edits - Numeric

Separator
Definition con51derat10ns for UI record
data item edits - Numeric Separator
Target environments for UI record data
item edits - Numeric Separator

viii

. 260
. 260
. 261
. 261
. 261

. 261
. 262

. 262

. 263
. 264

. 264
. 264

. 265

. 265
. 266

. 266

. 266

267

. 267

268

. 268

. 268

269

. 269

270

. 270
. 270
. 271
. 271

. 271

VisualAge Generator: Programmer’s Reference

Ul record data item edits - Run edit function
. 272

on web - .
Definition consrderatlons for UI record
data item edits - Run edit function on
web
Target environments for Ul record data
item edits - Run edit function on web .

UI record data item edits - Sign . .
Definition considerations for UI record
data item edits - Sign .

Target environments for Ul record data
item edits - Sign

UI record data item edits - Zero ed1t
Definition considerations for Ul record
data item edits - Zero edit .

Target environments for UI record data
item edits - Zero edit

. 272

. 272
. 273

. 273

. 274
. 274

. 274

. 275

Chapter 7. Program specification block 277

Program specification block elements

Program communication block (PCB)
Uses . .
Definition consrderatlons for PCBs .
Target environments for PCBs.

Chapter 8. Maps .

Map elements .

Bypass edit keys .
Uses .

Target envrronments for Bypass ed1t keys

Device selection .
Definition con51deratlons for Dev1ce
selection .
Target envrronments for Devrce selectlon
Floating area
Uses . .
Target env1ronments for Floatmg area .
Floating map
Definition consrderatlons for Floatmg
map .
Target envrronments for Floatmg map
Initial cursor field.
Uses .

field
Target envrronments for In1t1a1 cursor
field
Help key.
Uses .
Target envrronments for Help key

. 277
. 278
. 278
. 279
. 280

. 283
. 283
. 284
. 284

285

. 286

. 286

286

. 288
. 288
. 289
. 290

. 290
. 291
. 292
. 292
Definition con51derat10ns for Imtlal cursor

. 292

. 292
. 293
. 293
. 293

Help map name

Uses .

Definition Con81derat10ns for Help map

name .

Target env1ronments for Help map name
Map group .

Uses .

Definition cons1derat10ns for Map group

Target environments for Map group
Map name . .

Definition con51derat10ns for Map name

Target environments for Map name .
Map position

Uses .

Definition con51derat10ns for Map

position . .

Target env1ronments for Map posmon
Map size.

Uses .

Target env1ronments for Map size
SO/SI take position .

Uses .

Target env1ronrnents for SO / SI take

position . .
Variable field foldlng

Uses .

Target env1ronments for Varlable f1eld

folding

Chapter 9. Map fields
Map field elements
Constant field .
Uses .
Target env1ronrnents for Constant fleld
Constant field - DBCS
Uses .
Definition cons1derat10ns for Constant
field - DBCS
Target environments for Constant fleld -
DBCS.
Constant field - MIX
Uses .
Definition c0n51derat10ns for Constant
field - MIX .
Target environments for Constant fleld -
MIX
Field attributes.
Uses .
Target env1ronments for Fleld attnbute
Field attribute - Color

. 294
. 294

. 294

295

. 296
. 296

296

. 297
. 298

298

. 298
. 300
. 300

. 300

300

. 302
. 302
. 302
. 303
. 303

. 303
. 305
. 305

. 305

. 307
. 307
. 312
. 312

312

. 314
. 314

. 315
. 315
. 316
. 316
. 317
. 317

. 318
. 319

319

. 319

Uses . .
Definition consmleratlons for Fleld
attribute - Color
Target environments for Fleld attnbute -
Color .

Field attribute - nghhght
Uses .
Target env1ronments for Fleld attnbute -
Extended Highlighting . .

Field attribute - Initial cursor field .
Uses .
Target env1ronments for Fleld attr1bute -
Initial cursor field.

Field attribute - Input required
Uses .
Target env1ronments for Fleld attrlbute -
Input required .

Field attribute - Intensity

Uses .
Target env1ronrnents for Fleld attrlbute -
Intensity .
Field attribute - nght pen detect
Uses .

Definition consmleratlons for Fleld
attribute - Light pen detect. .
Target environments for Field attnbute -
Light pen detect
Example for Field attrlbute nght pen
detect . . .

Field attribute - Mod1f1ed data tag .
Uses . .
Definition Con51derat10ns for Fleld
attribute - Modified data tag . .
Target environments for Field attr1bute -
Modified data tag.

Field attribute - Numeric
Uses .
Target env1ronments for Fleld attr1bute -
Numeric .

Field attribute - Outhnmg
Uses . .
Definition con51derat1ons for Fleld
attribute - Outlining .
Target environments for Field attrlbute -
Outlining .

Field attribute - Protectlon
Uses . .
Definition cons1derat10ns for Fleld
attribute - Protection .

Contents

. 319

. 319

. 319
. 320
. 320

. 321
. 322
. 322

. 322
. 323
. 323

. 324
. 324
. 325

. 325
. 326
. 326
. 326
. 327
. 328
. 328
. 328
. 328
. 329
. 330
. 330
. 330
. 331
. 331
. 331
. 331
. 333
. 333

. 333

ix

Target environments for Field attribute -
Protection

Field attribute - Requlre f111 on mput
Uses .

Target env1ronments for Fleld attrlbute -
Require fill on input .

Message field - EZEMSG
Uses . .
Definition con51derat10ns for Message
field - EZEMSG .

Target environments for Message fleld -
EZEMSG.

Variable field
Uses . .
Definition cons1derat10ns for Varlable
field
Target env1r0nments for Varlable fleld

Variable field array
Uses . .
Definition cons1derat10ns for Varlable
field array
Target enV1r0nments for Varlable fleld
array .

Variable field - DBCS
Uses . .
Definition cons1derat10ns for Varlable
field - DBCS
Target environments for Varlable fleld -
DBCS.

Variable field - MIX
Uses . .
Definition consu:leratlons for Varlable
field - MIX .

Target environments for Varlable fleld -
MIX

Variable field ed1t
Uses .

Target env1ronments for Varlable f1e1d
edit .

Variable field ed1t Check SO / SI space
Definition considerations for Variable
field edit - Check SO/SI space .
1/0 editing considerations for Variable
field edit - Check SO/SI space
Target environments for Variable f1e1d
edit - Check SO/SI space

Variable field edit - Currency .

Uses .
I/0 editing cons1derat10ns for Var1ab1e
field edit - Currency Symbol .

X VisualAge Generator: Programmer’s Reference

. 333
. 334
. 334

. 335
. 336
. 336
. 336
. 336
. 337
. 337

. 337

338

. 339
. 339

. 339
. 339
. 340
. 340
. 341
. 341
. 342
. 342
. 343
. 343
. 344
. 344

. 345
. 345

. 345
. 345
. 346
. 346
. 347

. 347

Target environments for Variable field
edit - Currency. .
Variable field edit - Date ed1t mask
Uses .
Date edit mask formats

Length of the Date edit mask for data

items .

Length of the Date ed1t mask for map

variable fields .

I/0 editing considerations for Varlable

field edit - Date edit mask .

Target environments for Variable field

edit - Date edit mask.
Variable field edit - Decimals .
Uses .

I/0 editing con51derat1ons for Varlable

field edit - Decimals .

Target environments for Varlable f1e1d

edit - Decimals. .
Variable field edit - Descrlptlon .
Uses .

Target env1ronments for Varlable fleld

edit - Description . .o
Variable field edit - Edit error message
number .

Uses .

Definition cons1derat1ons for Ed1t error

message number . . .

Target environments for Edlt error

message number . .
Variable field edit - Edit routme .

Uses .

I/0 editing consmleratlons for Edlt

routine .

Target env1ronments for Edlt routme
Variable field edit - Fill character.

Uses .

I/0 editing con51derat1ons for Flll

character.

Target environments for Flll character .

Variable field edit - Fold
Uses .

Target enV1ronments for Varlable fleld

edit - Fold . .
Variable field edit - Hex ed1t .
Uses .

I/0 editing con51derat10ns for Varlable

field edit - Hex edit .

Target environments for Variable f1eld

edit - Hex edit .

. 347
. 348
. 348
. 349

. 350
. 351
. 351
. 352
. 353
. 353
. 353
. 354
. 354
. 355
. 355

. 356
. 356

. 356

. 357
. 357
. 358

. 358
. 358
. 359
. 359

. 360
. 360
. 361
. 361

. 361
. 362
. 362
. 362

. 363

Variable field edit - Input required .
Uses .

I/0 editing Consmleratlons for Varlable

field edit - Input required .

Target environments for Variable f1eld

edit - Input required .
Variable field edit - Justify .
Uses .

I/0 editing con51derat10ns for Varlable

field edit - Justify .

Target environments for Varlable fleld

edit - Justify
Variable field edit - Max1mum Value
Uses .

I/0 editing con51derat10ns for Varlable

field edit - Maximum value

Target environments for Variable field

edit - Maximum value .
Variable field edit - Minimum mput
Uses .

I/0 editing C0n51derat10ns for Varlable

field edit - Minimum input

Target environments for Variable field

edit - Minimum input
Variable field edit - Minimum value
Uses .

I/0 editing con51derat10ns for Varlable

field edit - Minimum value

Target environments for Variable field

edit - Minimum value .
Variable field edit - Numeric separator
Uses .

I/0 editing C0n51derat10ns for Varlable

field edit - Numeric separator.

Target environments for Variable field

edit - Numeric separator
Variable field edit - Sign
Uses .

I/0 editing con51derat10ns for Varlable

field edit - Sign

Target environments for Varlable fleld

edit - Sign .
Variable field edit - Zero edlt
Uses .

I/0 editing con31derat10ns for Varlable

field edit - Zero edit .
Target environments for Variable f1eld
edit - Zero edit.

Variable field edit order.

. 363
. 364

. 364
. 364
. 365
. 365
. 365
. 365
. 366
. 366
. 366
. 367
. 368
. 368
. 368
. 368
. 369
. 369
. 369
. 369
. 370
. 370
. 370
. 371
. 372
. 372
. 372
. 373
. 374
. 374
. 375

. 375
. 376

Definition considerations for Variable

field edit order. . . 376
Target environments for Varlable fleld
edit order . . 377
Variable field length . . 377
Uses . . 378
Definition cons1derat10ns for Vanable
field length . . . 378
Target environments for Varlable f1e1d
length. . . 378
Variable field name . . . 379
Definition considerations for Var1able
field name 379
Target environments for Varlable fleld
name . . 379
Part 2. Scripting language . 381
Chapter 10. Program processing
statements . . 383
Statement Elements . . 383
AID value . . 384
Target env1ronments for AID Value . . 385
Data item . 387
1/0 error value . 389
Uses . . . 390
1/0 status codes . . 397
SYS value . 398
Assignment statement . 399
numeric expression . . . 400
Achieving consistent results across
environments . . 403
Compatibility with CSP / AE arlthmetlc 403
Target environments for assignment. . 404
Examples for assignment . 404
CALL statement .. . 407
Definition considerations for CALL . 410
Target environments for CALL .41
Examples for CALL . . 414
DXFR statement . . 414
Definition con51derat10ns for DXFR . 415
Generation considerations for DXFR . 416
Target environments for DXFR . 416
Examples for DXFR . . 419
FIND statement . . 419
Target environments for FIND . 420
Examples for FIND . . 421
Function invocation statement . . 421
Definition considerations for Functlon
invocation statement . . 422
Contents X1

Target environments for function
invocation statements
Examplesof function invocation
statements .

IF statement
logical expression .
condition .
Definition con51derat10ns for IF .
Target environments for IF.
Examples for IF

MOVE statement . .
Definition considerations for MOVE
Target environments for MOVE .
Examples for MOVE .

MOVEA statement
Uses .

Definition con51derat10ns for MOVEA

Target environments for MOVEA
Examples for MOVEA .
RETR statement (Retrieve) .

Definition considerations for RETR .

Target environments for RETR
Examples for RETR .

SET statement .
color .
ext-hilite (extended hlghhghtmg)
Definition considerations for SET
Target environments for SET .
Examples for SET .

TEST statement

Definition con51derat10ns for TEST .

Target environments for TEST.
Examples for TEST
WHILE statement.
logical expression .
condition
Uses .
Target env1ronments for WHILE
Examples for WHILE
XFER statement

Definition considerations for XFER .

Target environments for XFER
Examples for XFER .

Chapter 11. Special function words .
Special function words .
EZEAID .
Uses .
Target env1ronments for EZEAID
Example for EZEAID

. 422

. 422
. 423
. 423
. 423
. 428
. 429
. 431
. 432
. 432
. 435
. 435
. 436
. 436
. 437
. 437
. 437
. 439
. 440
. 440
. 440
. 441
. 442
. 442
. 446
. 447
. 448
. 448
. 451
. 452
. 453
. 455
. 455
. 455
. 459
. 460
. 461
. 463
. 466
. 467
. 471

. 473

. 473
. 476
. 477
. 477
. 479

xii VisualAge Generator: Programmer’s Reference

EZEAPP .
Uses .

Definition consu:leratlons for EZEAPP

Target environments for EZEAPP
Example for EZEAPP
EZEBYTES .
Uses . .
Target env1ronments for EZEBYTES
Example for EZEBYTES
EZECLOS
Uses . .
Target env1ronments for EZECLOS
Example for EZECLOS .
EZECNVCM
Uses . .
Definition con51derat10ns for
EZECNVCM

Target environments for EZECNVCM

Example for EZECNVCM .
EZECOMIT . -
Uses .

Definition con51derat10ns for EZECOMIT
Target environments for EZECOMIT

Example for EZECOMIT
EZECONCT .
Uses . .
Definition con51derat1ons for
EZECONCT

Target environments for EZECONCT .

Example for EZECONCT .
EZECONYV . -
Uses .

Definition con51derat10ns for EZECONV

Target environments for EZECONV

Example for EZECONV
EZECONVT .

Uses .

Definition con51derat10ns for EZECONVT
Target environments for EZECONVT .

Example for EZECONVT .
EZEC10 . L.
Uses .

Definition C0n51derat10ns for EZECIO .

Target environments for EZEC10
Example for EZEC10

EZECI11 . -
Uses .

Definition con51derat10ns for EZECll .

Target environments for EZEC11.
Example for EZEC11

. 479
. 479

480

. 480
. 481
. 481
. 481
. 481
. 481
. 481
. 482
. 482
. 483
. 483
. 483

. 484

484

. 485
. 485

. 485
485

. 487
. 490
. 490
. 491

. 493
. 495
. 497
. 497

. 497
497

. 498
. 499
. 499

. 499
499

. 500
. 501
. 501
. 501
. 502
. 502
. 502
. 503
. 503
. 503
. 503
. 503

EZEDAY .
Uses . .
Target env1ronments for EZEDAY
Example for EZEDAY

EZEDAYL .
Uses . .
Target env1ronments for EZEDAYL
Example for EZEDAYL .

EZEDAYLC.
Uses . .
Target env1ronments for EZEDAYLC
Example for EZEDAYLC

EZEDEST ..
Uses .
Definition con51derat10ns for EZEDEST
Target environments for EZEDEST .
Example for EZEDEST .

EZEDESTP . .
Uses .
Definition cons1derat10ns for EZEDESTP
Target environments for EZEDESTP
Examples for EZEDESTP .

EZEDLCER (DL/T)
Uses . .
Definition conmderatlons for EZEDLCER
Target environments for EZEDLCER
Example for EZEDLCER

EZEDLCON (DL/I) .
Uses . .
Definition con51derat10ns for EZEDLCON
Target environments for EZEDLCON .
Example for EZEDLCON .

EZEDLDBD (DL/1)
Uses .
Definition c0n51derat10ns for EZEDLDBD
Target environments for EZEDLDBD .
Example for EZEDLDBD .

EZEDLERR (DL/T)
Uses . .
Definition c0n81derat10ns for EZEDLERR
Target environments for EZEDLERR
Example for EZEDLERR

EZEDLKEY (DL/I)
Uses . .
Definition con51derat10ns for EZEDLKEY
Target environments for EZEDLKEY
Example for EZEDLKEY

EZEDLKYL (DL/1)
Uses .
Definition c0n51derat10ns for EZEDLKYL

. 504
. 504
. 505
. 505
. 505
. 505
. 505
. 505
. 505
. 506
. 506
. 506
. 507
. 507

507

. 510
. 522
. 522

. 522
523

. 524
. 529
. 529

. 529
530

. 530
. 531
. 531

. 531
532

. 532
. 533
. 533

. 533
533

. 534
. 535
. 535

. 535
535

. 536
. 537
. 537

. 537
537

. 538
. 539
. 539

. 539
539

Target environments for EZEDLKYL . . 540

Example for EZEDLKYL . 541
EZEDLLEV (DL/I) . 541
Uses . . 541
Definition con51derat10ns for EZEDLLEV 541
Target environments for EZEDLLEV . . 542
Example for EZEDLLEV . . 543
EZEDLPCB (DL/T) . 543
Uses . . . 543
Definition c0n51derat10ns for EZEDLPCB 544
Target environments for EZEDLPCB . . 544
Examples for EZEDLPCB . . . 546
EZEDLPRO (DL/I) . 547
Uses . . . 547
Definition cons1derat10ns for EZEDLPRO 547
Target environments for EZEDLPRO . . 548
Example for EZEDLPRO .. 549
EZEDLPSB (DL/T) . 549
Uses . . 549
Definition con51derat10ns for EZEDLPSB 550
Target environments for EZEDLPSB . . 550
Example for EZEDLPSB . . 553
EZEDLRST (DL/T) . 553
Uses . . . 553
Definition con51derat10ns for EZEDLRST 554
Target environments for EZEDLRST . . 554
Example for EZEDLRST . 555
EZEDLSEG (DL/I) . 555
Uses . . . 555
Definition cons1derat10ns for EZEDLSEG 556
Target environments for EZEDLSEG . . 556
Example for EZEDLSEG . . 557
EZEDLSSG (DL/T) . 557
Uses . . 557
Definition consmleratlons for EZEDLSSG 557
Target environments for EZEDLSSG . . 558
Example for EZEDLSSG . . 559
EZEDLSTC (DL/T) . 559
Uses . . . 559
Definition con51derat10ns for EZEDLSTC 559
Target environments for EZEDLSTC . . 560
Example for EZEDLSTC .. 560
EZEDLTRM (DL/I) . . 561
Uses . . . 561
Definition cons1derat10ns for EZEDLTRM 561
Target environments EZEDLTRM . . . 561
EZEDTE . . 562
Uses 562
Target env1ronments for EZEDTE . . .bh63

Example for EZEDTE

. 563

Contents xiii

EZEDTEL
Uses . .
Target enV1ronments for EZEDTEL
Example for EZEDTEL .

EZEDTELC .
Uses . .
Target env1ronments for EZEDTELC
Example for EZEDTELC

EZEFEC . oL
Uses .
Target env1r0nments for EZEFEC
Example for EZEFEC

EZEFLO . ..
Uses .
Target env1ronments for EZEFLO
Example for EZEFLO

EZEGI10 . ..
Uses .
Target env1ronments for EZEGlO
Example for EZEG10

EZEGI11 . .
Uses .
Target env1ronments for EZEGll
Example for EZEGI11

EZELOC. .
Uses .
Definition Con51derat10ns for EZELOC
Target environments for EZELOC
Example for EZELOC

EZELTERM .
Uses .
Target env1r0nments for EZELTERM
Example for EZELTERM

EZEMNO R
Uses . .
Definition c0n51derat10ns for EZEMNO
Target environments for EZEMNO .
Examples for EZEMNO

EZEMSG. L.
Uses .
Definition con51derat10ns for EZEMSG
Target environments for EZEMSG .
Example for EZEMSG .

EZEOVER .
Uses .
Target env1r0nments for EZEOVER
Example for EZEOVER.

EZEOVERS . .
Uses .
Target env1r0nments for EZEOVERS

. 563
. 563
. 563
. 564
. 564
. 564
. 565
. 565
. 565
. 565
. 566
. 566
. 566
. 566
. 566
. 567
. 567
. 567
. 568
. 568
. 568
. 569
. 569
. 569
. 570
. 570

570

. 571
. 572
. 572
. 572
. 573
. 574
. 574
. 575

575

. 575
. 576
. 577
. 577

577

. 577
. 578
. 578
. 579
. 579
. 581
. 581
. 581
. 581

Xiv VisualAge Generator: Programmer’s Reference

Example for EZEOVERS
EZEPURGE . -
Uses . .
Target env1ronments for EZEPURGE
Examples for EZEPURGE .
EZERCODE. .
Target environments for EZERCODE .
Example for EZERCODE .
EZEREPLY . -
Uses . .
Target env1ronments for EZEREPLY
Example for EZEREPLY .
EZEROLLB . .
Uses . .
Definition con51derat10ns for EZEROLLB
Target environments for EZEROLLB
Example for EZEROLLB
EZERTN . L.
Uses .
Target env1ronments for EZERTN
Example for EZERTN
EZERT2 . -
Uses .
Target env1ronments for EZERTZ
EZERTS .
Uses .
Definition con51derat1ons for EZERT8
Generation Considerations for EZERT8
Target environments for EZERTS
Example for EZERTS8
EZESEGM .
Uses . .
Target env1ronments for EZESEGM
Example for EZESEGM.
EZESEGTR . .
Uses . .
Target env1ronments for EZESEGTR
Example for EZESEGTR
EZESQCOD (SQL)
Uses . . .
Target env1ronments for EZESQCOD .
Example for EZESQCOD .
EZESQISL (SQL) .
Uses .
Definition con51derat10ns for EZESQISL
Target environments for EZESQISL .
Example for EZESQISL .
EZESQLCA (SQL).
Uses .
Target env1ronments for EZESQLCA

. 581
. 581
. 582
. 582
. 583
. 583
. 584
. 585
. 585
. 586
. 586
. 586
. 587
. 587

587

. 587
. 590
. 590
. 590
. 590
. 591
. 592
. 592
. 592
. 592
. 592
. 593

593

. 594
. 600
. 600
. 600
. 601
. 602
. 602
. 602
. 603
. 604
. 604
. 604
. 605
. 606
. 606
. 606

606

. 607
. 608
. 608
. 608
. 608

Example for EZESQLCA
EZESQRD3 (SQL).

Uses . .

Target env1ronments for EZESQRD3

Example for EZESQRD3
EZESQRRM (SQL)

Uses .

. 610
. 610
. 610
. 610
. 611
. 611

. 612

Definition cons1derat10ns for EZESQRRM 612

Target environments for EZESQRRM .

Example for EZESQRRM .
EZESQWN1 (SQL)
Uses .

. 612
. 613
. 613

. 614

Definition c0n51derat10ns for EZESQWNI 614

Target environments for EZESQWNT1 .

Example for EZESQWN1 .
EZESQWNS6 (SQL)
Uses .

. 614
. 615
. 616

. 616

Definition con51derat10ns for EZESQWN6 616

Target environments for EZESQWNG6 .

Example for EZESQWNG6 .
EZESYS . . .o
Uses .

Definition cons1derat10ns for EZESYS

Target environments for EZESYS
Examples for EZESYS

EZETIM . .
Uses .
Target env1r0nments for EZETIM
Example for EZETIM

EZETST . .
Uses .
Target env1r0nments for EZETST
Example for EZETST

EZEUSR . .
Uses . .
Target env1r0nments for EZEUSR
Example for EZEUSR

EZEUSRID . .
Uses . .
Target enV1r0nments for EZEUSRID
Example for EZEUSRID

EZEWAIT .
Uses . . .
Target env1ronments for EZEWAIT .
Example for EZEWAIT .

Chapter 12. String function words

String function words

EZESBLKT . . .
Target env1ronmentsfor EZESBLKT .

. 617
. 618
. 618
. 618
. 619
. 619
. 619
. 620
. 620
. 620
. 620
. 620
. 621
. 621
. 621
. 622
. 622
. 623
. 625
. 625
. 625
. 625
. 627
. 627
. 627
. 628
. 629

. 631

. 632
. 633
. 633

Examplefor EZESBLKT .

EZESCCWS.

Target env1r0nmentsfor EZESCCWS
Example for EZESCCWS

EZESCMPR .
Definition Con51derat10ns for EZESCMPR

Target environments for EZESCMPR
Example for EZESCMPR

EZESCNCT .

Target environments for EZESCNCT
Example for EZESCNCT

EZESCOPY .
Definition consmleratlons for EZESCOPY

Target environments for EZESCOPY
Example for EZESCOPY

EZESFIND . .
Definition con51derat10ns for EZESFIND

Target environments for EZESFIND
Example for EZESFIND

EZESNULT . .
Definition con51derat10ns for EZESNULT

Target environments for EZESNULT
Example for EZESNULT

EZESSET.

Definition con51derat10ns for EZESSET
Target environments for EZESSET .
Example for EZESSET .

EZESTLEN .

Target environments for EZESTLEN
Example for EZESTLEN

EZESTOKN . .
Definition Con51derat10ns for EZESTOKN

Target environments for EZESTOKN
Example for EZESTOKN

Chapter 13. Math function words
Math function exceptions .
Math function words.

EZEABS .

Target env1ronments for EZEABS
Example for EZEABS

EZEACOS

Target environments for EZEACOS
Example for EZEACOS.

EZEASIN

Target env1ronments for EZEASIN
Example for EZEASIN .

EZEATAN .

Target env1ronments for EZEATAN
Example for EZEATAN.

Contents

. 633
. 633
. 634
. 634

. 634
635

. 635
. 635
. 635
. 636
. 636

. 636
637

. 637
. 637
. 637

638

. 638
. 638

. 638
639

. 639
. 639
. 639

640

. 640
. 640
. 640
. 640
. 640

. 640
641

. 642
. 642

. 643
. 643
. 644
. 645
. 646
. 646
. 646
. 646
. 646
. 646
. 647
. 647
. 647
. 647
. 647

XV

EZEATAN?2 . .
Target environments for EZEATAN2
Example for EZEATAN2

EZECEIL. .
Target env1ronments for EZECEIL .
Example for EZECEIL .

EZECOS .
Target env1ronments for EZECOS
Example for EZECOS

EZECOSH . .
Target environments for EZECOSH
Example for EZECOSH.

EZEEXP . .
Target enVlronments for EZEEXP
Example for EZEEXP

EZEFLADD. .
Target environments for EZEFLADD
Example for EZEFLADD

EZEFLDIV . .
Target environments for EZEFLDIV
Example for EZEFLDIV

EZEFLMOD

Target environments for EZEFLMOD .

Example for EZEFLMOD .
EZEFLMUL.
Target environments for EZEFLMUL
Example for EZEFLMUL
EZEFLOOR . .
Target environments for EZEFLOOR
Example for EZEFLOOR
EZEFLSET . .
Target environments for EZEFLSET
Example for EZEFLSET.
EZEFLSUB . .
Target environments for EZEFLSUB
Example for EZEFLSUB
EZEFREXP . .
Target environments for EZEFREXP
Example for EZEFREXP
EZELDEXP .
Target environments for EZELDEXP
Example for EZELDEXP
EZELOG. .
Target enVlronments for EZELOG
Example for EZELOG
EZELOGI10 .
Target environments for EZELOGlO
Example for EZELOG10
EZEMAX
Target env1r0nments for EZEMAX

. 648
. 648
. 648
. 648
. 649
. 649
. 649
. 649
. 649
. 649
. 650
. 650
. 650
. 650
. 650
. 651
. 651
. 651
. 651
. 652
. 652
. 652
. 652
. 652
. 653
. 653
. 653
. 653
. 653
. 654
. 654
. 654
. 654
. 654
. 655
. 655
. 655
. 655
. 655
. 656
. 656
. 656
. 656
. 657
. 657
. 657
. 657
. 657
. 657
. 658

Xvi VisualAge Generator: Programmer’s Reference

Example for EZEMAX .
EZEMIN .
Target env1ronments for EZEMIN
Example for EZEMIN
EZEMODF . .
Target environments for EZEMODF
Example for EZEMODF
EZENCMPR

Target environments for EZENCMPR .

Example for EZENCMPR .
EZEPOW
Target env1ronments for EZEPOW
Example for EZEPOW .
EZEPRCSN .
Target environments for EZEPRCSN
Example for EZEPRCSN
EZEROUND

Target environments for EZEROUND .

Example for EZEROUND .
EZESIN .
Target env1ronments for EZESIN
Example for EZESIN
EZESINH
Target env1ronments for EZESINH
Example for EZESINH .
EZESQRT .
Target env1ronments for EZESQRT
Example for EZESQRT .
EZETAN.
Target env1ronments for EZETAN
Example for EZETAN
EZETANH .
Target env1ronments for EZETANH
Example for EZETAN

Chapter 14. Object Scripting EZE words
Object scripting words .
EZESCRPT .
Uses .
Definition C0n51derat10ns
Target environments for EZESCRPT
Example for EZESCRPT.

Chapter 15. User interface EZE words
EZEUIERR . .
Target environments for EZEUIERR
Example for EZEUIERR.
EZEUILOC . .
Target environments for EZEUILOC
Example for EZEUILOC

. 658
. 658
. 658
. 658
. 658
. 659
. 659
. 659
. 659
. 659
. 660
. 660
. 660
. 660
. 661
. 661
. 661
. 661
. 661
. 662
. 662
. 662
. 662
. 662
. 663
. 663
. 663
. 663
. 663
. 664
. 664
. 664
. 664
. 664

665

. 665
. 665
. 665
. 666
. 666
. 667

669

. 669
. 669
. 669
. 669
. 670
. 670

Chapter 16. Services

Services elements .

AUDIT
Uses . e
Target environments for AUDIT .
Examples for AUDIT.

COMMIT

CREATX.
Definition considerations for CREATX
Target environments for CREATX

CSPTDLI. .
Definition considerations for CSPTDLI
Target environments for CSPTDLI
Examples for CSPTDLI .

EZCHART . .
Uses . e
Definition considerations for EZCHART
Parameters for EZCHART . .
Target environments for EZCHART .

. 671
. 671
. 672
. 672
. 673
. 674
. 675
. 675

676

. 676
. 684

685

. 685
. 687
. 689
. 689

689

. 690
. 694

Examples for EZCHART . 695
RESET . . 697
Part 3. Appendixes . 699
Appendix A. Reading syntax diagrams 701
Appendix B. Naming conventions for data
item, record, function names . 703
National characters . 704
DBCS naming conventions. . 704
Appendix C. Size restrictions and record
lengths707
Size limitations for VisualAge Generator . . 707
Maximum record lengths . 708
Index . . 711

Contents XVii

xviii VisualAge Generator: Programmer’s Reference

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2000 Xix

XX VisualAge Generator: Programmer’s Reference

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries:

ACF/VTAM
AD/Cycle
AIX

AS/400

C Set ++
CICS

CICS 0S/2
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/2
COBOL/370
COBOL /400
DataJoiner
DB2

DB2/2
DB2/400
DB2/6000
DRDA

FAA

GDDM

IBM
IBMLink
IMS
IMS/ESA
InfoExplorer

Language Environment

MVS
MVS/ESA

Operating System /2

0Ss/2
0S/400
RACF
RS/6000
SAA
SQL/DS
SQL /400
System /370

TeamConnection

© Copyright IBM Corp. 1980, 2000

xxi

xxii

Virtual Machine/Enterprise Systems Architecture
VisualAge

VisualGen

VM/ESA

The following terms are trademarks of other companies:

Adobe Adobe Systems Incorporated
HP-UX Hewlett-Packard Company
Micro Focus IMS Option Micro Focus Limited

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

Solaris, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

VisualAge Generator: Programmer’s Reference

About this document

You can use this document as a reference for writing VisualAge Generator
programs. If you are writing a program, you can use this document to look
up language element syntax, usage, and examples. This document, along with
VisualAge Generator Design Guide, VisualAge for Smalltalk User’s Guide, and
VisualAge Generator Generation Guide , serves as a source of general
information needed to write a VisualAge Generator program.

Another use is as a design guide for portable programs. If you are designing a
VisualAge Generator program to run in an environment other than the
environment in which the program is written, you can use this document to
become aware of the portability or compatibility considerations that could
affect the way your program runs.

The language elements described in this document are grouped into
non-procedural elements (Part Specifications) and procedural elements
(Scripting Language, also known as “code”).

Part specifications are grouped by the following part types:

Graphical user interface specification
An event-driven program that contains the graphical user interface of
a program.

Program specification
Text or 3270 user interface program, batch program, or server
program.

Function specification
An I/0 operation or sequence of associated code used within a
program.

Record specification
A data structure representing temporary working storage or a file or
database record.

Table specification
A data array containing a set of predefined values.

Program specification block specification
Definition of the hierarchical record relationships between DL/I
record segments.

© Copyright IBM Corp. 1980, 2000 xxiii

Item specification
A data element definition. The element can be part of a record or
table.

Map specification
Definition of a text or 3270 user interface format or a printer format.
Elements related to the map as a whole.

Map field specification
Elements related to individual constant and variable fields on the
map.

Scripting language elements are used when you enter procedural logic (code)
associated with function parts, or program flow statements that control the
order in which the main (top-level) functions of a program run.

The scripting language elements are grouped by the following topics:

Program statements
VisualAge Generator language statements and syntax.

Special function words
VisualAge Generator defined variables and services.

Services
System services specific to some run-time environments.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:

* Printed and separately ordered using the individual form number.

* Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is
used to view the manuals online and to print desired pages.

* HTML files (.htm) on the product CD-ROM and from the VisualAge
Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.

* VisualAge Generator Getting Started (GH23-0258-01) '

* VisualAge Generator Installation Guide (GH23-0257-01) '

* Introducing VisualAge Generator Templates (GH23-0272-01) >

1. These documents are available as HTML files and PDF files on the product CD.
2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

XXiv VisualAge Generator: Programmer’s Reference

The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.

VisualAge Generator Client/Server Communications Guide (SH23-0261-01)" 2
VisualAge Generator Design Guide (SH23-0264-00) *

VisualAge Generator Generation Guide (SH23-0263-01) *

VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) *

VisualAge Generator Programmer’s Reference (SH23-0262-01) !

VisualAge Generator Migration Guide (SH23-0267-00) '

VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) '*
VisualAge Generator System Development Guide (SG24-5467-00) >

VisualAge Generator User’s Guide (SH23-0268-01) ' 2

VisualAge Generator Web Transaction Development Guide (SH23-0281-00) *

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:

VisualAge Generator Server Guide for AS/400 (SH23-0280-00) *
VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) >

The following information is also available for VisualAge Generator:

VisualAge Generator External Source Format Reference (SH23-0265-01)

* Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
VisualAge Generator Templates V4.5 Standard Functions—User’s Guide
(SH23-0269-01)* *

4. This document is included when you order the VisualAge Generator Server product CD.

About this document XXV

Xxvi VisualAge Generator: Programmer’s Reference

Part 1. VAGen parts

© Copyright IBM Corp. 1980, 2000

2 VisualAge Generator: Programmer’s Reference

Chapter 1. Graphical user interfaces

A graphical user interface (GUI) program is an event-driven program that
contains one or more windows that represent the graphical user interface
through which the program user enters data and requests the actions
performed by the program. GUI programs consist of GUI windows and the
logic (functions) and data (records, tables) parts associated with the window.
The GUI program calls batch or server programs to access files and databases.

Defining a GUI program requires an approach that is different from defining
character-based programs. A VisualAge Generator GUI program requires that
you visually construct the user interface of the program and that you also
visually construct the communication between the visual parts of the program
and the nonvisual logic and data parts.

Graphical user interfaces in Smalltalk

The VisualAge Smalltalk product ships a parts palette that includes templates
for creating many visual and nonvisual program parts. VisualAge Generator
ships the following extensions to the VisualAge Smalltalk parts palette:

+ Additional features (such as actions, attributes and events) for parts
shipped with VisualAge Smalltalk

* Additional VisualAge Generator categories and their parts

All of the VisualAge Generator extensions to the parts palette have names that
begin with the VAGen prefix. The VisualAge Generator extensions are
described in this chapter, along with some techniques for visual programming.
The basic parts palette shipped with VisualAge Smalltalk is described in the
VisualAge Smalltalk online help and the VisualAge Smalltalk User’s Reference.

For more information on visual programming and the visual parts of a GUI

program, refer to the VisualAge Smalltalk User’s Reference. For information on

defining nonvisual parts, refer to the other chapters in this book.
VisualAge Generator parts category for Smalltalk

The VisualAge Generator product ships categories and parts that are added to
the VisualAge Smalltalk parts palette during installation. The following are
the VisualAge Generator parts.

* VAGen Record
* VAGen Table
* VAGen Program

© Copyright TBM Corp. 1980, 2000 3

¢ VAGen Function

VAGen Data parts
VAGen Data Parts include VisualAge Generator Developer data parts you can

use to help build a GUI client. The parts in this category are nonvisual. The
parts are described in the following sections.

Notes:

1. The Settings view of an embedded view does not show promoted
attributes that belong to VAGen Data Parts.

2. The Public Interface Editor’s Promote Feature page cannot be used to
promote VAGen Data Parts attributes that are associated with data items.
To promote these attributes, choose the Promote Part Feature... option
from the parts in the Composition Editor. Once the attributes are
promoted, the Promote Feature page can be used to view them.

VAGen Record part: Select the VAGen Record part to add a VisualAge
Generator record to the free-form surface.

VAGen Record attributes:

self The self attribute represents the part itself.

Connecting to this property of a record part to pass parameter to a
function part expecting a record or to pass a record part into another
part that contains a place holder for it (a VAGen variable).

data The data attribute represents the contents of the record, table, or data
item.

Note: In the case of an occurs item, it represents an Ordered
Collection with the values of the valid elements of the occurs
item.

data item attributes and data item data attributes
Two attributes are created for each of the individual and top-level
substructured data items in the record. One attribute represents the
data item and the other attribute represents the data item data.

VAGen Record actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

VAGen Record events:

4 VisualAge Generator: Programmer’s Reference

VAGen Record

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

You can use any of the data item attributes in the record as a source of an
event-to-action connection. The event is the modification of the value of the
data item when the application runs. For example, you can use a flag in a
working storage record and set the flag from the VisualAge Generator logic to
trigger an action, such as opening or closing a window, in the application.

VAGen Record properties: No properties may be set for this part.

VAGen Table part: Select the VAGen Table part to add VisualAge Generator
tables to the free-form surface.

VAGen Table attributes:

self The self attribute represents the part itself.

Connecting to this property of a record part to pass parameter to a
function part expecting a record or to pass a record part into another
part that contains a place holder for it (a VAGen variable).

data The data attribute represents the contents of the record, table, or data
item.
Note: In the case of an occurs item, it represents an ordered collection
with the values of the valid elements of the occurs item.

table columns
The table columns attribute represents the data items that make up the
columns of a table.

VAGen Table actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

VAGen Table events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

VAGen Table properties: No properties may be set for this part.

Chapter 1. Graphical user interfaces 5

VAGen Logic parts

VAGen Logic parts
VAGen Logic Parts include VisualAge Generator logic parts you can use in

building a GUI program. These parts are nonvisual. The parts are described in
the following sections.

VAGen Program part: Select the VAGen Program part to add a VisualAge
Generator program or a non-VisualAge Generator program to the free-form
surface. You can use the VAGen Program part as a way to visually call server
programs.

VAGen Program attributes:
self The self attribute represents the part itself.

Torn-off attributes get their values by using the self attribute. In
general, it is a read-only attribute, passing a value or values to
another part but not receiving any values.

You can use the self attribute of a torn-off attribute in an
attribute-to-attribute connection.

You can use the self attribute as a parameter in an event-to-action
connection.

lastResult
The lastResult attribute represents an object of the type
HptProgramResult. The lastResult attribute is the result of the last call
to this VAGen Callable Function.

The HptProgramResult object type is defined with the following
features:

e Attributes

returnCode
The returnCode attribute represents an Integer value that is
the return code value of the VAGen Program. In the case of
a local DLL call, the return code is the value returned by
the function. In the case of a remote call, the value is a
VAGen middleware Reason Code.

e Actions

displayError
The displayError action displays the VAGen middleware
error message that resulted from a remote call. The failure
event of the VAGen Program can be connected to this
action so that an error message will be displayed when the
remote call fails.

6 VisualAge Generator: Programmer’s Reference

getErrorText

VAGen Program

The getErrorText action returns the VAGen middleware error
message that resulted from a remote call.

linkageInfo

The linkagelnfo attribute represents an object of the type
HptCallLinkagelnformation, and contains necessary linkage
information for making a call to another function or program.

The HptCallLinkageInformation class is defined with the following

attributes:

appType

The appType attribute specifies the remote application type.
appType can have one of the following values:

VG

The called program is a generated VisualAge
Generator application. An additional parameter is
automatically passed to the server to allow the server
to return an error code to the middleware if the server
application ends abnormally.

NON_VG

The called program was developed using a tool other
than VisualAge Generator. Only the parameters
passed on the call are passed to the called program.

conversionTable
The conversionTable attribute specifies the name of the
conversion table used to perform automatic data conversion
on the call to the remote application. The name is a 9-byte
character array containing a null-terminated character string.

Some names have a special meaning:

*

Conversion is performed on the client using the
default conversion table. You must enclose the asterisk
in single quotes.

On 05/2, AIX, and Windows systems, the default is
the conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELACNxxx (OS/2 or AIX) or
ELACWxxx (Windows), where xxx is the national
language code specified in environment variable
EZERNLS. If EZERNLS is not specified, the default
national language code is ENU.

BINARY

Only binary fields are converted. The byte order in
the binary field is reversed.

Chapter 1. Graphical user interfaces 7

VAGen Program

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa,
when both the client and the server are running under
the same code page.

NONE
No conversion is performed.

externalName
The externalName attribute specifies the name of the entry
point in the DLL named in the library. The externalName value
is ignored if isRemote is true.

isRemote
The isRemote attribute is a Boolean value that specifies if a call
is to a remote or local function.

is32Bit
The is32Bit attribute is a Boolean value that tells whether a
called DLL function is a 32 Bit or 16 Bit function. The is32Bit
attribute is ignored if isRemote is true.

library
If isRemote is true, the library attribute specifies the name of
the library that contains function to be called.

If externalName and programName are empty, library will also
be the function name.

If isRemote is true, the library attribute specifies the OS/400
program library name. The name is a 20-byte character array
containing a null-terminated character string. This value is
used only with the Client Access/400 and Java400 protocols. It
specifies the name of the OS/400 library that contains the
called program. The default value is the application name if
the array contains a null string.

linkageTableName
The linkageTInbleName attribute specifies the file name of the
linkage table to be used if run-time bind is specified for the
Protocol parameter.

If not specified (null string), the linkage table file name is
obtained from environment variable CSOLINKTBL.

If the name is not fully qualified, the VisualAge Generator
middleware uses the current DPATH (for OS/2) or PATH (for
Windows) search path to find the table.

location
The location attribute specifies the protocol-dependent server

8 VisualAge Generator: Programmer’s Reference

VAGen Program

system name. The name is a 20-byte character array
containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null

string).
Protocol Meaning of location Default value
CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.
CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.
DCE, Location where the server No default.
DCESECURE, advertises in the DCE CDS
DCECICS, database. The location is
DCEIMS, specified in the configuration file
DCEVM used when the VisualAge
Generator DCE server program is
started.
APPCIMS CPIC side information identifier. No default
The side information specifies:
e Partner LU Alias
* Transaction Program Name
* Mode Name
VG See VisualAge Generator routing Host defined for applname in
table description routing table
TCPIP TCP/IP hostname No default
NPIPE For remote NPIPE support No default
(IBM’s LAN Server), specify the
COMPUTERNAME value from
the LAN server’s IBMLAN.INI
file. For local NPIPE support,
specify LOCAL.
CA/400 AS/400 system identifier The managing OS/400 system
luwType

The luwType attribute specifies the logical unit of work type.

Values are as follows:

CLIENT

Unit of work is under client control.

Server updates are not committed or rolled back until
the client requests commit or rollback using the
EZECOMIT or EZEROLLB services of VisualAge

Chapter 1. Graphical user interfaces 9

VAGen Program

Generator or the commit or rollback actions of the
VisualAge Generator commSession attribute for the
class on whose free-form surface this part was
dropped. Server applications cannot request commit
or rollback.

Environments which do not support client-controlled
unit of work will ignore this value.

SERVER
Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) is automatically issued when the server
returns. Server applications can request rollback.

parmform

The parmform attribute specifies the parameter format.

This option is supported only when calling through the CICS
OS/2 ECI or CICS Client ECI. It is ignored for all other types
of middleware.

Possible values for parmform are as follows:

COMMPTR
The server program expects to be called using the
CSP/AE parameter-passing convention that uses
pointers in the COMMAREA. Use only with MVS
CICS or VSE CICS server programs that were
generated or coded to use this parameter-passing
convention.

COMMDATA
The server program expects to receive the parameter
values in the CICS COMMAREA. The parameter
values passed on the call are moved into a single
buffer, each value adjoining the previous value
without regard for boundary alignment. On return
from the remote call, the values returned in the output
buffer are moved back to the corresponding
parameters that were passed on the call.

programName

The programName attribute specifies the name of the server
program that is being called.

The name is a null-terminated character string with a
maximum length of eight characters plus the null terminator.

10 VisualAge Generator: Programmer’s Reference

VAGen Program

protocol
The protocol attribute specifies the communications protocol
used to communicate with the client application.

Valid values are as follows:

Runtime Bind

The communications protocol is read from the linkage
table at run time. In addition, the following option
values are read from the linkage table and any
corresponding option specified in the linkagelnfo
settings is ignored:

luwType

appType

parmform

conversionTable

location

serverld

library

CICS Client ECI
CICS Client External Call Interface

Client Access/400
Client Access/400

Javad400
Java driver to connect to AS/400 system

APPC to IMS
LU 6.2 connection to IMS message processing region

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC), no authorization checking

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC) with authorization
checking

DCE to CICS
Distributed Computing Environment to CICS

DCE to IMS
Distributed Computing Environment to IMS message
processing region

DCE to VM
Distributed Computing Environment to VM

LU2 Logical Unit 2

Chapter 1. Graphical user interfaces 11

VAGen Program

Name Pipes
Name Pipes

PACBASE
PACBASE

TCP/1P
Transmission Control Protocol/Internetwork Protocol

serverld
The serverld attribute specifies the protocol-dependent server
channel or transaction name. The name is a 20-byte character
array containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null
string).

Protocol Meaning of Server Identifier

CICS, CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all applications called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction.

DCE, DCESECURE Server ID name advertised by the server in the DCE CDS
database. The serverld is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

user-defined parameters
Parameters added to the public interface by selecting Build
parameters from definition or Add parameter from the VAGen
Program’s pop-up menu.

VAGen Program actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

execute
The execute action runs the function or program. This method accepts
parameters for the program or function on the connection.

executeDeferred:
The executeDeferred: action runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay
interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

12 VisualAge Generator: Programmer’s Reference

VAGen Program

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

executeWithArguments:
The executeWithArguments: action calls the function or program, with
the arguments given. This action requires an OrderedCollection of
arguments to pass to the function or program being called.

executeDeferred:withArguments:
The executeDeferred:withArguments: action calls the function or program
on the connection after the specified delay, with the arguments given.
This action requires an OrderedCollection of arguments to pass to the
function or program being called.

VAGen Program events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

failure
The failure event signals that the call has failed. The lastResult attribute
is signaled with this event.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

success
The success event signals that the call was successful. The lastResult
attribute is signaled with this event.

VAGen Program properties: The following VAGen Program attributes can be set
from the Settings window for this part:

e lastResult

Chapter 1. Graphical user interfaces 13

VAGen Program
* linkagelnfo

VAGen Function part: Select the VAGen Function part to add a VisualAge
Generator function to the free-form surface.

VAGen Function attributes:

self The self attribute represents the part itself.

Torn-off attributes get their values by using the self attribute. In
general, it is a read-only attribute, passing a value or values to
another part but not receiving any values.

You can use the self attribute of a torn-off attribute in an
attribute-to-attribute connection.

You can use the self attribute as a parameter in an event-to-action
connection.

returnValue
The returnValue attribute is the result of the last call to a VAGen
Function. It is the value returned on the EZERTN statement within the
function.

The return values from the function mapped to the actual type of
object returned by the returnValue attribute are:

any numeric value with no decimal precision
Integer

any numeric value with decimal precision
Fraction

Char HptChaString
DBCS HptDBCSString
Mixed HptMixString
Hex HptMixString

VAGen Function actions:

destroyPart
The destroyPart action destroys the part and its children, and releases
all associated resources.

execute
The execute action runs the function or program. This method accepts
parameters for the program or function on the connection. This
feature might require parameter connections equivalent to the number
of arguments the function part expects.

14 VisualAge Generator: Programmer’s Reference

VAGen Function

A value is returned if the returnValue attribute is defined for the
function.

executeDeferred:
The executeDeferred: action runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. This feature might require parameter
connections equivalent to the number of arguments the function part
expects. The argument to this action is the delay interval, which is
specified in milliseconds. It is recommended that you do not use
delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

executeWithArguments:
The executeWithArguments: action calls the function or program, with
the arguments given. This action requires an OrderedCollection of
arguments to pass to the function or program being called.

executeDeferred:withArguments:
The executeDeferred:withArguments: action calls the function or program
on the connection after the specified delay, with the arguments given.
This action requires an OrderedCollection of arguments to pass to the
function or program being called.

VAGen Function events:

destroyedPart
The destroyedPart event signals that the part and its children have been
destroyed, and any system resources associated with them have been
released.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

Chapter 1. Graphical user interfaces 15

VAGen Container Details
VAGen Function properties: No properties may be for this part.

VAGen Container Details part
Select the VAGen Container Details part to add a part that displays

information in rows and columns, with each item occupying a row. You can
add columns by dragging a Container Details Column part from the parts
palette. The number of rows is determined at run time by the object
connected to the items attribute.

You can use a VAGen Container Details part to display the contents of a
VisualAge Generator Table or an occurs item of a VisualAge Generator
Record. You can also retrieve rows in packets that can be specified in the
VAGen Container Details part, rather than retrieving all rows at once.

You can allow users of your application to change the contents of a cell in the
VAGen Container Details part. They can do this by selecting the cell and
entering data. It is recommended that you switch the selectionPolicy to single
cell selection if you enable users to modify cells.

Part: VAGen Container Details

Class Name:
HptContainerDetailsView

Differences between Container Details and VAGen Container Details: The
VAGen Container Details part provides the packeting support that is provided
in the Packeting Container Details part. The packet support allows you to
have individual rows retrieved in packets as requested by the VAGen
Container Details part instead of having all rows retrieved at once. Besides the
packet support, the VAGen Container Details part provides some other useful
features, such as the events cellValueChanged and userInputConvertError.

VAGen Container Details inherits features from Container Details. For
descriptions of the Container Details features, refer to the VisualAge Smalltalk
Reference. VAGen Container Details has all the features provided by Container
Details, as well as the following features:
attributes

* packet

* packetEnabled

* packetSize

* totalRows

actions

16 VisualAge Generator: Programmer’s Reference

VAGen Container Details

* forcePacketRequest

e getSelectedCell

* getSelectedColumnindices
* getToplndex

events
e cellValueChanged
* packetRequested
* userInputConvertError

VAGen Container Details attributes: The following VAGen Container
Details attributes can be set as properties, which are available from the
Settings view for this part:

packet The packet property represents the packet data structure that is used
during packeting. It replaces the variable you previously had to
connect from the packetRequested event. It supports the following
features:

startRow
The row where the packet begins

endRow
The row where the packet ends

dataRows
The items or rows in the packet

packetEnabled
The packetEnabled attribute specifies whether the part will request data
one packet at a time.

packetSize
The packetSize specifies the size of packets the VAGen Container
Details part retrieves.

The packetSize attribute enables you to set the packet size before the
packet request is run. This value is used as a suggested value when
the packet is requested. However, if the suggested value is not valid,
it is not updated automatically to reflect the actual size of the packet
that was requested. To get the actual size of the packet that was
requested, you should look at the endRow setting of the packet
attribute.

totalRows
The totalRows attribute specifies the total number of rows within the
container.

VAGen Container Details actions:

Chapter 1. Graphical user interfaces 17

VAGen Container Details

forcePacketRequest:
The forcePacketRequest: action triggers the packet request operation.

getSelectedCell
The getSelectedCell action returns a Point object representing the
(column,row) coordinate of the selected cell in the container.

getSelectedColumnIndices
The getSelectedColumnlIndices action returns a collection of the indices
of the selected columns.

getTopIndex
The getToplndex action returns the index of the top visible row in the
container.

VAGen Container Details events:

cellValueChanged
The cellValueChanged event signals that one of the cells in the part was
modified. This event contains a parameter that contains the following
features:

° row

e column
* oldValue
* newValue

packetRequested
The packetRequested event signals that the part needs a new packet of
information.

userInputConvertError
The userInputConvertError event signals that the user has typed an
invalid value into the current cell of the part. This event is signalled
with a cell error callback data object of type HptCellErrorCallbackData
that contains the information about the cell that is in error. This
callback data object has the following attributes:

new Value
This is the new string that was typed into the cell. The string
is not valid for this cell. If this attribute is set to another valid
string when this event is being handled, the valid value will
be put in the cell. If this attribute is left unchanged when this
event is handled, the last valid value of this cell (oldValue) will
be put back in the cell.

The following steps show an example using the userInputConvertError
event:

18 VisualAge Generator: Programmer’s Reference

VAGen Container Details

1. Connect the VAGen Container Details view’s userInputConvertError
event to the self attribute of a variable. When an error occurs, the
variable will hold the cell error callback data object that is
signalled with this event.

2. Connect the VAGen Container Details view’s userlnputConvertError
event to the prompt action of a text prompter, to prompt the user
for a valid value.

3. Connect the answerString attribute of the text prompter to the
newValue attribute of the variable. You will need to connect to an
unlisted attribute of the variable. When prompted for the unlisted
attribute name, type newValue.

4. These connections will cause a text prompter to be displayed when
an invalid value is typed into one of the cells and focus is then
moved elsewhere. If a valid value is typed into the prompter,
when OK is pressed, that valid value is entered into the error cell
and committed. If an invalid value is typed, the prompter remains
displayed until either a valid value is typed or Cancel is pressed.
If Cancel is pressed, the last valid value in that cell is entered into
the cell.

Note: For a valid value to be put back into the cell, the newValue
attribute must be set in the process of handling the
userlnputConvertError event. After the event is handled,
setting newValue will not have any effect.

VAGen Variable part
Select the VAGen Variable part to enable your application to work with a part

that is created at run time. A variable is a placeholder for the actual part,
much like a parameter in an ordinary programming language.

When you add a variable to the free-form surface, you specify its class and
connect the variable so that, at run time, it receives its identity from a part
elsewhere in your application. At run time, a part of that class takes the place
of the variable.

Part: VAGen Variable

i |

Class Name:
AbtVariable

Refer to the Variable part description in the VisualAge Smalltalk User’s Reference
for more information on the Variable part.

Chapter 1. Graphical user interfaces 19

VAGen Variable

Differences between VAGen Variable and Variable parts: The VAGen
Variable is intended to be used with other VAGen parts. There are two main
differences between VAGen Variable and Variable.

* When an attribute of a VAGen Variable is connected to another part’s
attribute or a connection’s parameter, the VAGen Variable performs the
appropriate conversion of its attribute into the expected type at the other
end of the connection.

For example, if you have a VAGen Variable that holds a VAGen Num data
item, and you connect data attribute of the variable to enabled of a push
button, the VAGen Variable converts the value of its data attribute from an
integer or a number to a boolean as expected by enabled so that the
alignment of the connection will be successful. If you use a VisualAge
Smalltalk Variable instead of a VAGen Variable, this alignment will cause an
error. Because of this automatic conversion, it is recommended that you use
a VAGen Variable when the value that it holds is a VAGen Data part or is
related to a VAGen Data part. When you tear off an attribute from a VAGen
Data part, a VAGen Variable is used automatically for the tearoff.

* Because VAGen parts are not Smalltalk classes, you cannot change a
VisualAge Smalltalk Variable’s type to a VAGen part to have the
appropriate features listed at edit time. Therefore, the VAGen Variable has
an option to Change VAGen Type instead of Change Type for VisualAge
Smalltalk Variable parts. Change VAGen Type allows you to specify at edit
time the VAGen part that the VAGen Variable will hold at run time, and
that allows the VAGen Variable part to show all features that are available
for that VAGen part.

Remember that VAGen Variables are placeholders for other parts, much like
parameters in 3GL programming languages. Therefore, you must connect
the self attribute of the VAGen Variable to identify the attributes of the part
the VAGen Variable will receive at run time.

Selecting Change VAGen Type is not sufficient to identify the part the
VAGen Variable will receive. This function is available at edit time to make
it easier to make connections to the features of a VAGen Variable.

VAGen Variable inherits from Variable. Therefore, it has the same features as
Variable.

VAGen Variable attributes:
self The self attribute represents the part itself.

valueHolder
The valueHolder attribute holds the value of the variable or class.

After you select Change VAGen Type from the VAGen Variable’s pop-up
menu, the attributes of that part are available.

20 VisualAge Generator: Programmer’s Reference

VAGen Variable

VAGen Variable actions: After you select Change VAGen Type from the
VAGen Variable’s pop-up menu, the actions of that part are available.

VAGen Variable events: After you select Change VAGen Type from the
VAGen Variable’s pop-up menu, the events of that part are available.

VAGen File Accessor part
Select the File Accessor part to add a part that will allow your application to

manipulate text files. With this part, applications can read text files, display
their contents in a string-capable control (for example, a Multi-line Edit), work
with the actual file string, or save the string to any file and invoke the File
dialog.

Use the File Accessor part to allow programs to manipulate text files. With
this part, programs can read text files, display their contents in a string
capable control, work with the actual file string, or save the string to any file
and invoke the File dialog.

Part: VAGen File Accessor

2

Class Name:
HptFilePart

VAGen File Accessor attributes:

buffer The buffer attribute represents a String value that is a copy in memory
of the contents of the file. The contents of this buffer are preserved
when fileSpec is changed, which allows for save as operations. You can
connect this attribute to a Multi-line Edit and be able to modify a file
simply by using the read and write actions.

The initial value for this attribute is set on the Settings window for
this part.

fileSpec
The fileSpec attribute represents a String value that contains the fully
qualified file name. This is likely to be platform-specific. The File
Accessor part always uses this attribute to indicate what file it is
managing.

The initial value for this attribute is set on the Settings window for
this part.

self The self attribute represents the part itself.

VAGen File Accessor actions:

Chapter 1. Graphical user interfaces 21

VAGen File Accessor

read The read action clears the buffer, opens, reads the file into the buffer,
and closes the file specified by the fileSpec attribute. If fileSpec is
empty, the file selection dialog is invoked to prompt the user for the
file name.

selectFile
The selectFile action invokes the platform-specific file selection dialog.
The specified file is returned in fileSpec.

write The write action opens, writes the contents of the buffer to the file
specified by fileSpec, and closes the file. If fileSpec is empty, the file
selection dialog is invoked to prompt for the file name. To be able to
invoke a save as type of operation, simply set fileSpec to the new file
name prior to invoking the write action.

VAGen File Accessor events: There are no events for this part.

VAGen File Accessor properties: The following VAGen File Accessor
properties can be set from the Settings view for this part:

e buffer
* fileSpec
¢ lastError

Additional VisualAge Generator features for VisualAge Smalltalk parts

The VisualAge Generator product ships additional attributes and actions for
several VisualAge Smalltalk parts. The following sections describe these
additional features and list all the VisualAge Smalltalk parts for which they
are available.

Dynamically programming visual parts
VisualAge Generator provides several actions that enable you to dynamically

build visual parts at run time. You can use these features to add new pages to
a notebook part based on some logic, add new menu choices to a menu, or
add new menu pull-downs.

You can use these features to establish a child-parent relationship between
two parts. You can dynamically create a new instance of a visual part with the
Object Factory part, and it can be displayed by the openWidget action without
adding it to a parent part. However, if it does not have a parent part, it is
treated as a top-level part and it is destroyed when it is closed. To prevent it
from being destroyed, add it to a parent part using the subpartNamed: action.

A sample, partadr.dat, showing the use of these features is shipped with

VisualAge Generator. For more information on the sample application, refer to
the VisualAge Generator Getting Started document.

22 VisualAge Generator: Programmer’s Reference

VAGen Features for VisualAge Smalltalk

The following actions enable you to dynamically program visual parts. These
actions require that an instance of a part that you want to add exists to be
used as the “part” parameter. To create an instance of a part, use the Object
Factory part.

¢ Adding a subpart to an existing composite visual part:

VAGen subpartNamed:put:
The VAGen subpartNamed:put: action adds a subpart to a composite
part using the specified name. The part is added invisibly and must
be opened using openWidget to be visible.

VAGen subpartNamed:putOpened:
The VAGen subpartNamed:putOpened: action adds a subpart to a
composite part using the specified name. The part is added visibly
so no openWidget is necessary after this action.

VAGen subpartNamed:put:beforePartNamed:
The VAGen subpartNamed:put:beforePartNamed: action adds a subpart
invisibly at a specific order in the components list of the parent
part. Note that this action will not show the part in the correct
order in its parent unless the parent part has not been opened yet.
If the parent is already opened, it must be closed and reopened to
display its components in the correct order. If no before part name
is specified, the part is added to the end of the list.

VAGen subpartNamed:putOpened:beforePartNamed:
The VAGen subpartNamed:putOpened:beforePartNamed: action adds a
visible subpart at a specific order in the components list of the
parent part. If no before part name is specified, the part is added to
the end of the list. Though this action will add the part in the
correct component sequence, it is likely the sequence will not
appear correct until the parent is closed and reopened.

* Retrieving and destroying a subpart from a composite part:

VAGen destroySubpartNamed:
The VAGen destroySubpartNamed: action finds the subpart with the
specified name and removes it from its parent.

VAGen subpartNamed:
The VAGen subpartNamed: action finds the subpart with the specified
name. This search recursively scans all subparts of the composite
part until a match is found. The result of this action can be assigned
to a variable that can then act as the subpart.

* Showing and positioning an existing visual part:

openWidget
The openWidget action opens a modeless Window with respect to its
parent Window.

Chapter 1. Graphical user interfaces 23

VAGen Features for VisualAge Smalltalk

closeWidget
The closeWidget action closes the part.

VAGen setX
The VAGen setX action positions the left edge of the widget at the
specified outset.

VAGen setY
The VAGen setY action positions the top edge of the widget at the
specified outset.

VAGen setHeight
The VAGen setHeight action sets the height of the widget.

VAGen setWidth
The VAGen setWidth action sets the width of the widget.

The positioning actions affect the framingSpec of the widget. However, they
only allow you to set absolute/relative dimensions, not proportional or
attachment settings. To access the more powerful attachment functions, you
should use the framingSpec attribute.

The features are available with specific visual parts described in the sections
below.

Nonvisual parts of class: AbtAppBIldrPart and visual parts of class:
AbtAppBIdrView

Attributes: The attributes and actions described in this section apply to all
nonvisual parts in the AbtAppBldrPart class and all visual parts in the
AbtAppBldrView class.

VAGen commSession
The VAGen commSession attribute is a read-only attribute that is
initialized to an object of type CmSession when the first call to a
VAGen server is issued from the VAGen Callable Function or from a
VAGen CALL statement in a function.

The CmSession class is defined with the following actions:

commit
When executed, the commit action propagates a commit to the
server platforms, as appropriate. The commit will only have
an effect when calls to servers using this session were made
through the CICS Client or Client Access/400 middleware
products and client unit of work was specified. In all other
cases, commit results in an immediate return with no action
taken.

24 VisualAge Generator: Programmer’s Reference

VAGen Features for VisualAge Smalltalk

rollback
When executed, the rollback action propagates a rollback to the
server platforms, as appropriate. The rollback will only have
an effect when calls to servers using this session were made
through the CICS Client or Client Access/400 middleware
products and client unit of work was specified. In all other
cases, rollback results in an immediate return with no action
taken.

If VAGen inheritsCommSession is set to true, then VAGen commSession is
only set if the parent of the part is nil and the VAGen
commSessionOwner attribute is nil. VAGen commSessionOwner is first
checked for the session and if it is nil, then the parent is checked. If
both are nil, then the VAGen commSession attribute is set to a new
instance of the VAGen Communications Session part.

The VAGen commSession attribute can be torn off and used visually or
it can be accessed through Smalltalk code.

VAGen commSessionOwner

The VAGen commSessionOwner attribute can be set to any instance of a
subclass of AbtAppBldrNonVisual. VAGen commSessionOwner is used in
conjunction with VAGen inheritsCommSession to control the ownership
of a given communications session within a hierarchy of parts. If
VAGen commSessionOwner is set, and VAGen inheritsCommSession is set
to true, the session object will be looked for in that part.

VAGen inheritsCommSession

VAGen inheritsCommSession is a boolean attribute that controls how to
look for the instance of a VAGen Communications Session part when
a call to a VAGen server is issued. If set to true, the VAGen
commSessionOwner is checked first. If the VAGen commSessionOwner is
set to nil, then the parent is checked. If the VAGen inheritsCommSession
attribute is false, then the current part returns the session that is
stored in VAGen commSession.

Actions:

VAGen destroyTopLevelSubpartNamed:

The VAGen destroyTopLevel SubpartNamed: action finds the subpart with
the specified name, removes it from its parent and destroys it. This
action differs from the VAGen destroySubpartNamed: action provided by
the primary part in that it starts the search from this part rather than
the primary part.

VAGen topLevelSubpartNamed:

The VAGen topLevelSubpartNamed: action finds the subpart with the
specified name. This search recursively scans all the subparts of the

Chapter 1. Graphical user interfaces 25

VAGen Features for VisualAge Smalltalk

composite part until a match is found. The result of this action can be
assigned to a variable that can then act as the subpart. This action
differs from the VAGen subpartNamed: action provided by the primary
part in that it starts the search from this part rather than the primary
part.

VAGen topLevelSubpartNamed:put:
The VAGen topLevel SubpartNamed:put: action adds a subpart to a
composite part using the specified name. The part is added invisibly
and must be opened using openWidget to be visible. This action
differs from the VAGen subpartNamed:put: action provided by the
primary part in that it adds the subpart to this part instead of adding
the subpart to the primary part.

VAGen performRequest:
The VAGen performRequest: action executes actions stored in its
parameter object, such as a record’s data item.

For example, use the VAGen performRequest: action when you would
like to conditionally trigger an action in the GUI program based on a
computation that is performed in a VisualAge Generator logic part.

Visual parts of class: AbtBasicView
The actions described in this section apply to all visual parts in the class

AbtBasicView in the following categories:
* Buttons

* Data Entry

* Lists

* Menus

+ Canvas

* OS/2

Actions:

VAGen setHeight
The VAGen setHeight action sets the height of the widget.

VAGen setWidth
The VAGen setWidth action sets the width of the widget.

VAGen setX
The VAGen setX action positions the left edge of the widget at the
specified offset.

VAGen setY
The VAGen setY action positions the top edge of the widget at the
specified offset.

26 VisualAge Generator: Programmer’s Reference

VAGen Features for VisualAge Smalltalk

Visual parts that can contain other visual parts
The actions described in this section apply to all visual parts that can contain
other visual parts, including:

¢ Container Details part (Class: AbtContainerDetailsView)
* Composite Views part (Class: AbtCompositeView)
 Parts in the Canvas category

Actions:

VAGen destroySubpartNamed:
The VAGen destroySubpartNamed: action finds the subpart with the
specified name, removes it from its parent and destroys it.

VAGen subpartNamed:
The VAGen subpartNamed: action finds the subpart with the specified
name. This search recursively scans all the subparts of the composite
part until a match is found. The result of this action can be assigned
to a variable that can then act as the subpart.

VAGen subpartNamed:put:
The VAGen subpartNamed:put: action adds a subpart to a composite
part using the specified name. The part is added invisibly and must
be opened using openWidget to be visible.

VAGen subpartNamed:put:beforePartNamed:
The VAGen subpartNamed:put:beforePartNamed: action adds a subpart
invisibly at a specific order in the components list of the parent part.
Note that this action will not show the part in the correct order in its
parent unless the parent part has not been opened yet. If the parent is
already opened, it must be closed and reopened to display its
components in the correct order. If no before part name is specified,
the part is added to the end of the list.

VAGen subpartNamed:putOpened:
The VAGen subpartNamed:putOpened: action adds a subpart to a
composite part using the specified name. The part is added visibly, so
no openWidget is necessary after this action.

VAGen subpartNamed:putOpened:beforePartNamed:
The VAGen subpartNamed:putOpened:beforePartNamed: action adds a
visible subpart at a specific order in the components list of the parent
part. If no before part name is specified, the part is added to the end
of the list. Though this action will add the part in the correct
component sequence, it is likely the sequence will not appear correct
until the parent is closed and reopened.

Chapter 1. Graphical user interfaces 27

VAGen Features for VisualAge Smalltalk

Form, Group Box and Window parts
The attributes described in this section apply to the following parts:

* Form part (Class: AbtFormView)
* Group Box part (Class: AbtGroupBoxView)
* Window part (Class: AbtShellView)

Attributes:

VAGen topLevelEnabled
The VAGen topLevelEnabled attribute is a Boolean value that represents
whether a part is available for user interaction. VAGen topLevel Enabled
is different from enabled in that when VAGen topLevelEnabled is false for
a part, it does not show the part’s children as disabled. The children
of the part will appear enabled.

Window part
The actions described in this section apply to the Window part of class

AbtShellView.

Actions:

VAGen cancelCloseRequest:
The VAGen cancelCloseRequest: action enables you to stop a window
from closing if the program user decides to cancel the close operation
from a confirmation box.

Connect the closeWidgetRequest event as follows:
1. To the self attribute of a Variable part
2. To one of the openModal actions of a confirmation dialog

3. To the suspendExecutionUntilRemoved action of a confirmation
dialog

The cancel event (for example, clicked of the cancel button) of the
confirmation dialog should be connected to the VAGen
cancelCloseRequest: action of the window to be closed. This connection
requires a parameter to which you should connect the self attribute of
the Variable part you assigned in the first connection above.

VAGen getFocusPart
The VAGen getFocusPart action enables you to perform standard CUA
operations, such as Cut, Copy, Paste, and Clear from a menu.

You use this action by connecting some event (for example, clicked of
the Cut menu button) to the VAGen getFocusPart action of a Window
part. The result of this connection should be connected to self of a
Variable part.

28 VisualAge Generator: Programmer’s Reference

VAGen Features for VisualAge Smalltalk

You should also connect the menu button to an unlisted feature of the
variable that corresponds to the action that the VAGen getFocusPart
action should perform. For example, cutSelection, copySelection, paste, or
clearSelection.

VisualAge Generator extensions to VisualAge Smalltalk data types

VisualAge Generator provides some extensions to the VisualAge Smalltalk
basic data types. It is recommended that these VAGen data types be used on
parts that are connected to VAGen data items. This is especially true for the
Boolean, Date and Time data types because of the implicit conversion that
they perform on the data. The VisualAge Generator extensions are:

Boolean-VAGen
The Boolean-VAGen converter is like the Boolean converter except
that on connection alignment, it can accept objects of types String and
Integer in addition to objects of Boolean type. This allows VAGen data
items of String and Integer types to be connected to attributes that
expect Boolean data. See VisualAge Generator User’s Guide for the
rules used to convert String and Integer objects to Boolean objects.

Date-VAGen
The Date-VAGen converter is like the Date converter except that on
connection alignment, it can accept objects of String and Integer types
in addition to objects of Date type. This allows VAGen data items of
String and Integer type to be connected to attributes that expect Date
data. See VisualAge Generator User’s Guide for the rules used to
convert String and Integer objects to Date objects.

DBCS Only-VAGen
The DBCS Only-VAGen converter is like the DBCS Only converter
except that it supports minimum and maximum values.

Number-VAGen
The Number-VAGen converter is like the Number converter except
that it uses VisualAge Generator rules on rounding and truncation.

Time-VAGen
The Time-VAGen converter is like the Time converter except that on
connection alignment, it can accept objects of String type in addition
to objects of Time type. This allows VAGen data items of String type
to be connected to attributes that expect Time data. See VisualAge
Generator User’s Guide for the rules used to convert String objects to
Time objects.

Note: VisualAge Smalltalk recommends that you use Properties Table in
place of Notebook Style settings view. Properties Table is used as the
default unless the VisualAge Notebook Style settings views feature is
loaded and Notebook Style is selected as the preferred settings view
from the VisualAge Preferences window. If Notebook Style is selected,

Chapter 1. Graphical user interfaces 29

VAGen Features for VisualAge Smalltalk

you will need to load the configuration map VAGen GUI Settings to
be able to access the settings view for these VAGen data types.
Otherwise, the Customize button from the part’s settings view is
disabled when one of these data types is selected.

Graphical user interfaces in Java

The VisualAge for Java product ships a parts palette that includes templates
for creating many visual and nonvisual program parts. VisualAge Generator
ships the following extensions to the VisualAge for Java parts palette:

* An additional VisualAge Generator category and parts

All of the VisualAge Generator extensions to the parts palette have names that
begin with the VAGen prefix. The basic parts palette shipped with VisualAge
for Java is described in the VisualAge for Java online help.

For more information on visual programming and the visual parts of a GUI
program, refer to the VisualAge for Java task information in the online help.
For information on defining nonvisual parts, refer to the other chapters in this
book.

VisualAge Generator parts category for Java
The VisualAge Generator product ships categories and parts that are added to
the VisualAge for Java parts palette during installation. The following table
shows the VisualAge Generator categories and their parts.
* VAGen Record
* VAGen Table
* VAGen Program
* VAGen Function

VAGenRecordPart
Select the VAGenRecordPart part to add a VisualAge Generator record to the

free-form surface.

VAGenRecordPart properties:

byteData
The byteData property represents the contents of the record as a byte
array. Use thebyteData property if you wish to share or pass the record
part’s contents. The byteData property is readable, writable, and
bound.

data The data property represents the contents of the record as a string. Use
data property to display the record part’s contents as a string. Due to
internal conversions involved with the data property, if you wish to

30 VisualAge Generator: Programmer’s Reference

VAGenRecordPart

share or pass the record part’s contents, use byteData property instead
to maintain its integrity. The data property is readable, writable, and
bound.

this The this property represents the part itself. Connecting to this
property of a record part to pass parameter to a function part
expecting a record or to pass a record part into another bean that
contains a place holder for it (a VAGen variable).

The this property is readable.

data item properties and data item data properties
Two properties are created for each of the individual and top-level
substructured data items in the record. One property represents the
data item and the other property represents the data item data. These
properties are bound properties. The properties that represent the data
items are readable and bound. The properties that represent the data
items data are readable, writable and bound.

VAGenRecordPart methods:

getByteData()
The getByteData() method returns the byte array that represents the
contents of the record. This method is the get selector for the byteData

property.
getValue()

The getValue() method returns the string that represents the contents
of the record.

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the record to the
byte array given. This method is the get selector for the byteData

property.
setValue(java.lang.String)

The setValue(java.lang.String) method sets the contents of the record to
the string given.

VAGenRecordPart events: The VAGenRecordPart does not have any real
events. However, you can use any of the data item properties in the record as
a source of an event-to-method connections. The event is the modification of
the value of the data item when the application runs.

VAGenTablePart
Select the VAGenTablePart part to add VisualAge Generator tables to the

free-form surface.

VAGenTablePart properties: Following is the list of properties of a
VAGenTablePart, none of which can be set in a Properties dialog;:

Chapter 1. Graphical user interfaces 31

VAGenTablePart

byteData
The byteData property represents the contents of the table as a byte
array. Use the byteData property if you wish to share or pass the table
part’s contents. The byteData property is readable, writable, and
bound.

data The data property represents the contents of the table as a string. Use
data property to display the table part’s contents as a string. Due to
internal conversions involved with the data property, if you wish to
share or pass the table part’s contents, use byteData property instead
to maintain its integrity. The data property is readable, writable, and
bound.

table columns
The table columns property represents the data items that make up the
columns of a table. The fable columns property is readable and bound.

table columns data
The table columns data property represents the contents of the columns
of a table as an array of strings. The table columns data property is
readable, writable and bound.

this The this property represents the part itself.

Connecting to this property of a table part to pass parameter to a
function part expecting a table or to pass a table part into another
bean that contains a place holder for it (a VAGen variable). The this
property is readable.

data item properties and data item data properties
Two properties are created for each of the individual and top-level
substructured data items in the record. One property represents the
data item and the other property represents the data item data. These
properties are bound properties. The properties that represent the data
items are readable and bound. The properties that represent the data
items data are readable, writable and bound.

VAGenTablePart methods:

getByteData()
The getByteData() method returns the byte array that represents the
contents of the table. This method is the get selector for the byteData
property.

getValue()
The getValue() method returns the string that represents the contents
of the table.

32 VisualAge Generator: Programmer’s Reference

VAGenTablePart

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the table to the
byte array given. This method is the get selector for the byteData

property.
setValue(java.lang.String)

The setValue(java.lang.String) method sets the contents of the table to
the string given.

VAGenTablePart events: The VAGenTablePart does not have any real events.
However, you can use any of the data item properties in the table as a source
of an event-to-method connections. The event is the modification of the value
of the data item when the application runs.

Additional VAGen parts used with data parts

VAGen Field part: This part represents a data item in a data part, and you
can access its features by tearing off a data item property from a data part. It
is not a part in the VAGen Parts category.

VAGen Field properties: Following is the list of properties of a VAGen Field,
none of which can be set in a Properties dialog;:

bigNumData
The bigNumData property represents the contents of the data item as a
com.ibm.vgj.wgs.VG]BigNumber, which is a numeric value with
decimal precision, if possible. The bigNumData property is readable,
writable, and is an expert property.

data The data property represents the contents of the data item. The type of
the data property depends on the type of the data item. The following
table maps the data item type to the Java type that is contained by
this property:

Table 1. Data item type compared to Java type

Data item type Comparable Java type
any numeric value with no decimal long
precision

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]BigNumber

Char java.lang.String
DBCS java.lang.String
Mixed java.lang.String
Hex byte(]

Chapter 1. Graphical user interfaces 33

VAGen Field

Use data property if you wish to share or pass the data item’s
contents. The data property is readable, writable, and bound.

intData
The intData property represents the contents of the data item as a Java
int if possible. The intData property is readable, writable, and is an
expert property.

longData
The longData property represents the contents of the data item as a
Java long if possible. The longData property is readable, writable, and
is an expert property.

shortData
The shortData property represents the contents of the data item as a
Java short if possible. The shortData property is readable, writable, and
is an expert property.

stringData
The stringData property represents the contents of the data item as a
string. The stringData property is readable, writable, and is an expert

property.
this The this property represents the data item itself. Connecting to this

property of a data item to pass parameter to a function part expecting
a data item. The this property is readable.

value The value property represents the contents of the data item as a Java
Object. The following table maps the data item type to the Java object
type that is contained by this property:

Table 2. Data item type compared to Java object type

Data item type Comparable Java object type
any numeric value with no decimal java.lang.Long
precision

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]BigNumber

Char java.lang.String
DBCS java.lang.String
Mixed java.lang.String
Hex byte[]

The value property is readable, writable, and is an expert property.

data item properties and data item data properties
If a VAGen Field represents a substructured data item, two properties
are created for each of the individual and top-level substructured data
items in the record. One property represents the data item and the

34 VisualAge Generator: Programmer’s Reference

VAGen Field

other property represents the data item data. These properties are
bound properties. The properties that represent the data items are
readable and bound. The properties that represent the data items data
are readable, writable and bound.

VAGen Field methods:

getBigNumData()
The getBigNumData() method returns the contents of the data item as
a com.ibm.vgj.wgs.VG]BigNumber. If the contents of the data item can
not be converted to a numeric value with decimal precision, an
exception will occur. This method is the get selector for the
bigNumData property.

getByteData()
The getByteData() method returns the byte array that represents the
contents of the data item. This method is the get selector for the
byteData property.

getIntData()
The getIntData() method returns the contents of the data item as a
Java int. If the contents of the data item can not be converted to an
integer, an exception will occur. This method is the get selector for the
intData property.

getLongData()
The getLongData() method returns the contents of the data item as a
Java long. If the contents of the data item can not be converted to a
long, an exception will occur. This method is the get selector for the
longData property.

getShortData()
The getShortData() method returns the contents of the data item as a
Java short. If the contents of the data item can not be converted to a
short, an exception will occur. This method is the get selector for the
shortData property.

getStringData()
The getStringData() method returns the contents the contents of the
data item as a string. This method is the get selector for the stringData
property.

getValue()
The getValue() method returns the Java object that represents the
contents of the data item. The following table maps the data item type
to the Java object type that is returned by this method:

Chapter 1. Graphical user interfaces 35

VAGen Field

Table 3. Data item type compared to Java object type

Data item type Comparable Java object type
any numeric value with no decimal java.lang.Long
precision

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]BigNumber

Char java.lang.String
DBCS java.lang.String
Mixed java.lang.String
Hex byte[]

setBigNumData(com.ibm.vgj.wgs.VGJBigNumber)
The setBigNumData(com.ibm.vgj.wgs.VG]BigNumber) method sets the
contents of the data item to the com.ibm.vgj.wgs.VG]BigNumber
given. If the value given cannot be converted to this data item’s type,
an exception will occur. This method is the set selector for the
bigNumData property.

setByteData(byte[])
The setByteData(byte[]) method sets the contents of the data item to the
byte array given. This method is the get selector for the byteData
property.

setIntData(int)
The setIntData(int) method sets the contents of the data item to the
integer given. If the value given cannot be converted to this data
item’s type, an exception will occur. This method is the set selector for
the intData property.

setLongData()
The setLongData() method sets the contents of the data item to the
long given. If the value given cannot be converted to this data item’s
type, an exception will occur. This method is the set selector for the
longData property.

setShortData()
The setShortData() method sets the contents of the data item to the
short given. If the value given cannot be converted to this data item’s
type, an exception will occur. This method is the set selector for the
shortData property.

setStringData(java.lang.String)
The setStringData(java.lang.String) method sets the contents of the data
item to the string given. If the value given cannot be converted to this
data item’s type, an exception will occur. This method is the set
selector for the stringData property.

36 VisualAge Generator: Programmer’s Reference

VAGen Field

setValue(java.lang.Object)
The setValue(java.lang.String) method sets the contents of the data item
to the Java object given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the value property.

setValueToDefault()
The setValueToDefault() method sets the contents of the data item to
its default value (zero for the numeric data items and blanks for
character data items).

VAGen Field events: The VAGen Field does not have any real events.
However, if it represents a substructured data item, you can use any of the
data item properties in it as a source of an event-to-method connection. The
event is the modification of the value of the data item when the application
runs.

VAGen Array Field: This part represents an occurs data item in a data part,
and you can access its features by tearing off an occurs data item property
from a data part. It is not a part in the VAGen Parts category.

Note: VAGen Array Field parts are indexed from 0 and VAGen Array Field
methods operate on this assumption. For example, the integers in the
method getFieldsInRange(int, int) are zero-based.

VAGen Array Field properties: Following is the list of properties of a VAGen
Array Field, none of which can be set in a Properties dialog:

bigNumArrayData
The bigNumArrayData property represents the contents of the data
item as an array of com.ibm.vgj.wgs.VG]BigNumber(s) if possible. The
bigNumArrayData property is readable, writable, and is an expert
property.

byteArrayData
The byteArrayData property represents the contents of the data item as
a two-dimensional array of bytes. The byteArrayData property is
readable, writable, and is an expert property.

data The data property represents the contents of the data item, which is an
array of values. The type of the values depends on the type of the
data item. The following table maps the data item type to the Java
type that is contained in this array:

Table 4. Data item type compared to Java type

Data item type Comparable Java type
any numeric value with no decimal long
precision

Chapter 1. Graphical user interfaces 37

VAGen Array Field

Table 4. Data item type compared to Java type (continued)

Data item type Comparable Java type

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]BigNumber
Char java.lang.String

DBCS java.lang.String

Mixed java.lang.String

Hex byte[]

Use data property if you wish to share or pass the data item’s
contents. The data property is readable, writable, and bound.

intArrayData
The intArrayData property represents the contents of the data item as
an array of Java int(s) if possible. The intArrayData property is
readable, writable, and is an expert property.

longArrayData
The longArrayData property represents the contents of the data item as
an array of Java long(s) if possible. The longArrayData property is
readable, writable, and is an expert property.

shortArrayData
The shortArrayData property represents the contents of the data item
as an array of Java short(s) if possible. The shortArrayData property is
readable, writable, and is an expert property.

stringArrayData
The stringArrayData property represents the contents of the data item
as an array of string. The stringArrayData property is readable,
writable, and is an expert property.

this The this property represents the data item itself. Connecting to this
property of a data item to pass parameter to a function part expecting
a data item or to display the data item contents in a JTable. The this
property is readable.

data item properties and data item data properties
If a VAGen Array Field represents a substructured occurs data item,
two properties are created for each of the data items in the
substructure: one property represents the data item and the other
property represents the data item data. The properties that represent
the data items are readable and bound. The properties that represent
the data items data are readable, writable and bound.

VAGen Array Field methods:

38 VisualAge Generator: Programmer’s Reference

VAGen Array Field

addNewRowA fter(int)
The addNewRowAfter(int) method adds an empty row after the given
row number. The row number is 0-based. If this occurs item is
connected to a JTable, the empty row will now show up in the JTable
allowing the end-user to fill in the columns information.

addNewRowBefore(int)
The addNewRowBefore(int) method adds an empty row before the
given row number. The row number is 0-based. If this occurs item is
connected to a JTable, the empty row will now show up in the JTable
allowing the end-user to fill in the columns information.

addNewRowLast()
The addNewRowLast() method adds an empty row at the end of the
valid rows. If this occurs item is connected to a JTable, the empty row
will now show up at the end of the JTable allowing the end-user to
fill in the columns information.

getBigNumArrayData()
The getBigNumArrayData() method returns the contents of the data
item as an array of com.ibm.vgj.wgs.VGJBigNumber(s). If the contents
of the data item can not be converted to an array of numeric value
with decimal precision, an exception will occur. This method is the get
selector for the bigNumArrayData property.

getByteArrayData()
The getByteArrayData() method returns a two-dimensional array of
bytes that represents the contents of the data item. This method is the
get selector for the byteArrayData property.

getColumnClass(int)
The getColumnClass(int) method is part of the Swing’s TableModel
interface. It returns java.lang.Object class for all of the data items in its
substructure.

getColumnCount()
The getColumnCount() method is part of the Swing’s TableModel
interface. It returns the number of data items in the occurs data item’s
substructure.

getColumnName(int)
The getColumnName(int) method is part of the Swing’s TableModel
interface. It returns the name of the data item positioned at the given
column number in the occurs data item’s substructure.

getElementAt(int)
The getElementAt(int) method is part of the Swing’s ListModel
interface. It returns the value of the element at the specified index.

Chapter 1. Graphical user interfaces 39

VAGen Array Field

getFieldAt(int)
The getFieldAt(int) method returns the element at the specified index
of the occurs data item. You can use this method to pass the element
at the specified index of the array as a parameter to the
VAGenProgramPart.

getFieldsInRange(int, int)
The getFieldsInRange(int, int) method returns elements between two
indexes of an occurs item. You can connect the result of this method
to the model property of a JTable to get only a certain range of the
occurs item.

getIntArrayData()
The getIntArrayData() method returns the contents of the data item as
an array of Java int(s). If the contents of the data item cannot be
converted to an array of integers, an exception will occur. This
method is the get selector for the intArrayData property.

getLongArrayData()
The getLongArrayData() method returns the contents of the data item
as an array of Java long(s). If the contents of the data item cannot be
converted to an array of longs, an exception will occur. This method is
the get selector for the longArrayData property.

getRowCount()
The getRowCount() method is part of the Swing’s TableModel interface.
It returns the count of elements in the occurs data item with
non-default values.

getSelectedItem()
The getSelectedlItem() method is part of the Swing’s ComboBoxModel
interface. It returns the value of the selected item from the JComboBox
if the occurs data item is connected to a JComboBox’s model.

getShortArrayData()
The getShortArrayData() method returns the contents of the data item
as an array of Java short(s). If the contents of the data item cannot be
converted to an array of shorts, an exception will occur. This method
is the get selector for the shortArrayData property.

getSize()
The getSize() method is part of the Swing’s ListModel interface. It
returns the count of elements in the occurs data item with non-default
values.

getStringArrayData()
The getStringArrayData() method returns the contents of the data item
as an array of strings. This method is the get selector for the
stringArrayData property.

40 VisualAge Generator: Programmer’s Reference

VAGen Array Field

getValue()
The getValue() method returns the value of the first element in the
Array (index = 0). The following table maps the data item type to the
Java object type that is returned by this method:

Table 5. Data item type compared to Java object type

Data item type Comparable Java object type
any numeric value with no decimal java.lang.Long
precision

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]JBigNumber

Char java.lang.String
DBCS java.lang.String
Mixed java.lang.String
Hex byte[]
getValueAt(int)

The getValueAt(int) method returns the value of the element at the
specified index of the occurs data item. You can connect the result of
this method to anything you would normally connect to the data
property of a non-occurs item such as JTextField’s text .

getValueAt(int, int)
The getValueAt(int, int) method is part of the Swing’s TableModel
interface. It returns the value of cell <row, column> (row is the first
integer given, column is the second integer given. Cell <row, column>
is the occur row of the data item at position column in the occurs data
item’s substructure.

getValuesInRange(int, int)
The getValuesInRange(int, int) method returns the values of elements
between two indexes of an occurs item.

isCellEditable(int, int)
The isCellEditable(int, int) method is part of the Swing’s TableModel
interface. It returns true for all cells <row, column>.

removeRowAt(int)
The removeRowAt(int) method removes the row at the specified index.
The row index is 0-based. If this occurs item is connected to a JTable,
the row will now be removed from the JTable.

setBigNumArrayData(com.ibm.vgj.wgs.VG]JBigNumber[])
The setBigNumArrayData(com.ibm.vgj.wgs.VG]BigNumber) method sets
the contents of the occurs data item to the array of
com.ibm.vgj.wgs.VG]BigNumber(s) given. If the value given can not

Chapter 1. Graphical user interfaces 41

VAGen Array Field

be converted to this data item’s type, an exception will occur. This
method is the set selector for the bigNumArrayData property.

setByteArrayData(byte[])
The setByteArrayData(byte[]) method sets the contents of the data item
to the two-dimensional array of bytes given. This method is the get
selector for the byteArrayData property.

setIntArrayData(int[])
The setIntArrayData(int) method sets the contents of the data item to
the array of integers given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the intArrayData property.

setLongArrayData([])
The setLongArrayData([]) method sets the contents of the data item to
the array of longs given. If the value given cannot be converted to this
data item’s type, an exception will occur. This method is the set
selector for the longArrayData property.

setSelectedItem(java.lang.Object)
The setSelectedItem() method is part of the Swing’s ComboBoxModel
interface. It saves the value of the selected item from the JComboBox
if the occurs data item is connected to a JComboBox’s model.

setShortArrayData([])
The setShortArrayData([]) method sets the contents of the data item to
the array of shorts given. If the value given can not be converted to
this data item’s type, an exception will occur. This method is the set
selector for the shortArrayData property.

setStringArrayData(java.lang.String][])
The setStringData(java.lang.String[]) method sets the contents of the
data item to the array of strings given. If the value given can not be
converted to this data item’s type, an exception will occur. This
method is the set selector for the stringArrayData property.

setValue(java.lang.Object)
The setValue(java.lang.String) method sets the contents of the first
element of the Array to the Java object given. If the value given can
not be converted to this data item’s type, an exception will occur. This
method is the set selector for the value property.

setValueAt(int, java.lang.Object)
The setValueAt(int, java.lang.Object) method replaces the value of the
element at the specified index with the Java object given. If the value
given can not be converted to this data item’s type, an exception will
occur.

42 VisualAge Generator: Programmer’s Reference

VAGen Array Field

setValueAt(java.lang.Object, int, int)
The setValueAt(int, int) method is part of the Swing’s TableModel
interface. It replaces the value of the cell <row, column> with the
object given (row is the first integer given, column is the second
integer given. Cell <row, column> is the occur row of the data item at
position column in the occurs data item’s substructure.

setValuesInRange(int, int, java.lang.Object[])
The setValuesInRange(int, int) method sets the values of elements
between two indexes of an occurs item to the array of values given.

setValueToDefault()
The setValueToDefault() method sets the contents of the first element
of the Array to its default value (zero for the numeric data items and
blanks for character data items).

VAGen Array Field events: The VAGen Array Field does not have any real
events. However, if it represents a substructured data item, you can use any
of the data item properties in it as a source of an event-to-method connection.
The event is the modification of the value of the data item when the
application runs. VAGen Logic Parts include VisualAge Generator logic parts
you can use in building a GUI program. These parts are nonvisual. The parts
are described in the following sections.

VAGenProgramPart
Select the VAGenProgramPart part to add a VisualAge Generator program or

a non-VisualAge Generator program to the free-form surface. You can use the
VAGen Program part as a way to visually call server programs.

VAGenProgramPart properties:

lastResult
The lastResult property represents an object of the type
HptProgramResult. The lastResult property is the result of the last call
to this VAGen Program.

The HptProgramResult object type is defined with the following
features:

Properties

error The error property returns a boolean indicating if the last
invocation of this program resulted in a nonzero return code.
The error property is readable only.

errorObject
The errorObject property represents an object of the type
HptProgramError if the last invocation of this program
resulted in a non-zero return code. Otherwise, this property
will return null.

Chapter 1. Graphical user interfaces 43

VAGenProgramPart

The HptProgramError object type is defined with the
following features:

dateAndTime
The dateAndTime property returns a java.lang.String.
The dateAndTime property is readable and writable.

errorText
The errorText property returns a java.lang.String. The
errorlext property is readable and writable.

errorTextReplace
The errorTextReplace property returns a
java.lang.String. The errorTextReplace property is
readable and writable.

errorTextReplace
The errorTextReplace property returns a
java.lang.String. The errorTextReplace property is
readable and writable.

locus The locus property returns a java.lang.String. The locus
property is readable and writable.

origin The origin property returns a java.lang.String. The
origin property is readable and writable.

reasonCode
The reasonCode property returns an int. The reasonCode
property is readable and writable.

returnCode
The returnCode property returns an int. The returnCode
property is readable and writable.

errorText

The errorText property returns a java.lang.String containing the
error text from the last invocation of this program, if an error
was produced. Otherwise, this property will return null. The
errorlext property is readable and writable.

returnCode

The returnCode property returns an int. containing the return
code from the last invocation of this program. The returnCode
property is readable and writable.

The lastResult property is readable and bound.

linkageInfo

The linkagelnfo property represents an object of the type

44 VisualAge Generator: Programmer’s Reference

VAGenProgramPart

HptCallLinkagelnformation, and contains necessary linkage
information for making a call to another function or program.

The HptCallLinkageInformation class is defined with the following

properties:

appType

The appType property specifies the remote application type.
appType can have one of the following values:

VG

The called program is a generated VisualAge
Generator application. An additional parameter is
automatically passed to the server to allow the server
to return an error code to the middleware if the server
application ends abnormally.

NON_VG

The called program was developed using a tool other
than VisualAge Generator. Only the parameters
passed on the call are passed to the called program.

conversionTable
The conversionTable property specifies the name of the
conversion table used to perform automatic data conversion
on the call to the remote application. The name is a 9-byte
character array containing a null-terminated character string.
Some names have a special meaning:

*

Conversion is performed on the client using the
default conversion table. You must enclose the asterisk
in single quotes.

On 05/2, AIX, and Windows systems, the default is
the conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELACNxxx (OS/2 or AIX) or
ELACWxxx (Windows), where xxx is the national
language code specified in environment variable
EZERNLS. If EZERNLS is not specified, the default
national language code is ENU.

BINARY

Only binary fields are converted. The byte order in
the binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa,
when both the client and the server are running under
the same code page.

Chapter 1. Graphical user interfaces 45

VAGenProgramPart

NONE
No conversion is performed.

externalName
The externalName property specifies the name of the entry
point in the DLL named in the library. The externalName value
is ignored if isRemote is true.

isRemote
The isRemote property is a Boolean value that specifies if a call
is to a remote or local function.

is32Bit
The is32Bit property is a Boolean value that tells whether a
called DLL function is a 32 Bit or 16 Bit function. The is32Bit
property is ignored if isRemote is true.

library
If isRemote is true, the library property specifies the name of
the library that contains function to be called.

If externalName and programName are empty, library will also
be the function name.

If isRemote is true, the library property specifies the OS/400
program library name. The name is a 20-byte character array
containing a null-terminated character string. This value is
used only with the Client Access/400 and Java400 protocols. It
specifies the name of the OS/400 library that contains the
called program. The default value is the application name if
the array contains a null string.

linkageTableName
The linkageTnbleName property specifies the file name of the
linkage table to be used if run-time bind is specified for the
Protocol parameter.

If not specified (null string), the linkage table file name is
obtained from environment variable CSOLINKTBL.

If the name is not fully qualified, the VisualAge Generator
middleware uses the current DPATH (for OS/2) or PATH (for
Windows) search path to find the table.

location
The location property specifies the protocol-dependent server
system name. The name is a 20-byte character array
containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null

46 VisualAge Generator: Programmer’s Reference

VAGenProgramPart

string).
Protocol Meaning of location Default value
CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.
CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.
DCE, Location where the server No default.
DCESECURE, advertises in the DCE CDS
DCECICS, database. The location is
DCEIMS, specified in the configuration file
DCEVM used when the VisualAge
Generator DCE server program is
started.
APPCIMS CPIC side information identifier. No default
The side information specifies:
¢ Partner LU Alias
¢ Transaction Program Name
¢ Mode Name
VG See VisualAge Generator routing Host defined for applname in
table description routing table
TCPIP TCP/IP hostname No default
NPIPE For remote NPIPE support No default
(IBM’s LAN Server), specify the
COMPUTERNAME value from
the LAN server’s IBMLAN.INI
file. For local NPIPE support,
specify LOCAL.
CA /400 AS/400 system identifier The managing OS/400 system
Java400 AS/400 system identifier No default
luwType
The luwType property specifies the logical unit of work type.
Values are:
CLIENT

Unit of work is under client control.

Server updates are not committed or rolled back until
the client requests commit or rollback using the
EZECOMIT or EZEROLLB services of VisualAge
Generator or the commit or rollback actions of the
VisualAge Generator commSession property for the

Chapter 1. Graphical user interfaces 47

VAGenProgramPart

class on whose free-form surface this part was
dropped. Server applications cannot request commit
or rollback.

Environments which do not support client-controlled
unit of work will ignore this value.

SERVER

parmform

Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) is automatically issued when the server
returns. Server applications can request rollback.

The parmform property specifies the parameter format.

This option is supported only when calling through the CICS
OS/2 ECI or CICS Client ECI. It is ignored for all other types
of middleware.

Possible values for parmform are:

COMMPTR

The server program expects to be called using the
CSP/AE parameter-passing convention that uses
pointers in the COMMAREA. Use only with MVS
CICS or VSE CICS server programs that were
generated or coded to use this parameter-passing
convention.

COMMDATA

programName

The server program expects to receive the parameter
values in the CICS COMMAREA. The parameter
values passed on the call are moved into a single
buffer, each value adjoining the previous value
without regard for boundary alignment. On return
from the remote call, the values returned in the output
buffer are moved back to the corresponding
parameters that were passed on the call.

The programName property specifies the name of the server
program that is being called.

The name is a null-terminated character string with a
maximum length of eight characters plus the null terminator.

protocol

The protocol property specifies the communications protocol
used to communicate with the client application.

48 VisualAge Generator: Programmer’s Reference

VAGenProgramPart

Valid values are:

Runtime Bind

The communications protocol is read from the linkage
table at run time. In addition, the following option
values are read from the linkage table and any
corresponding option specified in the linkagelnfo
settings is ignored:

luwType

appType

parmform

conversionTable

location

serverld

library

CICS Client ECI
CICS Client External Call Interface

Client Access/400
Client Access/400

Java400
Java driver to connect to AS/400 system

APPC to IMS
LU 6.2 connection to IMS message processing region

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC), no authorization checking

DCE RPC Secure
Distributed Computing Environment Remote
Procedure Call (DCE RPC) with authorization
checking

DCE to CICS
Distributed Computing Environment to CICS

DCE to IMS
Distributed Computing Environment to IMS message
processing region

DCE to VM
Distributed Computing Environment to VM

LU2 Logical Unit 2

Name Pipes
Name Pipes

Chapter 1. Graphical user interfaces 49

VAGenProgramPart

PACBASE
PACBASE

TCP/1P
Transmission Control Protocol/Internetwork Protocol

serverld

The serverld property specifies the protocol-dependent server
channel or transaction name. The name is a 20-byte character
array containing a null-terminated character string.

The following table shows the meaning of the identifier by
protocol and the default value if a name is not specified (null
string).

Protocol

Meaning of Server Identifier

CICS, CICSCLIENT Name of CICS transaction for the server. If client unit of work is

specified, all applications called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction.

DCE, DCESECURE Server ID name advertised by the server in the DCE CDS

database. The serverld is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

this

providerURL

This providerURL property specifies the host name and port of
the name server used by the EJB client. The property value
must have the following format: iiop:/ /hostname:port, where
hostname is the IP address or hostname of the machine on
which the name server runs and port is the port number on
which the name server listens.

The this property represents the part itself.
The this property is readable.

VAGenProgramPart methods:

execute

The execute method runs the function or program. This method
accepts parameters for the program or function on the connection.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up

executeDeferred:

The executeDeferred: method runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay

50 VisualAge Generator: Programmer’s Reference

VAGenProgramPart

interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is
read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

VAGenProgramPart events:

failure
The failure event signals that the call has failed. Both the new and the
old value of the lastResult property is signalled with this event.

hasExecuted
The hasExecuted event signals that a function or program has been
run.

success
The success event signals that the call was successful. Both the new
and the old value of the lastResult property is signalled with this
event.

VAGenFunctionPart
Select the VAGenFunctionPart part to add a VisualAge Generator function to

the free-form surface.

VAGenFunctionPart properties:

returnValue
The returnValue property contains the value returned by the last
invocation of this function part. The following table maps the return
value type returned by the function to the Java object type that is
contained by this property:

Chapter 1. Graphical user interfaces 51

VAGenFunctionPart

Table 6. Data item type compared to Java object type

Data item type Comparable Java object type
any numeric value with no decimal java.lang.Long
precision

any numeric value with decimal precision |com.ibm.vgj.wgs.VG]BigNumber

Char java.lang.String
DBCS java.lang.String
Mixed java.lang.String
Hex byte[]

The returnValue property is readable and bound.
this The this property represents the part itself.
The this property is readable.

VAGenFunctionPart methods: The following methods are associated with
VAGenFunctionPart:

execute
The execute method runs the function or program. This method
accepts parameters for the program or function on the connection.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

executeDeferred:
The executeDeferred: method runs the function or program after the
specified delay. This method accepts parameters for the program or
function on the connection. The argument to this action is the delay
interval, which is specified in milliseconds. It is recommended that
you do not use delays that are less than 100 milliseconds.

This action can be used to create a polling loop to wait on a certain
resource to become available. The VAGen Logic part can check the
resource and reschedule itself to executeDeferred again using a
perform request structure. Once the resource is available, the loop can
be terminated by simply not redispatching the VAGen Logic part
again. Note that during the delay period, you are free to interact with
the user interface and you can schedule other logic events to run prior
to the timer expiration.

This action creates a background delay that will expire at the end of
the delay interval. At that time, the logic part will be put on the
execution queue to be processed at the next opportunity the queue is

52 VisualAge Generator: Programmer’s Reference

VAGenFunctionPart

read. This means that there is no guarantee that the logic you have
deferred will execute in the same order or at a set timer interval. The
interval simply specifies when it would run at the earliest.

Parameters can be added by selecting Build parameters from
definition or Add parameter from the VAGen Program Part’s pop-up
menu.

getBigNumReturnValue()
The getBigNumReturnValue() method returns the returnValue property
converted the type com.ibm.vgj.wgs.VG]BigNumber

getByteNumReturnValue()
The getByteNumReturnValue() method returns the returnValue property
converted the type byte[].

getIntReturnValue()
The getIntReturnValue() method returns the returnValue property
converted the type int

getLongReturnValue()
The getLongReturnValue() method returns the returnValue property
converted the type long

getShortReturnValue()
The getShortReturnValue() method returns the refurnValue property
converted the type short

getStringReturnValue()
The getStringReturnValue() method returns the returnValue property
converted the type java.lang.String

VAGenFunctionPart events: The following event is associated with
VAGenFunctionPart:

hasExecuted
The hasExecuted event signals that a function or program has been
run.

VAGenVariable Part
Select the VAGenVariable part and drop it on the free form surface to enable

your program to work with a part that is created at run time. A variable is a
placeholder for the actual part, much like a parameter in an ordinary
programming language.

VAGenCommsSession Part
Select the VAGenCommSession Part to add a communication session to the

free form surface. Use this part to explicitly define which communication
session your other VAGen parts use.

Chapter 1. Graphical user interfaces 53

VAGenCommSession Part

VAGenCommSession attributes: Two attributes associated with the VAGen
Communications Session part are VAGen inheritsCommSession and VAGen
commSessionOwner.

VAGen inheritsCommSession is a boolean attribute that controls how to look for
the instance of a VAGen Communications Session part when a call to a
VAGen server is being issued. If set to true, the VAGen commSessionOwner is
checked first. If the VAGen commSessionOwner is set to nil, then the parent is
checked. If the VAGen inheritsCommSession attribute is false, then the current
part will return the session that is stored in VAGen commSession.

VAGen commSessionOwner is an attribute that can be set to any instance of a
subclass of AbtAppBldrNonVisual. VAGen commSessionOwner is used in a
hierarchy of parts to control which parts actually have the VAGen commSession
attribute set to an instance of a VAGen Communications Session part. If
VAGen commSessionOwner is set, and VAGen inheritsCommSession is set to true,
the session object will be looked for in that part.

VAGenCommSession properties: The following properties are associated
with the VAGen Communications Session part:

password
Specifies the password to be used for this communications session.
This property is used in combination with the userID property. The
value needs to be available when the Java GUI requires
communication to an AS/400 server program through the Java400
protocol.

userID
Specifies the user ID to be used for this communications session. This
property is used in combination with the password property. The
value needs to be available when the Java GUI requires
communication to AS/400 server program through the Java400
protocol.

Additional VisualAge Generator Features for VisualAge Java Beans

VAGenCommSession
The VAGenCommSession property represents an object of the type

HptCommSession. This is the same type that is used when a
VAGenCommSession Part is dropped on the free-form surface.

When the first VisualAge Generator part is added to a Java bean, VAGen adds
the VAGenCommSession property to the Java bean’s interface.

The VAGenCommSession property allows users to share the communication
session created to handle server calls between multiple beans. Connecting a

54 VisualAge Generator: Programmer’s Reference

VAGenCommsSession

VAGenCommSession Part (HptCommSession) from another bean to this
property allows the beans to share the same communication session.

If this property is not set, a communication session is created by default when
needed.

Chapter 1. Graphical user interfaces 55

VAGenCommsSession

56 VisualAge Generator: Programmer’s Reference

Chapter 2. Programs

A program refers to any of the following types of VisualAge Generator

programs:

* Programs that communicate with the user via a text (3270 or character
based) user interface.

 Stand alone batch programs.
* Called programs (server programs or local subprograms).

In short, a program is any VisualAge Generator program other than a GUI
program.

When you create a program, you must define general information such as, the
type of program you are creating, the map group the program will use, the
working storage name, the help map group, the message table prefix, and the
first map name. You also define information about function keys and
implicits. Finally, you associate logic and data parts with the program using
the main function list, the table and additional records list, and the called
parameter list.

Program elements

Table 7. Program elements

5
+
& + N
o o =
@)
9}
o
Element o E
| e NI=EE=
»n = Z| Z O|Z | =
cl)-SUO = 9_18:‘:38 2] » » Gm &é
= 2| Ol 2 &| » 2| Bl B 5 O 2| = s | &
O m =y > 2 U » 1= Xl Ol o o & 2o
nl Al »nl & ~ F| =) S| T| K| KT [y
SISzl 22 S 8 BB g o o B & B EE S SE S
> > 2| 2| 2| &l &| »| »| O O] O] <| ZT| <| =| B| A| AIZ | F
Allow X | x| x| x| x| x| x| x| x|x|x|x|x|x|x|x]|x]|x]|x]|x]x
implicits
Bypass edit | x X | ¢ C X X | x [x| x| x| x]|x]|x|x]|x X
keys

© Copyright IBM Corp. 1980, 2000 57

Table 7. Program elements (continued)

o)
+
) + g
o o =
@]
n
<
Element o o)
| e ==
» < »n Z| Z O|Z | =
wn| S| O O = QU)-SU Dl n| = '_'mu
S = B = EU#,_‘ @] Q <
5| % O E & g &3 &9 g «| S| | | o 2|2 |E
2 2 2
2B DF oo wm|om| 9 F| Q] | R < B B S ET|R
=l 2 2l 2 g n| nl B A B [Sl Bl = =|.E
S| = - = ol © 55}
> > 2| 2| 2| &| & »| »| 0| O] O| «| T| <| 2| 2| B BT | =
Called X[x| x| x| x|l x| x| x| x|x|x|x|x|x|x]|x|x]|x]x]x
parameter
list
Execution | ¢ c | c C C c|li|c|lc|lc|c|c|lc]|]c]|c X
mode
F1-12 = X X | x X X X | x [x| x| x|[x]|x]|x|x]x X
F13-24
First map | x X | X C X X | X [x| x| x| x| x| x| x]|Xx X
First Ul C C C c|lc|lc|lclc|lc|lc|lcl|lx]|c
Flow X | x| x| x| x| x| x| x| x| x|x|x|x|x|x|x]|x]|x]x]|x]x
statements
Help key | x X | ¢ C X X [x| x| x| x| x|x]|x]|x]x X
Help map | x X | x X X X | x| x| x| x| x|x]|x]|x]x X
group
name
Keepafter | x | x | x | x | x| x| x [x| x|[x|x|x|[x]|x|[x]|x]|x]x]x]x
use
Main X[x [x| x| x| x| x| X[X |[x|x|x|x|x|x|x|x]|x]|x]|x]x
function
list
Mapgroup | x | X | X | X | X | x | X [X | x | X [x| x| X |x|[X]|Xx]|Xx]X]Xx X
name
Message X | x| x| x| x| x| x| x| x| x|x|x|x|x|x|x]|x]|x]x]|x]x
table prefix
Program X | x| x| x| x| x| x| x| x| x|x|x|x|x|x|x]|x]|x]x]|x]x
name
Program | x| c | x| x| c|c|c|x|c|x|x|x|x|x|x]|x]|x|x]|x]|c]|Xx
type
Prologue | x | X | x | X | X | x | X [X | x [X | X | X[X |x [X|x|x]|Xx]|x]|x]x

58 VisualAge Generator: Programmer’s Reference

Table 7. Program elements (continued)

5
2 i S
: : :
7))
o
Element o E
| = = 3
»n < n Z| Z olZz | =
§'§28‘:§ §8§2 S| 2l ¢ Ugst)
Sl & C 2| R & & O & 9 g x| O| 8| 8| 2 2|5 |=
2 DD G o ok owm g T = B 2 Rl §E R
EE>>>§§wwmmm§m§-~-~ss-~m
> > 2 2| 2| & & »| »| O| O| O] «| ZT| < B| B| #| AZ |
PSB name clc|lcl|lclc|c|cl|i|i|i|i]|]i|c|c|lc]|]i|cl|i]Xx
Structure | x | x | x | x | x| x| x| x| x| x| x| x| x| x| x| x|x|x]|x]x]x
list
Tableand | x | x | x | x | x | x| x| x| x| x| x| x| x| x| x| x|x|x]|x]x]x
additional
records list
Working X [x| x| x| x|c| x| x| x|x|x|x|x|x|x|x|x]|x]|x]|x]|x
storage
Legend: In this table, the following characters are used to indicate the level of support:
X Supported
c Supported with compatibility considerations
i Ignored.
v Supported with VisualAge Generator generation, but not with TeamConnection build
* Resource association file referenced only at runtime
blank Not supported

Note: Program elements do not apply to GUI elements.

Allow implicits

Allow implicits enables you to have the VisualAge Generator test and
generation facilities create implicit data item definitions.

Uses
Implicit data item definitions are needed for unqualified data item names
referenced in the program that are not defined in any of the records, tables, or
maps used in the program.

If you do not specify Allow implicits, the test and generation facilities bypass

all processing involved in creating implicit data items. These facilities issue
error messages for any undefined data item.

Chapter 2. Programs 59

Allow implicits

Performance information for Allow implicits
Test and generation performance improve when you do not Allow implicits.

Target environments for Allow implicits
Supported in all environments without compatibility considerations.

Bypass edit keys

You can specify up to five function keys for the program user to use to bypass
map edits and map edit routines.

Uses

When the program user presses a bypass edit key, data is not passed to the
program, and the program continues processing at the statement following the
terminal I/O function (either the first map or a CONVERSE statement).

The data on a map when the program user presses a bypass edit key is not
saved.

PA keys are treated as bypass edit keys in a generated program.

The values specified during program specification are the default keys for the
maps used by the program. However, the values you assign for the bypass
edit keys during map definition override the values specified during program
specification.

For example, if three keys are specified during program specification, but only
one is specified during map definition, only the key specified during map
definition can be used for that map.

Note: You cannot use one function key as both a bypass edit key and the help
key.

Target environments for bypass edit keys

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO PF6 is reserved for a panel recovery function in this environment. If

you press PF6, it is treated as pressing the Clear key. The PF key
value is not passed back to the program. Avoid using PF6 in this
environment.

MVS batch Not supported.

60 VisualAge Generator: Programmer’s Reference

Bypass edit keys

Environment Compatibility Considerations

IMS/VS IMS reserves the PA keys so they cannot be the default bypass edit
keys. A specific PF key must be defined if the program user is
allowed to bypass edits.
If your installation uses PF12 for the IMS local copy function, you
cannot use PF12 as a bypass edit key.

IMS BMP Not supported.

CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 None.

0S/400 None.

0s/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT Not supported.

(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Called parameter list

Uses

The called parameter list shows the names and types of parameters your
program receives.

The following can be specified for each parameter to be passed to this

program:

Name The name of the data item, record, or map received as a parameter.

Type

The part type of the parameter:
e Item
* Map

¢ Record

Chapter 2. Programs 61

Called parameter list

Definition considerations for called parameter list
The following restrictions apply to parameters:

The maximum number of parameters is 30. Parameters can be maps,
records, or data items. EZEDLPSB or EZEDLPCB can also be a parameter.

Note: If you specify EZEDLPSB or EZEDLPCB as a parameter, specify Item
as the type of parameter.

The parameters must be listed in the same order as the arguments are listed
in the CALL statement in the calling program.

The number of parameters must equal the number of arguments.

The parameter definitions must be the same as or compatible with the
definitions of the call arguments. If data types are not compatible or lengths
are not the same, errors might occur during execution.

The data item must be defined using data item definition. A data item
parameter cannot be a data item in a record, table, or map used by the
called program.

If the program is going to be a server program called from a remote system,
the total length of all parameters must not exceed 32567 bytes.

Parameters in the called parameter list cannot be used as I/O objects or
specified as the working storage record for the called program.

Target environments for called parameter list

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS The preprocessor requires either EZEDLPSB or EZEDLPCB when

generating for IMS/VS. Remote server programs in IMS/VS require
EZEDLPSB but cannot accept EZEDLPCBs.

IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.
0Ss/2 None.

62 VisualAge Generator: Programmer’s Reference

Called parameter list

Environment Compatibility Considerations
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Execution mode

Uses

Execution mode defines the mode in which main transaction programs are
started.

The following execution modes are valid for main transaction programs:

Nonsegmented
A CONVERSE does not mark the end of a unit of work. I/O locks
and database and file positions are maintained across the CONVERSE.

Segmented
Each write to the terminal (CONVERSE or XFER with map or Ul
record) is the end of a unit of work.

Single segment
A single input from a terminal is processed and the program stops
running after one of the following occurs:
* The program responds to the input.
* Control transfers to another program.

Programs running in single segment mode have the following

limitations:

* Programs cannot use the CONVERSE I/O option.

* Programs must use the XFER statement with a map and a first map
for terminal I/O operations.

* Programs with terminal I/O operations must use the XFER
statement with a map to transfer to a program with a first map.

Chapter 2. Programs 63

Execution mode

Definition considerations for segmented
On each write to the terminal, database and file changes are committed. The
program saves the contents of records and maps across a CONVERSE, but not
across an XFER with map or Ul record.

The following information is also lost on the commit:

e I/0 locks

* Database and file positions
* Main storage resources

Definition considerations for single segment

Each interaction with the program user at the terminal is the end of the unit
of work. Database and file changes are committed and all resources are freed.
The only data passed to the next segment is the data in the map variable and
the data in the passed working storage record.

Target environments for execution mode

Environment

Compatibility Considerations

VM CMS

Segmented and single segment mode are simulated by the

following:

* Committing database changes prior to each CONVERSE

* Refreshing single user table contents

* Resetting to their default values the EZE words that are not saved
across segments.

VM batch

Not supported.

CICS for
MVS/ESA

The end of a segment is the equivalent of a CICS SYNCPOINT. All
updates to recoverable files and databases are committed and all
I/0 locks and positions are freed.

Nonsegmented programs run in conversational mode. Segmented
programs run in pseudoconversational mode.

For segmented programs, all main storage resources are free while
the system waits for terminal input from the program user.

MVS/TSO

Same as VM CMS.

MVS batch

Not supported.

64 VisualAge Generator: Programmer’s Reference

Execution mode

Environment Compatibility Considerations

IMS/VS Nonsegmented main transaction programs are not supported.
EZESEGM is ignored.
The end of a segment is a commit point. All updates to recoverable
files and databases are committed and all I/O locks and positions
are freed.
For segmented programs, all main storage resources are free while
the system waits for terminal input from the program user.
IMS conversational processing is used for segmented programs if an
IMS scratchpad area (SPA) length greater than 0 is specified as a
COBOL generation option.
IMS nonconversational processing is used for segmented programs
if SPA length is equal to O or it is not specified.

IMS BMP Not supported.

CICS for Same as CICS for MVS/ESA.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 Same as CICS for MVS/ESA.

0S/400 Ignored, all programs operate as nonsegmented.

0S/2 Same as VM CMS.

AIX Same as VM CMS.

HP-UX Same as VM CMS.

CICS for AIX Same as VM CMS.

Windows NT Same as VM CMS.

(C++)

Windows NT Not supported.

(Java)

CICS for Same as VM CMS.

Windows NT

Solaris Same as VM CMS.

CICS for Solaris

Same as VM CMS.

Test Facility

None.

F1-12=F13-24

F1-12=F13-24 assigns the functions of the F1 to F12 function keys to the F13 to
F24 function keys.

Chapter 2. Programs 65

F1-12=F13-24

Uses

A program test to determine whether a single key, such as F1 has been
pressed will test true if either F1 or F13 is pressed only if F1-F12=F13-F24 is
specified.

Target environments for F1-12=F13-24

Environment Compatibility Considerations
VM CMS None.

VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch Not supported.
IMS/VS None.

IMS BMP Not supported.
CICS for None.
VSE/ESA

VSE batch Not supported.
CICS for OS/2 None.

0S/400 None.

0S/2 None.

AIX None.

HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

First map

First map specifies the name of a map to display when a main transaction

first starts.

66 VisualAge Generator: Programmer’s Reference

First map

Uses

First map is an initial map on which the program user enters input before the
first function is run.

Definition considerations for first map

The program enables the user to enter input from the first map before any
other program logic runs. Any inputs are validated according to map edit
specifications.

A program with a first map starts as the result of one of the following:

* An XFER statement

* A transfer without a map from a non-VisualAge Generator program

* The program being started by a user (entering a transaction code for CICS
or IMS, running a CLIST for TSO, or running a runtime REXX exec for
VM CMS)

If the program was started using an XFER with map, the program reads the
map from the terminal prior to executing the first function. Otherwise, the
program converses the map prior to executing the first function. In this case,
the map fields are initialized as though a SET map CLEAR statement was
performed.

When the map is read, the contents of the map are validated as specified by
the map item edits. If the contents are not valid, the map displays with an
error message. If the contents are valid, execution continues with the first
function defined for the program.

First map cannot be specified for main batch, called batch, called transaction,
or web transaction programs. You cannot use the DXFR statement to transfer
control to a program that has a first map specified.

The first map must be part of the map group specified for the program.
Target environments for first map

Environment Compeatibility Considerations
VM CMS None.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch Not supported.

Chapter 2. Programs 67

First map

Environment Compatibility Considerations

IMS/VS If the program is transferred to or from another program using
XFER with a map, the transferring and the transferred-to programs
must share the same map group.
A program with a first map can also be started with the IMS
/FORMAT command, provided there is an IMS transaction code on
the map.
A program with a first map can also start with a deferred
program-to-program message switch from a non-VisualAge
Generator program. Refer to the IMS chapter in the VisualAge
Generator Design Guide document for more information.

IMS BMP Not supported.

CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 None.

0OS/400 None.

0s/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT Not supported.

(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

First Ul record

First Ul record is an initial UI record to which data is passed in a program
link from one Web transaction program to another Web transaction program.
The first Ul record contains the definition of the data items that receive data.

68 VisualAge Generator: Programmer’s Reference

First Ul record

Definition considerations for First Ul record

The only valid record type that can be specified as a First Ul record is a Ul
record. A First Ul record can be specified only in a Web transaction program.

Target environments for First Ul record

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for Valid only for Web transaction programs.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only for Web transaction programs.
IMS BMP Not supported.

CICS for Valid only for Web transaction programs.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0Ss/2 Valid only for Web transaction programs.
AIX Valid only for Web transaction programs.
HP-UX Valid only for Web transaction programs.
CICS for AIX Valid only for Web transaction programs.
Windows NT Valid only for Web transaction programs.
(C++)

Windows NT None.

(Java)

CICS for Valid only for Web transaction programs.
Windows NT

Solaris Valid only for Web transaction programs.

CICS for Solaris

Valid only for Web transaction programs.

Test Facility

Valid only for Web transaction programs.

Flow statements

Flow statements consist of the processing statements associated with each
main (first-level) function in the program function list. Flow statements can
identify the next main function to be executed.

Chapter 2. Programs 69

Flow statements

Uses

Flow statements for a function are executed after the function is executed. If
no flow statements are specified for the function, the default flow is to execute
the next main function in the program function list.

Flow statements are described in EChapter 10. Program pracessing statements”]

Flow statements are stored with the program definition and are not part of
the function definition. A function can be used in more than one program
with different flow definitions.

Target environments for flow statements
Supported in all environments without compatibility considerations.

Help key

If the program you are creating provides help information, help key specifies
the Help function key for maps in this program.

Uses
F1 is the default help key, but you can use any function key from F1 to F24.

Note: You cannot have a function key be both a bypass edit key and the help
key.
Definition considerations for help key

You can override the default help function key for individual maps during
map definition.

Target environments for help key

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO F6 is reserved for a panel recovery function in this environment. F6

is treated as pressing the Clear key. The function key value is not
passed back to the program. Avoid using F6 in this environment.

MVS batch Not supported.

IMS/VS If your installation uses F12 for the IMS local copy function, you
cannot use F12 as a help function key.

IMS BMP Not supported.

70 VisualAge Generator: Programmer’s Reference

Help key

Environment Compatibility Considerations
CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 None.

0S/400 None.

0s/2 None.

AIX None.

HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Help map group name
Help map group name is the name of the map group containing the help
maps you define for the program.
Uses

If your program does not provide help maps or if the help maps are in the
same map group you specified for the Map group name, you do not need to
specify the Help map group name.

Definition considerations for help map group name

Using a separate map group for your help maps is more efficient and can
save storage during execution because the help maps are loaded only when
necessary. You can specify only one help map group for each program.

Target environments for help map group name

Environment Compatibility Considerations
VM CMS None.
VM batch Not supported.

Chapter 2. Programs 71

Help map group name

Environment Compatibility Considerations
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch Not supported.
IMS/VS None.

IMS BMP Not supported.
CICS for None.
VSE/ESA

VSE batch Not supported.
CICS for OS/2 None.

0S/400 None.

0S/2 None.

AIX None.

HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Keep after use

Specify Keep after use to have the use count for this table incremented when
the program or program segment first references the table and decremented at
the end of the program.

If you do not specify Keep after use, the use count is incremented at the first
use of the table in a main function and decremented when the main function,
program, or program segment ends.

Definition considerations for keep after use

VisualAge Generator Server for MVS, VSE, and VM and VisualAge Generator
Server maintain a use count for all tables in use by a program.

72 VisualAge Generator: Programmer’s Reference

Keep after use

When the use count goes to zero, the table contents are released from memory
unless the table has been defined as Resident.

Target environments for keep after use

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.
0S/2 None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility Not supported.

Main function list

The main function list shows the sequence and specifications of the main
functions that can be executed as part of the program.

Chapter 2. Programs 73

Main function list

Uses

The function list determines the default sequence of execution. The default
logic flow begins with reading and editing the First map or First Ul record, if
specified, and then executing each main function in turn, based on the order
that they appear in the main function list.

Target environments for main function list
Supported in all environments without compatibility considerations.

Map group name

Map group name is the name of the map group that contains the maps used
in your program.

Note: You must specify a map group name for all transaction programs
except web transactions.

Uses

The map group contains the maps that you will use as one of the following:
* 1/0O objects

* First map

* Parameters in the called parameter list

* Arguments on a CALL or XFER with map statements

A called program might use a different map group than the calling program
unless a map is a parameter passed to the called program. In this case, the
same map group must be used.

In addition, if a program transfers to another program using an XFER with a
map, the transferring and transferred-to programs must use the same map
group, or the same map must be defined in both map groups.

Performance information for map group name
For better performance, avoid sharing map groups between programs unless
all maps are the same.

Target environments for map group name

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

74 VisualAge Generator: Programmer’s Reference

Environment Compatibility Considerations
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.
0S/2 None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C+4)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Message table prefix

Uses

Map group name

Message table prefix is a 3 or 4 character prefix that identifies the message
table for your program. The message table contains program messages.

When the program runs, the national language support code for the
environment where the program is running supplies a suffix to the table name
prefix, forming the name of the message table. The following are the language

codes:

Code
CHS
CHT
DES
DEU
ENP
ENU
ESP

Language
Simplified Chinese
Traditional Chinese
Swiss German
German

Uppercase English
US English
Spanish

Chapter 2. Programs 75

Message table prefix

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

Note: Uppercase English is not supported by AIX, OS/2, Windows NT,
HP-UX, SCO OpenServer, and Solaris.

For example, if the table name prefix is PRX and the program was generated
with Spanish as the runtime language, then the message table name would be
PRXESP.

Definition considerations for message table prefix

The message table is accessed during test and execution when one of the

following is true:

* EZEMNO is modified.

* An edit check fails for which you have specified an alternate edit error
message.

When the program type is Web transaction:
* The table type does not have to be Message.

* The table must have 2 columns each of which is type CHA, MIX, or
UNICODE.

* The table is only accessed at the Web Server by the UI Record Java Beans
that were generated from Ul Records which used the table.

* Access occurs when:
- EZEUIERR sets a given item in error.
— An edit check fails for which you have specified an alternate edit
message

The given key is used on lookup.

Target environments for message table prefix
Supported in all environments without compatibility considerations.

Program name

Program name specifies the name of the program being defined, and also the
name of the COBOL or C++ program generated for the program.
Definition considerations for program name
Naming conventions for programs:
* Maximum length is 7
* First character must be alphabetic (A-Z)

76 VisualAge Generator: Programmer’s Reference

Program name

* Other characters can be alphanumeric (A-Z, 0-9)

 Cannot begin with the EZE prefix

* Cannot contain embedded blanks

* Cannot be a COBOL reserved word (in COBOL environments)
* Cannot be a DBCS name

+ To avoid potential conflicts with the program names generated for the map
groups, do not end the program name with FM or P1

Target environments for program name

Supported in all environments without compatibility considerations.

Program type

Uses

Program type indicates the method of processing used by a program.

You can specify one of the following types of programs:

Main transaction
You intend to start the program by a transfer from the system or
another program.

The program user can interact with the program using maps.

Called transaction
You intend the program to be called from another program.

The program user can interact with the program using maps.
Parameters can be passed and reset by the called program.

Main batch
You intend to start the program by a transfer from the system or
another program.

The program user cannot interact with the program using maps.

Called batch
You intend the program to be called from another program.

The program user cannot interact with the program using maps.
Parameters can be passed and reset by the called program.

Server programs called from remote clients must be specified as called
batch programs.

Web transaction
You intend to start the program by a transfer from the system or
another program.

Chapter 2. Programs 77

Program type

The program user can interact with the program using HTML pages
and forms.

The Segmented execution mode is implied.

Definition considerations for Main transaction and Main batch

You can start a main transaction program or a main batch program with a
transfer from one of the following:

* the system

* a non-VisualAge Generator program

* a VisualAge Generator program

A block of working storage data can be passed to the program on transfer
from a non-VisualAge Generator program or VisualAge Generator program.
The block of storage is used to initialize the working storage record defined
for the program.

Definition considerations for Web transaction

You can start a Web transaction program with a transfer from one of the
following:

* the system

* anon-VisualAge Generator program

* a VisualAge Generator program

A First Ul record can be defined and data can be passed to the First UI record
on transfer from another Web transaction program.

There are no map groups in Web transaction programs.

Target environments for program type

Environment Compatibility Considerations

VM CMS Web transaction programs are not supported.
VM batch Transaction programs are not supported.
CICS for None.

MVS/ESA

MVS/TSO Web transaction programs are not supported.
MVS batch Web transaction programs are not supported.
IMS/VS Called transaction programs are not supported.
IMS BMP Web transaction programs are not supported.
CICS for None.

VSE/ESA

VSE batch Same as VM batch.

CICS for OS/2 Web transaction programs are not supported.

78 VisualAge Generator: Programmer’s Reference

Program type

Environment Compatibility Considerations

0S/400 Web transaction programs are not supported.
0s/2 None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT Main transaction and called transaction programs are not
(Java) supported..

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Prologue

Uses

The prologue area is unformatted text that describes the program.

The use of a prologue is optional; it is commentary only and does not affect

program execution.

Target environments for prologue
Supported in all environments without compatibility considerations.

Program specification block (PSB) name

Uses

PSB name is the name of the PSB part that describes the IMS message queues
and DL/I databases used in the program.

The PSB definition is used in generating default DL/I call information.

Definition considerations for PSB name

The definition of the database PCBs in the IMS or DL/I PSB used with the
program must match the definition of the PCBs in the PSB part, except for
database names.

Chapter 2. Programs

79

PSB name

Target environments for PSB name

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for The PSB name is the default DL/I PSB scheduled when the program

MVS/ESA is executed.

The program can schedule another PSB instead of the default PSB
by moving the alternate PSB name to special function word
EZEDLPSB.

The alternate PSB is scheduled the next time PSB scheduling is
required. The program schedules the PSB on the first DL/I function
following:

* Program start

* A commit or rollback

MVS/TSO EZEDLPSB cannot be used to change the PSB name while the
program is running.

The DL/I PSB must be generated with CMPAT=YES specified on
the PSBGEN macro.

MVS batch Same as MVS/TSO.

IMS/VS The PSB part used with a main transaction or main batch program
cannot have the same name as the IMS PSB scheduled for the IMS
transaction, even though the definitions of the PSB part and the IMS
PSB must match. IMS assumes that the IMS PSB name is the same
as the program name. To avoid confusion, choose a naming
convention whereby the PSB part names can be derived in a
consistent fashion from the corresponding program and IMS PSB
name.

EZEDLPSB cannot be used to change the PSB name while the
program is running.

The IMS PSB must be generated with CMPAT=YES specified on the
PSBGEN macro.

IMS BMP The PSB name is required; otherwise same as MVS/TSO.

CICS for Same as CICS for MVS/ESA.

VSE/ESA

VSE batch EZEDLPSB cannot be used to change the PSB name while the
program is running.

CICS for OS/2 Ignored.

0S/400 Ignored.

0S/2 Ignored.

80 VisualAge Generator: Programmer’s Reference

PSB name

Environment Compatibility Considerations
AIX Ignored.

HP-UX Ignored.

CICS for AIX The PSB name is ignored.
Windows NT Same as CICS for AIX.
(C++)

Windows NT Ignored.

(Java)

CICS for Same as CICS for AIX
Windows NT

Solaris Ignored.

CICS for Solaris

The PSB name is ignored.

Test Facility

None.

Structure list

Structure list is a top-down structure of all functions in the program.

Uses

The first level in the program structure is defined by the First map

specification and the program main function list. If First map is specified, the
first entry in the first level shows FIRSTMAP as the I/O option and the First
map as the I/O object. Otherwise, the first entry is the first main function in

the program.

Lower levels in the structure are defined implicitly by coding language
elements that invoke lower level functions. These language elements follow:

e FIND or TEST statement that invokes a function

* Function used as an error routine, which is invoked when an I/O error is
returned on execution of the I/O option

¢ Function specified as a map edit routine for a variable field on the First
map or a conversed map.

Target environments for structure list
Supported in all environments without compatibility considerations.

Table and additional record list

Table and additional records list specifies the tables and additional record
definitions needed in the program.

Chapter 2. Programs 81

Table and Additional Record List

Definition considerations for table and additional record list
In the table and additional records list, the following items must be specified:

* The names of all table parts referenced in the program, including tables
specified as input edit routines for map variable fields. The list is used to
verify references to tables by function invocation statements and to assure
that the tables are available at program execution.

Do not include the name of the message table in the table and additional
records list. The name of the message table is included in the program by
the message table prefix you specify during program specification.

* Record parts only if they are not specified as the program working storage
record, as I/O objects, or in the called parameter list.
Records in the list can be used as additional temporary storage. The
program cannot reference level-77 data items in a working storage record
when the record is included using the additional records list.

* Record redefinitions needed by the program.

For each table entry in the list you can also specify Keep after use. See @
” for more information.

Target environments for table and additional record list
Supported in all environments without compatibility considerations.

Working storage

Working storage records define storage areas for temporary data items used in
VAGen programs.

Definition considerations for working storage

Only one primary working storage record is named in the program
specification. Use the table and additional record list to include additional
working storage records.

The primary working storage record is initialized to blanks for CHA, DBCS,
Unicode, and MIX, and zero for numeric data. For main programs, if a record
is received from the transferring program, the primary working storage record
is first initialized based on the type of data and then the received record is
moved into the primary working storage record.

If the primary working storage record is longer than the received record, the
extra data in the primary working storage record remains initialized based on
its data type.

The structure of the received record must match the structure defined in the

working storage record. Otherwise data that is not valid in the working
storage record can cause abnormal termination of the program.

82 VisualAge Generator: Programmer’s Reference

Working storage

Target environments for working storage

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS If an input message to a main transaction consists of only the

transaction name followed by blanks, the program assumes it starts
with no working storage record being passed. The primary working
storage record is initialized based on the type of data.

IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.
0Ss/2 None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Chapter 2. Programs 83

Working storage

84 VisualAge Generator: Programmer’s Reference

Chapter 3. Functions

A function is a logic block consisting of statements surrounding a central
function, usually an I/O operation. The central function is defined by: the I/O
option, the I/O object, and the I/O error routine. The I/O option can be a file
or database access, a write and subsequent read of a text user interface map,

or a write of a printer map.

Functions are included in a program by being named in a program main

function list, named as a map item edit routine, named as an 1/O error

routine, named as a target of a TEST or FIND statement, dropped as a

Function part on a GUI definition or invoked from within another function.

Statements that can be included in a function definition are described in

Chapter 10_Program processing statementd. The function elements are

described in this section.

Function elements

Table 8. Function elements

Element

COBOL

GUI

C++

Java

VM CMS
VM Batch

MVS CICS

MVS/TSO

MVS Batch

IMS/VS

IMS BMP
VSE CICS
VSE Batch
0S/2 CICS

0S/400

Windows*-OS/2(ST)

Windows*(Java)

0S/2
AIX

HP-UX

AIX CICS

Windows NT

Windows NT CICS

Solaris

Solaris CICS

Windows NT

Test Facility

DL/I call

X

X

X

X

X

X

X

X

DL/I call -
Database
identifier

X

X

X

X

X

X

X

X

DL/I call -
Scan for
update

DL/I call -
Scan in
parent

© Copyright IBM Corp. 1980, 2000

85

Table 8. Function elements (continued)

o
[l
® = 1 s
8 (O] @] &
o 0
s <
Element g3 v
< = B wn|E
P10 P O Y A - R e
%)) - ol O » | » w| o w [=
S| 25| 2| & o2 8| 5| 5lo|E|E Ol g g |YET
Ul & = >| @8 O] » gle |8 x| O| 2| &| g ale|&
D Bl D Flonl wml o wl QI FT T | o = S| 8| 5| &[T | o
S| S|zl 2 2] €8 5 8 o alE|E| BB & BEE G SE|E
> > 2| 2| 2| &8 > »| OO B | O|<| T| <| 2| B| &| #[F |F
DL/I call - Xx|clec|x|x|c|c X
Segment
search arg
Function X [X[X[X[X|X[X]|X|[X]|X|X|[X]|X|[X][X]|X[XxX]|x]|X][x |x [x |X
Function X[x|[x|x|x|x|[x]x]|x]|x]|x X [x| x| x|x|x|[x |[x |x |x
description
Function XIx x| x| x| x|[x|x|x|x|[x|g|g|x|x]|x]|x|x]|x]|x |x [x |x
local storage
list
Function XIx x| x| x| x[x|x|x|x|[x|g|g|x|x|x|[x|x]|x]|x |x [x |[x
name
Function X | X [x| x| x|[x|x|x|x|x|x|g|g|x]|x|x|[x]|]x]|x]|x |x [x |x
parameter
list
Function X [X | X[X[X |X|[X]|X|[X]|X]|X X | x| x| x|x|x|x |x |x |x
return value
1/0 error X | X [x| x| x|x|x|x]|x|x]|x X [x| x| x|x|x|[x |[x |x |x
routine
I[/Oobject | x | x | x| X | x| x|[Xx]|X|X]|Xx][X X [x| x| x|x|x|[x |[x |x |x
I/Ooption-| c |c|x|c|c|c|c|c|c|c]|x clclcfclc|c]c c | x
ADD
I[/Ooption-| x | x |[c| x| c|c|c|c|c|c|x X |x|x|c|x|c|x c | x
CLOSE
I/0 option - | ¢ x|c|cl|c X clc X | x| x| x|[x|x|x [x |c |[x
CONVERSE
I/Ooption-| x | x | x| x| x| x [x|X|X]|Xx]|X X | X| X | x|x|x|x |x |c |X
DELETE
I/Ooption-| x | x | x| x [x| c|x|X|[x|Xx]|X X [x| x| x|x|x|x |x X
DISPLAY

86 VisualAge Generator: Programmer’s Reference

Table 8. Function elements (continued)

Element

COBOL

GUI

C++

Java

VM CMS
VM Batch

MVS CICS

MVS/TSO

MVS Batch

IMS/VS

IMS BMP
VSE CICS
VSE Batch
0S/2 CICS

0S/400

0S/2
AIX

HP-UX

AIX CICS

Windows NT
Windows NT CICS
Solaris CICS
Windows NT

Solaris

Test Facility

I/0 option -
EXECUTE

X

X

X

X

X

X

X

X

X

X

X

aq | Windows*-OS/2(ST)

e | Windows*(Java)

X

X

X

X

X
X
X
X
X

X

1/0 option -
INQUIRY

X

X

X

1/0 option -
REPLACE

I/0 option -
SCAN

I/0 option -
SCANBACK

1/0 option -
SETINQ

I/0 option -
SETUPD

I/0 option -
SQLEXEC

I/0 option -
UPDATE

SQL
statement

SQL
statement -
Declare
cursor with
hold

SQL
statement -
Execution
time
statement
build

Chapter 3. Functions

87

Table 8. Function elements (continued)

5
.
) = T s
o) @) @]]
U f—
=)
7 O
Element g ’e‘;‘ o
z | M=
ol | g wl =l ol TP z|z| | Qlz &
m%goﬁ L‘U‘gu*m*m amm Ole | =
S 50| 2 & » 2 2| 5T 2 (2 = 2| 2]
O | = Zmum 8le | o Xl O| o| e 2| 2|lo | =
DB D Flo wl oml QFT T Qx| P < B B 5| BT
E 2 >l 2| > E 2 N »n| Dl A= |~ wn 5 By 5 ot | e '—o' '—o'.—n 8
> > 2| 2| 2| 8|8l > > O|0|X |2 | O|<d| | <| 2| 2| A B|X |~
SQL X | X [X[x| X |[x|x]|x|x]x]x X | x| x| x| x|x|x |x X
statement -
Model SQL
statement
generation
SQL X | x| x| x| x| x|[x|x]|x|x]|x X | x| x| x| x| x|[x |x X
statement -
Single row
select
SQL X | X [X| X | X |[x|x]|x|x]x]x X | x| x| x|x|x|[x |x X
statement -
UPDATE or
SETUPD
function
name

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Note: In this table, the following characters are used to indicate the level of support:

X Supported
c Supported with compatibility considerations
g The part or some of its features can be connected in a GUI application

blank Not supported

DL/I call
A DL/I call is created when a function uses an I/O object that is a segment in
a DL/I database.

Uses

A default DL/I call is generated automatically based on the I/O option, the
definition of the DL/I segment, and the definition of the database structure in
the PSB part. The default call specification can be modified by the developer.

88 VisualAge Generator: Programmer’s Reference

Target environments for DL/I call

See the following pages for the individual elements that make up the DL/I
call definition.

DL/l call

DL/I call - Database identifier

Uses

Target environments for Database identifier

Database identifier identifies the database in the program PSB that is to be

accessed by this DL/I call.

Database identifier is a combination of program control block (PCB) number
and database name. The number identifies which PCB in the program

specification block (PSB) is to be used when the database name appears in
more than one PCB in the PSB definition.

The default value is the database name for the first PCB in the PSB that
contains a segment with the same name as the I/O object.

Environment Compatibility Considerations
VM CMS Not supported.
VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 Not supported.
0S/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++)

Not supported.

AIX

Not supported.

HP-UX

Not supported.

Chapter 3. Functions

89

DL/l call - Database identifier

Environment Compatibility Considerations
CICS for AIX Not supported.

Windows NT Not supported.

(C++)

Windows NT Not supported.

(Java)

CICS for Not supported.

Windows NT

Solaris Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

DL/l call - Scan for update

Uses

Scan for update specifies whether a segment retrieved by a SCAN 1/0O option

can be replaced or deleted.

If you do not specify scan for update, you cannot replace or delete the DL/I

segment after a SCAN I/0O option.

Target environments for Scan for update

Environment Compatibility Considerations
VM CMS Not supported.
VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 Not supported.
0OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

90 VisualAge Generator: Programmer’s Reference

DL/I call - Scan for update

Environment

Compatibility Considerations

Windows Java
(GUI)

Not supported.

0S/2 (C++) Not supported.
AIX Not supported.
HP-UX Not supported.
CICS for AIX Not supported.
Windows NT Not supported.
(C++)

Windows NT Not supported.
(Java)

CICS for Not supported.
Windows NT

Solaris Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

DL/l call - Scan in parent

Uses

Scan in parent specifies whether the scan range of a DL/I call is limited to the
parent chain of the database hierarchy.

If you do not specify Scan in parent, the next segment of that type in the

database is retrieved regardless of the parent chain.

Target environments for Scan in parent

Environment Compatibility Considerations
VM CMS Not supported.
VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

Chapter 3. Functions 91

DL/I call - Scan in parent

Environment Compatibility Considerations
VSE batch None.

CICS for OS/2 Not supported.

0OS/400 Not supported.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) Not supported.
AIX Not supported.
HP-UX Not supported.

CICS for AIX Not supported.

Windows NT Not supported.

(C++)

Windows NT Not supported.
(Java)

CICS for Not supported.
Windows NT

Solaris Not supported.

CICS for Solaris Not supported.

Test Facility None.

DL/I call - Segment search arguments

Segment search arguments (SSAs) identify the segments in the database to be
accessed on a DL/I call. An SSA can also contain command codes that control
the type of processing performed and qualification statements that specify
search criteria for segment selection.

Uses

SSAs are automatically generated for you based on the I/O option and the
position of the object segment in the database hierarchy in the PSB definition.
You can modify the default SSAs to change the processing performed by the
DL/I call.

You can enter the following information when modifying the SSA list:

Segment name
The name of the segment accessed by the SSA. The segment must be
defined in the parent chain that goes from the object segment back to
the root segment in the database hierarchy.

92 VisualAge Generator: Programmer’s Reference

DL/l call - Segment search arguments

Command codes

Command codes are optional codes that identify special processing to
be performed. Up to 4 codes can be entered in the command code
column. Refer to the IMS documentation for a more detailed
description of the command codes.

The following command codes are valid for SSAs:

C

Use the concatenated key to select this segment. When C is specified
as a command code, the Segment Field, Boolean Op, and Op fields of
the SSA must be left blank. The Comparison Value Item names a data
item that contains the entire concatenated key for the segment.

This code allows the retrieval or insertion of multiple segments in a
hierarchical path. This code is not required for the lowest level
segment, since it is always retrieved or inserted. Specify this code for
any higher level segment to be retrieved on INQUIRY, UPDATE, or
SCAN options. For an ADD option, specify this code only for the
highest level segment you want inserted, to add that segment and all
segments at lower levels.

VisualAge Generator Developer handles I/O buffering for segments
retrieved or written using the D command code. If you retrieve
multiple segments for update using the D code, a REPLACE option
with the lowest level segment as the object will replace all the
segments that were retrieved with the D code.

The path call processing option (P) must be specified in DL/I PSB
generation if the D command code is used.

For the SCAN option, start scanning from the first occurrence of this
segment type under its parent. For the ADD option, this code is
effective only for segments with non-unique or no sequence field, and
the segment is inserted at the first position within its parent.

For INQUIRY, UPDATE, and SCAN options, retrieve the last
occurrence of this segment type under its parent. If qualification
statements are present, retrieve the last segment that satisfies the
search criteria. For the ADD option, this code is effective only for
segments with non-unique or no sequence field, and the segment is
inserted at the last position within its parent.

Do not replace this segment on a replace call even though it was
retrieved on the get for update call.

Set parent position for get next in parent (SCAN) at the hierarchy
level represented by this segment.

Lock the retrieved segments until checkpoint or PSB termination.

Chapter 3. Functions 93

DL/l call - Segment search arguments

Note: If you used the Q command code in coding DL/I calls for CICS
in other languages, you followed the Q command code with an
A for IMS compatibility. However, do not enter the A here.
VisualAge Generator Developer supplies the A when it builds
the final SSA list at execution time.

U Do not move the database position from this segment while searching
its hierarchical dependents.

v Like U except that the command code is automatically set at all higher
levels in the call.

The following command codes are supported only in the IMS/VS, IMS BMP,
and CICS for MVS/ESA environments. Use these codes to access subsets of a
special type of database called a fast path data entry database (DEDB). To
identify the subset you are accessing, enter the command code followed by an
integer from 1 to 8.

M Move subset pointer to next occurrence of the segment in the segment
chain.

R Retrieve first occurrence of the segment in the subset.

S Set the subset pointer unconditionally to the current position.

\ Set the subset pointer conditionally to the current position.

V4 Set the subset pointer to 0.

Certain command codes are applicable only to certain I/O options. The
following table identifies the applicable command codes:

Option Command Codes Fast Path Command Code
INQUIRY D,LQUYVCP M,R, S W Z

UPDATE D,L,Q U, VCP MR, S, W, Z

ADD D,LLEU,VC M, R, S, W, Z

REPLACE N M,S, W, Z

DELETE None Z

SCAN D,LLEQUVCP M, R, S, W Z

Command codes are optional. If none are specified, none are used. The R and
F, R and Q, L and F, or U and V command codes cannot both be entered in
the command code field for the same SSA. In addition, only one of the M,S,W,
and Z command codes can be used in the same SSA.

You can only have one C command code in a set of SSAs. On an INSERT call,
the following apply:

* A qualified SSA cannot follow a D command code.

94 VisualAge Generator: Programmer’s Reference

DL/l call - Segment search arguments

* A C command code cannot follow any SSA with a D command code.

Segment field
A qualification statement consists of a segment field, a relational
operator, and a comparison value item. The segment field identifies
the name of the field used for segment selection. You must specify the
field name as defined in the DL/I database description.

When the program runs, DL/I compares the value in the segment
field with the value in the comparison value item to determine
whether the segment qualifies for selection.

The default value used in the generated SSA list is the name of either
the segment’s key item or the index key defined for the segment in
the PSB. If both are defined, the name of the index key is the default.
If neither key is defined, no qualification statement is generated for
the segment.

Relational operator
The following relational operators are used for comparing the segment
values and the Comparison Value Item:
EQ (=) Equal
NE (=)
Not equal
GT (>)
Greater than
GE (>=)
Greater than or equal
LT (<) Less than
LE (<=)
Less than or equal

Comparison Value Item
The Comparison Value Item is the name of an item in a record, table,
or map. When the program runs, the value in this item is used as the
field value in building the SSA for the DL/I call. The field value is
compared to the contents of the Segment Field. If the comparison is
true, the search criteria of this qualification statement is satisfied.

The item name can be qualified and/or subscripted. Literals cannot be
used for the item name. If no qualifier is specified, the segment name
from the current SSA is used as the qualifier. If that segment does not
contain the item, the I/O object name is used as the default qualifier.

The default value is the name of either the segment’s key item or the
index key defined for the segment in the PSB. If both are defined, the
name of the index key is the default.

Both the Segment Field and the Comparison Value Item must have
the same length. If the Segment Field is defined to the VisualAge

Chapter 3. Functions 95

DL/l call - Segment search arguments

Generator Developer, the preprocessor verifies that the lengths are
equal. If the Segment Field is not defined to the generator, you are
responsible for ensuring that the fields have equal length.

Boolean operator
The Boolean operator identifies the presence of an additional
qualification statement and shows how the true or false values of the
qualification statements are to be combined.

A Boolean operator in the continuation line indicates that there are
additional qualifications for the SSA. On the continuation line, you
leave the segment name field and command code field blank and
enter data in the qualification statement fields only.

Valid Boolean operators are:

& or AND
AND operator

| or OR
OR operator

Note: Boolean operator “#:” (independent AND) is not supported.
The “**” and “+” forms of the AND and OR operators are not
supported.

For a segment to satisfy an SSA with multiple qualification statements,
a segment can satisfy any set of qualification statements. A set consists
of a sequence of qualification statements that are joined by AND
operators. To satisfy the set, a segment must satisfy each of the
qualification statements in the set. Each OR starts a new set of
qualification statements.

No Boolean operators are used in the default SSA list built by the
VisualAge Generator Developer.

Definition considerations for Segment search arguments

You can specify most parameters for a DL/I call. The only DL/I call
parameters you cannot specify are the address of the I/O area and the
function code. The generated program takes care of I/O area allocation for
you. The function code is determined from the I/O option and the SCAN
parameters.

The function codes used for each I/O option are the following:

1/0 OPTION SCAN FOR SCAN IN DL/I FUNCTION
UPDATE PARENT

INQUIRY Get Unique

96 VisualAge Generator: Programmer’s Reference

DL/l call - Segment search arguments

UPDATE Get Hold Unique

ADD Insert

REPLACE Replace

DELETE Delete

SCAN No No Get Next

SCAN Yes No Get Hold Next

SCAN No Yes Get Next in Parent
SCAN Yes Yes Get Hold Next in Parent

Target environments for Segment search arguments

Environment Compatibility Considerations

VM CMS Not supported.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO Command codes M, R, S, W, and Z are not supported.
MVS batch Same as MVS/TSO.

IMS/VS None.

IMS BMP None.

CICS for Command codes C, M, P, R, S, W, and Z are not supported.
VSE/ESA

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 Not supported.

0S/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++)

Not supported.

AIX

Not supported.

HP-UX

Not supported.

CICS for AIX

Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

Chapter 3. Functions

97

DL/l call - Segment search arguments

Environment

Compatibility Considerations

CICS for
Windows NT

Not supported.

Solaris

Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

Function

A function is built around a specific action called an I/O option. An I/O
option is the I/O to be performed by a function, such as displaying a map or
gaining access to a record.

You name the map or record used as the object of the function, which is called
the I/0O object, in the function specifications. You use only one I/O object per

I/0 option.
Uses

You can place additional statements in the function definition, either before or
after the I/O option.

Target environments for function
Supported in all environments without compatibility considerations.

Function description

Function description is a text string from 1 to 30 characters that describes a

function.

Uses

Function description is optional and does not affect execution.

Target environments for function description

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

98 VisualAge Generator: Programmer’s Reference

Function description

Environment Compatibility Considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Function local storage list

The local storage list shows the names and types of storage areas may that
may be accessed solely by this function.

Uses
The following can be specified for each local storage area:

Name The name of the data item or record used as a local storage area.
Type The part type of the local storage area:
e Item
* Record
Description
The description of the local storage area. This is not the description of
the shared data item in the library.

Chapter 3. Functions 99

Function local storage list

Item Usage
Item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the function definition.

Item usage can be set to the following:

* Nonshared - These characteristics apply only to the definition of the
item in this function and the characteristics are stored with the
function containing the item in its local storage list.

 Shared - These characteristics apply wherever a shared item with
the same name is defined in any data structure. Shared
characteristics are stored in a data item part, independent of the
data structures, function local storage lists, or function parameter
lists to which they belong.

Item Type

Data item type specifies the internal format or type of data. The data

type determines how the item is processed when referenced in

processing statements.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE
Unicode character data
Item Bytes
Item bytes specify the number of bytes required to store the data item
internally.
Item Decimal Places
Item decimal places specifies the number of places reserved to the
right of an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function local storage list
For records, the local storage name must be the name of a working storage

record part in the library. The part definition defines the storage layout of the
local storage data.

Defining a local storage data item does not create a data item part in the
library unless it is flagged as a shared item definition.

Local storage is not initialized upon entry into a function. Therefore, the user
should make no assumptions as to any of the local storage data area values.

100 vVisualAge Generator: Programmer’s Reference

Function local storage list

The scope of reference for a record or item named as local storage for a
function is limited to that function only. If it is to be known by any other
function, it must be passed to that function as an argument. If it is to be
known to the caller, then it should not be a local storage definition. It should
be a shared definition or be received via a parameter instead. The same record
or item can be named in the local storage list for more than one function.
Each function gets a separate copy of the storage mapped by the definition.

Definition of a local storage area that has the same name as a global program
variable hides the global program variable from direct reference by the
function. The function cannot modify the global variable in this case.

Target environments for function local storage list
Supported in all environments without compatibility considerations.

Function name
The function name identifies a set of logic that can perform an I/O operation.

Uses

Seo 12 =B Nami - fordatad ' - |

for function naming conventions.

Target environments for function name
Supported in all environments without compatibility considerations.

I/0O error routine

I/0 error routine is the name of an error handling subroutine. An error
routine is started when an error occurs during execution of an I/O option that
accesses a record.

Uses
If you do not specify an error routine, a program ends when an error occurs

with a message describing the error condition. This includes standard
situations such as the end-of-file (EOF) condition.

You cannot specify error routines for functions with map 1/O objects or for
EXECUTE functions. Display or printer errors cause the program to end.

The error routine can be any of the following:
* A valid special function word (EZERTN, EZEFLO, EZECLOS)
* The name of a function.

If the error routine is a main function, then control is transferred to that
function when an error occurs and does not return to the failing I/O option.
Otherwise, control returns to the statement following the I/O option after the
error routine ends. When a function invoked as an error routine is defined to
have a return value, the return value is ignored.

Chapter 3. Functions 101

1/O error routine

You can test error codes returned by the system using the TEST, WHILE, and
IF statements.

Target environments for function error routine

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

102 VisualAge Generator: Programmer’s Reference

Function parameter list

Function parameter list

The parameter list shows the names and types of parameters that are received
by the function. The list is an ordered list of data areas to be accessed solely
by this function.

Uses
The following can be specified for each parameter:

Name The name of the data item or record used as a parameter.
Type The part type of the parameter:
e Item
* Map Item
* SQL Item
* Record
Description
The description of the parameter. This is not the description of the
shared data item in the library.
Item Usage
Item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the function definition.

Item usage can be set to the following:

* Nonshared - These characteristics apply only to the definition of the
item in this function and the characteristics are stored with the
function containing the item in its parameter list.

* Shared - These characteristics apply wherever a shared item with
the same name is defined in any data structure. Shared
characteristics are stored in a data item part, independent of the
data structures, function local storage lists, or function parameter
lists to which they belong.

Item Type

Data item type specifies the internal format or type of data. The data

type determines how the item is processed when referenced in

processing statements.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE
Unicode character data

Chapter 3. Functions 103

Function parameter list

ANYCHA
Character data of any length
ANYDBCS
Double-byte character data of any length
ANYHEX
Hexadecimal data of any length
ANYMIX
DBCS data mixed with single-byte character data of any
length
ANYNUMERIC
Bin, Num, Numc, Pacf, or Pack data of any length with any
number of decimal places
ANYUNICODE
Unicode data of any length
Item Bytes
Item bytes specify the number of bytes required to store the data item
internally.
Item Decimal Places
Item decimal places specifies the number of places reserved to the
right of an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function parameter list
For records, the parameter name must be the name of a working storage

record part in the library. The part definition defines the storage layout of the
parameter received by the function.

Defining a parameter data item does not create a data item part in the library
unless it is flagged as a shared item definition.

For items with one of the ANY item types; bytes and decimals are not
allowed. For map item parameters, the only valid parameter item types are:
NUM, CHA, DBCS, MIX, ANYNUMERIC, ANYCHA, ANYDBCS, and
ANYMIX. For SQL item parameters, the only valid parameter item types are:
BIN, CHA, DBCS, HEX, PACK, ANYNUMERIC, ANYCHA, ANYDBCS, and
ANYHEX.

Defining item parameters as one of the ANY item types specifies loose typing
of the parameter. The 4GL statements in the function operate on the
parameter using the data item definition specified for the argument. ITF and
the C++ generator implement loosely typed parameters by passing the
arguments as item objects which contain the item definition as well as the
item value. The COBOL generator implements loosely typed parameters by
generating multiple copies of the function code, one copy for each unique
combination of loosely typed argument definitions used within the program.

104 vVisualAge Generator: Programmer’s Reference

Function parameter list

Defining item parameters with a data type other than one of the ANY item
types specifies strong typing of the parameter. Bytes, decimals, and a specific
data type are either specified or defaulted for you. Test and generation will
require exact matches between arguments and parameters when strong typing
is used.

When map or SQL items are passed as arguments, the item state is available
to the logic of the receiving function. This is so the user can test for and
modify the state of the item. For example, TEST SQL-item TRUNC true false;
or SET map-item MODIFIED;. This may imply that the state of the map
containing the map-item is updated as well. In order to test or set map
conditions, the Parameter type must be Map Item. Likewise, in order to test or
set SQL item conditions, the Parameter type must be SQL item. A parameter
whose type is Map Item must be passed a map item as an argument. A
parameter whose type is SQL Item must be passed an SQL item as an
argument. Map or SQL items may be received into a parameter whose
Parameter type is Item, but the specific map item state information and SQL
item state information will not be available. An attempt to reference the state
information in this case will result in an error in ITF and in the preprocessor.

EZEwords cannot be specified as parameters.

When records are passed as arguments, their level-77 items are not passed.
Only the data structure is passed. The function receives a string of data and
then accesses it using the parameter record definition. The length of the
parameter record definition must be less than or equal to the argument record
length. If the argument length is greater than the parameter length, the
invoked function only has access to the amount of data defined by the
parameter definition.

Functions may receive arrays as parameters only as part of a record. When a
function that has no parameters defined is named as a map edit routine, the
map array is available to the function by its map array name.

The scope of reference for a record or item named as a parameter for a
function is limited to that function only. The same record or item can be
named in the parameter list for more than one function. Each function gets a
separate copy of the storage mapped by the definition.

Parameters are passed by reference. Therefore when a global variable is
passed as an argument to a function and the function modifies the value of
the parameter it received, then the value of the global variable has been
modified. Definition of a parameter, local storage, or return value that has the
same name as a global program variable hides the global program variable
from direct reference by the function. The function cannot modify the global
variable in this case.

Chapter 3. Functions 105

Function parameter list

Target environments for function parameter list
Supported in all environments without compatibility considerations.

Function return value

The return value defines the characteristics of a data area that is returned to
the invoking function upon termination of this function. Any value specified
on an EZERTN statement must be compatible with the characteristics defined.
Each function has one and only one return value.

Uses
The following can be specified for the function return value:

Description
The description of the return value.

Type Type specifies the internal format or type of data. The data type
determines how the return value is processed.

The following types of data are available:
Bin Binary number
CHA Character data
DBCS Double-byte character data
Hex Hexadecimal data
Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format
Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
UNICODE
Unicode character data
Bytes Bytes specify the number of bytes required to store the data item
internally.
Decimal Places
Decimal places specifies the number of places reserved to the right of
an implied decimal point. The default is 0 (no decimal places).

Definition considerations for function return value
Return values are defined with strong typing. Bytes, decimals, and a specific

data numeric type are either specified or defaulted for you. Upon exit from
the function, the return value is assigned to the receiving data area according
to move compatibility rules.

If a return value definition is specified, all EZERTN statements in that
function must have an argument specified. If a return value definition is not
specified, there may be EZERTN statements, but none of them may have an
argument specified. If the logic of the function is such that the routine falls
through to the end without executing an EZERTN statement, an implicit
EZERTN is executed, returning a temporary storage area that is initialized to a
default value according to the definition.

106 VisualAge Generator: Programmer’s Reference

Function return value

Target environments for function return value
Supported in all environments without compatibility considerations.

I/O object
I/0 object is the name of a record or map accessed by the I/O option.

Uses
If the I/O option is EXECUTE, an 1/O object is not allowed. If the I/O option

is SQLEXEC, the I/O object is optional. All other I/O options require an I/O
object.

Target environments for 1/0 object

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.
(C++)

Windows NT None.
(Java)

Chapter 3. Functions 107

I/O object

Environment Compatibility Considerations
CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/0O option

I/0 option is the I/O operation in a function.

Uses

Only one option can be specified per function. EXECUTE is the default

option.

The following are the I/O options that can be specified:

« ADD
« CLOSE

« CONVERSE
« DELETE

« DISPLAY

« EXECUTE

« INQUIRY

« REPLACE

« SCAN

« SCANBACK
« SETINQ

« SETUPD

« SQLEXEC

« UPDATE

Each option is described individually on the pages that follow.

Target environments for /O option

The behavior of an I/O option varies with the type of file or database being
accessed. The file type is determined from the record organization specified
for the I/O object and the system file type associated with the record file
during generation. Refer to the VisualAge Generator Generation Guide for more

information on records and resource association files.

See the individual descriptions of the I/O options for variations in I/O option

behavior based on target environment and file type.

108 VisualAge Generator: Programmer’s Reference

I/O option - ADD

I/O option - ADD

The ADD I/0O option places a new record in a file, database, or message
queue. The program should initialize all fields in the record before processing
the ADD I/0O option.

Uses
ADD is valid for DL/I segment, indexed, message queue, relative, serial and

SQL row records.

Definition considerations for ADD
When you use an ADD function with a serial file, records are automatically

appended to the end of the file. Exceptions are noted under the target
platform compatibility considerations.

When you use an ADD function with a DL/I segment, the program should
initialize the key fields of all segments that are parents of the segment being
added.

When you use an ADD 1/0 option with an SQL row record, items in the
record marked as read-only are not written to the database.

When you use the ADD I/O option to add a message queue record to a
message queue, VisualAge Generator automatically specifies the MQSeries
calls appropriate for the state of the queue:
MQCONN
Connect the VisualAge Generator program to the default queue
manager if no connection is active
MQOPEN
Establish access to the queue if the queue is not open
MQPUT
Put the message queue record in the queue

Some file types do not allow an ADD and SCAN function for the same serial
file to be done in the same program. When using both an ADD and a SCAN
function for a serial file in the same program, the file is closed and reopened
whenever the program changes from adding to scanning or from scanning to
adding. When the file is closed, file position is lost. Therefore, the first SCAN
function after an ADD function reads the first record from the file. The
following list identifies the file types that support both the ADD and SCAN
I/0 option in the same program:

File type ADD and SCAN supported
GSAM No
MMSGQ No

OS2COBOL Yes

Chapter 3. Functions 109

I/O option - ADD

SEQ
SEQRS
SMSGQ
SPOOL
TEMPAUX
TEMPMAIN
TRANSIENT
VSAM
VSAMRS

Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes

Target environments for ADD

Environment

Compatibility Considerations

VM CMS

The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using the DISP MOD option on the CMS FILEDEF
command. Until the file is closed, subsequent ADD functions place
data following the previously added data.

VM batch

Same as VM CMS.

CICS for
MVS/ESA

None.

MVS/TSO

The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using the MOD option on a TSO ALLOCATE command.
Until the file is closed, subsequent ADD functions place data
following the previously added data.

MVS batch

The first ADD function to a serial non-VSAM file adds data to the
beginning of the file and all previous data is lost, unless the file is
allocated using DISP=MOD in the JCL for the batch job. Until the

file is closed, subsequent ADD functions place data following the

previously added data.

An ADD function for a serial record assigned to a GSAM file results
in an ISRT command to the GSAM database. The program starts
adding the records at the beginning of the file unless the file is
allocated using DISP=MOD in the JCL for the batch job.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

110 VisualAge Generator: Programmer’s Reference

I/O option - ADD

Environment

Compatibility Considerations

IMS/VS

A serial record must be associated with an alternate PCB (a TP PCB
in the PSB). The IMS message header (length, ZZ field, and
transaction code) is automatically added to each record written to
the message queue. An ADD function for a serial record assigned to
a message queue results in an ISRT call to the message queue.

If an error occurs and the record is assigned to a multiple segment
message queue and associated with PCB #2 (the express PCB), any
records already added are committed, even if an explicit CLOSE
function has not occurred. If it is important that these records are
not committed, include an additional express PCB in the PSB and
associate the file with the additional express PCB.

IMS BMP

An ADD function to a serial non-VSAM file adds data to the
beginning of the file and loses all previous data, unless the file is
allocated using DISP=MOD in the JCL for the batch job. Until the
file is closed, subsequent ADD functions place data following the
previously added data.

An ADD function for a serial record assigned to a message queue
results in an ISRT call to the message queue. The IMS message
header (length, ZZ field, and transaction code) is automatically
added to each record written to the message queue.

An ADD function for a serial record assigned to a GSAM file results
in an ISRT to the GSAM database. The program starts adding the
records at the beginning of the file unless the file is allocated using
DISP=MOD in the JCL for the batch job.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

CICS for
VSE/ESA

The first ADD function to a SPOOL file creates a new VSE/POWER
queue part and adds the data to the beginning of the file. Until the
file is closed, subsequent ADD functions place data following the
previously added data.

Once a SPOOL file that is a VSE/POWER LST or PUN queue part is
closed, a subsequent ADD function to that file creates a new
segment for that queue part.

Once a SPOOL file that is a VSE/POWER RDR queue part is closed,
a subsequent ADD function to that file creates a new RDR queue
part that is processed as a separate batch job.

VSE batch

Same as CICS for VSE/ESA.

CICS for OS/2

Use with message queue records is not supported.

0S/400

None.

Chapter 3. Functions 111

1/0 option - ADD

Environment Compatibility Considerations

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java ~ Not supported.

(GUI)

0S/2 (C++) If the file is a native serial file and the /REPLACE option was
specified for the file in the resource association file, the first ADD
adds the record to the beginning of the file. All previous data in the
file is lost.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT Same as OS/2 (C++).

(C++)

Windows NT Serial, SQL, and message records are the only supported I/O
(Java) objects.

CICS for Same as OS/2 (C++).

Windows NT

Solaris Same as OS/2 (C++).

CICS for Solaris Same as OS/2 (C++).

Test Facility None.

I/O option - CLOSE

The CLOSE I/0O option can do any of the following;:

* Close a file

* Disconnect a printer

* Release any unprocessed rows in a set of SQL row records selected by the
UPDATE, SETUPD, or SETINQ I/0 option

* Close a message queue

Uses
CLOSE is valid for indexed, message queue, relative, serial or SQL row
records and for printer maps.

Definition considerations for CLOSE
The function of the CLOSE I/0O option varies with the type of I/O object and

the system on which a CLOSE is issued.

Files If the I/O object is a file, the CLOSE I/O option results in system
close for the file. If you use EZEDEST to change the resource name
associated with a file that is currently open, that file is closed on the
next I/O option issued for the file. You do not need to explicitly
specify the CLOSE I/O option for the previously opened file.

112 VisualAge Generator: Programmer’s Reference

I/O option - CLOSE

If the program ends before all files are closed, VisualAge Generator
Server for MVS, VSE, and VM and VisualAge Generator Server ensure
that all files are closed.

Message queue
If the I/O object is a MQSeries message queue, the CLOSE I/O option
closes the queue.

Printer maps
If the I/O object is a printer map, the CLOSE 1/0O option issues a
form feed and then either disconnects from the printer or closes the
printer file on systems where the print lines are spooled to a file.

When you use EZEDESTP to change the print destination, use a
CLOSE 1/0 option to close the print file specified by the current value
of EZEDESTP. Issue a CLOSE 1/0 option for each destination you use,
because multiple print files can be open at the same time.

If the program ends before all printers are closed, VisualAge
Generator Server for MVS, VSE, and VM and VisualAge Generator
Server ensure that all printers are closed.

SQL row record
If the object is an SQL row record, a CLOSE 1/0O option results in a
CLOSE cursor when an SQL cursor is open for the record.

Cursors that were declared using CURSOR WITH HOLD are not
closed on a COMMIT. But a rollback or a CONNECT function will
close all cursors including those declared using a WITH HOLD.

The CLOSE function for an SQL row record is performed
automatically when:

* The SCAN loop following a SETINQ or SETUPD function continues
until a no record found (NRF) condition is encountered, indicating
all rows in the set were processed.

* A single row is read for an INQUIRY function.

* A REPLACE or DELETE function for the same I/O object is
executed following an UPDATE function.

¢ Another INQUIRY, UPDATE, SETINQ, or SETUPD function is
executed for the same I/O object. Only one set of rows can be
selected for a specific SQL row record at a time.

* A program transfers to another program.
* Database changes are committed or rolled back.

Target environments for CLOSE

Environment Compatibility Considerations

VM CMS None.

Chapter 3. Functions 113

I/O option - CLOSE

Environment

Compatibility Considerations

VM batch

None.

CICS for
MVS/ESA

For SPOOL files, the SPOOL CLOSE command is executed for the
file. For all other files, the CLOSE function does not physically close
a file, it resets the position pointer to the beginning of the file. The
CLOSE I/0 option does not delete temporary storage files.

Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE as well as at the end of a program.

MVS/TSO

None.

MVS batch

A CLOSE function for a record or printer map assigned to a VSAM
or MVS sequential file results in an OS CLOSE for the file.

A CLOSE function for a serial record assigned to a GSAM file
results in a CLSE call to the GSAM database.

A CLOSE function for a printer map assigned to a GSAM file results
in a form feed followed by a CLSE call.

IMS/VS

A CLOSE function for a serial record assigned to a message queue
for output results in a PURG call to the message queue.

A CLOSE function for a serial record assigned to a message queue
for input is ignored.

A CLOSE function for a printer map results in a form feed followed
by a PURG call.

When a main program ends or when a program called by a
non-VisualAge Generator program ends, a form feed is issued for
each destination to which printer maps were sent, followed by a
PURG call for that destination.

A main program is considered to have ended when it finishes its
last function or does an EZECLOS, an XFER, or a DXFR.

A form feed and a PURG call are also issued for each destination
when a segmentation break occurs at a CONVERSE function.

A form feed and CLOSE function are not done when a program
called by another VisualAge Generator program ends.

114 VisualAge Generator: Programmer’s Reference

I/O option - CLOSE

Environment Compatibility Considerations

IMS BMP A CLOSE function for a record or printer map assigned to a VSAM
or MVS sequential file results in an OS CLOSE for the file.
If the GSAM file is open due to an I/O function other than CLOSE,
a CLOSE function for a serial record assigned to a GSAM file results
in a CLSE call to the GSAM database.
A CLOSE function for a printer map assigned to a GSAM file results
in a form feed followed by a CLSE call.
A CLOSE function for a serial record assigned to a message queue
for output results in a PURG call to the message queue.
A CLOSE function for a serial record assigned to a message queue
for input is ignored.
A CLOSE function for a printer map assigned to a message queue
results in a form feed followed by a PURG call.
When a main program ends or when a program called by a
non-VisualAge Generator program ends, a form feed is issued for
each message queue destination to which printer maps were sent,
followed by a PURG call for that destination.

CICS for For SPOOL files, a CLOSE function results in a CLOSE

VSE/ESA VSE/POWER access service request for that part. For all other files,
a CLOSE function does not physically close a file, it resets the
position pointer to the beginning of the file. A CLOSE function does
not delete temporary storage files.
Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE function as well as at the end of a
program.

VSE batch For SPOOL files, a CLOSE function results in a CLOSE

VSE/POWER access service request for that part. A CLOSE function
for a record or printer map assigned to a file with the type SEQ,
VSAM, or VSAMRS results in a system close for the file.

CICS for OS/2

For all files, the CLOSE function does not physically close a file, it
resets the position pointer to the beginning of the file. The CLOSE
function option does not delete temporary storage files.

Automatic CLOSE processing is performed when a segmentation
break occurs at a CONVERSE as well as at the end of a program.

Using CLOSE with a message queue record is not supported.

0S/400

None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Chapter 3. Functions 115

I/O option - CLOSE

Environment

Compatibility Considerations

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX

CLOSE for CICS files does not physically close the file, it resets the
position pointer to the beginning of the file. The CLOSE does not
delete temporary storage files.

Windows NT None.

(C++)

Windows NT Serial, SQL, and message records are the only supported I/O
(Java) objects.

CICS for Same as CICS for AIX.

Windows NT

Solaris None.

CICS for Solaris

CLOSE for CICS files does not physically close the file, it resets the
position pointer to the beginning of the file. The CLOSE does not
delete temporary storage files.

Test Facility

None.

I/O option - CONVERSE

If the program type is Web transaction, CONVERSE sends a user interface
(UI) record and waits for input from the program user. If the program type is
not Web transaction, CONVERSE displays a map and waits for input from the
program user.

CONVERSE is valid only for display maps (3270 user interface screens) or Ul
records.

Using the CONVERSE 1/0O option with a map
If the CONVERSE 1/0 option sends a map, edit validation is bypassed if the

program user presses an attention key or a function key defined as a bypass
edit key.

Using the CONVERSE /O option with a Ul record
If the CONVERSE 1/0 option sends a Ul record, all edits are bypassed if the

submit value sent back is defined as a Submit Bypass item.

Definition considerations for CONVERSE with maps
If the CONVERSE 1/0 option sends a map and the program user presses

Enter or a function key, the data entered by the program user is read and
validated as specified in the map variable field edit definitions. If the data

116 VisualAge Generator: Programmer’s Reference

I/O option - CONVERSE

entered is not valid, the map appears again without passing the input to the

program for processing. A message prompts the user to correct the data in

error.

Definition considerations for CONVERSE with Ul records
If the CONVERSE 1/0 option sends a Ul record and the program user

submits the HTML page to the server:
* The specified edit validations occur at the Web Server where the Ul Record
beans have been deployed:
— If the specified edit validations fail, the HTML page is sent back to the
user. The HTML page can access error messages available in the UI bean.
The default generated HTML page will show the error directly
underneath the field in error.

— If the specified edit validations succeed, the data is passed back to the
program and any user defined edit functions are run on the server. If

any of the user defined edit functions fail, the CONVERSE of the Ul
record is repeated, otherwise the program continues on after the
CONVERSE statement.

Target environments for CONVERSE

Environment Compatibility Considerations

VM CMS UI records are not supported.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO UI records are not supported.

MVS batch Ul records are not supported.

IMS/VS Multiple partial maps cannot be used for terminals because the
screen is erased before the map displays.
PA2 cannot be used as a bypass edit key.

IMS BMP Not supported.

CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 Ul records are not supported.

0S/400 UI records are not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

Chapter 3. Functions

117

I/0 option - CONVERSE

Environment Compatibility Considerations
0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT UI records are the only supported 1/O objects.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - DELETE
DELETE removes a record from a file or database.

Uses
DELETE is valid for relative, indexed, DL/I segment and SQL row records.

You must first obtain the record by an UPDATE function or a SCAN for an
update function for DL/I or relational databases.

Target environments for DELETE

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 None.

118 VisualAge Generator: Programmer’s Reference

I/O option - DELETE

Environment Compatibility Considerations
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O objects.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - DISPLAY
DISPLAY sends a map to a printer or to a terminal output buffer.

Uses
If a map is sent to a terminal output buffer, the buffer contents are sent to the

screen when the next CONVERSE occurs.

The DISPLAY option serves the following two purposes:

¢ Sends a map to a printer

* Sends a number of maps to the screen at once. The maps can be floating
maps or fixed maps, each of which only partially fills the screen. Each
DISPLAY option sends a map to the terminal 1/O buffer until the
CONVERSE option of a subsequent map causes all the accumulated maps
(including the conversed map) to be sent to the screen.

DISPLAY is valid for both terminal and printer maps.

Target environments for DISPLAY

Environment Compeatibility Considerations

VM CMS None.

Chapter 3. Functions 119

I/O option - DISPLAY

Environment Compatibility Considerations
VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS The DISPLAY 1/0 option is only supported for printer maps.
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0OS/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - EXECUTE

EXECUTE is not associated with an I/O operation. EXECUTE has no I/O
object (map or record).

120 vVisualAge Generator: Programmer’s Reference

I/O option - EXECUTE

Uses
Use EXECUTE for special processing, such as controlling the flow between

functions, initialization, processing not to be repeated in an I/O function,
error handling, and processing that ends the program.

Target environments for EXECUTE
Supported in all environments without compatibility considerations.

I/0 option - INQUIRY

INQUIRY reads a single record from a file or database. The current value in
the key identifies the record to be read.

Uses
INQUIRY is valid for indexed, relative, DL/I segment, or SQL row records.

Definition considerations for INQUIRY
For an SQL row record, the SELECT statement built for the INQUIRY function

is always issued using an SQL cursor unless Single row select is specified for
the SQL statement. The INQUIRY function reads the first row returned by the
SELECT and automatically issues a CLOSE function to release any other rows.

Target environments for INQUIRY

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.
(GUI)

0S/2 (C++) None.

Chapter 3. Functions 121

I/0 option - INQUIRY

Environment Compatibility Considerations
AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O object.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/0 option - REPLACE

REPLACE puts a changed record back into a file or database.

Uses

REPLACE is valid for indexed, relative, DL/I segment, or SQL row records.

You must first obtain the record by an UPDATE or SCAN for update function
for DL/I or relational databases.

Definition considerations for REPLACE
The default SQL statement built for a REPLACE function for an SQL row

record does not write to the database any item specified as the default key or
as read-only in the SQL row record.

Target environments for REPLACE

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

122 vVisualAge Generator: Programmer’s Reference

I/O option - REPLACE

Environment Compatibility Considerations
CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O objects.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - SCAN

The SCAN 1/0 option reads the next record in a file, database or message
queue.

Uses
The SCAN 1/0 option is valid for DL/I segment, indexed, message queue,

relative, serial or SQL row records.

Definition considerations for SCAN
Any successful file I/O sets the position for the SCAN function. The position

following an unsuccessful I/O operation is undefined. The program must
establish file position again when an unsuccessful read occurs.

A SET record SCAN statement also establishes positioning to the next record to
be retrieved if followed by a SCAN I/O option. The SET record SCAN
statement is used only with indexed or DL/I segment records. It is not
allowed for relative records and is ignored for all other record types.

Chapter 3. Functions 123

I/O option - SCAN

DL/I segments
The scan position for records in a DL/I database depends on previous
calls to the database. The Get Next in Parent option for the DL/I
CALL defined for the function controls when EOF is returned for the
SCAN. If Get Next in Parent is specified, EOF is indicated after the
last segment of that type for the current parent has been read; if Get
Next in Parent is not specified, EOF is indicated after the last segment
of that type in the database has been read. Refer to the section on
developing DL/I programs in the Design Guide online document for a
more detailed discussion of the scan position for DL/I segments.

Message queue records

If you use the SCAN I/0 option to read a message queue record in a

message queue, VisualAge Generator automatically:

1. Connects to the queue manager, if the queue manager is not
already connected

2. Opens the queue, if the queue is not already open

3. Gets the next message from the queue and moves the message
contents to the message queue record structure

Relative and indexed files
The SCAN function reads the record following the last read record in
key sequence. The first record of a file is read if no function that uses
the record as an object has been previously executed.

A SCAN function following a SCANBACK function retrieves the
record following the record accessed on the SCANBACK function. If a
SCANBACK function returns an EOF condition, the SCAN function
returns the first record in the file.

An EOF condition is returned on the SCAN function after the last
record is read. For compatibility with versions of Cross System
Product, relative file I/O will also return NRF on a SCAN function
past the end of the file.

When using alternate indexes, a SCAN function returns the record in
the file with the next higher alternate key than the current position in
the file. A DUP condition occurs if the record retrieved using the
SCAN function has the same key as another record in the file. An
exception occurs when retrieving the last record in a group of
duplicate-keyed records. In this case, although the record has a
duplicate key, the DUP mnemonic is not set. If records with duplicate
keys exist in the file, a SCAN function following a SCAN retrieves
any duplicate-keyed record before retrieving the record with the next
key. Records with duplicate keys are returned in the order that VSAM
returns them. A SCAN function following a successful 1/O option

124 vVisualAge Generator: Programmer’s Reference

I/O option - SCAN

(other than a SCAN function that retrieved a duplicate-keyed record)
skips over any remaining duplicate-keyed records and retrieves the
record with the next greater key.

An EOF condition is returned on the SCAN after the last record has
been read. For compatibility with previous versions of VisualAge
Generator, relative file I/O will also return NRF on a SCAN past the
end of the file.

Serial files
A SCAN function reads the record following the last record read in
the entry sequence. The first record is read for the first scan of a file.

If the record accessed on the previous I/O operation was the last
record in the file, SCAN returns EOF. The following list identifies the
file types that support both the ADD and SCAN I/O option in the
same program:

File type ADD and SCAN supported
GSAM No
MMSGQ No
OS2COBOL Yes
SEQ Yes
SEQRS Yes
SMSGQ No
SPOOL No

TEMPAUX Yes

TEMPMAIN Yes

TRANSIENT Yes

VSAM Yes

VSAMRS Yes

When using both an ADD and a SCAN function in the same program,
the file is closed and reopened whenever the program changes from
adding to scanning or from scanning to adding. When the file is

closed, the file position is lost; therefore, the first SCAN after an ADD
will read the first record from the file.

SQL row records
The SCAN function reads the next row from a set of rows selected
from the relational database by a SETINQ or SETUPD 1/O option. If a

Chapter 3. Functions 125

I/O option - SCAN

row was selected using SETUPD, it can be replaced (REPLACE
option) or deleted (DELETE option) immediately following the SCAN
function that retrieved the row.

The SET record SCAN statement has no effect on SQL row records.
Position for SQL row can only be set with a SETINQ or SETUPD 1/0O

option.
A NRF condition is set if the last row in the set was retrieved on a
previous SCAN function.

The scan position is lost if a CLOSE function is performed for the set
of rows. See the description of the CLOSE 1/O option for a
description of when CLOSE processing is performed.

For details concerning SQL options, refer to the section on developing
SQL programs in the Design Guide document.

Target environments for SCAN

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for The scan position is lost when a commit or rollback is issued, or

MVS/ESA following a CONVERSE function if running in segmented mode.

Cursors that were declared using CURSOR WITH HOLD are not
closed on a commit, but a rollback or database connect function will
close all cursors including those declared using WITH HOLD.

MVS/TSO None.

MVS batch A SCAN function for a serial record assigned to a GSAM file results

in a get next call to the GSAM database.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

126 VisualAge Generator: Programmer’s Reference

I/O option - SCAN

Environment

Compatibility Considerations

IMS/VS

A serial record must be associated with the I/O PCB (PCB 0). The
SCAN function is not supported for a transaction program or for a
batch program that is called from a transaction program. Batch
programs can use only one serial file for input. The IMS message
header (Iength, ZZ field, and transaction code) is automatically
removed from each record read from the queue.

A SCAN function for a serial record assigned to a single-segment
message queue results in a get unique (GU) call to the I/O PCB.
This GU call results in an automatic commit point.

The first SCAN for a serial record assigned to a multiple-segment
message queue results in a GU call to the I/O PCB. Subsequent
SCAN functions result in get next calls until an NRF (status code
QD) condition is reached. The first SCAN function after the NRF
results in another GU call, and the function continues until an EOF
(status code QC) is reached. Each GU call results in an automatic
commit point.

During any specific scheduling of a batch program, the program can
do a SCAN function from only one message queue. The transaction
code for which IMS scheduled the program determines the message
queue that is scanned. The system resource specified during
generation is ignored.

IMS BMP

For an IMS batch-oriented BMP, a SCAN function for a serial record
assigned to a GSAM file results in a get next call to the GSAM
database.

If a variable-length serial record is in a file associated with GSAM
and the record length is longer than the physical file, DL/I returns a
blank status code. Data is truncated, but no message is issued
because the situation cannot be detected.

For an IMS transaction-oriented BMP, a SCAN function for a serial
record assigned to a message queue is the same as IMS/VS.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch

The SCAN function is not supported for a serial record that is
assigned to a SPOOL file.

CICS for OS/2

Same as CICS for MVS/ESA except that use with message queue
records is not supported.

0S/400

None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

Chapter 3. Functions 127

I/O option - SCAN

Environment Compatibility Considerations
0S/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT Serial, SQL, and message records are the only supported I/0O
(Java) objects.

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Examples for SCAN
Consider a file where the keys are as follows:

1, 2a, 2b, 2c,

3, 4

Where a, b, and ¢ are used to indicate duplicate-keyed records for key 2 and
the order in which they were added to the file.

The following examples illustrate the order in which records are retrieved.

Example 1:

1/0 option Key Retrieves Sets

INQUIRY 2 2a DUP
SCAN 3

Example 2:

I/0 option Key Retrieves Sets

SET record SCAN 2

SCAN 2a DUP
SCAN 2b DuP
SCAN 2c

SCAN 3

128 VisualAge Generator: Programmer’s Reference

I/O option - SCANBACK

I/O option - SCANBACK
SCANBACK reads the previous record in an indexed file.

Uses
SCANBACK is valid only for indexed records.

Definition considerations for SCANBACK
A SCANBACK function returns the record in the file with the highest key that

is less than the current position in the file. The last record of a file is read if
no function that uses the record as an object has been previously executed and
no SET record SCAN statement has been done.

A SCANBACK function on an uninitialized file causes an NRF condition to
occur. A SCANBACK function on an empty file causes an EOF for a non-CICS
environment, and both an EOF and an NRF for a CICS environment. An
uninitialized file is one that has never had any records added to it. An empty
file is one from which all records have been deleted.

The file position after an unsuccessful INQUIRY, UPDATE, SCAN, or
SCANBACK function is undefined. The program must establish file position
again when an unsuccessful read occurs.

The SCANBACK position is set on any successful I1/O to the file. A
SCANBACK function after any successful I/O operation retrieves the record
with the highest key value that is less than the key of the record accessed on
the previous I/O operation.

A SCANBACK function following a SET record SCAN statement retrieves the
record with the highest key value that is less than or equal to the current
record key value. A SET record SCAN with a key value set to all hexadecimal
FF bytes prior to a SCANBACK function sets the position pointer in all
environments to the end of the file so that the next SCANBACK function
retrieves the last record in the file.

If a SCANBACK function follows a SCAN function that returned an EOF
condition, the last record in the file is retrieved.

An EOF condition occurs if no previous record was in the file. This occurs, for
example, when SCANBACK functions are repeated past the beginning of the
file.

When using alternate indexes, a SCANBACK function returns the record in a
file with the highest alternate key that is less than the current position in the
file. A DUP condition occurs if the record retrieved using a SCANBACK
function has the same key as another record in the file. An exception occurs
when retrieving the last record in a group of duplicate-keyed records. In this

Chapter 3. Functions 129

I/0 option - SCANBACK

case, although the record has a duplicate key, the DUP mnemonic is not set. If
records with duplicate keys exist in the file, a SCANBACK function following
a SCANBACK function retrieves any duplicate-keyed record before retrieving
the record with the previous key. Records with duplicate keys are returned in
the order that VSAM returns them.

A SCANBACK function following a successful I/O option (except for a
SCANBACK function that retrieved a duplicate-keyed record) skips over any
remaining duplicate-keyed records and retrieves the record with the next
lower key.

Target environments for SCANBACK

Environment Compatibility Considerations

VM CMS VSAM files that use a SCANBACK function must be specified as file
type VSAMRS during generation. All programs within a run unit
that share the file must also specify VSAMRS for the file.

VM batch Same as VM CMS.
CICS for None.

MVS/ESA

MVS/TSO Same as VM CMS.
MVS batch Same as VM CMS.
IMS/VS Not supported.
IMS BMP Same as VM CMS.
CICS for None.

VSE/ESA

VSE batch Same as VM CMS.
CICS for OS/2 None.

0S/400 SET Record SCAN must be used before SCANBACK if the

SCANBACK is the first I/O operation performed on the file.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.
(C++)

130 VisualAge Generator: Programmer’s Reference

I/O option - SCANBACK

Environment Compatibility Considerations
Windows NT Not supported.

(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Examples for SCANBACK
Consider a file where the keys are as follows:

1, 2a, 2b, 2c, 3, 4

Where a, b, and ¢ are used to indicate duplicate-keyed records for key 2 and
the order in which they were added to the file.

The following examples illustrate the order in which records are retrieved.

Example 1:

I/0 option Key Retrieves Sets
INQUIRY 3 3

SCANBACK 2a DUP
SCANBACK 2b DuP
SCANBACK 2c

SCANBACK 1

Example 2:

1/0 option Key Retrieves Sets
SET record SCAN 2

SCAN 2a DUP
SCAN 2b DUP
SCANBACK 1

Example 3:

I/0 option Key Retrieves Sets
SET record SCAN 1

Chapter 3. Functions 131

I/0 option - SCANBACK

SCANBACK nothing EOF

I/O option - SETINQ

SETINQ selects a set of rows from a relational database for later retrieval with
the SCAN I/0 option.

Uses
The object must be an SQL row record.

Definition considerations for SETINQ
The default SQL statement built for a SETINQ function selects all rows that

meet any default selection conditions defined for the SQL row record, and
whose key column is greater than or equal to the current key item value. The
rows are sorted in key column sequence if a key was specified.

The default WHERE clause is not built when multiple-column keys exist.

Target environments for SETINQ

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java ~ Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

132 VisualAge Generator: Programmer’s Reference

I/O option - SETINQ

Environment Compatibility Considerations
CICS for AIX None.
Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O object..
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/0O option - SETUPD

SETUPD selects a set of records from a relational database for later processing
with the SCAN 1/0O option.

Uses
The selected records can be replaced or deleted. The object must be an SQL

row record.

Definition considerations for SETUPD
If a single key is defined for an SQL row record, the default SQL statement

built for a SETUPD function selects all rows that meet any default selection
conditions defined for the SQL row record, and whose key column is greater
than or equal to the current key item value. The rows are not sorted.

The default WHERE clause is not built when multiple-column keys exist. If
multiple keys are defined for the SQL row record, the default SQL statement
retrieves all rows that meet the default selection conditions defined for the
record.

Target environments for SETUPD

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

Chapter 3. Functions 133

/0 option - SETUPD

Environment Compatibility Considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O objects..
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O option - SQLEXEC

SQLEXEC enables you to define your own SQL statement to run as the I/O
option.

Uses
SQLEXEC is valid only for SQL records. However, using an SQL row record

I/0O object is optional.

Definition considerations for SQLEXEC
The SQLEXEC 1/0 option supports the use of SQL data manipulation and

definition statements that are not directly supported by other I/O options.
The statements supported by SQLEXEC are as follows:

e Multirow INSERT
e Multirow DELETE

134 VisualAge Generator: Programmer’s Reference

I/O option - SQLEXEC

e Multirow UPDATE
* GRANT
 REVOKE

* CREATE

* DROP

e SET

To use the SQLEXEC function you must be familiar with SQL statement
syntax. Refer to the SQL reference manual for the relational database manager
used at your location for information on SQL statement syntax. The rules for
SQL statement syntax differ among the various database managers.

SELECT statements cannot be issued using the SQLEXEC I/O option because
the SQL interfaces that support the SQLEXEC I/O option do not support
SELECT statements. Use the SETINQ, SETUPD, INQUIRY, or UPDATE 1/0
options for SELECT processing.

If you do not enter an SQL statement, the I/O behaves like an EXECUTE 1I/0
option.

An I/O object is not required. You can specify an SQL row record as an I/O
object.

Target environments for SQLEXEC

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Chapter 3. Functions 135

I/O option - SQLEXEC

Environment Compatibility Considerations
Windows Java Not supported.

(GUI)

0S/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT SQL records are the only supported 1/O objects.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

I/O Option - UPDATE

UPDATE reads a record from a file or database with the implied intention of
replacing or deleting the record.

Uses
UPDATE locks the record, protecting it from updates by other users, until

another operation is complete for the file or database.
UPDATE is valid for indexed, relative, DL/I segment, or SQL row records.

Definition considerations for UPDATE
If the file or database is shared by multiple users, an UPDATE function

should not be held across a CONVERSE function. This can cause other users
attempting to access the record to wait until the first user responds to the
CONVERSE function.

The default SQL statement built for an UPDATE function for an SQL row
record reads the row whose key columns are equal to the current key item
values. All columns represented in the record are retrieved; only columns

other than key columns or read-only columns can be written back to the
database on the associated REPLACE 1/0O option.

136 VisualAge Generator: Programmer’s Reference

/O option - UPDATE

Target environments for UPDATE

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT SQL records are the only supported I/O objects.
(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL statement
An SQL statement is created for a function to access a relational database.

Chapter 3. Functions 137

SQL statement

Uses
A default SQL statement is generated for the function based on the I/O option

and the definition of the SQL row record I/O object.

Definition considerations for SQL statement
You can modify the SQL statements for some I/O options if you understand

SQL syntax. You cannot change the following:

* The table name clause in the SQL statement for any I/O option other than
the SQLEXEC 1/0O option

* The SQL statements for the DELETE, SCAN, and CLOSE I/O options

* The WHERE CURRENT OF CURSOR clause in the SQL statements for the
REPLACE and DELETE I/0O options.

You can define entire SQL statements for the SQLEXEC function or use the
model option to create default UPDATE or DELETE statements. You can
modify all clauses in the model statement.

If you change or enter a statement, use the SQL statement syntax described in
the appropriate DB2 reference manual with the following additions or
exceptions:

* To use data items as host variables in the statement, place a colon
immediately preceding the data item name.

* Do not use null indicator variables. Null indicators are maintained by the
VisualAge Generator Developer for all items in SQL row definitions. Use
the TEST and IF statements to test null indicators and the SET statement to
set null indicators for SQL row items.

* Use an INTO clause with all SELECT statements. The SELECT might
actually be executed with an SQL cursor. If so, the INTO clause identifies
the data items that receive the data when a row is retrieved with the
FETCH command associated with the cursor. The INTO clause is defined
with the SELECT because a one-to-one relationship must be maintained
between the selected columns and the items in the INTO clause. You can
avoid use of a cursor for an INQUIRY I/O option by selecting the Single
row select option.

* To enter a comment line in the statement, type /* as the first characters in
the comment.

* Enter an SQL column name directly, or enter the data item name in the SQL
row record preceded by an exclamation mark (!item-name). When the SQL
statement is prepared for execution, the data item name is replaced by the
SQL column name defined for the data item in the SQL row definition.

The SQLEXEC 1/0 option is used for advanced SQL programming functions
for database manipulation. With SQLEXEC, you define the entire SQL

138 VisualAge Generator: Programmer’s Reference

SQL statement

statement. You can enter any statement that you execute using the EXECUTE
command of the SQL interface for high-level languages.

For more information and examples of how to use SQL statements in a

program, refer to the Design Guide document.

If the program contains a large number of SQL I/O options, DB2 precompiler
limits can be exceeded. If you exceed a limit, split the program.

Target environments for SQL statement

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.

Chapter 3. Functions

139

SQL statement

Environment Compatibility Considerations

Test Facility None.

SQL statement - Declare cursor with hold

Declare cursor with hold specifies that the WITH HOLD clause is added to
the DECLARE CURSOR statement that is issued for the SETINQ or SETUPD
I/0 options.

Uses
If you use the WITH HOLD clause, the cursor is not closed when a commit

occurs.

The WITH HOLD clause is not effective on rollback functions or at the end of
a segment.

Definition considerations for Declare cursor with hold
To avoid an SQL error, do the following:

* When using the SETUPD 1/0 option, specify the SCAN I/O option after a
commit before using the DELETE or REPLACE 1/0O option,

* Before connecting to a different database using EZECONCT, use the CLOSE
I/0 option to close all cursors.

If you have specified an I/O option other than SETINQ or SETUPD, you
cannot specify Declare cursor with hold.

Target environments for Declare cursor with hold

Environment Compatibility Considerations

VM CMS Refer to the reference manual for your version of SQL/DS VM to
determine if the WITH HOLD clause can be specified on the
DECLARE CURSOR statement. If the WITH HOLD clause is not
supported, do not specify Declare cursor with hold. Otherwise, the
SQL/DS VM precompiler fails when you prepare the program.

VM batch Same as VM CMS.
CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

140 VisualAge Generator: Programmer’s Reference

SQL statement - declare cursor with hold

Environment Compatibility Considerations

CICS for Refer to the reference manual for your version of DB2 VSE

VSE/ESA (SQL/DS) to determine if the WITH HOLD clause can be specified
on the DECLARE CURSOR statement. If it is not supported, do not
specify Declare cursor with hold. Otherwise, the DB2 VSE(SQL/DS)
precompiler will fail when you prepare the program.

VSE batch Same as CICS for VSE/ESA.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

SQL statement - Execution time statement build

Execution time statement build indicates that the SQL statement generated for
a function is prepared dynamically each time it is executed. This lets you
modify parts of the SQL statement (the WHERE clause, for example) at

execution time.

Uses

Execution time statement build can be specified for SELECT statements and
statements issued using the SQLEXEC 1/O option.

Use Execution time statement build to do the following tasks:

* Dynamically modify an SQL statement generated for an SQL function when
the program runs

* To use host variables in SQL where host variables are not normally

supported.

141

Chapter 3. Functions

SQL statement - Execution time statement build

If you do not specify Execution time statement build, the statement is built as
a static SQL statement or prepared and executed using the dynamic or
extended dynamic PREPARE and EXECUTE interface. You use host variables
as defined in normal SQL statement syntax. All valid host variable data types
are supported.

If you specify Execution time statement build, the statement is prepared each
time the function is executed. SQLEXEC functions are executed using the SQL
dynamic EXECUTE IMMEDIATE command. INQUIRY, SETINQ, UPDATE,
and SETUPD functions are executed using PREPARE and cursor manipulation
statements. Any REPLACE and DELETE functions associated with dynamic
SELECT statements are also executed dynamically.

Definition considerations for Execution time statement build
When you specify Execution time statement build, the statement executed is

built by replacing all the host variables in the statement (except host variables
in the INTO clause in the SELECT statement) with the character
representation of the contents of the host variables.

Only host variables with type CHA, BIN, or PACK can be used in the
statement, except in the INTO clause. The CHA fields are inserted directly
into the statement without being enclosed in single quotes. This has the
advantage of allowing host variables to be used in places where SQL does not
normally support host variables.

For example, you could code a host variable in place of an entire WHERE
clause and have the program dynamically build the WHERE clause in the

host variable at execution time.

Target environments for Execution time statement build

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.

142 VisualAge Generator: Programmer’s Reference

SQL statement - Execution time statement build

Environment Compatibility Considerations
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

SQL statement - Model SQL statement generation

Model SQL statement generation specifies whether a model SQL statement is
generated for an SQLEXEC function, and if required, the type of model SQL
statement.

Uses
You can specify one of the following:

None To define a function with an SQLEXEC I/0O option without a model
SQL statement.

Update
To define a function with an SQLEXEC I/O option with a model SQL
statement for updating a table row.

The model SQL statement is derived from the SQL statement you
specified as the default for the SQL row record that is the I/O object.

Delete To define a function with an SQLEXEC 1/O option with a model SQL
statement for deleting an SQL table row.

The model SQL statement is derived from the SQL statement you
specified as the default for the SQL row record that is the I/O object.

Chapter 3. Functions 143

SQL statement - Model SQL statement generation

Target environments for Model SQL statement generation

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL Statement - Single row select

Single row select specifies single row selection if you are defining a function
with an INQUIRY I/O option.

144 VisualAge Generator: Programmer’s Reference

SQL Statement - Single row select

Uses
Single row select is designated during SQL statement definition for an

INQUIRY function to indicate that the row be retrieved with a Single row
select rather than with an SQL cursor.

This option is effective only with static execution and is ignored when the
program is run in the test facility, which runs in dynamic mode.

Definition considerations for Single row select
Single row select is more efficient than retrieving a single row with a cursor,

but it will fail if more than one record meets the selection criteria. Use Single
row select when retrieving rows by key where the key is unique.

Target environments for Single row select

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.
(C++)

Chapter 3. Functions 145

SQL Statement - Single row select

Environment Compatibility Considerations
CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility Not supported.

SQL statement - UPDATE or SETUPD function name
UPDATE or SETUPD function name identifies the name of an UPDATE or
SETUPD function that selected the rows to be replaced by a REPLACE 1/0
option.

Uses
The UPDATE or SETUPD function name is required for generation if more

than one UPDATE or SETUPD function exists with the same 1/O object as the
REPLACE function and at least one of the FOR UPDATE OF clauses was
modified.

The UPDATE or SETUPD function name provides the information needed to
correctly associate SQL SELECT and UPDATE statements in the generated

module.

Target environments for UPDATE or SETUPD function name

Environment Compatibility Considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

146 VisualAge Generator: Programmer’s Reference

SQL statement - UPDATE or SETUPD function nhame

Environment Compatibility Considerations
Windows Java Not supported.

(GUI)

0S/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Chapter 3. Functions 147

SQL statement - UPDATE or SETUPD function hame

148 VisualAge Generator: Programmer’s Reference

Chapter 4. Records

A record defines the organization and item structure of the record along with

other options such as file name and record ID item. Record specification

options vary depending on the organization you choose.

VisualAge Generator supports the following record organizations:

Records are included in a program by specifying the record name as:

DL/I segment
Indexed
Message queue
Redefined
Relative

Serial

SQL row

User interface
Working storage

An I/0 object

An entry in the table and additional records list for the program
A working storage record

A called parameter

A parameter for a function

A local storage area for a function

The name of a record part included in a GUI definition

© Copyright IBM Corp. 1980, 2000

149

Record elements

Table 9. Record elements

COBOL

GUI

C++

Java

Element

VM CMS
VM Batch

MVS CICS

MVS/TSO

MVS Batch

IMS/VS

IMS BMP
VSE CICS
VSE Batch
0S/2 CICS

0S/400

Windows*-OS/2(ST)

Windows*(Java)

0S/2
AIX

HP-UX

AIX CICS

Windows NT

Windows NT CICS

Solaris

Solaris CICS
Windows NT

Test Facility

Alternate
specification

0

0

0

0

0

X

0

(o)

0

0

X

X

X

X

0

X

0

X

X

Default key
item (SQL)

X

X

X

X

Default
selection
conditions

(SQL)

File name

Key item
(DL/T)

Number of
occurrences
item

Organization
-DL/I
segment

Organization
- Indexed

Organization
- Message
queue

Organization
- Redefined

Organization
- Relative

Organization
- Serial

150 VisualAge Generator: Programmer’s Reference

Table 9. Record elements (continued)

5
|
) = ¥ s
O 0 @]]
U P
= 19}
7 O
Element % ’.‘;‘ O
2 = &= n|H=
n 5 2wl 192 z| z glz | &
mﬁgO% f‘—i@_‘gu*m*m amm Ole | =
= 20| 2| & »| 2| 5| B C|o|2 |2 Olzl 2 z |
U m = Zmum 8le |9 X| O] o| o] .2| 2|0 | =
28D Fly mwl om QFE T 2 I Bl B & BT | =
E E >l 2| > E 2 N Nn| Dl AD|= |~ (7)) 5 By >,_'< o | e '3 '—Q' o= 8
> > 2| 2| 2| &g > > OO |2 | 0|4l T < 2| 2| » B |F
Organization| x | x | x| X | X | X [X| X [X | X [X X [x| x| x|x|x|[x |x |x |x
- SQL row
Organization c c c clc|lc|clclc|c |c |c |c
- User
Interface
Organization| x | X | X | x | x | X | x| x | x | x | x X | x| x| x|x|x|x |x |x |x
- Working
storage
Prologue X | x [x| x| x| x|x| x| x|x|x|x|x|x|x|x]|x]|x]|x]|x |[x |[x |x
Record X[x [x| x| x| x|x| x| x|x|x|x|x|x|x|x|x]|x]|x]|x [x |[x |x
Record ID X | X [X| x| x| x|[x|x]|x]|x]|Xx X [x| x| x|x|x|[x |x |x |x
item
Record clclc|lc|clclc|lc|lc|c X[x| x|c|x]|cl|x |c [x |x
length item
Record X | x [x| x| x| x|x| x| x|x|x|x|x|x|x|x]|x]|x]|x]|x [x |[x |x
name
Redefinition | x | x | x| x | x | x | x| x | x | x | x X [x| x| x| x|x|[x |[x [x |x
for
SQL table X[x [x| x| x| x|x|x]|x]x][x X | x| x| x|x|x|x |x |x |x
names
Variable X| x| x| x|x|x|x X
length item
(DL/T)
Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.
Legend: In this table, the following characters are used to indicate the level of support:
X Supported
c Supported with compatibility considerations
g The part or some of its features can be connected in a GUI application
blank Not supported

Chapter 4. Records 151

Alternate specification

Alternate specification

Uses

“Alternate specification” is the name of an existing record whose data item
structure is to be used for this record.

Specify “Alternate specification” to avoid creating and maintaining several
record structures. Once you change the structure of one record, you change
the structure of all records that refer to it as an alternate specification.

There is no record structure defined for this record. VisualAge Generator uses
the structure defined in the record named as the “Alternate specification”.

Definition considerations for Alternate specification

For VSAMRS files accessed using VisualAge Generator Server for MVS, VSE,
and VM or VisualAge Generator Server (specifying the VSAMRS file type at
generation) or for VSAM files on CICS, the file name for the alternate
specification cannot be the same as the file name for any other record in the
program.

Indexed records
When used with indexed records, an alternate specification enables
you to specify an alternate record ID item that can be associated with
an alternate index. You must also specify an alternate file name.

SQL row records
When used with another SQL record, alternate specification records
allow a program to do the following:

* Simultaneously scan two different sets of rows from the same
relational table

* Access a table with a different default key item
e Access a table with different default selection conditions

You cannot specify an SQL row record as an alternate specification for
a record with a different organization.

You cannot specify a record with a different organization as an
alternate specification for an SQL row record.

You cannot enter SQL table names for a row defined as an alternate
specification for another record.

152 VisualAge Generator: Programmer’s Reference

Alternate specification

Target environments for Alternate specification

Environment

Compatibility considerations

VM CMS

If you generate the program to use COBOL 1/O statements to access
a VSAM file using an alternate index (file type is specified as VSAM
at generation), then all programs in the job step that do I/O to the
same file must include both the alternate specification record and
the base record defined with the primary key. Both records must
specify the same file name. All programs must include both of the
records, either as I/O objects or listed in the table and additional
records list.

VM batch

Same as VM CMS.

CICS for
MVS/ESA

For VSAM files, the file name for the alternate specification cannot
be the same as the file name for any other record in the program.

MVS/TSO

For VSAMRS files accessed using VisualAge Generator Server for
MVS, VSE, and VM or VisualAge Generator Server (specifying the
VSAMRS file type at generation), the file name for the alternate
specification cannot be the same as the file name for any other
record in the program.

If you generate the program to use COBOL I/O statements to access
a VSAM file using an alternate index (file type is specified as VSAM
at generation), then all programs in the job step that do I/O to the
same file must include both the alternate specification record and
the base record defined with the primary key. Both records must
specify the same file name. All programs must include both of the
records, either as I/O objects or listed in the table and additional
records list.

MVS batch

Same as MVS/TSO.

IMS/VS

None.

IMS BMP

Same as MVS/TSO.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch

Same as MVS/TSO.

CICS for OS/2

Same as CICS for MVS/ESA.

0S/400

None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.

Chapter 4. Records 153

Alternate specification

Environment Compatibility considerations

CICS for AIX Same as CICS for MVS/ESA.

Windows NT None.

(C++)

Windows NT None.

(Java)

CICS for Same as CICS for MVS/ESA.
Windows NT

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Default key item (SQL)

Uses

Default key item specifies the name of the data item to be used as the search
field in default SQL statements built for an alternate specification of an SQL
row record.

The default key item is used as the search field in the SQL statements that
access records in relational databases.

Specifying the Default key item is optional, but is the only way to specify an
SQL key item for an alternate specification for record.

Default key item is most useful for accessing tables that have a single column
for which a unique index is defined. If a default key is specified, the key item
cannot be modified by a REPLACE function.

If specified, the default key item must be in the item list for the primary
record associated with the alternate specification record.

If you did not specify Alternate specification, you cannot specify Default key
item.

Target environments for Default key item (SQL)

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

154 VisualAge Generator: Programmer’s Reference

Default key item (SQL)

Environment Compatibility considerations
MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Default selection conditions (SQL)

Uses

Default selection conditions are default search criteria specified for a record
defined as an SQL row.

Default selection conditions refer to SQL search-conditions defined in
conjunction with a record that is automatically included in default SELECT

statements built for functions that access that record. You enter the search

condition in the WHERE clause of a simulated SELECT statement.

Chapter 4. Records

155

Default selection conditions (SQL)

Default selection conditions are useful for defining join conditions that need
to be specified for an SQL row record that is defined as a join of two or more
relational tables. If the SQL row record represents a single table with one or
more columns combining to form a unique index, you would usually specify
items in the record as key items instead of coding default selection conditions.

If an index is defined for any columns referenced in the search conditions, the
item that represents the column in the SQL row record must be defined as
read-only, or the index is not used in the search in an UPDATE or SETUPD
function.

Definition considerations for Default selection conditions

Join conditions are search conditions that express the relationships between
the combined tables. Join conditions limit the number of rows in the larger
table by selecting only valid combinations of rows. If no join conditions are
defined, all possible combinations of rows are formed.

Using the WHERE clause
Default selection conditions are specified using the syntax for a search

condition in the WHERE clause of a SELECT statement.

The syntax is not validated until the SQL statements with the default selection
conditions are preprocessed by the relational database manager.

The default selection conditions are built into any WHERE clauses generated
for functions with the SQL row record as the I/O object.

If key items are also specified for the SQL row, the default selection conditions
are combined with any default key selection conditions using an AND logical
operator.

Target environments for Default selection conditions

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

156 VisualAge Generator: Programmer’s Reference

Default selection conditions (SQL)

Environment Compatibility considerations
VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

File name

Uses

File name associates a record specification with a physical file.

File name is specified for indexed, message queue, relative and serial files.

File name is a 1- to 8-character file name that must meet the following

conventions:

* The first character must be alphabetic or national (A-Z, $, #, @).
* The remaining characters must be alphanumeric or national (A-Z, 0-9, $, #,

@).

* The name cannot contain special characters or embedded blanks or have an

EZE prefix.

* The name cannot use $, #, or a COBOL reserved word if the file is
associated with:
— VSAM or SEQ in a non-CICS environment

Chapter 4. Records

157

File name
— OS2COBOL in a CICS OS/2 environment

Note: The $, #, and @ are not in the National Language syntactic character set
and cannot be represented by equivalent code points across differing
code pages. Avoid using these characters if the program you are
developing will be exported or generated for these differing code
pages. This will particularly affect programs exported between the
System/370 host and the workstation.

Definition considerations for File name

Records sharing the same file name are associated with the same physical file.
The physical file associated with the file name can be specified during
program generation. The default destination can be overridden during
resource association or by using the EZEDEST special function word.

Programs that run together in the same run unit and access the same physical
file must have the same file name specified for all records associated with the
file.

All records with the same file name that run together in the same run unit
must have the same attributes (record format, length, organization, key length,

and key offset). They must also match the physical file definition.

If you define a message queue record, you must specify a file name.

Note: For more information on size restrictions and record lengths, see
Generation Considerations for File name

Using the linkage table, you can specify whether a file associated with the file
name is at a remote location and whether automatic data conversion from
ASCII to EBCDIC is to be performed when file records are accessed.

For more information on accessing remote files, refer to VisualAge Generator
Client/Server Communications Guide.

Target environments for File name

Environment Compatibility considerations

VM CMS If the program has not set the EZEDEST special function word for
the record, this file name is used as the file name on a CMS
FILEDEF command or DLBL command to allocate the physical file
prior to running the program.

VM batch If the file is associated with a VSAM or VM file and the program
has not set the EZEDEST special function word for the record, the
value is the file name used when the file is opened.

158 VisualAge Generator: Programmer’s Reference

File name

Environment Compatibility considerations

CICS for The file name is the default system resource name. Its meaning is

MVS/ESA based on the file type selected when the program is generated or
tested.

MVS/TSO If the program has not set the EZEDEST special function word for

the record, use this file name as the file name on a TSO ALLOC
command or DLBL command to allocate the physical file prior to
running the program.

MVS batch If the file is associated with a VSAM or sequential MVS file and the
program has not set the EZEDEST special function word for the
record, the value is the DD name used when the file is opened.

If a serial file is associated with a GSAM file, the value is the DD
name used in the JCL. It must match the DD name specified in the
GSAM DBD.

IMS/VS The file name is the default logical terminal or transaction code
used when records are added to a serial output file allocated to an
IMS message queue. The actual logical terminal or transaction code
used when the program is running must be defined to IMS.

File name is ignored for an input message queue because it uses the
1/0 PCB.

IMS BMP If the file is associated with a VSAM or sequential MVS file, and the
program has not set the EZEDEST special function word for the
record, the value is the DD name used when the file is opened.

If a serial output file is associated with a message queue, the value
is the default logical terminal or transaction code. The actual logical
terminal or transaction code used when the program is running
must be defined to IMS.

File name is ignored for an input message queue because it uses the
1/0 PCB.

If a serial file is associated with a GSAM file, the value is the DD
name used in the JCL. It must match the DD name specified in the

GSAM DBD.
CICS for Same as CICS for MVS/ESA.
VSE/ESA
VSE batch If the program has not set the EZEDEST special function word for

the record, the file name is the DLBL name used when the file is
opened. Only the first 7 characters of the name are used.

CICS for OS/2 Same as CICS for MVS/ESA except that use with message queue
records is not supported.

0OS/400 None.

Chapter 4. Records 159

File name

Environment

Compatibility considerations

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX Same as CICS for MVS/ESA.
Windows NT None.

(C++)

Windows NT None.

(Java)

CICS for Same as CICS for MVS/ESA.
Windows NT

Solaris None.

CICS for Solaris

Same as CICS for MVS/ESA.

Test Facility

The test facility resolves the logical filename specified in the record
to the physical filename. The Resource Association File (RAF) is
used to connect the logical file name to the physical file name at test
time.

Key item (DL/I)

Key item specifies the name of an item in a DL/I segment record that
contains the segment key.

Uses
The default value is blank. Use the default value if the DL/I segment has no
sequence field.

Definition considerations for Key item
The Key item must have the same name, length, and offset that the segment
sequence field has in the DL/I database description.

Target environments for Key item

Environment Compatibility considerations
VM CMS Not supported.
VM batch Not supported.

160 VisualAge Generator: Programmer’s Reference

Key item (DL/I)

Environment Compatibility considerations
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++)

Not supported.

AIX

Not supported.

HP-UX

Not supported.

CICS for AIX

Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Not supported.

Solaris

Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

Number of occurrences item

Number of occurrences item supports the definition of variable-length records
for files in which all records have a fixed-length part at the beginning of the
record, followed by an array with a variable number of entries at the end of

the record.

Chapter 4. Records

161

Number of occurrences item

Uses

Number of occurrences item is valid only for indexed, message queue or
serial records.

If the record you define ends with an array that can have a variable number
of occurrences, specify the name of the data item that contains the number as
the Number of occurrences item.

The data item that contains the number of occurrences must meet all of the
following requirements:

* Be defined in the fixed-length part of the variable-length record

* Have a data type of numeric (Num), binary (Bin), or packed (Pack)
* Have a maximum length of 9 characters

* Contain no decimal places

Definition considerations for Number of occurrences item

The number of occurrences item contains the number of entries in the array.
When the record is written to the file, VisualAge Generator computes the
length of the record by multiplying the current value in the number of
occurrences item by the length of an array entry.

For message queue records, the occurrences item value multiplied by the
length of an array item plus the length of the record structure without the
array determines the message length. If the record contains both a record
length item and occurrences item, the record length item is set to the length
calculated from the number of occurrences before a message is added to the
queue.

The array is represented in the record data item definition by the last item
that is not subordinate to any other item (not part of a substructure). The
array itself can be substructured. The dimension (occurrences) specified for
the array is the maximum number of entries that can be written out for the
record. The minimum number of entries is zero.

The number of occurrences item must not be specified for fixed-length
records.

If the records in a file are variable-length, the record specification must
include a record length item, a number of occurrences item, or both.

If you have both a record length item and a number of occurrences item, the
record length is calculated using the number of occurrences item each time
the record is written to the file. The calculated length is moved to the record
length item before writing the record.

162 VisualAge Generator: Programmer’s Reference

Number of occurrences item

Test and runtime use the number of occurrences item only when reading
records from the file or writing records to the file.

Program statements can reference all the items in the entire record regardless
of the values of the record length item and number of occurrences item.

Target environments for Number of occurrences item

Environment

Compatibility considerations

VM CMS

Variable-length records are supported in VSAM files and VM
sequential files.

Variable-length records in VM non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to a VM
non-VSAM sequential file with variable record format and removed
when the record is read.

VM batch

Same as VM CMS.

CICS for
MVS/ESA

Variable-length records are not supported for temporary storage
queues and transient data queues.

MVS/TSO

Variable-length records are supported in VSAM files and MVS
sequential files.

Variable-length records in MVS non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to an MVS
non-VSAM sequential file with variable record format and removed
when the record is read.

MVS batch

If the file is a GSAM file, the 2-byte leading length field is added to
records written to the file and removed from records read from the
file. The data item definition for the record should not include the
header.

If the file is not a GSAM file, then the same considerations for
MVS/TSO apply to MVS batch.

IMS/VS

Number of occurrences item is only supported for serial files
associated with IMS message queues. The IMS message header
(length, ZZ field, and transaction code) is added to records written
to a queue and removed from records read from the queue. The
data item definition for the record should not include the header.

Chapter 4. Records 163

Number of occurrences item

Environment

Compatibility considerations

IMS BMP

If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

For files associated with IMS message queues, the considerations for
IMS/VS apply to IMS BMP.

Otherwise, the considerations for MVS/TSO apply to IMS BMP.

CICS for
VSE/ESA

VSE supports variable length sequential files. Variable-length
records in VSE non-VSAM sequential (SAM) files have an eight-byte
header. The first four bytes are the block length descriptor (BL) and
the next four bytes are the record length (RL) descriptor. The value
in BL includes the length of both BL plus RL. The value in RL
includes the length of RL. In both the BL and RL, bytes 0 through 1
are the length in binary format. Bytes 2 through 3 are reserved. This
is true for both variable length blocked and unblocked records.
Variable unblocked records have a blocking factor of one.

VSE batch

Same as CICS for VSE/ESA.

CICS for OS/2

Variable-length records are supported with CICS-managed files
(generation file type VSAM), and COBOL-managed files (file type
OS2COBOL). Variable-length records are not supported for
temporary storage queues and transient data queues. Use with
message queue records is not supported.

0S5/400

Not supported.

Windows-OS/2
Smalltalk (GUI)

A program can be considered to be a part to a GUI program.
Therefore, the program or features of the program can be connected
in a GUI program.

Windows Java

Same as Windows-OS/2 Smalltalk (GUI).

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX

Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Windows NT None.

(C++)

Windows NT None.

(Java)

CICS for Same as CICS for AIX.
Windows NT

Solaris None.

164 VisualAge Generator: Programmer’s Reference

Number of occurrences item

Environment Compatibility considerations

CICS for Solaris ~ Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Test Facility None.

Organization

Uses

Organization describes how the file or database in which the record resides is
organized. The organization determines which I/O options can be used to
access the record in the program.

The following are the types of organization supported:
¢ DL/I segment

* Indexed

* Message queue

* Redefined

* Relative

* Serial

* SQL row

* Working storage

* User interface

Record specification options vary depending on the record organization you
specify.

Target environments for Organization

Support for an organization means that I/O operations can be performed for
the record in the environment.

Except for redefined records, all types of records can be included in GUI
programs.

All types of records can be used in any other type of program as temporary
storage data structures by specifying the record name in the called parameter
list or the table and additional records list.

Organization -

Uses

DL/I segment

DL/I segment organization indicates that the record is a segment in a DL/I
database.

The record name must be the same as the segment name in the DL/I
database.

Chapter 4. Records 165

Organization - DL/l segment

Target environments for DL/l segment

Environment Compatibility considerations
VM CMS Not supported.
VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 Not supported.
0OS/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) Not supported.
AIX Not supported.
HP-UX Not supported.
CICS for AIX Not supported.
Windows NT Not supported.
(C++)

Windows NT Not supported
(Java)

CICS for Not supported.
Windows NT

Solaris Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

Organization - Indexed

Indexed organization indicates that the records are in a file and are accessed
by a key.

166 VisualAge Generator: Programmer’s Reference

Organization - Indexed

Uses
The record key is specified in the record ID item.

Target environments for Indexed

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS Not supported.
IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 None.

0OS/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Chapter 4. Records 167

Organization - Message queue

Organization - Message queue

A message queue record represents a message on an MQSeries message
queue. Message attributes include instructions for processing the message.
I/0 operations on message queues are like I/O operations on serial files.
Only the ADD, SCAN and CLOSE 1/0 options are supported for message
queue records.

Message queue record definitions include the following message queue record
attributes:

Include message in transaction
Includes the message as a recoverable resource in the program’s unit
of work.

Open queue for exclusive use on input
Opens the message queue for exclusive use on input. If this attribute
is not specified, the queue is opened for shared use.

The following message queue record attributes specify records used as
parameters on MQ API calls. If a record is not specified for an attribute, a
default record is built based on the attributes specified for the message queue
record.

Queue descriptor record
MQ Object Descriptor, MQOD, record.

MQOD is used as a parameter on MQSeries MQOPEN and
MQCLOSE calls to functions that open and close queues.

Open options record
MQ Open Options, MQOO, record.
MQOQO is used as a parameter on MQSeries MQOPEN and
MQCLOSE calls to functions that open and close queues.

Message descriptor record
MQ Message Descriptor, MOMD, record.

MQMD is used as a parameter on MQSeries MQGET and MQPUT
calls to functions that implement the ADD and SCAN 1/0O options for
message queue records.

Get options record
MQ Get Message Options, MQGMO, record.

MQGMO is used as a parameter on the MQSeries MQGET call to the
function that implements the SCAN I/O option for a message queue
record.

Put options record
MQ Put Message Options, MQPMO, record.

168 VisualAge Generator: Programmer’s Reference

Organization - Message queue

MQPMO is used as a parameter on the MQSeries MQPUT call to the
function that implements the ADD I/0O option for a message queue
record.

Message queue record definitions also include the following record attributes:
¢ File name

* Alternate specification

* Record length item

* Occurrences item

Definition considerations for Message queue

A message queue record can be defined as a unit of related data items (data
structure), similar to the definition of other record organizations. One or more
single, unrelated data items can be defined for use in the message queue
record instead of, or in addition to, the data structure.

Message queue records provide the following:
* Data items to temporarily hold message data

* Data items to be passed as arguments to another program

Target environments for Message queue

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 Not supported.
0S/400 None.

Windows-OS/2 None.
Smalltalk (GUI)

Windows Java None.
(GUI)

0S/2 (C++) None.

Chapter 4. Records 169

Organization - Message queue

Environment Compatibility considerations
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Organization - Redefined

A redefined record is an alternate data item structure for an existing record.

Uses

The alternate data structure enables you to access the data in a record using
different data item names and definitions.

You cannot use redefined records as 1/O objects, but you can use them in
statements and as passed parameters.

To use a redefined record, you must specify the name of the record in the
Tables and Additional Record List during program definition. The record that
it redefines must also be referenced in the program as an I/O object,
additional record, or working storage record.

Target environments for Redefined

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

170 VisualAge Generator: Programmer’s Reference

Organization - Redefined

Environment Compatibility considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Organization -

Uses

Relative

Relative organization indicates that the file is an ordered set of fixed-length
records accessed by a relative number.

The relative number is found in the record ID item specified for the record.

For relative records, the record ID item does not need to be part of the record
structure. It can be an item in any map, record, or table used in the program.

Target environments for Relative

Environment

Compatibility considerations

VM CMS

None.

Chapter 4. Records

171

Organization - Relative

Environment Compatibility considerations
VM batch None.
CICS for When serial or relative files are associated with temporary storage
MVS/ESA queues, an additional byte is added to the front of the record. The
VisualAge Generator record definition should not include this byte.
However, non-VisualAge Generator programs sharing the same
temporary storage queue must allocate space for the byte and
maintain its value.
A zero (0) in the additional byte means the record logically exists in
the file. A one (1) in the additional byte means it has been deleted.
The record length for a deleted record should be 1. Functions
operating on temporary storage queues have the following actions:
* An ADD function sets this byte to "0".
* A DELETE function sets this byte to "1” and sets the record length
to 1.
* An INQUIRY function for a record with a value of ‘1" in the
additional byte causes the NRF record state to be set.
* A REPLACE function sets this byte to "0".
* A SCAN function skips records with a byte value of 1" in the first
byte space.
* An UPDATE function for a record with a byte value of '1” in the
additional byte causes the NRF record state to be set.
MVS/TSO None.
MVS batch None.
IMS/VS Not supported.
IMS BMP None.
CICS for Same as CICS for MVS/ESA.
VSE/ESA
VSE batch None.
CICS for OS/2 Same as CICS for MVS/ESA.
OS/400 Not supported.
Windows-OS/2 None.
Smalltalk (GUI)
Windows Java None.
(GUI)
0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX

Same as CICS for MVS/ESA.

172 VisualAge Generator: Programmer’s Reference

Organization - Relative

Environment

Compatibility considerations

Windows NT
(C++)

None.

Windows NT
(Java)

Not supported.

CICS for
Windows NT

Same as CICS for MVS/ESA.

Solaris

None.

CICS for Solaris

Same as CICS for MVS/ESA.

Test Facility

None.

Organization - Serial

Serial organization indicates that the records are stored in the file in sequential

order.

Uses

References to the records start at the beginning and go consecutively to the

end of the file.

With serial files, you can only use the ADD, SCAN, or CLOSE function

options.

Target environments for Serial

Environment Compatibility considerations

VM CMS None.

VM batch None.

CICS for When serial or relative files are associated with temporary storage
MVS/ESA queues, an additional byte is added to the front of the record. The

VisualAge Generator record definition should not include this byte.

However, non-VisualAge Generator programs sharing the same
temporary storage queue must allocate space for the byte and
maintain its value.

A zero (0) in the additional byte means the record logically exists in
the file. A one (1) in the additional byte means it has been deleted.
The record length for a deleted record should be 1. Functions
operating on temporary storage queues have the following actions:

* An ADD function sets this byte to "0".

* A SCAN function skips records with a byte value of 1" in the first
byte space.

Chapter 4. Records 173

Organization - Serial

Environment Compatibility considerations

MVS/TSO None.

MVS batch None.

IMS/VS Transaction programs cannot use a serial file for input. Batch
programs can only use one serial file for input.

IMS BMP None.

CICS for Same as CICS for MVS/ESA.

VSE/ESA

VSE batch None.

CICS for OS/2 Same as CICS for MVS/ESA.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX Same as CICS for MVS/ESA.

Windows NT None.

(C++)

Windows NT None.

(Java)

CICS for Same as CICS for MVS/ESA.
Windows NT

Solaris None.

CICS for Solaris Same as CICS for MVS/ESA.

Test Facility None.

Organization - SQL row

SQL row organization indicates that the record represents a row in a table in a
relational database.

Target environments for SQL row

Environment Compatibility considerations

VM CMS None.

174 VisualAge Generator: Programmer’s Reference

Organization - SQL row

Environment Compatibility considerations
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Organization - User interface

A User Interface (UI) record is a special type of record you can use in Web
transaction programs. Ul records are generated into HTML pages. Data items,
tables and literals in a Ul record are generated into HTML parts included in
the page.

Chapter 4. Records 175

Organization - User interface

These records specify how data is defined and processed but not how it is
displayed. User Interface Records (UI records) can be the object of
CONVERSE and XFER with UI record. This programming model separates
the concerns of the business logic developer from the user interface developer.
The outputs of Ul record generation are a Java bean, which encapsulates all
the defined processing of the business data and a Java Server Page, which
accesses this bean. These outputs are deployed on the web server and the Java
Server Page. An HTML expert can then complete the user interface without
having to consider how the runtime data populates the page.

Definition considerations for User interface

Data items for this type of record can be laid out freely as in a Working
Storage Record with the addition of User Interface related record attributes
and record item attributes. For information on defining Ul record data item
edits, see ML record data item edits” on page 254. For information on defining

data item UI types, see ['Data item 1II type” on page 241. UI Record attributes

are:

Ul title
Default title for the UI record

Submit value item
Name of the data item in the Ul record that will receive a value as
defined by any of the items that have a UlType of Submit or Submit
Bypass. Because HTML pages provide no predefined way to capture
the values of function keys pressed by end users (no EZEAID
equivalent), this item along with the Submit and Submit Bypass items
are used to provide this function. Submit and Submit Bypass items set
up all the possible values available to the end user and the Submit
Value Item receives the value of the key selected by the end user.
Define this item if the values to be checked in the Web Transaction
program must be more descriptive than ‘PF1’, "Enter’, and the like. If
you do not specify a value, the default behavior is to check PF values
and use EZEAID. In this case, the values for the Submit and Submit
Bypass items must be strings like 'PF1” as outlined in the following
list.

The submit value item must be defined in the UI record’s data item
list with a Char, Mixed, DBCS, or Unicode data type. This item may
be an array item. An array item is an item defined with an occurs
value greater than one.

The submit value item must not be an occurrences or selected index
item defined for a data item in the UI record’s data item list.

By default, the Submit value item field is blank and EZEAID is the
defined submit value item. Only the following string values are valid
with the default definition:

176 VisualAge Generator: Programmer’s Reference

Organization - User interface

» 'PF1’ - 'PF24’

* 'PA1’ - 'PA3’

* 'ENTER’

"ENTER’ is used if the specified value is not valid.

Input edit order
Input edits are processed at run time according to the input edit order.

The default input edit order is set as input items are created in the Ul
record, from the top of the record to the bottom of the record. You can
change the input edit order.

Help text
Default help text for the entire UI Record.

Ul record default HTML generation
The generation of default HTML both during ITF execution and JavaServer

Pages (JSP) generation is defined through a combination of Ul record data
item attributes (type, length, occurs, and so on), substructuring, UI'Type,
UlType Properties and Edits. [Cable 1d and the sections which follow describe
how these elements are combined for creating different HTML elements and
default layout. For most elements, if the item is occurred it simply means
repeat the element for as many occurs as there are. However, for some
combinations an occurred item will cause different HTML elements to be
generated.

[Cable 1d gives a basic description of how different HTML elements are related
to the Ul record item definition.

Table 10. HTML elements and Ul record item definition

HTML Item UI type
element(s) attributes Occurs UI type properties Edits Notes
Text Input N/A 1 Input, N/A N/A N/A
Input/Output
Checkbox CHA, 1 Input, N/A Boolean value =Y’ or
Numeric Input/Output ‘N’ for CHA
value =0 or 1
for Numeric
TextArea CHA, MIX, 1 Input, N/A N/A N/A
Length>80 Input/Output
Plain Text N/A 1 Output N/A N/A N/A

Chapter 4. Records 177

Organization - User interface

Table 10. HTML elements and Ul record item definition (continued)

HTML Item UI type

element(s) attributes UI type properties Edits Notes

Plain Text N/A Output Selected N/A Each array

Paragraph Index Item element will be
is NOT a separate line
defined. in the

paragraph.

Submit CHA, MIX 1 Submit, N/A N/A Buttons only

Button Submit show if there

Bypass are values in
the item.
Default values
can be set in
UlType
Properties.

HyperText N/A Program Link N/A Parameters

Link Link properties defined in the
define Link Properties
what will are defined as
be used for query
the HREF parameters on
attribute of the URL
the <A> generated for
HTML the HREF
element. attribute of the

<A> HTML
element.

Form N/A Form Link N/A Parameters
properties defined in the
define Link Properties
what will are defined as
be used for Hidden Input
the fields within
ACTION the <FORM>
attribute of HTML
the element.
<FORM>
HTML
element.

178 VisualAge Generator: Programmer’s Reference

Organization - User interface

Table 10. HTML elements and Ul record item definition (continued)

HTML Item UI type
element(s) attributes Occurs UI type properties Edits Notes
Drop N/A 1 Input, No Match The data of
Down List Input/Outpelected Valid this list is
Index Item Edit constant based
defined Table on the data in
the table. The
selected value
will be
contained in
the item that
references the
Edit Table.
Drop N/A >1 Output Selected N/A The list is
Down List Index Item composed of
is defined. the data

contained in
the item at run
time. The
actual index of
the item
selected is set
into the
defined
Selected Index
Item. If the
index item is
occurred the
list will be
multiple select.

Chapter 4. Records 179

Organization - User interface

Table 10. HTML elements and Ul record item definition (continued)

HTML Item UI type

element(s) attributes Occurs Ul type properties Edits Notes

Table N/A >1 Output Selected N/A Substructed
Index Item items at the
can be next level
optionally define the
defined columns. The

labels of these
items will be
the column
headers. These
items can be
further
substructured
to give
structure to the
cells of the
column. If a
Selected Index
Item is defined
the first
column of the
table will
contain radio
buttons or
checkboxes for
handling single
or multiple
select
respectively.

Selected Index Item: This item must be a numeric item. If it is occurred, the
list will be a multiple select list. The number of occurrences of the Selected
Index Item must be the same as the item referencing it in this case.

In the case where the list item is substructured under an item of
UlType=Form, the selected index item is of little value. This is because a Form
defines the invocation of an independent program. This means that one
cannot index into an existing set of data because the program is invoked anew
each time and this set of data does not exist. This is unlike returning back
from a CONVERSE in which the existing set of data still exists and can
readily be indexed using the Selected Index Item values.

Occurrences item: The value in this referenced item determines how many

occurrences should show in the list. If no item is referenced, then all elements
in the array will show.

180 VisualAge Generator: Programmer’s Reference

Organization - User interface

Labels: In most cases, the label defined for an item is displayed in bold next
to or above the appropriate HTML element. However, there are some special
cases to note:

For an occurred item (either explicitly defined or implicitly as result of
parent item being occurred) one can define a single label for all occurrences
or a label for each occurrence. Each line of the label definition is a separate
label. Define one label to have the same label for all occurrences. To have a
separate label for each occurrence, define as many labels (one on each line)
as there are occurrences.

If no label is defined for a Program Link, Submit, or Submit Bypass item,
the data of the item itself is used as the label.

HTML element layout: The following areas of HTML element layout can be
controlled by the UI record developer:

In general, HTML elements will show up in the order that the items have
been defined in the Ul record. There are a few exceptions:

— Submit/Submit Bypass items that are NOT substructured will show up
across the bottom of the page no matter where they are defined relative
to the other items.

— In HTML, Forms cannot contain Forms. Because the Ul Record itself
implicitly defines a Form, items with UlType=Form cannot be
interspersed with items that are meant to be in the default form. To
handle this situation, the default generation will place the Form elements
after all the other elements regardless of where they were defined in the
record.

In general, items at the top structure level create line breaks between their
generated HTML elements. However, if an item is substructured the sub
item HTML elements will flow from left to right without line breaks. The
exception to this rule are items with UlType=Form. Basically the flow rule
described above starts over with items substructured under a Form item.
The highest level items under a Form item will create line breaks between
themselves. To get items to flow from left to right, substructure them
further under another item. Note: if the only purpose of the super item is
for layout purposes use a filler item. An item named * is a filler item.

Target environments for User interface

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for Valid only for Web transaction programs.
MVS/ESA

MVS/TSO Not supported.

Chapter 4. Records 181

Organization - User interface

Environment Compatibility considerations

MVS batch Not supported.

IMS/VS Valid only for Web transaction programs.
IMS BMP Not supported.

CICS for Valid only for Web transaction programs.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java ~ Not supported.

(GUI)

0OS/2 (C++) Valid only for Web transaction programs.
AIX Valid only for Web transaction programs.
HP-UX Valid only for Web transaction programs.

CICS for AIX Valid only for Web transaction programs.

Windows NT Valid only for Web transaction programs.

(C++)

Windows NT Valid only for Web transaction programs.
(Java)

CICS for Valid only for Web transaction programs.
Windows NT

Solaris Valid only for Web transaction programs.

CICS for Solaris ~ Valid only for Web transaction programs.

Test Facility Valid only for Web transaction programs.

Organization - Working storage
Working storage records define storage areas for temporary data items that
are used in programs.
Uses

The data item values are not saved when the program has finished running
unless the data items have been moved to a record and placed in a file.

Definition considerations for Working storage

A working storage record can be defined as a unit of related data items (data
structure), similar to the definition of other record organizations. One or more

182 VisualAge Generator: Programmer’s Reference

Organization - Working storage

single, unrelated data items can be defined for use in the working storage
record instead of, or in addition to, the data structure.

If an input message to a main transaction consists of only the transaction
name followed by blanks, the program assumes it is being started with no
working storage record being passed.

Working storage records provide the following:

* Data items to temporarily hold data, such as the date or intermediate
results of calculations

¢ Data items to be passed as arguments to another program

Level-77 data items
Single data items are referred to as level-77 data items. These data items are

defined with a level of 77 after all data items in the working storage structure
have been defined.

Level-77 data items are initialized to blanks, or to numeric or binary zeros,
depending on the defined data type.

Level-77 items are included in a program only if the working storage record is
specified as the primary working storage record in the program specification.

If a working storage record is passed as a parameter to another program, only
the structure is passed. Any level-77 data items you want to pass must be
specified as separate arguments on the CALL statement.

Generation Considerations for Working storage

The primary working storage record identified in the program specification is
always initialized. If the /INITADDWS generation option is specified,
working storage records included in the Table and Additional Record List are
initialized based on the type of data (blanks for character, DBCS, Unicode, and
mixed data, and zero for numeric data).

Target environments for Working storage

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

Chapter 4. Records 183

Organization - Working storage

Environment Compatibility considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Working storage records are included in a GUI program by
specifying the working storage record name as the name of a record
part dropped on the GUI definition. Level-77 items are included
with each record.

Windows Java
(GUI)

Same as Windows-OS/2 Smalltalk (GUI).

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Prologue

Uses

A prologue is a text description of the record.

The use of the prologue is optional. The prologue area is used for
documentation purposes only. It is for commentary and does not affect the
program at run time.

Target environments for Prologue
Supported in all environments without compatibility considerations.

184 VisualAge Generator: Programmer’s Reference

Record

Record

A record or multiple records are individually accessible units of storage in a
file or database.

Uses

Records can also be used as temporary working storage when a program
runs. A record definition consists of the following;:

* A specific record organization

The record organization indicates both the structure of the file or database
containing the collection of records and how to gain access to the record.
You can choose from the following types of organization:

- DL/I segment

— Indexed

— Redefined

— Relative

— Serial

— SQL row

— User interface

- Working storage

e A list of data items

Target environments for Record
Supported in all environments without compatibility considerations.

Record ID item

Record ID item is the name of the data item that contains the record key for
an indexed file, or the relative record number for a relative file.

Definition considerations for Record ID item

Indexed records
For an indexed file, the record ID item must be defined in the Data
items list for the record.

The record ID item should have the same length and record offset as
the key in the records in the physical file.

Relative records
The record ID item does not have to be specified in the Data items list
as part of the record structure for a relative record.

The item should be defined as follows:

Data type
Numeric (Num), packed (Pack), or binary (Bin)

Chapter 4. Records 185

Record ID item

Decimal places
0

Maximum length
9

If you have not defined the record ID item anywhere in your program
and implicits are allowed for the program, test and generation defines
a 2-byte binary implicit data item.

When a relative record file is accessed while the program is running,
the record ID item must contain a number that indicates the record
position in the file relative to the beginning of the file.

Target environments for Record ID item

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.
(C++)

186 VisualAge Generator: Programmer’s Reference

Record ID item

Environment Compatibility considerations
Windows NT None.
(Java)
CICS for None.
Windows NT
Solaris None.
CICS for Solaris None.
Test Facility None.
Record length item

Uses

Record length item specifies the data item that contains the length of a
variable-length serial, indexed or message queue record.

When a variable-length record is read from the file, the length is stored in the
record length item. When a record is written to the file, the length is obtained
from the record length item. The data item specified as the Record length item
does not have to be defined in the record definition itself.

The data item characteristics of the record length item must be one of the
following:

* Have a data type of numeric (Num), binary (Bin), or packed, (Pack)

* Have a maximum length of 9 digits

 Contain no decimal places

Definition considerations for Record length item

If the record length item is not defined anywhere in the program and
implicits are allowed in the program, the record length item is defined
implicitly as a 2-byte binary field.

The maximum length for a variable-length record is the record length
calculated from the data item definition for the record. When a variable-length
record with a record length item is written to the file, the value in the record
length item must be less than or equal to the maximum record length.

For message queue records, the message length is set equal to the value in the
record length item when a program adds the record to a message queue.
When the program reads a message from the queue, the message length is
returned in the record length item. If the record contains both a record length
item and occurrences item, the record length item is set to the length
calculated from the number of occurrences before a message is added to the
queue.

Chapter 4. Records 187

Record length item
The record length item must not be specified for fixed-length records.

If the records in a file are variable-length, the record specification must
include a record length item, a number of occurrences item, or both.

If you have both a record length item and a number of occurrences item, the
record length is calculated using the number of occurrences item each time
the record is written to the file. The calculated length is moved to the record
length item before writing the record.

Test and runtime use the record length only when reading records from the
file or writing records to the file.

Program statements can reference all the items in the entire record regardless
of the values of the record length item and number of occurrences item.

For Elatform specific record lengths, see 'Maximum record lengths” od

Target environments for Record length item

Environment Compatibility considerations

VM CMS Variable-length records are supported in VSAM files and VM
sequential files.

Variable-length records in VM non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to a VM
non-VSAM sequential file with variable record format and removed
when the record is read.

VM batch Same as VM CMS.

CICS for Variable-length records are not supported for temporary storage
MVS/ESA queues and transient data queues.

MVS/TSO Variable-length records are supported in VSAM files and MVS

sequential files.

Variable-length records in MVS non-VSAM sequential files have a
4-byte header (2-byte length field and 2-byte filler field). The data
item definition for the record should not include the header. The
4-byte variable length header is added when writing to an MVS
non-VSAM sequential file with variable record format and removed
when the record is read.

188 VisualAge Generator: Programmer’s Reference

Record length item

Environment

Compatibility considerations

MVS batch

If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

Otherwise, the considerations for MVS/TSO apply to MVS batch.

IMS/VS

Record length item is only supported for serial files associated with
IMS message queues. The IMS message header (length, ZZ field,
and transaction code) is removed from records read from a queue
and added to records written to the queue. The data item definition
for the record should not include the header.

IMS BMP

If the file is a GSAM file, the 2-byte leading length field is removed
from records read from the file and added to records written to the
file. The data item definition for the record should not include the
header.

For files associated with IMS message queues the same
considerations for IMS/VS apply to IMS BMP.

Otherwise, the considerations for MVS/TSO apply to IMS BMP.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

VSE batch

Same as CICS for MVS/ESA.

CICS for OS/2

Variable-length records are supported with CICS-managed files
(generation file type VSAM), and COBOL-managed files (file type
OS2COBOL). Variable-length records are not supported for
temporary storage queues and transient data queues. Use with
message queue records is not supported.

0S/400

Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX

Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Windows NT None.
(C++)
Windows NT None.
(Java)

Chapter 4. Records 189

Record length item

Environment Compatibility considerations
CICS for Same as CICS for AIX.
Windows NT

Solaris None.

CICS for Solaris Variable length records are supported for CICS-managed files with
file type VSAM in the resource association file.

Test Facility None.

Record name

Uses

The record name identifies a record part.

See Apnendix B Naming 0
for record naming conventions.

Target environments for Record name

Supported in all environments without compatibility considerations.

Record data structure

Uses

Record data structure, called a record data item definition, specifies a data
structure that describes the format or field layout of data items within a
record.

The structure definition is specified as a list of data items. The following
elements can be specified for each data item in the list:
* BYTES

* DEC (decimal positions)

* DESCRIPTION

* LENGTH

* LEVEL

* NAME

* OCCURS

* TYPE

* USAGE

These data items are discussed in I'Data item” on page 213.

Target environments for Record data structure

See the individual data item discussions in ['Data item” on page 215.

190 VisualAge Generator: Programmer’s Reference

Redefinition for

Redefinition for

Uses

Target environments for Redefinition for

The redefinition for element identifies the name of the record that is being

redefined when record organization is specified as redefined record.

You cannot use redefined records as I/O objects, but you can use them in
statements and as passed parameters.

To use a redefined record, you must specify the name of the record in the

Table and Additional Record List during program definition.

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

Chapter 4. Records

191

Redefinition for

Environment Compatibility considerations
CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

SQL row record data structure

SQL row record data structure defines a set of data items that represent
columns in the SQL tables represented by the SQL row.

Uses

The structure definition is specified as a list of data items. The following
elements can be specified for each data item in the list:
* BYTES

* DEC (decimal positions)

» DESCRIPTION

+ KEY

* LENGTH

* NAME

* READ-ONLY

* SQL COLUMN NAME

* SQL DATA CODE

* TYPE

* USAGE

These data items are discussed in [‘Data item” on page 21 q.

Target environments for SQL row record data structure
See the individual data item discussions in {Data item” on page 215

SQL table names
SQL table names is the set of relational tables that an SQL row record
represents.

Uses

Two elements are specified for each table: table name and table label. The data
that you enter for the table name and table label must meet SQL naming
conventions. SQL names are not validated.

192 vVisualAge Generator: Programmer’s Reference

SQL table names

SQL Table Name
SQL table name is the name of a table or view as it is known by the database

manager. The name can be in any format that is accepted by the database
manager. You can qualify the name with an owner or authorization identifier
and a remote database location, or you can specify a synonym for a table
name instead of the table name itself. The table name can be specified directly
(as a literal) or indirectly (as a host variable). If you use host variable format,
the program must move the table or view name to the variable at run time.

Literal (direct): The value of table name must meet SQL naming conventions.
VisualAge Generator does not validate SQL names.

The name is left-justified and padded with blanks and is not changed to
uppercase. The name is inserted in SQL statements and passed to the database
manager exactly as it is entered.

Host variable (indirect): When using host variable format, the table name is
a data item name preceded by the SQL host variable indicator. The program
must move the SQL table name to the data item at run time. The SQL table
names in host variable format can be as follows:

* The SQL host variable indicator is defined in the environment variable
EZERSQLHOST. The default character can be changed by your system
administrator using the customization procedures for language-dependent
options. You can also change the default character by using the
EZERSQLHOST environment variable.

Note: For VisualAge Generator Developer, all support for EZER*
environment variables have been removed. The SQL host variable
indicator is specified on the VAGen-SQL tab in the VisualAge
Preferences dialog. Some of these environment variables are still
supported by VisualAge Generator Server.

* A valid data item name preceded by a question mark (?) if you want to
specify a table name in SQL host variable format in the external source
format file.

e The data item must define a CHA or MIXED data item.

¢ The data item name can be qualified, subscripted, or both. The subscript
can be a numeric data item or a literal. The table name has a maximum
length of 60 characters, including the SQL host variable indicator.

At run time, the program must move the actual table name into the host
variable before the SQL record is accessed. The SQL statements for functions
that gain access to the record as an I/O object are prepared and executed
dynamically when the program runs. The current contents of the data item for
the host variable are substituted wherever it appears in the SQL statement.

Chapter 4. Records 193

SQL table names

The value moved into the table name host variable must meet SQL naming
conventions. The generated program does not validate the value.

SQL table label
SQL table label is a shortened version of the table name. You can enter a label

up to 4 characters long. The label is used as a qualifier to uniquely identify
column names in SQL row definitions and SQL statements when the SQL row
record represents two or more tables joined together.

If you do not specify the label, record specification automatically generates
one for you.

Table Joins
If there is more than one table specified, the record represents a join of the

tables in the list. When a record represents a join, use the Default Selection
Conditions element to specify default join conditions to limit the number of
rows produced when the tables are joined. SQL rows that represent joins
cannot be used with I/O options that modify the database (UPDATE,
SETUPD, REPLACE, DELETE, and ADD).

Target environments for SQL table names

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None.
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java ~ Not supported.

(GUI)
0S/2 (C++) None.
AIX None.

194 VisualAge Generator: Programmer’s Reference

SQL table names

Environment Compatibility considerations
HP-UX None.
CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Variable length item (DL/I)

Uses

Variable length item is the name of a data item in a DL/I segment that
contains the length of the rest of the segment, including the length field.

The name must be specified if the segment has variable length. The item must
be a 2-byte binary item and have the same length and offset as the length
field in the segment in the DL/I database description.

If the segment has fixed length, the variable-length item field must be left
blank.

The variable-length item will usually be the first item in the segment. The
only time the variable-length item is not first is when a concatenated segment
in a logical database is built from a fixed-length segment followed by a
variable-length segment.

Target environments for variable length item (DL/I)

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

Chapter 4. Records 195

Variable length item (DL/I)

Environment Compatibility considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 Not supported.

0S/400 Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++)

Not supported.

AIX

Not supported.

HP-UX

Not supported.

CICS for AIX

Not supported.

Windows NT
(C++)

Not supported.

Windows NT
(Java)

Not supported

CICS for
Windows NT

Not supported.

Solaris

Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

196 VisualAge Generator: Programmer’s Reference

Chapter 5. Tables

A table part is an array of predefined data values that can be used for the
following;:

 Editing data that is entered on a map by a user of the program (edit table
types)

 Storing messages that the program issues (message table type)

* Storing information for reference by a program when it runs (all table
types)

Tables are included in a program by specifying the table name as the program
message table, in the table and additional records list for the program, or as
the name of a table part included in a GUI definition. The table that a
program uses for its message table must be identified in the message table
prefix for the program.

Table elements

Table 11. Table elements

5
— +
/m -] + g
o Q0 @) =
@]
=)
7 o
Element g ’5 o
Z | M=
PN o =l ol (T2 zlz| gz |2
(%) el 8 8 = E S L'-) wn | » 8 ol o Ol » E
= % O m| » = 8| O 2 |2 = 2| 2 2| g
Ol & B S| m| O m gle | X| O| &| | .2| 2| |&
nlAB| »nl S gl F|T B o) T T H| H|T
D V| 1 H X S8 | S| x| % T x| g 8] 8 S| | =
2 E > > > 2 E Nl | N| D= |- (75) (] = = = o '_O‘ '_o'-—(%
— »n| wn
> > 2|2 = > > O| O |[Z| O <| T| < 2| = 2 =
olumn X | x| x|[x| x| x| x| x| x| x|x|x|x|x|x|x|x]|x|x|x]x]|x]|x
Col
definition
Contents X | x| x[x| x| x| x|x|x|]c|x|x|x|x|x|x|c|[x]|x]|x]|c|x]x
definition
Prologue X | x| x[x| x| x| x| x| x| x|x|x|x|x|x|x|x]|x|x|x]x]|x]|x
Resident c|lc|clclc|c|c|leclec|lc|lcec|x|x|c|]c|]c|lc|lc|c|clcacl|c]|x
Shared clc|lc|lc|lec|lclc|c|lc|lclx]|cl|i|lc|lc]lc|lc|lclc|c|c]|x]c
Tablename | x | X | X | x| x| x| x [x| x| x| x| x|x| x| x| x| x|x|x|x]x]|x]|x
Tabletype | x | X | x [x| x [X | x| x|X|[x|c|c|c|x|X|x|X|x]|X|x]|x]|Xx]|c

© Copyright TBM Corp. 1980, 2000 197

Table 11. Table elements (continued)

o
/M) I 8
8 O o =
= n
o O
Element g E o
= =
o |5 2wl |92 z| z| |8z |2
wl 5 UlOo| & r\—‘auU % DN w| » Um"_':
= 5| O|2 & »| 2| B| 2| 5| o|2 |2 S £ (T
Ul B L | B Yl SIEREE x| O| 8| 8| g 2l |=
nl Al nl X a F(T T o) T| TB| B =T
gg>>>§§gaaaa.saﬁiﬁ.s.sgg.sg
> > 22| 2| & & > > OO |Z| 0| <| B| <| | Z| & #|F |F
Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.
Legend: In this table, the following characters are used to indicate the level of support:
X Supported
c Supported with compatibility considerations
blank Not supported

Column definition

A table column definition specifies a data structure that describes the format
of each row in a generator data table as opposed to a relational database table.

Uses

The column definition is specified as a list of data items. The following item
elements can be specified for each data item in the list:

* BYTES

* DEC (decimal positions)

* DESCRIPTION

* LENGTH

* LEVEL

* NAME

* TYPE

* USAGE

These data items are discussed in ‘Data item” on page 21 q.

Target environments for Column definition
Supported in all environments without compatibility considerations.

Contents definition

A table contents definition defines the contents of the data values stored in
the table.

198 VisualAge Generator: Programmer’s Reference

Contents definition

Uses

The contents are specified in a list. Each row in the list represents one row in
the table. Each row is formatted as specified in the table column definition.

For tables, the comparison is always done from the first row in the table
through the last row in the table. For better performance, values that occur
most frequently should be put first in the table.

Table contents are converted to the format of the runtime environment when
the table is generated for an environment.

Target environments for Contents definition
Supported in all environments without compatibility considerations.

Prologue
The prologue area is used for documentation purposes only.

Uses

The use of a prologue is optional; it is commentary only and does not affect
program execution.

Target environments for Prologue
Supported in all environments without compatibility considerations.

Resident
Resident keeps the shared table in storage after its use count is set to zero.

Uses

A use count is kept for shared tables accessed by programs. If Resident is
specified, the table contents are not removed from memory when the use
count is set to zero.

Note: You can only specify Resident for tables that are shared.

Definition considerations for Resident

The time it takes to delete the table contents depends on the target runtime
environment.

The Keep after use attribute determines when the use count is incremented
and decremented for a specific program.

Chapter 5. Tables 199

Resident

Target environments for Resident

Environment Compatibility Considerations

VM CMS Resident table contents are removed from storage when any of the
following occurs:
* The main program ends
* The main program performs an XFER
* The main program performs a DXFR to a non-VisualAge

Generator program

* A called program returns to a non-VisualAge Generator program.

VM batch Same as VM CMS.

CICS for Do not use the RES keyword on the CICS PPT entry for the table

MVS/ESA program if you use the resident attribute.
Resident table contents are deleted only when the CICS region
comes down or when the VisualAge Generator Server for MVS,
VSE, and VM new copy utility is used to delete the table.
When new copy is used, transactions that are already active and
have the table loaded continue to use the old copy of the table until
the table use count is set to zero for the transaction. The old copy is
deleted when no more programs are using the copy.

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Resident table contents are deleted when any of the following
occurs:
* A main batch program ends
* A called program returns to a non-VisualAge Generator program
* A main transaction program finishes processing all messages in

the input message queue

IMS BMP Same as VM CMS.

CICS for Same as CICS for MVS/ESA.

VSE/ESA

VSE batch Same as VM CMS.

CICS for OS/2 Same as CICS for MVS/ESA.

0S/400 Same as VM CMS.

Windows-OS/2 None.

Smalltalk (GUI)

Windows Java None.

(GUI)

0S/2 (C++)

Resident table contents are deleted when the run unit ends.

AIX

Same as OS/2 (C++).

HP-UX

Same as OS/2 (C++).

200 VisualAge Generator: Programmer’s Reference

Resident

Environment

Compatibility Considerations

CICS for AIX

Same as OS/2 (C++).

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Same as OS/2 (C++).

CICS for
Windows NT

Same as OS/2 (C++).

Solaris

Same as OS/2 (C++).

CICS for Solaris

Same as OS/2 (C++).

Test Facility

None.

Shared

Shared specifies whether all users of a table share a single copy of the table.

Uses

If you do not specify Shared, each program user has a unique copy of the

table.

Note: You can only specify Resident for tables that are shared.

Target environments for Shared

Environment

Compeatibility Considerations

VM CMS

Shared tables marked as resident remain loaded until any of the
following ends VisualAge Generator Server for MVS, VSE, and VM:
* Return to the system or the non-VisualAge Generator program

* XFER

* DXFR to non-VisualAge Generator program

Otherwise, the shared indicator is ignored. Each user has a separate
copy of the table.

VM batch

Same as VM CMS.

CICS for
MVS/ESA

If shared tables are modified, the modifications are effective for all
users of the table in the same CICS region until the table is
reloaded.

If the table being modified has synchronization considerations with
other transactions using the table, the modifications to the table
should not be made across a CALL statement or an I/O option.
Programs requiring synchronization across CALL statements or I/O
options should use an external serialization method.

Chapter 5. Tables 201

Shared

Environment Compatibility Considerations

MVS/TSO Same as VM CMS.

MVS batch Same as VM CMS.

IMS/VS Shared tables cannot be modified by the program.
IMS BMP Same as VM CMS.

CICS for Same as CICS for MVS/ESA.

VSE/ESA

VSE batch Same as VM CMS.

CICS for OS/2

If shared tables are modified, the modifications are effective for all
users of the table on the same CICS for OS/2 system until the table
is reloaded.

Updates to shared tables are not synchronized in CICS for OS/2.
Programs requiring synchronization for updates to shared tables
should use an external serialization method.

An example of an external serialization method would be to call an
external non-VisualAge Generator program to perform a CICS ENQ
function while the table is being updated.

0S/400

None.

Windows-OS/2
Smalltalk (GUI)

All GUIs running under the same IBM image in a single function
share the same copy of a shared table. If the table is not marked as
shared, each GUI has a separate copy of the table.

GUIs do not share tables with called programs.

Windows Java
(GUI)

Ignored.

0S/2 (C++) Shared tables cannot be updated.
AIX Shared tables cannot be updated.
HP-UX Shared tables cannot be updated.
CICS for AIX Shared tables cannot be updated.
Windows NT Shared tables cannot be updated.
(C++)

Windows NT None.

(Java)

CICS for Shared tables cannot be updated.
Windows NT

Solaris Shared tables cannot be updated.

CICS for Solaris

Shared tables cannot be updated.

202 VisualAge Generator: Programmer’s Reference

Shared

Environment Compatibility Considerations

Test Facility All GUIs running under the test facility share the same copy of a
shared table. If the table is not marked as shared, each GUI has a
separate copy of the table.

All other types of programs running under the test facility share the
same copy of a table, whether or not it is marked as shared.

Programs running under the test facility do not share tables with
generated programs that are called from the programs being tested.

Table name

The table name is the name of the table part.

Definition considerations for Table name
Naming conventions for tables:

Maximum length
7

First character
Alphabetic (A-Z)

Other characters
Alphanumeric (A-Z, 0-9)

DBCS name
No

* Table names cannot end with a 0 (zero)

* The table name must be unique within a CICS execution system and within
a target MVS load library

* To avoid potential conflicts with the program names generated for the map
groups, do not end the table name with FM or P1

¢ Table names cannot begin with the EZE prefix.

* Table names cannot contain embedded blanks.

* Table names cannot be COBOL reserved words.

Other rules apply for message tables. The format of the message table name is
xxxxyyy where xxxx is the message table prefix and yyy is a suffix that
identifies the national language. The format for the message table name prefix
follows.

* Maximum length: 4

* First character: alphabetic (A-Z)

* Other characters: alphanumeric (A-Z, 0-9)

The message table prefix is specified during program specification.

Chapter 5. Tables 203

Table name

A suffix is appended to the message table prefix to build the name of the user
message table. The VisualAge Generator Developer supports the following
suffixes for the national languages:

Code Language

CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German

ENP Uppercase English
ENU US English

ESP Spanish

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

Note: Uppercase English is not supported by AIX, OS/2, Windows NT,
HP-UX, SCO OpenServer, and Solaris.

Target environments for Table name
Supported in all environments without compatibility considerations.

Table type
Table type defines how the table is to be used.
Uses
You can specify the following table types:
Unspecified
Defines a table to store information to which a program refers when it
runs.

Statements can refer to a table with the Unspecified type.
You cannot use a table with the Unspecified type as an edit routine.

Match valid
Defines a table that requires the data entered by a program user to
match a value in the first column of the table.

A match valid table can be specified as a map variable field edit
routine. This type of table is useful for checking a set of valid entries
for a map field.

Match invalid
Defines a table that requires that the data entered by a program user
does not match any of the data in the first column of the table.

204 VisualAge Generator: Programmer’s Reference

Table type

A match invalid table can be specified as a map variable field edit
routine.

Range match valid
Defines a table that requires the data entered by a program user to be
between sets of values.

A range match valid table can be specified as a map variable field edit
routine. It must have at least two columns, with the first and second
columns showing the valid ranges.

When a map variable field has a range valid table specified as an edit
table, each time a value is entered in the field it is checked against
each row of the table to see if it is greater than or equal to the first
column, and less than or equal to the second column. If the range
check fails, the value is treated as not valid. If the range check passes,
the value is treated as valid.

Message
Defines a table to contain user messages for your program to use.

Message tables must have at least two columns, the first column
contains the message number and the second column contains the
message text.

Program messages are used to notify the user of errors detected in
validated input from maps. You identify which message is to be
displayed in response to an edit error by coding the program to move
a message number to EZEMNO or by specifying a message number as
the Edit Error Message Number.

When an error is detected, the text from the second column for the
selected error message is displayed in map field EZEMSG. The second
column can be defined to be longer than 78 characters, but if it is
longer than the field defined using the EZEMSG special function
word, the value will be truncated.

The message table columns must follow the following conventions:

The first two columns of a message table with the lowest level data
item must meet the following requirements:

Column 1
This data item is used for the message number.

Type Num

Length
4

Decimals
0

Chapter 5. Tables 205

Table type

Column 2

This data item is used for the message text.
Type Char or Mixed

Length
1 to 254 (78 is recommended)

Decimals
0

Target environments for Table type

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS None.

IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0OS/400 MESSAGE type tables may not be referenced in a statement. Only

access to MESSAGE tables is via EZEMNO or as a message number
reference for a map edit failure.

Windows-OS/2
Smalltalk (GUI)

Functions related to table type are not supported in GUIs. All tables
are treated as if the table type was unspecified.

Windows Java

Same as Windows-OS/2 Smalltalk (GUI).

(GUI)
0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)
Windows NT None.
(Java)

206 VisualAge Generator: Programmer’s Reference

Table type

Environment Compatibility Considerations
CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility Results can vary for range checks in different environments due to
differences in data formats in the environment.

Chapter 5. Tables 207

Table type

208 VisualAge Generator: Programmer’s Reference

Chapter 6. Items

An item is a data element. The item can be defined by itself as a separate
part, or within the context of a data structure definition.

Iltem elements

Table 12. Item elements

5
—
) = i 8
@] O @) K
@]
= 9]
@ =
Element g’e‘;‘ o
= | H 7 1=
0 P P M - JElE g |z
2} = g O w |» ol » w |=
S 2l 5l 2| & o 2|8 5B |58 Ol 2| 5| | Y213
= m| O] vl Y| g|ls |5 b o| o| 2| =2l |&
Q| m ~ Z [=] o o | e =]
DA D F oy wm om Q] FE IR Q = Bl Bl B BT |-
EE>>>EEU)U)U)U).-.~mﬁgﬁ.—._q'—o"—o‘.—8
> > 2| 2| 2| &l & >| »| O| Ol |[Z]| O <| T| €| 2| 2| & ®|Z |~
Dataitem | x | x| x| x| x| x| x| x|x|x]Xx X | x| x| x| x| x|x]|x]x]|x
bytes
Dataitem | x | x| x |x| x| x| x| x|x|x]x X | x| x| x| x| x|x]|x]x]|x
decimal
places
Dataitem | x| x| x| x| x| x| x| x|x|x]x X | x| x| x| x| x|x]|x]x]|x
description
Dataitem | x | x | X [X| X | X | X | x| x| x| X X | X | X[X | X | XxX|X]|X]|]X]|X
key (SQL
row record)
Dataitem | x | x | x [X| X | X | X | x| x| x| X X | X | X[X | X | x|X]|X]|]X]|X
length
Dataitem | x | x [X | x| x| x| x| x| x|c|x|c|c|]c|x|x|x|c|c|x|x]|x]|c
level
Dataitem | x | X | X | X | x| X | x| x| x| x| x|[x|x|x|x|x|x|x|x|x]x]|x]|x
name
Dataitem | x | x| x | x| x| x| x| x| x| x| x| x|[x|x|x|x|x]|x|x|x]|x]x]x
occurs

© Copyright TBM Corp. 1980, 2000 209

Table 12. Item elements (continued)

type -

Numc

o
+
) + IS
(@) O <
U f—
e 9]
7 S
Element g’.‘;‘ o
< = wn|H=
wl | = 2wl 92 z| z glz | &
=l Olo| & a9 * % [75) — o
2 = ol £ 9 » | » Ol g ¢ Ul»e |[=
= 5| O|2 & » 2| 2| = 0| o2 |2 Ol 2| 2 2|3
Ul | = >| | O] m gle |9 x| O] o o] .2 2o |Z
nlin | R N F T T =) T T =| =T
==l = & & 3| B B BE|E| | B & B & E 2 BE|E
EE EECD(DVJCD—'—‘(D._'Q,_‘-'-'OO.AU
> > 2| 2| 2| & &l >| > 0|0l |2| 0| <| T < 2| 2| B 0|2 |F
Dataitem | x | x| x| x| x| x| x| x|x|x]x X | x| x| x| x| x|x]|x]x|[x
read-only
(SQL row
record)
Dataitem | x | x | x | x| x| x| x| x| x|[x|Xx X | x| x| x| x| x|x]|x]x|[x
SQL
column
(SQL row
record)
Dataitem | x | x| x| x| x| x| x| x|x]|x]x X | x| x| x| x| x|x]|x]x|[x
SQL data
code (SQL
row record)
Dataitem | x | x| x |x| x| x| x| x|x|c|x|c|c|c|x|x|x]|]c|c|x|x]|x]c
type - Bin
Dataitem | c|c|c|c|c|c|c|c|c|c|c|clc|c|c|c|lc|]c|c|clc]c]c
type - Char
Dataitem | c|c|c|c|c|c|c|c|c|c|c|clc|lc|c|c|lc|]c|c|clc]|]c]ec
type -
DBCS
Dataitem | x | X | X | X | X | X | X | x| x| X | x| x|[x|x|xX|x|x|x|x|[x]x]|x]|Xx
type - Hex
Dataitem | c|c|c|c|c|c|c|c|c|c|c|lclc|c|c|c|lc|]c|c|lclc]|]c]ec
type -
Mixed
Dataitem | c|c|c|c|c|c|c|c|c|c|c|lclc|c|c|c|lc|]c|c|clc]c]ec
type - Num
Dataitem |c|c|c|c|c|c|c|c|c|c|c|c|c|lc|c|]c|c|c|c|]c|]c]|cl|c

210 VisualAge Generator: Programmer’s Reference

Table 12. Item elements (continued)

COBOL

C++

Java

Element

VM CMS
VM Batch

MVS CICS
MVS/TSO

MVS Batch
IMS/VS

IMS BMP
VSE CICS
VSE Batch
0S/2 CICS

0S/400

Windows*-OS/2(ST)

Windows*(Java)

0S/2
AIX

HP-UX

AIX CICS

Windows NT
Windows NT CICS
Solaris

Solaris CICS
Windows NT

Test Facility

Data item
type - Pacf

n

0

0

0

n

n

0

0

n

n

0

0

0

n

n

0

0

0
n
0
0

0

0

Data item
type - Pack

0

0

0

0

0

0

0

Data item

type -
Unicode

Data item
UI type

Data item
Ul type -

Form

Data item
Ul type -
Hidden

Data item
UI type -
Input

Data item
UI type -
Input/Outpiit

Data item
UI type -
None

Data item
UI type -
Output

Data item
UI type -
Program

link

Chapter 6. Items

211

Table 12. Item elements (continued)

COBOL

C++

Java

Element

VM CMS
VM Batch
MVS CICS
MVS/TSO
MVS Batch
IMS/VS
IMS BMP
VSE CICS
VSE Batch
0S/2 CICS
0S/400

Windows*-OS/2(ST)

Windows*(Java)

0S/2
AIX

HP-UX

AIX CICS

Windows NT

Windows NT CICS

Solaris

Solaris CICS
Windows NT

Test Facility

Data item
UI type -
Submit

0
0
0

0

0

n

n

0

0

0

n

Data item C C C
UI type -
Submit
bypass

Dataitem | x | x| x| x| x| x| x| x|Xx
usage

UI record C C C
data item
edits

UI record C o C
data item
edits -
Check
SO/SI

space

UI record C C C
data item
edits -

Currency

UI record C C c
data item
edits -
Currency
symbol

UI record C C C
data item
edits - Edit
function

212 VisualAge Generator: Programmer’s Reference

Table 12. Item elements (continued)

Element

COBOL

C++

Java

VM CMS
VM Batch

MVS CICS
MVS/TSO

MVS Batch
IMS/VS

IMS BMP
VSE CICS
VSE Batch
0S/2 CICS

0S/400

Windows*-OS/2(ST)

Windows*(Java)

0S/2
AIX

HP-UX

AIX CICS

Windows NT
Windows NT CICS
Solaris CICS
Windows NT

Solaris

Test Facility

UI record
data item
edits - Edit
table

0

n

0

0

n

n

0

0
0
0
0

0

n

UI record
data item
edits - Edit
type

UI record
data item
edits - Fill
character

UI record
data item
edits - Fold

UI record
data item
edits -
Input
required

UI record
data item
edits -
Maximum
value

UI record
data item
edits -
Minimum
input

Chapter 6. Items

213

Table 12. Item elements (continued)

COBOL
U
C++

Java

Element

Windows*-OS/2(ST)

VM CMS

VM Batch
MVS CICS
MVS/TSO
MYVS Batch
IMS/VS

IMS BMP

VSE CICS
VSE Batch
0S/2 CICS
0S/400
Windows*(Java)
HP-UX

AIX CICS
Windows NT
Windows NT CICS

0S/2
AIX

Solaris

Solaris CICS
Windows NT

Test Facility

UI record
data item
edits -
Minimum
value

0
0
0
0
0
(9}
(9}
0
0

0

n

UI record C C C c|lc|cl|lc|c|c
data item
edits -

Numeric
Separator

UI record C 1 C c|c|c|lc|c|c
data item
edits - Run
edit
function on
web

UI record C o C c|c|cl|lc|c|c
data item
edits - Sign

UI record C o C c|c|cf|lc|c|c
data item
edits - Zero
edit

Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

Legend: In this table, the following characters are used to indicate the level of support:
X Supported

c Supported with compatibility considerations

blank Not supported

214 VisualAge Generator: Programmer’s Reference

Data item

Data item

An item is a data element. The item can be defined by itself as a separate
part, or within the context of a data structure definition.

Shared data item definitions are stored independently of the records or tables
to which they belong.

This section describes the language elements that specify data item
characteristics. Some characteristics can be stored in a data item part
independent of any record or table structure if the usage of the data item
definition is shared. Other elements specify information about a data item as
it is used in that structure.

If the usage of the data item definition is specified as shared, the following
data item characteristics are independent of the structure:

BYTES

DEC (Decimal positions)

DESCRIPTION

LENGTH

NAME

TYPE

If the usage of the data item definition is specified as nonshared, the
characteristics above are stored with the data structure, not with a separate
data item.

A data item name represents the same data item wherever it is used as a
shared data item in a record or table. Changing the shared data item
specifications of type, length, and decimal places in one structure causes a
corresponding change in all structures that include the data item as a shared
data item. Changing the characteristics of a nonshared data item does not
affect any other data item definition.

The following data item characteristics are always stored with the data
structure, treated as local data and dependent on the structure:

KEY (SQL row record)

LEVEL

OCCURS

READ-ONLY (SQL row record)

SQL COLUMN NAME (SQL row record)

SQL DATA CODE (SQL row record)

USAGE

Chapter 6. Items 215

Data item bytes

Data item bytes

Data item bytes specify the number of bytes required to store the data item
internally.

Uses

If data item length is specified, the bytes are automatically calculated from the
length value.

Maximum Number of Characters

The following table explains the maximum number of characters for records
and tables, based on the type of data:

Data Length Bytes Length Bytes
type in record in record in table in table
Char 32767 32767 254 254
Mixed 32767 32767 254 254
DBCS 16383 32766 127 254
UNICODE 16383 32766 127 254
Hex 65534 32767 254 127

Maximum Number of Digits

The following table explains the maximum number of digits for records and
tables, based on the type of data:

Data Length Bytes Length Bytes
type in record in record in table in table
Num/Numc 18 18 18 18
Pack/Pacf 18 10 18 10

Bin 18 8 18 8

SQL Bin 9 4 N/A N/A
SQL Pack 18 10 N/A N/A

For binary data, the following table shows the correspondence between the
number of digits and the number of bytes required:

Length (in digits) Bytes
1-4 2
5-9 4

216 VisualAge Generator: Programmer’s Reference

Data item bytes

10 - 18

Target environments for Data item bytes

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Chapter 6. Items

217

Data item decimal places

Data item decimal places

Data item decimal places specifies the number of places reserved to the right
of an implied decimal point. The default is 0 (no decimal places).

Uses

The length of the data item must include space for the decimal places. The
maximum number of decimal places is 18 or the length of the data item, if it
is shorter than 18. The decimal point is not stored with the data.

You cannot specify Decimal places when either of the following conditions is
true:

* You select a data type that is not numeric.

* For SQL data items, you select a data type other than PACK.

Target environments for Data item decimal places
Supported in all environments without compatibility considerations.

Data item description

Data item description is a text description of what the data item represents.

Uses
You can specify a 1- to 30-character description of a data item.

Descriptions can be entered in uppercase, lowercase, or mixed case.

Target environments for Data item description
Supported in all environments without compatibility considerations.

Data item key
Data item key designates whether a data item in an SQL row record is a key
column in an SQL row.
Uses

Columns that are defined as key items are used as the selection variables
when building the default SQL statements for INQUIRY, UPDATE, SETINQ,
and SETUPD functions.

Key items are not replaced by the default SQL statement built for the
REPLACE I/0O option.

Any column designated as a key is included in the ORDER BY clause of the

SELECT statement for a SETINQ function. The order of the key within the
record definition determines its position within the ORDER BY clause.

218 VisualAge Generator: Programmer’s Reference

Data item key

The data item key designation is ignored if the data item definition is used
with an alternate specification record. Use the default key item to specify a
key column for an alternate specification record.

Target environments for Data item key

Supported in all environments without compatibility considerations.

Data item length

Uses

Data item length specifies the number of characters or digits set aside in a
data structure for a single occurrence of a data item.

The bytes set aside for an array is length times occurs.

If the Bytes value is specified, the Length value is automatically calculated
from the bytes value.

Maximum Number of Characters

The following table explains the maximum number of characters for records
and tables, based on the type of data:

Data Length Bytes Length Bytes
type in record in record in table in table
Char 32767 32767 254 254
Mixed 32767 32767 254 254
DBCS 16383 32766 127 254
UNICODE 16383 32766 127 254
Hex 65534 32767 254 127

Maximum Number of Digits

The following table explains the maximum number of digits for records and
tables, based on the type of data:

Data Length Bytes Length Bytes
type in record in record in table in table
Num/Numc 18 18 18 18
Pack/Pacf 18 10 18 10

Bin 18 18 8

SQL Bin 9 4 N/A N/A

Chapter 6. Ttems 219

Data item length

SQL Pack 18 10 N/A N/A

For binary data, the following table shows the correspondence between the
number of digits and the number of bytes required:

Length (in digits) Bytes
1-4 2
5-9 4
10 - 18 8

Target environments for Data item length

Supported in all environments without compatibility considerations.

Data item level

Uses

Data item level specifies a number that can be used to create a substructure
within the data items in a record or table.

Level information is unique to a data structure definition. Level numbers can
differ for the same data item that is used in several data structures. The only
valid levels are 3 through 49, and 77.

Data items with the lowest level number in a structure occupy the highest
position in the structure. Data items with higher level numbers represent
substructures of the previous item in the structure list with a lower level
number. The byte length of data items in a substructure must be equal to the
length of the data item at the next higher level in the structure. The default
level number is 3.

Definition considerations for Data item level

A data structure can contain one or more filler data items (nonshared data
items with a * specified for the name). The length of the filler data item must
be included in the entire length of a structure.

Working storage records can contain single data items in addition to or in

place of a data structure. Level 77 data items are not part of a data structure.
If both a data structure and single data items are defined, the structure must
be defined first. The level 77 data items will follow the structured data items.

Level 77 data items can be used for relative record ID items, work items, or
arguments to be passed to another program in a CALL statement. They are
not passed as part of the working storage when the working-storage record is

220 VisualAge Generator: Programmer’s Reference

Data item level

passed as a parameter on CALL, XFER, or DXFR statements. They are not
included if the working-storage record is specified in the Table and Additional
Record List for the program.

Target environments for Data item level

Environment Compatibility considerations
VM CMS None.
VM batch None.
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.

CICS for OS/2 Binary items are stored in byte-reversed order in OS/2 and
Windows environments. Therefore, using levels to access bytes
within binary items will have different results than in other
environments.

0S/400 None.

Windows-OS/2 Same as CICS for OS/2.
Smalltalk (GUI)

Windows Java Same as CICS for OS/2.

(GUI)

0S/2 (C++) Same as CICS for OS/2.
AIX None.

HP-UX None.

CICS for AIX None.
Windows NT Same as CICS for OS/2.

(C++)

Windows NT Same as CICS for OS/2.
(Java)

CICS for Same as CICS for OS/2.
Windows NT

Solaris None.

CICS for Solaris None.

Chapter 6. Ttems 221

Data item level

Environment Compatibility considerations

Test Facility Same as CICS for OS/2.

Examples for Data item level

The following example depicts how various lengths of data entered in a
certain field level must total the next higher field level.

Name Level Numbers Length
ADDRESS 10 42
STREET 12 20
LOCALE 12 22
CITY 14 10
STATE 14 2
NEWZIP 14 10

VALY 16 5

* 16 5

Notice in the table above that the total length of the data items in a
substructure must equal the length of the owning data item. For example:

* ADDRESS is level 10 and has a length of 42. STREET and LOCALE are
level 12 and have a combined length equal to ADDRESS.

* CITY, STATE, and NEWZIP are level 14 and have a combined length equal
to LOCALE.

» ZIP and * (a filler) are level 16 and have a combined length equal to
NEWZIP.

Data item name

Data item name is the unique identification of a data item within a data
structure.

Uses

For data item naming conventions, see Appendix B. Naming conventions fo
P | fincti]

Target environments for Data item name
Supported in all environments without compatibility considerations.

222 VisualAge Generator: Programmer’s Reference

Data item occurs

Data item occurs

Data item occurs specifies the number of occurrences of the data item,
allowing the creation of arrays within a record.

Uses
A number from 1 to 32767 can be specified. The default is 1.

Definition considerations for Data item occurs

If you define a data item with more than 1 occurrence, no other data items
within its substructure can have more than 1 occurrence.

The same data item can be used in other data structures. The occurs
characteristic for a data item applies only for the data structure where the
characteristic is defined. The data item can have a different number of
occurrences for each data structure in which it is used.

For information on handling occurs in GUI programs, refer to the VisualAge
Smalltalk User’s Guide.

You cannot define level-77 data items in working storage with an occurrence
greater than 1.

You cannot define the number of occurrences for an item in an SQL row
record. An SQL row is treated as a set of single data items at the same level.

You cannot define the number of occurrences for an item in a table. For a
table item, the number of occurrences is equal to the number of rows defined
for table contents.

Target environments for Data item occurs
Supported in all environments without compatibility considerations.

Data item Read-only

Data item read-only prevents the data item from being written to the
relational database.

Uses

The specification of read-only determines what columns are included in the
generated SQL statements that write to the relational database.

Definition considerations for Data item Read-only

Specify Read-only for columns from a view that you know cannot be updated
and for columns that your program never needs to change.

Read-only is automatically specified when the following is true:
¢ Data items in SQL column names are expressions.

Chapter 6. Ttems 223

Data item Read-only

* Data items in an SQL row record are defined as an SQL join.

Target environments for Data item Read-only
Supported in all environments without compatibility considerations.

Data item usage

Data item usage indicates whether the data item definition is stored as a
separate data item or stored as part of the data structure definition.

Uses

Data item usage can be set to the following:
* Nonshared
* Shared

Nonshared characteristics apply only to the definition of the item in that data
structure and the characteristics are stored with the part containing the data
structure.

Shared characteristics apply wherever a shared item with the same name is
defined in any data structure. Shared characteristics are stored in a data item
part, independent of the data structures, function local storage lists, or
function parameter lists to which they belong.

Map fields are always nonshared.

Data item usage applies only to where VisualAge Generator stores and
retrieves the information about the data item, not to the usage of the item in
terms of generated code.

Definition considerations for Data item usage

A data item name represents the same data whenever it is used as a shared
data item in a data structure. Changing the shared data item specifications of
type, length, and decimal places in one structure causes a corresponding
change in all structures that include the data item as a shared data item.
Changing the characteristics of a nonshared data item does not affect any
other data item definition.

When you export an ENVY application containing a new shared data item,
both a VisualAge Generator shared data item and a shared data element are
created. VisualAge Generator Developer creates the shared data element with
the same name as the shared data item.

Nonshared data item characteristics are saved with the containing data

structure. Nonshared data item information is not saved as a separate data
item part.

224 VisualAge Generator: Programmer’s Reference

Data item usage

Target environments for Data item usage
Supported in all environments without compatibility considerations.

Data item SQL column name

Data item SQL column name specifies the column name used in the relational
database. The name can be from 1- to 36-characters.

Uses

If you do not enter a name, the data item name is used as the SQL column
name.

Definition considerations for Data item SQL column name

The SQL column can be the name of a column in a relational table or view
definition, or an SQL expression made up of column names, SQL operators,
constants, and built-in functions.

Relational table column
Specify a relational table column name if the actual name of the column in the

relational table or view definition differs from the data item name. If the SQL
row was defined as a join of multiple tables or views, the column name
should be qualified by the table label to which it belongs. The table label is
defined for the table or view name in the record specification to which it
belongs.

SQL expression
Specify an SQL expression to define a virtual column that can be used as a

read-only data item in the SQL row definition. The expression can be made
up of column names, SQL operators, constants, and built-in functions. The
expression is calculated when the SQL row is read from the database.

An example of an expression used as a column name is as follows:
MONTHLY-SALARY * 12

The name is inserted into the generated SQL statements just as it is entered.
All single-byte characters not within double quotes are folded to uppercase.
The specified name is not validated by VisualAge Generator. Instead, the
name is checked by the relational database manager during SQL statement
preparation for a program.

Target environments for Data item SQL column name

Environment Compatibility considerations
VM CMS None.
VM batch None.

Chapter 6. Items 225

Data item SQL column name

Environment Compatibility considerations
CICS for None.
MVS/ESA

MVS/TSO None.
MVS batch None
IMS/VS None.
IMS BMP None.
CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Data item SQL data code
Data item SQL data code is the number that identifies the data type of the

data item in the relational database.
Uses

SQL data codes can vary only for DBCS, character, hexadecimal, and unicode
data items. SQL data codes are fixed for other types of data items and cannot
be modified.

226 VisualAge Generator: Programmer’s Reference

Data item SQL data code

SQL data codes are set correctly if you retrieved the data item definition for
the record from the relational database. If you enter the data item definitions,
specify the SQL data code to be the same as the SQL data code defined for the

associated column in the database for the data item.

When specified for hexadecimal data items, the SQL data code lets a program
access SQL data types not supported by corresponding VisualAge Generator

data types. For example, to access a double-precision FLOAT column in a

relational database, define the corresponding data item with a type of
hexadecimal, a bytes value of 8, and an SQL data code of 481.

Valid combinations of SQL data codes, and character or DBCS data items are

as follows:

Table 13. SQL Data Types for Variable and Fixed Length Columns

VisualAge

Generator Data

Type SQL Data Type Variable/Fixed
CHA 453—CHA (default) Fixed

CHA 449—VARCHAR, length < 255 Variable

CHA 457—VARCHAR, length > 254 Variable
DBCS 469—GRAPHIC (default) Fixed

DBCS 465—VARGRAPHIC, length < 128 Variable
DBCS 473—VARGRAPHIC, length > 127 Variable
UNICODE 469—GRAPHIC (default) Fixed
UNICODE 465—VARGRAPHIC, length < 128 Variable
UNICODE 473—VARGRAPHIC, length > 127 Variable

For more information on SQL data codes, refer to VisualAge Generator Design

Guide

Target environments for Data item SQL data code

Environment Compatibility considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None

IMS/VS None.

Chapter 6. Items

227

Data item SQL data code

Environment Compatibility considerations
IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0OS/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Data item type

Data item type specifies the internal format or type of data. The data type
determines how the item is processed when referenced in processing
statements.

Uses

The following types of data are available:

Bin Binary number

CHA Character data

DBCS Double-byte character data

Hex Hexadecimal data

Mixed DBCS data mixed with single-byte character data
Num Numeric characters with positive sign in F format
Numc Numeric characters with positive sign in C format

228 VisualAge Generator: Programmer’s Reference

Data item type

Pacf Packed decimal characters with positive sign in F format
Pack Packed decimal characters with positive sign in C format
Unicode

Double-byte character data

Performance Information for numeric data types

VisualAge Generator supports five numeric data types to allow you to define
record structures that match the structure of records in existing files.

For new data item definitions, in general, use BIN because it requires the least
amount of storage and performs the best overall.

For zoned decimal data, NUMC performs better than NUM. For packed
decimal data, PACK performs better than PACE

BIN data type is the most efficient for array subscripting and relative record
IDs. Try to use short binary positive numbers with no decimal places. “Short”
includes numbers whose values are less than 32768 (or defined as four
numeric digits), which can be resolved into a length of two bytes.

NUM data without decimal places is more efficient in calculations, moves,
and comparisons than numeric data with decimals. If decimal places are
required, the number of decimal places across all items in a calculation should
be consistent.

VisualAge Generator handles numeric or binary data with up to 18 digits,
including decimal places. Performance is improved, however, if the fields
contain 4 or less digits (including decimal places).

Target environments for Data item type
See the individual data item types for compatibility considerations.

Data item type - Bin

Bin (binary) specifies numeric data stored in binary format.

Uses

Binary data can store large numbers in a smaller number of bytes than other
numeric data types.

Target environments for Data item type - Bin

Environment Compatibility considerations
VM CMS None.
VM batch None.

Chapter 6. Ttems 229

Data item type - Bin

Environment Compatibility considerations
CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None

IMS/VS None.

IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 Binary items are stored in byte-reverse order on OS/2 and Windows
systems. Therefore, using substructures for binary items can have
different results that in other systems.

0S/400 None.

Windows-OS/2 Same as CICS for OS/2.
Smalltalk (GUI)

Windows Java Same as CICS for OS/2.

(GUI)

0S/2 (C++) Same as CICS for OS/2.
AIX None.

HP-UX None.

CICS for AIX None.

Windows NT Same as CICS for OS/2.

(C++)

Windows NT Same as CICS for OS/2.
(Java)

CICS for Same as CICS for OS/2.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility The test facility stores binary numbers in INTEL format in byte
reversed order.

Data item type - CHA

CHA (character) data consists of alphabetic, numeric, or national characters.

230 VisualAge Generator: Programmer’s Reference

Target environments for Data item type - CHA
ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII

environments than in EBCDIC environments.

Data item type - CHA

Environment Compatibility considerations
VM CMS Uses EBCDIC character sets.
VM batch Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
MVS/ESA

MVS/TSO Uses EBCDIC character sets.
MVS batch Uses EBCDIC character sets.
IMS/VS Uses EBCDIC character sets.
IMS BMP Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
VSE/ESA

VSE batch Uses EBCDIC character sets.
CICS for OS/2 Uses ASCII character sets.
0S/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java

Uses ASCII character sets.

(GUI)

0S/2 (C++) Uses ASCII character sets.
AIX Uses ASCII character sets.
HP-UX Uses ASCII character sets.
CICS for AIX Uses ASCII character sets.
Windows NT Uses ASCII character sets.
(C++)

Windows NT Uses ASCII character sets.
(Java)

CICS for Uses ASCII character sets.
Windows NT

Solaris Uses ASCII character sets.

CICS for Solaris

Uses ASCII character sets.

Test Facility

Uses ASCII character sets.

Chapter 6. Ttems 231

Data item type - DBCS

Data item type - DBCS

DBCS (double-byte character set) data consists of double-byte characters.
DBCS data is ideographic character data that requires two positions for each
character in a record, table, or map.

Uses

DBCS data requires a terminal or printer device with DBCS capability so that
double-byte character data can be viewed or printed. Double-byte characters
are required for languages such as Japanese, Korean, and Chinese.

Target environments for Data item type - DBCS

ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations
VM CMS Uses EBCDIC character sets.
VM batch Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
MVS/ESA

MVS/TSO Uses EBCDIC character sets.
MVS batch Uses EBCDIC character sets.
IMS/VS Uses EBCDIC character sets.
IMS BMP Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
VSE/ESA

VSE batch Uses EBCDIC character sets.
CICS for OS/2 Uses ASCII character sets.
0S/400 Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java
(GUI)

Uses ASCII character sets.

0S/2 (C++) Uses ASCII character sets.
AIX Uses ASCII character sets.
HP-UX Uses ASCII character sets.
CICS for AIX Uses ASCII character sets.
Windows NT Uses ASCII character sets.
(C++)

232 VisualAge Generator: Programmer’s Reference

Data item type - DBCS

Environment Compatibility considerations
Windows NT Uses ASCII character sets.
(Java)

CICS for Uses ASCII character sets.
Windows NT

Solaris Uses ASCII character sets.
CICS for Solaris Uses ASCII character sets.
Test Facility Uses ASCII character sets.

Data item type - Hex

Uses

HEX data consists of bytes of data where each byte is represented by two
hexadecimal (base 16) digits.

Hexadecimal data items provide basic processing functions (moves,
comparisons and parameter passing) for database fields whose data type is
not directly supported by VisualAge Generator.

If the data type of the data item in a physical record does not match any of
the other data types, select HEX. Specify a Bytes value equal to the number of

bytes the field uses in the database record or file.

The Length value represents the number of digits in the hexadecimal data
item and is twice the Bytes value.

Hexadecimal data items cannot be used in arithmetic expressions.

Target environments for Data item type - Hex

Supported in all environments without compatibility considerations.

Data item type - Mixed

Uses

Mixed data can contain both single-byte (SBCS) and double-byte characters
(DBCS).

Mixed data requires a terminal or printer device with DBCS capability so that
double-byte character data can be viewed or printed. Double-byte characters
are required for languages such as Japanese, Korean, and Chinese.

The length specified for a mixed data item type is the number of single-byte

characters that the field can contain. The number of Bytes for a mixed field
must equal the length.

Chapter 6. Ttems 233

Data item type - Mixed

Relational database managers do not support a data type for mixed data.
Instead, they allow mixed data in character columns when the database is
running in a DBCS environment. When accessing mixed data in a relational
database, the character items in the SQL row record must be defined as
character data items instead of mixed data items. The character data items can
be moved to mixed variable fields on maps or in other data structures.

Definition considerations for Data item type - Mixed

On systems that use EBCDIC character sets (mainframes like the System /370
and AS/400), special delimiters identify DBCS subfields within a mixed data
item. The shift-out (SO) character in SBCS text signifies that the text following
the SO character is DBCS. The shift-in (SI) character in DBCS text signifies
that the text following the SI character is SBCS. If you are defining mixed data
items for records that will be stored on mainframes, ensure that the item
length includes space for SO/SI characters for all valid values for the item.

Target environments for Data item type - Mixed

ASCII character sets are used in workstation environments. EBCDIC character
sets are used in host environments. Differences in collating sequence can
cause greater-than or less-than comparisons to have different results in ASCII
environments than in EBCDIC environments.

Environment Compatibility considerations
VM CMS Uses EBCDIC character sets.
VM batch Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
MVS/ESA

MVS/TSO Uses EBCDIC character sets.
MVS batch Uses EBCDIC character sets.
IMS/VS Uses EBCDIC character sets.
IMS BMP Uses EBCDIC character sets.
CICS for Uses EBCDIC character sets.
VSE/ESA

VSE batch Uses EBCDIC character sets.

CICS for OS/2

Uses ASCII character sets.

0OS/400

Uses EBCDIC character sets.

Windows-OS/2
Smalltalk (GUI)

Uses ASCII character sets.

Windows Java

(GUI)

Uses ASCII character sets.

0S/2 (C++)

Uses ASCII character sets.

AIX

Uses ASCII character sets.

234 VisualAge Generator: Programmer’s Reference

Data item type - Mixed

Environment Compatibility considerations

HP-UX Uses ASCII character sets.

CICS for AIX Uses ASCII character sets.

Windows NT Uses ASCII character sets.

(C++)

Windows NT Uses ASCII character sets.
(Java)

CICS for Uses ASCII character sets.
Windows NT

Solaris Uses ASCII character sets.

CICS for Solaris Uses ASCII character sets.

Test Facility Uses ASCII character sets.

Data item type - Num
NUM data is numeric data in character (or zoned decimal) format.

Uses
NUM is supported for compatibility with previous products. For new
development, use BIN or PACK for defining numeric data items.
Definition considerations for Data item type - Num

Internally, each digit is represented by the character for that digit. The data
value is right-justified padded on the left with character zeros. The sign of
number is stored in the left half of the last byte (the zone).

In EBCDIC, a positive sign is represented by the standard zone value for a

the

numeric character, which is hexadecimal F. The negative sign is hexadecimal

D.
A negative sign is represented by the hexadecimal digit 7.

NUM is not supported in relational databases.
Target environments for Data item type - Num

Environment Compatibility considerations
VM CMS EBCDIC sign formats are used.
VM batch EBCDIC sign formats are used.
CICS for EBCDIC sign formats are used.
MVS/ESA

MVS/TSO EBCDIC sign formats are used.

Chapter 6. Items

235

Data item type - Num

Environment Compatibility considerations
MVS batch EBCDIC sign formats are used.
IMS/VS EBCDIC sign formats are used.
IMS BMP EBCDIC sign formats are used.
CICS for EBCDIC sign formats are used.
VSE/ESA

VSE batch EBCDIC sign formats are used.
CICS for OS/2 ASCII sign formats are used.
OS/400 EBCDIC sign formats are used.

Refer to the VisualAge Generator Design Guide and VisualAge
Generator Generation Guide documents for more information on
compatibility. You can optimize runtime performance by using the
Generation option /POSSIGN=F.

Windows-OS/2
Smalltalk (GUI)

ASCII sign formats are used.

Windows Java
(GUI)

ASCII sign formats are used.

0S/2 (C++) ASCII sign formats are used.
AIX ASCII sign formats are used.
HP-UX ASCII sign formats are used.
CICS for AIX ASCII sign formats are used.
Windows NT ASCII sign formats are used.
(C++)

Windows NT ASCII sign formats are used.
(Java)

CICS for ASCII sign formats are used.
Windows NT

Solaris ASCII sign formats are used.

CICS for Solaris

ASCII sign formats are used.

Test Facility

ASCII sign formats are used.

Data item type - Numc

Uses

NUMC data is numeric data in character (or zoned decimal) format with a
system sign value.

NUMC is supported for compatibility with previous products. For new
development, use BIN or PACK for defining numeric data items.

236 VisualAge Generator: Programmer’s Reference

Data item type - Numc

Definition considerations for Data item type - Numc

Internally, each digit is represented by the character for that digit. The data
value is stored right-justified padded on the left with character zeros. The sign
of the number is stored in the left half of the last byte (the zone).

In EBCDIC, NUMC data items are equivalent to NUM data items, except that
the hexadecimal digit C represents a positive sign. The negative sign is
hexadecimal D.

A negative sign is represented by the hexadecimal digit 7.

Select NUMC when a program creates records to be processed by other
products using the C convention for positive sign.

NUMC is not supported in relational databases.
Target environments for Data item type - Numc

Environment Compatibility considerations
VM CMS EBCDIC sign formats are used.
VM batch EBCDIC sign formats are used.
CICS for EBCDIC sign formats are used.
MVS/ESA

MVS/TSO EBCDIC sign formats are used.
MVS batch EBCDIC sign formats are used.
IMS/VS EBCDIC sign formats are used.
IMS BMP EBCDIC sign formats are used.
CICS for EBCDIC sign formats are used.
VSE/ESA

VSE batch EBCDIC sign formats are used.
CICS for OS/2 ASCII sign formats are used.
0S/400 EBCDIC sign formats are used.

Refer to the VisualAge Generator Design Guide and VisualAge

Generator Generation Guide documents for more information on

compatibility. You can optimize runtime performance by using the

Generation option /POSSIGN=C.

Windows-OS/2
Smalltalk (GUI)

ASCII sign formats are used.

Windows Java
(GUI)

ASCII sign formats are used.

0S/2 (C++)

ASCII sign formats are used.

Chapter 6. Items

237

Data item type - Numc

Environment

Compatibility considerations

AIX

ASCII sign formats are used.

HP-UX

ASCII sign formats are used.

CICS for AIX

ASCII sign formats are used.

Windows NT
(C++)

ASCII sign formats are used.

Windows NT
(Java)

ASCII sign formats are used.

CICS for
Windows NT

ASCII sign formats are used.

Solaris

ASCII sign formats are used.

CICS for Solaris

ASCII sign formats are used.

Test Facility

ASCII sign formats are used.

Data item type - Pacf

PACF data items specify packed decimal data. Packed decimal data has 2
digits in every byte, with the sign in the right half of the last byte.

Uses

PACEF is supported for compatibility with previous products. Use BIN or
PACK data types for new development.

Definition considerations for data item type - Pacf

Internally, the data value is stored rightjustified padded on the left with
zeros. The positive sign is a hexadecimal F. The negative sign is hexadecimal
D. B is accepted as a negative sign in data created using other products.

PACEF is not supported in relational databases.

Target environments for Data item type - Pacf

Refer to the VisualAge Generator Design Guide and VisualAge Generator
Generation Guide documents for more information on compatibility. You can
optimize runtime performance for the OS/400 environment by using the
generation option /POSSIGN=F.

Data item type - Pack

PACK data items specify packed decimal data. Packed decimal data has 2
digits in every byte, with the system generated sign value in the right half of

the last byte.

238 VisualAge Generator: Programmer’s Reference

Data item type - Pack

Uses

Use PACK for decimal numbers (non-integer numbers) for programs that will
normally run on MVS, VSE, VM, or OS/400. If the program is to be used
regularly on workstations, use BIN for numeric data. Always use BIN for
integer data.

Definition considerations for Data item type - Pack

Internally the data value is stored right-justified padded on the left with
zeros. The positive sign is represented by hexadecimal C. The negative by
hexadecimal D. B is accepted as a negative sign in data created using other
products.

Target environments for data item type - Pack

Refer to the VisualAge Generator Design Guide and VisualAge Generator
Generation Guide documents for more information on compatibility. You can
optimize runtime performance for the OS/400 environment by using the
generation option /POSSIGN=C.

Data item type - Unicode

Unicode is a 16 bit (2-byte) character encoding standard established by the
Unicode Consortium. It’s goal is to support all characters from all languages
in one character set. In version 2.0 of the standard, the character set contains
over 38,000 distinct coded characters from 25 supported scripts.

Java uses the Unicode character encoding for character strings within Java
programs. However, since very few systems have Unicode keyboards, fonts,
or printers, Java converts strings between Unicode and the locale character set
when displaying or printing data or reading data from the keyboard.

Data items with the Unicode data type are assumed to contain double byte
Unicode characters.

Use the Unicode data type for better performance for 4GL parts used only
within Java clients, and for storing text information for applications where the
text can be entered in different languages.

Definition considerations for Data item type - Unicode

The Unicode data type is only available for VisualAge Generator Developer
on Java.

Unicode items can be defined in records and tables, but not maps. Unicode
data is entered and displayed from Java client programs or Web programs.

Unicode support is not available for 3270 maps.

Chapter 6. Ttems 239

Data item type - Unicode

Servers can store Unicode data directly in files or using the
GRAPHIC/VARGRAPHIC SQL data type on UDB databases where Unicode
has been specified as the code page for GRAPHIC data.

Unicode items can only be assigned, moved, or compared to other Unicode
items. All comparisons are logical comparisons between the bit values of the
items in Unicode.

Unicode items are padded with Unicode blanks when required. String
functions operate on Unicode items as byte strings.

The length for a Unicode item is expressed as the number of Unicode
characters. The number of bytes in the item is twice the length.

Unicode literals are not supported. Use tables to define initialized Unicode
variables.

Table contents for Unicode variables are entered as single byte or mixed
character data. Table definition converts the character strings to the
corresponding Unicode values based on the current locale.

Target environments for Data item type - Unicode

Environment Compatibility considerations
VM CMS Not supported.
VM batch Not supported.
CICS for Not supported.
MVS/ESA

MVS/TSO Not supported.
MVS batch Not supported.
IMS/VS Not supported.
IMS BMP Not supported.
CICS for Not supported.
VSE/ESA

VSE batch Not supported.
CICS for OS/2 Not supported.
0OS/400 Not supported.
Windows-OS/2 None.
Smalltalk (GUI)

Windows Java None.

(GUI)

0S/2 (C++) None.

240 VisualAge Generator: Programmer’s Reference

Data item type - Unicode

Environment Compatibility considerations
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT None.
(Java)

CICS for None.
Windows NT

Solaris None
CICS for Solaris None.
Test Facility None.

Data item Ul type

Uses

Data item Ul type is available only for items defined in User Interface (UI)
records.

The user interface type defines how the item is used in the user interface and
together with other data item attributes such as occurs, substructuring, etc.
help determine the default UI elements used to implement the HTML form
when the Ul record is generated.

The following Data item UI types are available:

Form Form is similar to Program Link except that it allows items that are
substructured under an item with this Ul Type to be part of an HTML
"Form”. With the Form UI Type you can substructure items of Ul
Type=Input, Input/Output, Submit, etc. to create multiple Forms that
invoke independent programs, passing the data of the given form.

Hidden
Fields of this type are not visible to the program user on the
generated HTML page. However, the data of these fields will be
passed when a form containing a hidden field is submitted.

Input Defines that input can be entered by the program user and that edits
will be run on the input data.

Input/Output
Defines that both INPUT and OUTPUT attributes are specified.

None Defines that the field is not to show on the user interface and that no

Chapter 6. Ttems 241

Data item Ul type

edits are to be defined for it. Items with this setting are typically used
as control data for user defined edits or as items such as the defined
the submit value item.

Output
Defines that output edits will be performed on data received from the
server.

Program Link
Enables an item with specified Link properties to define a link that
invokes a referenced program when the generated HTML link is
selected by the program user.

Submit
Defines an item to contain a value, or set of values if the item has an
occurs value greater than one, that can be received into the submit
value item when the program user submits a form back to the server.

Submit Bypass
Defines an item to contain a value, or set of values if the item has an
occurs value greater than one, that can be received into the submit
value item when the program user submits a form back to the server.
All input edits are bypassed when the program user submits the form.

Definition considerations for Data item Ul type
The following properties are available:
* Occurrences item
* Selected index item
* Help text
» Ul label
Occurrences item
The data item that defines the number of rows to display in the

generated HTML page. The specified occurrences item must be
defined in the Ul record as follows:

Occurs
1

Data Type
Bin, Num, Numc, Pacf or Pack

Decimals
0

The data item specified as the occurrences item must not be the item
you are currently defining, the selected index item of the item you are
currently defining or the record’s submit value item.

Selected index item
The data item that receives the index or indices of the element(s)

242 VisualAge Generator: Programmer’s Reference

Data item Ul type

selected by the program user. The specified selected index item must
be defined in the Ul record as follows:

Data Type
Bin, Num, Numc, Pacf or Pack

Decimals
0

You can specify an array item as the selected index item. If the
specified selected index item is an array item, the generated UI part is
a multiple select list. The occurs value of the array item must match
the occurs value of the data item you are defining. If the specified
selected index item is not an array item, the generated Ul part is a
single select list.

Help text
Help text defined for the item. Help text can be shared among all
records that use a shared data item.

UI label
The label defined for the item. If the item has an occurs value greater
than one and the item type is Submit, Submit Bypass or Program
Link, labels can be defined for each occurrence.

Target environments for Data item Ul type

See the individual data item UI types for compatibility considerations.

Data item Ul type - Form

Uses

Ul Type - Form is similar to Data item UI type - Program Link except that it
allows items that are substructured under an item with this UI Type to be part
of an HTML "Form". With Ul Type - Form you can substructure items of Ul
Type=Input, Input/Output, Submit, etc. to create multiple Forms that invoke
independent programs, passing the data of the given form.

Use UlType - Form if data to be passed into the referenced program when this
Form is submitted is meant to be updated by the program user. The
substructured items of UI Type - Input, Input/Output will be input fields that
can be updated by the program user. This data will be passed to the
referenced program when this Form is submitted.

Note that not all data that is substructured will be passed. Only data of Ul
Types Input, Input/Output, Submit, Submit Bypass, and Hidden will be
passed because these types turn into forms of the HTML INPUT tag. Other
UlTypes such as Output can be substructured to control the appearance of the
form, but this data will not be passed. To pass data of fields with UITypes of

Chapter 6. Ttems 243

Data item Ul type - Form

Output, None (any types that do not become HTML INPUT fields), use the
Link Parameter definition as outlined in R44.

The Ul record as a whole is treated as a default Form with the referenced
program implicitly being the one that CONVERSEd it. The same rules as
outlined previously for passing data apply to this default Form, that is, only
those fields that become HTML INPUT fields will actually be passed back
from the browser.

The main difference between using fields with UlType - Form and the default
Form of the entire Ul record is that the default Form is sent to the browser as
the result of a CONVERSE and the entire state of that UI record has been
saved at the server. When you invoke the reference program of an item with
UlType - Form, this program is started new each time, so the First UI record
of this program will only have the state of the data that is passed to it.

Definition considerations for Data item Ul type - Form

The following Program Link properties are available for Data item UI type -
Form:

* First UI record

* Link parameters

* Open as new window

* Program

First UI record
The name of a Ul record that is defined in the specified program. If
data is passed when the program is invoked, the First Ul record
specified contains the definition of the data items that receive data.
Specifying the First Ul record is optional but using a Form to invoke a
program without passing data is not efficient. If the you want to
invoke a program without passing data, use UlType - Program Link.

Link parameters
Parameters that associate a data item in the First Ul record of the
referenced program with data of the Ul record containing the given
link. The difference between parameters defined here and those
defined for UIType - Program Link is that in the generated HTML
these parameters become HTML INPUT fields of TYPE=hidden
instead of query parameters tacked onto a URL. You can successfully
pass 400 bytes of data this way.

Name The name of the data item that receives data when the
program is invoked. This data item must be defined in the
specified First Ul record.

Value Item
The name of the item that contains the data to be passed to
the invoked program. Parameter values passed to this

244 VisualAge Generator: Programmer’s Reference

program when the program user submits this Form are the

Data item Ul type - Form

state of the value items at the time when the page is sent to
the browser The data item specified as the value item and the
program link must be defined in the same UI record. A literal

can also be specified as the Value Item.

Open as new window
A boolean value used to specify whether the results returned when a
user transits a link are displayed in a new window or in the current
window. If you are defining a program link, specifying a new window
for the linked program is optional.

Program

The name of the program to invoke. A Web Transaction program is

the only valid type of program you can define for this property. This
field is mandatory.

Target environments for Data item Ul type - Form

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

Chapter 6. Items

245

Data item Ul type - Form

Environment Compatibility considerations
CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Data item Ul type - Hidden

Ul Type - Hidden fields are not visible to the program user on the generated
HTML page. However, the data of these fields will be passed when a form
containing a hidden field is submitted.

Uses

Use UlType - Hidden if the data should not be visible to the program user but
must be passed to the server program.

Target environments for Data item Ul type - Hidden

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Not supported.

0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

246 VisualAge Generator: Programmer’s Reference

Data item Ul type - Hidden

Environment Compatibility considerations
Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Data item Ul type - Input
UI Type - Input defines that input can be entered by the program user and

that edits will be run on the input data.

Uses

Use UI Type - Input if the generated Ul part initially displays no data and

allows the program user to input data.

Target environments for Data item Ul type - Input

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX

Valid only in UI records.

Chapter 6. Items

247

Data item Ul type - Input

Environment Compatibility considerations
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Data item Ul type - Input/Output
UI Type - Input/Output defines that both INPUT and OUTPUT attributes are
specified.
Uses

Use Ul Type - Input/Output if the generated Ul part initially displays data
and allows your user to input data.

Target environments for Data item Ul type - Input/Output

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Not supported.

0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

248 VisualAge Generator: Programmer’s Reference

Data item Ul type - Input/Output

Environment Compatibility considerations
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Data item Ul type - None

UI Type - None defines that both INPUT and OUTPUT attributes are specified
for the data item.

Uses

Use Ul Type - None if the data item generates control data. Ul Type - None
data items are not displayed to the program user.

Target environments for Data item Ul type - Input/Output

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0s/2 Valid only in UI records.
AIX Valid only in UI records.

Chapter 6. Items

249

Data item Ul type - None

Environment Compatibility considerations

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Data item Ul type - Output

UI Type - Output defines that output edits will be performed on data received
from the server.

Uses

Use Ul Type - Output if the generated Ul part displays data to the program
user.

Target environments for Data item Ul type - Output

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Not supported.

0S/2 Valid only in UI records.

250 VisualAge Generator: Programmer’s Reference

Data item Ul type - Output

Environment Compatibility considerations
AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.
CICS for Solaris ~ Valid only in UI records.
Test Facility Valid only in UI records.

Data item Ul type - Program link

Uses

UI Type - Program Link enables an item with specified Link properties to
define a link that invokes a referenced program when the generated HTML
link is selected by the program user.

Use Ul Type - Program Link when a hypertext link to another Web
Transaction program is required.

Definition considerations for Data item Ul type - Program link

The following Program Link properties are available:
* First UI record

¢ Link parameters

* Open as new window

¢ Program

First UI record
The name of a Ul record that is defined in the specified Program. If
data is passed when the program is invoked, the First Ul record
specified contains the definition of the data items that receive data. If
you are defining a program link and not passing any data, specifying
the First Ul record is not necessary.

Link parameters
Parameter that associate a data item in the First Ul record of the
referenced program with the data of the Ul record containing the
given link. In the HTML, a program link becomes an HTML element
and the link parameters become query parameters that are part of the
HREF attribute of the HTML element. This means that there is an

Chapter 6. Ttems 251

Data item Ul type - Program link

implied limit to the amount of data that can be passed and it varies
depending on the browser and the web server used. If you need to
pass more than 400 bytes, use the UI Type of Form.

Name The name of the data item that receives data when the

program is invoked. This data item must be defined in the
specified First Ul record.

Value Item

The name of the item that contains the data to be passed to
the invoked program. Parameter values passed to this
program when the program user clicks on this link are the
state of the value items when the page was sent to the
browser. The data item specified as the value item and the
program link must be defined in the same Ul record. A literal
can also be specified as the Value Item and usage rules are the
same as when you use literals as operands in statements.

Open as new window
A boolean value used to specify whether the results returned when a
user transits a link are displayed in a new window or in the current
window. If you are defining a program link, specifying a new window
for the linked program is optional. This field is optional.

Program

The name of the program to invoke. A Web transaction program is the
only valid type of program you can define for this property. If you are
defining a program link, specifying the program is mandatory.

Target environments for Data item Ul type - Program link

Environment

Compatibility considerations

VM CMS

Not supported.

VM batch

Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO

Not supported.

MVS batch

Not supported.

IMS/VS

Valid only in UI records.

IMS BMP

Not supported.

CICS for
VSE/ESA

Valid only in UI records.

VSE batch

Not supported.

CICS for OS/2

Not supported.

0S/400

Not supported.

252 VisualAge Generator: Programmer’s Reference

Data item Ul type - Program link

Environment Compatibility considerations
0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.
CICS for Solaris ~ Valid only in UI records.
Test Facility Valid only in UI records.

Data item Ul type - Submit

UI Type - Submit defines an item to contain a value, or set of values if the
item has an occurs value greater than one, that can be received into the
submit value item when the program user submits a form back to the server.

Uses

Use UI Type - Submit if the generated Ul part is a push button that validates
the data entered by the program user against the edits specified for each
generated Ul part on the HTML page.

Definition considerations for Data item Ul type - Submit

EZEAID can be used as the submit value item if the values are valid EZEAID
values.

An example Ul Type - Submit definition and explanation of the generated

output:

e A UI record data item is created and named SUBMIT _ITEM

¢ The item SUBMIT_ITEM is defined as Ul Type - Submit

e The item SUBMIT_ITEM is further defined as CHA with an occurs value of
2

* A Ul record data item is created and named SUBMIT_VALUE

* The item SUBMIT_VALUE is defined as UI Type - None

e The item SUBMIT_VALUE is further defined as the submit value item of
the given UI record

¢ The values set into the array are 'F1” and 'F2’

* The Labels defined for the item contain ‘"CONTINUE” and "CANCEL’

Chapter 6. Ttems 253

Data item Ul type - Submit

In this example, the default generated HTML page includes 2 submit push
buttons with text containing the defined label values. The value of the actual
button pressed, 'F1” or 'F2’, is set into the item named SUBMIT_VALUE when
the form is submitted back to the server. The program then tests the value of
the item named SUBMIT_VALUE to determine if the program user wants to
"CONTINUE’ or "CANCEL’".

Submit properties

Initial Values
The item must have a value, set into the submit value item, for the
buttons to be visible to the program user on the generated HTML
page. In most cases, a value can be programmatically set into the
submit value item. However, in the case of a First UI Record that is
receiving data, no program logic is run in time to set the data. To
address this situation, you can define initial values for Submit and
Submit Bypass items. During run time or ITF execution, these values
will be set into the item when the record or Ul Bean is instantiated. If
the item has an occurs value greater than one, each line is a separate
value for each occurrence. Blank lines mean the occurrence at that
index will have no value. If the item is arrayed and there is only one
value specified, this value will be set on all occurrences.

Target environments for Data item Ul type - Submit

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Not supported.

0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

254 VisualAge Generator: Programmer’s Reference

Data item Ul type - Submit

Environment Compatibility considerations

CICS for AIX Valid only in UI records.

Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Data item Ul type - Submit bypass

Uses

UI Type - Submit Bypass defines an item to contain a value, or set of values if
the item has an occurs value greater than one, that can be received into the
submit value item when the program user submits a form back to the server.
Submit Bypass is identical to Submit except that all input edits are bypassed
when the program user submits the form.

Use UI Type - Submit Bypass if the generated Ul part is a push button that
does not validate the data entered by the program user against the edits
specified for each generated UI part on the HTML page.

Definition considerations for Data item Ul type - Submit bypass
EZEAID can be used as the submit value item if the values are valid EZEAID

values.

Submit Bypass properties

Initial Values

The item must have a value, set into the submit value item, for the
buttons to be visible to the program user on the generated HTML
page. In most cases, a value can be programmatically set into the
submit value item. However, in the case of a First UI Record that is
receiving data, no program logic is run in time to set the data. To
address this situation, you can define initial values for Submit and
Submit Bypass items. During run time or ITF execution, these values
will be set into the item when the record or Ul Bean is instantiated. If
the item has an occurs value greater than one, each line is a separate
value for each occurrence. Blank lines means the occurrence at that
index will have no value.

Chapter 6. Items 255

Data item Ul type - Submit bypass

Target environments for Data item Ul type - Submit bypass

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Not supported.

0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits
Ul record data item edits are part of data item definition and are available
only for use in User Interface (UI) records and Web transaction programs.
Uses

Use Ul record data item edits to specify the type of edit you want performed
on the selected data item. The following Ul record data item edits are
available:

256 VisualAge Generator: Programmer’s Reference

Ul record data item edits

¢ Check SO/SI space
e Currency
¢ Currency symbol
* Edit function
 Edit type
» Edit table
 Fill character
* Fold
* Input required
* Maximum value
* Minimum input
* Minimum value
* Numeric separator
* Run edit function on web
 Sign
» Zero edit
Definition considerations for Ul record data item edits
Input edits are processed in the following order or levels:
1. VAGen edits (valid numeric, range, required field, and so on).
2. Table edits
3. User Functions defined to run on the web server with the Ul Record.
4. User Functions defined to run in the server program that did the
CONVERSE.

VAGen edits, Table edits, and User Functions defined to run on the web
server with the Ul Record are run on the web server where the UI record
beans are deployed. All fields are run through the input edits for each type. If
all fields pass a level, the next level is processed. If all fields do not pass a
level, processing stops at the level where input edits failed and the page is
sent back to the browser. Fields are processed in the defined input edit order.
The default input edit order is set as input items are created in the UI record,
from the top of the record to the bottom of the record.

Target environments for Ul record data item edits
See the individual Ul record data item edits for compatibility considerations.

Ul record data item edits - Check SO/SI space

UI record data item edits - Check SO/SI space determines whether mixed
data (SBCS or DBCS) entered in the generated UI part can be converted to the
mainframe SO/SI format with a valid length for the generated UI part.

Chapter 6. Ttems 257

Ul record data item edits - Check SO/SI space

Definition considerations for Ul record data item edits - Check SO/SI

space
Mixed fields require fewer bytes of storage on OS/2 and Windows systems
because the ASCII DBCS format does not use SO/SI escape characters for
delimiting DBCS data.
Check SO/SI space is only available for mixed data items.

Target environments for Ul record data item edits - Check SO/SI space

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

258 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Currency

Ul record data item edits - Currency

UI record data item edits - Currency displays a currency symbol or accepts a
currency symbol for numeric data in the generated Ul part when the program
user submits the generated HTML page.

Definition considerations for Ul record data item edits - Currency

One currency symbol is accepted preceding or following the numeric data
entered by the program user.

Field length is calculated automatically.

Target environments for Ul record data item edits - Currency

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Not supported.

0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Chapter 6. Items

259

Ul record data item edits - Currency

Environment

Compatibility considerations

Test Facility

Valid only in UI records.

Ul record data item edits - Currency symbol

UI record data item edits - Currency symbol defines a one to three character
symbol for the data item.

Definition considerations for Ul record data item edits - Currency symbol

The default system currency symbol is used when a currency symbol is not
defined and UI record data item edits - Currency is defined. The default
system currency symbol can be changed by your system administrator using
the customization procedures for language-dependent options.

Target environments for Ul record data item edits - Currency symbol

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Not supported.

0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

260 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Currency symbol

Environment Compatibility considerations
CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.
Test Facility

Valid only in UI records.

Ul record data item edits - Edit function

Ul record data item edits - Edit Function defines an edit function for
validating data entered by the program user in the generated user interface

part.
Uses

Use edit functions to check user input entered into the generated user

interface.

Definition considerations for Ul record data item edits - Edit function

The edit function cannot be defined with parameters. The function can invoke
other functions defined with parameters. EZEC10 and EZEC11 are also valid

edit functions.

Target environments for Ul record data item edits - Edit function

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.

Chapter 6. Items

261

Ul record data item edits - Edit function

Environment Compatibility considerations

HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Ul record data item edits - Edit type

Ul record data item edits - Edit type defines the data item as one of the
following:

e Date
* Time
* Boolean
* None

Date Date edit type specifies that the internal data of the item should be
treated as a date. The purpose of this is to allow the Java Server Page
developer to format it appropriately. In order for this to work the
internal date format defined for the server must match the date
format of the hptDateMask initialization parameter of the Gateway
Servlet on the Web Server. For additional information on data item
date formats, see 'EZEDTEI.C” on page 564l If the date format of the
server is sufficient i.e. it need not be specially formatted on the Java
Server Page, then do not specify this edit. For additional information
on date formatting for the Gateway Servlet, see the VisualAge
Generator User’s Guide.

Time Time defines the data item as a time.

Boolean
Boolean defines the data item as a boolean edit.

None None defines the data item as neither a date, time or boolean.

Definition considerations for Ul record data item edits - Edit type

Valid numeric item values for the Boolean Edit Type are 1 (true) and 0O (false).
Valid character item values are Y (true) and N (false).

262 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Edit type

The data item specified as Date, Time, or Boolean must be defined as follows:

Data Type

Bin, Char, Num, Numc, Pacf or Pack

Decimals
0

Target environments for Ul record data item edits - Edit type

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Chapter 6. Items

263

Ul record data item edits - Edit table

Ul record data item edits - Edit table

Ul record data item edits - Edit table defines an edit table for validating data
entered by the program user in the generated user interface part.

Target environments for Ul record data item edits - Edit table

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Valid only in UI records.
0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Fill character

UI record data item edits - Fill character defines a character to fill unused
positions in the generated UI part.

264 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Fill character

Definition considerations for Ul record data item edits - Fill character
A fill character can be an alphanumeric character or a blank.

The Fill Character field is not available for DBCS or Unicode items because
blank is the only valid definition.

Null is not a valid character.

Target environments for Ul record data item edits - Fill character

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Chapter 6. Items

265

Ul record data item edits - Fold

Ul record data item edits - Fold

Ul record data item edits - Fold specifies the folding of alphabetic characters
in the generated UI part to uppercase characters when the program user
submits the generated HTML page.

Definition considerations for Ul record data item edits - Fold

Fold is not available when the data type is:

* Bin

* DBCS

* Num

* Numc
e Pacf

e Pack

* Unicode

Folding does not occur for DBCS data in mixed fields.

Target environments for Ul record data item edits - Fold

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

OS/400 Valid only in UI records.
0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

266 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Fold

Environment Compatibility considerations
Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Input required

UI record data item edits - Input required defines that the program user must

enter information in the generated Ul part before submitting the generated

HTML page. The edit is satisfied if the field contains a value other than
blanks, or zero for a numeric field.

Target environments for Ul record data item edits - Input required

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Chapter 6. Items

267

Ul record data item edits - Input required

Environment Compatibility considerations
Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Ul record data item edits - Maximum value

UI record data item edits - Maximum value defines the upper limit of a range
of numbers that the program user can enter in the generated UI part.

Definition considerations for Ul record data item edits - Maximum value

If you specify Ul record data item edits - Maximum Value, you must also
specify Ul record data item edits - Minimum Value.

Target environments for Ul record data item edits - Maximum value

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Valid only in UI records.
0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX

Valid only in UI records.

268 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Maximum value

Environment

Compatibility considerations

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris

Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Minimum input

UI record data item edits - Minimum input defines the minimum number of

characters that the program user is required to enter in the generated user

interface part. If the program user enters any data in the generated user

interface part, the minimum input definition applies.

Target environments for Ul record data item edits - Minimum input

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX

Valid only in UI records.

Chapter 6. Items

269

Ul record data item edits - Minimum input

Environment Compatibility considerations
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris ~ Valid only in UI records.

Test Facility Valid only in UI records.

Ul record data item edits - Minimum value

UI record data item edits - Minimum value defines the lower limit of a range
of numbers that the program user can enter in the generated Ul part.

Definition considerations for Ul record data item edits - Minimum value

If you specify Ul record data item edits - Minimum Value, you must also
specify Ul record data item edits - Maximum Value.

Target environments for Ul record data item edits - Minimum value

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Valid only in UI records.
0S/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.

270 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Minimum value

Environment

Compatibility considerations

CICS for AIX

Valid only in UI records.

Windows NT
(C++)

Valid only in UI records.

Windows NT
(Java)

Valid only in UI records.

CICS for
Windows NT

Valid only in UI records.

Solaris

Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Numeric Separator

Ul record data item edits - Numeric Separator accepts on input or displays a
numeric separator for numeric data.

Definition considerations for Ul record data item edits - Numeric

Separator

Field length is calculated automatically.

If the number of significant digits is fewer than 4, Numeric Separator is not

valid.

For VisualAge Generator Developer, the default numeric separator is
determined by your development environment’s system setting.

Target environments for Ul record data item edits - Numeric Separator

Environment

Compatibility considerations

VM CMS

Not supported.

VM batch

Not supported.

CICS for
MVS/ESA

Valid only in UI records.

MVS/TSO

Not supported.

MVS batch

Not supported.

IMS/VS

Valid only in UI records.

IMS BMP

Not supported.

CICS for
VSE/ESA

Valid only in UI records.

Chapter 6. Ttems 271

Ul record data item edits - Numeric Separator

Environment Compatibility considerations
VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Valid only in UI records.
0S/2 Valid only in UI records.

AIX Valid only in UI records.
HP-UX Valid only in UI records.

CICS for AIX Valid only in UI records.

Windows NT Valid only in UI records.

(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris Valid only in UI records.

Test Facility Valid only in UI records.

Ul record data item edits - Run edit function on web

UI record data item edits - Run edit function on web defines that the edit
function is to run on the web server where the Ul record run time bean is
deployed.

Definition considerations for Ul record data item edits - Run edit function

on web
When Run edit function on web is defined, the function’s data usage is
strictly limited to the data of the UI record where the function is defined.
When Run edit function on web is not defined, the edit function runs on the
server and can access any of the data available to the program.

Target environments for Ul record data item edits - Run edit function on

web
Environment Compatibility considerations
VM CMS Not supported.
VM batch Not supported.
CICS for Valid only in UI records.
MVS/ESA
MVS/TSO Not supported.

272 VisualAge Generator: Programmer’s Reference

Ul record data item edits - Run edit function on web

Environment Compatibility considerations
MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Sign

Ul record data item edits - Sign defines how the program user enters a sign in
the generated Ul part:

Leading
Accepts on input or displays a plus (+) or a minus (-) sign to the left
of numeric data.

Trailing
Accepts on input or displays a plus (+) or a minus (-) sign to the right
of numeric data.

None Prevents your user from entering a sign with the numeric data.

Definition considerations for Ul record data item edits - Sign
Field length is calculated automatically.

Chapter 6. Ttems 273

Target environments for Ul record data item edits - Sign

Ul record data item edits - Sign

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0OS/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Ul record data item edits - Zero edit

Ul record data item edits - Zero edit displays the value zero in the generated
UI part.

Definition considerations for Ul record data item edits - Zero edit

If Ul record data item edits - Zero Edit is not defined, the value zero is not
displayed in generated UI part.

274 VisualAge Generator: Programmer’s Reference

Target environments for Ul record data item edits - Zero edit

Ul record data item edits - Zero edit

Environment Compatibility considerations
VM CMS Not supported.

VM batch Not supported.

CICS for Valid only in UI records.
MVS/ESA

MVS/TSO Not supported.

MVS batch Not supported.

IMS/VS Valid only in UI records.
IMS BMP Not supported.

CICS for Valid only in UI records.
VSE/ESA

VSE batch Not supported.

CICS for OS/2 Not supported.

0S/400 Valid only in UI records.
0s/2 Valid only in UI records.
AIX Valid only in UI records.
HP-UX Valid only in UI records.
CICS for AIX Valid only in UI records.
Windows NT Valid only in UI records.
(C++)

Windows NT Valid only in UI records.
(Java)

CICS for Valid only in UI records.
Windows NT

Solaris Valid only in UI records.

CICS for Solaris

Valid only in UI records.

Test Facility

Valid only in UI records.

Chapter 6. Items

275

Ul record data item edits - Zero edit

276 VisualAge Generator: Programmer’s Reference

Chapter 7. Program specification block

A program specification block (PSB) is a formal DL/I description of the
hierarchical database structures a program can access. VisualAge Generator
uses the PSB definition to build and validate DL/I calls for I/O functions that
access records in DL/I databases. The PCBs are listed in the VisualAge
Generator PSB in the same order that they appear in the actual DL/I or IMS
PSB definition to be used with the program. The PSB structure also identifies
the PCBs used for terminal, printer, and message queue support in the
IMS/VS and IMS BMP environments.

VisualAge Generator supports the definition of a part that contains a subset of
the information in the DL/I PSB. The PSB definition describes the hierarchical
relationship between types of segments.

A PSB is made up of program communication blocks (PCBs). You define the
PSB by defining its PCBs.

Program specification block elements

Table 14. Program specification block elements

o
& =) i s
8 Qo o =
=)
7 o
Element SE 54
| & =
ol | = =l wl 92 zl z| |8z |2
2512 23 o 5 S 2 gl _|tlt Sl 2l gl |9t |%
Gl & Y| R 2 & O & 9 glB |5 x| O| 8| 8| 2| 2|8 |&
DD D H o omowm Y FEIT| Y = 2 2| & BT |-
EE>>>EEmmmu§.~.—mﬁmﬁ._‘..—(—d—d.ng
> > 2| 2| 2| & &> > OO X | O] «| | <| | 2| A B |~
Program clcl|lcl|lclclc]|ec X
specification
block
Program clc|lcl|lclcl|lc]|ec X
communicgtion
block
Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.

© Copyright TBM Corp. 1980, 2000 277

Table 14. Program specification block elements (continued)

S
—_
] = I g
; ° ° 2
[92]
7 o
Element %"e‘;‘ o
| B =
dalol gl |ololelsl B2 2l g 2
[72] - ol O -
S| 25| 2 & o 2| 8| E O] o|E |2 Ol gl 2 Ll YE T
Ul m = ZmUm 8le | o Xl Ol | | & &2l | =
DD D F oo wm owm Y FE|IT| L = B2 R BT |-
S| 22l 22| S8 5 8| g B|E (S| 2| B B EE S GE|L
Sl > 2| 2| 2| & & > > OO |0 < T| <| 2| 2| &| B2 |~

Note: In this table, the following characters are used to indicate the level of support:
b Supported

c Supported with compatibility considerations

blank Not supported

Program communication block (PCB)

A PCB is an entry in a PSB that describes the segment within one hierarchical
database, IMS message queues, or GSAM databases.
Uses
You can specify the following information when defining PCBs:
PCB number
The number of the PCB you are defining. The PCB number is

calculated by VisualAge Generator, based on the placement of the
PCB within the PSB.

The number identifies which PCB in the PSB is to be used when the
database name appears in more than one PCB in the PSB definition.

Type There are three types of PCBs: database (DB); generalized sequential
access method (GSAM); and teleprocessing (TP).

The three types of PCBs are described under

7

Database
A 1- to 8-character name of the database used with the PSB. The
database name is required for DB and GSAM PCBs, but cannot be
specified with TP PCBs.

When you specify a new database, you signal the start of a new PCB
in the PSB.

278 VisualAge Generator: Programmer’s Reference

Program Communication Block (PCB)

You can also specify ELAMSG or ELAWORK as the name of the
database. ELAMSG and ELAWORK represent message and work
databases used with Server for MVS, VSE, and VM to run the
program. If you specify ELAMSG or ELAWORK as the name of the
database, do not specify a segment or index key.

Segment
A 1- to 8-character name for the segment in the database. The segment
name must be the same as the name in the DL/I PSB.

Note: Before you can access the segment in a program, you must
define the segment as a record with the DL/I segment
organization.

Parent A 1- to 8-character name of the segment that is the parent of this
segment in the database. The parent/segment relationship (hierarchy)
must be the same as in the DL/I PSB.

If the segment is the root segment in a PCB structure, the parent name
is blank.

Index key
A 1- to 8-character name for the secondary index key field.

If you want the program to access the database through a secondary
index (the PCB in the DL/I PSB has a PROCSEQ keyword specified),
you must name the secondary index key.

The index key must be the name of a data item you have defined in a
segment.

The data item name must be the same as the name specified for the
secondary index field in the DL/I database description (NAME
keyword in the XDFLD statement). The data item length must be the
same as the length of the field defined in the XDFLD statement.

Definition considerations for PCBs

You can pass individual PCBs on a call. This enables you to define a program
with a PSB and call the program from other programs that have different PSB
structures. You use the special function word EZEDLPCB, subscripted with
the PCB number to be passed, on the CALL statement.

The following describes the three types of PCBs:

Database (DB) PCB
Each DB PCB describes one hierarchical data structure that a program
can use. The data structure might correspond directly to the structure
of a physical or logical DL/I database or might invert the database
structure through access by a secondary index.

Chapter 7. Program specification block 279

Program Communication Block (PCB)

If the database is accessed using a secondary index, the first line must
contain the PCB type (DB), the database name, the name of the root
segment, and the name of the index field.

One line is specified for each SENSEG segment defined for the
database PCB in the DL/I or IMS Program Specification Block. Each
SENSEG line specifies a segment name and parent name in the same
order that they appear in the PSB. If the segment is the root segment
(no parent) in a PCB structure, the database name is specified, and the
parent name is left blank.

For more information on DB PCBs, refer to “Developing DL/I
Programs” in VisualAge Generator Design Guide

Generalized Sequential Access Method (GSAM) PCB
Each GSAM PCB represents a generalized sequential access method
(GSAM) database in an IMS Program Specification Block.

The database name is the only field that can be specified for a GSAM
PCB. GSAM PCBs appear last in the PSB definition.

Teleprocessing (TP) PCB
Each TP PCB represents an alternate PCB in an IMS Program
Specification Block. The alternate PCB represents a terminal, printer,
or message queue in the IMS environment.

There is one line in the list for each teleprocessing PCB. TP PCBs
appear first in the PSB definition.

A TP PCB must not be specified for PCB zero, which is the main 1/O
PCB. This PCB is not specified in the IMS PSB definition.

TP PCBs are not used in non-IMS environments but can be included if
the program using the PSB is to be generated for both IMS and
non-IMS environments.

Target environments for PCBs

Environment Compatibility considerations

VM CMS Not supported.

VM batch Not supported.

CICS for The 1/0, teleprocessing (TP), and GSAM PCBs cannot be referenced
MVS/ESA in the CICS environment with the EZEDLPCB special function

word, or the CSPTDLI service routine.

When database (DB) PCBs are accessed using the EZEDLPCB
special function word or the CSPTDLI service routine, the PCB
number should be specified using the PCB number from the PSB
definition.

280 VisualAge Generator: Programmer’s Reference

Program Communication Block (PCB)

Environment

Compatibility considerations

MVS/TSO

The IMS PSB definition must be generated with the CMPAT=YES
option specified on the PSBGEN macro. The TP PCBs are ignored.

At least two PCBs are needed in the PSB so the COBOL program
can determine whether it is being started by the IMS control region
or through an XCTL from a non-VisualAge Generator program
passing working storage and the EZEDLPSB parameter.

MVS batch

Same as MVS/TSO.

IMS/VS

The IMS PSB generated for use with a main transaction program
must have the same name as the COBOL program load module for
the program. The default name for the load module is the program
name.

The definition for the IMS PSB must match the definition of the PSB
part PCB for PCB, except for the PSB name and the database names.

The first TP PCB must be a modifiable alternate PCB, to be used for
switching transactions. The second TP PCB must be a modifiable
express alternate PCB, to be used for diagnostic information. These
two TP PCBs are required. Additional modifiable or not modifiable
alternate or express alternate PCBs can follow.

Database PCBs must be included in the PSB for the VisualAge
Generator Server for MVS, VSE, and VM work database
(ELAWORK) if a DL/I implementation of this database is used. The
work database is indicated in the PSB by database name only and
does not require a line for each segment.

IMS BMP

The IMS PSB definition must be generated with the CMPAT=YES
option specified on the PSBGEN macro. The TP PCBs are used to
access the message queues as serial files.

Programs that read input from the I/O PCB are transaction-oriented
BMPs. Programs that do not read input from the I/O PCB are
batch-oriented BMPs.

The requirements defined for the two TP PCBs for the IMS/VS
environment also apply.

CICS for
VSE/ESA

Same as CICS for MVS/ESA.

Chapter 7. Program specification block 281

Program Communication Block (PCB)

Environment

Compatibility considerations

VSE batch

DL/I DOS/VS does not support definition of PSBs with
teleprocessing (TP) or GSAM PCBs. If a PSB with teleprocessing
PCBs will be used in the same program on both MVS and VSE
systems, the DL/I DOS/VS PSB should omit the TP and GSAM
PCBs.

When using a language element which requires specifying a PCB by
number (such as EZEDLPCB or CSPTDLI), always use the PCB
number for the PCB as it is defined in the PSB part. The VisualAge
Generator Developer adjusts the number you specify to account for
the TP and GSAM PCBs not being included in the DL/I DOS/VS
PSB.

CICS for OS/2

Not supported.

0S/400

Not supported.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) Not supported.
AIX Not supported.
HP-UX Not supported.
CICS for AIX Not supported.
Windows NT Not supported.
(C++)

Windows NT Not supported.
(Java)

CICS for Not supported.
Windows NT

Solaris Not supported.

CICS for Solaris

Not supported.

Test Facility

None.

282 VisualAge Generator: Programmer’s Reference

Chapter 8. Maps

A map is a format specification for a character-based user interface on a
terminal or printer. Map specification language elements specify
nonprocedural processing information related to a map.

Map specification enables you to define options such as the size and position
of a map. The map size is the number of lines and columns of a map. The
map position is the position where the map starts on a device. Other options
in map specification include items such as whether to fold input to uppercase,
the name of the help map, and which key is the help key.

Map elements

Table 15. Map elements

o
— +
) = i g
o Q o =
@)
=)
3 O
Element %E o
z | =
n < =l wl |92 z| z Olz | &
U)"SBO-‘E magu*m*m amm am:
= 20| 2| & o 2 Bl 5| 5|2 |2 9l 3| = 2|3
Ul m 5 | RO SR x| Ol 8| 2| 2| zgle |<
D B D Flonl @l wm o FT T] S8 R ORIT o
22>>>22mwaa£.saﬁiﬁ.s.sgs.sg
> > 2| 2| 2| g|& > > OO |2 | O|<| T 4|2 2| | 0| |~
Bypass edit | x X | c C X X | x X [x| x| x|x| x| x]|x X
keys
Device X | x|[x|x|x|c|c|x]|x|c]|c clc|lclc|c|lc]c|ec X
selection
Floating X | x|x|x|x|clc|x|x]|x]|x clc|c|c|c|lc|c|c X
area
Floating X[x| x| x| x|c|x|x|x|x]|x X [X| x| x| x| x| x| x X
map
Initial X X | X X X X | x X [x| x| x|x| x| x]|x X
cursor field
Help key X x| c c X X | x XX | x| x|[x|x]|x]|x X
Help map | x X | x X X X | x X | x| x| x|x|x|x]x X
name

© Copyright TBM Corp. 1980, 2000 283

Table 15. Map elements (continued)

5
—
] =) b g
8 Q @] =
= 9}
7 o
Element % E o
- = n|E=
dolo gl ol asle B J25 ok e
[72] -] @])))) 0 | =
S| 25| 2 & ol 2| B E|5|o|E |E Ol gl g | YE|T
Ul m = >| Al U M 8le | e Xl Ol el & .2 2o |
0D 2 Blel w owm QIEI|T| Q= 2| < E B E EE| =
E E >l 2| > 2 E N | Nl A= |= (7)) 5 =W 5 ot | e '—o' '—o' o 8
> > 2| 2| 2| &|&] »| >| 0|02 |2 | O|l«| | <| | B| & ®|Z |F
Map group | X | X [X | x | x | x [x| x| x| X |x X[x| x| x|[x|x|x]|x X
Map name | x | x [x| X [x | X [x| X | x| X |x X[x| x| x|[x|x|x]|x X
Map X | x|[x| x| x| x|x|x|x|x]|c X[x| x| x|[x|x|x]|x X
position
Map size X | x[x|x|x|c|x|x|x]|x|x X[x| x| x|[x|x|x]|x X
SO/Sltake | c|c|c|c|clclclclclclc clc|lclc|c|lcl|c|c C
position
Variable X cl x C C c | x clc|lc|lcl|lc|lc|lc|c X
field folding
Note: *Includes Windows 95 and Windows 98, Windows NT, and Windows 2000.
Legend: In this table, the following characters are used to indicate the level of support:
X Supported
c Supported with compatibility considerations
blank Not supported

Bypass edit keys

Bypass edit keys enable the program user to bypass map edits and map edit
routines.

Uses
You can specify up to five function keys as bypass edit keys. PA keys are
treated as bypass edit keys in a generated program.

When the program user presses a bypass edit key, data is not passed to the
program and the program continues processing at the statement following the

terminal I/O function (either the first map or an I/O option).

The data on the map is not saved when the program user presses a bypass
edit key.

284 VisualAge Generator: Programmer’s Reference

Bypass edit keys

During program specification you can specify bypass edit keys to be used as
defaults for all the maps used by a program. The bypass edit keys you define
for the map override the default specification. For example, if you specify
three keys to be bypass edit keys, but you only specify one bypass edit key on
the map you define, only that key can be used for that map.

Note: You cannot have a function key be both a bypass edit key and the help
key.

Target environments for Bypass edit keys

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO PF6 is reserved for a panel recovery function in this environment.
Pressing PF6 is treated as pressing the Clear key. The PF key value
is not passed back to the program. Avoid using PF6 in this
environment.

MVS batch Not supported.

IMS/VS IMS reserves the PA keys so they cannot be the default bypass edit
keys. A specific PF key must be defined if the program user is
allowed to bypass edits.

If your installation uses PF12 for the IMS local copy function, PF12
cannot be used as a bypass edit key.

IMS BMP Not supported.

CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.

Chapter 8. Maps 285

Bypass edit keys

Environment Compatibility Considerations
Windows NT None.

(C++)

Windows NT Not supported.

(Java)

CICS for None.

Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Device selection

Device selection enables you to specify the devices on which the map can be
displayed or printed.

You must always have at least one device supported at all times.

Definition considerations for Device selection
Many of the device types are supported only for compatibility with previous
products. If you are defining a new map, select Printer (SBCS) or 5550P
(DBCS) for a print map, 5550D for a DBCS terminal map, or an ANY-xx
device with the correct screen size for a single-byte terminal map.

A map group that does not contain any DBCS maps cannot be used in the
same job step with a map group that contains DBCS maps. Make sure that at
least one map in the map group specifies a DBCS device type if you mix
DBCS and non-DBCS maps from different map groups.

Target environments for Device selection

Environment Compatibility Considerations
VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

286 VisualAge Generator: Programmer’s Reference

Device selection

Environment

Compatibility Considerations

IMS/VS

For non-DBCS terminals, only 3270-type terminals are supported. If
non-3270 display devices (3643) are specified, generation builds MFS
definitions for 3270 devices with a compatible screen size.

The minimum screen size supported is 24 x 80. If maps are defined
with a smaller screen size, generation builds MFS definitions for
3270 devices with a 24 x 80 screen.

The MFSDEV, MFSFEAT, and MFSEATTR generation options should
be set up to specify the device characteristics for different device
types at your installation.

IMS BMP

If you specify the MSP(MFS) or MSP(ALL) generation option, the
considerations are the same as IMS/VS. Otherwise there are no
compatibility considerations.

CICS for
VSE/ESA

None.

VSE batch

None.

CICS for OS/2

CICS OS/2 3270 emulation can display maps on the workstation
screen, in a window, or on an ASCII terminal attached to the
workstation as specified in the CICS OS/2 Terminal Control Table
(TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

0S/400

The following device types are supported:

ANY-2D 24 x 80 panel
ANY-5D 27 x 132 panel
PRINTER printer

5550D DBCS terminal
5550P DBCS printer

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++)

There is no concept of a Device when generating C++ programs.
The C++ runtime will use the current size of the OS/2 session,
Windows NT (C++) session, or AIX window when running a
program. If the maps are defined with variable fields that wrap on
multiple lines, the program user should define the OS/2 session,
Windows NT (C++) session, or AIX window with the same number
of columns as the map. Otherwise, the wrapping variable fields can
have unpredictable results.

AIX

Same as OS/2 (C++).

Chapter 8. Maps 287

Device selection

Environment

Compatibility Considerations

HP-UX

Same as OS/2 (C++).

CICS for AIX

CICS for AIX 3270 emulation can display maps on the workstation
screen, in a window, or on an ASCII terminal attached to the
RS/6000 as specified in the CICS for AIX Terminal Control Table
(TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Windows NT
(C++)

Same as OS/2 (C++).

Windows NT
(Java)

Not supported.

CICS for
Windows NT

CICS for Windows NT 3270 emulation can display maps on the
workstation screen, in a window, or on an ASCII terminal attached
to the Windows NT (C++) system as specified in the CICS for
Windows NT Terminal Control Table (TCT). The screen dimensions
are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Solaris

Same as OS/2 (C++).

CICS for Solaris

CICS for Solaris 3270 emulation can display maps on the
workstation screen, in a window, or on an ASCII terminal attached
to the RS/6000 as specified in the CICS for Solaris Terminal Control
Table (TCT). The screen dimensions are specified in the TCT entry.

When specifying a display device for a map in map definition,
specify a device with the same screen dimensions specified in the
TCT entry.

Test Facility

None.

Floating area

Floating area is an area within a device display region reserved for displaying
maps defined as floating maps.

Uses

Usually, the floating area is defined with the same depth for all terminals in a
map group. No side-by-side maps are supported. Only one floating area can
be specified for each device in a map group.

The floating area consists of a floating area size and a floating area position.

288 VisualAge Generator: Programmer’s Reference

Floating Area

The following elements must be specified to define a floating area size:
Lines The number of lines in the floating area.

Columns
The number of columns in the floating area.

When a floating map appears, it is written to the next available line in the
floating area defined for the map group. Once the floating area is full, the
program must converse the last map so that all the displayed floating maps
can be seen by the user. If there is not sufficient room in the floating area for
the map, the floating area is erased and the map is positioned in the first line
of the floating area.

The following elements must be specified to define a floating area position:

Starting line
The starting line of the floating area.

Starting column
The starting column of the floating area.

Note: If you specify a value for any one of the elements above, you must
specify a value for all the elements. If these values are left blank, the
entire device is considered as the floating area.

Target environments for Floating area

Environment Compeatibility Considerations

VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS A floating area is valid only for printer maps. A floating area is not
valid for maps defined for display devices.

IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Chapter 8. Maps 289

Floating Area

Environment Compatibility Considerations

Windows Java Not supported.

(GUI)

0S/2 (C++) Only one floating area is used for display maps and only one
floating area is used for printer maps. If different floating areas are
defined for different display or printer types, the definition that is
used depends on the order in which maps were defined, and is
unpredictable. To avoid confusion, specify the same print device for
all printer maps and the same display device for all display maps,
or specify the same floating area for all print devices and the same
floating area for all display devices.

AIX Same as OS/2 (C++).

HP-UX Same as OS/2 (C++).

CICS for AIX Same as OS/2 (C++).

Windows NT Same as OS/2 (C++).

(C++)

Windows NT Not supported.
(Java)

CICS for Same as OS/2 (C++).
Windows NT

Solaris Same as OS/2 (C++).
CICS for Solaris Same as OS/2 (C++).
Test Facility None.

Floating map

When you specify a map as a floating map, you can specify only the size of
the map, not the position. The starting line of the map is “Next” by definition,
meaning the map will occupy the next available line in the floating area. The
starting column of the map is “Same” by definition, meaning the map always
displays in the same column, which is defined by the position of the floating
area.

Definition considerations for Floating map

A floating map is displayed starting at the next available line in the floating
area. If the map will not fit in the remaining available lines, the floating area
is erased and the map is displayed at the top of the floating area.

To ensure that the user sees all floating maps, code your program to issue a

CONVERSE instead of a DISPLAY for the last map that will fit in a floating
area. Maps written with the DISPLAY option do not show up on the screen

290 VisualAge Generator: Programmer’s Reference

Floating map

until the next CONVERSE and will be lost if a subsequent DISPLAY or
CONVERSE causes the floating area to be erased.

When a floating print map is displayed following a fixed print map, a page
eject occurs and the floating map displays in the first line of the floating area.
When a fixed print map is displayed following a floating map, a page eject is
issued before the fixed map is displayed.

Target environments for Floating map

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS A floating map is valid only for printer maps. A floating map is not
valid for maps defined for display devices.

IMS BMP None.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

Chapter 8. Maps 291

Floating map

Environment Compatibility Considerations
CICS for Solaris None.
Test Facility None.

Initial cursor field

The initial cursor field is the field on a map where the cursor appears when
the map is first displayed.

Uses

The default for the initial cursor field is the first named and unprotected
variable field on the map.

Definition considerations for Initial cursor field

To define a variable field as the initial cursor field, select the initial cursor
field attribute for the field where you want the cursor to appear. Alternatively,
from the Define menu in the Map editor, select Field Edit Order, then Show
Tags and place the initial cursor graphical tag on the field you want to
initially set the cursor on. The initial cursor graphical tag is the yellow tag.

At runtime, the SET item CURSOR statement overrides the initial cursor field
previously specified.

Target environments for Initial cursor field

Environment Compatibility Considerations
VM CMS None.

VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch Not supported.
IMS/VS None.

IMS BMP Not supported.
CICS for None.
VSE/ESA

VSE batch Not supported.
CICS for OS/2 None.

0OS/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

292 VisualAge Generator: Programmer’s Reference

Initial cursor field

Environment Compatibility Considerations
Windows Java Not supported.

(GUI)

0S/2 (C++) None.

AIX None.

HP-UX None.

CICS for AIX None.
Windows NT None.

(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.

CICS for Solaris None.

Test Facility None.

Help key
Help key specifies a function key that displays the help map for a map.

Uses

If you do not specify a value for a help key within map definition, the value
specified in program definition is used as the default.

If you specify a help key, you must also specify a help map name.
Target environments for Help key

Environment Compatibility Considerations

VM CMS None.

VM batch Not supported.

CICS for None.

MVS/ESA

MVS/TSO PF6 is reserved for a panel recovery function in this environment. If

you press PF6, it is treated as pressing the Clear key. The PF key
value is not passed back to the program. Avoid using PF6. in this
environment.

MVS batch Not supported.

Chapter 8. Maps 293

Help Key

Environment Compatibility Considerations

IMS/VS If your installation uses PF12 for the IMS local copy function, PF12
cannot be used as a help key.

IMS BMP Not supported.

CICS for None.

VSE/ESA

VSE batch Not supported.

CICS for OS/2 None.

0OS5/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Help map name
Help map name specifies the help map that displays when the user presses
the help key while conversing the map.
Uses
The map must be in the help map group specified for the program. If a help
map group is not specified, the map must reside in the program map group.
Definition considerations for Help map name

A help map is a map defined with the following restrictions:
* A help map cannot have variable fields.
* A help map cannot be a floating map.

294 VisualAge Generator: Programmer’s Reference

Help Map Name
* A help map must be defined for display, not printing.

The screen is always erased prior to the display of a help map.

Target environments for Help map name

Environment Compatibility Considerations
VM CMS None.

VM batch Not supported.
CICS for None.
MVS/ESA

MVS/TSO None.

MVS batch Not supported.
IMS/VS None.

IMS BMP Not supported.
CICS for None.
VSE/ESA

VSE batch Not supported.
CICS for OS/2 None.

0S/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Chapter 8. Maps

295

Map group

Map group

A map group has two different meanings in VisualAge Generator. In one
context, a map group is a logical grouping of maps that are used by a
particular program as I/O objects or help maps. In the other context, a map
group is a part that contains the definition of the floating areas to be used for
the various devices supported by the maps in the map group. In both cases,
the name of the map group is the first part of the two part name that is
specified when saving a map part.

Uses
Maps in a map group can be shared between VisualAge Generator programs.

You specify a map group name in the program to indicate the set of maps
that can be used by the program, either as I/O objects or as the FIRSTMAP.
You can optionally specify a help map group name to indicate the set of help
maps that can be used by the maps displayed by the program.

To define floating areas, open the Map Group Editor and define the floating
areas for each supported device. Any maps in this map group with the device
specified can use the floating areas.

The generated map group is the combination of the executable form of the
maps in the map group, as well as the floating area information required to
properly display floating maps from a program. The map group can be
generated with or separate from the programs in which it is used.

Definition considerations for Map group

Each map within a map group must have a unique name. All maps used in a
program must be in the same map group, except for help maps, which can be
in a separate map group.

The map group name and the map name are separated by a blank. The
format for a map group name is as follows:

Map group name
Naming conventions for map groups:

Maximum length
6

First character
Alphabetic (A-Z)

Other characters
Alphanumeric (A-Z, 0-9)

DBCS name
No

296 VisualAge Generator: Programmer’s Reference

Map group

* The map group name cannot have the same name as the map
* The map group name cannot have the same name as another
program in the MVS library or the same CICS system

The following part name conventions apply to all part types:

* part names cannot begin with the EZE prefix.

* part names cannot contain embedded blanks.

* part names cannot be COBOL reserved words (in COBOL environments)

Target environments for Map group

Environment Compatibility Considerations

VM CMS None.

VM batch None.

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS All maps in a map group are generated in a single MFS message

input description (MID) or message output description (MOD) per
device. If you have a large map group, it can exceed the 32K size
limit for MFS control blocks. For more information on estimating the
size, refer to the Design Guide document.

IMS BMP If you specify the MSP(MFS) or the MSP(ALL) generation option,
the IMS/VS compatibility considerations apply. Otherwise, there are
no compatibility considerations.

CICS for None.
VSE/ESA

VSE batch None.
CICS for OS/2 None.
0S/400 None.

Windows-OS/2 Not supported.
Smalltalk (GUI)

Windows Java Not supported.

(GUI)

0S/2 (C++) None.
AIX None.
HP-UX None.

CICS for AIX None.

Windows NT None.
(C++)

Chapter 8. Maps 297

Map group

Environment Compatibility Considerations

Windows NT Not supported.

(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Map name

Map name specifies the unique name of a map that is used to define the
layout and characteristics of information to be presented on a screen or
printed report.

Definition considerations for Map name
The format for map name is as follows:

Map name
Naming conventions for maps:

Maximum length
8

First character
Alphabetic (A-Z) or one of the valid national characters for
your workstation

Other characters
Alphanumeric (A-Z, 0-9), or one of the valid national
characters for your workstation

DBCS name
No

The following part name conventions apply to all part types:

* part names cannot begin with the EZE prefix.

* part names cannot contain embedded blanks.

* part names cannot be COBOL reserved words (in COBOL environments)

Target environments for Map name

Environment Compatibility Considerations
VM CMS None.
VM batch None.

298 VisualAge Generator: Programmer’s Reference

Map name

Environment Compatibility Considerations

CICS for None.

MVS/ESA

MVS/TSO None.

MVS batch None.

IMS/VS All maps in a map group are generated in a single MFS message
input description (MID) or message output description (MOD) per
device. If you have a large map group, it can exceed the 32K size
limit for MFS control blocks. For more information on estimating the
size, refer to the Design Guide document.

IMS BMP If you specify the MSP(MFS) or the MSP(ALL) generation option,
the IMS/VS compatibility considerations apply. Otherwise, there are
no compatibility considerations.

CICS for None.

VSE/ESA

VSE batch None.

CICS for OS/2 None.

0S5/400 None.

Windows-OS/2
Smalltalk (GUI)

Not supported.

Windows Java
(GUI)

Not supported.

0S/2 (C++) None.
AIX None.
HP-UX None.
CICS for AIX None.
Windows NT None.
(C++)

Windows NT Not supported.
(Java)

CICS for None.
Windows NT

Solaris None.
CICS for Solaris None.
Test Facility None.

Chapter 8. Maps 299

Map position

Map position

Uses

Map position specifies the starting position on a device using a line and
column coordinate.

The default is line 1 column 1 (upper left corner).

You can specify the following:

Starting line
The row on the device where the map begins.

Starting column

The column on the device where the map begins.

If you specify a Floating map, you cannot specify a starting line or starting
column. The starting line is set to Next and the starting column is set to Same.

Definition considerations for Map position

If the position and size of the partial maps (maps smaller than the device size)
permit each map to display in a different set of rows on the screen, then
partial maps can share the same device.

If one fixed map overlaps another perfectly, the screen is not erased. To
overlap perfectly, both maps must be the same size and start in the same
position.

If one fixed map overlaps another imperfectly, the screen is erased. Even if a
map is positioned in the same rows (side-by-sid